A divide-and-conquer clustering approach based on optimum-path forest [recurso eletrônico] = Uma abordagem de agrupamento baseada na técnica de divisão e conquista e floresta de caminhos ótimos
Adán Echemendía Montero
DISSERTAÇÃO
Português
T/UNICAMP Ec43d
[Uma abordagem de agrupamento baseada na técnica de divisão e conquista e floresta de caminhos ótimos]
Campinas, SP : [s.n.], 2018.
1 recurso online (109 p.) : il., digital, arquivo PDF.
Orientador: Alexandre Xavier Falcão
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Resumo: O agrupamento de dados é um dos principais desafios em problemas de Ciência de Dados. Apesar do seu progresso científico em quase um século de existência, algoritmos de agrupamento ainda falham na identificação de grupos (clusters) naturalmente relacionados com a semântica do problema....
Ver mais
Resumo: O agrupamento de dados é um dos principais desafios em problemas de Ciência de Dados. Apesar do seu progresso científico em quase um século de existência, algoritmos de agrupamento ainda falham na identificação de grupos (clusters) naturalmente relacionados com a semântica do problema. Ademais, os avanços das tecnologias de aquisição, comunicação, e armazenamento de dados acrescentam desafios cruciais com o aumento considerável de dados, os quais não são tratados pela maioria das técnicas. Essas questões são endereçadas neste trabalho através da proposta de uma abordagem de divisão e conquista para uma técnica de agrupamento única em encontrar um grupo por domo da função de densidade de probabilidade dos dados --- o algoritmo de agrupamento por floresta de caminhos ótimos (OPF - Optimum-Path Forest). Nesta técnica, amostras são interpretadas como nós de um grafo cujos arcos conectam os $k$-vizinhos mais próximos no espaço de características. Os nós são ponderados pela sua densidade de probabilidade e um mapa de conexidade é maximizado de modo que cada máximo da função densidade de probabilidade se torna a raiz de uma árvore de caminhos ótimos (grupo). O melhor valor de $k$ é estimado por otimização em um intervalo de valores dependente da aplicação. O problema com este método é que um número alto de amostras torna o algoritmo inviável, devido ao espaço de memória necessário para armazenar o grafo e o tempo computacional para encontrar o melhor valor de $k$. Visto que as soluções existentes levam a resultados ineficazes, este trabalho revisita o problema através da proposta de uma abordagem de divisão e conquista com dois níveis. No primeiro nível, o conjunto de dados é dividido em subconjuntos (blocos) menores e as amostras pertencentes a cada bloco são agrupadas pelo algoritmo OPF. Em seguida, as amostras representativas de cada grupo (mais especificamente as raízes da floresta de caminhos ótimos) são levadas ao segundo nível, onde elas são agrupadas novamente. Finalmente, os rótulos de grupo obtidos no segundo nível são transferidos para todas as amostras do conjunto de dados através de seus representantes do primeiro nível. Nesta abordagem, todas as amostras, ou pelo menos muitas delas, podem ser usadas no processo de aprendizado não supervisionado, sem afetar a eficácia do agrupamento e, portanto, o procedimento é menos susceptível a perda de informação relevante ao agrupamento. Os resultados mostram agrupamentos satisfatórios em dois cenários, segmentação de imagem e agrupamento de dados arbitrários, tendo como base a comparação com abordagens populares. No primeiro cenário, a abordagem proposta atinge os melhores resultados em todas as bases de imagem testadas. No segundo cenário, os resultados são similares aos obtidos por uma versão otimizada do método original de agrupamento por floresta de caminhos ótimos
Ver menos
Abstract: Data clustering is one of the main challenges when solving Data Science problems. Despite its progress over almost one century of research, clustering algorithms still fail in identifying groups naturally related to the semantics of the problem. Moreover, the advances in data acquisition,...
Ver mais
Abstract: Data clustering is one of the main challenges when solving Data Science problems. Despite its progress over almost one century of research, clustering algorithms still fail in identifying groups naturally related to the semantics of the problem. Moreover, the advances in data acquisition, communication, and storage technologies add crucial challenges with a considerable data increase, which are not handled by most techniques. We address these issues by proposing a divide-and-conquer approach to a clustering technique, which is unique in finding one group per dome of the probability density function of the data --- the Optimum-Path Forest (OPF) clustering algorithm. In the OPF-clustering technique, samples are taken as nodes of a graph whose arcs connect the $k$-nearest neighbors in the feature space. The nodes are weighted by their probability density values and a connectivity map is maximized such that each maximum of the probability density function becomes the root of an optimum-path tree (cluster). The best value of $k$ is estimated by optimization within an application-specific interval of values. The problem with this method is that a high number of samples makes the algorithm prohibitive, due to the required memory space to store the graph and the computational time to obtain the clusters for the best value of $k$. Since the existing solutions lead to ineffective results, we decided to revisit the problem by proposing a two-level divide-and-conquer approach. At the first level, the dataset is divided into smaller subsets (blocks) and the samples belonging to each block are grouped by the OPF algorithm. Then, the representative samples (more specifically the roots of the optimum-path forest) are taken to a second level where they are clustered again. Finally, the group labels obtained in the second level are transferred to all samples of the dataset through their representatives of the first level. With this approach, we can use all samples, or at least many samples, in the unsupervised learning process without affecting the grouping performance and, therefore, the procedure is less likely to lose relevant grouping information. We show that our proposal can obtain satisfactory results in two scenarios, image segmentation and the general data clustering problem, in comparison with some popular baselines. In the first scenario, our technique achieves better results than the others in all tested image databases. In the second scenario, it obtains outcomes similar to an optimized version of the traditional OPF-clustering algorithm
Ver menos
Requisitos do sistema: Software para leitura de arquivo em PDF
A divide-and-conquer clustering approach based on optimum-path forest [recurso eletrônico] = Uma abordagem de agrupamento baseada na técnica de divisão e conquista e floresta de caminhos ótimos
Adán Echemendía Montero
A divide-and-conquer clustering approach based on optimum-path forest [recurso eletrônico] = Uma abordagem de agrupamento baseada na técnica de divisão e conquista e floresta de caminhos ótimos
Adán Echemendía Montero