Derivada fracionária e as funções de Mittag-Leffler
Daniela dos Santos de Oliveira
DISSERTAÇÃO
T/UNICAMP OL4d
[Fractional derivative and the Mittag-Leffler functions]
Campinas, SP : [s.n.], 2014.
106 p. : il.
Orientador: Edmundo Capelas de Oliveira
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Resumo: Neste trabalho apresentamos um estudo sobre as funções de Mittag-Leffler de um, dois e três parâmetros. Apresentamos a função de Mittag-Leffler como uma generalização da função exponencial bem como a relação que esta possui com outras funções especiais, tais como as funções beta, gama, gama...
Ver mais
Resumo: Neste trabalho apresentamos um estudo sobre as funções de Mittag-Leffler de um, dois e três parâmetros. Apresentamos a função de Mittag-Leffler como uma generalização da função exponencial bem como a relação que esta possui com outras funções especiais, tais como as funções beta, gama, gama incompleta e erro. Abordamos, também, a integração fracionária que se faz necessária para introduzir o conceito de derivação fracionária. Duas formulações para a derivada fracionária são estudadas, as formulações proposta por Riemann-Liouville e por Caputo. Investigamos quais regras clássicas de derivação são estendidas para estas formulações. Por fim, como uma aplicação, utilizamos a metodologia da transformada de Laplace para resolver a equação diferencial fracionária associada ao problema do oscilador harmônico fracionário
Ver menos
Abstract: This work presents a study about the one- two- and three-parameters Mittag-Leffler functions. We show that the Mittag-Leffler function is a generalization of the exponential function and present its relations to other special functions beta, gamma, incomplete gamma and error functions. We...
Ver mais
Abstract: This work presents a study about the one- two- and three-parameters Mittag-Leffler functions. We show that the Mittag-Leffler function is a generalization of the exponential function and present its relations to other special functions beta, gamma, incomplete gamma and error functions. We also approach fractional integration, which is necessary to introduce the concept of fractional derivatives. Two formulations for the fractional derivative are studied, the formulations proposed by Riemann-Liouville and by Caputo. We investigate which classical derivatives rules can be extended to these formulations. Finally, as an application, using the Laplace transform methodology, we discuss the fractional differential equation associated with the harmonic oscillator problem
Ver menos
Oliveira, Edmundo Capelas de, 1952-
Orientador
Camargo, Rubens de Figueiredo
Avaliador
Vaz, Jayme Morandi, 1964-
Avaliador
Derivada fracionária e as funções de Mittag-Leffler
Daniela dos Santos de Oliveira
Derivada fracionária e as funções de Mittag-Leffler
Daniela dos Santos de Oliveira
Exemplares
Nº de exemplares: 2
Não existem reservas para esta obra