Terminal de consulta web

Anomaly detection in hyperspectral images via regularization by denoising

Anomaly detection in hyperspectral images via regularization by denoising

Mauro Luiz Brandão Junior, Victor Carneiro Lima , Thomás Antônio Portugal Pereira Teixeira, Eduardo Rodrigues de Lima, Renato da Rocha Lopes

ARTIGO

Inglês

Agradecimentos: This work was supported in part by the R&D Project PD-07130-0062/2020 "Predictive Failure Analysis by Artificial Intelligence," funded by Transmissora Aliança de Energia Elétrica SA (TAESA) with resources from ANEEL R&D Program, and in part by the National Council for Scientific and... Ver mais

Acompanhado de errata

Abstract: In a recent work, Fu et al. (2021) proposed an anomaly detector (AD) for hyperspectral images called DeCNN-AD, which decomposes the image in a low rank representation of the background and the anomalies. DeCNN-AD is regularized by an implicit plug and play prior (PnP), providing... Ver mais

CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQ

305480/2018-9

Aberto

Anomaly detection in hyperspectral images via regularization by denoising

Mauro Luiz Brandão Junior, Victor Carneiro Lima , Thomás Antônio Portugal Pereira Teixeira, Eduardo Rodrigues de Lima, Renato da Rocha Lopes

										

Anomaly detection in hyperspectral images via regularization by denoising

Mauro Luiz Brandão Junior, Victor Carneiro Lima , Thomás Antônio Portugal Pereira Teixeira, Eduardo Rodrigues de Lima, Renato da Rocha Lopes

    Fontes

    IEEE journal of selected topics in applied Earth observations and remote sensing

    v. 15, p. 8256-8265, Sept. 2022