Multi-objective optimization based on a multi-criteria estimation of distribution [recurso eletrônico] = Otimização multiobjetivo com estimação de distribuição guiada por tomada de decisão multicritério
Pedro Mariano Sousa Bezerra
DISSERTAÇÃO
Inglês
T/UNICAMP So85m
[Otimização multiobjetivo com estimação de distribuição guiada por tomada de decisão multicritério]
Campinas, SP : [s.n.], 2018.
1 recurso online (79 p.) : il., digital, arquivo PDF.
Orientadores: Fernando José Von Zuben, Guilherme Palermo Coelho
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Resumo: Considerando as meta-heurísticas estado-da-arte para otimização multiobjetivo (MOO, do inglês Multi-Objective Optimization), como NSGA-II, NSGA-III, SPEA2 e SMS-EMOA, apenas um critério de preferência por vez é levado em conta para classificar soluções ao longo do processo de busca. Neste...
Ver mais
Resumo: Considerando as meta-heurísticas estado-da-arte para otimização multiobjetivo (MOO, do inglês Multi-Objective Optimization), como NSGA-II, NSGA-III, SPEA2 e SMS-EMOA, apenas um critério de preferência por vez é levado em conta para classificar soluções ao longo do processo de busca. Neste trabalho, alguns dos critérios de seleção adotados por esses algoritmos estado-da-arte, incluindo classe de não-dominância e contribuição para a métrica de hipervolume, são utilizados em conjunto por uma técnica de tomada de decisão multicritério (MCDM, do inglês Multi-Criteria Decision Making), mais especificamente o algoritmo TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), responsável por ordenar todas as soluções candidatas. O algoritmo TOPSIS permite o uso de abordagens baseadas em múltiplas preferências, ao invés de apenas uma como na maioria das técnicas híbridas de MOO e MCDM. Cada preferência é tratada como um critério com uma importância relativa determinada pelo tomador de decisão. Novas soluções candidatas são então amostradas por meio de um modelo de distribuição, neste caso uma mistura de Gaussianas, obtido a partir da lista ordenada de soluções candidatas produzida pelo TOPSIS. Essencialmente, um operador de roleta é utilizado para selecionar um par de soluções candidatas de acordo com o seu mérito relativo, adequadamente determinado pelo TOPSIS, e então uma novo par de soluções candidatas é gerado a partir de perturbações Gaussianas centradas nas correspondentes soluções candidatas escolhidas. O desvio padrão das funções Gaussianas é definido em função da distância das soluções no espaço de decisão. Também foram utilizados operadores para auxiliar a busca a atingir regiões potencialmente promissoras do espaço de busca que ainda não foram mapeadas pelo modelo de distribuição. Embora houvesse outras opções, optou-se por seguir a estrutura do algoritmo NSGA-II, também adotada no algoritmo NSGA-III, como base para o método aqui proposto, denominado MOMCEDA (Multi-Objective Multi-Criteria Estimation of Distribution Algorithm). Assim, os aspectos distintos da proposta, quando comparada com o NSGA-II e o NSGA-III, são a forma como a população de soluções candidatas é ordenada e a estratégia adotada para gerar novos indivíduos. Os resultados nos problemas de teste ZDT mostram claramente que nosso método é superior aos algoritmos NSGA- II e NSGA-III, e é competitivo com outras meta-heurísticas bem estabelecidas na literatura de otimização multiobjetivo, levando em conta as métricas de convergência, hipervolume e a medida IGD
Ver menos
Abstract: Considering the state-of-the-art meta-heuristics for multi-objective optimization (MOO), such as NSGA-II, NSGA-III, SPEA2 and SMS-EMOA, only one preference criterion at a time is considered to properly rank candidate solutions along the search process. Here, some of the preference criteria...
Ver mais
Abstract: Considering the state-of-the-art meta-heuristics for multi-objective optimization (MOO), such as NSGA-II, NSGA-III, SPEA2 and SMS-EMOA, only one preference criterion at a time is considered to properly rank candidate solutions along the search process. Here, some of the preference criteria adopted by those state-of-the-art algorithms, including non-dominance level and contribution to the hypervolume, are taken together as inputs to a multi-criteria decision making (MCDM) strategy, more specifically the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), responsible for sorting all candidate solutions. The TOPSIS algorithm allows the use of multiple preference based approaches, rather than focusing on a particular one like in most hybrid algorithms composed of MOO and MCDM techniques. Here, each preference is treated as a criterion with a relative relevance to the decision maker (DM). New candidate solutions are then generated using a distribution model, in our case a Gaussian mixture model, derived from the sorted list of candidate solutions produced by TOPSIS. Essentially, a roulette wheel is used to choose a pair of the current candidate solutions according to the relative quality, suitably determined by TOPSIS, and after that a new pair of candidate solutions is generated as Gaussian perturbations centered at the corresponding parent solutions. The standard deviation of the Gaussian functions is defined in terms of the parents distance in the decision space. We also adopt refreshing operators, aiming at reaching potentially promising regions of the search space not yet mapped by the distribution model. Though other choices could have been made, we decided to follow the structural conception of the NSGA-II algorithm, also adopted in the NSGA-III algorithm, as basis for our proposal, denoted by MOMCEDA (Multi-Objective Multi-Criteria Estimation of Distribution Algorithm). Therefore, the distinctive aspects, when compared to NSGA-II and NSGA-III, are the way the current population of candidate solutions is ranked and the strategy adopted to generate new individuals. The results on ZDT benchmarks show that our method is clearly superior to NSGA-II and NSGA-III, and is competitive with other wellestablished meta-heuristics for multi-objective optimization from the literature, considering convergence to the Pareto front, hypervolume and IGD as performance metrics
Ver menos
Requisitos do sistema: Software para leitura de arquivo em PDF
Von Zuben, Fernando José, 1968-
Orientador
Coelho, Guilherme Palermo, 1980-
Coorientador
Krohling, Renato Antonio
Avaliador
Boccato, Levy, 1986-
Avaliador
Multi-objective optimization based on a multi-criteria estimation of distribution [recurso eletrônico] = Otimização multiobjetivo com estimação de distribuição guiada por tomada de decisão multicritério
Pedro Mariano Sousa Bezerra
Multi-objective optimization based on a multi-criteria estimation of distribution [recurso eletrônico] = Otimização multiobjetivo com estimação de distribuição guiada por tomada de decisão multicritério
Pedro Mariano Sousa Bezerra