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Abstract

This work is divided between two main areas: in the theory of multialgebras, we focus mostly

on a new definition of what a freely generated object should be in their category, and on how

this category is equivalent to another with partially ordered algebras as objects; we then use non-

deterministic semantics, specially those we have named restricted Nmatrices, on paraconsistent

logics and some systems dealing with a new presentation of the natural concept of incompati-

bility, which generalizes inconsistency.

In algebra, we will focus on the non-deterministic ones, also known as multialgebras,

whose operations return non-empty subsets of their universes. While the category of algebras

over a signature has freely generated objects, which in a sense permit for the unique extension of

functions to homomorphisms, the category of multialgebras over a given signature does not have

elements with comparable properties. To circumvent this problem, we widen our understanding

of algebras of formulas: if a multialgebra generalizes an algebra by having multiple results for a

given operation, a multialgebra of formulas should generalize an algebra of formulas by having

multiple possibilities for applying a connective to given formulas. Concerning the category of

multialgebras itself, we offer an equivalence between it and a category avoiding non-determinism

altogether, relying instead on ordered Boolean-like algebras as objects.

On the part devoted to logic, our goals are again roughly twofold: firstly, some logics

of formal inconsistency, exempli gratia those found in da Costa’s hierarchy, cannot be charac-

terized by finite Nmatrices. In what is a very natural development, a restricted Nmatrix (or

RNmatrix) restricts those homomorphisms to be taken into consideration when evaluating the

validity of a deduction according to an Nmatrix. We show how this distinction gives far greater

expressiveness to finite RNmatrices, enough to adequately characterize da Costa’s systems and

provide decision methods for those logics, both based on row-branching, row-eliminating truth

tables, and tableau semantics. In another direction, we generalize logics of formal inconsistency

to new systems built around the notion of incompatibility: the Leitmotiv being that having two

incompatible formulas to simultaneously hold trivializes a deduction, and as a special case, a

formula is consistent when it is incompatible with its negation. We show how this notion ex-

tends that of inconsistency in a non-trivial way, presenting conservative translations for many

simple inconsistent systems into logics of incompatibility; we also provide semantics built on

RNmatrices for these new logics, and prove that they can not be characterized by more standard

methods.

Keywords: Non-classical mathematical logic; Paraconsistent logic; Algebraic logic;

Inconsistency (Logic); Universal algebra.



Resumo

Este trabalho está dividido entre duas grandes áreas: na teoria de multiálgebras, focamos ma-

joritariamente em uma nova definição do que um objeto livremente gerado deveria ser em sua

categoria e em como esta categoria é equivalente a outra com álgebras parcialmente ordenadas

como objetos; então usamos semânticas não-determinísticas, especialmente aquela que nome-

amos Nmatrizes restritas, nas lógicas paraconsistentes e em alguns sistemas lidando com uma

nova apresentação do conceito natural de incompatibilidade, que generaliza o conceito de in-

consistência.

Em álgebra, nos focaremos nas não-determinísticas, também conhecidas como mul-

tiálgebras, cujas operações retornam subconjuntos não vazios de seus universos. Enquanto a

categoria de álgebras sobre uma assinatura possui objetos livremente gerados, os quais permi-

tem em certo sentido a extensão única de funções a homomorfismos, a categoria de multiálgebras

sobre uma assinatura dada não possui elementos com propriedades comparáveis. Para contornar

este problema, estendemos o significado de uma álgebra de fórmulas: se uma multiálgebra ge-

neraliza uma álgebra ao ter múltiplos resultados para uma dada operação, uma multiálgebra de

fórmulas generaliza uma álgebra de fórmulas ao ter múltiplas possibilidade para a aplicação de

um conectivo a fórmulas dadas. Quanto à categoria de multiálgebras propriamente dita, oferece-

mos uma equivalência entre ela e uma categoria livre de não-determinismo, que alternativamente

possui álgebras ordenadas, semelhantes a álgebras de Boole, como objetos.

Na parte dedicada à lógica, nossos objetivos são novamente dois: primeiramente,

algumas lógicas de inconsistência formal, exempli gratia aquelas da hierarquia de da Costa, não

podem ser caracterizadas por Nmatrizes finitas. No que é um desenvolvimento muito natural,

uma Nmatriz restrita, ou RNmatriz, restringe aquelas homomorfismos que devem ser conside-

rados quando testamos a validade de uma dedução por uma Nmatriz. Mostramos como esta

distinção provê as RNmatrizes finitas com poder expressivo muito superior, suficientente para

adequadamente caracterizar os sistemas de da Costa e dar a eles métodos de decisão, tanto base-

ados em tabelas de verdade quanto em semânticas de tableaux. Em outra direção, generalizamos

as lógicas de inconsistência formal a sistemas construídos em torno da noção de incompatibili-

dade: o Leitmotiv sendo que duas fórmulas incompatíveis simultaneamente verdadeiras triviali-

zam uma dedução, e como um caso especial, uma fórmula é consistente quando é incompatível

com sua negação. Mostramos como essa noção estende aquela de inconsistência de maneira

não-trivial, apresentando traduções conservativas para muitos dos sistemas inconsistentes mais

simples em lógicas de incompatilidade, apresentamos semânticas construídas com RNmatrizes

para essas novas lógicas e mostramos que elas não podem ser caracterizadas por métodos mais

usuais.

Palavras-chave: Lógica matemática não clássica; Lógica paraconsistente; Lógica

algébrica; Inconsistência (Lógica); Álgebra universal.
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Introduction

The research that makes up the bulk of this work may be divided in two grand areas, what

explains our division of the thesis in two parts: algebra, corresponding to Part I, and logic, to

Part II.

In algebra, we focus on the subject of multialgebras: we present a new concept of

weakly free multialgebras, which we designed in order to offer a generalization of free algebras;

furthermore, we show how the category of multialgebras, as usually defined in the context of

non-deterministic semantics, can be presented alternatively as a category of algebras equipped

with orders that are compatible with the underlying operations.

In logic, we will delve into paraconsistent logics, together with their generaliza-

tions, and non-deterministic semantics: we generalize non-deterministic matrices to restricted

non-deterministic matrices (also known as RNmatrices), a semantical tool that uses both multi-

algebras and restrictions over the set of valuations to be considered, and apply this methodology

to give an extend analysis of da Costa’s hierarchy that includes new decision methods for its

logics; we also give a new formalization of a natural concept, that of incompatibility, and treat

the resulting logical systems again with RNmatrices.

Multialgebras

In Part I we will deal mainly with multialgebras, also known as hyperalgebras or

non-deterministic algebras. Chapter 1 gives a brief introduction to the subject, broaching the

definition of multialgebras, as well as those of homomorphisms between multialgebras, sub-

multialgebras, the interpretation of formulas, and so on. We spend a few pages over alternative

definitions for a homomorphism of multialgebras that allow for stronger representation theo-

rems, and discuss briefly how these, sadly, are not very practical to use in non-deterministic

semantics. Given its frequent use in our work, we also use this chapter to define, for complete-

ness sake, lattices, Boolean algebras and Heyting algebras.

Chapter 2 offers an alternative solution to a classical problem: the category of alge-

bras, on a given signature, possesses objects satisfying the universal mapping property, namely

free algebras; meanwhile, the category of multialgebras over a signatureΣ, denoted by MAlg(Σ),

does not. Algebras of formulas over a signature Σ and variables Ą , that we denote by F(Σ,Ą),

are then extended to structures that admit non-determinism: after all, if a multialgebra general-
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izes an algebra by allowing multiple results to an operation, a multialgebra of formulas should

allow many formulas to be obtained from the application of a connective to given formulas. This

new concept is shown to have many desirable characterizations, some inspired by linear algebra,

others graph-theoretic in nature, motivating us to coin the nomenclature of weakly free multial-

gebras for them. They are shown to greatly simplify the proof that MAlg(Σ) does not have free

objects, and some other categorical considerations are then developed by the end of the chapter.

Concerning the category MAlg(Σ) itself, Chapter 3 proves this category is equiv-

alent to another that avoids non-determinism altogether by considering ordered, Boolean-like

algebras. Intuitively, one wants to capture both the operations and order of the natural algebra

over the powerset of the universeA of a multialgebra ï, where: the order is the usual order for a

powerset; and, given non-empty subsetsA1 troughAn ofA, an n-ary operation � on (A1,& , An)

is given by the union of �(a1,& , an) for (a1,& , an) inA1×ď×An. This presents an alternative

for those logicians wishing to stick to deterministic semantics without any loss of expressive-

ness, and can be generalized to offer equivalences for other categories with non-deterministic

algebras, such as partial multialgebras.

Paraconsistent Logic

Part II involves paraconsistent logics, as well as non-deterministic semantics and broader sys-

tems. It starts with Chapter 4, which provides a brief introduction to formal logic, and semantics

of logical matrices, non-deterministic matrices (also known as Nmatrices) and restricted matri-

ces. The high point of the chapter, however, is the definition of restricted non-deterministic

matrices, also known as restricted Nmatrices or RNmatrices, which very naturally combine re-

stricted and non-deterministic matrices: some theoretical considerations are made about these

semantics, as well as a brief analysis of its previous, unrecognized uses in the literature. In

essence, an RNmatrix is a triple (ï, D,ô ), with ï a Σ-multialgebra, D a subset of its universe

and ô a set of homomorphisms � ∶ F(Σ,Ą) ³ ï. Their motivation is to give finite semantics

to logical systems that are not characterizable by finite Nmatrices, such as the logics of formal

inconsistency (LFI2s) between mbCcl and Cila, and the whole hierarchy of da Costa.

The C-systems of da Costa, due to their complexity, are treated separately in Chap-

ter 5: in it, we start by defining these logics first devised in order to formalize the notion of

inconsistency, or paraconsistency. We then proceed to provide RNmatrices of n + 2 elements

capable of characterizing each and every Cn of the hierarchy, starting from C2 to fix ideas: the

intuition is that an RNmatrix for Cn must have two classical values, standing from true and false,

as well as n inconsistent values, each standing for a different degree of inconsistency achieved

in the logic; of course, this suggests that the n-th logic in the hierarchy could be regarded as an

n+2-valued, non-deterministic logic. Furthermore, we show how these finite RNmatrices can be

made into decision methods for da Costa’s systems through both row-branching, row-eliminating

truth tables, and tableau semantics.
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Chapter 6 extends the RNmatrices for Cn from the previous chapter to allow for

model-theoretic considerations: while we started with n+2-valued restricted non-deterministic

matrices, these can be shown to be constructed from the two-valued Boolean algebra as swap

structures; the next logical step is to construct these swap structures over any Boolean algebras,

leading to a class of RNmatrices capable itself of characterizing Cn. Further results include a

brief combinatorial description of the snapshots found in these swap structures, as well as the

construction of a category of swap structures for Cn, which is then proven to be isomorphic to

the category of non-trivial Boolean algebras; this has important applications to the model theory

of da Costa’s hierarchy.

Chapter 7 introduces logics of incompatibility: a first attempt of formalizing the

notion of incompatibility from natural language would be to declare two formulas incompatible

if, and only if, together they trivialize a deduction. As it is done in logics of formal inconsistency,

we weaken that condition to state that two incompatible formulas, a concept which may be

primitive, are capable of trivializing an argument; we will denote by � ² � the fact that � and

� are incompatible. We start by defining some very basic systems of incompatibility, as of yet

without negation, characterize then with RNmatrices and provide decision methods: of bI− we

ask nothing, while bI must have a commutative incompatibility connective and bIpr propagates

incompatibility under some conditions. We finish the chapter by discussing axioms that collapse

² to its classical interpretation, and finally comparing our approach to a preexisting formalization

of incompatibility, that of Brandom.

It is natural, once we have a connective for incompatibility, to consider its inter-

play with negation: the systems of Chapter 7 are devoid of negation, by design, but Chapter 8

consider those logics now equipped with negation and some axioms governing its interaction

with incompatibility, most of them heavily inspired by the most common axioms for paraconsis-

tent systems: while nbI only adds a negation to bI satisfying tertium non datur, nbIciw, nbIci

and nbIcl generalize the logics of paraconsistency mbCciw, mbCci and mbCcl, respectively.

Of course, we then provide these systems with characterizing RNmatrices, as well as decision

methods through row-branching, row-eliminating truth tables and tableau calculi, and explain

why these semantics, instead of more classical ones, are necessary: not only our basic incom-

patible systems are not algebraizable by Blok and Pigozzi, they are also not characterizable by

either finite Nmatrices or finite restricted matrices. We finish by analyzing the generalizations

of logical matrices we have broached here, how do they relate to each other and to other possible

generalizations.

Finally, Chapter 9 studies an equivalence merely implied in previous chapters: in

logics of formal inconsistency, a formula � being consistent is recurrently expressed by ċ�,

where the connective ċ stands precisely for consistency. When dealing with incompatibility, the

fact consistency is adequately reintroduced as incompatibility with negation becomes apparent:

that is, ċ� may be viewed as � ² ¬�. Accordingly, we define a function from the logics of formal

inconsistency into the logics of incompatibility that is not only a translation, but a conservative
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one nonetheless. This seems to imply that our interpretation of incompatibility in logic strictly

extends the notion of inconsistency in a non-trivial way.
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Chapter 1

Σ-Multialgebras and lattices

A multialgebra, or hyperalgebra, is a generalization of the notion of algebra usually found in the

context of universal algebras, see [BS81] for a standard approach to universal algebra. The main

objective of such a generalization is to address the possibility that the outcome of an operation

may be diffuse, that is, non-deterministic: we may have an idea of what the outcome should be,

but not be certain about it. The first known appearance of multialgebras in literature may be

found in [Mar34].

A collection of disjoint sets Σ = {Σn}n*ℕ indexed by ℕ will be called a signature; the

elements of the sets Σn will be called functional symbols of arity n, or n-ary functional symbols.

For simplicity, we will denote
å

n*ℕ Σn also by Σ.

A pairï = (A, {�ï}�*Σ) is said to be, whereþ(A) denotes the powerset (also known

as power set) of A:

1. a Σ-algebra if, for every � * Σn, �ï is a function of the form

�ï ∶ An ³ A;

2. a Σ-multialgebra if A � ∅ and, for every � * Σn, �ï is a function of the form

�ï ∶ An ³ þ(A) ö {∅};

The set A is called the universe of ï.

Given a Σ-algebra ï = (A, {�ï}�*Σ), one can always define the Σ-multialgebra

ï = (A, {�ï}�*Σ) such that, for � * Σn and a1,& , an * A,

�ï(a1,& , an) = {�ï(a1,& , an)};

it is clear that ï carries the same information that ï, and so one can see Σ-algebras as Σ-

multialgebras. For most of our studies here we will focus mainly on multialgebras.
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1.1 Homomorphisms

1.1.1 Single-valued homomorphisms

Given Σ-algebras ï = (A, {�ï}�*Σ) and ð = (B, {�ð}�*Σ), a function ' ∶ A³ B is said to be

a homomorphism from ï to ð if, for every � * Σn and a1,& , an * A we have that

'(�ï(a1,& , an)) = �ð('(a1),& , '(an)).

Given Σ-multialgebras ï = (A, {�ï}�*Σ) and ð = (B, {�ð}�*Σ), we would like to

define once again a morphism between the two of them. But in the case of multialgebras, one

can come up with many possible straightforward definitions of homomorphisms, all of them

starting with a function ' ∶ A ³ B. The following two definitions are the most useful to our

purposes:

1. if, for all � * Σn and a1,& , an * A,

{'(a) ∶ a * �ï(a1,& , an)} ⊆ �ð('(a1),& , '(an)),

we call ' a homomorphism, or Σ-homomorphism;

2. we call ' a full homomorphism if the above condition is replaced by

{'(a) ∶ a * �ï(a1,& , an)} = �ð('(a1),& , '(an)).

If the function ' ∶ A³ B is a homomorphism from ï to ð, we will simply write ' ∶ ï ³ ð.

Theorem 1.1.1. The class of all Σ-multialgebras becomes a category MAlg(Σ) or MAlg=(Σ)

when the set of morphisms between two Σ-multialgebras ï and ð is, respectively:

1. the set of all homomorphisms between ï and ð;

2. the set of all full homomorphisms between ï and ð.

In both cases, the composition of morphisms is the usual composition of functions.

Proof. We must show that all two of those alleged categories have identity morphisms and that

their compositions are well-defined, meaning that composing two morphisms returns again a

morphism; clearly there is no need to show the associativity of composition, since it is know

that the composition of functions is indeed associative.

For every multialgebra ï we consider the morphism Idï ∶ ï ³ ï given by, for

every a * A, Idï(a) = a. This morphism is the desired identity morphism for ï in both
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categories, since: it is, in fact, a morphism in the two of them, given that it is a full homomor-

phism and therefore also a homomorphism; it is the identity for the composition of functions

and therefore, for any morphisms ' ∶ ï ³ ð and  ∶ ñ ³ ï,

'ċIdï = ' and Idïċ =  .

Now to prove that the composition is well-defined, fix � * Σn and a1,& , an * A.

1. If ' ∶ ï ³ ð and  ∶ ð ³ ñ are simply homomorphisms,

{'(a) ∶ a * �ï(a1,& , an)} ⊆ �ð('(a1),& , '(an))

and therefore

{ ċ'(a) ∶ a * �ï(a1,& , an)} ⊆ { (b) ∶ b * �ð('(a1),& , '(an))};

since  is a homomorphism, we have that

{ (b) ∶ b * �ð('(a1),& , '(an))} ⊆ �ñ( ċ'(a1),& ,  ċ'(an)),

and from that  ċ' is also a homomorphism.

2. If ' ∶ ï ³ ð and  ∶ ð ³ ñ are full homomorphisms, is enough to replace all "⊆" on

the proof above by equalities to obtain a proof that  ċ' is also a full homomorphism.

Definition 1.1.1. A full homomorphism ' ∶ ï ³ ð is said to be an isomorphism if ' ∶ A³ B

is a bijection.1

Proposition 1.1.1. Let ï and ð be Σ-multialgebras and ' ∶ A ³ B be a bijective function

with inverse  ∶ B ³ A: if ' is a full homomorphism, so is  .

Proof. Let � * Σn, b1,& , bn * B and a1 =  (b1),& , an =  (bn), so that b1 = '(a1),& , bn =

'(an). We have that

{ (b) ∶ b * �ð(b1,& , bn)} = { (b) ∶ b * �ð('(a1),& , '(an))} =

{ (b) ∶ b * {'(a) ∶ a * �ï(a1,& , an)}} = �ï(a1,& , an) = �ï( (b1),& ,  (bn)),

and therefore  is indeed a full homomorphism.
1We do not attempt to define isomorphisms for homomorphisms that are not full since the latter class is

not closed under inverses: the inverse of a non-full homomorphism is an antihomomorphism, which satisfies
�ð('(a1),& , '(an)) ⊆ {'(a) ∶ a * �ï(a1,& an)}; considering antihomomorphisms does not make the un-
derlying theory uninteresting, but it does make the theory much harder.
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1.1.2 Multi-valued homomorphisms

One natural consideration when defining morphisms between multialgebras is that, if the oper-

ations are of a non-deterministic nature, perhaps the morphisms should be as well.

Although there exist a plethora of possible definitions in this case, we will mention

only two of them, even avoiding considerations about isomorphisms for they are out of scope

for this text. Given a signature Σ and Σ-multialgebras ï = (A, {�ï}�*Σ) and ð = (B, {�ð}�*Σ),

a function ' ∶ A ³ þ(B) ö {∅} is said to be a multihomomorphism if, for all � * Σn and

a1,& , an * A, å

a*�ï(a1,&,an)

'(a) ⊆
å

(b1,&,bn)*'(a1)×ď×'(an)

�ð(b1,& , bn);

the same function is said to be a full multihomomorphism if this conditions is replaced by

å

a*�ï(a1,&,an)

'(a) =
å

(b1,&,bn)*'(a1)×ď×'(an)

�ð(b1,& , bn).

We will denote a multihomomorphism ' between ï and ð simply by ' ∶ ï ³ ð.

Lemma 1.1.1. For an n * ℕ, take sets X1,& , Xn; for X =
ån

i=1
Xi, let {Yx}x*X be a family

indexed by X; then

å

(x1,&,xn)*X1×ď×Xn

Yx1 ×ď × Yxn ⊆
å

x1*X1

Yx1 ×ď ×
å

xn*Xn

Yxn .

If n = 1, we have instead an equality.

Proof. Suppose (y1,& , yn) belongs to the left side of the inequality, and there must exist

(x1,& , xn) in X1 ×ď ×Xn such that (y1,& , yn) * Yx1 ×ď × Yxn .

Now, for any i * {1,& , n}, since yi * Yxi for an xi * Xi, yi *
å

x*Xi
Yx. It follows

that (y1,& , yn) *
å

x1*X1
Yx1 ×ď ×

å
xn*Xn

Yxn .

The equality if n = 1 is trivial.

Theorem 1.1.2. The class of allΣ-multialgebras becomes a category MMAlg(Σ) or MMAlg=(Σ)

when the set of morphisms between two Σ-multialgebras ï and ð is, respectively:

1. the set of all multihomomorphisms between ï and ð;

2. the set of all full multihomomorphisms between ï and ð.

In both cases, the composition  ċ' of multihomomorphisms ' ∶ ï ³ ð and  ∶ ð ³ ñ is

given by, on an element a * A,  ċ'(a) =
å

b*'(a)  (b).

Proof. We must show the existence of identity morphisms and that the composition of mor-

phisms is well-defined and associative.



Chapter 1: Σ-Multialgebras and lattices 27

For every Σ-multialgebra ï we consider the morphism Idï ∶ ï ³ ï given by, for

every a * A, Idï(a) = {a}. It is a full multihomomorphism, and therefore also a multihomo-

morphism, given that, for � * Σn and a1,& , an * A,

å

a*�ï(a1,&,an)

Idï(a) =
å

a*�ï(a1,&,an)

{a} = �ï(a1,& , an) =
å

(b1,&,bn)*{a1}×ď×{an}

�ï(b1,& , bn) =

å

(b1,&,bn)*Idï(a1)×ď×Idï(an)

�ï(b1,& , bn).

For any multihomomorphisms ' ∶ ï ³ ð and  ∶ ñ ³ ï and elements a * A and c * C , we

have that

'ċIdï(a) =
å

d*Idï(a)

'(d) =
å

d*{a}

'(d) = '(a)

and

Idïċ (c) =
å

e* (c)

Idï(e) =
å

e* (c)

{e} =  (c),

so that 'ċIdï = ' and Idïċ =  , and Idï is indeed an identity.

To see that the composition is well-defined, fix � * Σ and a1,& , an * A.

1. If ' ∶ ï ³ ð and  ∶ ð ³ ñ are multihomomorphisms,

å

a*�ï(a1,&,an)

 ċ'(a) =
å

a*�ï(a1,&,an)

å

b*'(a)

 (b);

since å

a*�ï(a1,&,an)

'(a) ⊆
å

(b1,&,bn)*'(a1)×ď×'(an)

�ð(b1,& , bn),

we have that the last set on the equality is contained in

å

(b1,&,bn)*'(a1)×ď×'(an)

å

b*�ð(b1,&,bn)

 (b) ⊆
å

(b1,&,bn)*'(a1)×ď×'(an)

å

(c1,&,cn)* (b1)×ď× (bn)

�ñ(c1,& , cn);

by Lemma 1.1.1, for Xi = '(ai) and Yx =  (x), this last set is contained in

å

(c1,&,cn)*
å
b1*'(a1)

 (b1)×ď×
å
bn*'(an)

 (bn)

�ñ(c1,& , cn) =
å

(c1,&,cn)* ċ'(a1)×ď× ċ'(an)

�ñ(c1,& , cn),

and from that  ċ' is also a multihomomorphism.

2. If ' ∶ ï ³ ð and  ∶ ð ³ ñ are full multihomomorphisms, is enough to replace all

occurrences of "⊆" in the proof above by "=" to obtain a proof that  ċ' is also a full

multihomomorphism.

Finally, it remains to be proved that such a notion of composition is associative: let

' ∶ ï ³ ð,  ∶ ð ³ ñ and � ∶ ñ ³ ò be multihomomorphisms and a * A; then, using
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Lemma 1.1.1 again, we have that

[�ċ( ċ')](a) =
å

c* ċ'(a)

�(c) =
å

c*
å
b*'(a)  (b)

�(c) =
å

b*'(a)

å

c* (b)

�(c) =

å

b*'(a)

�ċ (b) = [(�ċ )ċ'](a)

We can arrange the categories that have so far appeared in our study of multialgebras

in the following helpful diagram.

MAlg=(Σ) MMAlg=(Σ)

MAlg(Σ) MMAlg(Σ)

J=

J

It is clear that MAlg=(Σ) is a subcategory of MAlg(Σ), and that MMAlg=(Σ) is

a subcategory of MMAlg(Σ), all of these four categories having as objects the class of all Σ-

multialgebras. And, although MAlg=(Σ) is not a subcategory of MMAlg=(Σ), nor is MAlg(Σ)

a subcategory of MMAlg(Σ), we can easily define functors

J= ∶ MAlg=(Σ) ³ MMAlg=(Σ) and J ∶ MAlg(Σ) ³ MMAlg(Σ)

such that the image of J (respectively J=) is a subcategory of MMAlg(Σ) (MMAlg=(Σ)) iso-

morphic to MAlg(Σ) (MAlg=(Σ)); we define J (J=) as the identity on objects, and for a (full)

homomorphism ' ∶ ï ³ ð, the (full) multihomomorphism J' (respectively J=') from ï to

ð, on an element a of ï, is just {'(a)}.

1.2 Formulas and how to interpret them

Definition 1.2.1. Given a set Ą , whose elements we will call propositional variables, we define

the formulas over the signature Σ on the variables Ą by recursion, and only by the following

rules:

1. all elements of Ą are formulas;

2. all elements of Σ0 are formulas;

3. if � * Σn and �1,& , �n are formulas, �(�1,& , �n) is a formula.

However, the expression �(�1,& , �n) is not entirely formally defined: in what would

be the correct, formal definition, yet not as clear, a formula over the signature Σ on the variables
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Ą is any function f ∶ Ik ³ Ą L
å

n*ℕ Σn, where Ik = {0,& , k} is a initial segment of ℕ, such

that:

1. either k = 0 and f (0) * Ą L Σ0;

2. or there exist m * ℕ ö {0}, � * Σm and formulas

f1 ∶ Ik1 ³ Ą L
å

n*ℕ

Σn through fm ∶ Ikm ³ Ą L
å

n*ℕ

Σn

such that k = 1 +
1m

j=1
kj , f (0) = � and

f (i − kp +

p1

j=1

kj) = fp(i), for p * {1,& , m} and i * Ikp .

The set of all formulas over the signature Σ on the variables Ą is denoted by F (Σ,Ą).

If we define, for a � * Σn, the function �F(Σ,Ą) ∶ F (Σ,Ą)n ³ F (Σ,Ą) to be, for formulas

�1,& , �n,

�F(Σ,Ą)(�1,& , �n) = �(�1,& , �n),

we obtain a Σ-algebra

F(Σ,Ą) = (F (Σ,Ą), {�F(Σ,Ą)}�*Σ),

said to be the free Σ-algebra on the variables Ą , or the Σ-algebra of formulas on the variables Ą .

We will also use F(Σ,Ą) to denote the corresponding Σ-multialgebra.

Definition 1.2.2. We define the order, or complexity, |�| of a formula � in F (Σ,Ą) as:

1. 0, if � is an element of Ą;

2. 0, if � is an element of Σ0;

3. if � is of the form �(�1,& , �n),

|�| = 1 + max
1didn

|�i|.

Now, we have given the simplest definition of formula: when we approach choice-

dependent freely generated multialgebras, we will find what one can identify as a broader defi-

nition of formula, but with which we shall not deal with until later.

1.2.1 Different notions of interpretation

Perhaps more important than defining what is a formula is interpreting this formula, and here

the non-determinism of multialgebras once again gives us an array of different notions.
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Definition 1.2.3. Given a Σ-multialgebra ï, a homomorphism � ∶ F(Σ,Ą) ³ ï is called a

legal valuation.

The notion of legal valuation is one attempt to give an interpretation of a formula �:

in this case, the formula �, under the legal valuation �, takes the value �(�).

A serious problem that arises from the notion of legal valuation is that one interpre-

tation of the variables can lead to several legal valuations, and therefore different interpretations

of a formula. This does not occur to Σ-algebras, where one interpretation of the variables implies

an unique interpretation of the formulas.

Example 1.2.1. Take the signature Σ with Σ1 = {s} and Σn = ∅ for n � 1; take the Σ-

multialgebras F(Σ,Ą), for Ą = {x}, and ï = (A, {�ï}�*Σ) such that A = {0, 1} and sï(0) =

sï(1) = {0, 1}.

Ď

s2(x)

s(x)

x

sF(Σ,Ą)

sF(Σ,Ą)

sF(Σ,Ą)

F(Σ,Ą)

0 1sï
sï

sï

sï

ï

We state that �1 ∶ F (Σ,Ą) ³ A, given by �1(�) = 0 for every � * F (Σ,Ą), and

�2 ∶ F (Σ,Ą) ³ A, given by �2(�) = 1 for every � * F (Σ,Ą) ö {x} and �2(x) = 0, are

homomorphisms. In fact, for every � * F (Σ,Ą), we have that

{�i(�) ∶ � * sF(Σ,Ą)(�)} = {�i(s(�))} ⊆ {0, 1} = sï(�i(�)),

where i * {1, 2}. So �1 and �2 are different legal valuations, despite being the same over the

variables.

We will say that a legal valuation � ∶ F(Σ,Ą) ³ ï is associated to the function

� ∶ Ą ³ A given by � = �|Ą ,2 which we shall call a valuation or interpretation of the variables;

more generally, we say � is associated to the function � ∶ Ą ³ þ(A) ö {∅} if �(x) * �(x) for

every x * Ą . What we have shown in the previous example is that two distinct legal valuations

may be associated to the same interpretation of the variables.

2Here, it is important to clarify the notation: for a function f ∶ X ³ Y and a set Z ⊂ X, we will denote by
f |Z the restriction of f to Z.
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So, if legal valuations are problematic, what other definition should we take? Many

attempts to correctly interpret a formula in a multialgebra have been made, each with its own

advantages and drawbacks. When studying choice-dependent freely generated multialgebras,

we will show that maybe one needs to specify both an interpretation of the variables and what

we shall call a collection of choices. For now, we shall offer a few other possibilities.

Definition 1.2.4. Given a Σ-multialgebra ï, a full multihomomorphism � ∶ F(Σ,Ą) ³ ï is

called a full valuation.

Proposition 1.2.1. Two full valuations �1, �2 ∶ F(Σ,Ą) ³ ï such that �1|Ą = �2|Ą are the

same.

Proof. We will prove that, for any formula �, �1(�) = �2(�) by induction on the order of �. If

|�| = 0, either � is an element x * Ą and then �1(x) = �2(x) since �1|Ą = �2|Ą , or � is a � * Σ0,

and then

�1(�) = �ï = �2(�).

Assuming the proposition is true for formulas of order at mostm, if � = �(�1,& , �n)

is a formula of order m + 1 then �1 through �n are formulas of order at most m, and therefore

�1(�1) = �2(�2),& , �1(�n) = �2(�n). It follows that

�1(�) =
å

(a1,&,an)*�1(�1)×ď�1(�n)

�ï(a1,& , an) =
å

(a1,&,an)*�2(�1)×ď�2(�n)

�ï(a1,& , an) = �2(�).

So, to every function � ∶ Ą ³ þ(A) ö {∅}, there corresponds at most one full

valuation: but we can also show that there is at least one full valuation associated to � , which

we denote by � . We define it by induction on the order of a formula �:

1. if |�| = 0, either � is a x * Ą , when we define �(�) = �(x), or � is a � * Σ0, when

�(�) = �ï;

2. supposing � is defined for formulas of degree at most m, if � = �(�1,& , �n) is of degree

m + 1, and so �1,& , �n are of degree at most m, we define

�(�) =
å

(a1,&,an)*�(�1)×ď×�(�n)

�ï(a1,& , an).

We can generalize both legal and full valuations through what we will call simply

valuations: any multihomomorphism � ∶ F(Σ,Ą) ³ ï will be said to be a valuation on ï,

associated to any of the functions � ∶ Ą ³ þ(A) ö {∅} such that �(x) ⊆ �(x) for every x * Ą .

It is quite clear how this is a generalization of a full valuation, but one can see this

is not a direct generalization of a legal valuation, since those are function from F (Σ,Ą) to A,
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instead of þ(A) ö {∅}; however, when one considers for the legal valuation � the function �∗ ∶

F (Σ,Ą) ³ þ(A) ö {∅} such that �∗(�) = {�(�)} for every � * F (Σ,Ą), one sees that �∗ is a

valuation.

Without much further ado, we will identify �∗ with �, and characterize some valua-

tions as legal ones.

Proposition 1.2.2. Fixed F(Σ,Ą), the set V (ï) of all valuations from it to the Σ-multialgebra

ï is a partially ordered set, when for valuations �1, �2 * V (ï) one considers �1 d �2 if and

only if

�1(�) ⊆ �2(�), "� * F (Σ,Ą),

closed under suprema of non-empty sets, with as minimal elements the set of all legal valuations

LV (ï) on ï.

Proof. First, we prove that the mentioned order is in fact an order.

1. For any � * V (ï) and all � * F (Σ,Ą), it is true that �(�) ⊆ �(�), and therefore � d �.

2. For any two �1, �2 * V (ï), if �1 d �2 and �2 d �1, then for every � * F (Σ,Ą) we have

that �1(�) ⊆ �2(�) and �2(�) ⊆ �1(�), and therefore �1(�) = �2(�); it follows that �1 = �2.

3. For any three �1, �2, �3 * V (ï), if �1 d �2 and �2 d �3, then for every � * F (Σ,Ą) we see

that �1(�) ⊆ �2(�) and �2(�) ⊆ �3(�), and therefore �1(�) ⊆ �3(�); it follows that �1 d �3.

Now, we state that the supremum of a non-empty set Λ ⊆ V (ï) is the valuation

such that, for every � * F (Σ,Ą),

�(�) =
å

�*Λ

�(�);

it is, in fact, a valuation since it is a multihomomorphism: if � * Σn and �1,& , �n are formulas

in F (Σ,Ą), we have that

�(�(�1,& , �n)) =
å

�*Λ

�(�(�1,& , �n)) ⊆
å

�*Λ

å

(a1,&,an)*�(�1)×ď×�(�n)

�ï(a1,& , an) ⊆

å

�*Λ

å

(a1,&,an)*�(�1)×ď×�(�n)

�ï(a1,& , an) =
å

(a1,&,an)*�(�1)×ď×�(�n)

�ï(a1,& , an).

Clearly � is an upper bound of Λ, so suppose �∗ is another upper bound: for every

formula � and � * Λ we have that �(�) ⊆ �∗(�), and from that �(�) =
å

�*Λ �(�) ⊆ �
∗(�), that

is, � d �∗ and so � = supΛ.

Since for any legal valuation � * LV (ï) and formula � the set �(�) is always of

cardinality 1, legal valuations are clearly minimal elements.

For a function � ∶ Ą ³ þ(A) ö {∅}, we would like to consider the set

V (�) = {� * V (ï) ∶ � d �}.
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It is clearly a partially ordered set, containing � and all valuations, legal or not, associated to � ; it

has as minimal elements LV (�) = LV (ï) KV (�) and maximum � ; it is closed under suprema

since for any Λ ⊆ V (�) we have that � is an upper bound for Λ, and therefore supΛ d � ,

meaning that supΛ * V (�).

Notice that, alternatively, � * V (�) if, and only if, � is a valuation for which, for

every x * Ą , �(x) ⊆ �(x).

The join-semilattice V (�) is then a very interesting object: if one is in doubt of how

to interpret a formula given the interpretation of variables � , using valuations, legal valuations

or full valuations, V (�) captures the information offered by all of these attempts, despite being

considerably more complex.

1.2.2 Full valuations and adjointedness

Take the class of all sets and, as morphisms between any two sets X and Y , take the functions

f ∶ X ³ þ(Y ) ö {∅}, with the composition of two such functions f ∶ X ³ þ(Y ) ö {∅} and

g ∶ Y ³ þ(Z) ö {∅} being defined as the function gċf ∶ X ³ þ(Z) ö {∅} such that, for any

x * X,

gċf (x) =
å

y*f (x)

g(y).

As we saw before, such a composition is associative, and has as identity, for a given

set X, the function IdX ∶ X ³ þ(X) ö {∅} such that, for every x * X, IdX(x) = {x}.

Therefore, this object is a category, which we will call the category of sets with multifunctions,

and denote by MSet; its morphisms will be called multifunctions.

Now, fixed a signature Σ, take for every set X the Σ-multialgebra FX = F(Σ, X)

and, for every morphism f from X to Y , that is, function f ∶ X ³ þ(Y ) ö {∅}, take the full

multihomomorphism Ff = f ∶ F(Σ, X) ³ F(Σ, Y ).

Given the identity IdX ∶ X ³ X on MSet, we state that IdX ∶ F(Σ, X) ³ F(Σ, X)

is exactly the identity IdF(Σ,X) of this multialgebra in MMAlg=(Σ): one can see this by induction

over the order of a formula �.

1. If � is of order 0, either � is an x * X and then IdX(x) = IdX(x) = {x}, or � is a � * Σ0,

when IdX(�) = �F(Σ,X) = {�}.

2. If � = �(�1,& , �n), for � * Σn and �1 through �n of order less than that of �, we have

that

IdX(�) =
å

(�1,&,�n)*IdX (�1)×ď×IdX (�n)

�F(Σ,X)(�1,& , �n) =
å

(�1,&,�n)*{�1}×ď×{�n}

{�(�1,& , �n)} =

{�(�1,& , �n)} = {�}.
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Furthermore, given morphisms f from X to Y and g from Y to Z in MSet, we see

that for every x * X

gċf (x) =
å

y*f (x)

g(y) =
å

y*f (x)

g(y),

and since f (x) ⊆ Y , for any y * f (x) we have that g(y) = g(y) and therefore

å

y*f (x)

g(y) =
å

y*f (x)

g(y) = gċf (x) = gċf (x),

since gċf goes from X to Z; therefore both gċf and gċf are full multihomomorphisms equal

over the variables, and are therefore equal.

Since FIdX = IdFX and FgċFf = F (gċf ), we have proved

F ∶ MSet ³ MMAlg=(Σ)

is a functor. Now, we can also consider the forgetful functor

ă ∶ MMAlg=(Σ) ³ MSet,

since full multihomomorphisms are multifunctions; what we shall prove now is that F and ă

are actually adjoint. So, we consider the functions, for a set X and a Σ-multialgebra ï,

¨ï,X ∶ HomMSet(X,ăï) ³ HomMMAlg=(Σ)
(FX,ï)

associating a map f ∶ X ³ þ(A) ö {∅} to the full multihomomorphism f ∶ F(Σ, X) ³ ï

extending f . Since, for every f , there corresponds one and only one f , the ¨ï,X are bijections.

Now, given sets X and Y , Σ-multialgebras ï and ð, a morphism f from Y to X

in MSet and a full multihomomorphism ' ∶ ï ³ ð, we must only prove that the following

diagram commutes.

HomMSet(X,ăï) HomMMAlg=(Σ)
(FX,ï)

HomMSet(Y ,ăð) HomMMAlg=(Σ)
(FY ,ð)

¨ï,X

Hom(f,ă') Hom(Ff,')

¨ð,Y

So, denoting the universe ofï byA as usual, we take a function g ∶ X ³ þ(A)ö{∅}

in HomMSet(X,ăï): on the top edge of the diagram we obtain the full multihomomorphism

¨ï,X(g) = g from F(Σ, X) to ï; and on the right edge we obtain the once again full multiho-

momorphism 'ċgċf , since Ff = f , from F(Σ, Y ) to ð.

On the left edge, we obtain the multifunction 'ċgċf from Y to the universe B of
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ð, since ă' = '; applying ¨ð,Y on the bottom edge of the diagram we obtain 'ċgċf , also a

full multihomomorphism from F(Σ, Y ) to ð.

Now, to prove that the diagram commutes or, what is equivalent, that 'ċgċf =

'ċgċf , since both are full valuations on F(Σ, Y ) is enough to prove that, when restricted to Y ,

both are the same. So, for y * Y ,

'ċgċf (y) =
å

x*f (x)

'ċg(x) =
å

x*f (x)

å

a*g(x)

'(a) =
å

x*f (x)

å

a*g(x)

'(a) =
å

x*f (y)

å

a*g(x)

'(a) =

å

x*f (y)

'ċg(x) = 'ċgċf (y) = 'ċgċf (y),

what ends the proof that F and ă are adjoint.

Proposition 1.2.3. Let � ∶ Ą ³ þ(A) ö {∅} be a function and ' ∶ F(Σ,Ą) ³ ï a multihomo-

morphism such that, for every x * Ą , '(x) ⊆ �(x): then ' d � .

Proof. It is enough to proceed by induction over the order of a formula �.

If it is 0, either � is an element x * Ą , when the result is true by hypothesis; or � is

a � * Σ0, and since ' is a multihomomorphism we have that '(�) ⊆ �ï = �(�).

Now, suppose the result is true for formulas of order smaller than that of �, and

suppose � is of the form �(�1,& , �n): then

'(�) =
å

�*�F(Σ,Ą)(�1,&,�n)

'(�) ⊆
å

(�1,&,�n)*'(�1)×ď×'(�n)

�ï(�1,& , �n) ⊆

å

(�1,&,�n)*�(�1)×ď×�(�n)

�ï(�1,& , �n) =
å

�*�F(Σ,Ą)(�1,&,�n)

�(�) = �(�).

This way, we see that full valuations have many important properties: they allow,

together with the algebras of formulas, to build a functor adjoint to a forgetful functor on a rather

natural category (MSet); furthermore, they are maximal among valuations associated to a given

evaluation of the variables.

And, at the same time, they are not very useful to most applications in logic, one

reason being that, from the point of view of full valuations, the free objects of MMAlg=(Σ) are

the algebras of formulas F(Σ,Ą), meaning we gain no new structures to analyze. A second reason

for or disinterest on full valuations is that they are not at all very precise: legal valuations, that

are only functions instead of multifunctions, are much more useful and "precise". Unfortunately,

to an evaluation of the variables there are many legal valuations associated: one approach in the

direction of fixing this problem is to consider collections of choices (Definition 2.2.1), which

will allow us at the same time to consider generalizations of the algebras of formulas (Definition

2.1.2).
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We will work those objects in Chapter 2. Their algebraic structure is rather rich,

regardless of how difficult their treatment is trough category theory. And, speaking of category

theory, the categories shown up until now can be arranged as in the diagram below. The functor

JSet is the identity on sets and takes functions to multifunctions in the obvious way, like J and

J=; the question of whether the forgetful functor from MAlg=(Σ) to Set, here represented by a

dashed arrow, has a left adjoint is answered negatively at the end of Section 2.3.

MAlg(Σ) MAlg=(Σ) Set

MMAlg(Σ) MMAlg=(Σ) MSet

J J= JSet

ă

F

1.3 Lattices, and Boolean and Heyting algebras

Consider the signature ΣLat with two binary connectives, J and I: that is (ΣLat)2 = {J,I} and

(ΣLat)n = ∅, for n � 2.

Definition 1.3.1. A lattice is a ΣLat-algebra ú = (L, {�ú}�*Σ) satisfying, for every x, y, z * L,

1. x J y = y J x and x I y = y I x (commutative laws);

2. x J (y J z) = (x J y) J z and x I (y I z) = (x I y) I z (associative laws);

3. x J x = x and x I x = x (idempotent laws);

4. x J (x I y) = x and x I (x J y) = x (absorption laws).

In this definition, for simplicity, we have denoted Jú(x, y) and Iú(x, y) by, respec-

tively, x J y and x I y.

This is often regarded as the algebraic definition of a lattice, an order-theoretic one

existing as well. A partial order in a set X is a binary relation d on X, meaning a subset of

X ×X, such that, for all x, y, z * X,

1. x d x (reflexivity);

2. x d y and y d x imply x = y (antisymmetry);

3. x d y and y d z imply x d z (transitivity),

where we will denote the fact that (x, y) *d by x d y. A set X, together with a partial order d

in it, will be named a partially ordered set, or poset.

In a poset (X,d), we say x is an upper bound of S ⊆ X if y d x for every y * S; x

is a lower bound for S if x d y for every y * S. Then, the supremum of S ⊆ X, if it exists, is

its least upper bound, meaning an upper bound supS * X for S such that, for any other upper
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bound x for S, supS d x; the infimum of S, if it exists, is its greatest lower bound, meaning a

lower bound inf S for S such that, for any other lower bound x for S, x d inf S.

Definition 1.3.2. A lattice is a poset ú = (L,d) such that, for any elements x, y * L, sup{x, y}

and inf{x, y} both exist.

One can translate between the two definitions: given a lattice ú presented as a ΣLat-

algebra (L, {�ú}�*ΣLat
), we may define an order d in L by

x d y if and only if x = x I y,

and it is easy to prove that in this case (L,d) is a lattice, where xI y and xJ y are, respectively,

the infimum and supremum of x and y. Reciprocally, given a lattice ú presented as a poset

(L,d), we may define operations J and I on L by

x I y = inf{x, y} and x J y = sup{x, y},

from what we obtain a ΣLat-algebra on which x d y if, and only if, x = x I y.

An element 0 of a lattice ú is a minimum, or bottom element, when either: xJ0 = x,

for every x * L; x I 0 = 0, for every x * L; or 0 d x, for every x * X. Notice that all

three conditions are equivalent. An element 1 of ú is a maximum, or top element, when either:

x J 1 = 1, for every x * L; x I 1 = x, for every x * L; or x d 1, for every x * L. Again, all

three conditions are equivalent.

To accommodate bottom and top elements, we extend the signature ΣLat to Σ0
Lat, Σ

1
Lat

and Σ0,1

Lat by adding, respectively, a 0-ary symbol 0, a 0-ary symbol 1 and 0-ary symbols 0 and

1. For simplicity, we will drop the indexes ú from 0ú and 1ú.

Definition 1.3.3. 1. A lattice with bottom (respectively top) element is a Σ0
Lat

-algebra (Σ1
Lat

-

algebra)ú = (L, {�ú}�*Σ0
Lat
) such that (L, {�ú}�*ΣLat

) is a lattice and 0 is a bottom element

(1 is a top element).

2. A bounded lattice is a Σ0,1

Lat
-algebra ú = (L, {�ú}�*Σ0,1

Lat

) such that (L, {�ú}�*ΣLat
) is a

lattice, 0 is a bottom element and 1 is a top element.

In a lattice, "x implies y" is defined as the element

sup{z * L ∶ x I z d y},

if it exists, and denoted by x³ y. We add to the signatures Σ1
Lat and Σ0,1

Lat the binary symbol ³,

obtaining respectively the signatures ΣImp and ΣHey.

Definition 1.3.4. 1. An implicative lattice is a ΣImp-algebra ú = (L, {�ú}�*ΣImp
) such that

(L, {�ú}�*Σ1
Lat
) is a lattice with top element, sup{z * L ∶ x I z d y} exists for any two
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x, y * L and

x³ y = sup{z * L ∶ x I z d y}.

2. A Heyting algebra is a ΣHey-algebra such that (L, {�ú}�*ΣImp
) is an implicative lattice and

0 is a bottom element.

It is important here to point out that various different definitions of implicative lat-

tices and Heyting algebras exist in the literature, most, if not all, equivalent to each other; we

chose definitions most befitting of our purposes, taken from [CC16].

Another relevant point to make is that Heyting algebras are no strange beasts: clas-

sical propositional logic is to Boolean algebras, which we shall soon formally define, as intu-

itionistic logic is to Heyting algebras, meaning that not only are Heyting algebras models of

intuitionistic logic, but their class characterizes intuitionistic logic (unfortunately, the parallel

ends there: although the two-valued Boolean algebra is, by itself, capable of characterizing

CPL, no finite algebra, Heyting or not, can do the same to intuitionistic logic, see [Göd32]).

One could argue that while intuitionistic logic possesses a negation, Heyting algebras do not,

but this can be easily dealt with: it is enough to define

¬x = x³ 0.

With this, we can define Heyting algebras over the signature ΣBoo, obtained from

ΣHey by addition of an unary symbol "¬", by merely requesting that ¬x = x³ 0 for all elements

x; we say ¬x is the partial complement, or (intuitionistic) negation of x.

Definition 1.3.5. A Boolean algebra is a Heyting algebra over ΣBoo such that, for every x in its

universe, we have the law of excluded middle, or tertium non datur:

x J ¬x = 1.

The following lemma will need an observation about the definition of implication

on a Heyting algebra: notice that, if x I z d y, then z d x³ y, by the very definition of x³ y

as the supremum of {z * L ∶ xIz d y}. Reciprocally, if z d x ³ y, xIz d xI(x³ y) d y,3

meaning that z d x³ y if, and only if, xIz d y. The following proof, although quite standard,

follows closely the one found in [Esa19].

Lemma 1.3.1. In a Heyting algebra, J is distributive over I and vice-versa, meaning that

x J (y I z) = (x J y) I (x J z) and x I (y J z) = (x I y) J (x I z),

for all x, y and z in the universe.

3Here we are using that x d y implies x I z d y I z, but this is trivial to prove: if x d y, x = x I y, and so
(x I z) I (y I z) = (x I y) I z = x I z.
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Proof. We will prove that x I (y J z) = (x I y) J (x I z), being the other equality proved

analogously. Even more, we need only to prove that x I (y J z) d (x I y) J (x I z), since

in any lattice one finds that y d y J z and z d y J z, meaning that x I y d x I (y J z) and

x I z d x I (y J z), and therefore (x I y) J (x I z) d x I (y J z).

Let w denote (x I y) J (x I z), and since x I y d w and x I z d w, we obtain

y d x³ w and z d x³ w. So y J z d x³ w, and we get, as desired,

x I (y J z) d x I (x³ w) d w = (x I y) J (x I z).

In the following proposition, we omit several more trivial steps, such as proving that

¬x I x = 0. The reader is invited to fill them in as they appear.

Proposition 1.3.1. A Heyting algebra ö, with universe H , is a Boolean algebra if, and only if,

x J (x³ y) = 1 for all x, y * H .

Proof. Start by assuming that we have xJ(x³ y) = 1 for all x, y * H : then, since in particular

0 * H , x J ¬x = x J (x³ 0) = 1 for all x * H , meaning ö is a Boolean algebra.

Reciprocally, suppose ö is a Boolean algebra. We state that x³ y = ¬xJ y, being

then necessary to prove that ¬x J y is the supremum of {z * H ∶ x I z d y}: since

x I (¬x J y) = (x I ¬x) J (x I y) = 0 J (x I y) = x I y,

which is smaller or equal to y, ¬x J y is in fact an element of this set; furthermore, if x I z d y,

then

z d ¬x J z = 1 I (¬x J z) = (¬x J x) I (¬x J z) = ¬x J (x I z) d ¬x J y.

Then, since x³ y = ¬x J y,

x J (x³ y) = x J (¬x J y) = (x J ¬x) J y = 1 J y = 1,

as we wished to prove.

Of course, this means we could avoid adding a negation to the signature of Heyting

algebras to be able to express Boolean algebras: a Boolean algebra is a ΣHey-algebra which is a

Heyting algebra and satisfies, for all x and y in its universe, x J (x ³ y) = 1. But we prefer to

have a negation at hand when dealing with Boolean algebras, it is just more convenient that way.

Now, it is important to point out that some symbols on the signature ΣBoo can be

changed, usually because we are inserting Boolean algebras in a context where they are already

in use. So 0 may be replaced with "⊥", 1 with "⊤" and ¬ with "<". We will make such changes

more or less freely, without much ado.
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As a final remark, we would like to make clear that lattices, implicative or not, and

Heyting algebras will play a very minor role in what is to come: they are, more importantly,

milestones in defining Boolean algebras that also appear when dealing with some swap struc-

tures, specifically for paraconsistent logics ([CC16]). Boolean algebras, however, will be used

time and time again in our study: in Section 3.1 we will use them to search for a category equiv-

alent to that of multialgebras, when we will offer a more order-theoretic approach to the subject;

Section 6.1 shows a new semantics of valuations for da Costa’s logics Cn based on Boolean al-

gebras, which is used in Section 6.2 to offer yet another semantics for those logics, proven in

Section 6.4.2 to generate a category of models for Cn isomorphic to the category of Boolean

algebras itself.
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Chapter 2

Weakly free multialgebras

In the study of universal algebra, it is well known ([BS81]) that there exist Σ-algebras ï freely

generated (or absolutely freely generated) by subsets X of their universes A, meaning that for

any Σ-algebra ð, with universe B, and function f ∶ X ³ B, there exists precisely one homo-

morphism f ∶ ï ³ ð extending f , and therefore commuting the following diagram in Set, for

j ∶ X ³ A the inclusion.
A

X B

f
j

f

Moreover, the Σ-algebra freely generated by X is isomorphic to the Σ-algebra of formulas over

X, that is F(Σ, X), and therefore unique up to isomorphisms; even more, given F(Σ, X) and

F(Σ, Y ) are isomorphic whenever X and Y are of the same cardinality, we discover there is

precisely one freely generated Σ-algebra, up to isomorphisms, for each cardinality. Equivalently,

in the language of categories, the forgetful functor

U ∶ Alg(Σ) ³ Set,

from the category of Σ-algebras (with homomorphisms between them) to the category of sets,

which takes a Σ-algebra and returns its underlying universe, has a left adjoint F : it associates to a

setX any Σ-algebra freely generated byX, and to a function the only homomorphism extending

it.

However, an algebraic structure being absolutely free is a concept that does not ex-

tend well to the context of multialgebras ([Mar34]), specially when one restricts oneself to the

non-partial multialgebras (whose multioperations do not return the empty-set), as we often do

here given our interest on non-deterministic semantics, specifically those designed for paracon-

sistency. It is easy to prove that, first of all, freely generated multialgebras, which generalize

freely generated algebras in the most obvious way, do not exist, and second, that the forgetful
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functor

ă ∶ MAlg(Σ) ³ Set,

from the category of multialgebras over the signature Σ to the category of sets, does not have

a left adjoint. These results are deeply folkloric, being difficult to pinpoint a proof of them in

standard literature, although it seems no one is not aware of their validity.

We here expose our reasons to believe that understanding as formulas, in MAlg(Σ),

only those elements found in the universe of F(Σ,Ą) disregards other multialgebras with an

astoundingly similar behavior, so that we generalize the algebras of formulas to multialgebras

of formulas. These structures indeed share many of the properties one expects of the algebras

of formulas (or, equivalently, freely generated algebras):

1. they possess the unique extension property not for functions, but rather pairs of functions

and what we will call collections of choices, that “select” how a homomorphism will

approach indeterminacies;

in fact, given multialgebras ï and ð and an n-ary �, for all n-tuples (a1,& , an) * An

and (b1,& , bn) * Bn a collection of choices determines how to map those elements of

�ï(a1,& , an) into those of �ð(b1,& , bn);

2. they are somewhat “free” of identities, an intuition we formalize through disconnected

multialgebras, and they are generated by a set of “indecomposable” elements we shall call

the ground of the multialgebra, much like variables (which are formulas without proper

subformulas and therefore indecomposable in some sense);

more formally, a multialgebra is disconnected whenever different operations, or the same

operation performed on different elements, always return disjoint results, while the ground

G(ï) of a multialgebra ï is the subset of its universe of all elements a for which there do

not exist � (of arity n) and elements a1,& , an of ï such that a * �ï(a1,& , an);

3. strengthening the previous point, they are disconnected and have a minimum generating

set that behaves quite similarly to a basis, of e.g. a vector space;

notice, however, that while a basis of a vector space is a minimal generating set, we are

looking here at minimum generating sets, so we use the terminology of “strong basis”,

which end up being precisely the grounds we have mentioned earlier;

4. a final pair of properties we present is that they are simultaneously disconnected and sat-

isfy that every sequence of further simpler and simpler elements eventually ends on an

indecomposable element, condition we call being “chainless” and that implies having a

strong basis;

essentially, by a being simpler than b we mean that there exist � (of arity n) and elements

a1,& , an such that ai = a, for some i * {1,& , n}, and b * �ï(a1,& , an).
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Furthermore, we prove all these four listed items are equivalent, characterizing ex-

actly the same multialgebras; and with these weakly free multialgebras we here define at hand,

we can offer simple proofs that freely generated multialgebras (now in the naive generalization)

do not exist, and that ă does not have a left adjoint.

Most of the research presented in this chapter was submitted as a preprint in [CT21a]

and finally published in [CT22c].

2.1 Formulas

Here we briefly recall the basic notions involving formulas found in Section 1.2. Given a set Ą

of propositional variables and a signature Σ = {Σn}n*ℕ, the algebra of formulas freely generated

by Ą over Σ will be denoted F(Σ,Ą), and its universe will be denoted F (Σ,Ą). Intuitively, the

set of formulas F (Σ,Ą) is the smallest set containing:

1. the variables Ą ;

2. the formula �(�1,& , �n), given a � * Σn and already defined formulas �1,& , �n in

F (Σ,Ą).

More formally, F (Σ,Ą) should be smallest set containing:

1. for every x * Ą , the function fx ∶ {0} ³ Ą L Σ defined by fx(0) = x;

2. the function

f�(�1,&,�n)
∶ {0,& , 1 +

n1

i=1

mn} ³ Ą L Σ,

given a � * Σn and already defined formulas f�1 ∶ {0,& , m1} ³ Ą L Σ,& , f�n ∶

{0,& , mn} ³ Ą L Σ, such that f�(�1,&,�n)
(0) = � and, for every j * {1,& , n} and

k * {0,& , mj},

f�(�1,&,�n)
(k +

j−11

i=0

mi) = f�j (k),

where for simplicity we define m0 = 1.

One should notice that f�(�1,&,�n)
is simply the formalization of the polish notation of �(�1,& , �n).

The set F (Σ,Ą) becomes the Σ−algebra F(Σ,Ą) when we define, for a � * Σn and

formulas �1,& , �n in F (Σ,Ą),

�F(Σ,Ą)(�1,& , �n) = �(�1,& , �n).

We define the order, or complexity, of an element of F (Σ,Ą) as: 0 if the formula is

a variable or a constant, that is, a � * Σ0; as 1 + max{p1,& , pn} if the formula is of the form

�(�1,& , �n), with �j being of order pj .
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2.1.1 Multialgebra of non-deterministic formulas

Definition 2.1.1. Given a signature Σ and a cardinal � > 0, the expanded signature Σ� =

{Σ�
n
}n*ℕ is the signature such that Σ�

n
= Σn × �, where we will denote the pair (�, �) by �� , for

� * Σ and � * �.

We demand that � is greater than zero: hence, if Σ is non-empty, so is Σ� .

Definition 2.1.2. Given a set of variables Ą , a signature Σ and a cardinal � > 0, we define the

Σ-multialgebra of non-deterministic formulas, or simply multialgebra of formulas, as

mF(Σ,Ą , �) = (F (Σ� ,Ą), {�mF(Σ,Ą ,�)}�*Σ)

with universe F (Σ� ,Ą) and such that, for � * Σn and �1,& , �n * T (Σ� ,Ą),

�mF(Σ,Ą ,�)(�1,& , �n) = {��(�1,& , �n) ∶ � * �}.

The intuition behind this definition is that, connecting given formulas �1 through �n
with a connective � can, in a broader interpretation taking into account non-determinism, return

many formulas with the same general shape, that is �(�1,& , �n), over which we maintain certain

degree of control by counting them, what we achieve by using an index to our connective, �� .

One can ask why all connectives must return the exact same number of generalized

formulas, that is �, but this will not be the case: more useful to us shall be the submultialgebras

of mF(Σ,Ą , �), where the cardinality will vary as long as it is bounded by �; we have defined the

multialgebras of formulas as above since defining its submultialgebras directly is substantially

more difficult.

Here, we will restrict ourselves to the cases where Σ0 � ∅ or Ą � ∅, so that

mF(Σ,Ą , �) is always well defined.

We will understand as the order of an element � of mF(Σ,Ą , �) simply its order as

an element of F (Σ� ,Ą). Notice that, if

�mF(Σ,Ą ,�)(�1,& , �n) K �mF(Σ,Ą ,�)(�1,& , �m) � ∅,

then � = �, n = m and �1 = �1,& , �n = �m, since if the intersection is not empty there are

�, 
 * � such that ��(�1,& , �n) = �
(�1,& , �m) and by the structure of F (Σ� ,Ą) we find that

�� = �
 .

Example 2.1.1. The Σ-algebras of formulas F(Σ,Ą), when considered as multialgebras such

that �F(Σ,Ą)(�1,& , �n) = {�(�1,& , �n)}, are multialgebras of formulas, with � = 1; that is,

F(Σ,Ą) and mF(Σ,Ą , 1) are isomorphic.

From now on, the cardinal of a set X will be denoted by |X|.
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Example 2.1.2. A directed graph is a pair (V ,A), with V a non-empty set of elements called

vertices and A ⊆ V 2 a set of elements called arrows, where we say that there is an arrow from

u to v, both in V , if (u, v) * A; we say that the n-tuple (v1,& , vn) is a path between u and v if

u = v1, v = vn and (vi, vi+1) * A for every i * {1,& , n − 1}; we say that a vertex u * V has

a successor if there exists v * V such that (u, v) * A, and u has a predecessor if there exists

v * V such that (v, u) * A.

A directed graph F = (V ,A) is a forest if, for any two vertices u, v * V , there exists

at most one path between u and v, and a forest is said to have height ! if every vertex has a

successor. Then, we state that forests of height ! are in bijection with the submultialgebras of

the multialgebras of formulas over the signature Σs with exactly one operator s of arity 1.

Essentially, take as Ą the set of elements of F that have no predecessor and define,

for u * V ,

sï(u) = {v * V ∶ (u, v) * A},

and we have that the Σs-multialgebra ï = (V , {sï}), submultialgebra of mF(Σs,Ą , |V |), car-

ries the same information that F .

Example 2.1.3. More generally, a directed multi-graph [Con+09], or directedm-graph, is a pair

(V ,A) with V a non-empty set of vertices and A a subset of V + × V , where V + =
å

n*ℕö{0} V
n

is the set of finite, non-empty, sequences over V . We will say that (v1,& , vn) is a path between

u and v if u = v1, v = vn and, for every i * {1,& , n − 1}, there exist vi1 ,& , vim such that

((vi1 ,& , vim), vi+1), with vi = vij for some j * {1,& , m}.

Then an m-forest is a directed m-graph such that any two elements are connected

by at most one path; and an m-forest is said to have n-height !, for n * ℕ ö {0}, if, for any

(u1,& , un) * V n, there exists v * V such that ((u1,& , un), v) * A. Finally, we see that every

m-forest F = (V ,A) with n-height !, for every n * S ⊆ ℕ ö {∅}, is essentially equivalent to the

ΣS-multialgebra ï = (V , {�ï}�*ΣS ), with

�ï(u1,& , um) = {v * V ∶ ((u1,& , um), v) * A},

for � of arity m, and ΣS the signature with exactly one operator of arity n, for every n * S. It

is not hard to see that ï is a submultialgebra of mF(ΣS ,Ą , |V |), with Ą the set of elements v of

V such that, for no (u1,& , un) * V +, ((u1,& , un), v) * A.

2.2 Equivalences for being a submultialgebra of mF(Σ,Ą , �)

2.2.1 Being cdf-generated

Now, in universal algebra, the algebras of formulas F(Σ,Ą) are absolutely free, also said to be

freely generated, also said to be freely generated in the variety of all Σ-algebras: this means that

there exists a set, in their case the set of variables Ą , such that, for every other Σ-algebra ð with
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universe B and function f ∶ Ą ³ B, there exists an unique homomorphism f ∶ F(Σ,Ą) ³ ð

extending f , essentially defined as:

1. f (p) = f (p), for every p * Ą ;

2. f (�(�1,& , �n)) = �ð(f (�1),& , f (�n)).

As we mentioned before, this is no longer true when dealing with multialgebras, but we can

define a closely related concept with the aid of what we will call collections of choices.

Collections of choices are motivated by legal valuations, notion first defined in Avron

and Lev’s seminal paper [AL01] on non-deterministic logical matrices. A map � from F(Σ,Ą)

to the universe of a Σ-multialgebra ï is a legal valuation whenever

�(�(�1,& , �n)) * �ï(�(�1),& , �(�n));

essentially, at every formula �(�1,& , �n), � “chooses” a value from all the possible values

�ï(�(�1),& , �(�n)), possible values which depend themselves on previous choices �(�1) through

�(�n) performed by �. What a collection of choices does is then to automatize these choices, what

justifies its name.

Definition 2.2.1. Given multialgebras ï = (A, {�ï}�*Σ) and ð = (B, {�ð}�*�) over the sig-

nature Σ, a collection of choices from ï to ð is a collection C = {Cn}n*ℕ of collections of

functions

Cn = {C�b1,&,bn
a1,&,an

∶ � * Σn, a1,& , an * A, b1,& , bn * B}

such that, for � * Σn, a1,& , an * A and b1,& , bn * B, C�
b1,&,bn
a1,&,an

is a function of the form

C�b1,&,bn
a1,&,an

∶ �ï(a1,& , an) ³ �ð(b1,& , bn).

Example 2.2.1. If ð is actually an algebra (meaning all its operations return singletons), there

only exists one collection of choices from any ï to ð (since there exists only one function to

a set with only one element); this means that in universal algebra, collections of choices are

somewhat irrelevant.

Example 2.2.2. A directed tree is a directed forest where there exists exactly one element without

predecessor; we say that v ramifies from u if there exists an arrow from u to v. Then, given two

directed trees T1 = (V1, A1) and T2 = (V2, A2) of height !, seem as Σs-multialgebras, and a

collection of choices C from T1 to T2, for every v * V1 and u * V2 the function Csu
v

chooses, for

each of the elements that ramify from v, one element that ramifies from u.

Definition 2.2.2. Given a signature Σ, a Σ-multialgebra ï = (A, {�ï}�*Σ) is choice-dependent

freely generated by X if X ⊆ A and, for all Σ-multialgebras ð = (B, {�ð}�*Σ), all functions

f ∶ X ³ B and all collections of choices C from ï to ð, there is a unique homomorphism

fC ∶ ï ³ ð such that:
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1. fC|X = f ;

2. for all � * Σn and a1,& , an * A,

fC|�ï(a1,&,an)
= C�fC (a1),&,fC (an)

a1,&,an
.

For simplicity, whenï is choice-dependent freely generated byX, we will write that

ï is cdf-generated by X, or merely that ï is cdf-generated, when the set X is not important.

We now introduce the concept of ground to indicate what elements of a multialgebra

are not “achieved”, “reached” by its multioperations; alternatively, while thinking of formulas

and their respective algebras, the ground is the set of indecomposable formulas, that is, variables.

Definition 2.2.3. Given a Σ-multialgebra ï = (A, {�ï}�*Σ), we define its build as

B(ï) =
å{

�ï(a1,& , an) ∶ n * ℕ, � * Σn, a1,& , an * A
}
.

We define the ground of ï as

G(ï) = A ö B(ï).

Example 2.2.3. B(F(Σ,Ą)) = T (Σ,Ą) ö Ą and G(F(Σ,Ą)) = Ą .

Example 2.2.4. If F = (V ,A) is a directed forest of height !, thought as a Σs-multialgebra, its

ground is the set of elements v in V without predecessors.

Proposition 2.2.1. Let ï and ð be Σ-multialgebras.

1. If f ∶ ï ³ ð is a homomorphism between Σ-multialgebras, then

B(ï) ⊆ f−1(B(ð)) and f−1(G(ð)) ⊆ G(ï).

2. If ð is a submultialgebra of ï, B(ð) ⊆ B(ï) and G(ï) ⊆ G(ð).

Proof. 1. If a * B(ï), there exist � * Σn and a1,& , an * A such that a * �ï(a1,& , an).

Since f (�ï(a1,& , an)) ⊆ �ð(f (a1),& , f (an)), we find that f (a) * �ð(f (a1),& , f (an))

and therefore f (a) * B(ð), meaning that a * f−1(B(ð)). Using that G(ï) = A ö B(ï)

and G(ð) = B ö B(ð) we obtain the second mentioned inclusion.

2. If b * B(ð), there exist � * Σn and b1,& , bn * B such that b * �ð(b1,& , bn), and

given that �ð(b1,& , bn) ⊆ �ï(b1,& , bn) we obtain b * B(ï). Using again that G(ï) =

A ö B(ï) and G(ð) = B ö B(ð) we finish the proof.

From this it also follows that if f ∶ ï ³ ð is a homomorphism, G(ð) K f (A) is

contained in {f (a) ∶ a * G(ï)}. Indeed, if b is in G(ð) K f (A), a * A such that f (a) = b is
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in f−1(G(ð)) and, by the previous proposition, it is in G(ï), and therefore b is in {f (a) ∶ a *

G(ï)}.

Generalizing Example 2.2.3, we have that G(mF(Σ,Ą , �)) = Ą : we proceed by

induction to show that B(mF(Σ,Ą , �)) = T (Σ� ,Ą) ö Ą , what is equivalent. If � is of order 0,

either we have � = �� , for a � * Σ0 and � * �, and therefore � * B(mF(Σ,Ą , �)); or we have

that � = p * Ą , and if there exists � * Σm and �1,& , �m * T (Σ� ,Ą) such that

p * �mF(Σ,Ą ,�)(�1,& , �m)

we have p = ��(�1,& , �m), for � * �, which is absurd given the structure ofF (Σ� ,Ą), forcing us

to conclude that x + B(mF(Σ,Ą , �)). If � is of order n+1, we have that � = ��(�1,& , �m) for a

� * Σm, � * � and �1,& , �m of order at most n, and therefore we have � in �mF(Σ,Ą ,�)(�1,& , �m),

meaning that � * B(mF(Σ,Ą , �)).

Definition 2.2.4. Given a Σ-multialgebra ï = (A, {�ï}�*Σ) and a set S ⊆ A, we define the sets

ïSðm by induction: ïSð0 = S L
å

�*Σ0
�ï; and assuming we have defined ïSðm, we make

ïSðm+1 = ïSðm L
å{

�ï(a1,& , an) ∶ n * ℕ, � * Σn, a1,& , an * ïSðm
}
.

The set generated by S, denoted by ïSð, is then defined as ïSð = å
m*ℕïSðm.

We say ï is generated by S if ïSð = A.

Lemma 2.2.1. Every submultialgebra ï of mF(Σ,Ą , �) is generated by G(ï).

Proof. Suppose a is an element of ï not contained in ïG(ï)ð of minimum order: since a cannot

belong to G(ï) L
å

�*Σ0
�ï = ïG(ï)ð0, there exist n > 0, � * Σn and a1,& , an * A such that

a * �ï(a1,& , an).

Since �ï(a1,& , an) ⊆ �mF(Σ,X,�)(a1,& , an) we derive that a1 to an are of order less

than that of a: by our hypothesis, there must exist m1,& , mn such that aj * ïG(ï)ðmj for all

j * {1,& , n}; taking m = max{m1,& , mn}, a1,& , an * ïG(ï)ðm, and therefore

a * �ï(a1,& , an) ⊆ ïG(ï)ðm+1,

which contradicts our assumption and proves the lemma.

Theorem 2.2.1. Every submultialgebra ï of mF(Σ,Ą , �) is cdf-generated by G(ï).

Proof. Let ï = (A, {�ï}�*Σ) be a submultialgebra of mF(Σ,Ą , �), let ð = (B, {�ð}�*Σ) be

any Σ-multialgebra, let f ∶ G(ï) ³ B be a function and C a collection of choices from ï to

ð. We define fC ∶ ï ³ ð by induction on ïG(ï)ðm:

1. if a * ïG(ï)ð0 and a * G(ï), we define fC(a) = f (a);

2. if a * ïG(ï)ð0 and a * �ï, for a � * Σ0, we define fC(a) = C�(a);
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3. if fC is defined for all elements of ïG(ï)ðm, a1,& , an * ïG(ï)ðm and � * Σn, for every

element a * �ï(a1,& , an) we define

fC(a) = C�fC (a1),&,fC (an)
a1,&,an

(a).

First, we must prove that fC is well defined. There are two possibly problematic

cases to consider for an element a * A: the one in which a * G(ï) and there are � * Σn

and a1,& , an * A for which a * �ï(a1,& , an), corresponding to a falling simultaneously

in the cases (1) and (2), or (1) and (3) of the definition; and the one where there are � * Σn,

� * Σm, a1,& , an * A and b1,& , bm * A such that a * �ï(a1,& , an) and a * �ï(b1,& , bm),

corresponding to the cases (2) and (3), (2) and (2), or (3) and (3) occurring simultaneously.

The first case is not possible, since G(ï) ⊆ A ö �ï(a1,& , an) for every � * Σn and

a1,& , an * A; in the second case, we find that

a * �ï(a1,& , an) K �ï(b1,& , bm) ⊆ �mF(Σ,Ą ,�)(a1,& , an) K �mF(Σ,Ą ,�)(b1,& , bm),

so n = m, � = � and a1 = b1,& , an = bm, and therefore fC(a) is well-defined.

Second, we must prove that fC is defined over all of A: that is simple, for fC is

defined over all of ïG(ï)ð and we established in Lemma 2.2.1 that A = ïG(ï)ð.
So fC ∶ A ³ B is a well-defined function: it remains to be shown that it is a

homomorphism; given � * Σn and a1,& , an, we see that

fC(�ï(a1,& , an)) =
{
C�fC (a1),&,fC (an)

a1,&,an
(a) ∶ a * �ï(a1,& , an)

}
⊆ �ð(fC(a1),& , fC(an)),

while we also have that fC clearly extends both f and all C�fC (a1,&,fC (an)
a1,&,an

.

To finish the proof, suppose g ∶ ï ³ ð is another homomorphism extending both

f and all C�g(a1,&,g(an)
a1,&,an

: we will prove that g = fC again by induction on the m of ïG(ï)ðm. For

m = 0, an element a * ïG(ï)ð0 is either in G(ï), when we have g(a) = f (a) = fC(a), or in �ï
for a � * Σ0, when g(a) = C�(a) = fC(a).

Suppose g is equal to fC in ïG(ï)ðm and take an a * ïG(ï)ðm+1 ö ïG(ï)ðm: we

have that there exist � * Σn and a1,& , an * ïG(ï)ðm such that a * �ï(a1,& , an), and then

g(a) = C�g(a1),&,g(an)
a1,&,an

(a) = C�fC (a1),&,fC (an)
a1,&,an

(a) = fC(a),

proving that g = fC and that, in fact, fC is unique. This means that ï is cdf-generated by

G(ï).

The following lemma may be found in section 2 of [CFG20].

Lemma 2.2.2. Ifï = (A, {�ï}�*Σ) andð = (B, {�ð}�*Σ) areΣ-multialgebras and f ∶ ï ³ ð
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is a homomorphism, ñ = (f (A), {�ñ}�*Σ) such that

�ñ(c1,& , cn) =
å

{f (�ï(a1,& , an)) ∶ f (a1) = c1,& , f (an) = cn}

is a Σ-submultialgebra of ð, while f ∶ ï ³ ñ is an epimorphism.1 The Σ-multialgebra ñ is

known as the direct image of ï trough f .

Proof. First of all, A is not empty, and therefore so is f (A).

Take c1,& , cn * f (A): there must exist a1,& , an * A such that f (a1) = c1,& ,

f (an) = cn, and since ï is a multialgebra, �ï(a1,& , an) � ∅, implying that f (�ï(a1,& , an))

is not empty and, therefore, that �ñ(c1,& , cn) is non-empty, given it contains f (�ï(a1,& , an)).

It is obvious that, as defined, �ñ(c1,& , cn) is a subset of f (A), and so we can deduce that ñ is a

Σ-multialgebra.

Now, given f ∶ ï ³ ð is a homomorphism, for all a1,& , an * A we have

f (�ï(a1,& , an)) ⊆ �ð(f (a1),& , f (an)), meaning

�ñ(c1,& , cn) =
å

{f (�ï(a1,& , an)) ∶ f (a1) = c1,& , f (an) = cn} ⊆

å
{�ð(f (a1),& , f (an)) ∶ f (a1) = c1,& , f (an) = cn} = �ð(c1,& , cn),

or what is equivalent, that ñ is a submultialgebra of ð.

Finally, f ∶ A³ f (A) is still a well-defined function, obviously surjective: for any

n-ary � and elements a1 through an of A, one has

f (�ï(a1,& , an)) ⊆
å

{f (�ï(a
2
1
,& , a2

n
)) ∶ f (a2

1
) = f (a1),& , f (a2

n
) = f (an)} =

�ñ(f (a1),& , f (an))

and that, in conclusion, f is a homomorphism.

Theorem 2.2.2. If the multialgebra ï = (A, {�ï}�*Σ) over Σ is cdf-generated by X, then ï is

isomorphic to a submultialgebra of mF(Σ, X, |A|) containing X.

Proof. Take f ∶ X ³ F (Σ|A|, X) to be the inclusion (such that f (x) = x), and take a collection

of choices C such that, for � * Σn, a1,& , an * A and �1,& , �n * F (Σ|A|, X),

C��1,&,�n
a1,&,an

∶ �ï(a1,& , an) ³ �mF(Σ,X,|A|)(�1,& , �n)

is an injective function. Such collection of choices exist since �ï(a1,& , an) ⊆ A and

�mF(Σ,X,|A|)(�1,& , �n) is of cardinality |A|. Now, since ï is cdf-generated by X, there exists a

homomorphism fC ∶ ï ³ mF(Σ, X, |A|) extending f and each C�fC (a1),&,fC (an)
a1,&,an

.

1A epimorphism between Σ-multialgebras ï = (A, {�ï}�*Σ) and ð = (B, {�ð}�*Σ) is defined, as usual, as a
homomorphism ' ∶ A ³ B between ï and ð that is surjective.
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Let ð = (fC(A), {�ð}�*Σ) be the direct image of ï trough fC , so that fC ∶ ï ³ ð

is an epimorphism, what is possible given Lemma 2.2.2: notice too that

X = X K fC(A) = G(mF(Σ, X, |A|)) K fC(A) ⊆ G(ð)

because ð is a submultialgebra of mF(Σ, X, |A|). Take any g ∶ G(ð) ³ A such that g(x) = x,

for every x * X. And take a collection of choices D from ð to ï such that, for any � * Σn,

b1,& , bn * fC(A) and a1,& , an * A, the function

D�
a1,&,an
b1,&,bn

∶ �ð(b1,& , bn) ³ �ï(a1,& , an)

satisfies that, if a * �ï(a1,& , an) is such that C�b1,&,bn
a1,&,an

(a) * �ð(b1,& , bn), then

D�
a1,&,an
b1,&,bn

(C�
b1,&,bn
a1,&,an

(a)) = a. Given that C�b1,&,bn
a1,&,an

is injective, this condition is well-defined.

Since ð is cdf-generated by G(ð), we know to exist a homomorphism gD ∶ ð ³ ï

extending g and the functions D�gD(b1),&,gD(bn)

b1,&,bn
.

Finally, we take gDċfC ∶ ï ³ ï: it extends the injection id = gċf ∶ X ³ A, for

which id(x) = x; it also extends the collection of choices E defined by

E�
a2
1
,&,a2n

a1,&,an
= D�

a2
1
,&,a2n

fC (a1),&,fC (an)
ċCfC (a1),&,fC (an)

a1,&,an
∶ �ï(a1,& , an) ³ �ï(a

2
1
,& , a2

n
),

for � * Σn and a1,& an, a
2
1
,& , a2

n
* A. This way, E�a1,&,an

a1,&,an
is the identity on �ï(a1,& , an):

indeed, for any a * �ï(a1,& , an),

C�fC (a1),&,fC (an)
a1,&,an

(a) = fC(a)

by definition of fC , and, given fC is a homomorphism, fC(a) * �ð(fC(a1),& , fC(an)), meaning

C�
fC (a1),&,fC (an)
a1,&,an

(a) * �ð(fC(a1),& , fC(an)); then

E�a1,&,an
a1,&,an

(a) = D�
a1,&,an
fC (a1),&,fC (an)

(CfC (a1),&,fC (an)
a1,&,an

(a)) = a

by definition of D.

But notice that the identical homomorphism Idï ∶ ï ³ ï also extends both id

and E and, given the unicity of such extensions on the definition of being cdf-generated, we

obtain that Idï = gDċfC . Of course, the fact that fC ∶ ï ³ ð has a left inverse implies that is

injective, and by definition of ð it is also surjective, meaning it is a bijective function; moreover,

gD is the inverse function of fC . Finally, for � * Σn and a1,& , an * A,

fC(�ï(a1,& , an)) ⊆ �ð(fC(a1),& , fC(an)),
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since fC is a homomorphism; however, given gD is also a homomorphism.

gD(�ð(fC(a1),& , fC(an))) ⊆ �ï(gDċfC(a1),& , gDċfC(an)) = �ï(a1,& , an),

and by applying fC to both sides, one obtains

�ð(fC(a1),& , fC(an)) = fC(gD(�ð(fC(a1),& , fC(an)))) ⊆ fC(�ï(a1,& , an)),

what proves fC is a full homomorphism, that is, an isomorphism.

Notice that, mutatis mutandis, the previous proof shows that if ï = (A, {�ï}�*Σ) is

cdf-generated by X, then ï is isomorphic to a submultialgebra of mF(Σ, X,M(ï)), where

M(ï) = sup
{
|�ï(a1,& , an)| ∶ n * ℕ, � * Σn, a1,& , an * A

}
.

Quite obviously, M(mF(Σ,Ą , �)) = � and M(ï) d � for any submultialgebra of mF(Σ,Ą , �).

The value M(ï) has been regarded for some time, in the literature of multialgebras, as one of

their fundamental aspects, see for example [ČM93]; unfortunately, their definition of homomor-

phism is grossly different from ours, meaning their results are not applicable to or studies.

Notice, furthermore, that written in classical terms, the previous Theorems 2.2.1

and 2.2.2 state something quite well known: an algebra is absolutely free if, and only if, it is

isomorphic to some algebra of formulas over the same signature.

Corollary 2.2.1. Every cdf-generated multialgebra ï is generated by its ground G(ï).

Proof. Since every cdf-generated multialgebra is isomorphic to a submultialgebra of some

mF(Σ, X, �), from Theorem 2.2.2, and every submultialgebra of mF(Σ, X, �) is generated by

its ground, by Lemma 2.2.1, the result follows.

Corollary 2.2.2. Every cdf-generated multialgebra ï is cdf-generated by its ground G(ï).

Definition 2.2.5. A Σ-multialgebra ï = (A, {�ï}�*Σ) is said to be disconnected if, for every

� * Σn, � * Σm, a1,& , an, b1,& , bm * A,

�ï(a1,& , an) K �ï(b1,& , bm) � ∅

implies that n = m, � = � and a1 = b1,& , an = bm.

Example 2.2.5. F(Σ,Ą) is disconnected.

Example 2.2.6. All directed forests of height !, when considered as Σs-multialgebras, are dis-

connected, given that no two arrows point to the same element.
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It is clear that if ð is a submultialgebra of ï and ï is disconnected, then ð is also

disconnected, since if �ð(a1,& , an) K �ð(b1,& , bm) � ∅, for a1,& , an, b1,& , bm * B, given

that �ð(a1,& , an) ⊆ �ï(a1,& , an) and �ð(b1,& , bm) ⊆ �ï(b1,& , bm), we find that

�ï(a1,& , an) K �ï(b1,& , bm) � ∅

and therefore n = m, � = � and a1 = b1,& , an = bm.

We noticed before that mF(Σ,Ą , �) is disconnected, and by Theorem 2.2.2 we ob-

tain that every cdf−generated algebra is disconnected. This has a deeper meaning: being dis-

connected is an attempt to measure how free of identities a multialgebra is. After all, having

no two multioperations to coincide, on any elements, is strongly indicative that the multialgebra

does not satisfy any identities. The fact that our candidates for an absolutely free multialgebra

(the submultialgebras of mF(Σ,Ą , �)) are all disconnected suggests that they are well-deserving

of the “weakly free” title.

2.2.2 Being disconnected and generated by the ground

We have offered, so far, two characterizations of the multialgebras we chose to call weakly free:

first of all, they are submultialgebras of some mF(Σ,Ą , �), and perhaps this is to be taken as their

definition; second, they are cdf-generated. Now, we look at other possible characterizations of

being weakly free that could lead to possible future definitions of relatively free multialgebras.

Algebras of formulas satisfy no identities, what would partially correspond here to

the concept of being disconnected. However, there is one property that is maybe more represen-

tative of our intuition of formulas (which are, up to isomorphism, the elements of all absolutely

free algebras): whenever one deals with formulas, one starts by defining them from elements

that are as simple as possible (variables), and continues indefinitely by combining them trough

operations (connectives).

The concept of simplest (or indecomposable) element, here, is replaced by that of

being an element of the ground, so one would expect that being generated by it plays some sort

of role in the objects we have defined so far: a multialgebra which is generated by a set has all

of its elements either on the set, or as the result of increasingly more complex (multi)operations

performed on that very set.

Lemma 2.2.3. If ï is cdf-generated by X, then X ⊆ G(ï).

Proof. If ï is cdf-generated byX, then ï is isomorphic to a submultialgebra of mF(Σ, X, |A|)
containingX, from Theorem 2.2.2: let us assume thatï is equal to this submultialgebra, without

loss of generality.

Then we have X = G(mF(Σ, X, |A|)) K A ⊆ G(ï).

Lemma 2.2.4. If ï is cdf-generated by both X and Y , with X ⊆ Y , then X = Y .
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Proof. Suppose X � Y and let y * Y öX: take a Σ-multialgebra ð over the same signature as

ï such that |B| e 2, and a collection of choices C from ï to ð.

Take also two functions g, ℎ ∶ Y ³ B such that g|X = ℎ|X and g(y) � ℎ(y), which is

possible since |B| e 2: given that ï is cdf-generated by Y , there exist unique homomorphisms

gC and ℎC extending both, respectively, g and C and ℎ and C .

However, gC and ℎC extend both g|X ∶ X ³ B and C , and since ï is cdf-generated

by X, we find that gC = ℎC . This is not possible, since gC(y) � ℎC(y), what must imply that

Y öX = ∅ and therefore X = Y .

Theorem 2.2.3. Every cdf-generated multialgebra ï is uniquely cdf-generated by its ground.

Proof. From Theorem 2.2.1, ï is cdf-generated by G(ï), and from Lemma 2.2.3, if ï is also

cdf-generated by X, then X ⊆ G(ï). By Lemma 2.2.4, this implies that X = G(ï).

We have proved so far that, if ï is cdf-generated, then ï is generated by its ground

and disconnected. We would like to prove that this is enough to characterize a cdf-generated

multialgebra: that is, if ï is generated by its ground and disconnected, then it is cdf-generated,

exactly by its ground.

The idea is similar to the one we used to prove, in Theorem 2.2.1, that all submul-

tialgebras of mF(Σ,Ą , �) are cdf-generated: take a multialgebra ï that is both generated by its

ground G(ï), which we will denote by X, and disconnected, and fix a multialgebra ð over the

same signature, a function f ∶ X ³ B and a collection of choices C from ï to ð.

We define a function fC ∶ A ³ B using induction on the ïXðm: for m = 0, either

we have an element x * X, when we define fC(x) = f (x), or we have an a * �ï, for a � * Σ0,

when we define fC(a) = C�(a). Notice how, up to this point, there are no contradictions on the

definition, given an element cannot belong both to X and to a �ï, since X = G(ï).

Suppose we have successfully defined fC on ïXðm and take an a * �ï(a1,& , an)

for a1,& , an * ïXðm. We then define

fC(a) = C�fC (a1),&,fC (an)
a1,&,an

(a).

Again the function remains well-defined: a cannot belong to X, since X = G(ï), and cannot

belong to a �ï(b1,& , bp) unless p = n, � = � and b1 = a1,& , bp = an, since ï is disconnected.

Clearly fC is a homomorphism, since the image of �ï(a1,& , an) under fC is con-

tained in �ð(fC(a1),& , fC(an)), and fC extends both f and C .

Lemma 2.2.5. If a multialgebra ï is both generated by its ground X and disconnected, ï is

cdf-generated by X.

Proof. It remains for us to show that fC , as defined above, is the only homomorphism extending

f andC . Suppose g is another such homomorphism and we shall proceed yet again by induction.
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On ïXð0, we have that fC(x) = f (x) = g(x) for all x * X; and for a * �ï and

� * Σ0 we have that

fC(a) = C�(a) = g(a),

hence fC and g coincide on ïXð0. Suppose that fC and g are equal on ïXðm and take a *

�ï(a1,& , an) for a1,& , an * ïXðm: we have by induction hypothesis that

fC(a) = C�fC (a1),&,fC (an)
a1,&,an

(a) = C�g(a1),&,g(an)
a1,&,an

(a) = g(a),

which concludes our proof.

Theorem 2.2.4. A multialgebra ï is cdf-generated if, and only if, ï is generated by its ground

and disconnected.

We have introduced several concepts that, although dissimilar in their definitions,

are intrinsically connected; so it becomes important to analyze whether they are indeed distinct:

are there multialgebras that are disconnected but not generated by their grounds? Are there

multialgebras that are generated by their grounds but not disconnected? Or does being generated

by its ground implies being disconnected, or vice-versa? We show below that this is not the case,

for we provide examples answering positively both previous questions.

Example 2.2.7. Take the signature Σs with a single unary operator, first defined in Example

2.1.2. Consider the Σs−multialgebra ñ = ({−1, 1}, {sñ}) such that sñ(−1) = {1} and sñ(1) =

{−1} (that is, sñ(x) = {−x}).

We state that ñ is disconnected, but not generated by its ground. ñ is clearly dis-

connected since sñ(−1) K sñ(1) = ∅; now, B(ñ) = sñ(−1) L sñ(1) = {−1, 1}, and so G(ñ) = ∅.

Since Σ0 = ∅,
å

�*Σ0
�ñ = ∅ and therefore ïG(ñ)ðn = ∅ for every n * ℕ, so that G(ñ) does not

generate ñ.

−1 1

sñ

sñ

The Σs-multialgebra ñ

Example 2.2.8. Take the signature Σs with a single unary operator. Consider the Σs−multialge-

bra ð = ({0, 1}, {sð}) such that sð(0) = {1} and sð(1) = {1} (that is, sð(x) = {1}).

Then ð is clearly not disconnected, since sð(0) K sð(1) = {1}, yet ð is generated by

its ground: B(ð) = {1} and so G(ð) = {0}, and we see that ïG(ð)ð1 is already {0, 1}.



Chapter 2: Weakly free multialgebras 57

0 1
sð

sð

The Σs-multialgebra ð

2.2.3 Being disconnected and having a strong basis

Now, we define the notion of a strong basis (a minimum generating set), and prove that, on

one hand, being generated by the ground implies having a strong basis, what means that be-

ing disconnected and generated by the ground implies being disconnected and having a strong

basis; reciprocally, we also prove having a strong basis and being disconnected implies being

disconnected and generated by the ground (although having a strong basis does not imply being

generated by the ground). This provides a third characterization of our weakly free multialge-

bras.

Our motivation, when coining the definition of a strong basis, was to be able to

weaken that very condition: after all, absolutely free algebras (that is, algebras freely generated

on the variety of all algebras on a given signature) are easier to define than the relatively free

ones (which are the algebras freely generated on any variety one wants to consider), so it is

natural that we start this study with “absolutely free” multialgebras. However, we still would

like to be able, in the future, to define what should be a relatively free multialgebra (whatever a

variety of multialgebras may be); to this end, weakening a strong basis to be a minimal (instead

of minimum) generating set makes sense, given many relatively free algebras, on domains such

as that of vector spaces, indeed have basis.

Definition 2.2.6. We say B ⊆ A is a strong basis of the Σ-multialgebra ï = (A, {�ï}�*Σ) if it

is the minimum of the set õ = {S ⊆ A ∶ ïSð = A} when ordered by inclusion.

Example 2.2.9. The set of variables Ą is a strong basis of F(Σ,Ą).

Example 2.2.10. The set of elements without predecessor of a directed forest of height ! is a

strong basis of the forest, when considered as a Σs-multialgebra.

Lemma 2.2.6. For every subset S of the universe of a Σ-multialgebra ï, G(ï) K ïSð ⊆ S.

Proof. Suppose x * G(ï) K ïSð: if x + S, we will show that x cannot be in ïSð, which

contradicts our assumption. Indeed, if x + S then

x + ïSð0 = S L
å

�*Σ0

�ï,

since x + S, and x * G(ï) implies that

x * A ö B(ï) ⊆ A ö
å

�*Σ0

�ï.
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Now, for induction hypothesis, suppose that x + ïSðm; then

x + ïSðm+1 = ïSðm L
å{

�ï(a1,& , an) ∶ n * ℕ, � * Σn, a1,& , an * ïSðm
}

since x + ïSðm, and x * G(ï) implies that

x * A ö B(ï) ⊆ A ö
å{

�ï(a1,& , an) ∶ n * ℕ, � * Σn, a1,& , an * ïSðm
}
.

Theorem 2.2.5. If the Σ-multialgebra ï has a strong basis B, G(ï) ⊆ B.

Proof. By lemma 2.2.6, G(ï) = G(ï) K A = G(ï) K ïBð ⊆ B.

Notice lemma 2.2.6 leads us too to the fact that, if ï is generated by its ground, then

it has the ground as a strong basis: this is because, if ïSð = A, G(ï) = G(ï) K ïSð ⊆ S, and

therefore G(ï) becomes a minimum generating set.

Definition 2.2.7. If B is a strong basis of a disconnected Σ-multialgebra ï, we define the B-

order of an element a * A as the natural number

oB(a) = min
{
k * ℕ ∶ a * ïBðk

}
.

This is a clear generalization of the order, or complexity, of a formula: in fact, the

order of a formula in T (Σ,Ą) is exactly its Ą-order.

Proposition 2.2.2. If a * �ï(a1,& , an) and oB(a) e 1, then oB(a1),& , oB(an) < oB(a).

Proof. Suppose oB(a) equals m + 1, with m * ℕ, implying that

a * ïBðm+1 = ïBðm L
å{

�ï(a1,& , an) ∶ n * ℕ, � * Σn, a1,& , an * ïBðm
}
;

since m + 1 = min{k * ℕ ∶ a * ïBðk}, we have that a + ïBðm and therefore

a *
å{

�ï(a1,& , an) ∶ n * ℕ, � * Σn, a1,& , an * ïBðm
}
.

Finally, we obtain that there exist p * ℕ, � * Σp and b1,& , bp * ïBðm such that a *

�ï(b1,& , bp). Since a * �ï(a1,& , an), this implies that �ï(a1,& , an) K �ï(b1,& , bp) � ∅,

and therefore p = n, � = � and b1 = a1,& , bp = an, so that oB(a1),& , oB(an) d m.

But what if a * �ï(a1,& , an) and oB(a) = 0, implying a * B? We state this case

cannot occur, for if it does,

B∗ =
(
B L {a1,& , an}

)
ö {a}
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generates A, while clearly not containing B, even in the case where n = 0. We have that a *

ïB∗ð1, since a1,& , an * B∗ and a * �ï(a1,& , an), and given that B ö {a} ⊆ B∗, it follows that

B ⊆ ïB∗ð1, and so ïBð0 ⊆ ïB∗ð1.
It is then true that, for every m * ℕ, ïBðm ⊆ ïB∗ðm+1: if this is true for m, let

b * ïBðm+1, and then either b * ïBðm, so that b * ïB∗ðm+1 ⊆ ïB∗ðm+2, or there exist � * Σp and

b1,& , bp * ïBðm such that b * �ï(b1,& , bp); in this case, since ïBðm ⊆ ïB∗ðm+1, we have that

b * �ï(b1,& , bp) ⊆
å{

�ï(a1,& , an) ∶ n * ℕ, � * Σn, a1,& , an * ïB∗ðm+1
}
⊆ ïB∗ðm+2,

so once again b * ïB∗ðm+2. Since ïBð =
å

m*ℕïBðm equals A, we have that ïB∗ð also equals

A, as we previously stated. This is absurd, since B is the minimum of {S ⊆ A ∶ ïSð = A}

ordered by inclusion and B ⊈ B∗. The conclusion must be that if a * �ï(a1,& , an), then

oB(a1),& , oB(an) < oB(a), regardless of the value of oB(a).

Lemma 2.2.7. If ï is disconnected and has a strong basis B, B = G(ï) and so ï is generated

by its ground.

Proof. Suppose a * B ö G(ï): since a is in the build of ï, there exist � * Σn and elements

a1,& , an * A such that a * �ï(a1,& , an). If n > 0, oB(a) > oB(a1) e 0, which contradicts the

fact that a * B and therefore oB(a) = 0.

If n = 0, it is clear that B∗ = B ö {a} is a generating set smaller than B: generating

set because, if a * �ï, a *
å

�*Σ0
�ï and therefore B ⊆ ïB∗ð0, so that ïBðm ⊆ ïB∗ðm+1 and

å
m*ℕïBðm =

å
m*ℕïB∗ðm. This is also a contradiction, since B is a strong basis.

Theorem 2.2.6. ï is generated by its ground and disconnected if, and only if, it has a strong

basis and it is disconnected.

Proof. We already proved, in Lemma 2.2.7, that if ï is disconnected and has a strong basis

B, then it is generated by its ground and disconnected. Reciprocally, if ï is disconnected and

generated by its ground, first of all it is clearly disconnected.

Now, if ïG(ï)ð = A one has that G(ï) ⊆ S for every S * {S ⊆ A ∶ ïSð = A},

by Lemma 2.2.6. Therefore, the ground is a strong basis.

Once again, we ask ourselves whether the concepts we have defined in this section

are truly independent: does being disconnected imply having a strong basis? Does having a

strong basis imply being disconnected? We show that neither is the case by providing examples

of a multialgebra that is disconnected but does not have a strong basis and one of a multialgebra

that has a strong basis but is not disconnected.

Example 2.2.11. Take the Σs−multialgebra ñ from Example 2.2.7.

We know that ñ is disconnected, but we also state that it does not have a strong basis:

in fact, we see that the set {S ⊆ {−1, 1} ∶ ïSð = {−1, 1}} is exactly {{−1}, {1}, {−1, 1}},

and this set has no minimum.
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Example 2.2.12. Take the Σs−multialgebra ð from Example 2.2.8.

As we saw before, ð is not disconnected, but we state that it has a strong basis:

B = {0} generates ð and, since {1} does not generate the multialgebra, we find that B is a

minimum generating set.

In these two examples we presented a multialgebra (ð) which has a strong basis and

is generated by its ground, and one multialgebra (ñ) which does not have a strong basis and is

not generated by its ground. Clearly being generated by its ground implies having a strong basis,

so it is natural to hypothesize that having a strong basis and being generated by its ground could

be equivalent notions; however, as we show in the example below, having a basis does not imply

being generated by its ground.

Example 2.2.13. Take the signature Σs with a single unary operator from Example 2.1.2. Con-

sider the Σs−multialgebra û = ({−1, 0, 1}, {sû}) such that sû(0) = {0}, sû(1) = {1} and

sû(−1) = {1} (that is, sû(x) = {|x|}, where |X| denotes the absolute value of x).

We have thatG(û) = {−1} and that ï{−1}ð = {−1, 1}, so that û is not generated

by its ground. But we state that {−1, 0} is a strong basis: first of all, it clearly generates û;

furthermore, the generating sets of û are only {−1, 0} and {−1, 0, 1}, so that {−1, 0} is in fact

the smallest generating set.

−1 0 1

sû

sû

sû

The Σs-multialgebra û

2.2.4 Being disconnected and chainless

The last equivalence to being a submultialgebra of mF(Σ,Ą , �) we give depends on the notion

of being chainless, which is very graph-theoretical in nature. Think of a tree that ramifies ever

downward: one can pick any vertex and proceed, against the arrows, upwards until an element

without predecessor is reached. More than that, it is not possible to find an infinite path, starting

in any one vertex, by always going against the arrows: such a path, if it existed, would be what

we shall call a chain. A multialgebra without chains is, very naturally, chainless.

As it was in the case of strong bases, there isn’t a parallel concept to being chainless

among the theory of universal algebra: it seems that this concept is far more natural when dealing

with multioperations, although it can be easily applied to algebras if one wishes to do so. A close,

although not equivalent, entity are the branches in the formation trees of formulas: if allowed to

grow infinitely, these would became chains.
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The main result of this section is, perhaps, the fact that being chainless implies being

generated by its ground, which, as we know, implies in turn having a strong basis. Of course,

when adding disconnectedness to the equation, all three concepts become equivalent to one

another and to the fact that the multialgebra at hand is weakly free. We have, then, the following

schematic diagram, that offers an overview of the aforementioned results.

ï is chainless

ï is generated by G(ï)

ï has a strong basis

∖
∖

ï is chainless

and disconnected

ï is generated by G(ï)

and disconnected

ï has a strong basis

and is disconnected

Given a function � ∶ {1,& , n} ³ {1,& , n} in Sn, the group of permutations on n

elements (meaning � is bijective), the action of � in an n-tuple (x1,& , xn) * Xn is given by

�(x1,& , xn) = (x�(1),& , x�(n)).

Given 1 d i, j d n, we define [i, j] to be the permutation such that [i, j](i) = j, [i, j](j) = i and,

for k * {1,& , n} different from i and j, [i, j](k) = k.

Definition 2.2.8. Given a Σ-multialgebra ï, a sequence {an}n*ℕ ⊆ A is said to be a chain if, for

every n * ℕ, there exist a natural number mn * ℕ, a functional symbol �n * Σmn , a permutation

�n * Smn and elements an
1
,& , an

mn−1
* A such that

an * �n
ï
(�n(an+1, a

n
1
,& , an

mn−1
)).

A Σ-multialgebra is said to be chainless when it has no chains.

Example 2.2.14. Take a directed forest of height ! and add to it a loop, that is, choose a vertex

v and add an arrow from v to v: then {an}n*ℕ, such that an = v for every n * ℕ, is a chain.

Example 2.2.15. F(Σ,Ą) is chainless.

Lemma 2.2.8. If ï is chainless, then it is generated by its ground.

Proof. Suppose that this not hold, so Aö ïG(ï)ð is not empty, and must therefore contain some

element a0. We create a chain {an}n*ℕ by induction, being the case n = 0 already done.
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So, suppose we have created a finite sequence of elements a0,& , ak * A ö ïG(ï)ð
such that, for each 0 d n < k, there exist a positive integer mn * ℕ ö {0}, a functional symbol

�n * Σmn , a permutation �n * Smn and elements an
1
,& , an

mn−1
* A such that

an * �n
ï
(�n(an+1, a

n
1
,& , an

mn−1
)).

Since ak * A ö ïG(ï)ð, we have that ak is not an element of the ground; so, there

must exist mk * ℕ, a functional symbol �k * Σmk and elements bk
1
,& , bk

mk
* A such that

ak * �k
ï
(bk

1
,& , bk

mk
).

Now, if all bk
1
,& , bk

mk
belonged to ïG(ï)ð, so would ak: there must be an element ak+1 *

{bk
1
,& , bk

mk
}, say bk

l
, such that ak+1 * AöïG(ï)ð. We then define ak

i
as bk

j
, for i * {1,& , mk−1}

and j = min{i d p d mk ∶ p � l}, and

�k = [l − 1, l]ċďċ[1, 2],

and then it is clear that {an}n*ℕ becomes a chain, with the extra condition that {an}n*ℕ ⊆ A ö

ïG(ï)ð. Since ï is chainless, we reach a contradiction, so we must have instead that A ö

ïG(ï)ð = ∅, and therefore ï is generated by its ground.

So, a disconnected, chainless multialgebra is, by Lemma 2.2.8, disconnected and

generated by its ground. We state, that, in fact, the reciprocal also holds, when we arrive at yet

another characterization of being an weakly free multialgebra.

So, suppose ï is disconnected and generated by its ground, and let {an}n*ℕ be a

chain in ï: clearly no an can belong to the ground, since

an * �n
ï
(�n(an+1, a

n
1
,& , an

mn−1
)),

and therefore oG(ï)(an+1) < oG(ï)(an), that is, theG(ï)-order of an+1 is less than theG(ï)-order

of an; we reach a contradiction, since if oG(ï)(a0) = m, then oG(ï)(am+1) < 0, what is impossible.

ï must then be chainless.

Theorem 2.2.7. ï is generated by its ground and disconnected if, and only if, it is chainless

and disconnected.

Finally, Theorems 2.2.1, 2.2.2, 2.2.4, 2.2.6 and 2.2.7 can be summarized as follows;

the object we decided to call a weakly free multialgebra is then a multialgebra which satisfies

any, and therefore all, of the conditions found in the following theorem.

Theorem 2.2.8. Are equivalent:

1. ï is a submultialgebra of some mF(Σ,Ą , �);
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2. ï is cdf-generated;

3. ï is generated by its ground and disconnected;

4. ï has a strong basis and is disconnected;

5. ï is chainless and disconnected.

An important point to stress is that, although not all concepts present in the previous

theorem have natural counterparts in universal algebra, by defining them for algebras, presented

as multialgebras, we find that all of the conditions in the theorem are valid only for algebras of

formulas. This follows easily from the fact that the only cdf-generated algebras are the algebras

of formulas themselves.

Now, a few examples concerning being chainless, disconnected, having a strong

basis and being generated by the ground will be given. Essentially, they show that the notion of

being chainless is independent from that of being disconnected, and that despite being chainless

implies being generated by the ground (and so having a strong basis), the reciprocal does not

hold, and there exist multialgebras generated by the ground which are not chainless.

Example 2.2.16. Take the signature Σs from Example 2.1.2, and consider the Σs−multialgebra

ć = (ℕ L {a, b}, {sć}) such that sć (n) = {n + 1}, for n * ℕ, and sć (a) = sć (b) = {0}.

We see that ć is chainless since, given a chain {an}n*ℕ, it must be contained in the

build of ć , that is, ℕ: but then an+1 = an−1, what is a contradiction, since there are only a finite

number of elements with index smaller than that of a0. At the same time, ć is not disconnected,

since sć (a) = sć (b).

a

0 1 ď

b

sć

sć sć

sć

The Σs-multialgebra ć

Example 2.2.17. Take the Σs−multialgebra ñ from Example 2.2.7.

We know that ñ is disconnected, but we state that it is not chainless: in fact,

{(−1)n}n*ℕ and {(−1)n+1}n*ℕ are chains in ñ.

Example 2.2.18. Take the Σs−multialgebra ð from Example 2.2.8.

We have already established that ð has a basis and is generated by its ground, {0},

yet it is not chainless: {1}n*ℕ is a chain in ð.
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2.3 Freely generated multialgebras

So, as we mentioned time and time again, the algebras of formulas, in the study of universal

algebras, are specially significant given they are the only absolutely free algebras, meaning they

are the only ones with the unique extension property in the variety of all algebras over their

signature.

So we turn now to a somewhat folkloric result: the unique extension property, rela-

tive to the class of all multialgebras on a given signature, is satisfied by no one; alternatively, this

statement can be reworded as to say that the forgetful functor from the category of multialgebras

to Set does not have a left adjoint, what implies in particular that this category has no initial

objects.

Of course, such a result is stated in various ways, depending on your definition of

homomorphism and, perhaps most importantly, even on your own definition of multialgebra.

So, we offer what we believe to be a simplified proof of the result for the category MAlg(Σ) as

we have defined it. We proceed by contradiction, and start defining the multialgebras which do

satisfy the unique extension property.

Definition 2.3.1. A Σ-multialgebra ï = (A, {�ï}�*Σ) is freely generated by X, for a X ⊆ A,

if for every Σ-multialgebra ð = (B, {�ð}�*Σ) and map f ∶ X ³ B there exists only one

homomorphism f ∶ ï ³ ð extending f .

In other words, if j ∶ X ³ A is the inclusion, there exists only one homomorphism

f ∶ ï ³ ð commuting the following diagram in Set.

A

X B

fj

f

Lemma 2.3.1. If' is a bijective Σ-homomorphism from ï = (A, {�ï}) to ð = (B, {�ð}) whose

inverse is also a homomorphism, then ' is a isomorphism.

Proof. We only have to prove that' is a full homomorphism, so take � * Σn and a1,& , an * A:

from the fact ' is a homomorphism we know that

{'(a) ∶ a * �ï(a1,& , an)} ⊆ �ð('(a1),& , '(an));

and since '−1 is also a homomorphism, we have that

{'−1(b) ∶ b * �ð('(a1),& , '(an))} ⊆ �ï(a1,& , an).

Since ' is a bijection, we may apply it to the last equation while preserving the inclusion, thus

getting

�ð('(a1),& , '(an)) ⊆ {'(a) ∶ a * �ï(a1,& , an)}.
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Proposition 2.3.1. If there exist Σ-multialgebras ï and ð which are freely generated by, re-

spectively, X and Y such that |X| = |Y |, then ï and ð are isomorphic.

Proof. Since X and Y are of the same cardinality, there exists bijective functions f ∶ X ³ Y

and g ∶ Y ³ X inverses of each other. Take the extensions f ∶ ï ³ ð and g ∶ ð ³ ï and

we have that gċf is a homomorphism extending gċf = IdX , the identity on X.

Since the identical homomorphism Idï ∶ ï ³ ï also extends IdX , we have that

Idï = gċf . In a similar way we have that Idð = fċg, so that ï and ð are isomorphic by use

of Lemma 2.3.1.

This way we can refer ourselves to the unique Σ-multialgebra freely generated byX,

up to isomorphisms.

We will denote by ă ∶ MAlg(Σ) ³ Set the forgetful functor, which takes a multi-

algebra to its universe and a homomorphism to itself, seem now merely as a function between

sets.

Lemma 2.3.2. If there exist, for every set X, a Σ-multialgebra freely generated by X, then

the functor F ∶ Set ³ MAlg(Σ), associating a set X to a Σ-multialgebra freely generated

by X, which we will denote FX, and a function f ∶ X ³ Y to the only homomorphism

f ∶ FX ³ FY extending f , is a left adjoint of ă .

Proof. For X a set and ï a Σ-multialgebra with universe A we consider

¨ï,X ∶ HomSet(X,ăï) ³ HomMAlg(Σ)(FX,ï)

associating a map f ∶ X ³ A to the only homomorphism f ∶ FX ³ ï extending f . Each

¨ï,X is clearly a bijection given that FX is freely generated by X.

Now, given sets X and Y , Σ-multialgebras ï and ð, a function f ∶ Y ³ X and a

homomorphism ℎ ∶ ï ³ ð, we have only left to prove that the following diagram commutes

in Set.

HomSet(X,ăï) HomMAlg(Σ)(FX,ï)

HomSet(Y ,ăð) HomMAlg(Σ)(FY ,ð)

¨ï,X

Hom(f,ă') Hom(Ff,')

¨ð,Y

So we take a function g ∶ X ³ ăï: taking the top-right edges of the diagram

we have ¨ï,Xg = g and Hom(Ff, ℎ)g = ℎċgċFf ; on the bottom-left ones, Hom(f,ă ℎ)g =

ă ℎċgċf and ¨ð,Y (ă ℎċgċf ) = ă ℎċgċf .

Now both ℎċgċFf and ă ℎċgċf are homomorphisms from FY to ð extending

ă ℎċgċf ∶ Y ³ ăð: for the second one this is obvious, for the first we take an element y * Y
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and see that

ℎċgċFf (y) = ℎċgċf (y) = ℎċgċf (y) = ă ℎċgċf (y)

since, respectively, Ff = f , which extends f ; g extends g, which is defined on X that contains

f (y); and ă ℎ = ℎ, seen only as a function between sets.

Given that FY is freely generated over Y , we have that ℎċgċFf = ă'ċgċf and

the diagram in fact commutes.

Theorem 2.3.1. Given a non-empty signatureΣ and a setX, there does not exist aΣ-multialgebra

freely generated by X.

Proof. Suppose that ï = (A, {�ï}�*Σ) is freely generated by X and let Ą be a set that properly

contains X, meaning Ą � ∅ and therefore that F(Σ,Ą) is well defined; then take the identity

function j ∶ X ³ F (Σ,Ą), such that j(x) = x for every x * X, and the homomorphism

j ∶ ï ³ F(Σ,Ą) extending j.

Now, take the identity function id ∶ Ą ³ F (Σ2,Ą) and the collections of choices C

and D from F(Σ,Ą) to mF(Σ,Ą , 2) such that, for � * Σn,

C��1,&,�n
�1,&,�n

(�(�1,& , �n)) = �0(�1,& , �n)

and

D��1,&,�n
�1,&,�n

(�(�1,& , �n)) = �1(�1,& , �n),

and consider the only homomorphisms idC , idD ∶ F(Σ,Ą) ³ mF(Σ,Ą , 2) extending, respec-

tively, id and C , and id and D, which we know to exist given F(Σ,Ą) is cdf-generated by Ą .

Since idCċj, idDċj ∶ ï ³ mF(Σ,Ą , 2) both extend the function j2 ∶ X ³ T (Σ2,Ą) such that

j2(x) = x for every x * X (remember Ą properly contains X), we have idCċj = idDċj.

Now, if � * T (Σ,Ą) ö Ą , we have that there exist � * Σn, for n * ℕ, and elements

�1,& , �n * F (Σ,Ą) such that � = �(�1,& , �n); in this case,

idC(�) = �0(idC(�1),& , idC(�n)) � �1(idD(�1),& , idD(�n)) = idD(�),

given that the main connectives are distinct, and therefore implying that idC and idD are always

different outside of Ą .

Since idCċj = idDċj, we must have that j(A) ⊆ Ą , and this is absurd since we are

assuming Σ non-empty: if Σ0 � ∅, for a � * Σ0 and a * �ï we have that j(a) = � in F (Σ,Ą),

which is not in X; if it is another Σn which is not empty, given a * A (which exists given the

universe of multialgebras are assumed to be non-empty) we have that, for b * �ï(a,& , a), is

valid that j(b) = �(j(a),& , j(a)), which is again not in Ą .

We must conclude that there are no freely generated multialgebras.

Corollary 2.3.1. The category MAlg(Σ) does not have an initial object.
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Proof. We state that if ï is an initial object, ï is freely generated by ∅: in fact, for every

Σ-multialgebra ð and map f ∶ ∅ ³ B, there exists a single homomorphism !ð ∶ ï ³ ð

extending f = ∅, that is, the only homomorphism between ï and ð.

By Theorem 2.3.1, freely generated multialgebras do not exist, what ends the proof.

Theorem 2.3.2. The forgetful functor ă ∶ MAlg(Σ) ³ Set does not have a left adjoint.

Proof. For suppose we have a left adjoint F ∶ Set ³ MAlg(Σ) of ă , so that F has a right

adjoint and is therefore cocontinuous. Since ∅ is the initial object in Set, we have that F∅ must

be an initial object in MAlg(Σ), which by Corollary 2.3.1 does not exist.

Answering a question posed at the end of Section 1.2, we can prove with arguments

similar to those found in Theorem 2.3.1 and Corollary 2.3.1 that the category of Σ-multialgebras

equipped with full homomorphisms, MAlg=(Σ), does not have intial objects, and so its forgetful

functor into Set does not have a left adjoint.

In fact, suppose ï is an initial object of MAlg=(Σ), and let ! be the only full homo-

morphism from ï to mF(Σ,Ą , 2); we take the identity function id ∶ Ą ³ F (Σ2,Ą) and the

collections of choices C and D from mF(Σ,Ą , 2) into itself such that

C��1,&,�n
�1,&,�n

(�0(�1,& , �n)) = �0(�1,& , �n), C��1,&,�n
�1,&,�n

(�1(�1,& , �n)) = �1(�1,& , �n),

D��1,&,�n
�1,&,�n

(�0(�1,& , �n)) = �1(�1,& , �n) and D��1,&,�n
�1,&,�n

(�1(�1,& , �n)) = �0(�1,& , �n),

and it is clear that idC and idD are both full homomorphisms satisfying idCċ! = idDċ!. Since idC
and idD are always distinct over the build of mF(Σ,Ą , 2), we get that the image of ! is contained

in Ą , a contradiction as we saw in the proof of Theorem 2.3.1.

2.4 A categorical characterization

Given the category MAlg(Σ) whose objects are all Σ−multialgebras and morphisms from ï to

ð are all homomorphisms from ï to ð, we would like to construct a related category MG(Σ)

whose objects are also exactly all Σ−multialgebras, but where the cdf-generated multialgebras

can be construed as the image of an adjoint-having functor. The motivation behind the search

for such a MG(Σ) is that having such a category, and the associated pair of adjoint functors,

would make weakly free multialgebras far more similar to absolutely free algebras than they are

now: after all, the latter are images under the so called free functor, right adjoint of the forgetful

functor from the category of Σ-algebras Alg(Σ) to the category of sets Set. Unfortunately, since,

as we showed in Theorem 2.3.2, the forgetful functor of MAlg(Σ) does not have a left-adjoint,

the task is not as simple as in the classical case and will require far more craftsmanship.
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Definition 2.4.1. Given a homomorphism ' ∶ ï ³ ð between Σ−multialgebras ï and ð, we

say that ' is ground-preserving, or that it preserves grounds, if '(G(ï)) ⊆ G(ð).

Proposition 2.4.1. Taking as objects all Σ−multialgebras and as morphisms between the

Σ−multialgebras ï and ð all ground-preserving homomorphisms between ï and ð, the result-

ing structure MAlgG(Σ) is a subcategory of MAlg(Σ).

Proof. Clearly the identical homomorphism Idï is ground-preserving, so Idï is in

HomMAlgG(Σ)
(ï,ï).

And if ' ∶ ï ³ ð and  ∶ ð ³ ñ are ground-preserving, then

 ċ'(G(ï)) =  ('(G(ï)) ⊆  (G(ð)) ⊆ G(ñ),

so that  ċ' is also ground-preserving and MAlgG(Σ) is in fact a subcategory of MAlg(Σ).

Now, for ground-preserving homomorphisms ', ∶ ï ³ ð, we define an equiva-

lence relation "<" in HomMAlg(Σ)(ï,ð) by means of

'< õ '|G(ï) =  |G(ï).

That is in fact an equivalence relation since, given homomorphisms ', , � ∶ ï ³ ð we have

that:

1. '<', since '|G(ï) = '|G(ï);

2. if '< , then '|G(ï) =  |G(ï) and therefore  |G(ï) = '|G(ï), and so  <';

3. if '< and  <�, we have that '|G(ï) =  |G(ï) and  |G(ï) = �|G(ï), and therefore

'|G(ï) = �|G(ï) and '<�.

We will denote the equivalence class by < with representative a homomorphism ' by [']. Fi-

nally, we can define the morphisms from ï to ð in MG(Σ) to be

HomMG(Σ)(ï,ð) = HomMAlgG(Σ)
(ï,ð)∕<,

and their composition by, given ['] * HomMG(Σ)(ï,ð) and [ ] * HomMG(Σ)(ð,ñ),

[ ]ċ['] = [ ċ'].

We state that this definition of composition is well behaved: if ['1] = ['2] and [ 1] = [ 2] for

'1, '2 ∶ ï ³ ð and  1,  2 ∶ ð ³ ñ ground-preserving homomorphisms, we have that for an

a * G(ï) it is valid that

 1ċ'1(a) =  1('1(a)) =  1('2(a));
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since '2 is ground-preserving, we have that '2(a) * G(ð), implying

 1('2(a)) =  2('2(a)) =  2ċ'2(a),

and therefore  1ċ'1|G(ï) =  2ċ'2|G(ï), meaning [ 1ċ'1] = [ 2ċ'2].

Theorem 2.4.1. MG(Σ) is a category.

Proof. By the above remark HomMG(Σ) has a well-defined composition: to see that this compo-

sition is also associative, take ground-preserving homomorphisms ' ∶ ï ³ ð,  ∶ ð ³ ñ

and � ∶ ñ ³ ò: then

[�]ċ([ ]ċ[']) = [�]ċ[ ċ'] = [�ċ( ċ')] = [(�ċ )ċ'] = [�ċ ]ċ['] = ([�]ċ[ ])ċ['].

Furthermore, [Idï], for Idï * HomMAlg(Σ)(ï,ï) the usual identical homomor-

phism, is the identity on HomMG(Σ)(ï,ï), since for any other Σ−multialgebra ð and ground-

preserving homomorphisms ' ∶ ï ³ ð and  ∶ ð ³ ï we have

[']ċ[Idï] = ['ċIdï] = [']

and

[Idï]ċ[ ] = [Idïċ ] = [ ].

Our goal is to prove that the functor associating a set X to a cdf-generated multi-

algebra over X is the adjoint of a "forgetful functor" on MG(Σ): the clear problem is that the

morphisms on this category are not functions, but rather equivalence classes of functions.

So we define the functor U ∶ MG(Σ) ³ Set, which we shall call forgetful, by

Uï = G(ï) and, for a morphism ['] ∶ ï ³ ð, by U ['] = '|G(ï), which is well-defined since

' is ground-preserving.

U is indeed a functor since: if [Idï] is the identity onï,U [Idï] = Idï|G(ï), which

is the identical function on G(ï); and given homomorphisms ' ∶ ï ³ ð and  ∶ ð ³ ñ,

U [ ċ'] =  ċ'|G(ï) =  |'(G(ï))ċ'|G(ï) =  |G(ð)ċ'|G(ï) = U [ ]ċU ['].

Theorem 2.4.2. The functor

F� ∶ Set ³ MG(Σ)

associating to a set X the Σ−multialgebra mF(Σ, X, �) and to a function f ∶ X ³ Y the

morphism [fC], for any collection of choicesC from mF(Σ, X, �) to mF(Σ, Y , �), is a left-adjoint

of the forgetful functor U ∶ MG(Σ) ³ Set.
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Proof. First of all F is well defined over morphisms given that for any two collection of choices

C and D from mF(Σ, X, �) to mF(Σ, Y , �) we have that fC|X = f = fD|X , so [fC] = [fD].

It is a functor since:

1. given the identity between sets IdX ∶ X ³ X, the morphism F�IdX , when restricted to

X, equals IdmF(Σ,X,�), and therefore F�IdX = [IdmF(Σ,X,�)];

2. given functions f ∶ X ³ Y and g ∶ Y ³ Z,

F�gċF�f = [gD]ċ[fC] = [gDċfC],

for collections of choices C from mF(Σ, X, �) to mF(Σ, Y , �) and D from mF(Σ, Y , �)

to mF(Σ, Z, �); for any collection of choices E from mF(Σ, X, �) to mF(Σ, Z, �) we

have that (gċf )E , when restricted to the ground, is the same as gDċfC , that is, gċf , and

therefore

F�gċF�f = [(gċf )E] = F�(gċf ).

We define the bijection ¨X,ï ∶ HomSet(X,Uï) ³ HomMG(Σ)(F�X,ï) by, given

a function f ∶ X ³ Uï (where one should remember that Uï = G(ï)), ¨X,ïf = [fC] for

any collection of choices C from mF(Σ, X, �) to ï: again, this is clearly well-defined since if

D is another collection of choices we have fC|X = f = fD|X .

To see that such �Xï is really a bijection is easy:

1. given two functions f, g ∶ X ³ G(ï), if ¨X,ïf = ¨X,ïg, then [fC] = [gD], for any

collections of choicesC andD from mF(Σ, X, �) to ï, and therefore f = fC|X = gD|X =

g;

2. for any homomorphism ' ∶ mF(Σ, X, �) ³ ï and any collection of choices C from

mF(Σ, X, �) to ï, once we define f = '|X we have that ['] = [fC] = F�f .

Now we must prove that for any sets X and Y , any Σ−multialgebras ï and ð, any

function f ∶ Y ³ X and morphism ['] ∶ ï ³ ð we have that the following diagram

commutes.

HomSet(X,Uï) HomMG(Σ)(F�X,ï)

HomSet(Y , Uð) HomMG(Σ)(F�Y ,ð)

¨X,ï

Hom(f,U [']) Hom(F�f,['])

¨Y ,ð

Given a map g ∶ X ³ Uï, ¨X,ïg = [gC] for some collection of choices C from mF(Σ, X, �)

to ï, and

Hom(F�f, ['])¨X,ïg = Hom(F�f, ['])[gC] = [']ċ[gC]ċ[fD] = ['ċgCċfD],
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for some collection of choices D from mF(Σ, Y , �) to mF(Σ, X, �); on the other branch of the

diagram, we have that Hom(f, U ['])g = U [']ċgċf and therefore

¨Y ,ð(Hom(f, U ['])g) = ¨Y ,ð(U [']ċgċf ) = [(U [']ċgċf )E]

for some collection of choicesE from mF(Σ, Y , �) to ð. Now, is enough to prove that 'ċgCċfD
and (U [']ċgċf )E are equal over the ground of mF(Σ, Y , �), that is, Y . This is easy, since for

an element y * Y we have that

'ċgCċfD(y) = 'ċgC(f (y)) = '(g(f (y))

and that

(U [']ċgċf )E(y) = U [']ċgċf (y) = U [']ċg(f (y)) = U ['](g(f (y))) = '(g(f (y))).

Notice that two multialgebras ï and ð cdf-generated respectively by sets X and Y

of the same cardinality are isomorphic in MG(Σ): for, given a bijective function f ∶ X ³ Y

and collections of choices C from ï to ð andD from ð to ï, we have that [f−1
D
]ċ[fC] = [Idï],

since f−1ċf is the identity on X, and [fC]ċ[f
−1
D
] = [Idð].

In general, this makes the classes of isomorphisms of multialgebras in MG(Σ) too

coarse, meaning that this category can not tell apart multialgebras that, intuitively, we consider

very much distinct, such as mF(Σ, X, �) and mF(Σ, X, �) for distinct cardinals � and �; of

course, this is not to say that MG(Σ) doesn’t play a role in attempting to categorify weakly free

multialgebras, just that this category is not completely successful at that task. Of course, before

anything definitive is said about MG(Σ)’s success, or lack of it, as an ambient category for

further studies on non-deterministic algebraization, a better understanding on the relationship

between legal valuations, and grounds and collections of choices is necessary: after all, while

the former are already quite well established as the central object of study of non-deterministic

semantics, the latter have only recently been formally defined and, despite the results outlined

here, are arguably not very well understood.

Now, while still in the topic of categories, we may represent those found in this

chapter through the following diagram.

MG(Σ) MAlgG(Σ) MAlg(Σ)

Set

U

Q

ă
F�

Clearly MAlgG(Σ) is a subcategory of MAlg(Σ), sharing all of its objects, while
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the dashed arrow represents the forgetful functor from MAlgG(Σ) into Set, of which we have

nothing interesting to say. We can also define the functor Q ∶ MAlgG(Σ) ³ MG(Σ), that is the

identity on objects and takes ground-preserving homomorphism to their equivalence classes, to

better understand the relation between MAlgG(Σ) and MG(Σ): Q is surjective on both objects

and morphisms, but is only one-to-one on objects. Finally, from Theorem 2.3.2, ă does not

have a left adjoint.



Chapter 2: Weakly free multialgebras 73

References

[AL01] Arnon Avron and Iddo Lev. “Canonical Propositional Gentzen-Type Systems”. In:

Automated Reasoning. Ed. by Rajeev Goré, Alexander Leitsch, and Tobias Nip-

kow. Vol. 2083. Springer, Berlin, Heidelberg, 2001, pp. 529–544. ISBN: 978-3-54-

042254-9. DOI: 10.1007/3-540-45744-5_45.

[BS81] Stanley Burris and Hanamantagouda P. Sankappanavar. A Course in Universal Al-

gebra. Vol. 78. Graduate Texts in Mathematics. Springer-Verlag New York, 1981.

ISBN: 978-1-46-138132-7.

[CFG20] Marcelo E. Coniglio, Aldo Figallo-Orellano, and Ana C. Golzio. “Non-determinis-

tic algebraization of logics by swap structures”. In: Logic Journal of the IGPL 28

(5 2020), pp. 1021–1059. DOI: 10.1093/jigpal/jzy072.

[Con+09] Marcelo E. Coniglio, Amilcar Sernadas, Cristina Sernadas, and João Rasga. “A

Graph-theoretic Account of Logics”. In: Journal of Logic and Computation 19 (6

2009), pp. 1281–1320. DOI: 10.1093/logcom/exp023.

[CT21a] Marcelo E. Coniglio and Guilherme V. Toledo. Absolutely Free Hyperalgebras.

2021. arXiv: 2101.03647 [math.LO].

[CT22c] Marcelo E. Coniglio and Guilherme V. Toledo. “Weakly Free Multialgebras”. In:

Bulletin of the Section of Logic 51.1 (2022), pp. 109–141. DOI:10.18778/0138-

0680.2021.19.
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Chapter 3

Multialgebras as partially ordered

algebras

It is a fundamental result (see [Oos02] for a proof) that there exists a (bijective) correspondence

between sets and complete, atomic Boolean algebras (CABA’s): on one hand, a set is taken to

its powerset (which is certainly a CABA), while on the other direction a CABA is taken to its set

of atomic elements; accordingly, a map f ∶ X ³ Y is taken to the map þ(f ) ∶ þ(Y ) ³ þ(X)

such that þ(f )(B) = {a * A ∶ f (a) * B}, for any B ⊆ Y , and a continuous homomorphism

of Boolean algebras ' ∶ ï ³ ð is taken to the function A', from atoms of ð to atoms of ï,

such that A'(b) = a is the unique atom of ï satisfying that b d '(a), for any atom b of ð.

These two assignments can be made into functors, giving rise to an equivalence

of Setop and CABA, the category with CABA’s as objects and continuous homomorphisms of

Boolean algebras as morphisms. This is part of a broader area of study, known by Stone dualities,

which studies relationships between partially ordered sets and topological spaces (or rather, their

respective categories), and was established by Stone ([Sto36]) and his representation theorem,

which states that every Boolean algebra is isomorphic to a field of sets, specifically the algebra

of open and close subsets of its Stone space, a topological space where points are ultrafilters of

the original Boolean algebra: an ultrafilter of a Boolean algebra ï is any non-empty subset U

of its universe such that

1. a, b * U imply the existence of c * U satisfying c d a I b;

2. a * U and a d b imply b * U ;

3. and, for every element a of ï, either a * U or ¬a * U .

The topology of the Stone space S(ï) of ï is generated by the sets of ultrafilters sharing an

element a of ï, that is, {U * S(ï) ∶ a * U}. Of course, Stone’ theorem corresponds to

an equivalence between the category BA of Boolean algebras and that of Stone spaces, with

continuous functions between them as morphisms.
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In this search of dualities with categories of partially ordered sets, we focus on a more

palpable equivalence, closely related to the one between Setop and CABA: we shift from Set to

the category MAlg(Σ) of multialgebras over a given signature Σ by adding further structure

to Set, that is, multioperations; correspondingly, we replace CABA by a category of CABA’s

equipped with Σ-operations compatible with their orders.

We make only small adjustments to these categories, in order to better suit our needs

(although results for the aforementioned categories do exist): since we are most interested in

non-partial multialgebras, we consequently exchange CABA’s by posets corresponding to pow-

ersets with the empty-set removed (that is, CABA’s without minimum elements, an apparently

paradoxical concept we make precise further ahead). This way, a multialgebra with universe A

is taken to an algebra over the set of non-empty subsets of A, with order given by inclusion and

operations given by “accumulating” the operations of the multialgebra: that is, an n-ary operator

�, when evaluated on non-empty subsets Ai of A, returns the non-empty set

å

(a1,&,an)*A1×ď×An

�ï(a1,& , an);

reciprocally, an “almost” Boolean’ algebra, as we have loosely described, is taken to its set of

atomic elements, transformed into a multialgebra by addition of multioperations returning, for

� of arity n and atoms ai,

{a is an atom ∶ a d �ï(a1,& , an)}.

In non-deterministic semantics ([AL01]), all these considerations involving a cate-

gory equivalent to that of multialgebras offer an alternative: many logicians, mainly due to philo-

sophical objections, are reluctant to use multialgebras in order to characterize a given logic; the

equivalence we here present shows one can, if one chooses to, replace those semantics based on

multialgebras by, arguably more complex, semantics involving both an algebra and an underlying

order, which are however very classically behaved; of course, adding order-theoretic elements to

algebraic semantics is nothing new, see [Raf13] for an example, and the already existing theory

of order-algebraizable logics may offer new insights into non-deterministic semantics through

the paradigm here presented.

3.1 Complete, atomic and bottomless Boolean algebras

We have discussed Boolean algebras in some depth in Section 1.3, but we return to the topic

now with a more order-theoretic mindset. A partially ordered set, or poset, is a pair (A,d), with

A a set and d a relation on A (meaning it is a subset of A × A) such that:

1. d is reflexive, meaning that for any a * A, (a, a) is in the relation, what we write as a d a;
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2. d is anti-symmetric, meaning that if a d b and b d a, then a = b, for any a, b * A;

3. d is transitive, what means that if a d b and b d c, then a d c, for any a, b, c * A.

Whenever a d b, we may also write b e a; if a d b and we know a � b, one can also write

a < b, what may also be denoted by b > a.

Definition 3.1.1. Given a poset (A,d), an element a * A is:

1. a maximum if, for all b * A, b d a;

2. a minimum if, for all b * A, a d b;

3. maximal if, for all b * A, a d b implies a = b;

4. minimal if, for all b * A, b d a implies a = b.

Furthermore, given a subset S ⊆ A, we say a * A is:

1. an upper bound for S if, for any s * S, s d a;

2. a lower bound for S if, for any s * S, a d s;

3. the supremum of S, when we write a = supS, if it is the minimum of all upper bounds for

S, meaning that:

(a) for any s * S, s d a;

(b) if b * A is such that, for any s * S, s d b, then a d b;1

4. the infimum of S, when we write a = inf S, if it is the maximum of all lower bounds for

S, meaning that:

(a) for any s * S, a d s;

(b) if b * A is such that, for any s * S, a d s, then b d a.

Of course, we may define maxima, minima, maximal and minimal elements for a

subset S ⊆ A of A, by merely restricting the order of (A,d) to S.

A Boolean algebra, to which we have already given on Section 1.3 a purely algebraic

formulation, is a partially-ordered sets (A,d) such that: there are a maximum (denoted by 1) and

a minimum (0) elements, which we shall assume distinct; for every pair of elements a, b * A,

1Notice that there is indeed only one supremum of a set, as well as only one infimum: if a and b are both
minimum upper bounds for S, the fact that a is a minimum upper bound and that b is an upper bound gives us
a d b; reciprocally, the fact b is a minimum upper bound and a is an upper bound implies b d a, and so a = b. The
same reasoning applies to infima.
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the set {a, b} has a supremum, denoted by a J b, and an infimum, denoted by a I b; and every

element a has a complement b, which satisfies

b = inf{c * A ∶ sup{a, c} = 1}

and

b = sup{c * A ∶ inf{a, c} = 0}.

A poset (A,d) is said to be complete if everyS ⊆ A has a supremum and an infimum.

Lemma 3.1.1. 1. Every Boolean algebra (A,d) is distributive, meaning

a J (b I c) = (a J b) I (a J c) and a I (b J c) = (a I b) J (a I c),

for any a, b, c * A;

2. every complete Boolean algebra (A,d) is infinite distributive, meaning that for any S L

{a} ⊆ A,

sup{inf{a, s} ∶ s * S} = inf{a, supS} and inf{sup{a, s} ∶ s * S} = sup{a, inf S}.

Proof. We only prove the first equation related to distributivity, given that the proof for the other

is very similar. Denote p = a J (b I c), meaning

p = sup{a, inf{b, c}},

and q = (a J b) I (a J c), that is

q = inf{sup{a, b}, sup{a, c}};

since inf{b, c} d b and inf{b, c} d c, p = sup{a, inf{b, c}} d sup{a, b} and, analogously,

p d sup{a, c}, implying p is a lower bound for {sup{a, b}, sup{a, c}}. Since q is the largest of

these lower bounds, we get p d q.

Reciprocally, p = sup{a, inf{b, c}} implies a d p and inf{b, c} d p: if inf{b, c} =

p, this means a d inf{b, c} and therefore a d b and a d c, meaning that sup{a, b} = b and

sup{a, c} = c and therefore q = inf{b, c} = p; if, otherwise, inf{b, c} < p, p is not a lower

bound for {b, c} and so either b d p or c d p, implying either sup{a, b} d p or sup{a, c} d p

and consequently q = inf{sup{a, b}, sup{a, c}} d p, from what we get p = q.

More generally, we now prove one of the equalities of infinite-distributivity, the other

being analogous. We know both

p = sup{inf{a, s} ∶ s * S} and q = inf{a, supS}



Chapter 3: Multialgebras as partially ordered algebras 78

exist, given by hypothesis our Boolean algebra is complete. Now, for any s * S, s d supS, and

therefore inf{a, s} d inf{a, supS} = q, implying q is an upper bound for {inf{a, s} ∶ s * S}

and therefore p d q, given p is the least upper bound for that set.

Reciprocally, q = inf{a, supS} implies q d a and q d supS: if q = supS, this

means supS d a, and therefore s d a for every s * S, meaning inf{a, s} = s, for every s * S

and so p = sup{s ∶ s * S} = supS, giving us the desired equality; otherwise, q < supS, and

there must exist s * S such that q d s. Since we also have q d a, q d inf{a, s}, and since p is

an upper bound for {inf{a, s} ∶ s * S}, p e q, what finishes the proof.

An element a of a Boolean algebra is an atom if it is minimal inAö{0}, what means

that if b d a, then either b = 0 or b = a; the set of atoms smaller than a will be denoted by Aa;

and a Boolean algebra is said to be atomic if, for every one of its elements a, a = supAa.

Complete, atomic Boolean algebras are essentially powersets ([Oos02]): if one takes,

for a Boolean algebra ï = (A,d), the set A1 of all of its atoms (what is valid given all atoms

are smaller than 1), one sees ï is equivalent to þ(A1), the powerset of A1, where an element

a * Aö{0} is taken, by this isomorphism, toAa (and 0 to ∅). Reciprocally, the complete, atomic

Boolean algebra associated to a setX is precisely þ(X). For more information, look at Theorem

2.4 of [Oos02].

Useful to our intents and purposes are Boolean algebras that are, simultaneously,

complete, atomic and bottomless, meaning they lack a minimum element: this may seem a con-

tradiction, given we assumed Boolean algebras to have such elements, but this can be adequately

formalized.

Definition 3.1.2. Given a partially ordered set ï = (A,dï), we define

ï0 = (A L {0},dï0
),

where we assume 0 + A, as the poset such that a dï0
b if and only if:

1. either a dï b;

2. or a = 0.

Definition 3.1.3. The non-empty partially ordered set ï is a complete, atomic and bottomless

Boolean algebra if, and only if, ï0 is a complete, atomic Boolean algebra.

Notice that, since þ(∅) only has ∅ as element, for any complete, atomic and bottom-

less Boolean algebra ï we can not have ï0 equivalent to þ(∅), given ï has at least one element

and therefore ï0 must have at least two. This means complete, atomic and bottomless Boolean

algebras correspond to the powerset of non-empty sets with ∅ removed.

Proposition 3.1.1. If ï is a partially ordered set, so it is ï0.
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Proof. 1. For any a * A L {0}, we have that: if a * A, since ï is a partially ordered set,

a dï a, and therefore a dï0
a; if a = 0, we immediately have that a dï0

a, and therefore

dï0
is reflexive.

2. Suppose a dï0
b and b dï0

a: if both a and b are in A, this means a dï b and b dï a,

and therefore a = b; if a = 0, b dï0
a implies that b = 0, and therefore a = b; if b = 0,

a dï0
b implies that a = 0, and from that a = b; if a = b = 0, there is nothing to be done,

following from that that dï0
is anti-symmetric.

3. Suppose a dï0
b and b dï0

c: if c = 0, b dï0
c implies b = 0, and then a dï0

b implies

a = 0, and so a dï0
c; if b = 0, a dï0

b implies a = 0, and so a dï0
c; obviously, if

a = 0 we promptly have that a dï0
c; so suppose a, b, c * A as our last case, and then

a dï0
b implies a dï b while b dï0

c implies b dï c, and since ï is a partially ordered

set we get that a dï c and then a dï0
c, which proves dï0

is transitive.

Lemma 3.1.2. Given a partially ordered set (A,d), for elements a, b * A we have that the

supremum of the lower bounds of {a, b}, if it exists, is itself a lower bound for {a, b}.

Proof. Let S be he supremum of the lower bounds of {a, b}: by definition, this means that for

any upper bound d for the set {c * A ∶ c d a, c d b} of lower bounds, S d d; but, since a and

b are such upper bounds, we find that S d a and S d b.

Theorem 3.1.1. A partially ordered set (A,d) which satisfies all the following conditions is a

complete, atomic and bottomless Boolean algebra.

1. It has a maximum element 1.

2. All non-empty subsets S of A have a supremum.

3. For every a * A different from 1 there exists b * A, named the complement of a, such that

b = inf{c * A ∶ sup{a, c} = 1}

and

b = sup{c * A ∶ inf{a, c} does not exist},

property we call being semi-complemented.

4. Denoting by Aa the set of minimal elements smaller than a, a = supAa (whenever a poset

satisfies this condition, we will call it atomic).

Proof. Suppose that ï = (A,dï) is a partially ordered set satisfying the aforementioned con-

ditions. Since ï is a partially ordered set, so is ï0 from Proposition 3.1.1. The maximum 1 of
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ï remains a maximum in ï0, while 0 becomes a minimum. For non-zero elements a and b, the

supremum of the two in ï0 remains the same as in ï, while if a = 0 or b = 0 the supremum is

simply the largest of the two.

If a or b equals 0, the infimum is 0, while if a, b * A there are two cases to consider:

if inf{a, b} was defined in ï, it remains the same in ï0; if the infimum was not defined in ï,

this means that there were no lower bounds for both a and b, since otherwise we would have

inf{a, b} = sup{c * A ∶ c dï a and c dï b}

by Lemma 3.1.2, and therefore the infimum of both in ï0 is 0. Every element a * A ö {1}

already has a complement b in ï such that b = inf{c * A ∶ sup{a, c} = 1} and

b = sup{c * A ∶ inf{a, c} does not exist};

of course the first equality keeps on holding in ï0, while the second becomes, remembering that

the non-defined infima in ï become 0 in ï0,

b = sup{c * A ∶ inf{a, c} = 0};

the complement of 1 is clearly 0 and vice-versa. This, of course, proves ï0 is a Boolean algebra.

Since ï is closed under suprema of non-empty sets and sup ∅ = 0 in ï0, it is clear

that ï0 is closed under any suprema; it is clear that, for any set S, inf S = (sup{sc ∶ s *

S})c , where ac denotes the complement of s. Clearly ï0 remains atomic, since ï is atomic,

what finishes the proof that the previous list of conditions imply ï is a complete, atomic and

bottomless Boolean algebra.

Theorem 3.1.2. The reciprocal of Theorem 3.1.1 holds, meaning that complete, atomic and

bottomless Boolean algebras satisfy the list of conditions found in that theorem.

Proof. Given a partially ordered set ï, suppose ï0 is a complete, atomic Boolean algebra.

1. The maximum 1 of ï0 is still a maximum in ï.

2. The supremum of any non-empty set in ï is just its supremum in ï0.

3. Given any element a � 1, its complement b in ï0 ends up being also its complement in

ï: clearly

b = inf{c * A ∶ sup{a, c} = 1}.

Now, inf{a, c} does not exist in ï if, and only if, inf{a, c} = 0 in ï0: we already proved

that if inf{a, c} does not exist in ï then inf{a, c} = 0 in ï0, remaining to show the

reciprocal; if inf{a, c} existed in ï, since inf{a, c} = 0 in ï0 and given the unicity of the
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infimum one would find that inf{a, c} = 0 in ï, contradicting the fact that 0 is not in ï.

This way, we find that in ï

b = sup{c * A ∶ inf{a, c} does not exist},

as necessary.

4. Clearly ï0 being atomic implies ï is atomic.

Proposition 3.1.2. If (A,dï) is a complete, atomic and bottomless Boolean algebra, for any

S ⊆ A, if

Sa = {s * S ∶ inf{a, s} exists} � ∅,

then

sup{inf{a, s} ∶ s * Sa} = inf{a, supS};

if Sa = ∅, inf{a, supS} also does not exist.

Proof. If Sa = ∅ this means that inf{a, s} = 0 for every s * S in ï0, and therefore

inf{a, supS} = 0, so that the same infimum no longer exists in ï.

If Sa � ∅, all infima and suprema in sup{inf{a, s} ∶ s * Sa} and inf{a, supS}

exist in ï and are therefore equal to their counterparts in ï0; given sup{inf{a, s} ∶ s *

Sa} = sup{inf{a, s} ∶ s * S} in ï0, since s * S ö Sa implies inf{a, s} = 0, by the infinite-

distributivity of ï0 one proves the desired result.

To summarize the developments on this chapter so far, atomic and bottomless Bool-

ean algebra are powersets (of non-empty sets) with their empty-set removed. The relevance of

removing the empty-set from consideration is that the multialgebras we will work with are not

partial, meaning the empty-set is never the result of an operation.

3.2 A first attempt

For simplicity, let us denote the set of non-empty subsets of A by þ∗(A), that is, þ(A) ö {∅} =

þ∗(A).

Consider the categories Alg(Σ) of Σ-algebras, with homomorphisms between Σ-

algebras as morphisms, and MAlg(Σ) of Σ-multialgebras, with homomorphisms between Σ-

multialgebras as morphisms.

Consider the transformation þ ∶ MAlg(Σ) ³ Alg(Σ) taking:

1. a Σ-multialgebra ï = (A, {�ï}�*Σ) to the Σ-algebra

þ(ï) = (þ∗(A), {�þ(ï)}�*Σ),
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where þ(A) is the powerset of A and, for a � * Σn and nonempty A1,& , An ⊆ A,

�þ(ï)(A1,& , An) =
å

(a1,&,an)*A1×ď×An

�ï(a1,& , an);

2. for ï and ð Σ-multialgebras, a homomorphism ' ∶ ï ³ ð to the function þ(') ∶

þ(A) ³ þ(B) such that, for a ∅ � A2 ⊆ A,

þ(')(A2) = {'(a) * B ∶ a * A2}.

One could hope that þ(') is a homomorphism between Σ-algebras, and perhaps that

þ is a functor from MAlg(Σ) to Alg(Σ), but this does not happen: we have instead an inclusion.

Lemma 3.2.1. For ï and ð two Σ-multialgebras and ' ∶ ï ³ ð a homomorphism, þ(')

satisfies

þ(')(�þ(ï)(A1,& , An)) ⊆ �þ(ð)(þ(')(A1),& ,þ(')(An))

for all � * Σ and nonempty A1,& , An ⊆ A; if ' is a full homomorphism, þ(') is a homomor-

phism.

Proof. Given � * Σn and nonempty A1,& , An ⊆ A, we have that

�þ(ð)(þ(')(A1),& ,þ(')(An)) =
å

(b1,&,bn)*þ(')(A1)×ď×þ(')(An)

�ð(b1,& , bn) =

å

(b1,&,bn)*{'(a) ∶ a*A1}×ď×{'(a) ∶ a*An}

�ð(b1,& , bn) =
å

(a1,&,an)*A1×ď×An

�ð('(a1),& , '(an)),

which clearly contains

å

(a1,&,an)*A1×ď×An

{'(a) ∶ a * �ï(a1,& , an)} = {'(a) ∶ a *
å

(a1,&,an)*A1×ď×An

�ï(a1,& , an)} =

{'(a) ∶ a * �þ(ï)(A1,& , An)} = þ(')(�þ(ï)(A1,& , An)),

so that þ(') satisfies the required property; if' is a full homomorphism, �ð('(a1),& , '(an)) =

{'(a) ∶ a * �ï(a1,& , an)}, and the inclusion between the equations above becomes an

equality.

So, let us restrict þ for a moment to the category MAlg=(Σ), of Σ-multialgebras with

only full homomorphisms between them as morphisms, and let us call this new transformation

þ= ∶ MAlg=(Σ) ³ Alg(Σ).

Proposition 3.2.1. þ= is, in fact, a functor.
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Proof. 1. Given a Σ-multialgebra ï, let Idï ∶ ï ³ ï be the identity homomorphism. For

any ∅ � A2 ⊆ A, we have that

þ=(Idï)(A
2) = {Idï(a) ∶ a * A2} = {a ∶ a * A2} = A2,

and therefore þ=(Idï) is the identity homomorphism on þ∗(ï).

2. Let ï, ð and ñ be Σ-multialgebras and ' ∶ ï ³ ð and  ∶ ð ³ ñ be full homomor-

phisms between them. We have that, for every ∅ � A2 ⊆ A,

þ=( )ċþ=(')(A
2) = þ=( )({'(a) * B ∶ a * A2}) = { ('(a)) * C ∶ a * A2} =

þ=( ċ')(A
2),

and so þ=( )ċþ=(') = þ=( ċ').

What we actually want is an equivalence of categories, but we can be certain that

þ= will not provide this equivalence: unfortunately, þ= is not injective on objects. Take the

signature Σs with a single unary operator s, and consider the Σ-multialgebras ï = ({0, 1}, {sï})

and ð = ({0, 1}, {sð}) such that: sï(0) = {1} and sï(1) = {1}; and sð(0) = sð(1) = {0, 1}.

0 1
sï

sï

The Σs-multialgebra ï

0 1

sð

sð

sð

sð

The Σs-multialgebra ð

Clearly the two of then are not isomorphic, given that the result of an operation in

ï always has cardinality 1 and in ð always has cardinality 2.

However, we have that sþ=(ï)({0}), sþ=(ï)({1}), and sþ=(ï)({0, 1}) all equal {1},

while sþ=(ð)
({0}), sþ=(ð)

({1}), and sþ=(ð)
({0, 1}) all equal {0, 1}.

{0, 1}

{0} {1}

sþ=(ï)

sþ=(ï)
sþ=(ï)

The Σs-multialgebra þ=(ï)
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{0, 1}

{0} {1}

sþ=(ð)

sþ=(ð) sþ=(ð)

The Σs-multialgebra þ=(ð)

Taking the function ' ∶ þ∗(A) ³ þ∗(B) such that '({0}) = {0}, '({1}) = {0, 1},

and '({0, 1}) = {1}, we see that it is a bijection and a homomorphism, and therefore ' ∶

þ=(ï) ³ þ=(ð) is an isomorphism.

Curiously, we can also quite easily show that þ= does not have a right adjoint: if it

did, that functor would itself posses a left adjoint, and therefore be would be continuous, pre-

serving, among other constructions, terminal objects; and, while Alg(Σ) has as terminal objects

the Σ-algebras with one element (where all operations return that very element), MAlg=(Σ) does

not have them.2 In fact, for any Σ-multialgebra ï, by taking a cardinal � greater than the cardi-

nality of the universe of ï we see that there can be no full homomorphism from mF(Σ,Ą , �) to

ï.

3.3 An improvement

The problem with our definition of þ= is that it disregards the structure of the universe of þ(ï),

which admits an order. So, we change our target category to reflect this structure, allowing the

objects to carry with them such orderings.

Definition 3.3.1. Given a signature Σ, a (Σ,d)-algebra ï is a triple

(A, {�ï}�*Σ,dï)

such that:

1. (A, {�ï}�*Σ) is a Σ-algebra;

2. (A,dï) is a complete, atomic and bottomless Boolean algebra;

3. ifAa is the set of minimal elements of (A,dï) (atoms) below a, for all � * Σn and a1,& , an

we have that

�ï(a1,& , an) = sup{�ï(b1,& , bn) ∶ (b1,& , bn) * Aa1
×ď × Aan

}.

2Assuming, what is quite reasonable, that Σ is not empty.
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Proposition 3.3.1. For ï a (Σ,d)-algebra, � * Σn and a1,& , an, b1,& , bn * A such that

a1 dï b1,& , an dï bn,

�ï(a1,& , an) dï �ï(b1,& , bn).

Proof. Since, for every i * {1,& , n}, ai dï bi, we have that Aai
⊆ Abi

, and therefore Aa1
×

ď × Aan
⊆ Ab1

×ď × Abn
; this way,

�ï(a1,& , an) = sup{�ï(c1,& , cn) ∶ (c1,& , cn) * Aa1
×ď × Aan

} dï

sup{�ï(c1,& , cn) ∶ (c1,& , cn) * Ab1
×ď × Abn

} = �ï(b1,& , bn).

For a Σ-multialgebra ï = (A, {�ï}�*�), we define þð(ï) as the (Σ,d)-algebra

(þ∗(A), {�þð(ï)}�*Σ,dþð(ï))

such that (þ∗(A), {�þð(ï)}�*Σ) is exactly þ(ï) (defined in the beginning of Section 3.2) and, for

nonempty subsets A1 and A2 of A, A1 dþð(ï) A2 if and only if A1 ⊆ A2. Since:

1. þ(ï) is a Σ-algebra;

2. (þ∗(A),dþð(ï)) is a complete, atomic and bottomless Boolean algebra (since þ(A) is a

complete, atomic Boolean algebra);

3. and, for � * Σn and ∅ � A1,& , An ⊆ A, since the atoms of Ai are exactly AAi
= {{a} ∶

a * Ai},

�þð(ï)(A1,& , An) =
å

(a1,&,an)*A1×ď×An

�ï(a1,& , an) =

å

({a1},&,{an})*AA1
×ď×AAn

�þð(ï)({a1},& , {an});

we truly have that þð(ï) is a (Σ,d)-algebra.

Definition 3.3.2. Given (Σ,d)-algebras ï = (A, {�ï}�*Σ,dï) and ð = (B, {�ð}�*Σ,dð), a

function ' ∶ A³ B is said to be a (Σ,d)-homomorphism, in which case we write ' ∶ ï ³ ð,

when:

1. for all � * Σn and a1,& , an * A we have that

'(�ï(a1,& , an)) dð �ð('(a1),& , '(an));

2. ' is continuous, that is, for every non-empty subset A2 ⊆ A,

'(supA2) = sup{'(a) ∶ a * A2};
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3. ' maps minimal elements of (A,dï) to minimal elements of (B,dð).

Notice that a (Σ,d)−homomorphism is essentially an "almost Σ−homomorphism"

which is also continuous and minimal-elements-preserving; notice too that a (Σ,d)-homomor-

phism is order preserving: if a dï b, then b = sup{a, b}, and therefore '(b) = sup{'(a), '(b)},

meaning that '(a) dð '(b).

3.3.1 þð is a functor

Proposition 3.3.2. When we take as objects all (Σ,d)-algebras and as morphisms all the (Σ,d)-

homomorphisms between them, the resulting object is a category, denoted by Algð(Σ).

Proof. It is enough to show the composition of (Σ,d)-homomorphisms returns a (Σ,d)-homo-

morphism, that this composition is associative and has an identity element for every object in the

category. Let ï, ð, ñ and ò be (Σ,d)−algebras and ' ∶ ï ³ ð,  ∶ ð ³ ñ and � ∶ ñ ³ ò

be (Σ,d)-homomorphisms.

1. (a)  ċ' obviously is a function from A to C , so let � * Σn and a1,& , an * A: we have

that, since ' is a (Σ,d)-homomorphism, '(�ï(a1,& , an)) dð �ð('(a1),& , '(an)),

and since  is order-preserving

 ċ'(�ï(a1,& , an)) =  ('(�ï(a1,& , an))) dñ  (�ð('(a1),& , '(an)));

and since  is a (Σ,d)-homomorphism,

 (�ð('(a1),& , '(an))) dñ �ñ( ('(a1)),& ,  ('(an))) = �ñ( ċ'(a1),& ,  ċ'(an)).

(b) Given a non-empty A2 ⊆ A, we have that '(supA2) = sup{'(a) ∶ a * A2} and,

denoting {'(a) ∶ a * A2} by B2, we have that  (supB2) = sup{ (b) ∶ b * B2};

since supB2 = '(supA2), we obtain

 ċ'(supA2) = sup{ (b) ∶ b * B2} = sup{ ċ'(a) ∶ a * A2},

which means that  ċ' is continuous.

(c) Finally, if a * A is a minimal element, '(a) * B is a minimal element, since ' pre-

serves minimal elements, and for the same reason  ċ'(a) =  ('(a)) * C remains

a minimal element still, and from all of the above  ċ' is a (Σ,d)-homomorphism.

2. It is clear that �ċ( ċ') = (�ċ )ċ' since, as functions, both are the same.

3. Consider the identity function Idï ∶ A ³ A: it is a (Σ,d)-homomorphism, since for

n * Σn and a1,& , an * A,

Idï(�ï(a1,& , an)) = �ï(a1,& , an) = �ï(Idï(a1),& , Idï(an));
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for a non-empty A2 ⊆ A,

Idï(supA
2) = supA2 = sup{Idï(a) ∶ a * A2};

and for every minimal element a of ï, Idï(a) = a clearly remains a minimal element.

Furthermore, Idï is clearly an identity for the composition, and is therefore an identity

morphism.

So the transformation taking a Σ-multialgebra ï to þð(ï) and a homomorphism

' ∶ ï ³ ð to the (Σ,d)-homomorphism þð(') ∶ þð(ï) ³ þð(ð) such that, for an ∅ � A2 ⊆

A,

þð(')(A
2) = {'(a) * B ∶ a * A2},

is a functor, of the form þð ∶ MAlg(Σ) ³ Algð(Σ). First we must show that þð(') is, in fact,

a (Σ,d)-homomorphism: for � * Σn and ∅ � A1,& , An ⊆ A, as we saw in Lemma 3.2.1,

þ(')(�þ(ï)(A1,& , An)) ⊆ �þ(ð)(þ(')(A1),& ,þ(')(An)),

and since þ(') = þð('), we have that þð(') satisfies the first condition for being a (Σ,d)−

homomorphism; and, if ∅ � A22 is a subset of þ(A), we have that

þð(')(supA
22) = {'(a) ∶ a * supA22} = {'(a) ∶ a *

å

A2*A22

A2} =

å

A2*A22

{'(a) ∶ a * A2} =
å

A2*A22

þð(')(A
2) = sup{þð(')(A

2) ∶ A2 * A22},

what proves the satisfaction of the second condition; for the third condition, we remember that

the minimal elements of (þ(A)ö∅, ⊆) are the singletons, that is, sets of the form {a} with a * A,

and since þð(')({a}) = {'(a)}, þð(') preserves minimal elements.

Now we show that þð is, in fact, a functor.

1. Let ï be a Σ-multialgebra and Idï be its identity homomorphism: we then have that, for

every ∅ � A2 ⊆ A, þð(Idï)(A
2) equals {Idï(a) ∶ a * A2} = A2, and therefore þð(Idï)

is the identity (Σ,d)-homomorphism on þð(ï).

2. Let ï, ð and ñ be Σ-multialgebras and ' ∶ ï ³ ð and  ∶ ð ³ ñ be homomorphisms:

for every ∅ � A2 ⊆ A, we have that

þð( ċ')(A
2) = { ċ'(a) ∶ a * A2} = þð( )({'(a) ∶ a * A2}) =

þð( )(þð(')(A
2)) = þð( )ċþð(')(A

2).

Theorem 3.3.1. þð ∶ MAlg(Σ) ³ Algð(Σ) is a functor.
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3.3.2 þð is part of a monad

Remember that, for functors F and G, both from the category B to the category C , a natural

transformation � from F toG (what we may denote by � ∶ F ³ G) is a collection of morphisms

�U of C indexed by the objects U of B such that: for objects U and V of B, �U and �V are

morphisms from, respectively, F (U ) and F (V ) to, also respectively, G(U ) and G(V ) such that,

for any morphism f ∶ U ³ V ,

�V ċF (f ) = G(f )ċ�U .

For categories B, C and D, and � ∶ F ³ G a natural transformation between

functors F ,G ∶ B ³ C , given a third functor H ∶ C ³ D we denote by H� the natural

transformation between HċF and HċG given by, in an object X of C ,

(H�)X = H�X;

given yet a fourth categoryE and a functor I ∶ E ³ B, we also define the natural transformation

�I ∶ FċI ³ GċI given by, for an object Y of E,

(�I)Y = �I(Y ).

Definition 3.3.3. A monad ([Mac78]), in a category C , is an endofunctor P ∶ C ³ C together

with natural transformations � ∶ 1C ³ P and � ∶ PċP ³ P , where 1C is the identity functor

on C , such that the following conditions hold:

1. �ċP� = �ċ�P ;

2. �ċP� = �ċ�P = 1P , where 1P denotes the identity natural transformation on P .

The conditions required of a monad are equivalent to the commutativity of the fol-

lowing diagrams.

P 3 P 2

P 2 P

P�

�P �

�

P P 2

P 2 P

�P

T � �

�

Now, we state that the functors þð and þ may be adequately adapted as to be part

of a monad. Let P ∶ MAlg(Σ) ³ MAlg(Σ) be the functor taking: a Σ-multialgebra ï =

(A, {�ï}�*Σ) into the Σ-multialgebra Pï = (þ(A) ö {∅}, {�Pï}�*Σ) such that, for non-empty

subsets A1,& , An of A,

�Pï(A1,& , An) = {{a} ∶ a *
å

(a1,&,an)*A1×ď×An

�ï(a1,& , an)};
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and, for Σ-multialgebras ï and ð, a homomorphism ' ∶ ï ³ ð to the function P' ∶ þ(A) ö

{∅} ³ þ(B) ö {∅} such that, for a non-empty A2 ⊆ A,

P'(A2) = {'(a) * B ∶ a * A2}.

Notice, first of all, that P' is, indeed, a homomorphism from Pï to Pð, whenever' is a homo-

morphism fromï toð: for any non-empty subsetsA1 throughAn ofA and a � of arity n, one has

that, for every (a1,& , an) * A1 ×ď×An, {'(a) ∶ a * �ï(a1,& , an)} ⊆ �ð('(a1),& , '(an))

since ' is a homomorphism, and therefore

{P'(A2) ∶ A2 * �Pï(A1,& , An)} = {P'({a}) ∶ a *
å

(a1,&,an)*A1×ď×An

�ï(a1,& , an)} =

{{'(a)} ∶ a *
å

(a1,&,an)*A1×ď×An

�ï(a1,& , an)} =

å

(a1,&,an)*A1×ď×An

{{'(a)} ∶ a * �ï(a1,& , an)} ⊆

å

(a1,&,an)*A1×ď×An

{{b} ∶ b * �ð('(a1),& , '(an))} =

å

(b1,&,bn)*{'(a1) ∶ a1*A1}×ď×{'(an) ∶ an*An}

{{b} ∶ b * �ð(b1,& , bn)} =

å

(b1,&,bn)*P'(A1)×ď×P'(An)

{{b} ∶ b * �ð(b1,& , bn)} =

{{b} ∶ b *
å

(b1,&,bn)*P'(A1)×ď×P'(An)

�ð(b1,& , bn)} = �Pð(P'(A1),& , P'(An)).

It is easy to see that the identity homomorphism of ï is mapped, by P , to the identity homo-

morphism of Pï, and given homomorphisms ' ∶ ï ³ ð and  ∶ ð ³ ñ, we see that, for a

non-empty subset A2 of A, one has

P ( ċ')(A2) = { ċ'(a) ∶ a * A2} = { (b) ∶ b * P'(A2)} = (P ċP')(A2),

what finishes demonstrating that P is indeed an endofunctor of MAlg(Σ).

P is essentially equal to both þ and þð, given that Σ-algebras are multialgebras

whose operations are always singletons and, disregarding its order, a (Σ,d)-algebra is nothing

but a Σ-algebra; the difference here is that, while the operations in þ(ï) return sets of elements

of ï, the operations in Pï returns sets of singletons of elements of ï, precisely those elements

obtained in the operation as performed in þ(ï).

Now, to form a monad we need adequate natural transformations � ∶ 1MAlg(Σ) ³ P

and � ∶ PċP ³ P , or what is equivalent, homomorphisms �ï ∶ ï ³ Pï and �ï ∶ PPï ³

Pï, for every Σ-multialgebra ï. And we simply take the obvious candidates �ï(a) = {a} and,
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for a non-empty set of non-empty subsets {Ai}i*I of A, �ï({Ai}i*I ) =
å

i*I Ai.

Proposition 3.3.3. For any Σ-multialgebra ï, �ï and �ï, as previously defined, are full homo-

morphisms.

Proof. 1. Let a1,& , an be elements of ï and � an n-ary operator: then

{�ï(a) ∶ a * �ï(a1,& , an)} = {{a} ∶ a * �ï(a1,& , an)} =

�Pï({a1},& , {an}) = �Pï(�ï(a1),& , �ï(an)).

2. Let {A1
i
}i*I1 through {An

i
}i*In be elements of PPï and � be n-ary: we have that

å

(i1,&,in)*I1×ď×In

å

(a1,&,an)*A
1
i1
×ď×An

in

�ï(a1,& , an) =
å

(a1,&,an)*
å
i1*I1

Ai1
×ď×

å
in*In

Ain

�ï(a1,& , an) =

å

(a1,&,an)*�ï({A
1
i
}i*I1

)×ď×�ï({A
n
i
}i*In )

�ï(a1,& , an),

implying that

�PPï({A
1
i
}i*I1 ,& , {An

i
}i*In) = {{A2} ∶ A2 *

å

(i1,&,in)*I1×ď×In

�Pï(A
1
i1
,& , An

in
)} =

{{{a}} ∶ a *
å

(i1,&,in)*I1×ď×In

å

(a1,&,an)*A
1
i1
×ď×An

in

�ï(a1,& , an)} =

{{{a}} ∶ a *
å

(a1,&,an)*�ï({A
1
i
}i*I1

)×ď×�ï({A
n
i
}i*In )

�ï(a1,& , an)};

with this, we obtain that

{�ï({Ai}i*I ) ∶ {Ai}i*I * �PPï({A
1
i
}i*I1 ,& , {An

i
}i*In)} =

{�ï({{a}}) ∶ a *
å

(a1,&,an)*�ï({A
1
i
}i*I1

)×ď×�ï({A
n
i
}i*In )

�ï(a1,& , an)} =

{{a} ∶ a *
å

(a1,&,an)*�ï({A
1
i
}i*I1

)×ď×�ï({A
n
i
}i*In )

�ï(a1,& , an)} =

�Pï(�ï({A
1
i
}i*I1),& , �ï({A

n
i
}i*In)).

Proposition 3.3.4. For any Σ-multialgebras ï and ð, and homomorphism ' ∶ ï ³ ð,

1. P'ċ�ï = �ðċ' and

2. P'ċ�ï = �ðċPP',



Chapter 3: Multialgebras as partially ordered algebras 91

meaning � and � are natural transformations from, respectively, IdMAlg(Σ) to P , and PċP to P .

Proof. 1. Let a be an element ofï: we have that P'ċ�ï(a) = P'(�ï(a)), and since �ï(a) =

{a}, we have this equals {'(a)}; meanwhile, �ðċ'(a) = �ï('(a)) = {'(a)}, and as stated

both expressions end up being equal.

2. Let {Ai}i*I be an element of PPï, meaning it is a non-empty set of non-empty subsets

of ï: P'ċ�ï({Ai}i*I ) = P'(�ï({Ai}i*I )), and since �ï({Ai}i*I ) =
å

i*I Ai, the whole

expression simplifies to {'(a) ∶ a *
å

i*I Ai}; at the other hand,

�ðċPP'({Ai}i*I ) = �ð({{'(a) ∶ a * Ai} ∶ i * I}) =
å

i*I

{'(a) ∶ a * Ai} =

{'(a) ∶ a *
å

i*I

Ai},

giving us the desired equality.

Theorem 3.3.2. The triple formed by P , � and � constitutes a monad.

Proof. Let ï be a Σ-multialgebra.

1. We must prove that �ċP� = �ċ�P , what amounts to �ïċP�ï = �ïċ�Pï, as homomor-

phisms from P 3ï to Pï. So, let {{Aj
i}i*I}j*J be an element of P 3ï, where I and J are

non-empty sets of indexes and all Aj
i are non-empty subsets of A:

�ïċP�ï({{A
j
i}i*I}j*J ) = �ï({�ï({A

j
i ∶ i * I}) ∶ j * J}) = �ï({

å

i*I

A
j
i ∶ j * J}) =

å

j*J

å

i*I

A
j
i ,

while

�ïċ�Pï({{A
j
i}i*I}j*J ) = �ï(

å

j*J

{A
j
i}i*I ) =

å

i*I

å

j*J

A
j
i ,

and it is clear both sets are the same.

2. It remains to be proven that �ċP� = �ċ�P = 1P , meaning �ïċ�Pï = �ïċP�ï, as homo-

morphisms from Pï to Pï, and this equals the identity homomorphism on this multial-

gebra as well. So, we take a non-empty subset A2 of A, and we have that

�ïċ�Pï(A
2) = �ï({A

2}) = A2,

while for the other other expression one derives

�ïċP�ï(A
2) = �ï({�ï(a) ∶ a * A2}) = �ï({{a} ∶ a * A2}) =

å

a*A2

{a} = A2,
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what finishes the proof.

3.3.3 Multialgebras of atoms

Given a (Σ,d)-algebra ï, take the set ý((A,dï)) of atoms of (A,dï), that is, the set of minimal

elements of this poset.

For a � * Σn and atoms a1,& , an * ý((A,dï)), we define

�
ý(ï)(a1,& , an) = {a * ý((A,dï)) ∶ a dï �ï(a1,& , an)} = A�ï(a1,&,an)

� ∅.

This way, (ý((A,dï)), {�ý(ï)}�*Σ) becomes a Σ-multialgebra, that we will denote

by ý(ï) and call the multialgebra of atoms of ï.

Given (Σ,d)-algebras ï and ð and a (Σ,d)-homomorphism ' ∶ ï ³ ð, we define

ý(') ∶ ý((A,dï)) ³ ý((B,dð)) as the restriction of ' to ý((A,dï)) ⊆ A: it is well-defined

since every (Σ,d)-homomorphism preserves minimal elements, that is, atoms.

For � * Σn and atoms a1,& , an * ý((A,dï)) we have that

{ý(')(a) ∶ a * �
ý(ï)(a1,& , an)} = {'(a) ∶ a * �

ý(ï)(a1,& , an)} =

{'(a) * ý((B,dð)) ∶ a dï �ï(a1,& , an)}

and, since a dï �ï(a1,& , an) implies '(a) dð '(�ï(a1,& , an)) given ' is order preserving,

which in turn implies '(a) dð �ð('(a1),& , '(an)) since ' is an "almost homomorphism", we

get that

{'(a) * ý((B,dð)) ∶ a dï �ï(a1,& , an)} ⊆ {b * ý((B,dð)) ∶ b dð �ð('(a1),& , '(an)} =

�
ý(ð)('(a1),& , '(an)) = �

ý(ð)(ý(')(a1),& ,ý(')(an)),

what proves ý(') is a homomorphism between Σ-multialgebras, and we can write ý(') ∶

ý(ï) ³ ý(ð).

The natural question is whether ý ∶ Algð(Σ) ³ MAlg(Σ) is a functor, to which the

answer is yes.

1. Let ï be a (Σ,d)-algebra and Idï be its identity (Σ,d)-homomorphism: we then have

that, for every a * ý((A,dï)), ý(Idï)(a) = Idï(a) = a, and therefore ý(Iï) is the

identity Σ-homomorphism of ý(ï).

2. Let ï, ð and ñ be (Σ,d)-algebras, and ' ∶ ï ³ ð and  ∶ ð ³ ñ be (Σ,d)-

homomorphisms: for every a * ý((A,dï)) we have that

ý( ċ')(a) =  ċ'(a) =  ('(a)) = ý( )('(a)) = ý( )(ý(')(a)) = (ý( )ċý('))(a).
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3.4 Algð(Σ) and MAlg(Σ) are equivalent

Now, we aim to prove that Algð(Σ) and MAlg(Σ) are actually equivalent categories, the equiv-

alence being given by the functors þð and ý: so, let IdAlgð(Σ)
and IdMAlg(Σ) be the identity

functors on Algð(Σ) and MAlg(Σ) respectively, and we should prove that þðċý and IdAlgð(Σ)
,

and ýċþð and IdMAlg(Σ) are naturally isomorphic.

Equivalently, þð and ý form an equivalence of categories if both are full and faithful

and ý is a right adjoint of þð, what we will prove instead.

3.4.1 þð and ý are full and faithful

It is easy to see þð is faithful: given Σ-multialgebras ï and ð and homomorphisms ', ∶

ï ³ ð, if þð(') = þð( ), we have that for every a * A

{'(a)} = þð(')({a}) = þð( )({a}) = { (a)},

and therefore ' =  .

Proposition 3.4.1. ý is faithful.

Proof. Given (Σ,d)-algebras ï and ð, and (Σ,d)-homomorphisms ', ∶ ï ³ ð, suppose

we have ý(') = ý( ): then, for every a * A, we can write a = supAa, since (A,dï) is atomic.

Since ' and  are continuous, '(a) = sup{'(a2) ∶ a2 * Aa} and  (a) =

sup{ (a2) ∶ a2 * Aa}; but, since ý(') = ý( ), ' and  are the same when restricted to

atoms, and therefore {'(a2) ∶ a2 * Aa} = sup{ (a2) ∶ a2 * Aa}, what means '(a) =  (a)

and, since a is arbitrary, ' =  .

Now, given Σ-multialgebras ï and ð and a (Σ,d)-homomorphism ' ∶ þð(ï) ³

þð(ð), to prove þð is also full we must find a homomorphism ∶ ï ³ ð such that þð( ) = '.

For every a * A, {a} is an atom and, since ' preserves atoms, '({a}) is an atom of

þð(B), and therefore of the form {ba} for some ba * B: we define  ∶ ï ³ ð by  (a) = ba.

First of all, we must show  is in fact a homomorphism, which is quite analogous to the proof

of the same fact for ý('): given � * Σn and a1,& , an * A,

{ (a) ∶ a * �ï(a1,& , an)} = {ba ∶ a * �ï(a1,& , an)} = sup{{ba} ∶ a * �ï(a1,& , an)} =

sup{'({a}) ∶ a * �ï(a1,& , an)} = '(sup{{a} ∶ a * �ï(a1,& , an)}) = '(�ï(a1,& , an)) =

'(�þð(ï)({a1},& , {an})) ⊆ �þð(ð)
('({a1}),& , '({an})) = �þð(ð)

({ba1},& , {ban}) =

�ð(ba1 ,& , ban) = �ð( (a1),& ,  (an)).

Now, when we consider þð( ), we see that, for every atom {a} of þð(ï), þð( )({a}) =

{ba} = '({a}), and so the restrictions of ' and þð( ) to atoms are the same, therefore ý(') =



Chapter 3: Multialgebras as partially ordered algebras 94

ý(þð( )). Since ý is faithful, we discover that ' = þð( ) and, as we stated before, þð is full.

Now it remains to be shown that ý is also full: given (Σ,d)-algebras ï and ð and

a homomorphism ' ∶ ý(ï) ³ ý(ð); we then define  ∶ ï ³ ð by

 (a) = sup{'(c) ∶ c * Aa}.

First of all, we must prove that  is a (Σ,d)-homomorphism, for which we shall need a few

lemmas.

Lemma 3.4.1. Given a family of subsets {Xi}i*I of a complete poset (S,d), suppose we define

xi = supXi for i * I and X =
å

i*I Xi: then sup{xi ∶ i * I} = supX.

Proof. We define a = sup{xi ∶ i * I} and b = supX: first, we show that a is an upper bound

for X, so that a e b. For every x * X, we have that, since X =
å

i*I Xi, there exists j * I

such that x * Xj , and therefore xj e x; since a = sup{xi ∶ i * I}, we have that a e xj , and

by transitivity a e x, and therefore a is indeed an upper bound for X.

Now we show that b is an upper bound for {xi ∶ i * I}, and so b e a (and a = b).

For every i * I , we have that b is an upper bound for Xi (since Xi ⊆ X and b is an upper bound

for X), and therefore b e xi, since xi is the smallest upper bound for Xi; it follows that b is

indeed an upper bound for {xi ∶ i * I}, what finishes the proof.

Lemma 3.4.2. In a complete, atomic and bottomless Boolean algebra, given a non-empty set C ,
å

c*C Ac = AsupC .

Proof. If d * Ac for a c * C , d is an atom smaller than c; since c dï supC , d dï supC , and

therefore belongs to AsupC . So
å

c*C Ac ⊆ AsupC .

Reciprocally, suppose d * AsupC : then d is an atom which is smaller than supC ,

and therefore inf{d, supC} = d; it follows the subset Cd ⊆ C of c * C such that inf{d, c}

exists is not empty, by the infinite-distributivity of ï. But if c * Cd , inf{d, c} exists, and since

d is an atom, we have that d * Ac ⊆
å

c*C Ac, and from that
å

c*C Ac = AsupC .

Since �ï(a1,& , an) equals the supremum of {�ï(c1,& , cn) ∶ (c1,& , cn) * Aa1
×

ď × Aan
}, by Lemma 3.4.2 we have that A�ï(a1,&,an)

equals

å

(c1,&,cn)*Aa1
×ď×Aan

A�ï(c1,&,cn)
,

that is, we have the following lemma.

Lemma 3.4.3. For a � * Σn, and a1,& , an * A,

A�ï(a1,&,an)
=

å

(c1,&,cn)*Aa1
×ď×Aan

A�ï(c1,&,cn)
.
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Theorem 3.4.1. ý is full.

Proof. So, first of all, we prove using Lemmas 3.4.1, 3.4.2 and 3.4.3 that is a (Σ,d)-homomor-

phism.

1. First, it is clear that  maps atoms into atoms: if a is an atom,

 (a) = sup{'(c) ∶ c * Aa} = sup{'(a)} = '(a),

which is an atom since ' is a map between ý(ï) and ý(ð).

2.  is continuous: for any non-empty set C ⊆ A, we remember that  (c) = sup{'(d) ∶

d * Ac}, and from Lemma 3.4.1 we get that

sup{ (c) ∶ c * C} = sup{sup{'(d) ∶ d * Ac} ∶ c * C} = sup
å

c*C

{'(d) ∶ d * Ac};

from Lemma 3.4.2,

sup
å

c*C

{'(d) ∶ d * Ac} = sup{'(d) ∶ d * AsupC} =  (supC).

3. Since {'(a) ∶ a * �
ý(ï)(a1,& , an)} ⊆ �

ý(ð)('(a1),& , '(an)), it follows from Lemma

3.4.3 that

 (�ï(a1,& , an)) = sup{'(c) ∶ c * A�ï(a1,&,an)
} =

sup{'(c) ∶ c *
å

(c1,&,cn)*Aa1
×ď×Aan

A�ï(c1,&,cn)
};

since, for atoms c1,& , cn of ï, �
ý(ï)(c1,& , cn) = A�ï(c1,&,cn)

, we have that the previous

expression equals

sup{'(c) ∶ c *
å

(c1,&,cn)*Aa1
×ď×Aan

�
ý(ï)(c1,& , cn)} =

sup
å

(c1,&,cn)*Aa1
×ď×Aan

{'(c) ∶ c * �
ý(ï)(c1,& , cn)},

which is less than or equal to

sup
å

(c1,&,cn)*Aa1
×ď×Aan

�
ý(ð)('(c1),& , '(cn))

in ð; since, for atoms d1,& , dn of ð, we have that �
ý(ð)(d1,& , dn) = A�ð(d1,&,dn)

, this

equals

sup
å

(c1,&,cn)*Aa1
×ď×Aan

A�ð('(c1),&,'(cn))
= sup

å

(c1,&,cn)*Aa1
×ď×Aan

A�ð( (c1),&, (cn))
;
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now, since is continuous, ci dï ai, for every i * {1,& , n}, implies (ci) dð  (ai), and

therefore �ð( (c1),& ,  (cn)) dð �ð( (a1),& ,  (an)) for (c1,& , cn) * Aa1
×ď × Aan

.

It follows that
å

(c1,&,cn)*Aa1
×ď×Aan

A�ð( (c1),&, (cn))
is contained onA�ð( (a1),&, (an))

, and there-

fore

sup
å

(c1,&,cn)*Aa1
×ď×Aan

A�ð( (c1),&, (cn))
dð supA�ð( (a1),&, (an))

= �ð( (a1),& ,  (an)).

Now, for every atom a of ï, we have that  (a) = '(a), and therefore the restriction

of  to atoms equals ', that is, ý( ) = ', and since ' was taken arbitrarily, ý is full.

3.4.2 þð and ý are adjoint

It remains to be shown that þð and ý are adjoint: consider the bijections

¨ð,ï ∶ HomMAlg(Σ)(ý(ð),ï) ³ HomAlgð(Σ)
(ð,þð(ï)),

for ï a Σ-multialgebra and ð a (Σ,d)-algebra, given by, for ' ∶ ý(ð) ³ ï a homomorphism

and b an element of ð,

¨ð,ï(')(b) = {'(c) ∶ c * Ab}.

First of all, we must prove ¨ð,ï(') is truly a (Σ,d)-homomorphism.

1. If b is an atom, Ab = {b}, and therefore

¨ð,ï(')(b) = {'(c) ∶ c * Ab} = {'(b)},

which is a singleton and therefore an atom of þð(ï).

2. Let B2 be a non-empty subset of ð, and we have that

¨ð,ï(')(supB
2) = {'(c) ∶ c * AsupB2} = {'(c) ∶ c *

å

b*B2

Ab} =

å

b*B2

{'(c) ∶ c * Ab} =
å

b*B2

¨ð,ï(')(b) = sup{¨ð,ï(')(b) ∶ b * B2},

since AsupB2 =
å

b*B2 Ad , from Lemma 3.4.2, and the supremum in þð(ï) is simply the

union.

3. For � * Σn and b1,& , bn elements of ð, we have that, using Lemma 3.4.3,

¨ð,ï(')(�ð(b1,& , bn)) = {'(c) ∶ c * A�ð(b1,&,bn)
} =
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{'(c) ∶ c *
å

(c1,&,cn)*Ab1
×ď×Abn

A�ð(c1,&,cn)
} =

å

(c1,&,cn)*Ab1
×ď×Abn

{'(c) ∶ c * A�ð(c1,&,cn)
},

and, since c1,& , cn are atoms and ' is a homomorphism, this equals

å

(c1,&,cn)*Ab1
×ď×Abn

{'(c) ∶ c * �
ý(ð)(c1,& , cn)} ⊆

å

(c1,&,cn)*Ab1
×ď×Abn

�ï('(c1),& , '(cn)) =
å

(a1,&,an)*{'(c) ∶ c*Ab1
}×ď×{'(c) ∶ c*Abn}

�ï(a1,& , an) =

å

(a1,&,an)*¨ð,ï(')(b1)×ď×¨ð,ï(')(bn)

�ï(a1,& , an) = �þð(ï)(¨ð,ï(')(b1),& ,¨ð,ï(')(bn)).

Second, the ¨ð,ï must be bijections between HomMAlg(Σ)(ý(ð),ï) and

HomAlgð(Σ)
(ð,þð(ï)). They are certainly injective: if ¨ð,ï(') = ¨ð,ï( ), for every atom b

we have that

{'(b)} = ¨ð,ï(')(b) = ¨ð,ï( )(b) = { (b)},

and therefore ' =  .

For the surjectivity, take a (Σ,d)-homomorphism ' ∶ ð ³ þð(ï): we then define

 ∶ ý(ð) ³ ï by  (b) = a, for an atom b in ð with '(b) = {a}. It is well-defined since a

(Σ,d)-homomorphism takes atoms to atoms, and the atoms of þð(ï) are exactly the singletons.

We must show that  is truly a homomorphism: for � * Σn and atoms b1,& , bn in

ý(ð) such that '(bi) = {ai} for every i * {1,& , n}, we have that

'(�ð(b1,& , bn)) ⊆ �þð(ï)('(b1),& , '(bn)),

since ' is a (Σ,d)-homomorphism, and therefore

{ (b) ∶ b * �
ý(ð)(b1,& , bn)} = { (b) ∶ b * A�ð(b1,&,bn)

} =

å

b*A�ð(b1 ,&,bn)

'(b) = sup{'(b) ∶ b * A�ð(b1,&,bn)
} = '(supA�ð(b1,&,bn)

) = '(�ð(b1,& , bn)) ⊆

�þð(ï)('(b1),& , '(bn)) = �þð(ï)({a1},& , {an}) = �ï(a1,& , an) = �ï( (b1),& ,  (bn)).

Now ¨ð,ï( ) = ' since, for any element b in ð, we have that

¨ð,ï( )(b) = { (c) ∶ c * Ab} =
å

c*Ab

'(c) = sup{'(c) ∶ c * Ab} = '(supAb) = '(b),

and therefore the ¨ð,ï are, indeed, bijective.

Finally, for ï and ñ Σ-multialgebras, ð and ò (Σ,d)-algebras, ' ∶ ï ³ ñ a

homomorphism and  ∶ ò ³ ð a (Σ,d)-homomorphism, we must now only prove that the

following diagram commutes.
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HomMAlg(Σ)(ý(ð),ï) HomAlgð(Σ)
(ð,þð(ï))

HomMAlg(Σ)(ý(ò),ñ) HomAlgð(Σ)
(ò,þð(ñ))

¨ð,ï

Hom(ý( ),') Hom( ,þð('))

¨ò,ñ

So, we take a homomorphism � ∶ ý(ð) ³ ï and an element d of ò. We have that

Hom( ,þð('))¨ð,ï(�) = þð(')ċ¨ð,ï(�)ċ ,

and therefore the top-right edges of the diagram give us

þð(')ċ¨ð,ï(�)ċ (d) = þð(')({�(b) ∶ b * A (d)}) = {'ċ�(b) ∶ b * A (d)}.

Meanwhile, the left-bottom edges give us

¨ò,ñ('ċ�ċý( ))(d) = {'ċ�ċý( )(e) ∶ e * Ad} = {'ċ�ċ (e) ∶ e * Ad}.

If d is an atom, the top-right edges give the singleton containing only 'ċ�ċ (d),

since in this case Ad = {d} and, given that  preserves atoms, A (d) = { (d)}; the left-bottom

edges also give the singleton formed by 'ċ�ċ (d), since again Ad = {d}. Since a (Σ,d)-

homomorphism is determined by its action on atoms, we find that the left and right sides of the

diagram are equal, and therefore the diagram commutes.

As observed before, this proves ý and þð are adjoint and, therefore, that MAlg(Σ)

and Algð(Σ) are equivalent. We then have, more or less, the following functors and categories

to consider.

MAlg=(Σ) MAlg(Σ)

Alg(Σ) Algð(Σ)

þ=

P

þ
þðý

ā

While þ and þ= are our failed attempts, þð is the successful one, and P its pre-

sentation as an endofunctor of MAlg(Σ) and part of a monad. Here, ā is the forgetful functor

from Algð(Σ) into Alg(Σ), that ignores the order of a (Σ,d)-algebra, leaving us simply with a

Σ-algebra.
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3.5 Some related results

The result that MAlg(Σ) and Algð(Σ) are equivalent has a few consequences, and related results,

we would like to stress. We start by mentioning a consequence, and move to a few related results

to which, although we do not offer a proof, providing a demonstration appears straightforward.

So, take the empty signature, with no operators at all: in that case, given all multial-

gebras have non-empty universes, MAlg(Σ) becomes (or, rather, is equivalent to) the category

of non-empty sets Set∗ (a multialgebra corresponding to its universe), with functions between

them as morphisms; this is because, once one disregards the conditions demanded of a homo-

morphism, what remains is purely a function between the universes of the multialgebras.

Meanwhile, Algð(Σ) becomes the category with complete, atomic and bottomless

Boolean algebras as objects (given we simply drop the operations from a (Σ,d)-algebra), with

continuous, atoms-preserving functions between them as morphisms, category we will call

CABo (standing for “complete, atomic and bottomless”). More explicitly, the equivalence is

given by the pair of functors:

F ∶ Set∗ ³ CABo,

which takes a non-empty set X to the complete, atomic and bottomless Boolean algebra þ∗(X)

of its non-empty sets, and a function f ∶ X ³ Y to the continuous, atoms-preserving function

Ff ∶ þ∗(X) ³ þ∗(Y ) such that, for a non-empty A ⊆ X, Ff (A) = {f (x) * Y ∶ x * A}; and

G ∶ CABo ³ Set∗,

which takes a complete, atomic and bottomless Boolean algebra to its set of minimal elements

(atoms), and a continuous, atoms-preserving function ' ∶ (A,dï) ³ (B,dð) to the function

G' which maps an atom a in A to the, still minimal, element '(a) of B.

Notice this is very closely related to the equivalence between CABA and Setop: the

morphisms on the former are merely continuous functions, so the only extra requirement to the

morphisms of CABo we are making is that they should preserve atoms; this, of course, allows

one to exchange the opposite category of Set by Set itself (or rather Set∗); the extra requirement

that the maps should preserve atoms also allows one to prove a similar equivalence between an

enriched CABA and Set.

3.5.1 Partial multialgebras

Now, a generalization of our result is to partial multialgebras: given a signature Σ, a partial Σ-

multialgebra is a pair ï = (A, {�ï}�*Σ) (with A possibly empty) such that, if � * Σn, �ï is a

function of the form

�ï ∶ An ³ þ(A)
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(no longer þ(A) ö {∅} as in the case of multialgebras); that is, a partial multialgebra is a mul-

tialgebra where operations may return the empty-set. Given partial Σ-multialgebras ï and ð, a

homomorphism between them is a function ' ∶ A ³ B such that, as is the case for homomor-

phisms for multialgebras,

{'(a) ∶ a * �ï(a1,& , an)} ⊆ �ð('(a1),& , '(an)),

for all � * Σn and a1,& , an * A, where one or both of these sets may be empty. The class of

all partial Σ-multialgebras, with these homomorphisms between them as morphisms, becomes

a category, which we shall denote by PMAlg(Σ).

Correspondingly, we modify the category Algð(Σ): take, as objects of AlgCABA(Σ),

triples ï = (A, {�ï}�*Σ,dï) such that:

1. (A, {�ï}�*Σ) is a Σ-algebra;

2. (A,dï) is a complete, atomic Boolean algebra (no longer a bottomless Boolean algebra);

3. for Aa the set of atoms smaller than a (equal to ∅ if a = 0), � * Σn and a1,& , an * A,

�ï(a1,& , an) = sup{�ï(b1,& , bn) ∶ (b1,& , bn) * Aa1
×ď × Aan

}

(where, now, the set of which we take the supremum may be empty).

The morphisms in AlgCABA(Σ), between two of its objectsï andð, will be functions' ∶ A³ B

satisfying

1. for � * Σn and a1,& , an * A, '(�ï(a1,& , an)) dð �ð('(a1),& , '(an));

2. ' is continuous, id est, for any S ⊆ A (possibly empty), '(supS) = sup{'(a) ∶ a * S};

3. ' maps atoms of ï to atoms of ð.

Notice that the category AlgCABA(Σ) is really closely related to Algð(Σ): what we

changed is that the underlying objects are not complete, atomic and bottomless Boolean algebras

anymore, but rather complete, atomic Boolean algebras, while the morphisms are now required

to map 0 to 0 (that is, be continuous on the empty set). And, with the categories PMAlg(Σ) and

AlgCABA(Σ) at hand, it becomes easy to show both of them are equivalent.

In one direction, the equivalence is given by the functor

F ∶ PMAlg(Σ) ³ AlgCABA(Σ) which takes: a partial multialgebra ï with universe A to the

powerset of A, equipped with operations given by

�Fï(A1,& , An) =
å

(a1,&,an)*A1×ď×An

�ï(a1,& , an)
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for possibly empty A1,& , An ⊆ A; and a homomorphism ' ∶ ï ³ ð between partial Σ-

multialgebras to the function given by, for a possibly empty A2 ⊆ A, F'(A2) = {'(a) * B ∶

a * A2}.

In the other direction, the equivalence is given by G ∶ AlgCABA(Σ) ³ PMAlg(Σ),

taking: an object of AlgCABA(Σ) to its set of atomic elements, equipped with multioperations

such that �Gï(a1,& , an), for atoms a1 through an, is the set of atoms smaller than �ï(a1,& , an)

(now possibly empty, in the case the result of the operation is 0); and a morphism ' ∶ ï ³ ð

in AlgCABA(Σ) to its restriction to the atoms of ï.

The equivalence between PMAlg(Σ) and AlgCABA(Σ) is obtained directly from the

equivalence between MAlg(Σ) and Algð(Σ) by merely allowing operations to return the empty-

set, and correcting whatever definitions that require a set to be non-empty accordingly.

This may seem a long commentary for a result which changes very little, but there is

a reason why we focus on PMAlg(Σ): a pairû = (ï, D), such thatï is a partialΣ-multialgebra

with universe A and D is a subset of A, is called a PNmatrix, standing for a partial, non-

deterministic matrix. Given a set of formulas � L {'} in the signature Σ, we say � proves '

according to û if, for every homomorphism � ∶ F(Σ,Ą) ³ ï of partial multialgebras,

�(�) ⊆ D implies �(') * D,

when we write � ⊨û '.

It is easy to see that PNmatrices produce a broader semantics than that of Nmatrices:

after all, every Nmatrix is a PNmatrix, but not vice-versa; so, in the effort of algebraizing logics,

PNmatrices may offer new developments on logics that were, without them, uncharacterizable.

PNmatrices were first developed in [BLZ13], although the presentation given here is closer to

that of [CM19], and are indubitably very powerful; and yet, they are still not very widespread.

We believe the reason for this is that they add partiality, a not so desired property for decision

methods, to an already disliked by many semantical methodology, that of Nmatrices. So we

extract from the logicians who have no philosophical objections against non-determinism those

with no objections against partiality to find those willing to use PNmatrices.

From our studies presented here it is clear we are supporters of Nmatrices, and of

PNmatrices as well, so our intention here is not to replace them, but rather to give an alternative

approach, more classically behaved, to those logicians not willing to appeal to them.

3.5.2 Multihomomorphisms

Finally, consider the modified notions of homomorphism between Σ-multialgebras ï =

(A, {�ï}�*Σ) and ð = (B, {�ð}�*Σ) we briefly met in Section 1.1.2: the, perhaps, simplest

multihomomorphism one can define is a function ' ∶ A³ þ(B)ö{∅} satisfying, for all � * Σn

and a1,& , an * A,
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å

a*�ï(a1,&,an)

'(a) ⊆
å

(b1,&,bn)*'(a1)×ď×'(an)

�ð(b1,& , bn);

then, the category with Σ-multialgebras as objects, and these multihomomorphisms as mor-

phisms, will be denoted by MMAlg(Σ). Notice that the composition of multihomomorphisms

', between ï and ð, and  , between ð and ñ, is not given by their composition as functions,

but rather as

 ċ'(a) =
å

b*'(a)

 (b),

for any element a of ï.

The idea here is quite clear: now, morphisms in our category of multialgebras return

non-empty sets, much alike the multioperations in the multialgebras themselves. To find an

equivalent category, we must reflect this change, what is actually rather easy: we demanded that

the morphisms in Algð(Σ) should preserve atoms, exactly because we wanted them all to be

images, under þð, of some homomorphism ' in MAlg(Σ); and þð(') preserves singletons, that

is, atoms in the (Σ,d)-algebras þð(ï).

So, consider the category MAlgð(Σ), with (Σ,d)-algebras as objects and, as mor-

phisms between (Σ,d)-algebras ï = (A, {�ï}�*Σ,dï) and ð = (B, {�ð}�*Σ,dð), any function

' ∶ A³ B such that:

1. for all � * Σn and a1,& , an * A,

'(�ï(a1,& , an)) dð �('(a1),& , '(an));

2. ' is continuous on non-empty sets, meaning that for any non-empty S ⊆ A,

'(supS) = sup{'(a) ∶ a * S}.

Of course, slight changes are necessaries on the functors realizing an equivalence

between MMAlg(Σ) and MAlgð(Σ). The first of them is F ∶ MMAlg(Σ) ³ MAlgð(Σ), which

takes a multialgebra ï to þð(ï), but takes a multihomomorphism between ï and ð (with

universes A and B) to the function F' ∶ þ(A) ö {∅} ³ þ(B) ö {∅} such that

F'(A2) =
å

a*A2

'(a),

for a non-empty A2 ⊆ A. Reciprocally, we take the functor G ∶ MAlgð(Σ) ³ MMAlg(Σ)

mapping a (Σ,d)-algebraï to the multialgebraý(ï), but a morphism' ∶ ï ³ ð of MAlgð(Σ)

to the multihomomorphism between ý(ï) and ý(ð) such that, for an atom a of ï,

G'(a) = A'(a),
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that is, G'(a) is the set of atoms, in ð, below '(a).
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Part II

Paraconsistent Logic
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Chapter 4

Logics and Nmatrices

4.1 Basic notions in logic

Given a signature Σ and a countable set Ą , to which we will refer as a set of propositional

variables and whose elements we will denote by pi for i * ℕ, the language, or propositional

language, úΣ generated by Σ from Ą , which we may denote simply by ú if Σ is fixed, is the set

of formulas F (Σ,Ą).

A consequence relation ⊢ on a language ú is a binary relation on þ(ú), and if (�,�)

is in ⊢, we will simply write � ⊢ �. A logic ℒ over a signature Σ is then a pair (ú, ⊢ℒ), where

⊢ℒ is a consequence relation on ú which will, at times, be denoted simply by ⊢.

When � ⊢ℒ �, we will say that � proves �; and for sets of formulas �1,& ,�n and

�1,& ,�m and formulas �1,& , �k and �1,& , �l, we will denote

�1 Lď L �n L {�1,& , �k} ⊢ℒ �1 Lď L �m L {�1,& , �l}

simply by

�1,& ,�n, �1,& , �k ⊢ℒ �1,& ,�m, �1,& , �l,

meaning we will drop unions and curly brackets to simplify our notation. If ∅ ⊢ℒ ', we will

simply write ⊢ℒ ', and call ' a tautology.

Definition 4.1.1. A logic ℒ is said to be a tarskian logic if, for any set �L�L {'} of formulas

in the language of ℒ, the following holds:

1. if ' * �, � ⊢ℒ ';

2. if � ⊢ℒ ' and � ⊆ �, then � ⊢ℒ ';

3. if � ⊢ℒ ' and � ⊢ℒ 
 for every 
 * �, then � ⊢ℒ '.

A logic ℒ is said to be finitary if, for all sets of formulas � L {'} in its language, if

� ⊢ℒ ' then there exists a finite set �0 ⊆ � such that �0 ⊢ℒ '.
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A logic ℒ over the signature Σ with language ú = F (Σ,Ą) is said to be structural

when, for every � L {'} ⊆ ú and every Σ-homomorphism � ∶ F(Σ,Ą) ³ F(Σ,Ą), if � ⊢ℒ '

then �(�) ⊢ℒ �('); we call any Σ-homomorphism � ∶ F(Σ,Ą) ³ F(Σ,Ą) a substitution.

Definition 4.1.2. A set of formulas � in a logic ℒ is said to be closed if, anytime � ⊢ℒ ', we

have that ' * �.

The following theorem is due to Lindenbaum and Łoz, and will be used several times

in our study.

Theorem 4.1.1. If ℒ is a tarskian, finitary logic, and � L {'} is a set of formulas such that

� ⊬ú ', there exists a non-trivial, closed set of formulas � containing � and maximal with

respect to not proving '.

Proof. A proof can be found in [CC16], in Theorem 2.2.6.

4.1.1 Hilbert systems

Perhaps the most useful way for us to define a logic is through a set of axiom schemata plus a set

of rules of inference, in what is called a Hilbert system: given a language ú = F (Σ,Ą) over the

signature Σ, an n-ary rule of inference, for n * ℕ, is an element of ún × ú. A rule of inference

((�1,& , �n), �) will usually be denoted by �1,& , �n|� or

�1,& , �n
�

.

An axiom scheme is any formula �, and its instances are �(�), for any Σ-homomorphism � ∶

F(Σ,Ą) ³ F(Σ,Ą): notice that, technically speaking, an axiom is a 0-ary rule of inference;

regardless, we will still treat then differently, given that historically this is the most common

approach. More generally, given a rule of inference �1,& , �n|� and a homomorphism � ∶

F(Σ,Ą) ³ F(Σ,Ą), �(�1),& , �(�n)|�(�) is an instance of the aforementioned rule.

So, given a set of axiom schemata ý and a set of rules of inference ℜ, we can create

a logic ℒ dependent on ý and ℜ such that, given formulas � L {'} in ú, � ⊢ℒ ' if and only

if there exists a sequence of formulas '1,& , 'm, said to be a demonstration of ' from �, such

that 'm = ' and 'i, for i * {1,& , m}, is either:

1. an element of �, when we call it a premise;

2. an instance of axiom �(�), for an � * ý and a Σ-homomorphism � ∶ F(Σ,Ą) ³ F(Σ,Ą);

3. a formula �(�), for a Σ-homomorphism � ∶ F(Σ,Ą) ³ F(Σ,Ą) and �1,& , �n|� an n-ary

rule of inference in ℜ such that there exist 1 d i1,& , in < i with 'i1 = �(�1),& , 'in =

�(�n).
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Theorem 4.1.2. If ℒ is the logic obtained from the set of axiom schemata ý and the set of rules

of inference ℜ, ℒ is a finitary, tarskian logic.

Proof. Let � L � L {'} be a set of formulas in ú.

1. If ' * �, '1 is a demonstration of ' from �, with '1 = ': it is, in fact, a demonstration

since '1 is an element of �. This way, � ⊢ℒ '.

2. Suppose � ⊢ℒ ' and � ⊆ �: given '1,& , 'm, a demonstration of ' from �, we state that

'1,& , 'm is also a demonstration of ' from �. Clearly, first of all, we have that 'm = '.

Then 'i is either:

(a) an element of �, and since � ⊆ �, an element of �;

(b) an instance of axiom �(�), for � an axiom scheme and � a substitution;

(c) a formula �(�), for � a substitution and �1,& , �n|� a rule of inference for which

there exist 1 d i1,& , in < i with 'i1 = �(�1),& , 'in = �(�n).

This proves '1,& , 'm is a demonstration of ' from �, and therefore � ⊢ℒ '.

3. Suppose � ⊢ℒ ', and let '1,& , 'm be a demonstration of ' from �. We take �0 =

� K {'1,& , 'm}: we state then that '1,& , 'm is a demonstration of ' from �0 ⊆ �,

which is a finite set.

First of all, 'n = '. Then 'i is either:

(a) an element of �, and then 'i * � K {'1,& , 'n}, implying 'i is in �0;

(b) an instance �(�) of the axiom scheme �;

(c) a formula �(�), for a rule of inference �1,& , �n|� and 1 d i1,& , in < i such that

'ij = �(�j), for j * {1,& , n}.

So, to summarize, we have that �0 ⊢ℒ ', and therefore ℒ is finitary.

4. Finally, suppose � ⊢ℒ ' and that � ⊢ℒ 
 for every 
 * �. By the item above, there

exists a finite �0 ⊆ � such that �0 ⊢ℒ ', so let '1,& , 'M be a demonstration of ' from

�0, and let �0 = {
1,& , 
l}: we will prove that we can drop one of the premises of �0,

e.g. 
1, by adding as premises �, meaning

� L {
1,& , 
l} ö {
1} ⊢ℒ ',

and by an inductive argument, we will have that � ⊢ℒ '.

So, suppose 
1 � ' (otherwise we already have that � ⊢ℒ '), and consider the subse-

quence '2
1
,& , '2

m
of '1,& , 'M of formulas different from 
1; we then take a demonstra-

tion  1,& ,  k of 
1 from �, and state that the sequence �1,& , �k+m equal to

 1,& ,  k, '
2
1
,& , '2

m
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is a demonstration of ' from � L �0 ö {
1}.

First of all, since '2
1
,& , '2

m
is the subsequence of '1,& , 'M of formulas different from


1 and, by hypothesis, 
1 � ', we have that '2
m
= 'M = '. Now, if i * {1,& , k},

�i =  i, and then:

(a) if  i is a premise in �, clearly �i is a premise in the larger set � L �0 ö {
1};

(b) if  i is an instance of axiom �(�), clearly �i is also an instance of �;

(c) if i is the formula �(�), for �1,& , �n|� an n-ary inference rule and 1 d i1,& , in < i

such that  i1 = �(�1),& ,  in = �(�n), then, since

 i1 = �i1 ,& ,  in = �in ,

we have that �i is also �(�), for �1,& , �n|� an inference rule and 1 d i1,& , in < i

such that �i1 = �(�1),& , �in = �(�n).

If i * {k + 1,& , k + m}, �i = '2
i−k

, and then

(a) if '2
i−k

is a premise of the demonstration '1,& , 'M , and therefore in �0, since

'2
1
,& ,

'2
m

is the subsequence of elements different from 
1 we find '2
i−k

* �0 ö {
1}, and

�i is therefore in � L �0 ö {
1};

(b) if '2
i−k

is an instance of axiom �(�), evidently �i is also an instance of the same

axiom;

(c) if '2
i−k

= 'j is �(�), for an inference rule �1,& , �n|� and 1 d i1, .., in < j such that

'i1 = �(�1),& , 'in = �(�n), there are two cases to consider for a 'is:

i. either 'is � 
1, and so there exists k + 1 d js < k + i such that '2
js−k

= 'is;

ii. or 'is = 
1, when we make js = k and therefore �js = 
1;

either way, we find that �i is �(�), for �1,& , �n|� an n-ary inference rule and 1 d

j1,& , jn < i such that �j1 = �(�1),& , �jn = �(�n).

Again, let ℒ be the logic with axiom schemata ý and rules of inference ℜ: beyond

being a finitary, tarskian logic, we can prove that is also structural. Assume � ⊢ℒ ' and let

'1,& , 'm be a demonstration of ' from � and � ∶ F(Σ,Ą) ³ F(Σ,Ą) a Σ-homomorphism.

We state then that �('1),& , �('m) is a demonstration of �(') from �(�). First of

all, we have that, since 'm = ', �('m) = �(').

1. If 'i is a premise in �, then �('i) is a premise in �(�).
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2. If 'i is an instance �(�) of an axiom �, since �ċ� is still a Σ-homomorphism, then �('i)

is an instance �ċ�(�) of the same axiom �.

3. If 'i equals �(�), for a Σ-homomorphism �, a rule of inference �1,& , �n|� and 1 d

i1,& , in < i such that 'i1 = �(�1),& , 'in = �(�n), then �ċ� is still a Σ-homomorphism,

and �('i) equals �ċ�(�) for a rule of inference �1,& , �n|� and 1 d i1,& , in < i such

that �('i1) = �ċ�(�1),& , �('in) = �ċ�(�n).

One important thing to notice is that, when presenting an axiom or rule of inference,

is common to use a not so precise notation: suppose our signature has a binary symbol ², and

that p1 ² p2 is an axiom; we will usually write it as � ² �, using � and � as meta-variables for

formulas, although, in principle, this notation is incorrect. The same will be done for rules of

inference, where, to name one example, a rule such as

p1, p1 ² p2
<p2

will be denoted by �, � ² �|<�.

4.1.2 Paraconsistent logics and LFI2s

We will understand as classical propositional logic the logic we will denote by CPL over the

signature ΣCPL, such that ΣCPL
0

= {⊥,⊤}, ΣCPL
1

= {<}, ΣCPL
2

= {J,I,³} and ΣCPL
n

= ∅ for

n > 2, with axiom schemata

Ax 1 � ³ (� ³ �);

Ax 2
(
� ³ (� ³ 
)

)
³

(
(� ³ �) ³ (� ³ 
)

)
;

Ax 3 � ³
(
� ³ (� I �)

)
;

Ax 4 (� I �) ³ �;

Ax 5 (� I �) ³ �;

Ax 6 � ³ (� J �);

Ax 7 � ³ (� J �);

Ax 8 (� ³ 
) ³
(
(� ³ 
) ³

(
(� J �) ³ 


))
;

Ax 9 (� ³ �) ³
(
(� ³ <�) ³ <�

)
;

Ax 10 � ³ (<� ³ �);

Ax 11 � J <�;
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Ax 12 ⊥³ �;

Ax 13 � ³ ⊤;

and following the inference rule of Modus Ponens

� � ³ �

�
.

As opposed to CPL, a tarskian logic ℒ will be said to be paraconsistent when it

possesses an unary symbol "¬", that we shall refer to as a negation, such that there exist for-

mulas � and � of ℒ satisfying �,¬� ⊬ℒ �. A good, intuitive way to look at paraconsistent

logics is through the paradigm introduced by da Costa that the formulas of such a logic can, at

times, be divided into well-behaved and badly-behaved (nowadays more commonly referred to

as inconsistent) ones. Think of a scientist performing an experiment: from her school years, said

scientist knows that opposite poles of a magnet attract each other; so, if during the experiment

two poles she thought to be opposite are instead repealing each other, she can be certain that

she was wrong, and the two poles are instead the same, both north or both south. Her reasoning

works because the sentence “opposite poles attract” is well-behaved (that is, it can not coexist

with its negation) and true, while what she had apparently observed was that “opposite poles

repeal”, a well-behaved although false sentence.

Now, suppose that our scientist has discovered that all monopoles (conjectured mag-

netic particles that, instead of having both north and south poles, have only one pole, hence the

name) have exactly the same pole and is now testing two hypotheses: “all monopoles are north

poles” and “all monopoles are south poles”. Again, we have contradictory sentences, as was the

case with “opposite poles attract” and “opposite poles repeal”, but this time our scientist can

not reach the conclusion that, at some prior step, she made a mistake: why is that?1 Simply

put: none of the hypotheses to be tested, “all monopoles are north poles” and “all monopoles

are south poles”, is well-behaved, meaning that we can not discard their negations as necessarily

false.

What we are doing is dividing those sentences found in science between true-or-false

sentences (such as those involving attracting or repealing poles) and hypothetical sentences (such

as those involving all monopoles). But this is not exclusive to scientists: mathematicians also

have true-or-false sentences and conjectural sentences: after all, some mathematicians believe

that, e.g., the Riemann hypothesis is true, while others believe it to be false, and that doesn’t make

mathematics as a whole trivial. In daily life, conjectural and hypothetical sentences may be re-

placed with rumors, that can also be contradictory without making logical reasoning unfeasible.

da Costa’s hierarchy, which deals with these distinctions plus higher degrees of consistency, will

be studied algebraically in Chapters 5 and 6.

1Notice that we are presenting this logical problem in a somewhat convoluted way in order to avoid explicit
explosivity of the theory at hand: scientists, and most mathematicians, appear to prefer thinking about these topics
in terms of non-contradiction (what is eventually equivalent).
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If our logic ℒ also possesses a binary symbol "³" satisfying the deduction meta-

theorem, i.e., �,  ⊢ℒ ' if and only if � ⊢ℒ  ³ ', then the condition that there exist

formulas � and � such that �,¬� ⊬ℒ � is equivalent to the existence of formulas � and � such

that ⊬ℒ � ³ (¬� ³ �), which is know as the failure of the explosion law; if this result were

to be true for any � and �, that would mean the explosion law would be valid, which indeed

happens in CPL as one can see by its Ax 10.

If a formula  has all its propositional variables among the set {p1,& , pn}, we may

write  (p1,& , pn): to define logics of formal inconsistency, we shall need a set of formulas

ð(p), each of them dependent exactly on the propositional variable p, that is, each one of them

contains p and solely p as a variable.

And if we apply to a formula  (p1,& , pn) a homomorphism � sending pi to the

formula �i, for i * {1,& , n}, we shall write  (�1,& , �n) for �( ): this way, ð(�) will be the

set of formulas obtained from ð(p) after we apply to each of its elements the homomorphism

taking p to �, that is,

ð(�) = { (�) ∶  (p) * ð(p)}.

Definition 4.1.3. A tarskian, finitary and structural logic ℒ containing a negation and a set

of formulas ð(p) � ∅ depending exactly on the propositional variable p is a logic of formal

inconsistency (LFI) when:

1. there exist formulas � and � in ℒ such that �,¬� ⊬ℒ �;

2. there exist formulas � and � in ℒ such that

(a) ð(�), � ⊬ℒ � and

(b) ð(�),¬� ⊬ℒ �;

3. for all formulas ' and  in ℒ,

ð('), ',¬' ⊢ℒ  .

The logic ℒ will be called a weak LFI if the second condition of Definition 4.1.3

is replaced by there existing formulas �1 and �1 such that

ð(�1), �1 ⊬ℒ �1

and �2 and �2, possibly different from respectively �1 and �1, such that

ð(�2),¬�2 ⊬ℒ �2.

The logic ℒ will be called a strong LFI if the first and second conditions of Defini-

tion 4.1.3 are replaced by there existing a single pair of formulas � and � satisfying simultane-

ously
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1. �,¬� ⊬ℒ �,

2. ð(�), � ⊬ℒ � and

3. ð(�),¬� ⊬ℒ �.

All these definitions are the Definitions 2.1.7, 2.1.8 and 2.1.9 of [CC16].

When the set ð(p) contains a single formula, this formula will be denoted by ċp,

being the consistency of p. More often than not, we will want "ċ" to be a primitive connective,

as well as consistency a primitive notion.

The LFI we will most frequently work with is one that, beyond having a primitive

consistency, emulates only the positive fragment of classical propositional logic and excluded

middle: this way, mbC is often regarded as the simplest logic of formal inconsistency. It has

the signature we will denote by ΣLFI, with (ΣLFI)0 = ∅, (ΣLFI)1 = {¬, ċ}, (ΣLFI)2 = {J,I,³}

and (ΣLFI)n = ∅ for n > 2; it has as axiom schemata

Ax 1 � ³ (� ³ �);

Ax 2
(
� ³ (� ³ 
)

)
³

(
(� ³ �) ³ (� ³ 
)

)
;

Ax 3 � ³
(
� ³ (� I �)

)
;

Ax 4 (� I �) ³ �;

Ax 5 (� I �) ³ �;

Ax 6 � ³ (� J �);

Ax 7 � ³ (� J �);

Ax 8 (� ³ 
) ³
(
(� ³ 
) ³

(
(� J �) ³ 


))
;

Ax 9∗ (� ³ �) J �;

Ax 11∗ � J ¬�,

plus

ċ� ³ (� ³ (¬� ³ �)), (bc1)

and as inference rules that of Modus Ponens,

� � ³ �

�
.

Other logics of formal incompatibility we will make use of are:

1. mbCciw, obtained from the Hilbert system for mbC by adding the axiom schema

ċ� J (� I ¬�); (ciw)
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2. mbCci, obtained from mbC by adding

¬ċ� ³ (� I ¬�); (ci)

3. mbCcl, obtained from mbC by adding

¬(� I ¬�) ³ ċ�. (cl)

4.2 Matrices and generalizations

A logical matrix over a signature Σ is a pair û = (ï, D) such that ï = (A, {�ï}�*Σ) is a

Σ-algebra and D ⊆ A is said to be the set of designated elements of the matrix. Given formulas

�L{'} over the signatureΣ, we say� semantically proves' according toû (and write� ⊨û ')

if, for every homomorphism � ∶ F(Σ,Ą) ³ ï such that �(
) * D, for every 
 * �, one has that

�(') * D.

A logic ú, over the signature Σ, is said to be characterized by û if, for every set of

formulas � L {'} over Σ, � ⊢ú ' if and only if � ⊨û '.

Quite analogously, given a class ā of matrices û over the same signature, we write

� ⊨
ā
' if � ⊨û ' for every û * ā, and a logic ú is said to be characterized by ā when

� ⊢ú ' if and only if � ⊨
ā
'.

It is a well know result by Wójcicki that every tarskian logic can be characterized by

a suitable class of logical matrices, see [Wój84]. And, although one could see such a result as

settling the matter of logical matrices, many times the suitable class of logical matrices obtained

for a logic is not efficient, as in, to name one example, its algebras can be too large or complex,

or the class may be infinite. So alternatives have been offered to classes of logical matrices, as

in Wójcicki [Wój70].

Another approach is the one we will call that of restricted matrices, or Rmatrices,

(although that was not its original nomenclature, Piochi named then ó-matrices instead), see

[Pio78] or, for an approach focusing more on structurality of the related closure operators,

[Pio83] and [Pio80]. A restricted matrix over a signature Σ is a triple û = (ï, D,ô ) such

that:

1. ï = (A, {�ï}�*Σ) is a Σ-algebra;

2. D is a subset of A;

3. ô is a set of homomorphisms from F(Σ,Ą) to ï.

The set ô will be called the set of restrictions. Given formulas � L {'} over the

signature Σ, we say � proves ' according to a restricted matrix û (also over Σ) and write

� ⊨û ' if, for every homomorphism � * ô , �(
) * D, for every 
 * �, implies �(') * D; we
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say a logic ú is characterized by a restricted matrix û when � ⊢ú ' if and only if � ⊨û ',

and it is possible to prove that every tarskian logic can be characterized by a, potentially infinite,

restricted matrix (see Piochi’s [Pio78] and [Pio83]).

And yet, given sometimes this is the most efficient approach, we may define ⊨
ā

for

ā a class of restricted matrices in much the same way we did for a class of matrices.

Many of these generalizations have one simple objective, which is to offer a reason-

able decision method for a logic; of course, methods that depend on infinite matrices or infinite

classes of matrices are not really decision methods, and so finite matrices, or finite sets of finite

matrices, are the preferable outcomes of the algebraization process of a logic. Of course, such

outcomes are not always possible, as many results on uncharacterizability of logics show: prob-

ably the earliest one is Gödel’s proof that propositional, intuitionistic logic is not characterizable

by a single, finite logical matrix, found in [Göd32].

Inspired by Gödel’s proof, Dugundji ([Dug40]) proved that no system lying between

the modal logics S1 and S5 admits a single, finite logic matrix which characterizes it as well, and

in many places we may refer to results regarding uncharacterizability of logics as “Dugundji-

like” theorems. As we enter the domain of paraconsistent logics, these results abound, given

the intrinsic complexity of many of those systems: one example would be Avron’s proof that

many logics, including da Costa’s C1, do not possess a characterizing finite Nmatrix, or even a

characterizing finite set of finite Nmatrices ([Avr07; Avr05b]).

Most of the work shown in Sections 4.2.1, 4.2.2, 4.2.3 and 4.3 was submitted to an

online repository in [CT20], and then finally published in [CT22b].

4.2.1 Restricted Nmatrices

As we explained before, although the problem of finding semantics for a given logic is some-

what solved in the case the logic at hand is tarskian, the corresponding class of matrices or

even restricted matrix associated to the logic may not be sufficiently efficient, and in the realm

of paraconsistency and, furthermore, in the presence of incompatibility, which we will further

study ahead, non-deterministic matrices have been proven fruitful. The first approach to non-

deterministic matrices is found in the work of Rescher (see [Res62]) and Ivlev (see [Ivl88],

[Ivl13], [Ivl73] and [Ivl85]), although our reasoning will be closer to that of [Avr07].

Definition 4.2.1. Given a signature Σ, a non-deterministic matrix over Σ, or Nmatrix, is a pair

û = (ï, D) such that ï = (A, {�ï}Σ) is a Σ−multialgebra and D is a subset of A, said to be

its set of designated elements.

One may check definition 6.3.1 of [CC16] and [Avr07] for equivalent definitions,

with slightly different emphases.

Given formulas � L {'} over the signature Σ and an Nmatrix û, we say that �

proves ' according to û if, for every homomorphism of multialgebras � ∶ F(Σ,Ą) ³ ï such
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that �(
) * D for every 
 * �, one has �(') * D, when we then write � ⊨û ': notice how

close this definition is of that for ⊨û when û is simply a matrix.

One, perhaps very important, observation is that Nmatrices, as defined, are slightly

redundant, being enough to add a symbol to our signature in order to work only their underlying

multialgebra: consider an Nmatrix û = (ï, D) over the signature Σ, add a symbol ⊤ to Σ0

therefore producing the signature Σ⊤ and define the Σ⊤-multialgebra ï⊤ such that

�ï⊤ = �ï, for every � in Σ,

and⊤ï⊤ = D. Then, given formulas �L{'} in the signature Σ, we say that � proves' according

to ï⊤, and write � ⊨ï⊤ ', if for every homomorphism of Σ-multialgebras � ∶ F(Σ,Ą) ³ ï⊤,

�(�) ⊆ ⊤ï⊤ implies �(') * ⊤ï⊤ ,

what is possible given that Σ ⊆ Σ⊤ implies � L {'} ⊆ F (Σ,Ą) ⊆ F (Σ⊤,Ą). Of course, such a

simplification is not possible when dealing with matrices, unless the set of designated values is

a singleton.

Given a class ā of Nmatrices over the same signature Σ, we say � ⊨
ā
' if, for every

û * ā, � ⊨û '. Given every matrix is an Nmatrix, we have that every tarskian logic may be

characterized by a class of Nmatrices.

Definition 4.2.2. A restricted non-deterministic matrix, or restricted Nmatrix or RNmatrix, over

a signature Σ is a triple

û = (ï, D,ô )

such that:

1. (ï, D) is a non-deterministic matrix over Σ;

2. ô is a subset of the set of all homomorphisms from F(Σ,Ą) to ï.

We define⊨û as in the case thatû is a restricted matrix. Notice that every restricted

matrix is a restricted Nmatrix, and then every tarskian logic may be characterized by a restricted

Nmatrix, but we can achieve a more powerful result, similar to the one commonly known as

Suszko‘s Thesis, found in [Sus77]; but, unlike Suszko, we do not focus on bivaluations, and we

do not wish to advocate that all logics are two-valued.

Theorem 4.2.1. Every tarskian logic is characterizable by a two-valued RNmatrix.2

Proof. Let ÿ = (ú, ⊢) be a tarskian logic over the signature Σ. Consider then the Σ-multialgebra

2(Σ) with universe {0, 1} and, for an n-ary � * Σ, operations defined by

�2(Σ)(x1,& , xn) = {0, 1},"x1,& , xn * {0, 1}.

2By an n-valued RNmatrix we understand an RNmatrixû = (ï, D,ô )where the universe ofï has n elements.
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We then define the set ôÿ of valuations � ∶ F(Σ,Ą) ³ 2(Σ) such that there exists a closed set

of formulas � over Σ for which �(
) = 1 if, and only if, 
 * �; notice that all functions from

F(Σ,Ą) to 2(Σ) are homomorphisms, and therefore no further restrictions are necessary.

We then define the RNmatrix

2(ÿ) = (2(Σ), {1},ôÿ),

and we state that � ⊢ ' if, and only if, � ⊨2(ÿ) '.

Regarding the first direction, if � ⊢ ', for any valuation � * ôÿ such that �(�) ⊆ {1}

there must exist a closed set � of formulas over Σ such that �(�) = 1 if, and only if, � * �, and

since �(�) ⊆ {1} we have � ⊆ �; now, given � ⊢ ' and � ⊆ �, it follows that � ⊢ ' and, since

� is closed, ' * �, meaning �(') = 1 and, therefore, � ⊨2(ÿ) '.

For the second direction, assume � ⊨2(ÿ) ': if � ⊬ ', by Lindenbaum-Łoz there

exists a non-trivial extension � of � such that ' + �; if � is the valuation of ôÿ such that

�(�) = 1 if, and only if, � * �, this means that �(�) ⊆ {1}, and therefore �(�) ⊆ {1} since

� ⊆ �, and �(') = 0, contradicting the fact that � ⊨2(ÿ) '. This proves � ⊨2(ÿ) ' implies � ⊢ ',

and the theorem is proved.

For a restricted Nmatrix û we will want to consider, for a subset � of F (Σ,Ą), the

closure Kû(�), that is, the set of formulas ' * F (Σ,Ą) such that � ⊨û '.

Definition 4.2.3. Given a signature Σ, an operatorK ∶ þ(F (Σ,Ą)) ³ þ(F (Σ,Ą)) is said to be

a tarskian (or closure) one if, for all �,Θ ⊆ F (Σ,Ą), it satisfies:

1. � ⊆ K(�);

2. if Θ ⊆ �, K(Θ) ⊆ K(�);

3. if Θ = K(�), K(Θ) = Θ.

Notice how this generalizes the notion of a logic being tarskian: the consequence

relation in a tarskian logic is a tarskian operator; for such a reason, one may often call the pair

(F(Σ,Ą), K), for K a tarskian operator on F (Σ,Ą), a sentential logic itself. Even more, we may

define a logic ú over the signature Σ by � ⊢ú ' if, and only if, ' * K(�), and it is clear how ú

is tarskian: to every tarskian operator there corresponds a tarskian logic and vice-versa.

Proposition 4.2.1. Given a restricted Nmatrix û = (ï, D,ô ), the operator � Ç Kû(�) is a

tarskian one.

Proof. 1. Take' * �, and suppose � * ô is such that �(
) * D for all 
 * �; then �(') * D

and therefore ' * Kû(�), so that � ⊆ Kû(�).

2. Suppose Θ ⊆ � and that ' * Kû(Θ): then, if � * ô satisfies that �(�) * D, for every

� * Θ, one has �(') * D.
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Now, take a restricted homomorphism � * ô such that �(
) * D, for every 
 * �: since

Θ ⊆ �, in this case �(�) * D, "� * Θ, and therefore �(') * D, implying that' * Kû(�).

It follows that Kû(Θ) ⊆ Kû(�).

3. By the first item above, Θ ⊆ Kû(Θ), so it only remains to be shown that Kû(Θ) ⊆ Θ.

Given one ' * Kû(Θ), for any � * ô such that �(�) * D, for all � * Θ, �(') * D.

Now suppose � * ô satisfies that �(
) * D, for every 
 * �: then, since Θ = Kû(�),

�(�) * D for all � * Θ, and therefore �(') * D. It follows that ' * Kû(�) = Θ and

Kû(Θ) = Θ.

Given a class ā of RNmatrices, we can then consider the closure of a set � ⊆

F (Σ, X) under ā, that is, ' * K
ā
(�) if and only if � ⊨

ā
'. Clearly

K
ā
(�) =

ä

û*ā

Kû(�).

Lemma 4.2.1. If K� is a tarskian operator for every � * Λ, K defined as

K(�) =
ä

�*Λ

K�(�)

is also tarskian.

Proof. 1. Since, for every � * Λ we have that � ⊆ K�(�), we have that � ⊆
ä

�*ΛK�(�) =

K(�).

2. If Θ ⊆ �, we have K�(Θ) ⊆ K�(�) for every � * Λ, so

K(Θ) =
ä

�*Λ

K�(Θ) ⊆
ä

�*Λ

K�(�) = K(�).

3. Finally, if Θ = K(�), then
ä

�*ΛK�(�) = Θ, so that Θ ⊆ K�(�) for every � * Λ: clearly

Θ ⊆ K(Θ), so it remains for us to show that K(Θ) ⊆ Θ.

Let us denote K�(�) by Θ�, and since Θ ⊆ K�(�), K�(Θ) ⊆ K�(Θ�) = Θ�, for every

� * Λ; notice that Θ =
ä

�*ΛΘ�.

Then,

K(Θ) =
ä

�*Λ

K�(Θ) ⊆
ä

�*Λ

Θ� = Θ,

what finishes the proof.

Theorem 4.2.2. Given a class ā of RNmatrices, K
ā

is a tarskian operator.



Chapter 4: Logics and Nmatrices 120

In other words, classes of restricted Nmatrices can, at most, describe tarskian logics,

and from Theorem 4.2.1 they indeed characterize all of these. So no non-tarskian logic can be

characterized by either RNmatrices or their classes,3 but the fact is we do not see that as a real

problem: we are not looking exclusively for expressive power in our semantics, being efficiency

a more desirable property. That is, the point of restricted Nmatrices will not be what they can

express, but how easily will be to define and use them. Most importantly, however, is that

RNmatrices will be able to provide decision methods through what are, essentially, truth-tables,

where none were available before: one example, we will stress repeatedly, is that ofC1; although

decidable, this system is not only not characterizable by finite matrices, but neither by finite sets

of finite matrices, finite Nmatrices or finite sets of finite Nmatrices ([Avr07]). And, despite all of

this, this logic, and in fact all of da Costa’s hierarchy, may be characterized by finite RNmatrices,

what we will achieve in Chapter 5.

4.2.2 A brief history of RNmatrices

We first developed RNmatrices by studying semantics for the logic mbC: when analyzing Fidel

structures for that very system, we hoped to simplify the (3-valued) Nmatrix for mbC to a matrix,

by slightly altering its signature. By replacing the unary connective, standing for consistency, for

a binary connective (²) for incompatibility, and therefore creating the logics of incompatibility

we study in Chapters 7, 8 and 9, we created a system (within nbI−, that is, nbI without the com-

mutativity of ²) equivalent to mbC, with simpler semantics, but which was also, unfortunately,

not characterizable by finite matrices.

Well, a very natural system related to nbI− is bI, which adds the commutativity of

the binary incompatibility connective and subtracts the negation; rather unfortunate was then

our discovery that this logic is not characterizable by, not only finite matrices, but rather finite

Nmatrices as well. But we had a semantic for it almost ready, simply by adapting the decision

method (a two-valued Nmatrix) for bI−: it was enough to demand that every valuation to be

taken into consideration should satisfy �(� ² �) = �(� ² �).

Of course, within a semantics of matrices, or even Nmatrices, this is not permissible;

but, inspired by Piochi’s work on ó-matrices (which do restrict valuations) and our previous

knowledge of Nmatrices, we have coined what we begun to call restricted non-deterministic

matrices, or RNmatrices. We quickly grew to realize that RNmatrices are actually recurrent in

the history of non-classical logics, although not defined as such but rather as a specific solution to

a difficult system: examples abound, including bivaluations, Fidel structures, Kearn’s 4-valued

semantics for modal logics, static semantics, PNmatrices, among others.

To our great surprise, we found out that RNmatrices semantics have quite recently

started to resurface: Pawlowski and Urbaniak, in [Paw20; PU18], had noticed, shortly before

us, previous uses of the semantics of RNmatrces (although their nomenclature is, naturally,

3Although slight generalizations of RNmatrices could possibly change this.
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different), specially in the areas of informal provability and modal logic. We add to the topic a

more comprehensive analysis of the literature and a more in depth study of the expressiveness

of these semantics, in addition to the first explicit use of RNmatrices to paraconsistent logics.

And it is important, here, to explain what we mean by the expressiveness of RN-

matrix semantics: usually, the expressiveness of semantics refers to which logics can these

semantics characterize, a concept that is distinctively easy to understand when our semantics

are matricial in nature. However, according to Theorem 4.2.1, RNmatrices are, in a way, as

expressive as possible, meaning that any tarskian logic can be characterized by a finite RNma-

trix. Hence, we are actually more concerned about, first of all, the expressiveness of decidable

RNmatrices, i. e. RNmatrices where the problem of identifying which valuations are restricted

valuations is decidable, see Section 5.4 of Chapter 5 for more details; second, the expressiveness

of other, related semantics, such as PNmatrices of Example 4.2.4 below, which we know to be

no more expressive than RNmatrices (that is, all logics characterized by PNmatrices can also be

characterized by RNmatrices), but are not sure whether they are as expressive as RNmatrices

(meaning, if PNmatrices characterize all tarskian logics, as RNmatrices do).

Example 4.2.1. As we have already discussed, Dugundji proved that the logics between the

modal systems S1 and S5 can not be characterized by single, finite matrices; to circumvent that,

J. Kearns ([Kea81]) proposed a (four-valued) Nmatrix semantics for the modal T, S4 and S5

for which just some specific valuations can be considered, what clearly characterizes these as

RNmatrices semantics. Kearns idea proved itself to be very popular, and generalizations can be

found in, exempli gratia, [CCP15] (and [CCP16]) and [OS16].

Using a more modern approach to Kearns technique, as in [CCP15], we proceed as

follows: consider the universe {T , t, f , F }; operations are defined as necessary for each logic

L * {T,S4,S5}. Consider the set V alL of all valuations for L; we define V alL
k
⊆ V alL by

induction as V alL
0
= V alL and, for k * ℕ,

V alL
k+1

= {� * V alL
k
∶ for every formula �, V alL

k
(�) ⊆ D implies �(�) = T },

where V alL
k
(�) = {�(�) ∶ � * V alL

k
}. We then define the restricted valuations as ôL =

ä
k*ℕ V al

L
k
, and Kearns proved that ⊢L � if, and only if, �(�) = T for every � * ôL, making his

semantics for L correspond to the RNmatrix ùL = (ïL, {T },ôL), for ïL the multialgebra for

L, with universe {T , t, f , F }, whose precise definition we omitted.

Now, we can also prove ùL is structural: through an induction on k, one shows

that, for every valuation � * V alL
k

and every substitution �, �ċ� * V alL
k
, being the case k = 0

trivially true; so, suppose the result holds for a certain k * ℕ. Given � * V alL
k+1

and a

substitution �, by definition of V alL
k+1

we have � * V alL
k

and, by induction hypothesis, �ċ� *

V alL
k
. Let � be a formula satisfying V alL

k
(�) ⊆ D: for every � * V alL

k
, �ċ� * V alL

k
(again by

induction hypothesis), meaning that �ċ�(�) = �(�(�)) * D, and therefore V alL
k
(�(�)) ⊆ D.

This implies, since � * V alL
k+1

, that �ċ�(�) = �(�(�)) = T , and henceforth �ċ� *
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V alL
k+1

. Obviously this proves that � * V alL
k

implies �ċ� * V alL
k

for all k * ℕ: so, if � * ôL

and � is a substitution, for every k * ℕ, � * V alL
k

implies �ċ� * V alL
k

(again, for every k * ℕ),

and so �ċ� *
ä

k*ℕ V al
L
k
= ôL.

Example 4.2.2. The first proof of the decidability of da Costa’s calculi Cn (see Chapter 5 for a

definition of these logics) is due to Fidel, which in 1977 created a new class of structures, both

algebraic and relational, to provide precisely such a demonstration in [Fid77]: these objects are

now known as Fidel structures. Essentially, a Fidel structure for Cn, which in this presentation

are equipped with a connective (n), is a triple ü = (ï, {Na}a*A, {N
(n)
a
}a*A) such that:

1. ï is a Boolean algebra with universe A;

2. for every a * A, Na and N (n)
a

are subsets of A (and therefore unary relations indexed by

A) satisfying certain desired properties.

A valuation over a Fidel structureü forCn is a function � from the formulas ofCn toA satisfying,

among other conditions, that �(�#�) = �(�)#�(�), for # * {J,I,³},

�(¬�) * N�(�) and �(�(n)) * N (n)

�(�)
.

If, for every element a of ï, we define ¬a = Na and n(a) = N (n)
a

, we have enriched ï to become

a multialgebra, which we denote by ïn
ü

; it is not difficult to see, then, that the consequence

operator induced by the Fidel structure ü equals the one produced by the RNmatrix ûn
ü

=

(ïn
ü
, D,ô n

ü
), for D = {1} and ô n

ü
the set of valuations for Cn over ü .

Thus, we understand Fidel structures as one of the earliest, and best understood, ap-

plications of RNmatrices; more important, however, is its success in surviving the test of time,

being a methodology that is still relevantly applied today. See, for an example, the characteriza-

tions of LFI’s such as mbC, mbCcl and CILA in [CC16] through Fidel structures, all of which

may be recast as RNmatrices, one may add.

Now, to be more precise, [Fid77] uses a Fidel structure called C over the two-

element Boolean algebra 2 as a decision procedure for all of Cn: that way, for any n e 1,

the multialgebras ïn
C

are the same and satisfy ¬0 = n(0) = {1} and ¬1 = n(1) = {0, 1}; this

forces most of the semantical power of these structures to lie in their valuations, making of ô n
C

rather complicated sets (look, for an example of a similar nature, to 2(ÿ) in Theorem 4.2.1). In a

certain sense, when we present our own RNmatrices forCn in Chapter 5 we make a compromise:

we allow for the underlying multialgebras to have larger universes (with n+ 2 elements for Cn),

but in return we have far simpler valuations.

Example 4.2.3. In the work of Avron and Konikowska [AK05], valuations over Nmatrices induce

semantics which they called dynamic semantics over Nmatrices; as opposed to these, they have

also considered semantics which restrict the usual valuations, what they have baptized as static

semantics. Essentially, given an Nmatrix û = (ï, D), its static semantics is given by ûs =
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(ï, D,ô s
û
), for ô s

û
the set of valuations � over û satisfying that: for an n-ary connective �,

and formulas �(�1,& , �n) and �(�1,& , �n), �(�i) = �(�i), for every i * {1,& , n}, implies

�(�(�1,& , �n)) = �(�(�1,& , �n)).

It is easy to prove that the RNmatrices ûs are all structural.

Example 4.2.4. PNmatrices, whose first appearance in the literature was in [BLZ13], generalize

Nmatrices by replacing multialgebras for partial multialgebras (that is, algebras of relations).

Our brief presentation here, however, is closer to that of [CM19]: a partial Σ-multialgebra is a

pair ï = (A, {�ï}�*Σ) such that, if � * Σn, �ï is a function of the form �ï ∶ An ³ þ(A) (no

longer þ(A) ö {∅} as in the case of multialgebras). A valuation for a partial Σ-multialgebra ï,

as described, is then a map � ∶ F (Σ,Ą) ³ A such that

�(�(�1,& , �n)) * �ï(�(�1),& , �(�n)),

for every � * Σn and formulas �1,& , �n; notice that, if �ï(a1,& , an) = ∅, then there cannot

exist a valuation � and formulas �1 trough �n such that �(�i) = ai, for 1 d i d n, given � is

supposed to be a total function. Finally, given a partial Σ-multialgebra ï and a subset D of

its universe, û = (ï, D) is a PNmatrix: given formulas � L {'} on Σ, we say � proves '

according to û, and write � ⊨û ', whenever, for every valuation � for ï, �(�) ⊆ D implies

�(') * D.

What we can prove, however, is that the semantics induced by PNmatrices can be

also induced by RNmatrices, making of the latter a more expressive technique. Given a PNmatrix

û = (ï, D), over Σ, we consider the Σ-multialgebra ï∅ = (AL{o}, {�ï∅}�*Σ), for an element

o + A, such that

�ï∅(a1,& , an) =

{
�ï(a1,& , an) if a1,& , an * A and �ï(a1,& , an) � ∅,

{o} otherwise,

for all a1,& , an * A L {o}. By defining

ô = {� ∶ F(Σ,Ą) ³ ï∅ ∶ o + �(F (Σ,Ą))},

where �(F (Σ,Ą)) = {�(�) ∶ � * F (Σ,Ą)}, one sees that the valuations for ï correspond, more

or less, to ô , that is, the set of valuations for ï∅ without o in their range; then û∅ = (ï∅, D,ô )

has the same deduction operator as ï.

Example 4.2.5. Possible-translations semantics were first defined in [Car90], but here we use

an approach similar to that found in [Mar04], the difference being that we only focus on zeroth

order logics: take signatures Σ and Σ∗ and its respective languages, úΣ and úΣ∗; a translation

between logics ℒ = (úΣ, ⊢ℒ) and ℒ∗ = (úΣ∗ , ⊢ℒ∗) is any function t ∶ úΣ ³ úΣ∗ such that, for
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any set of formulas � L {'} of úΣ,

� ⊢ℒ ' implies t(�) ⊢ℒ∗ t('),

where t(�) = {t(
) ∶ 
 * �}. Fixed a systemℒ overΣ, a possible-translations semantics forℒ

is then a pair þĂ = (Log,Tr) where Log = {ℒi}i*I are logics over possibly distinct signatures

Σi, and Tr = {ti}i*I are translations from ℒ to ℒi. The possible-translations semantics leads

to a consequence operator⊩þĂ on the formulas of the signature Σ whenever we define, for a set

of formulas � L {'} over Σ,

� ⊩þĂ ' if and only if ti(�i) ⊢ℒi
ti('), for all i * I .

Of course, ℒ is characterized by þĂ when � ⊢ℒ ' iff � ⊩þĂ '; intuitively, a logic is char-

acterized by a given possible-translations semantics whenever ℒ can be defined by specific

properties of the ℒi, which the translations ti combine together to obtain ⊩þĂ .

Of course, RNmatrices cannot possibly be as expressive as even this weaker defi-

nition of possible-translations semantics, given that they can only deal with one signature at a

time,4 but a connection between the two semantics is self-evident: both of them shift the expres-

sive power of semantics, from structures to maps themselves; specifically, translations in the

case of possible-translations semantics, and restricted valuations in the case of RNmatrices.

However, consider a specific case of possible-translations semantics: suppose all

logics of Log have the same signature Σ as ℒ, and that all of them are characterized by RNma-

trices ûi or, what is equivalent, that all of them are tarskian (and, therefore, so is ℒ); then ℒ is

characterized by a class of of RNmatrices in a straightforward way. In fact, if ûi = (ïi, Di,ôi),

then

� ⊢ℒi
' iff �(�) ⊆ Di implies �(') * Di for every � * ôi;

by defining ô t
i
= {�ċti ∶ � * ôi} and ût

i
= (ïi, Di,ô

t
i
), it is easy to see that ti(�) ⊢ℒi

ti(') if,

and only if, � ⊨ût
i
'. By making ā = {ût

i
}i*I , we see that � ⊩þĂ ' is equivalent to � ⊨

ā
',

and so ℒ is characterized by ā.

4.2.3 Structurality

Definition 4.2.4. For any subsemigroup ó of the semigroup End(F (Σ,Ą)) of endomorphisms

on F (Σ,Ą), we say an operator K ∶ þ(F (Σ,Ą)) ³ þ(F (Σ,Ą)) is ó-structural when

{�(') ∶ ' * K(�)} ⊆ K({�(') ∶ ' * �})

4It seems, however, possible to combine RNmatrices over different signatures as long as one has at their disposal
adequate maps between signatures, sometimes also known as translations.
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for every � * ó , or as we shall write it, �K(�) ⊆ K(��); the operator is said to be structural

when it is End(F (Σ,Ą))-structural.

Structurality is rather important when dealing with logics arising from a Hilbert cal-

culus given that instances of axiom schemata and rules of inference are obtained by application

of endomorphisms; so, when studying a deduction operator, it is important to understand how

structural it is. While most of the systems we study here are structural, not only ó-structural for

a proper subsemigroup ó , developing a general theory of structurality for RNmatrices, as Piochi

did for Rmatrices in [Pio78], [Pio83] and [Pio80], can have useful applications on non-structural

logics.

Proposition 4.2.2. If û = (ï, D,ô ) is an RNmatrix such that, for every � * ô and � * ó ,

�ċ� * ô , then Kû is ó-structural.

Proof. Let � be a subset of F (Σ,Ą) and ' * Kû(�): we must prove that, for a given � * ó ,

�(') is in Kû(��), or what is equivalent, that �� ⊨û �('). So, let � * ô be a valuation

satisfying �(�(
)) = �ċ�(
) * D, "
 * �, and we must prove that �(�(')) = �ċ�(') * D.

By our hypothesis, �ċ� * ô , and since �ċ�(
) * D for every 
 * � and' * Kû(�)

(meaning � ⊨û '), we find that �ċ�(') * D, what ends the proof.

Lemma 4.2.2. If all operators K�, for � * Λ, are ó-structural, then so it is K defined by

K(�) =
ä

�*Λ

K�(�),

for every � ⊆ F (Σ,Ą).

Proof. Take � * ó and ' * K(�): we have that ' * K�(�) for every � * Λ, and then

�(') * K�(��), since each K� is structural.

It follows that �(') *
ä

�*ΛK�(��) = K(��), and so �K(�) ⊆ K(��).

Theorem 4.2.3. Given a class ā of RNmatrices û = (ï, D,ô ) such that, for every � * ô and

� * ó , �ċ� * ô , K
ā

is a ó-structural operator.

Now, for any tarskian logic ÿ, we remember for an instant the two-valued RNma-

trix 2(ÿ) which characterizes ÿ from Theorem 4.2.1: notice that, if ÿ is ó-structural, so is the

deduction operator induced by 2(ÿ). To see that, take an endomorphism � in ó ; if � ⊨2(ÿ) ',

� ⊢ ', and from the fact that ÿ is ó-structural, {�(
) ∶ 
 * �} ⊢ �('); this means, of course,

that

{�(
) ∶ 
 * �} ⊨2(ÿ) �('),

what proves the result. Of course, if ÿ is structural, so is the operator of 2(ÿ).
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4.3 Examples: characterizing some logics with RNmatrices

We would like to know that our approach using restricted Nmatrices has something to offer

that other approaches don’t. It is a classical result by Avron, found in [Avr07], that no finite

Nmatrix can characterize the logics between mbCcl and Cila, both included: the problem arises

specifically from axiom cl. This is an important Dugundji-like uncharacterizability theorem, that

limits greatly the expressive power of Nmatrices. We will show, by offering examples of such

finite RNmatrices, that no such restriction exists for finite RNmatrices over those logics.

4.3.1 mbCcl

This logic, together with the closely related mbCci, were first defined, under these names, in

[CC16]; however, the system B[{i1, i2}], equivalent to mbCci, appeared already in [Avr05a],

while Bi and Bl, equivalent to respectively mbCci and mbCcl, had also been defined in [Avr07].

Consider theΣLFI-multialgebraïmbCciw with universe {F , t, T } and operations given

by the tables below.

J F t T

F {F } {t, T } {t, T }

t {t, T } {t, T } {t, T }

T {t, T } {t, T } {t, T }

Table for Disjunction

I F t T

F {F } {F } {F }

t {F } {t, T } {t, T }

T {F } {t, T } {t, T }

Table for Conjunction

¬

F {t, T }

t {t, T }

T {F }

Table for ¬

³ F t T

F {t, T } {t, T } {t, T }

t {F } {t, T } {t, T }

T {F } {t, T } {t, T }

Table for Implication

ċ

F {t, T }

t {F }

T {t, T }

Table for ċ

When making D = {t, T }, is it is shown in Corollary 6.5.5 of [CC16] that the

Nmatrix ûmbCciw = (ïmbCciw, D) is adequate for mbCciw, that is, for any set of formulas

� L {'} over the signature ΣLFI we have � ⊢mbCciw ' if, and only if, � ⊨ûmbCciw
'.

Now consider the restricted Nmatrix

ûmbCcl = (ïmbCciw, D,ômbCcl)

such that ômbCcl is the set of homomorphisms � ∶ F(ΣLFI,Ą) ³ ïmbCcl satisfying that, if �(�) =

t, then �(� I ¬�) = T . Clearly such an RNmatrix is structural, since for any endomorphism �
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of F(ΣLFI,Ą) we have that if �ċ�(�) = t, then �(�(�)) = t, meaning �(�(�) I ¬�(�)) = T and,

therefore, �ċ�(� I ¬�) = T .

It is easy to see ûmbCcl models the axiom schemata and rules of inference of

mbCciw, but it is also true that, given an instance = ¬(�I¬�) ³ ċ� of cl, we have⊨ûmbCcl
 :

assume that, for � * ômbCcl, �( ) + D, meaning that �(¬(� I ¬�)) * D and �(ċ�) = F , which

in turn implies �(�) = t.

Since � * ômbCcl, �(�) = t implies �(� I ¬�) = T , and therefore �(¬(� I ¬�)) = F ,

reaching a contradiction. We have, then, that �( ) * D, for any � * ômbCcl.

Theorem 4.3.1. Given formulas � L {'} of mbCcl, if � ⊢mbCcl ' then � ⊨ûmbCcl
'.

Proof. If � ⊢mbCcl ', there exists a demonstration �1,& , �n of ' from �, with �n = '.

Let � * ômbCcl be a valuation satisfying that that �(�) ⊆ D: we want to prove that,

in this case, �(') * D; so we prove, by induction, that �1 through �n have image in D under �,

and therefore �(') = �(�n) = 1.

The formula �1 is either an instance of an axiom, when �(�1) * D since all instances

of axioms have image inD through any elements of ômbCcl, or �1 is a premise, that is, an element

of �, and since �(�) ⊆ D we have that �(�1) * D.

Suppose then that �(�1),& , �(�i−1) * D, and we have three cases to consider:

1. if �i is an instance of an axiom, as mentioned above �(�i) * D;

2. if �i is a premise, �(�i) * D since �i * � and �(�) ⊆ D;

3. if there are �j and �k with j, k < i such that �j = �k ³ �i or �k = �j ³ �i, since

�(�j), �(�k) * D we find in both cases that �(�i) * D, what ends the proof.

Reciprocally, consider that a map � ∶ F (ΣLFI,Ą) ³ {0, 1} is said to be a bivaluation

for mbCciw when it satisfies

1. �(� J �) = 1 if and only if �(�) = 1 or �(�) = 1;

2. �(� I �) = 1 if and only if �(�) = �(�) = 1;

3. �(� ³ �) = 1 if and only if �(�) = 0 or �(�) = 1;

4. �(�) = 0 implies �(¬�) = 1;

5. �(ċ�) = 1 if and only if �(�) � �(¬�);

A bivaluation for mbCcl is simply a bivaluation for mbCciw such that, in addition

to the previous conditions,

�(ċ�) = 0 implies �(¬(� I ¬�)) = 0.
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If we define, for a set of formulas � L {'} over the signature ΣLFI, that � ⊨mbCcl '

whenever, for every bivaluation for mbCcl such that �(�) ⊆ {1}, �(') = 1, it is proved in

Theorem 3.3.28 of [CC16] that � ⊢mbCcl ' if and only if � ⊨mbCcl '.

We want to show � ⊨ûmbCcl
' implies � ⊢mbCcl ', so we will show instead that,

given a bivaluation � for mbCcl, there exists a homomorphism � ∶ F(ΣLFI,Ą) ³ ïmbCciw

which lies in ômbCcl and satisfies that �(�) = 1 if and only if �(�) * D.

This way, when we assume � ⊨ûmbCcl
', if �(�) ⊆ {1} we have �(�) ⊆ D, and

therefore �(') * D, what means that �(') = 1, thus proving � ⊨mbCcl ' or, what is equivalent,

� ⊢mbCcl '.

So, suppose � ⊨ûmbCcl
' and let � ∶ F (ΣLFI,Ą) ³ {0, 1} be a bivaluation for

mbCcl: we then consider the map � ∶ F (ΣLFI,Ą) ³ {F , t, T } such that:

1. �(�) = F if and only if �(�) = 0 and �(¬�) = 1;

2. �(�) = t if and only if �(�) = 1 and �(¬�) = 1;

3. �(�) = T if and only if �(�) = 1 and �(¬�) = 0.

Notice � is well defined since �(�) = 0 implies �(¬�) = 1, and we therefore can

not have �(�) = �(¬�) = 0. The proof of the following results is long and tedious, but rather

straightforward, so we will prefer to wait to show similar proofs in the case of Cila, in Section

4.3.2.

Theorem 4.3.2. � is a ΣLFI-homomorphism between F(ΣLFI,Ą) and ïmbCcl.

Theorem 4.3.3. � is in ômbCcl.

4.3.2 Cila

This logic was defined in [CM02], and already in this study it was shown to be equivalent to da

Costa’s C1; it is obtained over the signature ΣLFI by adding to the Hilbert calculus of mbC the

axiom schemata

¬ċ� ³ (� I ¬�); (ci)

¬(� I ¬�) ³ ċ�; (cl)

(ċ� I ċ�) ³ ċ(� I �); (caI)

(ċ� I ċ�) ³ ċ(� J �); (caJ)

(ċ� I ċ�) ³ ċ(� ³ �); (ca³)

¬¬� ³ �. (cf)

Consider the ΣLFI-multialgebra ïCila given by the tables below.
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J F t T

F {F } {t, T } {T }

t {t, T } {t, T } {t, T }

T {T } {t, T } {T }

Disjunction

I F t T

F {F } {F } {F }

t {F } {t, T } {t, T }

T {F } {t, T } {T }

Conjunction

¬

F {T }

t {t, T }

T {F }

Negation

³ F t T

F {T } {t, T } {T }

t {F } {t, T } {t, T }

T {F } {t, T } {T }

Implication

ċ

F {T }

t {F }

T {T }

Consistency

We then define the restricted Nmatrix ûCila = (ïCila, D,ôCila) such thatD = {t, T }

andôCila is the set of homomorphisms � ∶ F(ΣLFI,Ą) ³ ïCila with the property that, if �(�) = t,

then �(� I ¬�) = T .

To prove the soundness of our RNmatrix, we start by defining the logic Ci, obtained

from mbC by addition of the axiom schemata ci and cf: by Theorem 6.5.24 of [CC16], Ci is

characterized by the Nmatrix ûCi = (ïCi, D), with ïCi the ΣLFI-multialgebra given by the

tables below.

J F t T

F {F } {t, T } {t, T }

t {t, T } {t, T } {t, T }

T {t, T } {t, T } {t, T }

Disjunction

I F t T

F {F } {F } {F }

t {F } {t, T } {t, T }

T {F } {t, T } {t, T }

Conjunction

¬

F {T }

t {t, T }

T {F }

Negation

³ F t T

F {t, T } {t, T } {t, T }

t {F } {t, T } {t, T }

T {F } {t, T } {t, T }

Implication

ċ

F {T }

t {F }

T {T }

Consistency

Since ïCila is a submultialgebra of ïCi, it is clear ûCila models Modus Ponens and

those axiom schemata of Ci: it remains to be shown that this RNmatrix also models the axioms

concerning propagation of consistency and cl.
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1. So, take an instance  = (ċ� I ċ�) ³ ċ(�#�) of ca#, for # * {J,I,³}: we have that,

for a � * ôCila, �( ) + D if and only if �(ċ� I ċ�) * D and �(ċ(�#�)) = F , which imply

�(ċ�), �(ċ�) * D and �(�#�) = t.

Since ċ always gives classical values (that is, either F or T ), we have �(ċ�) = �(ċ�) =

T , and therefore �(�), �(�) * {F , T }, where we finally reach the desired contradiction:

if both �(�) and �(�) are classically valued, so is �(�#�) from the tables for ïCila, and

therefore we must have �( ) * D.

2. Take an instance  = ¬(� I ¬�) ³ ċ� of cl, and assume that, for � * ôCila, �( ) + D,

meaning that �(¬(� I ¬�)) * D and �(ċ�) = F , which implies �(�) = t.

However, since � * ôCila, �(�) = t in turn implies �(� I ¬�) = T , and therefore �(¬(� I

¬�)) = F , a contradiction. We have, then, that �( ) * D.

Theorem 4.3.4. Given formulas � L {'} of Cila, if � ⊢Cila ' then � ⊨ûCila
'.

To prove the completeness of our RNmatrix, we will detour through bivaluations.

Definition 4.3.1. A bivaluation for Cila is a bivaluation for mbCcl satisfying additionally:

1. �(�) = 0 implies �(¬¬�) = 0;

2. �(ċ�) = �(ċ�) = 1 implies �(ċ(�#�)) = 1, for # * {J,I,³};

3. �(¬ċ�) = 1 implies �(ċ�) = 0.

We say � semantically proves ' in Cila if, for every bivaluation � for Cila such that

�(
) = 1, for every 
 * �, one has that �(') = 1; in this case we write � ⊨Cila '.

As it is discussed in [CC16] and [CCM07], � ⊢Cila ' if and only if � ⊨Cila '. We

now want to prove that, if � ⊨ûCila
', then � ⊢Cila ', so what we will do instead is prove that,

if � ⊨ûCila
', then � ⊨Cila '. Again, we suppose � ⊨ûCila

' and let � ∶ F (ΣLFI,Ą) ³ {0, 1} be

a bivaluation for Cila, to then consider the map � ∶ F (ΣLFI,Ą) ³ {F , t, T } such that:

1. �(�) = F if and only if �(�) = 0 and �(¬�) = 1;

2. �(�) = t if and only if �(�) = 1 and �(¬�) = 1;

3. �(�) = T if and only if �(�) = 1 and �(¬�) = 0.

Theorem 4.3.5. � is a ΣLFI-homomorphism between F(ΣLFI,Ą) and ïCila.

Proof. 1. If �(�) = t, �(�) = �(¬�) = 1 and therefore �(� J �) = 1, meaning

�(� J �) * {t, T } = �(�) J �(�).

We can do the same if �(�) = t.
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If �(�) = T and �(�) = F , we have �(�) = �(¬�) = 1 and �(¬�) = �(�) = 0, which imply

�(ċ�) = �(ċ�) = 1 and therefore �(ċ(� J �)) = 1; since �(� J �) = 1, �(¬(� J �)) = 0,

and therefore �(� J �) = T * �(�) J �(�), the same happening if �(�) = F and �(�) = T .

If �(�) = F and �(�) = F , we have that �(� J �) = 0 and, since �(ċ(� J �)) = 1, one has

�(¬(� J �)) = 1; so �(� J �) = F * �(�) J �(�). If �(�) = T and �(�) = T , �(� J �) = 1

and �(ċ(� J �)) = 1, that is, �(¬(� J �)) = 0: with this, �(� J �) = T * �(�) J �(�).

This finishes proving that, for any values of �(�) and �(�), �(� J �) * �(�) J �(�).

2. If �(�) = F , �(� I �) = 0 and therefore �(� I �) = F * �(�) I �(�). The same can be

done if �(�) = F .

If �(�) = t and �(�) is either t or T , we have �(�) = �(�) = 1 and therefore �(� I �) = 1,

meaning

�(� I �) * {t, T } = �(�) I �(�).

The same can be done if the conditions are reversed, �(�) is either t and T , and �(�) = t.

Finally, if �(�) = �(�) = T , �(� I �) = 1 and, since �(ċ(� I �)) = 1, �(¬(� I �)) = 0,

what means �(� I �) = T * �(�) I �(�).

3. First of all, suppose �(�) = t, what signifies �(�) = 1 and allows to find �(� ³ �) = 1, id

est, �(� ³ �) * {t, T } = �(�) ³ �(�).

If �(�) = F and �(�) is either F or T , we clearly have �(� ³ �) = 1; and since �(ċ�) =

�(ċ�) = 1, �(ċ(� ³ �)) = 1, meaning �(¬(� ³ �)) = 0 and therefore �(� ³ �) = T *

�(�) ³ �(�).

If �(�) = F and �(�) * {t, T }, �(�) = 1 but �(�) = 0, implying that �(� ³ �) = 0,

�(� ³ �) = F * �(�) ³ �(�).

If �(�) = t and �(�) = T , �(�) = 1 and �(�) = 1, what means that �(� ³ �) = 1 and

�(� ³ �) * {t, T } = �(�) ³ �(�).

If �(�) = T and �(�) = T , �(� ³ �) = 1 and �(ċ�) = �(ċ�) = 1, from what we derive

that �(ċ(� ³ �)) = 1 and �(¬(� ³ �)) = 0, that is, �(� ³ �) = T * �(�) ³ �(�).

4. If �(�) = F , �(�) = 0, �(¬�) = 1 and, therefore, �(¬¬�) = 0, meaning �(¬�) = T *

¬�(�).

If �(�) = t, �(¬�) = 1, and it follows that �(¬�) * {t, T } = ¬�(�).

If �(�) = T , one has �(�) = 1 and �(¬�) = 0 and, therefore, �(¬¬�) = 1, implying

�(¬�) = F * ¬�(�).

5. If �(�) equals F or T , �(ċ�) = 1 and �(¬ċ�) = 0, since otherwise we would be forced to

have �(ċ�) = 0; this means �(ċ�) = T * ċ�(�).
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If �(�) = t, �(ċ�) = 0 and therefore �(ċ�) = F * ċ�(�).

Theorem 4.3.6. � is in ôCila.

Proof. If �(�) = t, �(�) = �(¬�) = 1 and therefore �(�I¬�) = 1; meanwhile, �(�) = �(¬�) = 1

imply �(ċ�) = 0 and therefore �(¬(� I ¬�)) = 0, meaning �(� I ¬�) = T .

From the facts that � is in ôCila, � ⊨ûCila
' and �(
) = 1 for every 
 * �, implying

�(
) * D for every 
 * �, we obtain that �(') * D, meaning �(') = 1. With this, � ⊨Cila ',

and we have that � ⊢Cila ', what finishes proving ûCila characterizes Cila.

Example 4.3.1. With the described RNmatrix for Cila, we have obtained a simple, elegant and

rather efficient decision procedure for Cila and, given their equivalence, C1 as well.5 So, let us

stop for a moment to actually apply the method. Consider

¬(� J �) ³ (¬� I ¬�),

which is not a theorem of Cila (nor ofC1). Consider the homomorphism � ∶ F(ΣLFI,Ą) ³ ïCila,

lying in ôCila, such that

�(�) = t, �(�) = T , �(� J �) = t and �(¬(� J �)) = t.

Then we have �(¬�) = F , what means �(¬� I ¬�) = F (regardless of the value of ¬�) and

therefore �(¬(� J �) ³ (¬� I ¬�)) = F , what indeed shows that the formula is not a theorem.

5For how this decision procedure works in practice, and the proof that it actually works, look at Section 5.4.1
ahead.
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Chapter 5

RNmatrices for da Costa’s hierarchy

The most important result of this chapter will be a full treatment of da Costa’s hierarchy. In 1963,

Newton C. A. da Costa presented his Tese de Cátedra (the Brazilian equivalent of an habilita-

tion thesis) under the title “Sistemas Formais Inconsistentes” (inconsistent formal systems in

Portuguese, [Cos63]). This work is one of the founding studies in paraconsistent logic, together

with Stanislaw Jaśkowski discussive (or discursive) logic D2, based on suggestions made to him

by Jan Lukaziewicz ([Jaś48; Jaś49]). da Costa’s systems Cn, however, war far better scrutinized

by him than D2 by Jaśkowski, what may explain their far greater success in the long run.

One of da Costa’s innovations was the separation of the formulas for a given Cn
in two: those that, indeed, do not trivialize an argument when presented together with their

negation (and are, in a sense, “badly-behaved”), and those that do, usually called “well-behaved”

or “classically-behaved”. To facilitate this division, he introduced a connective ċn, for each Cn,

which asserts the well-behavior of a formula when analyzed in light of the explosion law: this

way, in Cn, {�,¬�} does not necessarily have a trivial deductive closure (meaning its negation

is not explosive), while {�,¬�, ċn�} does have it, implying

�,¬�, ċn� ⊢Cn �

for any formulas � and � of Cn. This approach was further generalized, later on, by Carnielli

and Marcos [CM02], through the notion of logics of formal inconsistency (LFI’s) which adds

the connective ċ, the consistency operator, as a primitive one.

Many logicians will agree that da Costa’s hierarchy Cn is astoundingly interesting,

but very few will deny that it is also of exceedingly difficult treatment: by Avron’s aforemen-

tioned results, C1, which is equivalent in a different signature to Cila, can not be characterized

by a finite Nmatrix; even more, it is not characterizable by a finite set of finite Nmatrices, and is

not algebraizable by Blok and Pigozzi’s methodology ([Avr07; Mor80; Mor89; LMS91]). It is,

fortunately, decidable, and decision methods vary from bivaluations ([LA80]) to Fidel structures

([Fid77]).

We here provide other decision procedures, now based on RNmatrices, for the entire
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hierarchy, which we believe to be easier to apply, given the very algebraic nature of RNmatrices,

than many other such procedures found in the literature; in particular, they seem to suggest that

the nth logic of da Costa should be seem as an n + 2-valued logic, something other approaches

cannot do. In Chapter 6 we proceed to generalize these RNmatrices for Cn to a more general,

and categorical, semantics through restricted swap structures ([CC16]).

Most of the work we present in this chapter can be found submitted to an online

repository in [CT20], and published in [CT22b].

5.1 Definition of da Costa’s hierarchy

Consider the signature ΣC with (ΣC)0 = ∅, (ΣC)1 = {¬}, (ΣC)2 = {J,I,³} and (ΣC)n = ∅ for

n > 2.

For simplicity, we define �0 = � and

�n+1 = ¬(�n I ¬(�n))

for n * ℕ; we also define �(0) = �, �(1) = �1 and

�(n+1) = �(n) I �n+1

for n * ℕ ö {0}. Again for simplicity, �1 may be denoted by �ċ, since this formula will play a

role equivalent to ċ�’s role in, for example, mbC.

The Hilbert calculus for the positive fragment of intuitionistic logic is composed of

the following axiom schemata

Ax 1 � ³ (� ³ �);

Ax 2
(
� ³ (� ³ 
)

)
³

(
(� ³ �) ³ (� ³ 
)

)
;

Ax 3 � ³
(
� ³ (� I �)

)
;

Ax 4 (� I �) ³ �;

Ax 5 (� I �) ³ �;

Ax 6 � ³ (� J �);

Ax 7 � ³ (� J �);

Ax 8 (� ³ 
) ³
(
(� ³ 
) ³

(
(� J �) ³ 


))
;

plus Modus Ponens as inference rule

� � ³ �

�
.
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We define the da costa’s system C!, over ΣC, by adding to the Hilbert calculus for

the positive fragment of intuitionistic logic the axiom schemata

Ax 10 � J ¬�;

cf ¬¬� ³ �.

Definition 5.1.1. For n * ℕ ö {0}, we define the da Costa’s system Cn, over the signature ΣC,

as the logic obtained from C! by addition of the axiom schemata

�(n) ³
(
� ³ (¬� ³ �)

)
; (bcn)

(�(n) I �(n)) ³ (� J �)(n); (pJn)

(�(n) I �(n)) ³ (� I �)(n); (pIn)

(�(n) I �(n)) ³ (� ³ �)(n). (p ³n)

These systems were originally developed by Newton da Costa, in his seminal work

[Cos63]; originally, the axiom bcn was presented as

�(n) ³
(
(� ³ �) ³

(
(� ³ ¬�) ³ ¬�

))
,

which deals with non-contradiction instead of explosivity, but it is clear how both approaches

are equivalent. For further comments on this finer distinction, refer back to [CC16].

Definition 5.1.2. A bivaluation for Cn, also known as a Cn-bivaluation, is a function

Ā ∶ F(ΣC,Ą) ³ {0, 1} satisfying:

(B1) Ā(� I �) = 1 if and only if Ā(�) = 1 and Ā(�) = 1;

(B2) Ā(� J �) = 1 if and only if Ā(�) = 1 or Ā(�) = 1;

(B3) Ā(� ³ �) = 1 if and only if Ā(�) = 0 or Ā(�) = 1;

(B4) Ā(�) = 0 implies Ā(¬�) = 1;

(B5) Ā(¬¬�) = 1 implies Ā(�) = 1;

(B6)n Ā(�n−1) = Ā(¬(�n−1)) if and only if Ā(�n) = 0;

(B7) Ā(�) = Ā(¬�) if and only if Ā(¬(�1)) = 1;

(B8) for any # * {J,I,³}, Ā(�) � Ā(¬�) and Ā(�) � Ā(¬�) imply, together, that Ā(�#�) �

Ā(¬(�#�)).
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The previous notion of bivaluations for Cn has its origin in [LA80]. If we denote the

fact that, for every Cn-bivaluation Ā, Ā(�) ⊆ {1} implies Ā(') = 1 by � ⊨Cn ', it is proved in

the same paper that

� ⊢Cn ' if and only if � ⊨Cn ',

for any set of formulas � L {'} over the signature ΣC.

We shall provide, in the next sections, a semantical approach to da Costa’s hierarchy

trough finite restricted Nmatrices.

5.2 C2

We will start from the simpler case that is C2. For Ā a C2-bivaluation, (B6)2 implies that Ā(�1) =

Ā(¬(�1)) if and only if Ā(�2) = 0; so Ā(�) = Ā(¬�) = Ā(�1) = 1 implies, from (B7), that

Ā(�2) = 0. Furthermore, Ā(�) = 0 leads us to Ā(¬¬�) = 0 from (B5), and so the following four

scenarios are possible.

� ¬� � I ¬� �1 ¬(�1) �1 I ¬(�1) �2 �(2)

1
1 1

1 1 1 0 0

0 1 0 1 0

0 0 1 0 0 1 1

0 1 0 1 0 0 1 1

Table for the scenarios on C2

Now, for a formula � and a C2-bivaluation, we would like to consider the triple

(Ā(�), Ā(¬�), Ā(�1)) in {0, 1}3; from the previous table, we see that there are only 4 possibilities,

that we list below:

T2 = (1, 0, 1), t2
0
= (1, 1, 0), t2

1
= (1, 1, 1, ) and F2 = (0, 1, 1).

We call the set of those elements B2, and it is clear that

B2 = {z * {0, 1}3 ∶ z1 J z2 = 1 and (z1 I z2) J z3 = 1},

where zi will denote the ith coordinate of an element z * {0, 1}3. We then define the ΣC-

multialgebra ïC2
with universe B2 and operations given by

¬̃z = {w * B2 ∶ w1 = z2 and w2 d z1}
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and

for # * {J,I,³}, z#̃w =

{
{u * B2 ∶ u1 = z1#w1} K Boo2 if z,w * Boo2

{u * B2 ∶ u1 = z1#w1} otherwise
,

where: we will denote an operation �ïC2
on ïC2

simply by �̃; the operations # * {J,I,³} are

defined as usual in {0, 1}; and Boo2 = {F2, T2} is the set of classically-behaving elements.

One could argue that a more natural definition would be that z#̃w always equals

{u * B2 ∶ u1 = z1#w1}, but that would be problematic. Condition (B8) for being a bivaluation

for Cn states that Ā(�) � Ā(¬�) and Ā(� � Ā(¬�) imply, together, that Ā(�#�) � Ā(¬(�#�)); and

one easily sees that the elements (Ā(�), Ā(¬�), Ā(�1)) of B2 satisfying Ā(�) � Ā(¬�) are precisely

F2 and T2. This all means that (B8) translates to demanding that, if x, y * Boo2, then one must

necessarily have x#̃y * Boo2. Notice that this also justifies the nomenclature of “classical” for

the elements F2 and T2: they correspond to formulas such that their negation, and the formula

itself, are not simultaneously true.

If we denote the set {t2
1
, t2

0
, T2} by D2, the tables for ïC2

are as below. We will also

use the notation {t2
0
, t2

1
} = I2 when necessary.

J F2 t2
1

t2
0

T2

F2 {F2} D2 D2 {T2}

t2
1

D2 D2 D2 D2

t2
0

D2 D2 D2 D2

T2 {T2} D2 D2 {T2}

Table for Disjunction

I F2 t2
1

t2
0

T2

F2 {F2} {F2} {F2} {F2}

t2
1

{F2} D2 D2 D2

t2
0

{F2} D2 D2 D2

T2 {F2} D2 D2 {T2}

Table for Conjunction

¬

F2 {T2}

t2
1

D2

t2
0

D2

T2 {F2}

Table for negation

³ F2 t2
1

t2
0

T2

F2 {T2} D2 D2 {T2}

t2
1

{F2} D2 D2 D2

t2
0

{F2} D2 D2 D2

T2 {F2} D2 D2 {T2}

Table for Implication

If we consider the Nmatrix ûC2
= (ïC2

, D2), we cannot hope to characterize C2

with it given that C2 is not characterizable by a single finite Nmatrix ([Avr07]). What we will

do instead, and which will be a successful endeavor, is to restrict the set of valuations for this

Nmatrix, creating an RNmatrix, in order to characterize C2.

Definition 5.2.1. Let ôC2
be the set of homomorphisms � ∶ F(ΣC,Ą) ³ ïC2

(which are called

valuations over ïC2
) such that:



Chapter 5: RNmatrices for da Costa’s hierarchy 141

1. if �(�) = t2
0
, then �(� I ¬�) = T2;

2. if �(�) = t2
1
, then �(� I ¬�) * I2 and �(�ċ) = t2

0
.

We will denote the restricted Nmatrix (ïC2
, D2,ôC2

) by ĀûC2
.

Suppose � * ôC2
: notice that, if �(�) = t2

0
, then �(� I ¬�) = T2 and so �(�ċ) = F2;

if �(�) = t2
1
, �(�ċ) = t2

0
and therefore �(�ċċ) = F2. Let ⊥� denote (� I ¬�) I �(2) and <� denote

� ³ ⊥� (the strong negation definable in C2), and we arrive at the following table, where an

asterisk signifies that a certain value would be different if the table were constructed using the

Nmatrix (ïC2
, D2).

� ¬� � I ¬� �ċ ¬(�ċ) �ċ I ¬(�ċ) �ċċ �(2) ⊥� <�

T2 F2 F2 T2 F2 F2 T2 T2 F2 F2

t2
0

D2 T ∗
2

F2 T2 F2 T2 F2 F2 F2

t2
1

D2 I∗
2

t2∗
0

D2 T ∗
2

F2 F2 F2 F2

F2 T2 F2 T2 F2 F2 T2 T2 F2 T2

Table for the scenarios in ĀûC2

Proposition 5.2.1. For a homomorphism � in ôC2
and an endomorphism � ∶ F(ΣC,Ą) ³

F(ΣC,Ą), �ċ� * ôC2
.

Proof. Of course �ċ� ∶ F(ΣC,Ą) ³ ïC2
remains a homomorphism.

1. If �ċ�(�) = t2
0
, given � is in ôC2

we derive that �(�(�) I ¬�(�)) = T2; since � is an

endomorphism of F(ΣC,Ą), �(�) I ¬�(�) = �(� I ¬�), and so �ċ�(� I ¬�) = T2.

2. If �ċ�(�) = t2
1
, since � * ôC2

we get �(�(�) I ¬�(�)) * I2 and

�(�(�)ċ) = �
(
¬(�(�) I ¬�(�))

)
= t2

0
;

given �(�) I ¬�(�) = �(� I ¬�) and ¬(�(�) I ¬�(�)) = �(¬(� I ¬�)), we obtain that

�ċ�(� I ¬�) * I2 and �ċ�(¬(� I ¬�)) = �ċ�(�ċ) = t2
0
, what finishes the proof.

The previous proposition implies ĀûC2
is structural.

The following technical lemmas are necessary in order to prove the desired Theorem

5.2.1.

Lemma 5.2.1. For � a valuation in ôC2
, the mapping Ā ∶ F (ΣC,Ą) ³ {0, 1}, such that Ā(�) = 1

if and only if �(�) * D2, is a C2-bivaluation.
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Proof. Let us see that Ā satisfies the clauses of Definition 5.1.2 for n = 2. Clauses (B1) through

(B3) are clearly satisfied: since

Ā(�#�) = �(�#�)1 = �(�)1#�(�)1

for # * {J,I,³}.

On the other hand, Ā(¬�) = �(¬�)1 = �(�)2, hence Ā(�) J Ā(¬�) = 1, by definition

of B2. From this, clause (B2) is satisfied. Since Ā(¬¬�) = �(¬¬�)1 = �(¬�)2 d �(�)1 = Ā(�) it

follows that Ā satisfies (B5).

Concerning (B6)2, suppose that Ā(�ċ) = Ā(¬(�ċ)) = 1: this means that �(�ċ)1 =

�(¬(�ċ))1 = �(�ċ)2 = 1. That is, �(�ċ) * {t2
0
, t2

1
}. From the possible scenarios in ĀûC2

it

follows that �(�ċ) = t2
1

and so �(�2) = F , what implies that Ā(�2) = �(�2)1 = 0. Conversely,

Ā(�2) = �(�2)1 = 0 means that �(�2) = F , which implies that �(�ċ) = t2
1
, and so Ā(�ċ) =

Ā(¬(�ċ)) = 1. From this, clause (B6)2 is satisfied.

Now, Ā(�) = Ā(¬�) if and only if �(�)1 = �(�)2 = 1, what in turn happens if and

only if �(�) * {t2
0
, t2

1
}. This last condition is equivalent to the fact that �(¬(�ċ)) * D2, by the

possible scenarios in ĀûC2
, which is equivalent to Ā(¬(�ċ)) = 1. Then, (B7) is satisfied.

Finally, suppose that Ā(�) � Ā(¬�) and v(�) � Ā(¬�). This means that �(�), �(�) *

{T2, F2} and so �(�#�) * {T2, F2}, by definition of ïC2
. Hence clause (B8) is fulfilled, and the

proof is complete.

Lemma 5.2.2. For Ā a C2-bivaluation, the mapping � ∶ F(ΣC,Ą) ³ ïC2
, such that �(�) =

(Ā(�), Ā(¬�), Ā(�ċ)), is a valuation which lies in ôC2
and satisfies that Ā(�) = 1 if, and only if,

�(�) * D2.

Proof. By definition, �(¬�) = (Ā(¬�), Ā(¬¬�), Ā((¬�)ċ)), and clearly this belongs to ¬̃�(�) ac-

cording to the definition of ¬̃, by the property (B5) of Ā. Analogously, by definition of #̃ it follows

that �(�#�) * �(�)#̃�(�), with use of the properties (B1) through (B3) of Ā. This shows that �

is a valuation for ïC2
. It remains to be shown that � satisfies conditions 1 and 2 of Definition

5.2.1.

Regarding the first of these conditions, assume that �(�) = t2
0
. This means that

Ā(�) = Ā(¬�) = 1 and Ā(�ċ) = 0. Let � = � I ¬� (thus ¬� = �ċ). By (B1), Ā(�) = 1. Since,

by hypothesis, Ā(�) � Ā(¬�), it follows that Ā(¬(�ċ)) = 0, by (B7), and so Ā(�ċ) = 1, by (B4).

This shows that

�(� I ¬�) = (1, 0, 1) = T2,

as we wished to prove.

Regarding the second condition, suppose that �(�) = t2
1
. Then, Ā(�) = Ā(¬�) =

Ā(�ċ) = 1. Consider again � = � I ¬�. From this, Ā(�) = Ā(¬�) = 1 and so

�(� I ¬�) = (Ā(�), Ā(¬�), Ā(�ċ)) * {t2
1
, t2

1
}.
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Since Ā(�) = Ā(¬�) it follows by (B7) that Ā(¬(�ċ)) = 1. Hence, since Ā(�1) = Ā(¬(�1)), we

infer that Ā(�2) = 0, by (B6)2. That is, �(�ċ) = (1, 1, 0) = t2
0
. This, of course, finishes proving

that � is in ôC2
.

Theorem 5.2.1. Given formulas � L {'} of C2, � ⊢C2
' if, and only if, � ⊨ĀûC2

'.

Proof. Suppose first that � ⊢C2
', and let � be a valuation in ôC2

such that �(
) * D2 for every


 * �. By Lemma 5.2.1, Ā defined as Ā(�) = �(�)1, for every �, is a C2-bivaluation such that,

by definition, Ā(
) = 1 for every 
 * �. By hypothesis and by soundness of C2 with respect to

bivaluations, it follows that Ā(') = 1. That is, �(') * D2. This shows that � ⊨ĀûC2
'.

Now assume that � ⊨ĀûC2
', and let Ā be a C2-bivaluation such that Ā(
) = 1 for

every 
 * �. By Lemma 5.2.2, the function � defined as �(�) = (Ā(�), Ā(¬�), Ā(�ċ)), for every

�, is a valuation in ôC2
such that, by definition, �(
) * D2 for every 
 * �. By hypothesis,

�(') * D2, which means that Ā(') = 1. By completeness of C2 with respect to bivaluations, it

follows that � ⊢C2
'.

5.3 The general case

Lemma 5.3.1. Given a Cn-bivaluation Ā, if Ā(�i) = 1 and Ā(¬(�i)) = 0 for some i * ℕ, then

Ā(�j) = 1 for all j e i.

Proof. We prove that, for all j e i, Ā(�j) = 1 and Ā(¬(�j)) = 0 by induction, being the base

case done. So, suppose Ā(�j) = 1 and Ā(¬(�j)) = 0: we have Ā(�j I ¬(�j)) = 0 from (B1), and

Ā(�j+1) = Ā(¬(�j I ¬(�j))) = 1 from (B4); and from (B7), Ā(¬(�j+1)) = Ā(¬((�j)1)) = 0, since

Ā(�j) � Ā(¬(�j)), what finishes the proof.

Proposition 5.3.1. If Ā is a Cn-bivaluation, at most one of the elements Ā(�), Ā(¬�), Ā(�1),& ,

Ā(�n−1) equals 0.

Proof. Suppose Ā(�) = 0: from condition (B4), this means Ā(¬�) = 1. Then Ā(� I ¬�) = 0

(from (B1)), meaning Ā(�1) = Ā(¬(� I ¬�)) = 1, again from (B4); but notice, furthermore,

that, from the converse of (B5), Ā(� I ¬�) = 0 implies Ā(¬(�1)) = Ā(¬¬(� I ¬�)) = 0. From

Lemma 5.3.1, we find Ā(�2) = ď = Ā(�n−1) = 1, what finishes proving that, if Ā(�) = 0, then

Ā(¬�) = Ā(�1) = ď = Ā(�n−1) = 1.

Now, suppose Ā(¬�) = 0: we already have Ā(�) = 1, since otherwise one could

derive Ā(¬�) = 1 from the previous remarks. So Ā(� I ¬�) = 0 and therefore Ā(�1) = 1.

Again by the converse of (B5), one finds Ā(¬(�1)) = 0, and again from Lemma 5.3.1, we obtain

Ā(�1) = ď = Ā(�n−1) = 1.

Finally, suppose that for some 1 d i < j < n − 1 one has Ā(�i) = Ā(�j) = 0: we

find Ā(�i I ¬(�i)) = 0, Ā(�i+1) = 1 and, from (B5)’s converse, Ā(¬(�i+1)) = 0; once again using

Lemma 5.3.1, we obtain Ā(�i+1) = ď = Ā(�n−1) = 1, contradicting Ā(�j) = 0. The obvious
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conclusion is that at most one of Ā(�1) trough Ā(�n−1) can equal 0, in which case one also has

Ā(�) = Ā(¬�) = 1.

We consider (n + 1)-tuples z = (z1,& , zn+1) in 2n+1, corresponding to Ā(�), Ā(¬�)

and Ā(�1) trough Ā(�n−1) under a given Cn-bivaluation Ā, which we will call snapshots for Cn;

given the restrictions established by the proposition, there are precisely n + 2 of such tuples:

Tn = (1, 0, 1,& , 1), tn
0
= (1, 1, 0, 1,& , 1), ď , tn

n−2
= (1,& , 1, 0), tn

n−1
= (1,& , 1)

and Fn = (0, 1,& , 1).

The set Bn of all snapshots for Cn is clearly the set of all elements of {0, 1}n+1 with at most one

coordinate equal to 0, and may be defined trough the following equality.

Bn = {z * 2n+1 ∶ (

kâ

i=1

zi) J z
k+1 = 1, for every 1 d k d n}.

The set of designated elements, that will soon be part of appropriate restricted Nma-

trices for Cn with universe Bn, is Dn = Bn ö {Fn}. Other useful sets are:

1. the set of undesignated elements, Un = {Fn};

2. the set of Boolean elements, Boon = {Fn, Tn}, also equal to {z * Bn ∶ z1 I z2 = 0};

3. and the set of inconsistent elements, In = Bn ö Boon.

Notice that an element z of Bn is in Boon if, and only if, it equals (a,<a, 1,& , 1),

for some element a of 2 and <a its complement in 2; this is easy to see given that z1 J z2 = 1,

from the definition of Bn, and z1 I z2 = 0, from the definition of Boon.

Now, we will define the multialgebra ïCn
, which happens to be a swap structure

in the sense of [CC16]; unlike the swap structures in this reference, however, we will need to

restrict the valuations taken into consideration, making of the semantics with underlying ïCn
an

RNmatrix.

Definition 5.3.1. We define the multioperations on the ΣC-multialgebra ïCn
, with universe Bn,

by means of the following equations:

¬̃z = {w * Bn ∶ w1 = z2 and w2 d z1}

and

for # * {J,I,³}, z#̃w =

{
{u * Bn ∶ u1 = z1#w1} K Boon if z,w * Boon

{u * Bn ∶ u1 = z1#w1} otherwise
.
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The operations on this multialgebra may be illustrated, concisely, by the following

tables.

J Fn In Tn

Fn {Fn} Dn {Tn}

In Dn Dn Dn

Tn {Tn} Dn {Tn}

Table for Disjunction

I Fn In Tn

Fn {Fn} {Fn} {Fn}

In {Fn} Dn Dn

Tn {Fn} Dn {Tn}

Table for Conjunction

¬

Fn {Tn}

In Dn

Tn {Fn}

Table for negation

³ Fn In Tn

Fn {Tn} Dn {Tn}

In {Fn} Dn Dn

Tn {Fn} Dn {Tn}

Table for Implication

Definition 5.3.2. Let ôCn be the set of valuations � over ïCn
satisfying that:

1. �(�) = tn
0

implies �(� I ¬�) = Tn;

2. for every 2 d k d n, �(�) = tn
k−1

implies �(� I ¬�) * In and �(�1) = tn
k−2

.

We denote the RNmatrix (ïCn
, Dn,ôCn) by ĀûCn

.

Proposition 5.3.2. For a homomorphism � in ôCn and an endomorphism � ∶ F(ΣC,Ą) ³

F(ΣC,Ą), �ċ� * ôCn .

Proof. Given the composition of homomorphisms returns homomorphisms, �ċ� ∶ F(ΣC,Ą) ³

ïCn
is certainly still a homomorphism.

1. Suppose �ċ�(�) = tn
0
: this means �(�(�)) = tn

0
, and since � * ôCn , �(�(�) I ¬�(�)) = Tn.

Given � is an endomorphism of F(ΣC,Ą),

�(�) I ¬�(�) = �(� I ¬�),

and so �ċ�(� I ¬�) = �(�(� I ¬�)) = Tn.

2. For a 2 d k d n, suppose �ċ�(�) = tn
k−1

. That is, �(�(�)) = tn
k−1

, and since � is in ôCn , we

have that �(�(�) I ¬�(�)) * In and �(�(�)1) = �(¬(�(�) I ¬�(�))) = tn
k−2

. Again, given

� is an endomorphism of F(ΣC,Ą),

�(�) I ¬�(�) = �(� I ¬�) and ¬(�(�) I ¬�(�)) = �(¬(� I ¬�)),

what implies �ċ�(� I ¬�) = �(�(� I ¬�)) * In and �ċ�(�1)) = �(�(�1)) = tn
k−2

.
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The previous result proves ĀûCn
is structural.

Notice that, for � * ôCn , �(�) = tn
0

implies �(�I¬�) = Tn and, therefore, �(�1) = Fn;

if �(�) = tn
1
, �(�1) = tn

0
and, by the previous remark, �(�2) = Fn. Proceeding inductively, we

discover that if �(�) = tn
i
, �(�j) * Dn, for 1 d j d i, and �(�i+1) = Fn. With the aid of these

observations, we obtain the following possible scenarios in ĀûCn
, where we will write X∗ to

mean that the value X is obtained from the fact a valuation is in ôCn .

� � I ¬� �1 �1 I ¬(�1) �2 �2 I ¬(�2) ď �n−1 �n−1 I ¬(�n−1) �n �(n)

Tn Fn Tn Fn Tn Fn ď Tn Fn Tn Tn

tn
0

T ∗
n

Fn Fn Tn Fn ď Tn Fn Tn Fn

tn
1

I∗
n

tn∗
0

T ∗
n

Fn Fn ď Tn Fn Tn Fn

tn
2

I∗
n

tn∗
1

I∗
n

tn∗
0

T ∗
n

ď Tn Fn Tn Fn

Ď Ď Ď Ď Ď Ď đ Ď Ď Ď Ď

tn
n−3

I∗
n

tn∗
n−4

I∗
n

tn∗
n−5

I∗
n

ď Tn Fn Tn Fn

tn
n−2

I∗
n

tn∗
n−3

I∗
n

tn∗
n−4

I∗
n

ď Fn Fn Tn Fn

tn
n−1

I∗
n

tn∗
n−2

I∗
n

tn∗
n−3

I∗
n

ď tn∗
0

T ∗
n

Fn Fn

Fn Fn Tn Fn Tn Fn ď Tn Fn Tn Tn

Table for the scenarios in ĀûCn

One sees that, if �(�) = tn
i
, then the fact that � * ôCn restricts the possible values of

2i + 1 formulas of the form �j or �k I ¬(�k): � I ¬�, �1, �1 I ¬(�1),& , �i and �i I ¬(�i).

Also worthy of note is the fact that, if we define ⊥� = (� I ¬�) I �(n) (the definable

bottom of Cn), for all � * ôCn one has �(⊥�) = Fn; and if we define <� = � ³ ⊥�, for

� * ôCn (the definable strong negation on Cn) we find that �(�) * Dn implies �(<�) = Fn, while

�(�) = Fn implies �(<�) = Tn.

Lemma 5.3.2. Denote, for simplicity, Tn by tn
−1

; for any formula � on Cn, valuation � on ôCn
and integer 1 d k d n, one has that:

1. if �(�) = tn
i
, for −1 d i d k − 2, �(�k) = Tn;

2. if �(�) = tn
k−1

, �(�k) = Fn;

3. if �(�) = tn
i
, for k d i d n − 1, �(�k) = tn

i−k
;

4. if �(�) = Fn, �(�
k) = Tn.

Proof. We will prove the lemma by induction on k, starting with the case k = 1.

1. If �(�) = tn
−1

, meaning �(�) = Tn, �(¬�) = Fn and therefore �(� I ¬�) = Fn, implying

�(�1) = Tn.
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2. If �(�) = tn
0
, from the fact that � is in ôCn we derive that �(� I ¬�) = Tn, and therefore

�(�1) = Fn.

3. If �(�) = tn
i
, for 1 d i d n − 1, again from the fact that � * ôCn we find �(�1) = tn

i−1
.

4. Finally, if �(�) = Fn, �(� I ¬�) = Fn and therefore �(�1) = Tn.

Now, suppose the result holds for k − 1.

1. If �(�) = tn
i
, for −1 d i d k − 2, there are two cases to consider: if i d k − 3, by

induction hypothesis �(�k−1) = Tn, meaning �(¬(�k−1)) = Fn, �(�
k−1 I ¬(�k−1)) = Fn

and �(�k) = Tn; if i = k − 2, again by induction hypothesis �(�k−2) = Fn, implying

�(�k−1 I ¬(�k−1)) = Fn and therefore �(�k) = Tn.

2. If �(�) = tn
k−1

, by induction hypothesis �(�k−1) = tn
0
, and from the fact � is in ôCn we get

�(�k−1 I ¬(�k−1)) = Tn, meaning �(�k) = Fn.

3. If �(�) = tn
i
, for k d i d n − 1, by induction hypothesis we find that �(�k−1) = tn

i−k+1
.

Since k d i d n − 1 and 1 d k d n, it follows that 1 d i − k + 1 d n − 1, and from the

fact that � is in ôCn we obtain �(�k) = tn
i−k

.

4. Finally, if �(�) = Fn, again by induction hypothesis �(�k−1) = Fn, meaning �(�k−1 I

¬(�k−1)) = Fn and therefore �(�k) = Tn.

Lemma 5.3.3. Let � be a valuation in ôCn; then the mapping Ā ∶ F(Σ,Ą) ³ 2 given by Ā(�) ∶=

�(�)1 (that is, Ā(�) = 1 if and only if �(�) * Dn) is a Cn-bivaluation.

Proof. 1. For any # * {J,I,³}, Ā(�#�) = 1 if and only if �(�#�)1 = 1; since �(�#�)1 =

�(�)1#�(�)1 by the definition of #̃, we have that:

(a) Ā(� J �) = 1 if and only if either Ā(�) = 1 or Ā(�) = 1 (clause (B2) for being a

Cn-bivaluation);

(b) Ā(� I �) = 1 if and only if Ā(�) = 1 and Ā(�) = 1 (clause (B1));

(c) Ā(� ³ �) = 1 if and only if Ā(�) = 0 or Ā(�) = 1 (clause (B3)).

2. If Ā(�) = 0, this means �(�)1 = 0; since �(�)1 J �(�)2 = 1, by definition of Bn, and

�(¬�)1 = �(�)2, by definition of ¬̃, we find that Ā(¬�) = �(¬�)1 = 1, satisfying clause

(B4).

3. If Ā(¬¬�) = 1, we have �(¬¬�)1 = 1; we have �(¬¬�)1 = �(¬�)2 and �(¬�)2 d �(�)1

from the definition of ¬̃, and so �(�)1 e 1, what means that Ā(�) = �(�)1 = 1 and that

clause (B5) is satisfied.
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4. If Ā(�n−1) = Ā(¬(�n−1)), then �(�n−1)1 = �(¬(�n−1))1 = �(�n−1)2; from looking at the

definition of Bn, we see this implies �(�n−1) * In. From Lemma 5.3.2, we obtain �(�) =

tn
n−1

, and in this case �(�n) = Fn, which implies Ā(�n) = �(�n)1 = 0.

Reciprocally, if Ā(�n) = 0, �(�n) = Fn, and from Lemma 5.3.2 once again �(�) = tn
n−1

: so

�(�n−1) = tn
0
, �(¬(�n−1)) * Dn and therefore

Ā(�n−1) = �(�n−1)1 = 1 = �(¬(�n−1))1 = Ā(¬(�n−1)).

We then find clause (B6)n is satisfied.

5. If Ā(�) = Ā(¬�), �(�)1 = �(¬�)1 = �(�)2 = 1, what means �(�) * In; from Lemma 5.3.2,

in this case we have that �(�1) * Bn ö {Tn}, and from the definition of ¬̃ one obtains that

�(¬(�1)) * Dn, and so Ā(¬(�1)) = �(¬(�1))1 = 1.

Reciprocally, if Ā(¬(�1)) = 1, �(¬(�1))1 = 1 and therefore �(�1)2 = 1, meaning �(�1) *

Bn ö{Tn}; this implies �(�) * In, and by the definition of ¬̃, �(¬�) * Dn. So Ā(�) = �(�)1

and Ā(¬�) = �(¬�)1 are both 1, and we have handled clause (B7).

6. If Ā(�) � Ā(¬�) and Ā(�) � Ā(¬�), �(�)1 � �(¬�)1 = �(�)2 and �(�)1 � �(¬�)1 =

�(�)2, meaning �(�), �(�) * {Fn, Tn}. From the tables for # * {J,I,³} we see that

�(�#�) * {Fn, Tn}, and again Ā(�#�) = �(�#�)1 differs from Ā(¬(�#�)) = �(¬(�#�))1,

what constitutes clause (B8) and finishes the proof.

Lemma 5.3.4. Let Ā be a Cn-bivaluation; then, the mapping � ∶ F(Σ,Ą) ³ ïCn
, given by

�(�) = (Ā(�), Ā(¬�), Ā(�1),& , Ā(�n−1)) is a valuation in ôCn such that Ā(�) = 1 if and only if

�(�) * Dn for every formula �.

Proof. First, we show � is a homomorphism.

1. We have that �(¬�) = (Ā(¬�), Ā(¬¬�), Ā((¬�)1),& , Ā((¬�)n−1)), and so there are three

cases to consider: if �(�) = Tn, Ā(¬�) = 0 and therefore �(¬�) = Fn; if �(�) * In,

Ā(¬�) = 1, implying �(¬�) * Dn; finally, if �(�) = Fn, Ā(�) = 0 and Ā(¬�) = 1, and from

clause (B5) for being a Cn-bivaluation we get Ā(¬¬�) = 0, and so �(¬�) = Tn. Regardless

of the case, we find �(¬�) * ¬̃�(�).

2. From the definition of �, �(� J �) = (Ā(� J �), Ā(¬(� J �)), Ā((� J �)1),& , Ā((� J �)n−1).

(a) If �(�) or �(�) equals Tn and both are boolean valued, either Ā(�) or Ā(�) equals 1,

meaning Ā(� J �) = 1 from clause (B2); and both Ā(�) � Ā(¬�) and Ā(�) � Ā(¬�),

which implies from clause (B8) that Ā(� J �) � Ā(¬(� J �)) and therefore �(� J �) =

Tn.
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(b) If �(�) or �(�) is in In, we have that either Ā(�) = 1 or Ā(�) = 1 and from clause

(B2) one gets Ā(� J �) = 1, meaning �(� J �) * Dn.

(c) If �(�) and �(�) are both Fn, Ā(�) = Ā(�) = 0 and so Ā(�J�) = 0 from (B2), meaning

that �(� J �) = Fn.

Either way, �(� J �) is in �(�)J̃�(�).

3. We have �(� I �) = (Ā(� I �), Ā(¬(� I �)), Ā((� I �)1),& , Ā((� I �)n−1).

(a) If �(�) = �(�) = Tn, Ā(�) = Ā(�) = 1 and Ā(¬�) = Ā(¬�) = 0; from clause (B1),

Ā(� I �) = 1, and from (B8) we get Ā(¬(� I �)) = 0, meaning �(� I �) = Tn.

(b) If �(�) or �(�) equals Fn, either Ā(�) or Ā(�) equals 0, and therefore Ā(� I �) = 0

(from clause (B1)) and so �(� I �) = Fn.

(c) In the remaining cases, when either �(�) or �(�) is in In but none of them equals Fn,

one sees that Ā(�) = Ā(�) = 1 and therefore Ā(� I �) = 1, meaning �(� I �) * Dn.

We have just proved �(� I �) * �(�)Ĩ�(�).

4. Clearly �(� ³ �) = (Ā(� ³ �), Ā(¬(� ³ �)), Ā((� ³ �)1),& , Ā((� ³ �)n−1).

(a) If �(�) = Fn or �(�) = Tn, and both are boolean valued, Ā(�) = 0 or Ā(�) = 1,

and both Ā(�) � Ā(¬�) and Ā(�) � Ā(¬�). By clauses (B3) and (B8), this all means

Ā(� ³ �) = 1 and Ā(¬(� ³ �)) = 0, and so �(� ³ �) = Tn.

(b) When �(�) * In, Ā(�) = 1 and so Ā(� ³ �) = 1 from clause (B3), meaning

�(� ³ �) * Dn.

(c) If �(�) = Fn and �(�) * Dn, Ā(�) = 0 and Ā(�) = 1, implying from clause (B3) that

Ā(� ³ �) = 0 and so �(� ³ �) = Fn.

(d) Finally, if �(�) * In and �(�) = Tn, Ā(�) = 1 and Ā(�) = 1; from clause (B3) once

again, Ā(� ³ �) = 1 and therefore �(� ³ �) * Dn.

In all cases, �(� ³ �) * �(�)³̃�(�).

Now, it remains to be shown that � is in ôCn .

1. If �(�) = tn
0
, we have Ā(�) = Ā(¬�) = 1 (and so Ā(� I ¬�) = 1) and Ā(¬(� I ¬�)) =

Ā(�1) = 0, from what one derives �(� I ¬�) = Tn.

2. If �(�) = tn
k−1

, for 2 d k d n, we have Ā(�) = Ā(¬�) = 1 (meaning Ā(� I ¬�) = 1) and

Ā(¬(� I ¬�)) = Ā(�1) = 1, and so �(� I ¬�) * In.

Furthermore, Ā((�1)k−1) = Ā(�k) = 0, from the fact that �(�) = tn
k−1

, and since Ā((�1)k−1) =

0 we find �(�1) = tn
k−2

, what ends the proof.
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Theorem 5.3.1. Given formulas � L {'} of Cn, � ⊢Cn ' if, and only if, � ⊨ĀûCn
'.

Proof. First, suppose � ⊢Cn ', and take a valuation � * ôCn for which �(�) ⊆ Dn: from Lemma

5.3.3, the function Ā ∶ F (ΣC,Ą) ³ 2, defined by Ā(�) = �(�)1, is a bivaluation which, by

hypothesis, satisfies Ā(�) ⊆ {1}. Given the soundness of Cn with respect to bivaluations and the

fact that � ⊢Cn ', it follows that Ā(') = 1, and therefore �(') * Dn. This, of course, shows that

� ⊨ĀûCn
'.

Reciprocally, suppose � ⊨ĀûCn
' and let Ā be a Cn-bivaluation satisfying Ā(�) ⊆

{1}: by Lemma 5.3.4, � ∶ F(ΣC,Ą) ³ ïCn
defined by

�(�) = (Ā(�), Ā(¬�), Ā(�1),& , Ā(�n−1)),

is a valuation in ôCn for which, in addition, �(�) ⊆ Dn. Given � ⊨ĀûCn
', we obtain that �(') *

Dn, meaning Ā(') = 1 and, by completeness of Cn with respect to bivaluations, � ⊢Cn '.

5.4 Decision methods

A finite Nmatrix û = (ï, D) which characterizes a logic ÿ always leads to a decision method

for when a formula ' is a tautology of ÿ, or when a finite set of premises � deduces ' in ÿ as

long as this logic satisfies the deduction meta-theorem (if � = {
1,& , 
n}, this is equivalent to

testing whether 
1 ³ (
2 ³ ď (
n ³ ')ď) is a tautology). The method is straightforward: one

constructs a row-branching truth table for', based on ï, and' is a tautology iff all rows contain

a designated value on the column corresponding to '. Even more, if a logic is characterized by

a finite class of finite Nmatrices, one still derives a decision method.

Things are not as simple when dealing with RNmatrices: even the logic character-

ized by a single, finite RNmatrix may not have a decision method, given that the problem of

finding out whether a certain homomorphism belongs to the set of restricted homomorphisms

may not be decidable; an example of something like this happening is found by looking at the

RNmatrix semantics obtained by Kearns for S4 ([Kea81]) in Example 4.2.1. However this is not

always the case: some finite RNmatrices are indeed quite efficient in inducing decision meth-

ods, and this happens for all ĀûCn
; this is due to the fact that finding those homomorphisms

not relevant for a deduction in ĀûCn
is actually easy. We start by generalizing row-branching

truth-tables to row-branching, row-eliminating truth-tables, and proceed to show how tableau

semantics are defined from our RNmatrices characterizing Cn.

5.4.1 Row-branching, row-eliminating truth tables

Take a formula ' in the signature ofCn, and let '1,& , 'k = ' be a sequence of all subformulas,

proper or not, of ' ordered by complexity.
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'1 '2 ď 'p
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Tn ď

Tn
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Ď đ Ď

Fn ď
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tn
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Tn
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Ď

Fn

tn
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ď
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tn
0

Ď

Fn

Ď đ Ď

Fn ď

Tn
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Fn
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Fn

Tn ď

Tn
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0

Ď

Fn

tn
0

ď

Tn

tn
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Ď

Fn

Ď đ Ď

Fn ď

Tn

tn
0

Ď

Fn

Figure 5.1: Beginning a truth table: only propositional variables
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In order to make things as clear as possible, we remember the complexity (or order)

of a formula' is 0 iff the formula is a propositional variable or a nullary connective, and it is r+1

iff ' = �(�1,& , �m), � is a m-ary connective and the maximum of the orders of �1 trough �m is

r. We say “a sequence”, rather than “the sequence”, since different subformulas of ' may have

the same order, and therefore may be interchanged without neglecting that the whole sequence

remains ordered.

Of course, given that the signature of Cn has no nullary connectives, we can be

certain that the first elements of the sequence are necessarily propositional variables, and so we

start to build a truth table. For each'i which is a propositional variable we list all possible values

it may assume in ĀûCn
given the values taken by '1 trough 'i−1; since the values taken by

propositional variables are independent of each other, we find that, for any combination of values

for '0 up to 'i−1, 'i can assume n + 2 values, Tn, t
n
0
, tn

1
,& , tn

n−1
and Fn. If p e 1 propositional

variables appear in ', this means we start by writing down n+2 rows for the column headed by

'1, each containing a value of Bn; for the column headed by '2, assuming p e 2, each of these

n + 2 rows is further subdivided into n + 2 new rows, each filled with a value of Bn, to a total

now of (n+2)2 rows; and inductively, we have a table with (n+2)p rows, and p columns (so far).

We summarize the situation so far with the table in Figure 5.1, showing how the first

part of the process, dealing only with propositional variables, goes. For simplicity, on all row-

branching truth-tables we will always merge consecutive rows on a given column with repeated

values; this is very helpful when truly trying to interpret those objects as “row-branching”.

Suppose we have written the table up to a column headed by 'q, for q e p, and let

us look at 'q+1: it must be of either the form (1) 'q+1 = 'i#'j , for some # * {J,I,³}, or

(2) 'q+1 = ¬'i, for 1 d i, j d q, since the subformulas of 'q+1 are also subformulas of '

of order strictly smaller. In a normal truth-table, the new column, headed by 'q+1, would be

filled on a given row by either a#̃b, corresponding to case (1), or ¬̃a, corresponding to case (2),

where: a is the value taken by 'i on the aforementioned row, b is the value taken by 'j and #̃ is

the (deterministic) operation corresponding to the connective #. In a truth-table arising from an

Nmatrix, we must further subdivide the row in question in as many values are found in a#̃b and

fill each new row with one of these values, whenever we find ourselves in case (1), or branch

the row in as many rows as there are elements in ¬̃a and fill each sub-row with one of these,

corresponding to case (2), where now #̃ is a multioperation.

The case with the RNmatrix ĀûCn
is similar, but has extra subtleties. Fix a given

row for what follows.

1. If 'q+1 = 'i I ¬'i and 'i takes the value tn
0
, then the row is not branched in the column

headed by 'q+1 and assumes the value Tn.
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ď 'i ď ¬'i ď 'i I ¬'i ď

đ Ď đ Ď đ Ď đ

ď tn
0

ď

Tn ď Tn ď

tn
0

ď Tn ď

Ď ď Ď ď

tn
n−1

ď Tn ď

đ Ď đ Ď đ Ď đ

2. If 'q+1 = 'i I ¬'i and 'i takes the value tn
l
, for any 1 d l d n − 1, the row is subdivided

into n new rows, each assigned a value of In = {tn
0
,& , tn

n−1
}.

ď 'i ď ¬'i ď 'i I ¬'i ď

đ Ď đ Ď đ Ď đ

ď tn
l

ď

Tn ď

tn
0

ď

Ď đ

tn
n−1

ď

tn
0

ď

tn
0

ď

Ď đ

tn
n−1

ď

Ď đ Ď đ

tn
n−1

ď

tn
0

ď

Ď đ

tn
n−1

ď

đ Ď đ Ď đ Ď đ

3. If 'q+1 = ¬('i I ¬'i) and 'i takes the value tn
l
, for any 1 d l d n − 1, the row is not

branched any further in the column headed by 'q+1 and assumes the value tn
l−1

on said

column (look at Figure 5.2).

Notice all of these steps are easily algorithmically performed: after all, they boil

down to identifying the form of a formula (namely 'q+1) and searching the value taken by an-

other formula ('i) on a given row; the intuition behind these procedures involves the fact that

each row of a completed row-branching, row-eliminating truth-table should correspond to a pos-

sible homomorphism, and the previous three steps eliminate all homomorphisms which are not

restricted.

If we are not in the cases described above, then one proceeds as if we were in an

Nmatrix: assume that, on a fixed row, 'i takes the value a and 'j takes the value b. Then, if

'q+1 = 'i#'j , for # * {J,I,³}, we divide our row into |a#̃b| new rows and assign each of

the elements of the set a#̃b to one of these new rows, where #̃ is the operation corresponding

to the connective # in the multialgebra ïCn
; notice that |a#̃b| may equal either n + 1, when
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a#̃b = Dn = {Tn, t
n
0
,& , tn

n−1
}, or 1, when a#̃b = {Tn} or a#̃b = {Fn}. If 'q+1 = ¬'i, the

row is subdivided |¬̃a| times, and one element of ¬̃a is placed on each of these; again we can

have |¬̃a| = n + 1, when ¬̃a = Dn, or |¬̃a| = 1, when ¬̃a = {Tn} or ¬̃a = {Fn}. For

completeness sake, compare what the previous rules dictated against what would be expected if

we were working with a mere Nmatrix.

ď 'i ď ¬'i ď 'i I ¬'i ď ¬('i I ¬'i) ď

đ Ď đ Ď đ Ď đ Ď đ
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Ď đ Ď đ

tn
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tn
0

ď

tn
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ď tn
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Ď đ Ď đ

tn
n−1

ď tn
l−1

ď

Ď đ Ď đ Ď đ

tn
n−1

ď

tn
0

ď tn
l−1

ď

Ď đ Ď đ

tn
n−1

ď tn
l−1

ď

đ Ď đ Ď đ Ď đ Ď đ

Figure 5.2: Eliminating row in the case of a formula ¬('i I ¬'i)

1. If 'q+1 = 'i I¬'i and 'i is tn
0
, ¬̃tn

0
= Dn and so, for any value b * ¬̃tn

0
that could be given

to ¬'i, t
n
0
Ĩb = Dn; so, only looking at ïCn

would branch the row n + 1 times, giving the

values Tn, t
n
0
,& , tn

n−1
to 'q+1, instead of only Tn.

2. If 'q+1 = 'i I ¬'i and 'i is tn
l
, for 1 d l d n − 1, one has ¬̃tn

l
= Dn and, for any value

b * ¬̃tn
l

the formula ¬'i could assume, tn
l
Ĩb = Dn; this means that only considering ïCn

would divide the row n+1 times, instead of n times, and give'q+1 the values Tn, t
n
0
,& , tn

n−1
,

instead of tn
0
,& , tn

n−1
.

3. If 'q+1 = ¬('i I ¬'i) and 'i is tn
l
, for 1 d l d n − 1, we obtain ¬̃tn

l
= Dn, for any value

b * ¬̃tn
l

that ¬'i could assume tn
l
Ĩb = Dn and, for any value c * tn

l
Ĩb which 'i I ¬'i

could assume, ¬̃c = {Fn} or ¬̃c = Dn; this means 'q+1 could, in principle, be assigned

any value of Bn, and therefore subdivide its row into n+ 2 new ones. Instead, we demand

that it does not branch its row any further and receives the value tn
l−1

.

So, we are now in position to proceed writing our row-branching, row-eliminating

truth-table as long as there are elements on the sequence'1,& , 'k = ', giving us a table with k

columns and no more than (n+2)k rows. Of course, if at the end the column headed by'k is filled

with nothing but designated values Dn = {Tn, t
n
0
,& , tn

n−1
}, then ' is a tautology of Cn, being
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the converse also true: if ' is a tautology, by writing down its correspondent row-branching,

row-eliminating truth-table, we obtain the column of ' has only designated values. We want,

from here on forward, to prove that this is, in fact, the case, that is, that our truth-tables are sound

and complete.

Proposition 5.4.1. Let � be a finite set of formulas of Cn closed by subformulas, that is, if � * �

and � is a subformula of �, then � * �. Let � ∶ � ³ Bn be a function satisfying:

1. if ¬� * �, �(¬�) * ¬̃�(�);

2. if �#� * �, for # * {J,I,³}, then �(�#�) * �(�)#̃�(�);

3. if � I ¬� * � and �(�) = tn
0
, �(� I ¬�) = Tn;

4. if �I¬� * � and �(�) = tn
k
, for some 1 d k d n−1, then �(�I¬�) * In = {tn

0
,& , tn

n−1
};

5. if �1 = ¬(� I ¬�) * � and �(�) = tn
k
, for some 1 d k d n − 1, then �(�1) = tn

k−1
.

Then there exists a homomorphism � * ôCn extending �, id est, a homomorphism for which

�(�) = �(�), for every � * �.

Proof. We define � by induction on the order of a formula, but whenever we define �(�) we will,

simultaneously, define �(¬�), �(� I ¬�) and �(�1) = �(¬(� I ¬�)) as well.

First, notice that, if � + �, then for no formula � * � we have that � is a subformula

of �, given � is closed by subformulas; of course this means that if � + �, then neither ¬�,

� I ¬� or �1 are in �. This is important since, whenever we define �(�) for a formula � + �,

we need not worry if this definition may interfere with �(�) for some � * � of which � is a

subformula: such a � can not exist.

For a propositional variable p, �(p) is defined as �(p), whenever p * �, and arbitrarily

otherwise; we have then defined �(�), for every formula � of order 0, given Cn has no nullary

connectives, so it remains to define �(¬�), �(� I ¬�) and �(�1).

1. If ¬p * �, �(¬p) is equal to �(¬p), and if ¬p + � we may take �(¬p) as equal to any value

of the set ¬̃�(p).

2. If p I ¬p * �, we define �(p I ¬p) as �(p I ¬p); if p I ¬p + � and �(p) = tn
0
, we must

define �(p I ¬p) as Tn, but if p I ¬p + � and �(p) = tn
k
, for some 1 d k d n − 1, we can

make �(p I ¬p) equal to an arbitrary value in In = {tn
0
,& , tn

n−1
}; if none of the previous

cases apply, we define �(p I ¬p) as an arbitrary element of �(p)Ĩ�(¬p).

3. If p1 = ¬(p I ¬p) * �, we make �(p1) = �(p1); if p1 + � and �(p) = tn
k
, for some

1 d k d n − 1, we must make �(p1) equal to tn
k−1

; if none of the previous cases apply, we

choose �(p1) as any element of ¬̃�(p I ¬p).
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This finishes the base step of order 0.

Now we suppose that, for every formula � of order at most m, for a m e 0, all of

�(�), �(¬�), �(�I¬�) and �(�1) are defined and satisfy the expected properties that would make

of � a homomorphism, our induction hypothesis, and take a formula � of order m + 1; there are

then two cases to consider.

1. If � = ¬�, �(�) = �(¬�) has been already defined and satisfies:

(a) �(¬�) = �(¬�), if ¬� * �;

(b) if ¬� + � and � = 
 I ¬
 , �(
1) equals tn
k−1

, in the case that �(
) = tn
k

(for a

1 d k d n − 1), and any value in ¬̃�(
 I ¬
) otherwise;

(c) and, if none of these is the case, one still has �(¬�) * ¬̃�(�).

Now we define �(¬�), �(� I ¬�) and �(�1).

(a) If ¬� * �, we make �(¬�) = �(¬�), otherwise is enough to require that �(¬�) *

¬̃�(�).

(b) If � I ¬� * �, �(� I ¬�) = �(� I ¬�); if � I ¬� + � and �(�) = tn
0
, �(� I ¬�) = Tn,

and if � I ¬� + � and �(�) = tn
k

(for 1 d k d n− 1), �(� I ¬�) * In; finally, if none

of these applies, �(� I ¬�) * �(�)Ĩ�(¬�).

(c) If �1 * �, obviously �(�1) = �(�1); if �1 + � and �(�) = tn
k

(for 1 d k d n − 1),

�(�1) = tn
k−1

; and if �1 + � and �(�) � tn
k
, we define arbitrarily �(�1) * ¬̃�(� I ¬�).

2. If � = �#
 , for some # * {J,I,³}, we have that either:

(a) �#
 * �, when we simply define �(�#
) as �(�#
);

(b) �#
 + � but # = I and 
 = ¬�, meaning �(� I ¬�) has already been defined and

is equal to �(� I ¬�), if � I ¬� * �; or is equal to Tn, if �(�) = tn
0
; or lies in In, if

�(�) = tn
k

(for 1 d k d n − 1); or lies in �(�)Ĩ�(¬�), if none of the previous cases

applies;

(c) �#
 + �, and # � I or 
 � ¬�, when we can define �(�#
) as any value of �(�)#̃�(
).

We are left now with the task of defining �(¬�), �(� I ¬�) and �(�1).

(a) If¬(�#
) * �, we make �(¬(�#
)) equal to �(¬(�#
)); if¬(�#
) + �, # = I, 
 = ¬�,

and �(�) = tn
k

(for 1 d k d n − 1), we have already defined �(¬(�#
)) = �(�1) to be

equal to tn
k−1

; if we are in none of these cases, is sufficient to take �(¬(�#
)) as equal

to any value of ¬̃�(�#
).

(b) If � I¬� * �, we merely define �(� I¬�) = �(� I¬�); if � I¬� + � and �(�) = tn
0
,

�(� I ¬�) = Tn, and if � I ¬� + � and �(�) = tn
k
, for 1 d k d n − 1, �(� I ¬�)

may take any value on the set In; if none of these applies, we can assign any value

of �(�)Ĩ�(¬�) to �(� I ¬�).
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(c) Finally, if �1 * �, �(�1) = �(�1); if �1 + � and �(�) = tn
k
, for any 1 d k d n − 1,

�(�1) = tn
k−1

; and if �1 + � and �(�) � tn
k

(for 1 d k d n−1), we simply make �(�1)

equal to any value of ¬̃�(� I ¬�).

So, given a formula ' of Cn, construct its row-branching, row-eliminating truth-

table as described before: the resulting table is finite and can be constructed in a finite number

of steps; take � as the set formed by ' and all its subformulas and it is clear that it is closed by

subformulas. By the procedure we used for constructing the table for ', its columns correspond

to the elements of �, while its rows correspond to functions � ∶ � ³ Bn satisfying the hypothesis

of Proposition 5.4.1. Of course, for every row and its �, by Proposition 5.4.1 there exists a

homomorphism � in ôCn extending �; reciprocally, to every homomorphism � of ôCn one can

find a row in correspondence with a � which is extended by � (it is sufficient to take � as the

restriction of � to �).

So, assume ⊢Cn ', and therefore ⊨ĀûCn
'; then, for any row of the table for ' and

its �, since � * ôCn we have �(') * Dn, and therefore �(') * Dn, meaning all entries on the

column headed by' are designated and, therefore,' is proved to be a tautology according to row-

branching, row-eliminating truth-tables. Reciprocally, assume ' is proved according to row-

branching, row-eliminating truth-tables: for any homomorphism � * ôCn , � = �|� corresponds

to a row of the table for ' and therefore satisfies �(') * Dn, meaning therefore that �(') * Dn;

this implies ⊨ĀûCn
', and so ⊢Cn ', what gives us soundness and completeness.

We can, in much the same way, define row-branching, row-eliminating truth-tables

for mbCcl and Cila based on the RNmatrices ûmbCcl (see Section 4.3.1) and ûCILA (see Sec-

tion 4.3.2); in both cases tables are proven to be decision methods for these logics, which are

known to be not characterizable by finite Nmatrices yet are decidable by three-valued RNmatri-

ces.

Now, we present some examples; first of all, we stress a slight simplification: in

the case that � = {
1,& , 
m} is a finite set of premises, instead of writing down the table for


1 ³ (ď ³ (
m ³ ')ď) to verify the deduction � ⊢Cn ', is enough to list the columns headed

by the formulas ' and 
1 through 
m, and their subformulas and verify that, in every row where

all premises assume designated values, so does '. This is due to the fact that all Cn obey the

deduction meta-theorem, meaning that �,  ⊢Cn ' if, and only if, � ⊢Cn  ³ ', and this may

shorten significantly our truth-tables.

Take a propositional variable p and the deduction p,¬p,¬(p I ¬p) ⊢C1
¬¬p. We

obtain then the following series of tables that culminate in the completed row-branching, row-

eliminating truth-table for that very argument.
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p Row

T1 1st

t1
0

2nd

F1 3rd

First stage

p ¬p Row

T1 F1 1st

t1
0

T1 2nd

t1
0

3rd

F1 T1 4th

Second stage

p ¬p ¬¬p Row

T1 F1 T1 1st

t1
0

T1 F1 2nd

t1
0

T1 3rd

t1
0

4th

F1 T1 F1 5th

Third stage

p ¬p ¬¬p pI¬p Row

T1 F1 T1 F1 1st

t1
0

T1 F1 T1 2nd

t1
0

T1 T1 3rd

t1
0

T1 4th

F1 T1 F1 F1 5th

Fourth stage

p ¬p ¬¬p pI¬p ¬(pI¬p) Row

T1 F1 T1 F1 T1 1st

t1
0

T1 F1 T1 F1 2nd

t1
0

T1 T1 F1 3rd

t1
0

T1 F1 4th

F1 T1 F1 F1 T1 5th

Fifth and final stage

We see that the deduction p,¬p,¬(p I ¬p) ⊢C1
¬¬p is valid: since in no rows one

has p, ¬p and ¬(p I ¬p) simultaneously assigned designated values, the deduction is vacuously

true.

Now, a final remark regarding our truth-tables: while we have presented row-bran-

ching, row-eliminating truth-tables on which rows are discarded as soon as they violate some

condition necessary for the corresponding homomorphism to lie in ôCn , one could first write

down the row-branching truth-table of the Nmatrix (ïCn
, Dn) to only then delete the rows cor-

responding to homomorphism outside ôCn . The order in which this is done is not relevant:

although eliminating the rows as soon as they are discovered not to be relevant is slightly more

efficient, the alternative way is, arguably, more intuitive. To show one example of how this goes,

consider again the deduction p,¬p,¬(p I ¬p) ⊢C1
¬¬p; using only the Nmatrix (ïC1

, D1) one

obtains the following table.



Chapter 5: RNmatrices for da Costa’s hierarchy 159

p ¬p ¬¬p pI¬p ¬(pI¬p) Row

T1 F1 T1 F1 T1 1st

t1
0

T1 F1

T1 F1 2nd

t1
0

T1 3rd

t1
0

4th

t1
0

T1

T1 F1 5th

t1
0

T1 6th

t1
0

7th

t1
0

T1 F1 8th

t1
0

T1 9th

t1
0

10th

F1 T1 F1 F1 T1 11th

If one tries to evaluate the validity of the argument only from this table, it appears

false: rows 3 and 4 have all premises designated but not the conclusion. But the rows, in the

general case of Cn, to be eliminated are:

1. the ones where � is assigned tn
0

and � I ¬� is not assigned Tn;

2. the ones where � is assigned the value tn
k
, for 1 d k d n − 1, but � I ¬� is assigned the

value Tn;

3. the ones where � is tn
k
, for 1 d k d n − 1, but �1 is not tn

k−1
.

In our specific case, rows 3, 4, 6, 7, 9 and 10 are eliminated, and we retrieve the previous table

we had written for the deduction, which makes it valid.

5.4.2 Tableau semantics

We have presented, in Sections 4.3.1, 4.3.2 and 5.3 shown RNmatrices that, through the row-

branching, row-eliminating truth tables outlined in Section 5.4.1, become decision methods for

the whole hierarchy of da Costa plus Cila and mbCcl, although none of these logics is charac-

terized by finite Nmatrices. However the corresponding truth tables can grow rather rapidly and

implementing such a method may not be at all feasible.

So we offer a second decision procedure, based too on the RNmatrices ĀûCn
, by

means of tableau semantics. Although recent developments provided general approaches to

obtaining tableau-like proof systems from finite Nmatrices ([Paw20]), the present study will

make use more extensively of [CCP21], which appears to be more useful when dealing with

RNmatrices defined by swap structures. Many of the ideas used to motivate tableaux from

RNmatrices may be found in any classical account on the subject, e.g. [Smu95].
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Our tableaux will have as nodes labeled formulas, that is, pairs of labels L * Bn =

{Tn, t
n
0
,& , tn

n−1
,Fn} and formulas ' of Cn. The labels correspond to the snapshots of Bn, but to

the make the distinction between truth value and label clearer we use different fonts; furthermore,

the pair formed by L and ' will be denoted by L('). The labeled tableau system for Cn will be

denoted by Ān and have the following n+ 2 rules of elimination for every connective (that is, ¬,

I, J and ³, totaling 4n + 8 rules), where the pictorial rule

L(')

L11('11)

ď

Lm1('m1)

Ď Ď

L1n1
('1n1

) Lmnm('mnm)

indicates that a branch of a tableau containing L(') may be forked into m new branches, each

containing all formulas already present in the original branch and, additionally, Lk1('k1) trough

Lknk('knk), for some 1 d k d m.

Tn(' J  )

Tn(') tn
0
(') ď tn

n−1
(') Tn( ) tn

n−1
( ) ď tn

n−1
( )

(EJTn)

tn
0
(' J  )

tn
0
(') ď tn

n−1
(') tn

0
( ) ď tn

n−1
( )

(EJtn
0
)

Ď

tn
n−1

(' J  )

tn
0
(') ď tn

n−1
(') tn

0
( ) ď tn

n−1
( )

(EJtn
n−1

)

Fn(' J  )

Fn(')

Fn( )

(EJFn)

The n + 2 rules for eliminating disjunction

Tn(¬')

tn
0
(') ď tn

n−1
(') Fn(')

(E¬Tn)
tn
0
(¬')

tn
0
(') ď tn

n−1
(')

(E¬tn
0
) ď

tn
n−1

(¬')

tn
0
(') ď tn

n−1
(')

(E¬tn
n−1

)
Fn(¬')

Tn(')
(E¬Fn)

The n + 2 rules for eliminating negation
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T
n
('

I
 
)

T
n
('
)

T
n
('
)

ď
T
n
('
)

tn 0
('
)

tn 0
('
)

ď
tn 0
('
)

ď
tn n
−
1
('
)

tn n
−
1
('
)

ď
tn n
−
1
('
)

T
n
( 

)
tn 0
( 

)
tn n
−
1
( 

)
T
n
( 

)
tn 0
( 

)
tn n
−
1
( 

)
T
n
( 

)
tn 0
( 

)
tn n
−
1
( 

)

(E
I
T
n
)

tn 0
('

I
 
)

T
n
('
)

ď
T
n
('
)

tn 0
('
)

ď
tn 0
('
)

ď
tn n
−
1
('
)

ď
tn n
−
1
('
)

tn 0
('
)

ď
tn n
−
1
('
)

tn 0
( 

)
tn n
−
1
( 

)
tn 0
( 

)
tn n
−
1
( 

)
tn 0
( 

)
tn n
−
1
( 

)
T
n
( 

)
T
n
( 

)

(E
I
tn 0
)

Ď

tn n
−
1
('

I
 
)

T
n
('
)

ď
T
n
('
)

tn 0
('
)

ď
tn 0
('
)

ď
tn n
−
1
('
)

ď
tn n
−
1
('
)

tn 0
('
)

ď
tn n
−
1
('
)

tn 0
( 

)
tn n
−
1
( 

)
tn 0
( 

)
tn n
−
1
( 

)
tn 0
( 

)
tn n
−
1
( 

)
T
n
( 

)
T
n
( 

)

(E
I
tn n
−
1
)

F
n
('

I
 
)

F
n
('
)

F
n
( 

)
(E

I
F
n
)

T
he
n
+
2

ru
le

s
fo

r
el

im
in

at
in

g
co

nj
un

ct
io

n

T
n
('

³
 
)

F
n
('
)

T
n
( 

)
tn n
−
1
( 

)
ď

tn n
−
1
( 

)
(E

³
T
n
)
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tn
0
('³  )

tn
0
(')

ď
tn
n−1

(')
tn
0
( ) ď tn

n−1
( )

Tn( ) Tn( )

(E³tn
0
)

Ď

tn
n−1

('³  )

tn
0
(')

ď
tn
n−1

(')
tn
0
( ) ď tn

n−1
( )

Tn( ) Tn( )

(E³tn
n−1

)

Fn('³  )

Tn(') tn
0
(')

ď
tn
n−1

(')

Fn( ) Fn( ) Fn( )

(E³Fn)

The n + 2 rules for eliminating implication

One sees that the tableau rules for Cn are rather difficult to write down given their

sizes, so we give an alternative presentation that uses a more compact notation. Let X and Y be

sets of labels.

L(')

L∗( ) X( )

L(')

L∗(
)

X( )

L(')

L∗(
) L∗∗( ) X(
)

X( ) Y(
) Y( )

1. The leftmost rule states that a closed branch containing L(') will also contain L∗( ) or

x( ), for some label x * X; if X has p elements, such a rule forks a branch into p+ 1 new

ones.

2. For the rule in the middle, a closed branch containing L(') must also contain both L∗(
)

and x( ), for some x * X. Notice that, since we do not have the vertical bar, it would

appear the branch is not forked at all; but since X is a set, we still have multiple cases to

consider, being the branch forked into p new branches.

3. Finally, if L(') is in a closed branch, the rightmost rule implies one of the following lies in

the branch as well: L∗(
) and x( ), for some x * X; or L∗∗( ) and y(
), for some y * Y;1

or x(
) and y( ), for x * X and y * Y. If Y has q elements, this rules forks a branch

pq + p + q times.

1Notice that, in this rule, we change the order of the formulas (
 above and  below) that was previously
established in order to make the idea of a tableau as a tree growing downwards clearer, leaving the larger set of
labels on the bottom.
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Using these conventions and defining In = {tn
0
,& , tn

n−1
} and Dn = InL{Tn}, the rules

of Ān may be more compactly presented by the following, where i takes any value in {0, 1,& , n−

1}.

Tn(¬')

In(') Fn(')
(E¬Tn)

tn
i
(¬')

In(')
(E¬tn

i
)

Fn(¬')

Tn(')
(E¬Fn)

Tn(' I  )

Dn(')

Dn( )

(EITn)

tn
i
(' I  )

Tn(') In(') Tn( )

In( ) In( ) In(')

(EItn
i
)

Fn(' I  )

Fn(') Fn( )
(EIFn)

Tn(' J  )

Dn(') Dn( )
(EJTn)

tn
i
(' J  )

In(') In( )
(EJtn

i
)

Fn(' J  )

Fn(')

Fn( )

(EJFn)

Tn('³  )

Fn(') Dn( )
(E³Tn)

tn
i
('³  )

Tn( )
In( )

In(')

(E³tn
i
)

Fn('³  )

Fn( )

Dn(')

(E³Fn)

Definition 5.4.1. A branch of a tableau in Ān is closed whenever:

1. it contains L(') and L
∗(') for labels L � L

∗
;

2. it contains t
n
0
(') and t

n
i
(' I ¬'), for 0 d i d n − 1;

3. it contains t
n
k
('), and either Tn(' I ¬') or L('1), for 1 d k d n − 1 and L � t

n
k−1

.

A branch � is said to be complete if, for every signed formula L(') appearing in

it with ' not a propositional variable, � also contains all the signed formulas of one of the

branches of the only rule applicable to L('). A complete branch is open if it is not closed.

A tableau of Ān is:

1. closed if all of its branches are closed;

2. complete if all of its branches are either closed or complete;

3. open if it is complete but not closed.

The rules of Ān are analytic, meaning that if L’( ) appears as a consequence of L(') in

some rule of Ān, the  is a proper subformula of '. In other words, the tableaux of Ān can always

be completed in a finite number of steps: in fact, if the complexity of ' is m, any completed

tableau starting with L(') is guaranteed to have at most (n+1)2m branches, of length at most m.
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We set out now to prove that the method of tableaux here presented for Cn is both

sound and complete, using arguments very similar to those found in [Smu95]; combined with

the fact any such tableau may be completed in finite time, we will therefore have a different

decision procedure for these systems.

Definition 5.4.2. A formula ' of Cn is provable according to tableaux of Ān, when we write

⊢
Ān
', if there exists a closed tableau of Ān started by Fn(').

Given a finite set � = {
1,& , 
m} of formulas of Cn, ' is said to be provable from

� according to tableaux of Ān, when we write � ⊢
Ān
', if

⊢
Ān

mâ

i=1


i ³ '.

Given a valuation � in ôCn , a signed formula L(') is true under �, also said to be

satisfied by �, if �(') = L, where L is, of course, the element of Bn corresponding to L; if L(')

is not true under �, we say it is false.

Then a branch � of a tableau Ă of Ān is true under �, or is satisfied by �, if all of

its signed formulas are true under �; Ă is true under �, or satisfied by �, if at least one of its

branches is true under �. We can see that a closed branch �, and accordingly a closed tableau,

is not satisfied under any � in ôCn:

1. if � contains L(') and L∗('), for L � L∗, � being true under � would mean �(') = L and

�(') = L∗, what is absurd;

2. if � contains tn
0
(') and tn

i
(' I ¬'), for 0 d i d n − 1, and � is true under �, from the

definition of ôCn one has that �(') = tn
0

would imply �(' I ¬') = Tn, contradicting the

fact that �(' I ¬') = tn
i
;

3. and if � contains tn
k
('), and either Tn(' I ¬') or L('1), for 1 d k d n − 1 and L � tn

k−1
,

then � being true under � would imply that �(') = tn
k

and, from the definition of ôCn ,

�(' I ¬') * {tn
0
, tn

1
,& , tn

n−1
} and �('1) = tn

k−1
, what in any of the two cases leads to a

contradiction.

Lemma 5.4.1. For a signed formula L('), with' not a propositional variable, and � a valuation

in ôCn under which L(') is true, all the formulas of at least one of the branches obtained from

the application of a rule of Ān to L(') are also true under �.

Proof. This is true from the definition of ïCn
due to the form of the rules in Ān and the very

definition of being true under a valuation. For an example, look at the rule EIFn, given by

Fn(' I  )

Fn(') Fn( )
.
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If � satisfies Fn(' I  ), this means �(' I  ) = Fn; looking at the table for conjunction in ïCn
,

presented below, we see that this implies either �(') = Fn or �( ) = Fn, and so � satisfies either

Fn(') or Fn( ), that is, precisely all formulas of one of the branches obtained from applying

EIFn to Fn(' I  ).

I Fn In Tn

Fn {Fn} {Fn} {Fn}

In {Fn} Dn Dn

Tn {Fn} Dn {Tn}

Of course, a similar reasoning works for all the other rules of Ān.

Theorem 5.4.1. For � L {'} a finite set of formulas of Cn, if � ⊢
Ān
', then � ⊨ĀûCn

'.

Proof. Given � = {
1,& , 
m}, it is clear that
âm

i=1

i ⊢Cn 
j , for every 1 d j d m, and

� ⊢Cn
âm

i=1

i; furthermore, Cn satisfies the deduction meta-theorem, and by soundness and

completeness of this system with respect to ĀûCn
, it is enough to prove the theorem under the

assumption that � = ∅.

One constructs a completed tableau for Fn(') through a finite sequence of tableaux

Ă0,& , Ăk = Ă , where Ă0 contains only Fn(') and each Ăj+1, for 0 d j d k−1, is obtained from

Ăj by application of a rule Rj of Ān to a, up to this moment, unused signed formula Lj( j) of a

branch �j of Ăj .

Given a valuation � of ôCn , we can then prove that if Ăj is true under �, then so is

Ăj+1. To see this, suppose � indeed validates Ăj , and therefore validates some branch � of Ăj:

1. if � = �j , that is, Ăj+1 is obtained from Ăj by extension of precisely the branch satisfied

by �, by Lemma 5.4.1 we find that all new formulas of one of the branches created by

applying Rj to Lj( j) are validated by �; this branch, which extends �j , is then a branch

of Ăj+1 true under �;

2. if � � �j , � is still a branch of Ăj+1, and in particular it is true under �.

In any case, the conclusion must be that � validates Ăj+1.

So suppose ' is not a tautology according to ĀûCn
, and therefore there exists a

valuation � * ôCn with �(') = Fn. Since � satisfies Fn('), and therefore Ă0, by induction we

prove that any completed tableau for Fn(') is true under �, and so it cannot be closed. Since every

completed tableau for Fn(') is open,⊬
Ān
', and by the contrapositive we have the theorem.

To prove completeness, we must define what are Hintikka sets for Ān.

Definition 5.4.3. A non-empty set � of labeled formulas L('), with L in Bn and ' a formula of

Cn, is a Hintikka set for Ān if all of the following properties are simultaneously satisfied, where

0 d i d n − 1 and 0 d k d n − 2.

1. If L('),L∗(') * �, then L = L
∗
.
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2. If t
n
0
('), no t

n
j
(' I ¬'), for 0 d j d n − 1, is in �.

3. If t
n
k+1

(') * �, then Tn(' I ¬') is not in �.

4. If t
n
k+1

('),L('1) * �, then L = t
n
k
.

5. If Tn(¬') * �, at least one of t
n
0
('),& , tn

n−1
('),Fn(') is also in �.

6. If t
n
i
(¬') * �, at least one of t

n
0
('),& , tn

n−1
(') is also in �.

7. If Fn(¬') * �, so is Tn(').

8. If Tn(' I  ) * �, then:

(a) either Tn('),Tn( ) * �;

(b) or Tn('), t
n
j
( ) * �, for some 0 d j d n − 1;

(c) or t
n
j
('),Tn( ) * �, for a 0 d j d n − 1;

(d) or t
n
j
('), tn

l
( ) * �, for 0 d j, l d n − 1.

9. If t
n
i
(' I  ) * �, then either:

(a) Tn('), t
n
j
( ) * �, for a 0 d j d n − 1;

(b) or t
n
j
('),Tn( ) * �, for some 0 d j d n − 1;

(c) or t
n
j
('), tn

l
( ) * �, for 0 d j, l d n − 1.

10. If Fn(' I  ) * �, either Fn(') or Fn( ) is in �.

11. If Tn('J ) is in �, at least one of Tn('), Tn( ), t
n
j
(') or t

n
l
( ) is also in �, for 0 d j, l d

n − 1.

12. If t
n
i
(' J  ) is in �, either t

n
j
(') or t

n
l
( ), for 0 d j, l d n − 1, is also in �.

13. If Fn(' J  ) * �, then both Fn(') and Fn( ) are in �.

14. If Tn('³  ) * �, at least one of Fn('), Tn( ) or t
n
j
( ), for 0 d j d n − 1, is also in �.

15. If t
n
i
('³  ) is in �, either:

(a) t
n
j
(') and Tn( ), for a 0 d j d n − 1, are both in �;

(b) or t
n
j
( ), for a 0 d j d n − 1, is in �.

16. If Fn('³  ) is in �, then:

(a) either Tn(') and Fn( ) are both in �;

(b) or t
n
j
(') and Fn( ), for a 0 d j d n − 1, are both in �.
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We must now prove that a Hintikka set for Ān is satisfiable in ôCn , that is, that there

exists a � * ôCn such that L(') * � implies �(') = L. We start by defining, for a Hintikka set �

for Ān, �0 as the set of formulas of Cn such that L(') * �, for some label L of Bn; then, we take

�0 ∶ �0 ³ Bn defined by �0(') = L iff L(') * �. That �0 is indeed a function one can prove by

noticing clause (1) of Definition 5.4.3: if one had both �0(') = L and �0(') = L∗, for L � L∗,

then it would follow that L('),L∗(') * �, for L � L∗, contradicting clause (1).

We extend �0 to a function � ∶ F (ΣC,Ą) ³ Bn by induction on the complexity of a

formula in much the same way we proceeded in Proposition 5.4.1. That is, for a propositional

variable p, we define:

1. �(p) = �0(p), if p * �0, and arbitrarily otherwise;

2. �(¬p) = �0(¬p), if ¬p * �0, and as any value in ¬̃�(p) otherwise;

3. �(pI¬p) = �0(pI¬p), in the case that pI¬p * �0; if pI¬p + �0 and �(p) = tn
0
, we make

�(p I ¬p) = Tn, but if p I ¬p + �0 and �(p) = tn
k
, for 1 d k d n − 1, we define �(p I ¬p)

as an arbitrary value of In; if none of these is the case, �(p I ¬p) may be given any value

in �(p)Ĩ�(¬p);

4. �(p1) = �0(p
1), whenever p1 * �0; in the case that p1 + �0, if �(p) = tn

k
, for a 1 d k d n−1,

we make �(p1) = tn
k−1

, and otherwise �(p1) can equal any value of ¬̃�(p I ¬p).

If �(�) and �(�), as well as �(¬�), �(� I ¬�), �(�1), �(¬�), �(� I ¬�), and �(�1),

have been already defined, we may also define �(') and �( ), as well as other correlated values

of �, for ' = ¬� and  = �#� (where # * {J,I,³}). For ' we have the following.

1. �(') = �(¬�) has already been defined.

2. If ¬' * �0, make �(¬') equal to �0(¬'), otherwise it is enough to make �(') equal to

some value in ¬̃�(').

3. If ' I ¬' * �0, one makes �(' I ¬') equal to �0(' I ¬'); if ' I ¬' is not in �0 and

�(') * In, we either make �(' I ¬') equal Tn, if �(') = tn
0
, or let it take any value in In,

if �(') = tn
k

for 1 d k d n − 1; if ' I ¬' + �0 and �(') + In, it is enough for �(' I ¬')

to lie in �(')Ĩ�(¬').

4. We make �('1) equal to: �0('
1) if '1 * �0; t

n
k−1

if '1 + �0 and �(') = tn
k
, for 1 d k d

n − 1; and any value of ¬̃�(' I ¬') if '1 + �0 and �(') * {Tn, t
n
0
, Fn}.

For  the conditions are as bellow.

1. If  * �0, it is necessary to make �( ) = �0( ). In the case that  + �0, if # = I and

� = ¬�, �( ) has already been defined; otherwise, �( ) is given any value among those

found in �(�)#̃�(�).
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2. To define �(¬ ), we again start by demanding that, in the case that ¬ * �0, it must equal

�0(¬ ). If ¬ + �0, and # = I and � = ¬�, �(¬ ) = �(�1) has already been defined;

otherwise �(¬ ) can be given any value found in ¬̃�( ).

3. In the case that  I¬ * �0, �( I¬ ) = �0( I¬ ). When  I¬ + �0: if �( ) = tn
0
,

�( I ¬ ) is defined as Tn; if �( ) = tn
k

(where 1 d k d n − 1), �( I ¬ ) equals an

arbitrary value of In; otherwise, �( I ¬ ) can take any value on �( )Ĩ�(¬ ).

4. If  1 * �0, �( 
1) is �0( 

1). If  1 + �0 and �( ) = tn
k
, for a 1 d k d n − 1, we make

�( 1) equal to tn
k−1

. And if  1 + �0 and �( ) + {tn
1
,& , tn

n−1
}, we can give to �( 1) any

value from ¬̃�( I ¬ ).

It is easy to see both that � is a well defined function from F (ΣC ,Ą) toBn and that, if

� is a homomorphism, then it certainly lies in ôCn . The difficulty here is convincing oneself that

� is indeed a homomorphism: the problem here is that, while in Proposition 5.4.1 the relevant

set of formulas was closed under subformulas, the set �0 is not; it would seem possible for a

formula � * �0 to have a subformula � + �0 such that �(�), as defined above, is incompatible

with �(�) = �0(�), in the sense that the function � cannot be a homomorphism. We will argue

that this does not happen, although the complete picture will be left for the reader to fill out.

Only a few clauses of Definition 5.4.3 do not presuppose that the immediate sub-

formulas of � are also in �0, specifically clauses 10, 11, 12, 14 and 15 (item (b)); regarding the

remaining clauses, the proof that ' behaves like a homomorphism should runs smoothly. So,

take one of these difficult clauses to analyze more thoroughly, let us say 10: so, there are formu-

las ' and  such that Fn('I ) * �, meaning then that 'I is in �0, and Fn(') * �, and thus

' * �0; the case in which Fn(') is not in � but Fn( ) is can be treated in an analogous way.

By the definition of � we have given, we have that �(' I  ) = �(') = Fn, and �( )

takes any value as long as � is still a well-defined function that satisfies all conditions to be in

ôCn , except perhaps being a homomorphism. We ask ourselves: is there any value we can give to

�( ) that would lead to �('I ) + �(')Ĩ�( ) and therefore force � not to be a homomorphism?

The answer is no: since �(') = Fn, looking at the table for Ĩ just after Definition 5.3.1, we

see that, for any value possibly taken by �( ), �(')Ĩ�( ) = FnĨ�( ) = {Fn}, which contains

�('I ). Briefly put, the definition of Hintikka sets, despite not being strong enough to guarantee

that those sets are closed under subformulas, carries enough information to make sure the �, as

defined above, is a homomorphism in ôCn .

For another example, look now at clause 15(b): there are formulas ' and  and

indices 0 d i, j d n− 1 for which tn
i
('³  ) and tn

j
( ) are both in �, and so '³  , * �0: is

it possible to find a value of �(') that makes of � not a homomorphism? No: by looking at the

table for ³̃ in ïCn
below, we see that �(' ³  ) = tn

i
is in Dn = �(')³̃tn

j
= �(')³̃�( ), for

any �(') * Bn.
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³ Fn In Tn

Fn {Tn} Dn {Tn}

In {Fn} Dn Dn

Tn {Fn} Dn {Tn}

Table for Implication

Summarizing what we have done just above, one gets the following result.

Proposition 5.4.2. For any Hintikka set � for Ān, we define �0 = {' * F(ΣC,Ą) ∶ L(') * �}

and the function �0 ∶ �0 ³ Bn by �0(') = L iff L(') * �. In this case, there is a homomorphism

� * ôCn extending �0.

We are now in position to trivially prove the equivalent to Hintikka’s lemma in Ān.

Theorem 5.4.2. For any Hintikka set � for Ān, there exists a � * ôCn satisfying that L(') * �

implies �(') = L.

Proof. Take �0 as the set of formulas' for which there exists a label L with L(') * �, and define

the function � ∶ �0 ³ Bn by �0(') = L iff L(') * �, as it would be expected. By Proposition

5.4.2, there exists � * ôCn extending �0 and, of course, if L(') * �, �(') = �0(') = L.

Hintikka sets for Ān, as it would be expected, correspond to open branches � of a

complete tableau Ă of Ān: in fact, define as � the set of labeled formulas appearing in �. Since �

is open, from Definition 5.4.1 it follows that if L(') and L∗(') are both in �, meaning that both

are in �, then L = L∗, what amounts to clause 1 in Definition 5.4.3.

If tn
0
(') and some tn

j
(' I ¬'), for 0 d j d n − 1, were both in �, and so in �,

this would make of � a closed branch, contradicting our supposition that � is actually open; of

course, we get from this that clause 2 of Definition 5.4.3 is also satisfied. And if tn
k+1

(') * �,

for 0 d k d n − 2, then neither Tn(' I ¬') nor L('), for L � tn
k
, can be in �, corresponding

to clauses 3 and 4. Finally, for L(¬') or L('# ) (with # * {J,I,³}) in �, one notices that Ă

being complete forces � to contain all labeled formulas of one branch of the rule in Ān headed

by L(¬') or respectively L('# ), what leads to clauses 5 through 16 of Definition 5.4.3 being

satisfied.

These observations, combined with Theorem 5.4.2, allow one to prove the following

result.

Corollary 5.4.1. For L(') a signed formula of Cn, let � be an open branch of a completed

tableau Ă in Ān starting with L('), and � be the set of labeled formulas appearing in �. There

exists a homomorphism � * ôCn such that �( ) = L iff L( ) * �.

Theorem 5.4.3. For � L {'} a finite set of formulas of Cn, if � ⊨ĀûCn
', then � ⊢

Ān
'.
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Proof. As it was done in Theorem 5.4.1, we can assume that � = ∅: this is because, if � =

{
1,& , 
m}, since
âm

i

i ⊢Cn 
j , for every 1 d j d m, and � ⊢Cn

âm

i=1

i, we get that � ⊢Cn ' if

and only if⊢Cn
âm

i=1

i ³ '. Given that� ⊢Cn ' iff� ⊨ĀûCn

', and� ⊢
Ān
' iff⊢

Ān

ân

i=1

i ³ '

by definition, it is indeed enough to take � = ∅.

So we suppose that ⊨ĀûCn
': if Ă is a completed tableau in Ān starting with Fn(')

with an open branch �, by Corollary 5.4.1 there exists a homomorphism � * ôCn such that

�( ) = L iff L( ) appears in �. Of course, since Fn(') is in �, �(') = Fn and therefore ' is not

a tautology, meaning that ⊭ĀûCn
' and leading to a contradiction.

This means that, if ⊨ĀûCn
', every completed tableau in Ān starting with Fn(')

must be closed, if there exist any; since it is always possible to construct a complete tableau in

Ān starting from any given labeled formula in a finite number of steps, it follows that ⊢
Ān
'.

Of course, Theorems 5.4.1 and 5.4.3 prove that the calculi Ān are correct and com-

plete in relation to the respective logics Cn. They are also decision methods, given that our

tableaux can always be constructed in a finite number of steps, inspired by the RNmatrices

ĀûCn
as our row-branching, row-eliminating truth-tables also were: it is easy to see that, if '

is valid in Cn, every complete tableau starting with Fn(') in Ān will be closed; and if ' is not

valid in Cn, every complete tableau starting with Fn(') in Ān will be open, and each of its open

branches produces a � * ôCn with �(') = Fn.

5.4.2.1 Examples and derived rules

In this section we present some examples of actually using the calculi Ān to test the validity of

arguments.

For the argument ¬¬� ⊢C1
�, which is indeed valid as shown below, keep in mind

that we are listing, at the right side of the tableau, the row (or rows), as well as their label and

lead connective, that lead to the inclusion of the present row; this way, one can check how the

tableau rules of Ā1 are being applied.

1.

2.

3.

4.

5.

F1(¬¬� ³ �)

T1(¬¬�)

F1(�)

F1(¬�)

T1(�)

⊗
3, 5

t1
0
(¬�)

t1
0
(�)

⊗
3, 5

t1
0
(¬¬�)

F1(�)

t1
0
(¬�)

t1
0
(�)

⊗
3, 5

1 F1 ³

1 F1 ³

2 T1¬; 2 t1
0
¬

4 F1¬; 4 t1
0
¬

Testing the same argument but in C2, that is ¬¬� ⊢C2
�, in the tableau of Figure 5.3

shows that it remains valid, but the complexity of the corresponding tableau grows substantially.
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:
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0
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,
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=
{
T
n
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}
,

D
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{
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−
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1. 2. 3. 4. 5. 6.

F
2
(¬
¬
�
³
�
)

T
2
(¬
¬
�
)

F
2
(�
)

t2 0
(¬
�
)

t2 0
(�
)

⊗ 3,
5

t2 1
(�
)

⊗ 3,
5

t2 1
(¬
�
)

t2 0
(�
)

⊗ 3,
5

t2 1
(�
)

⊗ 3,
5

F
2
(¬
�
)

T
2
(�
)

⊗ 3,
6

t2 0
(¬
¬
�
)

F
2
(�
)

t2 0
(¬
�
)

t2 0
(�
)

⊗ 3,
5

t2 1
(�
)

⊗ 3,
5

t2 1
(¬
�
)

t2 0
(�
)

⊗ 3,
5

t2 1
(�
)

⊗ 3,
5

t2 1
(¬
¬
�
)

F
2
(�
)

t2 0
(¬
�
)

t2 0
(�
)

⊗ 3,
5

t2 1
(�
)

⊗ 3,
5

t2 1
(¬
�
)

t2 0
(�
)

⊗ 3,
5

t2 1
(�
)

⊗ 3,
5

1
F
2
³

1
F
2
³

2
T
2
¬

;2
t2 0
¬

;2
t2 1
¬

4
t2 0
¬

;4
t2 1
¬

4
F
2
¬

Fi
gu

re
5.

3:
Te

st
in
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th

er
¬
¬
�
⊢
C
2
�
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.
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Tn('
i I ¬'i)

tn
i
(')

tn
i
('j I ¬'j)

Dej+1

n
(')

Fn('
i I ¬'i)

Ddi−1

n
(') Fn(')

Tn('
k I ¬'k)

⊗

tn
i
('l I ¬'l)

⊗

Here, the symbol⊗ at the bottom of a rule means that any branch where the labeled

formula at the top of said rule appears is closed.

Proving these derived rules are valid is long and tedious, but rather trivial: to give

one example, take the rule headed by Tn('
i I ¬'i), and n = 1 and i = 0; more complex cases

should be treated with inductive arguments. Then we have the following tableau, which indeed

only leaves us t1
0
(') as the rule stated.

1.

2.

3.

4.

5.

T1(' I ¬')

T1(')

T1(¬')

t1
0
(')

⊗
2, 5

F1(')

⊗
2, 5

T1(')

t1
0
(¬')

t1
0
(')

⊗
2, 4

t1
0
(')

T1(¬')

t1
0
(') F1(')

⊗
2, 5

t1
0
(')

t1
0
(¬')

t1
0
(')

1 T1I

1 T1I

3 t1
0
¬

3 T1¬

We can also easily obtain derived rules for formulas of the form 'm, as we show

below: take now indices 1 d r d n, 1 d s d n − 1, 0 d t d n − s − 1 and n − s d u d n − 1.

Tn('
r)

Ddr−2

n
(') Fn(')

tn
t
('s)

tn
s+t

(')

Fn('
r)

tn
r−1

(')

tn
u
('s)

⊗

Also important are derived rules for labeled formulas of the form ¬'m, where the

indices are again 0 d i d n − 1, 1 d r d n and 1 d s d n − 1.

Tn(¬'
r)

Der−1

n
(')

tn
i
(¬'s)

Des

n
(')

Fn(¬'
r)

Ddr−2

n
(') Fn(')

All of these derived rules allow us to give more convoluted examples of tableaux,

where the DR to the right of a row will signify that a derived rule was used to obtain the said

row.
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1
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)
I
�
1
)
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(�
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�
)
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2
(�

1
)

t2 0
(�
)
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(�
)
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1
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Now, still in C1, we show that �1, �1 ⊢C1
(� J �)1 or, what is equivalent, ⊢C1

(�1 I

�1) ³ (� J �)1.

1.

2.

3.

4.

5.

6.

7.

F1((�
1 I �1) ³ (� J �)1)

T1(�
1 I �1)

F1((� J �)
1)

t1
0
(� J �)

T1(�)

T1(�)

t1
0
(�)

⊗
5, 7

t1
0
(�)

⊗
6, 7

T1(�)

F1(�)

t1
0
(�)

⊗
5, 7

t1
0
(�)

⊗
6, 7

F1(�)

T1(�)

t1
0
(�)

⊗
5, 7

t1
0
(�)

⊗
6, 7

F1(�)

F1(�)

t1
0
(�)

⊗
5, 7

t1
0
(�)

⊗
6, 7

t1
0
(�1 I �1)

F1((� J �)
1)

⊗
2

1 F1 ³

1 F1 ³

3 DR

2 DR

2 DR

4 t1
0
J

Finally, in Figure 5.4, we show a negative result, now in C2: it is true that �,¬�, �1

⊢C2
� or, equivalently, ⊢C2

((�I¬�)I�1) ³ �? The answer, obviously, is no, yet for simplicity

we prove something slightly different, but equivalent: since � can assume any value, for this

deduction to be true we must have that (� I ¬�) I �1 always equals F2, what we show not to be

the case; that is, there are homomorphisms on ôC2
, given by the open branches of the tableau in

Figure 5.4, where (� I ¬�) I �1 indeed takes the value T2.

5.4.2.2 mbCcl and Cila

Before showing finite RNmatrices capable of characterizing the logicsCn, we had done the same

for the logics mbCcl and Cila in Sections, respectively, 4.3.1 and 4.3.2 and, in exactly the same

way we have motivated the introduction of the calculi Ān, we may motivate both ĀmbCcl and ĀCila.

Starting with mbCcl, of course now our formulas are over the signature ΣLFI and our labels

are T, t or F, but the procedure is the same: we look at the tables of the RNmatrix for mbCcl,

obtaining the following rules.

T(' J  )

T(') t(') T( ) t( )

t(' J  )

T(') t(') T( ) t( )

F(' J  )

F(')

F( )

T(' I  )

T(') T(') t(') t(')

T( ) t( ) T( ) t( )

t(' I  )

T(') T(') t(') t(')

T( ) t( ) T( ) t( )

F(' I  )

F(') F( )
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T('³  )

F(') T( ) t( )

t('³  )

F(') T( ) t( )

F('³  )

T(') t(')

F( ) F( )

T(¬')

t(') F(')

t(¬')

t(') F(')

F(¬')

T(')

T(ċ')

T(') F(')

t(ċ')

T(') F(')

F(ċ')

t(')

The closure conditions are the adequate translations of the ones in Ā1: a branch is

closed if it contains L(') and L∗(') with L � L∗ or if it contains t( I ¬ ).

For Cila, the situation is a bit simpler: one takes the calculus Ā1 now with formulas

over the signature ΣLFI; exchange the labels T1, t1
0

and F1 by, respectively, T, t and F; and adds

the following rules governing the connective ċ.

T(ċ')

T(') F(')

F(ċ')

t(')

The closure conditions are the same as those of ĀmbCcl, with one addition: a branch

is also closed if it contains a labeled formula t(ċ ). We will not prove it, but ĀmbCcl and ĀCila are

decision methods for their respective logics.
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Chapter 6

Restricted swap structures for da Costa’s

hierarchy

The RNmatrices we defined for Cn are swap structures: roughly speaking, they are semantics

built by assigning, simultaneously, truth values to a formula � and several other, related, for-

mulas; in our case, ¬�, �1,& , �n−1. Most frequently, these truth values are in the two-valued

Boolean algebra 2, but it is possible, in many cases, to instead consider these values in an arbi-

trary Boolean algebra. One example would be of the LFI known as mbC, whose swap structures

may be recast over any non-trivial Boolean algebra ([CC16]); this is made easier by the fact that,

in mbC’s case, we have only a single, finite Nmatrix. The end result of this process is a class

of Nmatrices parameterized by Boolean algebras, which we call a swap structures semantics.

This is done in order to produce a wider class of models, what allows one to study a given logic

by adapting tools from algebraic logic and model theory to the context of non-deterministic

algebras.

However, swap structures have been presented, up to now, only as Nmatrices; given

that the logics between mbCcl and Cila are not characterizable by finite Nmatrices, and that

swap structures were coined to be decision methods (and henceforth finite), it is easy to see that

there haven’t been defined swap structures semantics for these logics so far. In Chapter 5 we

changed this by finally defining, not classical swap structures, but their versions as RNmatrices

over 2 for C1 and the whole of da Costa’s hierarchy; we continue by generalizing, in much the

same way swap structures semantics generalize for arbitrary Boolean algebras the finite Nmatrix

characterization of mbC, the RNmatrices ĀûCn
to structures defined over any given, non-

trivial, Boolean algebra ð. As mentioned, this can have important applications in the model

theory of Cn, being the class of RNmatrices obtained a very well-behaved category; but, more

importantly, the methodology here outlined offers a new outlook of swap structures altogether.

The first step needed to make this generalization possible is to consider, instead of

bivaluations, the concept of ð-valuations; the rest of the process is actually rather straightfor-

ward, as we have already defined objects such as Bn, Dn, ïCn
and ôCn in terms that facilitate

exchanging 2 by an arbitrary ð: that is, they were only defined in terms of the Boolean operators
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and the constants 0 and 1, present in any Boolean algebra. The only restriction that we make is

to non-trivial, also known as non-degenerate, Boolean algebras, where 0 � 1.

The research found in this chapter has been submitted as a preprint in [CT21b].

6.1 ð-Valuations generalize bivaluations

Definition 6.1.1. Given a Boolean algebra ð with universeB, a ð-valuation for Cn is a function

Ā ∶ F(ΣC,Ą) ³ B satisfying:

(V 1) Ā(�#�) = Ā(�)#Ā(�), for any # * {J,I,³};

(V 2) <Ā(�) d Ā(¬�);

(V 3) Ā(¬¬�) d Ā(�);

(V 4)n Ā(�n) = <(Ā(�n−1) I Ā(¬(�n−1)));

(V 5) Ā(¬(�1)) = Ā(�) I Ā(¬�);

(V 6)n Ā(�(n)) I Ā(�(n)) d Ā((�#�)(n)), for any # * {J,I,³}.

Proposition 6.1.1. Let ð be a Boolean algebra and Ā a ð-valuation for Cn: let us denote, for a

formula �, the n + 1-tuple (Ā(�), Ā(¬�), Ā(�1),& , Ā(�n−1)) in Bn+1 by z = (z1,& , zn+1).

1. For any 1 d k d n − 1,

Ā(¬(�k)) = Ā(�) I Ā(¬�) I

k−1â

i=1

Ā(�i),

meaning at most one among z1,& , zn and zn+1 equals 0; furthermore, if zk = 0, then

zi = 1 for every k + 1 d i d n + 1.

2. For 1 d k d n − 1, Ā(�(k)) =
âk

i=1
Ā(�i) and

Ā(�n) = <(Ā(�) I Ā(¬�) I

n−1â

i=1

Ā(�i)).

3. One has Ā(�(n)) = <(Ā(�) I Ā(¬�)) I
ân−1

i=1
Ā(�i).

4. We have Ā(�) J Ā(¬�) = 1, (Ā(�) I Ā(¬�)) J Ā(�1) = 1 and, for every 1 < k d n − 1,

(Ā(�) I Ā(¬�) I

k−1â

i=1

Ā(�i)) J Ā(�k) = 1.
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Proof. 1. A simple argument by induction is sufficient: the case k = 1 is done, from clause

(V 5) of Definition 6.1.1; so, suppose for induction hypothesis that Ā(�k−1) = Ā(�)IĀ(¬�)I
âk−2

i=1
Ā(�i), and we have that, again from clause (V 5),

Ā(¬(�k)) = Ā(¬((�k−1)1)) = Ā(�k−1) I Ā(¬(�k−1)) = Ā(�) I Ā(¬�) I

k−1â

i=1

Ā(�i).

If Ā(�) = 0, from (V 2) we must have Ā(¬�) = 1; and from the previous formula for

Ā(¬(�k)), we find Ā(¬(�1)) = ď = Ā(¬(�n−1)) = 0, meaning, again from (V 2), that

Ā(�1) = ď = Ā(�n−1) = 1. If Ā(¬�) = 0, by the same argument one obtains Ā(¬(�1)) =

ď = Ā(¬(�n−1)) = 0 and the desired result.

Finally, if Ā(�k) = 0, for a k + 1 d j d n − 1, one obtains Ā(¬(�j)) = Ā(�) I Ā(¬�) I
âj−1

i=1
Ā(�i) = 0, and therefore Ā(�j) = 1.

2. For the first part, we proceed again by induction: for k = 1, the result is trivial given the

definition �(1) = �1; assuming Ā(�(k−1)) =
âk−1

i=1
Ā(�i), we get

Ā(�(k)) = Ā(�k I �(k−1)) = Ā(�k) I Ā(�(k−1)) =

kâ

i=1

Ā(�i).

Now, remembering (V 4)n and the previous item of the proposition,,

Ā(�n) = <(Ā(�n−1) I Ā(¬(�n−1))) = <(Ā(�) I Ā(¬�) I

n−1â

i=1

Ā(�i)).

3. From the previous item,

Ā(�(n)) = Ā(�n I �(n−1)) = Ā(�n) I Ā(�(n−1)) = <
[
Ā(�) I Ā(¬�) I

n−1â

i=1

Ā(�i)
]
I

n−1â

i=1

Ā(�i) =

[
<(Ā(�) I Ā(¬�)) J <

n−1â

i=1

Ā(�i)
]
I

n−1â

i=1

Ā(�i) =

[
<(Ā(�) I Ā(¬�)) I

n−1â

i=1

Ā(�i)
]
J
[
<

n−1â

i=1

Ā(�i) I

n−1â

i=1

Ā(�i)
]
=

(<(Ā(�) I Ā(¬�)) I

n−1â

i=1

Ā(�i)) J 0 = <(Ā(�) I Ā(¬�)) I

n−1â

i=1

Ā(�i).

4. From (V 2), <Ā(�) d Ā(¬�), and since Ā(�) J <Ā(�) = 1 we find Ā(�) J Ā(¬�) = 1; from

the first item of this proposition, Ā(¬(�1)) = Ā(�) I Ā(¬�), and since Ā(�) J Ā(¬�) = 1



Chapter 6: Restricted swap structures for da Costa’s hierarchy 181

works for any formula �, by replacing in the latter equation � with �1 one finds

Ā(�1) J (Ā(�) I Ā(¬�)) = Ā(�1) J Ā(¬(�1)) = 1;

finally, again from the first item of the proposition, for every 1 < k d n − 1, Ā(¬(�k)) =

Ā(�) I Ā(¬�) I
âk−1

i=1
Ā(�i), and therefore

Ā(�k) J (Ā(�) I Ā(¬�) I

k−1â

i=1

Ā(�i)) = Ā(�k) J Ā(¬(�k)) = 1.

Proposition 6.1.2. Given a Boolean algebra ð, let Ā be a ð-valuation for Cn.

1. For any # * {J,I,³}, if Ā(¬�) = <Ā(�) and Ā(¬�) = <Ā(�), then Ā(¬(�#�)) = <Ā(�#�);

2. if Ā(¬�) = <Ā(�), then Ā(¬¬�) = <Ā(¬�).

Proof. 1. Assume Ā is a ð-valuation for Cn for which Ā(¬�) = <Ā(�) and Ā(¬�) = <Ā(�).

Then Ā(�)IĀ(¬�) = Ā(�)IĀ(¬�) = 0 and therefore<(Ā(�)IĀ(¬�)) = <(Ā(�)IĀ(¬�)) = 1.

Since, from Proposition 6.1.1, Ā(¬(�k)) = Ā(�)IĀ(¬�)I
âk−1

i=1
Ā(�i) for every 1 d k d n−1,

we find Ā(¬(�k)) = Ā(¬(�k)) = 0 for every 1 d k d n − 1, implying from (V 2) (in

Definition 6.1.1) that Ā(�k) = Ā(�k) = 1 for all 1 d k d n − 1. Again from Proposition

6.1.1, Ā(�(n)) = <(Ā(�) I Ā(¬�)) I
ân−1

i=1
Ā(�i), and so Ā(�(n)) = Ā(�(n)) = 1, meaning from

(V 6)n that Ā((�#�)(n)) = 1.

But, again from the fact that, for any formula �, Ā(�(n)) = <(Ā(�) I Ā(¬�)) I
ân−1

i=1
Ā(�i),

we obtain that Ā((�#�)(n)) d <[Ā(�#�) I Ā(¬(�#�))], and thus Ā(�#�) I Ā(¬(�#�)) = 0,

which means Ā(¬(�#�)) = <Ā(�#�) from (V 2).

2. Now suppose Ā is a ð-valuation for Cn for which Ā(¬�) = <Ā(�): by (V 3),

Ā(¬¬�) I Ā(¬�) d Ā(�) I Ā(¬�) = 0,

and since Ā(¬¬�) J Ā(¬�) = 1 from (V 2), we find Ā(¬¬�) = <Ā(¬�).

One notices that, as a corollary to this last proposition, whenever Ą0 is a non-empty

subset of Ą and Ā is a ð-valuation for Cn satisfying that Ā(¬p) = <Ā(p), for every p * Ą0, one

has Ā(¬�) = <Ā(�) for every formula � in F (ΣC,Ą0).

A simple argument by structural induction is sufficient, being the base case one of

the hypothesis: if the result holds for � and �, from Proposition 6.1.2 Ā(¬(�#�)) = <Ā(�#�), for

any # * {J,I,³}; and, again by the proposition, Ā(¬¬�) = <Ā(¬�). Since {� * F (ΣC,Ą0) ∶
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Ā(¬�) = <Ā(�)} contains Ą0 and is closed under the connectives in {¬,J,I,³} (all of ΣC), we

obtain this set is the whole of F (ΣC,Ą0).

Additionally, under those hypothesis, we have that for every � * F (ΣC,Ą0) we have

Ā(�(n)) = 1: we can see that from the equality Ā(�(n)) = <(Ā(�) I Ā(¬�)) I
ân−1

i=1
Ā(�i). Since

Ā(¬�) = <Ā(�), Ā(�) I Ā(¬�) = 0 and therefore <(Ā(�) I Ā(¬�)) = 1; furthermore, for any

1 d k d n − 1, Ā(¬(�k)) = <Ā(�k) and Ā(¬(�k)) = Ā(�) I Ā(¬�) I
âk−1

i=1
Ā(�i), thus we find

Ā(�k) = <(Ā(�) I Ā(¬�) I

k−1â

i=1

Ā(�i)),

and in our current position this means Ā(�k) = 1 (for all 1 d k d n − 1), what gives the desired

result Ā(�(n)) = 1.

Lemma 6.1.1. Given a bivaluation Ā for Cn, Ā(�
(n)) = 1 if and only if Ā(�) � Ā(¬�).

Proof. We first prove that, if Ā(�(n)) = 1, then Ā(�) � Ā(¬�). Start by noticing that if Ā is a

bivaluation for Cn, then Ā(�(k)) =
âk

i=1
Ā(�i) for k e 1: this is obviously true for k = 1, given

�(1) = �1; supposing this is true for k − 1, we obtain that

Ā(�(k)) = Ā(�(k−1) I �k) = Ā(�(k−1)) I Ā(�k) =

kâ

i=1

Ā(�i).

So, since Ā(�(n)) =
ân

i=1
Ā(�i) = 1, Ā(�1) = ď = Ā(�n) = 1; from (B6)n of Definition 6.1.1,

Ā(�n) = 1 implies Ā(¬(�n−1)) = 0.

Now, from (B7), since Ā(�n−1) = Ā((�n−2)1) = 0 one finds out that Ā(¬(�n−2)) = 0;

inductively, we obtain Ā(¬(�1)) = ď = Ā(¬(�n−1)) = 0, and with one final application of (B7),

Ā(¬(�1)) = 0 implies Ā(�) � Ā(¬�).

Reciprocally, Ā(�) � Ā(¬�) implies Ā(�) I Ā(¬�) = 0 and so Ā(�1) = 1, while by

(B7) we obtain that Ā(¬(�1)) = 0; this, of course, implies that Ā(�2) = ď = Ā(�n) = 1, and

therefore Ā(�(n)) =
ân

i=1
Ā(�i) = 1.

Theorem 6.1.1. Given the Boolean algebra of two elements 2, a function Ā ∶ F (ΣC,Ą) ³ {0, 1}

is a bivaluation for Cn if, and only if, it is a 2-valuation for Cn.

Proof. Suppose, first of all, that Ā is a bivaluation. Condition (V 1) follows from (B1), (B2) and

(B3). If Ā(�) = 0, from (B4) we find Ā(¬�) = 1 and therefore <Ā(�) = 1 d 1 = Ā(¬�); if

Ā(�) = 1, regardless of the value of Ā(¬�) we obtain <Ā(�) = 0 d Ā(¬�), which means that, in

all cases, <Ā(�) d Ā(¬�), corresponding to clause (V 2).

If Ā(¬¬�) = 1, condition (B5) implies that Ā(�) = 1, and therefore Ā(¬¬�) d Ā(�);

if Ā(¬¬�) = 0, Ā(¬¬�) d Ā(�) is true regardless of the value of Ā(�), meaning condition (V 3)

always holds. Now, from condition (B4) we can not have Ā(�n−1) = Ā(¬(�n−1)) = 0, so there

remain three cases to consider: if Ā(�n−1) = 0 and Ā(¬(�n−1)) = 1, or vice-versa, from (B6)n we
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obtain Ā(�n) = 1 and therefore

Ā(�n) = 1 = <(Ā(�n−1) I Ā(¬(�n−1)));

if Ā(�n−1) = Ā(¬(�n−1)) = 1, again from (B6)n we obtain Ā(�n) = 0, and so

Ā(�n) = 0 = <(Ā(�n−1) I Ā(¬(�n−1))),

proving that (V 4)n is valid. As mentioned earlier, we can not have Ā(�) = Ā(¬�) = 0, according

to (B4), and so if Ā(�) = Ā(¬�) = 1, from (B7) we get Ā(¬(�1)) = 1 and therefore Ā(¬(�1)) =

Ā(�) I Ā(¬�); if Ā(�) = 0 or Ā(¬�) = 0, again from (B7) we find Ā(¬(�1)) = 0, meaning once

more that Ā(¬(�1)) = Ā(�) I Ā(¬�) and that (V 5) holds.

Finally, notice that if Ā(�(n)) = 0 or Ā(�(n)) = 0, (V 6)n already holds true, so let us

assume that Ā(�(n)) = 1 and Ā(�(n)) = 1: this means, by Lemma 6.1.1, that Ā(�) � Ā(¬�) and

Ā(�) � Ā(¬�); from (B8), this translates to Ā(�#�) � Ā(¬(�#�)) for any # * {J,I,³}, and

again by Lemma 6.1.1 this becomes Ā((�#�)(n)) = 1, which verifies (V 6)n and finishes proving

Ā is a 2-valuation.

Reciprocally, suppose Ā is a 2-valuation. (B1), (B2) and (B3) clearly follow from

(V 1). If Ā(�) = 0, from (V 2) we obtain Ā(¬�) e <Ā(�) = 1, and therefore Ā(¬�) = 1, thus

satisfying (B4). If Ā(¬¬�) = 1, Ā(�) e Ā(¬¬�) = 1 from (V 3), and so Ā(�) = 1, meaning (B5)

is also validated.

Now, if Ā(�n−1) = Ā(¬(�n−1)), since both can not be 0 given (V 2), both equal 1 and

from (V 4)n we get Ā(�n) = <(Ā(�n−1) I Ā(¬(�n−1))) = 0, and one direction of (B6)n holds.

Reciprocally, if Ā(�n) = 0, given Ā(�n) = <(Ā(�n−1) I Ā(¬(�n−1))) from (V 4)n we get Ā(�n−1) I

Ā(¬(�n−1)) = 1, and therefore Ā(�n−1) = Ā(¬(�n−1)) = 1, meaning that both directions of (B6)n
hold.

To analyze (B7), there are again two directions to consider: if Ā(�) = Ā(¬�), this

means that both are equal to 1 (given (V 2)), and so Ā(¬(�1)) = Ā(�) I Ā(¬�) = 1, in accordance

to (V 5); if Ā(¬(�1)) = 1, again from (V 5) we obtain 1 = Ā(¬(�1)) = Ā(�) I Ā(¬�), meaning

Ā(�) = Ā(¬�) = 1 and that (B7) holds true.

Finally, suppose Ā(�) � Ā(¬�) and Ā(�) � ¬Ā(�), meaning that Ā(¬�) = <Ā(�) and

Ā(¬�) = <Ā(�): from Proposition 6.1.2, Ā(¬(�#�)) = <Ā(�#�), for any # * {J,I,³}, and so

Ā(¬(�#�)) � Ā(�#�). This implies (B8) is true, and that Ā is then a bivaluation.

Fix a Boolean algebra ð and take formulas � L {'} ⊆ F (ΣC,Ą): we say � proves

' according to ð-valuations for Cn, and write � ⊨ð
Cn
', if every ð-valuation Ā satisfying Ā(�) ⊆

{1} also has the property that Ā(') = 1.

Theorem 6.1.2. Let n * ℕ ö {0} and � L {'} be a set of formulas in the signature ΣC: then

� ⊢Cn ' if and only if � ⊨ð
Cn
' for every Boolean algebra ð.
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Proof. First assume that � ⊢Cn ', and let us fix a Boolean algebra ð. It is a straightforward

exercise to prove that, if ' is an instance of an axiom of Cn, then Ā(') = 1 for any ð-valuation

Ā for Cn; now, again for a ð-valuation Ā for Cn, if Ā(�) = Ā(� ³ �) = 1, since Ā(� ³ �) =

Ā(�) ³ Ā(�) from (V 1), one derives that Ā(�) = 1, meaning “⊨ð
Cn

” models all axiom schemata

and rules of inference of Cn.

So, if '1,& , 'n, with 'n = ', is a derivation of ' from �, we prove by induction

that, if Ā(�) ⊆ {1}, then Ā('1) = ď = Ā('n) = 1, and therefore if Ā is a ð-valuation for Cn,

Ā(�) ⊆ {1} implies Ā(') = 1, meaning � ⊨ð
Cn
'. This is rather easy: '1 is either in �, where

the fact that Ā(�) ⊆ {1} implies Ā('1) = 1, or is an instance of an axiom schema, meaning from

the previous observations that Ā('1) = 1. So, assume that Ā('1) = ď = Ā('i−1) = 1, and there

are three cases to consider: if 'i is in � or is an instance of an axiom schema, proceed as before;

if there exist 'j and 'k, with 1 d j, k < i, such that 'j = 'k ³ 'i or 'k = 'j ³ 'i, since

Ā('j) = Ā('k) = 1 we find Ā('i) = 1, and we are done.

Reciprocally, assume � ⊨ð
Cn
' for every Boolean algebra ð; in particular, � ⊨2

Cn
',

and since bivaluations characterize Cn, we derive that � ⊢Cn '.

6.2 The RNmatrices Āûð
Cn

Now that we have the appropriate generalization of a bivaluation to arbitrary Boolean algebras,

our goal is to generalize the RNmatrix ĀûCn
= (ïCn

, Dn.ôCn) to a new restricted Nmatrix built

around ð by using the notion of snapshots in a broader context, in much the same way it would

be done while dealing with swap structures. This will be achieved by generalizing both ïCn
and

Dn to, respectively, the ΣC-multialgebra ïð
Cn

and the subset of its universe Dð
n

; this, of course,

takes the Nmatrix ûCn
= (ïCn

, Dn) to the, still, Nmatrix ûð
Cn

= (ïð
Cn
, Dð

n
). The decisive step,

however, is generalizing the set of restricted valuations from ôCn to ôð
Cn

, what will allow to trade

the RNmatrix ĀûCn
= (ïCn

, Dn,ôCn) for Āûð
Cn

= (ïð
Cn
, Dð

n
,ôð

Cn
).

For a Boolean algebra ð, consider a ð-valuation Ā for Cn and the (n + 1)-tuple

z = (z1,& , zn+1) in ðn+1 such that z1 = Ā(�), z2 = Ā(¬�), z3 = Ā(�1),& , zn+1 = Ā(�n−1), for

a formula � of Cn; these will be the aforementioned generalized snapshots over which we shall

work. We can be sure that the following definition works by referring back to Proposition 6.1.1.

Definition 6.2.1. Given a Boolean algebra ð, the set of ð-snapshots for Cn is

Bð
n
= {z * Bn+1 ∶ (

kâ

i=1

zi) J zk+1 = 1, for every 1 d k d n}.

Other sets that will be useful to us are:

1. Dð
n
= {z * Bð

n
∶ z1 = 1}, the set of designated values;

2. Booð
n
= {z * Bð

n
∶ z1 I z2 = 0}, the set of Boolean values;
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3. Uð
n
= Bð

n
öDð

n
, the set of undesignated values.

Although somewhat obvious, it is still relevant to point out the set of designated

elements correspond to formulas which are true under a ð-valuation: that is, if z = (z1,& , zn+1)

satisfies z1 = 1, and z = (Ā(�), Ā(¬�), Ā(�1),& , Ā(�n−1)), then Ā(�) = 1, that is, � is true

according to Ā. For simplicity, and to maintain the notation we had already adopted, we will

denote the i-th coordinate of z * Bn+1 by zi.

Notice that, from the definition of Bð
n

, for any snapshot z one has z1 J z2 = 1; so, if

z * Booð
n

, z1 I z2 = 0 and therefore z2 = <z1; then, from the fact that

1 = (

kâ

i=1

zi) J zk+1 = (z1 I z2 I

kâ

i=3

zi) J zk+1 = (0 I

kâ

i=3

zi) J zk+1 = 0 J zk+1 = zk+1,

for every 3 d k d n, we discover that z * Booð
n

if, and only if, there exists a in ð such that

z = (a,<a, 1,& , 1), what establishes a bijection between ð and Booð
n

.

Definition 6.2.2. Given a Boolean algebra ð, the full swap structure for Cn over ð is the ΣC-

multialgebra ïð
Cn

, with universe Bð
n

, with operations defined as, for any two z,w * Bð
n

,

¬̃z = {w * Bð
n

∶ w1 = z2 and w2 d z1}

and

for # * {J,I,³}, z#̃w =

{
{u * Bð

n
∶ u1 = z1#w1} K Boo

ð
n

if z,w * Booð
n

{u * Bð
n

∶ u1 = z1#w1} otherwise
.

Notice that this endows Booð
n

with a structure of a Boolean algebra, top element

(1, 0, 1,& , 1) and bottom (0, 1, 1,& , 1), isomorphic to that of ð, giving us a copy of ð inside

of ïð
Cn

: in all of this, “¬̃” plays the role of the negation of Booð
n

as a Boolean algebra, meaning

¬̃z = {(<a, a, 1,& , 1)}, if z = (a,<a, 1,& , 1). This is true since, appealing to its definition,

¬̃z = {w * Bð
n

∶ w1 = <a and w2 d a},

what means that w1 I w2 d <a I a = 0, and therefore w * Booð
n

is such that w1 = <a, and

there is only one element satisfying this property, namely w = (<a, a, 1,& , 1).

Furthermore, one sees that Bn ⊆ Bð
n

, given that 2 is necessarily a subalgebra of ð,

and Dð
n
K Bn = Dn and Booð

n
K Bn = Boon; the multioperations of ïð

Cn
, when restricted to Bn,

become those of ïCn
, and it is clear then that ïCn

is a submultialgebra of ïð
Cn

.

Definition 6.2.3. Given a Boolean algebra ð, the restricted Nmatrix for Cn over ð is the RN-

matrix

Āûð
Cn

= (ïð
Cn
.Dð

n
,ôð

Cn
),
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where ôð
Cn

is the set of valuations � for ïð
Cn

, meaning homomorphisms � ∶ F(ΣC,Ą) ³ ïð
Cn

,

satisfying, for any two formulas � and � of Cn:

1. �(� I ¬�) * {z * �(�)Ĩ�(¬�) ∶ z2 = �(�)3};

2. �(�1) = (�(�)3, �(�)1 I �(�)2, �(�)4,& , �(�)n+1,<(
ân+1

i=1
�(�)i));

3. for any # * {J,I,³}, �((�(n) I �(n)) ³ (�#�)(n)) * Dð
n

.

The following is a somewhat obvious result, but we prove it for completeness sake.

Lemma 6.2.1. For every formula � of Cn, j, k * ℕ and endomorphism � ∶ F(ΣC,Ą) ³

F(ΣC,Ą),

�(�j) = �(�)j and �(�(k)) = �(�)(k).

Proof. One has �(�0) = �(�) = �(�)0, so assume that �(�j) = �(�)j:

�(�j+1) = �(¬(�j I ¬�j)) = ¬(�(�j) I ¬�(�j)) = ¬(�(�)j I ¬�(�)j) = �(�)j+1.

Now �(�(0)) = �(�) = �(�)(0) and �(�(1)) = �(�1) = �(�)1 = �(�)(0), so assume �(�(k)) =

�(�)(k):

�(�(k+1)) = �(�(k) I �k+1) = �(�(k)) I �(�k+1) = �(�)(k) I �(�)k+1 = �(�)(k+1).

Proposition 6.2.1. For any homomorphism � in ôð
Cn

and any endomorphism � ∶ F(ΣC,Ą) ³

F(ΣC,Ą), �ċ� lies in ôð
Cn

.

Proof. Of course �ċ� ∶ F(ΣC,Ą) ³ ïð
Cn

is still a homomorphism of ΣC-multialgebras.

1. That �ċ�(� I ¬�) is in �ċ�(�)Ĩ�ċ�(¬�) is a given, since �ċ� is a homomorphism. Now,

given � is a homomorphism of F(ΣC,Ą), �ċ�(� I ¬�) = �(�(� I ¬�)) equals �(�(�) I

¬�(�)); since � lies in ôð
Cn

,

�(�(�) I ¬�(�))2 = �(�(�))3 = �ċ�(�)3,

as we needed to prove.

2. We use, again, that � is a change of variables: from Lemma 6.2.1, �(�1) = �(�)1; keeping

in mind that �ċ�(�)i = �(�(�))i,

�ċ�(�1) = �(�(�)1) =

(
�(�(�))3, �(�(�))1 I �(�(�))2, �(�(�))4,& , �(�(�))n+1,<(

n+1â

i=1

�(�(�))i)
)
=
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(
�ċ�(�)3, �ċ�(�)1 I �ċ�(�)2, �ċ�(�)4,& , �ċ�(�)n+1,<(

n+1â

i=1

�ċ�(�)i)
)
.

3. Finally, for any # * {J,I,³},

�ċ�
(
(�(n) I �(n)) ³ (�#�)(n)

)
= �

(
(�(�(n)) I �(�(n))) ³ �((�#�)(n))

)
;

from Lemma 6.2.1, this equals

�
(
(�(�)(n) I �(�)(n)) ³ �(�#�)(n)

)
= �

(
(�(�)(n) I �(�)(n)) ³ (�(�)#�(�))(n)

)
,

which is in Dð
n

since � is in ôð
Cn

(and �(�) and �(�) are still formulas of Cn).

It follows, quite easily, that Āûð
Cn

is structural.

Definition 6.2.4. To signify that ' follows from � according to the semantical consequence

relation with respect to Āûð
Cn

we write � ⊨RN
Āûð

Cn

'.

The semantical consequence relation with respect to the restricted swap structures

semantics for Cn, i.e. the class ĀāCn
of Āûð

Cn
for all Boolean algebras ð, will be similarly

represented by � ⊨RN
ĀāCn

': this means that

� ⊨RN
ĀāCn

' if, and only if, � ⊨RN
Āûð

Cn

' for all Boolean algebras ð.

Lemma 6.2.2. For 2 d k d n − 2, we have that, for a homomorphism � * ôð
Cn

,

�(�k) = (�(�)k+2,

k+1â

i=1

�(�)i, �(�)k+3,& , �(�)n+1,<

n+1â

i=1

�(�)i, 1,& , 1);

of course, we then have

�(�n−1) = (�(�)n+1,

nâ

i=1

�(�)i,<

n+1â

i=1

�(�)i, 1,& , 1)

and

�(�n) = (<

n+1â

i=1

�(�)i,

n+1â

i=1

�(�)i, 1,& , 1).

Proof. For k = 2, the result follows from the definition of ôð
Cn

and the fact that �2 = (�1)1:

1. �(�2)1 = �(�1)3 = �(�)4;

2. �(�2)2 = �(�1)1 I �(�
1)2 = �(�)1 I �(�)2 I �(�)3;
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3. for 3 d j d n − 1, �(�2)j = �(�1)j+1 = �(�)j+2;

4. �(�2)n = �(�1)n+1 = <
ân+1

i=1
�(�)i;

5. �(�2)n+1 = <
ân+1

i=1
�(�1)i = <(

ân+1

i=1
�(�)i I <

ân+1

i=1
�(�)i) = 1.

For the general case, suppose the result holds for k−1, and remember �k = (�k−1)1.

1. �(�k)1 = �(�k−1)3 = �(�)k+3;

2. �(�k)2 = �(�k−1)1 I �(�
k−1)2 = �(�)k+1 I

âk

i=1
�(�)i =

âk+1

i=1
�(�)i;

3. for 3 d j d n − k + 1, �(�k)j = �(�k−1)j+1 = �(�)j+k;

4. �(�k)n−k+2 = �(�k−1)n−k+3 = <
âk+1

i=1
�(�)i;

5. since
ân−k+2

i=1
=
âk+1

i=1
�(�)i I <

âk+1

i=1
�(�)i = 0, all following coordinates must equal 1.

The cases �(�n−1) and �(�n) follow analogously.

Using the previous lemma, specifically the fact that �(�k)1 = �(�)k+2, is not difficult

to prove that, for 1 d k d n, �(�(k))1 =
âk+2

i=3
�(�)i: the base case is rather obvious, since

�(�(1))1 = �(�1)1 = �(�)3; assuming the result holds for an arbitrary 1 d k d n − 1,

�(�(k+1))1 = �(�(k))1 I �(�
k+1)1 =

k+2â

i=3

�(�)i I �(�)k+3 =

k+3â

i=3

�(�)i.

Then, one has, again from Lemma 6.2.2,

�(�(n))1 = �(�(n−1))1 I �(�
n)1 =

n+1â

i=3

�(�)i I <

n+1â

i=1

�(�)i =

n+1â

i=3

�(�)i I <
(
�(�)1 I �(�)2 I

n+1â

i=3

�(�)i

)
=

n+1â

i=3

�(�)i I
(
<(�(�)1 I �(�)2) J <

n+1â

i=3

�(�)i

)
=

( n+1â

i=3

�(�)i I <(�(�)1 I �(�)2)
)
J
( n+1â

i=3

�(�)i I <

n+1â

i=3

�(�)i

)
=

<(�(�)1 I �(�)2) I

n+1â

i=3

�(�)i = <(�(�)1 I �(�)2) I �(�
(n−1))1

Proposition 6.2.2. Let <� = ¬�I�(n) be the definable strong negation in Cn; for every � * ôð
Cn

,

one has:

1. �(� I <�) = Fn;

2. �(� J < �) * Dð
n

.
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Proof. 1. One has �(¬�)1 = �(�)2 and �(�(n))1 = <(�(�)1 I �(�)2) I �(�
(n−1))1, and therefore

�(¬�I�(n))1 = �(�)2I<(�(�)1I�(�)2)I�(�
(n−1))1 = �(�)2I(<�(�)1J<�(�)2)I�(�

(n−1))1 =

(
�(�)2I<�(�)1I�(�

(n−1))1

)
J
(
�(�)2I<�(�)2I�(�

(n−1))1

)
= �(�)2I<�(�)1I�(�

(n−1))1.

So,

�(� I <�)1 = �(�)1 I
(
�(�)2 I <�(�)1 I �(�

(n−1))1

)
= 0,

what means that �(� I <�) = Fn.

2. Since �(�) is in Bð
n

, �(�)1 J �(�)2 = 1 and, for any 1 d k d n, (
âk

i=1
�(�)i) J �(�)k+1 = 1,

meaning

<�(�)k+1 d

kâ

i=1

�(�)i d �(�)1.

This implies that, for all 3 d k d n + 1, <�(�)k d �(�)1, and so <
ân+1

i=3
�(�)i =

ãn+1

i=3
<�(�)i d �(�)1, what implies in turn that

�(� J <�)1 = �(�)1 J
(
�(�)2 I <�(�)1 I �(�

(n−1))1

)
=

(�(�)1 J �(�)2) I (�(�)1 J <�(�)1) I (�(�)1 J

n+1â

i=3

�(�)i) = 1.

Of course, this finishes proving that �(� J <�) * Dð
n

.

Lemma 6.2.3. Let � be a valuation in ôð
Cn

; then, the mapping Ā ∶ F(ΣC,Ą) ³ |ð|, given by

Ā(�) = �(�)1, is a ð-valuation for Cn such that Ā(�) = 1 if, and only if, �(�) * Dð
n

for every

formula �.

Proof. 1. Clause (V 1) is quite obvious: since � is a homomorphism, �(�#�) * �(�)#̃�(�),

for any # * {J,I,³}, and given that u * z#̃w if, and only if, u1 = z1#w1, we obtain that

�(�#�)1 = �(�)1#�(�)1 and therefore Ā(�#�) = Ā(�)#Ā(�).

2. We have Ā(¬�) = �(¬�)1: since �(¬�) * ¬̃�(�), given � is a homomorphism, andw * ¬̃z

if, and only if w1 = z2 and w2 d z1, we obtain �(¬�)1 = �(�)2; from the definition of Bð
n

,

�(�)1J�(�)2 = 1, implying �(�)2 e <�(�)1. Of course, this means Ā(¬�) e <Ā(�), which

corresponds to clause (V 2).

3. Again from the definition of ¬̃, �(¬¬�)1 = �(¬�)2, and �(¬�)2 d �(�)1, meaning Ā(¬¬�) =

�(¬¬�)1 d �(�)1 = Ā(�). This corresponds to clause (V 3).

4. From Lemma 6.2.2, we have �(�n)1 = <
ân+1

i=1
�(�)i, �(�

n−1)1 = �(�)n+1 and �(¬(�n−1))1 =
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�(�n−1)2 =
ân

i=1
�(�)i, meaning therefore that

Ā(�n) = <

n+1â

i=1

�(�)i = <(�(�)n+1 I

nâ

i=1

�(�)i) = <(Ā(�n−1) I Ā(¬(�n−1))),

that is, clause (V 4)n.

5. We have Ā(¬(�1)) = �(¬(�1))1 = �(�1)2 = �(�)1 I �(�)2 = �(�)1 I �(¬�)1 = Ā(�) I Ā(¬�).

That validates clause (V 5).

6. From the third condition of Definition 6.2.3, for any # * {J,I,³} one has �((�(n) I

�(n)) ³ (�#�)(n)) * Dð
n

, meaning (�(�(n))1 I �(�
(n))1) ³ �((�#�)(n))1 = �((�(n) I �(n)) ³

(�#�)(n))1 = 1. Of course, this implies Ā(�(n))IĀ(�(n)) = �(�(n))1I�(�
(n))1 d �((�#�)(n))1 =

Ā((�#�)(n)). This shows condition (V 6)n is also validated.

Of course, Ā(�) = 1 if, and only if, �(�)1 = 1, which is equivalent to �(�) * Dð
n

.

Lemma 6.2.4. Let Ā be a ð-valuation for Cn; then, the mapping � ∶ F(ΣC,Ą) ³ Bð
n

given by

�(�) = (Ā(�), Ā(¬�), Ā(�1),& , Ā(�n−1)) is a valuation in ôð
Cn

such that Ā(�) = 1 if, and only if,

�(�) * Dð
n

for every formula �.

Proof. First of all, we prove � is a homomorphism.

1. One sees that, by definition of �, �(¬�)1 = Ā(¬�) = �(�)2 and, by (V 3), �(¬�)2 =

Ā(¬¬�) d Ā(�) = �(�)1, proving that �(¬�) * #̃�(�).

2. For # * {J,I,³}, from condition (V 1) one gets �(�#�)1 = Ā(�#�) = Ā(�)#Ā(�) =

�(�)1#�(�)1. Furthermore, �(�), �(�) * Booð
n

if and only if �(�)1 = <�(�)2 and �(�)1 =

<�(�)2, or equivalently, Ā(¬�) = <Ā(�) and Ā(¬�) = <Ā(�); from Proposition 6.1.2, this

implies Ā(¬(�#�)) = <Ā(�#�), that is, �(�#�) * Booð
n

. With all of this, we find that,

regardless of the values of �(�) and �(�), �(�#�) * �(�)#̃�(�).

Now, we need only to prove that � is in ôð
Cn

.

1. From the fact � is a homomorphism, �(� I ¬�) * �(�)Ĩ�(¬�); moreover, �(� I ¬�)2 =

Ā(¬(�I¬�)) = Ā(�1) = �(�)3, what proves the first condition for being in ôð
Cn

of Definition

6.2.3 is satisfied.

2. �(�1)1 = Ā(�1) = �(�)3, from the definition of �; from property (V 5), �(�1)2 = Ā(¬(�1)) =

Ā(�) I Ā(¬�) = �(�)1 I �(�)2; for 3 d k d n, �(�1)k = Ā((�1)k−2) = Ā(�k−1) = �(�)k+1.

Finally, we have from (V 4)n that �(�1)n+1 = Ā(�n) = <(Ā(�n−1) I Ā(¬(�n−1))); from (V 5),

Ā(¬(�n−1)) = Ā(�n−2) I Ā(¬(�n−2)), and proceeding recursively, one obtains �(�1)n+1 =

(Ā(�) I Ā(¬�) I <
ân−1

i=1
Ā(�i)) = <

ân+1

i=1
�(�)i.
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3. For any # * {J,I,³}, from (V 6)n we find that Ā(�(n)) I Ā(�(n)) d Ā((�#�)(n)), mean-

ing �(�(n) I �(n))1 = �(�(n))1 I �(�
(n))1 d �((�#�)(n))1, and therefore �(�(n) I �(n))1 ³

�((�#�)(n))1 = �((�(n) I �(n)) ³ (�#�)(n))1 = 1, which is equivalent to �((�(n) I �(n)) ³

(�#�)(n)) * Dð
n

.

Clearly, Ā(�) = 1 if, and only if, �(�)1 = 1, which is in turn equivalent to �(�) *

Dð
n

.

Theorem 6.2.1. Given formulas � L {'} of Cn, � ⊢Cn ' if, and only if, � ⊨RN
ĀāCn

'.

Proof. We start by assuming that � ⊢Cn ', and taking a valuation � lying in ôð
Cn

and satisfying

�(�) ⊆ Dð
n

: from Lemma 6.2.3, the function

Ā ∶ F (ΣC,Ą) ³ ð,

such that Ā(�) = �(�)1 for any formula � of Cn, is a ð-valuation for which, by hypothesis,

Ā(�) ⊆ {1}. We know the method of ð-valuations to be sound for Cn, so � ⊢Cn ' implies

that Ā(') = 1, and therefore �(') * Dð
n

. This proves � ⊨ĀûCn
', and hence the semantics of

restricted swap structures is sound.

Reciprocally, assume � ⊨RN
ĀāCn

' and suppose Ā is a ð-valuation with Ā(�) ⊆ {1}.

From Lemma 6.2.4,

� ∶ F(ΣC,Ą) ³ ïð
Cn

defined as

�(�) = (Ā(�), Ā(¬�), Ā(�1),& , Ā(�n−1)),

is a valuation in ôð
Cn

with the additional property that �(�) ⊆ Dð
n

. Since � ⊨RN
ĀāCn

', it follows

that �(') * Dð
n

, what means Ā(') = 1 and, by completeness of Cn with respect to ð-valuations,

� ⊢Cn '.

6.2.1 Āûð
Cn

is not trivial

A natural question is then if Āûð
Cn

adds anything to the already defined ĀûCn
: that is, is there

a valuation for Āûð
Cn

which is not a valuation for ĀûCn
? This is mostly equivalent to the

question of whether there exists a (non-trivial) Boolean algebra ð and a ð-valuation which is

not a bivaluation.

So, take a non-trivial Boolean algebra ð, and remember Definition 6.1.1 of a ð-

valuation . We will construct by structural induction a ð-valuation Ā for Cn, extending any

given function b from Ą into the universe of ð, and by taking a b for which there exists a p * Ą

with b(¬p) � <b(p) we will obtain that Ā satisfies:

1. that there exists a formula � for Cn with Ā(¬�) � <Ā(�);
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2. that the image {Ā(�) ∶ � * F (ΣC,Ą)} of Ā is not contained in {0, 1}.

Furthermore, by taking the homomorphism �(�) = (Ā(�), Ā(¬�), Ā(�1),& , Ā(�n−1)),

we find a valuation in ôð
Cn

whose image is not contained in Bn or Booð
n

.

Now, concerning the task of defining Ā, satisfying clauses (V 1) through (V 5) of

Definition 6.1.1 is easy, but in order to guarantee that clause (V 6)n is respected we must be very

careful. We have that Ā must be equal to b over formulas of complexity 0, namely variables; we

must also define, for our recursion to work, Ā(¬p), Ā(pi) and Ā(¬pi), for all i * ℕ and p * Ą , but

we will show how this is done in the more general setting where p is replaced by an arbitrary

formula � of bounded complexity. So, assume for a moment that Ā(�), Ā(¬�), Ā(�i) and Ā(¬�i),

for any i * ℕ, have been defined for all formulas � of complexity at most m: then a formula of

complexity m+1 is either: �#�, for � and � of complexity less or equal to m and # * {J,I,³},

when we define, in order to satisfy (V 1),

Ā(�#�) = Ā(�)#Ā(�);

or ¬�, for an � of complexity equal tom, when Ā(¬�) has already been defined. So we must now

specify, for � and � of complexity at most m, Ā(¬¬�), Ā((¬�)i), Ā(¬(¬�)i), Ā(¬(�#�)), Ā((�#�)j)

and Ā(¬(�#�)j)), for 1 d i, j d n.1 We start by looking at Ā(¬¬�), which we make equal to

1. Ā(
) I Ā(¬
), if ¬� = 
1 (thus validating (V 5));

2. any value between Ā(�) and <Ā(¬�), both included, if the previous case does not apply

(validating (V 2) and (V 3)).

Regarding Ā((¬�)i) and Ā(¬(¬�)i), for 1 d i d n − 1, there isn’t a lot we must do: supposing

we have defined Ā((¬�)i−1) and Ā(¬(¬�)i−1), it is sufficient to demand that Ā((¬�)i) is greater or

equal to

<[Ā((¬�)i−1 I ¬(¬�)i−1)],

in order to satisfy clause (V 2), and that Ā(¬(¬�)i) equals Ā((¬�)i−1) I Ā(¬(¬�)i−1), in order to

validate (V 5) (unless ¬� = 
k for some 1 d k d n − 1 such that k + i = n, in which case

Ā((¬�)i) = Ā(
n) is defined according to (V 4)n). Of course, Ā((¬�)n) and Ā(¬(¬�)n) are given

values according to clauses, respectively, (V 4)n and (V 5), being expressed in terms of the already

defined Ā((¬�)n−1) and Ā(¬(¬�)n−1).

Difficulties finally arise when defining Ā(¬(�#�)), Ā((�#�)i) and Ā(¬(�#�)i), because

we must be mindful of clause (V 6)n: denote by a0 the value Ā(�0) = Ā(�)#Ā(�), and by a# the

value Ā(�(n))IĀ(�(n)) =
ân

j=1
Ā(�j)IĀ(�j) (all of Ā(�j) and Ā(�j), by hypothesis, already defined).

Ā(¬(�#�)) - The value for Ā(¬(�#�)) will be a¬: on the off chance that # = I, � = 
n−1 and

� = ¬
n−1, we make a¬ equal to <a0 = <[Ā(
n−1) I Ā(¬(
n−1))] (as required by (V 4)n);

1We do not need to worry about defining Ā(�j) or Ā(¬�j) for j > n, for any formula �, since they must always
take the values, respectively, 1 and 0.
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otherwise, a¬ can be any value such that

a¬ e <a0 and a¬ I a0 d <a#

(this is possible, one example of such an element being a¬ = <a0); this last case of course

implies Ā(¬(�#�)) = a¬ e <a0 = <Ā(�#�), and thus also validates (V 2).

Ā((�#�)1) - Having defined a¬, we define Ā((�#�)1) to be any value a1 such that a1 e <(a0Ia¬)

(and therefore we have

Ā
(
¬((�#�) I ¬(�#�))

)
= Ā((�#�)1) = a1 e <(a0 I a¬) = <Ā

(
(�#�) I ¬(�#�)

)
,

and thus (V 2) remains valid) and <(a0Ia¬)Ia1 e a# (what would still be possible, being

enough to choose, for one, a1 = <(a0 I a¬)).

And we make Ā(¬(�#�)1) = Ā(�#�) I Ā(¬(�#�)) = a0 I a¬, thus respecting clause (V 5)

(and incidentally also (V 2) and (V 3)).

Inductive step - Supposing we have defined a1 = Ā((�#�)1) trough ak = Ā((�#�)k), for 1 d k d

n − 2, we make Ā((�#�)k+1) equal to any value ak+1 satisfying

ak+1 e <(a0 I a¬ I

kâ

j=1

aj) and <(a0 I a¬) I

kâ

j=2

aj e a#;

Inductively, we get Ā(¬(�#�)k) = a0 I a¬ I
âk−1

j=1
aj , and so: first of all, this means that

Ā((�#�)k) I Ā(¬(�#�)k) = a0 I a¬ I
âk

j=1
aj and therefore

Ā((�#�)k+1) = Ā(¬((�#�)k I ¬(�#�)k) e <
(
Ā((�#�)k) I Ā(¬(�#�)k)

)
,

meaning (V 2) is respected; second, by making Ā(¬(�#�)k+1) = Ā((�#�)k) I Ā(¬(�#�)k),

so as to respect (V 5), we obtain that Ā(¬(�#�)k+1) = a0 I a¬ I
âk

j=1
aj and the pattern

remains.

Ā((�#�)n) - Completing the process outlined in the previous items, we make Ā((�#�)n) equal to

an = <(Ā((�#�)n−1) I Ā(¬(�#�)n−1)) = <(a0 I a¬ I

n−1â

j=1

aj),

given clause (V 4)n; and define Ā(¬(�#�)n) to be simply Ā((�#�)n−1) I Ā(¬(�#�)n−1), that

is, a0 I a¬ I
ân−1

j=1
aj .

Finally, now that a1 trough an are defined, given that (�#�)(n) =
ân

j=1
(�#�)j , one
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obtains

Ā((�#�)(n)) =

nâ

j=1

Ā((�#�)j) = an I

n−1â

j=1

aj;

so

Ā((�#�)(n)) = [<(a0 I a¬) J <

n−1â

j=1

aj)] I

n−1â

j=1

aj = <(a0 I a¬) I

n−1â

j=1

aj e a# = Ā(�(n)) I Ā(�(n)),

satisfying (V 6)n and proving, with some difficulty, Ā is a ð-valuation, as we wanted to show.

6.3 Counting snapshots

We would like to prove, for completeness sake, that if ð is a finite Boolean algebra with 2m

elements, thenBð
n

has (n+2)m elements. To this end, we begin with a few observations intended

to make our job easier. We notice that the very useful equality

Bð
n+1

= {(a1,& , an+2) * |ð|n+2 ∶ (a1,& , an+1) * Bð
n

and an+2 J

n+1â

i=1

ai = 1}

holds for any n * ℕ ö {0}.

Now, given all finite Boolean algebras are isomorphic to the field of subsets of some

set, we will simply assume all finite Boolean algebras here involved are, in fact, fields of subsets:

in that case, the Boolean algebra with 2m elements is þ(Xm), for Xm = {x1,& , xm} a canonical

set with m elements. We will say that an element a of a finite Boolean algebra þ(Xm) is of order

k if it is a subset of Xm with k elements; it is clear that there are
(m
0

)
= 1 elements of order 0

(namely, ∅, the bottom),
(m
1

)
elements of order 1, . . . , and

(m
m

)
= 1 elements of order m (namely,

Xm, the top). For what will follow, it is important to remember that the binomial coefficient is

given by (
m

n

)
=

m!

n!(m − n)!
,

for m, n * ℕ and n d m, and that the binomial theorem states

(x + y)m =

m1

k=0

(
m

k

)
xkym−k,

for m * ℕ, and x and y any elements of a commutative ring with unity.

Lemma 6.3.1. For an element a of þ(Xm) of order k, there are
(k
p

)
2m−k elements b such that

a I b has order p d k, and
(m−k

q

)
2k elements c such that a J c has order q e k.

Proof. If a I b has order p, this means b has p elements in common with a, and since there are

k elements in a, we obtain
(k
p

)
possible values for a K b; but ac K b can be any subset of ac,
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of which there exist 2m−k given ac has m − k elements. Combining the two values, we obtain(k
p

)
2m−k solutions.

Now, if aJ c has order q, ac K c has q−k elements that a doesn’t, and since there are

m−k elements in ac , this gives us
(m−k

q

)
values for ac Kc; but aKc can be any subset of a, giving

us 2k values for a K c since a has k elements. This leads to the total
(m−k

q

)
2k solutions.

Notice that, by adapting the proof of the previous lemma, we may show that, for an

a of order k, there are
(k
p

)
elements b such that a J b = 1 and a I b has order p d k. This is

because: ac K b must equal ac, so that a J b = 1; and a K b must have p elements, and since a

has k elements, this gives us
(k
p

)
solutions.

Lemma 6.3.2. For m * ℕ and p d m,

m1

j=p

(
j

p

)(
m

j

)
xm−j =

(
m

p

)
(x + 1)m−p.

Proof. We see that, from the definition of the binomial coefficients and the binomial theorem,

m1

j=p

(
j

p

)(
m

j

)
xm−j =

m1

j=p

j!

p!(j − p)!

m!

j!(m − j)!
xm−j =

m1

j=p

m!

p!(j − p)!(m − j)!
xm−j =

m1

j=p

1

p!

m!

(j − p)!(m − j)!
xm−j =

m1

j=p

m!

p!(m − p)!

(m − p)!

(j − p)!(m − j)!
xm−j =

(
m

p

) m−p1

i=0

(m − p)!

((i + p) − p)!(m − (i + p))!
xm−(i+p) =

(
m

p

) m−p1

i=0

(m − p)!

i!((m − p) − i)!
x(m−p)−i =

(
m

p

) m−p1

i=0

(
m − p

i

)
x(m−p)−i1i =

(
m

p

)
(x + 1)m−p.

Lemma 6.3.3. For any n e 0, if ð has 2m elements thenBð
n

has precisely
(m
p

)
(n+1)m−p elements

(a1,& , an+1) such that
ân+1

i=1
ai has order p d m.

Proof. Let (a, b) be a pair in Bð
1

, meaning a J b = 1, such that a I b has order p. Then, by the

commentary after Lemma 6.3.1, if a has order k e p, there are
(k
p

)
possible values for b, and if

k d p there are none. Since there are
(m
k

)
elements a with order k, this gives us the number of
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pairs satisfying a J b = 1 and a I b having order p to be

(
p

p

)(
m

p

)
+

(
p + 1

p

)(
m

p + 1

)
+ď +

(
m

p

)(
m

m

)
,

which equals
(m
p

)
2m−p from Lemma 6.3.2, once we use x = 1.

Now, suppose the described conditions hold for Bð
n

: there are, by induction hypoth-

esis,
(m
k

)
(n+ 1)m−k elements (a1,& , an+1) such that

ân+1

i=1
ai is of order k, and then there are

(k
p

)

possible values for an+3, such that (a1,& , an+2) is in Bð
n+1

(meaning an+2 J
ân+1

i=1
ai = 1) and

ân+2

i=1
ai has order p, what gives the total

(
p

p

)(
m

p

)
(n + 1)m−p +ď +

(
m

p

)(
m

m

)
(n + 1)m−m,

which adds to
(m
p

)
(n + 2)m−p once we apply x = n + 1 to Lemma 6.3.2, ending our proof.

Theorem 6.3.1. If ð has 2m elements, Bð
n

has (n + 2)m elements.

Proof. By Lemma 6.3.3, there are
(m
0

)
(n+1)m−0 elements (a1,& , an+1) in Bð

n
such that

ân+1

i=1
ai

has order 0,
(m
1

)
(n+1)m−1 elements such that

ân+1

i=1
ai has order 1 and so on, adding up to a total

of (
m

0

)
(n + 1)m−0 +

(
m

1

)
(n + 1)m−1 +ď +

(
m

m

)
(n + 1)m−m =

m1

p=0

(
m

p

)
(n + 1)m−p1p = ((n + 1) + 1)m = (n + 2)m.

Notice, furthermore, that Dð
1

has 2m elements whenever ð has 2m elements: this

happens since (a, b) * Dð
1

whenever a = 1 and a J b = 1, meaning b can assume any value in

ð; and when n e 1,

Dð
n+1

= {(1, a1,& , an+1) * Bð
n+1

∶ (a1,& , an+1) * Bð
n
},

implying Dð
n+1

has as many elements as Bð
n

.

Theorem 6.3.2. If ð has 2m elements:

1. Dð
n

has (n + 1)m elements;

2. Booð
n

has 2m elements.

A final, relevant, note is on the case that ð is infinite, and of cardinality �: since Bð
n

contains the set of Boolean elements Booð
n

, isomorphic to ð itself, we can be sure that Bð
n

has at

least cardinality �; however, since Bð
n

is a subset of |ð|n+1, which is too of cardinality � given

the assumption this is an infinite cardinal, we obtain that Bð
n

has precisely � elements.
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To provide one example of Bð
n

’s complexity, let us take the four-valued Boolean

algebra ð4 as the field of subsets of {a, b}, containing the elements ∅ (which we shall denote by

0), {a}, {b}, and {a, b} (which we will denote by 1). Then, Bð4

1
has 9 snapshots.

1. Designated and Boolean: (1, 0).

2. Designated and not Boolean: (1, {a}), (1, {b}) and (1, 1).

3. Undesignated and Boolean: (0, 1), ({a}, {b}) and ({b}, {a}).

4. Undesignated and not Boolean: ({a}, 1) and ({b}, 1).

Still on the Boolean algebra with four elements, Bð4

2
has 16 snapshots.

1. Designated and Boolean: (1, 0, 1).

2. Designated and not Boolean: (1, 1, 0), (1, 1, {a}), (1, 1, {b}), (1, 1, 1), (1, {a}, {b}),

(1, {b}, {a}), (1, {a}, 1) and (1, {b}, 1).

3. Undesignated and Boolean: (0, 1, 1), ({a}, {b}, 1) and ({b}, {a}, 1).

4. Undesignated and not Boolean: ({a}, 1, 1), ({a}, 1, {b}), ({b}, 1, 1) and ({b}, 1, {a}).

Now, consider the eight-valued Boolean algebra ð8, which we will take to be the

Boolean algebra over the powerset of {a, b, c}. In that case, Bð8

1
has 27 elements:

1. Designated and Boolean: (1, 0).

2. Designated and not Boolean: (1, {a}), (1, {b}), (1, {c}), (1, {b, c}), (1, {a, c}), (1, {a, b})

and (1, 1).

3. Undesignated and Boolean: (0, 1), ({a}, {b, c}), ({b}, {a, c}), ({c}, {a, b}), ({b, c}, {a}),

({a, c}, {b}) and ({a, b}, {c}).

4. Undesignated and not Boolean: ({a}, 1), ({b}, 1), ({c}, 1), ({b, c}, {a, c}), ({b, c}, {a, b}),

({b, c}, 1), ({a, c}, {b, c}), ({a, c}, {a, b}), ({a, c}, 1), ({a, b}, {b, c}), ({a, b}, {a, c})

and ({a, b}, 1).

6.4 Category of restricted swap structures for Cn

Given a class C of RNmatrices, how to make it into a category ñ? We believe there may exist

more than one natural definition of what a morphism on ñ should be, the applications desired

for such an object dictating the best ones, but at least one definition seems to be more or less

universal. To start defining it, remember: an RNmatrix is a triple û = (ï, D,ô ), for ï a

Σ-multialgebra, D a subset of its universe and ô a set of homomorphisms (of multialgebras)

� ∶ F(Σ,Ą) ³ ï. So a morphism between RNmatrices û = (ï, D,ô ) and û2 = (ï2, D2,ô 2),

over the same signature Σ, should be, at a minimum:
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1. a homomorphism of multialgebras ℎ ∶ ï ³ ï2;

2. which preserves designated elements, meaning that ℎ(D) ⊆ D2;

3. and is absorbed by restricted valuations, meaning that for every � * ô , ℎċ� * ô 2.

û û2

F(Σ,Ą)

ℎ

�
ℎċ�

If � * ô , ℎċ� must be in ô 2

Theorem 6.4.1. A class of RNmatrices C , endowed with the morphisms defined above, becomes

a category ñ.

Proof. Take morphisms g ∶ û ³ û2 and ℎ ∶ û2 ³ û22 as described above, and first

of all we will show that their composition, as a composition of functions, returns again such a

morphism.

1. Since g and ℎ are both Σ-homomorphisms of multialgebras, respectively from ï to ï2

and from ï2 to ï22, it is clear that ℎċg is a Σ-homomorphism from ï to ï22.

2. Given that g(D) ⊆ D2 and ℎ(D2) ⊆ D22, we have that ℎċg(D) = ℎ(g(D)) ⊆ ℎ(D2) ⊆ D22,

meaning that ℎċg preserves designated elements.

3. Finally, we have that for any � * ô and any �2 * ô 2, gċ� * ô 2 and ℎċ�2 * ô 22; thus,

for any � * ô , gċ� * ô 2 and so (ℎċg)ċ� = ℎċ(gċ�) * ô 22, proving ℎċg is absorbed by

restricted valuations.

The associativity of the composition of these morphisms comes from the associativ-

ity of the composition of functions. The identity morphisms are precisely the identity functions,

meaning that given û = (ï, D,ô ), the identity morphism in û is the identity function on

the universe of ï, easily seem to be a homomorphism of multialgebras from ï to itself; that

preserves designated elements; and is absorbed by restricted valuations.

Now, for a fixed da Costa’s logic Cn, we take the class of RNmatrices Āûð
Cn

for ð

a non-trivial Boolean algebra and construct its corresponding category RSwapCn as it was done

in Theorem 6.4.1 just above. To spell out our definition in this very important case, RSwapCn is

the category:

1. with the class of (full) restricted swap structures Āûð
Cn

, for all Boolean algebras ð, as

objects;

2. as morphisms between Āû
ð1

Cn
and Āû

ð2

Cn
, all functions ' ∶ B

ð1
n ³ B

ð2
n such that
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(a) ' is a ΣC-homomorphism between ï
ð1

Cn
and ï

ð2

Cn
, seem as ΣC-multialgebras;

(b) for all d * D
ð1
n , '(d) is in Dð2

n ;

(c) for any � ∶ F(ΣC ,Ą) ³ ï
ð1

Cn
in ô

ð1

Cn
, 'ċ� ∶ F(ΣC ,Ą) ³ ï

ð2

Cn
is in ô

ð2

Cn
.

ï
ð1

Cn
ï

ð2

Cn

F(ΣC ,Ą)

'

�

'ċ�

If � * ô
ð1

Cn
, 'ċ� must be in ô

ð2

Cn

One important point to make is that demanding that a morphism of RSwapCn pre-

serves designated elements is actually superfluous: we could prove this property from the fact

that the morphisms in this category are absorbed by restricted valuations. However, the proof of

this fact is somewhat involved, so it is easier to assume the preservation of designated elements

as one of the defining characteristics of our morphisms.

A first question regarding the definition of RSwapCn could be whether there are truly

morphisms ' in it other than the identity ones.

Proposition 6.4.1. For Boolean algebras ð1 and ð2 and a homomorphism  ∶ ð1 ³ ð2 of

Boolean algebras, ' ∶ B
ð1
n ³ B

ð2
n such that, for every z = (z1,& , zn+1) * B

ð1
n ,

'(z)i =  (zi), for every 1 d i d n + 1,

what we may write as '(z) = ( (z1),& ,  (zn+1)), is a morphism between Āû
ð1

Cn
and Āû

ð2

Cn

in RSwapCn .

Proof. Notice that if z is a Boolean element of ïð1

Cn
, then it is of the form (a,<a, 1,& , 1), and

'(z) = ( (a),  (<a),  (1),& ,  (1)) = ( (a),< (a), 1,& , 1), given  is a homomorphism;

and since  (a) is an element of ð2, we see '(z) is a Boolean element of ïð2

Cn
, meaning ' pre-

serves Boolean elements.

Take elementsw and z inBð1
n . First, supposew and z are not both Boolean elements

and u * w#̃z, meaning that u1 = w1#z1: then

'(u) = ( (u1),  (u2),& ,  (un+1)) equals ( (w1)# (z1),  (u2),& ,  (un+1)),

since  is a homomorphism, and since '(w)1 =  (w1) and '(z)1 =  (z1), we obtain that

'(u) * '(w)#̃'(z). Now, if w and z are both Boolean elements and u * w#̃z, then u1 = w1#z1

and u is a Boolean element, and from what we saw above we find that '(u)1 = '(w)1#'(z)1 and

that '(w), '(z) and '(u) are all Boolean elements, meaning '(u) * '(w)#̃'(z).
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Now, for any z * B
ð1
n and w * ¬̃z, w1 = z2 and w2 d z1. Then '(w) =

( (w1),& ,  (wn+1)), and analogously for '(z), meaning '(w)1 =  (w1) =  (z2) = '(z)2

and '(w)2 =  (w2) d  (z1) = '(z)1,
2and therefore '(w) * ¬̃'(z). With this, ' is a ΣC-

homomorphism between ï
ð1

Cn
and ï

ð2

Cn
.

Given a designated element z = (1, z2,& , zn+1) of Āû
ð1

Cn
, we get that '(z) =

( (1),  (z2),& ,  (zn+1)) = (1,  (z2),& ,  (zn+1)) is also designated, meaning that ' pre-

serves designated elements.

Now, a ΣC-homomorphism � ∶ F(ΣC,Ą) ³ ï
ð1

Cn
is in ô

ð1

Cn
when, for all formulas �

and �:

1. �(� I ¬�)2 = �(�)3;

2. �(�1) = (�(�)3, �(�)1 I �(�)2, �(�)4,& , �(�)n+1,<(
ân+1

i=1
�(�)i));

3. and �((�(n) I �(n)) ³ (�#�)(n)) * D
ð1
n , for # * {J,I,³}.

Quite clearly 'ċ� ∶ F(ΣC,Ą) ³ ï
ð2

Cn
is still a ΣC-homomorphism.

1. We have '(�(� I ¬�))2 =  (�(� I ¬�)2), which equals, given � is in ô
ð1

Cn
,  (�(�)3) =

'(�(�))3.

2. See that '(�(�1)) equals

(
 (�(�)3),  (�(�)1 I �(�)2),  (�(�)4),& ,  (�(�)n+1),  (<(

n+1â

i=1

�(�)i))
)
=

(
 (�(�)3),  (�(�)1) I  (�(�)2),  (�(�)4),& ,  (�(�)n+1),<(

n+1â

i=1

 (�(�)i))
)
=

(
'(�(�))3, '(�(�))1 I '(�(�))2, '(�(�))4,& , '(�(�))n+1,<(

n+1â

i=1

'(�(�))i)
)
.

3. Since, as we already proved, ' preserves designated elements, �((�(n)I�(n)) ³ (�#�)(n)) *

D
ð1
n , for any # * {J,I,³}, implies that '(�((�(n) I �(n)) ³ (�#�)(n))) * D

ð2
n for any

# * {J,I,³}.

This finishes proving that 'ċ� lies in ô
ð2

Cn
.

Notice that, in the spirit of the last proposition, the identity morphism IdĀûð
Cn

of

RSwapCn on Āûð
Cn

can be written, for an arbitrary z = (z1,& , zn+1) in Bð
n

, as

Idïð
Cn

(z) = (z1,& , zn+1) = (Idð(z1),& , Idð(zn+1)),

2One should remember that homomorphisms of Boolean algebras preserve order: first of all, in a Boolean
algebra a d b iff a = a I b iff b = a J b; given a homomorphism  ∶ ð1 ³ ð2, if a d b, b = a J b and so
 (b) =  (a J b) =  (a) J  (b), meaning that  (a) d  (b).
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for Idð ∶ ð ³ ð the identity homomorphism on ð, and therefore the identity morphisms in

RSwapCn are, too, of the form described in the previous proposition.

A second question regarding the definition of RSwapCn is whether there are mor-

phisms in it other than those of the form described in Proposition 6.4.1. The answer, in this

case, is no, and in the following section we prove exactly that.

6.4.1 Morphisms of RSwapCn
For any function ' ∶ B

ð1
n ³ B

ð2
n we will write, for any z * B

ð1
n , '(z) as ('1(z),& , 'n+1(z)):

here, 'i, for any 1 d i d n + 1, is a function from B
ð1
n to ð2 obtained by composing the i-th

projection �i of Bð1
n with '.

With this, we can say that ' is a ΣC-homomorphism from ï
ð1

Cn
to ï

ð2

Cn
if, and only

if, for all snapshots w, z * B
ð1
n , and u * w#̃z (for any # * {J,I,³}) and v * ¬̃z,

'1(u) = '1(w)#'1(z), and '1(v) = '2(z) and '2(v) d '1(z),

what is equivalent to '(u) * '(w)#̃'(z) and '(v) * ¬̃'(z) once one considers the definitions

of #̃ and ¬̃.

So, we would like to study the function  ∶ ð1 ³ ð2, given by  (a) =

'((a,<a, 1,& , 1)) for any a in ð1, in the case that ' is actually a ΣC-homomorphism. Take a

snapshot z = (z1,& , zn+1) of Bð1
n and consider z∗ = (z1,<z1, 1,& , 1): then  (z1) = '(z∗) by

definition of  . Furthermore, recalling that tn
0
= (1, 1, 0, 1,& , 1) is a non-Boolean snapshot of

Bð
n

, for any non-trivial Boolean algebra ð, we find that

zĨtn
0
= z∗Ĩtn

0
= {w = (w1,& , wn+1) * Bð1

n
∶ w1 = z1},

and thus z, z∗ * zĨtn
0
= z∗Ĩtn

0
, since the first coordinates of both are precisely z1; given ' is

a homomorphism, z * zĨtn
0

implies that '1(z) = '1(z) I '1(t
n
0
), while z∗ * zĨtn

0
implies that

'1(z
∗) = '1(z)I'1(t

n
0
), leading us to'1(z) = '1(z

∗) and then to'1(z) =  (z1). In other words,

the function '1 depends exclusively on the first coordinate of a snapshot.

Furthermore, for any a, b * ð1, it is true for the snapshots (a,<a, 1,& , 1) and

(b,<b, 1,& , 1) in Bð1
n that

(a,<a, 1,& , 1)#̃(b,<b, 1,& , 1) = {(a#b,<a#b, 1,& , 1)},

for any # * {J,I,³}. This way, taking into consideration that ' is a homomorphism and

'1(z) =  (z1),  (a#b) =  (a)# (b). This means that  is almost a homomorphism, and we

will prove further ahead that it actually is a homomorphism of Boolean algebras.

For now, let us also define the function � ∶ ð1 ³ ð2 by �(a) = '2((<a, a, 1,& , 1)).
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For an arbitrary snapshot z = (z1,& , zn+1) in Bð1
n , consider

z∗ = (<z2, z2, 1,& , 1) and z2 = (z2,<z2, 1,& , 1),

and by definition of � we have that '2(z
∗) = �(z2). Since z is in Bð1

n , we have that z1 J z2 = 1

and so <z2 d z1, implying that z2 * ¬̃z and z2 * ¬̃z∗. 3 Using, once again, that ' is a homo-

morphism, '(z2) * ¬̃'(z) and '(z2) * ¬̃'(z∗), leading to '1(z
2) = '2(z) and '1(z

2) = '2(z
∗),

id est '2(z) = '2(z
∗). This leads us to '2(z) = �(z2), meaning '2 also depends exclusively of

one coordinate, in this case the second.

Finally, we may prove, with our only hypothesis being that ' is a homomorphism,

that  = �. To see this, take any a * ð1, and the snapshots z = (a,<a, 1,& , 1) and z∗ =

(<a, a, 1,& , 1) of Bð1
n , with the property that ¬̃z = {z∗} and ¬̃z∗ = {z}. Then '(z) * ¬̃'(z∗),

so '1(z) = '2(z
∗) (and also '2(z) d '2(z

∗)) and therefore  (a) = �(a), using that '1(z) =  (a)

and '2(z
∗) = �(a). We may summarize the results so far in the following theorem.

Theorem 6.4.2. If' ∶ ï
ð1

Cn
³ ï

ð2

Cn
is aΣC-homomorphism, there exists a function ∶ ð1 ³ ð2

such that

'1(z) =  (z1) and '2(z) =  (z2),

for all snapshots z = (z1,& , zn+1) ofB
ð1
n , and which satisfies, for all a, b * ð1 and # * {J,I,³

},  (a#b) =  (a)# (b).

Now we will demand that ' ∶ B
ð1
n ³ B

ð2
n be, not only a homomorphism from ï

ð1

Cn

to ï
ð1

Cn
, but a morphism of the category RSwapCn from Āû

ð1

Cn
to Āû

ð2

Cn
, so it also preserves

designated elements and is absorbed by restricted valuations.

So, take a snapshot z = (1, z2,& , zn+1) * D
ð1
n : since we must have, by hypothesis

over ', '(z) * D
ð2
n , and

'(z) = ('1(z),& , 'n+1(z)) = ( (1),  (z2), '3(z),& , 'n+1(z)),

we obtain that  (1) = 1. Furthermore, for any formula � in the language of Cn and valuation

� in ôð
Cn

, Proposition 6.2.2 shows that �(� I ¬� I �(n)) = Fn; since ' is absorbed by restricted

valuations, for any � * ô
ð1

Cn
we have 'ċ� * ô

ð2

Cn
and so, for any formula � of Cn

Fn = 'ċ�(� I ¬� I �(n)) = '(Fn) = ( (0),  (1), '3(Fn),& , 'n+1(Fn)),

meaning that we also have  (0) = 0. Since, for any a, b * ð1 and # * {J,I,³},  (a#b) =

 (a)# (b),  (1) = 1 and  (0) = 0, we actually have that  is a homomorphism of Boolean

algebras, as we had previously promised: given that <a = a³ 0, we have

 (<a) =  (a³ 0) =  (a) ³  (0) = < (a).

3Actually ¬̃z∗ = {z2} and vice-versa, since both are Boolean snapshots with complementary first-coordinates.
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But the fact that ' is absorbed by restricted valuations allows to prove something

even stronger: remember that, for any � * ôð
Cn

and formula � of Cn, �(�
k)1 = �(�)k+2 for

1 d k d n − 1, what we proved back in Lemma 6.2.2 for 2 d k d n − 1 and is obvious by

the definition of ôð
Cn

for k = 1. Given a z in Bð1
n , for any propositional variable p we can find

a restricted valuation in ô
ð1

Cn
with �(p) = z, by proceeding as in Section 6.2.1 if necessary; so

�(pk)1 = zk+2.

Since 'ċ� must be in ô
ð2

Cn
, we have that

'ċ�(pk)1 = 'ċ�(p)k+2 = '(z)k+2 = 'k+2(z),

and at the same time,

'ċ�(pk)1 =  (�(pk)1) =  (zk+2),

implying that 'k+2(z) =  (zk+2), for every 1 d k d n − 1. We get then the following theorem.

Theorem 6.4.3. If ' ∶ Āû
ð1

Cn
³ Āû

ð2

Cn
is a morphism of RSwapCn , there exists a homomor-

phism of Boolean algebras  ∶ ð1 ³ ð2 such that, for all snapshots z * B
ð1
n ,

'i(z) =  (zi), for all 1 d i d n + 1.

6.4.2 BA and RSwapCn are isomorphic

Proposition 6.4.2. The set Booð
n

of Boolean elements of ïð
Cn

is a Boolean algebra isomorphic

to ð when we define, for # * {J,I,³}, and a and b elements of ð,

(a,<a, 1,& , 1)#(b,<b, 1,& , 1) = (a#b,<(a#b), 1,& , 1),

<(a,<a, 1,& , 1) = (<a, a, 1,& , 1),

⊤ = (1, 0, 1,& , 1) and ⊥ = (0, 1, 1,& , 1)

Proof. Consider the map � ∶ B ³ Booð
n

, for B the universe of ð, given by �(a) =

(a,<a, 1,& , 1). Then, for a, b * B:

1. for # * {J,I,³},

�(a#b) = (a#b,<(a#b), 1,& , 1) = (a,<a, 1,& , 1)#(b,<b, 1,& , 1) = �(a)#�(b);

2. �(<a) = (<a,<<a, 1,& , 1) = (<a, a, 1,& , 1) = <(a,<a, 1,& , 1) = <�(a);

3. �(⊤) = (1, 0, 1,& , 1) = ⊤;

4. �(⊥) = (0, 1, 1,& , 1) = ⊥.

Furthermore, � is clearly both injective and surjective, being therefore an isomorphism.
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Notice that the operations we give to Booð
n

are the natural choice of Boolean algebra

structure for this set, taking into consideration the multioperations on ïð
Cn

, since for elements a

and b of ð, and # * {J,I,³},

�(a)#̃�(b) = {�(a)#�(b)} and ¬̃�(a) = {<�(a)}.

Consider now the category BA of non-degenerate Boolean algebras (that is, Boolean

algebras where 0 � 1), with homomorphisms of Boolean algebras as morphisms, and the func-

tors ïn ∶ BA ³ RSwapCn , which takes

1. a Boolean algebra ð to ïnð = ïð
Cn

;

2. a homomorphism of Boolean algebras ∶ ð1 ³ ð2 to the morphism ïn ∶ ï
ð1

Cn
³ ï

ð2

Cn

such that, for z = (z1,& , zn+1) * B
ð1
n , ïn (z)i =  (zi), for every i * {1,& , n + 1};

and Boon, which takes

1. the restricted swap structure ïð
Cn

to the Boolean algebra ð (or, what we saw to be equiv-

alent, Booð
n

with its natural Boolean algebra structure);

2. a morphism ' ∶ ï
ð1

Cn
³ ï

ð2

Cn
to the homomorphism of Boolean algebras Boon' ∶ ð1 ³

ð2 such that, for a an element of ð1, Boon'(a) = '((a,<a, 1,& , 1))1.

Proposition 6.4.3. As described, ïn is, indeed, a functor.

Proof. As we proved in Theorem 6.4.3, for a homomorphism of Boolean algebras ∶ ð1 ³ ð2,

ïn ∶ B
ð1
n ³ B

ð2
n such that, for an arbitrary z = (z1,& , zn+1) * B

ð1
n , ïn (z)i =  (zi), for

1 d i d n + 1, is indeed a morphism in RSwapCn .

Now, for a second homomorphism of Boolean algebras � ∶ ð2 ³ ð3, one has

ïn(�ċ )(z) = (�ċ (z1),& , �ċ (zn+1)) = ïn�(( (z1),& ,  (zn+1)) =

ïn�ċïn (z);

furthermore, for the identity Idð ∶ ð ³ ð of ð, ïnIdð ∶ ïð
Cn

³ ïð
Cn

satisfies that, for

z * Bð
n

,

ïnIdð(z) = (Idð(z1),& , Idð(zn+1)) = (z1,& , zn+1) = z,

and therefore is precisely the identity on ïð
Cn

.

Proposition 6.4.4. As described, Boon is, indeed, a functor.

Proof. Since, for any morphism ' ∶ ï
ð1

Cn
³ ï

ð2

Cn
, there exists a homomorphism  ∶ ð1 ³ ð2

such that, for any z = (z1,& , zn+1) * B
ð1
n , '(z)i =  (zi), for any 1 d i d n + 1, one sees that

Boon'(a) = '((a,<a, 1,& , 1))1 =  (a),
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and so Boon' is indeed a homomorphism of Boolean algebras.

For a second morphism � ∶ ï
ð2

Cn
³ ï

ð3

Cn
and a homomorphism � ∶ ð2 ³ ð3 such

that, for every w * B
ð2
n , �(w)i = �(wi), consider an element a of ð1: then

Boon(�ċ')(a) = �('((a,<a, 1,& , 1)))1 = �1('((a,<a, 1,& , 1))) =

�('((a,<a, 1,& , 1))1) = �('1((a,<a, 1,& , 1))) = �( (a)) = �(Boon'(a)) =

Boon�ċBoon'(a).

Finally, consider the identity homomorphism Idïð
Cn

∶ ïð
Cn

³ ïð
Cn

: for an a in ð,

BoonIdïð
Cn

(a) = Idïð
Cn

((a,<a, 1,& , 1))1 = a,

proving BoonIdïð
Cn

is the identity on ð.

Theorem 6.4.4. Boonċïn = IdBA.

Proof. A Boolean algebra ð is taken by ïn into ïð
Cn

, and ïð
Cn

is taken to ð again by Boon. This

means Boonċïn is the identity on objects.

Now, for Boolean algebras ð1 and ð2, a homomorphism  ∶ ð1 ³ ð2, and an

element a of ð1, let ' = ïn :

(Boonċïn) (a) = Boon'(a) = '((a,<a, 1,& , 1))1 =  (a),

implying Boonċïn is also identical when applied to morphisms.

Theorem 6.4.5. ïnċBoon = IdRSwapCn
.

Proof. ïð
Cn

is taken by Boon to ð, which is taken back to ïð
Cn

by ïn, giving us the identity on

objects.

Now, for restricted swap structures ïð1

Cn
and ï

ð2

Cn
, a morphism ' ∶ ï

ð1

Cn
³ ï

ð2

Cn
and

an element z = (z1,& , zn+1) * B
ð1
n , let us denote Boon' by  :

ïnċBoon'(z) = ïn (z) = ( (z1),& ,  (zn+1));

since Boon' =  , for any a in ð1, '((a,<a, 1,& , 1))1 =  (a). We also know that there exists

a homomorphism � ∶ ð1 ³ ð2 such that, for any z * B
ð1
n , '(z)i = �(zi) for 1 d i d n + 1.

From the fact that �(a) = '((a,<a, 1,& , 1))1 =  (a), we obtain � =  , and so

'(z) = ( (z1),& ,  (zn+1)) = ïnċBoon'(z),

implying finally that ïnċBoon maintains morphisms fixed as well.
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Now that we have RSwapCn is isomorphic to BA, we may use this isomorphism to

bring some results from the latter category into the former: of course, BA is one of the better

known categories, so there are many such results. Let us start by reminding that every atomic,

complete Boolean algebra is isomorphic to some power of the two-valued Boolean algebra 2;

in particular, an atomic, complete Boolean algebra with � atoms is isomorphic to precisely 2� ,

where � may be a finite or infinite cardinal.

Since every finite Boolean algebra is forcibly both atomic and complete, and from

the results of Section 6.3 Āûð
Cn

is finite if and only if ð is finite, we find a first representation

result in RSwapCn .

Corollary 6.4.1. Every finite Āûð
Cn

is isomorphic to a power of ĀûCn
.

Another representation theorem on Boolean algebras, a stronger one, states that ev-

ery Boolean algebra is isomorphic to a field of sets, that is, a Boolean subalgebra of the powerset

Boolean algebra of a given set; since every powerset is a complete and atomic Boolean algebra,

and is therefore isomorphic to some power 2� of 2, it follows that every Boolean algebra is

isomorphic to a subalgebra of a power of 2.

Now, we still haven’t defined what it means for an RNmatrix to be a "subRNmatrix"

of another, although we could merely translate what this means from BA into RSwapCn; we

chose to give a more general approach instead. So, given RNmatrices û = (ï, D,ô ) and

û2 = (ï2, D2,ô 2) over the same signature, we say that û2 is a subRNmatrix of û if:

1. ï2 is a submultialgebra of ï;

2. D2 is a subset of D, and

3. {jċ� ∶ � * ô 2} ⊆ ô , for j the inclusion of the universe of ï2 into the universe of ï.

In other words, û2 is a subRNmatrix of û if j is a morphism on the underlying category of

RNmatrices.

Now, we state that in RSwapCn the concept just described of a subRNmatrix corre-

sponds exactly to what one would obtain by translating the notion of being a subalgebra from

BA, that is, Āû
ð1

Cn
is a subRNmatrix of Āû

ð2

Cn
if and only if ð1 is a subalgebra of ð2.

In one direction, by assuming that Āû
ð1

Cn
is a subRNmatrix of Āû

ð2

Cn
, we have that

ï
ð1

Cn
is a submultialgebra of ïð2

Cn
, so for every a * ð1, given that (a,<a, 1,& , 1) is an element

of Bð1
n , we have that it must also be an element of Bð2

n , and therefore a * ð2. Since, for any

a, b * ð1 and # * {J,I,³},

(a,<a, 1,& , 1)#̃(b,<b, 1,& , 1) = {(a#b,<(a#b), 1,& , 1)

and ¬̃(a,<a, 1,& , 1) = {(<a, a, 1,& , 1)}, and given that the operations #̃ and ¬̃ in ï
ð1

Cn
are the

same as those in ï
ð2

Cn
, we obtain that the operations in ð1 are the same as those in ð2, proving

the former is a Boolean subalgebra of the latter.
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Reciprocally, suppose ð1 is a Boolean subalgebra of ð2: given a snapshot z =

(z1,& , zn+1) * B
ð1
n , we have that, fist of all, z1,& , zn+1 * ð1, implying that z1,& , zn+1 * ð2;

second, since (
âk

i=1
zi) J zk+1 = 1, for all 1 d k d n, in ð1, and since the operations in

ð2, when restricted to the universe of ð1, coincide to the operations in ð2, we obtain that

(
âk

i=1
zi) J zk+1 = 1, now in ð2. With this, z is a snapshot of Bð2

n .

So we can consider the inclusion j ∶ Bð1
n ³ B

ð2
n , and it is easy to prove that it is a

morphism of RSwapCn: after all, it can be written as j(z) = (i(z1),& , i(zn+1)) for i ∶ ð1 ³ ð2

the inclusion homomorphism, and z = (z1,& , zn+1) an arbitrary snapshot in Bð1
n .

Corollary 6.4.2. Every Āûð
Cn

is a subRNmatrix of a power of ĀûCn
.
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Chapter 7

Logics of formal incompatibility

In classical logics, a formula and its negation are not compatible, in the sense that having both

� and <� to be true trivialize whatever argument we are working over.

When dealing with logics of formal inconsistency, this is no longer true: we can

have � and its negation ¬� without trivializing our logic, as long as � is inconsistent, that is, ċ�

is not true, when we have at our disposal the consistency connective "ċ".

To formalize such a notion of incompatibility, we will consider a binary connec-

tive that, when connecting formulas � and �, will stand intuitively for "� is incompatible with

�". When choosing a symbol for such connective, one somewhat natural choice is the Shef-

fer’s stroke: in classical propositional logic, the Sheffer’s stroke may be defined from the usual

connectives as

� ò � = <(� I �),

and of course having � ò � to hold, along with � and �, trivializes an argument. The basic

axiom we will expect a system for incompatibility to satisfy will be

(� ² �) ³ (� ³ (� ³ 
)),

for any formula 
 , or more generally, if we don’t have a deduction meta-theorem,

� ² �, �, � ⊢ℒ 
;

in words, that means that having � and � to be true while having � and � to be incompatible

imply that our logic is trivial.

Referring back to paraconsistency, one sees consistency may be characterized as

incompatibility: � is consistent if, and only if, is incompatible with¬�. But, given a logic dealing

with incompatibility, we are also tempted to say that any formula � which is incompatible with

a given � is a negation of �, which leads to a notion of consistency and back again to logics

having inconsistency in their scope.

Before we go any further, it is important to formally define with which structures we
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are working. We define the signature ΣbI by: (ΣbI)2 = {J,I,³, ²}, and (ΣbI)n = ∅ for n � 2.

Definition 7.0.1. A logic ú is said to be a logic of formal incompatibility, or in short LIp, if it

contains a family of formulas + (p, q), exactly on the variables p and q, such that there exist

formulas ', � and  for which

', � ⊬  ;

formulas �, � and 
 such that:

1. + (�, �), � ⊬ 
 and

2. + (�, �), � ⊬ 
 ,

where + (�, �) is the set obtained by replacing, in each formula of + (p, q), p by � and q by �;

and, for all formulas 
 , � and !,

+ (
, �), 
, � ⊢ !.

More often than not, we want + (p, q) to be composed of only one formula, given

by a primitive, binary connective evaluated on p and q for which we will use the infix notation,

that is, p ² q.

Now, one can ask oneself when incompatibility has an interpretation in natural log-

ics, and perhaps the most canonical example would be the one of limited resources. Suppose we

are given a basis of true statements, �, and formulas ' that must be tested against � in the most

resource-efficient way possible, in regards to both time and amount of information recorded.

Now, if � ⊢ <', we must discard ': but, if the proof of this implication is unbe-

lievably long, we waste precious time. One could, to avoid spending time unnecessarily, have

a vast table pre-establishing if ' follows from � or not, but this would, of course, be memory-

consuming, and in a way also time-consuming: without a strong algorithm to check the list, this

could prove to be a very long search to identify ' or <' on said list.

The solution could lie halfway between those two approaches: one could have a

small list of statements that do not follow from �, which are incompatible with �, and, given a

', attempt to prove or disprove the given formula, knowing a few shortcuts given by our list of

incompatible statements.

This is very common not only in computer science, but also in science in general,

mathematics, and logic: one does not completely prove a statement starting from the axioms,

but rather accept a few results, derived from previous work, as true, and therefore accept their

negations as incompatible with whatever result is being searched for, and proceed from there;

it is also useful, in this context, to consider compatibility of two formulas � and � rather than

incompatibility, defined trivially as � ´ � = <(� ² �).

Another useful application of incompatibility is when dealing with partial informa-

tion: suppose one must test ' against a basis of true statements �, without having direct access

to � but rather � ⊂ �; in this case, knowing some key incompatibilities between ' and � or '

and the complement of � may help deriving � ⊢ ' or � ⊢ <' while only using directly �.
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Perhaps more importantly, incompatibility has an obvious connection to probability,

specifically independence (for what is to come, any reference in probability logic is sufficient,

such as [Háj01]): consider a sample space X, that is, the set of all things that may occur in ones

analysis; if, to give one example, we were to look at the outcome of flipping a coin, our sample

space could be X = {ℎeads, tails}. The next step, when dealing with probabilities, is taking a

�-algebra1 ï of subsets of X, most commonly the whole powerset of X. Finally, we also need

a probability measure P on ï to obtain a probability space (X,ï, P ), that is, a function from

ï into the interval [0, 1] satisfying P (X) = 1 and

P (
å

n*ℕ

An) =
1

n*ℕ

P (An),

for {An}n*ℕ a family of pairwise disjoint sets of ï. Intuitively, P tells us the probability of an

event (i. e. element of ï) happening, and ï tells us to which events a probability can actually

be assigned. We say two events A and B are mutually exclusive whenever

P (A K B) = 0 or, what is equivalent, P (A L B) = P (A) + P (B);

intuitively, mutually exclusive events are those events that cannot both occur in an experiment.

Then, if a propositional variable p is associated to an eventA, and a second propositional variable

is associated to an event B, it is very natural to interpret the incompatibility p ² q of p and q as

the mutual exclusivity of the eventsA and B, in which case the axiom (� ² �) ³ (� ³ (� ³ 
))

clearly models the fact that both events A and B can not simultaneously occur if the two are

independent.

This seems like a specially fruitful approach to apply to probability logics, systems

used in the formal study of probability theory and statistics, as well as in Bayesian perspectives

on epistemology of science. But, still on the field of probability theory, we can think of an

alternative interpretation of incompatibility: two events A and B are independent if

P (A K B) = P (A)P (B);

independent events naturally arise from the fact that one can usually only derive more informa-

tion about the probability of a complex event by knowing that its constituent events are pairwise

independent, sometimes an even stronger independence condition being necessary. One could,

then, for variables p and q standing for, respectively, events A and B, interpret p ² q as the

independence of A and B, what makes sense at first glance due to the binary nature of the two

concepts. However, in this interpretation, the axiom (� ² �) ³ (� ³ (� ³ 
)) is no longer the

most desirable one, at least in a naive interpretation of implication, given that two independent

events can, and often do, simultaneously happen.

1A �-algebra ï on a set X is a collection of subsets of X containing X itself and closed under complements
and countable unions, meaning that if A * ï and {An}n*ℕ ⊆ ï, then X ö A and

å
n*ℕ An are both in ï.
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Most of the research developed in this chapter can be found as a preprint in [CT22a].

7.1 The logic bI

Our simplest LIp, which we shall denote by bI, satisfies the axiom schemata of the positive

fragment of classical propositional logic,

Ax 1 � ³ (� ³ �);

Ax 2
(
� ³ (� ³ 
)

)
³

(
(� ³ �) ³ (� ³ 
)

)
;

Ax 3 � ³
(
� ³ (� I �)

)
;

Ax 4 (� I �) ³ �;

Ax 5 (� I �) ³ �;

Ax 6 � ³ (� J �);

Ax 7 � ³ (� J �);

Ax 8 (� ³ 
) ³
(
(� ³ 
) ³

(
(� J �) ³ 


))
;

Ax 9∗ (� ³ �) J �,

plus

(� ² �) ³ (� ³ (� ³ 
)) (Ip)

and

(� ² �) ³ (� ² �), (Comm)

and follows the inference rule of Modus Ponens.

Compare it with the classical definition of mbC and its extensions: they are logics

over ΣLFI, which is simply ΣbI once we exchange ² for ċ and add a negation, whose Hilbert

calculus consists at least of the axiom schemata for the positive fragment of propositional logic,

excluded middle and the schema

ċ� ³ (� ³ (<� ³ �)), (bc1)

with Modus Ponens as inference rule. The main difference here is the presence of Comm,

standing for the commutativity of the connective ². For convenience, we will denote the logic

bI without Comm by bI−.
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Example 7.1.1. We now present a model of bI: take the signature ΣbI and let CPL be the clas-

sical propositional logic; we make CPL into a model CPL² of bI by defining

� ² � to be � ò � = <(� I �),

that is, ² is the classically defined Sheffer’s stroke. Clearly CPL² satisfies the axioms of the

positive fragment of classical propositional logic and Modus Ponens, remaining for us to show

that it also validates Ip and Comm.

This is easy since, if we have � ² �, � and �, and � ² � means that <(�I�), we have,

by use of the deduction meta-theorem for classical propositional logic, that (� I �) I <(� I �),

which by the explosivity of negation in CPL implies any 
 .

And since the conjunction is commutative in CPL, <(� I �) ³ <(� I �) or, what is

equivalent, (� ² �) ³ (� ² �), proving Comm is valid in CPL².

7.1.1 Bottom and top elements, and classical negation

Before anything else, we wish to show that bI has a formula equivalent to a bottom, and how we

can use this to define a classical negation on it. So, for any two formulas � and � in the language

of bI, consider

⊥�� = � I (� I (� ² �)).

Lemma 7.1.1. 1. For a set � L {�, �} of formulas in bI, we have that �, � ⊢bI � if and only

if � ⊢bI � ³ � (this is known as the deduction meta-theorem).

2. If � ⊢bI � ³ � and � ⊢bI � ³ 
 , then � ⊢bI � ³ 
 .

3. For a set � L {�, �, '} of formulas in bI, we have that, if �, � ⊢bI ' and �, � ⊢bI ', then

�, � J � ⊢bI ' (this is know as a proof by cases).

Proof. 1. The proof of this result for the positive fragment of CPL can be found in [Men87]

(notice the proof does not use the negation), Proposition 1.9, and the result extends to bI

since this last logic has the axiom schemata of the previous one; but we make a point of

proving this theorem given its importance.

Suppose first that �, � ⊢bI � and let '1,& , 'n = � be a demonstration of � from �L{�};

we show by induction that, for every 1 d i d n, � ⊢bI � ³ 'i, and therefore � ⊢bI � ³ �

when we take i = n.

The case i = 1 follows from the general case, being an instance of an axiom or a premise,

so let us assume that the result holds for '1 through 'i, and prove it for 'i+1; then 'i+1
can be one of the following.
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(a) An instance of an axiom: in this case, since'i+1 and'i+1 ³ (� ³ 'i+1) are instances

of axioms, the second formula of Ax 1, we obtain by Modus Ponens that ⊢bI � ³

'i+1, and so � ⊢bI � ³ 'i+1 since bI is tarskian.

(b) A premise: 'i+1 ³ (� ³ 'i+1) certainly remains an instance of Ax 1, and through

Modus Ponens 'i+1 ⊢bI � ³ 'i+1, thus leaving us with � ⊢bI � ³ 'i+1.

(c) A conclusion of an inference rule: since we have only Modus Ponens as inference

rule, this means that there exist 1 d j < k d i with either 'j = 'k ³ 'i+1 or

'k = 'j ³ 'i+1, and we may assume without loss of generality the first case.

From the induction hypothesis, � ⊢bI � ³ 'j (and so � ⊢bI � ³ ('k ³ 'i+1)) and

� ⊢bI � ³ 'k, and from the instance

(
� ³ ('k ³ 'i+1)

)
³

(
(� ³ 'k) ³ (� ³ 'i+1)

)

of Ax 2 and two applications of Modus Ponens, we find � ⊢bI � ³ 'i+1, as we

needed to show.

Reciprocally, if � ⊢bI � ³ �, take a demonstration  1,& ,  m = � ³ � of � ³ � from

�, and we state that  1,& ,  m,  m+1,  m+2 is a demonstration of � from � L {�}, where

 m+1 = � and  m+2 = �. Of course, we have that  1,& ,  m remains a demonstration (of

� ³ �) from � L {�}, since this is a larger set of premises, and then:

(a)  m+1 = � is a premise of � L {�};

(b) and  m+2 = � is the conclusion of an inference rule, with  m = � ³ � =

 m+1 ³  m+2, meaning we are done.

2. From� ⊢bI � ³ � we get that�, � ⊢bI �, and from� ⊢bI � ³ 
 , the fact that bI is tarskian

and one application of Modus Ponens, we obtain that �, � ⊢bI 
 . So � ⊢bI � ³ 
 .

3. If �, � ⊢bI ' and �, � ⊢bI ', by the previous results of the lemma � ⊢bI � ³ ' and

� ⊢bI � ³ '; from the instance

(� ³ ') ³ ((� ³ ') ³ (� J �) ³ '))

of Ax 8 and two consecutive applications of Modus Ponens, � ⊢bI (� J �) ³ '. Again

by the above results, this means �, � J � ⊢bI '.

Proposition 7.1.1. For any formulas �, �, ' and  in bI, ⊥�� and ⊥' are equivalent, meaning

⊢bI ⊥�� ³ ⊥' and ⊢bI ⊥' ³ ⊥�� .

Proof. From the deduction meta-theorem, we have both statements are equivalent to, respec-

tively, ⊥�� ⊢bI ⊥' and ⊥' ⊢bI ⊥�� , and from Ax 4, Ax 5 and Ax 3, those are in turn

equivalent to �, �, � ² � ⊢bI ⊥' and ', , ' ²  ⊢bI ⊤�� , both obviously true from Ip.
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It is also clear from this proof that each ⊥�� behaves like a bottom, since for any

three formulas �, � and 
 we have that ⊢bI ⊥�� ³ 
 .

Now, we define <� as the formula

� ³ ⊥��,

and state that is satisfies all the three axioms commonly assigned to classical negation, at least

in CPL.

1. (� ³ �) ³ ((� ³ <�) ³ <�)

Using several applications of the deduction meta-theorem, it is clear proving the validity

of this statement is equivalent to proving that � ³ �, � ³ <� ⊢bI <�. Now, � ³ <� is

simply � ³ (� ³ ⊥��), which by Ax 2 implies (� ³ �) ³ (� ³ ⊥��), and therefore

� ³ �, � ³ <� ⊢bI � ³ ⊥�� ;

since ⊢mbC ⊥�� ³ ⊥��, and the fact implication is transitive in bI from Lemma 7.1.1, we

arrive at the desired result.

2. � ³ (<� ³ �)

Again by applying the deduction meta-theorem several times, we know it is enough to

prove that �,<� ⊢mbC �, and since <� = � ³ ⊥��, this is equivalent, by Modus Ponens,

to ⊥�� ⊢mbC �, which is true given all elements of the form ⊥�� behave like bottoms.

3. � J <�

Since <� = � ³ ⊥��, this is merely an instance of Ax 9∗.

By defining, for a formula � in bI,

⊤� = � ³ �,

we also have top elements, all equivalent to one another. To see those behave like top elements,

for any two formulas � and � we must show � ³ ⊤�, or what is the same, that � ³ (� ³ �).

By the deduction meta-theorem, this is equivalent to � ⊢bI � ³ �: it is clear how � ⊢bI � ³ �,

from the instance

� ³ (� ³ �)

of Ax 1 and Modus Ponens; and trivially � ³ � ⊢bI � ³ �, which implies by a proof by cases

that (� ³ �)J� ⊢bI � ³ �. Since (� ³ �)J� is an instance of Ax 9∗, we find that ⊢bI � ³ �,

and since bI is tarskian, � ⊢bI � ³ � as we wanted to prove.
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And from this remark, the fact that all such top elements are equivalent is almost

trivial: for any two formulas � and � we have both that ⊢bI ⊤� ³ ⊤� and ⊢bI ⊤� ³ ⊤�, since

both ⊤� and ⊤� behave like top elements, what means ⊤� and ⊤� are equivalent.

7.1.2 Bivaluations

A bivaluation for bI is a map � ∶ F (ΣbI,Ą) ³ {0, 1} such that:

1. �(� J �) = 1 if and only if �(�) = 1 or �(�) = 1;

2. �(� I �) = 1 if and only if �(�) = �(�) = 1;

3. �(� ³ �) = 1 if and only if �(�) = 0 or �(�) = 1;

4. if �(� ² �) = 1 and �(�) = 1, then �(�) = 0;

5. �(� ² �) = �(� ² �).

Bivaluations for bI− are simply bivaluations for bI that do not necessarily satisfy the

condition that �(� ² �) = �(� ² �), and the result that � ⊢bI− ' if and only if � ⊨bI− ' follows

quite the same steps as those of the same result for bI instead.

Given a set of formulas �L{'} of bI, we say that � proves ' semantically, and write

� ⊨bI ', if for every bivaluation � for bI, �(�) ⊆ {1} implies that �(') = 1.

7.1.2.1 Soundness

We notice, first of all, that "⊨bI" emulates Modus Ponens, meaning that if � ⊨bI � and � ⊨bI

� ³ �, then � ⊨bI �: this is because, if � is a bivaluation for bI such that �(�) ⊆ {1}, by

hypothesis �(�) = �(� ³ �) = 1; since �(� ³ �) = 1 implies that either �(�) = 0 or �(�) = 1

and we already know �(�) = 1, we find that �(�) = 1.

Then, it is possible to see that, if ' is an instance of an axiom of classical propo-

sitional logic, then ⊨bI ' (meaning that ∅ ⊨bI '); to give one example of how a proof of that

would go, take the instance of axiom ' = � ³ (� ³ �): if �(') = 0, we must have that

�(�) = 1 and �(� ³ �) = 0, which in turn implies that �(�) = 1 and �(�) = 0, making us

reach a contradiction. To give another example, take an instance  = (� ³ �) J � of Ax 9∗:

if �( ) = 0, we must have �(� ³ �) = �(�) = 0; from �(� ³ �) = 0 one gets in turn that

�(�) = 1 and �(�) = 0, what constitutes a contradiction. The proof for the other axioms follows

analogously.

Finally, we state that if' is an instance of Ip or Comm, then once again we have that

⊨bI ': to see that, suppose � is a bivaluation for which, by contradiction, �(') = 0, implying

that �(� ² �) = 1 but

�(� ³ (� ³ 
)) = 0;



Chapter 7: Logics of formal incompatibility 217

this last equality implies that �(�) = 1 and �(� ³ 
) = 0, and thus �(�) = 1 and �(
) = 0. But,

at the same time, �(� ² �) = 1 and �(�) = 1 imply together that �(�) = 0, which contradicts our

previous observations. One must have then that �(') = 1, for any bivaluation �, and therefore

⊨bI '.

Now, for Comm, if �(� ² �) = 0, clearly we already have that �((� ² �) ³ (� ²

�)) = 1; if, otherwise, �(� ² �) = 1, then by the fact � is a bivaluation for bI we get �(� ² �) = 1,

and once again �((� ² �) ³ (� ² �)) = 1.

Theorem 7.1.1. Given formulas � L {'} of bI, if � ⊢bI ' then � ⊨bI '.

Proof. If � ⊢bI ', there exists a demonstration �1,& , �n of ' from �, with �n = '.

Let � be a bivaluation for bI such that �(�) ⊆ {1}: we want to prove that, in this

case, �(') = 1; so we prove, by induction, that �1 through �n have image 1 under �, and therefore

�(') = �(�n) = 1.

The formula �1 is either an axiom, when �(�1) = 1 since all instances of axioms

have image 1 through any bivaluations, or �1 is a premise, that is, an element of �, and since

�(�) ⊆ {1} we have that �(�1) = 1.

Suppose then that �(�1) = ď = �(�i−1) = 1, and we have three cases to consider:

1. if �i is an instance of an axiom, as we commented above �(�i) = 1;

2. if �i is a premise, �(�i) = 1 since �i * � and �(�) ⊆ {1};

3. if there are �j and �k with 1 < j < k < i such that �j = �k ³ �i or �k = �j ³ �i, since

�(�j) = �(�k) = 1 we find in both cases that �(�i) = 1, what ends the proof.

7.1.2.2 Completeness

Now, for a non-trivial, closed set of formulas � maximal with respect to not proving ', we want

to prove that the function �, from the formulas of bI to {0, 1} and such that �(
) = 1 if and only

if 
 * �, is a bivaluation.

1. If �(� J �) = 1, � J � * �: suppose, by contradiction, that �, � + �; then �, � ⊢bI ' and

�, � ⊢bI '. So, by a proof by cases, �, � J � ⊢bI ', and since � J � * � we find that

� ⊢bI ', which is absurd. This means either � * �, and then �(�) = 1, or � * �, when

�(�) = 1.

Reciprocally, if �(�) = 1, since � ³ (� J �) is an instance of an axiom and is therefore in

�, we find that � J � * �, since this set is closed; the same occurs if � * �, forcing us to

conclude �(� J �) = 1.
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2. Now, assume �(� I �) = 1; being (� I �) ³ � an instance of an axiom, and � closed,

(� I �) ³ � * � and then � * �, and the same line of thought informs us that � * �,

meaning �(�) = �(�) = 1.

Reciprocally, if �(�) = �(�) = 1, �, � * � and, given the instance � ³ (� ³ (� I �))

of axiom Ax 3, by two consecutive applications of Modus Ponens we get that � I � * �,

meaning �(� I �) = 1.

3. For implication, assume �(� ³ �) = 1: then, either �(�) = 1, meaning � * � and, since

� is closed and also contains � ³ �, � * � and therefore �(�) = 1; or �(�) = 0.

Reciprocally, if �(�) = 1 we have that � * �, and since � ³ (� ³ �) is an instance of

axiom Ax 1 and � is closed, we obtain that � ³ � * �.

If �(�) = 0, from the maximality of � with respect to not proving ' we find �, � ⊢bI ';

suppose, by contradiction, that � ³ � + �, and again by the maximality of � we discover

�, � ³ � ⊢bI ', and from a proof by cases

�, (� ³ �) J � ⊢bI '.

However, by Ax 9∗, (� ³ �) J � is an instance of an axiom, and we get that � ⊢bI ',

which is absurd. It follows that, if �(�) = 0, then �(� ³ �) = 1.

4. Suppose �(� ² �) = 1 and �(�) = 1, meaning that � ² �, � * �; by Modus Ponens and

the correct instance of the axiom Ip,

(� ² �) ³ (� ³ (� ³ ')),

we derive that � ³ (� ³ ') * � since this set is closed; using the closedness of � and

Modus Ponens again, � ³ ' * �, meaning, from what we saw before, that either � + �

or ' * �. Since � does not prove ', we cannot have ' * �, and therefore � + �, that is,

�(�) = 0.

5. Finally, if �(� ² �) = 0, � ² � + �; if we had � ² � * �, given that � is closed and

(� ² �) ³ (� ² �)

is an instance of Comm, we would have � ² � * �, which is a contradiction; so we must

have � ² � + � and therefore �(� ² �) = 0.

If we have instead that �(� ² �) = 1, � ² � * �, and since � is closed and (� ² �) ³ (� ²

�) is an instance of axiom Comm, we get that � ² � * �, meaning �(� ² �) = 1.

Therefore, the function � is a bivaluation for bI.
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Theorem 7.1.2. Given formulas � L {'} in bI,

� ⊢bI ' if and only if � ⊨bI '.

Proof. We have already proved in Theorem 7.1.1 that, if � ⊢bI ', then � ⊨bI '.

Reciprocally, suppose by contradiction � ⊬bI ': then there exists a closed, non-

trivial extension � of � maximal with respect to not proving ', and the function � from the

formulas of bI to {0, 1} such that �(�) = 1 if and only if � * � is a bivaluation.

But then � is a bivaluation such that �(�) ⊆ {1} and �(') = 0, contradicting our

assumption that � ⊨bI '.

Now, with the aid of bivaluations, we can prove that bI is a logic of formal incom-

patibility, or LIp, as in Definition 7.0.1, with respect to the set + (p, q) = {p ² q}. Take any

three propositional variables p, q and r.

1. Taking a bivaluation � with �(p) = �(q) = 1 and �(r) = 0, we then have that p, q ⊬bI r.

2. Taking a bivaluation � with �(p) = �(p ² q) = 1 (and so �(q) = 0 and �(q ² p) = 1) and

�(r) = 0, it becomes clear that p ² q, p ⊬bI r.

3. Taking a bivaluation � with �(q) = �(p ² q) = 1 (and so �(p) = 0 and �(q ² p) = 1) and

�(r) = 0, it becomes clear that p ² q, q ⊬bI r.

4. For any formula �, it is true that p ² q, p, q ⊢bI � from Ip and Modus Ponens.

7.1.3 Fidel structures

Fidel structures are usually seem as generalized Boolean algebras, generalization originally

achieved by adding relations to these algebraic structures. Designed to treat non-classical logics,

their first occurrences in literature appear in the work of Fidel, as in [Fid77; Fid03; Fid09]. They

were first created to deal with certain paraconsistent logics, specifically da Costa’s Cn, and in

such a context they are probably more intuitively defined, but they will prove themselves very

adequate for dealing semantically with logics of incompatibility, when correctly presented as

multialgebras. When we focus our study on logics of formal inconsistency we will present a

more classical approach to Fidel structures, as it can be found in Definition 6.1.2 of [CC16], but

for now we will simply present the Fidel structures best tailored for bI.

Here, it becomes necessary to clarify the use of the nomenclature “Fidel structures”:

why are we using this name? These semantics were originally defined as certain implicative lat-

tices2 equipped with some unary relations to treat da Costa’s hierarchy plus C!. Then, as more

non-classical logics needed semantical characterizations, all Boolean-like algebras (including

2That, in the case of Cn, were proven to actually be Boolean algebras.



Chapter 7: Logics of formal incompatibility 220

implicative lattices, Heyting algebras and others), equipped with unary relations (usually stand-

ing for negation and consistency), could be called Fidel structures; the earliest examples of Fidel

structures over algebras that are not Boolean are also found in Fidel’s work, for da Costa’s C!
and Nelson’s logics, in respectively [Fid77] and [Fid80]. Here, our reasoning is the following:

Fidel structures should be seem as RNmatrices with an underlying Boolean-like (deterministic)

component, and multioperations (now of any arity) arising from what was previously presented

as relations. Perhaps it is too much to classify under the title of “Fidel structures”, but since the

logics at hand are still quite similar, in spirit, to da Costa’s hierarchy, the name seemed a fitting

tribute to Fidel’s breakthrough semantics.

Firstly, we expand the signature ΣbI by adding a bottom, a top and a classical nega-

tion, making the signature ΣCPL
bI such that: (ΣCPL

bI )0 = {⊥,⊤}, (ΣCPL
bI )1 = {<}, (ΣCPL

bI )2 =

{J,I,³, ²}, and (ΣCPL
bI )n = ∅ for n > 2. This allows us to define a Fidel structure, presented as

a ΣCPL
bI -multialgebra, for bI to be any ΣCPL

bI -multialgebra ï = (A, {�ï}�*ΣCPL
bI

) such that:

1. (A, {�ï}�*ΣCPL) is a Boolean algebra;3

2. for all a, b * A and c *²ï (a, b),

Iï(a,Iï(b, c)) = ⊥ï;

3. for all a, b * A, ²ï (a, b) =²ï (b, a).4

For simplicity, we will drop the indexes ï and use the standard infix notation.

Given a Fidel structure ï, presented as a ΣCPL
bI -multialgebra, for bI, a valuation over

ï is a function � ∶ F (ΣbI,Ą) ³ A such that:

1. �(�#�) = �(�)#�(�), for # * {J,I,³};

2. �(� ² �) * �(�) ² �(�).

Notice that � is a valuation for ï if and only if it is a ΣbI-homomorphism, between

F(ΣbI,Ą) and (A, {�ï}�*ΣbI
).

For every Fidel structure ï for bI, we will consider the restricted Nmatrix

(ï, {⊤},ôï), where ôï is the set of valuations � ∶ F(ΣbI,Ą) ³ ï such that

�(� ² �) = �(� ² �),

3Here, a distinction is important: the operations corresponding to the symbols ⊥, ⊤, <, J, I and ³ are deter-
ministic, and will be treated as such; meanwhile, ² will be, at most times, non-deterministic.

4Technically, this last condition could be replaced by, for all a, b * A, ²ï (a, b)K ²ï (b, a) � ∅, or simply
erased from our definition of Fidel structures for bI; it only guarantees that, for every such Fidel structure, any
function from the variables Ą into A may be extended to a restricted valuation. However, given the condition
�(� ² �) = �(� ² �) we will ask of these restricted valuations, dropping ²ï (a, b) =²ï (b, a) from the definition
of a Fidel structure would only mean that some Fidel structure would not help in establishing the validity of an
argument; the class of all Fidel structures, however, would still be sound and complete.
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for any two formulas � and � in F (ΣbI,Ą). If � proves ' according to such restricted Nmatrices,

we will write � ⊩bI
ô
': as one could suspect, � ⊢bI ' if and only if � ⊩bI

ô
'.

Proposition 7.1.2. Each restricted Nmatrix (ï, {⊤},ôï), as described above, is structural.

Proof. Take any ΣbI-homomorphism � ∶ F(ΣbI,Ą) ³ F(ΣbI,Ą) and an element � * ôï, which

is by definition of ôï a ΣbI-homomorphism � ∶ F(ΣbI,Ą) ³ ï such that, for any two formulas

� and �, �(� ² �) = �(� ² �).

Clearly �ċ� ∶ F(ΣbI,Ą) ³ ï is a ΣbI-homomorphism, so we only need to show

that, for any two formulas � and �, �ċ�(� ² �) = �ċ�(� ² �); and since

�ċ�(� ² �) = �(�(� ² �)) = �(�(�) ² �(�)) = �(�(�) ² �(�)) = �(�(� ² �)) = �ċ�(� ² �),

we finish the proof.

If we simply consider the class ā of Nmatrices (ï, {⊤}), where ï is a Fidel struc-

ture for bI, it is not hard to prove that � ⊨
ā
' if and only if � ⊢bI− '.

7.1.3.1 Soundness

First of all, we state that for any instance of an axiom � of the positive fragment of classical

propositional logic in bI, ⊩bI
ô
� (meaning that ∅ ⊩bI

ô
�): this is true because Boolean algebras

model classical propositional logic. To see one example, take an instance � ³ (� ³ �) of

Ax 1: we have that

�(� ³ (� ³ �)) = �(�) ³ (�(�) ³ �(�)),

and remembering that in a Boolean algebra, x³ y = <xJy, this equals <�(�)J(<�(�)J�(�));

using that J is commutative and associative, in this order, this equals

(<�(�) J �(�)) J <�(�) = ⊤ J <�(�) = ⊤,

and since for any valuation � we have that �(� ³ (� ³ �)) = ⊤, we find ⊩bI
ô
� ³ (� ³ �).

Now we take an instance (� ² �) ³ (� ³ (� ³ 
)) of axiom Ip; using again that

x³ y = <x J y, the image under a valuation � of this formula is

<�(� ² �) J (<�(�) J (<�(�) J �(
))) = (<�(� ² �) J (<�(�) J <�(�))) J �(
);

using that <x J <y = <(x I y) in a Boolean algebra, one of the De Morgan’s laws, we get this

expression equals

<(�(� ² �) I (�(�) I �(�))) J �(
),

and from the requirements made on the multioperation ² in the definition of Fidel structures for
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bI, we get that �(� ² �) I (�(�) I �(�)) = ⊥, and therefore the whole expression simplifies to

<⊥ J �(
) = ⊤ J �(
) = ⊤.

Finally, take an instance (� ² �) ³ (� ² �) of Comm, and for any restricted Nmatrix

(ï, {⊤},ôï) for bI, its image under a � * ôï is �(� ² �) ³ �(� ² �). Since � * ôï, we have

that �(� ² �) = �(� ² �), and therefore �((� ² �) ³ (� ² �)) equals �(� ² �) ³ �(� ² �),

which is always ⊤, meaning "⊩bI
ô

" models all axioms of bI.

Theorem 7.1.3. Given formulas � L {'} of bI, if � ⊢bI ' then � ⊩bI
ô
'.

Proof. Let �1,& , �n be a demonstration of' from �, with �n = ', and letï be a Fidel structure,

represented as a ΣbI-multialgebra, for bI, with � a valuation for bI over ï in ôï.

We aim to show that, if �(�) ⊆ {⊤}, then �(�i) = ⊤ for every i * {1,& , n}. We will

proceed by induction, assuming that the result already holds for all formulas prior to �i (notice

that �0 is either an axiom or a premise). Then we have that �i is either:

1. an instance of an axiom, when we already proved ⊩bI
ô
�i, and therefore �(�i) = ⊤;

2. a premise, and by our hypothesis that �(�) ⊆ {⊤} we find �(�i) = ⊤;

3. there exist j, k < i such that either �j = �k ³ �i or �k = �j ³ �i, where we will assume,

without loss of generality, that the first case holds;

by induction hypothesis, �(�j) = �(�k ³ �i) = ⊤, and therefore <�(�k) J �(�i) = ⊤, and

since �(�k) = ⊤, meaning <�(�k) = ⊥, we must have that �(�i) = ⊤, what finishes the

proof.

7.1.3.2 Completeness

Now, we want to show the reciprocal of Theorem 7.1.3 is also true: if � ⊩bI
ô
', then � ⊢bI '.

For a set of formulas � of bI, we define a relation "�bI
�

" between formulas of bI such

that

� �bI
�
� if and only if � ⊢bI � ³ � and � ⊢bI � ³ �.

Proposition 7.1.3. For any �, �bI
�

is an equivalence relation.

Proof. 1. For any formula �, we trivially have that � ⊢bI �, and therefore ⊢bI � ³ �; since

bI is tarskian, we find � ⊢bI � ³ �, and therefore � �bI
�
�.

2. If � �bI
�
�, then � ⊢bI � ³ � and � ⊢bI � ³ �; therefore � ⊢bI � ³ � and � ⊢bI � ³ �

or, what is equivalent, � �bI
�
�.
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3. If � �bI
�
� and � �bI

�

 , we have that � demonstrates � ³ �, � ³ �, � ³ 
 and 
 ³ �

in bI; from � ⊢bI � ³ � we get that �, � ⊢bI �, and then from � ⊢bI � ³ 
 and Modus

Ponens we obtain that �, � ⊢bI 
 , or what is equivalent, that �bI� ³ 
 . From � ⊢bI � ³ �

and � ⊢bI 
 ³ � we find that � ⊢bI 
 ³ �, meaning � �bI
�

 .

Theorem 7.1.4. For any �, �bI
�

is a congruence with relation to the operators in {J,I,³},

meaning that for any operator # in this set, and any formulas �1, �2, �1 and �2 in bI such that

�1 �
bI
�
�1 and �2 �

bI
�
�2,

�1#�1 �
bI
�
�2#�2.

Proof. Suppose � �bI
�
� and ' �bI

�
 , meaning � proves � ³ �, � ³ �, '³  and  ³ '.

1. We have that �, � ⊢bI �, and by Ax 6 we find �, � ⊢bI � J  ; analogously, we use

�, ' ⊢bI  to show that �, ' ⊢bI � J  , meaning through a proof by cases that

�, � J ' ⊢bI � J  

and that, therefore, � ⊢bI (� J ') ³ (� J  ). Using that � proves � ³ � and  ³ ', we

get that � ⊢bI (� J  ) ³ (� J '), and therefore � J ' �bI
�
� J  .

2. From �, � ⊢bI � and �, ' ⊢bI  , the instance � ³ ( ³ (� I  )) of Ax 3 and two

applications of Modus Ponens, we obtain that �, �, ' ⊢bI � I  .

Since � I' ⊢bI �, ', and by the fact that bI is tarskian, we obtain that �, � I' ⊢bI � I ,

that is, � ⊢bI (� I ') ³ (� I  ). Using � ⊢bI � ³ � and � ⊢bI  ³ ', we obtain

analogously � ⊢bI (� I  ) ³ (� I '), and that implies � I ' �bI
�
� I  .

3. From the fact that � ⊢bI � ³ � and � ⊢bI ' ³  , applying twice that implication is

transitive we find

�, � ³ ' ⊢bI � ³  ,

and so � ⊢bI (� ³ ') ³ (� ³  ). From the fact that � ⊢bI � ³ �,  ³ ' we obtain, in

a similar way, that � ⊢bI (� ³  ) ³ (� ³ '), meaning � ³ ' �bI
�
� ³  .

So the quotient set AbI
�
= F (ΣbI,Ą)∕ �bI

�
is a well defined set, where we will denote

the quotient class of the formula � by [�]. More than that, from the fact that �bI
�

is a congruence

with respect to the connectives in {J,I,³} we get that, by making

[�]#ï[�] = [�#�], for # * {J,I,³},
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such operations are well-defined. To see that, suppose both � and ' are in the class [�] (meaning

� �bI
�
') and both � and  are in [�]: we get that [�]#ï[�] = [�#�] and [']#ï[ ] = ['# ],

which equals [�#�] since �bI
�

is a congruence for # * {J,I,³}.

We then define, as it would be expected from our commentaries on the definable

bottoms, tops and classical negation in bI, ⊥ï = [⊥��] and ⊤ï = [⊤�] for any formulas � in �

in bI, what is possible since those bottom and top elements are equivalent to one another, and

<ï([�]) = [� ³ ⊥��].

To see that the classical negation is well-defined, take � * [�], and we wish to show that

<ï([�]) = <ï([�]), meaning � ³ ⊥�� �bI
�
� ³ ⊥�� . This is equivalent to showing that,

by applying the deduction meta-theorem,

�, � ³ ⊥�� ⊢bI � ³ ⊥�� and �, � ³ ⊥�� ⊢bI � ³ ⊥��.

But since � * [�], we have � ⊢bI � ³ � and � ⊢bI � ³ �, while ⊥�� ³ ⊥�� and ⊥�� ³ ⊥��

are tautologies, which implies the desired result through the transitive property of implication.

Theorem 7.1.5. ï = (AbI
�
, {�ï}�*ΣCPL) is a Boolean algebra.

Proof. For simplicity, we will drop the index ï. So, it must be proven that, for any formulas �,

� and 
 in bI,

1. [�] J ⊥ = [�] and [�] I ⊤ = [�];

2. [�] J [�] = [�] J [�] and [�] I [�] = [�] I [�];

3. [�] J ([�] I [
]) = ([�] J [�]) I ([�] J [
]) and [�] I ([�] J [
]) = ([�] I [�]) J ([�] I [
]);

4. [�] J <[�] = ⊤ and [�] I <[�] = ⊥;

5. [�] ³ [�] = <[�] J [�].

For those items containing more than one assertion, we shall only prove the first, being the

second completely analogous.

1. We must prove that � J ⊥�� �bI
�
�. Clearly � ⊢bI � ³ � J ⊥��, since this formula is an

instance of Ax 6.

We also know that ⊥�� behaves like a bottom element, i.e., for any formula �, ⊥�� ⊢bI

�, and therefore �, ⊥�� ⊢bI �; since � ³ � is a tautology, �, � ⊢bI �, and therefore

�, � J ⊥�� ⊢bI �, implying � ⊢bI � J ⊥�� ³ �.

2. The statement is equivalent to � J � �bI
�
� J �: from the instance � ³ (� J �) of Ax 7

and the instance � ³ (� J �) of Ax 6, we get that �, � ⊢bI � J � and �, � ⊢bI � J �, and

therefore �, � J � ⊢bI � J �, meaning � ⊢bI (� J �) ³ (� J �).
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Using the instances of axioms � ³ (� J �) and � ³ (� J �) we get the reciprocal.

3. We must prove that � J (� I 
) �bI
�
(� J �) I (� J 
): (� I 
) ³ � and (� I 
) ³ 
 are

instances of Ax 4 and Ax 5, and � ³ (� J �) and 
 ³ (� J 
) are instances of Ax 7,

meaning �, (� I 
) ⊢bI � J � and �, (� I 
) ⊢bI � J 
 .

Since � ³ (� J �) and � ³ (� J 
) are instances of Ax 6, �, � J (� I 
) ⊢bI � J � and

�, � J (� I 
) ⊢bI � J 
 , and from the instance

� J � ³ (� J 
 ³ ((� J �) I (� J 
)))

of Ax 3 and Modus Ponens, we get that � ⊢bI [� J (� I 
)] ³ [(� J �) I (� J 
)].

Reciprocally, is enough to show, by Ax 4 and Ax 5, that �, � J �, � J 
 ⊢bI � J (� I 
).

Then we have four cases:

(a) �, � ⊢bI � J (� I 
), from the instance � ³ [� J (� I 
)] of Ax 6;

(b) �, �, � ⊢bI � J (� I 
) for the same reason as above;

(c) �, �, 
 ⊢bI � J (� I 
), again for the same reason;

(d) �, �, 
 ⊢bI � J (� I 
), from the instance � ³ (
 ³ (� I 
)) of Ax 3 and two

applications of Modus Ponens that give us �, �, 
 ⊢bI � I 
 , and then the use of

Ax 7.

So, from the first two items, �, �, �J� ⊢bI �J(�I
), and from the last two �, �J�, 
 ⊢bI

� J (� I 
), meaning

�, � J �, � J 
 ⊢bI � J (� I 
).

4. To prove � J (� ³ ⊥��) �
bI
�
⊤�, we notice first that [� J (� ³ ⊥��)] ³ ⊤� follows from

the fact that ⊤� behaves like a top element, meaning � ⊢bI [� J (� ³ ⊥��)] ³ ⊤�.

Reciprocally, � J (� ³ ⊥��) is an instance of an axiom, and for this reason ⊢bI � J (� ³

⊥��), meaning � ⊢bI ⊤� ³ [� J (� ³ ⊥��)].

5. Finally, we need now only to prove that � ³ � �bI
�
(� ³ ⊥��) J �, that is, by applying the

deduction meta-theorem, �, � ³ � ⊢bI (� ³ ⊥��) J � and �, (� ³ ⊥��) J � ⊢bI � ³ �.

Clearly �, � ³ � ⊢bI (� ³ ⊥��) J �, by using Modus Ponens and the instance � ³ (� ³

⊥��) J � of Ax 7; meanwhile, � ³ ⊥��, � ³ � ⊢bI (� ³ ⊥��) J � by the instance

(� ³ ⊥��) ³ (� ³ ⊥��) J �

of Ax 6. From a proof by cases, (� ³ ⊥��) J �, � ³ � ⊢bI (� ³ ⊥��) J �, and since

(� ³ ⊥��) J � is an instance of Ax 9∗ and bI is tarskian, we obtain the desired result.
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Reciprocally, � ⊢bI � ³ � by Ax 1, and since ⊥�� ³ � is a tautology, � ³ ⊥�� ⊢bI � ³

�, by use of the transitivity of implication. By a proof by cases, (� ³ ⊥��)J� ⊢bI � ³ �.

Now, for a given �, we can make ï = (AbI
�
, {�ï}�*ΣCPL) into a Fidel structure,

presented as a ΣCPL
bI -multialgebra, for bI: we simply define

[�] ² [�] = {[' ²  ] ∶ ' * [�],  * [�]};

for [
] * [�] ² [�], we must show that [�] I ([�] I [
]) = ⊥; taking ' * [�] and  * [�] such

that 
 * [' ²  ], this means

' I ( I 
) �bI
�
⊥' .

Clearly � ⊢bI ⊥' ³ [' I ( I 
)], so it remains to be shown that � ⊢bI [' I ( I 
)] ³ ⊥' .

This is equivalent to �, ',  , 
 ⊢bI ⊥' , from Ax 4, and since � ⊢bI 
 ³ (' ²  ), � ⊢bI (' ²

 ) ³ 
 and ⊥' = ' I ( I (' ²  )), by Modus Ponens this equals

�, ',  , ' ²  ⊢bI ' I ( I (' ²  )),

but this is obviously true. We can also prove that if ' * [�] and  * [�], [ ² '] * [�] ² [�].

Very clearly [' ²  ] * [�] ² [�], so it is enough to prove that [ ² '] = [' ²  ], or in other

terms, that  ² ' �bI
�
' ²  , meaning

� ⊢bI ( ² ') ³ (' ²  ) and � ⊢bI (' ²  ) ³ ( ² ');

and this is clearly true, since both implications are instances of Comm. This shows that [�] ²

[�] = [�] ² [�], since the elements of both are the same.

TheΣCPL
bI -multialgebraïbI

�
just described, with universeAbI

�
, is called a Lindenbaum-

Tarski multialgebra of bI, specifically the one associated to �.

Theorem 7.1.6. Given formulas � L {'} of bI, if � ⊩bI
ô
' then � ⊢bI '.

Proof. Suppose that � ⊬bI ', and we know there exists a closed set of formulas � of bI that

contains � and is maximal with respect to not proving '. We take the Lindenbaum-Tarski

multialgebra ïbI
�

of bI associated to � and its associated RNmatrix, and consider the map

� ∶ F (ΣbI,Ą) ³ AbI
�

such that �(�) = [�]. We have that:

1. for any # * {J,I,³}, �(�#�) = [�#�] = [�]#[�] = �(�)#�(�);

2. �(� ² �) = [� ² �], which is in {[' ²  ] ∶ ' * [�],  * [�]} = [�] ² [�];

3. �(� ² �) = [� ² �] = [� ² �] = �(� ² �).
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So � is a valuation over ïbI
�

in ôïbI
�

. Furthermore, �(�) = ⊤ if and only if � ⊢bI �; given

that � ⊬bI ', we obtain �(�) ⊆ {⊤} and �(') � ⊤, meaning that � ⊮bI
ô
' and therefore

�⊮bI
ô
'.

7.1.4 Decision method

First of all, we remember the set {0, 1} can be made into a Boolean algebra 2 when we define

⊤ = 1, ⊥ = 0, and the other operations according to the following tables.

<

0 1

1 0

Negation

J 0 1

0 0 1

1 1 1

Disjunction

I 0 1

0 0 0

1 0 1

Conjunction

³ 0 1

0 1 1

1 0 1

Implication

Notice that, to give one example, technically ⊥ = {0}, since we are in the envi-

ronment of multialgebras; however, given the operations associated to the elements in ΣCPL are

supposed to be single-valued, since (A, {�ï}�*ΣCPL) is a Boolean algebra, we will identify a

singleton to the element it contains, as is usual.

We make 2 into a Fidel structure 2bI, presented as a ΣCPL
bI -multialgebra, for bI by

defining ²2bI
(1, 1) = {0} and ²2bI

(x, y) = {0, 1} otherwise. For simplicity, we will denote ²2bI

simply by ² and use the infix notation.

² 0 1

0 {0, 1} {0, 1}

1 {0, 1} {0}

Table for ² in 2bI

This is very clearly a Fidel structure for bI since, for z * x ² y, we have that

x I (y I z) = 0: in the case where neither x nor y equals 0, the only possible value for z is

exactly 0. Furthermore, one always has x ² y = y ² x.

Theorem 7.1.7. � ∶ F (ΣbI,Ą) ³ {0, 1} is a bivaluation for bI if, and only if, it is a ΣbI-

homomorphism from F(ΣbI,Ą) to 2bI in ô2bI
.

Proof. Assume first that � is a bivaluation. Then:

1. if �(�) = 1 or �(�) = 1, we have that �(�) J �(�) = 1 = �(� J �); otherwise, when both

�(�) and �(�) are 0, we have that �(�) J �(�) = 0 = �(� J �);

2. if both �(�) and �(�) are 1, �(�) I �(�) = 1 = �(� I �); otherwise, �(�) I �(�) = 0, which

is also the value of �(� I �);
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3. if either �(�) = 0 or �(�) = 1, �(�) ³ �(�) = 1 = �(� ³ �); in the case that �(�) = 1

and �(�) = 0, �(�) ³ �(�) = 0 = �(� ³ �);

4. for any value of �(� ² �) such that either �(�) or �(�) is not 1, it is clear �(� ² �) *

�(�) ² �(�), since in those cases �(�) ² �(�) is the whole universe of 2bI, so assume

�(�) = �(�) = 1; if we had �(� ² �) = 1, by the fact �(� ² �) = 1 and �(�) = 1 we would

get that �(�) = 0, which is a contradiction, forcing us to have

�(� ² �) = 0 * {0} = 1 ² 1 = �(�) ² �(�);

5. since �(� ² �) = �(� ² �) and, from the previous items, � is a ΣbI-homomorphism, we

have that � lies in ô2bI

To summarize, � is a ΣbI-homomorphism in ô2bI
.

Reciprocally, assume � is a ΣbI-homomorphism which lies in ô2bI
.

1. since �(� J �) = �(�) J �(�), looking at the table for disjunction we find that �(� J �) = 1

if and only if �(�) = 1 or �(�) = 1;

2. since �(� I �) = �(�) I �(�), �(� I �) = 1 if and only if �(�) = �(�) = 1;

3. given �(� ³ �) = �(�) ³ �(�), �(� ³ �) = 1 if and only if �(�) = 0 or �(�) = 1;

4. if �(� ² �) = 1, from the table for ² there are three possible cases: �(�) = �(�) = 0,

�(�) = 0 and �(�) = 1, and �(�) = 1 and �(�) = 0; so if �(� ² �) = 1 and �(�) = 1, we

have that �(�) = 0;

5. since � * ô2bI
, �(� ² �) = �(� ² �).

This finishes proving that � is then a bivaluation.

We will denote the restricted Nmatrix (2bI, {1},ô2bI
) by ābI.

Theorem 7.1.8. Given formulas � L {'} of bI, � ⊨bI ' if and only if � ⊨
ābI
'.

Proof. The proof is quite straightforward: suppose � ⊨bI '; then, for any ΣbI-homomorphism

� ∶ F(ΣbI,Ą) ³ 2bI in ô2bI
such that �(�) ⊆ {1}, from the previous theorem we have that � is a

bivaluation, and since �(�) ⊆ {1} and � ⊨bI ', we find that �(') = 1. Therefore, � ⊨2bI
'.

The reciprocal is analogous.

As it was discussed in depth in Section 5.4, not all finite RNmatrices lead straight-

forwardly to decision methods by row-branching, row-eliminating truth tables, since there may

not exist an algorithm to decide whether a given row is, or is not, a restricted valuation. As luck

would have it, in the case of bI the RNmatrix ābI does indeed offer a decision method; we will,
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however, just briefly discuss how it works, the complete proof being quite similar to the one

found in Section 5.4.1.

We start as it is usual: for a given formula ', produce a list of its subformulas in

non-decreasing order of complexity '1,& , 'n = '; the complexity, also known as order, of

a formula ' of bI is defined as 0 if ' is a variable, and if � and � have complexity p and q,

respectively, and ' = �#� for a # * {J,I,³, ²}, then the complexity of ' is max{p, q} + 1.

We produce a table with columns headed by the formulas 'i; we have some 1 d

m < n such that all '1,& , 'm are propositional variables, and so we write down 2m initial rows,

each with a possible combination of zeros and ones for these variables. Then we start filling

in the rows for 'm+1,& , 'n in the following way: if 'l = 'i#'j (where necessarily i, j < l),

# * {J,I,³} and, on a certain row, 'i is given the value a and 'j is given the value b, then on

this very row 'l is given the value a#b. If 'l = 'i ² 'j and both 'i and 'j are 1 on a row, then

'l is 0; if, however, on a specific row 'i or 'j takes the value 0, then this row is split in two, one

where 'l assumes the value 0, the other where it assumes the value 1.

The caveat of this last part is that undesired valuations need to be erased: if there is

a formula 'k = 'j ² 'i, with i, j < k < l, that takes the value 0 in the present row, then the

row where 'l = 'i ² 'l takes the value 1 is erased, in order to 'i ² 'j and 'j ² 'i be given the

same value; analogously, if in this row 'k is 1, the row where 'l is 0 is eliminated.5 At the end,

the column headed by ' is filled with nothing but ones if, and only if, the formula is a tautology

for bI.

For a finite set � = {
1,& , 
n}, we can test whether � ⊢bI ' by simply testing if


1 ³ (ď ³ (
n ³ ')ď) or
ân

i=1

i ³ ' is a tautology in the same logic; of course, we can

be more efficient and simply merge the tables for ' and all 
i and check if, in all rows where all

elements of � are designated, so is '.

To give one example of how our row-branching, row-eliminating truth tables work,

consider the deduction p, p ² q ⊢bI q ³ (q ² p); basically, it states that if p is true and

incompatible with q, then q must not be true (notice that q ³ (q ² p), in the presence of p, is

equivalent to <q).

p q p ² q q ² p q ³ (q ² p)

1 1 0 0 0

1 0
1 1 1

0 0 1

0 1
1 1 1

0 0 0

0 0
1 1 1

0 0 1

5Of course, one could write down the row-branching truth table for ', corresponding to the Nmatrix subjacent
to ābI, without simultaneously erasing the undesired rows, and only at the end select those rows where 'i ² 'j and
'j ² 'i are given different values to eliminate; this may be less efficient, but the result is the same.
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Notice that, since in every row where both p and p ² q are 1 so is q ³ (q ² p), the

deduction is valid.

Theorem 7.1.9. Let ābI− be the Nmatrix (2bI, {1}); for any formulas �L {'} of bI−, � ⊨bI− ' if

and only if � ⊨bI− '.

This result, whose proof is very similar to the one of Theorem 7.1.8, shows a strange

property of logics of incompatibility and their semantics which deserves to be further studied:

while none of the logics bI− and CPL, respectively weaker and stronger than bI, needs RN-

matrices to be characterized, bI, lying squarely in the middle, does indeed require RNmatrices,

what is formally proved in Section 8.5.

7.1.5 Another decision method

In Section 5.4.2 we showed how it is sometimes possible to extract from the tables of the oper-

ations of a finite RNmatrix tableau rules that, when paired with adequate closure conditions for

branches, produce a tableau semantics for the logic characterized by said RNmatrix. This can

again be done in bI, but the full proof that this works is left as an exercise: it follows the lines

of the same result for Cn, being however much simpler.

Definition 7.1.1. The following are the tableau rules with labeled formulas, where ' and  are

formulas of bI, and 0 and 1 are all possible labels, for the tableau calculus we denote by ĀbI.

0(' J  )

0(')

0( )

0(' I  )

0(') E 0( )

0('³  )

1(')

0( )

1(' J  )

1(') E 1( )

1(' I  )

1(')

1( )

1('³  )

0(') E 1( )

1(' ²  )

0(') E 0( )

Branches of tableaux in ĀbI are closed iff:

1. they contain labeled formulas L(') and L
∗(') with L � L

∗
;

2. or they contain labeled formulas L(' ²  ) and L
∗( ² ') with L � L

∗
.

A branch � is complete whenever it contains, for each L(
) in � not of the form

0(' ²  ) and with 
 not a variable, all the labeled formulas of one of the branches in the rule

headed by L(
); complete branches are open if they are not closed.



Chapter 7: Logics of formal incompatibility 231

A tableau in ĀbI is: closed if all of its branches are closed; complete if all of its

branches are either complete or closed; and open if it is complete but not closed.

Of course, the labels 0 and 1 correspond, respectively, to the values 0 and 1 of ābI;

notice, furthermore, that if we had included in the signature of bI the classical negation that is

definable in this logic, it wouldn’t be necessary to use labels, but this is in no way mandatory for

our tableaux to properly work.

Notice that all the rules found in ĀbI are analytic, in the sense that the complexities

of the formulas obtained from applying a rule are strictly smaller than the complexity of the

formula that motivated the application of the rule. This means that all tableaux in ĀbI can be

completed in a finite number of steps. A formula ' of bI is provable according to tableaux in

ĀbI, when we write ⊢
ĀbI
', if there is a closed tableau in ĀbI starting from 0('); for a finite set

of formulas � = {
1,& , 
n} of bI, we say � proves ' according to ĀbI if

⊢
ĀbI

nâ

i=1


n ³ ',

or alternatively

⊢
ĀbI

1 ³ (
2 ³ ď (
n ³ ')ď).

The following theorem is proved as in the case of da Costa’s hierarchy, found in Section 5.4.2,

and shows we indeed have a decision method.

Theorem 7.1.10. For any finite set of formulas � L {'} of bI, � ⊢bI ' if, and only if, � ⊢
ĀbI
'.

7.2 Other logics

Of course, when exploring a new logical environment, there are many possibilities that arise

according to your philosophical interpretation of what the logic at hand should accomplish.

The most basic logic of formal incompatibility, bI, is just that, the most basic one:

there are many, very natural, different logics of formal incompatibility that occur when dealing

with this subject, from which we present a few in the next sections.

7.2.1 The logic bIpr

The more one analyzes the concept of incompatibility, the more it seems it should have some

sort of interplay, of relationship with other logical objects such as disjunction and conjunction.

In the logic we shall call bIpr we add axioms relating ² with J and I.

It seems that, in natural language, when 
 is incompatible with � and incompatible

with �, then it is incompatible with the disjunction of � and � ; alternatively, when 
 is incom-

patible with � or incompatible with �, then it is incompatible with the conjunction of � and

�.
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To see how CPL would approach this, we remember the usual interpretation of the

Sheffer’s stroke is � ò � = <(� I �); then, we see that

(� J �) ò 
 = <
[
(� J �) I 


]
,

and by using the distributivity of conjunction over disjunction this is equivalent to <[(� I 
) J

(� I 
)], which by De Morgan’s law is equivalent to

<(� I 
) I <(� I 
) = (� ò 
) I (� ò 
),

as we suggested before. Quite analogously, (� I �) ò 
 is equivalent to (� ò 
) J (� ò 
) in

CPL.

To make bI more similar to the classical account of incompatibility, we add to it

axiom schemata regarding the propagation of incompatibility

[
(� ² 
) I (� ² 
)

]
³

[
(� J �) ² 


]
(prI)

and [
(� ² 
) J (� ² 
)

]
³

[
(� I �) ² 


]
, (prJ)

what gives us the logic bIpr.

We can prove that bIpr is strictly stronger than bI: take the instance [(p1 ² p3) I

(p2 ² p3)] ³ [(p1 J p2) ² p3] of prI, which is clearly true in bIpr, and take a bivaluation

� ∶ F (ΣbI,Ą) ³ {0, 1} for bI such that �(p1) = �(p2) = �(p3) = 0,

�((p1 J p2) ² p3) = 0, �(p1 ² p3) = 1 and �(p2 ² p3) = 1.

Then we have that

�([(p1 ² p3) I (p2 ² p3)] ³ [(p1 J p2) ² p3]) = �((p1 ² p3) I (p2 ² p3)) ³ �((p1 J p2) ² p3) =

[�(p1 ² p3) I �(p2 ² p3)] ³ 0 = (1 I 1) ³ 0 = 1 ³ 0 = 0,

meaning bI can not actually prove some instances of prI.

7.2.1.1 Bivaluations

Definition 7.2.1. A bivaluation for bIpr is a map � ∶ F (ΣbI,Ą) ³ {0, 1} that is a bivaluation

for bI and also satisfies that, for any formulas �, � and 
 ,

if �(� ² 
) = 1 and �(� ² 
) = 1, then �((� J �) ² 
) = 1,
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and

if �(� ² 
) = 1 or �(� ² 
) = 1, then �((� I �) ² 
) = 1.

Definition 7.2.2. Given a set of formulas � L {'} of bIpr, we say � proves ' according to

bivaluations for bIpr, and write � ⊨bIpr ', if for every bivaluation � for bIpr we have that, if

�(�) ⊆ {1}, then �(') = 1.

As it would be expected, given instances � = [(� ² 
) I (� ² 
)] ³ [(� J �) ² 
]

of prI and  = [(� ² 
) J (� ² 
)] ³ [(� I �) ² 
] of prJ, we have that ⊨bIpr � and ⊨bIpr  ,

meaning that for any bivaluation � for bIpr, �(�) = �( ) = 1.

To prove that, we will start with�: we have �(�) = 1 if and only if �((�J�) ² 
) = 1,

or

�((� ² 
) I (� ² 
)) = 0.

If �((� ² 
) I (� ² 
)) = 0 there is nothing to be done, so let us assume �((� ² 
) I (� ² 
)) = 1:

in this case, since � is a bivaluation for bI, �(� ² 
) = 1 and �(� ² 
) = 1, meaning �((� J �) ²


) = 1. Either way, �(�) = 1.

Now �( ) = 1 if and only if �((� I �) ² 
) = 1 or

�((� ² 
) J (� ² 
)) = 0;

as before, if �((� ² 
) J (� ² 
)) = 0 there is nothing to prove, so let us assume �((� ² 
) J (� ²


)) = 1. In this case, �(� ² 
) = 1 or �(� ² 
) = 1, implying �((� I �) ² 
) = 1. Once again,

we derive that in any case one has �( ) = 1.

Theorem 7.2.1. Given formulas � L {'} of bIpr, if � ⊢bIpr ' then � ⊨bIpr '.

To prove the reciprocal, we use the standard method of defining � ∶ F (ΣbI,Ą) ³

{0, 1}, for a closed, non-trivial set of formulas � of bIpr maximal with respect to not proving a

given ', as �(
) = 1 if and only if 
 * �.

We already know that � is a bivaluation for bI, since a set of formulas that is closed

under bIpr must be closed under bI, given bIpr extends bI. So assume �(� ² 
) = 1 and

�(� ² 
) = 1, meaning that � ² 
, � ² 
 * �; from the instance

[
(� ² 
) I (� ² 
)

]
³

[
(� J �) ² 


]

of prI and the fact that � is closed, we derive (� J �) ² 
 * �, and therefore �((� J �) ² 
) = 1,

proving the first extra condition of Definition 7.2.1. To prove the remaining property, assume

�(� ² 
) = 1 or �(� ² 
) = 1, meaning either � ² 
 * � or � ² 
 * �. From the instance

[
(� ² 
) J (� ² 
)

]
³

[
(� I �) ² 


]

of prJ and the fact � is closed, we get that (� I �) ² 
 * �, and so �((� I �) ² 
) = 1; this

finishes the proof.
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Theorem 7.2.2. Given formulas � L {'} of bIpr, if � ⊨bIpr ' then � ⊢bIpr '.

Notice, and the importance of this fact shall become clearer when we arrive at Sec-

tion 7.3, that bIpr is not classical propositional logic, with � ² � standing for � ò � = <(�I�).

To see this, take propositional variables p and q and a bivaluation � for bIpr with �(p) = �(q) =

�(p ² q) = 0: it is clear such a bivaluation is possible, and yet �(p ò q) = 1, implying that

p ò q ⊬bIpr p ² q.

7.2.1.2 Fidel Structures

The Fidel structures, asΣCPL
bI -multialgebras, for bIpr will simply be the same as those for bI. For

every such Fidel structure, presented as a ΣCPL
bI -multialgebra, we consider the restricted Nmatrix

(ï, {⊤},ôï), where ôï is the set of homomorphisms � ∶ F(ΣbI,Ą) ³ ï such that:

1. �(� ² �) = �(� ² �), for any formulas � and �;

2. for any instance � of prI, �(�) = ⊤;

3. for any instance  of prJ, �( ) = ⊤.

It is clear how such conditions keep the generalized Nmatrices in question structural:

if � is an endomorphism of F(ΣbI,Ą), and � is an instance of prI and  is an instance of prJ,

then �(�) and �( ) remain instances of, respectively, prI and prJ.

The second and third conditions in the previous definition can be modified, if we

remember a few simple properties of Boolean algebras: to give one example, take an instance

� =
[
(� ² 
) I (� ² 
)

]
³

[
(� J �) ² 


]

of prI; applying to � a valuation � in ôï gives us

<�(� ² 
) J <�(� ² 
) J �((� J �) ² 
),

so, asking that �(�) = ⊤ is equivalent to asking that xJ<y1J<y2 = ⊤, where �((�J�) ² 
) = x,

�(� ² 
) = y1 and �(� ² 
) = y2.

If � proves ' according to the class of these restricted Nmatrices, we write � ⊩
bIpr
ô

'.

We already know that the axioms and rules of inference of bI are modeled by "⊩bIpr
ô

",

remaining for us to show that this is also true for those axioms particular to bIpr, that is, prI
and prJ, meaning that for any instance � of prI and any instance  of prJ, we wish to prove

⊩
bIpr
ô

� and ⊩bIpr
ô

 .

This translates to proving that, for any Fidel structure ï for bI and any homomor-

phism � * ôï, �(�) = ⊤ and �( ) = ⊤, which is trivially true given our definition of ôï.

Theorem 7.2.3. Given formulas � L {'} of bIpr, if � ⊢bIpr ' then � ⊩
bIpr

ô
'.
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For the reciprocal, once again we define an equivalence relation on the formulas of

bIpr such that � �
bIpr
�

� if and only if � ⊢bIpr � ³ � and � ⊢bIpr � ³ �. As mentioned,

this is indeed an equivalence relation, but also a congruence for the connectives in {J,I,³},

allowing us to make AbIpr
�

= F (ΣbI,Ą)∕ �
bIpr
�

into a Boolean algebra as we did when studying

bI in Section 7.1.3.

We define, for formulas � and �,

²
ï

bIpr
�

([�], [�]) = {[' ²  ] ∶ ' * [�],  * [�]}.

For simplicity, let us drop the index ï
bIpr
�

and use the infix notation; first of all, it

is clear how, with such a definition, ïbIpr
�

= (A
bIpr
�

, {�ï}�*Σ²
) is indeed a Fidel structure for bI,

presented as a ΣCPL
bI -multialgebra. We will call ïbIpr

�
the Lindenbaum-Tarski Fidel structure of

bIpr associated to �.

Theorem 7.2.4. Given formulas � L {'} of bIpr, if � ⊩
bIpr

ô
', then � ⊢bIpr '.

Proof. Suppose � ⊬bIpr ' and take a maximal, with respect to not proving ', closed extension

� of � and consider: the Lindenbaum-Tarski Fidel structure ï
bIpr
�

of bIpr associated to �, and

the map � ∶ F (ΣbI,Ą) ³ A
bIpr
�

such that �(�) = [�].

Clearly � is a ΣbI-homomorphism, given �(�#�) = �(�)#�(�) for # * {J,I,³} and

�(� ² �) * [�] ² [�]. It remains for us to show that � * ôï:

1. since (� ² �) ³ (� ² �) and (� ² �) ³ (� ² �) are instances of Comm, we have that

[� ² �] = [� ² �], and therefore �(� ² �) = �(� ² �);

2. given an instance � of prJ, we have that � ⊢bIpr � ³ ⊤� and � ⊢bIpr ⊤� ³ �, meaning

[�] = ⊤ and therefore �(�) = ⊤;

3. for the case of prI, the proof follows that of prJ.

We see that �(�) = ⊤ if and only if � ⊢bIpr �, and so �⊮
bIpr
ô

', meaning that �⊮bIpr
ô

'.

7.2.1.3 Decision method

Take the Fidel structure 2bI for bI: we comment now on how (2bI, {1},ô2bIpr
), which we shall

denote by ābIpr, is a decision method for bIpr, where ô2bIpr
is the set of homomorphisms � ∶

F(ΣbI,Ą) ³ 2bI such that:

1. �(� ² �) = �(� ² �), for any formulas � and �;

2. for any instance � of prJ, �(�) = 1;

3. for any instance  of prI, �( ) = 1.
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Theorem 7.2.5. � ∶ F (ΣbI,Ą) ³ {0, 1} is a bivaluation for bIpr if, and only if, it is a ΣbI-

homomorphism from F(ΣbI,Ą) to 2bI that lies in ô2bIpr
.

Theorem 7.2.6. Given formulas � L {'} of bIpr, � ⊨bIpr ' if and only if � ⊨
ābIpr

'.

The row-branching, row-eliminating truth tables based on ābIpr are then constructed

more or less like the ones for bI found in Section 7.1.4, the key difference being that rows where

� ² 
 and � ² 
 are both 1 but (� J �) ² 
 is 0, or where � ² 
 or � ² 
 is 1 but (� I �) ² 
 is 0,

must also be disconsidered.

7.3 Collapsing axioms

7.3.1 Ex

A question that naturally arises when dealing with incompatibility is the partial equivalence

between � and � being incompatible, and � and �, together, trivializing a logic.

That is, we know that if �, �, and � ² � are simultaneously valid, then our logic

becomes trivial; but if � and �, just the two of them, can trivialize our logic, does that mean

� and � are incompatible? We believe such a question must reference the philosophical notion

hoped for the incompatibility to encompass, and for this end we consider the axiom

(� I � ³ ⊥��) ³ (� ² �). (Ex)

The logic obtained from bI by addition of Ex will be called bIEx, but that is not really a new

logic: we shall prove that, in this case, � ² � is equivalent to � I � ³ ⊥�� or, what is the same,

� ò � = <(� I �) when we consider the classical negation definable in bI, and therefore bIEx

becomes again classical propositional logic with a shorthand notation for � I � ³ ⊥�� , that is,

� ² �.

So we wish to prove that � ² � is equivalent, in this bIEx, to � I � ³ ⊥�� , meaning

that (� I � ³ ⊥��) ³ (� ² �) but also that

(� ² �) ³ (� I � ³ ⊥��).

Of course, the first direction of the bi-implication follows straightforwardly from Ex, being an

instance of the axiom. To prove the second direction, take the instance (� ² �) ³ (� ³ (� ³

⊥��)) of Ip, and by applying the meta-deduction theorem three times we find that

� ² �, �, � ⊢bIEx ⊥�� .

By applying the deduction meta-theorem to the instances � I � ³ � and � I � ³ � of, respec-
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tively, Ax 4 and Ax 5, we obtain that � I � ⊢bIEx � and � I � ⊢bIEx �, and therefore

� ² �, � I � ⊢bIEx ⊥�� ,

implying that � ² � ⊢bIEx � I � ³ ⊥�� and, therefore, that (� ² �) ³ (� I � ³ ⊥��) is a

tautology in bIEx.

7.3.2 ciw²

The axiom ciw, given by

ċ� J (� I ¬�),

is a very important one when dealing with paraconsistency, and adding it to mbC gives us the

logic mbCciw. When dealing with incompatibility, we would like to define an equivalent axiom,

namely

(� ² �) J (� I �). (ciw²)

The logic obtained from bI by adding ciw² will be called bIciw², and we will prove that, as

it happens with bIEx, bIciw² is again equivalent to classical propositional logic, with � ² �

corresponding to � I � ³ ⊥�� .

The proof that ⊢bIciw² (� ² �) ³ (� I � ³ ⊥��) is the same as the one for the same

fact in bIEx, remaining for us to show that (� I � ³ ⊥��) ³ (� ² �) is a tautology in bIciw².

By an application of the deduction meta-theorem, the desired result is equivalent to

� I � ³ ⊥�� ⊢bIciw² � ² �. It is clear how � ² �, � I � ³ ⊥�� ⊢bIciw² � ² �, and by an

application of Modus Ponens and the fact ⊥�� behaves like a bottom element, it is obvious that

� I �, � I � ³ ⊥�� ⊢bIciw² � ² �.

By a proof by cases, we get that

(� ² �) J (� I �), � I � ³ ⊥�� ⊢bIciw² � ² �,

and since (� ² �) J (� I �) is an instance of an axiom of bIciw², we get the desired result.

7.4 Brandom’s notion of incompatibility

Here, we offer a brief overview of Robert B. Brandom and Alp Aker’s work with incompati-

bility, echoed in Jaroslav Peregrin’s research. The differences between their own methodology

and ours are many: they focus on incompatibility between sets of formulas,; they aim to define

consequence from incompatibility, while we assume both to coexist; and, perhaps most impor-

tantly, although many systems can be retrieved from their methods, those of a paraconsistent
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behavior are not among them, as the only negations considered by them are classical, or at most

intuitionistic. But the connection between both works is there, and quite clear: the attempt to

control, in a way or another, explosion by mediating it through incompatibility.

7.4.1 Brandom and Aker’s “Between saying and doing”

We start by pointing out that, although the author of [Bra08] appears as Robert B. Brandom, he

makes it clear that much of the semantics for his logic of incompatibility was developed by his

Ph.D. student Alp Aker; given our focus in his book is mostly restricted to the chapters about

incompatibility, we will refer to both Brandom and Aker as authors.

In [Bra08], Brandom and Aker propose an approach to logic through incompati-

bility, instead of consequence; they defend that a modal understanding of incompatibility fits

better with the argumentative nature of epistemology, in his neo-pragmatic program. They pro-

ceed to redefine consequence, and the usual connectives, starting from incompatibility, or rather

incoherence, as a primitive notion.

Initially, Brandom and Aker start with the notions of commitment and entitlement,

which are very modal in nature. Intuitively, an agent is committed to an statement when stating

such statement is necessary for the agent; and the same agent is entitled to a statement when stat-

ing it is possible for the agent. Building from this, two statements are incompatible when being

committed to one implies not being entitled to the other. A notion of consequence arises from

this concept when we define that a statement p implies q whenever every statement incompatible

with q is incompatible with p; clearly we must reach for second-order logic and quantification

over formulas for this procedure to make sense.

Our approach to incompatibility is quite close, in a sense, to this first notion of Bran-

dom and Aker, but they proceed to extend their definition: they sustain that incompatibility must

deal with pairs of sets of statements, instead of pairs of statements; their argumentation is that a

claim may be incompatible with a set of claims without being incompatible with any one claim

of the set. First of all, we believe this problem may be circumvented by a careful distinction

between incompatibility in natural discourse and as expressed formally, although this distinc-

tion may be blurred given Brandom and Aker want incompatibility to originate logic, what in

turn may explain their position; second, we do not aim to encompass every reasoning involv-

ing incompatibility as Brandom and Aker do, but rather prefer to focus on its interplay with

paraconsistency and its possible semantics.

Here, a digression seems useful. In the beginning of this chapter we offered inter-

pretations of incompatibility, two of them being related to probability: mutual exclusivity and

independence. Now, if {Ai}i*I is a collection of pairwise mutually exclusive events, for any

J ⊆ I with at least two elements j1 and j2 one has that P (
ä

j*J Aj) d P (Aj1
KAj2

) = 0, and so

P (
ä

j*J Aj) = 0; this means that a set of pairwise mutually exclusive events also has a gener-

alized mutual exclusivity. Meanwhile, if {Ai}i*I is instead a collection of pairwise independent
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events, the fact that, for any two i1, i2 * I , one has P (Ai1
KAi2

) = P (Ai1
)P (Ai2

) does not imply

that, for any finite J ⊆ I , one also has P (
ä

j*J Aj) =
/

j*J P (Aj); because of that, we de-

fine instead that a finite collection of events {Ai}i*I is mutually independent, something much

stronger than merely pairwise independent, if, for any J ⊆ I ,

P (
ä

j*J

Aj) =
/

j*J

P (Aj)

holds. This difference between these two notions carries a lot of similarities with the difference

between ours, and Brandom and Aker‘s approach: in our understanding of incompatibility, a set

of propositions is incompatible if, and only if, any pair of its elements is, itself, incompatible,

exactly as in the case of mutually exclusive events; meanwhile, in Brandom and Aker, the more

general notion of incompatible set can not be reduced to pairwise incompatibility, as in the

problem of mutual independence as opposed to pairwise independence. This suggests interesting

connections between distinct incompatibilities and several concepts in probability theory.

Then, [Bra08] demands only two properties of incompatibility, derived from its nat-

ural interpretation and intuition:

1. if X is incompatible with Y , Y is incompatible with X (symmetry);

2. if X is incompatible with Y , and Z contains Y , then X is incompatible with Z (persis-

tence).

In our logics of incompatibility, symmetry is analogous to the commutative axiom

Comm, where � ² � ³ � ² �; regarding persistence, ignoring the obvious interpretation in

second-order logic, one very natural take would be, in our language, the axiom

(� ² �) ³
(
(
 ³ �) ³ (� ² 
)

)
.

But we also may, for sets of formulas X and Y , write a generalized incompatibility operator

X ² Y whenever there exist formulas � and � such that X ⊢ �, Y ⊢ � and � ² �. Then, if Z

contains Y and X ² Y , given formulas � and � as above, since Y ⊆ Z one finds Z ⊢ �, and

therefore X ² Z and persistence is reobtained on this environment. Of course, this is not to say

that our logics of incompatibility naturally model Brandom and Aker’s approach, but rather to

show they are plastic enough to do so.

Brandom and Aker stress that their incompatibility should not be limited to truth

values, as they intend to define the latter starting from the former, but they still mention en

passant that the obvious interpretation of, restricting ourselves to single statements once again,

p being incompatible to q should be that it is impossible to have both p and q simultaneously

true; this, in turn, is of course very distant from our own take on incompatibility, as it limits the

concept to a modal version of Sheffer’s stroke ¦<(p I q).
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To further distance its incompatibility from ours, [Bra08] takes as a tacit starting

point that a statement should be incompatible with its negation, appealing to classical logic to

do so; this may be justified if they intend to replicate merely classical negation from incompati-

bility, but it seems an inadmissible loss not to consider more modern negations, objects around

which our logics of incompatibility are actually built. It seems that, to define a negation from

incompatibility, it makes more sense, and is more interesting, to start from the assumption there

is no prior connection between incompatibility and negation; then one gains the interesting no-

tion of “well-behavedness” among statements, a resource well established amid logics of formal

inconsistency.

Nevertheless, Brandom and Aker then define the negation of a claim p as the min-

imum claim incompatible to p, meaning a claim <p incompatible with p such that, whenever

X is a set of statements incompatible with p, one has X ⊢ <p. Notice that, using the classical

negation that may be defined in bI, we find � ² � ³ (� ³ <�), meaning that if p and q are

incompatible, then p implies the negation of q; this may seem awfully close to Brandom and

Aker’s account, but notice <q is not, necessarily, incompatible with q, and we do not intend to

define negation from this relationship, but rather derive the relationship from the definition of

the strong negation and the fact �J(� ³ �) is an instance of an axiom. It becomes clear [Bra08]

has no interest in dealing with paraconsistency when it defines an inconsistent set of formulas

as any set which derives both a claim and its negation; this, of course, is not interesting to us at

all, since paraconsistency intends to precisely avoid this.

Brandom and Aker define the conjunction of statements p and q as the minimal

statement incompatible with every set X incompatible with {p, q}: they then go on to show

that the logic obtained from both these connectives they have defined is classical propositional

logic, what shows one may recover classical accounts of logic from the notion of incompatibility;

although not in line with what we hope to accomplish with our own logics of incompatibility,

Brandom and Aker’s result is no less important, and establishes that incompatibility, at least in

classical logic, is a notion no less important than that of deduction.

We have not studied modalities and their logical counterpart very deeply, but this

is one of Brandom and Aker’s concern, and they define that something is incompatible with

the necessity of a statement p, ¦p, whenever it is compatible with something that does not

imply p; meaning, X is incompatible with ¦p if and only if it is compatible with a Y such that

Y ⊬ p, and one may define necessity as the minimal statement which can replace ¦p in the

previous discussion. Very interestingly, this definition makes of the system at hand precisely

S5. Nevertheless, one may wonder if the definitions [Bra08] takes are the ideal ones: if we are

recovering only the most standard systems, perhaps a little more plasticity should be allowed

when redefining connectives from incompatibility.

In one last stretch, approaching their own account again to ours, Brandom and Aker

notice that, in his logic of incompatibility, connectives do not have the semantic sub-formula

property, meaning they are not functional: one can not derive the interpretation of a formula
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by merely looking at the interpretation of its sub-formulas. This non-deterministic behavior is

very clear in our logics of incompatibility, and specially clear when one analyses the easiness

with which one treats logics such as bI and nbI (see Chapter 8) with the aid of restricted non-

deterministic matrices and, more generally, multialgebras.

In a more formal treatment of their system, Brandom and Aker wish to analyze when

a consequence relation ⊢ may be characterized by incompatibility, in their own terms of “to be

characterized” as previously described. They reach two necessary and sufficient conditions:

1. if X ⊢ Y and Y LW ⊢ Z, then X LW ⊢ Z (general transitivity);

2. if X ⊬ Y , there exist a W and a Z such that, X L Z ⊬ W but, for all V , Y L Z ⊢ V

(defeasibility).

General transitivity is, of course, a reformulation of the cut rule; defeasibility states

that, if Y is not a consequence of X, then there exists something that when added to Y will

collapse the deduction, but not when added to X. Although somewhat natural, the way this

conditions are used to achieve incompatibility is diametrically opposed to what we look for, as

two sets are deemed incompatible whenever their union is inconsistent; disregarding our problem

with inconsistency, the axiom schema Ip invites one to produce instead the concept that, if two

sets are incompatible, then their union should be trivializing, and not the other way around.

Brandom and Aker go on to give several interesting definitions, but all based on these basic

concepts, and therefore distant from our ideal understanding of incompatibility. Concisely, given

a fixed set of sets of incoherent (intuitively, inconsistent) formulas, they demand of it only that if

X is incoherent andX ⊆ Y , then Y is also incoherent; then,X is incompatible with Y if, and only

if, X L Y is incoherent. Then, X derives a statement p, regarding their incompatibilities, when

every set incompatible to {p} is incompatible to X. Several strong theorems are then provided

for those systems, but to showcase how they are not aligned to our notion of incompatibility,

one of these theorems is that p I <p derives any set Y , meaning their negation is necessarily

classically behaved.

7.4.2 Peregrin

7.4.2.1 “Brandom’s incompatibility semantics”

In this first article [Per08], the author Jaroslav Peregrin studies the notion of incompatibility,

and their corresponding semantics, of Brandom and Aker’s [Bra08] from a more philosophical

standpoint. More precisely, his main concerns are tied to the problem of whether formal se-

mantics are truly compatible with pragmatic and inferentialist views and of how should such

semantics look like; his argument, a very interesting one, may be summarized as stating that, as

merely a model for natural processes, formal semantics can indeed be used by the pragmatist, as

long as the distinction between model and what is modeled is not ignored.
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More to the point we are interested in, Peregrin asks how should incompatibility

come into play in logic: he first stresses how the usual approach is to say that sets of formulas

X and Y are incompatible whenever their union can deduce anything; much in line with our

own views of the problem, Peregrin continues to state that, however standard this approach may

be, reducing incompatibility to inference is, first of all, wasteful, as it disregards the possible

intricacies the concept may carry; second, incompatibility, as a byproduct of inference, becomes

dependent on how strong is the logic we work over, meaning how expressive it is.

[Per08] proceeds to point some problematic aspects of Brandom and Aker’s inter-

pretation of incompatibility: first of all, when one defines that X ⊢ p whenever everything that

is incompatible with p is incompatible with X, this may be read as that everything compatible

with X is compatible with p, implying compatibility is preserved by consequence, and since so

is truth, the two concepts may become at moments indistinguishable. Of course, this is not of

much concern for us, since we do not intend to rebuild consequence from incompatibility, but

rather have incompatibility to exist in an environment with a predefined consequence operator.

A second problem, still not very troublesome for us, is that consequence is usually taken to have

a finitary character, while incompatibility, at least in Brandom and Aker’s take, often involves

quantification over all statements: so, by defining a consequence from incompatibility, one may

end with a consequence operator that is more model-theoretic than proof-theoretic, that is, that

has a clear non-finitary propensity.

To us, one of the most important developments found in this article is the connection

established between incompatibility and Kripke semantics, id est, semantics of possible worlds.

Peregrin defines a possible world, once a concept of coherence is given, as a maximal coherent

set of formulas; here, a set is a coherent one once it is not incompatible with itself, a definition

that goes back to the work of Brandom and Aker. The truth of a statement on a given world is

then taken to be the belonging of this statement to the wold, which is, again, a set of formulas;

here, Peregrin notices once again how coherence behaves dangerously alike truth in Brandom

and Aker’s [Bra08]. Notice how, given a statement p and a possible world w, w proves p in this

semantic of possible worlds if and only ifw derives p, or what is equivalent, when p is compatible

withw. Reciprocally, he derives a notion of incoherence from a Krikpkean semantics of possible

worlds by saying a set of formulas X is incoherent if no formula of this set is validated in any

world.

Peregrin also points out how Brandom and Aker’s definition of the necessity of a

statement p is equivalent to, in his semantic of possible words, validity: so a possible world w

verifies ¦p if, and only if, the set {p} is not incoherent; this of course means that Brandom and

Aker’s take on modal logic trough incompatibility only derives the most basic interpretations

of necessity and possibility. He offers an interesting alternative, in order to add richness to

those modal logics: a second level of incompatibility, or rather incoherence, a meta-coherence

if you will; Brandom and Aker only take into account a set of sets of formulas, said to be the

set of incoherent sets of formulas, while Peregrin goes further and defines a set of sets of sets of
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formulas, corresponding to a set of incoherent sets of sets of formulas, that offers a second level

of control over incompatibility. With this, he is able to characterize modal logics more complex

than S5, what of course suggests the power such generalizations may carry, although this level

of abstractness is not within our scope of research.

7.4.2.2 “Logic as based on incompatibility”

In this second of Peregrin’s article of great interest to us, he lays clear what he believes are

the reasons for Brandom and Aker’s incompatibility program: first, to study what the possible

minimal foundations of logic may be; and second, to offer a working systems for those philoso-

phers who have based their reasoning on incompatibility alone. While still reasoning about

Brandom and Aker’s program, the author defends that the most natural logic to arise from defin-

ing inference through incompatibility, in the opposite direction of Brandom and Aker’s work,

is intuitionistic; of course, this is not of great interest to us, since we hope for incompatibility

to control ex contradictione quolibet and not the other way around. Peregrin points out that,

by defining inference via incompatibility, “Between saying and doing” reaches a logic of, in-

stead of intuitionistic, classical character, but goes on to argue that this due not to the nature of

incompatibility, but rather to Brandom and Aker’s method.

[Per11] defines then an environment that should deal, simultaneously, with inference

and incompatibility: a triple (S,⊥, ⊢) is called a generalized inferential structure (gis) when S

is a set, ⊥ ⊆ þ(S) and ⊢⊆ þ(S) ×S; for simplicity, if X * ⊥ we write ⊥X, and if X L Y L {p}

is in ⊥, we may simply write ⊥X, Y , p. The basic conditions demanded of these objects are the

following:

(⊥) if ⊥X and X ⊆ Y , ⊥Y ;

(⊢) (a) X, p ⊢ p;

(b) if X, p ⊢ q and Y ⊢ p, then X, Y ⊢ q.

Peregrin suggests a possible interplay between the two concepts:

(⊥ ⊢) if ⊥X, then X ⊢ p for every p;

(⊢ ⊥) if X ⊢ p, then ⊥Y , p implies ⊥X, Y for every Y .

Of course, the first condition is very in line with what we expect of incompatibility: that it

derives anything and trivializes an argument, or, in other words, a controlled explosion. The

second condition has been presented before, in a much more complicated way: it corresponds

to Brandom and Aker’s defeasibility. The author then points out how assuming (⊥ ⊢) and

its converse amounts to reducing incompatibility to inference, while assuming (⊢ ⊥) and its

converse reduce inference to incompatibility. [Per11] also has definitions of an incompatibility

º defined trough inference and of an inference ⊳ defined trough incompatibility:
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1. º X if X ⊢ p, for every p;

2. X ⊳ p if, for every Y , ⊥Y , p implies ⊥X, Y .

Peregrin then offers interesting conditions, related to (⊥ ⊢) and (⊢ ⊥), under which º and⊥, and

⊳ and ⊢ are equivalent. But, more importantly, the author states what the minimal requirements

for an intuitionistic negation based on incompatibility should be:

1. ⊥p,<p;

2. if ⊥X, p, then X ⊢ <p.

Of course, the first condition is not desirable for our systems, while the second is derivable in

systems as simple as nbI (which we define in Chapter 8); with this, we see that the plasticity

that the author is hoping to obtain by modifying Brandom and Aker’s stipulations does not

encompass paraconsistency, nor is this his objective, as far as we can tell. He seems, instead,

more concerned with modal systems, allowing our logics to fill a gap in his approach.

The additional requirement that ⊥X,<p implies X ⊢ p is then equivalent to stating

that the negation in question is of classical behavior; Peregrin also shows that the definition

Brandom and Aker give of negation is equivalent to his own negation with this last additional

requirement, proving that the methodology found “Between saying and doing” can only lead to

classical negation. Conjunction is defined as in Brandom and Aker, meaning

1. if ⊥X, p I q, then ⊥X, p, q;

2. if ⊥X, p, q, then ⊥X, p I q.

After comparing Brandom and Aker’s, and his own, definitions with those necessary to define

classical propositional logic trough inference alone, the author reaches the conclusion that while

Brandom and Aker’s approach inexorably leads to classical logic, varying the techniques found

in his article is significantly more far-reaching. For an example, by removing the very basic

condition that

⊥X and X ⊆ Y imply ⊥Y ,

which is equivalent, given the correct assumptions, to the fact that X ⊢ p implies X, q ⊢ p,

one finds a system of relevant logic; without going into further details, Peregrin suggests that

changing incompatibility to a property between multisets of formulas, instead of sets, leads to

linear logic.
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Chapter 8

Adding a negation to logics of

incompatibility

When studying paraconsistent logics, our main focus is in the properties of negations, as is

the case when working with paracomplete, i.e. intuitionistic, logics. Given such a prominent

role negation plays in non-classical logics, is quite natural to shift our focus in the logics of

incompatibility from ² to a non-classical negation, or better yet, to the possible interplay between

² and such a negation.

Our first step is adding such a negation: we have seen that in any logic extending bI,

is always possible to define a somewhat quite classical negation; for any formulas � and �, the

formulas

⊥�� = � I (� I (� ² �))

are all equivalent to each other, and furthermore play the expected role for the bottom, meaning

that in the presence of Ip, for any formula 
 it is true that ⊥�� ³ 
 . By having a bottom element,

we can define a negation of classical behavior <� of a formula � by � ³ ⊥��, or any other

bottom since all of those are equivalent.

We, therefore, need a new negation, weaker than that negation intrinsic to bI. So

we need a symbol for it: we define the signature ΣnbI as the signature obtained from ΣbI by

addition of an unary symbol ¬, that is, (ΣnbI)1 = {¬}, (ΣnbI)2 = {J,I,³, ²} and (ΣnbI)n = ∅ for

n + {1, 2}.

Most of the research in this chapter was submitted as the preprint [CT22a].

8.1 The logic nbI

We start by adding to the simplest LIp, that is, bI, a paraconsistent negation: so, to the axiom

schemata and rules of inference of bI, we add

Ax 11∗ � J ¬�.
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We shall call this new logic nbI.

8.1.1 Bivaluations

A bivaluation for nbI is a map � ∶ F (ΣnbI,Ą) ³ {0, 1} such that:

1. if �(¬�) = 0, �(�) = 1;

2. �(� J �) = 1 if and only if �(�) = 1 or �(�) = 1;

3. �(� I �) = 1 if and only if �(�) = �(�) = 1;

4. �(� ³ �) = 1 if and only if �(�) = 0 or �(�) = 1;

5. if �(� ² �) = 1 and �(�) = 1, �(�) = 0;

6. �(� ² �) = �(� ² �).

Given a set of formulas �L{'} of nbI, we say � proves ' according to bivaluations,

and write � ⊨nbI ', if for every bivaluation � for nbI we have that, if �(�) ⊆ {1}, then �(') = 1.

Once most conditions demanded of a bivaluation for nbI are essentially the same as

those demanded of a bivaluation for bI in Section 7.1.2, we can easily find that "⊨nbI" models

those axioms and rules of inference of bI: to see that it also models Ax 11∗, take a formula �

and a bivaluation � for nbI

1. If �(¬�) = 1, �(� J ¬�) = 1 from the behavior of bivaluations for nbI regarding disjunc-

tions.

2. If �(¬�) = 0, we find �(�) = 1 and again �(� J ¬�) = 1.

Either way, one sees that "⊨nbI" also models Ax 11∗.

Theorem 8.1.1. Given formulas � L {'} of nbI, if � ⊢nbI ' then � ⊨nbI '.

The reciprocal result goes as it would be expected: for a closed, non-trivial set of

formulas � of nbI maximal with respect to not proving ', we define � ∶ F (ΣnbI,Ą) ³ {0, 1}

by means of �(
) = 1 if and only if 
 * �; � is then a bivaluation for nbI.

That it is a bivaluation for bI is quite obvious, remaining for us to show that, if

�(¬�) = 0, then �(�) = 1. So, suppose �(¬�) = 0, meaning ¬� + �: since � J¬� is an instance

of Ax 11∗ and � is closed, � J ¬� * �.

If we had �(�) = 0, then we would have �(� J ¬�) = 0, implying � J ¬� + �,

contradicting our previous remark. We must have then that �(�) = 1, what ends the proof that �

is a bivaluation for nbI.

Theorem 8.1.2. Given formulas � L {'} of nbI, if � ⊨nbI ' then � ⊢nbI '.
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8.1.2 Fidel structures

Once again we find ourselves in need of bottom and top elements, and a classical negation, so

that we must define the signature ΣCPL
nbI with (ΣCPL

nbI )0 = {⊥,⊤}, (ΣCPL
nbI )1 = {<,¬}, (ΣCPL

nbI )2 =

{J,I,³, ²} and (ΣCPL
nbI )n = ∅ for n > 2.

So, it becomes easy to define Fidel structures for nbI: a Fidel structure for nbI is

any ΣCPL
nbI -multialgebra ï = (A, {�ï}�*ΣCPL

nbI
) such that:

1. (A, {�ï}�*ΣCPL) is a Boolean algebra;

2. for all a * A and b * ¬ï(a), a J b = ⊤;

3. for all a, b * A and c *²ï (a, b), a I (b I c) = ⊥;

4. for all a, b * A, a ² b = b ² a.

As we did before, we shall drop the index ï and use the infix notation.

Given a Fidel structure ï, presented as a ΣCPL
nbI -multialgebra, for nbI, a valuation

for ï is any ΣnbI-homomorphism � ∶ F(ΣnbI,Ą) ³ ï; and, for every Fidel structure ï for

nbI, we will consider the restricted Nmatrix (ï, {⊤},ôï), where ôï is the set of valuations

� ∶ F(ΣnbI,Ą) ³ ï such that

�(� ² �) = �(� ² �),

for any two formulas � and � in F (ΣnbI,Ą); it is clear how these RNmatrices are structural. If �

proves ' according to such restricted Nmatrices, we will write � ⊩nbI
ô
'.

It is easy to see that if � is an instance of an axiom of bI, ⊩nbI
ô
�, and if ⊩nbI

ô
� and

⊩nbI
ô
� ³ � then ⊩nbI

ô
�: we would like to prove that, for any formula � of nbI, we also have

⊩nbI
ô
� J ¬�,

implying that "⊩nbI
ô

" models the axiom schemata and rules of inference of nbI.

So, for any Fidel structureï for nbI and valuation � overï, we have that �(�J¬�) =

�(�) J �(¬�); now, �(¬�) * ¬�(�), and therefore, from the conditions demanded of a Fidel

structure for nbI, �(�) J �(¬�) = ⊤, what finishes the desired proof.

Theorem 8.1.3. Given formulas � L {'} of nbI, if � ⊢nbI ' then � ⊩nbI
ô
'.

To prove the reciprocal result, we define the equivalence relation between formulas

of nbI such that, for a fixed set of formulas �, � �nbI
�

� if and only if � ⊢nbI � ³ � and � ⊢nbI

� ³ �; this relation is also a congruence with respect to the connectives in {J,I,³}, allowing

us to make AnbI
�

= F (ΣnbI,Ą)∕ �nbI
�

into the universe of a Boolean algebra. By defining, for

classes of formulas [�] and [�],

¬[�] = {[¬'] ∶ ' * [�]}
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and

[�] ² [�] = {[' ²  ] ∶ ' * [�],  * [�]},

we can prove ïnbI
�

= (AnbI
�
, {�ï}�*ΣCPL

nbI
) is a Fidel structure, presented as a ΣCPL

nbI -multialgebra,

for nbI, which we shall call the Lindenbaum-Tarski Fidel structure of nbI associated to �.

The proof that, for [
] * [�] ² [�], we have [�]I([�]I[
]) = ⊥, and that [�] ² [�] =

[�] ² [�] are exactly the same as those for the same facts in bI (found in Section 7.1.3.2), so we

will rather focus on proving that, for any class of formulas [�] and any [�] * ¬[�], [�]J[�] = ⊤:

by definition, there exists ' * � such that [�] = [¬'].

Then [�] J [�] = [� J ¬']: very clearly � ⊢nbI � J ¬' ³ ⊤�, remaining for us

to show that � ⊢nbI ⊤� ³ � J ¬' or, better yet, that � ⊢nbI � J ¬', by one application of the

deduction meta-theorem and the fact that a top element is always a tautology.

We know ' J ¬' is an instance of Ax 11∗ and � ⊢nbI '³ �:

1. �, ' ⊢nbI � by the deduction meta-theorem, and from the instance � ³ � J ¬' of Ax 6

and one application of Modus Ponens we get that �, ' ⊢nbI � J ¬';

2. �,¬' ⊢nbI ¬', and from the instance ¬' ³ � J ¬' of Ax 7 and the deduction meta-

theorem we get that �,¬' ⊢nbI � J ¬';

from this, we get that �, 'J¬' ⊢nbI �J¬' by a proof by cases, and since 'J¬' is an instance

of an axiom, � ⊢nbI � J ¬', as we wanted to prove.

Theorem 8.1.4. Given formulas � L {'} of nbI, if � ⊩nbI
ô
' then � ⊢nbI '.

8.1.3 Decision method

We take the Boolean algebra 2 once again and define the unary multioperation ¬ ∶ {0, 1} ³

þ({0, 1}) ö {∅} trough ¬0 = {1} and ¬1 = {0, 1},

¬

0 {1}

1 {0, 1}

Table for our Paraconsistent Negation

and, as we did in Section 7.1.4, we define 1 ² 1 = {0} and x ² y = {0, 1} for

any other values of x and y. By adding the previous operations to 2, we transform it into a

ΣCPL
nbI -multialgebra 2nbI with a finite universe {0, 1}. It is easy to prove that:

1. ({0, 1}, {�2nbI
}�*ΣCPL) is a Boolean algebra, since it equals 2;

2. for any x, y * {0, 1} and z * x ² y, x I (y I z) = 0;
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3. for any x, y * {0, 1}, x ² y = y ² x.

It remains to be shown, to prove that 2nbI is a Fidel structure presented as a ΣCPL
nbI -

multialgebra for nbI, that for any x * {0, 1} and y * ¬x, x J y = 1. If x = 0, we must have

y = 1, and then x J y = 0 J 1 = 1; if x = 1, we have that, either y = 0, when x J y = 1 J 0 = 1,

or y = 1, when x J y = 1 J 1 = 1, so we are done

Theorem 8.1.5. � ∶ F (ΣnbI,Ą) ³ {0, 1} is a bivaluation for nbI if, and only if, it is a ΣnbI-

homomorphism from F(ΣnbI,Ą) to 2nbI which lies in ô2nbI
.

As expected, we will denote the restricted Nmatrix (2nbI, {1},ô2nbI
) simply by ānbI.

Theorem 8.1.6. Given formulas � L {'} of nbI, � ⊨nbI ' if and only if � ⊨
ānbI

'.

So, take the Nmatrix (2nbI, {1}) subjacent to the RNmatrix (2nbI, {1},ô2nbI
): if one

writes the row-branching truth table for the said Nmatrix to test a formula ' of nbI and simply

erases the rows where � ² � and � ² � are given different values, we get a row-branching,

row-eliminating truth table that decides the validity, in a finite number of steps, of ' in nbI.

Essentially, this is the same decision method as the one presented for bI in Section 7.1.4, with

an extra multi-operation standing for negation.

8.1.4 Another decision method

Given the similitude between bI and nbI, one should hope that a tableau calculus for nbI, that

we will name ĀnbI, could be easily obtained from ĀbI of Section 7.1.5: this is, in fact, the case.

It is sufficient to add one new rule governing the case in which ¬' is false,

0(¬')

1(')

and change the conditions for a branch to be complete: a branch � is complete, now in ĀnbI, when

it contains, for every L(
) in � neither of the form 0(' ²  ) or 1(¬') and with 
 not a variable,

all the labeled formulas of one of the branches in the rule headed by L(
).

8.2 Collapsing axioms

8.2.1 ci²

Now that we have in our signature a paraconsistent negation, we are capable of doing to the

axioms schemata ci and cl much the same we did to ciw when we transformed it into ciw²:

consider

¬(� ² �) ³ (� I �) (ci²)
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and the logic nbIci² obtained from nbI by addition of ci²; we shall prove, once again, that nbIci²

collapses back to CPL, and � ² � is equivalent to � I � ³ ⊥�� .

It is clear how � ² � ⊢nbIci² � I � ³ ⊥�� , since such a deduction could be made in

bI itself, so let us concentrate in proving that � I � ³ ⊥�� ⊢nbIci² � ² �.

It is also clear that

� ² �, � I � ³ ⊥�� ⊢nbIci² � ² �,

but from the instance ¬(� ² �) ³ (� I �) of ci² plus Modus Ponens we can similarly get

¬(� ² �), � I � ³ ⊥�� ⊢nbIci² � ² �,

and using a proof by cases we get

(� ² �) J ¬(� ² �), � I � ³ ⊥�� ⊢nbIci² � ² �.

Since (� ² �) J ¬(� ² �) is an instance of Ax 11∗, we get the desired result.

But we can prove an even nicer result, that implies the previous: an instance of ci²

actually implies its corresponding instance of ciw² in nbI, that is,

¬(� ² �) ³ (� I �) ⊢nbI (� ² �) J (� I �).

We have that

¬(� ² �),¬(� ² �) ³ (� I �) ⊢nbI (� ² �) J (� I �)

by an application of Modus Ponens and remembering (�I�) ³ [(� ² �)J(�I�)] is an instance

of Ax 7; furthermore, we trivially find

� ² �,¬(� ² �) ³ (� I �) ⊢nbI (� ² �) J (� I �)

by remembering (� ² �) ³ [(� ² �) J (� I �)] is an instance of Ax 6. By a proof by cases,

(� ² �) J ¬(� ² �),¬(� ² �) ³ (� I �) ⊢nbI (� ² �) J (� I �),

and since (� ² �) J ¬(� ² �) is an instance of Ax 11∗, we derive the aforementioned result.

8.2.2 cl²

As one should expect, the axiom schema

¬(� I �) ³ (� ² �) (cl²)
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will collapse its corresponding logic nbIcl² back to CPL, with � ² � standing for � I � ³ ⊥�� .

To see that � I � ³ ⊥�� ⊢nbIcl² � ² �, we begin by noticing

� I �, � I � ³ ⊥�� ⊢nbIcl² � ² �,

by use of Modus Ponens and the fact ⊥�� behaves like a bottom element; at the same time,

¬(� I �), � I � ³ ⊥�� ⊢nbIcl² � ² �,

given the instance ¬(� I �) ³ (� ² �) of cl². With a proof by cases,

(� I �) J ¬(� I �), � I � ³ ⊥�� ⊢nbIcl² � ² �,

and since (� I �) J ¬(� I �) is an instance of Ax 11∗ we obtain the desired result.

However, we can again prove a stronger result: an instance of cl² can prove, in nbI,

the corresponding instance of ciw², what proves, as a special case, the previous collapse. To

summarize, we wish to prove

¬(� I �) ³ (� ² �) ⊢nbI (� ² �) J (� I �).

This is pretty simple:

� I �,¬(� I �) ³ (� ² �) ⊢nbI (� ² �) J (� I �),

by the instance (� I �) ³ [(� ² �) J (� I �)] of Ax 7, and

¬(� I �),¬(� I �) ³ (� ² �) ⊢nbI (� ² �) J (� I �)

by Modus Ponens and the instance (� ² �) ³ [(� ² �)J (�I�)] of Ax 6; with a proof by cases,

(� I �) J ¬(� I �),¬(� I �) ³ (� ² �) ⊢nbI (� ² �) J (� I �),

and since (� I �) J ¬(� I �) is an instance of Ax 11∗, the proof is done.

8.3 The logics nbIciw, nbIci and nbIcl

One notices that one of the basic axiom schema, Ip, of bI is

(� ² �) ³ (� ³ (� ³ 
)),
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which can be seem as the basic axiom of mbC, bc1,

ċ� ³ (� ³ (¬� ³ �)),

with ¬� replaced by � and ċ�, that is, that � is consistent, replaced by � ² �, that is, that � is

incompatible with �.

An attempt to make something similar to the axiom ciw,

ċ� J (� I ¬�),

is not successful, as the axiom ciw²

(� ² �) J (� I �)

collapses the incompatibility operator back to its classical interpretation. However, in nbI, where

we find at our disposal a non-classical negation, we can take an adaptation of the axiom ciw to

the language ΣnbI, instead of the generalization ciw², and study the resulting logic. We will

do the same with the axioms ci and cl, producing three logics that mix paraconsistency and

incompatibility.

So, over the signature ΣnbI, we consider the systems:

1. nbIciw, obtained from nbI by addition of the axiom schema

(� ² ¬�) J (� I ¬�); (ciw∗)

2. nbIci, obtained from nbI by adding the axiom schema

¬(� ² ¬�) ³ (� I ¬�); (ci∗)

3. nbIcl, obtained from nbI by adding

¬(� I ¬�) ³ (� ² ¬�). (cl∗)

8.3.1 Bivaluations

Definition 8.3.1. A bivaluation for ú * {nbIciw,nbIci,nbIcl} is a valuation for nbI satisfying

in addition that:

1. �(� ² ¬�) = 1 if and only if �(�) = 0 or �(¬�) = 0;

2. (a) if ú = nbIci and �(¬(� ² ¬�)) = 1, then �(�) = �(¬�) = 1;

(b) if ú = nbIcl and �(¬(� I ¬�)) = 1, then �(� ² ¬�) = 1.
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As usual, given a set of formulas � L {'} on the signature ΣnbI, we say � proves

' according to bivaluations for ú * {nbIciw,nbIci,nbIcl}, and write � ⊨ú ', if, for every

bivaluation � for ú such that �(�) ⊆ {1}, one has �(') = 1.

Since bivaluations for ú * {nbIciw,nbIci,nbIcl} are bivaluations for nbI satisfy-

ing some additional property, it is easy to see that "⊨ú" models all those axiom schemata of nbI,

plus Modus Ponens, its only inference rule; we wish now to prove that "⊨nbIciw" also models

ciw∗, and an analogous result holds for the other logics.

1. Take an instance (� ² ¬�) J (� I ¬�) of ciw∗ and a bivaluation � for nbIciw, and we see

that

�((� ² ¬�) J (� I ¬�)) = 0

if and only if �(� ² ¬�) = 0 and �(�I¬�) = 0; the first of these equalities holds if and only

�(�) = 1 and �(¬�) = 1, what would imply that �(� I ¬�) = 1, reaching a contradiction.

2. Take a bivaluation � for nbIci and suppose

�(¬(� ² ¬�) ³ (� I ¬�)) = 0,

what happens if and only if �(¬(� ² ¬�)) = 1 but �(� I ¬�) = 0; from the first equality,

�(�) = �(¬�) = 1, what again contradicts �(� I ¬�) = 0.

3. Finally, we take a bivaluation � for nbIcl and assume it is possible to have

�(¬(� I ¬�) ³ (� ² ¬�)) = 0.

This is equivalent to having �(¬(� I ¬�)) = 1 and �(� ² ¬�) = 0, but the first equality

implies �(� ² ¬�) = 1, which is evidently contradictory.

Theorem 8.3.1. Given formulas �L{'} over the signatureΣnbI andú * {nbIciw,nbIci,nbIcl},

if � ⊢ú ' then � ⊨ú '.

To prove the reciprocal, take a set of formulas � maximal with respect to not proving

' in ú * {nbIciw,nbIci,nbIcl} which is also closed (again, with respect to ú) and non-trivial.

We define � ∶ F (ΣnbI,Ą) ³ {0, 1} such that �(
) = 1 if and only if 
 * �, and wish to prove

that � is a bivaluation for ú.

It is clear � does not prove ' in nbI, since ú extends nbI, and also that � is closed

in nbI, given it is closed according to ú and this logic is stronger than the previous; this implies

� is at least a bivaluation for nbI, according to the definition found in Section 8.1.1.

1. For any of the logics ú * {nbIciw,nbIci,nbIcl}, if �(� ² ¬�) = 1, suppose �(�) = 1 and

�(¬�) = 1: by definition of �, this means � ² ¬�, �,¬� * �, and since � is closed and

(� ² ¬�) ³ (� ³ (¬� ³ '))
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is an instance of Ip, we get that ' * �, what is a contradiction, We must then have either

�(�) = 0 or �(¬�) = 0.

Suppose, reciprocally, that �(�) = 0 or �(¬�) = 0, and for a proof by contradiction, let

us take �(� ² ¬�) = 0, meaning � ² ¬� + � and either � + � or ¬� + �, implying

� I¬� + �. By the maximality of �, one has �, � ² ¬� ⊢ú ' and �, � I¬� ⊢ú ', and by

a proof by cases

�, (� ² ¬�) J (� I ¬�) ⊢ú '.

Since (� ² ¬�) J (� I ¬�) is an instance of ciw∗, if ú = nbIciw we get � ⊢nbIciw ', a

contradiction; for the other two logics, given that, from Sections 8.2.1 and 8.2.2,

¬(� ² �) ³ (� I �) ⊢nbI (� ² �) J (� I �)

and

¬(� I �) ³ (� ² �) ⊢nbI (� ² �) J (� I �),

by replacing � with ¬� we obtain that we still have � ⊢ú ', so still a contradiction. This

means we must have �(� ² ¬�) = 1.

2. If ú = nbIci and �(¬(� ² ¬�)) = 1, this means ¬(� ² ¬�) * �; since ¬(� ² ¬�) ³

(� I ¬�) is an instance of ci∗ and � is closed, � I ¬� * �, implying that �,¬� * � and

therefore �(�) = 1 and �(¬�) = 1.

3. If ú = nbIcl and �(¬(� I ¬�)) = 1, we have ¬(� I ¬�) * �; since ¬(� ² ¬�) ³ (� I ¬�)

is an instance of cl∗ and � is closed, � ² ¬� * �, and therefore �(� ² ¬�) = 1.

Theorem 8.3.2. Given formulas �L{'} over the signatureΣnbI andú * {nbIciw,nbIci,nbIcl},

if � ⊨ú ' then � ⊢ú '.

In the spirit of the arguments just used, since

¬(� ² �) ³ (� I �) ⊢nbI (� ² �) J (� I �)

and

¬(� I �) ³ (� ² �) ⊢nbI (� ² �) J (� I �),

by replacing � with ¬� we discover both nbIci and nbIcl are extensions of nbIciw, and with the

aid of bivaluations, we can prove even more.

Proposition 8.3.1. 1. nbIciw can not prove ci∗, and therefore nbIci is strictly stronger than

nbIciw;

2. nbIciw can not prove cl∗, and therefore nbIcl is strictly stronger than nbIciw.
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Proof. 1. Take a bivaluation � for nbIciw such that �(�) = 0, �(¬�) = 0 (and therefore

�(� I ¬�) = 0), �(� ² ¬�) = 1 and �(¬(� ² ¬�)) = 1: then

�(¬(� ² ¬�) ³ (� I ¬�)) = 0.

2. Take a bivaluation � for nbIciw such that �(�) = 1, �(¬�) = 1 (and therefore �(� I¬�) =

1), �(� ² ¬�) = 0 and �(¬(� I ¬�)) = 1: then

�(¬(� I ¬�) ³ (� ² ¬�)) = 0.

Theorem 8.3.3. 1. The formula (� ² ¬�) ² ¬(� ² ¬�) is a tautology of nbIci;

2. nbIci is obtained from nbIciw by adding the axiom schema

(� ² ¬�) ² ¬(� ² ¬�). (cc∗)

Proof. 1. It is clear that

(� ² ¬�) ² ¬(� ² ¬�) ⊢nbIci (� ² ¬�) ² ¬(� ² ¬�),

but from the instance

¬[(� ² ¬�) ² ¬(� ² ¬�)] ³ [(� ² ¬�) I ¬(� ² ¬�)]

of ci∗ we see that

¬[(� ² ¬�) ² ¬(� ² ¬�)] ⊢nbIci (� ² ¬�) I ¬(� ² ¬�).

(� ² ¬�) I ¬(� ² ¬�) easily deduces both � ² ¬� and ¬(� ² ¬�), and from this last

formula and the instance ¬(� ² ¬�) ³ (� I ¬�) of ci∗, we get ¬[(� ² ¬�) ² ¬(� ² ¬�)]

deduces � ² ¬�, � and ¬�: from the instance of Ip

(� ² ¬�) ³
[
� ³

[
¬� ³

(
(� ² ¬�) ² ¬(� ² ¬�)

)]]
,

this means

¬[(� ² ¬�) ² ¬(� ² ¬�)] ⊢nbIci (� ² ¬�) ² ¬(� ² ¬�),

and by a proof by cases

[(� ² ¬�) ² ¬(� ² ¬�)] J ¬[(� ² ¬�) ² ¬(� ² ¬�)] ⊢nbIci (� ² ¬�) ² ¬(� ² ¬�).
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Since the antecedent in this argument is an instance of Ax 11∗, we obtain that (� ² ¬�) ²

¬(� ² ¬�) is a tautology.

2. So we have that nbIci proves any instance of ciw∗ and cc∗, being therefore stronger than

the logic obtained from nbIciw by addition of cc∗, which we will briefly call nbIciw+.

To prove that nbIciw+ is as strong as nbIci, and therefore that both are equal, we only

need to prove that any instance of ci∗ is a tautology in nbIciw+, or what is equivalent, that

¬(� ² ¬�) ⊢nbIciw+ � I ¬�.

Obviously

� I ¬�,¬(� ² ¬�) ⊢nbIciw+ � I ¬�;

now, from the instance

[(� ² ¬�) ² ¬(� ² ¬�)] ³
[
(� ² ¬�) ³

[
¬(� ² ¬�) ³ (� I ¬�)

]]

of Ip and the fact (� ² ¬�) ² ¬(� ² ¬�) is an instance of cc∗, we can see by applying the

deduction meta-theorem as needed that

� ² ¬�,¬(� ² ¬�) ⊢nbIciw+ � I ¬�.

By a proof by cases,

(� ² ¬�) J (� I ¬�),¬(� ² ¬�) ⊢nbIciw+ � I ¬�,

and since (� ² ¬�) J (� I ¬�) is an instance of ciw∗, we discover that nbIci is nbIciw+,

as we wanted to show.

8.3.2 Fidel structures

A Fidel structure, presented as aΣCPL
nbI -multialgebra, forú * {nbIciw,nbIci,nbIcl} is anyΣCPL

nbI -

multialgebra ï = (A, {�ï}�*ΣCPL
nbI

) that is a Fidel structure for nbI and satisfies, additionally:

1. if b * ¬a, <(a I b) * a ² b;

2. (a) if ú = nbIci and b * ¬a, a I b * ¬<(a I b);

(b) if ú = nbIcl and b * ¬a, <(a I b) * ¬(a I b).

A valuation for a Fidel structure ï, presented as a ΣCPL
nbI -multialgebra, for ú *

{nbIciw,nbIci,nbIcl}, will still be any ΣnbI-homomorphism � ∶ F(ΣnbI,Ą) ³ ï; and now

we will consider the restricted Nmatrices (ï, {⊤},ôú
ï
), where ï is a Fidel structure for ú and
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ôú
ï

is the set of valuations � ∶ F(ΣnbI,Ą) ³ ï such that, for any formulas � and � over the

signature ΣnbI:

1. �(� ² �) = �(� ² �);

2. �(� ² ¬�) = <(�(�) I �(¬�));

3. (a) if ú = nbIci, �(¬(� ² ¬�)) = �(�) I �(¬�);

(b) if ú = nbIcl, �(� ² ¬�) = �(¬(� I ¬�)).

Proposition 8.3.2. The RNmatrices (ï, {⊤},ôú
ï
) as described above, for ú *

{nbIciw,nbIci,nbIcl}, are structural.

Proof. Let � ∶ F(ΣnbI,Ą) ³ F(ΣnbI,Ą) be a ΣnbI-homomorphism and � * ôú
ï

: it is clear

that �ċ� ∶ F(ΣnbI,Ą) ³ ï is always a ΣnbI-homomorphism, satisfying additionally that for all

formulas � and � on the signature ΣnbI, �ċ�(� ² �) = �ċ�(� ² �).

1. We must prove that �ċ�(� ² ¬�) = <(�ċ�(�) I �ċ�(¬�)), what is easy since

�ċ�(� ² ¬�) = �(�(� ² ¬�)) = �(�(�) ² �(¬�)) = �(�(�) ² ¬�(�)) =

<
(
�(�(�)) I ¬�(�(�))

)
= <(�ċ�(�) I �ċ�(¬�)).

2. (a) If ú = nbIci, it remains for us to show that �ċ�(¬(� ² ¬�)) = �ċ�(�) I �ċ�(¬�),

and we see that

�ċ�(¬(� ² ¬�)) = �
(
¬(�(�) ² ¬�(�))

)
= �(�(�)) I �(¬�(�)) = �ċ�(�) I �ċ�(¬�).

(b) If ú = nbIcl, we only need to prove that �ċ�(� ² ¬�) = �ċ�(¬(� I ¬�)):

�ċ�(� ² ¬�) = �(�(�) ² ¬�(�)) = �
(
¬(�(�) I ¬�(�))

)
= �ċ�(¬(� I ¬�)).

Given formulas � L {'} over the signature ΣnbI, if � proves ' according to such

restricted Nmatrices we will write � ⊩ú
ô
', and say that � proves ' according to Fidel structures

for ú.

It is easy to see how "⊩ú
ô

" models the axiom schemata of nbI and its rules of infer-

ence, but we can also prove "⊩nbIciw
ô

" proves any instance of ciw∗, "⊩nbIci
ô

" proves any instance

of ci∗ and "⊩nbIcl
ô

" proves any instance of cl∗, so take a formula � over the signature ΣnbI.

1. Given an instance (� ² ¬�) J (� I¬�) of ciw∗, we have for a Fidel structure ï for nbIciw

and a � * ônbIciw
ï

that

�((� ² ¬�) J (� I ¬�)) = �(� ² ¬�) J �(� I ¬�) =
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<(�(�) I �(¬�)) J (�(�) I �(¬�)) = (<�(�) J <�(¬�)) J (�(�) I �(¬�)) =

[
(<�(�) J <�(¬�)) J �(�)

]
I
[
(<�(�) J <�(¬�)) J �(¬�)

]
=

[<�(¬�) J ⊤] I [<�(�) J ⊤] = ⊤ I ⊤ = ⊤.

2. Take an instance ¬(� ² ¬�) ³ (� I ¬�) of ci∗, a Fidel structure ï for nbIci and a

� * ônbIci
ï

:

�(¬(� ² ¬�) ³ (� I ¬�)) = �(¬(� ² ¬�)) ³ �(� I ¬�) =

[
�(�) I �(¬�)

]
³

[
�(�) I �(¬�)

]
= ⊤.

3. For ¬(�I¬�) ³ (� ² ¬�) an instance of cl∗, a Fidel structure ï for nbIcl and a � * ônbIcl
ï

,

�(¬(� I ¬�) ³ (� ² ¬�)) = �(¬(� I ¬�)) ³ �(� ² ¬�) = �(� ² ¬�) ³ �(� ² ¬�) = ⊤.

Theorem 8.3.4. Given formulas � L {'} over the signature ΣnbI, for any ú *

{nbIciw,nbIci,nbIcl} we have that, if � ⊢ú ', then � ⊨ú
ô
'.

Reciprocally, we define, for a logicú * {nbIciw,nbIci,nbIcl} and a set of formulas

� over the signature ΣnbI, the equivalence relation such that, for formulas � and � still over the

signature ΣnbI, � �ú
�
� if and only if � ⊢ú � ³ � and � ⊢ú � ³ �.

As we did several times before, the well-defined quotient Aú
�
= F (ΣnbI,Ą)∕ �ú

�
is

made into a Boolean algebra, and by defining, for classes of formulas [�] and [�], ¬� =

{[¬'] ∶ ' * [�]} and

1. if [�] * ¬[�],

[�] ² [�] = [<(� I �)];

2. otherwise,

[�] ² [�] = {[' ²  ] ∶ ' * [�],  * [�]};

we shall prove ïú
�

= (Aú
�
, {�ï}�*ΣCPL

nbI
) is a Fidel structure for ú, which we shall call the

Lindenbaum-Tarski Fidel structure of ú associated to �.

Quite clearly (Aú
�
, {�ï}�*ΣCPL) is a Boolean algebra; concerning the paraconsistent

negation, for every [�] * ¬[�], there exists ' �ú
�
� such that � �ú

�
¬' and then [�] J [�] =

[� J �] = [' J ¬'] = ⊤; regarding the incompatibility connective, we begin by proving the

operation is well-defined in the case that [�] * ¬[�].

If ' * [�] and  * [�], we have that � �ú
�
' and � �ú

�
 , implying that <(� I

�) �ú
�
<(' I  ) given "�ú

�
" is a congruence for the connectives in {J,I,³,<}, and therefore

[�] ² [�] = ['] ² [ ]. In the case of [�] ² [�] with [�] + ¬[�, we use the same reasoning that

worked for bI in Section 7.1.3.2.
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To prove ïú
�

is a Fidel structure for nbI, we are yet to prove that, if [�] * ¬[�], for

every value [
] in [�] ² [�] (in this case, there is only one), we have [�] I ([�] I [
]) = ⊥, the

result being clear in the case that [�] + ¬[�]. Since 
 �ú
�
<(� I �),

� I (� I 
) �ú
�
� I (� I <(� I �)) �ú

�
⊥,

and the result holds; the case in which [�] * ¬[�] is analogous.

It only remains to be shown that ïú
�

is a Fidel structure for ú.

Lemma 8.3.1. 1. For any logic ú * {nbIciw,nbIci,nbIcl}, � ² ¬� and <(� I ¬�) are

equivalent.

2. ¬(� ² ¬�) and � I ¬� are equivalent in nbIci.

3. ¬(� I ¬�) and � ² ¬� are equivalent in nbIcl.

Proof. 1. For simplicity, we denote ⊥�I¬�,�I¬� simply by ⊥. Applying the deduction meta-

theorem, we must prove � ² ¬�, � I ¬� ⊢ú ⊥ and (� I ¬�) ³ ⊥ ⊢ú � ² ¬�.

The first implication is obvious, since � ² ¬� together with � I ¬� is exactly ⊥�,¬�, and

all bottom elements are equivalent to each other. Reciprocally, quite obviously

(� I ¬�) ³ ⊥, � ² ¬� ⊢ú � ² ¬�,

and

(� I ¬�) ³ ⊥, � I ¬� ⊢ú � ² ¬�

by Modus Ponens and the fact a bottom element implies any formula. With a proof by

cases and the fact that (� ² ¬�) J (� I ¬�) is an instance of ciw∗, which is a tautology in

any of the logics ú, we get the desired result.

2. We must prove ¬(� ² ¬�) ⊢nbIci � I ¬� and vice-versa, being the first direction a clear

application of ci∗. Reciprocally, we have

� I ¬�,¬(� ² ¬�) ⊢nbIci ¬(� ² ¬�)

with easy, while

� I ¬�, � ² ¬� ⊢nbIci ¬(� ² ¬�)

follows from the fact �I¬� implies both � and ¬�, followed by an application of Ip. With

a proof by cases and the fact (� ² ¬�) J ¬(� ² ¬�) is an instance of Ax 11∗, the result

follows.

3. Now, we must prove ¬(�I¬�) ⊢nbIcl � ² ¬� and its reciprocal, being the first implication
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a direct application of cl∗. Reciprocally,

� ² ¬�,¬(� I ¬�) ⊢nbIcl ¬(� I ¬�)

and, from the fact � I ¬� implies both � and ¬�, and by applying Ip,

� ² ¬�, � I ¬� ⊢nbIcl ¬(� I ¬�);

through a proof by cases and the fact (� I ¬�) J ¬(� I ¬�) is an instance of Ax 11∗, we

conclude the proof.

1. By definition, if [�] * ¬[�], then [�] ² [�] is single-valued and equal to <([�] I [�]).

2. (a) If ú = nbIci and [�] * ¬[�], implying that there exists � �nbIci
�

� such that � �nbIci
�

¬�, by use of Lemma 8.3.1 we find

[<(� I �)] = [<(� I ¬�)] = [� ² ¬�],

and therefore ¬[<(� I �)] contains [¬(� ² ¬�)] = [�I ¬�], which equals [�] I [�],

as we wanted to show.

(b) Ifú = nbIcl and [�] * ¬[�], let� �nbIcl
�

� be an element of [�] such that � �nbIcl
�

¬�,

and then [� I �] = [� I ¬�], while [� ² ¬�] = [¬(� I ¬�)] * ¬[� I ¬�].

Since [� ² ¬�] = [<(� I ¬�)] and <([�] I [¬�]) = <([�] I [�]), the result is done:

<([�] I [�]) * ¬([�] I [�]).

Theorem 8.3.5. Given formulas � L {'} over the signature ΣnbI, for any logic ú *

{nbIciw,nbIci,nbIcl} we have that, if � ⊩ú
ô
', then � ⊢ú '.

8.3.3 Decision method

We take the Boolean algebra 2 and extend it to the ΣCPL
nbI -multialgebra 2nbIciw with operations

given by the tables below.

¬

0 {1}

1 {0, 1}

Negation

² 0 1

0 {0, 1} {0, 1}

1 {0, 1} {0}

Incompatibility

It is easy to see that:

1. ({0, 1}, {�2nbIciw
}�*ΣCPL) is a Boolean algebra (that is, 2);



Chapter 8: Adding a negation to logics of incompatibility 262

2. for any x, y * {0, 1} and z * x ² y, x I (y I z) = 0;

3. for any x * {0, 1} and y * ¬x, xJy = 1, since in the case that x = 0 we must have y = 1.

So 2nbIciw is a Fidel structure for nbI. But we can prove even more, that it is a Fidel

structure for ú * {nbIciw,nbIci,nbIcl}.

1. We see that, for any values of x and y in {0, 1}, <(x I y) * x ² y even if y + ¬x;

2. (a) suppose that, for some values a and b in {0, 1} such that b * ¬a, a I b is not in

¬<(a I b), and since ¬1 = {0, 1}, we must then have <(a I b) = 0, that is, a I b = 1

and therefore a = b = 1; but then ¬<(aI b) = {1}, which contains exactly the value

of aIb = 1, leading to a contradiction; so, to summarize, for any values a, b * {0, 1}

we have a I b * ¬<(a I b);

(b) suppose that, for some values a and b in {0, 1} such that b * ¬a, <(a I b) is not in

¬(a I b), which means a I b = 0 (since ¬1 = {0, 1}); but then <(a I b) = 1 and

¬(a I b) = {1}, what is a contradiction; so, for any values a, b * {0, 1}, <(a I b) *

¬(a I b).

Finally, we can define, for ú * {nbIciw,nbIci,nbIcl}, the restricted Nmatrix

āú = (2nbIciw, {1},ô
ú
2nbIciw

)

such that ôú
2nbIciw

is the set of homomorphisms � ∶ F(ΣnbI,Ą) ³ 2nbIciw satisfying that, for any

formulas � and �:

1. �(� ² �) = �(� ² �);

2. �(� ² ¬�) = <(�(�) I �(¬�));

3. (a) if ú = nbIci, �(¬(� ² ¬�)) = �(�) I �(¬�);

(b) if ú = nbIcl, �(� ² ¬�) = �(¬(� I ¬�)).

Clearly such RNmatrices are structural.

Theorem 8.3.6. � ∶ F (ΣnbI,Ą) ³ {0, 1} is a bivaluation for ú * {nbIciw,nbIci,nbIcl} if, and

only if, it is a ΣnbI-homomorphism from F(ΣnbI,Ą) to 2nbIciw which lies in ôú
2nbIciw

.

Theorem 8.3.7. Given formulas � L {'} of ú * {nbIciw,nbIci,nbIcl}, � ⊨ú ' if and only if

� ⊨
āú
'.

Our finite RNmatrices again lead to decision methods through row-branching, row-

eliminating truth tables, and for all three of the logics nbIciw, nbIci and nbIcl. We believe the

subjacent Nmatrices are explicit enough, so let us focus on the conditions for a row to be erased.
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1. If � ² � and � ² � have different values.

2. If � ² ¬� or ¬� ² � is 0, and either � or ¬� is also 0.

3. (a) If the logic is nbIci: if ¬(� ² ¬�) is 1 but either � or ¬� is 0.

(b) If the logic is nbIcl, ¬(� I ¬�) is 1 and: either � ² ¬� or ¬� ² � is 0, or � and ¬�

are both 1.

8.3.4 Another decision method

We can add rules to the tableau calculus ĀnbI inspired by the tables found in Section 8.3.3 to

obtain tableau calculi ĀnbIciw, ĀnbIci and ĀnbIcl capable of characterizing their respective logics.

So, consider the following tableau rules:

0(' ² ¬')

1(')

1(¬')

0(¬' ² ')

1(')

1(¬')

1(¬(' ² ¬'))

1(')

1(¬')

1(¬(' I ¬'))

0(') E 0(¬')

Then, by addition to ĀnbI of:

1. the two first rules, one obtains ĀnbIciw;

2. the three first rules, one obtains ĀnbIci;

3. the two first rules plus the fourth, one obtains ĀnbIcl.

8.4 Our logics are not algebraizable by Blok and Pigozzi

8.4.1 bI is not algebraizable by Blok and Pigozzi

We wish to prove bI is not algebraizable even by some quite expressive standards: specifically,

we wish to show it is not algebraizable according to Blok and Pigozzi [BP89]. To accomplish

that we will use Lewin, Mikenberg and Schwarze’s construction found in[LMS91], and prove as

they do that there is a model for bI for which the Leibniz operator ¬bI, that sends a bI-filter to

its largest compatible congruence, is not a bijection; from Theorem 5.1 of [BP89], this proves

bI is not algebraizable.

Definition 8.4.1. Given a signature Σ and a Σ-algebra ï = (A, {�ï}�*Σ), a congruence in ï

is a relation � on A × A such that, if � * Σn and a1, b1,& , an, bn * A are elements such that

a1�b1,& , an�bn, then

�ï(a1,& , an)��ï(b1,& , bn).
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Definition 8.4.2. Given a signature Σ, a logic ú and a Σ-algebra ï = (A, {�ï}�*Σ), an ú-filter

in ï is a subset F ⊆ A such that

� ⊢ú ' implies � ⊨(ï,F ) ',

for every set of formulas � L {'} over Σ.

The largest compatible congruence � to a filter F is the largest congruence such that,

if a�b and a * F , then b * F .

So, over the signature ΣbI, for which (ΣbI)2 = {J,I,³, ²} and (ΣbI)n = ∅ for every

n � 2, we consider the ΣbI-algebra ÿ with universe L = {u, 1, a, b, 0} and operations given by

the tables bellow (all, with the exception of incompatibility, extracted from [LMS91]).

J u 1 a b 0

u u u u u u

1 u 1 1 1 1

a u 1 a 1 a

b u 1 1 b b

0 u 1 a b 0

Disjunction

I u 1 a b 0

u u 1 a b 0

1 1 1 a b 0

a a a a 0 0

b b b 0 b 0

0 0 0 0 0 0

Conjunction

³ u 1 a b 0

u u u a b 0

1 u 1 a b 0

a u 1 1 b b

b u 1 a 1 a

0 u 1 1 1 1

Implication

² u 1 a b 0

u 0 0 0 0 1

1 0 0 b a 1

a 0 b b 1 1

b 0 a 1 a 1

0 1 1 1 1 1

Incompatibility

u

1

a b

0

The lattice (L,J,I)
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We then consider the logical matrix Ā = (ÿ, D), with D = {u, 1}.

8.4.1.1 Ā is a model of bI

Notice that Ax 1, Ax 3, Ax 4, Ax 5, Ax 6, Ax 7, Ax 8 and Modus Ponens of the definition

of bI ate the beginning of Section 7.1 correspond, respectively, to the axiom schemata and rules

1, 6, 4, 5, 7, 8, 9 and 10 of C1 as defined in [LMS91]; since the operations J, I and ³ in ÿ

are exactly the same as the ones in the algebra of Lewin, Mikenberg and Schwarze’s article, and

since the logical matrix formed by that algebra and D models C1, we obtain that Ā models at

least these axiom schemata and rules of inference. It remains to be shown it also models Ax 2,

Ax 9∗, Ip and Comm.

1. Concerning Ax 2 of bI, (� ³ (� ³ 
)
)
³

(
(� ³ �) ³ (� ³ 
)), notice that by two

applications of the deduction meta-theorem we have that the validity of the axiom schema

2 of [LMS91] in bI is equivalent to stating that � ³ �, � ³ (� ³ 
) ⊢bI � ³ 
 , which by

two new applications of the deduction meta-theorem is now equivalent to the validity of

Ax 2. Since the matrix of Lewin, Mikenberg and Schwarze’s algebra validates the axiom

schema 2, we have Ā validates Ax 2.

2. For Ax 9∗, (� ³ �) J �, we see from the tables below that the image of Ax 9∗ under any

homomorphism is in D, and therefore this axiom schema is validated by Ā.

x³ y (x³ y) J x

x
y u 1 a b 0 u 1 a b 0

u u u a b 0 u u u u u

1 u 1 a b 0 u 1 1 1 1

a u 1 1 b b u 1 1 1 1

b u 1 a 1 a u 1 1 1 1

0 u 1 1 1 1 u 1 1 1 1

Table for Ax 9∗

3. To prove Ā models Ip, given by (� ² �) ³ (� ³ (� ³ 
)), we begin with the two tables

below.

y
z u 1 a b 0

u u u a b 0

1 u 1 a b 0

a u 1 1 b b

b u 1 a 1 a

0 u 1 1 1 1

Table for y³ z

x
y u 1 a b 0

u 0 0 0 0 1

1 0 0 b a 1

a 0 b b 1 1

b 0 a 1 a 1

0 1 1 1 1 1

Table for x ² y
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By looking at the table for Ip below, we see that, since the image of Ip under any homo-

morphism is always in D, we have Ā validates this axiom schema.

x ² y x³ (y³ z) (x ² y) ³ (x³ (y³ z))

x y
z u 1 a b 0 u 1 a b 0

u

u 0 u u a b 0 u u 1 1 1

1 0 u u a b 0 u u 1 1 1

a 0 u u u b b u u u 1 1

b 0 u u a u a u u 1 u 1

0 1 u u u u u u u u u u

1

u 0 u u a b 0 u u 1 1 1

1 0 u 1 a b 0 u 1 1 1 1

a b u 1 1 b b u 1 1 1 1

b a u 1 a 1 a u 1 1 1 1

0 1 u 1 1 1 1 u 1 1 1 1

a

u 0 u u 1 b b u u 1 1 1

1 b u 1 1 b b u 1 1 1 1

a b u 1 1 b b u 1 1 1 1

b 1 u 1 1 1 1 u 1 1 1 1

0 1 u 1 1 1 1 u 1 1 1 1

b

u 0 u u a 1 a u u 1 1 1

1 a u 1 a 1 a u 1 1 1 1

a 1 u 1 1 1 1 u 1 1 1 1

b a u 1 a 1 a u 1 1 1 1

0 1 u 1 1 1 1 u 1 1 1 1

0

u 1 u u 1 1 1 u u 1 1 1

1 1 u 1 1 1 1 u 1 1 1 1

a 1 u 1 1 1 1 u 1 1 1 1

b 1 u 1 1 1 1 u 1 1 1 1

0 1 u 1 1 1 1 u 1 1 1 1

Table for Ip

4. It only remains to showĀ validates Comm, an axiom schema given by (� ² �) ³ (� ² �),

what is done on the following table; notice that the tables for x ² y and y ² x are the same

since incompatibility is commutative in Ā.
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x ² y = y ² x (x ² y) ³ (y ² x)

x
y u 1 a b 0 u 1 a b 0

u 0 0 0 0 1 1 1 1 1 1

1 0 0 b a 1 1 1 1 1 1

a 0 b b 1 1 1 1 1 1 1

b 0 a 1 a 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1

Table for Comm

With this, we have proved that Ā is a model for bI, meaning that, for any formulas

� L {'} on the signature ΣbI, � ⊢bI ' implies � ⊨Ā '.

8.4.1.2 There are no non-trivial congruences on ÿ

Now, we wish to prove that the ΣbI-algebra ÿ has only two congruences, the ones we call trivial:

∇, equal to L × L, and �, given by {(x, x) ∶ x * L}. Here, we will perpetrate an abuse of

notation: take a signature Σ, a Σ-algebra ï with universe A, a congruence � on ï, � * Σn and

! * Σm, and a1,& , an, b1,& , bm * A: then, if �ï(a1,& , an) = a and !ï(b1,& , bm) = b, and

�ï(a1,& , an)�!ï(b1,& , bm), we may simply write a = �ï(a1,& , an)�!ï(b1,& , bm) = b to

make it clear that a�b.

1. (a) If u�1, 0 = (u ² a)�(1 ² a) = b, 0 = (u ² b)�(1 ² b) = a and 1 = (a ³ a)�(b ³

a) = a, and therefore � = ∇.

(b) If u�a, then u = (u J 1)�(a J 1) = 1 (meaning a�1), b = (u I b)�(a I b) = 0 and

0 = (u ² b)�(1 ² b) = a, implying � = ∇.

(c) If u�b, then u = (u J 1)�(b J 1) = 1, a = (u I a)�(b I a) = 0 and 0 = (u ² a)�(1 ²

a) = b, and again � = ∇.

(d) If u�0, then for every x we have u = (u J x)�(0 J x) = x, meaning � = ∇.

With this, we have proved that, if any pair (u, x), with x * L ö {u}, is in �, then � = ∇.

2. We will ignore the case 1�u, since it is equivalent to u�1, a case considered before.

(a) If 1�a, b = (1 I b)�(a I b) = 0, u = (u ³ 1)�(u ³ a) = a (and therefore u�1) and

0 = (u ² b)�(1 ² b) = a, meaning � = ∇.

(b) If 1�b, a = (1 I a)�(b I a) = 0, u = (u ³ 1)�(u ³ b) = b (and therefore u�1) and

0 = (u ² a)�(1 ² a) = b, and so � = ∇.

(c) If 1�0, a = (1 ³ a)�(0 ³ a) = 1, b = (1 ³ b)�(0 ³ b) = 1 and u = (u ³ 1)�(u ³

0) = 0, and therefore � = ∇.
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Once again, we have that if any pair (1, x), with x * L ö {1}, is in �, then � = ∇.

3. The cases a�u and a�1 correspond to the cases u�a and 1�a above.

(a) If a�0, 1 = (a J b)�(0 J b) = b, u = (u ³ 1)�(u ³ b) = b (and therefore u�1) and

0 = (u ² a)�(1 ² a) = b, what implies � = ∇.

(b) If a�b, b = (a ³ b)�(b ³ b) = 1 (implying a�1), 0 = (a I b)�(b I b) = b and

u = (u³ 1)�(u³ a) = a, what means � = ∇.

So, if (a, x) * �, for x * L ö {a}, � = ∇.

4. The cases b�u, b�1 and b�a equal the previous cases, respectively, u�b, 1�b and a�b.

(a) If b�0, 1 = (a J b)�(a J 0) = a, u = (u ³ 1)�(u ³ a) = a (and therefore u�1) and

0 = (u ² b)�(1 ² b) = a, and therefore � = ∇.

Again, if (b, x) * �, for b * L ö {b}, then � = ∇.

5. Since the cases 0�u, 0�1, 0�a and 0�b correspond, respectively, to u�0, 1�0, a�0 and b�0,

we have that, if (0, x) * �, for x * L ö {0}, then � = ∇.

With all of this, we discover that for any congruence � in ÿ, if (x, y) * �, for x � y,

then � = ∇, implying as we had mentioned that the only two congruences in ÿ are ∇ and �.

8.4.1.3 Two filters whose largest compatible congruence is ∇

Lemma 8.4.1. Given a signature Σ, a Σ-algebra ï and a logic ú over Σ, F is a ú-filter in ï

if, and only if, the following are satisfied:

1. for every Σ-homomorphism � ∶ F(Σ,Ą) ³ ï and instance of axiom  of ú, �( ) * F ;

2. for every Σ-homomorphism � ∶ F(Σ,Ą) ³ ï and instance of a rule of inference

 1,& ,  n| of ú, if �( 1),& , �( n) * F then �( ) * F .

Proof. Suppose F is a ú-filter in ï and � ∶ F(Σ,Ą) ³ ï is a Σ-homomorphism.

1. If  is an instance of an axiom, ⊢ú  , meaning ⊨(ï,F )  and, therefore, �( ) * F .

2. If  1,& ,  n| is an instance of an inference rule,  1,& ,  n ⊢ú  , meaning  1,& ,  n

⊨(ï,F )  and, therefore, if �( 1),& , �( n) * F , then �( ) * F .

Reciprocally, suppose � ⊢ú ' and that �1,& , �n is a proof of ' from � with �n =

'; we shall prove that, for any Σ-homomorphism � ∶ F(Σ,Ą) ³ ï such that �(�) ⊆ F ,

�(�1),& , �(�n) * F , and therefore �(') * F and � ⊨(ï,F ) '.

For induction hypothesis, being �1 either an element of � or an instance of an axiom,

assume �1 through �i−1 are mapped, by �, into F .
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1. If �i is in �, by hypothesis on � we have �(�i) * F .

2. If �i is an instance of an axiom, by our hypothesis on F we have �(�i) * F .

3. Finally, if there are �i1 ,& , �in , with i1,& , in * {1,& , i−1}, such that �i1 ,& , �in|�i is an

instance of a rule of inference, by induction hypothesis �(�i1),& , �(�in) * F , and again

by our hypothesis on F we have �(�i) * F .

So, we take the subsets Fa = {u, 1, a} and Fb = {u, 1, b} of L, and state that both

are bI-filters. First of all, for any ΣbI-homomorphism � ∶ F(ΣbI,Ą) ³ ÿ and any instance of an

axiom schema  of bI, since Ā = (ÿ, D) models bI, �( ) * D = {u, 1} ⊆ Fa and in much the

same way �( ) * Fb, implying that both Fa and Fb satisfy the first condition of Lemma 8.4.1

for being an bI-filter.

Furthermore, there is only one rule of inference to analyze, that of Modus Ponens.

From the table for implication, we see that if x ³ y is in Fa, then either y * Fa or x * L ö Fa;

so, if both x and x³ y are in Fa, then y * Fa. Similarly, if both x and x³ y are in Fb, y is also

in Fb, what implies that both Fa and Fb are bI-filters by Lemma 8.4.1.

But we state that the largest compatible congruence to both Fa and Fb is �, meaning

the Leibniz operator ¬bI of bI is not injective and therefore bI is not algebraizable by Blok

and Pigozzi. This is easy to prove: ∇ is not compatible to neither Fa nor Fb, since u�0 and

u * Fa K Fb, but 0 is not in Fa nor in Fb; clearly � is compatible to both Fa and Fb, and since

there are no congruences larger than � different from ∇, we obtain the aforementioned result.

8.4.2 nbI is not algebraizable by Blok and Pigozzi

Now, we will follow the reasoning found in Section 8.4.1 to show that nbI is also not algebraiz-

able by Blok And Pigozzi, showing that its Leibniz operator is not bijective, the only differ-

ence being that we must add a negation to ÿ. So, consider the ΣnbI-algebra ÿnbI with universe

L = {u, 1, a, b, 0}, �ÿnbI
equal to �ÿ for any � * {J,I,³, ²} and negation defined by the table

below; we drop ÿnbI from indexing the operations for simplicity.

x u 1 a b 0

¬x 1 0 b a 1

Table for Negation

We then define the logical matrix ĀnbI = (ÿnbI, D), with D = {u, 1}. Since the

operations associated to the symbols in {J,I,³, ²} are the same as those of ÿ, we see that

ĀnbI models the axiom schemata Ax 1 through Ax 8 of bI, plus Ax 9∗, Ip and Comm, since

those axiom schemata involve only the connectives on ΣbI.
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The proof that ĀnbI models Ax 11∗ is not necessary since it corresponds to the

axiom scheme number 3 for C1 in the axiomatization found in [LMS91], and we use the same

negation.

The proof that there are only two congruences on ÿnbI goes as expected, beginning

with the supposition that a pair (x, y), with x � y, is in �, what then implies � = ∇.

Finally, we trivially find both Fa = {u, 1, a} and Fb = {u, 1, b} are nbI-filters whose

largest compatible congruence is �, what proves nbI is not-algebraizable according to Blok and

Pigozzi.

8.4.3 nbIciw, nbIci and nbIcl are not algebraizable by Blok and Pigozzi

We state that ĀnbI also models nbIciw, nbIci and nbIcl, and since Fa and Fb are still, respec-

tively, ú-filters, for ú * {nbIciw,nbIci,nbIcl}, we prove that none of these three is algebraiz-

able by Blok and Pigozzi. The proof that Ā models ciw∗, ci∗ and cl∗ is in the following tables.

x ¬x x I ¬x x ² ¬x (x ² ¬x) J (x I ¬x)

u 1 1 0 1

1 0 0 1 1

a b 0 1 1

b a 0 1 1

0 1 0 1 1

Table for ciw∗

x ¬x x I ¬x x ² ¬x ¬(x ² ¬x) ¬(x ² ¬x) ³ (x I ¬x)

u 1 1 0 1 1

1 0 0 1 0 1

a b 0 1 0 1

b a 0 1 0 1

0 1 0 1 0 1

Table for ci∗

x ¬x x I ¬x x ² ¬x ¬(x I ¬x) ¬(x I ¬x) ³ (x ² ¬x)

u 1 1 0 0 1

1 0 0 1 1 1

a b 0 1 1 1

b a 0 1 1 1

0 1 0 1 1 1

Table for cl∗
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8.5 bI and nbI are not characterizable by finite Nmatrices

It is well known that da Costa’s hierarchy is both not algebraizable according to Blok and Pigozzi

([LMS91], [Mor80]) and not characterizable by a finite Nmatrix ([Avr07]). We have already

shown that bI, and the other systems of incompatibility we have here defined, are not algebraiz-

able according to Blok and Pigozzi, giving them a difficulty to be approached close to that of the

logics Cn; but here, we show furthermore that bI and nbI are not characterizable by finite Nma-

trices, and are, therefore, specially hard systems from a semantical standpoint. Interestingly,

most proofs found so far in this chapter, such as those for the facts that bivaluations and Fidel

structures both characterize our logics, or that these systems are not algebraizable according to

Blok and Pigozzi, are incredibly similar to the proofs of these results for logics of formal incon-

sistency, the only difference being that some amount of care must be taking while dealing with

incompatibility; however, the proofs in this section require formulas �ij specially composed to

prove the non-characterizability (by either finite Nmatrices or finite Rmatrices) of systems of

incompatibility, and are therefore intrinsically different from any demonstrations produced on

the field of LFI’s.

We start by supposing there exists an Nmatrix û = (ï, D) that characterizes bI,

with A the universe of ï and U = A öD the set of undesignated elements; we also remember

we have defined ⊥�� as � I (� I (� ² �)) and <� as � ³ ⊥��, since both of these will play an

important role in the proof to come. For simplicity, we will drop the indexes from the operations

on ï and use the infix notation.

Lemma 8.5.1. Suppose d1, d2 * D and u1, u2 * U :

1. d1 I d2 ⊆ D, while d1 I u1, u1 I d1 and u1 I u2 are subsets of U ;

2. d1 ³ d2, u1 ³ d1 and u1 ³ u2 are subsets of D, while d1 ³ u1 ⊆ U ;

3. d1 J d2, d1 J u1 and u1 J d1 are subsets of D, while u1 J u2 ⊆ U ;

4. for any formulas � and � and valuation � ∶ F(ΣbI,Ą) ³ ï for ï, �(⊥��) * U ;

5. for any formula � and valuation �, if �(�) * D, then �(<�) * U ; and if �(�) * U , then

�(<�) * D.

Proof. 1. Given variables p and q, from Ax 4 and Ax 5 one gets pIq ⊢bI p and pIq ⊢bI q;

given a valuation � for ï, if �(p) * U or �(q) * U , then �(p I q) * U , and therefore

�(p) I �(q) ⊆ U : this is the case since, otherwise, one could define a valuation �∗ ∶

F(ΣbI,Ą) ³ ï such that �∗(p) = �(p), �∗(q) = �(q) but �∗(p I q) * D, meaning that

either p I q ⊢bI p or p I q ⊢bI q is not validated by û.

From Ax 3 and the deduction meta-theorem, we obtain p, q ⊢bI p I q, meaning that if

�(p), �(q) * D, then �(p I q) * D, and so �(p) I �(q) ⊆ D.
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2. We have that, for variables p and q, q ³ (p ³ q) is an instance of an axiom schema of

bI, and therefore q ⊢bI p ³ q; taking a homomorphism � ∶ F(ΣbI,Ą) ³ ï such that

�(q) * D, we must have �(p ³ q) * D and therefore �(p) ³ �(q) ⊆ D. This, of course,

corresponds to both d1 ³ d2 and u1 ³ d1 being subsets of D.

Now, p, p ³ q ⊢bI q, and therefore if �(q) * U , we must have either �(p) * U or

�(p ³ q) * U ; so, if �(q) * U and �(p) * D, one must necessarily have �(p ³ q) * U ,

meaning �(p) ³ �(q) ⊆ U , corresponding to d1 ³ u1 ⊆ U .

Finally, suppose �(p), �(q) * U and, without loss of generality, �(r) * D; from Ax 2

and the deduction meta-theorem, p ³ (q ³ r) ⊢bI (p ³ q) ³ (p ³ r) and, from

the previous investigations, one finds that �(q ³ r) * D and �(p ³ (q ³ r)) * D,

meaning �((p ³ q) ³ (p ³ r)) * D. Since �(p ³ r) * D, one necessarily obtains

that �(p ³ q) * D, forcibly implying that �(p) ³ �(q) ⊆ D, what corresponds to

u1 ³ u2 ⊆ D.

3. Given variables p and q, we have that p ⊢bI p J q and q ⊢bI p J q from axiom schemata

Ax 6 and Ax 7 and the deduction meta-theorem. So, if �(p) * D or �(q) * D, one

necessarily finds �(p J q) * D, and therefore �(p) ³ �(q) ⊆ D.

Now, from axiom schema Ax 8 and the deduction meta-theorem, p ³ r, q ³ r ⊢bI

(pJ q) ³ r; if �(p) * U and �(q) * U , suppose, without loss of generality, that �(r) * U ;

this means �(p³ r) and �(q ³ r) are both inD, and so must be �((pJ q) ³ r), what only

happens if �(p J q) * U . This, of course, implies that �(p) J �(q) ⊆ U .

4. Let p, q and r be propositional variables: from Ip and the deduction meta-theorem one

finds that p, q, p ² q ⊢bI r, yet p, q ⊬bI r.
1 If we suppose � is a valuation for ï such that

�(p), �(q) * D and �(r) * U , it becomes clear that one must have �(p ² q) * U , since

otherwise one would forcibly have �(r) * D. This means we can never have all three �(�),

�(�) and �(� ² �) in D, and therefore

�(⊥pq) = (�(p) I �(q)) I �(p ² q) * U.

Of course, for arbitrary formulas � and �, ⊥�� ⊢bI ⊥pq and ⊥pq ⊢bI ⊥�� , meaning that, for

any �, �(⊥��) * U .

5. If �(�) * D, since �(⊥��) * U we obtain �(<�) = �(� ³ ⊥��) * U . Reciprocally, if

�(�) * U , �(<�) = �(� ³ ⊥��) * D.

Lemma 8.5.2. 1. For any two elements a, b * A, either a ² b ⊆ D or a ² b ⊆ U ;

1To see that, take a bivaluation � for bI with �(p) = �(q) = 1 and �(r) = 0
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2. for any two elements a, b * A, either both a ² b and b ² a are subsets of D, or both are

subsets of U .

Proof. Suppose that there are values d, u * a ² b such that d * D and u * U , and let p and

q be propositional variables throughout the proof. Since b ² a is necessarily not empty, it must

contain either an element d∗ * D, or an u∗ * U .

1. In the first case, take a valuation � ∶ F(ΣbI,Ą) ³ ï satisfying �(p) = a, �(q) = b,

�(p ² q) = u and �(q ² p) = d∗, and then we have that �((q ² p) ³ (p ² q)) * d∗ ³ u,

which by Lemma 8.5.1 is contained in U .

This shows � does not validate Comm, what is absurd given that û characterizes bI.

2. In the second case, take now a valuation � with �(p) = a, �(q) = b, �(p ² q) = d and

�(q ² p) = u∗. Then �((p ² q) ³ (q ² p)) * d ³ u∗, again contained in U according to

Lemma 8.5.1.

Either way we reach a contradiction, an the conclusion must be that either a ² b is

contained in D, or it is contained in U .

Finally, suppose that there are values a, b * A with a ² b ⊆ D and b ² a ⊆ U ,

and then, for any valuation � with �(p) = a and �(q) = b (and there are many of them), one

necessarily finds that �(p ² q) * D and �(q ² p) * U , and from Lemma 8.5.1 we have

�((p ² q) ³ (q ² p)) * U ; this again contradicts the fact that û characterizes bI, since it

implies that � does not model Comm.

The following fact is trivial, but important in the following discussion so we make a

point of proving it: suppose � is a set of formulas of bI such that there exists 'with the property

that � ⊬bI '; then we state that there exists a valuation � for ï with �(�) ⊆ D but �(') * U .

This is true since, otherwise, if we had that for every valuation � for ï satisfying �(�) ⊆ D one

also had �(') * D, this would imply � ⊨û '. Since û characterizes bI, this would mean

� ⊢bI ', against our suppositions.

Consider then two disjoint sets of distinct variables {pn ∶ n * ℕ} and {qn ∶ n * ℕ}

and the formulas, for i, j * ℕ,

�ij =

{
pi ² qj if i < j

<(pi ² qj) otherwise
;

we also define, for any n * ℕ,

�n = {�ij ∶ 0 d i, j d n}.
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<(p0 ² q0) p0 ² q1 ď p0 ² qn

<(p1 ² q0) <(p1 ² q1) ď p1 ² qn

Ď Ď đ Ď

<(pn ² q0) <(pn ² q1) ď <(pn ² qn)

The formulas in �n

We state that, for all n, �n ⊬bI p0: to see that, we consider the bivaluation � for

which �(pi) = �(pj) = 0, for all i, j * ℕ, and

�(pi ² qj) =

{
1 if i < j

0 otherwise
.

Such a bivaluation is possible since: first of all, given all pi and qj are mapped into 0, pi ² qj may

assume any value; second, assigning a value to pi ² qj does not interfere with the value assigned

to pk ² ql, for (i, j) � (k, l), given that the only restriction imposed by the fact �(pi ² qj) has

a certain value is that �(qj ² pi) has the same value. Furthermore, Lemma 8.5.1 tells us that

�(<�) = 1 if, and only if, �(�) = 0, giving us �(�ij) = 1 for all 0 d i, j d n; so �(�n) = 1 but

�(p0) = 0, and since bivaluations characterize bI, we have proved �n ⊬bI p0.

This means that, for any n * ℕ, there exists a valuation � for ï such that �(�n) ⊆ D

but �(p0) * U ; however, we will prove that, assuming ï has a finite universe with n elements,

there can not exist a valuation � satisfying �(�n) ⊆ D. This is rather simple: suppose there

exists such a valuation �; given there are n + 1 elements among p0, p1,& , pn and ï has only n

elements, by the pigeonhole principle one finds there exist 0 d i < j d n such that �(pi) = �(pj).

Since �(�n) ⊆ D, �(�ij) = �(pi ² qj) * D, implying �(pi) ² �(qj) ⊆ D. Neverthe-

less, �(pi) = �(pj) gives us that

�(pj ² qj) * �(pj) ² �(qj) = �(pi) ² �(qj) ⊆ D,

and therefore �(�jj) = �(<(pj ² qj)) * U , contradicting the supposition that �(�n) ⊆ D.

Theorem 8.5.1. There exists no finite Nmatrix which characterizes bI.

Of course, this also implies nbI is not characterizable by finite Nmatrices: if it

were characterizable by some û = (ï, D), for ï a ΣnbI-multialgebra with universe A, by

ignoring the paraconsistent negation and defining ï− = (A, {�ï}�*ΣbI
) one would find that

û− = (ï−, D) characterizes bI, contradicting our previous theorem.

8.5.1 bI is not characterizable by a finite Rmatrix

Although Rmatrices haven’t been as well studied as logical matrices, or even Nmatrices, one

could ask themselves whether Rmatrix semantics wouldn’t offer easier decision methods for bI
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and other logics of incompatibility than RNmatrices; so we stop for a moment and show that,

already for bI, it is not possible to find a characterizing finite Rmatrix.

Assume û = (ï, D,ô ) is a finite Rmatrix (meaning the universe A of ï is finite)

which characterizes bI, and consider again: two disjoint sets of distinct variables {pn ∶ n * ℕ}

and {qn ∶ n * ℕ}; the formulas, for i, j * ℕ,

�ij =

{
pi ² qj if i < j

<(pi ² qj) otherwise
;

and the sets of formulas, for any n * ℕ, �n = {�ij ∶ 0 d i, j d n}.

Lemma 8.5.3. If the Rmatrix û characterizes bI and the image of � * ô is not contained in

D, then �(�) and �(<�) can not both belong to D.

Proof. We know that, since "<" behaves classically, it satisfies

� ³ (<� ³ �)

for any formula �, implying by the deduction meta-theorem that �,<� ⊢bI �. Let 
 be a formula

such that �(
) + D: if �(�), �(<�) * D, then � would not validate the deduction �,<� ⊢bI 
 ,

and therefore at most one among �(�) and �(<�) belongs to D.

As we know, �n ⊬bI p0 for any n * ℕ, which means there must exist a valuation

� * ô with �(�n) ⊆ D but �(') + D, since otherwise one would have, for all � * ô , satisfying

that �(�n) ⊆ D, that �(') * D; this, of course, would show that �n ⊨û p0 and, since û

characterizes bI, that �n ⊢bI p0, which we know not to be true. So there exists a � * ô with

undesignated elements in its image and �(�n) ⊆ D. If A has cardinality n, by the pigeonhole

principle there must exist two elements pi and pj among {pn ∶ n * ℕ} such that �(pi) = �(pj),

what leads us to the following problem: assume, without loss of generality, i < j; then

�(pi ² qj) = �(pi) ² �(qj) = �(pj) ² �(qj) = �(pj ² qj).

Since �(�n) ⊆ D, �(pi ² qj), �(<(pj ² qj)) * D, which means � is a valuation in ô (with image

not contained in D) satisfying that �(pj ² qj) and �(<(pj ² qj)) are both in D, a contradiction

given Lemma 8.5.3.

The necessary conclusion is that no finite Rmatrix can characterize bI. A similar

argument applies to nbI.

8.6 Comparing matrix semantics

So, once we introduced the notion of an RNmatrix, or restricted Nmatrix, extending the notions

of Rmatrix and Nmatrix, it becomes clear that we are considering generalizations of a logical
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matrix in two distinct, and independent, directions: we extend matrices by allowing their un-

derlying algebras to become multialgebras, hence exchanging deterministic operations for mul-

tioperations, non-deterministic operations; and in a second direction, we restrict ourselves to a

subset of all valuations, selecting which homomorphisms to take into consideration.

This gives the semantics at hand, if one interprets independent directions as it would

be done in linear algebra, two dimensions of generality. Many of such dimensions are already

quite standard in the literature, if we take as starting point that a logical matrix should merely be

a pair û = (ï, D), with ï a finite algebra; we list a few ways below to extend such a matrix.

1. Allowingï to become an infinite algebra, that is, an algebra with an infinite universe (and,

reciprocally, if the underlying algebraic structure of the matrix is actually a multialgebra,

allowing it to have an infinite universe). This generalization turns a logical matrix from a

rather strict notion of a decision method to a broader semantical approach having universes

of any desired cardinality.

2. Considering, instead of an unique matrix û, a class ā of matrices over which we define

a semantical deduction operator by � ⊨
ā
' if and only if � ⊨û ' for all û in ā; these

matrices may be of any desired type, but it was already established by Wójcicki [Wój84;

Wój70], who envisioned this generalization, that every tarskian logic is characterizable by

a class of potentially infinite logical matrices.

3. Permitting that multiple different sets of distinguished elements coexist: meaning a pair

û = (ï, {D�}�*Λ), with
å

�*ΛD� contained in ï’s universe, when we define � ⊨û '

if, and only if, for every valuation � and index � one has that �(�) ⊆ D� implies �(') *

D�. Again a development by Wójcicki, usually referred to as generalized matrices or

Gmatrices, he proved in [Wój84; Wój70] that every tarskian logic can also be characterized

by a potentially infinite matrix with multiple sets of distinguished elements.

Of course, the ideal scenario remains that of a simple, old-fashioned finite logical

matrix, and the topic of how we are able to navigate the space of possible generalizations is a

rather interesting one. Look at the example of the logic of incompatibility bI: we know that a

restricted Nmatrix 2(bI) (Theorem 4.2.1) with two elements may characterize it, as well as the

previously defined ābI (Section 7.1.4) based on bivaluations, also with only two elements. But

the differences between the two are rather obvious: ābI is clearly more desirable as a semantical

tool and proves to be a very efficient decision method; additionally, ābI has far more restrictive

operations, and in exchange is far more lenient on the subject of which homomorphisms to

consider.
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Using the previous diagram, we can see that, in bI’s case, we are able to start at

some point in the far top-left, where 2(bI) lies, and navigate to the bottom-right without ever

leaving the, at least on the diagram, loosely-defined environment of restricted non-deterministic

matrices, arriving at ābI; notice this is very much in line with what we previously observed, that

going from the first of these RNmatrices to the second involves restricting the underlying oper-

ations while expanding the accepted homomorphisms. Worthy of notice is that, while working

in bI, we are never able to leave RNmatrices since bI can not be characterized by either (finite)

logical matrices, Nmatrices or Rmatrices.

In a different case, consider bI−: we know that it admits a finite RNmatrix, namely

2(bI−), located somewhere on the top-left region of the schematic diagram; but, in this case,

we also have a finite Nmatrix which characterizes bI−, although no (finite) logical matrices are

available as far as we know. So, at least in this logic’s case, navigating ever bottom-right indeed

leads outside the environment of RNmatrices and into the methodology of Nmatrices.

Now, as we have assigned numbers to the other generalizations of a finite logical ma-

trix, let us take (4) as exchanging the underlying algebra of a matrix for a multialgebra (making

a logical matrix into an Nmatrix, an Rmatrix into an RNmatrix and so on), and (5) as restricting

the valuations to be taken into consideration (turning a logical matrix into an Rmatrix and so

on).

Problem 8.6.1. Which combinations of generalizations of a (finite) logical matrix have the ex-

pressive power to characterize every tarskian logic?

Wójciki proved, in [Wój84] and [Wój70], that the combinations of (1) and (2), and

(1) and (3), corresponding to classes of potentially infinite logical matrices and potentially infi-

nite matrices with multiple sets of distinguished elements, are enough to characterize all tarskian

logics; Piochi, in [Pio78], proved that (1) plus (5) is also enough, and as we have proved that

every tarskian logic is characterizable by a two-elements RNmatrix (again Theorem 4.2.1), (4)
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plus (5) is also enough. From this, it is clear that combining any four of these conditions char-

acterizes all such logics, although it seems the same can not yet be said about combinations of

three of them, as, for example, we were not able to find a reference concerning (2) plus (3) and

(5) or any subset thereof. So, we have the following table to summarize these observations.

Generalizations

(1) (2) (3) (4) (5)

G
en

er
al

iz
at

io
ns (1) ✓ ✓ ✓ ?

(2) ✓ ? ? ?

(3) ✓ ? ? ?

(4) ✓ ? ? ✓

(5) ? ? ? ✓

We have left the diagonal of the table empty, as it does not deal with combinations

of generalizations per se, but rather the generalizations themselves. Of course, there is nothing

stopping us from considering which, if any, of the generalizations can characterize all tarskian

logics, leading to our second problem.

Problem 8.6.2. Are there any generalizations which, alone, can characterize all tarskian logics?

As we have shown, bI is not characterizable by either finite Nmatrices or finite Rma-

trices, so we can already place some limitatitive results in our table.

Generalizations

(1) (2) (3) (4) (5)

G
en

er
al

iz
at

io
ns (1) ? ✓ ✓ ✓ ?

(2) ✓ ? ? ? ?

(3) ✓ ? ? ? ?

(4) ✓ ? ? : ✓

(5) ? ? ? ✓ :

Of course, the first course of action one probably thinks of, when finding the prob-

lems mentioned above and looking at the tables, is attempting to fill in the missing results; this

does not seem impossible, but it does not seem trivial either. Proving that certain semantics can

not characterize all tarskian logics involves most probably presenting counter-examples, prefer-

ably examples among already known and studied systems.
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But one can always increase the rows and columns in our little illustrative tables,

by considering other generalizations of logical matrices. Here, for one, we have not included

making the operations of a matrix partial, instead of non-deterministic: when applied to Nma-

trices, this procedure returns the semantical objects known as PNmatrices. These play a unique

role indeed, as they are weaker than RNmatrices, yet we do not know if strictly so or if both

semantics characterize the same logics. We are then tempted to consider a hierarchy of strength

among combinations of generalizations of logical matrices, instead of the simply binary “do

they characterize all tarskian logics?”, and things start to become involved...
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Chapter 9

Translating paraconsistent logics

Take the signature ΣCPL
LFI such that (ΣCPL

LFI )0 = {⊥,⊤}, (ΣCPL
LFI )1 = {¬,<, ċ}, (ΣCPL

LFI )2 = {J,I,³}

and (ΣCPL
LFI )n = ∅ for n > 2.

We classically define a Fidel structure to be aΣCPL
LFI −multialgebra ó = (A, {�ó}�*ΣCPL

LFI
)

such that:

1. (A, {�ó}�*ΣCPL) is a Boolean algebra;

2. for every a * A and b * ¬a, a J b = ⊤;

3. for every a * A and b * ¬a, there exists a non-empty subset Oab of ċa, defined case

by case, designed to capture the logical structure intended to be emulated by the Fidel

structure.

Intuitively, one looks at ¬a as all possible negations of a, and at Oab as all possible

consistencies for a given that b is its negation. To give one example, in mbC, where we usually

denote Oab by BCab, we require that

a I (b I c) = ⊥, "b * ¬a, "c * BCab.

When looking at previous instances in this text of a "Fidel structure", maybe the

most important distinction was the intuitive replacement of consistency for incompatibility: so,

for example, instead of the axiom schema bc1 of mbC given by ċ� ³ (� ³ (¬� ³ �)), we

used a similar, but distinct, schema Ip, given by (� ² �) ³ (� ³ (� ³ 
)).

One clearly notices how our binary incompatibility operator, the generalized Shef-

fer’s stroke, as studied above seems inherently distinct from the unary consistency operator "ċ".

In fact, one must translate accordingly the axiomatization of LFI’s to that of our LIp’s to show

that the latter generalize the former, and logics such as mbC, mbCciw, mbCci and mbCcl

become sublogics of, respectively, nbI, nbIciw, nbIci and nbIcl.

But, and this is the important finding of this chapter, our intuition can still be val-

idated: inconsistency, at least as found in the simpler paraconsistent logics here exhibited, can
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be obtained from incompatibility, well-behaved formulas being precisely those formulas incom-

patible with their negations. Since there are systems on which incompatibility clearly does not

reduce back to inconsistency, such as bI (which does not even have a paraconsistent negation),

we must reach the conclusion that incompatibility appears to non-trivially generalize the notion

of inconsistency, giving some extra validation to the work we performed so far.

The developments found here have been submitted, as a preprint, in [CT22a].

9.1 Preliminaries

So, let us define a translation from the usual signature ΣLFI for LFI2s, with (ΣLFI)1 = {¬, ċ},

(ΣLFI)2 = {J,I,³} and (ΣLFI)n = ∅ for n + {1, 2}, to the signature ΣnbI. For Ą a countable set

of propositional variables, consider the function

T ∶ F (ΣLFI,Ą) ³ F (ΣnbI,Ą)

such that:

1. T (p) = p for every p * Ą ;

2. T (¬�) = ¬T (�);

3. T (�#�) = T (�)#T (�) for every # * {J,I,³};

4. T (ċ�) = T (�) ² ¬T (�).

Essentially, T changes all occurrences of the form ċ� to � ² ¬�. What one does is then to

consider for a set of axiom schemata � of an LFI its translation T (�) = {T ( ) ∶  * �}: to

give one example, many instances of Ip are translations of instances of bc1.

Proposition 9.1.1. T is an injective function.

Proof. Suppose T (�) = T (�): we proceed by double induction on the orders of � and �, to show

that in this case � = �.

If � is of order 0, then � = p for some p * Ą and therefore T (�) = �: if � is

of order 0, then it is a propositional variable q, and then again T (�) = �, implying we have

� = T (�) = T (�) = �.

So, assume � is of order at least 1, and we show that we can not actually have, in

this case, T (�) = T (�):

1. if � = ¬�0, T (�) = ¬T (�0) = T (�), which is absurd since T (�) is a propositional variable

and can not contain an unary connective;

2. if � = �0#�1, for # * {J,I,³}, T (�) = T (�0)#T (�1) = T (�), which is again absurd since

T (�) is a propositional variable;
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3. if � = ċ�0, T (�) = T (�0) ² ¬T (�0), which clearly contains even more than one connective

and therefore can not equal T (�).

Now, suppose that for every � of order at most m we have that, if T (�) = T (�), then

� = �, and take a formula � of order m + 1: we have that either � = �0#�1, for # * {J,I,³},

� = ¬�0 or � = ċ�0, with the orders of �0 and �1 being at most m.

If � is of order 0, then � = q for some q * Ą , and in that case T (�) = � is a formula

of order 0: we then can not really have T (�) = T (�), since T (�) is either ¬T (�0), T (�0)#T (�1)

or T (�0) ² ¬T (�0), none of which is of order 0; by vacuity, the lemma holds.

Inductively, suppose that for all � of order at most n, if T (�) = T (�) then � = �, and

take � of order n + 1: we have that either � = �0 ∗ �1, for ∗* {J,I,³}, � = ¬�0 or � = ċ�0,

with the orders of �0 and �1 being at most n.

If � = �0#�1, T (�) = T (�0)#T (�1): in this case, � can not equal ¬�0, for in this case

we would have T (�) = ¬T (�0) which has a leading connective of arity different from that of

T (�); for similar reasons we can not have � = ċ�0 or � = �0 ∗ �1 for ∗ different of #. The same

can be done when � = ¬�0, in which case � must also be of the form ¬�0, and when � = ċ�0,

when we must have � = ċ�0.

So there remains three cases to check:

1. if � = �0#�1 and � = �0#�1, T (�) = T (�) implies that T (�0)#T (�1) = T (�0)#T (�1), and

so T (�0) = T (�0) and T (�1) = T (�1); by our induction hypothesis, �0 = �0 and �1 = �1,

so that � = �;

2. if � = ¬�0 and � = ¬�0, T (�) = T (�) implies that¬T (�0) = ¬T (�0) and so T (�0) = T (�0);

by our induction hypothesis, �0 = �0 and therefore � = �;

3. if � = ċ�0 and � = ċ�0, T (�) = T (�) implies that

T (�0) ² ¬T (�0) = T (�0) ² ¬T (�0)

and so T (�0) = T (�0); by our induction hypothesis, �0 = �0 and therefore � = �.

This, of course, finishes the proof.

One important thing to notice is that a formula � inF (ΣnbI,Ą) is not in T (F (ΣLFI,Ą))

if and only if it contains a subformula �1 ² �2 such that �2 � ¬�1.

One direction is clear: if � contains a subformula �1 ² �2 with �2 � ¬�1 then it is not

in T (F (ΣLFI,Ą)), since such a formula is not a translation of anything over the signature ΣLFI.

Reciprocally, we proceed by induction on the order of �: if it is 0, � is a propositional

variable, and it is always the case that � is a translation; so assume that � is of order n > 1 and

that the result holds for formulas of order smaller than n. Then we have three cases to consider:
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1. if � = �0#�1, for # * {J,I,³}, and �0 and �1 are translations, so is �; therefore, if

� + T (F (ΣLFI,Ą)), then one of �0 or �1 has, by induction hypothesis, a subformula �1 ² �2
with �2 � ¬�1, and the result holds;

2. if � = ¬�0 and �0 is a translation, so is �; therefore, if � + T (F (ΣLFI,Ą)), then �0 +

T (F (ΣLFI,Ą)) and thus has, by induction hypothesis, a subformula of the desired form,

making the result hold once again;

3. finally, if � = �0 ² �1 but � + T (F (ΣLFI,Ą)), either �0 and �1 are translations but

�1 � ¬�0, and the result holds; or one of �0 and �1 is not a translation, and therefore

contains a subformula �1 ² �2 with �2 � ¬�1, what ends the proof.

9.2 T is a conservative translation

Given logics ú1 and ú2 over the signatures Σ1 and Σ2, a function Ă ∶ F (Σ1,Ą) ³ F (Σ2,Ą) is

said to be a translation, originally defined in [SDS99], when, for every set of formulas � L {'}

over the signature Σ1,

� ⊢ú1
' implies Ă (�) ⊢ú2

Ă (');

a translation Ă is said to be a conservative translation whenever, for every set of formulas �L{'}

over the signature Σ1,

Ă (�) ⊢ú2
Ă (') implies � ⊢ú1

'.

One may look at definition 2.4.1 of [CC16] for a reference for our definition, or the original

work concerning conservative translations, [FD01]: such a notion is recurring in a contemporary

approach to logic, where systems may have been formulated in apparently distinct ways that

prove to be, under translation, equivalent; coincidentally, we have already seen translations very

briefly in Example 4.2.5.

We shall prove that the function T we previously defined is a translation, and fur-

thermore, a conservative one in many cases. To prove the following lemma, and consequently

the following theorem, remember a Σ-homomorphism � ∶ F (Σ,Ą) ³ F (Σ,Ą) is determined

by its action on Ą , given F (Σ,Ą) is deterministic.

Lemma 9.2.1. Given a ΣLFI-homomorphism � ∶ F (ΣLFI,Ą) ³ F (ΣLFI,Ą), the ΣnbI-homomor-

phism � ∶ F (ΣnbI,Ą) ³ F (ΣnbI,Ą) given by, for a propositional variable p * Ą ,

�(p) = T (�(p))

satisfies that, for any formula � on ΣLFI, T (�(�)) = �(T (�)).

Proof. The result is trivially true for formulas of order 0, since they are invariant under T . So,

proceeding inductively, assume the result holds for the formulas � and �:
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1. for # * {J,I,³},

T (�(�#�)) = T (�(�)#�(�)) = T (�(�))#T (�(�)) = �(T (�))#�(T (�)) =

�(T (�)#T (�)) = �(T (�#�));

2. T (�(¬�)) = T (¬�(�)) = ¬T (�(�)) = ¬�(T (�)) = �(¬T (�)) = �(T (¬�));

3. finally, remembering � is a homomorphism,

T (�(ċ�)) = T (ċ�(�)) = T (�(�)) ² ¬T (�(�)) = �(T (�)) ² ¬�(T (�)) =

�(T (�)) ² �(¬T (�)) = �(T (�) ² ¬T (�)) = �(T (ċ�)),

what ends the proof.

Theorem 9.2.1. Ifú is a logic over the signatureΣLFI with axiom schemata« andú∗ is the logic

over the signature ΣnbI with axiom schemata T («), then � ⊢ú ' implies that T (�) ⊢ú∗ T (').

Proof. Let �1,& , �n be a demonstration of ' from �, with �n = ': we want to show that in this

case T (�1),& , T (�n) is a demonstration of T ('); first of all, obviously T (�n) = T ('). Then:

1. if �i is an instance of an axiom schema  , T (�i) is an instance of the axiom schema T ( ),

by an immediate application of Lemma 9.2.1;

2. if �j is in �, T (�j) * T (�);

3. finally, given that our only rule of deduction is Modus Ponens, if �k is such that there exist

�i and �j with i, j < k and �j = �i ³ �k or �i = �j ³ �k, then T (�k) is such that either

T (�j) = T (�i ³ �k) = T (�i) ³ T (�k)

or

T (�i) = T (�j) ³ T (�k).

This finishes proving that, if � ⊢ú ', then T (�) ⊢ú∗ T (').

This proves how T is always a translation.

Notice how nbI has as axiom schemata all axiom schemata of mbC∗, and therefore

is capable of all deductions that mbC∗ is capable, meaning that, if � ⊢mbC∗ ', then � ⊢nbI '.

However, nbI is strictly stronger than mbC∗, as one can see from, to given one example, the

formula

(� ² �) ³ (� ³ (� ³ �)),
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which is an instance of Ip, but not of T (bc1), is a tautology of nbI but not of mbC∗. Analogously,

nbIciw, nbIci and nbIcl are strictly stronger than, respectively, mbCciw∗, mbCci∗ and mbCcl∗.

One more interesting example would be in nbIcl: although it is well known that ¬(� I¬�) does

not imply ¬(¬� I �) in this logic, and this remains true in mbCcl∗ as we shall prove it, in nbIcl,

through use of cl∗, Comm and Ip, one gets

⊢nbIcl ¬(� I ¬�) ³ ¬(¬� I �).

9.2.1 T is conservative for mbC

Definition 9.2.1. A function � from the formulas of mbC to {0, 1} is said to be a bivaluation for

mbC if it satisfies, for any formulas � and �,

1. �(� I �) = 1 if and only if �(�) = 1 and �(�) = 1;

2. �(� J �) = 1 if and only if �(�) = 1 or �(�) = 1;

3. �(� ³ �) = 1 if and only if �(�) = 0 or �(�) = 1;

4. �(¬�) = 0 implies �(�) = 1;

5. �(ċ�) = 1 implies �(�) = 0 or �(¬�) = 0.

For � L {'} a set of formulas of mbC, we define � ⊨mbC ' to mean that for every

bivaluation � for mbC, if �(�) ⊆ {1} then �(') = 1.

Theorem 9.2.2. For formulas � L {'} of mbC,

� ⊢mbC ' if and only if � ⊨mbC '.

This is a classical result, which can be found in section 2.2 of [CC16], heavily in-

spired by Newton da Costa’s valuation semantics for C1 found in [CA76] and [CA77], that will

serve us to prove that, if T (�) ⊢mbC∗ T ('), then � ⊢mbC '.

By contraposition, suppose � ⊬mbC ': then, there exists a bivaluation � for mbC

such that �(�) ⊆ {1} and �(') = 0. We define a function � from the formulas of nbI to {0, 1}

by structural induction:

1. if � is of order 0, and is therefore a propositional variable, �(�) = �(�);

2. �(� J �) = 1 if and only if �(�) = 1 or �(�) = 1;

3. �(� I �) = 1 if and only if �(�) = 1 and �(�) = 1;

4. �(� ³ �) = 1 if and only if �(�) = 0 or �(�) = 1;

5. �(¬T (�)) = �(¬�), and if � is not a translation, �(¬�) = 1;
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6. �(T (�) ² ¬T (�)) = �(ċ�), �(¬T (�) ² T (�)) = �(ċ�), and, in all other cases, we make

�(� ² �) = 0.

Proposition 9.2.1. If � is a formula of mbC, �(T (�)) = �(�).

Proof. We proceed by induction on the order of �: if it is 0, � is a propositional variable and

T (�) = �, and by definition of � we have that �(T (�)) = �(�).

Now assume the result holds for formulas of order smaller than that of �, and we

have five cases to consider:

1. if � = �J , �(T (�)) = 1 if and only if �(T (�)) = 1 or �(T ( )) = 1, which by hypothesis

is equivalent to either �(�) or �( ) being equal to 1, which occurs if and only if �(�) = 1;

2. if � = �I , �(T (�)) = 1 is equivalent to �(T (�)) and �(T ( )) equating 1, which in turn

is equivalent by induction hypothesis to �(�) and �( ) equating 1, what happens if and

only if �(�) = 1;

3. if � = �³  , �(T (�)) = 1 if and only if �(T (�)) = 0 or �(T ( )) = 1, what by hypothesis

is equivalent to �(�) being 0 or �( ) being 1, which happens if and only if �(�) = 1;

4. if � = ¬�, by definition of � we have that

�(T (�)) = �(¬T (�)) = �(¬�) = �(�);

5. if � = ċ�, we have that

�(T (�)) = �(T (�) ² ¬T (�)) = �(ċ�) = �(�),

what ends the proof.

It is clear that, by its definition, � satisfies those conditions of being a bivaluation for

nbI, found at the beginning of Section 8.1.1, related to disjunction, conjunction, and implication.

If �(¬�) = 0, the only possibility is that � is the translation of some formula � in

mbC and that �(¬�) = 0; in this case �(�) = 1, what implies

�(�) = �(T (�)) = �(�) = 1.

If �(� ² �) = 1, this means that:

1. either � is the translation of some formula �, � = ¬� and �(ċ�) = 1, which means that

either �(�) = 0, and therefore �(�) = 0, or �(¬�) = 0, and then �(�) = 0;
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2. or � is the translation of some formula �, � = ¬� and �(ċ�) = 1, which again means that

either �(�) = 0 or �(�) = 0.

Finally, if � is a translation of � and � = ¬�, �(� ² �) = �(ċ�) = �(� ² �), the

same happening if � is a translation and � = ¬�. Otherwise, we have

�(� ² �) = 0 = �(� ² �).

This finishes proving that � is a bivaluation for nbI; of course, �(T (�)) = �(�) ⊆ {1} but

�(T (')) = �(') = 0, what implies T (�) ⊭nbI T ('); this is equivalent to T (�) ⊬nbI T ('), what

means that T (�) ⊬mbC∗ T ('), since nbI is strictly stronger than mbC∗. Since � ⊬mbC ' implies

T (�) ⊬mbC∗ T ('), T (�) ⊢mbC∗ T (') implies � ⊢mbC ', and therefore

� ⊢mbC ' if and only if T (�) ⊢mbC∗ T (').

9.2.2 T is conservative for mbCciw, mbCci and mbCcl

mbCciw∗, mbCci∗ and mbCcl∗ are, respectively, the translations, under T , of mbCciw, mbCci

and mbCcl, meaning:

1. mbCciw∗ is obtained from mbC∗ by addition of the axiom schema

(� ² ¬�) J (� I ¬�); (ciw∗)

2. mbCci∗ is obtained from mbC∗ by adding

¬(� ² ¬�) ³ (� I ¬�); (ci∗)

3. mbCcl∗ is obtained from mbC∗ by adding

¬(� I ¬�) ³ (� ² ¬�). (cl∗)

We already know by Theorem 9.2.1 that, for any of these logics ú, if � ⊢ú ' then

T (�) ⊢ú∗ T ('). To prove the reciprocal, as was done with mbC, we will use bivaluations.

Definition 9.2.2. A bivaluation for mbCciw, mbCci or mbCcl (already defined, for mbCciw and

mbCcl, in Section 4.3.1) is a valuation for mbC satisfying also that, respectively:

1. �(ċ�) = 1 if and only if �(�) = 0 or �(¬�) = 0;

2. the above condition, plus that �(¬ċ�) = 1 implies �(�) = 1 and �(¬�) = 1;

3. the first condition, plus that �(¬(� I ¬�)) = 1 implies �(ċ�) = 1.
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Given formulas � L {'} in the signature ΣLFI, we say � proves ' according to

bivaluations for mbCciw, and write � ⊨mbCciw ', if for all valuations � for mbCciw such that

�(�) ⊆ {1} we have that �(') = 1; we define ⊨mbCci and ⊨mbCcl analogously.

The following result is well established and can be found in sections 3.1 and 3.3 of

[CC16].

Theorem 9.2.3. Given formulas � L {'} over the signature Σ,

1. � ⊢mbCciw ' if and only if � ⊨mbCciw ';

2. � ⊢mbCci ' if and only if � ⊨mbCci ';

3. � ⊢mbCcl ' if and only if � ⊨mbCcl '.

Now we have the tools necessary to prove that � ⊢ú ' if and only if T (�) ⊢ú∗ T ('),

for any ú * {mbCciw,mbCci,mbCcl}. We will proceed by contraposition, therefore suppose

� ⊬ú ', and there exists a bivaluation � for ú such that �(�) ⊆ {1} but �(') = 0. We define a

function � from the formulas over the signature ΣnbI to {0, 1} by structural induction.

1. If � is of order 0, and therefore a propositional variable, �(�) = �(�);

2. �(� J �) = 1 if and only if �(�) = 1 or �(�) = 1;

3. �(� I �) = 1 if and only if �(�) = 1 and �(�) = 1;

4. �(� ³ �) = 1 if and only if �(�) = 0 or �(�) = 1;

5. �(¬T (�)) = �(¬�), and if � is not a translation:

(a) for ú = mbCci and � = � ² ¬�, if �(�) = 0 or �(¬�) = 0, �(¬�) = 0;

(b) for ú = mbCcl and � = � I ¬�, if �(� ² ¬�) = 0, �(¬�) = 0;

if � is not a translation and we find ourselves in neither of the previous two described

cases, �(¬�) = 1;

6. �(T (�) ² ¬T (�)) = �(ċ�) and �(¬T (�) ² T (�)) = �(ċ�); if � is not a translation, �(� ²

¬�) and �(¬� ² �) are 1 if, and only if, �(�) = 0 or �(¬�) = 0; and if � is not a translation

or � is not the negation of �, �(� ² �) = 0.

Proposition 9.2.2. If � is a formula over the signature ΣLFI, �(T (�)) = �(�).

It is clear that � satisfies the conditions for being a bivaluation for nbI regarding

disjunction, conjunction and implication. The image under � of the negation of a formula is 0

under the following conditions:
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1. if the formula is the translation of an � and �(�) = 0, and since � is a bivaluation for mbC,

we find �(T (�)) = �(�) = 1;

2. if the formula is not a translation and of the form � ² ¬�, ú = mbCci and �(�) = 0 or

�(¬�) = 0, and then we obtain that �(� ² ¬�) = 1;

3. if the formula is not a translation and of the form � I ¬�, ú = mbCcl and �(� ² ¬�) = 0,

in which case �(�) = �(¬�) = 1 and therefore �(� I ¬�) = 1.

To summarize, in all cases such that �(¬�) = 0, we have �(�) = 1, as it would be

expected of a bivaluation for nbI regarding the paraconsistent negation. Finally, the image under

� of a formula with the incompatibility operator as leading connective is 1 under the following

conditions:

1. if the formula is T (�) ² ¬T (�) or ¬T (�) ² T (�) and �(ċ�) = 1, in which case �(�) = 0

or �(¬�) = 0, implying either �(T (�)) = �(�) = 0 or �(¬T (�)) = �(¬�) = 0;

2. if the formula is not a translation and of the form � ² ¬� or ¬� ² �, meaning that either

�(�) = 0 or �(¬�) = 0.

Very clearly, for any two formulas over the signature ΣnbI we have that �(� ² �) =

�(� ² �), allowing us to conclude that � is a bivaluation for nbI, remaining for us to show that

for each logic, mbCciw, mbCci or mbCcl, � is a bivaluation for, respectively, nbIciw, nbIci

and nbIcl (refer back to Definition 8.3.1 if necessary).

1. For any of the three logics mbCciw, mbCci or mbCcl, it is clear that �(� ² ¬�) = 1 if

and only if �(�) = 0 or �(¬�) = 0, by definition of �.

2. If ú = mbCci, and �(¬(� ² ¬�)) = 1, this means both �(�) and �(¬�) are 1 (and therefore

�(� I ¬�) = 1), since otherwise, by definition of �, we would have �(¬(� ² ¬�)) = 0.

3. Finally, when ú = mbCcl, if �(¬(� I ¬�)) = 1, we have that �(� ² ¬�) = 1, since

otherwise, by definition of �, we would have �(¬(� I ¬�)) = 0.

So � is a bivaluation for nbIciw, nbIci or nbIcl, whenever ú is mbCciw, mbCci or

mbCcl, such that �(T (�)) = �(�) ⊆ {1} but �(T (')) = �(') = 0, what implies

T (�) ⊭nbIciw T ('), T (�) ⊭nbIci T (') and T (�) ⊭nbIcl T ('),

or what is equivalent,

T (�) ⊬nbIciw T ('), T (�) ⊬nbIci T (') and T (�) ⊬nbIcl T (');
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since nbIciw, nbIci and nbIcl are strictly stronger than, respectively, mbCciw∗, mbCci∗ and

mbCcl∗, this implies that T (�) ⊬ú∗ T ('), and therefore we have that T (�) ⊢ú∗ T (') implies

� ⊢ú ', or what is equivalent,

� ⊢ú ' if and only if T (�) ⊢ú∗ T ('),

for any ú * {mbCciw,mbCci,mbCcl}.
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Conclusion

We believe the main developments found in this work are, in its more algebraic side, weakly

free multialgebras, and, in the logical one, RNmatrices and logics of incompatibility. There

were other advances, of course, however if there are topics that may still offer further fruitful

research, these are probably the ones.

We now summarize what we have hoped the ideas here presented can achieve, and

future works planned based on them; for clarity, we divide our text between the two broad parts

in which this thesis has been divided so far.

Multialgebras

Our main motivation, when studying multialgebras, remains to search for a general theory of

their identities, much like universal algebra is to algebras themselves. Of course, this is no easy

task, but we believe weekly free multialgebras are a step in the right direction. In Chapter 2 we

have shown that these structures enjoy many characterizations similar to those of absolutely free

algebras, and probably are the correct generalizations of objects without identities to the context

of multialgebras. We have used this to offer simplified proofs of some standard, folkloric results

in the theory of non-deterministic algebras, but we still are left wondering what should identities

on a multialgebra be. There are many candidates, and the task ahead is to identify which serve

what purposes; but the next logical step, once we have generalized absolutely free algebras,

is to generalize the relatively free ones, a closely related endeavor since ideals of identities in

universal algebra fully characterize relatively free objects.

Showing, in Chapter 3, the category of multialgebras is equivalent to a category

of ordered, almost Boolean algebras seems to have mainly philosophical implications, in the

following sense: non-deterministic semantics are seem by many, in what we consider an un-

fortunately regressive point of view, as an undesirable development in the problem of decision

methods for logics, precisely because of the non-determinism. Here, we offer an alternative, not

only for Nmatrices but also PNmatrices and closely related semantics: they may be recast as

deterministic structures, as long as we consider, along their operations, also their orders. This

invites one to recast already existing decision methods that rely on non-determinism as deter-

ministic decision methods; alternatively, one can also analyze what the equivalences presented

here, and others they may lead to being discovered, can say about the involved categories.
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Paraconsistent Logic

Chapter 4 introduces the semantics of restricted non-deterministic matrices. We start by show-

ing how previous semantics found in the literature, created in order to solve specific problems

and without an underlying theory, can be reinterpreted as RNmatrices, what already establishes

that this new tool indeed is useful. To gather further evidence for that point, we show many log-

ics of difficult treatment, as those paraconsistent systems between mbCcl and Cila, da Costa’s

hierarchy as a whole, and logics of formal incompatibility, can be relatively easily character-

ized by RNmatrices, with accompanying decision methods. So we hope to have convinced the

reader of restricted Nmatrices’ utility, but the issue of determining a theory for these semantics

is still very open: can a theory like the one Blok and Pigozzi designed for the process of alge-

braization of logics exist for non-deterministic algebraization, specifically in our case through

RNmatrices? A less ambitious objective, however, is searching for other systems of demanding

characterization that can be more easily studied with RNmatrices: in addition to paraconsistent

ones, modal logics seem like good candidates.

Still on the subject of RNmatrices, Chapter 5 investigates how to obtain, from them,

decision methods, in this case truth tables and tableaux, for da Costa’s systems. We ponder if

these procedures can be systematized, producing for all restricted Nmatrices, in some up to now

unspecified class, row-branching, row-eliminating truth tables and tableau calculi; even more,

we are interested in knowing if other varieties of decision methods, such as sequents, may be

extracted from these semantics. Of course, regarding the decision methods and restricted non-

deterministic matrices for da Costa’s Cn logics themselves, here suggested to be n + 2-valued

in nature, one should be curious of how they place against existing decision methods for these

systems, such as bivaluations, different tableau calculi and effective Nmatrices: are they more

efficient? Less efficient? We are yet to survey these questions, although we are certain of the

importance of having produced new instruments with which to approach such challenging logics.

Finally, even before it is ascertained whether a theory of non-deterministic alge-

braization is possible, Chapter 6 starts to look into other directions in which to extend RNma-

trices’ analysis: by looking at swap structures, a general methodology that can be very well the

most successful for finding restricted Nmatrices, we are lead to the notion of a category of RN-

matrices. In the case of the systems Cn, this category is shown to be astoundingly well-behaved;

in this thesis a broad procedure for creating categories of restricted non-deterministic matrices

is already outlined, and we are interested in the problem of whether this construction always

returns nice categories. Restricted swap structures for da Costa’s hierarchy also suggest strong

model theoretic connections, and the combinatorial investigation of their snapshots is a first step

in this direction: a second step would be to scrutinize those results in model theory, if any, hold

for arbitrary restricted swap structures.

Chapter 7 broaches another of the more relevant contributions of this work, that

of logics of incompatibility: yes, there have been previous attempts of formalizing the natural
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notion of incompatible properties, more prominently in Brandom’s neo-pragmatic program for

epistemology, but much as da Costa’s systematization of contradiction brought new light into

the subject of paraconsistency, we hope that a more controlled take on incompatibility could

better develop the field. After defining some simpler systems, accounting for commutativity and

propagation of incompatibility, we supply them with semantics, both based on bivaluations and

RNamtrices, as well as decision methods constructed from the aforementioned RNmatrices; this

gives additional evidence of the importance of restricted Nmatrices. In future developments, one

hopes to define other systems, possibly modeling additional attributes of incompatible properties

in natural language or including quantifiers and modalities.

One possible angle for studying logics of incompatibility is adding to them a nega-

tion, with which the incompatibility can interact, task we undertake in some depth in Chapter 8.

Most of the systems we define are based in others for paraconsistency, and are dealt with by us-

ing bivaluations and RNmatrices, obtaining thus decision methods again through row-branching,

row-eliminating truth tables and tableaux. And, what is formally proven in Chapter 9 but heav-

ily insinuated since their definitions, these logics extend those paraconsistent ones upon which

they are built in a non-trivial way: that is, we have conservative translations from the latter into

sublogics of the former; this means our logics of incompatibility are strictly, and non trivially,

generalizing logics of formal inconsistency, and invites the interested to find the most appropri-

ate translations for inconsistent systems, a line of future research. Furthermore, by providing

characterizing RNmatrices for logics of incompatibility with negation, we feel compelled to

prove that more classical semantics such as Blok and Pigozzi’s algebraization, Nmatrices, and

restricted matrices would not work. This means we have offered logics very simple to define, yet

very difficult to characterize, and leads us to wonder about the interplay between competing gen-

eralizations of logical matrices: restricted matrices, to give one example, seem very promising

although virtually unstudied.
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Lists

Listed by order of appearance.

List of symbols

Symbols Meaning Page

þ(A) Powerset of the set A 23

' ∶ ï ³ ð Homomorphism from ï to ð 24

F (Σ,Ą) Formulas, on the signature Σ, over the variables Ą 29

F(Σ,Ą) Σ-Algebra of formulas, on the signature Σ, over the variables Ą 29

|�| Order of the formula � 29

Σ� Expanded signature 45

mF(Σ,Ą , �)
Σ-Multialgebra of non-deterministic formulas, on the signature Σ,

over the variables Ą and bounded by �
45

|X| Cardinality of the set X 45

cdf-generated Choice-dependent freely generated 48

B(ï) Build of the multialgebra ï 48

G(ï) Ground of the multialgebra ï 48

ïSðm The m-th set obtained in the process of defining ïSð 49

ïSð Set generated by S 49

M(ï)
Supremum of the cardinalities of the operations on the multialge-

bra ï
53

oB(a) B-order of the element a of a multialgebra with strong basis B 58

ï0

Poset obtained from the poset ï by addition of a minimum ele-

ment
78

ú Propositional language generated by Σ 107

� ⊢ ' � syntactically proves ' 107

ℒ An arbitrary logic 107

�1,& , �n|� Rule of inference where {�1,& , �n} deduces � 108

ý A set of axiom schemata 108

ℜ A set of rules of inference 108
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 (p1,& , pn) A formula  whose variables are among {p1,& , pn} 113

ċ� Formula stating the consistency of � 114

� ⊨û ' � semantically proves ' according to û 115

� ⊨
ā
' � semantically proves ' according to the class ā 115

2(Σ)
Σ-multialgebra with universe {0, 1} whose operations always re-

turn {0, 1}
117

2(ÿ) RNmatrix, with multialgebra 2(Σ), characterizing ÿ 118

Kû(�) Logical closure, according to û, of � 118

K
ā
(�) Logical closure, according to the class û, of � 119

ùL Kearns RNmatrix for the logic L 121

Na Possible negations of a in a Fidel structure 122

ûs Static semantics for the Nmatrix û 123

û∅ RNmatrix equivalent to the PNmatrix û 123

ûmbCciw Nmatrix characterizing mbCciw 126

ûmbCcl RNmatrix characterizing mbCcl 126

ûCILA RNmatrix characterizing CILA 129

�n �0 = � and �n+1 = ¬(�n I ¬�n) 137

�(n) �(1) = �1 and �(n+1) = �n+1 I �(n) 137

�ċ Equal to �1 137

Tn The snapshot (1, 0, 1,& , 1) 144

Fn The snapshot (0, 1, 1,& , 1) 144

Bn Set of snapshots for Cn 144

Dn Set of designated snapshots for Cn 144

Boon Set of Boolean snapshots for Cn 144

ïCn
Swap structure for Cn 144

ôCn Set of restricted valuations for Cn 145

ĀûCn
RNmatrix characterizing Cn 145

Ān Tableau calculus for Cn 160

� ⊢
Ān
' � proves ' according to the tableau calculus Ān 164

� ⊨ð
Cn
' � semantically proves ', according to ð-valuations 183

Bð
n

Set of snapshots, over ð, for Cn 184

Dð
n

Set of designated snapshots, over ð, for Cn 184

Booð
n

Set of Boolean snapshots, over ð, for Cn 184

ïð
Cn

Swap structure, over ð, for Cn 185

Āûð
Cn

RNmatrix, over ð, characterizing Cn 185

ôð
Cn

Set of restricted valuations, over ð, for Cn 186

� ⊨RN
Āûð

Cn

' � semantically proves ', according to Āûð
Cn

187

� ⊨RN
ĀāCn

' For every Boolean algebra ð, � ⊨RN
Āûð

Cn

' 187
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|ð| Universe of the Boolean algebra ð 189

Xm Generic set with m elements 194

�i Projection from a product to its i-th coordinate 201

� ² � � and � are incompatible 209

� ´ � � and � are compatible 210

� ⊨bI ' � semantically proves ', according to bivaluations for bI 216

� ⊩bI
ô
' � semantically proves ', according to Fidel structures for bI 221

� �bI
�
� � and � are equivalent, according to �, in bI 222

AbI
�

The quotient set of F (ΣbI,Ą) by �bI
�

223

ïbI
�

The Lindenbaum-Tarski multialgebra of bI associated to � 226

2bI Two-valued Fidel structure for bI 227

� ⊨bIpr ' � semantically proves ', according to bivaluations for bIpr 233

� ⊩
bIpr
ô

' � semantically proves ', according to Fidel structures for bIpr 234

2bIpr Two-valued Fidel structure for bIpr 235

� ⊨nbI ' � proves ', according to bivaluations for nbI 247

� ⊩nbI
ô
' � proves ', according to Fidel structures for nbI 248

� �nbI
�
� � and � are equivalent, according to �, in nbI 248

ïnbI
�

The Lindebaum-Tarski multialgebra of nbI associated to � 249

2nbI Two-valued Fidel structure for nbI 249

� ⊨nbIciw ' � proves ', according to bivaluations for nbIciw 254

� ⊨nbIci ' � proves ', according to bivaluations for nbIci 254

� ⊨nbIcl ' � proves ', according to bivaluations for nbIcl 254

� ⊩nbIciw
ô

' � proves ', according to Fidel structures for nbIciw 258

� ⊩nbIci
ô

' � proves ', according to Fidel structures for nbIci 258

� ⊩nbIcl
ô

' � proves ', according to Fidel structures for nbIcl 258

∇ Trivial congruence on a multialgebra ï, equal to A × A 267

� Trivial congruence on a multialgebra ï, equal to {(a, a) ∶ a * A} 267

T Translation from the LFI’s to logics of incompatibility 282
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List of logics and axioms

Symbols Meaning Page

CPL Classical propositional logic 111

LFI Logics of formal inconsistency 113

mbC One of the simplest LFI’s 114

mbCciw Logic obtained from mbC by addition of ciw 114

ciw Axiom scheme ċ� J (� I ¬�) 114

mbCci Logic obtained from mbC by addition of ci 115

ci Axiom scheme ¬ċ� ³ (� I ¬�) 115

mbCcl Logic obtained from mbC by addition of cl 115

cl Axiom scheme ¬(� I ¬�) ³ ċ� 115

B[{i1, i2}] System, defined by Avron, equivalent to mbCci 126

Bi System, defined by Avron, equivalent to mbCci 126

Bl System, defined by Avron, equivalent to mbCcl 126

CILA An LFI equivalent to da Costa’s C1 128

cf Axiom scheme ¬¬� ³ � 128

Ci Logic obtained from mbCci by addition of cf 129

C! An intuitionistic and paraconsistent system by da Costa 138

Cn The n-th logic in da Costa’s hierarchy 138

bcn Axiom scheme �(n) ³ (� ³ (¬� ³ �)) 138

p#n Axiom scheme (�(n)#�(n)) ³ (� J �)(n) 138

LIp Logic of formal incompatibility 210

bI A basic logic of incompatibility, with commutativity 212

Ip Axiom scheme (� ² �) ³ (� ³ (� ³ 
)) 212

Comm Axiom scheme (� ² �) ³ (� ² �) 212

bI− The logic bI without commutativity 212

bIpr Logic obtained from bI by addition of prJ and prI 231

prI Axiom scheme [(� ² 
) I (� ² 
)] ³ [(� J �) ² 
] 232

prJ Axiom scheme [(� ² 
) I (� ² 
)] ³ [(� J �) ² 
] 232

Ex Axiom scheme (� I � ³ ⊥��) ³ (� ² �) 236

bIEx Logic obtained from bI by addition of Ex 236

ciw² Axiom scheme (� ² �) J (� I �) 237

bIciw² Logic obtained from bI by addition of ciw² 237

nbI Logic obtained from bI by addition of the axiom scheme � J ¬� 247

ci² Axiom scheme ¬(� ² �) ³ (� I �) 250

cl² Axiom scheme ¬(� I �) ³ (� ² �) 251

nbIciw Logic obtained from nbI by addition of the axiom scheme ciw∗ 253

ciw∗ Axiom scheme (� ² ¬�) J (� I ¬�) 253
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nbIci Logic obtained from nbI by addition of the axiom scheme ci∗ 253

ci∗ Axiom scheme ¬(� ² ¬�) ³ (� I ¬�) 253

nbIcl Logic obtained from nbI by addition of the axiom scheme cl∗ 253

cl∗ Axiom scheme ¬(� I ¬�) ³ (� ² ¬�) 253

cc∗ Axiom scheme (� ² ¬�) ² ¬(� ² ¬�) 256

ú∗ Translation of the LFI logic ú to an incompatibility logic 285

mbC∗ Translation of mbC 285

mbCciw∗ Translation of mbCciw 286

mbCci∗ Translation of mbCci 286

mbCcl∗ Translation of mbCcl 286
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List of categories and functors

Symbols Meaning Page

MAlg Category of Σ-multialgebras equipped with homomorphisms 24

MAlg= Category of Σ-multialgebras equipped with full homomorphisms 24

MMAlg Category ofΣ-multialgebras equipped with multihomomorphisms 26

MMAlg=

Category of Σ-multialgebras equipped with full multihomomor-

phisms
26

MSet Category of sets equipped with multifunctions 33

MG(Σ)
Category of Σ-multialgebras equipped with classes of equivalence

of ground-preserving homomorphisms
68

CABA
Category of complete, atomic Boolean algebras, equipped with

continuous homomorphisms
74

Alg(Σ) Category of Σ-algebras equipped with homomorphisms 81

þð Functor from MAlg(Σ) to Algð(Σ) 85

Algð(Σ)
Category of (Σ,d)-algebras equipped with (Σ,d)-

homomorphisms
86

P Endofunctor on MAlg(Σ) that is part of a monad 88

ý Functor from Algð(Σ) to MAlg(Σ) 92

Set∗ Category of non-empty sets equipped with functions 99

CABo
Category of complete, atomic and bottomless Boolean algebras

equipped with continuous, atoms-preserving functions
99

PMAlg(Σ) Category of partial multialgebras equipped with homomorphisms 100

AlgCABA(Σ)

Category of Σ-algebras, with a Boolean algebra structure,

equipped with homomorphisms that are continuous and atoms-

preserving

100

MAlgð(Σ)
Category of (Σ,d)-algebras equipped with continuous almost-

homomorphisms
102

RSwapCn
Category of swap structures for Cn, equipped with homomor-

phisms commuting with ôð
Cn

198

BA
Category of non-degenerate Boolean algebras, equipped with ho-

momorphisms
204

ïn Functor from BA to RSwapCn 204

Boon Functor, inverse of ïn 204
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List of signatures

Symbols Meaning Page

Σ Arbitrary signature 23

ΣLat Signature with J and I as symbols 36

Σ0
Lat Signature with 0,J and I as symbols 37

Σ1
Lat Signature with 1,J and I as symbols 37

Σ0,1

Lat Signature with 0, 1,J and I as symbols 37

ΣImp Signature with 1,J,I and ³ as symbols 37

ΣHey Signature with 0, 1,J,I and ³ as symbols 37

ΣBoo Signature with 0, 1,¬,J,I and ³ as symbols 38

Σs Signature with an unary s as only symbol 46

ΣCPL Signature with ⊥,⊤,<,J,I and ³ as connectives 111

ΣLFI Signature with ¬, ċ,J,I and ³ as connectives 114

Σ⊤ Signature obtained from Σ by addition of the 0-ary connective ⊤ 117

ΣC Signature with ¬,J,I and ³ as connectives 137

ΣbI Signature with J,I,³ and ² as connectives 210

ΣCPL
bI Signature with ⊥,⊤,<,J,I,³ and ² as connectives 220

ΣnbI Signature with ¬,J,I,³ and ² as connectives 246

ΣCPL
nbI Signature with ⊥,⊤,<,¬,J,I,³ and ² as connectives 248

ΣCPL
LFI Signature with ⊥,⊤, ċ,<,¬,J,I and ³ as connectives 281
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Alphabetical Index

A

Algebra, 23

Algebra, (Σ,d)-, 84

Algebraizable, 263

Atom, 78

Avron, 116

Axiom scheme, 108

Axiom scheme, Instance of an, 108

B

Bivaluation, 120

Bivaluation for bI, 216

Bivaluation for Cila, 130

Bivaluation for mbCciw, 127

Bivaluation for mbCcl, 127

Bivaluation for nbI, 247

Bivaluation for nbIci, 253

Bivaluation for nbIciw, 253

Bivaluation for nbIcl, 253

Bivaluation for mbCci, 288

Bivaluation for mbC, 286

Bivaluation for Cn, 138

Blok and Pigozzi, 136

Boolean algebra, 38

Boolean algebra, Complete, atomic and

bottomless, 78

Boolean algebra, Non-degenerate, 204

Boolean elements, 144

Branch, Closed, 163

Branch, Complete, 163

Brandom, 237

Build, 48

C

CABA, 74

Carnielli, 136

Chain, 61

Chainless, 61

Characterized, 115

Choice-dependent freely generated, 47

Closed set of formulas, 108

Collection of choices, 47

Commitment, 238

Commutativity of incompatibility, 212

Compatibility, 210

Complexity of a formula, 29

Congruence, 263

Congruence, Largest compatible, 264

Consequence relation, 107

D

da Costa, 136

Defeasibility, 241

Demonstration, 108

Designated elements, 115

Direct image, 51

Disconnected, 53

Dugundji, 116

E

Entitlement, 238

Explosion law, 113
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F

Fidel structure, 122

Fidel structure for bI, 220

Fidel structure for nbI, 248

Fidel structure for nbIci, 257

Fidel structure for nbIciw, 257

Fidel structure for nbIcl, 257

Fidel structure for Cn, 122

Filter, ú-, 264

Formula, 28

Formulas, Non-deterministic, 45

Freely generated, 42

G

Generated, 49

Gmatrix, 276

Ground, 48

Gödel, 116

H

Heyting algebra, 38

Hierarchy, da Costa’s, 138

Hilbert system, 108

Homomorphism, 24

Homomorphism, (�,d)-, 85

Homomorphism, Full, 24

Hyperalgebra, 23

I

Incoherence, 238

Incompatibility, 209

Isomorphism, 25

Ivlev, 116

K

Kearns, 121

Kripke, 242

L

Language, 107

Lattice, 36

Lattice, Bounded, 37

Lattice, Implicative, 37

Lewin, 263

Limited resources, 210

Logic, 107

Logic of formal incompatibility, 210

Logic of formal inconsistency, 113

Logic, Classical propositional, 111

Logic, Finitary, 107

Logic, Intuitionistic, 137

Logic, Paraconsistent, 112

Logic, Structural, 108

Logic, Tarskian, 107

M

Matrix, Generalized, 276

Matrix, Logical, 115

Matrix, Non-deterministic, 116

Matrix, Partial non-deterministic, 123

Matrix, Restricted, 115

Matrix, Restricted non-deterministic, 117

Meta-coherence, 242

Monad, 88

Multi-graph, 46

Multialgebra, 23

Multialgebra of atoms, 92

Multialgebra of non-deterministic

formulas, 45

Multihomomorphism, 26

Multihomomorphism, Full, 26

N

Nmatrix, 116

O

Operator, Tarskian, 118

Order of a formula, 29

Order, B-, 58

P

Partial information, 210
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Partial multialgebras, 99

Partially ordered set, 75

Peregrin, 237

Persistence, 239

Piochi, 115

PNmatrix, 123

Poset, 75

Poset, complete, 77

Possible-translations semantics, 124

Premise, 108

R

Rescher, 116

Restrictions, 115

Rmatrix, 115

RNmatrix, 117

Rule of inference, 108

Rule of inference, Instance of a, 108

S

Semantics, Dynamic, 122

Semantics, Static, 122

Sheffer’s stroke, 209

Signature, 23

Signature, Expanded, 45

Snapshots, 144

Strong LFI, 113

Strong basis, 57

Structural, ó-, 124

SubRNmatrix, 206

Swap structure, 144

Symmetry, 239

T

Tableau, Closed, 163

Tableau, Complete, 163

Tableau, Open, 163

Tableaux, 159

Tautology, 107

Translation, 284

Translation, Conservative, 284

U

Universe, 23

V

Valuation, ð-, 179

Valuation, Associated legal, 30

Valuation, Full, 31

Valuation, Legal, 30

W

Wójciki, 115

Weak LFI, 113
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