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Resumo

Esta dissertação explora a relação entre as soluções para o G2-sistema heterótico e as

condições para Ricci generalizado plano e para a satisfazer as equações de instantons

acoplados, no contexto de algebroides de Courant transitivos em geometria generalizada.

Motivado por desenvolvimentos recentes em física teórica, o estudo reinterpreta as equações

do G2-sistema heterótico, examinando as interconexões entre instantons acoplados, métricas

Ricci-planas generalizadas e espinores de Killing em um algebroide de Courant.

A pesquisa aborda dois problemas principais relacionados a desenvolvimentos recentes

tanto em física, notavelmente por De la Ossa, Larfors e Svanes [dlOLS18a], quanto em

matemática sobre variedades Calabi-Yau, como visto em trabalhos recentes por Garcia-

Fernandez e González Molina [GFGM23]. A dissertação apresenta a resolução completa

do primeiro problema e, especificamente para G2-estruturas em sete dimensões, é feito um

progresso significativo na abordagem do segundo problema. Além disso, o trabalho examina

soluções aproximadas para o G2-sistema heterótico, particularmente aquelas desenvolvidas

em variedades Calabi-Yau de contato 7-dimensionais por Sá Earp e Lotay [LSE23]. Aqui,

confirmamos a existência de 7-dimensionais-instantons acoplados aproximados e métricas

aproximadamente Ricci generalizadas planas.

Por fim, a dissertação apresenta uma abordagem não-espinorial para definir instantons. Os

dois problemas foram resolvidos com essa perspectiva, e uma exploração de como estender

nossos resultados a outras estruturas geométricas, além das G2-estruturas, foi conduzida.

Keywords: teorias de calibre, Calabi-Yau de contato, instantons, G2-estruturas, instantons

acoplados, equações espinoriais de Killing, G2-sistema heterótico.



Abstract

This dissertation explores the relationship between solutions for the heterotic G2 system

and the conditions for generalized Ricci flatness and to satisfy coupled instantons equations

within the context of transitive Courant algebroids in generalized geometry. Motivated

by recent developments in theoretical physics, the study reinterprets the equations of

the heterotic G2-system, examining the interconnections between coupled instantons,

generalized Ricci-flat metrics, and Killing spinors on a Courant algebroid.

The research addresses two main problems related to recent developments in both physics,

notably by De la Ossa, Larfors, and Svanes [dlOLS18a], and in mathematics for Calabi-Yau

manifolds, as seen in recent works by Garcia-Fernandez and González Molina [GFGM23].

The dissertation presents the complete resolution of the first problem and, specifically

for G2 structures in seven dimensions, significant progress is made in addressing the

second problem. Additionally, the work examines approximate solutions for the heterotic

G2-system, particularly those developed on 7-dimensional contact Calabi-Yau manifolds

by Sá Earp and Lotay [LSE23]. Here, we confirm the existence of approximate coupled G2

instantons and approximately Ricci-flat generalized metrics.

Finally, the dissertation introduces a non-spinorial approach to defining instantons. Both

problems were resolved from this perspective, and an exploration of how to extend our

results to other geometric structures beyond G2 structures was conducted.

Keywords: gauge theory, contact Calabi-Yau, instantons, G2-structures, coupled instan-

tons, Killing spinor equations, heterotic G2-system.
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Introduction

This project explores the intersection of two intensely researched areas in

differential geometry: generalized geometry and the heterotic G2-system. Our primary

objective is to investigate how solutions for the heterotic G2-system naturally align with

the conditions of generalized Ricci flatness and coupled instanton equations within the

framework of generalized geometry.

Nigel Hitchin’s pioneer work on generalized geometry, which suggests a changing

on the tangent bundle of a manifold M by the sum bundle TM · T ∗M (what we call now

exact Courant algebroids) with a closed 3-form H (the NS-flux in the physics literature),

opened new avenues for studying type II string theory. This framework has been extended

to heterotic string theory, where the NS-flux, still a 3-form, satisfies the heterotic Bianchi

identity:

dH =
³′

4
tr (FA ' FA − F¹ ' F¹).

This formulation integrates the curvatures of the connections A and ¹ within both the

tangent bundle and an additional vector bundle. To align with generalized geometry,

we consider a principal bundle P → M and the transitive Courant algebroid, commonly

denoted as E = TM · adP · T ∗M . These connections are a central focus of our study.

Generalized geometry extends the study of geometric properties beyond the

traditional tangent bundle for more general objects, the Courant algebroids. This broader

perspective introduces the concept of generalized connections, analogous to connections in

Riemannian geometry, and allows for the definition of generalized Ricci curvature.

On the other hand, the exploration of manifolds endowed with G2-structures

was initially motivated by Berger’s list of possible holonomy groups:

SO(n), U(m), SU(m), Sp(k), Sp(k)Sp(1), G2, Spin(7).

The pioneering constructions in this realm were due to Bryant, Salamon, and Joyce

[Bry87, BS89, Joy96]. G2-structures found their way into theoretical physics due to the

Hull-Strominger system which describes the supersymmetric background in heterotic string

theories, originally in the context of Calabi-Yau 3-folds [Hul86, Str86] and which lately

culminates in the G2 version, called heterotic G2-system.

Solutions to such a system are naturally expressed within the framework of

generalized geometry using transitive Courant algebroids. In this context, we can explore

generalized Ricci flatness for solutions of the heterotic G2-system, which is a primary focus

of this dissertation.
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The second main focus of this dissertation is the concept of the coupled instanton

equation, which represents the instanton condition for a specific connection D in a part

of the Courant algebroid, namely TM · adP . This connection D is induced by another

connection ¹ in P . The introduction of this concept is based on an important result by de

la Ossa, Larfors, and Svanes ([dlOLS18a]), which states that the instanton condition for ¹

implies the coupled instanton equation, and vice versa, up to (³′)-approximations. This

approach is commonly used in theoretical physics. From a mathematical perspective, this

idea is studied by Garcia-Fernandez and Molina for U(m)-structures [GFGM23]. Here, we

revisit this notion of coupled instanton for G2-structures and its relation to the Killing

spinor equations.

About this project

This master’s project began in the first semester of 2022. During the first

year, the author of this dissertation studied the preliminary concepts for the project,

including general aspects of geometry using mainly references [KN63, Dar94, KN96, Joy00,

Tu10, Tu17, FSE19], an overview of generalized geometry using mainly the references

[GFS20, GF14] and the heterotic G2-system using mainly the references [LSE23] (from

the advisor of this master project) and [Bla10].

The master’s project included two international research internships. The

first one (funded by FAPESP grant nº 2023/00126-6, BEPE - Bolsa de Estágio de

Pesquisa no Exterior) took place during the first semester of 2023 at the Instituto de

Ciencias Matemáticas (ICMAT), affiliated with the Universidad Autónoma de Madrid

(UAM), under the supervision of Professor Mario Garcia-Fernandez. This internship’s

primary focus was exploring the coupled instanton equations within the framework of

G2-structures, inspired by the recent work of Garcia-Fernandez [GFGM23]. The findings

from this research are now discussed in Chapter 4 and are further elaborated in parts

of Chapter 2 (as we will describe below). Key references during this period included

[GFGM23, dlOLS18a, GF14, GF19, CGFT22].

The second internship (also funded by FAPESP grant nº 2022/13162-8, BEPE

- Bolsa de Estágio de Pesquisa no Exterior) took place during the second semester of 2023

at the Mathematical Institute of Oxford University. Professor Jason D. Lotay guided this

research internship. The primary objective of this second internship was to leverage the

knowledge of generalized geometry, coupled equations and conditions for generalized Ricci

flatness the author had acquired during the first BEPE, applying it to the approximate

solutions constructed in [LSE23] - a collaborative effort between Jason D. Lotay and

the master’s project advisor. The advancements from this project are documented in

Chapter 5. Additionally, this period marked the beginning of efforts to generalize certain



Introduction 12

concepts previously performed to G2-structures. These generalized concepts are thoroughly

developed in Chapter 6, with applications to Spin(7)-structures and almost-Hermitian

structures in the Chapter 7. Key literature references during this internship include

[LSE23, dlOG21, FI02, LM90, Fri00].

After completing both internships, it was determined that the project results,

with some additional work, were substantial enough to warrant the writing of a paper

authored by the author’s dissertation, the advisor, and the advisors in the internships,

Mario Garcia-Fernandez and Jason D. Lotay. By April 2024, the paper was completed and

submitted for the special issue “At the Interface of Complex Geometry and String Theory”

in the International Journal of Mathematics (IJM) (preprint available on arXiv.org and

referenced as [dSJGFLSE24]).

Outline of the dissertation

The structure of chapters in this dissertation is heavily influenced by the

previously mentioned paper [dSJGFLSE24], co-authored by the author and advisors. In

particular, Chapter 2, Chapter 4, and Chapter 5 mirror specific chapters of [dSJGFLSE24],

albeit with targeted modifications. Chapter 1 not only introduces the content of Chap-

ter 2 but also substantially expands upon the introductory material and appendix from

[dSJGFLSE24], delving into the concepts of generalized geometry and generalized Ricci

curvature. Similarly, Chapter 3 serves as a primer for the discussions in Chapter 4 and

Chapter 5, expanding the quick review about G2-structures presented in [dSJGFLSE24].

Both Chapter 1 and Chapter 3 aim to provide a more thorough exposition of the topics

introduced at the level of a master’s dissertation.

On the other hand, Chapter 6 and Chapter 7 introduce content not covered in

[dSJGFLSE24]. These chapters explore an alternative concept of instantons and address

the problems previously presented in Chapter 2, now using this novel notion of instantons.

Specifically, they apply these alternative instantons to different geometric structures, no-

tably focusing on Spin(7) structures and U(m) (almost-Hermitian structures) in Chapter 7.

This part of the dissertation is a current work and aims to become a publication in the

future.

In sequence, we will detail how each chapter is organized: outlining its structure,

highlighting the main results, and emphasising the unique research contexts in which the

author has been involved.

Chapter 1 introduces fundamental concepts in generalized geometry, including

Courant algebroids, generalized metrics, generalized connections, and divergence operators.

Section 1.5 concludes the chapter with a detailed computation of the generalized Ricci
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curvature for transitive Courant algebroids, a key focus of our investigation (and which was

initially proved in [GF14]); the main result is Theorem 1.5.5, which provides the explicit

formula for the Ricci curvature.

Chapter 2 introduces the concept of Killing spinor equations in alignment with

generalized geometry and explores the coupled instanton equations within the framework

of transitive Courant algebroids over an oriented spin manifold. This chapter lays the

foundation by presenting two pivotal problems that will serve as the cornerstone throughout

the dissertation: understanding the conditions required to satisfy the coupled instanton

equations (refer to Problem 1), and investigating the criterion for generalized Ricci flatness

(refer to Problem 2).

Among the main results in Chapter 2, we have Proposition 2.1.6, which demon-

strates that solutions to the Killing spinor equations exhibit generalized Ricci flatness.

Additionally, a key highlight is Theorem 2.3.2, establishing that solutions to the gravitino

equation inherently satisfy the coupled instanton equations, thereby addressing Problem 1.

This theorem represents a critical piece of research developed through the author’s collab-

orative efforts during an internship in Spain, specifically focusing on G2-structures. The

current version of this theorem has been refined and enhanced as documented in the final

iteration of the paper [dSJGFLSE24].

Chapter 3 provides a comprehensive overview of G2-structures, starting with

the geometric motivation using the cross product in seven dimensions and how this choice

defines a G2-structure punctually on the tangent space of a 7-manifold. The chapter then

delves into the decomposition of the spaces of forms into irreducible G2-modules in the

presence of such a structure, followed by a discussion on the torsion of G2-structures and

their connections with skew-symmetric torsion. Finally, the chapter explores the spinorial

description of G2-structures.

Subsequently, Chapter 4, we utilize the theory of Killing spinor equations and

coupled equations, along with their connection to generalized Ricci flatness as introduced

in Chapter 2, in the context of G2-structures and solutions of the heterotic G2-system.

We also present an alternative proof of the generalized Ricci flatness for such structures,

building on the results from [IS23b]. This approach will be extended to other structures

in Chapter 6 and Chapter 7. Additionally, we provide several examples at the end of the

chapter to illustrate the theory.

While Chapter 3 comprehensively outlines established knowledge regarding

G2-structures, Chapter 4 presents new findings in this domain. A pivotal development

detailed in this chapter is the equivalence between the heterotic G2-system and the Killing

spinor equations for G2-structures. This equivalence crucially leads to generalized Ricci

flatness, as detailed in Proposition 4.1.2 and Theorem 4.2.1. Additionally, the sequence of
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results culminates in the characterization of the coupled G2-instanton equations, a line

in which the author has worked since his internship in Spain, cf. Proposition 4.3.5 and

Theorem 4.3.6.

In Chapter 5, we apply the theory from Chapter 4 to a specific class of solutions

of the heterotic G2-system, which were constructed in [LSE23]. These solutions are actually

‘approximate’ because the instanton condition F¹ ' È is not zero but of class O(³′)2. As

a result of the author’s internship in Oxford, this chapter examines how the results

behave under these approximate solutions and establishes conditions for such solutions

to be ‘approximate’ generalized Ricci flat and satisfy the ‘approximate’ coupled instanton

equation.

Notably, being approximate generalized Ricci flat is related to the condition

∇¹,+F¹ 'È to be also of order O(³′)2. Based on the necessity of this condition, we propose

a new definition of what should be approximate instanton, cf. Definition 5.4.1. Using

this definition, we prove the equivalent statements of Chapter 4: approximate coupled

instanton equation and approximate generalized Ricci flatness under some conditions (cf.

Theorem 5.4.4 and Theorem 5.4.7 ).

Chapter 6 introduces an alternative concept of instanton based on the existence

of a 4-form È ∈ Ω4(M), rather than the instanton concept presented in Chapter 2, which

relies on the existence of a non-vanishing spinor ¸ ∈ Ω0(S). In G2-structures, these

two concepts are equivalent. The primary results in this chapter address the problems

introduced in Chapter 2, related to generalized Ricci flatness and coupled equations. For

instance, using the spinorial approach, we still have not a general solution for the problem

of generalized Ricci flatness. However, we solved it for G2-structures because the method

was based on the equivalence of these two notions.

The main result of this chapter is the introduction of the flux operator H :

Ω3(M) → Ω3(M) and a method to calculate the torsion H of compatible connection with

skew-symmetric torsion using the eigenvalues of this operator (cf. Theorem B.3.6). In

sequence, we derive conditions to rewrite the Yang-Mills equation, cf. Theorem 6.2.3 for an

instanton, to make the first term for generalized Ricci curvature in Theorem 1.5.5 be zero.

This culminates in finding conditions for generalized Ricci flatness in Theorem 6.3.6 in a

string algebroid which pair (H, ¹) given by the torsion of the connection compatible with

structure induced by È and ¹ an instanton with relation to instanton form È ∈ Ω4(M).

Finally, the Chapter 7 presents an overview of Spin(7) and almost-Hermitian

structures (U(m)-structures) and applies the results of Chapter 6 to the case of these

structures. So, as we have obtained for G2-structures in Chapter 4, here we have obtained

conditions of generalized Ricci flatness and how an instanton satisfies the coupled instanton

equations in Spin(7) and almost-Hermitian structures.
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1 Introduction to Courant algebroids and gen-

eralized geometry

This chapter provides a comprehensive overview of foundational principles in

generalized geometry, aimed at familiarizing readers with crucial concepts and examples

essential for understanding the subsequent text, such as Courant algebroids and generalized

curvature tensors. The concepts introduced primarily follow the book [GFS20] and draw on

ideas from [GF19, GF14]. The concluding section, which focuses on an explicit computation

for the generalized Ricci curvature, is a more specific computation.

This chapter is organized as follows: Section 1.1 delves into the fundamental

concepts of generalized geometry, focusing on Courant algebroids as outlined in Defini-

tion 1.1.1. These structures are a versatile replacement for the traditional tangent bundle,

offering a broader perspective on Riemannian geometry. Our exploration encompasses

various forms of these algebroids, with particular attention to transitive Courant algebroids,

exemplified in Example 1.1.5 and Example 1.1.5 respectively.

Moving forward, Section 1.2 will delve into the concept of generalized metric,

focusing mainly on its canonical manifestation in transitive algebroids when the basis

manifold is Riemannian (refer to Example 1.2.4), which will be the primary focus of our

discussions in the future.

Following this, Section 1.3 introduces generalized connections and discusses

the notion of curvature associated with such connections, particularly the specificities of

direct generalizations of curvature in the context of generalized geometry. Notably, we

introduce the idea of generalized Ricci curvature (cf. Definition 1.3.7), an essential concept

that reoccurs throughout subsequent chapters.

Section 1.4 is dedicated to introducing divergence operators and some examples

(as divergence induced by a connection and the Riemannian divergence), pivotal for

exploring generalized Ricci flatness within transitive Courant algebroids.

Finally, in Section 1.5, we present an explicit formula for the generalized Ricci

curvature for a torsion-free generalized connection compatible with a given generalized

metric and a given divergence operator in the context of transitive Courant algebroids (cf.

Theorem 1.5.5). These calculations were initially expounded upon in meticulous detail by

[GF14] and also revisited in [dSJGFLSE24].
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1.1 Courant algebroids

Generalized geometry presents a more general framework than the one typically

considered in Riemannian geometry. Instead of the tangent bundle TM of a manifold M ,

we embrace a more expansive vector bundle E → M , called Courant or Dorfman algebroid.

Initially proposed as TM · T ∗M by Nigel Hitchin, this notion has since evolved into a

more versatile concept. Furthermore, we shift from the familiar Lie bracket on vector fields

to the Courant bracket, an operation between sections of the Courant algebroid [Hit10].

The essence of generalized geometry lies in leveraging our understanding of

traditional differential geometry and extending it through analogy. These extensions find

their roots in Type II string theory, where the NS-flux manifests as a closed 3-form denoted

as H. Later, the impetus for further exploration stems from heterotic string theory, when

the 3-form H satisfies the anomaly cancellation condition regarding its exterior derivative

dH, [Sis19, Sec. 1].

Courant algebroids are like a broader version of the usual tangent bundle TM

of a Riemannian manifold. They incorporate similar concepts like Lie brackets and inner

products, forming the foundation of generalized geometry [Hit10].

The material of this chapter is based mainly on the book [GFS20] and the

papers [GFRT20, GFS20, BH15, GF14]).

Definition 1.1.1. A Courant algebroid (E, ï·, ·ð , [·, ·] , Ã) over a manifold M consists of a

vector bundle E → M endowed with a non-degenerate symmetric bilinear form ï·, ·ð and a

Dorfman bracket [·, ·] on Ω0(E), and a bundle map Ã : E → TM , called an anchor map ,

such that the following axioms are satisfied, for all a, b, c ∈ Ω0(E) and f ∈ C∞(M):

(1) [a, [b, c]] = [[a, b] , c] + [b, [a, c]],

(2) Ã [a, b] = [Ã(a), Ã(b)],

(3) [a, fb] = f [a, b] + Ã(a)(f)b,

(4) Ã(a) ïb, cð = ï[a, b] , cð + ïb, [a, c]ð,

(5) [a, b] + [b, a] = D ïa, bð.

Here, the notation D : C∞(M) → Ω0(E) denotes the composition of the exterior differential

d : C∞(M) → Ω1(M), the dual map Ã∗ : T ∗M → E∗ and the isomorphism E∗ ∼= E provided

by the non-degenerancy of ï·, ·ð.

Remark 1.1.2 (Non-skew-symmetry of Dorfman Bracket). Note that condition (5) implies

that the Dorfman bracket is generally not skew-symmetric, unlike the Lie brackets between
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vector fields. However, if a, b ∈ Γ(E) are two orthogonal sections, i.e., ïa, bð = 0, then they

anti-commute.

This lack of anti-commutation has implications for condition (3). Does [fa, b]

satisfy a condition similar to (3)? The answer is no. The relation is slightly different:

[fa, b] = −[b, fa] + Ã∗dïfa, bð

= −f [b, a] − Ã(b)(f)a+ Ã∗
(

df ïa, bð + fdïa, bð
)

= f
(

− [b, a] + Ã∗dïa, bð
)

− Ã(b)(f)a+ ïa, bðÃ∗df

= f [a, b] − Ã(b)(f)a+ ïa, bðÃ∗df

Note that there is a minus sign with Ã(b)(f)a in this expression (which is different from the

case of [a, fb]), and there is an additional term ïa, bðÃ∗df (which is zero in the particular

case of orthogonal sections). ⃝

Considering the non-skew-symmetric nature of the Dorfman bracket, some

notions still need the skew-symmetry of the bracket to be defined. To account for this, we

define the skew-symmetrization of the Dorfman bracket as follows:

[[a, b]] :=
1

2
[a, b] −

1

2
[b, a]

for a, b ∈ Γ(E). It is evident that [[·, ·]] represents a skew-symmetric operation on sections.

We will denote a Courant algebroid (E, ï·, ·ð , [·, ·] , Ã) simply by E. Using the

isomorphism ï·, ·ð : E → E∗, we obtain a sequence of vector bundles

0 −→ T ∗M
Ã∗

−→ E
Ã

−→ TM −→ 0. (1.1.1)

We consider three relevant categories of Courant algebroids: exact, transitive,

and regular Courant algebroids.

Definition 1.1.3. A Courant algebroid E → M is called

• exact, if the sequence in (1.1.1) is exact;

• transitive, (sometimes called heterotic) if the anchor map Ã is subjective and;

• regular, if the anchor map Ã has constant rank.

For the class of exact Courant algebroids, we have by definition of exact sequence

that Ã∗ is injective, Ã subjective, and

Im(Ã∗) = ker(Ã)
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and since the fibers of TM and T ∗M are vector spaces with the same dimension n, we

have by the range-kernel theorem

rank(E) = dim(Im(Ã)) + dim(ker(Ã)) = n+ n = 2n.

In particular, Ã is surjective. Since Ã being surjective implies the map’s rank is maximum,

in particular, constant, we have that:

exact =⇒ transitive =⇒ regular.

Example 1.1.4 (Example of exact Courant algebroid). Let M be a manifold and H ∈

Ω3(M). Consider E = TM · T ∗M and the symmetric pairing

ïX + À, Y + ¸ð :=
1

2
(iX¸ + iY À) , (1.1.2)

the bracket is defined by

[X + À, Y + ¸] := [X, Y ] + LX¸ − iY dÀ + iY iXH, (1.1.3)

with the canonical projection in the first coordinate Ã : E → TM . Then the data

(E, ï·, ·ð, [·, ·], Ã) is a Courant algebroid (cf. Definition 1.1.1)) if, and only if H is a closed

3-form, i.e., dH = 0.

Conversely, if we have an exact Courant algebroid E → M is possible to

construct a closed 3-form H ∈ Ω3(M) such that E is isomorphic (as Courant algebroid)

to TM · T ∗M (as constructed above), so the example discussed is all exact Courant

algebroids, up to isomorphism, cf. [GFS20, Proposition 2.10]. △

Example 1.1.5 (Example of transitive Courant algebroid). Let K be a Lie group, and

P → M be a principal K-bundle over M . We assume a non-degenerate bi-invariant pairing

on the Lie algebra k of K (which subscript k can be omitted by convenience)

ï·, ·ðk : k ¹ k → R. (1.1.4)

Consider the Whitney sum of vector bundles1

E = TM · adP · T ∗M (1.1.5)

endowed with the symmetric pairing

ïX + r + À, Y + t+ ¸ð =
1

2
(¸(X) + À(Y )) + ïr, tðk (1.1.6)

and the canonical projection Ã : X + r + À ∈ E 7→ X ∈ TM on the first coordinate.
1 Given a principal G-bundle, we have the adjoint representation Ad : K → Aut(k) which induces an

associated bundle adP := P ×Ad k, called the adjoint bundle which fibres are copies of k.
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Given a 3-formH ∈ Ω3(M) and a connection form ¹ ∈ Ω1(P, k) on P , and denote

F¹ ∈ Ω2(P, k) its curvature 2-form (which can be considered living in F¹ ∈ Ω2(M, adP )

canonically, due its invariance). Thus, we can define a bracket on Ω0(E) as follows:

[X + r + À, Y + t+ ¸] = [X, Y ] + LX¸ − iY dÀ + iY iXH

− [r, t] − F¹(X, Y ) + d¹Xt− d¹Y r

+ 2ïd¹r, tðk + 2ïiXF¹, tðk − 2ïiY F¹, rðk.

(1.1.7)

Then, the data (E, ï·, ·ð, [·, ·], Ã) satisfies the axioms of a Courant algebroid (see Defini-

tion 1.1.1) if and only if the so-called heterotic Bianchi identity2 is satisfied:

dH = ïF¹ ' F¹ðk. (1.1.8)

In the affirmative case, the data constitutes a transitive Courant Algebroid since Ã : E →

TM is surjective as it represents a projection.

Conversely, if we have a transitive Courant algebroid E → M , is possible to

find a 3-form H ∈ Ω3(M), a principal K-bundle P → M (which Lie algebra k is endowed

with a symmetric pairing ï·, ·ðk) endowed with a connection form ¹ ∈ Ω1(P, k) satisfying

the heterotic Bianchi identity (1.1.8) such that E is isomorphic to the example constructed

above, cf. [CSX13]. △

1.2 Generalized metrics

In this section, we recall essential aspects of generalized Riemannian geometry,

following [GF19, GFS20]. As we will see later, some concepts in generalized geometry are

not so well-behaved as in Riemannian geometry; for instance, curvature operators are not

tensors. For this reason, it is interesting to have the Courant algebroid orthogonally split

in order to make some of these concepts be well-defined.

Definition 1.2.1. Let Mn be an oriented manifold endowed with a Courant algebroid E.

A generalized metric on E is an orthogonal decomposition E = V+ · V−, such that the

restriction of ï·, ·ð to V+ is positive definite, the restriction to V− is negative definite, and

that Ã|V+ : V+ → TM is an isomorphism.

Given a generalized metric, we can naturally define the projections into the

components Ã± : a+ + a− ∈ E 7→ a± ∈ V±.
2 We cannot define a wedge product between such forms if we have E-valued differential forms ξ, ζ ∈

Ω(M, E). However, if there is an operation µ ∈ Γ(T 2,1(M)), then the wedge product is defined in the
following way: without loss of generality, suppose ξ = ξ0 ¹ S and ζ = ζ0 ¹ T for ξ0, ζ0 ∈ Ω(M) and
S, T ∈ Γ(E), we define the wedge product of such forms as

ξ ' ζ := (ξ0 ' ζ0) ¹ µ(S, T ).

In our context, the Lie algebra is endowed with a symmetric pairing ï·, ·ð, which is µ in this case.
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Lemma 1.2.2. A generalized metric E = V+ · V− is equivalent to an endomorphism

G : E → E satisfying the following conditions:

(1) G is an ï·, ·ð-isometry, i.e., ïGa,Gbð = ïa, bð,

(2) G is ï·, ·ð-self adjoint, i.e., ïGa, bð = ïa,Gbð,

(3) The bilinear pairing ïGa, bð is symmetric and positive definite,

(4) The restricted anchor map Ã|V+ is an isomorphism.

for all sections a, b ∈ Γ(E). In this case, the projections are given by

Ã± =
1

2
(G ± Id) (1.2.1)

Proof. (⇒) Given V+ · V− a generalized metric, we can define the endomorphism G by

the formula

G(e+ + e−) = e+ − e−.

Note that conditions (1), (2), and (3) are immediately satisfied.

(⇐) Conversely, if we have G the endomorphism satisfying the conditions in

the statement, then G2 = Id:

ïa, bð
(1)
= ïGa,Gbð

(2)
= ïG2a, bð,

and we conclude G2a = a by the non-degeneracy of ï·, ·ð. The fact that G squares the

identity implies the eigenvalues of G are ±1. Define V± f E as the respective eigen-bundles.

Then the decomposition E = V+ · V− into eigen-bundles is orthogonal. The restriction of

ï·, ·ð in V± is positive/negative definite by condition (3).

Corollary 1.2.3. A generalized metric E = V+ · V− on a Courant algebroid E → M

induces canonically a Riemannian metric in the tangent bundle TM .

Proof. In fact, the item (3) in Lemma 1.2.2 guarantees ï·, ·ð is positive definite in V+ and

the isomorphism Ã|V+ : V+ → TM guarantees the Riemannian metric in TM .

For our purposes on transitive Courant algebroids in the standard form TM ·

adP · T ∗M as in Example 1.1.5, there is a natural choice of generalized metric, which we

discuss below.

Example 1.2.4 (Transitive Courant algebroid). In Example 1.1.5 of transitive Courant

algebroids (in particular for transitive Courant algebroids in Example 1.1.5), where

E ∼= TM · adP · T ∗M,
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for a uniquely determined H ∈ Ω3(M) and principal connection ¹ on P satisfying the

heterotic Bianchi identity (1.1.8). There is a natural choice of generalized metric given by

V+ = {X + gX : X ∈ TM},

V− = {X + r − gX : X ∈ TM, r ∈ adP},
(1.2.2)

when M is endowed with the Riemannian metric g. In this case, the induced endomorphism

is given by

G =








0 0 g−1

0 − Id 0

g 0 0







,

with orthogonal projections

Ã+(X + r + ·) =
1

2
(X + gX + g−1· + ·),

Ã−(X + r + ·) =
1

2
(X − gX − g−1· + ·) + r.

(1.2.3)

Note that a metric in M induces a generalized metric in the transitive Courant

algebroid E = TM · adP · T ∗M via (1.2.2). Analogously, if we have a generalized

metric G in E = TM · adP · T ∗M , then it induces a Riemannian metric g in TM (cf.

Corollary 1.2.3). △

Remark 1.2.5. In the context of transitive Courant algebroids and the canonical generalized

metric, let’s introduce the notation

Ã± : X ∈ TM 7→ X ± gX ∈ V±, (1.2.4)

which will be useful for us later. ⃝

1.3 Generalized connections and related curvature operators

The concept of a generalized connection resembles affine connections on vector

bundles. However, rather than deriving sections in the direction of a vector field, we

differentiate sections from other sections. This aligns with our understanding of generalized

geometry, which substitutes vector fields with sections of a more general vector bundle,

namely the Courant algebroid. A more detailed definition is presented below.

Definition 1.3.1. A generalized connection D (or simply, a connection in the context of

generalized geometry) on a Courant algebroid E → M is a first-order differential operator

D : Γ(E) → Γ(E∗ ¹ E) (1.3.1)
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satisfying the following Leibniz-type rule

Da(fb) = fDab+ Ã(a)(f)b (1.3.2)

for a, b ∈ Γ(E) and f ∈ C∞(M).

Example 1.3.2. Every Courant algebroid E → M admits a generalized connection. This

is because every vector bundle admits an affine connection ∇, so we define D by:

Dae := ∇Ã(a)e,

where Ã : E → TM is the anchor map. △

The generalized connections we will care about are the ï·, ·ð-compatible ones.

Definition 1.3.3. A generalized connection D on a Courant algebroid E is said to be

compatible with the inner product ï·, ·ð (or simply ï·, ·ð-compatible) on E if it satisfies

Ã(e)ïa, bð = ïDea, bð + ïa,Debð (1.3.3)

the set of all ï·, ·ð-compatible connections is denoted by D.

We also have the notion of compatibility with a generalized metric G as:

Definition 1.3.4. Let E be Courant algebroid endowed with a generalized metric V+ and

D a generalized connection ï·, ·ð-compatible on E. We say that D is V+-compatible (or

compatible with the generalized metric V+) if

D(Γ(V±)) ¢ Γ(E∗ ¹ V±). (1.3.4)

The set of all V+-compatible generalized connections will be denoted by DV+ or DG, where

G is the induced endomorphism of V+.

For generalized connections, we encounter analogous concepts to torsion, curva-

ture, and Ricci curvature, albeit with some distinctive characteristics. Given a generalized

connection D, it seems natural to define the generalized curvature of D by

GRD(e1, e2) = De1De2 −De2De1 −D[e1,e2],

based on the usual definition of Riemannian curvature for ordinary connections in vector

bundles. However, the curvature defined as above is not skew-symmetric, and not even a

tensor. The skew-symmetric property could be fixed using the skew-symmetrization for

the Dorfman bracket:

GRD(e1, e2) = De1De2 −De2De1 −D[[e1,e2]],
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but this definition is still not tensorial. This condition is a problem because the tensorial

properties of curvature are useful in many concepts. So, we will change its definition

to make the pair of sections to which it applies more restrictive. Before that, we must

introduce the compatibility of a generalized connection and a generalized metric.

Lemma 1.3.5 (Generalized Curvature). Let E be a Courant algebroid endowed with a

generalized metric G and D ∈ DG a G-compatible generalized connection. The generalized

curvatures GR±
D defined by

GR±
D(e±1 , e

∓
2 ) := De±

1
De∓

2
−De∓

2
De±

1
−D[e±

1 ,e
∓
2 ], (1.3.5)

are tensors GR±
D ∈ Γ(V ∗

± ¹ V ∗
∓ ¹ End(V±)).

Remark 1.3.6 (Skew-symmetry for the generalized curvature). Note that the generalized

curvature operators GR±
D are skew-symmetric in the sense that:

GR±
D(e±1 , e

∓
2 ) = −GR∓

D(e∓2 , e
±
1 ).

Thus, even though we have two curvature operators GR±, each of them contains all

the information about the curvature, due to the skew-symmetry property. So, from

now on, we will refer to the generalized curvature operator as the operator GRD ∈

Γ(V ∗
+ ¹ V ∗

− ¹ End(V+)).. ⃝

Definition 1.3.7 (Generalized Ricci curvature). Given a generalized connection D ∈ DG,

we define the generalized Ricci curvatures Ric± ∈ Γ(V ∗
∓ ¹ V ∗

±) as the operators

GRic±(e∓2 , e
±
3 ) = tr

(

e±1 7→ GR±
D(e±1 , e

∓
2 )e±3

)

. (1.3.6)

The generalized Ricci curvature emerges as a central concept in our discussion,

especially concerning the condition of generalized Ricci flatness on transitive Courant

algebroids constructed via G2-structures on 7-manifolds. We will revisit the concept of

generalized Ricci curvature to derive an explicit formula for this quantity, underscoring its

significance in our analysis.

Remark 1.3.8 (Equivalent definitions of generalized Ricci curvature). Different definitions

of generalized Ricci curvature were proposed in the literature, and they were proved to

be equivalent, cf. [CPR24]. The first one, which is the one we are considering here (cf.

Definition 1.3.7), was given in [GF14] by Mario Garcia-Fernandez. For the purpose of

comparison in this remark, let’s denote it as below:

GRic±GF(e∓2 , e
±
3 ) := tr

(

e±1 7→ GR±
D(e±1 , e

∓
2 )e±3

)

.

A second definition, due to B. Jurco and J. Vysoky (cf. [JV16]), defines the generalized

Ricci curvature GRicJV ∈ Γ(E∗ ¹ E∗) as

GRicJV(e2, e3) := tr (e1 7→ GRJV(e1, e2)e3) ,



Chapter 1. Introduction to Courant algebroids and generalized geometry 24

where the curvature tensor GRJV ∈ Γ(E∗ ¹E∗ ¹E∗ ¹so(E)) in their perspective is related

by our definition of curvature GRD (cf. Definition 1.3.5) by the expression:

ïGRJV(a, b)c, eð :=
1

2
(ïGRD(a, b)c, eð + ïGRD(c, e)a, bð + ï(Da)∗b, (Dc)∗eð) .

A third definition, proposed by Cavalcanti, Pedregal and Rubio (cf. [CPR24]), is given in

terms of the generalized Ricci curvature as proposed by Jurco and Vysoky as

GRicSSCV(a, b) := GRicJV(a, b) − GRicJV(Ga,Gb).

The equivalence between them is given by

GRicSSCV(a∓, b±) = 2GRicJV(a∓, b±) = GRic±GF(a∓, b±) + GRic∓GF(b±, a∓).

cf. [CPR24, Theorem 8] for the proof of this equivalence and further discussions. ⃝

We finish defining the torsion of a generalized connection:

Lemma 1.3.9 ([GF19]). Given a generalized connection D on a Courant algebroid E, we

define the generalized torsion by

TD(a, b, c) = ïDab−Dba− [a, b], cð + ïDca, bð. (1.3.7)

Then TD ∈ Γ(Λ3(E∗)).

In addition, we also have the concept of generalized scalar curvature for gener-

alized connections. However, defining it for generalized connections is more delicate than

for ordinary connections (which is just the trace of the Ricci curvature), to be explored in

Section 2.4.

1.4 Divergence operators

Later, we will define the generalized Ricci curvature and show that, under

certain circumstances, it depends not on the connection itself, but only on the generalized

metric and an additional parameter related to the connection, the divergence operator,

which we will introduce now.

Definition 1.4.1. A divergence operator on a Courant algebroid E is a bundle map

div : Γ(E) → C∞(M) satisfying the Leibniz-type rule

div(fa) = f div(a) + Ã(a)(f), (1.4.1)

for f ∈ C∞(M) and a ∈ Γ(E).
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Example 1.4.2 (Divergence of a generalized connection). Let E a Courant algebroid and

D a generalized connection, then the induced operator

divD(e) := tr(De)

defines a divergence operator on E. In fact, the Leibniz rule for the connection D gives us

that D(fe) = Ã(·)f · e+ fDe, consequently

divD(fe) = tr(D(fe)) = tr (Ã(∗)(f) · e+ f De)

= tr(Ã(·)f · e) + f tr(De)

= Ã(e)(f) + f divD(e),

as we claimed. Note that the last line is obtained writing e = ·kek in a frame, so the

operator on the second line is, in particular, the projection on the j-th coordinate given

by ·jÃ(ej)f · ej, and we have the trace given by

tr(Ã(·)f · e) :=
∑

j

·jÃ(ej)f =
∑

j

Ã(·jej)f = Ã(e)f

This shows, in particular, that a divergence operator always exists for a Courant algebroid

since a Courant algebroid always admits a generalized connection. △

Definition 1.4.3. Let E → M be a Courant algebroid endowed with a generalized metric

G and let div a divergence operator on E. We define the space of G-compatible generalized

connections with divergence div by

D(G, div) = {D ∈ DG : divD = div}. (1.4.2)

We also define the subspace D0(G, div) ¢ D(G, div) of the torsion-free connections.

D0(G, div) = {D ∈ DG : divD = div, TD = 0}. (1.4.3)

Lemma 1.4.4 ([GFS20]). The space of divergence operators on a Courant algebroid E

forms an affine space modelled on Γ(E). That is, if we fix a divergence operator div, any

other divergence operator div′ is given by

div′ = div + ïe, ·ð (1.4.4)

for a unique section e ∈ Γ(E).

In the context of transitive Courant algebroids E = TM · adP · T ∗M (cf.

Example 1.1.5), we have an important divergence operator to discuss:

Example 1.4.5 (Riemannian divergence). Consider an oriented Riemannian manifold

(M, g, volM ) and let E = TM · adP · T ∗M be the standard transitive Courant algebroid
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over M (which is endowed with a generalized metric G induced by g) as in Examples 1.1.5

and 1.2.4, then we can define a divergence operator on E by

divG(e) :=
LÃ(e)volM

volM
, (1.4.5)

which is called the Riemannian divergence of G. Using that LfXÉ = fLXÉ + df ' iXÉ,

we can check that this defines a divergence operator on the Courant algebroid. In fact,

divG(fe) =
LÃ(fe)vol

vol
=
fLÃ(e)vol + df ' iÃ(e)vol

vol
.

N+ow, using that df ' vol = 0 since vol is top-form, we have by the product rule for

contraction under wedge

df ' iÃ(e)vol = iÃ(e)(df ' vol
︸ ︷︷ ︸

=0

) + iÃ(e)df ' vol = Ã(e)(f)vol

and the result follows. As a result of the Lemma 1.4.4, any divergence div on E can be

expressed in the form

div = divG −ïe, ·ð,

for a uniquely determined section e ∈ Γ(E). △

1.5 Generalized Ricci curvature on transitive Courant algebroids

In our context, we are interested in transitive Courant algebroids E = TM ·

adP · T ∗M with structures given by a pair

H ∈ Ω3(M), ¹ ∈ Ω1(P, k),

satisfying the heterotic Bianchi identity dH = ïF¹ ' F¹ð (where ï·, ·ð is the symmetric

and non-degenerate pairing in the Lie algebra k for the principal K-bundle P → M), cf.

Example 1.1.5.

Our goal here is providing an explicit formula for the generalized Ricci curvature

(cf. Definition 1.3.7) for a generalized connection D ∈ D0(G, div).We will perform this

computation in steps.

We start establishing the independence of the generalized Ricci curvature from

the choice of connection by demonstrating that for any D1, D2 ∈ D0(G, div) (as outlined

in Lemma 1.5.1), it holds that GRic±D1
= GRic±D2

. Consequently, the generalized Ricci

curvature associated with connections in D0(G, div) is uniquely determined by the pair

(G, div). Thus, our focus narrows to computing the Ricci curvature within a specific

connection D ∈ D0(G, div).
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In sequence, we construct an explicit connection D̃ ∈ D0(G, divG) and provide

an explicit expression for its generalized Ricci curvature (see Lemma 1.5.2). Following this,

we introduce a novel connection, denoted by D, which includes terms Ç± (which we will

specify later)

D = D̃ +
1

dim V+ − 1
Ç+ +

1

dim V− − 1
Ç−,

where the section e ∈ Γ(E) is defined by ïe, ·ð = div − divG. This construction guarantees

D ∈ D0(G, div), as outlined in Lemma 1.5.3, thus providing a specific connection within the

space D0(G, div), so the generalized Ricci curvature to any other connectionD ∈ D0(G, div)

has the same expression.

After this, we will compute the generalized Ricci curvature for the connection

D̃, discussed in Lemma 1.5.3. For this, we will utilize the transformation behaviour of the

Ricci curvature under the transition from D̃ to D as above (cf. Proposition 1.5.4) and

derive the Ricci curvature for D0(G, div). This culminates in Theorem 1.5.5, wherein we

present the explicit expression for the Ricci curvature within D0(G, div), as desired.

Lemma 1.5.1. If D1, D2 ∈ D0(G, div) are generalized connections on the transitive

Courant algebroid E = TM · adP · T ∗M as in Example 1.1.5 and standard generalized

metric G as in Example 1.2.4, we have

GRicD1 = GRicD2 ,

i.e., the generalized Ricci curvature doesn’t depend on the connection in D0(G, div).

This lemma tells us that if M has a Riemannian metric g, then torsion-free G-

compatible generalized connections (for G induced by g) on the standard transitive Courant

algebroid E = TM · adP · T ∗M has the generalized Ricci curvature depending uniquely

on the divergence divD, or equivalently only on the section e defined by divD = divG −ïe, ·ð.

Because of this, we can denote

GRic(G, div) = GRicD, ∀D ∈ D0(G, div).

We define the connection D̃ ∈ D0(G, divG) and provide an explicit formula for

its generalized Ricci curvature. For this, let’s introduce some connections by convenience

∇±1/3 := ∇g ±
1

6
g−1H, ∇± := ∇g ±

1

2
g−1H,

where ∇g is the Levi-Civita connection for g in M . These connections are metric connections

and have skew-symmetric torsion, respectively, given by ±1
3
H and ±H. The connection ∇+

is called Bismut connection and ∇−, the Hull connection, and they will play a distinguished

role in this study, especially the Bismut connection.
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Lemma 1.5.2. Let E = TM·adP·T ∗M transitive Courant algebroid as in Example 1.1.5

endowed with the standard generalized metric G as in Example 1.2.4, and consider the

generalized connection defined by3

D̃a−b− = Ã−

(

∇
−1/3
V W − 2

3
g−1ïiV F¹, tð − 1

3
g−1ïiWF¹, rð

)

+ d¹V t− 2
3
F¹(V,W ) + 1

3
[t, r]

D̃a+b+ = Ã+

(

∇
+1/3
V W

)

where a+ = V + gV , a− = V + r − gV , b+ = W − gW and b− = W + t − gW . Then

D̃ is in D0(G, divG), i.e., it is torsion-free, compatible with the generalized metric and

its divergence is the Riemannian divergence (1.4.5). Furthermore, the generalized Ricci

curvature is given by 4

GRic+
D̃

(a−, b+) =
(

Ric+ + F¹ ◦ F¹
)

(V,W ) − iW
〈

d¹∗F¹ − F¹ @H, r
〉

, (1.5.1)

where Ric+ = Ric∇+ is the Ricci curvature for the Bismut connection ∇+ and F¹ ◦ F¹ =

ïiej
F¹, iej

F¹ð for some orthonormal frame {ej} on TM .

In sequence, we consider an arbitrary divergence operator div on E = TM ·

adP · T ∗M , then by the Lemma 1.4.4, we have the existence of a unique section e ∈ Γ(E)

such that

div = divG − ïe, ·ð,

and decompose it e = e+ + e−, for e± ∈ V±. Define the operators Çe± ∈ Γ(V ∗
± ¹ V ∗

± ¹ V±)

by the formula

Çe±(a±, b±) ≡ Çe±
a±
b± := ïa±, b±ðe± − ïe±, b±ða±. (1.5.2)

With these notations, we can define a new connection D:

Lemma 1.5.3. Let E = TM · adP · T ∗M be the transitive Courant algebroid endowed

with the standard generalized metric G as in Example 1.2.4 and div a fixed divergence

operator on E, Consider

D := D̃ +
1

dim V+ − 1
Çe+ +

1

dim V− − 1
Çe− , (1.5.3)

where D̃ ∈ D0(G, divG) (defined in Lemma 1.5.2) and Çe± given by (1.5.2), for e = e+ +e−

such that div = divG − ïe, ·ð. Then D ∈ D0(G, div).

3 The co-differential dθ∗ := (−1)n(k+1)+1 ∗ dθ∗ acting on k-forms in an n-dimensional manifold, where
dθ is the covariant exterior derivative induced by the connection θ.

4 The contraction of forms

Fθ @ H :=
1

2!1!
F ijHijkek = (−1)n+1 ∗ (Fθ ' ∗H),

where Fθ = 1
2! Fijeij and H = 1

3! Hijkeijk. For more details about the contraction of forms, cf.
Appendix A.
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Finally, in order to compute the generalized Ricci curvature for D, we need to

understand how the generalized Ricci curvature of D̃ behaves when we add the terms Çe±

as above and use the result in Lemma 1.5.2 to find an explicit expression for GRicD.

Proposition 1.5.4. On the transitive Courant algebroid E = TM · adP · T ∗M (cf.

Example 1.1.5), the generalized Ricci curvature for a pair (G, div) satisfies

GRic±(G, div)(a∓, b±) = GRic±(G, divG)(a∓, b±) − ï[e±, a∓], b±ð, (1.5.4)

where e ∈ Γ(E) defined by div = divG − ïe, ·ð.

An immediate corollary is the following result, which is the main result of the

section, and gives us the final explicit formula for the generalized Ricci curvature for

generalized connections in D0(G, div).

Theorem 1.5.5. Let (G, div) be a pair given by a generalized metric G and a divergence

operator div on a transitive Courant algebroid E = TM · adP ·T ∗M as in Example 1.2.4

and consider e ∈ Γ(E) defined by

div = divG − ïe, ·ð, e = Z + s+ · ∈ Γ(E).

Set ·+ = 1
2
(Zo + ·) ∈ Ω1(M), then the generalized Ricci curvature for every connection

D ∈ D0(G, div) is given by

GRic+
D(a−, b+) = iY iX

(

Ric+ +F¹ ◦ F¹ + ∇+·+

)

− iY

〈

d¹∗F¹ − F¹ @H + i·#
+
F¹, r

〉

,
(1.5.5)

where a− = X+r−Xo ∈ V−, b+ = Y +Y o ∈ V+, Ric+ is the Ricci curvature of the Bismut

connection ∇+ and F¹ ◦ F¹ = ïiej
F¹, iej

F¹ð for some orthonormal frame {ej} of TM .

Proof. By Lemma 1.5.1, we need to compute the generalized Ricci curvature for the

connection D ∈ D0(G, div) constructed in Lemma 1.5.3. By the Proposition 1.5.4 and

Lemma 1.5.2, we have that

GRic+
D(a−, b+) = GRic+

D̃
(a−, b+) − ï[e+, a−], b+ð

=
(

Ric+ + F¹ ◦ F¹
)

(V,W ) − iW
〈

d¹∗F¹ − F¹ @H, r
〉

− ï[e+, a−], b+ð

we need to prove that

ï[e+, a−], b+ð = ïF¹(·
#
+ ,W ), rð − ∇+

V ·+(W )

by direct computation using the Dorfman bracket[·, ·] defined in the Example 1.1.5, using

ïe+, a−ð = 0 ⇒ [e+, a−] = −[a−, e+] (cf. Remark 1.1.2) and e+ = 1
2
(Z + gZ + · + g−1·) =



Chapter 1. Introduction to Courant algebroids and generalized geometry 30

·+ + ·#
+ (cf. Example 1.2.4), we then have

[a−, e+]+ = [V − V o + r, ·+ + ·#
+ ]+ = [V − V o, ·+ + ·#

+ ]+ + [r, ·+ + ·#
+ ]+

= Ã+(∇+
V ·+) + Ã+

(

−d¹
·#

+
r − 2ïi·#

+
F¹, rð

)

= Ã+

(

∇+
V ·+ − g−1ïi·#

+
F¹, rð

)

.

Now, take the inner product with b+. Since the term [a−, e+]− does not interfere due to

the orthogonal decomposition of V±, we have

ï[a−, e+], b+ð = ∇+
V ·+(W ) − ïF¹(·

#
+ ,W ), rð

as desired.

A particular case which we will be interested is when the section which deter-

mines the divergence satisfies e ∈ T ∗M ¢ E = TM · adP · T ∗M , in this case, ·+ = 1
2
e

and we have

div = divG − 2ï·+, ·ð, (1.5.6)

and the generalized Ricci curvature given explicitly in terms of ·+ as in (1.5.5).
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2 Killing spinor equations and coupled instan-

tons

In this chapter, we present two essential concepts in this dissertation: the Killing

spinor equations within generalized geometry [GFRT16, GF19] and the coupled instanton

equations [GFGM23, dlOLS18a].

Notably, the Killing spinor equations encompass the Hull–Strominger system

and the heterotic G2-system as specific instances. The significance of Killing spinor

equations in generalized geometry lies in their ability to yield unique instances of generalized

Ricci-flat metrics. For the coupled instanton equations, they were inspired by recent

developments on coupled instantons, both in the physics [dlOLS18a, dlOLS18b] and

mathematical literature [GFGM23, GFJS23]. These equations are closely related to Killing

spinors and generalized Ricci-flat metrics and play an important role in recent developments

around the Hull–Strominger system and non-Kähler mirror symmetry [ACDAdLHGF24].

This chapter is organized as follows: In Section 2.1, we introduce the Killing

spinor equations, encompassing the gravitino and dilatino equations, historically rooted

in physics, (cf. Definition 2.1.2), within the framework of a transitive Courant algebroid

over a spin manifold. Additionally, we establish a crucial result: solutions to the Killing

spinor equations yield generalized Ricci flatness through a direct spinor calculation (cf.

Proposition 2.1.6).

In the following, Section 2.2, we introduce the coupled instantons equations

within the framework of transitive Courant algebroids over spin manifolds. In this context, is

presented the connection D in the auxiliary bundle TM·adP and we propose two problems

intended for ongoing exploration throughout the text (cf. Problem 1 and Problem 2).

Continuing our investigation, Section 2.3 thoroughly explores Problem 1 and

presents a complete solution for it for arbitrary dimensions (cf. Theorem 2.3.2). Problem 1

elucidates the connection between the coupled instanton condition and the gravitino

equation, while Problem 2 delves into the relationship between coupled instantons and

generalized Ricci flatness, still open. We solve Problem 2 in Chapter 4.3 for the case of

seven dimensions with the spinor field defining a G2-structure.

In Section 2.4, we delve into the concept of generalized scalar curvature, a

term we avoid defining in Chapter 1 due to its nuanced nature. Here, we discuss these

intricacies, addressing them through discussions outlined in Lemma 2.4.1 and Defini-

tion 2.4.3. Moreover, we explore its intricate relationship with the Killing spinor equations
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(cf. Proposition 2.4.7).

Lastly, in Section 2.5, we unveil an algorithm aimed at constructing iteratively

instantons of increasing rank from solutions of the gravitino equation, focusing on the

scenario of dH = 0; these solutions are called “instanton towers” (cf. Proposition 2.5.1).

2.1 Killing spinors with parameter ¼

For the purposes of this section, we fix Mn to be a spin-oriented manifold

M , which spin structure P̃ induces the bundle of spinors S via spin representation

» : Spin(n) → SO(∆n) (where ∆n
∼= R

2+n/2,

), i.e., S = P̃ ×» ∆n, cf. [LM90].

One of the main challenges to introducing natural curvature quantities asso-

ciated with a generalized metric G is the absence of a uniquely determined analogue of

the Levi-Civita connection [CSCW11, GF19]. Instead, we consider a pair of differential

operators

D+
− : Γ(V+) → Γ(V ∗

− ¹ V+) and D−
+ : Γ(V−) → Γ(V ∗

+ ¹ V−), (2.1.1)

defined on sections a− ∈ Γ(V−) and b+ ∈ Γ(V+) respectively by

ïa−, D
+
−b+ð = Ã+[a−, b+] and ïb+, D

−
+a−ð = Ã−[b+, a−].

In the sequel, we will simply write Da−b+ := ïa−, D
+
−b+ð, and similarly for D−

+. They satisfy

natural Leibniz rules concerning the anchor map for any smooth function f ∈ C∞(M):

Da−(fb+) = Ã(a−)(f)b+ + fDa−b+,

Db+(fa−) = Ã(b+)(f)a− + fDa+a−.

Associated with the pair (G, div), there are canonical first-order differential

operators defined via the operators D∓
± as mentioned above [GFRT16, GF19] (see also

[CSCW11]):

DS
− : Ω0(S) → Ω0(V ∗

− ¹ S), and /D
+

: Ω0(S) → Ω0(S). (2.1.2)

The operator DS
− corresponds to the unique lift to the spinor bundle S of the metric-

preserving operator D+
− in (2.1.1). The Dirac-type operator /D

+ is defined by the formula

/D
+
¸ := µj ·Dµj

¸,

where {µj} is an orthonormal basis for V+ and D ∈ D0(G, div) the torsion-free generalized

connection constructed in Section 1.5 (cf. Lemma 1.5.3). Here we are using the isometry

X + gX ∈ V+
∼= X ∈ (TM, g) to consider the connection D induced on spinors. These

two operators can written in terms of more elementary concepts.
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Lemma 2.1.1. Let (G, div) be a generalized metric and a divergence operator on a tran-

sitive Courant algebroid E, and let (H, ¹) be the unique pair satisfying (1.1.8) determined

by G, where H ∈ Ω3(M) and ¹ is a principal connection on P . Denote divG − div = ïe, ·ð,

set · = g(Ãe+, ·) ∈ T ∗M . Then, for any spinor ¸ ∈ Ω0(S) and a− = X+r−g(X) ∈ Γ(V−),

one has

DS
a−
¸ := ∇+

X¸ − ïF¹, rð · ¸, (2.1.3)

/D
+
¸ := /∇

1/3
¸ − 1

2
· · ¸, (2.1.4)

where ∇
1/3
X Y = ∇g

XY + 1
6
g−1H(X, Y, ·) and /∇

1/3
is the associated Dirac operator.

Proof. [GFRT16, Lemma 5.2].

Once the relevant operators are introduced, we can proceed to discuss our

primary system of equations of interest, which are the Killing spinor equations in the

context of generalized geometry.

Definition 2.1.2. Let E be a transitive Courant algebroid over a spin manifold M , and

fix a constant ¼ ∈ R. A triple (G, div, ¸), given by a generalized metric G, a divergence

operator div, and a spinor ¸ ∈ Ω0(S), is a solution of the Killing spinor equations with

parameter ¼, if

DS
−¸ = 0, (2.1.5)

/D
+
¸ = ¼¸. (2.1.6)

From their origins in theoretical physics, we will refer to (2.1.5) as the gravitino equation,

and (2.1.6) as the dilatino equation [dSJGFLSE24].

By the Lemma 2.1.1, where we have expression for the operators DS
− and /D

+,

the gravitino and dilatino equations are:

∇+
X¸ − ïF¹, rð · ¸ = 0,

(

/∇
1/3

−
1

2
·
)

· ¸ = ¼¸.

Since r is arbitrary in the expression above, we can also rewrite the first equation (gravitino)

in two parts. The Killing spinor equations then become:

∇+¸ = 0, F¹ · ¸ = 0,
(

/∇
1/3

−
1

2
·
)

· ¸ = ¼¸. (2.1.7)

Note that these equations don’t depend on the Courant algebroid structure, so normally,

they are stated together with the heterotic Bianchi identity (1.1.8): dH = ïF¹ ' F¹ð.

Any solution (g,H, ¹, ¸, ·) of (2.1.7) satisfying the heterotic Bianchi identity

(1.1.8) determines a transitive Courant algebroid as in Definition 1.1.5, endowed with
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a solution of the gravitino and dilatino equation in Definition (2.1.2). The proof is in

[GFRT20, Proposition A.6] and an almost identical to the proof of [ACDAdLHGF24,

Lemma 3.8].

Remark 2.1.3 (Even dimensions). In even dimensions, the system (2.1.5) and (2.1.6) for a

spinor ¸ inducing a SU(m)-structure forces ¼ = 0, cf. [GFRT16, GF19]. ⃝

Remark 2.1.4. In the mathematical physics literature, the name gravitino equation is often

reserved only for the part ∇+¸ = 0, while the second receives the name of gaugino equation,

referring to the superpartners of the graviton field and the gauge field, respectively (see,

e.g. [II05]). The unified treatment of the first two equations (2.1.7) is motivated by the

way they appear in generalized geometry (2.1.5). ⃝

We next present the first structural property of the Killing spinor equations

(2.1.5) and (2.1.6) with parameter ¼ about generalized Ricci-flat metrics, which motivates

Definition 2.1.2. This result is based on an exciting formula for the generalized Ricci tensor

in terms of operators DS
− and /D

+, discovered in the physics literature [CSCW11] (without

proof) and first established in [GF19, Lemma 4.7].

Lemma 2.1.5. Let (G, div) be a pair given by a generalized metric and a divergence

operator on a transitive Courant algebroid E over a spin manifold M . Then, for any

a− ∈ Ω0(V−) and any spinor ¸ ∈ Ω0(S), the generalized Ricci tensor GRic+
G,div ∈ Γ(V ∗

−¹V ∗
+)

satisfies

ïa−,GRic+
G,divð · ¸ = 4

(

/D
+
DS
a−

−DS
a−
/D

+
−

n∑

j=1

ej ·DS
Ã−[ej ,a−]

)

¸,

where {ej} is any choice of local orthonormal frame for V+.

Proof. Cf. [GF19, Lemma 4.7]

As a direct consequence of the previous formula, any solution of the Killing

spinor equations with parameter ¼ is generalized Ricci-flat.

Proposition 2.1.6. Let (G, div, ¸) be a solution of the Killing spinor equations as in

Definition (2.1.2) with parameter ¼ ∈ R, on a transitive Courant algebroid E over a spin

n-manifold M . Provided that ¸ is nowhere-vanishing on M , the pair (G, div) satisfies

GRic+
G,div = 0.
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More explicitly, in terms of the tuple (g,H, ¹, ¸, ·) determined by (G, div), cf. Proposi-

tion 1.5.5 one has1

Ricg − 1
4
H2 + F¹ ◦ F¹ + 1

2
L·#g = 0,

d∗H − d· + i·#H = 0,

d¹∗F¹ − F¹ @H + i·#F¹ = 0.

(2.1.8)

where F¹ ◦ F¹ =
∑

j

ïiej
F¹, iej

F¹ð, for some local orthonormal frame {ej} for g.

Proof. Applying Lemma 2.1.5 to a solution of the Killing spinor equations in Definition

(2.1.2), we have

ïa−,GRic+
G,divð · ¸ = −4DS

a−
/D

+
¸ = −4¼DS

a−
¸ = 0,

for every a− ∈ Ω0(V−). Consequently,

|ïa−,GRic+
G,divð|2¸ = ïa−,GRic+

G,divð · ïa−,GRic+
G,divð · ¸ = 0,

and therefore |ïa−,GRic+
G,divð|2 = 0 for every section a−, since ¸ is nowhere-vanishing. The

first part of the proof follows now from the fact that the pairing on V+ is positive-definite.

As for the second part of the statement, equations (2.1.8) follow from the explicit

formula for the generalized Ricci tensor (1.5.5), together with the unique decomposition

of Ric+ = Ric∇+ and ∇+· into symmetric and skew-symmetric 2-tensors:

Ric+ = Ricg −
1

4
H2 −

1

2
d∗H,

∇+· =
1

2
L·#g +

1

2
d· −

1

2
i·#H.

(2.1.9)

see e.g. [GFS20, IP01].

Remark 2.1.7. When · = dϕ, for a smooth function ϕ, equations (2.1.8) match the heterotic

supergravity equations of motion for the metric, the 3-form flux, and the gauge field, in the

mathematical physics literature, see e.g. [GF14, Mol24]. This fact suggests that solutions

of the Killing spinor equations (cf. Definition (2.1.2)) with closed, or even exact, one-form

·, play a special role; we explore this aspect in Section 2.4. ⃝

1 The notation α @
1 β means for a 2-form α = 1

2! αijeij and a 3-form β = 1
3! βijkeijk, we have:

α @
1 β :=

1

2
αµ

iβµjkeijk ∈ Ω3(M).

For details about partial contractions, cf. Appendix A.2. In the same way, β2 = β @ β = ïβ, βð.
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2.2 Coupled instantons

In order to introduce our equations of interest, we first fix a transitive Courant

algebroid E = TM · adP · T ∗M over an oriented spin manifold M and which alge-

broid structure is determined by a pair (H, ¹). Considering the generalized metric as in

Example 1.2.4, we can identify V− isometrically with TM · adP via

Ã− : (TM · adP, ï·, ·ð0) −→ V−

X + r 7−→ X + r − gX
(2.2.1)

where ïX + r,X + rð0 = g(X,X) − ïr, rð. With this, we now introduce the connection D

on the vector bundle TM · adP [dlOLS18a, GFGM23]:

D =




∇−

F
 

−F d¹



 , (2.2.2)

where ∇− = ∇g − 1
2
g−1H is the Hull connections and F ∈ Ω1(Hom(TM, adP )) is the

Hom(TM, adP )-valued 1-form

(iXF)(Y ) := F¹(X, Y ) (2.2.3)

and F
 ∈ Ω1(Hom(adP, TM)) is the corresponding ï·, ·ð0-adjoint

(iXF
 )(r) = −g−1ïiXF¹, rð

0.

We will use the standard notation R∇± for the curvature of ∇± and also ∇¹,± for the

covariant derivative induced by ¹ and ∇± on Λ2T ∗M ¹ adP . In particular,

(∇¹,±
Z F¹)(X, Y ) = d¹Z(F¹(X, Y )) − F¹(∇

±
ZX, Y ) − F¹(X,∇

±
ZY ) (2.2.4)

An explicit formula for the curvature of D is given in the lemma below.

Lemma 2.2.1. The curvature of D is given by

FD =




R∇− − F

 ' F −(∇¹,+F¹)
 

∇¹,+F¹ [F¹, ·] − F ' F
 



 , (2.2.5)

where

iY iXF
 ' F(Z) = g−1ïiY F¹, F¹(X,Z)ð − g−1ïiXF¹, F¹(Y, Z)ð,

iY iXF ' F
 (r) = F¹(Y, g

−1ïiXF¹, rð) − F¹(X, g
−1ïiY F¹, rð).

Proof. Following [GFGM23, Lemma 4.7], we conclude the two terms on the diagonal, and

we have that the non-diagonal terms of the matrix of FD are given by I and I
 , where I is

given by

iY iXI(Z) = (∇¹,−
Z F¹)(X, Y ) + F¹(X, g

−1iZiYH) − F¹(Y, g
−1iZiXH)
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and our result is obtained computing directly:

iW iV I(Z) = (∇¹,−
Z F¹)(V,W ) − F¹(V,H(Z,W )) + F¹(W,H(Z, V ))

= d¹Z(F¹(V,W )) − F¹(V,∇
−
ZW ) − F¹(∇

−
ZV,W ) − F¹(V,H(Z,W ))

+ F¹(W,H(Z, V ))

= d¹Z(F¹(V,W )) − F¹
(

V,∇g
ZW + 1

2
H(Z,W )

)

− F¹
(

∇g
ZV + 1

2
H(Z, V ),W

)

= (∇¹,+
Z F¹)(V,W ).

and the result follows.

We can finally define the notion of coupled G-instantons using the connection

D in (2.2.2).

Definition 2.2.2. Let E be a transitive Courant algebroid over an oriented spin manifold

Mn. A pair (G, ¸), given by a generalized metric G and a spinor ¸ ∈ Ω0(S), is a solution

of the coupled instanton equation, if

FD · ¸ = 0, (2.2.6)

where the connection D in TM · adP is defined in (2.2.2). When ¸ is nowhere-vanishing,

denoting by G the stabilizer of ¸ in Spin(n), we will refer to a solution of (2.2.6) as a

coupled G-instanton.

Examples of solutions for the coupled instanton equations will be discussed in

Section 4.5 in the context of G2-structures.

Remark 2.2.3. Due to the Lemma 2.2.1, the coupled G-instanton equation is equivalent to

the following system of equations

(R∇− − F
 ' F) · ¸ = 0,

∇¹,+F¹ · ¸ = 0,

[F¹ · ¸, ·] − F ' F
 · ¸ = 0,

dH − ïF¹ ' F¹ð = 0.

(2.2.7)

Conversely, any solution (g,H, ¹, ¸) of (2.2.7) determines a transitive Courant Courant

algebroid as in Example 1.2.4, endowed with a solution of the coupled instanton equation

(2.2.6). ⃝

We introduce in sequence two problems that link the coupled instanton equation

(2.2.6) to the Killing spinor equations in Definition 2.1.2 and generalized Ricci-flat metrics,

providing essential motivation for their study. We first observe that, if Mn is even-

dimensional with n = 2m, then any solution of the gravitino equation in (2.1.5), with
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complex pure spinor ¸ and integrable complex structure is, in fact, a coupled SU(m)-

instanton, in the sense of Definition 2.2.2, cf. [GFGM23, Lemma 5.4]. In this case, solutions

of the Killing spinor equations with ¸ pure and · exact are in correspondence with solutions

of the Hull–Strominger system on complex Calabi-Yau manifolds, with the Hermitian

Yang-Mills Ansatz, see [GFGM23]. This correspondence motivates the following.

Problem 1. Let E be a transitive Courant Courant algebroid over an oriented spin

manifold Mn. Let (G, ¸) be a solution of the gravitino equation in (2.1.5), i.e.

DS
−¸ = 0.

Then, (G, ¸) satisfies the coupled instanton equation (2.2.6).

More explicitly, the data (E,G, ¸) in the hypothesis of the previous Problem is

equivalent to a tuple (g,H, ¹, ¸) solving the equations:

∇+¸ = 0, F¹ · ¸ = 0, dH − ïF¹ ' F¹ð = 0. (2.2.8)

Furthermore, coupled SU(m)-instantons which satisfy the gravitino equation in (2.1.5)

with integrable complex structure are generalized Ricci-flat by [GFGM23, Proposition 5.6],

for a suitable choice of divergence operator canonically determined by the Lee form of the

SU(m)-structure, which is the motivation for our second problem. This result is recovered

with the theory in Chapter 6, cf. Theorem 6.3.6.

Problem 2. Let E be a transitive Courant algebroid over an oriented spin manifold

Mn. Let (G, ¸) be a solution of the coupled instanton equation (2.2.6). Find the precise

conditions, in terms of the G-structure determined by ¸, which imply that

GRic+
G,div0

= 0,

for a canonical choice of divergence operator div0 = div(G, ¸) uniquely determined by the

pair (G, ¸).

Remark 2.2.4. Notice that the generalized Ricci tensor Ric+
G,div depends only on ·+ =

1
2
(Zo + ·) in the decomposition e = Z + z + · where ïe, ·ð := divG − div, for ·± ∈ Γ(T ∗M)

and z ∈ Γ(adP ), see Theorem 1.5.5. We expect a solution of (2.1.5) to determine the

divergence uniquely by imposing the constraint e ∈ T ∗M . ⃝

In subsequent Section 2.3, we present a complete answer to Problem 1 in

arbitrary dimensions via a spinorial proof, cf. Theorem 2.3.2. Section 4.2 and Section

4.3 are devoted to studying those two Problems in the 7-dimensional case, where any

nowhere-vanishing spinor determines a G2-structure. In particular, by direct application

of Theorem 2.3.2, in Theorem 4.3.6, we extend a result by de la Ossa, Larfors and Svanes

in seven dimensions in the physics literature [dlOLS18a, dlOLS18b].
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On the other hand, we propose an approach to Problem 1 and Problem 2 in

Chapter 6 not using spinors, but an alternative notion of instantons which will agree for

G2, Spin(7) and SU(m)-instantons. In this alternative, we will solve both problems.

2.3 Generalized Ricci flatness for gravitino solutions

This section presents a complete solution to Problem 1 in arbitrary dimensions.

We will need the following essential technical lemma, which generalises [dlOLS18a, Lemma

5], initially proved in dimension 7, to arbitrary dimensions.

Lemma 2.3.1. Let (Mn, g) be an oriented spin manifold Riemannian manifold. Let

³, ´ ∈ Ω2(M) a pair of 2-forms on M and ¸ ∈ Γ(S) an arbitrary spinor. Then, we have2

(³ · ´ − ´ · ³) · ¸ =
(

³ @
1 ´
)

· ¸ (2.3.1)

Proof. Writing the 2-forms in the standard way ³ = 1
2!
³ije

ij and ´ = 1
2!
´ije

ij and using

the canonical embedding of Λ2 into the Clifford algebra ej ' ek = ejk 7→ 1
2
ejek, we have

³ · (´ · ¸) =
1

16
³ij´kleiejekel · ¸, ´ · (³ · ¸) =

1

16
³ij´klekeleiej · ¸. (2.3.2)

Furthermore, µ = ³ @
1 ´ ∈ Ω2 is given by µ = 1

2
(³jk´jl − ³jl´jk) e

kl and, consequently:

µ · ¸ =
1

4
(³jk´jl − ³jl´jk) ekel · ¸. (2.3.3)

The basic Clifford identity eiej = −ejei − 2¶ij implies

ekeleiej = −ekeielej − 2¶ilekej = ekeiejel + 2¶jlekei − 2¶ilekej

= −eiekejel − 2¶ikejel + 2¶jlekei − 2¶ilekej

= eiejekel + 2¶jkeiel − 2¶ikejel + 2¶jlekei − 2¶ilekej.

Using the previous expression and substituting in the first equation in (2.3.2), we then

have

´ · (³ · ¸) =
1

16
³ij´kl (eiejekel + 2¶jkeiel − 2¶ikejel + 2¶jlekei − 2¶ilekej) · ¸

= ³ · (´ · ¸) +
(

1

8
³ij´jleiel −

1

8
³ij´ilejel +

1

8
³ij´kj ekei −

1

8
³ij´kiekej

)

· ¸

= ³ · (´ · ¸) +
(

−
1

4
³ij´ilejel +

1

4
´jk³jiekei

)

· ¸

= ³ · (´ · ¸) − (³ @
1 ´) · ¸,

as desired.
2 The notation α @

1 β means a ’partial contraction’ in the sense that for 2-forms α = 1
2! αijeij and

β = 1
2! βijeij , we have:

α @
1 β := αµ

iβµjeij ∈ Ω2(M).

For details about partial contractions, cf. Appendix A.2.
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As in the previous section, we consider a transitive Courant algebroid E over an

oriented spin manifold Mn. A solution (G, ¸) of the gravitino equation in Definition (2.1.2)

is equivalent to a tuple (g,H, ¹, ¸) solving the equations (2.1.7) and the heterotic Bianchi

identity (1.1.8). Similarly, the coupled instanton equation (2.2.6) on E is equivalent to a

tuple (g,H, ¹, ¸) solving the coupled instanton system (2.2.7). With these preliminaries,

the following result provides a complete solution to Problem 1 in arbitrary dimensions.

Theorem 2.3.2. Let P → M be a principal K-bundle over an oriented spin manifold of

arbitrary dimension. Then any solution (g,H, ¹, ¸) of the equations

∇+¸ = 0, F¹ · ¸ = 0, dH − ïF¹ ' F¹ð = 0 (2.3.4)

solves the coupled instanton system (2.2.7), and consequently the connection on T · adP

defined in (2.2.2) is an instanton with respect to ¸, i.e.

FD · ¸ = 0.

In particular, given any solution (g,H, ¹, ¸, ·) of the Killing spinor equations (2.1.7),

satisfying the heterotic Bianchi identity (1.1.8), the tuple (g,H, ¹, ¸) solves the coupled

instanton system (2.2.7).

Proof. To prove that the first equation in (2.2.7) is satisfied with our hypothesis, we start

by writing (using the summation convention, as we shall use throughout the proof):

F
 ' F :=

1

2
f lkije

ij ¹ ek ¹ el ∈ Ω2(M,End(TM))

in a local orthonormal frame {ej} of TM . The coefficients are computed as follows:

f lkij := el(iej
iei
F
 ' F(ek)) = el

(

g−1ïiej
F¹, F¹(ei, ek)ð − g−1ïiei

F¹, F¹(ej, ek)ð
)

= el
(

g−1ïFjpe
p, Fikð − g−1ïFipe

p, Fjkð
)

= el
((

ïFj
p, Fikð − ïFi

p, Fjkðep
))

= ïFj
l, Fikð − ïFi

l, Fjkð,

where F¹ := 1
2
Fµ¿e

µ¿ and Fµ¿ := F¹(eµ, e¿) ∈ Ω0(adP ). Note that

ïF l ' Fkð = ïF l
i, Fkjðe

ij =
1

2

(

ïF l
i, Fkjð − ïF l

j, Fkið
)

eij,

i.e.

ïF l
j, Fkið − ïF l

i, Fkjð = f lkij = −ïF l ' Fkðij.

On the other hand,

ïF¹ ' F¹ð =
1

4
ïFli, Fkjðe

likj =
1

12
(ïFli, Fkjð − ïFlk, Fijð + ïFlj, Fikð) e

likj

=
1

12

(

ïFli, Fkjð − ïFlj, Fkið − ïFlk, Fijð
)

elikj

= −
1

12
(−ïFl ' Fkðij + ïFlk, Fijð) e

likj,
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which gives the components

−ïFl ' Fkðij + ïFlk, Fijð = −
1

2
ïF¹ ' F¹ðlikj.

Combining the above and introducing the heterotic Bianchi identity dH = ïF¹ ' F¹ð, we

therefore have

f lkij = −ïF l ' Fkðij = −
1

2
ïF¹ ' F¹ð

l
kij − ïF¹, F

l
kðij

= −
1

2
(dH)lkij − ïF¹, F

l
kðij.

From the relation between the curvatures of the connections ∇± = ∇g ± 1
2
g−1H:

g(R∇+(X, Y )Z,W ) = g(R∇−(Z,W )X, Y ) +
1

2
dH(X, Y, Z,W ), (2.3.5)

we deduce:

R∇− − F
 ' F = −

1

2

(

f lkij − (R∇−) lkij
)

eij ¹ ek ¹ el

= −
1

2

(

−
�
�
�
�
��1

2
(dH)lkij − ïF¹, F

l
kðij +

�
�
�

�
��1

2
(dH)lkij − (R∇+) ij

l
k

)

eij ¹ ek ¹ el

=
1

2

(

ïF¹, F
l
kðij + (R∇+) ij

l
k

)

eij ¹ ek ¹ el. (2.3.6)

Applying now the first equation in (2.3.4), we also have

g(R∇+(X, Y )ei, ej)eiej · ¸ = ∇+
X∇+

Y ¸ − ∇+
Y ∇+

X¸ − ∇+
[X,Y ]¸ = 0,

for arbitrary vector field X, Y ∈ Γ(TM). Hence, the first equation in (2.2.7) follows from
(

R∇− − F
 ' F

)

· ¸ =
1

4

(

g(R∇+(el, ek)ei, ej)eiej · ¸ + 2ïF¹ · ¸, F l
kð
)

¹ ek ¹ el = 0.

We next prove that the second and third equations in (2.2.7) are satisfied. Since ∇+¸ = 0

and F¹ · ¸ = 0 by hypothesis, we have

(∇¹,+F¹) · ¸ = ∇¹,+(F¹ · ¸) = 0, and [F¹ · ¸, ·] = 0,

so, it only remains to show that F ' F
 · ¸ = 0. To see this, taking an orthonormal basis

{·j} for the Lie algebra k, write

F ' F
 =

1

2
hlkije

ij ¹ ·k ¹ ·l ∈ Ω2(M,End(adP )),

where the coefficients are given by

hlkij = · l
(

iej
iei
F ' F

 (·k)
)

= · l
(

F¹(ej, g
−1ïiei

F¹, ·kð) − F¹(ei, g
−1ïiej

F¹, ·kð)
)

= · l
(

F¹(ej, ïFi
aea, ·kð) − F¹(ei, ïFj

aea, ·kð)
)

= · l
(

F¹(ej, ïF
³
i
aea ¹ ·³, ·kð) − F¹(ei, ïF

³
j
aea ¹ ·³, ·kð)

)

= · l
(

F¹(ej, Fki
aea) − F¹(ei, Fkj

aea
)

= · l
(

F³
jaFki

a·³ − F³
iaFkj

a·³
)

= F l
jaFki

a − F l
iaFkj

a. (2.3.7)

Those are precisely the coefficients of the 2-form F l
@

1 Fk, and hence the proof follows

from F¹ · ¸ = 0 by direct application of Lemma 2.3.1.
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2.4 Generalized scalar curvature

A comparison with the physics setup (see Remark 2.1.7) leads naturally to

asking whether the Killing spinor equations (cf. Definition 2.1.2) imply the analogue of

the equation of motion for the dilaton field, a scalar equation given by the vanishing of

the function

Rg −
1

2
|H|2 + |F¹|

2 − 2d∗· − |·|2 ∈ C∞(M), (2.4.1)

where (g,H, ¹, ¸, ·) is the associated data. This scalar quantity plays an important role

in the theory of generalized Ricci flow, being closely related to the volume density of

the generalized Perelman energy functional, see [GFS20, GFGMS24]. In (2.4.1), and the

sequel, we use the Hodge norm on differential forms |´|2 = ´ @ ´ for ´ ∈ Ωk. Note further

that the summand |F¹|
2 in (2.4.1) is computed using the bilinear form ï·, ·ð : k ¹ k −→ R,

via |F¹|
2 = ïF¹ @ F¹ð, Hence, it might not be non-negative as a function of M .

To describe the dynamics of the dilaton field and provide an answer to the

above question, we start by giving an interpretation of the scalar (2.4.1) in generalized

geometry, using the operators (2.1.2). We build on a Lichnerowicz-type formula for the

cubic Dirac operator /∇
1/3 due to Bismut [Bis89], see also [AF03, Theorem 6.2]. We follow

closely [GFS20, Proposition 3.39], see also [CSCW11] (alternative approaches can be found

in [AMP24, ŠV20, SSCV24]). Given a pair (G, div), we can define a rough Laplacian

operator

∆S
− : Ω0(S) → Ω0(S)

by the formula

∆S
−¸ := trV−(D−

− ¹DS
−)(DS

−¸),

where we recall that DS
−¸ ∈ Ω0(V ∗

− ¹ S) and D−
− is the operator defined in Lemmas 1.5.2

and 1.5.3 and Lemma 1.5.2. It is not difficult to see that ∆S
− is independent of the choice of

G-compatible torsion-free generalized connection with divergence div (see [GF19, Lemma

3.4]). Hence, it is a natural quantity associated canonically with the pair (G, div). We give

below an explicit formula for ∆S
−.

Lemma 2.4.1. Let E = TM·adP·T ∗M transitive Courant algebroid as in Example 1.2.4.

Define e ∈ Ω0(E) by ïe, ·ð := divG − div where e = Z + z + · and consider ·± = 1
2
(Zo + ·).

Then, for any spinor ¸ ∈ Ω0(S), one has

∆S
−¸ = (∇+)∗∇+¸ +

1

4
ïF¹ ' F¹ð · ¸ −

1

4
|F¹|

2¸ − ∇+

·#
−

¸ + ïF¹, zð · ¸, (2.4.2)

where ∇+ = ∇g + 1
2
g−1H.

Proof. Taking a−, c− ∈ Ω0(V−), we have

ï(D−
− ¹DS

−)(DS
−¸), a− ¹ c−ð := DS

a−
DS
c−
¸ −DS

Da−c−
¸.
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To calculate the different elements in this formula explicitly, consider the natural isometries,

cf. (1.2.2),

(TM, g) → V+

X 7→ X + gX
and

(TM,−g) · (adP, ï·, ·ð) → V−

X + r 7→ X + r − gX.
(2.4.3)

Via the identification TM · adP ∼= V−, we have, cf. Example 1.2.4:

D−
X+r(Z + t) = ∇

−1/3
X Z − 2

3
g−1ïiXF¹, tð) − 1

3
g−1ïiZF¹, rð

+ d¹Xt− 2
3
F¹(X,Z) − 1

3
[r, t]

+ 1
dim k+n−1

(

(ïr, tð − g(X,Z))(z + ·#
− ) − (ïz, tð − ·−(Z))(X + r)

)

.

Since S is the spinor bundle for (TM, g), the Clifford bundle Cl(TM) is defined via the

relation (we follow [LM90])

X ·X = −g(X,X)

and, consequently, in a local orthonormal frame {ej} of T , the 2-forms ei ' ej ∈ so(T ) =

Λ2T ∗M embed as 1
2
ei · ej into Cl(T ), cf. [LM90, Proposition 6.2]. Hence, we have an

identification of DS
− in (2.1.3) with the operator:

DS
X+r¸ = ∇+

X¸ − ïF¹, rð · ¸,

for any local spinor ¸. We choose a local orthogonal frame {vµ} of V− and let vµ denote

the corresponding metric dual frame so that ïvµ, v
¿ð = ¶µ¿ , which we assume without loss

of generality to be of the form:

vµ =







Xµ if 1 f µ f n,

rµ−n if n < µ f dim k + n,
vµ =







−Xµ if 1 f µ f n,

rµ−n if n < µ f dim k + n,

where Xµ lie in TM and rµ lie in adP , and analogously, for their metric duals. Using this,

we calculate

n∑

µ=1

DS
vµ
DS
vµ¸ =

n∑

µ=1

DS
Xµ

(

−∇+
Xµ
¸
)

+
dim k∑

µ=1

DS
rµ

(−ïF¹, r
µð · ¸)

= −
n∑

µ=1

∇+
Xµ

∇+
Xµ
¸ +

dim k∑

µ=1

ïF¹, rµðïF¹, r
µð · ¸

= −
n∑

µ=1

∇+
Xµ

∇+
Xµ
¸ +

1

16

n∑

i,j,k,l=1

ïFij, FklðXiXjXkXl · ¸

= −
n∑

µ=1

∇+
Xµ

∇+
Xµ
¸ +

1

4
ïF¹ ' F¹ð · ¸ −

1

4
|F¹|

2¸.

Since the element

Ωk =
dim k∑

µ=1

[rµ, r
µ] ∈ k
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is independent of the choice of local frame {rµ} and therefore

Ωk =
dim k∑

µ=1

[rµ, rµ] = −Ωk = 0.

Using this fact, we also have

dim k+n∑

µ=1

D−
vµ
vµ =

n∑

µ=1

DXµ(−Xµ) +
dim k∑

µ=1

Drµr
µ

=
n∑

µ=1

(

−∇
−1/3
Xµ

Xµ + 2
3
F¹(Xµ, Xµ) + 1

dim k+n−1
(¶µµ(z + ·#

− ) − (·−(Xµ))Xµ)
)

+
dim k∑

µ=1

(

−1
3
[rµ, r

µ] + 1
dim k+n−1

(¶µµ(z + ·#
− ) − (ïz, rµð)rµ)

)

= −
n∑

µ=1

(

∇g
Xµ
Xµ

)

+ 1
dim k+n−1

(nz + (n− 1)·−)

+ 1
dim k+n−1

((dim k − 1)z + dim k·#
− )

= −
n∑

µ=1

(

∇g
Xµ
Xµ

)

+ ·#
− + z.

From the last formula
n∑

µ=1

DS
Dvµvµ

¸ = −
n∑

µ=1

∇+
∇g

Xµ
Xµ
¸ + ∇+

·#
−

¸ − ïF¹, zð · ¸.

Using now [AF03, Theorem 6.1], which states

(∇+)∗∇+¸ = −
n∑

µ=1

(

∇+
Xµ

∇+
Xµ
¸ + ∇+

∇g
Xµ

Xµ
¸
)

,

consequently

∆S
−¸ = (∇+)∗∇+¸ +

1

4
ïF¹ ' F¹ð · ¸ −

1

4
|F¹|

2¸ − ∇+

·#
−

¸ + ïF¹, zð · ¸.

as desired.

We are ready to provide the technical results of this section.

Proposition 2.4.2. Let (G, div) be given by a generalized metric and a divergence

operator on a transitive Courant algebroid E. Consider the pair (H, ¹) satisfying (1.1.8)

uniquely determined by G. Define e = Z + z + ·̃ ∈ Ω0(E) by ïe, ·ð := divG − div and set

·± = 1
2
(Zo + ·̃) ∈ Ω0(T ∗M) and · = ·+. Then, for any spinor ¸ ∈ Ω0(S), one has

((

/D
+
)2

− ∆S
− −DS

ẽ−

)

¸ =
1

4
(S+ − 2d·) · ¸, (2.4.4)

ẽ− = Ã−(·# + ·#
− ) + z and

S+ = Rg −
1

2
|H|2 + |F¹|

2 − 2d∗· − |·|2 . (2.4.5)
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Proof. Let’s use the same notation as in Lemma 2.4.1 and its proof. Then, the anchor

map Ã applied on the operator D+
+ is given by the following affine metric connection in

the tangent bundle [GFS20, p. 44]

∇̃XY = ∇
1/3
X Y +

1

n− 1
(g(X, Y )·# − ·(Y )X) = ∇

1/3
X Y +

1

n− 1
g−1(Xo ' ·)(Y )

and the operator /D
+, defined as the Dirac operator for D+

+ (see [GF19, Lemma 3.4]), is

therefore /D
+
¸ = /̃∇¸. Hence, given a local spinor ¸, we have

∇̃X¸ = ∇
1/3
X ¸ +

1

4(n− 1)
(−· ·X +X · ·) · ¸.

Moreover, writing · =
∑

k

·ke
k, we have

/̃∇¸ = /∇
1/3
¸ +

1

4(n− 1)

∑

j,k

·ke
j · (−ek · ej + ej · ek) · ¸

= /∇
1/3
¸ +

1

4(n− 1)

∑

j,k

·k(2¶jke
j − 2ek) · ¸ = /∇

1/3
¸ −

1

2
· · ¸.

With these preliminaries, following the proof of [GFS20, Proposition 3.39], we compute

/̃∇
2
¸ =

(

/∇
1/3
)2
¸ −

1

2

(

ej · ∇g
ej
· +

1

6
ej ·H(ej, ·

#, ·)
)

· ¸ + ∇+
·#¸ −

1

3
i·#H · ¸ −

1

4
|·|2 ¸,

where we have used that ej · ³ + ³ · ej = −2³j, for any ³ = ³je
j ∈ T ∗M . Now, for any

³, ´ ∈ T ∗M , we have (cf. [LM90, Proposition 3.9]) (³ ' ´) · ¸ = (³ · ´) · ¸ + (³ @ ´) · ¸,

and hence
∑

j

ej · ∇g
ej
· · ¸ =

∑

j

(ej ' ∇g
ej
·) · ¸ −

∑

j

(ej @ ∇g
ej
·) · ¸ = (d· + d∗·) · ¸.

Moreover,

1

3
i·#H · ¸ =

1

6

∑

j,k,l

·lHjkle
j ' ek · ¸ =

1

12

∑

j,k,l

·lHjkle
j · ek · ¸ −

1

12

∑

j

ej ·H(ej, ·, ·) · ¸.

We deduce that

/̃∇
2
¸ =

(

/∇
1/3
)2
¸ −

1

2
d· · ¸ −

1

2
d∗·¸ + ∇+

·#¸ −
1

4
|·|2 ¸.

Applying now Lemma 2.4.1 and using the Lichnerowicz-type formula [Bis89], cf. [AF03,

Theorem 6.2],
(

/∇
1/3
)2

− (∇+)∗∇+ =
1

4
Rg −

1

8
|H|2 +

1

4
dH

we conclude, applying the Bianchi identity (1.1.8),

(( /D
+

)2 − ∆S
−) · ¸ =

1

4

(

Rg −
1

2
|H|2 + |F¹|

2 − 2d∗· − |·|2
)

¸ +
1

4
dH · ¸

−
1

2
d· · ¸ + ∇+

·#¸ −
1

4
ïF¹ ' F¹ð · ¸ + ∇+

·#
−

¸ − ïF¹, z)ð · ¸

=
1

4

(

Rg −
1

2
|H|2 + |F¹|

2 − 2d∗· − |·|2
)

¸ −
1

2
d· · ¸ + ∇+

·#+·#
−

¸ − ïF¹, z)ð · ¸.

as desired
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The previous result motivates the following definition:

Definition 2.4.3. Let (G, div) be given by a generalized metric and a divergence operator

on a transitive Courant algebroid E. Define e = Z + z + ·̃ ∈ Ω0(E) by ïe, ·ð := divG − div

and set ·± = 1
2
(Zo + ·̃) ∈ Ω0(T ∗M) and · = ·+. The generalized scalar curvature

S+ = S+
G,div ∈ C∞(M)

of the pair (G, div) is defined by

S+¸ = 4
((

/D
+
)2

− ∆S
− −DS

ẽ−
+

1

2
d·
)

· ¸, (2.4.6)

for any spinor ¸ ∈ Ω0(S), where ẽ− = Ã−(·# + ·#
− ) + z. The generalized scalar curvature

is well-defined, and explicitly given by (2.4.5) in Proposition 2.4.2.

Remark 2.4.4. As we will see shortly, the generalized scalar curvature plays a distinguished

role when e ∈ Ω0(kerÃ) and [e, ·] = 0; in other words, when e gives a symmetry of the

Dorfman bracket lying in the kernel of the anchor map. In this case, one has · = −·− and

consequently ẽ− = z. Furthermore, the condition [e, ·] = 0 implies

d· + 2ïF¹, zð = 0, d¹z = 0, [z, ·] = 0.

A fascinating instance arises when z = 0, that is, when e lies on the cotangent subbundle

T ∗M ¢ E, as in this case d· = 0 and ẽ− = 0. An essential fact about S+
G,div, which we will

see in the proof of Proposition 2.4.7, is that it does not always coincide with the trace of

the symmetric part of the generalized Ricci tensor Ric+
G,div (cf. [GFS20, Remark 3.42]). ⃝

Remark 2.4.5. We can regard (2.4.6) as a local formula on M so that there is no obstruction

for the existence of the spinor bundle. Therefore, we can define the generalized scalar

curvature of a pair (G, div) by (2.4.5) for a transitive Courant algebroid over an arbitrary

smooth manifold. ⃝

We finish this section by establishing the desired relation between the generalized

Ricci-flat condition, the Killing spinor equations in Definition 2.1.2, and the generalized

scalar curvature.

Proposition 2.4.6. Let (G, div) be a pair given by a generalized metric and a divergence

operator on a transitive Courant algebroid E over an n-manifold M . Define e = Z+z+ ·̃ ∈

Ω0(E) by ïe, ·ð := divG − div and set · = 1
2
(Z + ·̃). Then, assuming that GRic+

G,div = 0,

cf. (2.1.8), one has

dS+ = (−1)n ∗ (d· ' ∗H). (2.4.7)

In particular, if d· = 0, the generalized scalar curvature of (G, div) is constant and

furthermore one has

d



|H|2 − |F¹|
2 − d∗· − |·|2



 = 0 (2.4.8)
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Proof. [Mol24, Proposition 6.4.5].

The formula (2.4.7) follows from an explicit calculation in local coordinates

while the proof of (2.4.8) follows by subtracting S+ minus the trace of the symmetric

tensor in the generalized Ricci-flat equations (2.1.8), cf. Remark 2.4.4. In the last result

of this section, we establish that solutions for the killing spinor equations have constant

generalized scalar curvature.

Proposition 2.4.7. Provided that (G, div, ¸) is a solution of the Killing spinor equations

(cf. Definition 2.1.2) with parameter ¼ ∈ R, then the generalized scalar curvature satisfies

(S+ − 4¼2 − 2d·) · ¸ = 0,

where divG − div = ïe, ·ð and · = g(Ãe+, ·) ∈ T ∗M . In particular, if d· = 0 and ¸ is

nowhere-vanishing, one has

S+ = |H|2 − |F¹|
2 − d∗· − |·|2 = 4¼2.

Proof. Combining the Killing spinor equations (2.1.5) and (2.1.6) with (2.4.4), we conclude

immediately

(S+ − 2d·)¸ = 4
((

/D
+
)2

− ∆S
− −DS

ε̃−

)

¸ = 4¼2¸.

The last part of the statement follows, as in the proof of Proposition 2.4.6, by subtracting

S+ minus the trace of the first equation in (2.1.8).

Remark 2.4.8. Equation (2.4.7) implies that, for a Ricci-flat pair (G, div) with d· = 0, the

dilaton equation of motion S+ = 0 is satisfied, up to an overall constant on the manifold.

Furthermore, for any solution of the Killing spinor equations in Definition 2.1.2 with

d· = 0 and parameter ¼ ̸= 0, one has S+ > 0. ⃝

Remark 2.4.9. For a solution (G, div, ¸) of the Killing spinor equations in dimension 6

with ¸ ̸= 0, one has that ¼ = 0 (because ¸ is pure). Imposing further that · = dϕ, one has

that (G, div, ¸) is equivalent to a solution of the Hull-Strominger system [GFRT16] and

the previous result implies that S+ = 0 in this case. ⃝

2.5 Instanton towers

We will now discuss a curious phenomenon which creates infinite numbers of

instantons, with increasing rank, from solutions of the gravitino equation (2.1.5) with

dH = 0. Concrete examples of these instanton towers are discussed in Section 4.5 in the

seven-dimensional case by application of Theorem 4.3.6. Fundamental to our development
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is the following symmetry, originally due to Bismut [Bis89] (see also [GFS20, Proposition

3.21]), between the curvatures of the metric connections ∇± = ∇g ± 1
2
g−1H with totally

skew-symmetric torsion ±H ∈ Ω3:

g(R∇+(X, Y )Z,W ) = g(R∇−(Z,W )X, Y ) +
1

2
dH(X, Y, Z,W ). (2.5.1)

We discuss next the salient implications of the previous result for instanton

engineering on the oriented spin n-manifold M . To start the iteration scheme, consider

M endowed with a metric g, a spinor ¸, a three-form H ∈ Ω3, and a connection ¹ on a

principal K-bundle P → M , satisfying

∇+¸ = 0, F¹ · ¸ = 0, dH = 0.

We consider the Lie algebra k of the structure group K of P endowed with a bi-invariant

pairing ï, ð. Using that (d¹)2 = [F¹, ·], it follows that the covariant derivative ∇1 = d¹ on the

orthogonal bundle V1 = (adP, ï, ð) is an instanton with respect to ¸. Let P1 be the principal

bundle of split orthogonal frames of V1 · V1, with structure group K1 = SO(r1) × SO(r1),

for r1 = dim k (here we abuse notation for the special orthogonal group, since ï, ð may

have arbitrary signature), and Lie algebra k1 endowed with the neutral pairing

ï·, ·ð1 = trso(r1) − trso(r1) .

The product connection D1 = ∇1×∇1 provides a new solution (g,H,D1, ¸) of the gravitino

equation (2.1.5),

∇+¸ = 0, FD1 · ¸ = 0,

together with a trivial split solution of the Bianchi identity (cf. (1.1.8)):

dH = 0, ïFD1 ' FD1ð1 = trso(r1)(F∇1 ' F∇1) − trso(r1)(F∇1 ' F∇1) = 0. (2.5.2)

This type of ansatz for solving the (supersymmetry) equations is known in the supergravity

literature as the standard embedding, cf. [GFRST22].

Applying now Theorem 2.3.2, from the data (g,H,D1, ¸) we can construct an

instanton ∇2 on the bundle

V2 = T · adP1

for the same metric g and spinor ¸, explicitly given by (2.2.2) (with ¹ replaced by D1).

Note that V2 is an orthogonal bundle with metric

ïX + r,X + rð2 = g(X,X) − ïr, rð1,

and the connection ∇2 is compatible with this metric. As before, let P2 be the principal

bundle of split orthogonal frames of V2 · V2, with structure group K2 = SO(r2) × SO(r2),

for r2 = n+ r1(r1 − 1), and Lie algebra k2 endowed with the neutral pairing

ï·, ·ð2 = trso(r2) − trso(r2) .
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The product connection D2 = ∇2×∇2 provides a new solution (g,H,D2, ¸) of the gravitino

equation (2.1.5) and a trivial split solution of the Bianchi identity (2.5.2). Iterating this

scheme, we obtain, by induction, an infinite tower of instantons with rank going to infinity

on a fixed manifold. We will summarise the construction using the result below.

Proposition 2.5.1. Let M be an oriented spin manifold of dimension n endowed with a

metric g, a three-form H ∈ Ω3, a spinor ¸, and a connection ¹ on a principal K-bundle

P → M , solving the equations

∇+¸ = 0, F¹ · ¸ = 0, dH = 0.

Then, there exists an infinite sequence of instantons {(Vk,∇
k)}k∈N on M , for the same

metric g and spinor ¸, where Vk is a real orthogonal bundle of rank

rk = n+ rk−1(rk−1 − 1), r1 = dimK,

and ∇k is a linear orthogonal connection on Vk.

Remark 2.5.2. Given a solution (g,H, ¸) of the equations,

∇+¸ = 0, dH = 0,

the proof of Theorem 2.3.2 implies that the connection ∇− on the orthogonal vector bundle

(TM, g) is an instanton. This is a direct consequence of the identity (2.3.5). Hence, in this

setup, one can choose ¹ = ∇− to start the iteration scheme. ⃝
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3 G2-Structures

This chapter provides an introduction to the geometry of G2-structures, which

are defined as a reduction of the frame bundle of a seven-dimensional manifold M7 from

Gl(7) to G2. In Chapter 4, we will use the theory developed in Chapter 2 applied to

manifolds endowed with G2-structures. Key references for this chapter include [SW17]

for the introductory geometric explanation of the cross product in seven dimensions,

[Bry05, Kar20, Kar08a, dlOLS18a] for the general theory of G2-structures in manifolds,

encompassing their decomposition of forms and torsion forms. Additionally, we will draw

insights from [FI02] to study the intrinsic torsion of G2-structures. Furthermore, references

such as [FKMS97, ACFH15] were consulted for the spinorial description of G2-structures.

This chapter is structured as follows: in the first Section 3.1, we explore the

concept of the cross product in seven dimensions, extending its traditional cross product

in three dimensions. By drawing parallels between the classical cross product in three

dimensions and the quaternion algebra H, we establish connections with the octonions O.

In the following, we introduce the group G2 in this context with the fundamental 3-form

φ0 ∈ Λ3(R7)∗. Furthermore, we elucidate its correlation with the metric structure of R7

(cf. Lemma 3.1.5). We finish the section with the identities for the coefficients of φ0 and

its dual È0 = ∗φ0 which will be useful throughout all the text (cf. Proposition 3.1.6). This

discussion follows mainly [SW17].

In Section 3.2, we present the existence of the 3-form φ0 ∈ Λ3(R7)∗ (funda-

mental G2-structure in R
7) induces a decomposition of the space of forms Λk(R7)∗ into

irreducible G2-representations. Through a detailed exploration of this decomposition and

the characterization of each component, we gain insight into the structure’s impact on

form spaces for general structure, which will be essential in Chapter 6, where we generalize

some results of the Chapter 4 for other geometrical structures. This section is mainly based

on [Bry05, Kar08a] and follows the conventions in [dlOLS18a].

Continuing our investigation, in Section 3.3, we present the G2-structures on

manifolds. This can be understood as the existence of the cross product in each tangent

space of a 7-dimensional manifold M . This is equivalent to the existence of a 3-form

φ ∈ Ω3(M), referred to as a G2-structure on M and locally modelled by φ0. Throughout

this chapter, we meticulously explore the geometry inherent in such structures, emphasising

the torsion they exhibit and detailing the torsion forms (cf. Propositions 3.3.2) and the

intrinsic torsion of a G2-structure (cf. Proposition 3.3.4). We follow mainly [Kar08a] for

the description of torsion forms and [FI02, Fri02] for the description of the intrinsic torsion,

included in Appendix B for general structures.
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In Section 3.4, we study the existence of compatible (with the G2-structure)

connections with totally skew-symmetric torsion. Connections with skew-symmetric torsion

have appeared in Chapter 1 and Chapter 2 (connections ∇±,∇±1/3). Within the realm of

G2-structures, the significance of such connections lies in their uniqueness when they exist.

Moreover, their torsion matches the flux H elucidated in the first two chapters. This marks

the start point of the selection process for the pair (H, ¹) (cf. Example 1.1.5) within the

context of G2: H represents the torsion of this compatible connection, and ¹ assumes the

role of the so-called G2-instantons, defined via the form φ. To find the expression of the

torsion H of the compatible connection (cf. Theorem 3.4.4), we use an original approach

(which works for other geometrical structures), which is discussed in Appendix B.

Finally, in Section 3.5, we present a characterization of G2-structures utilizing

spinors, leveraging the canonical isomorphism between G2 and a subgroup of Spin(7).

This spinorial perspective proves invaluable, especially in light of the spinorial treatment

explored in Chapter 2. The insights gleaned from this section will serve as a foundation

for the subsequent Chapter 4. This section follows mainly [FKMS97, ACFH15].

3.1 Geometrical motivation: the cross product

In elementary analytical geometry of the three-dimensional space R
3, two

operations are essential: the scalar product (also called the inner product) and the cross

product (also called vector product)

· : R3 × R
3 → R and × : R3 × R

3 → R
3.

These operations on vectors can measure angles and distances; the cross product is a

skew-symmetric operation which results in a vector, such vector is perpendicular to its

entries

(u× v) · u = (u× v) · v = 0, (3.1.1)

and the norm of scalar and cross product are “circular complementary” in the following

sense:

|u× v|2 + (u · v)2 = |u|2|v|2 (3.1.2)

The inner product is naturally generalized to any dimension and allows the same study of

angles and distance in higher dimensions.

The natural question is: “What about the cross-product in higher dimensions?”

To answer this question, we have to understand what is, actually, the cross product in R
3.

For this, we introduce the notion of quaternions. The quaternions, denoted by H, generalise

complex numbers but with three imaginary identities. Recall that the complex numbers

are the vector space C = R
2, where the standard basis is denoted by (e0, e1) =: (1, i), and

the algebra product is defined by relation i2 = −1. In the same way:
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Definition 3.1.1 (Quaternionic Algebra). The quaternions H = R
4 is a vector space with

a product defined in the standard basis (e0, e1, e2, e3) =: (1, i, j,k) by the relations

i2 = j2 = k2 = ijk = −1

this operation defines an algebra structure (associative, anti-commutative and a normed

algebra, that is, |uv| = |u| · |v|).

The most general form of a quaternion is v = a+bi+cj+dk, where a, b, c, d ∈ R.

The real part is a = Re(v) and the imaginary part is a vector part Im(v) = (b, c, d) ∈ R
3.

The natural identification Im(H) = R
3 is crucial for understanding the essence of the

cross-product.

Lemma 3.1.2. Let u, v ∈ R
3 and identify R

3 with the purely imaginary quaternions

Im(H) ¢ H. Then, the cross product of u and v can be expressed, using the product of

quaternions, as

u× v = Im(uv),

where the product on the right-hand side is the quaternionic multiplication of u and v.

With this identification, the properties of the cross product (3.1.1) and (3.1.2)

are immediate consequences of H being a normed division algebra. With this, we obtain a

way to find a cross product in other dimensions: if there is a normed algebra in R
n+1 =

R · R
n, we can define a cross product as the imaginary projection in R

n = Im(R · R
n).

In fact, cf. [SW17], the cross-product exists only in these cases.

The ‘problem’ here is that the division normed algebra doesn’t exist in every

dimension. Surprisingly, it exists only in dimensions n = 1, 2, 4, 8. In dimension n = 1 is

the algebra of real numbers R; for n = 2, we have the algebra of complex numbers; in

n = 4, the algebra of quaternionic numbers H, as we have discussed above; and for n = 8,

we have the algebra of octonions O.

Definition 3.1.3 (Octonionic Algebra). The octonions O = R
8 is a vector space with a

product defined in the standard basis (e0, . . . , e7) by the relations

ei · ej = −¶ij + εijkek; i, j ∈ {1, · · · , 7},

where ¶ij is the Kronecker delta and εijk is totally skew-symmetric with value 1 when

ijk = 123, 145, 176, 246, 257, 347, 365. This operation defines an algebra structure (non-

associative and non-commutative).

Lemma 3.1.4. Let u, v ∈ R
3 and identify R

3 with the purely imaginary quaternions

Im(H) ¢ H. Then, the cross product of u and v defined, using the product of quaternions,

as

u× v = Im(uv),
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where the product on the right-hand side is the octonionic multiplication of u and v.

Then this expression defines a cross product in the sense it satisfies (3.1.1), (3.1.2) and is

skew-symmetric.

On the cross product in R
3, we can contract the operation using the metric

(standard in R
3) and define the (3,0)-tensor φ0:

φ0(u, v, w) = g(u× v, w) = det(u, v, w),

which contains all the information about the cross-product and has the property of being

completely skew-symmetric. We have the cross product on R
7, and we can define the

3-form φ0 similarly. But it will not be the volume in seven dimensions as in R
3 because we

have more dimensions.

Lemma 3.1.5 ([SW17]). Let R7 with standard metric g0 = e1 ¹ e1 + · · · + e7 ¹ e7 and the

cross product as the imaginary projection in the octonions. Define the (3,0)-tensor

φ0(u, v, w) = g0(u× v, w)

then φ0 ∈ Λ3(R7∗), i.e., it is a totally skew-symmetric tensor called fundamental G2-

structure on R
7, which recovers the inner product via the expression:

g0(u, v) =
1

6vol
iuφ0 ' ivφ0 ' φ0. (3.1.3)

Using the standard dual basis {e1, · · · , e7} of R7∗, φ0 and its dual È0 = ∗φ0 are given by1

φ0 = e127 + e347 + e567 + e135 − e146 − e236 − e245 (3.1.4)

È0 = e3456 + e1256 + e1234 − e2467 + e2357 + e1457 + e1367. (3.1.5)

In particular, |φ0|
2 = |È0|

2 = 7.

Using the standard way to write the forms (cf. Appendix A), we will denote

the coordinates of φ0 and È0 (using the standard basis of R7) as2

φ0 =
1

3!
φijke

ijk, and È0 =
1

4!
Èijkle

ijkl.

With these coefficients, the cross product in coordinates is given by

ei × ej = φij
kek (3.1.6)

These coefficients satisfy some relations under contractions:
1 Here eijk := ei ' ej ' ek.
2 where ϕijk := ϕ(ei, ej , ek) and ψijkl := ψ(ei, ej , ek, el).
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Proposition 3.1.6. The fundamental G2-structure on R
7 (in the standard basis as in

(3.1.4) and (3.1.5)) satisfies the following relations between the coefficients:

φµ¿Äφµ¿Ä = 42

φµ¿iφµ¿a = 6¶ia

φµijφµab = ¶ia¶
j
b − ¶ja¶

i
b + Èijab

φµ¿ÄÈµ¿Äi = 0

φµ¿iÈµ¿ab = 4φiab

φµijÈµabc = ¶iaφ
j
bc + ¶ibφa

j
c + ¶icφab

j − ¶jaφi
bc − ¶jbφa

i
c − ¶jcφab

i

Èµ¿Ä¸Èµ¿Ä¸ = 168

Èµ¿ÄiÈµ¿Äa = 24¶ia

Èµ¿ijÈµ¿ab = 4¶ia¶
j
b − 4¶ib¶

j
a + 2Èijab

ÈµijkÈµabc = −φa
jkφibc − φia

kφjbc − φijaφ
k
bc + ¶ia¶

j
b¶
k
c + ¶ib¶

j
c¶
k
a

+ ¶ic¶
j
a¶
k
b − ¶ia¶

j
c¶
k
b − ¶ib¶

j
a¶
k
c − ¶ic¶

j
b¶
k
a

+ ¶iaÈ
jk
bc + ¶jaÈ

ki
bc + ¶kaÈ

ij
bc − ¶abÈ

ijk
c + ¶acÈ

ijk
b

Proof. This proof can be found in [Kar08a], but our conventions follow [dlOLS18a]. They

can also be obtained via direct computation using (3.1.4) and (3.1.5).

The designation of ‘G2-structure’ for the form φ0 may appear arbitrary at first

glance, but it holds significant mathematical relevance. The name stems from the algebraic

structure known as G2, one of the five exceptional simple simply-connected Lie groups,

and one of the two exceptional holonomy groups listed in Berger’s classification alongside

Spin(7). Furthermore, the connection between G2 and the form φ0 is direct: G2 is the

stabilizer group of such a form, meaning it is the set of transformations that preserve the

form:

G2 :=
{

g ∈ GL(7) : g∗φ0 = φ0

}

. (3.1.7)

The group G2 is compact, simple, simply-connected and a subgroup of SO(7) and, as a

manifold, dim G2 = 14 [Joy00]. Another way to characterize the group G2 is as the group

of algebra automorphisms of the octonions, i.e., G2 = Aut(O) [SW17].

3.2 Decomposition of the space of forms

The group G2 acts on R
7 via matrix multiplication and consequently on

all space of forms Λk(R7)∗. Consequently, they can be decomposed into G2-irreducible

representations. Details are given below and based on [Bry05, Kar20, FI02]. The list of

irreducible G2-representations can be found in [FKS20].
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There is a standard representation of the group G2 in a seven-dimensional

vector space, Ä : G2 → Aut(R7), given by matrix multiplication since we have defined

G2 ¢ GL(7). It is irreducible and extends naturally in tensor product spaces, particularly

within forms. In particular, the space of 1-forms is irreducible:

Λ1 ∼= Λ1
7

In general, the subscript indicates the dimension of the space, so Λ1
7

∼= R
7. For the space

of 0-forms, we have the 1-dimensional trivial representation:

Λ0 = Λ0
1

∼= R.

Since the Hodge star operator induces isomorphisms ∗ : Λk ∼= Λ7−k, we have to study the

decomposition of 2-forms and 3-forms.

The space of 2-forms has
(

7

2

)

= 21 dimensions and contains the adjoint 14-

dimensional representation via identification g2 < so(7) = Λ2(R7)∗ which is irreducible

since G2 is simple. Furthermore, the space of 2-forms also contains the vector representation

R
7 because the map

X ∈ Λ1 7→ X @ φ0 ∈ Λ2

is a G2-invariant map and an embedding of Λ1 into Λ2 since φ0 is non-degenerate. Now,

since 14 + 7 = 21, we have the decomposition of the space of 2-forms into irreducible

modules:

Λ2(R7)∗ = Λ2
7 · Λ2

14
∼= Λ1 · g2

What we have to do now is characterize these spaces. We have already known that

Λ2
7 = {X @ φ0 : X ∈ Λ1} by the embedding Λ1 → Λ2. Let’s find a more complete

characterization of these spaces.

Proposition 3.2.1 (Decomposition of 2-forms). The space Λ2(R7)∗ of 2-forms decomposes

into G2-irreducible representations as

Λ2 = Λ2
7 · Λ2

14
∼= Λ1 · g2 (3.2.1)

where

Λ2
7 = {X @ φ0 : X ∈ R

7} = {´ ∈ Λ2 : (´ @ φ0) @ φ0 = 3´} = {´ ∈ Λ2 : ´ @ È0 = 2´}

(3.2.2)

Λ2
14 = {´ ∈ Λ2 : ´ ' È0 = 0} = {´ ∈ Λ2 : ´ @ φ0 = 0} = {´ ∈ Λ2 : ´ @ È0 = −´} (3.2.3)

furthermore, we have the projection formulas for these spaces

Ã7(´) =
1

3
(´ @ φ0) @ φ0 =

1

3
(´ + ´ @ È0) (3.2.4)

Ã14(´) =
1

3
(2´ − ´ @ È0) (3.2.5)
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Proof. The first characterization of Λ2
7 we have already proved. Now let’s consider another

G2-invariant map:

´ ∈ Λ2 7→ ´ @ φ0 ∈ Λ1.

Given Λ1 = R
7 and Λ2 = R

7 · g2, then g2 is in the kernel of this map since it doesn’t

appear in the decomposition of Λ1 and invariant maps preserve the irreducible components

[FI02]. About Λ2
7, we can compute directly how it behaves under this map using the fact

that Λ2
7 = {X @ φ0 : X ∈ R

7} and the contraction identities proved in Proposition 3.1.6:

(X @ φ0) @ φ0 =
1

1!2!1!
Xµφµ

ijφijke
k =

1

2
Xµ · 6¶µke

k = 3Xke
k = 3X

consequently, we have ((X @φ0)@φ0)@φ0 = 3X @φ0 and since ´ @φ0 = 0 ⇐⇒ ´ 'È0 = 0,

we have proved the following characterizations

Λ2
7 = {X @ φ0 : X ∈ Λ1} = {´ ∈ Λ2 : (´ @ φ0) @ φ0 = 3´}

Λ2
14 = {´ ∈ Λ2 : ´ @ φ0 = 0} = {´ ∈ Λ2 : ´ ' È0 = 0}.

Finally, let’s investigate the G2-invariant map between 2-forms

´ ∈ Λ2 7→ ´ @ È0 ∈ Λ2

since it is an invariant endomorphism between 2-forms, it decomposes into eigenspaces,

and the irreducible components are contained in a unique eigenspace. Let’s compute the

eigenvalues explicitly. Firstly, for the component Λ2
7:

(X @ φ0) @ È0 =
1

1!2!2!
Xµφµ

ijÈijabe
ab =

1

4
Xµ · 4φµabe

ab = 2X @ φ0.

Now, to compute the eigenvalue for the space g2 = Λ2
14, we have no general form of an

element in it, but since the map is invariant, it is enough to compute for a specific element

in g2. Let ´0 any element not completely in Λ2
7, and consider ´1 = 2´0 − ´0 @ È0 ∈ Λ2

14.

Performing:

(´0 @ È0) @ È0 =
1

2!2!2!
´0

abÈab
µ¿Èµ¿ije

ij =
1

8
´0

ab(4¶ai¶bj − 4¶aj¶bi + 2Èabij)e
ij

=
1

8
(4´0ij − 4´0ji + 2´0

abÈabij)e
ij = 2´0 + ´0 @ È0

then ´1 @ È0 = 2´0 @ È0 − 2´0 − ´0 @ È0 = −´1, therefore the eigenvalue is −1 in g2, so we

have provided the following characterizations:

Λ2
7 = {´ ∈ Λ2 : ´ @ È0 = 2´} and Λ2

14 = {´ ∈ Λ2 : ´ @ È0 = −´}.

The formulas from the projections are straightforward to obtain since we have already

computed the eigenvalues of the invariant maps for the irreducible components.
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The space of 3-forms has
(

7

3

)

= 35 dimensions and contains trivial 1-dimensional

representation since the invariant map

f ∈ Λ0 7→ fφ0 ∈ Λ3

is an embedding because φ0 ≠ 0. Furthermore, we have the vectorial representation R
7

inside Λ3 via the embedding invariant map

X ∈ Λ1 7→ X @ È0 = − ∗ (X ' φ0) ∈ Λ3

this gives R · R
7 < Λ3 and still left 27-dimenions to describe. It happens that G2 has a

27-dimensional irreducible representation given by S2
0(R7) the space of symmetric trace-free

matrices. This representation can be embedded within 3-forms via the map [Bry05, Eq.

2.15]:

iφ0 : ³¹ ´ ∈ S2
0(R7) 7→ ³ ' i´φ0 + ´ ' i³φ0 ∈ Λ3 (3.2.6)

if ³' i´φ+ ´ ' i³φ = 0 ⇒ ³a´bφbcd + ´a³bφbcd = 0 and since φ is non-degenerate we have

³a´b + ´a³b = 0, but the map was defined on symmetric matrices, so ³a´b = ´a³b and we

have ³a´b = 0 for all a, b and this implies ³¹ ´ = 0 and the map is injective. So, we have

concluded the decomposition of the space of 3-forms into irreducible modules:

Λ3 = Λ3
1 · Λ3

7 · Λ3
27

∼= Λ0 · Λ1 · S2
0(R7)

As we have done for 2-forms, we will now characterize these spaces. We have already known

that Λ3
1 = {fφ0 : f ∈ R} and Λ3

7 = {X @È0 : X ∈ R
7} by the embeddings described above.

Proposition 3.2.2 (Decomposition of 3-forms). The space Λ3(R7)∗ of 3-forms decomposes

into G2-irreducible representations as

Λ3 = Λ3
1 · Λ3

7 · Λ3
27

∼= Λ0 · Λ1 · S2
0(R7) (3.2.7)

where

Λ3
1 = {fφ0 : f ∈ R} (3.2.8)

Λ3
7 = {X @ È0 : X ∈ R

7} (3.2.9)

Λ3
27 = {µ ∈ Λ3 : µ ' φ0 = 0, µ ' È0 = 0}. (3.2.10)

Proof. We just have to prove the characterization of Λ3
27 = (Λ3

1 · Λ3
27)§. In fact, we have:

Λ3
1 § Λ3

27 ⇒ φ0 § µ ⇒ ïφ0, µð = 0 ⇒ µ @ φ0 = 0

Λ3
7 § Λ3

27 ⇒ ïX @ È0, µð = 0,∀X ⇒ Èa
bcdµbcd = 0 ⇒ µ @ È0 = 0

so µ ∈ Λ3
27 ⇐⇒ µ § Λ3

1 · Λ3
7 ⇐⇒ µ @ φ0 = 0, µ @ È0 = 0 ⇐⇒ µ ' φ0 = 0, µ ' È0 = 0

and we have proved the characterization of Λ3
27.
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3.3 G2-structures on manifolds, their torsion forms and intrinsic

torsion

In general, a G-structure on a manifold Mn (with G f GL(n) a closed subgroup)

is a reduction of the frame bundle Fr(M) of GL(n) to G, meaning it is a principal G-

subbundle of Fr(M) (cf. [KN63, Tu17, Joy00]). In this context, a G2-structure on a

7-manifold M is a reduction of the frame bundle of GL(7) to G2. Particularly, since

G2 ¢ SO(7), a G2-structure implies a Riemannian metric and orientation, as stated in

Lemma 3.1.5.

Since G2 is the stabilizer of the 3-form φ0 in Λ3(R7)∗ (cf. Equation (3.1.7)),

a G2-structure on M7 is equivalent to a 3-form φ in Ω3(M7), which can be punctually

expressed in the standard G2-structure (3.1.4) in R
7. We denote È = ∗φ ∈ Ω4(M), where

∗ is considered in relation to the induced metric via φ, as described in Lemma 3.1.5.

As pointed out by [Joy00, §10.1], every non-degenerate 3-form on a seven

manifold can be put punctually in the form (3.1.4) by dimensional comparison of the space

of forms3 (what, in [Joy00] nomenclature is called positive 3-form and the comparison

of forms being the same means the bundle of positive 3-forms is an open topological

subbundle of Λ3(T ∗M)).

Not every 7-manifold admits a G2-structure, i.e., the cross product punctually

modelled in φ0 which varies smoothly in the manifold. We have:

Theorem 3.3.1 ([Gra69]). A seven-dimensional manifold admits a G2-structure if, and

only if, it is orientable and admits spin structure.

When calculations involving tensorial operations in φ ∈ Ω3(M) and È ∈ Ω4(M)

need to be carried out, they can all be conducted using the standard forms outlined in

Lemma 3.1.5 and Proposition 3.1.6, in particular,

|φ|2 = |È|2 = 7.

The space of differential forms follows the decomposition discussed in Section 3.2: the

space of 2-forms decomposes as Ω2 = Ω2
7 · Ω2

14, where

Ω2
7 = {X @ φ : X ∈ TM} = {´ ∈ Ω2 : (´ @ φ) @ φ = 3´} = {´ ∈ Ω2 : ´ @ È = 2´},

(3.3.1)

Ω2
14 = {´ ∈ Ω2 : ´ ' È = 0} = {´ ∈ Ω2 : ´ @ φ = 0} = {´ ∈ Ω2 : ´ @ È = −´}. (3.3.2)

3 This is something special for G2-structures. For example, in the Spin(7) case, not every arbitrary
non-degenerate 4-form can be put in the standard form of a Spin(7)-structure.
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analogously, the space of 3-forms decomposes as Ω3(M) = Ω3
1 · Ω3

7 · Ω3
27 where

Ω3
1 = {fφ : f ∈ C∞(M)},

Ω3
7 = {X @ È : X ∈ Ω1},

Ω3
27 = {µ ∈ Ω3 : µ ' φ = 0, µ ' È = 0}.

As the form varies across different manifolds, we must discuss its derivatives,

particularly to describe its non-closed and non-co-closed nature. We introduce the notion

of torsion forms.

Proposition 3.3.2 (Torsion Forms). Let (M7, φ) be a manifold with G2-structure, then

there are unique differential forms Ä0 ∈ Ω0, Ä1 ∈ Ω1, Ä2 ∈ Ω2
14 and Ä3 ∈ Ω3

27 (called the

torsion forms) satisfying

dφ = Ä0È + 3Ä1 ' φ+ ∗Ä3 (3.3.3)

dÈ = 4Ä1 ' È + Ä2 ' φ (3.3.4)

Proof. Since Ω4 = Ω4
1 · Ω4

7 · Ω4
27, we have immediately that there are forms Ä0, Ä1, Ä3 as in

the statement satisfying

dφ = Ä0È + 3Ä1 ' φ+ ∗Ä3

the constants are just for convenience. Analogously since Ω5 = Ω5
7 · Ω5

14, we have that

there are forms Ä̃1, Ä2 such that

dÈ = 4Ä̃1 ' È + Ä2 ' φ

We need to prove that Ä1 = Ä̃1. The justifying for it is [Kar08a, Theorem 2.23].

Definition 3.3.3. A G2-structure (M,φ) is said to be integrable if Ä2 = 0.

In the present work, integrable G2-structures play a distinguished role, as they

admit compatible connections with totally skew-symmetric torsion, as discussed in the

next section. The name ‘integrable’ can be ‘questioned’ because some authors use integrable

in the sense that the G2-structure has reduced holonomy (as we will discuss later), but in

this sense, being ‘integrable’ is equivalent to having all torsion forms vanishing.

To finalize, we will discuss the intrinsic torsion of a G2-structure which follows

the discussion of intrinsic torsion in Appendix B and in the case of G2-structures (to be

obtained as the stabilizer of some differential form, cf. Proposition B.1.2) it can be defined

as the 1-form Γ ∈ Ω1(M, g§2 ) (where g§2 = Λ2
7(R

7)∗) via the expression

∇g
Xφ := Γ(X) @1 φ, (3.3.5)
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where ∇g is the Levi-Civita connection and @
1 the partial contraction as in Appendix A.2.

In the case of G2-structures, we have

Γ ∈ Ω1(M, g§2 ) := Γ(TM ¹ g§2 ) = Γ(TM ¹ 2
7)

∼= Γ(End(TM)),

so, punctually, Γ lives in the space R
7 ¹ R

7 ∼= End(R7) and we have

End(R7) = Λ2(R7)∗ · S2(R7)∗ = Λ2
7 · Λ2

14 · Λ1 · Λ3
27,

so we can consider that the intrinsic torsion lives in Ω0 · Ω1 · Ω2
14 · Ω3

27. The interesting

about this 1-form is that it contains every information of the torsion forms, cf. [MCMS94,

p. 5].

Proposition 3.3.4. The intrinsic torsion Γ ∈ Ω1(M, g§2 ) of a G2-structure (M,φ), up to

identification is precisely the sum of torsion forms

Γ = Ä0 + Ä1 + Ä2 + Ä3 ∈ Ω0 · Ω1 · Ω2
14 · Ω3

27 (3.3.6)

In particular, Γ ≡ 0 if, and only if dφ = 0 and dÈ = 0.

Proof. To see the correspondence between Γ and the torsion forms Äp ∈ Ωp, we will use

the result in Proposition B.1.2 (for an orthonormal basis {ej} of R7) where V = Λ3(R7)∗:

∇g
Xφ = Γ(X) @1 φ ⇒ dφ = ej ' ∇g

ej
φ = ej ' (Γ(ej) @

1 φ)

⇒ ¶φ = −ej @ ∇g
ej
φ = −ej @ (Γ(ej) @

1 φ)

so, if Γ ≡ 0, then dφ = 0 and dÈ = 0. Now, if dφ = 0 and dÈ = 0, we have by the

irreducibility of each representation to conclude that each component of Γ is zero.

Remark 3.3.5 (G2-manifolds). Let (M,φ) be a G2-structure. If the intrinsic torsion vanishes,

i.e., Γ ≡ 0, we have the principle of holonomy that the Riemannian holonomy of M is in

G2. By the results above, the holonomy of the Levi-Civita connection of M is in G2 if,

and only if dφ = 0 and dÈ = 0 (cf. [Joy00]). ⃝

Remark 3.3.6. In the classical text by Fernández and Gray [FG82], the G2-structures are

classified into 16 classes, and each class is a presence or not of the so-called W spaces:

W1, W2, W3, W4.

Cabrera and Swann [MCMS94] have proved that the presence of these W-spaces is actually

whether some torsion form is zero or not, in the following correspondence:

Ä0 ∈ W1, Ä2 ∈ W2, Ä3 ∈ W3, Ä1 ∈ W4.

Now, using the approach of Friedrich and Ivanov [FI02] and the result above, these

W-spaces are the irreducible components of the intrinsic torsion:

Ω0 ∼= W1, Ω2
14

∼= W2, Ω3
27

∼= W3, Ω1 ∼= W4.

⃝



Chapter 3. G2-Structures 61

3.4 The characteristic connection of integrable G2-structures

This discussion regarding connections with skew-symmetric torsion follows

mainly [Agr06], with additional insights provided in Appendix B. Furthermore, the deriva-

tion of the formula for the characteristic is influenced by [FI02], albeit reformulated for

clarity and applicability to our context.

Definition 3.4.1. Let (M7, φ) be a G2-structure. An affine connection ∇ is said to be

compatible with the G2-structure if

∇φ = 0.

The condition ∇φ = 0 implies ∇È = 0 immediately since G2 is a subgroup of

O(7). Therefore, any ∇ compatible with φ is metric compatible and commutes with the

Hodge star operator.

Remark 3.4.2. In particular, the compatibility of a connection ∇ with the G2-structure

implies that the endomorphism part of its curvature R∇ lives in Ω2
14 = g2 ¢ Ω2, that is,

for any pair of vector fields X, Y on M ,

g(R∇(X, Y )·, ·) ∈ g2 = Ω2
14. (3.4.1)

This is because Ω2
14 = g2 ¢ so(7) = Ω2 and the compatibility of the connection. In

particular, the endomorphism part is skew-symmetric because it is metric compatible since

G2 ¢ O(7). ⃝

As discussed in Appendix B, a metric connection with totally skew-symmetric

torsion is entirely defined by its torsion T ∈ Ω3(M). This kind of connection is important

in the context of G2-structures because it is unique and then defines a natural geometry

on the manifold. We have the following result using the theory in Appendix B.

Proposition 3.4.3 ([FI02]). A G2-structure (M, g, φ) admits a compatible connection

with skew-symmetric torsion if and only if Ä2 = 0. In this case, the connection is unique

and called the characteristic connection or Bismut connection.

Proof. The existence of a connection with totally skew-symmetric torsion hinges upon

the condition that the intrinsic torsion Γ resides in Ω3(M), as stated by the operator Θ

in Theorem B.3.1. According to Proposition 3.3.4, this criterion is satisfied if and only

if Ä2 = 0. This is because Ω3 decomposes into Ω3
1 · Ω3

7 · Ω3
27

∼= Ω0 · Ω1 · Ω3
27, and a

connection is uniquely determined when Ä2 = 0 because the intrinsic torsion inhabits a

space isomorphic to Ω3, rendering Θ injective and thereby uniquely defining the torsion.

Given the uniqueness of the characteristic connection when it exists, to define it

completely, we need to find its torsion T ∈ Ω3(M), as expounded in Appendix B. Therefore,
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our task primarily entails computing this torsion. This method is meticulously outlined in

Theorem B.3.6, an original method from the author’s dissertation.

Theorem 3.4.4. Let (M7, φ) be an integrable G2-structure and denote ∇+ = ∇g + 1
2
g−1T

the characteristic connection. Then, its torsion is given by

T =
1

6
Ä0φ− Ä1 @ È − Ä3. (3.4.2)

This quantity is sometimes called flux and sometimes denoted by T = H.

Proof. The proof of this theorem follows the notation introduced in Appendix B and use

the partial contractions @
q in Appendix A.2. Using the Flux’s theorem B.3.6, we just have

to compute the eigenvalues of the operator H given by

H : µ ∈ Ω3 7→ µ @
2 È = ∗(µ @

1 φ) ∈ Ω3.

For this, we must compute the specific elements of each irreducible component. For Ω3
1,

which elements are multiple of φ, we have

H(φ) =
1

2!2!
∗ (φijkφabke

ijab) =
1

4
∗ ((

�
�
�¶ia¶jb −

�
�
�¶ib¶ja + Èijab)e

ijab)

=
6

4!
∗ (Èijabe

ijab) = 6 ∗ È = 6φ

consequently, we have the eigenvalue k1 = 6. Now, for the space Ω3
7, where a general form

has the form X @ È, then we have

H(X @ È) =
1

2!2!
∗ (XaÈakbcφkije

bcij) =
1

4
∗ (XaÈabckφijke

bcij)

=
1

4
∗ (Xa(−¶iaφjbc −����¶ibφajc −����¶icφabj + ¶ajφibc +����¶bjφaic +����¶cjφabi)e

bcij)

=
1

4
∗ (−Xiφjbce

bcij +Xjφibce
bcij) =

1

4
∗ (−Xiφjbce

ijbc −Xjφibce
jibc)

= −3 ·
1

1!3!
∗ (Xie

i ' φjbce
jbc) = −3 ∗ (X ' φ) = 3X @ È

and we conclude that the eigenvalue k7 = 3.

For the last component, Ω3
27, we have no general form for their elements, so we

must find some specific element in this space and apply H. This eigenvalue is k27 = −1 as

computed in [dlOLS18a, Lemma 3, Appendix A].

We can compute directly this eigenvalue, just considering an explicit element

in Ω3
27: µ = e127 − e135 (which we can immediately check that µ ' φ = µ ' È = 0 using the

expression in Lemma 3.1.5).

Performing the necessary calculations, we have (using the notation φk = ek @φ):
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e1 @ φ = e27 + e35 − e46 e1 @ µ = e27 − e35 µ1 ' φ1 = −e2467 − e3456

e2 @ φ = −e17 − e36 − e45 e2 @ µ = −e17 µ2 ' φ2 = e1367 + e1457

e3 @ φ = e47 − e15 + e26 e3 @ µ = e15 µ3 ' φ3 = −e1457 − e1256

e4 @ φ = −e37 + e16 + e25 e4 @ µ = 0 µ4 ' φ4 = 0

e5 @ φ = e67 + e13 − e24 e5 @ µ = −e13 µ5 ' φ5 = −e1367 − e1234

e6 @ φ = −e57 − e14 − e23 e6 @ µ = 0 µ6 ' φ6 = 0

e7 @ φ = e34 + e56 − e24 e7 @ µ = e12 µ7 ' φ7 = e1234 + e1256

consequently, we have

H(µ) = ∗
7∑

j=1

(ej @ µ) ' (ej @ φ) = − ∗
(

e2467 + e3456
)

= e135 − e127 = −µ.

We have concluded directly k27 = −1. Consequently, the expression for the torsion T has

been obtained

H =
1

6
Ä0φ− Ä1 @ È − Ä3 (3.4.3)

which gives us the expression for the torsion of the characteristic connection of a G2-

structure.

3.5 The spinorial description of G2-structures

As we have defined G2 in (3.1.7), it is a subgroup of SO(7), functioning as the

stabilizer of a particular 3-form φ0 as in (3.1.4). An intriguing observation is that G2 is

isomorphic to a subgroup of Spin(7), serving as the stabilizer of a specific spinor ¸0 ∈ ∆7.

Thus, what we’re poised to explore is the equivalence between the G2-structure represented

by a 3-form φ ∈ Ω3(M) and its counterpart as a spinor ¸ ∈ Γ(S). To get deeper into this

equivalence, first, we will point out the basic concepts for Clifford algebras and spinors in

dimension seven. For this, we will reference [LM90] for general aspects of spin geometry

and [FKMS97, ACFH15] for spinorial description of G2-structures.

Let Cl(R7) denote the Clifford algebra of (R7, g0), given by the tensorial algebra

of R7 modulo the relation

X ·X = −g0(X,X),

for X ∈ R
7. The algebra Cl(R7) is isomorphic to End(R8) · End(R8), and it admits a real

representation ∆7
∼= R

8 with generators (see [FKMS97, p. 261]):

e1 = E18 + E27 − E36 − E45, e2 = −E17 + E28 + E35 − E46,

e3 = −E16 + E25 − E38 + E47, e4 = −E15 − E26 − E37 − E48,

e5 = −E13 − E24 + E57 + E68, e6 = E14 − E23 − E58 + E67,

e7 = E12 − E34 − E56 + E78,

(3.5.1)
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where Eij is the standard basis of the Lie algebra so(8): it is −1 in the position i, j and

skew-symmetric. Upon restriction of this representation to Spin(7) ¢ Cl(R7) we obtain

the (irreducible) real spin representation

» : Spin(7) → SO(∆7).

The group Spin(7) acts transitively on the sphere and G2 can be identified with the

subgroup of Spin(7) preserving a spinor (see e.g. [FKMS97]).

Proposition 3.5.1. The Lie group G2 is canonically isomorphic to the subgroup of Spin(7)

preserving the spinor ¸0 := (1, 0, · · · , 0) ∈ ∆7:

G2
∼=
{

g ∈ Spin(7) : g · ¸0 = ¸0

}

. (3.5.2)

The space of spinors ∆7 decomposes into irreducible G2-representations com-

ponents as ∆7
∼= Λ0 · Λ1. This decomposition is derived through the following steps:

∆7
∼= R

8 ∼= R · R
7 ∼= ï¸0ð · Λ1 ∼= Λ0 · Λ1,

corresponding to the real and purely imaginary octonions. The identification of Λ1 inside

∆7 is simply the embedding ³ ∈ Λ1 7→ ³# · ¸0 ∈ ∆7, cf. [FKMS97, p. 262]. The relation

between the descriptions of G2, as the stabiliser of a 3-form φ0 in SO(7), and, as the

stabiliser of a spinor ¸0 in Spin(7), are related by [ACFH15, p. 545]:

φ0(X, Y, Z) := −ïX · Y · Z · ¸0, ¸0ð, (3.5.3)

where in the right-hand side, the action is the Clifford multiplication. On the other hand,

given the 3-form φ0, this implies the decomposition ∆7 = Λ0 · Λ1, so just define ¸0 ∈ Λ0

with unit-lenght. This shows the equivalence between G2-structures via 3-forms and spinors.

Following the discussion, the spinor ¸0 induces some invariant maps, which we

will use later in Chapter 4. Firstly, 2-forms act in the spinor ¸0 via Clifford multiplication,

so we can consider the natural G2-equivariant map:

µ : Λ2 → ∆7

´ 7→ ´ · ¸0.

Using the isomorphisms Λ2 ∼= Λ1 · g2 and ∆7
∼= ï¸0ð · Λ1, one can easily see that µ|g2 ≡ 0

by invariance. Furthermore, as demonstrated in [FKMS97, p. 262], µ|Λ1 is an embedding.

This leads to a characterization of the Lie algebra g2:

g2 = {´ ∈ Λ2 : ´ · ¸0 = 0} ¢ Λ2. (3.5.4)
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so, the equivalence below will be useful for us when we consider a different notion of

instanton in Chapter 6, the two notions of G2-instantons will be equivalent due to the

characterization above. For reference:

´ · ¸0 = 0 ⇐⇒ ´ ' È0 = 0 ( ⇐⇒ ´ @ È0 = −´). (3.5.5)

Analogously, consider the action of 3-forms on the spinor ¸0 via Clifford multiplication

¿ : Λ3 → ∆7

µ 7→ µ · ¸0.
.

Using Λ3 ∼= ïφ0ð · Λ1 · Λ3
27, the different pieces in this decomposition act on ¸0 via the

following formulae (see [FI02])

φ0 · ¸0 = −7¸0, (X @ È0) · ¸0 = 4X · ¸0, µ · ¸0 = 0, (3.5.6)

for all X ∈ R
7 and µ ∈ Λ3

27. Consider now the induced ’Dirac-type’ map /¿ : Λ3 → ∆7,

defined by
/¿ : Λ3 → ∆7

µ 7→ /µ · ¸0

where /µ · ¸0 :=
∑

j

ej · (ej @ µ) · ¸0 (3.5.7)

Using the decomposition ∆7
∼= ï¸0ð · Λ1, we can describe how the irreducible components

of Λ3 behave under the G2-invariant map /¿:

Lemma 3.5.2. Under the decomposition Λ3 ∼= ïφ0ð · Λ1 · Λ3
27, the irreducible components

of Λ3 under the map /¿ : Λ3 → ∆7 in (3.5.7) acts as

/φ0 · ¸0 = −
21

2
¸0, �

�
�iXÈ0 · ¸0 = 6X · ¸0, /µ · ¸0 = 0, (3.5.8)

for all X ∈ R
7 and µ ∈ Λ3

27.

Proof. The last equation /µ · ¸0 = 0 in (3.5.8) holds immediately by invariance of the map

/¿ because the representation S2
0(R7) ∼= Λ3

27 is not a component in ∆7. Now, in general for

À ∈ Λ3, we can write À = 1
3!
Àijke

ijk an arbitrary 3-form, then we have eµ @ À = 1
2!
Àµjke

jk

and consequently

/À · ¸0 = eµ · (eµ @ À) · ¸0 =
1

2!
Àµjke

µ · (ej ' ek) · ¸0.

Using the canonical embedding spin(7) ∼= so(7) = Λ2 → Cl(R7) given by (cf. [LM90, Prop.

6.2]) ej ' ek ∈ Λ2 7→ 1
2
ej · ek ∈ Cl(R7), in accordance with the convention v · v = −|v|2, we

then have

/À · ¸0 =
1

4
Àµjk e

µ · ej · ek · ¸0.

To perform the calculations, we will use the explicit representation in (3.5.1) and the

canonical spinor ¸0 = (1, 0, · · · , 0) ∈ ∆7
∼= R

8. The first equation is held by a direct

computation.
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Finally, for the second equation in (3.5.8), it is enough to prove for the specific

element X = e1 ∈ R
7, hence by invariance, it will be true for the whole irreducible

representation. Firstly, performing the action of e1 on the spinor, we have:

e1 · ¸0 = (E18 + E27 − E36 − E45) · ¸0 = E18 · ¸0 = (0, · · · , 0, 1).

Now, we have in this case using (3.1.5) that

iXÈ0 = e256 + e234 + e457 + e367,

and, on the other hand, an extensive calculation gives us

����e1 @ È0 · ¸0 = (0, · · · , 0, 6),

and the result follows.

We have discussed the spinor ¸0 ∈ ∆7 induced the 3-form φ0 and vice versa.

In manifolds, a G2-structure is equivalent to a unitary spinor field ¸ ∈ Γ(S), where

S = PM ×G2 ∆7 is the spinor bundle for PM → M the principal Spin(7)-bundle (since

a manifold with G2-structure is spin [Gra69]) and ∆7
∼= R

8 the irreducible real spinor

representation. The equivalence of φ ∈ Ω3(M) non-degenerate and ¸ ∈ Γ(S) unitary is in

the formula as before [FKMS97, ACFH15]:

φ(X, Y, Z) := −ïX · Y · Z · ¸, ¸ð. (3.5.9)

Conversely, any non-degenerate 3-form φ ∈ Ω3(M) determines a non-vanishing spinor via

the identification

S ∼= ïφð · Ω3
7 (3.5.10)

provided by (3.5.6).
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4 Killing spinors and the heterotic G2-system

This chapter explores the practical implications of the theory of Killing spinor

equations and coupled instanton equations, as introduced in Chapter 2, within the frame-

work of G2-structures previously discussed in Chapter 3 in seven dimensions. Delving

deeper, we examine specific characteristics of these structures and provide several illustra-

tive examples.

In Section 4.1, we present the heterotic G2-system (cf. Definition 4.1.1), a

system of differential equations initially described in the physics literature and which we

will explore later in Chapter 5, mainly focusing on the approximate solutions as constructed

in [LSE23]. We proceed to present the main theorem of this section, Proposition 4.1.2,

establishing the equivalence between the heterotic G2-system and the Killing spinor

equations discussed in Chapter 2.

Next, Section 4.2 delves into the implications of solutions to the heterotic

G2-system on curvature tensors. Our primary focus lies in establishing generalized Ricci

flatness for solutions within generalized geometry and transitive Courant algebroids (when

divergence is induced by Ä1) cf. Theorem 4.2.1. This theorem is a particular solution for

the Problem 2 (open) elucidated in Chapter 2. With an alternative approach, we further

explore this problem and its implications in Chapter 6. Additionally, this section explores

some consequences of generalized scalar curvature due to the heterotic G2-system, as

outlined in Theorem 4.2.3.

In the following, in Section 4.3, we extend the applications introduced in

Chapter 2 to the realm of G2-structures by introducing the coupled G2-instanton equations.

We revisit the characterization of these equations within the context of G2, elucidating

the significance of the Ricci-Bismut form (cf. Definition 4.3.1) in measuring the non-

integrability of the G2-structure (cf. Lemma 4.3.3). Concluding the section, we establish

a pivotal result: Theorem 4.3.6 demonstrates how the gravitino equation implies the

existence of coupled G2-instantons, a specific solution to Problem 1. This result is revisited

in Chapter 6 with an alternative notion of instanton.

In Section 4.4, we revisit the generalized Ricci flatness resulting from the

gravitino equation, cf. Theorem 4.4.3 (offering a partial solution to Problem 2). Our

alternative approach in this section draws inspiration from [IS23b], serving as a prototype

for the forthcoming discussions in Chapter 6, where we explore a more generalized scenario.

Concluding the section, we examine the breakdown of generalized Ricci-flatness upon

relaxing the instanton condition on ¹, cf. Lemma 4.4.4. This technical insight will play
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a pivotal role in the proof of the main results outlined in Section 5.4, mainly when the

instanton condition is ’approximate’. Finally, Section 4.5 presents several examples of the

theory developed in this chapter.

4.1 The heterotic G2-system

In this section, we establish a relation between the Killing spinor equations

(2.1.2) in seven dimensions and the heterotic G2-system. The Killing spinor equations are

(cf. Definition 2.1.2):

∇+¸ = 0, F¹ · ¸ = 0,
(

/∇
1/3

−
1

2
·
)

· ¸ = ¼¸

for the data (g,H, ¹, ¸, ·).

We define the heterotic G2-system on a fixed oriented and spin manifold M7

endowed with a principal K-bundle P . We assume that k = Lie(K) is endowed with a

non-degenerate bi-invariant symmetric bilinear form

ï·, ·ð : k ¹ k −→ R.

Definition 4.1.1 (Heterotic G2-system, [dlOLS18a]). Let M7 be an oriented spin manifold

endowed with a principal K-bundle P . A pair (φ, ¹), where φ is a G2-structure on M and

¹ is a principal connection on P , satisfies the heterotic G2-system if

F¹ ' È = 0, Ä2 = 0, dHφ = ïF¹ ' F¹ð. (4.1.1)

where Hφ ∈ Ω3(M) is the flux of the G2-structure

Hφ :=
1

6
Ä0φ− Ä1 @ È − Ä3.

Note that the condition Ä2 = 0 (the structure being integrable) implies that

the flux Hφ is the torsion of the characteristic connection, i.e., ∇+ = ∇g + 1
2
g−1Hφ. And

on the other hand, if ∇φ = 0 for some connection ∇ with skew-symmetric torsion, then

T∇ = Hφ (cf. Proposition 3.4.3 and Theorem 3.4.4).

We now show that the heterotic G2 system (4.1.1) is equivalent to the Killing

spinor equations with parameter ¼ on M7, cf. (2.1.5) and (2.1.6).

Proposition 4.1.2. Let E be a transitive Courant algebroid over an oriented spin manifold

M7. Let (G, div, ¸) be a solution of the Killing spinor equations with parameter ¼ ∈ R on

E, cf. Definition (2.1.2). Assume that the spinor ¸ is nowhere-vanishing and consider the

tuple (g,H, ¹, ·) determined by (G, div) and the G2-structure φ defined by ¸ via (3.5.9).

Then (φ, ¹) satisfies the heterotic G2 system (4.1.1) and

g = gφ, H = Hφ :=
1

6
Ä0φ− Ä1 @ È − Ä3, · = 4Ä1, Ä0 =

12

7
¼. (4.1.2)
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Conversely, any solution (φ, ¹) of the heterotic G2-system (4.1.1) with constant Ä0 de-

termines a transitive Courant algebroid as in Definition 1.1.5, endowed with a solution

(G, div, ¸) of the Killing spinor equations with parameter ¼, as in (2.1.6), and a nowhere-

vanishing spinor. The tuple (g,H, ¹, ·) determined by (G, div) satisfies (4.1.2) and the

spinor ¸ is given by (3.5.10), where we identify S, the spinor bundle for V+, with a spinor

bundle for (T, g) via

Ã+ : (TM, g) −→ V+

X 7−→ X + gX
.

Proof. We need to prove the equivalence between solutions of the heterotic G2 system

(4.1.1) and solutions (g,H, ¹, ·, ¸) of the coupled system defined by (2.1.5), (2.1.6), and the

heterotic Bianchi identity (1.1.8). Given such a tuple (g,H, ¹, ·), consider the G2-structure

φ defined by the real spinor ¸ via (3.5.9). Note that, as G2 f SO(7), we have g = gφ. Then,

∇+¸ = 0 implies that ∇+φ = 0 and hence, applying Proposition 3.4.3 and Theorem 3.4.4,

Ä2 = 0, H = Hφ :=
1

6
Ä0φ− Ä1 @ È − Ä3.

Furthermore,(3.5.5), shows that we have the equivalence of being an instanton

F¹ ' È = 0 ⇐⇒ F¹ · ¸ = 0.

Using ∇+1/3 = ∇g + 1
6
H = ∇+ − 1

3
H, we have for (2.1.6)

¼¸ =
(

/∇
+1/3

−
1

2
·
)

· ¸ = /∇
+
¸ −

1

3
/H · ¸ −

1

2
· · ¸ = −

1

3
/H · ¸ −

1

2
· · ¸.

On the other hand, applying (3.5.8) in Lemma 3.5.2, it follows that

/H · ¸ =
(

1

6
Ä0/φ−����Ä1 @ È − /Ä 3

)

· ¸ = −
21

12
Ä0 · ¸ − 6Ä1 · ¸ ⇒

¼¸ = −
1

3
/H · ¸ −

1

2
· · ¸ =

7

12
Ä0 · ¸ + 2Ä1 · ¸ −

1

2
· · ¸

and, consequently
(

2Ä1 −
1

2
·
)

· ¸ +
(

7

12
Ä0 − ¼

)

· ¸ = 0.

Using now that (2Ä1 − 1
2
·) · ¸ ∈ ï¸ð§ ∼= Ω1 ¢ S, cf. Section 3.5, it follows that:

· = 4Ä1, ¼ =
7

12
Ä0.

Conversely, given a solution (φ, ¹) of the heterotic G2 system (4.1.1), consider the real

nowhere-vanishing spinor ¸ defined by (3.5.10). Then, by the third equation in (4.1.1),

Ä2 = 0, hence

∇+φ = 0 ⇒ ∇+¸ = 0,
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where ∇+ = ∇g + 1
2
g−1H and H = Hφ, see (4.1.2). As before, F¹ 'È = 0 implies F¹ ·¸ = 0,

while the second equation in (4.1.1) implies ¼ = 7
12
Ä0, by Theorem 3.4.4. Finally, setting

· = 4Ä1, we have
(

/∇
+1/3

−
1

2
·
)

· ¸ =
(

/∇
+

−
1

3
/H −

1

2
·
)

· ¸ =
7

12
Ä0 · ¸ + 2Ä1 · ¸ −

1

2
· · ¸

=
7

12
Ä0 · ¸ = ¼ · ¸.

and we have obtained the Killing spinor equations (2.1.5) and (2.1.6).

Remark 4.1.3. Given a solution (φ, ¹) of the heterotic G2 system, the associated transitive

Courant algebroid is EP,Hϕ,¹ as in Definition 1.1.5, and the corresponding generalized

metric is

Gφ =








0 0 g−1
φ

0 − Id 0

gφ 0 0







,

with eigenbundles

V+ = {X + gφX : X ∈ T}, V− = {X + r − gφX : X ∈ T, r ∈ adP}.

The divergence operator associated with a solution, given by

div = divGϕ −2ïe, ·ð,

is uniquely determined, provided that we impose the natural condition e ∈ T ∗M . In this

case, e = 4Ä1 ∈ T ∗M . ⃝

4.2 Curvature constraints on the heterotic G2-system

We will derive various curvature constraints for solutions of the heterotic G2

system. Our results follow from the characterisation of the system using generalized

geometry in Proposition 4.1.2, combined with Proposition 2.1.6 and Proposition 2.4.2.

We will keep the notation from the previous section. In particular, we fix an

oriented spin manifold M7 endowed with a principal K-bundle P . Our first result interprets

the heterotic G2-system as a special class of generalized Ricci-flat metrics.

Theorem 4.2.1. Given a solution (φ, ¹) of the heterotic G2-system (4.1.1) on (M,P ),

the associated Riemannian metric g = gφ satisfies:

Ricg −
1

4
H2 + F¹ ◦ F¹ +

1

2
L·#g = 0,

d∗H − d· + i·#H = 0,

d¹∗F¹ − F¹ @H + i·#F¹ = 0,

(4.2.1)
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where H = Hφ ∈ Ω3(M) is the flux and · = 4Ä1. In particular, the solution (Gφ, divφ, ¸φ)

induced by (φ, ¹), cf. Proposition 4.1.2 is generalized Ricci flat:

Ric+
Gϕ,divϕ = 0.

Proof. By Proposition 4.1.2, (φ, ¹) determines a solution (Gφ, divφ, ¸φ) of the Killing spinor

equations with parameter ¼ on the transitive Courant algebroid EP,H,¹. More explicitly,

the generalized metric Gφ is as in Remark 4.1.3 and

divφ = divGϕ −2ï4Ä1, ·ð.

Applying now Proposition 2.1.6, we have Ric+
Gϕ,divϕ = 0, and the result follows from

(2.1.8).

Remark 4.2.2. By the proof of the previous result, a solution (φ, ¹) of the heterotic G2

system determines a generalized Ricci-flat metric. Alternatively, we can think of (φ, ¹) as

solving the equations of motion of heterotic supergravity for the metric, the three-form

flux, and the gauge field, in the mathematical physics literature, see Remark 2.1.7. In our

following result, the analogue of the equation of motion for the dilaton field is satisfied

up to an overall constant on the manifold, explicitly given in terms of the parameter ¼

in (4.1.1). In other words, solutions of the heterotic G2 system have constant generalized

scalar curvature, proportional to the square of the torsion component Ä0. ⃝

Theorem 4.2.3. Given a solution (φ, ¹) of heterotic G2-system (4.1.1) on (M,P ), one

has

S+ = Rg −
1

2
|H|2 + |F¹|

2 − 8d∗Ä1 − 16|Ä1|
2 =

49

36
Ä 2

0 , (4.2.2)

where H = 1
6
Ä0φ− Ä1 @ È − Ä3 is the flux 3-form.

Proof. As in the proof of Theorem 4.2.1, (φ, ¹) determines a solution (Gφ, divφ, ¸φ) of

the Killing spinor equations with parameter ¼ = 7
12
Ä0 on the transitive Courant algebroid

EP,H,¹. Applying now Proposition 2.4.2, we have

(S+ − 8dÄ1)¸ = 4
((

/D
+
)2

− ∆S
− −DS

ẽ
−

)

¸ = 4¼2¸ =
49

36
Ä 2

0 ¸

where

S+ = Rg −
1

2
|H|2 + |F¹|

2 − 8d∗Ä1 − 16|Ä1|
2. (4.2.3)

First note that dÈ = 4Ä1 ' È, consequently

0 = d2È = dÄ1 ' È − Ä1 ' dÈ = dÄ1 ' È − Ä1 ' Ä1 ' È = dÄ1 ' È

consequently dÄ1 ∈ Ω2
7

∼= Ω1 and dÄ1 · ¸ ∈ Ω1 via (3.5.5) in the orthogonal decomposition

S = ï¸ð · Ω1. This implies S+ = 49
36
Ä 2

0 by the equation above.
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We conclude this section with an alternative form of the scalar equation in

(4.2.2).

Corollary 4.2.4. Given a solution (φ, ¹) of heterotic G2-system (4.1.1) on (M,P ), one

has
7

6
Ä 2

0 + 12|Ä1|
2 + 4d∗Ä1 − |Ä3|

2 + |F¹|
2 = 0. (4.2.4)

Proof. Applying the result in Theorem 4.2.3 and the fact that

|H|2 = H @H =
1

6
Ä0φ @

1

6
Ä0φ+ (Ä1 @ È) @ (Ä1 @ È) + Ä3 @ Ä3

=
7

36
Ä 2

0 + 4|Ä1|
2 + |Ä3|

2,

where we have used |φ|2 = 7 and (Ä1 @ È) @ È = −4Ä1 (cf. (4.4.5) or Lemma 6.3.3). On the

other hand, we have (cf. [Bry05, Equation (4.2)])

Rg =
21

8
Ä 2

0 + 30|Ä1|
2 −

1

2
|Ä3|

2 + 12d∗Ä1.

which gives us

49

36
Ä 2

0 = Rg −
1

2
|H|2 − 8d∗Ä1 − 16|Ä1|

2 + |F¹|
2

=
21

8
Ä 2

0 + 30|Ä1|
2 −

1

2
|Ä3|

2 + 12d∗Ä1 −
1

2
|H|2 − 8d∗Ä1 − 16|Ä1|

2 + |F¹|
2

=
21

8
Ä 2

0 + 14|Ä1|
2 −

1

2
|Ä3|

2 + 4d∗Ä1 −
1

2
|H|2 + |F¹|

2

=
21

8
Ä 2

0 + 14|Ä1|
2 −

1

2
|Ä3|

2 + 4d∗Ä1 −
1

2

(
7

36
Ä 2

0 + 4|Ä1|
2 + |Ä3|

2
)

+ |F¹|
2

=
(

21

8
−

7

72

)

Ä 2
0 + 12|Ä1|

2 + 4d∗Ä1 − |Ä3|
2 + |F¹|

2

=
91

36
Ä 2

0 + 12|Ä1|
2 + 4d∗Ä1 − |Ä3|

2 + |F¹|
2

and the result follows.

4.3 Coupled instantons and the gravitino equation

We introduce the coupled G2-instanton equations, a particular instance of the

system (2.2.3) in seven dimensions. We will also establish the relation to the gravitino

equation (2.1.5) by application of Theorem 2.3.2 in the present setup.

We fix an oriented spin manifold M7 as in the previous section. Given a G2-

structure φ on M and a three-form H ∈ Ω3, we introduce the following quantity, which

plays a similar role to the Bismut–Ricci form in the theory of coupled SU(n)-instantons,

see [GFGM23, GFJS23]. Recall that the vector cross product × : TM ¹ TM → TM

associated to φ defined by (cf. Section 3.1)

gφ(X × Y, Z) = φ(X, Y, Z),
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for any X, Y ∈ TM .

Definition 4.3.1 (Bismut–Ricci form). The Bismut–Ricci form associated to a pair (φ,H),

where φ is a G2-structure and H ∈ Ω3(M), is the vector-valued 2-form

Ä = Ä(φ,H) ∈ Ω2(M,T )

defined by

Ä(X, Y ) :=
1

2

∑

j

(R∇+(X, Y )ej) × ej (4.3.1)

in terms of the vector cross product, where {ej} is a local orthonormal frame on T , and

∇+ is the metric connection with skew-symmetric torsion

∇+ = ∇g +
1

2
g−1H.

Remark 4.3.2. An interesting particular case of the previous definition follows when we

take

H = Hφ :=
1

6
Ä0φ− Ä1 @ È − Ä3.

In this case, we say that Äφ = Ä(φ,Hφ) is the Bismut–Ricci form of the G2-structure. ⃝

As we observe in the following result, the Bismut–Ricci form is an obstruction

to the integrability of the G2-structure.

Lemma 4.3.3. Assume that (φ,H) satisfies ∇+φ = 0. Then, (φ,H) has vanishing

Bismut–Ricci form:

Ä(φ,H) = 0.

Proof. Assuming ∇+φ = 0, the endomorphism part of the curvature tensor R∇+ lives in

Ω2
14 ¢ Ω2, i.e. for any vector fields X, Y on M ,

g(R∇+(X, Y )·, ·) ∈ Ω2
14.

The proof follows from the identity

g(Ä(X, Y ), el) =
1

2

∑

j

g((R∇+(X, Y )ej) × ej, el)

=
1

2

∑

j,k

R∇+(X, Y )kj g(ek × ej, el) =
1

2

∑

j,k

φkjlR∇+(X, Y )kj .

Now, by Proposition 3.4.3, the assumption ∇+φ = 0 implies that φ and ∇+ unique, so we

have H = Hφ := 1
6
Ä0φ− Ä1 @ È − Ä3.

To introduce our equations of interest, we fix a principal K-bundle P → M .

The Lie algebra k = Lie(K) is endowed with a non-degenerate bi-invariant symmetric

bilinear form ï·, ·ð.
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Definition 4.3.4. Let P → M7 be a principal K-bundle over an oriented spin 7-manifold.

For a triple (φ,H, ¹), where φ is a G2-structure on M , H ∈ Ω3(M), and ¹ is a principal

connection on P , the coupled G2-instanton equation is

Ä(φ,H) + ïF¹, (F¹ @ φ)#ð = 0,

(∇¹,+F¹) @ φ = 0,

[F¹ @ φ, · ] −
(

F¹ @
1 ï·, ·ð−1F¹

)

@ φ = 0,

dH − ïF¹ ' F¹ð = 0,

(4.3.2)

where F ' F
 ∈ Ω2(End(adP )) is F¹ @

1 ï·, ·ð−1F¹ via (2.3.7).

In the next result, we establish a bijection between the solutions of the coupled

G2-instanton equation (4.3.2) and the coupled instanton equations formulated in terms of

spinors, in Remark 2.2.3, namely,

(R∇− − F
 ' F) · ¸ = 0,

∇¹,+F¹ · ¸ = 0,

[F¹ · ¸, ·] − F ' F
 · ¸ = 0,

dH − ïF¹ ' F¹ð = 0.

Recall that a G2-structure on M is equivalent to a nowhere-vanishing spinor field ¸ ∈ Ω0(S),

via (3.5.9) and (3.5.10). Note that the system (2.2.7), introduced in Remark 2.2.3, can be

regarded as a system for tuples (g,H, ¹, ¸).

Proposition 4.3.5. Let P → M7 be a principal K-bundle over an oriented spin 7-manifold.

Then, any solution of the coupled G2-instanton equations (4.3.2),

Ä(φ,H) + ïF¹, (F¹ @ φ)#ð = 0,

(∇¹,+F¹) @ φ = 0,

[F¹ @ φ, · ] −
(

F¹ @
1 ï·, ·ð−1F¹

)

@ φ = 0,

dH − ïF¹ ' F¹ð = 0,

determines a solution (gφ, H, ¹, ¸φ) of (2.2.7). Conversely, any solution (g,H, ¹, ¸) of

(2.2.7) determines a solution of the coupled G2-instanton equations (4.3.2) of the form

(φ¸, H, ¹), where φ¸ is defined by (3.5.9).

Proof. The equivalence between the second and third equations in (2.2.7) and (4.3.2)

follows easily from (3.5.4). It remains, therefore, to prove the equivalence between the

first equation in (4.3.2) and the first equation in (2.2.7), so long as the Bianchi identity

dH = ïF¹ ' F¹ð is satisfied. Arguing as in the last part of the proof of Theorem 2.3.2, the
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desired equivalence now follows from (3.5.4):
(

R∇− − F
 ' F

)

· ¸ = 0 ⇐⇒ R∇− − F
 ' F ∈ Ω2

14

⇐⇒
(

R∇− − F
 ' F

)

@ φ = 0

⇐⇒
1

2!1!

(

ïF¹, F
l
kðij + (R∇+) ij

l
k

)

φijpe
p ¹ ek ¹ el = 0

⇐⇒ ï(F¹ @ φ)#, F l
ke
k ¹ elð + Älk = 0

⇐⇒ ï(F¹ @ φ)#, F¹ð + Ä = 0.

as desired.

As a direct consequence of the previous result and Remark 2.2.3, it follows that

any solution of the coupled G2-instanton equation (4.3.2) corresponds to a G2-instanton

on TM · adP , given by the connection (2.2.2).

To finish this section, we prove that any solution of the gravitino equation

(2.1.5) in seven dimensions provides a solution of the coupled G2-instanton equation (4.3.2),

by application of Theorem 2.3.2. Note that, in the present setup, the gravitino equation is

given by

∇+φ = 0, F¹ ' È = 0, (4.3.3)

where the unknowns are pairs (φ, ¹) as before and ∇+ = ∇g + 1
2
g−1Hφ for (see Proposition

3.4.3)

Hφ :=
1

6
Ä0φ− Ä1 @ È − Ä3. (4.3.4)

We are mainly interested in solutions of the gravitino equation and also the heterotic

Bianchi identity (1.1.8)

dHφ = ïF¹ ' F¹ð. (4.3.5)

Our findings offer an alternative proof of, and are inspired by, certain results presented in

[dlOLS18a, dlOLS18b].

Theorem 4.3.6. Let P → M7 be a principal K-bundle over an oriented spin 7-manifold.

Then any solution (φ, ¹) of the gravitino equation (4.3.3) and the Bianchi identity (1.1.8)

determines a solution (φ,Hφ, ¹) of the coupled G2-instanton equation (4.3.2), and the

connection on T · adP defined in (2.2.2) by

D =




∇−

F
 

−F d¹





is a G2-instanton with respect to φ =: ∗È, i.e.

FD ' È = 0.

In particular, given a solution (φ, ¹) of the heterotic G2-system (4.1.1), the triple (φ,Hφ, ¹)

solves the coupled G2-instanton equation (4.3.2).
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Proof. The proof follows by direct application of Theorem 2.3.2, combined with Proposition

4.3.5. The last part of the statement follows from Proposition 4.1.2.

As a straightforward consequence is related to instanton towers in Section 2.5.

Theorem 4.3.6 and Proposition 2.5.1 gives us that:

Corollary 4.3.7. Let (M7, φ) be a 7-manifold with an integrable G2-structure φ and

closed torsion, endowed with a G2-instanton connection ¹ on a principal K-bundle P → M

with respect to φ =: ∗È, that is, solving the equations,

Ä2 = 0, dHφ = 0, F¹ ' È = 0,

cf. Proposition 3.4.3. Then there exists a sequence of G2-instanton bundles {(Vk,∇
k)}k∈N

over M with respect to φ, such that each Vk is a real orthogonal bundle of rank

rk = 7 + rk−1(rk−1 − 1), r1 = dimK,

and ∇k is a linear orthogonal connection on Vk.

4.4 Gravitino solutions and generalized Ricci-flat metrics

We will answer Problem 2 for the particular case of an oriented spin manifold

M7 in the context of G2-structures. The approach consists of considering solutions (φ, ¹) of

the gravitino equation (4.3.3) and the heterotic Bianchi identity (1.1.8) and proving that

they induce generalized Ricci-flat metrics for a canonical choice of divergence determined

by the Lee form of the G2-structure φ. In particular, this implies that any solution of the

coupled G2-instanton equation (4.3.2) constructed via Theorem 4.3.6 induces a generalized

Ricci-flat metric, as stated in Problem 2. We start with a technical Lemma about the

failure of a G2-instanton to satisfy the Yang-Mills equations, i.e., d¹∗F¹ = 0, which is valid

for arbitrary G2-structures.

Lemma 4.4.1. Let P be a principal K-bundle over 7-manifold M7 with G2-structure φ.

Given a G2-instanton ¹ on P , that is, a principal connection ¹ satisfying F¹ ' È = 0, one

has

d¹∗F¹ − F¹ @H + 4iÄ#
1
F¹ = 0. (4.4.1)

Proof. Recall that the instanton condition for ¹ is equivalent to the following equations:

F¹ ' È = 0 ⇐⇒ F¹ @ φ = 0 ⇐⇒ F¹ @ È = −F¹ ⇐⇒ F¹ ' φ = − ∗ F¹.

Taking covariant derivatives in the last expression and using the usual Bianchi identity

d¹F¹ = 0, we obtain:

d¹ ∗ F¹ = d¹(−F¹ ' φ) = −F¹ ' dφ,
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which implies (the so-called Yang-Mills equation with torsion, cf. [Tor15])

d¹∗F¹ + F¹ @ d
∗È = 0.

Applying (3.3.3), we have d∗È = ∗dφ = Ä0φ− 3Ä1 @ È + Ä3, and therefore

F¹ @ d
∗È = Ä0F¹ @ φ − 3F¹ @ (Ä1 @ È) + F¹ @ Ä3

=
(

− 1
6

+ 7
6

)

Ä0F¹ @ φ + (1 − 4)Ä1 @ (F¹ @ È) + F¹ @ Ä3

= −F¹ @H + 7
6
Ä0����:

0
F¹ @ φ − 4Ä1 @ (F¹ @ È) = −F¹ @H + 4Ä1 @ F¹.

combining this result with the Yang-Mills equation with torsion, the result follows.

Our following result establishes the desired relation between solutions of the

seven-dimensional gravitino equation and generalized Ricci-flat metrics. Via Theorem 4.3.6,

it can be regarded as a partial answer to Problem 2. For the proof, we will use a general

formula for the Ricci tensor of the characteristic connection of an integrable G2-structure,

from [IS23b, Theorem 4.5].

Lemma 4.4.2 ([IS23b]). Let (M7, φ) be an integrable G2-structure, then the Ricci curvature

Ric+ of its characteristic connection ∇+ = ∇g + 1
2
g−1H satisfies the following identity in

coordinates:

Ric+
ij −

1

12
(dH)abµiÈabµj + 4∇+

i Ä1j = 0. (4.4.2)

Proof. We start with the definition of the Ricci curvature for an arbitrary affine connection

∇: Ric∇ij = R∇µ
jµi. Additionally, the G2-structure is integrable, so the curvature R+ of

∇+ has its endomorphism part living in g2 = Λ2
14, so it satisfies:

R+
abijÈ

ab
kl = −2R+

klij. (4.4.3)

Now, let’s delve into the computation of the Ricci coefficients for the characteristic

connection ∇+. We will perform this calculation directly using an orthonormal frame,

which allows us the flexibility to raise and lower indices arbitrarily. We start as follows:

2Ric+
ij := 2R+

µjµi
(4.4.3)

= −R+
abµiÈabµj = −

1

3

(

R+
abµi +R+

abµi +R+
abµi

)

Èabµj

= −
1

3

(

R+
abµiÈabµj +R+

µabiÈµabj +R+
bµaiÈbµaj

)

= −
1

3

(

R+
abµi +R+

µabi +R+
bµai

)

Èabµj,

We have relabelled the indices in the last two equations and used the skew-symmetry

property of the È indices.
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Considering the identity in Lemma B.2.2 (Bianchi identity for metric connection

with skew-symmetric torsion) applied in the characteristic connection ∇+, the expression

for the Ricci tensor obtained above becomes:

2Ric+
ij = −

1

3

(

−
1

2
(dH)abµi + (∇+

i H)abµ

)

Èabµj

=
1

6
(dH)abµiÈabµj −

1

3
(∇+

i H)abµÈabµj

(4.4.4)

We can still simplify the last term ∇+H @ È. For this, let’s consider the G2-invariant map

µ ∈ Ω3 7→ µ @ È ∈ Ω1 which is zero in all components of Ω3 but Ω3
7

∼= Ω1, consequently (by

the compatibility of ∇+ and the flux theorem which relates H and ¶È)

∇+H @ È = ∇+(H @ È) = ∇+(Ã7H @ È) = ∇+(−(Ä1 @ È) @ È) = 4∇+Ä1

where we have used that (X @ È) @ È = −4X. To see this, use the identities in Proposi-

tion 3.1.6:

(X @ È) @ È =
1

1!1!3!
XµÈµ

ijkÈijkle
l = −

1

6
Xµ · 24¶µl e

l = −4Xo, (4.4.5)

and the result follows.

Theorem 4.4.3. Let P → M7 be a principal K-bundle over a connected, oriented, spin

7-manifold, and let (φ, ¹) be a solution of the gravitino equation (4.3.3) and the Bianchi

identity (1.1.8):

∇+φ = 0, F¹ ' È = 0, dH = ïF¹ ' F¹ð.

Then the Riemannian metric g = gφ on M determined by the G2-structure satisfies:

Ricg −
1

4
H2 + F¹ ◦ F¹ + 2LÄ#

1
g = 0,

d∗H − 4dÄ1 + 4iÄ#
1
H = 0,

d¹∗F¹ − F¹ @H + 4iÄ#
1
F¹ = 0,

(4.4.6)

where H = Hφ. In particular,

GRic+
Gϕ,divϕ = 0,

where Gφ is obtained as in Remark 4.1.3 and the divergence operator is uniquely determined

by the G2-structure via the explicit formula given by Remark 2.2.4:

divφ = divGϕ −2ï4Ä1, ·ð.

Proof. The third equation in (4.4.6) follows from Lemma 4.4.1 and the hypothesis (4.3.3).

For the first two equations in (4.4.6), we use the integrability of φ, which implies from

Lemma 4.4.2 that

(Ric∇+)ij −
1

12
(dH)abµiÈabµj + 4∇+

i Ä1j = 0. (4.4.7)
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Choosing an orthonormal frame {·³} for the pairing ï·, ·ð on the Lie algebra k, we express

the curvature of ¹ by

F¹ =
1

2!
F³

ije
i ' ej ¹ ·³,

where {ej} form a local orthonormal frame for the tangent bundle. Using this, we now

have

ïF¹ ' F¹ð =
〈

1

2!
F³

ab e
ab ¹ ·³ '

1

2!
F ´

kl e
kl ¹ ·´

〉

=
1

4
F³

abF
´
kle

abklï·³, ·´ð

By the heterotic Bianchi identity (1.1.8), we have dH = ïF¹ 'F¹ð = 1
4
F³

abF³kle
abkl, which

reads in local components:

(dH)i = F³
iµF³¿Äe

µ¿Ä.

Contracting this expression with Èj = 1
3!
Èjµ¿Äe

µ¿Ä, and using the instanton condition for ¹,

we conclude:

(dH)i @ Èj = F³
i
µF³

¿ÄÈjµ¿Ä = −2F³
i
µF³jµ.

On the other hand,

(dH)i @ Èj =
1

6
(dH)abµiÈabµj = −2F³

iµF³jµ ⇒ (dH)abµiÈabµj = −12F³
µiF³µj,

and hence

(Ric∇+)ij = −F³
µiF³µj − 4∇+

i Ä1j = −(ïiek
F¹, iek

F¹ð)ij − 4∇+
i Ä1j. (4.4.8)

The first and second equations in (4.4.6) now follow from the unique decomposition of

Ric∇+ and ∇+Ä1 into symmetric and skew-symmetric 2-tensors given by (2.1.9), since Ricg

and F¹ ◦ F¹ := ïiej
F¹, iej

F¹ð are symmetric tensors.

We will use this approach in Chapter 6 to prove generalized Ricci flatness for

more general structures, in particular for Spin(7)-structures.

To finish this section, in the following result, we investigate the failure of

generalized Ricci-flatness when we remove the instanton condition on ¹ from the hypotheses

of Theorem 4.4.3. We focus on the Yang–Mills-type equation given by the third equation

in (4.4.6), which we relate to the second equation in the coupled G2-instanton equations

(4.3.2). This situation can be then compared to the case of SU(n)-structures (É,Ψ) with

integrable complex structure studied in [GFGM23, Proposition 4.9], see Remark 4.4.5. A

similar analysis can be adopted for the first and second equations in (4.4.6), following the

proof of Theorem 4.4.3 carefully. This technical result will be key for the proof of the main

results in Section 5.4.
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Lemma 4.4.4. Let (M7, φ) be a 7-manifold endowed with an integrable G2-structure φ.

Let P be a principal K-bundle over M and ¹ an arbitrary principal connection on P . Then

the following identity holds:

d¹∗F¹+4Ä1 @F¹−F¹ @H = 6Ä1 @Ã7F¹+
1

3
Ä0Ã7F¹ @φ−3Ã7F¹ @Ä3 −3

∑

j

iej
Ã7∇

¹,+
ej
F¹ (4.4.9)

for a local orthonormal frame {ej} on M and Ã7 : Ω2 → Ω2
7 being the projection. In

particular, if ∇¹,+F¹ ∈ Ω2
14, we have

d¹∗F¹ + 4Ä1 @ F¹ − F¹ @H = 6Ä1 @ Ã7F¹ +
1

3
Ä0Ã7F¹ @ φ− 3Ã7F¹ @ Ä3. (4.4.10)

or, equivalently

d¹∗F¹ + F¹ @ d
∗È = (F¹ @ È + F¹) @H. (4.4.11)

Proof. Writing the expression for ∇¹,+
X F¹ explicitly, we have

∇¹,+
X F¹(V,W ) = d¹X(F¹(V,W )) − F¹(∇

+
XV,W ) − F¹(V,∇

+
XW )

= d¹X(F¹(V,W )) − F¹(∇
g
XV,W ) − F¹(V,∇

g
XW )

−
1

2

(

F¹(H(X,V ),W ) + F¹(V,H(X,W ))
)

= ∇¹,g
X F¹(V,W ) −

1

2

(

F¹(H(X,V ),W ) − F¹(H(X,W ), V ).
)

Define K ∈ Ω1(Λ2T ∗ ¹ adP ) by ∇¹,+
X F¹ =: ∇¹,g

X F¹ −
1

2
KX . Now, using

Ã7∇
¹,+
X F¹ =

1

3

(

∇¹,+
X F¹ + ∇¹,+

X F¹ @ È
)

,

in a local orthonormal frame {ej}, we obtain

3
∑

j

iej
Ã7∇

¹,+
ej
F¹ =

∑

j

iej
∇¹,+
ej
F¹ + iej

(∇¹,+
ej
F¹ @ È) =

∑

j

iej
∇¹,+
ej
F¹ + ∇¹,+

ej
F¹ @ iej

È

=
∑

j

iej
∇¹,+
ej
F¹ − ∇¹,+

ej
F¹ @ ∗(ej ' φ) =

∑

j

iej
∇¹,+
ej
F¹ − ∗(∇¹,+

ej
F¹ ' ej ' φ).

We compute the first summand in the last expression:

∑

j

iej
∇¹,+
ej
F¹ =

∑

j

iej
∇¹,g
ej
F¹ −

1

2

(

F¹(H(ej, ej), ·) + F¹(ej, H(ej, ·))
)

=
∑

j

ej @ ∇¹,g
ej
F¹ −

1

2
HjklFjl e

k = −d¹∗F¹ + F¹ @H

To compute the second summand, we use the identity for the covariant exterior derivative,

d¹ =
∑

j

ej ' ∇¹,g
ej

, so that the Bianchi identity d¹F¹ = 0 gives

∑

j

ej ' ∇¹,+
ej
F¹ =

∑

j

ej ' ∇¹,g
ej
F¹

︸ ︷︷ ︸

dθFθ

−
1

2
ej ' Kej

= −1
2

∑

j

ej ' Kej
.
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Therefore

−d¹∗F¹ + F¹ @H + 1
2

∑

j

∗(ej ' Kej
' φ) = 3

∑

j

iej
Ã7∇

¹,+
ej
F¹.

Setting Kj = Kej
, and computing directly (now using summation convention for efficiency)

ej ' Kj = 1
2
(Kj)³´ e

j³´ = 1
2

(

Hj³
µFµ´ −Hj´

µFµ³
)

ej³´

= 1
2

(

(Hj³
µ ej³) ' (Fµ´ e

´) + (Hj´
µ ej´) ' (Fµ³ e

³)
)

= 2ieγ
(Hµ ' F¹),

we obtain

∗(ej ' Kj ' φ) = 2 ∗ (iej
(Hj ' F¹) ' φ) = 2 ∗ (iej

(Hj ' F¹ ' φ) −Hj ' F¹ ' iej
φ).

Using now that Ä2 = 0, we have (cf. Lemma B.3.2) that dφ = H @
1 φ = Hj ' φj, we then

deduce

∑

j

∗(Hj ' F¹ ' φj) = ∗(F¹ ' dφ) = ∗(F¹ ' ∗ ∗ d ∗ ∗φ) = F¹ @ d
∗È,

and so

∗
(

iej
(Hj ' F¹ ' φ)

)

= ∗(iej
(Hj ' ∗(F¹ @ È))) = ej ' ∗(Hj ' ∗(F¹ @ È))

= ej ' (Hj
@ (F¹ @ È)) = 1

2
Hjkl(F¹ @ È)kle

j

= 1
2
(F¹ @ È)klHjkle

j = (F¹ @ È) @H.

From this, we conclude that

∗(ej ' Kj ' φ) = 2
(

F¹ @ d
∗È − (F¹ @ È) @H

)

and, as desired,

d¹∗F¹ + 4Ä1 @ F¹ − ∗(F¹ ' ∗H) = 4Ä1 @ F¹ + (F¹ @ È) @H − F¹ @ d
∗È − 3iej

Ã7∇
¹,+
ej
F¹

= 4Ä1 @ F¹ + 1
3
Ä0Ã7F¹ @ φ− Ä1 @ ((F¹ @ È) @ È)

− (F¹ @ È) @ Ä3 − Ä0F¹ @ φ+ 3Ä1 @ (F¹ @ È) − F¹ @ Ä3 − 3ej
Ã7∇

¹,+
ej
F¹

= 6Ä1 @ Ã7F¹ + 1
3
Ä0Ã7F¹ @ φ− 3Ã7F¹ @ Ä3 − 3iej

Ã7∇
¹,+
ej
F¹.

and the result follows.

Remark 4.4.5. Equation (4.4.10) above shows us that the second equation in the coupled

G2-instanton equations (4.3.2), given by

∇¹,+F¹ ' È = 0,
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does not imply, in general, the Yang-Mills equation with torsion, given by the third

equation in (4.4.6). An explicit example where this is indeed the case is not known,

[dSJGFLSE24]. This situation stands out in comparison to SU(n)-structures (É,Ψ) with

integrable complex structure studied in [GFGM23, Proposition 4.9], for which the equation

(∇¹,+F¹) 'Én−1 = 0 combined with F 0,2
¹ = 0 is equivalent to the corresponding Yang–Mills

equation with torsion. More details about this example, cf. Example 6.5.4. ⃝

4.5 Examples

In this section, we discuss some examples of coupled G2-instantons which can

be found scattered in the literature but which have not been identified as such. The

first examples arise from solutions of the heterotic G2 system (4.1.1), by Theorem 4.3.6

and Proposition 4.1.2. Such solutions with exact torsion one-form Ä1 = dϕ have been

constructed in, e.g. [GN95, FIUV11, Nol12, FIUV15, dlOG21, CGFT22, GS24], motivated

by the concept’s origins in heterotic string theory, which requires a globally defined dilaton

field ϕ whose vacuum expectation value determines the string-coupling constant. The

approximate solutions constructed in [LSE23] deserve special treatment since they do not

precisely solve the first equation in (4.1.1), and we postpone their analysis to Section 5.

Since we are mainly concerned with solving the coupled instanton equation

(4.3.2), we will work with Theorem 4.3.6 and consider solutions of the gravitino equation

(4.3.3) and the Bianchi identity (1.1.8). Incidentally, by Theorem 4.4.3, these conditions

are sufficient to imply a solution of the heterotic G2 system, with our relaxed definition

(4.1.1). Note that our equations barely impose any constraint on the torsion one-form

Ä1, and therefore are more flexible than the ones usually considered in the mathematical

physics literature, yet are still strong enough to prove Theorem 4.2.1 and Theorem 4.3.6.

Our first two examples are given by the product of a flat torus with a manifold

carrying an SU(n)-structure which is integrable and has closed torsion, also known in

the literature as twisted Calabi-Yau [GFRT20] or, more generally, Bismut Hermitian–

Einstein metrics [GFJS23]. The seven-dimensional geometry is given by a strong integrable

G2-structure (see Proposition 3.4.3), i.e. such that

Ä2 = 0 and dHφ = 0.

Example 4.5.1. Let N4 be a four-dimensional manifold endowed with SU(2)-structure

(É,Ψ), with almost complex structure J and Hermitian metric g = É(·, J ·). Its Lee form

¹É := −J∗d∗É ∈ Ω1(N) is defined by

dÉ = ¹É ' É.
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In this setup, a solution of the gravitino equation is a triple (É,Ψ, H) such that, cf. [FI02,

Theorem 10.1],

H = −dcÉ + g(NJ , ·),

where NJ is the Nijenhuis tensor of J , which in particular must be skew-symmetric.

Suppose that (É,Ψ) satisfies the twisted Calabi-Yau equation, introduced in

[GFRST22]:

dΨ = ¹É ' Ψ, d¹É = 0, ddcÉ = 0. (4.5.1)

Then, it was proved in [GFRST22, Lemma 2.2] that NJ = 0 and that it determines a

solution of the gravitino equation with H = −dcÉ, which also solves the Bianchi identity

dH = 0. Note that compact solutions of these equations in four dimensions are rather

rigid, as they only exist on tori and K3 surfaces, with H = 0 = ¹É, and diagonal Hopf

surfaces, with H ̸= 0 ̸= ¹É, cf. [GFRST22, Proposition 2.10].

To build the seven-dimensional geometry from a solution of (4.5.1) we follow

closely [FMMR23]. We consider M = N × T 3, where T 3 is a three-dimensional flat torus.

Denote

È+ := Re(Ψ), È− := Im(Ψ).

Define a G2-structure on M by

φ = dx1 ' dx2 ' dx3 + dx1 ' É + dx2 ' È+ − dx3 ' È−, (4.5.2)

where (x1, x2, x3) ∈ R are coordinates in the universal cover of T 3. Then, φ is strong and

integrable with

Ä0 = 0, ¹É = 4Ä1, Hφ = dcÉ.

For the proof, we follow [FMMR23, Proposition 3.5]. For instance, since É, È+ and È− are

Hodge self-dual on N4,

∗φ = 1
2
É2 + dx2 ' dx3 ' É − dx1 ' dx3 ' È+ − dx1 ' dx2 ' È−.

Since dÉ = ¹É ' É and dΨ = ¹É ' Ψ, we obtain d ∗ φ = ¹É ' ∗φ. Thus, φ is an integrable

G2-structure with Lee form ¹ = ¹É, and

dφ ' φ = ¹É '
(

dx1 ' É + dx2 ' È+ − dx3 ' È−

)

' φ = 0,

since the self-dual forms É, È+ and È− are pairwise orthogonal. The torsion of φ is

Hφ = ∗(¹ ' φ− dφ) = ∗(¹É ' dx1 ' dx2 ' dx3) = − ∗4 ¹É = JdÉ = dcÉ,

since ¹É = J ∗4 d ∗4 É = ∗4JdÉ and JÉ = É.

Applying now Theorem 2.3.2, we obtain a coupled G2-instanton on TM given

by the connection

∇− = ∇g7 −
1

2
g−1

7 Hφ. (4.5.3)
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Incidentally, this connection is actually flat [FMMR23], and the tower of coupled G2-

instantons over this manifold given by Corollary 4.3.7 is also flat. △

The following example is given by the product of the Calabi–Eckmann 6-

manifold S3 × S3 with a circle. Similarly, as in the previous example, by application of

[FMMR23, Proposition 3.5], the seven-dimensional torsion classes are inherited from the

six-dimensional geometry. Consequently, this example is also strong and integrable, but

unlike the previous one, it has dÄ1 ≠ 0, which reflects the fact that the Calabi–Eckmann

complex threefold does not admit balanced hermitian metrics. Note that this example

provides a solution of the heterotic G2 system (4.1.1) according to our lax Definition 4.1.1,

but it escapes from the orthodoxy for these systems of equations in the literature, precisely

because Ä1 is non-closed.

Example 4.5.2. Let

N6 = {C2
× × C

2
×}/C ≃ S3 × S3,

with its (non-Kähler) Calabi–Eckmann SU(3)-structure (É,Ψ). Following [GFS20, Example

8.35], if we let Ãj : S3 → CP
1 denote the Hopf fibration on each of the two factors in N ,

for j = 1, 2, and let µj denote the 1-form on S3 such that

dµj = Ã∗
jÉCP

1

for j = 1, 2, where ÉCP
1 is the Kähler form for the Fubini–Study metric on CP

1, then we

can write É explicitly as:

É = Ã∗
1ÉCP

1 + Ã∗
2ÉCP

1 + µ1 ' µ2.

It is straightforward to show that if we let

¹É = µ2 − µ1

then

dΨ = ¹É ' Ψ and ddcÉ = 0.

However, note that

d¹É = Ã∗
2ÉCP

1 − Ã∗
1ÉCP

1 ̸= 0

and so the second equation (4.5.1) in the definition of twisted Calabi–Yau is not satisfied,

though the rest are.

As in Example 4.5.1, we now let È± denote the real and imaginary parts of Ψ

respectively. We may then define a product G2-structure on M7 = N6 × S1 by

φ = É ' dt+ È+,
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where dt is the standard nowhere vanishing 1-form on S1. The Hodge dual È of φ is then

given by

È =
1

2
É2 + È− ' dt.

As in [FMMR23, Proposition 3.5], one sees from these formulae that the G2-structure φ is

integrable with

Ä0 = 0, Ä1 = ¹É, Hφ = dcÉ = Ã∗
1ÉCP

1 ' µ1 − Ã∗
2ÉCP

1 ' µ2.

Hence, dHφ = ddcÉ = 0 and thus φ is also strong.

Even though Ä1 is not closed, one may still apply Theorem 2.3.2 and obtain a

coupled G2-instanton ∇− on TM as in (4.5.3), which is again flat. The tower of coupled

G2-instantons we obtain from Corollary 4.3.7 are also flat. Notice that the G2-structure

presented here is fundamentally different from that obtained on G = SU(2)2 × S1 as a Lie

group, in [FMMR23, Proposition 6.2]. △

Remark 4.5.3. Given the observations in Examples 4.5.1 and 4.5.2, it would be interesting

to find G2-structures which are both strong and integrable but for which the connection

∇− in (4.5.3) is not flat, or even irreducible. ⃝

Remark 4.5.4. No irreducible compact homogeneous spaces admitting invariant G2-

structures, up to a covering, admit (invariant) strong integrable G2-structures, cf. [FMMR23,

§5]. On the other hand, the same authors find numerous examples of such structures on

reducible spaces, which, according to their preference, have closed Lee form, cf. [FMMR23,

§6]. Several of those examples can be easily adapted to provide more general solutions of

the gravitino equation (4.5.1). ⃝

Our final example, originally found in [II05, §6], provides a solution of the

heterotic G2-system (4.1.1) with Ä0 ̸= 0 and non-flat instanton ¹ in the nearly parallel

seven-dimensional sphere. In particular, the coupled G2-instanton obtained from this

solution via Theorem 4.3.6 is non-flat.

Example 4.5.5. Let M = S7 be the standard 7-sphere, viewed as a sphere in the

octonions. It is well-known that the embedding of S7 in the octonions induces a natural

Spin(7)-invariant G2-structure φ on S7 which is nearly parallel in the sense that

dφ = 4»È (4.5.4)

where È = ∗φ as usual and » ≠ 0 is constant. Note that the metric determined by φ has

constant curvature »2. We clearly see that all the torsion forms vanish, except Ä0 = 4» ≠ 0

and is constant. Hence, φ is an integrable G2-structure but since

H =
2

3
»φ, (4.5.5)
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we see that

dH =
8

3
»2È ̸= 0 (4.5.6)

by (4.5.4) and thus φ is not strong.

Take P to be the G2-frame bundle of S7, and let ¹ be the connection on P

determined by ∇+. It is observed in [II05, §6] that ∇+Hφ = 0, and consequently, cf.

(2.3.5),

g(R∇+(X, Y )Z,W ) = g(R∇+(Z,W )X, Y ).

As in the proof of Theorem 2.3.2, ¹ is a G2-instanton. Furthermore, it is shown in [II05,

§6] that the curvature F¹ of ¹ satisfies

trF¹ ' F¹ = −
32»4

27
È. (4.5.7)

Combining (4.5.6) and (4.5.7), we see that the heterotic Bianchi identity (1.1.8) is satisfied

for a suitable choice of scaling of the Killing form on the Lie algebra of G2. Overall, we see

that (φ,H, ¹) defines a coupled G2-instanton on S7. △

Remark 4.5.6. An interesting example in six dimensions where Theorem 2.3.2 applies

is the 6-sphere with the standard nearly Kähler structure inherited from the imaginary

octonions. According to [II05, §6], this provides a solution of the gravitino equation and

the Bianchi identity with instanton connection ∇+ and non-closed torsion given by the

Nijenhuis tensor of the SU(3)-structure, with a structure very similar to Example 4.5.5.

⃝
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5 Approximate solutions on contact Calabi-

Yau 7-manifolds

We have seen a connection between solutions of the heterotic G2-system,

solutions of the coupled G2-instanton equations and the vanishing of generalised Ricci

curvature. In [LSE23], “approximate” solutions to the heterotic G2 system were given

in the sense that the connections involved were only “approximate” G2-instantons: here

the “approximate” pertains to dependence on the non-zero constant ³′ which appears

in the heterotic Bianchi identity as ³′ → 0. Motivated by this and our results thus far,

in this section, we propose a new definition of ³′-approximate G2-instantons and show

that it not only leads to approximate solutions to the coupled G2-instanton equations but

also to generalised Ricci curvature which is approximately zero in a quantitative sense as

³′ → 0. We also demonstrate that the examples as mentioned above from [LSE23] provide

³′-approximate G2-instantons and thus lead to approximate coupled G2-instantons and

approximate generalised Ricci-flatness.

This chapter is structured as follows: In Section 5.1, we provide an introduction

to the fundamental concepts of contact structures, setting the stage for the main focus

of this chapter: contact Calabi-Yau manifolds. Additionally, we investigate how a 7-

dimensional contact Calabi-Yau manifold possesses a natural family of integrable G2-

structures. Following this, we calculate the essential quantities associated with these

structures as the flux and torsion forms.

In Section 5.3, a parametrised family of connections ¹ε,km,¶ on the tangent bundle

of a contact Calabi-Yau manifold is introduced, characterised by accurate parameters ε,

k, m, and ¶. Moreover, as made in the analysis by [LSE23], we show how much these

connections are not G2-instantons.

In sequence, Section 5.4, we introduce the notion of approximate G2-instantons

by introducing a new imposition with relation to approximate instantons in [LSE23] (cf.

Definition 5.4.1). Furthermore, we apply all the theory of coupled instanton equations and

generalised Ricci flatness studied in Chapters 2 and 4 to the notion of approximate instan-

tons. Under certain conditions, we prove that approximate instantons imply approximate

coupled instantons and approximate generalised Ricci flatness, cf. Theorem 5.4.7.

Finally, in Section 5.5, we extend the findings from the preceding section to

the specific setting of contact Calabi-Yau manifolds outlined in Section 5.1. Here, we

establish the proof that the approximate solutions introduced in [LSE23] indeed qualify as

approximate generalised Ricci flat solutions.
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5.1 Contact Calabi–Yau manifolds

In [LSE23], the heterotic G2 system was studied within the framework of contact

Calabi–Yau 7-manifolds, which naturally admit a one-parameter family of G2-structures

that we will now review.

Contact structures on odd-dimensional manifolds M2m+1 are U(m)-structures

in the sense of a reduction of the frame bundle of SO(2m+ 1) to U(m) when we identify

U(m) ∼= U(m) × 1 inside SO(2m + 1). In terms of tensors, this is equivalent to a data

(M2m+1, ¸, g, É), where ¸ ∈ Ω1(M) called the contact form defines a volume form by the

expression:

volM =
1

m!
¸ ' d¸m; (5.1.1)

É ∈ Ω2(M) being a symplectic form on the 2m-rank bundle ker ¸ satisfying

d¸ = É; (5.1.2)

g a Riemannian metric on M given by a Riemannian metric g¸ on ker ¸ (compatible with

É on this subbundle) with an additional term with ¸ as

g = g¸ + ¸ ¹ ¸; (5.1.3)

With this, there exists a unique vector field, called Reeb field such that (cf. [BG08, Bla10]):

À @ ¸ = 1; À @ d¸ = 0. (5.1.4)

With this, we have an orthogonal splitting of the tangent bundle TM = ker ¸ · ïÀð. This

data defines an almost complex structure J on ker ¸ via É and the Riemannian metric g¸.

This tensor J can be defined in TM vanishing in ïÀð, consequently for X = X¸ +¼À ∈ TM ,

we have

J2(X¸ + ¼À) = −X¸ = −(X¸ + ¼À) + ¼À = −X + ¸(X)À

so, the so-called transverse almost complex structure satisfies:

J2 = − Id +¸ ¹ À. (5.1.5)

Note that in this case

g(JX, JX) = g¸(JX, JX) + ¸(JX) ¹ ¸(JX) = g¸(JX¸, JX¸)

= g¸(X¸, X¸) − ¸(X) ¹ ¸(X) + ¸(X) ¹ ¸(X)

= g(X,X) − ¸ ¹ ¸(X,X)

consequently, the metric satisfies

g(J, J) = g − ¸ ¹ ¸ (5.1.6)
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Sometimes, the ‘contact’ setup will denoted by (M2k+1, ¸, g, É, À, J) with the non-independent

quantities satisfying the relations (5.1.1), (5.1.2), (5.1.3), (5.1.4), (5.1.5) and (5.1.6). Some-

times, we will refer to (M2k+1, ¸, g, É, À, J) as almost contact structures if it satisfies (5.1.1),

(5.1.3), (5.1.4), (5.1.5) and (5.1.6).

Example 5.1.1 (Boothby-Wang fibrations). We now present an important class of

examples, namely principal circle bundles over symplectic manifolds. A celebrated theorem

by Boothby and Wang [BW58] states that a compact regular1 contact manifold is always

of this type (cf. [Bla10, Theorem 3.9] for a proof). Examples of this type are often simply

referred to as Boothby-Wang fibrations.

These examples consist of a principal S1-bundle Ã : M2m+1 → V 2m, where the

base manifold (V, É) is symplectic and ¸ ∈ Ω1(M) is a connection form which curvature

satisfies d¸ = Ã∗É. With this and a metric gV in V , we can define via the relations discussed

above a contact structure (M, ¸, g, É, À, J), [Bla10]. △

A particular example in the Boothby-Wang fibration Ã : M → V is when the

basis manifold V is Kähler, so the contact manifold M is called Sasakian manifold. In

terms of only the tensor, the contact structure will be Sasakian if the transversal Nijenhius

tensor vanishes

NJ(X, Y ) = [JX, JY ] + J2[X, Y ] − J [JX, Y ] − J [X, JY ] + d¸(X, Y )À ≡ 0. (5.1.7)

If the base manifold of the Boothby-Wang fibration is Calabi-Yau (V,Ψ) for Ω = ReΩ +

i ImΩ is the holomorphic volume form, then Ψ is defined as M naturally vanishing on the

vertical part ïÀð and the Sasakian manifold is called contact Calabi-Yau manifold. Due to

[HV15], we have a classification of contact Calabi-Yau manifolds (cf. the definition above).

We are particularly interested when the base manifold is a Calabi-Yau 3-orbifold, so the

contact manifold is seven-dimensional, and the interesting thing, in this case, is that they

have a natural G2 structure.

Definition 5.1.2 (Contact Calabi-Yau manifold). Let (V, É,Ω) be a Calabi–Yau 3-fold,

i.e. a Kähler 3-fold with Kähler form É and holomorphic volume form Ω satisfying

volV =
É3

3!
=

1

4
ReΩ ' ImΩ,

where volV the volume form is associated with the Kähler metric gV on V . A contact

Calabi-Yau manifold is the total space of an S1-bundle Ã : M7 → V endowed with a

connection 1-form ¸ such that d¸ = É.

1 A contact structure is regular if the Reeb vector field ξ is regular as a vector field, that is, every point
of the manifold has a neighbourhood such that any integral curve of the vector field passing through
the neighbourhood passes through only once.
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5.2 Family G2-structures φε on contact Calabi–Yau 7-manifolds

As mentioned earlier, seven-dimensional contact Calabi-Yau manifolds are

naturally equipped with a family of G2-structures, which we will now define.

Definition 5.2.1. For every ε > 0, we define an S1-invariant G2-structure φε on M7,

with dual 4-form Èε, by

φε = ε¸ ' É + ReΩ and Èε =
1

2
É2 − ε¸ ' ImΩ. (5.2.1)

The metric induced from this G2-structure and its corresponding volume form on M are:

gε = ε2¸ ¹ ¸ + gV , volε = ε¸ ' volV . (5.2.2)

Note that varying ε in (5.2.2) amounts to rescaling the S
1 fibres of Ã : M → V , so that

ε → 0 corresponds to collapsing the fibres to zero size.

We now recall some basic observations about the family of G2-structures φε in

(5.2.1) on the contact Calabi–Yau 7-manifold M from [LSE23, Lemmas 2.4 & 2.5]. We see

that

dφε = εÉ2, dÈε = 0,

so the G2-structures are co-closed. The torsion forms of φε are [LSE23, Lemma 2.4]:

Ä0 =
6

7
ε; Ä1 = 0; Ä2 = 0; Ä3 =

8

7
ε2¸ ' É −

6

7
εReΩ.

In particular, we observe that the structures are integrable (i.e. Ä2 = 0) and admit a

connection with totally skew-symmetric torsion (cf. Proposition 3.4.3 and Theorem 3.4.4)

given by [LSE23, Lemma 2.5]

Hε = −ε2¸ ' É + εReΩ, (5.2.3)

which satisfies

dHε = −ε2É2.

The above facts show that one can build approximate solutions to the heterotic

G2-system on M , using the G2-structures φε. To describe these approximate solutions, it

is necessary to introduce a useful (and natural) local coframe adapted to the geometry of

M .

Definition 5.2.2. Given ε > 0, let (M7, φε) be as in Definition 5.1.2. We choose a local

Sasakian real orthonormal coframe on M :

e0 = ε¸, e1, e2, e3, Je1, Je2, Je3, (5.2.4)

where J is the transverse complex structure (from the Calabi–Yau V ).
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In particular, we have {e1, e2, e3, Je1, Je2, Je3} a basic SU(3)-frame for V . In

this frame, the Kähler and holomorphic volume forms are given by:

É = e1 ' Je1 + e2 ' Je2 + e3 ' Je3

Ω = (e1 + iJe1) ' (e2 + iJe2) ' (e3 + iJe3).

In particular, expanding the last expression we have [LSE23, Remark 2.7]:

ReΩ = e1 ' e2 ' e3 − e1 ' Je2 ' Je3 − e2 ' Je3 ' Je1 − e3 ' Je1 ' Je2,

ImΩ = Je1 ' e2 ' e3 + Je2 ' e3 ' e1 + Je3 ' e1 ' e2 − Je1 ' Je2 ' Je3.

By [LSE23, Proposition 3.2], we know that if we write e = (e1 e2 e3)T and Je =

(Je1 Je2 Je3)T then the following structure equations hold:

d








e0

e

Je








= −








0 ε
2
JeT − ε

2
eT

− ε
2
Je a b− ε

2
e0I

ε
2
e −b+ ε

2
e0I a








'








e0

e

Je







, (5.2.5)

where a is a skew-symmetric 3 × 3 matrix of 1-forms, b is a symmetric traceless 3 × 3

matrix of 1-forms, and I is the 3 × 3 identity matrix. Therefore, if we define

A =








0 0 0

0 a b

0 −b a








and B =








0 JeT −eT

−Je 0 −e0I

e e0I 0








(5.2.6)

we see that A + ε
2
B is the local matrix representing the Levi-Civita connection of gε with

respect to the local orthonormal coframe introduced in Definition 5.2.2. In particular, A is

the matrix representation of the Levi-Civita connection of gV [LSE23, Lemma 3.1]. If we

then let

I =








0 0 0

0 0 −I

0 I 0








and C =








0 JeT −eT

−Je −[e] [Je]

e [Je] [e]








− e0I, (5.2.7)

where 













e1

e2

e3















=








0 e3 −e2

−e3 0 e1

e2 −e1 0







, (5.2.8)

These quantities will be useful for us to define squashing connections on the tangent bundle

to find for (approximate) G2-instantons.

5.3 The approximate G2-instantons ¹¶,kε,m in TM

Using the quantities defined in the last section, we can ‘squash’ the Levi-Civita

connection ∇gε for gε in TM . We can define a family of connections on TM as follows

[LSE23, Proposition 3.21].
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Definition 5.3.1. Let (M7, φε) be as in Definition 5.1.2 for some ε > 0. Recall the local

coframe on M in Definition 5.2.2 and the matrices A,B,C, I defined concerning this

coframe in (5.2.6)–(5.2.7). For k ∈ R \ {0} and ¶,m ∈ R we define a connection ¹¶,kε,m on

TM by the formula

¹¶,kε,m = A +
kε

2
B +

kε¶

2
C +

kmε

2
e0I. (5.3.1)

Note that this local expression determines a globally defined connection on TM , that taking

¶ = m = 0 and k = 1 in (5.3.1) yields the Levi-Civita connection ∇gε of the metric gε on

M , and taking ¶ = k = 1 and m = 0 in (5.3.1) yields the Bismut connection ∇+ associated

with gε and torsion Hε.

Remark 5.3.2. We can interpret the various parameters in Definition 5.3.1 as follows. First,

the parameter k can be viewed as a “squashing” parameter, allowing us to rescale the

connection along the fibres of Ã : M → V independently of the parameter ε. The matrix

C is equivalent (up to a factor of ε) to the torsion Hε in (5.2.3) by [LSE23, Proposition

3.10], so the parameter ¶ varies the torsion of the connection along a canonical line, which

contains the Bismut, Hull and Levi-Civita connections when k = 1 and m = 0. Finally, the

parameter m can be viewed as an additional “twist” parameter acting in the transverse

directions for the fibration of M over V . ⃝

In [LSE23, Corollary 3.27], it was described how ¹¶,kε,m in Definition 5.3.1 fails

to be a G2-instanton.

Proposition 5.3.3. Using the notation of Definition 5.3.1, (5.2.7) and (5.2.8), the curva-

ture R¶,k
ε,m of the connection ¹¶,kε,m on TM satisfies:

R¶,k
ε,m ' Èε =

kε2(6(1 − ¶ +m) + k(1 − ¶)(1 + 3¶))

4
·
É3

3!
I +

k2ε2

4
¸ '

É2

2!
' M¶

m, (5.3.2)

where

M¶
m =








0 (1 +m− 5¶)(1 + ¶)eT (1 +m− 5¶)(1 + ¶)JeT

(5¶ − 1 −m)(1 + ¶)e (¶2 − 2(2 +m)¶ − 1)[Je] (¶2 − 2(2 +m)¶ − 1)[e]

(5¶ − 1 −m)(1 + ¶)Je (¶2 − 2(2 +m)¶ − 1)[e] −(¶2 − 2(2 +m)¶ − 1)[Je]







.

In particular, ¹¶,kε,m is never a G2-instanton.

The main result on the heterotic G2 system in this contact Calabi–Yau setting

is the following [LSE23, cf. Theorem 1].

Theorem 5.3.4. Let Ã : M7 → V as in Definition 5.1.2 be a contact Calabi–Yau 7-

manifold. Let A be the pullback of the Levi-Civita connection of the Calabi–Yau metric on

V , defined on E = Ã∗TV .
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For all ³′ > 0 there exist ε = ε(³′) > 0, k = k(³′) > 0, with k(³′) → ∞ and

ε(³′) → 0 as ³′ → 0, and ¶,m ∈ R so that if M is endowed with the G2-structure φε as in

(5.2.1), the connection ¹¶,kε,m in Definition 5.3.1 on TM and the connection A on E, then

we have a solution to the heterotic G2 system, except that ¹¶,kε,m is never a G2-instanton but

instead satisfies

|R¶,k
ε,m ' Èε|gε

= O(³′)2 as ³′ → 0. (5.3.3)

Concretely, three separate regimes are presented in [LSE23, §4.4] of choices of

the parameters ε, k, ¶,m so that the conclusion of Theorem 5.3.4 holds for any positive ³′

sufficiently close to 0.

Case 1. ¶ ∈ R \ {0,−1}, m = ¶ − 1, k2 = (³′)−3, ε2 =
8

¶2(1 + ¶)2
(³′)5.

Case 2. ¶ = 0, m < −1, k = (³′)−3, ε2 = −
8

(1 +m)(1 + 3(³′)3)
(³′)8.

Case 3. ¶ = −1, m > −2, k = (³′)−3, ε2 =
8

(2 +m)(4 − 3(³′)3)
(³′)8.

We shall return to the examples in Theorem 5.3.4 at the end of this section to

understand in what sense the condition (5.3.3) gives “approximate” G2-instantons and

thus approximate solutions to the heterotic G2 system.

5.4 Approximate coupled G2-instantons and generalized Ricci cur-

vature

We return to the general setting of 7-manifolds with integrable G2-structures.

Given the relationship between solutions of the heterotic G2 system, coupled G2-instantons

and the vanishing of the generalised Ricci curvature as seen in Section 4.3, and based on

the results in Theorem 5.3.4, we are motivated to define a suitable notion of approximate

G2-instantons, and then to show that this leads to an appropriate sense of both approximate

coupled G2-instantons and approximate generalised Ricci-flatness.

Given this goal, we propose the following definition of approximate G2-instantons

in our context.

Definition 5.4.1. Suppose that for a sequence of non-zero real numbers ³′ → 0 we have

the following data.

Let (M7, φ) be a 7-manifold endowed with an integrable G2-structure with

induced metric g, dual 4-form È and torsion 3-form H. Let P → M be a principal K-

bundle over M , where the Lie algebra k is endowed with an ³′-independent, non-degenerate,

bilinear, symmetric pairing ï·, ·ð : k ¹ k → R. Let ¹ ∈ Ω1(P, k) define a connection on P
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with curvature F¹ and recall the induced connection ∇¹,+ (cf. (2.2.4)). Suppose finally that

the heterotic Bianchi identity is satisfied:

dH = ³′ïF¹ ' F¹ð. (5.4.1)

We say that the connections ¹ are ³′-approximate G2-instantons if

∣
∣
∣F¹ ' È

∣
∣
∣
g

= O(³′)2 and
∣
∣
∣∇¹,+F¹ ' È

∣
∣
∣
g

= O(³′)2, (5.4.2)

as ³′ → 0.

Remark 5.4.2. Note that if φ is integrable, then ∇+ preserves φ and hence È, and so

∇¹,+(F¹ ' È) = ∇¹,+F¹ ' È. (5.4.3)

In particular, if ¹ is a G2-instanton then ∇¹,+F¹ ' È = 0. Hence G2-instantons give trivial

examples of ³′-approximate G2-instantons. ⃝

In general, the first condition in (5.4.2), which is the one considered in [LSE23]

(see Theorem 5.3.4), does not imply the second. Definition 5.4.1, therefore, gives a more

robust notion of approximate G2-instanton, which appears to be more natural, at least in

our context.

Remark 5.4.3. As it is well-known, G2-instantons can bubble, meaning that their curvature

can blow up pointwise in a family. To avoid this, it is natural to impose that their curvature

stays bounded (pointwise), so we can ask the same of our approximate G2-instantons. In

this setting, we can achieve our main results concerning approximate solutions. ⃝

In the following sense, we now show that ³′-approximate G2-instantons yield

approximate coupled G2-instantons.

Theorem 5.4.4. Suppose that we have an ³′-approximate G2-instantons ¹ on a principal

K-bundle over (M7, φ) with integrable G2-structure φ and torsion H satisfying (5.4.1) as

in Definition 5.4.1. Recall Ä(φ,H) given in Definition 4.3.1 and F ' F
 given in Lemma

2.2.1.

If the curvature F¹ of ¹ is bounded as ³′ → 0, then (φ,H, ¹) give approximate

solutions to the coupled G2-instanton equation (4.3.2) in Definition 4.3.4 in the following

sense as ³′ → 0:

|Ä(φ,H) + ïF¹, (F¹ @ φ)#ð|g = O(³′)2,

|(∇¹,+F¹) @ φ|g = O(³′)2,

|[F¹ @ φ, ] − F ' F
 
@ φ|g = O(³′)2,

dH − ³′ïF¹ ' F¹ð = 0.

(5.4.4)
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Proof. Since φ is integrable, Ä(φ,H) = 0 by Lemma 4.3.3. The first equation in (5.4.4) is

then an immediate consequence of the boundedness of F¹ and the first condition in (5.4.2)

of ³′-approximate G2-instantons. The second equation in (5.4.4) is precisely the second

condition in (5.4.2). The fourth equation in (5.4.4) is satisfied by assumption. We are,

therefore, only left with the third equation in (5.4.4).

The first term in the third equation is of order O(³′)2 by the first condition in

(5.4.2). In the proof of Theorem 2.3.2, we saw locally we can write F ' F
 as:

−
∑

j

(

ej @ ï·, ·ð−1(·l @ F¹)
)

'
(

ej @ (·k @ F¹)
)

¹ ·k ¹ ·l = −F l
@

1 Fk,

where {ej} form a local orthonormal frame on M7 and {·j} give an orthonormal basis for

the Lie algebra of K. By Lemma 6.4.3 and the calculations in the proof, we deduce that

Ã7(F¹) = 0 forces Ã7(F ' F
 ) = 0 and, moreover, there is a universal constant C > 0 so

that

|Ã7(F ' F
 )|g f C|F¹|g|Ã7(F¹)|g.

The third equation in (5.4.4) now follows from the boundedness of F¹ and the first condition

in (5.4.2).

Now, as we have seen, taking G2-instantons ¹ in Definition 5.4.1 leads to

generalised Ricci-flatness because in this case, the following two terms, which are the

components of the generalised Ricci curvature as in Theorem 1.5.5, must vanish:

d¹∗F¹ + 4iÄ#
1
F¹ − F¹ @H, Ric+ + ³′F¹ ◦ F¹ + 4∇+Ä1. (5.4.5)

We now examine these terms for ³′-approximate G2-instantons.

Proposition 5.4.5. Let ¹ be ³′-approximate G2-instantons over (M7, φ) as in Definition

5.4.1. Then the curvature F¹ satisfies

∣
∣
∣d¹∗F¹ + 4Ä1 @ F¹ − F¹ @H

∣
∣
∣
g

= O(³′)2 as ³′ → 0.

Proof. Recall that, by Lemma 4.4.4, we have

d¹∗F¹ + 4Ä1 @ F¹ − F¹ @H = 6Ä1 @ Ã7F¹ +
1

3
Ä0Ã7F¹ @ φ− 3Ã7F¹ @ Ä3

+ 3
7∑

j=1

ej @ Ã7∇
¹,+
ej
F¹.

(5.4.6)

The result follows from the ³′-approximate G2-instanton condition (5.4.2).

We now turn to the second term in (5.4.5).
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Proposition 5.4.6. Let (M7, φ) be a 7-manifold with an integrable G2-structure and ¹ be

a connection on a principal K-bundle over M as in Definition 5.4.1 so that the heterotic

Bianchi identity (5.4.1) is satisfied. Then

Ric+ + ³′ F¹ ◦ F¹ + 4∇+Ä1 = 3³′ F¹ ◦ Ã7F¹ (5.4.7)

In particular, if ¹ are ³′-approximate G2-instantons as in Definition 5.4.1 with bounded

curvature F¹ as ³′ → 0, then

∣
∣
∣Ric+ + ³′F¹ ◦ F¹ + 4∇+Ä1

∣
∣
∣
g

= O(³′)3 as ³′ → 0. (5.4.8)

Proof. Using Lemma (4.4.2), we have

Ric+
ij −

1

12
(dH)abµiÈabµj + 4∇+

i (Ä1)j = 0, (5.4.9)

so it suffices to study the second term in (5.4.9) to obtain (5.4.7). Note that

(dH)i @ Èj =
1

6
(dH)abµiÈabµj.

This observation, together with the heterotic Bianchi identity (5.4.1), then implies that

1

12
(dH)abµiÈabµj =

1

2
(dH)i @ Èj =

³′

2
(F¹)

´
i
µ(F¹)´

¿ÄÈjµ¿Ä.

Using the decomposition

F¹ @ È = 2Ã7F¹ − Ã14F¹ = 3Ã7F¹ − F¹. (5.4.10)

we deduce that

1

12
(dH)abµiÈabµj = ³′

(

−(F¹)
´
µi(F¹)´µj + 3(F¹)

´
i
µÃ7F¹´jµ

)

. (5.4.11)

Inserting (5.4.11) in (5.4.9) gives (5.4.7). The final result then follows from the condition

(5.4.2) in Definition 5.4.1 of ³′-approximate G2-instantons, together with the assumption

that F¹ is bounded as ³′ → 0.

Combining Propositions 5.4.5 and 5.4.6, we immediately obtain the following

result about approximate generalised Ricci flatness.

Theorem 5.4.7. Let ¹ be an ³′-approximate G2-instanton on a principal K-bundle over

(M7, φ), endowed with an integrable G2-structure with torsion form H satisfying the

heterotic Bianchi identity (5.4.1), as in Definition 5.4.1. Suppose further that the curvature

F¹ is bounded as ³′ → 0.

Let E = TM · adP · T ∗M have the transitive Courant algebroid structure

defined by the pair (H, ¹) and generalized metric Gφ as in Example 1.2.4. If the divergence

is given by

div = divV+ − 2ï4Ä1, ·ð, (5.4.12)
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then we obtain approximate generalized Ricci flatness in the sense of

∣
∣
∣GRic (Gφ, divφ)

∣
∣
∣
gϕ

= O(³′)2, (5.4.13)

as ³′ → 0.

5.5 Approximate solutions on contact Calabi–Yau 7-manifolds

In this subsection, we revisit the setting of contact Calabi–Yau 7-manifolds

Ã : M7 → V endowed with the G2-structures φε as in Definition 5.1.2. Recall that φε
are integrable G2-structures with torsion Hε. Recall also the connections ¹¶,kε,m on TM in

Definition 5.3.1 and that we can define the bundle E = Ã∗TV and endow it with the

pullback A of the Levi-Civita connection from the Calabi–Yau 3-orbifold V . This leads us

to the following definition.

Definition 5.5.1. Let K = G2 × SU(3) and identify G2 and SU(3) with their standard

matrix representations (acting on R
7 and C

3 respectively). We can define a principal

K-bundle P over M whose natural associated vector bundle is TM · E. We can then

define a connection ¹ on P using the pair of connections ¹¶,kε,m and A.

We also endow the Lie algebra k of K with the pairing ï·, ·ð : k ¹ k → R with

respect to the splitting k = g2 · su(3):

ï(X1, Y1), (X2, Y2)ð = −tr(X1X2) + tr(Y1Y2). (5.5.1)

Note that ï·, ·ð is non-degenerate, bilinear and symmetric.

Theorem 5.3.4 then states that if we are given any sequence ³′ → 0, then we

can choose positive parameters ε = ε(³′), k = k(³′) and real parameters ¶,m independent

of ³′ so that H = Hϵ and ¹ given in Definition 5.5.1 satisfy the heterotic Bianchi identity

(5.4.1) with ï·, ·ð as in (5.5.1) (which we notice is ³′-independent). Moreover, since A

is a G2-instanton by [LSE23, Lemma 3.1], (5.3.3) in Theorem 5.3.4 also gives that the

curvature F¹ of ¹ satisfies the first condition in (5.4.2).

Theorems 5.4.4 and 5.4.7 imply that if ¹ also satisfies the second condition in

(5.4.2) and has bounded curvature as ³′ → 0, then the “approximate” solutions to the

heterotic G2 system given by Theorem 5.3.4 give rise to approximate coupled G2-instantons

and an approximate generalised Ricci-flat connection on the associated Courant algebroid.

This is what we now show.

Theorem 5.5.2. Let M7 be a contact Calabi–Yau 7-manifold as in Definition 5.1.2.

Suppose we are given any sequence of positive numbers ³′ → 0. Let ε = ε(³′) > 0,

k = k(³′) > 0, ¶,m ∈ R be the associated parameters given by Theorem 5.3.4 and let M be
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endowed the integrable G2-structure φε given in (5.2.1) with torsion H = Hε. Let P, ¹, ï·, ·ð

be the principal K-bundle, connection and pairing on k given in Definition 5.5.1.

Then the heterotic Bianchi identity (5.4.1) is satisfied, and ¹ are ³′-approximate

G2-instantons in the sense of Definition 5.4.1 with bounded curvature as ³′ → 0. Hence,

(φε, Hε, ¹) are ³′-approximate coupled G2-instantons in the sense of (5.4.4) and the Courant

algebroid Q = TM · adP · T ∗M with structure (H, ¹) and divergence as in (5.4.12) has

a torsion-free V+-compatible generalized connection with generalized Ricci curvature with

norm of order O(³′)2 as ³′ → 0.

Proof. As explained before the statement, we need only show that the curvature F¹ is

bounded and that the second condition in (5.4.2) holds. By (5.4.3), we see that this second

condition is equivalent to

∣
∣
∣∇¹,+(F¹ ' Èε)

∣
∣
∣
gε

= O(³′)2 as ³′ → 0. (5.5.2)

We already remarked that the connection A on E is a G2-instanton and is pulled back from

V . Hence, its curvature FA, and the norm of FA, are ³′-independent since the metric gε
on M is ³′-independent when restricted to basic forms by (5.2.2). Moreover, FA ' Èε = 0

and so (5.5.2) is trivially satisfied for F¹ = FA.

Given this discussion and the definition of ¹, it now suffices to show that the

curvature R¶,k
ε,m of ¹¶,kε,m has bounded norm as ³′ → 0 and satisfies

∣
∣
∣∇¹δ,k

ε,m,+(R¶,k
ε,m ' Èε)

∣
∣
∣
gε

= O(³′)2 as ³′ → 0. (5.5.3)

In [LSE23, Proposition 3.17], the curvature R¶,k
ε,m was written in terms of the local or-

thonormal coframe given in Definition 5.2.2 as:

R¶,k
ε,m = FA +

1

2
kε2(1 − ¶ +m)ÉI +

k2ε2

4
Q¶
m,

where FA is the curvature of the connection A as above, I is given in (5.2.7) and Q¶
m

depends only on ¶ and m (and the local coframe), so is independent of ³′. Since all the

terms except FA involve at least a factor of kε, which tends to zero as ³′ → 0, we deduce

that
∣
∣
∣R¶,k

ε,m − FA
∣
∣
∣
gε

→ 0 as ³′ → 0.

Since we already established that FA has bounded norm as ³′ → 0, the same must be true

for R¶,k
ε,m.

We already saw the expression for R¶,k
ε,m ' Èε in (5.3.2). Note that the matrix

M¶
m is again independent of ³′. Recall that ¹¶,kε,m is given in (5.3.1) and note that taking

¶ = 1, m = 0 and k = 1 in this expression leads to the Bismut connection ∇+, and instead

taking ¶ = m = 0 and k = 1 yields the Levi-Civita connection. Altogether, we see that
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taking derivatives using ∇¹δ,k
ε,m,+ cannot decrease the powers of k and ε that already appear

in (5.3.2). Therefore, the norm of ∇¹δ,k
ε,m,+(R¶,k

ε,m ' Èε) must have at least the same order as

³′ → 0 as the norm of R¶,k
ε,m ' Èε. Since we are already given that this latter quantity is of

order O(³′)2 as ³′ → 0 by (5.3.3), we deduce that (5.5.3) holds as desired.

Remark 5.5.3. Theorem 5.5.2 shows that it is justified to say that the results in [LSE23],

summarised in Theorem 5.3.4, indeed lead to “approximate” solutions to the heterotic G2

system. ⃝
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6 Generalized Ricci flatness and coupled equa-

tions for geometrical structures

This chapter revisits Problem 1 and Problem 2, initially explored in Chapter 2,

employing an alternative notion of instanton. We reformulate these problems using this new

approach (cf. Problem 3 and Problem 4) and provide the solutions for them. Additionally,

we examine the equivalence between G2 and SU(m) structures under this alternative

framework, as presented firstly in Chapter 2 and Chapter 4. Using the theory developed

in this chapter, we will extend our discussion exploring these proposed problems within

the context of Spin(7)-structures in Chapter 7.

This chapter is structured as follows: In Section 6.1, we introduce an alternative

notion of instanton (cf. Definitions 6.1.1, 6.1.3, and 6.1.4), which is based on the existence

of a specific 4-form that defines the manifold’s geometric structure and characterizes the

Lie algebra (within the space of 2-forms) as an eigenvalue of an invariant map associated

with this 4-form. We conclude the section by exploring key examples, including G2, Spin(7),

SU(m), Sp(k), and contact-instantons, and demonstrate the equivalence of this alternative

notion with the one considered in Chapter 2.

In Section 6.2, we delve into the fundamental rationale behind the consideration

of instantons as outlined in Section 6.1: the elementary derivation (as a direct derivative

of the instanton condition) of the Yang-Mills equations, pivotal in understanding the

generalized Ricci curvature (as demonstrated in Theorem 1.5.5). We initially present the

first version of these equations in Lemma 6.2.1, followed by their refined formulation

derived from the former under additional conditions. This sophisticated version appears in

Theorem 6.2.3 for computing the generalized Ricci curvature.

In Section 6.3, we investigate generalized Ricci curvature within our alternative

notion of instantons. Here, we explore geometrical structures which admit compatible

connections with totally skew-symmetric torsion (as reviewed in Appendix B), utilizing

them to derive a formula closely resembling the final term for the generalized Ricci curvature

in Theorem 1.5.5 (cf. Lemma 6.3.1). Leveraging the heterotic Bianchi identity, we rewrite

this formula in the way it appears in the expression for the generalized Ricci curvature

(Corollary 6.3.2). We apply several technical lemmas to identify the conditions necessary

for a structure to exhibit generalized Ricci flatness, as encapsulated in Theorem 6.3.6.

This not only resolves Problem 3 (a reformulation of Problem 2) but also recovers the

results observed for the G2 case in Chapter 4.
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In Section 6.4, we delve into the coupled instanton equations using the bundle

TM · adP and the connection D, as introduced in Chapter 2, albeit with the alter-

native approach to instantons. Key results include Proposition 6.4.2, which provides a

characterization of coupled instanton equations under this approach, and Theorem 6.4.4,

demonstrating that solutions to the gravitino equations in this framework imply solutions

to the coupled instanton equations. This resolves the proposed Problem 4, a reformulation

of Problem 1.

Finally, in Section 6.5, we explore the concept of semi-instantons (a weak

version of instanton) and their implications for the behaviour of the Yang-Mills equation,

as discussed in Section 6.1. This inquiry was sparked by a finding in [GFGM23], revealing

that the Yang-Mills equation can be derived using a weak notion of instanton in the

SU(m) case. Here, we establish more precise conditions for this phenomenon to occur in

a broader context, and recover this result of [GFGM23] with the main theorem in the

section, Theorem 6.5.2. Concluding the section, we pose Problem 5, suggesting that a

specific hypothesis of Theorem 6.5.2 should be satisfied in a more general setting, and

propose a further investigation into Sp(k)-instantons, a case where the problem can be

tested.

6.1 G-instantons and the Yang-Mills equation

In Chapter 2, we have considered a spin manifold endowed with a non-vanishing

spinor ¸ which induces on the manifold a G-structure for G the stabilizer of ¸ in Spin(n).

In this context, we say that a connection ¹ (in a vector or principal bundle over M) is a

G-instanton if its curvature satisfies:

F¹ · ¸ = 0 (6.1.1)

In particular, we have proved that the Killing spinor equations,

∇+¸ = 0, F¹ · ¸ = 0,
(

/∇
1/3

− 1
2
·
)

· ¸ = ¼¸, dH = ïF¹ ' F¹ð

imply on generalized Ricci flatness on the transitive Courant algebroid E = TM · adP ·

T ∗M (cf. Proposition 2.1.6 for details). In particular, generalized Ricci flatness is equivalent

to the equations (cf. Theorem 1.5.5 and Proposition 2.1.6),

Ric+ + F¹ ◦ F¹ + ∇+· = 0,

d¹∗F¹ + i·#F¹ − F¹ @H = 0.

We will propose a non-spinorial description for instantons where the first equation is

a consequence of the heterotic Bianchi identity and the existence of the connection

∇+ = ∇g + 1
2
g−1H compatible with the structure. The second equation is a consequence

of an alternative notion of instantons (based mainly in [Car98, Don96], see also [FSE19]).
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This alternative notion holds significance as it is equivalent to spinorial de-

scriptions in cases such as G2, Spin(7), and SU(m) instantons. Moreover, its applicability

extends to structures lacking spinorial descriptions, such as contact structures (as discussed

in [PSE20]) and Sp(k)-instantons (though yet unexplored in this context, [FSE23] provides

a natural way for defining it. It is interesting in the light of Problem 5, elaborated in

Section 6.5).

A general notion of instanton, which we will use here, is related to the Lie

algebra (inside the space of 2-forms canonically identified with so(n)) of the geometrical

structure in question. It was firstly considered by [Car98], Cf. also [FSE19, LM22]. Our

context will be a manifold Mn endowed with a G-structure (for G ¢ SO(n) being a closed

Lie subgroup) such that the group G is the stabilizer of some 4-form È0 ∈ Λ4(Rn)∗

G = {g ∈ SO(n) : g∗È0 = È0}

so, the G-structure is equivalent to a 4-form È ∈ Ω4(M) punctually modelled by È0.

Definition 6.1.1 (Instanton 4-form). Let Mn be a manifold with a N(H)-structure1

È ∈ Ω4(M) (for H < SO(n) being a closed subgroup), then È is called an H-instanton

form if it defines the Lie algebra h ¢ so(n) = Λ2 as:

h =
{

´ ∈ Ω2 : ´ @ È = −´
}

f so(n) = Ω2 (6.1.2)

Naturally, the instanton form defines a subspace of vector-valued 2-forms.

We will call the invariant operator map defined below within the space of

2-forms as the instanton map:

Ξ : Ω2(M) → Ω2(M)

´ 7→ ´ @ È
(6.1.3)

so instanton form È makes h (contained in) an eigenspace of the instanton map with

eigenvalue −1 (the value −1 is just for convention, but, up to rescaling for È, it could be

every non-zero real value).

Remark 6.1.2 (Simple Lie Groups). For our purposes, (6.1.2) in the definition of instanton

form is more than necessary. We can impose

h ¢ {´ ∈ Ω2 : ´ @ È = −´}.

Because of that, if the group H is simple and È non-degenerate, then h is irreducible and

necessarily h is contained in a unique eigenspace of instanton map. Hence, the relation

above h ¢ {´ ∈ Ω2 : ´ @ È = −´} holds up to a rescaling of È. So, for our purposes, it is
1 Let G be a group and H f G a subgroup, then the normalizer of H is N(H) = {g ∈ G : gHg−1 = H}.
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enough for H to be simple and È non-degenerate (in the sense of the instanton map being

an isomorphism between 2-forms). All of our cases of interest occur for H being simple.

⃝

Now, we can define the notion of instanton as a connection in which curvature

2-form is in the Lie algebra as above. Precisely:

Definition 6.1.3 (H-instanton). Let È be an H-instanton form on M (in particular,

it defines an N(H)-structure on the manifold), then a connection ∇ on a vector bundle

E → M is said to be an H-instanton if 2

R∇ ∈ h (6.1.4)

where R∇ ∈ Ω2(M,End(E)) is the curvature 2-form. More general, if ¹ ∈ Ω1(P, g) is a

connection form on a principal G-bundle P → M , it is called an H-instanton if

F¹ ∈ h (6.1.5)

where F¹ ∈ Ω2(P, g)G ∼= Ω2(M, adP ). So the instanton condition is characterized by the

2-form part of the curvature living in the Lie algebra inside the space of 2-forms.

We also define the weak notion of semi-instanton (which will be explored in

Section 6.5) as follows:

Definition 6.1.4 (H-semi-instanton). Let È be an H-instanton form on M (in particular,

it defines an N(H)-structure on the manifold), then a connection ∇ on a vector bundle

E → M is said to be an H-semi-instanton if

R∇ ∈ n(h) g h (6.1.6)

where R∇ ∈ Ω2(M,End(E)) is the curvature 2-form. Analogously, for general connection

forms on principal bundles.

Now, we provide some essential examples which we will through the text:

Example 6.1.5 (G2-instantons). The group G2 is normal in SO(7), i.e., N(G2) = G2, so

the notion of G2-instantons makes sense for G2-structures. The group G2 is the stabilizer

of the 3-form φ0 ∈ Λ3(R7)∗ as in (3.1.4). However, in the seven dimensions, the Hodge

dual of a 3-form is a 4-form, so we have È0 = ∗φ0 ∈ Λ4(R7)∗ as in (3.1.5). It happens that

G2 is also the stabilizer of the form È0, so on a manifold (M7, φ) with G2-structure, the

4-form È ∈ Ω4(M) is an instanton form by because (3.3.2).
2 We are using the simplified notation h for h ¹ End(E).
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Furthermore, due to (3.3.2), the Lie algebra (which is simple in this case) can

also be characterized by

g2 =
{

´ ∈ Ω2 : ´ ' È = 0
}

=
{

´ ∈ Ω2 : ´ @ φ = 0
}

.

We have noticed that G2 is also the stabilizer of the spinor ¸0 = (1, 0, · · · , 0) ∈ ∆7
∼= R

8.

However, as we have pointed in (3.5.5), the Lie algebra g2 is characterized as

´ ∈ g2 ⇐⇒ ´ ' È = 0 ⇐⇒ ´ @ È = −´ ⇐⇒ ´ · ¸ = 0

so the two notions of instantons in G2-structures are equivalent seeing G2 in SO(7) and in

Spin(7). △

Example 6.1.6 (Spin(7)-instantons). The group Spin(7) is a normal subgroup of SO(8),

i.e., N(Spin(7)) = Spin(7), so the notion of Spin(7)-instantons makes sense for Spin(7)-

structures. As we will see later in Chapter 7, the group Spin(7) is the stabilizer of the

self-dual 4-form Ω0 ∈ Λ4(R8)∗ as in (7.1.2). In this way, a Spin(7)-structure (M8,Ω) defines

an Spin(7)-instanton form on M simply by the Ω itself because the characterization of

spin(7) inside Ω2 as in (7.1.5), which is irreducible. △

For G2 and Spin(7) instantons, the concept of semi-instantons does not expand

beyond the notion of instantons themselves. The Lie algebra is irreducible in these cases,

so n(h) = h. However, there are scenarios where this isn’t the case.

Example 6.1.7 (SU(m)-instantons). Fix m g 3, so the group U(m) is the stabilizer of

the standard Hermitian 2-form É0 ∈ Λ2(R2m)∗ in R
2m in SO(2m):

É0 = e12 + e34 + · · · + e2m−1 ' e2m

and consider the subgroup SU(m) ¢ U(m), then we have N(SU(m)) = U(m), so the notion

of SU(m)-instantons makes sense in U(m)-structures (i.e., almost Hermitian Riemannian

manifolds (M2m, g, É)).

The SU(m)-instanton form here È = 1
2
É ' É because of the characterization of

2-forms as in cf. Chapter 7. Note that here, the notion of instantons is equivalent in the

spinorial and via É because

´ ∈ su(m) ⇐⇒ ´ @ È = −´ ⇐⇒ ´ · ¸ = 0

for ¸ the spinorial description (to be explored in Chapter 7); however, the spinorial

description only makes sense for SU(m)-structures since via instanton-form we just need

almost-Hermitian structures. △

Example 6.1.8 (SU(2)-instantons). In dimension 4, it happens that N(SU(2)) = SO(4),

so the notion of SU(2)-instantons makes sense for all oriented Riemannian four-dimensional
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manifolds (it is not necessary to be almost Hermitian). Consider È = volM in this case,

and we have the instanton-form. The study of instantons in four dimensions first motivated

defining instantons as we have done due to the work by Donaldson [DK90] and generalized

in [DT98, DS11]. △

Example 6.1.9 (Sp(k)-instantons). The example of Sp(k)-instantons is, in some sense,

similar to SU(m)-instantons. Firstly Sp(k) ¢ SO(4k) and its normalizer N(Sp(k)) =

Sp(k)Sp(1) (cf. [McI91, pg. 11]). So Sp(k)-instantons make sense in Sp(k)Sp(1)-structures.

It happens Sp(k)Sp(1) is the stabilizer of some Ω0 ∈ Ω4(R4k)∗ (cf. [FSE23]) and since

sp(k) is irreducible, up to rescaling the Sp(k)Sp(1)-structure Ω ∈ Ω4(M4k) we obtain an

instanton form. △

Example 6.1.10 (Contact-instantons). Identifying U(m) ∼= U(m) × 1 inside SO(2m+ 1),

so contact manifolds are U(m)-structures in (2m+ 1)-dimensional manifolds, known as

contact structures. In this way, we have the transversal Hermitian form, and we can

normally define the instanton form as

È =
1

2
É ' É ⇒ ∗È =

1

(n− 2)!
¸ ' Én−2

for ¸ ∈ Ω1(M) the contact form. These instantons were considered in [PSE20], particularly

in seven dimensions and the relation with G2-structures. △

To finish the section, we will introduce some concepts that emerge from the

existence of an instanton form.

Definition 6.1.11. Let È ∈ Ω4(M) be an instanton form on Mn and let

Ω3(M) = Ω3
k1

(M) · · · · · Ω3
kp

(M),

the orthogonal decomposition of 3-forms into irreducible components due to the instanton

form and denote Ãkj
: Ω3(M) → Ω3

kj
(M) the respective projection, define

Ä kj := Ãkj
(d∗È) ∈ Ω3

kj
(M). (6.1.7)

Then Ä kj is called the associated torsion form in the irreducible component Ω3
kj

(M).

Example 6.1.12 (G2-structures). For G2-structures, we have dφ = Ä0È + 3Ä1 ' φ+ ∗Ä3

and consequently

d∗È = ∗dφ = Ä0φ− 3Ä1 @ È + Ä3

so, the torsion forms in the context of instanton form relates to the torsion forms for

G2-structures as follows (considering the decomposition Ω3 = Ω3
1 · Ω3

7 · Ω3
27)

Ä 1 = Ä0φ, Ä 7 = −3Ä1 @ È, Ä 27 = Ä3.

Even though we use the name ‘torsion forms’ in two contexts, they are related. △
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Another important notion is the operator H as we have considered in Ap-

pendix B and in Theorem 3.4.4. See Appendix A.2 for the notations @
k about partial

contractions.

Definition 6.1.13. Given an instanton form È ∈ Ω4(M), we define the associated flux

operator H : Ω3(M) → Ω3(M) by the (equivalent) formulas3

H(µ) :=
1

4
µijaÈijbce

abc = µ @
2 È = (−1)n+1 ∗ (µ @

1 ∗È). (6.1.8)

If H is an isomorphism, then the instanton form is called determinant.

Example 6.1.14. In G2-structures the instanton form is always determinant. In fact, by

Theorem 3.4.4, we have

a1 = 6, a7 = 3, a27 = −1.

so H is an isomorphism. △

Note that this map is invariant, consequently, it decomposes the space of

3-forms into eigenspaces and since eigenspaces are representations, then every irreducible

component Ω3
kj

is contained in a unique eigenspace. In particular, if È is determinant,

every eigenvalue is non-zero. With this and the torsion forms, we introduce the following

natural 3-form for a determinant instanton form.

Definition 6.1.15. Given a determinant instanton form È ∈ Ω4(M) and let

Ω3(M) = Ω3
k1

(M) · · · · · Ω3
kp

(M),

the orthogonal decomposition of 3-forms into irreducible components due to the instanton

form, we define the associated flux 3-form H ∈ Ω3(M) by the expression

H =
p
∑

j=1

1

akj

Ä kj , (6.1.9)

where Ä kj ∈ Ω3
kj

(M) is the associated torsion form in Ω3
kj

(M) and akj
∈ R the eigenvalue

of the flux operator H : Ω3(M) → Ω3(M) in the component Ω3
kj

(M).

The necessity of this mapping, as outlined in Appendix B, arises from its

function in defining a method for determining the torsion of a compatible connection

with skew-symmetric torsion when such a connection exists. This procedure was used

in Theorem 3.4.4. We will further explore this concept in contexts with a compatible

connection with skew-symmetric torsion. It’s important to note that for a determinant

instanton form if the connection exists, it will be unique, as established in Theorem B.3.6

in Appendix B.
3 cf. Appendix A.
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6.2 Yang-Mills equation with torsion

A fundamental consequence of our chosen definition for the instanton form

lies in its pivotal role in deriving a Yang-Mills equation with torsion, akin to the one

presented in Theorem 1.5.5. Let È ∈ Ω4(M) denote the instanton form on a manifold, and

¹ represents an H-instanton. In this context, the curvature 2-form of ¹ adheres to the

following relation:

F¹ @ È = −F¹ ⇐⇒ F¹ ' ∗È = − ∗ F¹.

Taking the exterior covariant derivative of this expression and using the Bianchi identity

d¹F¹ = 0, we then have

d¹∗F¹ = (−1)n+1 ∗ d¹ ∗ F¹ = (−1)n ∗ d¹(F¹ ' ∗È) = (−1)n ∗
(

�
�
�*

0
d¹F¹ ' ∗È + F¹ ' d ∗ È

)

= − ∗ (F¹ ' ∗ ∗ d ∗ È) = (−1)n ∗ (F¹ ' ∗d∗È) = −F¹ @ d
∗È

then we conclude the so-called torsion Yang-Mills equation:

Proposition 6.2.1. Let È ∈ Ω4 an H-instanton form on a manifold M , if ¹ is an H-

instanton on some bundle over M , then it satisfies the so-called Yang-Mills equation with

torsion:

d¹∗F¹ + F¹ @ d
∗È = 0 (6.2.1)

where F¹ is the curvature 2-form of the connection ¹.

If d∗È = 0, the above equation reduces to the classical Yang-Mills equation:

d¹∗F¹ = 0. Because of that, (6.2.1) is called ‘with torsion’.

We aim to modify the torsion Yang-Mills above to obtain the first part of

Theorem 1.5.5 for appropriate · and H. Since we are in the context of the existence

of a N(H)-structure on the manifold, we can impose this structure to accept a unique

compatible connection with totally skew-symmetric torsion T ∈ Ω3(M) and with this

define H := T (as we have made for G2-structures in Chapter 3, where this imposition was

Ä2 = 0). So, how about ·? Since we have the instanton form È ∈ Ω4(M) non-degenerate,

we have an embedding

X ∈ Ω1 7→ X @ È ∈ Ω3

so d∗È has a component of type X @ È and this will be useful for us to define ·.

To clarify some subsequent statements, let’s classify the components of Ω3(M).

We are considering the impositions above. Firstly, we have the only component of Ω3

isomorphic to Ω1 given by

Ω3
n :=

{

X @ È : X ∈ Ω1
}

∼= Ω1, (6.2.2)
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the respective torsion form Än will be denoted by Ä1 @ È. The other components will be

classified into two classes with relation to their eigenvalue in H-operator: if it has the

eigenvalue given by −1 or not

O−1 =
⊕

kj ̸=n,
akj

=−1

Ω3
kj

and O0 =
⊕

kj ̸=n,
akj

̸=−1

Ω3
kj

(6.2.3)

this is because if akj
≠ −1, it will not make a difference in the theory, as we will see later.

Note that this classification Ω3 = Ω3
n · O−1 · O0 doesn’t depend on the existence of a

compatible connection with totally skew-symmetric torsion.

Example 6.2.2. In G2-structures, we have decomposition Ω3 = Ω3
1 · Ω3

7 · Ω3
27 and

in this case O−1 = Ω3
27 and O0 = Ω3

1. The representation Ω3
7 is precisely the vectorial

representation, cf. Theorem 3.4.4. △

So, we can finally obtain the desired Yang-Mills equation as it appears in

Theorem 1.5.5.

Theorem 6.2.3. Let È ∈ Ω4(M) be an H-instanton form on Mn, suppose Ω1 is irreducible

and Ω1 ↪→ Ω3 only once. Decompose Ω3 into irreducible components Ω3
kj

, along with O0

and O−1 as in (6.2.3):

Ω3 = Ω3
k1

· · · · · Ω3
kp

= Ω3
n · O0 · O−1.

If ¹ is an H-instanton on some bundle over M , and its curvature 2-form F¹ satisfies

F¹ @ Ä
kj = 0, ∀kj : Ω3

kj
¢ O0,

then F¹ satisfies the following Yang-Mills equation with torsion:

d¹∗F¹ + i·#F¹ − F¹ @H = 0, (6.2.4)

where · ∈ Ω1(M) is the so-called Lee form for the instanton form È ∈ Ω4(M), defined by

· := −
(

1 +
1

an

)

Ä1, (6.2.5)

where an is the eigenvalue of H on the component Ω3
n and Ä1 ∈ Ω1 is defined by Ä1 @È := Än,

the torsion form for the vectorial component Ω3
n.

Proof. Since H =
∑

j

1
akj

Ä kj and dÈ = akj
Ä kj , we have

d∗È = −H +
p
∑

j=1

(

1 +
1

akj

)

Ä kj
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and the torsion Yang-Mills equation established in Proposition 6.2.1 can be rewritten as

0 = d¹∗F¹ + F¹ @ d
∗È = d¹∗F¹ − F¹ @H +

p
∑

j=1

(

1 + 1
akj

)

F¹ @ Ä
kj

considering the classification of 3-forms established in (6.2.3) and (6.2.2), we have that

1 + 1
akj

= 0 if Ω3
kj

¢ O−1 because in this case, akj
= −1 and by hypothesis F¹ @ Ä kj if

Ω3
kj

¢ O0, so the only component which doesn’t cancel in the above summand is the

vectorial torsion form Än = Ä1 @ È, i.e., kj = n (which appears once) and we then have

−d¹∗F¹ + F¹ @H =
(

1 + 1
an

)

F¹ @ (Ä1 @ È) =
(

1 + 1
an

)

Ä1 @ (F¹ @ È)

= −
(

1 + 1
an

)

Ä1 @ F¹,

where in the last line, we have used the instanton condition for ¹, i.e., F¹ @ È = −F¹, so

the result follows by the definition of the Lee form · in (6.2.5).

Example 6.2.4. In the context of G2-structures, Theorem 6.2.3 above is the Lemma 4.4.1.

It’s worth highlighting that in the G2 case, the condition F¹@Ä kj in O0 becomes superfluous.

This is because O0 reduces to Ω3
1, and the respective torsion form is Ä0φ. Consequently,

F¹ @ (Ä0φ) = 0 is automatically satisfied due to the instanton condition since, in this case,

F¹ ∈ g2 ⇐⇒ F¹ @ φ = 0. △

6.3 Generalized Ricci flatness For G-Structures

This section will address the following problem, which represents a reformulation

of Problem 2 within this new framework of instantons.

Problem 3. Let E be a transitive Courant algebroid over an oriented spin manifold Mn

endowed with an instanton form È ∈ Ω4(M). Find the precise conditions, in terms of the

G-structure determined by È, which imply that

Ric+
G,div0

= 0,

for a canonical choice of divergence operator div0 uniquely determined by the pair (G, È),

where G is induced by the Riemannian metric due to the G ¢ SO(n)-structure.

Let’s establish and prove several results and technical lemmas in sequence to

tackle this.

Lemma 6.3.1. Let È ∈ Ω4(M) be a determinant H-instanton form on Mn, suppose Ω1 is

irreducible and Ω1 ↪→ Ω3 only once. Suppose that the N(H)-structure È admits a compatible

connection with totally skew-symmetric torsion H ∈ Ω3 given by ∇+ = ∇g + 1
2
g−1H and

suppose that the endomorphism part of ∇+ is in h, i.e.,

R∇+(X, Y ) ∈ h f n(h) f so(n) = Ω2(M), ∀X, Y ∈ Γ(TM) (6.3.1)
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then its Ricci curvature satisfies

Ric+
ij −

1

12
(dH)abµiÈabµj +

³

an
(∇+

i Ä1)j = 0 (6.3.2)

where ³ ∈ R is such that (X @ È) @ È = ³X for all X ∈ Γ(TM) and an the eigenvalue of

the vectorial representation Ω3
n in the H : Ω3 → Ω3 operator.

Proof. The proof of this follows the approach in [IS23a, IS23b, IP23] (where is proved for

G2 and Spin(7) cases) and it was already proved in Lemma 4.4.2. It is essentially the same

proof until (4.4.4):

2Ric+
ij =

1

6
(dH)abµiÈabµj −

1

3
(∇+

i H)abµÈabµj (6.3.3)

We still follow the same approach in Lemma 4.4.2 but being careful about the constants.

For this, let’s consider the invariant map µ ∈ Ω3 7→ µ @ È ∈ Ω1 which is zero in all

components of Ω3 but Ω3
n

∼= Ω1, consequently (by the compatibility of ∇+ and the flux

theorem B.3.6 which relates H and ¶È)

∇+H @ È = ∇+(H @ È) = ∇+(ÃnH @ È) =
1

an
∇+((Ä1 @ È) @ È) =

³

an
∇+Ä1

and the result follows.

The equation above is extremely similar to the second equation in Theorem 1.5.5,

Ric+ + F¹ ◦ F¹ + ∇+· = 0 and we will see in the result below that in fact, we can obtain

this equation using the Lemma 6.3.1 above because of the heterotic Bianchi identity. For

this, let’s introduce the notation F¹ ◦F¹ (as in [GF14]) as the symmetrization of F¹ defined

by (where was used an orthonormal basis {eµ} of TM when expressed in coordinates):

F¹ ◦ F¹ :=
n∑

µ=1

ïieµ
F¹ð =

n∑

µ=1

F³
µiF³µje

i ¹ ej.

Corollary 6.3.2. Under the assumptions of the Lemma 6.3.1 and the heterotic Bianchi

identity dH = ïF¹ ' F¹ð, then the equation (6.3.2) in the Lemma 6.3.1 becomes

Ric+ + F¹ ◦ F¹ +
³

an
∇+Ä1 = 0. (6.3.4)

Proof. The same proof as in Theorem 4.4.3.

We can finally prove the main theorem of the chapter below. It establishes the

condition for generalized Ricci flatness under the notion of instanton and the existence of

a compatible connection with skew-symmetric torsion, as we have been discussing above.

We will need some results.
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Lemma 6.3.3. Let È ∈ Ω4(M) be an instanton form and suppose Ω1 is irreducible and

consider the following invariant

Ξ : Ω1 → Ω1

X 7→ (X @ È) @ È

then there is a constant ³ ∈ R such that Ξ = ³ Id with ³ given by

³ = −
4|È|2

n
. (6.3.5)

Proof. The existence of ³ is due to invariance and the fact that Ω1 is irreducible. By

definition of norm, we have ÈijklÈijkl = 4!|È|2. Now using (X @È) @È = ³X for all X ∈ Ω1

in coordinates, we have

³Xje
j =

1

3!
XµÈµ

ijkÈijkle
l ⇒ ³3!¶j

i = ÈµijkÈijkl

where we have taken X = ei ⇒ Xµ = ¶µi. Taking i = j and summing over it, we have

ÈijklÈijkl = −n³3! = 4!|È|2

therefore ³ = −4|È|2

n
.

Continuing, we introduce now a partial norm of an arbitrary 4-form À ∈ Ω4(M)

by the expression

[[À]]2 :=
1

16
ÀijabÀ

ab
µ¿À

µ¿
ij.

Lemma 6.3.4. Let È ∈ Ω4(M) be an instanton form and suppose Ω1 is irreducible and

Ω1 ↪→ Ω3 only once, then we have

an =
[[È]]2

|È|2
, (6.3.6)

where an is the eigenvalue of H in the component Ω3
n

∼= Ω1.

Proof. Consider the invariant maps

A : X ∈ Ω1 7→ X @ È ∈ Ω3, and B : X ∈ Ω1 7→ (X @ È) @2 È ∈ Ω3

so since Ω1 is irreducible and Ω1 ↪→ Ω3 only once, by invariance, there is a constant k ∈ R

such that A = kB. Here, these maps are defined by

A(X) @ È = (X @ È) @ È = ³X

B(X) @ È = ((X @ È) @2 È) @ È = an(X @ È) @ È = an³X
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consequently ³X = A(X) @ È = kB(X) @ È = kan³X, thus k = 1
an

and we conclude that

B = anA. On the other hand, we can compute directly

B(X) @ È =
1

3!
((X @ È) @2 È)ijkÈijkle

l =
3!

3!2!2!
XµÈµ³´iÈ³´jkÈijkle

l

= −
1

4
XµÈiµ³´È³´jkÈjkile

l

using B(X) @ È = anA(X) @ È = an³X and ³ = −4|È|2

n
as we have calculated above, we

then obtain taking X = e¿ , then Xµ = ¶µ¿ and Xl = ¶l¿ and we have

−
1

4
XµÈµi³´È³´jkÈjklie

l = −an
4|È|2

n
Xle

l ⇒
1

4
Èµ¿³´È³´jkÈjkile

l = an
4|È|2

n
e¿ ⇒

an
4|È|2

n
=

1

4
Èµ¿³´È³´jkÈjkil¶l¿

now, taking the sum over ¿, we have 1
4
Èµ¿³´È³´jkÈjki¿ = an4|È|2, which gives the desired

expression.

The results for some important structures, just for comparison:

G2 [[È]]2 = 21 |È|2 = 7 an = 3 ³ = −4

Spin(7) [[È]]2 = 84 |È|2 = 14 an = 6 ³ = −7

U(3) [[È]]2 = 3 |È|2 = 3 an = 1 ³ = −2

U(4) [[È]]2 = 12 |È|2 = 6 an = 2 ³ = −3

U(5) [[È]]2 = 30 |È|2 = 10 an = 3 ³ = −4

Example 6.3.5. For G2 we use Proposition 3.1.6, and we have

[[È]]2 :=
1

16
ÈijabÈ

ab
µ¿È

µ¿
ij =

1

16

(

4¶iµ¶
j
¿ − 4¶jµ¶

i
¿ + 2Èijµ¿

)

Èµ¿ij =
1

8
Èijµ¿È

µ¿
ij = 21

as in the table. △

We will see the other structures in detail later. With these two Lemmas, we

can finally prove the main theorem:

Theorem 6.3.6. Under the hypothesis of Theorem 6.2.3 and Corollary 6.3.2, consider

the transitive Courant algebroid E = TM · adP · T ∗M defined with a pair (¹,H), so if

the instanton form È ∈ Ω4(M) satisfies the following condition on its norm

[[È]]2 =
4

n
|È|4 − |È|2 (6.3.7)

then GRic+(G, div) = 0 where G is the standard generalized metric in Example 1.2.4 and

the divergence is given by

div = divG − 2ï·, ·ð

for · ∈ Ω1 the Lee form as in (6.2.5).
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Proof. The Theorem 6.2.3 and Corollary 6.3.2 and the expression for the Lee form (6.2.5),

we have the equations

d¹∗F¹ −
(

1 + 1
an

)

iÄ#
1
F¹ − F¹ @H = 0 (6.3.8)

Ric+ + F¹ ◦ F¹ +
³

an
∇+Ä1 = 0 (6.3.9)

so by Theorem 1.5.5, we will have generalized Ricci flatness if

−
(

1 +
1

an

)

=
³

an

which can be rewritten as ³ + 1 = −an. But using Lemma 6.3.3 and Lemma 6.3.4, we

have this equality equivalent to:

³+ 1 = −
4|È|2

n
+ 1 = −an = −

[[È]]2

|È|2
⇐⇒ [[È]]2 =

4

n
|È|4 − |È|2

which is satisfied by the hypothesis.

6.4 Coupled instanton equations

In this section, we will be in the same hypothesis as in Section 2.2, we will fix

a transitive Courant algebroid E = TM · adP · T ∗M (i.e., a pair (¹,H) satisfying the

heterotic Bianchi identity 1.1.8) and we define the connection D on TM · adP in the

same way (2.2.2):

D =




∇−

F
 

−F d¹





but here we are considering H being the flux, defined when we have a determinant instanton

form È ∈ Ω4(M), and H is well-defined by

H =
p
∑

j=1

1

akj

Ä kj

So, the coupled H-instanton holds if D is an instanton.

Definition 6.4.1. Let E be a transitive Courant algebroid with generalized metric G over

an oriented manifold Mn endowed with a determinant instanton form È ∈ Ω4(M). We say

that È is a solution of the coupled instanton equations if

FD @ È = −FD, (6.4.1)

where FD is the curvature of D (2.2.2).
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Via Lemma 2.2.1 which computes explicitly the curvature FD, the coupled

instanton equations are equivalent to the system:

R∇− − F
 ' F ∈ h,

∇¹,+F¹ ∈ h,

[F¹, ·] − F ' F
 ∈ h,

dH − ïF¹ ' F¹ð = 0.

(6.4.2)

We can also rewrite these equations more directly, similar to what we have

done in Definition 4.3.4 and Proposition 4.3.5 for the case of G2-structures.

Proposition 6.4.2. Let Mn be a manifold endowed with a determinant instanton form

È ∈ Ω4(M) and ¹ a connection in some principal K-bundle and H the flux induced by H.

Then, the coupled instanton equations are equivalent to

R∇+ + ïF¹, F¹ð ∈ Ω2 ¹ h (6.4.3)

∇¹,+F¹ ∈ h, (6.4.4)

[F¹, ·] − F¹ @
1 ï·, ·ð−1F¹ ∈ h, (6.4.5)

dH − ïF¹ ' F¹ð = 0. (6.4.6)

the first equation is saying that the endomorphism part R∇+ which contributes to the Lie

algebra h.

Proof. For the first equation, we will use (2.3.6) derived in Theorem 2.3.2, which gives us

the formula (where i, j is in h and k, l in Ω2(M) up to raise an index)

R∇− − F
 ' F =

1

2

(

ïF¹, F
l
kðij + (R∇+) ij

l
k

)

eij ¹ ek ¹ el

This shows exactly what we are looking for: the endomorphism part of R∇+ (indices I, j)

in the Lie algebra.

We have already derived the second equation since it comes directly from how

FD is written. The third is deduced in the end of the proof of Theorem 2.3.2 in (2.3.7).

Now, we will delve into the solution of Problem 1 in the context of this new

notion of instanton. Let’s reformulate it:

Problem 4 (Reformulated Problem 1). Let E be a transitive Courant algebroid with

generalized metric G over a manifold endowed with a determinant instanton form È ∈

Ω4(M) and suppose it satisfies the gravitino equation:

∇+È = 0, F¹ @ È = −F¹, dH − ïF¹ ' F¹ð = 0.

So, what conditions make the data (G, È) a solution for the coupled instanton equation

(6.4.1), i.e., FD @ È = −FD?
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To solve this, let’s prove a quick lemma:

Lemma 6.4.3. Let M be a manifold with an instanton form È ∈ Ω4(M). Let Ω2
p be an

irreducible component of Ω2(M) and suppose Ω2
p @

1 È = 0 inside Ω4, then Ω2
p @

1 Ω2
p ¢ Ω2

p,

i.e., if ³ = 1
2!
³ije

ij and ´ = 1
2!
´ije

ij are in Ω2
p, then

µ := ³ @
1 ´ = ³ij´ike

jk ∈ Ω2
p.

In particular h @1 h ¢ h and n(h) @1 n(h) ¢ n(h).

Proof. Let b the eigenvalue of Ω2
p under the instanton map (6.1.3): ´ 7→ ´ @ È. Then, we

need to prove that µ @ È = bµ. By direct computation, we have µ = 1
2
(³ki´kj − ³kj´ki)e

ij

and:

µ @ È =
1

2!2!
(³ki´kj − ³kj´ki)Èijabe

ab =
1

2
³ik´kjÈjabie

ab

now, let’s study the permutation

³i[kÈjab]i =
1!3!

4!

(

³ikÈjabi − ³ibÈkjai + ³iaÈbkji − ³ijÈabki
)

coming back in the expression of µ @ È, using that ³i[kÈjab]i are the coefficients of the

form ³ @
1 È ∈ Ω4, then they must be zero by hypothesis, i.e., ³i[kÈjab]i = 0 for all k, j, a, b.

Consequently, using that ³, ´ ∈ Ω2
p, consequently ³ijÈijab = 2b³ab, ´ijÈijab = 2b´ab, we

have

µ @ È =
1

2
´kj
(

4
�����:0
³i[kÈjab]i + ³ibÈkjai − ³iaÈbkji + ³ijÈabki

)

eab

= bk³ib´aie
ab − bk³ia´bie

ab −
1

2
³ji´jkÈikabe

ab

= b(−´ @
1 ³+ ³ @

1 ´) − µ @ È = 2bµ − µ @ È

which gives us µ @ È = bµ ⇒ µ ∈ Ω2
p as stated.

For instance, in the case of G2-structures, since the adjoint representation is

not a component inside Ω4, the condition g2 @
1 È = 0 holds by invariance (this has already

been proved in [dlOLS18a, dlOLS16] in the case G2, and their result were modifying for

us to prove the Lemma above). The same holds for Spin(7)-structures, since spin(7) is not

contained in Ω4, as we will describe in the section about Spin(7)-structures.

So now, we present the conditions that make the Problem 4 true. In summary,

we will need to create an imposition about the endomorphism part of R∇+ (which naturally

lives in n(h), when ∇+ is compatible with È) and roughly speaking, the Lie algebra h

cannot be contained within 4-forms.
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Theorem 6.4.4. Let E be a transitive Courant algebroid with generalized metric G over

a manifold endowed with a determinant instanton form È ∈ Ω4(M) and suppose it satisfies

the gravitino equation:

∇+È = 0, F¹ @ È = −F¹, dH − ïF¹ ' F¹ð = 0.

If the endomorphism part of R∇+ lives in h and h @1 È = 0, then the data (G, È) satisfies

the coupled instanton equation (6.4.1), i.e., FD @ È = −FD.

Proof. Note that the equation ∇+È = 0 is that ∇+ is compatible and since H is an

isomorphism, ∇+ is the only compatible connection with skew-symmetric torsion H ∈

Ω3(M) induced by H and the torsion forms via dÈ. The second equation, which is the

instanton condition for ¹ is equivalent to F¹ ∈ h and since ∇+ preserves the irreducible

components of Ω2 (because it is compatible), then we have

∇¹,+F¹ ∈ h

We must prove that the diagonal elements of FD are contained in h. The fact that [F¹, ] ∈ h

is also immediate, so we just have to prove

R∇+ + ïF¹, F¹ð ∈ h, F¹ @
1 ï·, ·ð−1F¹ ∈ h. (6.4.7)

In the first one, we have to prove the endomorphism part to be in h. But it is immediate

because we impose the endomorphism part of R∇+ being in h and ¹ is an instanton, so

F¹ ∈ h. For the last entry, F¹ @1 ï·, ·ð−1F¹ ∈ h follows immediately by the Lemma 6.4.3

assuming the instanton condition. So the coupled instanton equations follow by the

heterotic Bianchi identity (which is satisfied since we are in the context of transitive

Courant algebroids) and Proposition 6.4.2.

6.5 Semi-instantons and the ∇¹,+F¹ ∈ h condition

Suppose that we are in the case of solutions for the gravitino equation; then

we have the equations:

∇+È = 0, F¹ ∈ h, dH = ïF¹ ' F¹ð.

The first equation guarantees ∇+ is compatible, and with the instanton condition in the

second equation, we have ∇¹,+F¹ ∈ h. However, in the definition of coupled instanton

equations

FD ∈ h, dH = ïF¹ ' F¹ð,

the condition ∇¹,+F¹ ∈ h is satisfied even when F¹ ∈ h doesn’t. The condition F¹ ∈ h

implies the Yang-Mills equation with torsion (6.2.3). The role is, under some conditions,

∇¹,+F¹ ∈ h also can imply this. This discussion is based on this result for SU(m)-instanton

case in [GFGM23].
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Proposition 6.5.1. Let M be a manifold endowed with a determinant instanton form

È ∈ Ω4(M) and ¹ a connection in some vector bundle over M satisfying such that

∇+È = 0, ∇¹,+F¹ ∈ h.

Then ¹ satisfies the so-called semi-instanton torsion Yang-Mills equation:

d¹∗F¹ + F¹ @ d
∗È = (F¹ + F¹ @ È) @H. (6.5.1)

where H ∈ Ω3 is the flux induced by H.

Proof. The proof is equal to Lemma 4.4.4 as pointed in (4.4.11).

Note that when the instanton condition holds, F¹ @È = −F¹, we obtain exactly

the torsion Yang-Mills d¹∗F¹ + F¹ @ d
∗È = 0 as in Proposition 6.2.1. Note that in the first

torsion Yang-Mills equation, we didn’t impose ∇+to be compatible, but for this version, we

had to impose this because now we use the definition of ∇+ due to hypothesis ∇+F¹ ∈ h.

Interestingly, this last equation involving the flux also holds for semi-instantons

under certain hypotheses (as in the case of our examples). We have the following result:

Proposition 6.5.2. Let È ∈ Ω4(M) be an determinant H-instanton form on Mn, suppose

Ω1 is irreducible and Ω1 ↪→ Ω3 only once. Let ¹ be a connection in some vector bundle

over M satisfying such that

∇+È = 0, ∇¹,+F¹ ∈ h

Also, suppose that the connection the curvature of the connection ¹ lives at most in two

irreducible components of Ω2, say F¹ ∈ h · b, and suppose that b ∈ R is the eigenvalue of

b under the instanton map (6.1.3). If

F¹ @ Äkj
= 0, ∀Ω3

kj
¢ O0, and ÃbF¹ @ Äkj

= 0, ∀Ω3
kj

¢ O−1

where Äkj
= Ãkj

(d∗È) are the torsion forms and O0,O−1 as in (6.2.3). If b = 1 + an (where

an is the eigenvalue of Ω3
n under the H), then ¹ satisfies the following torsion Yang-Mills

equation:

d¹∗F¹ + i·#F¹ − F¹ @H = 0

where H ∈ Ω3 is the flux induced by H and · = −(1 + 1
an

)Ä1 is the Lee form, for

Ä1 @ È = Än = Ãn(d∗È).

Proof. As we have written before:

H + d∗È =
∑

j

(

1 +
1

akj

)

Äkj
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by the Proposition 6.5.1 (using the existence of compatible connection ∇+ compatible and

∇¹,+
X F¹ ∈ h), we have the weak torsion Yang-Mills equation given by

d¹∗F¹ + F¹ @ d
∗È = (F¹ + F¹ @ È) @H

since ¹ is not an instanton, we cannot conclude that the term F¹ @ d
∗È = i·#F¹ − F¹ @H.

Thus, we need to work on this expression: using akj
= −1 in O−1 and F¹ @ O0 = 0, we

then have

F¹ @ d
∗È = F¹ @



−H +
(

1 +
1

an

)

Ä1 @ È +
∑

kj ̸=n

(

1 +
1

akj

)

Äkj





= −F¹ @H − · @ (F¹ @ È)

Supposing b is the eigenvalue of b under the instanton and h has eigenvalue −1, we then

obtain

F¹ @ d
∗È = −F¹ @H − · @ (−ÃhF¹ + bÃbF¹)

on the other hand, the term F¹ + F¹ @ È has only the component b because the h cancels

out since it is the −1 eigenvalue or the instanton map. Using ÃbF¹ @ Äkj
= 0 on O−1 and

F¹ @ Äkj
= 0 on O0 we have ÃbF¹ @ Äkj

= 0 for all kj ̸= n, consequently:

(F¹ + F¹ @ È) @H = (1 + b)ÃbF¹ @H = (1 + b)ÃbF¹ @



 1
an
Ä1 @ È +

∑

kj ̸=n

1
akj

Äkj





=
b(b+ 1)

an
Ä1 @ ÃbF¹,

finally:

0 = d¹∗F¹ − F¹ @H − (1 + 1
an

)Ä1 @ ÃhF¹ +
(

b(1 + 1
akj

) − (b2 + b)a−1
n

)

Ä1 @ ÃbF¹

= d¹∗F¹ − F¹ @H + i·#ÃhF¹ +
(

b− b2a−1
n

)

Ä1 @ ÃbF¹

and the equation would follow if b− b2a−1
n = −(1 + a−1

n ). Solving this equation with b as a

variable, we find two possible values:

b = −1; b = 1 + an

but we also know b ̸= −1 because b ≠ h. So the desired equation holds if b = 1 + an as the

hypothesis guarantees.

Example 6.5.3 (G2-structures). The hypothesis of b = 1 + an in the proposition above

cannot be removed; indeed, it doesn’t always hold. For example, consider G2-structures,

then F¹ ∈ Ω2 = g2 · Ω2
7, in this case b = 2 and an = 3 and consequently b = 2 ̸=

4 = 1 + an, so the hypothesis is not guaranteed. In fact, in Lemma 4.4.4, the expression

d¹∗F¹ + i·#F¹ − F¹ @H is calculated, and it is, in fact, not zero.

The same holds for Spin(7)-structures where b = 3 ̸= 7 = 1 + 6 = 1 + an and in

this case, b− b2a−1
n + (1 + a−1

n ) = 8/3 ̸= 0. △
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The following example is crucial because it motivated this analysis and is still

the motivation of open problems about it, which we will discuss below.

Example 6.5.4 (Revisiting [GFGM23] of U(m)-structures). Consider U(m)-structures on

M2m, where m g 3, yielding SU(m)-instanton via instanton form È = 1
2
É2. The eigenvalue

a2m of H in Ω3
2m is:

a2m = m− 2.

Now, let b = Ω2
1 = {fÉ : f ∈ C∞(M)}. Direct computation yields the eigenvalue b as

follows:

É @ È =
1

2!
É @ É2 =

1

(m− 2)!
∗ (É ' Ém−2) =

m− 1

(m− 1)!
∗ Ém−1 = (m− 1)É

which implies b = m− 1. Hence, we have b = m− 1 = m− 2 + 1 = 1 + a2m, aligning with

the hypothesis of the Proposition 6.5.2.

We proceed to verify the other hypothesis of the proposition. Firstly, F¹ = F 1,1
¹

is equivalent to F¹ ∈ su(m) · ïÉð = h · b. Additionally, considering ∇+È = 0, which is

equivalent to the component W2 of the intrinsic torsion being zero (in this case, H = −dcÉ

represents the torsion of the compatible connection with skew-torsion). In this scenario,

the space of 3-forms decomposes as:

Ω3 = W1 · W3 · W4.

If J is integrable, then the torsion form in W1 = O0 is zero. Furthermore, the class W3 is

perpendicular to W4 = Ω3
6, then for µ ∈ W3, satisfies (for X = ∂µ)

0 = ïX ' É, µð =
1

1!2!3!
¶µaÉbcµijkïe

abc, eijkð =
1

2
¶µaÉbcµabc =

1

2
Ébcµbcµ

for all µ, implying É @ µ = 0 for µ ∈ W3 = O−1. Now since b = ïÉð then ÃbF¹ = fÉ and

consequently ÃbF¹ @ O−1 = 0 as in the hypothesis.

Thus, we’ve placed the result from [GFGM23] under the hypothesis of Proposi-

tion 6.5.2. In the paper, ∇¹,+F¹ ∈ su(n) and the almost complex structure is considered

integrable. Note that Proposition 6.5.2 offers the same result for a slightly more general

hypothesis: imposing only F¹ @ Ä = 0 for Ä = ÃW1(d∗È) not Ä = 0 as in [GFGM23] (because

J is integrable). In Chapter 7, the calculations cited here are explored. △

The difference between the case of G2-structures and U(m)-structures is that

for the first one, N(G2) = G2 and consequently, nothing interesting holds for F¹. However,

in the second one, we are imposing F¹ ∈ n(h) = u(m), i.e., ¹ being a semi-instanton and a

natural problem emerges:
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Problem 5. Let È ∈ Ω4(M) be an H-instanton form on Mn, suppose Ω1 is irreducible

and Ω1 ↪→ Ω3 only once and that the associated H operator being an isomorphism. Let ¹ be

a semi-instanton, i.e., F¹ ∈ n(h) = h · h§ (in some bundle) satisfying h§ irreducible and

∇+È = 0, ∇¹,+F¹ ∈ h.

If b ∈ R denotes the eigenvalue of b under the instanton map (6.1.3) and suppose the

conditions (about Äkj
= Ãkj

(d∗È) the torsion forms and O0,O−1 as in (6.2.3))

F¹ @ Äkj
= 0,∀Ω3

kj
¢ O0, and ÃbF¹ @ Äkj

= 0,∀Ω3
kj

¢ O−1

are satisfied, then b = 1 + an (where an is the eigenvalue of Ω3
n under the H).

If the Problem 5 is true, then the semi-instanton ¹ satisfies the torsion Yang-

Mills equation as follows (by the Proposition 6.5.2):

d¹∗F¹ + i·#F¹ − F¹ @H = 0,

where H ∈ Ω3 represents the flux induced by the vector field H, and · = −(1 + 1
an

)Ä1

denotes the Lee form, with Ä1 @ È = Än = Ãn(d∗È).

This problem is of interest only in scenarios where N(H) ̸= H, for example, the

case discussed above where N(SU(m)) = U(m). This condition does not hold for G2 and

Spin(7) structures, but it does for Sp(k)Sp(1)-structures, satisfying the relation [McI91]:

N(Sp(k)) = Sp(k)Sp(1) ̸= Sp(k)

within SO(4k). However, a thorough investigation of such examples is lacking. If proven

true, it raises questions regarding the general solution to Problem 5.
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7 Spin(7) and almost Hermitian structures

In Chapter 3, we thoroughly explored the geometry of G2-structures in seven

dimensions. Shifting our focus to this chapter, we will now delve into the realm of Spin(7)-

structures in eight dimensions and U(m)-structures (commonly known as almost Hermitian

structures) in 2m dimensions, providing insights into similar findings. To conclude our

investigation, we will utilize the frameworks established in Chapter 2 (as we have made

in Chapter 4 for G2-structure), regarding conditions for Ricci flatness and the coupled

instanton equations. The main references for this section were [Iva04, Kar05, Kar08b,

MM18, IP23] for the part of Spin(7) and [Sal89, AFS05, MU19] for the almost Hermitian

structures.

The chapter is organized as follows: In Section 7.1, we present fundamental

information about the group Spin(7), including its alternative definition as the stabilizer of

a 4-form in R
8, the properties of its fundamental 4-form Ω0, and how Spin(7) decomposes

the space of forms Ωk(R8)∗ into irreducible components.

In Section 7.2, we introduce Spin(7)-structures on a manifold, characterized by

a 4-form Ω ∈ Ω4(M8), locally modelled in (R8,Ω0). We further discuss the torsion forms

associated with such a structure, culminating in Proposition 7.2.3, which addresses the

existence of a compatible connection with skew-symmetric torsion for all Spin(7)-structures.

Additionally, we apply Appendix B in computing the torsion of such a connection.

In Section 7.3, we conclude our examination of Spin(7)-structures by explor-

ing conditions for generalized Ricci flatness within transitive Courant algebroids over

a manifold equipped with a Spin(7)-structure satisfying the gravitino equation, as de-

tailed in Theorem 7.3. Finally, we present Theorem 7.3.2, which delineates the coupled

Spin(7)-instanton equations due to the gravitino equation and the Bianchi identity.

In continuation, we delve into the realm of almost Hermitian structures (U(m)-

structures) in even dimensions in Section 7.4. Similar to Section 7.1, this section follows a

parallel approach, where we introduce the group U(m), its fundamental form É0 (referred

to as the Hermitian form), and describe the decomposition of the space of forms into

irreducible components.

In Section 7.5, we delve into the intrinsic torsion of almost Hermitian structures,

exploring the conditions necessary for the existence of a compatible connection with skew-

symmetric torsion and providing an explicit computation for it using the techniques in

Appendix B. This section draws inspiration from [AFS05], which approaches Hermitian

structures through the lens of torsion forms rather than classical tensors, cf. Theorem 7.5.3.
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To conclude the chapter, Section 7.6 leverages the theory of almost Hermitian

structures, as explored in the preceding sections, to establish conditions of generalized

Ricci flatness for transitive Courant algebroids over almost Hermitian manifolds satisfying

the gravitino equation, as demonstrated in Theorem 7.6.1. Furthermore, in Theorem 7.6.2,

we establish that such manifolds imply coupled SU(m)-instanton equations.

7.1 The group Spin(7) and the decomposition of forms

The group Spin(7) f SO(8) is a simple, simply-connected, compact, 21-

dimensional Lie group [Joy00] defined as

Spin(7) :=
{

g ∈ GL(8) : g∗Ω0 = Ω0

}

(7.1.1)

where Ω0 ∈ Ω3(R8) (called the standard Spin(7)-structure in R
8) is defined by (in the

canonical basis and metric of R8)1:

Ω0 = e0127 + e0347 + e0567 + e0135 − e0146 − e0236 − e0245

+ e3456 + e1256 + e1234 − e2467 + e2357 + e1457 + e1367.
(7.1.2)

This 4-form is self dual, i.e., ∗Ω0 = Ω0 (with respect to the usual metric) and satisfies

|Ω0|
2 = 14 and normally called the standard or fundamental Spin(7)-structure on R

8.

The Spin(7)-structure Ω0 is related to the Riemannian metric g0 and orientation

in a non-linear fashion, which we now describe. Let v ∈ R
8 a non-zero vector, we define

[Kar08b, FLMSE23]:

Bij(v) = ((iei
ivΩ0) ' (iej

ivΩ0) ' (ivΩ0))(e1, · · · , e7)

A(v) = (ivΩ0 ' Ω0)(e1, · · · , e7),

then, the metric is given by

(g0(v, v))2 = −
73

67/3

(detBij)
1/3

A(v)3
. (7.1.3)

As for the G2-structures which the motivation was the cross product in R
7, the

Spin(7)-structure can be motived by the triple cross product in R
8 [SW17], but is not our

objective to treat this here.

Remark 7.1.1. Although we are considering (7.1.1) as the definitive definition of the group

Spin(7), it’s essential to point out that the broader concept of Spin(n) is as the universal

covering of SO(n). So, (7.1.1) is just a particularity for n = 7. ⃝
1 Note that Ω0 = e0 ' ϕ0 + ψ0, where ϕ0 and ψ0 has the expressions as in G2-structures (3.1.4) and

(3.1.5).
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Using the standard way to write the forms, we will denote the coordinates of

Ω0 (using the standard basis of R8) as

Ω0 =
1

4!
Ωijkle

ijkl.

These coefficients satisfy some relations under contractions:

Proposition 7.1.2. The fundamental Spin(7)-structure on R
8 (in the standard basis as

in (7.1.2)) satisfies the following relations between the coefficients:

Ωµ¿Ä¸Ωµ¿Ä¸ = 336

Ωµ¿ÄiΩµ¿Äa = 42¶ia

Ωµ¿ijΩµ¿ab = 6¶ia¶
j
b − 6¶ib¶

j
a + 4Ωij

ab

ΩµijkΩµabc = ¶ia¶
j
b¶
k
c + ¶ib¶

j
c¶
k
a + ¶ic¶

j
a¶
k
b − ¶ia¶

j
c¶
k
b − ¶ib¶

j
a¶
k
c

− ¶ic¶
j
b¶
k
a + ¶iaΩ

jk
bc + ¶jaΩ

ki
bc + ¶kaΩ

ij
bc + ¶ibΩ

jk
ca

+ ¶jbΩ
ki
ca + ¶kcΩ

ij
ca + ¶icΩ

jk
ab + ¶jcΩ

ki
ab + ¶kcΩ

ij
ab

Proof. [Kar08b, Kar05].

As in the case of the standard G2-structure, the form Ω0 implies on the

decomposition of the space of forms Λk(R8)∗ into Spin(7)-irreducible representations.

Using the Hodge star operator ∗ : Λk ∼= Λn−k, we need to describe the decomposition for

k = 0, 1, 2, 3, 4. The space of 0-forms and 1-forms are irreducible via the 1-dimensional and 8-

dimensional (natural) representations (determinant and matrix multiplication, considering

Spin(7) ¢ SO(8)).

Λ0 = Λ0
1

∼= R, Λ1 = Λ1
8

∼= R
8.

The space of 2-forms contains the seven-dimensional representation R
7 (irre-

ducible over SO(7) and irreducible over Spin(7) via universal covering Ξ : Spin(7) → SO(7))

and the adjoint representation spin(7) (irreducible because Spin(7) is simple). We then

have:

Proposition 7.1.3 (Decomposition of 2-forms). The space Λ2(R8)∗ of 2-forms decomposes

into Spin(7)-irreducible representations as

Λ2 = Λ2
7 · Λ2

21
∼= R

7 · spin(7) (7.1.4)

where

Λ2
7 = {´ ∈ Λ2 : ´ @ Ω0 = 3´}, Λ2

21 = {´ ∈ Λ2 : ´ @ Ω0 = −´}.

Furthermore, we have the projection formulas for these spaces

Ã7(´) =
1

4
(´ + ´ @ Ω0) and Ã21(´) =

1

4
(3´ − ´ @ Ω0). (7.1.5)
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Proof. Cf. [Kar08b, Puh09].

The space of 3-forms has
(

8

3

)

= 56 dimensions and contains the vectorial

representation R
8 inside Λ3 via the embedding invariant map

X ∈ Λ1 7→ X @ Ω0 ∈ Λ3

and still left 48 dimensions to describe. It happens that Spin(7) have a 48-dimensional

irreducible representation given by the kernel of the Clifford multiplication ∆7 ¹R
7 → ∆7.

It is well known that this space is an irreducible Spin(7)-representation [Fri02, §2.4].

Consequently, we have:

Proposition 7.1.4 (Decomposition of 3-forms). The space Λ3(R8)∗ of 3-forms decomposes

into Spin(7)-irreducible representations as

Λ3 = Λ3
8 · Λ3

48 (7.1.6)

where

Λ3
8 = {X @ Ω0 : X ∈ R

8} (7.1.7)

Λ3
48 = {µ ∈ Λ3 : µ ' Ω0 = 0}. (7.1.8)

Proof. We have to prove the characterization of Λ3
48 =

(

Λ3
8

)§
. But this is immediate via

this perpendicularity, let µ ∈ Λ3
48, then

Λ3
8 § Λ3

48 ⇒ Ω0 § µ ⇒ ïΩ0, µð = 0 ⇒ µ @ Ω0 = 0

so µ ∈ Λ3
48 ⇐⇒ µ ' Ω0 = 0 and we have proved the characterization of Λ3

48.

We also have a decomposition of 4-forms (to characterize all the spaces of

forms). We will not use this decomposition in the text, but it is:

Proposition 7.1.5 (Decomposition of 4-forms). The space Λ4(R8)∗ of 4-forms decomposes

into Spin(7)-irreducible representations as

Λ4(M) = Λ4
1 · Λ4

7 · Λ4
27 · Λ4

35 (7.1.9)

where

Λ4
1 = {fΩ0 : f ∈ R}

Λ4
7 = {´ @

1 Ω0 : ´ ∈ Λ2
7},

Λ4
27 = {Ã ∈ Λ4 : Ã ' Ω0 = 0, Ã ' Λ4

7 = 0; ∗Ã = Ã}
Λ4

35 = {Ã ∈ Λ4 : ∗Ã = −Ã}

Proof. [Kar05, Section 4.2] and [Kar08b, Section 2.1].
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7.2 Spin(7)-structures on manifolds, their torsion forms and intrinsic

torsion

As G2, the group Spin(7) is the isotropy of a form, then a Spin(7)-structure

on a manifold M8 is equivalent to a 4-form Ω ∈ Ω4(M) which can put punctually in the

standard form (7.1.2).

Remark 7.2.1. In seven dimensions [Joy00], every non-degenerate 3-form can be put in the

standard form (3.1.4) for G2-structures. However, for eight dimensions this is not true,

that is, a non-degenerate 4-form doesn’t necessarily define a Spin(7)-structure. ⃝

The Spin(7)-structures have only two torsion forms because dΩ ∈ Ω5, which

has only two irreducible components. Let (M8,Ω) be a manifold with Spin(7)-structure,

then there are unique differential forms Ä1 ∈ Ω1 and Ä3 ∈ Ω3
48 (called the torsion forms)

satisfying

dΩ = Ä1 ' Ω + ∗Ä3. (7.2.1)

Now, we will describe the intrinsic torsion for a Spin(7)-structure as we have

made for G2-structures based on the discussion in Appendix B.

Proposition 7.2.2. The intrinsic torsion of a Spin(7)-structure (M8,Ω) lives is the space

Ω3(M) and decomposes into irreducible components as

Γ ∈ Ω1 · Ω3
48,

and with the appropriate identifications, the components of the intrinsic torsion are the

torsion forms:

Γ = Ä1 + Ä3 ∈ Ω1 · Ω3
48. (7.2.2)

In particular, Γ ≡ 0 if, and only if dΩ = 0.

Proof. Analogous to Proposition 3.3.4.

Let’s discuss the characteristic connection for Spin(7)-structures. Recall that

an affine connection ∇ is said to be compatible with the Spin(7)-structure if

∇Ω = 0.

In the context of compatible connections with totally skew-symmetric torsion, every

Spin(7)-structure admits such a connection. The existence of this connection discussed in

[Fri02], while the derivation of its torsion formula was first established by [Iva04] and an

alternative proof of this fact utilizing spinors can be found in Lucia Martín Merchán’s thesis

(cf. [MM18]). The proof we present here follows the flux theorem B.3.6 in Appendix B.
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Proposition 7.2.3. Let (M8,Ω) be a Spin(7)-structure, then it admits a compatible

connection with totally skew-symmetric torsion ∇+ = ∇g + 1
2
g−1T . Furthermore, this

connection is unique and its torsion is given by

T = −1

6
Ä1 @ Ω − Ä3. (7.2.3)

this 3-form is called flux and denoted by T = H.

Proof. We have seen in the last result the intrinsic torsion Γ = Ä1+Ä3 lives in Ω1·Ω3
48

∼= Ω3,

and this space embeds (in fact, is equal) to Ω3. Hence, the structure admits a unique

compatible connection with skew-symmetric torsion T ∈ Ω3 by the results in Appendix B.

To compute the formula for the torsion, we have to find the eigenvalues for the

flux operator H(µ) = µ @2 Ω in each of the irreducible components of the space of 3-forms.

For the vectorial component Ω3
8 = {X @ Ω : X ∈ TM}, we compute directly using the

identities in Proposition 7.1.2:

H(X @ Ω) = (X @ Ω) @2 Ω =
1

2!(3 − 2)!(4 − 2)!
X iΩi

µ¿
jΩµ¿abe

jab

=
1

4
X i (6¶ia¶jb − 6¶ib¶ja + 4Ωijab) e

jab = X iΩijabe
jab = 6X @ Ω

hence, the eigenvalue is ak8 = 6. For Ω3
48, we have no general form for an element in it, so

we have to find some specific element in this space and apply H on it. Using the expression

(7.1.2), is immediate to see that

Ω0 ' e023 = e1457023, Ω0 ' e057 = e1234057 = Ω0 ' e023

so this defines µ = e023 − e057 ∈ Ω3
48. Proceeding analogous (by direct computation as we

have done in Theorem 3.4.4), we obtain ak48 = −1. Now, the expression for co-differential

of Ω is ¶Ω = − ∗ dΩ = −Ä1 @ Ω + Ä3, consequently we have by the flux theorem B.3.6 that

T = −1
6
Ä1 @ Ω − Ä3.

7.3 Generalized Ricci flatness and coupled equations for Spin(7)-

structures

As we have seen, a Spin(7)-structure (M8,Ω) has naturally an instanton form

given by Ω ∈ Ω4(M). Furthermore, the instanton form is determinant since (cf. Theo-

rem 7.2.3)

a8 = 6, a48 = −1.

where Ω3 = Ω3
8 · Ω3

48 such that Ω3
48 = O−1 and O0 = ∅ (see (6.2.3)). By Theorem 7.2.3,

we have the (particular) gravitino equation is always satisfied:

∇+Ω = 0.



Chapter 7. Spin(7) and almost Hermitian structures 127

The torsion forms are

Ä 8 = −Ä1 @ Ω, Ä 48 = Ä3,

the norm of the instanton form is |Ω|2 = 14, ³ = −4|Ω|2

8
= −7 (cf. Lemma 6.3.3).

Consequently, the Lee form is given by

· := −
(

1 +
1

a8

)

· 1

³
Ä 8

@ Ω =
(

1 +
1

6

)

Ä1 =
7

6
Ä1.

The partial norm using Proposition 7.1.2, we have

[[Ω]]2 =
1

16
Ωij

abΩ
ab
µ¿Ω

µ¿
ij =

1

16
Ωij

ab

(

6¶ai ¶
b
j − 6¶bi ¶

a
j + 4Ωij

ab
)

=
4 · 336

16
= 84,

Consequently, we have

4

8
|Ω|4 − |Ω|2 = 98 − 14 = 84 = [[Ω]]2

i.e., we are in the hypothesis of Theorem 6.3.6; consequently, we have the result about

generalized Ricci flatness:

Theorem 7.3.1. Let P → M8 be a principal K-bundle for (M8,Ω) a Spin(7)-structure

and suppose a connection ¹ satisfies the instanton condition and Bianchi identity:

F¹ @ Ω = −F¹, dH = ïF¹ ' F¹ð.

Then the Riemannian metric g = gΩ on M determined by the Spin(7)-structure satisfies:

Ricg − 1
4
H2 + F¹ ◦ F¹ + 7

12
LÄ#

1
g = 0,

d∗H − 7
6
dÄ1 + 7

6
i·#H = 0,

d¹∗F¹ − F¹ @H + 7
6
iÄ#

1
F¹ = 0.

(7.3.1)

where H = HΩ (cf. Theorem 7.2.3). In particular,

GRic+
GΩ,divΩ = 0,

where GΩ is obtained analogously as in Remark 4.1.3 and the divergence operator is

uniquely determined by the Spin(7)-structure via the explicit formula given by Remark

2.2.4:

divΩ = divGΩ −2ï7
6
Ä1, ·ð.

The first two equations in (7.3.1) are the symmetric and skew-symmetric parts

of the equation

Ric+ + F¹ ◦ F¹ + 7
6
∇+Ä1 = 0.

Now, another thing to see for Spin(7) is the coupled Spin(7)-instanton equations.

Initially, note that Ω2
21 @

1 Ω = 0 due to spin(7) = Ω2
21 not being a component of Ω4 =
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Ω4
1 · Ω4

7 · Ω4
27 · Ω4

35. Thus, the conditions outlined in Lemma 6.4.3 are satisfied. Moreover,

as N(Spin(7)) = Spin(7) within SO(8) (thus, the endomorphism part of R∇+ resides in

spin(7)), Theorem 6.4.4 applies directly to this specific scenario: instanton condition for

¹ and heterotic Bianchi identity implies coupled instanton condition (here the gravitino

equation is always satisfied, i.e., ∇+Ω = 0).

Theorem 7.3.2. Let E be a transitive Courant algebroid with generalized metric G over

a Spin(7)-structure (M8,Ω) and suppose:

F¹ @ Ω = −F¹, dH − ïF¹ ' F¹ð = 0.

Then, the coupled Spin(7)-instanton equation is satisfied, i.e., FD @ Ω = −FD.

Remark 7.3.3. Note that in the case of Spin(7)-structures, the first entry of the curvature

FD is equivalent to

ïF¹, F¹ð ∈ Ω2
21 ¹ Ω2

because R∇+ always have endomorphism part in Ω2
21 due to Theorem 7.2.3. ⃝

7.4 The group U(m) and the decomposition of forms

Now, we will explore the notion of SU(m)-instantons, which makes sense in the

context of U(m)-structures (almost Hermitian structures) in (2m)-dimensional manifolds.

The group U(m) f SO(2m) can be defined as the one which stabilizes the

standard hermitian form in R
2m

U(m) :=
{

g ∈ SO(2m) : g∗É0 = É0

}

(7.4.1)

where É0 ∈ Ω2(R2m) is the standard hermitian structure in R
2m defined by (using

{e1, e2, · · · , e2m−1, e2m} the canonical basis and metric of R2m):

É0 = e12 + e34 + · · · + e2m−1 ' e2m =
m∑

k=1

e2k−1 ' e2k (7.4.2)

The powers of É0 satisfy some interesting properties

1

k!
∗ Ék0 =

1

(m− k)!
Ém−k

0 ; volR2m =
1

m!
Ém0 ;

∣
∣
∣
∣

Ék0
k!

∣
∣
∣
∣

2

=

(

m

k

)

=
m!

k!(m− k)!
. (7.4.3)

The group U(m) is not obtained as the stabilizer of É0 in GL(2m), so a metric

is initially considered in such structures and not induced by it. In the classical approach

in almost Hermitian manifolds, the first object considered is the almost complex structure

J0. For us here, it will be defined in terms of the objects we already have: É0 and g0:

g0(X, Y ) = É0(X, J0Y ).
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In coordinates, we have

gij = ÉikJ
k
j.

where the coefficients are given by

É0 =
1

2!
Éije

ij; J = Jkje
j ¹ ek.

We can check the essential property of the almost complex structure J2
0 = − Id using the

contraction identities for É

Proposition 7.4.1. The fundamental U(m)-structure É0 on R
2m satisfies the following

relations between the coefficients

Éµ¿Éµ¿ = 2|É|2 = 2m

ÉµiÉµa = ¶ia.

Furthermore, if we define È0 = 1
2
É0 ' É0, given in coordinates by È0 = 1

4!
Èijkle

ijkl will

satisfy |È0|2 = 1
2
m(m− 1) and

Èijkl = ÉijÉkl − ÉikÉjl + ÉilÉjk,

ÈijklÈijkl = 12m(m− 1),

ÈijklÈijkµ = 6¶lµ(m− 1),

ÈijklÈijab = 2ÉklÉab(m− 2) + 2¶a
k¶b

l − 2¶a
l¶b

k.

Proof. The formulas for É are immediate given the norm |É|2 = m and the fact that

É is essentially the almost complex structure up to lower an index. The expression

Èijkl = ÉijÉkl − ÉikÉjl + ÉilÉjk is by definition of È and for the others for È are just

elementary manipulations of this one.

The decomposition of the space of 2-forms (and of k-forms in general is based on

the realification of the decomposition of complex forms, and we will follow the convention

and notation in [Sal89]) is decomposed using the realification of complex forms:

Λ2 = [[Λ2,0]] · [Λ1,1
0 ] · ïÉ0ð

since dimR[[Λ2,0]] = dimC

(

Λ2,0 · Λ0,2
)

= 2
(
m

2

)(
m

0

)

= m(m − 1) and the sum space

[Λ1,1
0 ] · ïÉð ∼= u(m) = su(m) · 1 (note that the adjoint representation u(m) is not

irreducible since U(m) is not simple, however, su(m) is irreducible because SU(m) is

simple), so we have:

Proposition 7.4.2 (Decomposition of 2-forms). The space Λ2(R2m)∗ of 2-forms decomposes

into U(m)-irreducible representations as

Λ2 = Λ2
m(m−1) · Λ2

m2−1 · Λ2
1

∼= [[Λ2,0]] · [Λ1,1
0 ] · ïÉ0ð ∼= [[Λ2,0]] · su(m) · ïÉð

(7.4.4)
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where (considering È = 1
2!
É2

0)

Λ2
1 = {´ ∈ Λ2 : ´ @ È = m− 1} = {fÉ : f ∈ R}

Λ2
m2−m = {´ ∈ Λ2 : ´ @ È = 3} = {´ ∈ Λ2 : J´ = −´}

Λ2
m2−1 = {´ ∈ Λ2 : ´ @ È = −1} = {´ ∈ Λ2 : J´ = ´, ´ @ É = 0}

the condition ´ @É = 0 also holds in Ω2
m2−m. Furthermore, we have the projection formulas

for these spaces

Ã2
1(´) =

1

m
ï´, ÉðÉ (7.4.5)

Ã2
i (´) =

1

¼2
i − ¼i(¼j + ¼k) + ¼j¼k

(

(´ @ À) @ À − (¼j + ¼j)´ @ À + ¼j¼k´
)

(7.4.6)

where ¼i are the eigenvalues of ´ 7→ ´ @ È and i ̸= j ̸= k ̸= i.

Proof. Cf. [Sal89, FSE19, MU19].

We can embed Λ1 (irreducible) into Λ3 via the map X ∈ Λ1 7→ X ' É0 ∈ Λ3,

we also have two other irreducible components inside Λ3 (Cf. [GH80, Thrm 2.1] and

[Fri02, FI02, AFS05]). We have:

Proposition 7.4.3 (Decomposition of 3-forms). The space Λ3(R2m)∗ of 3-forms decomposes

into U(m)-irreducible representations as

Λ3(M) = Λ3
2m · Λ3

1
3
m(m−1)(m−2) · Λ3

m(m+1)(m−2)
∼= Λ1 · [[Λ3,0]] · [[Λ2,1

0 ]] (7.4.7)

where the identification Λ3
2m

∼= Λ1 is Λ3
2m = {X ' É : X ∈ Λ1}.

Proof. [Sal89, GH80, AFS05].

7.5 Torsion of almost Hermitian structures

For manifolds, a U(m)-structure is equivalent to (M2m, g, É) where É is punc-

tually É0 and g a Riemannian metric, then there are unique differential forms

Ä1 ∈ Ω1, Ä3,1 ∈ Ω3
1
3
m(m−1)(m−2), Ä3,3 ∈ Ω3

m(m+1)(m−2)

(called the torsion forms) satisfying

d∗È = Ä1 ' É + Ä3,1 + Ä3,3 (7.5.1)

Remark 7.5.1 (Relation between Ä1 and the Lee form). Consider dÉm−1 ∈ Ω2m−1 ∼= Ω1,

then there is a unique 1-form such that dÉm−1 = ¹É ' Ém−1 (the so-called Lee form in the

context of almost Hermitian structures).
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On the other hand, note that the map µ ∈ Ω3 7→ É @ µ ∈ Ω1 is invariant, so the

only component which is not cancelled is Ω3
2m, consequently

É @ d∗È = (constant) · Ä1

We have

É @ d∗È = É @ (Ä1 @ È) = Ä1 @ (É @ È) = Ä1 @ ∗ Ém−1

(m− 2)!
= (m− 1)Ä1 @ É = (m− 1)Ä1

since X @ É = X ∈ Ω1 (by invariance), but on the other hand, we have

É @ d∗È = − ∗ (É ' d ∗ È) = − 1

(m− 2)!
∗
(

É ' dÉm−2
)

= − m− 2

(m− 2)!
∗
(

dÉ ' Ém−2
)

= − m− 2

(m− 1)!
∗ dÉm−1 = − m− 2

(m− 1)!
∗ (¹É ' Ém−1) = −(m− 2)¹É @ É

= −(m− 2)¹É

We conclude that Ä1 and the Lee form ¹É are essentially the same thing, up to a constant.

They are related by the expression Ä1 = −m−2
m−1

¹É. ⃝

Now, let’s describe the intrinsic torsion of almost Hermitian structures. Since

so(2m) = u(m) · mm(m−1), consequently, the space where the intrinsic torsion Γ lives is

R
2m ¹ mm(m−1) ∼= W1 · W2 · W2 · W4

∼= Ω3
1
3
m(m−1)(m−2) · W2 · Ω3

m(m+1)(m−2) · Ω3
1

∼= Ω3 · W2,

where the spaces Wj were defined in [GH80]. Since U(m) is the isotropy of É, so, as we

have one before in Proposition 3.3.4 and Proposition 7.2.2 we have that the intrinsic

torsion Γ is identified as

Γ = Ä1 ' É + Ä3,1 + Ä3,3 + ÃW2(Γ), (7.5.2)

i.e., W2 and dÉ define Γ completely. Some properties of these Wj classes are important

[GH80]:

• Γ ∈ W1 · W3 · W4, the so-called G1-manifolds is equivalent to the Nijenhius tensor

N ∈ Ω2 ¹ Ω1, being completely skew-symmetric, i.e., N ∈ Ω3.

• Γ ∈ W3 · W4 if, and only if N ≡ 0, which is equivalent to the almost complex

structure being integrable, i.e., the manifold is complex (hermitian). Therefore, a

G1-hermitian structure is a complex manifold if, and only if Ä3,1 = 0 [GH80, AFS05].
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With this, we can investigate compatible connections with totally skew-symmetric

torsion.

Theorem 7.5.2 ([FI02]). Let (M2m, É, g) be an almost-Hermitian manifold. Then, there

exists a compatible connection with totally skew-symmetric torsion if and only if the

Nijenhuis tensor N(X, Y, Z) := g(N(X, Y ), Z) is a 3-form. In this case, the connection is

unique and is determined by

T = H = −JdÉ +N (7.5.3)

In particular, if the manifold is hermitian, then H = −JdÉ = −dcÉ. The existence of such

a connection is equivalent to ÃW2(Γ) = 0.

The result above is interesting because it gives us the torsion in terms of É and

N . Still, for our purposes, it is interesting because it provides the torsion in terms of the

torsion forms, so we have the theorem below, which is proved in [AFS05] for m = 3, but

here we will prove the general version and using our method.

Theorem 7.5.3. Let (M2m, g, É) be an almost-Hermitian manifold which admits a com-

patible connection ∇+ = ∇g + 1
2
T which totally skew-symmetric torsion T ∈ Ω3(M), then

its torsion is given by

T =
1

m− 2
Ä1 @ È +

1

3
Ä3,1 − Ä3,3.

Proof. Following the flux theorem B.3.6, we have to compute the eigenvalues of the flux

operator H(µ) = µ @
2 È. In the vector component in Ω3

2m, which elements have the form

X ' É, we have using the contraction identities in Proposition 7.4.1

H(X ' É) = (X ' É) @2 È = 1
2!2!

(XjÉka +XaÉjk +XkÉaj)Èjkbce
abc

= 1
4
(XjÉka +XaÉjk +XkÉaj)(ÉjkÉbc − ÉjbÉkc + ÉkbÉjc)e

abc

= 1
4

(

−Xj¶ajÉbc −�����Xj¶acÉjb +�����Xj¶acÉjc + 2mXaÉbc

−Xa¶kbÉkc −Xa¶bjÉjc −Xk¶kaÉbc +�����Xk¶abÉkc +�����Xk¶abÉjc
)

eabc

= (m− 2)X ' É

and we have obtained the desired eigenvalue: a2m = m − 2. Now, let’s consider the

irreducible component Ω3
1
3
m(m−1)(m−2)

∼= [[Ω3,0]]. For all m g 3, this space complexified

[[Ω3,0]]2 ¹ C = Ω3,0 contains the element dz123 by definition, and it is given by

dz123 = (e1 + ie2)(e3 + ie4)(e5 + ie6)

= e135 + ie136 + ie145 − e146 + ie235 − e236 − e245 − ie246

Considering this complex form as a real form, we obtain

µ = e135 + e136 + e145 − e146 + e235 − e236 − e245 − e246 ∈ [[Ω3,0]]
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performing the computations for this specific form, we obtain

a 1
3
m(m−1)(m−2) = 3.

Now, for the component Ω3
m(m+1)(m−2)

∼= [[Ω2,1
0 ]] and this space always contains the 3-form

µ = ³− ´ = e123 − e356 (Cf. [AFS05, p.4]), we obtain

am(m+1)(m−2) = −1.

Using ¶È = Ä1 @ È + Ä3,1 + Ä3,3 and the Flux Theorem B.3.6, the result follows.

Note that, in particular, the instanton form is determinant (because we are

considering m g 3) and

O0 = Ω3
1
3
m(m−1)(m−2) = W1, O−1 = Ω3

m(m+1)(m−2) = W3.

7.6 Generalized Ricci flatness and coupled SU(m)-instantons

As we have seen, a U(m)-structure (M2m, É, g) has naturally an instanton form

given by È = 1
2
É2 ∈ Ω4(M). Furthermore, the instanton form is determinant since (cf.

Theorem 7.5.3)

a2m = m− 2, am(m+1)(m−2) = −1, am(m−1)(m−2)/3 = 3.

where the space of 3-forms decomposes as

Ω3 = Ω3
2m · Ω3

m(m+1)(m−2) · Ω3
m(m−1)(m−2)/3

such that Ω3
m(m+1)(m+2) = O−1 and O0 = Ω3

m(m−1)(m−2)/3 (see (6.2.3)). By Theorem 7.5.3,

we have the (particular) gravitino equation satisfied if the component W2 of the intrinsic

torsion vanishes:

ÃW2 (Γ) ≡ 0.

The torsion forms are

Ä 2m = Ä1 @ È, Ä
1
3
m(m−1)(m−2) = Ä3,1, Äm(m+1)(m−2) = Ä3,3.

the norm of the instanton form is |È|2 = 1
2
m(m−1), ³ = −4|È|2

2m
= 1−m (cf. Lemma 6.3.3).

Consequently, the Lee form is given by

· := −
(

1 +
1

a2m

)

Ä1 =
m− 1

m− 2
· m− 2

m− 1
¹É = ¹É

so, the Lee form as defined in Chapter 6 is, in fact, the Lee form in the context of almost

Hermitian structures (in fact, this correspondence was the motivation to call · the Lee
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form). The partial norm using Proposition 7.4.1, we have

[[È]]2 = 1
16
ÈijklÈ

kl
abÈ

ab
ij = 2(m−2)

16
ÉklÉ

ab
(

ÉklÉ
ab + Ék

aÉb
l − Ék

bÉal
)

= 2(m−2)
16

(2m · 2m− ¶la¶la − ¶lb¶lb) = 2(m−2)
16

(

4m2 − 4m
)

= 1
2
m(m− 1)(m− 2)

Consequently, we have

4

2m
|È|4 − |È|2 =

4

2m

(
1

2
m(m− 1)

)2

− 1

2
m(m− 1) =

1

2
m(m− 1)(m− 2) = [[È]]2

i.e., we are in the hypothesis of Theorem 6.3.6; consequently, we have the result about

generalized Ricci flatness:

Theorem 7.6.1. Let P → M2m be a principal K-bundle for (M2m, É, gÉ) a U(m)-structure

with instanton form È = 1
2
É2 and suppose a connection ¹ satisfies the instanton condition

and Bianchi identity:

F¹ @ È = −F¹, dH = ïF¹ ' F¹ð,

and that the endomorphism part of R∇+ lives in su(m) f u(m) f Ω2. Then the Riemannian

metric g = gÉ on M satisfy:

Ricg − 1
4
H2 + F¹ ◦ F¹ + 1

2
L¹#

ω
g = 0,

d∗H − d¹É + i¹#
ω
H = 0,

d¹∗F¹ − F¹ @H + i¹#
ω
F¹ = 0.

(7.6.1)

where H = HÉ = −dcÉ +N is the flux (cf. Theorem 7.5.2) and ¹É ∈ Ω1(M) the Lee form.

In particular,

GRic+
Gω ,divω = 0,

where GÉ is obtained analogously as in Remark 4.1.3 and the divergence operator is

uniquely determined by the U(m)-structure via the explicit formula given by Remark 2.2.4:

divÉ = divGω −2ï¹É, ·ð.

The first two equations in (7.6.1) are the symmetric and skew-symmetric parts

of the equation

Ric+ + F¹ ◦ F¹ + ∇+¹É = 0.

In concluding our discussion, let’s consider the coupled instanton equations

in the case of U(m)-structures, which is a specific case of Theorem 6.4.4. To apply the

theorem, as we have mentioned in Lemma 6.4.3, we need to ensure that su(m) @1 su(m).

In contrast to the case of G2 and Spin(7)-structures, where the Lie algebra was not a

component of Ω4 (so the condition would be trivial due to the imposition h @1 È = 0, cf.
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Lemma 6.4.3), in almost Hermitian manifolds, su(m) is part of Ω4 [Sal89]. Therefore, we

need to prove that the condition su(m) @1 su(m) still holds. In fact:

(dzi ' dzj) @1 (dzk ' dzl) = (eµ @ (dzi ' dzj)) ' (eµ @ (dzk ' dzl))

= ((¶iµ + i¶im+µ)dzj − (¶jµ − i¶im+µ)dzj) ' ((¶kµ + i¶km+µ)dzl − (¶lµ − i¶jm+µ)dzk)

which is clearly in Ω1,1 = u(m). The operation @
1 preserves su(m) because in the comple-

ment ïÉð it is zero:

É @
1 É =

1

1!1!1!
ÉijÉike

jkab = ¶jke
jk = 0.

With this, we then have

Theorem 7.6.2. Let E be a transitive Courant algebroid with generalized metric G over

a manifold with U(m)-structure (M2m, g, É) and denote È = 1
2
É2 and suppose:

∇+È = 0, F¹ @ È = −F¹, dH − ïF¹ ' F¹ð = 0.

Then, the coupled U(m)-instanton equation is satisfied, i.e., FD @ È = −FD.
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APPENDIX A – Conventions on differential

forms and notation

A.1 Differential Forms

Let Mn be a n-dimensional Riemannian manifold. We denote Ωk(M) =

Γ(ΛkT ∗M) the space of k-forms which standard notation in coordinates will be for À ∈ Ωk

À =
1

k!
Ài1···ik e

i1···ik =
1

k!
Ài1···ik e

i1 ' · · · ' eik (A.1.1)

where the repeated covariant and contravariant indices implies an implicit sum over all

indices (even the repetition and permutations, and because that the correction factor
1

k!
is considered on the expression), the so-called Einstein’s sum convention. Note that in the

standard notation, the indices are given by

Ài1···ik := À(ei1 , · · · , eik) (A.1.2)

and the indices are completely skew-symmetric. The wedge product ' : Ωk × Ωl → Ωk+l is

given in coordinates by

À ' ¸ =
1

k!l!
Ài1···ik¸j1···jl e

i1···ikj1···jl (A.1.3)

this formula holds, however it not in the standard form (A.1.1) because the indices don’t

satisfy (A.1.2). To find the standard form for the wedge product, we have to reorganize

the indices on the (linearly dependend) generator set eij to obtain

À ' ¸ = À[i1···ik¸ik+1···ik+l] e
i1···ikik+1···ik+l

:=
1

(k + l)!

∑

Ã∈Sk+l

(−1)|Ã|Àiσ(1)···iσ(k)
¸iσ(k+1)···iσ(k+l)

ei2···ik+l .
(A.1.4)

We will also use the Hodge star operator ∗ = ∗g for induced by a Riemannian

metric g on an oriented manifold (Mn, volM ). The Hodge star operators are isomorphisms

∗ : Ωk → Ωn−k between the space of k-forms defined by the relation

À ' ∗À = |À|2volM . (A.1.5)

It satisfies ∗∗À = (−1)k(n−k)À, in particular ∗∗ = Id for odd-dimensional manifolds and

∗∗ = (−1)k Id for even-dimensional manifolds. In coordinates, for À ∈ Ωk, the Hodge star

operator is given by

(∗À)ik+1···in =

√
g

k!
Ài1···ikεi1···in , where ∗ À =

1

(n− k)!
(∗À)ik+1···ine

ik+1···in (A.1.6)

In this context, we have the co-differential d∗ = (−1)n(k+1)+1 ∗ d∗ : Ωk → Ωk−1, which is

d∗ = − ∗ d∗ in even dimensional manifolds and d∗ = (−1)k ∗ d∗ for odd ones.
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A.2 Contractions of forms

A Riemannian metric g (or more generally, any non-degenerate bilinear form)

on the tangent space TM defines a natural identification TM ∼= T ∗M by

X ∈ TM 7→ g(X, ·) ∈ T ∗M

this identification is called the musical isomorphism, and we normally denote it and its

inverse by o : X ∈ TM 7→ Xo ∈ T ∗M and # : À ∈ T ∗M 7→ À# ∈ TM . In coordinates, if we

set the vector field X = Xjej and the 1-form À = Àje
j with covariant indices, the musical

isomorphisms are given by

Xo = Xje
j := Xkgkj e

j and À# = Àjej := Àkg
kj ej. (A.2.1)

Let À ∈ Ωk and a fixed vector field X, we define the contraction operator X@ = iX : Ωk →
Ωk−1 normally denoted by X @ À or iXÀ and defined by

(X @ À)(Y1, · · · , Yk−1) := À(X, Y1, · · · , Yk−1) (A.2.2)

in coordinates, we have the coefficients of this operation is given by (ej@À)i1···ik−1
= Àji1···ik−1

.

So we write the expression for the (k − 1)-form iXÀ = X @ À by

X @ À =
1

(k − 1)!
XjÀji1···ik−1

ei1···ik−1 (A.2.3)

Naturally we can contract a 1-form with a k-form defining by ³ @ À := ³#
@ À. We can

generalize this operation by taking ¸ ∈ Ωk and À ∈ Ωk+p and defining ¸ @ À ∈ Ωp by:

¸ @ À :=
1

k!p!
¸i1···ikÀi1···ikik+1···ik+p

eik+1···ik+p (A.2.4)

Some interesting property of contraction of forms is the relation of it with the Hodge star

operator given by the lemma below.

Lemma A.2.1. Let ¸ ∈ Ωk and À ∈ Ωk+p forms on an oriented Riemannian manifold

Mn, then we have that

¸ @ À = (−1)p(n−p−k) ∗ (¸ ' ∗À) (A.2.5)

Which writes as

¸ @ À = (−1)pk ∗ (¸ ' ∗À) n odd. (A.2.6)

¸ @ À = (−1)p(k+1) ∗ (¸ ' ∗À) n even. (A.2.7)

Proof. Cf. [dlOLS18a, Appendix A].

Another important property of contractions is some kind of commutativity

when three contractions are considered. To be precise, the following result holds:
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Lemma A.2.2. Let ³ ∈ Ωk, ´ ∈ Ωl, µ ∈ Ωp (where k, l, p are integers such that the

contractions below make sense), then the following identity holds:

³ @ (´ @ µ) = (−1)kl´ @ (³ @ µ) (A.2.8)

Proof. By direct computation, we just have to translate the indices of µ:

³ @ (´ @ µ) =
1

k!l!(p− l − k)!
³i1···ik´j1···jlµj1···jli1···ikik+1···ip−l−k

eik+1···ip−k−l

=
(−1)kl

k!l!(p− l − k)!
´j1···jl³i1···ikµi1···ikj1···jlik+1···ip−l−k

eik+1···ip−k−l

= (−1)kl´ @ (³ @ µ)

as desired.

The contraction of ¸ ∈ Ωk in À ∈ Ωk+p consists in contracting the indices of ¸

in À. We can make this process partially, contracting just some indices and defining a map

@
q : Ωk × Ωk+p → Ω2k+p−2q

by the formula (where the second line is the case of orthonormal basis)

¸ @q À :=
1

q!(k − q)!(k + p− q)!
¸a1···aq

i1···ik−q
Àa1···aqj1···jk+p−q

ei1···ik−qj1···jk+p−q

=
1

q!
¸i1···iq ' Ài1···iq =

∑

i1<···<iq

¸i1···iq ' Ài1···iq

(A.2.9)

where the notation used above for an arbitrary form ´ ∈ Ωr is defined by

´i1···iq := ieq
· · · ie1´ =

1

(r − q)!
´i1···iqiq+1···ire

iq+1···ir ∈ Ωr−q(M).

Note that the partial contractions generalize the ‘usual’ contraction and the wedge product,

in the sense that

¸ @ À = ¸ @k À and ¸ ' À = ¸ @0 À. (A.2.10)

also note that the sign correction for commutation: ¸ @q À = (−1)k−qÀ @q ¸. The partial

contractions are important because, like the contractions, Hodge dual and wedge product,

they can define G-invariant maps (when taken using the forms preserved by such structure)

and appear on countless occasions. The equivalences (A.2.10) suggest a relation between

the q-contraction @
q and the (k − q)-contraction @

k−q via the Hodge star operator. In fact,

we have

Proposition A.2.3. Let ³ ∈ Ωk, ´ ∈ Ωk+p, then the relation below holds

³ @
q ´ = (−1)(k−q)(k−q+n)+p(n−p−q) ∗ (³ @

k−q ∗´). (A.2.11)
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which writes as

³ @
q ´ = (−1)pq ∗ (³ @

k−q ∗´) n odd. (A.2.12)

³ @
q ´ = (−1)p(q+1)+k−q ∗ (³ @

k−q ∗´) n even. (A.2.13)

Proof. By definition of partial contractions, we have

∗(³ @
q ´) =

1

q!
∗ (³i1···iq ' ´i1···iq) =

1

q!(k − q)!
³i1···iq iq+1···ik ∗ (eiq+1···ik ' ´i1···iq)

now, working with the Hodge dual on this expression, we then have

∗(eiq+1···ik ' ´i1···iq) = ∗(eiq+1···ik ' (ei1···iq @ ´))

= (−1)(k+p−q)(n−k−p) ∗ (eiq+1···ik ' ∗(ei1···iq ' ∗´))

= (−1)(k−q)(n−k)+p(n−q+1)+p(n−p)eiq+1···ik
@ (ei1···iq ' ∗´)

= (−1)(k−q)(n−k)+p(p+q+1)eik @ · · · @ eiq+1
@ (ei1···iq ' ∗´)

performing the first contraction, we then obtain

(−1)(k−q)(n−k)+p(p+q+1)eik@· · ·@eiq+2
@

( q
∑

a=1

(−1)a+1¶iaiq+1ei1···îa···iq'∗´+(−1)qei1···iq'(∗´)iq+1

)

Note that the only term in the parentheses which has no ¶’s is (−1)qei1···iq ' (∗´)iq+1 .

When we perform the second contraction, now with eiq+2 , the only term with no ¶’s will

be (−1)2qei1···iq ' (∗´)iq+1iq+2 . Performing all the k − q contractions, we finally have that

the only term with no ¶’s will be (−1)q(k−q)ei1···iq ' (∗´)iq+1···ik . Denoting the terms which

contain some ¶ involving the indices i1 · · · iq and iq+1, · · · ik by Σ¶, we then have

∗(eiq+1···ik ' ´i1···iq) = (−1)(k−q)(n−k)+p(p+q+1)
(

Σ¶ + (−1)q(k−q)ei1···iq ' (∗´)iq+1···ik

)

substituting in the initial expression for ∗(³ @
k ´) the term Σ¶ cancel with the skew-

symmetry of indices in µ (which are the ones which appear in the terms of Σ¶), we finally

have

∗(³ @
k ´) =

1

q!(k − q)!
(−1)(k−q)(n−k)+p(p+q+1)+q(k−q)³i1···iq iq+1···ike

i1···iq ' (∗´)iq+1···ik

= (−1)(k−q)(n−k)+p(p+q+1)+q(k−q) 1

(k − q)!
³iq+1···ik ' (∗´)iq+1···ik

= (−1)(k−q)(n−k)+p(p+q+1)+q(k−q)³ @
k−q ∗´

now, applying the Hodge star dual on both sides, and using that ³ @
k ´ ∈ Ω2k+p−2q, we

then have the expression below

³ @
q ´ = (−1)(k−q)(n−k)+p(p+q+1)+q(k−q)+p(n−p) = (−1)(k−q)(n−k−q)+p(n−p−q) ∗ (³ @

k−q ∗´)

as desired.
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APPENDIX B – Intrinsic torsion

This discussion is found in [FI02] and can also be found in [Fri02, Agr06].

B.1 Intrinsic torsion and classes of G-structures

Let (Mn, g) be an oriented Riemannian manifold and Fr(M) its frame bundle

(already considering the reduction to an SO(n)-bundle), consequently the Levi-Civita

connection1 is a 1-form

Zg ∈ Ω1(Fr(M), so(n))

with values in the Lie algebra so(n).

Suppose the manifold admits a G-structure (for some G ¢ SO(n)), which is

encoded in the G-subbundle R f Fr(M). We can restrict the Levi-Civita connection

to R as a form Zg|R ∈ Ω1(R, so(n)) and decompose it with respect to the orthogonal

decomposition of the Lie algebra so(n) = g · m:

Zg|R := Z̃ · Γ, (B.1.1)

where Z̃ ∈ Ω1(R, g) is a connection form for R and Γ ∈ Ω1(R,m) and can be identified as

Γ ∈ Ω1(M,R ×G m) (such identification is possible since the form is G-invariant by the

existence of the G-structure, [KMS93, Section 10.12]).

Definition B.1.1. On a manifold (M, g) with G-structure R f Fr(M), the 1-form

Γ ∈ Ω1(M,R ×G m) defined in (B.1.1) is called the intrinsic torsion of the G-structure R.

The G-structure is called integrable or torsion-free if Γ ≡ 0.

We can classify types of G-structure analysing how the intrinsic torsion Γ

decomposes into irreducible representations of G. To understand this, first see that the

intrinsic torsion is a 1-form with vector values is a section

Γ ∈ Ω1(M,R ×G m) = Γ (T ∗M ¹ (R ×G m)) ∼= Γ (TM ¹ (R ×G m))

i.e., Γ is a section of TM ¹ (R ×G m), which fibres are isomorphic to R
n ¹ m. So, the

classes of G-structures are the irreducible components of the representation R
n ¹ m.

The theory of intrinsic torsion discussed above is very general and extensively

examined in Friedrich’s seminal work [Fri02] for many types of geometries. However,
1 Considering the tangent bundle as an associated bundle of frame bundle, cf. [LM90], a connection on

the frame bundle is equivalent to connections on the associated bundles, cf. [Tu17, LM90]. For the
details of such equivalence see specifically [Tu17, Theorem 29.10].
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a specific scenario holds particular significance for our discussion: when the group G

represents the isotropy or stabilizer group of a tensor Φ0. This case is notable, as many

well-known G-structures fall within its scope, including almost Hermitian structures (or

U(m)-structures), G2-structures, and Spin(7)-structures.

Let’s discuss more this class of examples, i.e., the group G is the stabilizer of

some tensor. Let (Mn, g) be an oriented Riemannian manifold and suppose that there is a

faithful representation in a vector space V , Ä : SO(n) → SO(V ) for the group G ¢ SO(n)

and an element Φ0 ∈ V such that

G =
{

g ∈ SO(n) : Ä(g)Φ0 = Φ0

}

,

then a G-structure is a triple (Mn, g,Φ) consisting of a Riemannian manifold equipped

with an additional tensor field Φ ∈ Γ(V ) := Γ(Fr(M) ×Ä V ) which takes the form of Φ0

punctually. In such cases, the intrinsic torsion of the structure is directly related to the

Riemannian covariant derivative of Φ (Cf. [Fri02, Puh11, AFS05, FI02]).

Proposition B.1.2. Let (Mn, g,Φ) be a G-structure when G ¢ SO(n) is the stabilizer of

the punctual form of Φ via representation Ä : SO(n) → SO(V ). Then the intrinsic torsion

Γ ∈ Ω1(M,m) of this structure satisfies:

∇g
XΦ = Ä∗(Γ(X))(Φ) (B.1.2)

where Ä∗ : so(n) → so(V ) is the differential of the representation. ∇gΦ is an element of the

space R
n ¹ V (which is a rough way to denote Γ(TM ¹ V )). In particular, if V = Λk(Rn)∗

is a space of forms, we can identify so with two forms and the intrinsic torsion satisfies

[Puh11, Section 2]:

∇g
XΦ = Γ(X) @1 Φ =

n∑

j=1

iej
Γ(X) ' iej

Φ.

where Γ(X) ∈ m f so(n) = Λ2(Rn)∗ and Φ is in V = Λk.

Proof. [Fri02].

B.2 Connections with skew-symmetric torsion

Let ∇ be an arbitrary affine connection in the tangent bundle TM of some

manifold Mn. The torsion of the connection is defined by

T∇(X, Y ) = ∇XY − ∇YX − [X, Y ]

and it is a (2,1)-tensor. If the manifold is Riemannian and the connection compatible

with the metric, then the torsion is skew-symmetric on its first two-components, i.e.,
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T∇ ∈ Γ(Λ2(T ∗M) ¹ TM). If we contract and identify T∇ as a (3,0) tensor, we can ask

when T∇ ∈ Ω3(M), i.e., when it is skew-symmetric on all components. In this case, the

connection is said to have totally skew-symmetric torsion. In particular, connections with

skew-symmetric torsion are metric-compatible.

Since the space of connections is modelled on an affine space of (2,1)-tensors

(cf. [Tu10, Tu17]), then the difference between two connections is a (2,1)-tensor, and we

have:

∇XY = ∇g
XY + A(X, Y )

It is immediate to compute the torsion and see that T∇(X, Y ) = A(X, Y ) − A(Y,X). In

particular, ∇ compatible with the metric, we have A skew-symmetric and T∇ = 2A. So,

we have the following result:

Lemma B.2.1. Let (M, g) be a Riemannian metric and ∇ be a metric connection on M

(i.e., ∇g = 0), then

∇ = ∇g +
1

2
T∇.

where T∇ ∈ Γ(Λ2 ¹ TM) is its torsion and ∇g the Levi-Civita connection for g. This

means that metric connections are completely characterized by its torsion. Conversely, if

T ∈ Γ(Λ2T ∗M ¹ TM), then

∇ := ∇g +
1

2
T

is a metric compatible connection and its torsion is T∇ = T .

If T ∈ Ω3(M), we can define a metric compatible connection with totally

skew-symmetric torsion T ∈ Ω3(M) by the formula

∇ := ∇g +
1

2
g−1T (B.2.1)

For the Levi-Civita connection (c.f. [Tu17, Dar94]), we have the (first algebraic)

Bianchi identity given by

R(V,X, Y, Z) +R(V, Y, Z,X) +R(V, Z,X, Y ) = 0,

which in coordinates reads

Ra[bcd] = 0 ⇒ Rabcd +Racdb +Radbc = 0.

We have the generalization of such identity for metric connection with totally skew-

symmetric torsion T ∈ Ω3(M).

Proposition B.2.2 (Bianchi identity). Consider a metric affine connection with skew-

symmetric torsion T on a Riemannian manifold (M, g) given by ∇ = ∇g + 1
2
g−1T , then it
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satisfies the following first Bianchi identity:

R(X, Y, Z, V ) +R(Y, Z,X, V ) +R(Z,X, Y, V ) = −1

2
dT (X, Y, Z, V ) + (∇V T )(X, Y, Z)

(B.2.2)

which in coordinates, can be expressed as2

Rijkl +Rjkil +Rkijl = −1

2
(dT )ijkl + (∇lT )ijk.

Proof. [IS23a, FI02].

B.3 Existence of compatible connections with skew-symmetric tor-

sion

In our study, connections with totally skew-symmetric torsion hold a distin-

guished role. In physics, as discussed in [Str86], these connections serve as the foundation

for formulating equations in string theory. In the study of geometrical structures, such

connections are occasionally unique, under the hypothesis of compatibility with the struc-

ture (which will be our case for G2-structures). Therefore, they represent a natural choice

for investigating geometric phenomena in these structures [Agr06].

Suppose the G-structure is defined by some k-form À ∈ Ωk(M) as we have

discussed before. If a G-structure in this context admits a connection compatible with the

structure, i.e., ∇À = 0, it will satisfy the endomorphism part of the curvature lives in the

Lie algebra:

ïR∇(X, Y )·, ·ð ∈ g f so(n) = Λ2. (B.3.1)

In particular, if this connection has totally skew-symmetric torsion T ∈ Ω3(M), it will be

given by

∇+ = ∇g +
1

2
g−1T.

when this connection is unique, it is normally called Bismut connection or characteristic

connection. The existence of such connection in special geometrical was deeply studied by

Friedrich et al. [FI02, Fri02, Fri03]. A special result by Friedrich is given below.
2 Here, we have to be careful with the conventions. We are using

R(X,Y, Z,W ) = g(R(Z,W )Y,X),

(normally used in general relativity), but some authors we are following (e.g., [IS23a, IS23b, IP23]) use
the convention

R(X,Y, Z,W ) = g(R(X,Y )Z,W ).

The general relativity convention is useful to represent the curvature in coordinates as being

R(X,Y, Z,W ) = g(R(Z,W )Y,X) = XaY
bZcW dRa

bcd

with the upper index being the first one.
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Theorem B.3.1 ([Fri02, Fri03]). Let M be a Riemannian manifold endowed with a

G-structure (which splits so(n) = g · g§), let us introduce the map

Θ : Λ3 → R
n ¹ g§; Θ(T ) =

∑

j

(Ãj @ T ) ¹ Ãj

where Ãi is an orthonormal basis of g§ f Λ2. In this context, the G-structure admits a

compatible connection with totally skew-symmetric torsion if and only if the intrinsic torsion

1-form Γ belongs to the image of Θ and in this case, the torsion satisfies 2Γ = −Θ(T ).

On A G-structure which admits a connection with skew-symmetric torsion

∇+ = ∇g + 1
2
T#, we define ∇+-parallel tensor Φ if it satisfies ∇+Φ = 0. This has an

important consequence for the particular case of ∇+-parallel differential forms:

Lemma B.3.2. Let ¸ ∈ Ωp(M) be a ∇+-parallel form on a manifold with G-structure

admitting connection ∇+ = ∇g+ 1
2
T# with skew-symmetric torsion T ∈ Ω3, then it satisfies

d¸ = T @
1 ¸ =

∑

j

iej
T ' iej

¸. (B.3.2)

Proof. The identity is obtained by the property ∇+¸ = 0 and the fact that we can write

the differential d¸ = ej ' ∇g
ej
¸ and ∇+ = ∇g + 1

2
T#. Evaluating, we have

d¸ = ej ' ∇g
ej
¸ = ej '

(

�
�
�>

0
∇+
ej
¸ +

1

2
(T¸)ej

)

=
1

2
ej ' (T¸)ej

where the form T¸ ∈ T ∗M ¹ Ωk acts as

(T¸)ej
(X1, · · · , Xp) = ¸(T (ej, X1), · · · , Xp) + · · · + ¸(X1, · · · , T (ej, Xp))

each of these terms, in coordinates, is written as (taking Xk = ek)

(T¸)ej
(ek1 , · · · , ekp

) = ¸(T (ej, ek1), · · · , ekp
) + · · · + ¸(ek1 , · · · , T (ej, ekp

))

= Tjk1

q¸qk2···kp
+ · · · + Tjkp

q¸k1···kp−1q

and the form is written as

(T¸)ej
=

1

p!

(

Tjk1

q¸qk2···kp
+ · · · + Tjkn−4

q¸k1···kp−1q

)

ek1···kp

=
1

p!

(

(−1)0Tqjk1¸qk2···kp
ek1···kp + · · · + (−1)p−1Tqjkp

¸qk1···kp−1e
k1···kp

)

=
1

p!

(

Tqjk1¸qk2···kp
ek1 ' ek2···kp + · · · + Tqjkp

¸qk1···kp−1e
kp ' ek1···kp−1

)

taking the wedge product with ej and summing over j (note that ¸q ∈ Ωp−1 and Tq ∈ Ω2),

we have
1

2
ej ' (T¸)ej

=
1

2!p!

(

Tqjk1¸qk2···kp
ejk1 ' ek2···kp + · · · + Tqjkp

¸qk1···kp−1e
jkp ' ek1···kp−1

)

=
1

p

(

Tq ' ¸q + · · · + Tq ' ¸q
︸ ︷︷ ︸

p times

)

= T @
1 ¸

and we can conclude that d¸ = T @
1 ¸.
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To establish a rigorous methodology for exploring compatible connections within

a prescribed G-structure accompanied by totally skew-symmetric torsion, we introduce

pivotal concepts. Our groundwork involves G-structures defined as the stabilizers of

differential forms, as previously discussed. The main theorem here is the one which gives

us a way to compute the torsion T ∈ Ω3(M) of a metric compatible connection when its

exists.

Definition B.3.3 (H-Operator). Let (Mn, g) be a Riemannian manifold endowed with

a G-structure defined by some differential form È ∈ Ω4(M). Consider the G-invariant

operator H : Ω3 → Ω3

H(µ) = µ @
2 È = (−1)n+1 ∗ (µ @

1 ∗È). (B.3.3)

This operator is called H-operator associated with the G-structure.

Due to the invariance of this map, it decomposes into eigenvalues, and each

irreducible component resides within some eigenspace. This is a consequence of eigenspaces

being G-representations, which decompose into irreducible representations. Let’s denote by

akj
the eigenvalue corresponding to the irreducible component Ω3

kj
; then, for µkj

∈ Ω3
kj

(M),

we have

H(µkj
) = akj

µkj
.

Our case of interested is when all eigenvalues are zero (and this will be related to the

existence of a unique compatible connection with totally skew-symmetric torsion). For

instance, consider G ¢ SO(n).

Definition B.3.4 (Flux). Let (Mn, g) be a manifold endowed with a G-structure defined

by some 4-form È ∈ Ω4(M). If the eigenvalues of the operator H : Ω3 → Ω3 are non-zero,

we define the 3-form H ∈ Ω3(M), sometimes called flux, by the expression

H =
∑

j

1

akj

Ä kj (B.3.4)

where Äkj
∈ Ω3

kj
(M) f Ω3(M) is defined by Ä kj = Ãkj

(d∗È) and called the torsion forms.

Remark B.3.5 (General Definition of Flux). When the operator HÀ : Ω3 → Ω3 has a

non-trivial kernel (i.e., akj
= 0 for some kj), which is given by

ker H :=
⊕

akj
=0

Ω3
kj

(M) f Ω3(M)

we define the space of fluxes as the affine space H := H0 + ker HÀ, where H0 ∈ Ω3 is the

(so-called) primary flux defined by

H0 =
∑

akj
̸=0

1

akj

Ä kj
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In this way, a flux is an element H ∈ H. Note that this definition reduces to the anterior,

when the eigenvalues are all non-zero (i.e., ker H = 0 and the affine space has just one

element H = H0). ⃝

It happens that for all our interested cases (G2, Spin(7),U(m) structures),

ker H = 0 and the flux is unique. Let’s compute them now. These results were computed

before in [AFS05, FI02, Iva04], respectively. Below, using the method described above.

Let’s consider the context where the G-structure which admits a (not necessarily

unique) connection ∇+ with skew-symmetric torsion T . The following result relating the

torsion and the flux is relevant: the torsion is the flux.

Theorem B.3.6 (Flux’s Theorem). Let Mn with a G-structure defined via È ∈ Ω4(M)

and suppose the structure admits compatible metric connection ∇+ with skew-symmetric

torsion T ∈ Ω3(M). Then

T = H

where H is the flux defined via the operator H : Ω3 → Ω3. In particular, the compatible

connection ∇+ is unique.

Proof. Since È is ∇+-parallel, so does ¸ = ∗È ∈ Ωn−4(M), we have by the lemma above

that d¸ = T @
1 ¸, but on the other hand, we have

d∗È = (−1)n+1 ∗ d¸ = (−1)n+1 ∗ (T @
1 ¸) = H(T )

now, using the invariance of the flux operator, we have

Ãkj
(T ) =

1

akj

H(Ãkj
(T )) =

1

akj

Ãkj
H(T ) =

1

akj

Ãkj
(d∗È) =

1

akj

Ä kj = Ãkj
(H)

and the result follows: T = H.

Remark B.3.7. We can revisit the flux theorem when the flux operator has a non-trivial

kernel, in this case, we have

H = H0 + µ; H(µ) = 0

proceeding in the same way, using again d∗È = H(T ), what we obtain is that Ãkj
(T ) =

Ãkj
(H0) for all kj such that akj

̸= 0. This means that the torsion T ∈ H lives within fluxes

and the flux theorem can be stated: the skew-torsion of a compatible metric connection is

a flux. In the general case, the connection ∇+ is not unique because the space of fluxes is

not unique. ⃝

We have established that the flux corresponds to the torsion in the presence of

the ∇+ connection within the framework of stabilizing G-structures. Remarkably, the flux
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still makes sense even in cases where the G-structure does not admit such a connection.

This concept becomes particularly valuable in subsequent discussions when we introduce

coupled equations. There, the flux emerges, even in scenarios where the G-structure does

not fall into the category which admits a connection with skew-symmetric torsion.
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