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Resumo

Esta tese centra-se na investigação analítica e numérica de um par de equações de transporte

bidimensionais não-lineares e não-locais. Uma delas é bem conhecida, a equação quase-

geostrófica de superfície. A outra é uma tentativa de generalizar uma lei de conservação

unidimensional adicionando uma dimensão espacial, que chamamos uma lei de conservação

com velocidade parcialmente não local. No estudo analítico, obtemos a boa colocação da

equação quase-geostrófica de superfície inviscída e dessa lei de conservação com velocidade

parcialmente não local dentro da estrutura dos espaços Besov-fracos-Morrey modificado

e dos espaços de Besov clássico, respectivamente. Por outro lado, para a investigação

numérica, empregamos aproximações para os operadores não-locais presentes em cada uma

dessas equações de transporte e formulamos o método Lagrangiano-Euleriano 2D totalmente

discreto para leis de conservação não local. Portanto, do ponto de vista computacional,

fornecemos evidências numéricas para os aspectos teóricos e conduzimos uma investigação

numérica sobre os critérios que regem a explosão do tipo de concentração em termos de

concentração de massa, atenuação do tipo de regularização, a formação de singularidades

e a emergência de gradientes abruptos em soluções para a equação quase-geostrófica de

superfície e dessa lei de conservação com velocidade parcialmente não local.

Palavras-chave: Lei de conservação não local; Potencial de Riesz; Transformada de

Hilbert; Transformada de Riesz; Superfície quase-geostrófica; Espaços de Besov; Espaços

Besov-fracos-Morrey modificados; Estudo analítico-computacional; Superfícies não locais

sem fluxo; Método Lagrangiano-Euleriano 2D não local totalmente discreto;



Abstract

This thesis focuses on the analytical and numerical investigation of a pair of nonlinear and

nonlocal two-dimensional transport equations. One of them is well-known, the surface quasi-

geostrophic equation. The other is an attempt to generalize a one-dimensional conservation

law by adding a spatial dimension, which we call a conservation law with partially nonlocal

velocity. In the analytical study, we obtain the well-posedness of the inviscid surface

quasi-geostrophic equation and this conservation law with partially nonlocal velocity

within the framework of modified Besov-weak-Morrey spaces and classical Besov spaces,

respectively. On the other hand, for the numerical investigation, we employ approximations

for the nonlocal operators present in each of these transport equations and formulate

the 2D fully-discrete Lagrangian-Eulerian method. Therefore, from a computational

standpoint, we provide numerical evidence for the theoretical aspects and conduct a

numerical investigation into the criteria governing t attenuation of regularization type,

the formation of singularities, and the emergence of abrupt gradients in solutions for

the surface quasi-geostrophic equation and this conservation law with partially nonlocal

velocity.

Keywords: Nonlocal conservation law; Riesz potential; Hilbert transform; Riesz transform;

Surface quasi-geostrophic; Besov spaces; Modified Besov-weak-Morrey spaces; Analytical-

computational study; Nonlocal no-flow surfaces; Nonlocal 2D fully-discrete Lagrangian-

Eulerian method.
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1 Introduction

The present thesis aims to conduct an analytical-numerical study of two

hyperbolic-type conservation laws; these are nonlinear nonlocal two-dimensional transport

equations. One of them is the inviscid surface quasi-geostrophic equation, SQG (1.1). The

other is an attempt to generalize a one-dimensional conservation law by adding a spatial

dimension and addressing it dimension by dimension through spatial domain decomposition

(in the spirit of an operator splitting methodology), which we call a conservation law with

partially nonlocal velocity (1.3). These nonlocal transport equations are presented below.

The SQG in conservative form is given by$&%Bt¹ �∇ � p¹vq � 0

¹px, 0q � ¹0pxq,
(1.1)

where ¹ � ¹px, tq is a scalar function, ¹ : R
2 � r0,8q ÝÑ R, which represents the

temperature potential of the fluid, v � pv1, v2q denote a velocity field such that ∇ � v � 0

and the relationship between v and ¹ is through the Riesz transform R,

v � RK¹ � p�R2¹,R1¹q � p�B2p�∆q� 1

2 ¹, B1p�∆q� 1

2 ¹q.

Here, the operator ∆ is the Laplacian. We can also write the Riesz transform in classical

form, that is, the integral singular operator [65],

Rjp¹qpx, tq � 1

2Ã
p.v.

»
R2

pxj � yjq
|x� y|3

¹py, tqdy. (1.2)

where x � px1, x2q and y � py1, y2q be elements in R
2, t ¡ 0 and j � 1, 2.

On the other hand, a conservation law with partially nonlocal velocity is given

by $&%Bt¹ �∇ � p¹vq � 0, with v � pΛ³�1

1
H1¹,Λ

³�1

2
H2¹q

¹px, 0q � ¹0pxq,
(1.3)

where ¹ : R2 � r0,8q ÝÑ R is a scalar function, the initial data, ¹0pxq, is not necessarily

regular, moreover Hi and Λ³�1

i with i � 1, 2 are the nonlocal operators, the partial Hilbert

transform and the partial Riesz potential respectively, which will be defined later.

In the analytical study, we obtain the well-posedness of the SQG and of a

conservation law with partially nonlocal velocity model within the framework of modified

Besov-weak-Morrey spaces and classical Besov spaces, respectively. For the numerical

study, we have devised an enhanced, fully-discrete Lagrangian-Eulerian scheme to obtain
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the numerical solution of these transport equations. Furthermore, we present potential

theoretical insights based on numerical observations of the SQG and of a conservation law

with partially nonlocal velocity.

1.1 State of the Art

This research introduces a novel approach to studying a two-dimensional

nonlinear and nonlocal transport equation. To achieve this, we define partial nonlocal

operators associated with the velocity field of this transport equation. This involves fixing

one of the variable’s coordinates and applying the nonlocal operator to the total variable,

with one of them fixed. Consequently, we obtain an operator acting solely in one direction.

It is important to note that this technique needs to be applied in both directions to cover

the entire variable space. Subsequently, we apply this approach to the transport equation

across the defined domain. We utilize this novel approach to analyze the SQG, giving rise

to the emergence of a conservation law with partially nonlocal velocity. Additionally, we

obtain the well-posedness of these nonlocal transport equations within the framework of

Besov-type spaces.

The SQG comes from atmospheric science and describes the evolution of the

potential temperature on the surface. Therefore, this equation describes the evolution

of cold and warm air fronts in a thin layer in the atmosphere. For this reason, the SQG

has applications in meteorology and oceanography, playing an important role in weather

forecasting and improving the understanding of the temperature evolution of geophysical

flows and, in particular, frontogenesis in the case of atmospheric flows [27, 31].

Constantin, Majda, and Tabak introduced the SQG to the mathematical

community in [31], conducting numerical and analytical studies. Additionally, the SQG

exhibits an analogy with the 3D Euler equations. So far, the mathematical study of the

surface quasi-geostrophic equation has been divided into two significant cases: the inviscid

case and the dissipative case.

The first inviscid case (1.1) is probably the most straightforward dynamical

scalar equation. However, the global regularity problem remains open. In [31], it was

established the local well-posedness and blow-up criterion of (4.1) in Sobolev spaces. The

exciting fact about [31] is that the authors also make a numerical study of the problem

besides being the first analytical study. Subsequently, there are various results available

in different function spaces. For instance, on the Triebel-Lizorkin spaces in [26], on the

Besov spaces in [67], on the Triebel-Lizorkin-Lorentz spaces in [71], on the Besov–Lorentz

spaces in [73]. Recently, [72] demonstrated the well-posedness and blow-up criterion for

the generalized surface quasi-geostrophic equation in Sobolev spaces.
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The second case considers the dissipative term »p�△qµ¹ in the equation (1.1),

Bt¹ �∇ � p¹vq � »p�△qµ¹.

In this case, it was studied the global well-posedness problem. More precisely, the study

on the dissipative surface quasi-geostrophic equation unfolds in three directions: the sub-

critical case µ ¡ 1{2, the critical case µ � 1{2, and the super-critical case µ   1{2. For

more details of the sub-critical case, the reader should consult [33] and [62]. In [30], it

addressed the global regularity issue for the critical case; in particular, it obtained a global

existence result of the solution under a smallness condition on the initial data. Since then,

global existence results for small initial data have been obtained in various functional

settings, e.g., in Sobolev spaces in [34, 57], Besov spaces in [29, 1, 28, 70]. Two papers

exist that resolve entirely the global regularity problem without a smallness condition.

One is in [52] and the other in [24].

As noted earlier, the well-posedness theory of the surface quasi-geostrophic

equation in the dissipative case has undergone thorough investigation in previous years.

Numerous authors have successfully addressed global well-posedness, particularly for critical

cases, as documented in the references [52, 24, 32, 1]. Nevertheless, limited attention has

been given to the super-critical case, with only a handful of papers, such as [37, 51, 64],

delving into the discussion of eventual regularity.

Recently, the dissipative case has been examined in various types of spaces, with

intermittent regularities discussed in the following papers [53, 55, 68, 21, 66, 20, 15, 18].

In this research, we prove the well-posedness of the SQG in modified Besov-

weak-Morrey spaces; this space was defined in [42] and in that work, the authors prove

the well-posedness of the n-dimensional Euler Equation.

On the other hand, considering that a conservation law with partially nonlocal

velocity is our proposed model that has a new structure, as a first study, we show the

well-posedness this model in classical Besov spaces.

Furthermore, this research presents new advances in numerical schemes designed

to solve two-dimensional nonlocal transport equations numerically. The proposed method

is based on the concept of Lagrangian-Eulerian No-Flow curves. This approach has been

previously employed in fully-discrete Lagrangian-Eulerian schemes, as evidenced by existing

literature [9, 6]. The schemes presented in this thesis are suitable for numerically studying

nonlocal transport equations with initial data that are not necessarily regular. In this

context, the frontal advance and novelty in terms of the Lagrangian-Eulerian approach

is the generalization of the underlying concept of local no-flow curves to nonlocal no-

flow curves linked to both a conservation law with partially nonlocal velocity (hereafter,

1D+1/2) and the inviscid surface quasi-geostrophic equation.
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1.2 Motivation Examples

The motivation for this thesis initially arises from the study of [38] and [2]. In

these works, the authors study the global well-posedness and finite-time blowing-up of

solutions for a nonlinear one-dimensional transport equation with nonlocal velocity

ut � puHpuqqx � vuxx,

with ¿ ¡ 0 and measure initial data. Such a model arises in fluid mechanics and vortex-

sheet problems, among other situations. Its nonlocal feature comes from the presence of a

singular integral operator Hilbert transform H in the velocity field. For the viscous case

¿ ¡ 0, the authors obtain an explicit condition on the size of the initial data, which implies

the global well-posedness in the framework of pseudo-measure spaces. Furthermore, they

numerically study the blow-up of concentration type and global diffusion-smooth behavior

of solutions. In the inviscid case (¿ � 0), simulations of the model ut � puHpuqqx � 0

provide evidence that the solution exhibits a blow-up of concentration type with mass

preservation. Conversely, an attenuation effect is observed for the model with the opposite

sign in the flux ut � puHpuqqx � 0, initialized with any non-trivial positive measure as

initial data. The solution manifests the behavior already described in both cases; this

numerical solutions were obtained by the Lagrangian-Eulerian method.

In the same line, in the work [47], the study of the numerical solution of the

same one-dimensional nonlinear and nonlocal transport equation was continued, but with

the addition of the operator Riesz potential in the velocity field. In fact, the author

considers the model

ut � puΛ³�1Huqx � 0,

with 0   ³   1, getting similar results to the previous one.

The two presented one-dimensional nonlinear and nonlocal equations can be

interpreted as the 1D quasi-geostrophic equation. In concrete, [38] and [47] study one-

dimensional versions of the SQG that involve the Hilbert transform and Riesz potential

operators from both numerical and analytical perspectives, initially motivated by the

numerical part and giving interesting and novel results in the analytical part. From a

computational point of view, a natural way to transit to the two-dimensional case is

to consider an intermediate model, which we call the a conservation law with partially

nonlocal velocity. This model is defined by a conservation law that contains a vector

velocity field with components defined by partial nonlocal operators, i.e., one-dimensional

operators acting on each axis separately.
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1.3 Aims and Objectives

The general objectives are to study two nonlocal transport equations analytically

and numerically, namely the SQG and a conservation law with partially nonlocal velocity.

Additionally, leveraging numerical observations, we aim to propose new theoretical insights

that enhance our understanding of these two transport equations.

1.3.1 Specific objectives for a conservation law with partially nonlocal velocity

Analytical:

• Study the well-posedness of the solution of a conservation law with partially nonlocal

velocity and a conservation law with partially nonlocal velocity with rotation in

classical Besov spaces.

• Study the Berntein’s inequality for the nonlocal partial operators.

• Study the estimates of commutator operator in classical Besov spaces for a conserva-

tion law with partially nonlocal velocity.

Numerical:

• Study the implementation of fully-discrete Lagrangian–Eulerian method for a con-

servation law with partially nonlocal velocity.

• Study the numerical approximations from the partial Riesz potential and the partial

transform of Hilbert.

• Study the numerical solution of a conservation law with partially nonlocal velocity

and positive flux: Bt¹ �∇ � p¹Λ³�1

1
H1¹, ¹Λ

³�1

2
H2¹q � 0.

• Study the numerical solution of a conservation law with partially nonlocal velocity

and negative flux: Bt¹ �∇ � p¹Λ³�1

1
H1¹, ¹Λ

³�1

2
H2¹q � 0.

Numerical for a conservation law with partially nonlocal velocity with rotation:

• Study the numerical solution of a conservation law with partially nonlocal velocity

with rotation

Bt¹ �∇ � p�¹Λ³�1

2
H2¹, ¹Λ

³�1

1
H1¹q � 0.

1.3.2 Specific objectives for the SQG

Analytical:
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• Study the well-posedness of the SQG in the modified Besov-weak-Morrey spaces.

Numerical:

• Study the implementation of fully-discrete Lagrangian–Eulerian method for the

SQG.

• Study the numerical approximations and validation of the Riesz transform.

• Study the numerical solution of the SQG: Bt¹ �∇ � p�¹R2¹, ¹R1¹q � 0.

1.4 Meaningful Contributions of the Thesis

We summarize the main contributions of this work in the following bullet

points:

• One of the principal contributions of this thesis is a novel approach to studying

a two-dimensional nonlocal transport equation. This involves defining nonlocal

operators connected to the velocity field in the form of partial nonlocal operators.

Consequently, this leads to a new conservation law with partially nonlocal velocity

and a novel structure and introduces new mathematical properties. Furthermore,

the computational cost in numerical simulations is significantly lower compared to

the original equation.

• This new approach was employed to conduct numerical and analytical investigations

of the SQG, resulting in the formulation of a new equation referred to as a conservation

law with partially nonlocal velocity. In the analytical part, as an initial exploration of

this model, we successfully established its well-posedness in the classical Besov spaces.

A noteworthy contribution in this context was the demonstration of the Bernstein

inequality, considering nonlocal partial operators (the partial Hilbert transform and

the partial Riesz potential), and the estimates of two commutator operators were also

made considering these nonlocal partial operators. The contribution in the numerical

part, in turn, was that we successfully implemented the fully-discrete Lagrangian-

Eulerian method for this model and the numerical approximation of the partial

nonlocal operators involved in the model. Furthermore, the numerical simulations of

a conservation law with partially nonlocal velocity show similar qualitative behaviors

to the 1D case of SQG that were studied in [2] and [47]. The other outstanding

contribution is that by rotating the coordinates of the velocity field, a conservation

law with partially nonlocal velocity with rotation is obtained; we observed that the

numerical simulations for this model closely resemble those obtained for the SQG in

[31, 46, 25]. We might be dealing with a prototype for SQG.
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• Another significant contribution in the analytical part is the demonstration of the

well-posedness of the SQG in a novel space requiring less regularity, namely, the

modified Besov weak-Morrey space. This broadens the set of initial data for which

SQG possesses a unique solution. In the numerical aspect, our contribution involves

successfully implementing the 2D fully-discrete Lagrangian-Eulerian method for the

SQG. Additionally, we approximated and validated the Riesz Transform numerically.

Furthermore, we conducted the first numerical simulations for the SQG, considering

three different types of initial data.

1.5 Organization

The remaining content of this work is structured as follows: Chapter 2, is

intended for the preliminaries and basic results; here we will introduce the classical Besov

spaces and the modified Besov-weak-Morrey spaces along with the elemental properties

that will be used in the following chapters. In Chapter 3, is intended for the numerical and

analytical study of a conservation law with partially nonlocal velocity and a conservation

law with partially nonlocal velocity with rotation. For the analytical study, we furnish

the proof of the well-posedness of the solution for this model within the framework of

classical Besov spaces. On the numerical study, we develop the fully-discrete Lagrangian-

Eulerian numerical scheme for a conservation law with partially nonlocal velocity, as

well as the numerical approximations arising from nonlinear and nonlocal operators, the

partial Riesz potential and the partial Riesz transform and we present the numerical

simulations considering both measured initial data and measured initial data of weak

Morrey type. In Chapter 4, we embark on a study analogous to the preceding chapter, by

focusing on the SQG equation. Here, we aim to prove the well-posedness of the solution

for this equation within the modified Besov weak-Morrey spaces framework. Furthermore,

we present a numerical approximation with validation of the Riesz transform, and the

numerical simulations measured initial data. Finally, in Chapter 5, we present conclusions

and future perspectives.
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2 Preliminaries and Basic Facts

In this chapter, we define the Besov and the modified Besov-weak-Morrey

spaces and present some of their fundamental properties. These properties serve as the

foundation for the proofs of a conservation law with partially nonlocal velocity and the

SQG, which will be discussed in the following chapters.

2.1 Littewood-Paley Decomposition

The Littlewood-Paley decomposition is a fundamental concept in Harmonic

analysis, especially in exploring Fourier analysis and its diverse applications. This decompo-

sition involves expressing a single function as a sum of functions with distinct frequencies.

It is an indispensable tool for deciphering the local behavior of functions based on their

frequency content. For more details, see [19], [45], [42], [70]. Widely applied across various

mathematical domains, including partial differential equations, probability theory, and

number theory, the Littlewood-Paley decomposition allows a comprehensive analysis of

the functions.

In order to introduce the Littlewood-Paley decomposition, we write for each

j P Z

Dj � tÀ P R
n :

3

4
2j ¤ |À| ¤ 8

3
2ju and Bj � tÀ P R

n : |À| ¤ 4

3
2ju.

Moreover, we consider a non-negative radial function φ P C8
c pRnq satisfying supppφq � D0

and ¸
jPZ

φjpÀq � 1, @À P R
nzt0u where φjpÀq :� φp2�jÀq or φ̂jpÀq � 22jφ̂p2jÀq,

note that, suppφj � Dj for all j P Z.

Furthermore, define È as ÈpÀq :�
¸

j¤�1

φjpÀq, if À � 0, and Èp0q :� 1. So,

È P C8
c pRnz0q, supppÈq � B0 and

ÈpÀq �
¸
j¥0

φjpÀq � 1, @À P R
n.

For simplicity in the calculations, we also define the functions rφj :�
¸

|k�j|¤1

φk,

rÈ � È � φ and the set rDj � Dj�1 Y Dj Y Dj�1. Then, in Dj, we have that rφj � 1,

φj � rφjφj, for all j P Z, and È � rÈÈ. The localization operators ∆j, ∆̄j and Sj are
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defined as

∆jf � φjpDqf � F�1

�
φj

pf	 � 2jn
�
F�1φp2j�q� � f, @j P Z,

∆̄jf � ∆jf, if j ¥ 0,

∆̄�1f � ÈpDqf � F�1

�
È pf	 � F�1pÈq � f,

∆̄jf � 0, if j ¤ �2,

Sjf � ÈjpDqf � F�1

�
Èj

pf	 � 2jn
�
F�1Èp2j�q� � f, @j P Z,

where ÈjpÀq � Èp2�jÀq. From the relations of supports φj and Èj we will get the orthogo-

nality of localization operators

∆j∆kf � 0, if |j � k| ¥ 2, (2.1)

∆jpSk�2g∆kfq � 0, if |j � k| ¥ 3. (2.2)

The Littlewood-Paley decomposition of f is obtained through the operators Sk

and ∆j, this is, f � Skf�
¸
j¥k

∆jf , for all f P S 1pRnq and k P Z. Moreover, if lim
kÑ�8

Skf � 0

in S 1 (as in the case for f P L8z{constants}), then the equality f �
¸
jPZ

∆jf is called the

homogeneous Littlewood-Paley decomposition of f [54]. On the other hand, using Bony’s

paraproduct [22], it follows that for f, g P S 1 we can define the product f � g as

fg � Tfg � Tgf �Rpf, gq, (2.3)

where Tfg �
¸
j¥2

Sj�2f∆̄jg and Rpf, gq �
¸

j¥�1

∆̄jf
¸

|j�j1|¤2

∆̄j1g.

2.2 Generalized Besov Spaces

This section is dedicated to collecting basic notations, definitions, tools, and

properties about some operators and functional spaces that will be useful for our ends.

The following definitions and results were obtained from [42].

Definition 1. Let E � S 1pRnq be a Banach space, 1 ¤ r ¤ 8 and s P R. The inhomoge-

neous Besov-E space BEr
r is defined as

BEs
r �

!
f P S 1pRnq; ∥f∥BEs

r
  8

)
,

where

∥f∥BEs
r

:�

$'''&'''%
� ¸

j¥�1

2jsr
∥

∥

∥∆̄jf
∥

∥

∥

r

E

�1{r

if r   8

sup
j¥�1

2js
∥

∥

∥∆̄jf
∥

∥

∥

E
, if r � 8.
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Similarly, the homogeneous Besov-E space 9BEs
r is defined as

9BEs
r �

!
f P S 1pRnq{PpRnq; ∥f∥

9BEs
r
  8

)
,

where PpRnq denotes the space of polynomials in R
n, and

∥f∥
9BEs

r
:�

$'''&'''%
�¸

jPZ

2jsr∥∆jf∥r

E

�1{r

if r   8

sup
jPZ

2js∥∆jf∥
E
, if r � 8.

2.2.1 Classical Besov spaces

The classical Besov space is a particular case when E � Lp with 1 ¤ p ¤ 8,

we will define it as BEs
r :� Bs

p,r and 9BEs
r :� 9Bs

p,r, this is

Definition 2. Let 1 ¤ r ¤ 8 and s P R. The classical inhomogeneous Besov space Bs
p,r is

defined as

Bs
p,r �

!
f P S 1pRnq; ∥f∥Bs

p,r
  8

)
,

where

∥f∥Bs
p,r

:�

$'''&'''%
� ¸

j¥�1

2jsr
∥

∥

∥∆̄jf
∥

∥

∥

r

Lp

�1{r

if r   8

sup
j¥�1

2js
∥

∥

∥∆̄jf
∥

∥

∥

Lp
, if r � 8.

Similarly, the classical homogeneous Besov space 9Bs
p,r is defined as

9Bs
p,r �

!
f P S 1pRnq{PpRnq; ∥f∥

9Bs
p,r
  8

)
,

where

∥f∥
9Bs

p,r
:�

$'''&'''%
�¸

jPZ

2jsr∥∆jf∥r

Lp

�1{r

, if r   8

sup
jPZ

2js∥∆j∥fLp , if r � 8.

The fundamental properties of classical Besov spaces are outlined in [74].

Basics proprieties of classical Besov spaces

Proposition 1. Let s P R, 1 ¤ p ¤ 8 and 1 ¤ q ¤ 8.
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(I) If s ¡ 0, then Bs
p,r � 9Bs

p,r X Lp, and ∥f∥Bs
p,r
� ∥f∥

9Bs
p,r
� ∥f∥Lp;

(II) If s1 ¤ s2, then Bs2

p,r � Bs1

p,r. If 1 ¤ r1 ¤ r2 ¤ 8, then 9Bs
p,r1

� 9Bs
p,r2

and Bs
p,r1

� Bs
p,r2

;

(III) If s ¡ n

p
, then Bs

p,r ãÑ L8. If p1 ¤ p2, s1 � n

p1

¡ s2 � n

p2

, then Bs1

p1,r1
ãÑ Bs2

p2,r2
;

(IV) If s ¡ 0, p ¥ 1, then ∥uv∥Bs
p,8

¤ C∥u∥L8∥v∥Bs
p,8

� C∥u∥Bs
p,8

∥v∥L8.

2.2.2 The modified Besov-weak-Morrey space

The following definitions and results were obtained from [42]. In what follows,

we will define the modified weak-Morrey space and the modified Besov-weak-Morrey space.

We denote by |A| the measure of a Lebesgue set A � R
n for notational convenience.

Definition 3. For f a Lebesgue measurable functions in R
n, the distribution function of

f is the function df defined on r0,8r as follows:

df : r0,8r ÝÑ R
�

³ ÝÑ df p³q � |tx P R
n : |fpxq| ¡ ³u|.

Definition 4. For 0   p   8 the space weak�LppRnq � Lp,8, is defined as the set of all

measurable functions f such that the quantity

||f ||Lp,8 � inf

"
c ¡ 0 : df p³q ¥ cp

³p
, @³ ¡ 0

*
� sup

 
µdf pµq1{p : µ ¡ 0

(
,

is finite.

Definition 5. For 1   p ¤ l ¤ 8 the weak Morrey space, WMl
ppRnq � WMl

p, is defined

as the set of all tempered distribution functions f P S 1pRnq such that

||f ||W Ml
p
� sup

x0PRn,R¡0

!
R

n
l
�n

p ||f � 1Bpx0,Rq||Lp,8

)
,

is finite, where 1Bpx0,Rq denotes the indicator function of the open ball Bpx0, Rq. Note that,
n

l
� n

p
¤ 0.

Definition 6. Let 1   p ¤ l ¤ 8. The modified weak-Morrey space WM̃l
p � WM̃l

ppRnq
is defined as the set of all measurable functions such that

∥f∥W M̃l
p

:� sup
x0PRn

sup
R¥1

R
n
l
�n

p

∥

∥

∥f � 1Bpx0,Rq

∥

∥

∥

Lp,8pDpx0,Rqq
  8. (2.4)



Chapter 2. Preliminaries and Basic Facts 26

Definition 7. Let 1   p ¤ l ¤ 8, 1   r ¤ 8 and s P R. The inhomogeneous modified

Besov-Weak-Morrey space BWM̃l,s
p,rpRnq � BWM̃l,s

p,r is defined as

BWM̃l,s
p,r �

!
f P S 1pRnq : ∥f∥

BW M̃l,s
p,r
  8

)
,

where

∥f∥
BW M̃l,s

p,r
:�

$'''&'''%
� ¸

j¥�1

2jsr
∥

∥

∥∆̄jf
∥

∥

∥

r

W M̃l
p

�1{r

; r   8,

sup
j¥�1

2js
∥

∥

∥∆̄jf
∥

∥

∥

W M̃l
p

; r � 8.

Basics proprieties of Besov-weak-Morrey spaces

Below, we present some lemmas taken from [42] that we will use in the proof

of the well-posedness; see Theorem 3.

Lemma 1. (Convolution in modified Morrey spaces) Let 1   p ¤ l ¤ 8 and

¸ P L1pRnq. Then, there exists C ¡ 0 (independent of ¸) such that

∥¸ � f∥W M̃l
p
¤ C∥¸∥L1∥f∥W M̃l

p
, for all f P WM̃l

p. (2.5)

Lemma 2. Let 1   p   8. The Riesz transform is bounded in WM̃l
p.

Lemma 3 (Bernstein-type inequalities in modified Morrey spaces). Let 1   p ¤ l ¤ 8.

1. Given C1 ¡ 0, there exists C ¡ 0 such that

∥Dµf∥W M̃l
p
¤ C2j|µ|∥f∥W M̃l

p
, (2.6)

for all j P Z and f P WMl
P such that supp

�
f̂
� � Dp0, C12

jq.

2. For j ¥ �1, we have that

∥f∥L8 ¤ C2
j n

p ∥f∥W M̃l
p
, (2.7)

for all f P WM̃l
p such that supp

�
f̂
� � Dp0, C12

jq. Moreover, if j ¤ �2, we have

∥f∥L8 ¤ C2j n
l ∥f∥W M̃l

p
, (2.8)

for all f P WM̃l
p such that supp

�
f̂
� � Dp0, C12

jq.

3. Let C2 ¡ C1 ¡ 0, j P Z and f P WM̃l
p be such that supp

�
f̂
� � tÀ P R

n;C12
j ¤

|À|   C22
ju. Then, there exists a constant C ¡ 0 depending on µ, n, C1, C2 such

that

∥f∥W M̃l
p
¤ C2�j|µ|∥Dµf∥MM̃l

p
. (2.9)
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Lemma 4. Let 1   p, l ¤ 8 and assume that X : R
n Ñ R

n is a volume-preserving

diffeomorphism such that

|Xpx0q �Xpy0q| ¤ µ|x0 � y0|, @x0, y0 P R
n, (2.10)

for some fixed µ ¥ 1, where |�| stands for the Euclidean norm in R
n. Then, there exists a

positive constant C � Cpn, p, l, µq such that

C�1∥f∥W M̃l
P
¤ ∥f �X∥W M̃l

p
¤ C∥f∥W M̃l

p
. (2.11)

For further reference, we recall that if u : Rn � r0, T s Ñ R
n is a continuous

vector field that is Lipschitzian in the first variable for each fixed t P r0, T s, and X :

R
n � r0, T s Ñ R

n is the flow defined by$&%
BXpx0, tq

Bt � upXpx0, tq, tq
Xpx0, 0q � x0,

(2.12)

then

|Xpx0, tq �Xpy0, tq| ¤ e
³t
0

bpt1qdt1|x0 � y0|, (2.13)

where bpt1q is the Lipschitz constant.
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3 A Conservation Law with Partially Nonlocal

Velocity

This chapter aims to show the existence, uniqueness and continued dependence

of the solution of a conservation law with partially nonlocal velocity (1.3) in the Besov

spaces. This conservation law is,$&%Bt¹ �∇ � p¹vq � 0, with v � pΛ³�1

1
H1¹,Λ

³�1

2
H2¹q

¹px, y, 0q � ¹0px, yq,

where ¹ : R2 � r0,8q ÝÑ R is a scalar function, the initial data ¹0px, yq is not necessarily

regular; moreover Hi and Λ³�1

i , with i � 1, 2, are the nonlinear and nonlocal operators, the

partial Hilbert transform and the partial Riesz potential, respectively, which are defined

as follows.

Definition 8 (The partial Hilbert transform). Given a function f : R2 ÝÑ R, we can

define the partial Hilbert transform on the X-axis and on the Y -axis as

H1rfpx, yqs � 1

Ã
p.v.

» 8

�8

fpu, yq
x� u

du, (3.1)

H2rfpx, yqs � 1

Ã
p.v.

» 8

�8

fpx, vq
y � v

dv. (3.2)

Definition 9 (The partial Riesz potential). Given a function f : R2 ÝÑ R such that

f P LppR2q, for ³ P p0, 1q we can define the partial Riesz potential on the X-axis and on

the Y -axis as

Λ³�1

1
rfpx, yqs � c³

»
R

fpu, yq
|x� u|³

du, (3.3)

Λ³�1

2
rfpx, yqs � c³

»
R

fpx, vq
|y � v|³

dv. (3.4)

where, c³ � Γp³
2
q

21�³
?
ÃΓp1�³

2
q .

In order to tackle the SQG transport equation differently, we use a new

dimension-by-dimension approach via spatial domain decomposition. Specifically, about

the two-dimensional nonlocal operator of the velocity field in the SQG, namely the Riesz

transform, this operator will now be given by the composition of the partials nonlocal

operators: the partial Hilbert transform and the partial Riesz potential; hence, we obtain

a new transport equation doubly nonlocal where the velocity field is obtained by the

composition of the partial Hilbert transform and the partial Riesz potential, this new
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equation transport we call as a conservation law with partially nonlocal velocity. This

can permit the interpretation of a conservation law with partially nonlocal velocity as an

intermediary framework between the 1D quasi-geostrophic equation and the SQG.

In [45], we find an equivalent form of the Hilbert transform defined through a

distribution function on S 1pRq. The significance of defining the Hilbert transform in an

equivalent manner lies in its application to regularize the velocity field in the proof of

Theorem 2.

We begin by defining a distribution W0 in S 1pRq as follows:

xW0, ·y � 1

Ã
lim
ϵÑ0

»
ϵ¤|x| 1

·pxq
x

dx � 1

Ã

»
|x|¥1

·pxq
x

dx, (3.5)

for · P SpRq.
Thence, the truncated Hilbert transform of f P SpRq (at height ϵ) is defined by

Hpϵqpfqpxq � 1

Ã

»
|y|¥ϵ

fpx� yq
y

dy � 1

Ã

»
|x�y|¥ϵ

fpyq
x� y

dy. (3.6)

Then, the Hilbert transform of f P SpRq is defined by

Hpfqpxq � pW0 � fqpxq � lim
ϵÑ0

Hpϵqpfqpxq. (3.7)

The following theorem will prove the Bernstein inequality in Besov spaces

subject to partial nonlocal operators: the partial Riesz potential and the partial Hilbert

transform. Unlike the article [69] or similar works, in our demonstration, we will use the

partial Fourier transform several times, defined for instance in [43].

3.1 Bernstein-type Inequality to Nonlocal Partials Operators in

Besov spaces

Theorem 1 (Bernstein inequality). Let ³ P R, f P SpR2q and 1 ¤ p ¤ q ¤ 8.

(I) If f satisfies

supp f̂ � tÀ P R
2 : |À| ¤ 2ju,

for some integer j, then

∥Λ³
1
f∥LqpR2q ¤ C2

j³�2jp 1

p
� 1

q
q∥f∥LppR2q. (3.8)

∥Λ³
1
H1f∥LqpR2q ¤ C2

j³�2jp 1

p
� 1

q
q∥f∥LppR2q. (3.9)

(II) If f satisfies

supp f̂ � tÀ P R
2 : K12

j ¤ |À| ¤ K22
ju, (3.10)



Chapter 3. A Conservation Law with Partially Nonlocal Velocity 30

for some integer j and constants 0   K1 ¤ K2, then

C12
j³∥f∥LqpR2q ¤ ∥Λ³

1
f∥LqpR2q ¤ C22

j³�2jp 1

p
� 1

q
q∥f∥LppR2q. (3.11)

C̃12
jp³�1q∥f∥LqpR2q ¤

∥

∥

∥Λ³�1

1
H1f

∥

∥

∥

LqpR2q
¤ C̃22

jp³�1q�2jp 1

p
� 1

q
q∥f∥LppR2q. (3.12)

where C1, C̃1, C2 and C̃2 are constants depending on ³, p and q only.

Proof. We will start by proving pIq; it is enough to prove that

∥f∥Lq ¤ C2
2jp 1

p
� 1

q
q∥f∥Lp , (3.13)

and

∥Λ³
1
f∥Lp ¤ C2³j∥f∥Lp . (3.14)

As f̂ is supported in Bj and Èj � 1 on Bj, since if À P suppf̂ so |À|   2j

then for all j ¥ 0 we will have
∣

∣

∣2�jÀ
∣

∣

∣   2j, follow that φjp2�jÀq � 0, hence ÈjpÀq �
ÈjpÀq �

¸
j¥0

φjp2�jÀq � 1. It follows that f̂ � Èj f̂ or, in an equivalent form, f � È̌j � f .

Thus, Young’s inequality implies that

}f}Lq ¤ }È̌j}Lp1 }f}Lp , (3.15)

where
1

p1

� 1� 1

q
� 1

p
. Direct computations by using a change of variables implies that

}È̌j}Lp1 � 2
2jp 1

p
� 1

q q}È̌}Lp1 .

By replacing this last fact into (3.15), we get (3.13).

Throughout the work, we will use the notations À � pÀ1, À2q and x � px1, x2q,
with x � 0. Fourier transform of the partial Riesz potential,

pΛ³
1
fq^ pÀq �

»
R2

e�2Ãix�ÀΛ³
1
fpxqdx

�
¼

e�2Ãix1À1e�2Ãix2À2Λ³
1
fpx1, x2q dx1 dx2

�
»
e�2Ãix2À2

"»
e�2Ãix1À1Λ³

1
fp�, x2q dx1

*
dx2

�
»
e�2Ãix2À2F1 tΛ³

1
fp�, x2qu dx2.

The previous calculations are correct as long as f P SpR2q; for the general case, consider

f P S 1pR2q. Since, F1 tΛ³
1
fp�, x2qu � |À1|

³F1 tfp�, x2qu, so

pΛ³
1
fq^ pÀq �

»
e�2Ãix2À2|À1|

³F1 tfp�, x2qu dx2

� |À1|
³

»
e�2Ãix2À2F1 tfp�, x2qu dx2

� |À1|
³
f̂pÀq

� ÈjpÀq|À1|
³
f̂pÀq. (3.16)
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Therefore,

Λ³
1
f �Mj � f, (3.17)

where, Mj � F�1 tÈjpÀq|À1|
³u, from the fact that ÈjpÀq � Èp2�jÀq and by changing

variables, we get

Mj � 2j³22j

»
R2

e2Ãix�2jÀÈpÀq|À1|
³
dÀ

:� 2j³22jN.

Notice that, Np2jxq � F�1 tÈp�q|�1|³u p2jxq, as È P S and |�1|³ is a polynomial,

so Èp�q|�1|³ P S. Thus Np2jxq P S, then there is C ¡ 0, in particular C � Cpmq with

m ¡ 0, such that
∣

∣

∣Np2jxq
∣

∣

∣ ¤ C
∣

∣

∣2jx
∣

∣

∣

�m
. So we have

|Mjpxq| � 2j³22j
∣

∣

∣Np2jxq
∣

∣

∣

¤ C2j³22j
∣

∣

∣2jx
∣

∣

∣

�m
,

i.e., Mj is bounded. Moreover, thinking B as a ball with center at the origin and m ¡ 2,

we have

∥Mj∥L1 �
»
R2

|Mjpxq|dx

�
»

B

|Mjpxq|dx�
»
R2zB

|Mjpxq|dx

¤
»

B

C2j³22j
∣

∣

∣2jx
∣

∣

∣

�1

dx�
»
R2zB

C2j³22j
∣

∣

∣2jx
∣

∣

∣

�m
dx

¤ C2j³2j

»
B

|x|�1
dx� C2j³2jp1�mq

»
R2zB

|x|�m
dx

¤ C2j³2j � C2j³2jp1�mq

¤ C2j³.

Then, applying Young’s inequality to (3.17), we get

∥Λ³
1
f∥Lp ¤ ∥Mj∥L1∥f∥LP

¤ C2j³∥f∥LP ,

with this, we are proving (3.14), consequently we demonstrated (3.8). To prove (3.9) it will

suffice to consider g � H1f , continue the accounts with g and, at the end apply Young’s

inequality in g.

Now will prove pIIq, for this case also is it suffices to show

∥f∥Lq ¤ C2
2jp 1

p
� 1

q
q∥f∥Lp , (3.18)
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and

C2³j∥f∥Lp ¤ ∥Λ³
1
f∥Lp ¤ C2³j∥f∥Lp . (3.19)

As the suppf̂ is in an annulus, then from the Littlewood–Paley decomposition,

there is a φj that is supported in Dj such that suppf̂ � suppφj, so

f̂ � φj f̂ , (3.20)

that is f � φ̌ � f . Thus, Young’s inequality implies that

∥f∥Lq � ∥φ̌∥Lp1
∥f∥Lp , (3.21)

where
1

p1

� 1� 1

q
� 1

p
. Direct computations by using a change of variables implies that

∥φ̌j∥Lp1
� 2

2jp 1

p
� 1

q
q∥φ̌∥Lp1

.

By replacing this last fact into (3.21), we get (3.18).

On other hand, proceeding as in (3.16), we get

pΛ³
1
fq^ pÀq � ÈjpÀq|À1|

³
f̂pÀq, (3.22)

even more,

Λ³
1
f � Kj � f, (3.23)

where, Kj � F�1 tÈjpÀq|À1|
³u and a direct computations by using a change of variables

implies that

Kj � 2j³22j

»
R2

e2Ãix�2jÀÈ0pÀq|À1|
³
dÀ

:� 2j³22jI.

Notice that, by integration by parts, we have

I �
»
R2

e2Ãix�2jÀÈpÀq|À1|
³
dÀ

� 1

2Ãi2jx1

»
R2

� B
BÀ1

e2Ãix�2jÀ



pÈpÀq|À1|

³q dÀ

� �1

2Ãi2jx1

»
R2

e2Ãix�2jÀ B
BÀ1

pÈpÀq|À1|
³q dÀ

� �1

p2Ãi2jx1q2
»
R2

B
BÀ1

e2Ãix�2jÀ B
BÀ1

pÈpÀq|À1|
³q dÀ

� 1

p2Ãi2jx1q2
»
R2

e2Ãix�2jÀ B2

BÀ2
1

pÈpÀq|À1|
³q dÀ,
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the previous integrals are well-defined since the support of È does not have any neighbor-

hood of the origin. Even more,

p2jx1q2I � � 1

p2Ãq2
»
R2

e2Ãix�2jÀ B2

BÀ2
1

pÈpÀq|À1|
³q dÀ,

similarly, we get

p2jx2q2I � � 1

p2Ãq2
»
R2

e2Ãix�2jÀ B2

BÀ2
2

pÈpÀq|À1|
³q dÀ,

adding the previous results, we get

pp2jx1q2 � p2jx2q2qI � � 1

p2Ãq2
»
R2

e2Ãix�2jÀ

" B2

BÀ2
1

pÈpÀq|À1|
³q � B2

BÀ2
2

pÈpÀq|À1|
³q
*
dÀ

∣

∣

∣2jx
∣

∣

∣

2

I � � 1

p2Ãq2
»
R2

e2Ãix�2jÀ∆ pÈpÀq|À1|
³q dÀ.

So,

∣

∣

∣

∣

∣

∣

∣2jx
∣

∣

∣

2

I

∣

∣

∣

∣

¤ 1

p2Ãq2
»
R2

∣

∣

∣e2Ãix�2jÀ
∣

∣

∣|∆ pÈpÀq|À1|
³q|dÀ

� C

p2Ãq2
»
R2

|∆ pÈpÀq|À1|
³q|dÀ

� C

p2Ãq2 ∥∆ pÈpÀq|À1|
³q∥L1

¤ C,

that is,

|I| ¤ C
∣

∣

∣2jx
∣

∣

∣

�2

,

in general using the maximum norm in R
2 we can obtain an m P N such that

|I| ¤ C
∣

∣

∣2jx
∣

∣

∣

�m
,

then, applying absolute value to Kj, we have

|Kj| � 2j³22j|I|

¤ C2j³22j
∣

∣

∣2jx
∣

∣

∣

�m
,

i.e. Kj is bounded, and note that thinking B as a ball with center at the origin and m ¡ 2,
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we have

∥Kj∥L1 �
»
R2

|Kjpxq|dx

�
»

B

|Kjpxq|dx�
»
R2zB

|Kjpxq|dx

¤
»

B

C2j³22j
∣

∣

∣2jx
∣

∣

∣

�1

dx�
»
R2zB

C2j³22j
∣

∣

∣2jx
∣

∣

∣

�m
dx

¤ C2j³2j

»
B

|x|�1
dx� C2j³2jp1�mq

»
R2zB

|x|�m
dx

¤ C2j³2j � C2j³2jp1�mq

¤ C2j³.

Then, applying Young’s inequality to (3.23), we get

∥Λ³
1
f∥Lp ¤ ∥Kj∥L1∥f∥LP

¤ C2j³∥f∥LP ,

this proves the right half of (3.19). To prove the left half of (3.19), we have that

supptpΛ³
1
fq^ pÀqu = supp

!
|À1|

³
f̂pÀq

)
is in an annulus since suppf̂ is in an annulus, then

the right half of (3.19), we have

∥f∥Lp �
∥

∥

∥Λ�³
1

Λ³
1
f

∥

∥

∥

Lp

¤ C2�³j∥Λ³
1
f∥Lp ,

that is,

C2³j∥f∥Lp ¤ ∥Λ³
1
f∥Lp .

To prove (3.12), it will suffice to consider g � H1f continue with computations

with g and, at the end apply Young’s inequality in g. This completes the proof of this

theorem.

3.2 Commutator Estimates in Besov Spaces

This section contains estimates for the commutator estimates in the context of

Besov spaces. Such estimates are essential to prove the well-posedness of a conservation

law with partially nonlocal velocity (1.3).

Proposition 2. Let ¼ ¡ 0, ³ P p0, 1q, p P r1,8s be given. Assume r ¡ 2{p. Then there

exist constant C ¡ 0 such that

2j¼∥r∆j, vsΛ³
1
u∥

Lp ¤ C
�

∥v∥Br�1

p,8
∥u∥Bλ�α�1

p,8
� ∥u∥Br�α

p,8
∥v∥Bλ

p,8

	
, (3.24)
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where the brackets represent the commutator operator given by

r∆j, f sg :� ∆jpfgq � f∆jg, (3.25)

for suitable functions f and g.

Proof. By using Bony’s decomposition (2.41) and the orthogonality relations of the

localization operator from [19], the commutator can be written as

r∆j, vsΛ³
1
u �

¸
|j�k|¤4

∆jpSk�1v∆kpΛ³
1
uqq �

¸
|j�k|¤4

∆jpSk�1pΛ³
1
uq∆kvq

�
¸

|k�k̃|¤1

∆jp∆kv∆k̃pΛ³
1
uqq �

¸
|j�k|¤1

Sk�1v∆kp∆jΛ
³
1
uq

�
¸

k¥j�1

Sk�1p∆jΛ
³
1
uq∆kv �

¸
|k�k̃|¤1

∆kv∆k̃p∆jΛ
³
1
uq

�
¸

|j�k|¤4

∆jpSk�1v∆kpΛ³
1
uqq �

¸
|j�k|¤4

Sk�1v∆kp∆jΛ
³
1
uq

�
¸

|j�k|¤4

∆jpSk�1pΛ³
1
uq∆kvq �

¸
|k�k̃|¤1

∆jp∆kv∆k̃pΛ³
1
uqq

�
¸

k¥j�1

Sk�1p∆jΛ
³
1
uq∆kv �

¸
|k�k̃|¤1

∆kv∆k̃p∆jΛ
³
1
uq

�
¸

|j�k|¤4

t∆jpSk�1v∆kpΛ³
1
uqq � Sk�1v∆kp∆jΛ

³
1
uqu �

¸
|j�k|¤4

∆jpSk�2pΛ³
1
uq∆kvq

�
¸

|k�j|¤3

¸
|k�k̃|¤1

∆jp∆kv∆k̃pΛ³
1
uqq �

¸
k¥j�1

Sk�1p∆jΛ
³
1
uq∆kv

�
¸

|k�k̃|¤1

¸
|k̃�j|¤1

∆kv∆k̃p∆jΛ
³
1
uq

:� I1 � I2 � I3 � I4 � I5.

We commence by independently estimating the terms above. To initiate, let us

observe

I1 �
¸

|k�j|¤4

22j

»
R2

hp2jpx� yqqtSk�1vpyq � Sk�1vpxqu∆kΛ³
1
upyqdy

�
¸

|k�j|¤4

22j

»
R2

hp2jpx� yqq
"
�
»

1

0

∇tSk�1vpx� Äpy � xqqu � px� yqdÄ
*

∆kΛ³
1
upyqdy

� �
¸

|k�j|¤4

22j

»
R2

hpzq
"»

1

0

∇tSk�1vpx� 2�jzÄqu � 2�jzdÄ

*
∆kΛ³

1
upx� 2�jzqp2�2jqdz

�
¸

|k�j|¤4

�2�j

»
R2

hpzq
"»

1

0

∇tSk�1vpx� 2�jzÄqu � zdÄ
*

∆kΛ³
1
upx� 2�jzqdz,
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applying absolute value, we get

|I1| ¤
¸

|k�j|¤4

2�j

»
R2

|hpzq|
"»

1

0

∣

∣

∣∇tSk�1vpx� 2�jzÄqu � z
∣

∣

∣dÄ

*
∣

∣

∣∆kΛ³
1
upx� 2�jzq

∣

∣

∣dz

¤
¸

|k�j|¤4

2�j

»
R2

|hpzq|
"»

1

0

∥∇Sk�1v∥L8∥z∥dÄ

*
∣

∣

∣∆kΛ³
1
upx� 2�jzq

∣

∣

∣dz

�
¸

|k�j|¤4

2�j∥∇Sk�1v∥L8

»
R2

|hpzq|∥z∥
∣

∣

∣∆kΛ³
1
upx� 2�jzq

∣

∣

∣dz.

So after applying the norm ∥�∥Lp , Young’s inequality, from (3.11) of Theorem 1 and the

third item of Proposition 1, we have

∥I1∥Lp ¤
¸

|k�j|¤4

2�j∥∇Sk�1v∥L8

»
R2

|hpzq|∥z∥∥Λ³
1
∆ku∥Lpdz

¤
¸

|k�j|¤4

2�j∥∇Sk�1v∥L8∥Λ³
1
∆ku∥Lp

»
R2

|hpzq|∥z∥dz

�
¸

|k�j|¤4

2�j∥Sk�1∇v∥L8∥Λ³
1
∆ku∥LpC

¤
j�4¸

k�j�4

C2�j∥∇v∥L8C2³k∥∆ku∥Lp

¤ C2�j∥∇v∥Br
p,8

j�4¸
k�j�4

2³k∥∆ku∥Lp

¤ C2�j∥v∥Br�1

p,8

j�4¸
k�j�4

2³k∥∆ku∥Lp ,

the last inequality is due to immersion is due to immersion; for more details, see the first

item of Theorem 2.2 of [63]. In addition, we must have that r ¡ 2{p.
Then,

2j¼∥I1∥Lp ¤ C2p¼�1qj∥v∥Br�1

p,8

j�4¸
k�j�4

2³k∥∆ku∥Lp

� C∥v∥Br�1

p,8

j�4¸
k�j�4

2p¼�1qpj�kq2p¼�1�³qk∥∆ku∥Lp

¤ C∥v∥Br�1

p,8
∥u∥Bλ�α�1

p,8

4̧

k��4

2p¼�1qk

¤ C∥v∥Br�1

p,8
∥u∥Bλ�α�1

p,8
.

We also have the following estimate through the Hölder and Young inequalities,

in addition to the third item of Proposition 1
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∥I2∥Lp ¤
¸

|k�j|¤4

∥∆jpSk�1Λ
³
1
u∆kvq∥Lp

¤
¸

|k�j|¤4

C∥Sk�1Λ
³
1
u∆kv∥Lp

¤
¸

|k�j|¤4

C∥Sk�1Λ
³
1
u∥L8∥∆kv∥Lp

¤
j�4¸

k�j�4

C∥Λ³
1
u∥L8∥∆kv∥Lp

¤ C

j�4¸
k�j�4

∥Λ³
1
u∥Br

p,8
∥∆kv∥Lp

¤ C

j�4¸
k�j�4

∥u∥Br�α
p,8

∥∆kv∥Lp .

The last inequality was derived from the following auxiliary argument, wherein

the inequalities (3.11) and (3.8) of Bernstein’s Theorem are employed

∥Λ³
1
u∥Br

p,8
� sup

j¥0

2jr∥∆jΛ
³
1
u∥

Lp � ∥S0Λ
³
1
u∥Lp

� sup
j¥0

2jr∥Λ³
1
∆ju∥

Lp � ∥Λ³
1
S0u∥Lp

¤ sup
j¥0

2jrC22
j³∥∆ju∥

Lp � C1∥S0u∥Lp

¤ C

�
sup
j¥0

2jpr�³q∥∆ju∥
Lp � ∥S0u∥Lp



� ∥u∥Br�α

p,8
,

then

2j¼∥I2∥Lp ¤ C2j¼∥u∥Br�α
p,8

j�4¸
k�j�4

∥∆kv∥Lp

� C∥u∥Br�α
p,8

j�4¸
k�j�4

2pj�kq¼2k¼∥∆kv∥Lp

¤ C∥u∥Br�α
p,8

∥v∥Bλ
p,8

4̧

k��4

2k¼

¤ C∥u∥Br�α
p,8

∥v∥Bλ
p,8
.

Analogously, we estimate I3 using the Young and Hölder inequalities, in addition
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to (3.11) of Theorem 1 and from first item of Proposition 1

∥I3∥Lp ¤
¸

|k�j|¤3

¸
|k�k̃|¤1

∥∆jp∆kv∆k̃Λ³
1
uq∥

Lp

¤
¸

|k�j|¤3

¸
|k�k̃|¤1

C∥∆kv∥Lp∥Λ³
1
∆k̃u∥L8

¤
¸

|k�j|¤3

¸
|k�k̃|¤1

C∥∆kv∥LpC22
³k̃∥∆k̃u∥L8

¤ C2�j¼
¸

|k�j|¤3

¸
|k�k̃|¤1

2pj�kq¼

"
sup
k¥0

2k¼∥∆kv∥Lp

*#
sup
k̃¥0

2k̃³∥∆k̃u∥L8

+

� C2�j¼
¸

|k�j|¤3

¸
|k�k̃|¤1

2pj�kq¼∥v∥Bλ
p,8

∥u∥Bα
8,8

� C2�j¼C∥v∥Bλ
p,8

∥u∥Bα
8,8

� C2�j¼∥v∥Bλ
p,8

∥u∥Br�α
p,8

,

then

2j¼∥I3∥Lp ¤ C∥v∥Bλ
p,8

∥u∥Br�α
p,8

.

Similarly, we estimate I4

∥I4∥Lp ¤
¸

k¥j�1

∥Sk�1∆jΛ
³
1
u∆kv∥

Lp

¤
¸

k¥j�1

∥Sk�1∆jΛ
³
1
u∥

L8∥∆kv∥Lp

¤ 2�j¼
¸

k¥j�1

2pj�kq¼C∥Λ³
1
u∥L82k¼∥∆kv∥Lp

� 2�j¼C∥Λ³
1
u∥L82k¼∥∆kv∥Lp

¤ C2�j¼∥Λ³
1
u∥Br

p,8

"
sup
k¥0

2k¼∥∆kv∥Lp � ∥S0pvq∥Lp

*
¤ C2�j¼∥u∥Br�α

p,8
∥v∥Bλ

p,8
,

then

2j¼∥I4∥Lp ¤ C∥u∥Br�α
p,8

∥v∥Bλ
p,8
.
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Finally,

∥I5∥Lp ¤
¸

|j2�j1|¤1

¸
|j1�j|¤1

∥∆j2v∆j1∆jΛ
³
1
u∥

Lp

¤
¸

|j2�j1|¤1

¸
|j1�j|¤1

∥∆j2v∥
Lp∥∆j1∆jΛ

³
1
u∥

L8

¤
¸

|j2�j1|¤1

¸
|j1�j|¤1

C∥∆j2v∥
Lp∥Λ³

1
u∥L8

� C∥Λ³
1
u∥L8

¸
|j2�j1|¤1

¸
|j1�j|¤1

∥∆j2v∥
Lp

¤ C∥u∥Br�α
p,8

¸
|j2�j1|¤1

¸
|j1�j|¤1

∥∆j1v∥
Lp ,

proceeding analogously to the previous estimates, we have

2j¼∥I5∥Lp ¤ C∥u∥Br�α
p,8

∥v∥Bλ
p,8
,

and collecting the estimates above, we obtain

2j¼∥r∆j, vsΛ³
1
u∥

Lp ¤ Cp∥u∥Bλ�α�1

p,8
∥v∥Br�1

p,8
� ∥v∥Bλ

p,8
∥u∥Br�α

p,8
q.

Proposition 3. Let ¼ ¡ 0, ³ P p0, 1q, p P r1,8s be given. Assume r ¡ 2{p. Then there

exist constant C ¡ 0 such that

2j¼
∥

∥

∥r∆j,Λ
³�1

1
H1usB1v

∥

∥

∥

Lp
¤ Cp∥u∥Br�α

p,8
∥v∥Bλ

p,8
� ∥v∥Br�1

p,8
∥u∥Bλ�α�1

p,8
q, (3.26)

where the brackets r, s denote the commutator operator.

Proof. By using Bony’s decomposition (2.41) and the orthogonality relations of the

localization operator from [19], the commutator can be written as

r∆j,Λ
³�1

1
H1usB1v �

¸
|j�k|¤4

∆jpSk�1Λ
³�1

1
H1u∆kB1vq �

¸
|j�k|¤4

∆jpSk�1B1v∆kΛ³�1

1
H1uq

�
¸

|k�k̃|¤1

∆jp∆kΛ³�1

1
H1u∆k̃B1vq �

¸
|j�k|¤4

Sk�1Λ
³�1

1
H1u∆k∆jB1v

�
¸
k¥j

Sk�1∆jB1v∆kΛ³�1

1
H1u�

¸
|j1�j2|¤1, |j�j2|¤2

∆j1∆jB1v∆j2Λ
³�1

1
H1u

�
¸

|j�k|¤4

 
∆jpSk�1Λ

³�1

1
H1u∆kB1vq � Sk�1Λ

³�1

1
H1u∆j∆kB1v

(
�

¸
|j�k|¤4

∆jpSk�1B1v∆kΛ³�1

1
H1uq �

¸
|k�j|¤3

¸
|k�k̄|¤1

∆jp∆kΛ³�1

1
H1u∆k̃B1vq

�
¸
k¥j

Sk�1∆jB1v∆kΛ³�1

1
H1u�

¸
|j2�j1|¤1

¸
|j1�j|¤1

∆j2∆jB1v∆j1Λ
³�1

1
H1u

:� L1 � L2 � L3 � L4 � L5.
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The estimates for each term will be obtained similarly to those in the previous

proposition.

L1 �
¸

|j�k|¤4

22j

»
R2

hp2jpx� yqq  Sk�1Λ
³�1

1
H1upyq � Sk�1Λ

³�1

1
H1upxq

(
∆kB1vpyqdy

�
¸

|j�k|¤4

22j

»
R2

hp2jpx� yqqt
»

1

0

∇rSk�1Λ
³�1

1
H1upx� Äpy � xqqs � px� yqdÄu∆kB1vpyqdy

�
¸

|j�k|¤4

22j

»
R2

hpzq
"»

1

0

∇rSk�1Λ
³�1

1
H1upx� 2�jzqs � 2�jzdÄ

*
∆kB1vpx� 2�jzqp2�jq2dz

�
¸

|j�k|¤4

2�j

»
R2

hpzq
"»

1

0

∇rSk�1Λ
³�1

1
H1upx� 2�jzqs � zdÄ

*
∆kB1vpx� 2�jzqdz,

applying absolute value, we get

|L1| ¤
¸

|j�k|¤4

2�j

»
R2

|hpzq|
"»

1

0

∣

∣

∣∇rSk�1Λ
³�1

1
H1upx� 2�jzqs � z

∣

∣

∣dÄ

*
∣

∣

∣∆kB1vpx� 2�jzq
∣

∣

∣dz

¤
¸

|j�k|¤4

2�j

»
R2

|hpzq|
"»

1

0

∥

∥

∥∇Sk�1Λ
³�1

1
H1u

∥

∥

∥

L8
|z|dÄ

*
∣

∣

∣∆kB1vpx� 2�jzq
∣

∣

∣dz

¤
¸

|j�k|¤4

2�j
∥

∥

∥∇Sk�1Λ
³�1

1
H1u

∥

∥

∥

L8

»
R2

|hpzq||z|
∣

∣

∣∆kB1vpx� 2�jzq
∣

∣

∣dz,

then, after applying the norm ∥.∥Lp , Young’s inequality, the classic Bernstein’s inequality,

see item (b) of Proposition 2.3 from [54], we have

∥L1∥Lp ¤
¸

|j�k|¤4

2�j
∥

∥

∥Sk�1∇Λ³�1

1
H1u

∥

∥

∥

L8

»
R2

|hpzq||z|∥∆kB1v∥Lpdz

¤
¸

|j�k|¤4

2�jC
∥

∥

∥∇Λ³�1

1
H1u

∥

∥

∥

L8
∥∆kB1v∥Lp

»
R2

|hpzq||z|dz

�
¸

|j�k|¤4

2�jC
∥

∥

∥∇Λ³�1

1
H1u

∥

∥

∥

L8
∥B1∆kv∥LpC

¤
¸

|j�k|¤4

C2�j
∥

∥

∥∇Λ³�1

1
H1u

∥

∥

∥

Br
p,8

2k∥∆kv∥Lp

¤ C2�j
∥

∥

∥Λ³�1

1
H1u

∥

∥

∥

Br�1

p,8

¸
|j�k|¤4

2k∥∆kv∥Lp

¤ C2�j∥u∥Br�α
p,8

¸
|j�k|¤4

2k∥∆kv∥Lp .

Notice that r ¡ 2{p and the last inequality was derived from the following auxiliary
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argument, wherein the inequalities (3.12) and (3.9) of Bernstein’s Theorem are employed.

∥

∥

∥Λ³�1

1
H1u

∥

∥

∥

Br�1

p,8

� sup
j¥0

2jpr�1q
∥

∥

∥∆jΛ
³�1

1
H1u

∥

∥

∥

Lp
�

∥

∥

∥S0Λ
³�1

1
H1u

∥

∥

∥

Lp

� sup
j¥0

2jpr�1q
∥

∥

∥Λ³�1

1
H1∆ju

∥

∥

∥

Lp
�

∥

∥

∥Λ³�1

1
H1S0u

∥

∥

∥

Lp

¤ sup
j¥0

2jpr�1qC22
jp³�1q∥∆ju∥

Lp � C1∥S0u∥Lp

¤ C

�
sup
j¥0

2jpr�³q∥∆ju∥
Lp � ∥S0u∥Lp



� ∥u∥Br�α

p,8
,

then

2j¼∥L1∥Lp ¤ C2p¼�1qj∥u∥Br�α
p,8

¸
|j�k|¤4

2k∥∆kv∥Lp

� C∥u∥Br�α
p,8

¸
|j�k|¤4

2p¼�1qpj�kq2¼k∥∆kv∥Lp

¤ C∥u∥Br�α
p,8

∥v∥Bλ
p,8

¸
|k|¤4

2p¼�1qk

¤ C∥u∥Br�α
p,8

∥v∥Bλ
p,8
.

We also have the following estimate through the Hölder and Young inequalities,

in addition to the third item of Proposition1 and from (3.12) of Theorem 1,

∥L2∥Lp ¤
¸

|j�k|¤4

∥Sk�1B1v∥L8

∥

∥

∥∆kΛ³�1

1
H1u

∥

∥

∥

Lp

¤
¸

|j�k|¤4

C∥B1v∥L8

∥

∥

∥∆kΛ³�1

1
H1u

∥

∥

∥

Lp

¤ C
¸

|j�k|¤4

∥∇v∥Br
p,8

∥

∥

∥Λ³�1

1
H1∆ku

∥

∥

∥

Lp

¤ C
¸

|j�k|¤4

∥v∥Br�1

p,8
C̃2kp³�1q∥∆ku∥Lp ,

so,

2j¼∥L2∥Lp ¤ C2j¼∥v∥Br�1

p,8

¸
|j�k|¤4

2kp³�1q∥∆ku∥Lp

� C∥v∥Br�1

p,8

¸
|j�k|¤4

2pj�kq¼2p¼�³�1qk∥∆ku∥Lp

¤ C∥v∥Br�1

p,8
∥u∥Bλ�α�1

p,8

¸
|k|¤4

2k¼

¤ C∥v∥Br�1

p,8
∥u∥Bλ�α�1

p,8
.
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We have also,

∥L3∥Lp ¤
¸

|k�j|¤3

¸
|k�k̄|¤1

C
∥

∥

∥∆kΛ³�1

1
H1u

∥

∥

∥

Lp
∥∆k̃B1v∥L8

¤ C
¸

|k�j|¤3

¸
|k�k̄|¤1

∥

∥

∥Λ³�1

1
H1∆ku

∥

∥

∥

Lp
∥B1v∥L8

¤ C
¸

|k�j|¤3

¸
|k�k̄|¤1

∥

∥

∥Λ³�1

1
H1∆ku

∥

∥

∥

Lp
∥∇v∥L8

¤ C
¸

|k�j|¤3

¸
|k�k̄|¤1

2kp³�1q∥∆ku∥Lp∥v∥Br�1

p,8

¤ C2�j¼
¸

|k�j|¤3

¸
|k�k̄|¤1

2pj�kq¼
 
2p¼�³�1qk∥∆ku∥Lp

(
∥v∥Br�1

p,8

¤ C2�j¼∥u∥Bλ�α�1

p,8
∥v∥Br�1

p,8
,

so,

2j¼∥L3∥Lp ¤ C∥u∥Bλ�α�1

p,8
∥v∥Br�1

p,8
.

By proceeding similarly, we will obtain the estimates for L4 and L5:

∥L4∥Lp ¤
¸
k¥j

C∥B1v∥L8

∥

∥

∥Λ³�1

1
H1∆ku

∥

∥

∥

Lp

¤
¸
k¥j

∥∇v∥L8C̃2kp³�1q∥∆ku∥Lp

¤ C2�j¼
¸
k¥j

2pj�kq¼∥∇v∥Br
p,8

2kp¼�³�1q∥∆ku∥Lp

¤ C2�j¼∥v∥Br�1

p,8
∥u∥Bλ�α�1

p,8
,

so

2j¼∥L4∥Lp ¤ C∥v∥Br�1

p,8
∥u∥Bλ�α�1

p,8
.

Finally,

∥L5∥Lp ¤
¸

|j2�j1|¤1

¸
|j1�j|¤1

∥B1v∥L8

∥

∥

∥Λ³�1

1
H1∆j1u

∥

∥

∥

Lp

¤
¸

|j2�j1|¤1

¸
|j1�j|¤1

∥∇v∥L8

∥

∥

∥Λ³�1

1
H1∆j1u

∥

∥

∥

Lp

¤
¸

|j2�j1|¤1

¸
|j1�j|¤1

∥∇v∥Br
p,8
C2j1p³�1q∥∆j1u∥

Lp

¤ C
¸

|j2�j1|¤1

¸
|j1�j|¤1

∥v∥Br�1

p,8
2p³�1qj1∥∆j1u∥

Lp ,
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so,

2j¼∥L5∥Lp ¤ C∥v∥Br�1

p,8

¸
|j2�j1|¤1

¸
|j1�j|¤1

2pj�j1q¼2p¼�³�1qj1∥∆j1u∥
Lp

¤ C∥v∥Br�1

p,8
∥u∥Bλ�α�1

p,8
.

By collecting the estimates above, we obtain

2j¼
∥

∥

∥r∆j,Λ
³�1

1
H1usB1v

∥

∥

∥

Lp
¤ Cp∥u∥Br

p,8
∥v∥B

γ�α
p,8

� ∥u∥Bλ�α�1

p,8
∥v∥Br�1

p,8
q.

Without loss of generality, Proposition 2 and Proposition 3 remain valid for

nonlinear and nonlocal operators in the other direction, i.e., in Λ³�1

2
and H2.

3.3 On the Well-Posedeness of a Conservation Law with Partially

Nonlocal Velocity in Besov Spaces

The Theorem 2 is one of the main theoretical results of our research. This

theorem guarantees the existence, uniqueness, and continuous dependence of the solution

of a conservation law with partially nonlocal velocity in classical Besov spaces. Before

commencing the proof of Theorem 2, we present some results that will be used throughout

the proof of this theorem.

In order to regularize the velocity field, let us consider a symmetric and

nonnegative smooth function Ä P C8
c pRq such that

»
R

Äpsq d s � 1. Now, for a small ϵ ¡ 0

define, Äϵpsq � ϵ�1Äps
ϵ
q. Also, given a function ¹px, yq defined in R

2, we denote by �1 and

�2 the partial convolutions:

pÄ �1 ¹qpx, yq �
»
R

Äpx� sq¹ps, yq d s, (3.27)

pÄ �2 ¹qpx, yq �
»
R

Äpy � sq¹px, sq d s, (3.28)

respectively.

We defined,

P1,ϵ¹ :� c³p|x|�³ � Äϵq � pH1¹q
� c³p|x|�³ � Äϵq � pW0 � ¹yq
� c³|x|�³ � pW0 � pÄϵ � ¹yqq
� c³|x|�³ � pW0 � pÄϵ �1 ¹qq
� c³|x|�³ �H1pÄϵ �1 ¹q
� Λ³�1

1
H1¹1,ϵ,
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where

¹1,ϵ � Äϵ �1 ¹. (3.29)

Notice that ¹y P SpRq and Äϵ �1 ¹ P SpRq. Similarly we can get P2,ϵ¹ � Λ³�1

2
H2¹2,ϵ, where

¹2,ϵ � Ä �2 ¹. (3.30)

Thus, the regularized velocity field is given by pΛ³�1

1
H1¹1,ϵ,Λ

³�1

2
H2¹2,ϵq.

Furthermore, for fixed j, the functions ¹i,ϵ and ∆j¹i,ϵ with i � 1, 2 are bounded

by ¹ and ∆j¹ respectively in L1pR2q.
In fact, from Young’s inequality, it follows that

∥¹1,ϵ∥L1pR2q �
»
R2

|¹1,ϵpx, yq| dx dy

�
»
R

�»
R

|Äϵ �1 ¹| dx



dy

�
»
R

∥Äϵ �1 ¹∥L1dy

¤
»
R

C∥¹y∥
L1dy

� C

»
R

»
R

|¹ypxq| dx dy

� C∥¹∥L1pR2q.

Analogously, we can obtain ∥¹2,ϵ∥L1pR2q ¤ C∥¹∥L1pR2q.

On the other hand, the definition of the partial convolution �1, see (3.27), we

have

∆j¹1,ϵpx, yq � 22jrpF�1φp2j�qq � ¹1,ϵspx, yq
� 22j

»
R

»
R

F�1φp2jpx� u, y � vqq¹1,ϵpu, vq du dv

� 22j

»
R

rF�1φp2jp�, y � vqq �1 pÄϵ �1 ¹qspxq dv

� 22j

»
R

rÄϵ �1 pF�1φp2jp�, y � vqq �1 ¹qspxq dv

� pÄϵ �1 ∆j¹q px, yq,

then, by Young’s inequality, we have

∥∆j¹1,ϵ∥L1pR2q ¤ C∥∆j¹∥L1pR2q.

Analogous, it can be demonstrated that ∆j¹2,ϵpx, yq � pÄϵ �2 ∆j¹q px, yq and

∥∆j¹2,ϵ∥L1pR2q ¤ C∥∆j¹∥L1pR2q.
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Notice that, for ¼ ¡ 0

∥¹1,ϵ∥Bλ
1,8pR

2q � sup
j¥0

2¼j∥∆j¹1,ϵ∥L1pR2q � ∥S0¹1,ϵ∥L1pR2q

¤ sup
j¥0

2¼jC∥∆j¹∥L1pR2q � C∥¹∥L1pR2q

¤ C∥¹∥Bλ
1,8pR

2q. (3.31)

Analogous, we get ∥¹2,ϵ∥Bλ
1,8pR

2q ¤ C∥¹∥Bλ
1,8pR

2q.

Moreover, in the following result nonlocal operators depend only on one variable.

This particular result is cited multiple times in the proof of Theorem 2.

Claim 3.3.1. For ³ P R, we have

d

dx
pΛ³�1H¹q � Λ³¹. (3.32)

In fact, from the definitions, pΛ³�1¹q^pÀq � |À|³�1
¹̂pÀq and pH¹q^pÀq � � iÀ

|À|
¹̂pÀq

follow that "
d

dx
Λ³�1pH¹q

*^

pÀq � iÀ
 
Λ³�1pH¹q(^ pÀq

� iÀ
 
|À|³�1pH¹q^pÀq(

� iÀ

"
|À|³�1

�
� iÀ

|À|
¹̂pÀq


*
� |À|³¹̂pÀq
� pΛ³¹q^pÀq

by taking the inverse Fourier Transform, we obtain the desired.

Lemma 5. Let ³ P r0, 1s and µ ¡ 3. Assume that w, u1, u2 P B¼
1,8 and

Btw �∇ �  wpΛ³�1

1
H1u1,Λ

³�1

2
H2u2q

( � g, (3.33)

then,»
R2

sgnp∆jwqBt∆jwdx dy ¤
2̧

i�1

C2�jµ∥ui∥B
γ�α�1

1,8
∥w∥B

γ
1,8

�
»
R2

sgnp∆jwq∆jg dx dy,

(3.34)

where, ∆j is the localization operator and g � gpw, u1, u2q.

Proof. Equation (3.33) can be expressed as

Btw �
2̧

i�1

BiwΛ³�1

i Hiui �
2̧

i�1

wΛ³
i ui � g,
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multiplying by the ∆j localization operator, we have from the definition of commutators

(3.25) that

∆jBtw �
2̧

i�1

 r∆j,Λ
³�1

i HiuisBiw � Λ³�1

i Hiui∆jBiw � r∆j, wsΛ³
i ui � w∆jΛ

³
i ui

(�∆jg.

Now, by multiplying both sides by sgnp∆jwq � ∆jw

|∆jw|
and integrating over R

2

we obtain:»
R2

sgnp∆jwqBt∆jw dx dy :� J1 � J2 � J3 � J4 �
»
R2

sgnp∆jwqg dx dy. (3.35)

Then, to estimate J1, Proposition 3 is employed; in this case we take r �
µ � 1 ¡ 2

J1 ¤
2̧

i�1

»
R2

∣

∣

∣sgnp∆jwqr∆j,Λ
³�1

i HiuisBiw
∣

∣

∣dx dy

�
2̧

i�1

∥

∥

∥r∆j,Λ
³�1

i HiuisBiw
∥

∥

∥

L1pR2q

¤
2̧

i�1

2�jµ
!
C∥ui∥Br�α

1,8
∥w∥B

γ
1,8

� C∥w∥Br�1

1,8
∥ui∥B

γ�α�1

1,8

)
¤

2̧

i�1

2�jµ
!
C∥ui∥B

γ�α�1

1,8
∥w∥B

γ
1,8

� C∥w∥B
γ
1,8

∥ui∥B
γ�α�1

1,8

)
¤

2̧

i�1

C2�jµ∥ui∥B
γ�α�1

1,8
∥w∥Bλ

1,8
.

To estimate J2, we use integration by parts, and from the third item of Propo-

sition 1 for r � µ � 1 ¡ 2, we have

J2 �
»
R2

2̧

i�1

Λ³�1

i Hiui sgnp∆jwqBi∆jw dx dy

�
2̧

i�1

»
R2

Λ³�1

i HiuiBi|∆jw| dx dy

� �
2̧

i�1

»
R2

Λ³
i ui|∆jw|, dx dy

¤
2̧

i�1

∥Λ³
i ui∥L8

»
R2

|∆jw| dx dy

¤
2̧

i�1

C∥Λ³
i ui∥Br

1,8
∥∆jw∥

L1

¤
2̧

i�1

C2�jµ∥ui∥Br�α
1,8

 
2jµ∥∆jw∥

L1

(
¤

2̧

i�1

C2�jµ∥ui∥B
γ�α�1

1,8
∥w∥B

γ
1,8
.
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To estimate J3, we use Proposition 2, and we take r � µ � 1 ¡ 2

J3 ¤
2̧

i�1

»
R2

|sgnp∆jwqr∆j, wsΛ³
i ui|dx dy

¤
2̧

i�1

∥r∆j, wsΛ³
i ui∥L1

¤
2̧

i�1

2�jµ

"
C∥w∥Br�1

1,8
∥ui∥Bλ�α�1

1,8
� C

∥

∥

∥¹
pnq
i,ϵ

∥

∥

∥

Br�α
1,8

�
∥

∥

∥¹pn�1q
∥

∥

∥

Bλ
1,8

*
�

2̧

i�1

2�jµ
!
C∥w∥B

γ
1,8

∥ui∥B
γ�α�1

1,8
� C∥ui∥B

γ�α�1

1,8
� ∥w∥Bλ

1,8

)
� C2�jµ∥ui∥B

γ�α�1

1,8
∥w∥B

γ
1,8
.

On the other hand, defining sgn¶p∆jwq � ∆jwap∆jwq2 � ¶
we have to

sgn¶p∆jwq ÝÑ sgnp∆jwq when ¶ Ñ 0. Furthermore

Bitsgn¶p∆jwqwu � Bitsgn¶p∆jwquw � sgn¶p∆jwqBiw

� Bip∆jwq
p∆jwq2 � ¶

#b
p∆jwq2 � ¶ � p∆jwq2ap∆jwq2 � ¶

+
w � sgn¶p∆jwqBiw

� Bip∆jwqap∆jwq2 � ¶
3
p¶wq � sgn¶p∆jwqBiw ÝÑ sgnp∆jwqBiw,

so, Bitsgn¶p∆jwqwu ÝÑ sgnp∆jwqBiw when ¶ Ñ 0.

Finally, we estimate J4 using integration by parts, from (3.12) of Theorem 1,

from the third item of Proposition 1, the first item of Theorem 2.2 from [63], for r � µ� 1,

we have

J4 �
2̧

i�1

»
R2

sgn¶p∆jwqwBipΛ³�1

i Hi∆juiqdx dy

� �
2̧

i�1

»
R2

sgnp∆jwqBitwupΛ³�1

i Hi∆juiqdx dy

¤
2̧

i�1

∥Biw∥L8

∥

∥

∥Λ³�1

i Hi∆jui

∥

∥

∥

L1

�
2̧

i�1

C2�j¼∥∇w∥L82jp¼�³�1q∥∆jui∥L1

¤
2̧

i�1

C2�jµ∥w∥Br�1

1,8
∥ui∥B

γ�α�1

1,8

¤
2̧

i�1

C2�jµ∥ui∥B
γ�α�1

1,8
∥w∥B

γ
1,8
.
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Notice that, r∆j, wsΛ³
i ui � w∆jΛ

³
i ui � ∆jtwΛ³

i uiu, so

J :�
»
R2

sgnp∆jwq
2̧

i�1

∆jtwΛ³
i uiu dx dy � J3 � J4 ¤

2̧

i�1

C2�jµ∥ui∥B
γ�α�1

1,8
∥w∥B

γ
1,8
.

Thus, by using the previous estimates in (3.35), we obtain»
R2

sgnp∆jwqBt∆jw dx dy ¤
2̧

i�1

C2�jµ∥ui∥B
γ�α�1

1,8
∥w∥B

γ
1,8

�
»
R2

sgnp∆jwqg dx dy.

Theorem 2. Let ³ P r0, 1s and ¼ ¡ 5. Assume that the initial data ¹0 P B¼
1,8. Then we can

find T � T p∥¹0∥Bλ
1,8
q, such that a unique solution ¹ to (1.3) on r0, T s�R

2 exists. Moreover,

this solution belongs to C1pr0, T s;B¼�³�2

1,8 q
£

L8pr0, T s;B´
1,8q, and ´ P r¼� ³ � 2, ¼s.

Proof. We begin the proof of Theorem 2 by constructing a sequence t¹pnqu, defined

recursively by solving the following equations$'''&'''%
¹p1q � S2p¹0q
Bt¹

pn�1q � ∇ �
!
¹pn�1qpΛ³�1

1
H1¹

pnq
1,ϵ ,Λ

³�1

2
H2¹

pnq
2,ϵ q

)
¹pn�1qppx, yq, 0q � ¹

pn�1q
0 � Sn�2¹0.

(3.36)

Since ¹pn�1q solves the linear system, we can always find the sequence. Notice that the

second equation from (3.36) is a particular case of Lemma 5 with w � ¹pn�1q, u1 � ¹
pnq
1,ϵ ,

u2 � ¹
pnq
2,ϵ and g � 0, where ¹1,ϵ and ¹2,ϵ are defined in (3.29) and (3.30) respectively, for

µ � ¼, we have»
R2

sgnp∆j¹
pn�1qqBt∆j¹

pn�1q dx dy ¤
2̧

i�1

C2�j¼
∥

∥

∥¹
pnq
i,ϵ

∥

∥

∥

Bλ�α�1

1,8

∥

∥

∥¹pn�1q
∥

∥

∥

Bλ
1,8

¤ C2�j¼
∥

∥

∥¹pnq
∥

∥

∥

Bλ�α�1

1,8

∥

∥

∥¹pn�1q
∥

∥

∥

Bλ
1,8

.

Furthermore, observe that»
R2

sgnp∆j¹
pn�1qqBt∆j¹

pn�1q dx dy �
»
R2

Bt

∣

∣

∣∆j¹
pn�1q

∣

∣

∣ dx dy � d

dt

∥

∥

∥∆j¹
pn�1q

∥

∥

∥

L1
, (3.37)

then integrating from 0 to t in (3.35), the fact that ¹
pn�1q
0 � Sn�2¹0, Young’s inequality,

and applying sup
j¥�1

2j¼, we have

sup
j¥�1

2j¼
∥

∥

∥∆j¹
pn�1q

∥

∥

∥

L1
¤ sup

j¥�1

2j¼C∥∆j¹0∥L1 � sup
j¥�1

2j¼C2�j¼

» t

0

∥

∥

∥¹pn�1q
∥

∥

∥

Bλ
1,8

∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

dÄ

∥

∥

∥¹pn�1q
∥

∥

∥

Bλ
1,8

¤ C∥¹0∥Bλ
1,8

� C

» t

0

∥

∥

∥¹pn�1q
∥

∥

∥

Bλ
1,8

∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

dÄ,
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by the Grönwall inequality integral form, it follows that

∥

∥

∥¹pn�1q
∥

∥

∥

Bλ
1,8

¤ C∥¹0∥Bλ
1,8

exp

"
C

» t

0

∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

dÄ

*
, (3.38)

with C independent of n.

Claim 3.3.2. Defining XT :� Cpr0, T s;B¼
1,8q, we get

∥

∥

∥¹pn�1q
∥

∥

∥

XT

¤ C∥¹0∥Bλ
1,8

exp
!
CT

∥

∥

∥¹pnq
∥

∥

∥

XT

)
, (3.39)

where
∥

∥

∥¹pn�1q
∥

∥

∥

XT

� sup
0¤t¤T

∥

∥

∥¹pn�1q
∥

∥

∥

Bλ
1,8

.

In fact, by taking t ¤ T , we have (3.38)

∥

∥

∥¹pn�1q
∥

∥

∥

Bλ
1,8

¤ C∥¹0∥Bλ
1,8

exp

"
C

» t

0

sup
0¤t¤T

∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

dÄ

*
� C∥¹0∥Bλ

1,8
exp

"
C

» t

0

∥

∥

∥¹pnq
∥

∥

∥

XT

dÄ

*
� C∥¹0∥Bλ

1,8
exp

!
C

∥

∥

∥¹pnq
∥

∥

∥

XT

t
)

¤ C∥¹0∥Bλ
1,8

exp
!
CT

∥

∥

∥¹pnq
∥

∥

∥

XT

)
, (3.40)

and take the supremum for t P r0, T s, we obtain (3.39).

The following statement asserts that the sequence t¹pnqu is bounded by the

initial data ¹0 in the space B¼
1,8.

Claim 3.3.3. If exp
!

2C2T0∥¹0∥Bλ
1,8

)
¤ 2, then sup

0¤t¤T0

∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

¤ 2C∥¹0∥Bλ
1,8

for all

n ¥ 1.

In fact, the proof is by induction. Let T0 ¤ T , for n � 1, from Young’s inequality,

we have

sup
0¤t¤T0

∥

∥

∥¹p1q
∥

∥

∥

Bλ
1,8

� sup
0¤t¤T0

∥S2¹0∥Bλ
1,8

¤ C sup
0¤t¤T0

∥¹0∥Bλ
1,8

¤ 2C∥¹0∥Bλ
1,8
.

Assume it holds for n; we show it also holds for n� 1. From (3.38) and proceeding as in

(3.40), we can obtain

sup
0¤t¤T0

∥

∥

∥¹pn�1q
∥

∥

∥

Bλ
1,8

¤ C∥¹0∥Bλ
1,8

exp

"
CT0 sup

0¤t¤T0

∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

*
¤ C∥¹0∥Bλ

1,8
exp

!
CT02C∥¹0∥Bλ

1,8

)
¤ 2C∥¹0∥Bλ

1,8
.
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Let YT :� Cpr0, T s;B¼�³�2

1,8 q. We will prove that the sequence p¹pnqq is Cauchy

in YT1
for some T1 P p0, T0q. Considering the difference ¹pn�1q� ¹pnq, and to the linearity of

Λ³�1

i and Hi for i � 1, 2, we get

Btp¹pn�1q � ¹pnqq � ∇ �
!
¹pn�1qpΛ³�1

1
H1¹

pnq
1,ϵ ,Λ

³�1

2
H2¹

pnq
2,ϵ q

)
�∇ �

!
¹pnqpΛ³�1

1
H1¹

pn�1q
1,ϵ ,Λ³�1

2
H2¹

pn�1q
2,ϵ q

)
� ∇ �

!
p¹pn�1q � ¹pnqqpΛ³�1

1
H1¹

pnq
1,ϵ ,Λ

³�1

2
H2¹

pnq
2,ϵ q

)
�

�∇ �
!
¹pnqpΛ³�1

1
H1p¹pnq1,ϵ � ¹

pn�1q
1,ϵ q,Λ³�1

2
H2p¹pnq2,ϵ � ¹

pn�1q
2,ϵ qq

)
:� D1 �D2,

with initial datum p¹pn�1q � ¹pnqqpx, y, 0q � ∆n�1¹0.

Also, note that this is a particular case of Lemma 5 with w � ¹pn�1q � ¹pnq,

u1 � ¹
pnq
1,ϵ , u2 � ¹

pnq
2,ϵ and g � D2, where ¹1,ϵ and ¹2,ϵ are defined in (3.29) and (3.30)

respectively; for µ � ¼� ³ � 2, we have»
R2

sgnt∆jp¹pn�1q � ¹pnqquBt∆jp¹pn�1q � ¹pnqqdx dy ¤
2̧

i�1

C2�jp¼�³�2q∥ui∥Bλ�2α�3

1,8

∥

∥

∥¹pn�1q � ¹pnq
∥

∥

∥

Bλ�α�2

1,8

�
»
R2

sgnt∆jp¹pn�1q � ¹pnqqu∆jD2 dx dy ¤
2̧

i�1

C2�jp¼�³�2q
∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

∥

∥

∥¹pn�1q � ¹pnq
∥

∥

∥

Bλ�α�2

1,8

�
»
R2

sgnt∆jp¹pn�1q � ¹pnqqu∆jD2 dx dy,

(3.41)

from the definition of commutators (3.25), we find that

∆jD2 �
2̧

i�1

r∆j,Λ
³�1

i Hip¹pnqi,ϵ � ¹
pn�1q
i,ϵ qsBi¹

pnq �
2̧

i�1

Λ³�1

i Hip¹pnqi,ϵ � ¹
pn�1q
i,ϵ q∆jBi¹

pnq

�
2̧

i�1

r∆j, ¹
pnqsΛ³

i p¹pnqi,ϵ � ¹
pn�1q
i,ϵ q �

2̧

i�1

¹pnq∆jΛ
³
i p¹pnqi,ϵ � ¹

pn�1q
i,ϵ q.

so, »
R2

sgnt∆jp¹pn�1q � ¹pnqqu∆jD2dx dy :� J 1
1
� J 1

2
� J 1

3
� J 1

4
. (3.42)

We estimate J 1
1
, J 1

2
, J 1

3
and J 1

4
analogously to J1, J2, J3, and J4, respectively. For
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J 1
1

of Proposition 3, in this case, we take r � ¼� 2 ¡ 2

J 1
1
¤

2̧

i�1

∥

∥

∥r∆j,Λ
³�1

i Hip¹pnqi,ϵ � ¹pn�1q
ϵi

qsBi¹
pnq

∥

∥

∥

L1

¤
2̧

i�1

2�jp¼�³�2qtC
∥

∥

∥¹
pnq
i,ϵ � ¹

pn�1q
i,ϵ

∥

∥

∥

Bλ�α�2

1,8

∥

∥

∥¹pnq
∥

∥

∥

Bλ�α�2

1,8

� C
∥

∥

∥¹pnq
∥

∥

∥

Bλ�α�1

1,8

∥

∥

∥¹
pnq
i,ϵ � ¹

pn�1q
i,ϵ

∥

∥

∥

B
λ�α�2�pα�1q
1,8

u

¤
2̧

i�1

2�jp¼�³�2q

"
C

∥

∥

∥¹
pnq
i,ϵ � ¹

pn�1q
i,ϵ

∥

∥

∥

Bλ�α�2

1,8

∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

� C
∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

∥

∥

∥¹
pnq
i,ϵ � ¹

pn�1q
i,ϵ

∥

∥

∥

Bλ�α�2

1,8

*
¤ C2�jp¼�³�2q

∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

∥

∥

∥¹pnq � ¹pn�1q
∥

∥

∥

Bλ�α�2

1,8

.

For J 1
2

of the integration by parts and from the third item of Proposition 1, we

also take r � ¼� 2 ¡ 2 here

J 1
2
� �

2̧

i�1

»
R2

sgnt∆jp¹pn�1q � ¹pnqquBitΛ³�1

i Hip¹pnqi,ϵ � ¹
pn�1q
i,ϵ qu∆j¹

pnq dx dy

¤
2̧

i�1

∥

∥

∥Λ³
i p¹pnqi,ϵ � ¹

pn�1q
i,ϵ q

∥

∥

∥

L8

»
R2

∣

∣

∣∆j¹
pnq

∣

∣

∣ dx dy

¤
2̧

i�1

C
∥

∥

∥Λ³
i p¹pnqi,ϵ � ¹

pn�1q
i,ϵ q

∥

∥

∥

Br
1,8

∥

∥

∥∆j¹
pnq

∥

∥

∥

L1

¤
2̧

i�1

C2�jp¼�³�2q
∥

∥

∥¹
pnq
i,ϵ � ¹

pn�1q
i,ϵ

∥

∥

∥

Br�α
1,8

∥

∥

∥¹pnq
∥

∥

∥

Bλ�α�2

1,8

¤
2̧

i�1

C2�jp¼�³�2q
∥

∥

∥¹
pnq
i,ϵ � ¹

pn�1q
i,ϵ

∥

∥

∥

Bλ�α�2

1,8

∥

∥

∥¹pnq
∥

∥

∥

Bλ�α�2

1,8

¤ C2�jp¼�³�2q
∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

∥

∥

∥¹
pnq
i,ϵ � ¹

pn�1q
i,ϵ

∥

∥

∥

Bλ�α�2

1,8

.

For J 1
3

of Proposition 2, with r � ¼ � 2 ¡ 2 and from the third item of

Proposition 1

J 1
3
¤

2̧

i�1

∥

∥

∥r∆j, ¹
pnqsΛ³

i p¹pnqi,ϵ � ¹
pn�1q
i,ϵ q

∥

∥

∥

L1

¤
2̧

i�1

2�jp¼�³�2qtC
∥

∥

∥¹pnq
∥

∥

∥

Bλ�1

1,8

∥

∥

∥¹
pnq
i,ϵ � ¹

pn�1q
i,ϵ

∥

∥

∥

B
λ�α�2�pα�1q
1,8

� C
∥

∥

∥¹
pnq
i,ϵ � ¹

pn�1q
i,ϵ

∥

∥

∥

Bλ�α�2

1,8

∥

∥

∥¹pnq
∥

∥

∥

Bλ�α�2

1,8

u

¤
2̧

i�1

2�jp¼�³�2q

"
C

∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

∥

∥

∥¹
pnq
i,ϵ � ¹

pn�1q
i,ϵ

∥

∥

∥

Bλ�α�2

1,8

� C
∥

∥

∥¹
pnq
i,ϵ � ¹

pn�1q
i,ϵ

∥

∥

∥

Bλ�α�2

1,8

∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

*
¤ C2�jp¼�³�2q

∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

∥

∥

∥¹pnq � ¹pn�1q
∥

∥

∥

Bλ�α�2

1,8

.
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Finally, for J 1
4

of the integration by parts, from inequality (3.12) of Theorem 1

and from the third item of Proposition 1, in this case r � ¼� 1

J 1
4
� �

2̧

i�1

»
R2

sgnt∆jp¹pn�1q � ¹pnqquBi¹
pnqtΛ³�1

i Hi∆jp¹pnqi,ϵ � ¹
pn�1q
i,ϵ qu dx dy

¤
2̧

i�1

∥

∥

∥∇¹pnq
∥

∥

∥

L8

∥

∥

∥Λ³�1

i Hi∆jp¹pnqi,ϵ � ¹
pn�1q
i,ϵ q

∥

∥

∥

L1

¤
2̧

i�1

∥

∥

∥∇¹pnq
∥

∥

∥

Br
1,8

C2jp³�1q
∥

∥

∥∆jp¹pnqi,ϵ � ¹
pn�1q
i,ϵ q

∥

∥

∥

L1

¤
2̧

i�1

C2�jp¼�³�2q
∥

∥

∥¹pnq
∥

∥

∥

Br�1

1,8

∥

∥

∥¹
pnq
i,ϵ � ¹

pn�1q
i,ϵ

∥

∥

∥

B
λ�α�2�pα�1q
1,8

¤ C2�jp¼�³�2q
∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

∥

∥

∥¹pnq � ¹pn�1q
∥

∥

∥

Bλ�α�2

1,8

,

then in (3.42), we get»
R2

sgnt∆jp¹pn�1q�¹pnqqu∆jD2dx dy ¤ C2�jp¼�³�2q
∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

∥

∥

∥¹pnq � ¹pn�1q
∥

∥

∥

Bλ�α�2

1,8

. (3.43)

On the other hand, from the orthogonality of the localization operator ∆j and

Young’s inequality, we have

∥

∥

∥¹
pn�1q
0 � ¹

pnq
0

∥

∥

∥

Bλ�α�2

1,8

� ∥∆n�1¹0∥Bλ�α�2

1,8

� sup
j¥�1

2jp¼�³�2q∥∆j∆n�1¹0∥L1

� sup
n¤j¤n�2

2j¼2jp³�2q∥∆n�1∆j¹0∥L1

¤ 2np³�2q sup
n¤j¤n�2

2j¼C∥∆j¹0∥L1

¤ C2np³�2q∥¹0∥Bλ�α�2

1,8
.

Hence, from (3.37), (3.41) and (3.43), we obtain

d

dt

∥

∥

∥∆jp¹pn�1q � ¹pnqq
∥

∥

∥

L1
�
»
R2

Bt

∣

∣

∣∆jp¹pn�1q � ¹pnqq
∣

∣

∣dx dy ¤

C2�jp¼�³�2q
∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

"
∥

∥

∥¹pn�1q � ¹pnq
∥

∥

∥

Bλ�α�2

1,8

�
∥

∥

∥¹pnq � ¹pn�1q
∥

∥

∥

Bλ�α�2

1,8

*
,

integrating the extremes from 0 to t and using sup
j¥�1

2jp¼�³�2q

sup
j¥�1

2jp¼�³�2q
∥

∥

∥∆jp¹pn�1q � ¹pnqq
∥

∥

∥

L1
¤ sup

j¥�1

2jp¼�³�2q
∥

∥

∥∆jp¹pn�1q
0 � ¹

pnq
0 q

∥

∥

∥

L1
�

sup
j¥�1

C

» t

0

∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

"
∥

∥

∥¹pn�1q � ¹pnq
∥

∥

∥

Bλ�α�2

1,8

�
∥

∥

∥¹pnq � ¹pn�1q
∥

∥

∥

Bλ�α�2

1,8

*
dÄ,
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so,

∥

∥

∥¹pn�1q � ¹pnq
∥

∥

∥

Bλ�α�2

1,8

¤
∥

∥

∥¹
pn�1q
0 � ¹

pnq
0

∥

∥

∥

Bλ�α�2

1,8

� C

» t

0

sup
0¤t¤T1

∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

sup
0¤t¤T1

∥

∥

∥¹pnq � ¹pn�1q
∥

∥

∥

Bλ�α�2

1,8

dÄ

� C

» t

0

sup
0¤t¤T1

∥

∥

∥¹pnq
∥

∥

∥

Bλ
1,8

∥

∥

∥¹pn�1q � ¹pnq
∥

∥

∥

Bλ�α�2

1,8

dÄ

¤ C2np³�2q∥¹0∥Bλ
1,8

� C

» t

0

2C∥¹0∥Bλ
1,8

∥

∥

∥¹pnq � ¹pn�1q
∥

∥

∥

YT1

dÄ

� C

» t

0

2C∥¹0∥Bλ
1,8

∥

∥

∥¹pn�1q � ¹pnq
∥

∥

∥

Bλ�α�2

1,8

dÄ

¤ C2np³�2q∥¹0∥Bλ
1,8

� 2C∥¹0∥Bλ
1,8

∥

∥

∥¹pnq � ¹pn�1q
∥

∥

∥

YT1

» t

0

dÄ

� 2C∥¹0∥Bλ
1,8

» t

0

∥

∥

∥¹pn�1q � ¹pnq
∥

∥

∥

Bλ�α�2

1,8

dÄ

¤ C2np³�2q∥¹0∥Bλ
1,8

� 2CT1∥¹0∥Bλ
1,8

∥

∥

∥¹pnq � ¹pn�1q
∥

∥

∥

YT1

� 2C∥¹0∥Bλ
1,8

» t

0

∥

∥

∥¹pn�1q � ¹pnq
∥

∥

∥

Bλ�α�2

1,8

dÄ,

by the integral version of Grönwall inequality, we get

∥

∥

∥¹pn�1q � ¹pnq
∥

∥

∥

Bλ�α�2

1,8

¤
�
C2np³�2q∥¹0∥Bλ

1,8
� 2CT1∥¹0∥Bλ

1,8

∥

∥

∥¹pnq � ¹pn�1q
∥

∥

∥

YT1



exp

"
2C∥¹0∥Bλ

1,8

» t

0

dÄ

*
¤
�
C2np³�2q∥¹0∥Bλ

1,8
� 2CT1∥¹0∥Bλ

1,8

∥

∥

∥¹pnq � ¹pn�1q
∥

∥

∥

YT1



exp

!
2CT1∥¹0∥Bλ

1,8

)
¤ C 12np³�2q � C 1T1 exptC 1T1u

∥

∥

∥¹pnq � ¹pn�1q
∥

∥

∥

YT1

,

where, T1 P r0;T0s, and the constant C 1 � C 1p∥¹0∥Bλ
1,8
q. Thus, if C 1T1 exptC 1T1u   1{2,

we can deduce that ¹pnq converges to ¹ P L8pr0;T1s;B¼�³�2

1,8 q in YT1
.

Taking ´ � p1� sqp¼� ³ � 2q � s¼ where 0 ¤ s ¤ 1, we have

∥

∥

∥¹pnq � ¹
∥

∥

∥

B
β
1,8

�
∥

∥

∥¹pnq � ¹
∥

∥

∥

1�s

Bλ�α�2

1,8

∥

∥

∥¹pnq � ¹
∥

∥

∥

s

Bλ
1,8

,

as we have for all n P N and 0 ¤ t ¤ T1 that ¹pnq is bounded by the initial condition

¹0 P B¼
1,8, then p¹pnq � ¹q is limited in B¼

1,8. Hence, by the well-known interpolation

inequality in the Besov spaces, we have ¹pnq Ñ ¹ in L8pr0;T1s;B´
1,8q for all ´ P r¼�³�2, ¼s.

Let nÑ 8, we have ¹pnq Ñ ¹. Thus, we find that ¹ is a solution to (1.3) in B
´
1,8.

Uniqueness and continuous dependence: Suppose ¹ and Ã are both elements of

L8pr0;T1s;B´
1,8q, representing two solutions of a conservation law with partially nonlocal
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velocity (1.3) associated with the initial conditions ¹0 and Ã0. Considering the difference

Bt¹ � BtÃ, we have

Btp¹ � Ãq � ∇ � t¹pΛ³�1

1
H1¹,Λ

³�1

2
H2¹qu � ∇ � tÃpΛ³�1

1
H1Ã,Λ

³�1

2
H2Ãqu

�∇ � tÃpΛ³�1

1
H1¹,Λ

³�1

2
H2¹qu � ∇ � tÃpΛ³�1

1
H1¹,Λ

³�1

2
H2¹qu

� ∇ � tp¹ � ÃqpΛ³�1

1
H1¹,Λ

³�1

2
H2¹qu � ∇ � tÃpΛ³�1

1
H1p¹ � Ãq,Λ³�1

2
H2p¹ � Ãqqu

:� D3 �D4.

This also is a particular case of Lemma 5 with w � ¹ � Ã, u1 � u2 � ¹ and

g � D4, for µ � ´, we have »
R2

sgnt∆jp¹ � ÃquBt∆jp¹ � Ãqdx dy ¤

C2�j´∥¹∥
B

β�α�1

1,8
∥¹ � Ã∥

B
β
1,8

�
»
R2

sgnt∆jp¹ � Ãqu∆jD4 dx dy ¤

C2�j´∥¹∥
B

β
1,8

∥¹ � Ã∥
B

β
1,8

�
»
R2

sgnt∆jp¹ � Ãqu∆jD4 dx dy, (3.44)

from the definition of commutators (3.25), we find that

∆jD4 �
2̧

i�1

r∆j,Λ
³�1

i Hip¹ � ÃqsBiÃ �
2̧

i�1

Λ³�1

i Hip¹ � Ãq∆jBiÃ �
2̧

i�1

r∆j, ÃsΛ³
i p¹ � Ãq

�
2̧

i�1

Ã∆jΛ
³
i p¹ � Ãq,

so, »
R2

sgnt∆jp¹ � Ãqu∆jD4 dx dy :� K 1
1
�K 1

2
�K 1

3
�K 1

4
. (3.45)

Then, we have the following estimates:

For K 1
1

of the Proposition 3 with r � ´ � 1 and Proposition 1

K 1
1
�

2̧

i�1

∥

∥

∥r∆j,Λ
³�1

i Hip¹ � ÃqsBiÃ
∥

∥

∥

L1

¤
2̧

i�1

2�j´
!
C∥¹ � Ã∥Br�α

1,8
∥Ã∥

B
β
1,8

� C∥Ã∥Br�1

1,8
∥¹ � Ã∥

B
β�α�1

1,8

)
¤

2̧

i�1

2�j´
!
C∥¹ � Ã∥

B
β�α�1

1,8
∥Ã∥

B
β
1,8

� C∥Ã∥
B

β
1,8

∥¹ � Ã∥
B

β�α�1

1,8

)
¤ C2�j´∥Ã∥

B
β
1,8

∥¹ � Ã∥
B

β
1,8
.

For K 1
2

of the integration by parts and from the third item of Proposition 1,

we also take r � ´ � ³ ¡ 2 here

K 1
2
¤

2̧

i�1

2�j´C∥¹ � Ã∥Br�α
1,8

∥Ã∥
B

β
1,8

¤ C2�j´∥¹ � Ã∥
B

β
1,8

∥Ã∥
B

β
1,8
.



Chapter 3. A Conservation Law with Partially Nonlocal Velocity 55

For K 1
3

of Proposition 2, with r � ´ � 1 ¡ 2 and from the third item of

Proposition 1

K 1
3
¤

2̧

i�1

2�j´
!
C∥Ã∥Br�1

1,8
∥¹ � Ã∥

B
β�α�1

1,8
� C∥¹ � Ã∥Br�α

1,8
� ∥Ã∥

B
β
1,8

)
�

2̧

i�1

2�j´
!
C∥Ã∥

B
β
1,8

∥¹ � Ã∥
B

β�α�1

1,8
� C∥¹ � Ã∥

B
β�α�1

1,8
∥Ã∥

B
β
1,8

)
� C2�j´∥Ã∥

B
β
1,8

∥¹ � Ã∥
B

β
1,8
.

Finally, for K 1
4

of the integration by parts, from inequality (3.12) of Theorem 1

and from the third item of Proposition 1. For this case r � ´ � 1

K 1
4
¤

2̧

i�1

∥∇Ã∥L8C2jp³�1q∥∆jp¹ � Ãq∥
L1

¤
2̧

i�1

C2�j´∥Ã∥Br�1

1,8
∥¹ � Ã∥

B
β�α�1

1,8

¤ C2�j´∥Ã∥
B

β
1,8

∥¹ � Ã∥
B

β�α�1

1,8

¤ C2�j´∥Ã∥
B

β
1,8

∥¹ � Ã∥
B

β
1,8

then in (3.45), we get»
R2

d

dt
|∆jp¹ � Ãq| dx dy ¤ C2�j´∥¹∥

B
β
1,8

∥¹ � Ã∥
B

β
1,8

� C2�j´∥Ã∥
B

β
1,8

∥¹ � Ã∥
B

β
1,8» t

0

d

dt
∥∆jp¹ � Ãq∥

L1dÄ ¤
» t

0

C2�j´
!

∥¹∥
B

β
1,8

� ∥Ã∥
B

β
1,8

)
∥¹ � Ã∥

B
β
1,8
dÄ

∥∆jp¹ � Ãq∥
L1 � ∥∆jp¹0 � Ã0q∥L1 ¤ C2�j´

» t

0

!
∥¹∥

B
β
1,8

� ∥Ã∥
B

β
1,8

)
∥¹ � Ã∥

B
β
1,8
dÄ,

through sup
j¥�1

2j´, we obtain

∥¹ � Ã∥
B

β
1,8

¤ ∥¹0 � Ã0∥B
β
1,8

� C

» t

0

!
∥¹∥

B
β
1,8

� ∥Ã∥
B

β
1,8

)
∥¹ � Ã∥

B
β
1,8
dÄ

¤ ∥¹0 � Ã0∥B
β
1,8

� C

» t

0

"
sup

0¤t¤T1

∥¹∥
B

β
1,8

� sup
0¤t¤T1

∥Ã∥
B

β
1,8

*
∥¹ � Ã∥

B
β
1,8
dÄ

¤ ∥¹0 � Ã0∥B
β
1,8

� C

» t

0

!
2C∥¹0∥B

β
1,8

� 2C∥¹0∥B
β
1,8

)
∥¹ � Ã∥

B
β
1,8
dÄ

¤ ∥¹0 � Ã0∥B
β
1,8

� C 1

» t

0

∥¹ � Ã∥
B

β
1,8
dÄ,

where C 1 � C 1p∥¹0∥B
β
1,8
q and by the Grönwall inequality integral form, we have

∥¹ � Ã∥
B

β
1,8

¤ ∥¹0 � Ã0∥B
β
1,8

exp

"
C 1

» t

0

dÄ

*
¤ ∥¹0 � Ã0∥B

β
1,8

exptC 1T1u,

if ¹0 � Ã0 we get the uniqueness of solutions in Cpr0;T1s;B´
1,8q. The proof is complete.
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3.4 Numerical Study

In this section, we aim to devise an enhanced, fully-discrete nonlocal Lagrangian-

Eulerian method based on the improved concept of space–time No-Flow curve. This scheme

is specifically crafted to adeptly address the complexities arising from the application of

the partial doubly nonlocal operator Λ³�1

i Hi with i � 1, 2 to hyperbolic conservation laws.

Here, Λ³�1

i represents the partial Riesz potential transform, and Hi represents the partial

Hilbert transform.

The construction of the Lagrangian-Eulerian scheme is rooted in the novel

concept of the No-Flow curve, which was initially introduced in [12] and rigorously analyzed

for fully discrete schemes with a solid mathematical foundation. A significant feature of this

method is the dynamic tracking of the No-Flow curve forward in time, on a per-time-step

basis. This represents a substantial improvement compared to the classical backward

tracking of characteristic curves over each time step interval, which is based on the strong

form of the problem. Furthermore, one notable advantage of this method is that it does

not require the eigenvalues to determine the CFL condition; instead, it can be obtained

from the No-Flow curve.

As described in [11], the one-dimensional dynamic forward tracking Lagrangian-

Eulerian numerical scheme can be integrated into monotone and "Total Variation Di-

minishing" (TVD) schemes. Similar to the one-dimensional approach presented in [49],

it can be verified that this new no-flow finite volume Lagrangian-Eulerian scheme con-

verges to the unique entropy solution for conservation laws that feature a discontinuous

spacetime-dependent flux. The proposed scheme is noteworthy for being free of local

Riemann problem solutions and not requiring adaptive space-time discretizations. This

feature is relevant for real-world, non-trivial applications found in recent literature. These

applications include scenarios with conservation laws featuring a discontinuous flux function

[16, 23, 39, 49, 50, 59], point sources [36, 39, 48, 58], and resonant models [9, 44, 61].

We introduce a Lagrangian-Eulerian approach based on the principles outlined

in [12]. For the sake of presentation, let us consider a generic 1D (local) scalar hyperbolic

conservation law, denoted as u � upx, tq, with the governing equation Btu� BxHpuq � 0.

The formulation of the fully-discrete nonlocal Lagrangian-Eulerian scheme represents an

improved and, actually, a substantial novel interpretation of the integral tube concept as

firstly introduced [41, 40] for local parabolic problems and linear transport problems [17]

for flow in porous media. Therefore, in the new context, this integral tube is now subject to

the condition O

�
Hpuq
u



9
�

∆x

∆t

�
, which is referred to as the No-Flow curve (as described

in [12, 11]). These quantities, u and Hpuq, are obtained from the local scalar hyperbolic

conservation law, and with the aid of suitable stability estimates, this approach proves

to be highly effective in practical computations. Additionally, it results in a weak CFL
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condition that is not contingent on the derivative of the flux function Hpuq, but instead

relies solely on the local behavior of the No-Flow curve.

For a more in-depth understanding of these concepts, see [7] and [8].These

two recent works have been examined through weak asymptotic analysis, as detailed in

[10], [4], and [5]. They have provided further insights into the concept of the No-Flow

curve within semi-discrete Lagrangian-Eulerian formulations. It is also noteworthy that

the initial numerical analysis for the fully-discrete Lagrangian-Eulerian scheme for scalar

local hyperbolic problems was presented in [61].

The concept of the No-Flow curve has been extended in various directions

to tackle multidimensional initial value problems for both local scalar models and local

systems of conservation laws. Recently in [2], the authors formally apply, for the first

time, a fully-discrete Lagrangian-Eulerian scheme for study global well-posedness and

finite time blow-up of solutions for a nonlinear 1D transport equation with nonlocal

velocity given as ut � puHpuqqx � ¿uxx where ¿ ¡ 0, along with measure initial data

in the inviscid case when ¿ � 0. Such models arise in fluid mechanics in vortex-sheet

problems and its nonlocal feature comes from the presence of a singular integral operator

(Hilbert transform Hpuq) in the velocity field; see, e.g., [2] for more details on how and

why the nonlocal Hilbert transform arises in the context of fluid dynamics. Additionally,

in [47], a fully-discrete Lagrangian-Eulerian scheme was formally applied for a numerical

investigation to demonstrate evidence of blow-up and explore other qualitative properties

of solutions for a nonlinear 1D transport equation with doubly nonlocal velocity, involving

the interaction between the Riesz potential denoted as Λ³�1 and the Hilbert transform

denoted as H. The equation of interest is given as ut � puΛ³�1Hpuqqx � 0. Therefore,

[2] and [47] were the first to implement the fully-discrete nonlocal Lagrangian-Eulerian

scheme for the 1D case.

Continuing in the same direction, we aim to implement the fully-discrete

nonlocal Lagrangian-Eulerian method to numerically investigate the global well-posedness,

evidence of blow-up, attenuation, and other proprieties geometrics of the solutions of a

conservation law with partially nonlocal velocity (3.46). In this equation, the velocity field

is obtained through the composition of two nonlocal partial operators.$&%Bt¹ �∇ � p¹vq � 0, with v � pΛ³�1

1
H1¹,Λ

³�1

2
H2¹q

¹px, y, 0q � ¹0px, yq,
(3.46)

where px, y, tq P Ω� pt0, T s � R
2 �R

� and ¹0 P LppR2q Y t¸u with ¸ P WM̃l
p (modified

weak-Morrey space) which is defined as ¸px, yq � 1

x2 � y2
, that is, ¹0 : Ω� t0u ÝÑ R is

a not necessarily regular function, and T � tf ¡ 0.
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3.4.1 The nonlocal No-Flow curve and the nonlocal Lagrangian-Eulerian

approach for a conservation law with partially nonlocal velocity

In this subsection, we are going to present the numerical approximations we will

use to solve numerically the underlying conservation law with partially nonlocal velocity.

First, we define the space-time domain, or the no-flow tube, in one spatial

variable, this is

Dn
j � tpt, xq { tn ¤ t ¤ tn�1, Ãn

j ptq ¤ x ¤ Ãn
j�1

ptqu. (3.47)

To u � upx, tq, a conserved variable in 1D case, we define the approximations

Un
j � 1

h

» xn

j� 1

2

xn

j� 1

2

upx, tnqdx, and U
n�1

j � 1

hn�1

j

» xn�1

j� 1

2

xn�1

j� 1

2

upx, tn�1qdx j P Z, (3.48)

j, n � 1, 2, 3, 4, � � � . The first is in the original grid (homogeneous grid in tn time) and the

second one (non-homogeneous grid in tn�1 time).

To u � upx, y, tq, a conserved variable, in 2D case, we use an approximation of

the form

Un
i,j �

1

∆y

1

∆x

» yn

j� 1

2

yn

j� 1

2

» xn

i� 1

2

xn

i� 1

2

upx, y, tnqdxdy, (3.49)

U
n�1

i,j � 1

∆y
n�1

1

∆x
n�1

» ȳn�1

j� 1

2

ȳn�1

j� 1

2

» x̄n�1

i� 1

2

x̄n�1

i� 1

2

upx, y, tn�1qdxdy. (3.50)

Again, the first is in the original grid (homogeneous grid in tn time) and the

second one (non-homogeneous grid in tn�1 time). The approximations defined before

having a sense when they join with the following definitions for i, j � 1, 2, ....

In the time level tn, we have

pxn
i , y

n
j q � pi∆x, j∆yq and

�
xn

i� 1

2

, yn
j� 1

2

	
�
�
i∆x� ∆x

2
, j∆y � ∆y

2



,

on the uniform local grid (or primal grid). Here

∆xn � xn
i� 1

2
,j
� xn

i� 1

2
,j

and ∆yn � yn
i,j� 1

2

� yn
i,j� 1

2

for i, j � 1, 2...,

where
�
xn

i� 1

2

, yn
j� 1

2

	
are the corners of the pi, jq-cell. For the nonuniform grid in the time

level tn�1, we have

∆x
n�1 � xn�1

i� 1

2
,j
� xn�1

i� 1

2
,j

and ∆y
n�1 � yn�1

i,j� 1

2

� yn�1

i,j� 1

2

for i, j � 1, 2, ..
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The pair pxn
i , y

n
j q are the centers of the region Rn

i,j � rxn
1� 1

2

, xn
1� 1

2

s � ryn
1� 1

2

, yn
1� 1

2

s with

i, j � 1, 2, ..., which we call pi, jq-cell in time tn. Furthermore, on each pi, jq-cell in time tn.

The approximate solution of u is Un
i,j in each cell rxn

i� 1

2

, xn
i� 1

2

s � ryn
j� 1

2

, yn
j� 1

2

s (see Figure

1) and the approximation of u in the non-uniform grid is U
n�1

i,j in the non regular cell

rxn�1

i� 1

2

, xn�1

i� 1

2

s � ryn�1

i� 1

2

, yn�1

i� 1

2

s. All these approximations, along with the initial condition

Upx0

j , y
0

j , t
0q � U0

i,j.

The control volume of the Lagrangian-Eulerian scheme in 2D will denoted by

Dn
i,j see [12] and [9]. This control volume is a solid in R

3 and is composed of triples px, y, tq
situated between the regions Rn

i,j and R
n�1

i,j , where R
n�1

i,j is determined by the No-Flow

curves Ãn
i,jptq with i, j � 1, 2, ... and tn ¤ t ¤ tn�1. Thus, the border of the control volume

Dn
i,j is given by BDn

i,j � Rn
i,j Y Sn

i,j YR
n�1

i,j , where

• Rn
i,j � rxn

i� 1

2

, xn
j� 1

2

s � ryn
i� 1

2

, yn
j� 1

2

s � R
2 is the entry of the no-flow surface region,

• R
n�1

i,j � rxn�1

i� 1

2

, xn�1

j� 1

2

s� ryn�1

i� 1

2

, yn�1

j� 1

2

s � R
2 is the exit of the no-flow surface region, and

• Sn
i,j � R

3, is the lateral surface of the no-flow region.

Figure 1 – Two-dimension cell, Ri,j-cell.

3.4.2 Approximation of the partial Hilbert transform

For a function f : R2 ÝÑ R the definition of the partial Hilbert transform on

the X axis and on the Y are given by

H1rfpx, yqs � 1

Ã
p.v.

» 8

�8

fpu, yq
x� u

du � 1

Ã
lim

ϵÑ0�

»
|u�x|¡ϵ

fpu, yq
x� u

du,

H2rfpx, yqs � 1

Ã
p.v.

» 8

�8

fpx, vq
y � v

dv � 1

Ã
lim

ϵÑ0�

»
|v�y|¡ϵ

fpx, vq
y � v

dv.
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For ∆x ¡ 0, let Äx � txn � x0 � n∆xuN
n�0

be a uniform grid on the X axis of

N � 1 points that determine the closed interval IÄx
� rx0, xN s. Given a fixed y P R and

assuming that the grid must be such that the function fpx, yq can be approximated by

zero outside IÄx
� tyu � rx0, xN s � rys. Then, for each interior point pxk, yq P IÄx

� tyu
with k � 1, . . . , N � 1, we can approximate the partial Hilbert transform on the X axis as

H1rfpxk, yqs � 1

Ã
lim

ϵÑ0�

N�1̧

n�0

»
|u�xk|¡ϵ, xn¤u¤xn�1

fpu, yq
xk � u

du

� 1

Ã
lim

ϵÑ0�

�» xk�ϵ

xk�1

fpu, yq
xk � u

du�
» xk�1

xk�ϵ

fpu, yq
xk � u

du

�

� 1

Ã

k�2̧

n�0

» xn�1

xn

fpu, yq
xk � u

du � 1

Ã

N�1̧

n�k�1

» xn�1

xn

fpu, yq
xk � u

du. (3.51)

Note that, in the previous approximation, the y is fixed, and if the values of

nodes fpxk, yq are known in each interval rxn, xn�1s the function fpu, yq is approximated

by linear polynomial interpolation,

fpu, yq � fpxn, yq � fpxn�1, yq � fpxn, yq
∆x

pu� xnq, (3.52)

using the approximation (3.52) in the approximation of the partial Hilbert transform on

the X axis (3.51) we will get

H1rfpxk, yqs � � 1

Ã
tfpxk�1, yq � fpxk�1, yq

�
N�1�k¸

n�1

r�p1� pn� 1qbnqfpxk�n, yq � p1� nbnqfpxk�n�1, yqs

�
k�1̧

n�1

rp1� pn� 1qbnqfpxk�n, yq � p1� nbnqfpxk�n�1, yqsu, (3.53)

where

bn � log

�
n� 1

n



.

The expression on the right-hand side of equation (3.53) defines a linear

operator that approximates the partial Hilbert transform on the X axis for the vector

F � pfpx0, yq, fpx1, yq, � � � , fpxN , yqq at the interior points within the grid IÄx. This

operator is de as the discrete partial Hilbert transform on the X axis, represented as HÄx,

and it can be expressed in matrix form as

HÄx
F � AFint � CFbnd, (3.54)
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where the vector F has been split into its projection on internal nodes Fint � pfpx1, yq, � � � ,
fpxN�1, yqq and boundary points Fbnd � pfpx0, yq, fpxNq, yq, whereas A is a pN � 1q �
pN � 1q antisymmetric Toeplitz matrix,

A �

������
a0 a1 � � � aN�3 aN�2

�a1 a0 � � � aN�4 aN�3

...
...

...
...

...

�aN�2 �aN�3 � � � �a1 a0

�����
, (3.55)

where the matrix entries are given by

ak � � 1

Ã

$'''&'''%
0, for k � 0,

2b1, for k � 1,

pk � 1qbk � pk � 1qbk�1, for k ¡ 1,

(3.56)

and C is a rectangular pN � 1q � 2 matrix

C �

������
0 CN�1

�c1 CN�2

...
...

�CN�1 0

�����
, (3.57)

where

ck � � 1

Ã
p1� kbkq.

Remark: An antisymmetric Toeplitz matrix is completely defined by its first row. Thus

the evaluation of the N � 1 elements pa0, � � � , aN�2q is enough to complete determine A.

Analogously, for the discrete partial Hilbert transform on the Y axis, we take

∆y ¡ 0, let Äy � tyn � y0 � n∆yuN
n�0

be a uniform grid on the Y axis of N � 1 points that

determine the closed interval IÄy
� ry0, yN s. Given a fixed x P R and assuming that the grid

must be such that the function fpx, yq can be approximated by zero outside txu � IÄy
�

rxs � ry0, yN s. Then, for each interior point px, ykq P txu � IÄy
with k � 1, . . . , N � 1, we

have

H2rfpx, ykqs � 1

Ã
lim

ϵÑ0�

N�1̧

n�0

»
|v�yk|¡ϵ, yn¤u¤yn�1

fpx, vq
yk � v

dv

� 1

Ã
lim

ϵÑ0�

�» yk�ϵ

yk�1

fpx, vq
yk � v

dv �
» yk�1

yk�ϵ

fpx, vq
yk � v

dv

�

� 1

Ã

k�2̧

n�0

» yn�1

yn

fpx, vq
yk � v

dv � 1

Ã

N�1̧

n�k�1

» yn�1

yn

fpx, vq
yk � v

dv. (3.58)
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Notice that, in the previous approximation the x is fixed and if the values of

nodes fpx, ykq are known in each interval ryn, yn�1s the function fpx, vq is approximated

by linear polynomial interpolation,

fpx, vq � fpx, ynq � fpx, yn�1q � fpx, ynq
∆y

pv � ynq, (3.59)

using the approximation (3.59) in the approximation of the partial Hilbert transform on

the Y axis (3.58), we will get

H2rfpx, ykqs � � 1

Ã
tfpx, yk�1q � fpx, yk�1q

�
N�1�k¸

n�1

r�p1� pn� 1qbnqfpx, yk�nq � p1� nbnqfpx, yk�n�1qs

�
k�1̧

n�1

rp1� pn� 1qbnqfpx, yk�nq � p1� nbnqfpx, yk�n�1qsu, (3.60)

where

bn � log

�
n� 1

n



.

The expression on the right-hand side of equation (3.60) establishes a linear

operator that provides an approximation of the partial Hilbert transform on the Y axis

for the vector F̃ � pfpx, y0q, fpx, y1q, � � � , fpx, yNqq at the interior points within the grid

txu � IÄy. This operator is defined as the discrete partial Hilbert transform on the Y axis,

denoted as HÄy, and it can be expressed in matrix form as

HÄy
F̃ � AF̃int � CF̃bnd, (3.61)

where the vector F̃ has been split into its projection on internal nodes F̃int � pfpx, y1q, ...,
fpx, yN�1qq and boundary points F̃bnd � pfpx, y0q, fpx, yNqq, additionally, the matrices A

and C have already been defined.

3.4.3 Approximation of the partial Riesz potential

For a function f : R2 ÝÑ R and a parameter ³ P p0, 1q, the definition of the

partial Riesz potential on the X axis and the Y axis is as follows:

Λ³�1

1
rfpx, yqs � c³

»
R

fpu, yq
|x� u|³

du,

Λ³�1

2
rfpx, yqs � c³

»
R

fpx, vq
|y � v|³

dv,

where,

c³ � Γp³
2
q

21�³
?
ÃΓp1�³

2
q . (3.62)
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For ∆x ¡ 0, let Äx � txn � x0 � n∆xuN
n�0

be a uniform grid on the X axis of

N � 1 points that determine the closed interval IÄx
� rx0, xN s. Given a fixed y P R and

assuming that the grid must be such that the function fpx, yq can be approximated by

zero outside IÄx
� tyu � rx0, xN s � rys. Then, for each interior point pxk, yq P IÄx

� tyu
with k � 1, . . . , N � 1, then we can approximate the partial Riesz potential on the X axis

as

Λ³�1

1
rfpxk, yqs � c³

N�1̧

n�0

» xn�1

xn

fpu, yq
|xk � u|³

du

� c³

�
N�1̧

n�0

» xn�1

xn

fpu, yq
pxk � uq³du �

N�1̧

n�0

» xn�1

xn

fpu, yq
pu� xkq³du

�
. (3.63)

Notice that, in the previous approximation, the variable y remains fixed, and if

the values of nodes fpxk, yq are known in each interval rxn, xn�1s, we can approximate the

function fpu, yq using linear polynomial interpolation

fpu, yq � fpxn, yq � fpxn�1, yq � fpxn, yq
∆x

pu� xnq. (3.64)

For calculation purposes, we omit the constant c³, and using the approximation (3.64) in

the partial Riesz potential approximation (3.63), we get
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Λ³�1

1
rfpxk, yqs �

k�1̧

n�0

» xn�1

xn

�
fpxn, yq
pxk � uq³ � fpxn�1, yq � fpxn, yq

∆x
� pu� xnq
pxk � uq³



du

�
N�1̧

n�k

» xn�1

xn

�
fpxn, yq
pxk � uq³ � fpxn�1, yq � fpxn, yq

∆x
� pu� xnq
pxk � uq³



du

�
k�1̧

n�0

�fpxn, yq
�pxk � uq1�³

1� ³

�u�xn�1

u�xn

�
k�1̧

n�0

fpxn�1, yq � fpxn, yq
∆x

» xn�1

xn

pu� xnq
pxk � uq³du

�
N�1̧

n�k

fpxn, yq
�pu� xkq1�³

1� ³

�u�xn�1

u�xn

�
N�1̧

n�k

fpxn�1, yq � fpxn, yq
∆x

» xn�1

xn

pu� xnq
pxk � uq³du

�
k�1̧

n�0

�fpxn, yq
�pxk � uq1�³

1� ³

�u�xn�1

u�xn

�
k�1̧

n�0

fpxn�1, yq � fpxn, yq
∆x

�» xn�1

xn

�
xk � xn

pxk � uq³ � 1

pxk � uq³�1



du�

N�1̧

n�k

fpxn, yq
�pu� xkq1�³

1� ³

�u�xn�1

u�xn

�
N�1̧

n�k

fpxn�1, yq � fpxn, yq
∆x

» xn�1

xn

�
xk � xn

pxk � uq³ � 1

pxk � uq³�1



du

�
k�1̧

n�0

�fpxn, yq
1� ³

tpxk � xn�1q1�³ � pxk � xnq1�³u

�
k�1̧

n�0

fpxn�1, yq � fpxn, yq
∆x

t�pxk � xnq
1� ³

rpxk � xn�1q1�³ � pxk � xnq1�³s

� pxk � xn�1q2�³ � pxk � xnq2�³

2� ³
u �

N�1̧

n�k

fpxn, yq
1� ³

tpxn�1 � xkq1�³ � pxn � xkq1�³u

�
N�1̧

n�k

fpxn�1, yq � fpxn, yq
∆x

tpxk � xnq
1� ³

rpxn�1 � xkq1�³ � pxn � xkq1�³s

� pxn�1 � xkq2�³ � pxn � xkq2�³

2� ³
u,

given that xk � k∆x for k � 0, � � � , N , so

Λ³�1

1
rpfpxk, yqqs �

k�1̧

n�0

�fpxn, yq∆x1�³

1� ³
tpk � n� 1q1�³ � pk � nq1�³u

�
k�1̧

n�0

"�pk � nq
1� ³

rpk � n� 1q1�³ � pk � nq1�³s � pk � n� 1q2�³ � pk � nq2�³

2� ³

*
�

fpxn�1, yq � fpxn, yq
∆x1�³

�
N�1̧

n�k

fpxn, yq∆x1�³

1� ³
rpn� 1� kq1�³ � pn� kq1�³s

�
N�1̧

n�k

"pk � nq
1� ³

rpn� 1� kq1�³ � pn� kq1�³s � pn� 1� kq2�³ � pn� kq2�³

2� ³

*
�

fpxn�1, yq � fpxn, yq
∆x1�³

,
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to simplify the notation, we introduce a change of indices as follows: m � n� k, which

implies n � k �m

Λ³�1

1
rfpxk, yqs �

∆x1�³
k�1̧

n�0

�
"
p1�mqpm� 1q1�³ �m1�³

1� ³
� pm� 1q2�³ �m2�³

2� ³

*
fpxk�m, yq�

∆x1�³
k�1̧

n�0

fpxk�m�1, yq
" �m

1� ³
ppm� 1q1�³ �m1�³q � pm� 1q2�³ �m2�³

2� ³

*
�

∆x1�³
N�1̧

n�k

�
p1� pk � nqqpn� 1� kq1�³ � pn� kq1�³

1� ³
� pn� 1� kq2�³ � pn� kq2�³

2� ³



�

fpxn, yqq � ∆x1�³
N�1̧

n�k

fpxn�1, yqq��
k � n

1� ³
tpn� 1� kq1�³ � pn� kq1�³u � pn� 1� kq2�³ � pn� kq2�³

2� ³



,

again, changing the indices m � n�k�1 Ñ n � m�k�1, we have that the approximation

is

Λ³�1

1
rfpxk, yqs �

�∆x1�³
ķ

m�1

�
�fpxk�m, yq

"
p1�mq

�
m1�³ � pm� 1q1�³

1� ³



� m2�³ � pm� 1q2�³

2� ³

*�
�∆x1�³

k�1̧

n�0

fpxk�m�1, yq
�

m

1� ³
rm1�³ � pm� 1q1�³s � m2�³ � pm� 1q2�³

2� ³



�∆x1�³

N�ķ

m�1

�
fpxm�k�1, yq

"
m

�
m1�³ � pm� 1q1�³

1� ³



� m2�³ � pm� 1q2�³

2� ³

*�
�∆x1�³

N�ķ

m�1

fpxm�k, yq
�p1�mq

1� ³
rm1�³ � pm� 1q1�³s � m2�³ � pm� 1q2�³

2� ³



.

Finally, we have that the numerical approximation of the partial Riesz potential

on the X axis that was obtained is:

Λ³�1

1
rfpxk, yqs � ∆x1�³

ķ

m�1

tfpxk�m, yqrp1�mqam � bms � fpxk�m�1, yqpmam � bmqu

�∆x1�³
N�ķ

m�1

tfpxm�k�1, yqpmam � bmq � fpxm�kqrp1�mqam � bmsu,

(3.65)

where

am � m1�³ � pm� 1q1�³

1� ³
; bm � m2�³ � pm� 1q2�³

2� ³
.
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The right-hand side of (3.65) defines a linear operator that computes the partial

Riesz potential of F � pfpx0, yq, fpx1, yq, � � � , fpxN�1, yq, fpxN , yqq on the X axis at the

interior points of IÄx
� tyu. If we denote by

Fint � pfpx1, yq, fpx2, yq, � � � , fpxxN�1
, yqq and Fbnd � pfpx0q, fpxNqq, (3.66)

then

Λ³�1F � pA�BqFint �DFbnd, (3.67)

where

A �

������������������

ã1 ã2 ã3 ã4 ãN�2 ãN�1

ã2 ã1 ã2 ã3 ãN�2

ã3 ã2 ã1 ã2 ãN�3

ã4 ã3 ã2 ã1 ãN�3

ãN�2 ã2 ã1 ã2

ãN�1 ãN�2 ã3 ã2 ã1

�����������������

, (3.68)

with

ãk �
$&%�2a1, k � 1,

kak � pk � 2qak�1, k � 2, � � � , N � 1,

B �

������������������

b̃1 b̃2 b̃3 b̃4 b̃N�1

b̃2 b̃1 b̃2 b̃3 b̃N�2

b̃3 b̃2 b̃1 b̃2 b̃N�3

b̃4 b̃3 b̃2 b̃1 b̃N�3

b̃N�2 b̃2 b̃1 b̃2

b̃N�1 b̃3 b̃2 b̃1

�����������������

, (3.69)

with

b̃k �
$&%�2b1, k � 1,

bk�1 � bk, k � 2, � � � , N � 1,
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C �

��������������������������

c1 cN�1

c2 cN�2

c3 cN�3

c4 cN�4

cN�2 c2

cN�1 c1

�������������������������


, (3.70)

where

ck � p1� kqak � bk , k � 1, � � � , N � 1.

Fixing an x P R and proceeding analogously with the calculations made, we

can approximate the partial Riesz potential operator on the Y axis,

Λ³�1

2
rfpx, ykqs � ∆y1�³

ķ

m�1

rfpx, yk�mqtp1�mqam � bmu � fpx, yk�m�1, yqpmam � bmqs

�∆y1�³
N�ķ

m�1

rfpx, ym�k�1qtmam � bmu � fpx, ym�kqrp1�mqam � bmss.

(3.71)

The right-hand side of (3.71) defines a linear operator that computes the partial Riesz

potential of F̃ � pfpx, y0q, fpx, y1q, � � � , fpx, yN�1, yq, fpx, yNqq on the Y axis at the interior

points of txu � IÄy
. If we denote by

F̃int � pfpx, y1q, fpx, y2q, � � � , fpx, yxN�1
qq and F̃bnd � pfpx, y0q, fpx, yNqq, (3.72)

then

Λ³�1F̃ � pA�BqF̃int �DF̃bnd, (3.73)

where the matrices A,B, and D have already been defined.

3.4.4 The No-Flow Curve in the Hyperbolic Conservation Law, the Simplest

Case and Some Advantages

The first problem we will consider is the simple conservation law

Bu
Bt �

BHpuq
Bx � 0, upx, 0q � ¸pxq, (3.74)
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which is equivalent to, see [12],$''''''&''''''%

Bµn
i

Bt � Hpuq
u

, µn
i ptnq � xn

i ,

» xn�1

j� 1

2

xn�1

j� 1

2

upx, tn�1qdx �
» xn

j�1

xn
j

upx, tnqdx.
(3.75)

Here, xi is the center of the cell rxi� 1

2

, xi� 1

2

s, i � 1, 2, 3.... In the representation

(3.75),
Hpuq
u

is the non-flow curve in the theory sense. And

fi � HpUn
i q

Un
i

, (3.76)

is the non-flow curve in the numeric sense, hereinafter the No-Flow curve. The Lagrangian-

Eulerian method is defined as (see details in [12])

Un�1

i � Un
i �

kn

h

�
F pUi, U

n
i�1
q � F pUn

i�1
, Un

i q
�
, (3.77)

where the associated Lagrangian–Eulerian numerical flux function that depends explicitly

on the mesh parameters h, k and the No-Flow curve fi, is defined by

F pUn
i , U

n
i�1
, h, kq � 1

4

�
h

kn

�
Un

j � Un
i�1

�� h

hn�1

i

�
fn

i�1
� fn

i

� �
Un

i�1
� Un

i

��
. (3.78)

This numerical method has a CFL condition, called weak-CFL because it does not depend

on the derivative, which depends only on the No-Flow curve. The CFL condition is

max
i
t|fi|u∆t

∆x
¤ 1

2
.

The No-Flow curve adds some advantages to the numerical method, for example,

the fact of not depending on the derivative. This fact can be noted in the CFL condition,

making the method more versatile and robust.

For example, when we consider the Cauchy problem for the inviscid 1D transport

model with nonlocal flux, like in [2], we rewrite model (3.74) in the computational domain

ra, bs (with ¿ � 0),

utpx, tq � pF pt, x, uqqx � 0, px, tq P Ω� p0, T s, (3.79)

upa, tq � 0, upb, tq � 0, t P r0, T s, (3.80)

upx, 0q � fpxq, x P Ω, (3.81)

where F pt, x, uq :� pH puquq; recall that H is the Hilbert transform, which is given by

the principal value (1.6) from [2]. Then, if we consider Un as an approximation of u in

all domains, we can use the numerical method (3.77) and (3.78) only replacing fi by
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F ptn, xi, U
nq

Un
� H pUnq but now, fi represents a nonlocal operator, not a function. The

Hilbert transform approximation can be done as explained before.

The Lagrangian-Eulerian method for the 2D initial value problem for hyperbolic

of conservation laws is:$'&'%
Bu
Bt �

Bfpuq
Bx � Bgpuq

By � 0, px, y, tq P Ω� pt0, T s,
upx, y, t0q � ¸px, yq, px, yq P Ω.

(3.82)

Assuming that the integration volume is impermeable through its lateral surface

Sn
i,j, and that there is only flow through this volume at the inlet Rn

i.j and outlet R̄n�1

i.j , the

divergence theorem allows us to write the conservation law (3.82) as (see details in [6])$'''''''''&'''''''''%

¼
R

n�1

i,j

upx, y, tn�1q dRn�1

i,j �
¼
Rn

i,j

upx, y, tnq dRn
i,j

$&%Ã1i� 1

2
,j
ptq � f puq

u
,

Ãi� 1

2
,jptnq � xi� 1

2

,

$&%Ã1i,j� 1

2

ptq � g puq
u

,

Ãi,j� 1

2

ptnq � yj� 1

2

,

(3.83)

In the previous problem, we can identify the non-flow curves in the theoretical sense; these

are
f puq
u

and
g puq
u

; they start from the midpoints of the sides of the cell Rn
i.j, see figure

3.4.4. Using the approximations Un
i� 1

2
,j
, Un

i,j� 1

2

to u in the midpoints of the cell Rn
i,j we

have the approximate problem to (3.83)$''''''''''''&''''''''''''%

¼
R

n�1

i,j

upx, y, tn�1q dRn�1

i,j �
¼
Rn

i,j

upx, y, tnq dRn
i,j

$'''&'''%
Ã1

i� 1

2
,j
ptq �

f
�
Un

i� 1

2
,j

	
Un

i� 1

2
,j

,

Ãi� 1

2
,jptnq � xi� 1

2

,

$'''&'''%
Ã1

i,j� 1

2

ptq �
g
�
Un

i,j� 1

2

	
Un

i,j� 1

2

,

Ãi,j� 1

2

ptnq � yj� 1

2

.

(3.84)

This last problem is the basis for constructing the Lagrangian-Eulerian method in two

spatial dimensions. Let us look at this; take the first equation called the conservation

identity in this context¼
R

n�1

i,j

upx, y, tn�1q dRn�1

i,j �
¼
Rn

i,j

upx, y, tnq dRn
i,j. (3.85)

The numerical approximations Un
i,j and U

n�1

i,j appearing in (3.49) and (3.50) join with the

conservation identity (3.85) can be used to calculate naturally the following identity,
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U
n�1

i,j � 1

Ri,j

»
R

n�1

i,j

upx, y, tn�1q dA � Ri,j

Ri,j

1

Ri,j

»
Rn

i,j

upx, y, tnq dA � Ri,j

Ri,j

Un
i,j, (3.86)

[The pi, jq� cell in time tn, Rn
i,j.]

[The parameterized curves from time level tn to tn�1.]

Figure 2 – The construction of the control volume for the Lagrangian-Eulerian scheme
Dn

i,j.

We recall that, here the No-Flow curve are defined in the same way as before in

the case of one dimension as
f
�
Un

i� 1

2
,j

	
Un

i� 1

2
,j

� fi� 1

2
,j,
f
�
Un

i� 1

2
,j

	
Un

i� 1

2
,j

� fi� 1

2
,j

g
�
Un

i,j� 1

2

	
Un

i,j� 1

2

� gi,j� 1

2

,

g
�
Un

i,j� 1

2

	
Un

i,j� 1

2

� gi,j� 1

2

. Thus, we may approximate curves at tn   t   tn�1 as: Ãi� 1

2
,jptq �

pxi� 1

2

, yjq� pt� tnqfi� 1

2

, Ãi� 1

2
,jptq � xi� 1

2

�pt� tnqfi� 1

2
,j , Ãi,j� 1

2

ptq � yj� 1

2

�pt� tnqgi,j� 1

2

,

and Ãi,j� 1

2

ptq � yj� 1

2

� pt � tnqgi,j� 1

2

. The approximation of the volume Dn
i,j gives (see

Figure 2):

Di,j � tpt, x, yq{tn ¤ t   tn�1, Ãi� 1

2
,jptq ¤ x   Ãi� 1

2
,jptq, Ãi,j� 1

2

ptq ¤ y   Ãi,j� 1

2

ptqu.

Finally, the Lagrangian-Eulerian scheme with conservation property is given

by:
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STEP I (Lagrangian Forward Evolution, see Figure 3.4.4)

U
n�1

i,j � ApRi,jq
ApRi,jq

Un
i,j, with ApRi,jq � h2 and ApRi,jq � hn

i � hn
j (3.87)

where hn
i � hn

j � ph� pfi�1{2,j � fi�1{2,jq∆tq � ph� pgi,j�1{2 � gi,j�1{2q∆tq.
STEP II (Eulerian Remap, see Figure 3)

Un
i,j �

1

ApRi,jq
pK1 �K2 �K3q, (3.88)

where K1 � c11U
n�1

i�1,j�1
� c12U

n�1

i,j�1
� c13U

n�1

i�1,j�1
, K2 � c21U

n�1

i�1,j � c22U
n�1

i,j � c23U
n�1

i�1,j and

K3 � c31U
n�1

i�1,j�1
� c32U

n�1

i,j�1
� c33U

n�1

i�1,j�1
.

Figure 3 – Location of ci,j coefficients.

The construction of the coefficients of the Eulerian remap, ci,j, can be obtained

from the definition of fn
i�1{2,j and gn

i,j�1{2 (see Figure 4). For this construction the motivation

is given by
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c11 � p�fn
i�1{2,j∆tqp�gn

i,j�1{2∆tq
c12 � p∆xqp�gn

i,j�1{2∆tq
c13 � pfn

i�1{2,j∆tqp�gn
i,j�1{2∆tq

c21 � p�fn
i�1{2,j∆tqp∆yq

c22 � p∆xqp∆yq
c23 � pfn

i�1{2,j∆tqp∆yq
c31 � p�fn

i�1{2,j∆tqpgn
i,j�1{2∆tq

c32 � p∆xqpgn
i,j�1{2∆tq

c33 � p�fn
i�1{2,j∆tqpgn

i,j�1{2∆tq

(+)

(+)

(+)

(-) (-)

(-)

(+)

(-)

Figure 4 – Motivation for the construction of ci.j coefficients.

Next, we define the vector

Cx � rCxl, Cx0
, Cxrs (3.89)

where,

Cxl � 0.5p1� signpfn
i�1{2,jqqfn

i�1{2,j∆t

Cxr � 0.5p1� signpfn
i�1{2,jqqfn

i�1{2,j∆t

Cx0
� ∆x� Cxl � Cxr.

Similarly, let us define the vector

Cy � rCyl, Cy0
, Cyrs (3.90)
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where

Cyl � 0.5p1� signpgn
i,j�1{2qgn

i,j�1{2∆t

Cyr � 0.5p1� signpgn
i,j�1{2qqgn

i,j�1{2∆t

Cy0
� ∆y � Cyl � Cyr.

Then, the coefficients of the Eulerian remap ci,j from (3.87)-(3.88) are defined

as the matrix entries

C � pci,jq � CT
x Cy �

���CxlCyl CxlCy0
CxlCyr

Cx0
Cyl Cx0

Cy0
Cx0

Cyr

CxrCyl CxrCy0
CxrCyr

��� . (3.91)

By definition of matrix, step II

Ai,j �

��� U
n�1

i�1,j�1
U

n�1

i,j�1
U

n�1

i�1,j�1

U
n�1

i�1,j U
n�1

i,j U
n�1

i�1,j

U
n�1

i�1,j�1
U

n�1

i,j�1
U

n�1

i�1,j�1

��� (3.92)

the Lagrangian forward evolution (Step I) and the Eulerian remap (Step II) over the

original grid may be recast as:

Un�1

i,j � CxA
T
i,jC

T
y , (3.93)

or in the form of a conservative monotone scheme, as,

Un�1

i,j � Un
i,j�¼x∆x

�F pUn
i�p,i�r, ..., U

n
i�q�1,j�s�1

q�¼y∆
y
�GpUn

i�p,j�r, ..., U
n
i�q�1,j�s�1

q (3.94)

where ¼x � ∆t{∆x, ¼y � ∆t{∆y, p∆x
�qj,k � Uj�1,k � Uj,k and p∆y

�qj,k � Uj,k�1 � Uj,k, and

taking h � ∆x � ∆y, we have,

F pUn
i�1,j�1

, ..., Un
i�1,j�1

q �

FRpUn
i,j�1

, Un
i�1,j�1

, Un
i�1,j, U

n
i,j, U

n
i,j�1

q � FLpUn
i�1,j�1

, , Un
i�1,j, U

n
i,j�1

, Un
i,j, U

n
i,j�1

q,

where

FR � hCxl

�
U

n�1

i�1,j � U
n�1

i,j

	
�

CxlCyr

�
U

n�1

i�1,j�1
� U

n�1

i�1,j � pUn�1

i,j�1
� U

n

i,jq
	
� 1

2
pfpUn

i�1,jq�2fpUn
i,jq�fpUn

i�1,jqq,

FL � hCxlCyl

�
U

n�1

i�1,j � U
n�1

i,j

	
�

CxlCyl

�
U

n�1

i�1,j�1
� U

n�1

i,j�1
� pUn�1

i�1,j � U
n�1

i,j q
	
�1

2
pfpUn

i�1,jq�2fpUn
i,jq�fpUn

i�1,jqq.
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and

GpUn
i�1,j�1

, ..., Un
i�1,j�1

q �

GRpUn
i�1,j, U

n
i,j, U

n
i�1,j�1

, Un
i,j�1

, Un
i�1,jq �GLpUn

i�1,j, , U
n
i,j, U

n
i,j�1

, Un
i�1,j, U

n
i,j�1

q,

GR � hCyl

�
U

n�1

i,j�1
� U

n�1

i,j

	
�

Cxr �Cyl

�
U

n�1

i�1,j�1
� U

n�1

i�1,j � pUn�1

i,j�1
� U

n�1

i,j q
	
� 1

2
pgpUn

i,j�1
q � 2gpUn

i,jq � gpUn
i,j�1

qq,

GL � hCyl

�
U

n�1

i,j�1
� U

n�1

i,j

	
�

Cxr � Cyr

�
U

n�1

i�1,j�1
� U

n�1

i�1,j � pUn�1

i,j�1
� U

n�1

i,j q
	
� 1

2
pgpUn

i,j�1
q � 2gpUn

i,jqgpUn
i,j�1

qq.

We can note that F and G satisfy condition (3.26) from [6]; this implies that

the equation is consistent with (3.82), and thus, the numerical method to 2D-hyperbolic

equations is monotone.

The CFL condition based on the No-Flow curves, which is called weak-CFL

condition in this context, is given by

max
i,j

t|fn
i�1{2,j|, |fn

i�1{2,j|, |gn
i,j�1{2|, |gn

i,j�1{2|u
∆t

∆x
¤ 1

2
. (3.95)

To Improve numerically the solution of the generalized ODE system$''&''%
Ã1

i� 1

2
,j
ptq �

f
�
Ui� 1

2
,j

	
Ui� 1

2
,j

,

Ãi� 1

2
,jptnq � xi� 1

2

,

$''&''%
Ã1

i,j� 1

2

ptq �
g
�
Ui,j� 1

2

	
Ui,j� 1

2

,

Ãi,j� 1

2

ptnq � yj� 1

2

,

(3.96)

with conservation and robustness solutions, for example, to Ãn
i�1{2,jptq of the differential

system $''&''%
Ã1

i� 1

2
,j
ptq �

f
�
Ui� 1

2
,j

	
Ui� 1

2
,j

,

Ãi� 1

2
,jptnq � xi� 1

2

,

(3.97)

we may use the approximations

Ui� 1

2
,j � 1

h

» xn
i,j

xn
i�1,j

Lpx, tqdx � 1

h

��» xn

i� 1

2
,j

xn
i�1,j

Li�1,jpx, tqdx�
» xn

i,j

xn

i� 1

2
,j

Li,jpx, tqdx
�


� 1

2
pUi�1,j � Ui,jq � 1

8
pU 1

i,j � U 1
i,j�1

q.

(3.98)



Chapter 3. A Conservation Law with Partially Nonlocal Velocity 75

Distinct and high-order approximations are also acceptable for
dÃn

j�1{2ptq
dt

� fpuq
u

as in

(3.83). As in [6], the piecewise constant numerical data is reconstructed into a piecewise

linear approximation through the use of MUSCL-type interpolants:

Li,jpx, tq � ui,jptq � px� xjq 1

∆x
u1i,j. (3.99)

For the numerical derivative
1

∆x
u1i,j, there are several choices of slope limiters for scalar

case [6, 8].

Finally, to show the reconstruction’s flexibility, we use the nonlinear Lagrange

polynomial in Un
i�1,j, U

n
i,j�1

, Un
i,j, U

n
i,j�1

and Un
i�1,j. So, equation (3.87) reads

U
n�1

i,j � 1

hn�1

j

» sn

j� 1

2

sn

j� 1

2

P2px, yqds, (3.100)

where s � x, y and

P2px, yq � Un
i�1,j L�1px� xiq � Un

i,j�1
L�1py � yjq � Un

i,j L0px� xiq � Un
i,j L0py � yjq

� Un
i�1,j L1px� xjq � Un

i,j�1
L1py � yjq

and

L� 1pxq � 1

2

��
x

h
� 1

2


2

� 1

4

�
, L0pxq � 1�

�x
h

	2

.

3.4.5 Numerical Experiments with the Lagrangian-Eulerian with Conservation

Properties

We present a benchmark comprehensive set of numerical tests that explore

the role of the accuracy of our new 2D Lagrangian-Eulerian scheme with conservation

properties.

3.4.6 A Lagrangian–Eulerian scheme for a conservation law with partially

nonlocal velocity

In this subsection, our objective is to develop a fully-discrete nonlocal Lagrangian-

Eulerian scheme, utilizing the concept of the space-time No-Flow curve. This scheme is

crafted to tackle a conservation law featuring partially nonlocal velocity, specifically of

a conservation law with partially nonlocal velocity. In this model, the velocity field is

obtained by composing nonlocal partial operators: the partial Riesz potential Λ³�1

i and

the partial Hilbert transform Hi for i � 1, 2. Notice that, in equation (3.49), the vari-

able upx, y, tq represents ¹px, y, tq and is the solution to a conservation law with partially
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nonlocal velocity:$&%Bt¹ �∇ � p¹Λ³�1

1
H1¹, ¹Λ

³�1

2
H2¹q � 0, @px, y, tq P Ω� R

�

¹px, y, 0q � ¹0.

Furthermore, we know from Subsection 3.4.1 that the border of the volume control Dn
i,j is

given by BDn
i,j � Rn

i,j Y Sn
i,j Y R

n�1

i,j . At first, we do not know exactly what the non-flow

surface Sn
i,j looks like, we only know that the edge of the ingress coincides with BRn

i,j in

the tn plane, and the outlet end of surface Sn
i,j which intersects the tn�1 plane. Assuming

that the surface Sn
i,j is defined by a family of No-Flow curves represented as µptq for the

time interval tn ¤ t ¤ tn�1, we will proceed to establish a representative parametrized

curve µn
i�1{2,jptq and µn

i,j�1{2ptq at the midpoint of each side on the boundary BRn
i,j. These

parametrized curves will be determined using scalar functions, denoted as Ãn
i�1{2,jptq and

Ãn
i,j�1{2ptq, over the time interval tn ¤ t ¤ tn�1. These scalar functions are designed in

such a way that, at the initial time t � tn, they satisfy the conditions Ãn
i�1{2,jptnq � xi�1{2

and Ãn
i,j�1{2ptnq � yj�1{2. Furthermore, it should be noted that these four functions will

intersect the tn�1 plane at the time instant tn�1, as depicted in Figure 2. Then to build

R
n�1

i,j , we define the four parametric curves as follows

µn
i�1{2,jptq � rÃn

i�1{2,jptq, yj, tsT , µn
i,j�1{2ptq � rxi, Ã

n
i�1{2,jptq, tsT with tn ¤ t ¤ tn�1.

(3.101)

So, we have to µn
i�1{2,jptq, µn

i,j�1{2ptq P Sn
i,j for tn   t   tn�1.

According to [6] the construction of No-Flow side curves is not unique. Notice

that, for tn   t   tn�1 we have that µn
i�1{2,jptq is in plane-yj, µn

i,j�1{2,jptq is in plane-xi,

furthermore

d

dt
µn

i�1{2,jptq �
�
d

dt
Ãn

i�1{2,jptq, 0, 1
�T

and
d

dt
µn

i,j�1{2ptq �
�
0,
d

dt
Ãn

i,j�1{2ptq, 1
�T

In this manner, we obtain the following initial value problems for a conservation

law with partially nonlocal velocity$&%
d

dt
Ãn

i�1{2,jptq � �Λ³�1

1
H1¹pÃn

i�1{2,jptq, yj, tq
Ãn

i�1{2,jptnq � xn
i�1{2

(3.102)

and $&%
d

dt
Ãn

i,j�1{2ptq � �Λ³�1

2
H2¹pxi, Ã

n
i,j�1{2ptq, tq

Ãn
i,j�1{2ptnq � yn

j�1{2

(3.103)

where approximating of Λ³�1

1
H1 and Λ³�1

2
H2 are made using an approximation of the

partial Riesz potential and the partial Hilbert transform, respectively, as defined in the
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previous sections. Approximating the Ãn
i�1{2,jptq and Ãn

i,j�1{2ptq curves by Taylor’s series,

we obtain

Ãn
i�1{2,jptq � Ãn

i�1{2,jptnq �
d

dt
Ãn

i�1{2,jptnqpt� tnq

Ãn
i,j�1{2ptq � Ãn

i,j�1{2ptnq �
d

dt
Ãn

i,j�1{2ptnqpt� tnq.

Thus, from (3.102) we obtain, an approximation for Ãn
i�1{2,jptq

Ãn
i�1{2,jptq � xn

i�1{2 � pt� tnqfn
i�1{2,j for tn ¤ t ¤ tn�1 (3.104)

where, fn
i�1{2,j � �Λ³�1

1
H1¹pÃn

i�1{2,jptq, yn
j , tq.

Similarly, from (3.103), we obtain an approximation for Ãn
i,j�1{2ptq

Ãn
i,j�1{2ptq � yn

j�1{2 � pt� tnqgn
i�1{2,j for tn ¤ t ¤ tn�1 (3.105)

where, gn
i,j�1{2 � �Λ³�1

2
H2¹pxn

i , Ã
n
i,j�1{2ptq, tq.

So, a significant finding emerges: the No-Flow curves fn
i�1{2,j and gn

i,j�1{2 ap-

proximate the velocity nonlocal Λ³�1

1
H1¹pÃn

i�1{2,jptq, yn
j , tq and Λ³�1

2
H2¹pxn

i , Ã
n
i,j�1{2ptq, tq,

respectively, for this type of conservation law.

Moreover, the approximation to the control volume Dn
i,j is given by

Dn
i,j � tpx, y, tq| Ãn

i�1{2,jptq   x   Ãn
i�1{2,jptq, Ãn

i,j�1{2ptq   y   Ãn
i,j�1{2ptq, tn   t   tn�1u.

(3.106)

The conservative fully-discrete nonlocal Lagrangian-Eulerian scheme fora con-

servation law with partially nonlocal velocity, is presented in the following steps.

1. The Lagrangian forward evolution is given by

Θ
n�1

i,j � ApRn
i,jq

ApRn�1

i,j q
Θn

i,j with ApRn
i,jq � ∆x�∆y and ApRn�1

i,j q � ∆xn�1 �∆yn�1

(3.107)

where, ∆x � ∆y, ∆xn�1 � ∆x� pfn
i�1{2,j � fn

i�1{2,jq∆t, and

∆yn�1 � ∆y � pgn
i,j�1{2 � gn

i,j�1{2q∆t

2. The Eulerian remap is given by

Θn�1

i,j � 1

ApRn�1

i,j q
pK1 �K2 �K3q (3.108)

where

K1 � c11Θ
n�1

i�1,j�1
� c12Θ

n�1

i,j�1
� c13Θ

n�1

i�1,j�1

K2 � c21Θ
n�1

i�1,j � c22Θ
n�1

i,j � c23Θ
n�1

i�1,j

K3 � c31Θ
n�1

i�1,j�1
� c32Θ

n�1

i,j�1
� c33Θ

n�1

i�1,j�1
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3. The construction of the coefficients of the Eulerian remap, ci,j, can be obtained

from the definition of fn
i�1{2,j and gn

i,j�1{2, analogous to the 2D Lagrangian-Eulerian

method presented in subsection 3.4.4

Next, we proceed to define the vector

Cx � rCxm, Cx0
, Cxps (3.109)

where

Cxp � 0.5p1� signpfn
i�1{2,jqqfn

i�1{2,j∆t

Cxm � 0.5p1� signpfn
i�1{2,jqq

∣

∣

∣fn
i�1{2,j

∣

∣

∣∆t

Cx0
� ∆x� signpfn

i�1{2,jqCxp � signpfn
i�1{2,jqCxm.

Similarly, let us define the vector

Cy � rCym, Cy0
, Cyps (3.110)

where

Cyp � 0.5p1� signpgn
i,j�1{2qqgn

i,j�1{2∆t

Cxm � 0.5p1� signpgn
i,j�1{2q

∣

∣

∣gn
i,j�1{2

∣

∣

∣∆t

Cy0
� ∆y � signpgn

i,j�1{2qCyp � signpgn
i,j�1{2qCym.

Then, the coefficients of the Eulerian remap ci,j form (3.107)-(3.108) are defined as

the matrix entries

C � pci,jq � CT
x Cy �

���CxmCym CxmCy0
CxmCyp

Cx0
Cym Cx0

Cy0
Cx0

Cyp

CxpCym CxpCy0
CxpCyp

��� . (3.111)

The CFL condition based on the No-Flow curves, is also called weak is given

by

max
i,j

t|fn
i�1{2,j|, |fn

i�1{2,j|, |gn
i,j�1{2|, |gn

i,j�1{2|u
∆t

∆x
¤ 1

2
. (3.112)

3.5 Numerical Simulations for a Conservation Law with Partially

Nonlocal Velocity

Similar to the findings in the paper by [2], we will understand in our results that

the term blow-up means solutions assuming singular measures concerning the Lebesgue

measure in R
2 but preserving the initial total mass, e.g., giving mass to lines (singular
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lines with mass concentration but preserving the initial total mass, for this, we take the

initial non-negative data and check that the solution remains non-negative). For simplicity

in writing, we name it as blow-up of concentration type with mass preserving or simply

blow-up of concentration type, when there is no chance of misunderstanding.

This section presents the numerical solutions to a conservation law with partially

nonlocal velocity (1.3). In this model, the velocity field is obtained through the composition

of the partial Riesz potential and the partial Hilbert transform. For the numerical solution,

we employ the novel full-discrete nonlocal Lagrangian-Eulerian numerical scheme developed

in Subsection 3.4.6, see [12] and [6], together with the numerical approximation of nonlocal

operators of the partial Riesz potential (3.65) and (3.71), as well as of the partial Hilbert

transform (3.53) and (3.60). We performed numerical simulations considering initial data

that belong to the Schwartz spaces SpR2q as well as the weak-Morrey spaces WMl
ppR2q

and we provide new insights into the conservation law at hand such as blow-up and

attenuation behaviors.

The idea is to investigate numerically how the initial data influences the

existence of the global smooth diffusion, the formation of abrupt gradients, and the

formation of blow-up in finite time of solution for a conservation law with partially

nonlocal velocity. Thus, possible natural questions are: solution’s blow-up or attenuation

behaviors depend on the measure data, the sign of flux from a conservation law with

partially nonlocal velocity, or other factors. Do solutions evolve as a singular measure?

Or do they regularize (a diffusion mechanism along with mass-preserving) for t ¡ 0? As

we had already anticipated, we chose two initial datas we choose two types of initial data

fpx, yq. The first is to measure initial data belonging to the Schwartz spaces SpR2q and the

other is to measure initial data which was obtained through an adaptation of an element

from the weak-Morrey space WMl
ppR2q and will be detailed later. Suppose we gather

qualitative information about the solutions, such as attenuation of regularization type or

blow-up of concentration type. In that case, it enables us to gain insights into the required

characteristics of the initial mass for a global-in-time flow for the conservation law under

consideration.

To perform a numerical study of a conservation law with partially nonlocal

velocity (1.3) and deepen our comprehension of the nonlinear and nonlocal interactions

within Besov spaces type, we have developed a robust and coherent methodology for

addressing model (1.3) within a finite computational domain Ω � ra, bs � rc, ds based on

our previously rigorous findings, we can discern the most straightforward and mathemati-

cally accurate approach for addressing boundary conditions: expanding the domain to a

sufficient extent to prevent any disruptive spurious reflections from affecting the numerical

simulations. We describe our numerical experiments concerning two possibilities depending

on the sign of flux from a conservation law with partially nonlocal velocity; the first is
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when the flux has a positive signal, this is, Bt¹ � ∇ � p¹Λ³�1

1
H1¹, ¹Λ

³�1

2
H2¹q � 0, which

we will a conservation law with partially nonlocal velocity and positive flux; the other

possibility is when the flux has negative signal, i. e., Bt¹ �∇ � p¹Λ³�1

1
H1¹, ¹Λ

³�1

2
H2¹q � 0,

which we will a conservation law with partially nonlocal velocity and negative flux.

So, we proceed to reformulation the (1.3) model within the computational

domain Ω � ra, bs � rc, ds$&%Bt¹ �∇ � p¹Λ³�1

1
H1¹, ¹Λ

³�1

2
H2¹q � 0, px, y, tq P Ω� p0, T s,

¹px, y, 0q � ¹0px, yq, px, yq P Ω,
(3.113)

where Λ³�1

1
and Λ³�1

2
are the partial Riesz potential, which are given by (3.3) and (3.4),

respectively, H1 and H2 are the partial Hilbert transform, which are given by (3.1) and

(3.2) respectively. Furthermore ¹0px, yq will be a

(I) the 2D Gaussian pulse with compact support initial condition, ¹0px, yq � e�
px2�y2q

8

Ã

(II) the 2D weak-Morrey type initial condition, ¹0px, yq �
�
∥x∥2 � ∥y∥2

��1

1Aδ,R
, where

1Aδ,R
is the characteristic function from A¶,R, this is,

A¶,R � tpx, yq P R
2; ¶   px2 � y2q1{2   Ru,

here ¶ � ¶pmq and R � Rpmq, where m is the mesh size.

Notice that we have a uniform estimate for the WM̃l
p space norm:

∥

∥

∥px2 � y2q�11Aδ,R

∥

∥

∥

W M̃l
p

¤
∥

∥

∥px2 � y2q�1
∥

∥

∥

W M̃l
p

@¶, R ¡ 0.

To simplify notation, we will henceforth refer to the initial data mentioned above as

“Gaussian” and “weak-Morrey”, respectively.

We describe our numerical experiments related on to two approaches for

formulating from a conservation law with partially nonlocal velocity for different data

types f . Furthermore, for simulations throughout the thesis we use computers with the

following characteristics: Intel(R) Xeon(R) CPU E5-2643 v2 @ 3.50GHz, 128GB Ram,

and Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz, 32GB Ram. Our simulations for a

conservation law with partially nonlocal velocity and negative flux provide evidence that the

blow-up state is a two-dimensional Dirac measure with the same mass of f and supported

at px0, y0q P R
2; the position of px0, y0q depends on f . However, for a conservation law

with partially nonlocal velocity and negative positive, we were able to compute qualitatively

correct approximations by showing strong evidence of attenuation of regularization type

with mass-preserving. Furthermore, the gradient in the positive flux exhibits a decreasing

trend, as depicted in Figure 5, Figure 6, Figure 8, and Figure 9. However, the gradient in



Chapter 3. A Conservation Law with Partially Nonlocal Velocity 81

the negative flux exhibits an increasing trend, as depicted in the images in Figure 7, and

Figure 10.

In summary, the numerical studies conducted from Figure 5 to Figure 7 (Section

3.5.1) and from Figure 8 to Figure 10 (Section 3.5.2), computational results reveal that

even with a relatively coarse mesh grid, the full-discrete nonlocal Lagrangian-Eulerian

scheme is effective in solving numerically the underlying a conservation law with partially

nonlocal velocity (1.1). For concreteness, if we consider the negative flux with measure

initial data or measure initial data weak-Morrey type, we found numerical evidence of

blow-up of concentration type for the solution. On the other hand, if we consider the

positive flux with measure initial data or measure initial data weak-Morrey type, we found

a kind of attenuation type regularization for the solution.

We will present simulations in two distinct sections for a more comprehensive

numerical exploration of a conservation law with partially nonlocal velocity qualitative

behavior. Section 3.5.1 will examine simulations with measure initial data, while Section

3.5.2 will focus on simulations with initial data of the weak Morrey type. Within each

subsection, there will be further division into two sub-subsections, one dedicated to a

conservation law with partially nonlocal velocity with positive flux and the other to a

conservation law with partially nonlocal velocity model with negative flux.

3.5.1 Simulations for measure initial data

In this subsection, we will numerically present evidence of regularization of

attenuation type and evidence of blow-up of concentration type for the solution ¹ from

a conservation law with partially nonlocal velocity (1.3). Our analysis will specifically

consider measure initial data focusing on the Gaussian.

Positive flux

We determined a numerical solution using mesh grid cells m � 512 and refined

mesh grid cells m � 1024 for a conservation law with partially nonlocal velocity and positive

flux (3.113). These results are shown in Figure 5 and Figure 6, with Gaussian initial data.

The machine simulation time was 32 days and 50 days, respectively. At the top of Figure

5 (from left to right), it is evident that as time progresses, the numerical solution height

diminishes noticeably along the gradient and the first signs of the diffusive process are

seen. At the bottom, a similar pattern is observed, albeit with a less pronounced decrease

in height; nevertheless, the gradient continues decreasing, and now the diffusive process is

more. Consequently, we have observed compelling evidence of attenuation of regularization

type for the solution ¹ of a conservation law with partially nonlocal velocity and positive

flux. It is worth noting that the numerical solution is identical for a mesh grid refinement,

this is shown in Figure 6.
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Figure 5 – Numerical simulation for Bt¹�∇ � p¹Λ³�1

1
H1¹, ¹Λ

³�1

2
H2¹q � 0 with a Gaussian

initial data, ³ � 0.5 and mesh m � 512 for a sequence of times T � 0, 1, 3, 10.
On the top, you can observe a decrease in height and the initiation of diffusion
in the numerical solution as time evolves, while on the bottom the numerical
solution a shown diffusion-smooth and reduction in height as time evolves.
Evidence of attenuation of regularization type.
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Figure 6 – Numerical simulation for Bt¹�∇ � p¹Λ³�1

1
H1¹, ¹Λ

³�1

2
H2¹q � 0 with a Gaussian

initial data, ³ � 0.5 and mesh m � 1024 for a sequence of times T � 0.2, 1, 3, 5.
On the top, you can observe a decrease in height and the initiation of a diffusion
in the numerical solution as time evolves, while on the bottom the numerical
solution a shows a diffusion-smooth and minimal reduction in height as time
evolves. Evidence of attenuation of regularization type.
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Negative flux

We determined a numerical solution with mesh grid cells m � 512 for a

conservation law with partially nonlocal velocity and negative flux (3.113) with Gaussian

initial data. These results are illustrated in Figure 7, and the machine simulation time

was 9 days.

At the top of Figure 7 (from left to right), it is evident that the height of

the solution increases along the gradient as time progresses and the first signs of the

concentration process are seen. In the middle, we observe both an increase in height and

gradient, and the concentration process continues. Moving to the bottom, a similar pattern

is observed, but the height increases even more dramatically, the gradient continues

to increase significantly. Furthermore, the concentration is given at the origin of the

coordinates. Consequently, we find compelling evidence of blow-up of concentration type

for the solution ¹ of a conservation law with partially nonlocal velocity with negative

flux. Notice that in this simulation, the concentration near the origin exhibits a square

shape. This arises from the definition of the nonlocal operators, namely the partial Hilbert

transform and the partial Riesz potential. These operators generate attraction nuclei,

one along the X-axis and the other along the Y-axis. When they act simultaneously, a

concentration is obtained near the origin of the coordinates, forming a square around it.
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Figure 7 – Numerical simulation for Bt¹ � ∇ � p¹Λ³�1

1
H1¹, ¹Λ

³�1

2
H2¹q � 0 with a Gaus-

sian initial data, ³ � 0.5 and mesh m � 512 for a sequence of times
T � 0, 0.4, 1.5, 1.9, , 2, 2.1. On the top, you can observe an increase in height
and the initiation of concentration in the numerical solution as time progresses.
In the middle, the numerical solution shows both concentration and an increas-
ing height as time evolves. At the bottom, the approximate solution exhibits
concentration and a rapid increase in height as time progresses. Evidence of
blow-up of concentration type.
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3.5.2 Simulations for measured data of weak-Morrey type

In this subsection, we will present evidence of regularization of attenuation

type and evidence of blow-up of concentration type for the solution ¹ of a conservation

law with partially nonlocal velocity. Our analysis will consider both measure initial data

and measure initial data of weak-Morrey type.

Positive flux

We determined a numerical solution with a mesh grid cells m � 100 and a

mesh grid refinement m � 250 for a conservation law with partially nonlocal velocity

and positive flux. These results are shown in Figure 8 and Figure 9, respectively, with

weak-Morrey initial data. The machine simulation time was approximately 2 days and 15

days, respectively.

To better visualize the qualitative behavior in Figure 8, we have kept the Z

axis fixed. In the top row of Figure 8 (from left to right), it can be observed that as time

progresses, the height of the weak-Morrey profile decreases along the gradient and the

first signs of the diffusive process are seen. At the bottom, a similar pattern is observed.

While the Z axis remains fixed, we cannot precisely discern the height of the profile of

the solution. However, referencing the color bar in each image makes it apparent that the

height of the weak-Morrey profile diminishes, displaying diffusive behavior. As a result,

we have obtained evidence of regularization of attenuation type for the solution ¹ of a

conservation law with partially nonlocal velocity and positive flux. In Figure 6, we have an

identical numerical solution for the same model with a mesh grid refinement.

On the other hand, in the upper part of Figure 9 (from left to right), it is clear

that as time progresses, the height of the solution profile decreases along the gradient

and the first signs of the diffusive process are seen. In the lower part, we observe a

similar pattern; although the height decreases to a lesser extent, the gradient continues to

decrease and now the diffusive process is more. Consequently, we have obtained evidence

of regularization of attenuation-type for the solution ¹ of a conservation law with partially

nonlocal velocity and positive flux.
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Figure 8 – Numerical simulation for Bt¹ � ∇ � p¹Λ³�1

1
H1¹, ¹Λ

³�1

2
H2¹q � 0 with a weak

Morrey initial data, ³ � 0.5 and mesh m � 100 for a sequence of times
T � 0.0001, 0.1, 1, 4. To better visualize the qualitative behavior, we keep the Z
axis fixed. On the top, you can observe a decrease in height and the initiation
of diffusion in the numerical solution as time evolves, while on the bottom the
numerical solution shows a diffusion-smooth and minimal reduction in height
as time evolves. Evidence of attenuation of regularization type.
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Figure 9 – Numerical simulation for Bt¹�∇ � p¹Λ³�1

1
H1¹, ¹Λ

³�1

2
H2¹q � 0 with a Gaussian

initial data, ³ � 0.5 and mesh m � 250 for a sequence of times T � 0, 0.1, 2, 8.
On the top, you can observe a decrease in height and the initiation of diffusion
in the numerical solution as time evolves, while on the bottom, the numerical
solution shows a diffusion-smooth and minimal reduction in height as time
evolves. Evidence of attenuation of regularization type.
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Negative flux

We determined a numerical solution with mesh grid cells m � 512 for a

conservation law with partially nonlocal velocity and negative flux (3.113) with weak-

Morrey initial data. This result is illustrated in Figure 10 and the machine simulation

time was 32 days. Examining the early times, we can observe a subtle numerical diffusion.

At the bottom, we can see that the height of the numerical solution increases along the

gradient and the concentration process as time passes. As a result, we have evidence of

blow-up type concentration for the solution ¹ of a conservation law with partially nonlocal

velocity and negative flux.

An important observation is that for all simulations in this chapter, we used

CFL � 0.5. However, in the simulation shown in Figure 10, we used CFL � 0.125. This

adjustment was necessary because, for a value close to CFL � 0.5, there was instability

in the numerical solution.
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Figure 10 – Numerical simulation for Bt¹ � ∇ � p¹Λ³�1

1
H1¹, ¹Λ

³�1

2
H2¹q � 0 with a Gaus-

sian initial data, ³ � 0.5 and mesh m � 512 for a sequence of times
T � 0.0001, 0.001, 0.02, 0.024. This simulation is divided into two columns,
with simulations in the right column being a zoom of the simulations in the
left column close to the origin,aiming to see the evolution in the singularity of
the numerical solution. We have evidence of blow-up of concentration-type.
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3.6 The Model of a Conservation Law with Partially Nonlocal

Velocity with Rotation

The work by [38] and [47] can be interpreted as addressing the one-dimensional

SQG. Our primary question is whether we can derive the SQG or gather meaningful

information by extending these prior works to two dimensions. This extension involves

working with nonlocal partial operators in the velocity field, precisely the partial Hilbert

transform and the partial Riesz potential. This gives rise to the inception of a conservation

law with partially nonlocal velocity, and, as observed in the previous section, the numerical

and theoretical outcomes of the 1D case are maintained. As observed, for the velocity field

of a conservation law with partially nonlocal velocity to exhibit some similarity with the

velocity field of the SQG equation, a rotation is absent in the coordinates of our model’s

velocity field; doing this rotation, we obtain a new model which we will call the model of a

conservation law with partially nonlocal velocity 3.114. Our current inquiry is whether this

model can provide theoretical and numerical insights into the well-known SQG equation.

The answers to these questions will be elucidated in this section.$&%Bt¹ �∇ � p�¹Λ³�1

2
H2¹, ¹Λ

³�1

1
H1¹q � 0, px, y, tq P R

2 � R,

¹px, y, 0q � ¹0,
(3.114)

where Λ³�1

1
and Λ³�1

2
are the partial Riesz potential, which are given by (3.3) and (3.4)

respectively, H1 and H2 are the partial Hilbert transform, which are given by (3.1) and

(3.2) respectively. Furthermore, the initial data ¹0 is in Lp.

The well-posedness of the model of a conservation law with partially nonlocal

velocity with rotation is assured by the well-posedness of a conservation law with partially

nonlocal velocity, as established in Theorem 2. This guarantee arises from the fact that we

are merely altering the order of the coordinates in the velocity field. Consequently, the

calculations in the proof of the theorem will remain equivalent to a constant factor.

3.6.1 Numerical simulations for the model a conservation law with partially

nonlocal velocity with rotation

To perform a numerical study of the model of a conservation law with partially

nonlocal velocity with rotation (3.115) and deepen our comprehension of the nonlinear

and nonlocal interactions within the Besov spaces type, we have developed a robust

and coherent methodology for addressing model (3.115) within a finite computational

domain Ω � ra, bs � rc, ds analogous to a conservation law with partially nonlocal velocity.

We describe our numerical experiments concerning the model of a conservation law with

partially nonlocal velocity with rotation : Bt¹ �∇ � p�¹Λ³�1

2
H2¹, ¹Λ

³�1

1
H1¹q � 0.
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So, we proceed to rephrase model (1.3) within the computational domain

Ω � ra, bs � rc, ds$&%Bt¹ �∇ � p�¹Λ³�1

2
H2¹, ¹Λ

³�1

1
H1¹q � 0, px, y, tq P Ω� p0, T s,

¹px, y, 0q � fpx, yq, px, yq P Ω,
(3.115)

where fpx, yq will be a

(I) the 2D Gaussian pulse with compact support initial condition

fpx, yq � 1

Ã
exp

"
�px

2 � y2q
8

*
(II) the 2D positive negative initial condition,

gpx, yq � 3xy exp

"
�px

2 � y2q
5

*
,

(III) hpx, yq � Épx� 3, yq � Épx� 3, yq, where

Épx, yq �

$'&'%2 exp

"
� 1

1� x2 � y2

*
; x2 � y2   1

0 ; x2 � y2 ¥ 1

,

(IV) kpx, yq � ·px� 3, yq � ·px� 3, yq, where

·px, yq �

$'&'%exp

"
�px

2 � y2q
5

*
; x2 � y2   p2.8q2

0 ; x2 � y2 ¥ p2.8q2
.

Simulations

In this subsection, we present numerical simulations for the model a conservation

law with partially nonlocal velocity with rotation considering various types of initial data.

The simulations conducted here were performed with mesh grid cells of m � 128 and

m � 256, and the simulation time on the machine ranged from approximately 1 to 2 days.

We expect that for a mesh grid refinement to obtain the same qualitative behavior.

The novelty of the simulations in this subsection is that, along with illustrating

the qualitative behavior of the numerical solution as time progresses, we also provide

the level curves at each stage. This facilitates a deeper understanding of the numerical

solution’s behavior. In Figure 11, Figure 12 and Figure 13, we observe that the height of

the numerical solution decreases decreases, rotating counterclockwise and forming steeper

gradients as time progresses. However, in Figure 14, the height of the numerical solution

increases slightly, still rotating counterclockwise and forming steeper gradients over time.
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Figure 11 – Numerical simulation for Bt¹�∇�p�¹Λ³�1

2
H2¹, ¹Λ

³�1

1
H1¹q � 0 with a Gaussian

initial data, ³ � 0.5 and mesh m � 128 for a sequence of times T � 0, 10, 50, 70.
In the left column, initially, the height of the numerical solution begins to
grow, rotating counterclockwise and forming steeper gradients. In the following
times, the height decreases and continues, forming steeper gradients as time
evolves. Meanwhile, the pictures in the right column, represent the level sets
of the surfaces found at the top. Evidence of attenuation with formation of
abrupt gradients.
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Figure 12 – Numerical simulation for Bt¹�∇ � p�¹Λ³�1

2
H2¹, ¹Λ

³�1

1
H1¹q � 0 with a gpx, yq

initial data, ³ � 0.5 and mesh m � 128 for a sequence of times T � 0, 1, 4.
In the left column, the height of four peaks decreases forming two abrupt
gradients in the opposite peaks as time evolves. Meanwhile, the pictures in
right column, represent the level sets of the surfaces found at the top. Evidence
of attenuation with formation of abrupt gradients.
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Figure 13 – Numerical simulation for Bt¹�∇ � p�¹Λ³�1

2
H2¹, ¹Λ

³�1

1
H1¹q � 0 with a hpx, yq

initial data, ³ � 0.5 and mesh m � 128 for a sequence of times T � 0, 10, 100.
In the left column, the height of the two peaks decreases, forming steeper
gradients and coming together as time evolves. Meanwhile, the pictures in
the right column, represent the level sets of the surfaces found at the top.
Evidence of attenuation with formation of abrupt gradients.
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Figure 14 – Numerical simulation for Bt¹�∇ � p�¹Λ³�1

2
H2¹, ¹Λ

³�1

1
H1¹q � 0 with a gpx, yq

initial data, ³ � 0.5 and mesh m � 128 for a sequence of times T � 0, 1.2, 3.
In the left column, initially, the height of the two peaks decreases and forms
steeper gradients. In the following times, the height increases and forms an
abrupt gradient in each peak as time evolves. In this case, the peaks do not
join. Meanwhile, the pictures in the right column represent the level sets of
the surfaces found at the top. Evidence of the formation of an abrupt gradient
without attenuation.
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3.7 Geometric Properties of Level Sets in the Model a conservation

law with partially nonlocal velocity with Rotation

In [25], the authors investigate various geometric properties of the SQG sharp

fronts and ³-patches. To achieve this, they characterize the interface region (i.e., the area

where discontinuity arises due to rapid transitions between different air masses) using a

closed curve with a period of 2Ã. The objective is to study the evolution at the border

of this interface and, in turn, determine the qualitative behavior of the problem. In this

study, guided by numerical simulations, the authors provide proof for two results regarding

the behavior of SQG sharp fronts and ³-patches. Furthermore, they establish that ellipses

are not rotational solutions and demonstrate that initially, convex interfaces may lose this

property in finite time.

Inspired by this work, we attempted to track some level sets for the numerical

solution, and obtain geometric information from these level sets, for this case considering

the Gaussian as the initial data, see Figure 15. As we can see in our simulations, we also

obtained a similar result to [25], see Figure 16.
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Figure 15 – Tracking some level sets of the numerical solution of
Bt¹�∇ � p�¹Λ³�1

2
H2¹, ¹Λ

³�1

1
H1¹q � 0 with Gaussian initial data, ³ � 0.5 and

mesh m � 128 for a sequence of times T � 0, 10, 50, 70. In the left column,
we attempt to trace a level curve at half the initial data is height. As time
progresses, this level curve loses convexity and separates into two different
level curves. Meanwhile, in the pictures in the right column, the level curves
are positioned at the top of the initial data. Here, the level curves also lose
convexity and split into two distinct groups of level curves.
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Figure 16 – The two figures at the top represent the last two simulations described in Figure
15. In [25] the authors study the geometric properties of SQG sharp fronts and
³-patches; in this paper the SQG is given by Bt¹px, y, tq�upx, y, tq�∇¹px, y, tq �
0 with u � p�R2¹,R1¹q. The four figures at the bottom were taken from [25]
and are simulations of the evolution of the ellipses with, the patch with initial
data zpxq � pcospxq; 3sinpxqq displays a combination of a rotating motion
with a smaller scale oscillation which leads to loss of convexity. As we can
see, both simulations start with a regular and convex geometric figure; as
time passes, these simulations lose convexity and form two types of deformed
ellipses.
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4 The Surface Quasi-Geostrophic Equation

In this chapter, the aim is to establish the local well-posedness for the invis-

cid surface quasi-geostrophic equation SQG (4.1) in the framework of modified Besov

weak–Morrey spaces, which are modeled in Besov spaces and the underlying norm is of

weak-Morrey modified space rather than the usual weak-Lp space.

The SQG in non-conservative form is given by$&%Bt¹ � v �∇¹ � 0

¹px, 0q � ¹0pxq
(4.1)

where ¹ � ¹px, tq is a scalar function, ¹ : R2 � r0,8q ÝÑ R, represents the temperature

potential of the fluid, and v � pv1, v2q denotes a velocity field such that ∇v � 0. The

relationship between v and ¹ is through the Riesz transforms, R1 and R2, using the

following expression:

v � RK¹ � p�R2¹,R1¹q � p�B2p�∆q� 1

2 ¹, B1p�∆q� 1

2 ¹q

here the operator ∆ is the Laplacian.

The geostrophic theory describes the dynamics of large atmospheric and oceanic

currents through the balance between the Coriolis force and pressure gradient within

a rotating fluid. In [60] it delves into this theory, explaining how it can be applied to

understand large-scale atmospheric and oceanic circulation. However, it may not capture all

aspects of fluid motion at smaller scales or in more complex systems. The quasi-geostrophic

theory is an extension of the geostrophic theory, which acknowledges that at smaller scales

or in situations where factors other than the Earth’s rotation may be significant.

The SQG comes from atmospheric science and describes the evolution of the

potential temperature on the surface. Therefore, this equation describes the evolution

of cold and warm air fronts in a thin layer in the atmosphere. For this reason, the SQG

has applications in meteorology and oceanography, playing an important role in weather

forecasting and improving understanding of the temperature evolution of geophysical flows

and, particularly frontogenesis in atmospheric flows [27, 31].

Constantin, Majda, and Tabak introduced the SQG equation to the mathe-

matical community in [31], conducting numerical and analytical studies. Additionally,

the SQG exhibits an analogy with the 3D Euler equations. So far, the mathematical

study of the SQG has been divided into two significant cases. The first is the inviscid

case (4.1), probably the most straightforward dynamical scalar equation. However, the

global regularity problem remains open. In [31], it was established the local well-posedness
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and blow-up criterion of (4.1) in Sobolev spaces. The exciting fact about [31], is that the

authors also make a numerical study of the problem besides being the first theoretical

study. Subsequently, there are various results available in different function spaces. For

instance, on the Morrey spaces in [69], on the Triebel-Lizorkin spaces in [26], on the Besov

spaces in [67], on the Triebel-Lizorkin-Lorentz spaces in [71], on the Besov–Lorentz spaces

in [73], and recently it has been found in generalized spaces by [72].

The second case considers the dissipative term »p�△q³¹ in the equation (4.1).

In this case, it was studied the global well-posedness problem. More precisely, the study on

the dissipative SQG unfolds in three directions: the sub-critical case ³ ¡ 1{2, the critical

case ³ � 1{2, and the super-critical case ³   1{2. For more details of the sub-critical case,

the reader should consult [33] and [62]. In [30] it addressed the global regularity issue for

the critical case; in particular, it obtained a global existence result of the solution under a

smallness condition on the initial data. Since then, global existence results for small initial

data have been obtained in various functional settings, e.g., in Sobolev spaces in [34, 57],

Besov spaces in [29, 1, 26, 70]. Two papers exist that resolve entirely the global regularity

problem without a smallness condition. One is in [52] and the other in [24].

As noted earlier, the well-posedness theory of SQG in the dissipative case has

undergone thorough investigation in previous years. Numerous authors have successfully

addressed global well-posedness, particularly for critical cases, as documented in references

[52, 24, 32, 1]. Nevertheless, limited attention has been given to the super-critical case,

with only a handful of papers, such as [37, 51, 64], delving into the discussion of eventual

regularity.

Recently, the dissipative case has been examined in various types of spaces, with

intermittent regularities discussed in the following papers [53, 55, 68, 21, 66, 20, 15, 18, 35].

In this chapter, the aim is to establish the local well-posedness and blow-up

criterion for (4.1)within the framework of modified Besov–weak–Morrey spaces. These

spaces are based on Besov spaces, and the associated norm is derived from the weak-Morrey

Modified space, as opposed to the conventional weak-Lp space.

4.1 Commutator Estimates in Modified Besov-weak-Morrey Spaces

In this section, we present the commutator estimates in modified Besov-weak-

Morrey spaces defined in [42]. In addition, such commutator estimates are linked to the

bilinear term u �∇v, considering ∇ � u � ∇ � v � 0. In this work, we verify that for these

preliminary results and lemmas, it will suffice that only one of them has null divergence;

in this case, ∇ � u � 0. Let us define the commutator term

Rjpu, vq � ∆̄jpu �∇vq � Sj�2u �∇∆̄jv, (4.2)
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for u � pu1, � � � , unq, such that ∇ � u � 0 and v is a function. It follows that Rjpu, vq can

be decomposed as

Rjpu, vq �
4̧

i�1

Ri
jpu, vq, (4.3)

where

R1

j pu, vq �
ņ

k�1

∆̄jTBkvuk,

R2

j pu, vq � �
ņ

k�1

rTuk
Bk, ∆̄jsv,

R3

j pu, vq �
ņ

k�1

Tuk�Sj�2uk
Bk∆̄jv,

R4

j pu, vq �
ņ

k�1

t∆̄jRpuk, Bkvq �RpSj�2uk, ∆̄jBkvqu

with rTuk
Bk, ∆̄jsv :� Tuk

Bk∆̄jv � ∆̄jTuk
Bkv and Rpu, vq is the rest of the paraproduct of u

and v. Let us to check equation (4.3).

By using Bonny’s decomposition (2.3), we can write

∆̄jpu �∇vq � ∆̄j

ņ

k�1

ukBkv �
ņ

k�1

�
∆̄jTuk

Bkv � ∆̄jTBkvuk � ∆̄jRpuk, Bkvq
�

and

Sj�2u�∇∆̄jv �
ņ

k�1

Sj�2ukBk∆̄jv �
ņ

k�1

�
TSj�2uk

Bk∆̄jv � TBk∆̄jvSj�2uk �RpSj�2uk, Bk∆̄jvq
�
.

Subtracting the last two identities and introducing the term Tuk
Bk∆̄jv, we get

∆̄jpu �∇vq � Sj�2u �∇∆̄jv �
ņ

k�1

t� �
Tuk

Bk, ∆̄j

�
v � Tuk�Sj�2uk

Bk∆̄jv � ∆̄jTBkvuk

� TBk∆̄jvSj�2uk � ∆̄jRpuk, Bkvq �RpSj�2uk, Bk∆̄jvqu.

The result follows from the fact that TBk∆̄jvSj�2uk � 0. In fact, by the definition

of operator T ,

TBk∆̄jvSj�2uk �
¸
j1¥2

pSj1�2∆̄jvqp∆j1Sj�2ukq.

The operator Sj1�2∆̄j vanishes when j ¥ j1, the last assertion holds true.
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We start estimating R1

j pu, vq: using Young’s inequality and Hölder type inequal-

ity for modified weak-Morrey spaces, we can estimate as

∥

∥

∥R1

j pu, vq
∥

∥

∥

W M̃l
p

¤
ņ

k�1

¸
|j�j1|¤4

∥

∥

∥∆̄j

�
Sj1�2Bkv∆̄j1uk

�∥

∥

∥

W M̃l
p

¤ C

ņ

k�1

¸
|j�j1|¤4

∥

∥

∥Sj1�2Bkv∆̄j1uk

∥

∥

∥

W M̃l
p

¤ C

ņ

k�1

¸
|j�j1|¤4

∥Sj1�2Bkv∥
L8

∥

∥

∥∆̄j1uk

∥

∥

∥

W M̃l
p

By using the definition of R2

j pu, vq and the orthogonality relations (2.1) and

(2.2), we have

R2

j pu, vq � �
ņ

k�1

¸
|j�j1|¤3

�
Sj1�2ukBkp∆̄j1∆̄jvq � ∆̄j

�
Sj1�2uk∆̄j1Bkv

��
Thus, rewritten the previous equality in terms of their kernels, we get

R2

j pu, vq � �
ņ

k�1

¸
|j�j1|¤3

2jn

»
Rn

φ̌p2jpx� yqq rSj1�2ukpxq � Sj1�2ukpyqs Bk∆̄j1vpyqdy

�
ņ

k�1

¸
|j�j1|¤3

2jpn�1q

»
Rn

Bkφ̌p2jpx� yqq rSj1�2ukpxq � Sj1�2ukpyqs ∆̄j1vpyqdy,

(4.4)

where in the last identity, we have used by parts integration together with the fact that u

is free divergence. Now, notice that the fundamental Theorem of calculus allows us to get

the identity

Sj1�2ukpxq � Sj1�2ukpyq � �
»

1

0

∇pSj1�2ukqpx� Äpy � xqq � py � xqdÄ,

this implies, via the Cauchy-Schwartz inequality, the estimate

|Sj1�2ukpxq � Sj1�2ukpyq| ¤
»

1

0

|∇pSj1�2ukqpx� Äpy � xqq||y � x|dÄ ¤ ∥∇Sj1�2uk∥
L8 |x� y|.

(4.5)

Inserting (4.4) into (4.5), it follows the direct estimate,

|R2

j pu, vq| ¤
ņ

k�1

¸
|j�j1|¤3

2jn

»
Rn

|Bkφ̌p2jpx� yqq|2j|x� y||∆̄j1vpyq|dy∥∇uk∥L8 .

Now, by taking the norm and using Young’s inequality for modified weak-Morrey spaces,

we arrive to
∥

∥

∥R2

j pu, vq
∥

∥

∥

W M̃l
p

¤ C∥∇φ̌pxq � x∥L1∥∇u∥L8∥v∥W M̃l
p
. (4.6)
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By the definition of R3

j pu, vq, the orthogonality relation (2.1) and the homoge-

neous Littlewood-Paley decomposition, we get

R3

j pu, vq �
ņ

k�1

¸
j1¥2,|j�j1|¤1

Sj1�2puk � Sj�2ukqBk∆̄j1∆̄jv

�
ņ

k�1

¸
j1¥2,|j�j1|¤1

Sj1�2

�
8̧

m�j�2

∆muk

�
Bk∆̄j1∆̄jv

�
ņ

k�1

¸
j1¥2,|j�j1|¤1

Bk∆̄j1∆̄jv

j�1¸
m�j�2

∆̄mSj1�2uk.

So, by taking the norm and using Hölder’s and Young’s inequality, as well as

Bernstein-type inequalities for modified weak-Morrey spaces, we obtain

∥

∥

∥R3

j pu, vq
∥

∥

∥

W M̃l
p

¤ C

ņ

k�1

¸
j1¥2,|j�j1|¤1

j�1¸
m�j�2

∥

∥

∥Bk∆̄j1∆̄jv
∥

∥

∥

W M̃l
p

∥

∥

∥∆̄mSj1�2uk

∥

∥

∥

L8

¤ C

ņ

k�1

¸
j1¥2,|j�j1|¤1

j�1¸
m�j�2

2j
∥

∥

∥∆̄jv
∥

∥

∥

W M̃l
p

∥

∥

∥∆̄mSj1�2uk

∥

∥

∥

L8
.

Similarly, the R3

j can be estimated as

∥

∥

∥R3

j pu, vq
∥

∥

∥

W M̃l
p

¤ C

ņ

k�1

¸
j1¥2,|j�j1|¤1

∥

∥

∥∆̄j1∆̄jBkv
∥

∥

∥

L8

j�1¸
m�j�2

∥

∥

∥∆̄mSj1�2uk

∥

∥

∥

W M̃l
p

¤ C

ņ

k�1

¸
j1¥2,|j�j1|¤1

∥∇v∥L8

j�1¸
m�j�2

∥

∥

∥∆̄mSj1�2uk

∥

∥

∥

W M̃l
p

. (4.7)

Finally, by the definition of R4

j pu, vq, the derivative of the product with the

fact that u is free divergence, and adding and subtracting the term

ņ

k�1

∆̄j

¸
l¥�1

∆̄lSj�2uk

¸
|l�l1|¤2

∆̄l1Bkv,

we have

R4

j pu, vq �
ņ

k�1

Bk∆̄j

¸
l¥�1

∆̄lpuk � Sj�2ukq
� ¸

|l�l1|¤2

∆̄l1v

�

�
ņ

k�1

¸
l¥�1

r∆̄j, ∆̄lSj�2uks
� ¸

|l�l1|¤2

∆̄l1Bkv

�
:� R

4,1
j pu, vq �R

4,2
j pu, vq.
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In the R4,1
j pu, vq from the homogeneous Littlewood-Paley decomposition, the

orthogonality relation (2.1)

R
4,1
j pu, vq �

ņ

k�1

Bk∆̄j

¸
l¥�1

∆̄l

�
8̧

m�j�2

∆̄muk

�� ¸
|l�l1|¤2

∆̄l1v

�

�
ņ

k�1

Bk∆̄j

¸
l¥j�3

8̧

m�j�2

∆̄l∆̄muk

¸
|l�l1|¤2

∆̄l1v

�
ņ

k�1

Bk∆̄j

¸
l¥j�3

∆̄lpuk � Sj�2ukq
¸

|l�l1|¤2

∆̄l1v.

Now, by taking the norm and using Young’s and Hölder’s inequality for modified weak-

Morrey spaces we arrive to

∥

∥

∥R
4,1
j pu, vq

∥

∥

∥

W M̃l
p

¤
ņ

k�1

¸
l¥j�3

C

∥

∥

∥

∥

∥

∥

Bk

#
∆̄lpuk � Sj�2ukq

¸
|l�l1|¤2

∆̄l1v

+∥

∥

∥

∥

∥

∥

W M̃l
p

¤ C

ņ

k�1

¸
l¥j�3

∥

∥

∥Bk∆̄lpuk � Sj�2ukq
∥

∥

∥

L8

∥

∥

∥

∥

∥

∥

¸
|l�l1|¤2

∆̄l1v

∥

∥

∥

∥

∥

∥

W M̃l
p

� C

ņ

k�1

¸
l¥j�3

∥

∥

∥∆̄lpuk � Sj�2ukq
∥

∥

∥

W M̃l
p

∥

∥

∥

∥

∥

∥

Bk

¸
|l�l1|¤2

∆̄l1v

∥

∥

∥

∥

∥

∥

L8

¤ C

ņ

k�1

¸
l¥j�3

p∥∆lBkuk∥L8 � ∥Sj�2∆lBkuk∥
L8q

∥

∥

∥

∥

∥

∥

¸
|l�l1|¤2

∆̄l1v

∥

∥

∥

∥

∥

∥

W M̃l
p

� C

ņ

k�1

¸
l¥j�3

p∥∆luk∥W M̃l
p
� ∥Sj�2∆luk∥

W M̃l
p
q

¸
|l�l1|¤2

∥

∥

∥∆̄l1Bkv
∥

∥

∥

L8

¤ C∥∇u∥L8

¸
l¥j�3

∥

∥

∥

∥

∥

∥

¸
|l�l1|¤2

∆̄l1v

∥

∥

∥

∥

∥

∥

W M̃l
p

� C∥∇v∥L8

ņ

k�1

¸
l¥j�3

∥∆luk∥W M̃l
p
.

In R
4,2
j from the definition of commutator operator, we have

R
4,2
j pu, vq �

ņ

k�1

¸
l¥�1

#
∆̄j

�
∆̄lSj�2uk

¸
|l�l1|¤2

∆̄l1Bkv

�
� ∆̄lSj�2uk∆̄j

¸
|l�l1|¤2

∆̄l1Bkv

+
.
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Notice that,

supp

#
∆̄j

�
∆̄lSj�2uk

¸
|l�l1|¤2

∆̄l1Bkv

�+^

� supp

#
φj

�
∆̄lSj�2uk

¸
|l�l1|¤2

∆̄l1Bkv

�^+

� suppφj X supp

�
∆̄lSj�2uk

¸
|l�l1|¤2

∆̄l1Bkv

�^

�
"
À :

3

4
2j ¤ |À| ¤ 8

3
2j

*
X
"
À :

3

4
2l�2 ¤ |À| ¤ 8

3
2l�3

*
�
"
À :

3

4
2l�2 ¤ |À| ¤ 8

3
2l�2

*
the last equality is because j �, l � 2, l � 3, � � � . Furthermore,

supp

�
∆̄lSj�2uk

¸
|l�l1|¤2

∆̄l1Bkv

�^

� supp

�
φlÈj�2ûk �

¸
|l�l1|¤2

p∆̄l1Bkvq^
�

� supppφlÈj�2q � supp
¸

|l�l1|¤2

φl1pBkvq^

� supppφlq X supppÈj�2q � supp
¸

|l�l1|¤2

φl1

�
"
À :

3

4
2l ¤ |À| ¤ 8

3
2l

*
X
"
À : |À| ¤ 4

3
2j�2

*
�
"
À :

3

4
2l�2 ¤ |À| ¤ 8

3
2l�2

*
�
"
À :

3

4
2l ¤ |À| ¤ 8

3
2l

*
�
"
À :

3

4
2l�2 ¤ |À| ¤ 8

3
2l�2

*
�
"
À :

3

4
2l�2 ¤ |À| ¤ 8

3
2l�3

*
.
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On the other hand,

supp

#
∆̄lSj�2uk � ∆̄j

¸
|l�l1|¤2

∆̄l1Bkv

+^

� supp

#
p∆̄lSj�2ukq^ �

�
∆̄j

¸
|l�l1|¤2

∆̄l1Bkv

�^+
� supppφlÈj�2ûkq � supp

¸
|l�l1|¤1

φjφl1 pBkvq^

� supppφlq X supppÈj�2q � supp
¸

|l�l1|¤1

φjφl1 pBkvq^

�
"
À :

3

4
2l ¤ |À| ¤ 8

3
2l

*
�
"
À :

3

4
2l�1 ¤ |À| ¤ 8

3
2l�1

*
�
"
À :

3

4
2l ¤ |À| ¤ 8

3
2l�2

*
.

So,

R
4,2
j pu, vq �

ņ

k�1

¸
j¡l�1

r∆̄j, ∆̄lSj�2uks
� ¸

|l�l1|¤2

∆̄l1Bkv

�
:� B.

Thus, rewriting the B in terms of their kernels, we get, by using the integration

of the parts, together with the fact that u is free divergence

B � 2jn

»
φ̌p2jpx� yqq∆̄lSj�2ukpyqBk

¸
|l�l1|¤2

∆̄l1vpyqdy

� ∆̄lSj�2ukp�q2jn

»
φ̌p2jpx� yqq � Bk

¸
|l�l1|¤2

∆̄l1vpyqdy

� 2jn

»
tφ̌p2jpx� yqqp∆̄lSj�2ukpyq � ∆̄lSj�2ukpxqquBk

¸
|l�l1|¤2

∆̄l1vpyqdy

� �2jpn�1q

»
Bkφ̌p2jpx� yqqt∆̄lSj�2ukpyq � ∆̄lSj�2ukpxqu

¸
|l�l1|¤2

∆̄l1vpyqdy

� �2jpn�1q

»
Bkφ̌p2jpx� yqq

#»
1

0

ņ

m�1

∆̄lSj�2Bmukpx� Äpy � xqqpym � xmqdÄ
+
�¸

|l�l1|¤2

∆̄l1vpyqdy

� �2jpn�1q

»
Bkφ̌p2jpx� yqq

#
ņ

m�1

»
1

0

∆̄lSj�2Bmukpx� Äpy � xqqpym � xmqdÄ
+
�¸

|l�l1|¤2

∆̄l1vpyqdy

� �
ņ

m�1

»
Bkφ̌pzqzm

"»
1

0

∆̄lSj�2Bmukpx� 2�jzÄqdÄ
* ¸

|l�l1|¤2

∆̄l1vpx� 2�jzqdz
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in the last equality, we used the variables change with z � 2jpx� yq.
Now, by taking the norm and using Hölder’s inequality for modified weak-

Morrey spaces in R4

j pu, vq, we arrive at

∥

∥

∥R
4,2
j pu, vq

∥

∥

∥

W M̃l
p

¤
ņ

k,m�1

¸
j¡l�1

»
∥Bkφ̌pzqzm∥L8

»
1

0

∥

∥

∥∆̄lSj�2Bmukpx� 2�jz
∥

∥

∥

L8
ÄdÄ�

∥

∥

∥

∥

∥

∥

¸
|l�l1|¤2

∆̄l1vpx� 2�jzq
∥

∥

∥

∥

∥

∥

W M̃l
p

dz

¤ C

ņ

k,m�1

¸
j¡l�1

» »
1

0

∥

∥

∥∆̄lSj�2Bmuk

∥

∥

∥

L8
ÄdÄ

∥

∥

∥

∥

∥

∥

¸
|l�l1|¤2

∆̄l1vpx� 2�jzq
∥

∥

∥

∥

∥

∥

W M̃l
p

dz

¤ C

ņ

k,m�1

¸
j¡l�1

∥

∥

∥∆̄lSj�2Bmuk

∥

∥

∥

L8

∥

∥

∥

∥

∥

∥

¸
|l�l1|¤2

∆̄l1v

∥

∥

∥

∥

∥

∥

W M̃l
p

.

Lemma 6. (Commutator estimates) Let 1   p   8, 1 ¤ l, r ¤ 8, p ¤ l and let

∇ � u � 0.

1. Assume that Ä ¡ 0. Then, there exists a universal constant C ¡ 0 such that
∥

∥

∥

∥

2jÄ∥Rjpu, vq∥W M̃l
p

∥

∥

∥

∥

lr
¤ C

�
∥∇u∥L8∥v∥

BW M̃l,ρ
p,r
� ∥∇v∥L8∥u∥

BW M̃l,ρ
p,r

	
(4.8)

where we consider the usual modification for r � 8.

2. Assume that s ¥ n

p
� 1 and that r � 1 in the case s � n

p
� 1. Then, there exists a

universal constant C ¡ 0 such that
∥

∥

∥

∥

2js∥Rjpu, vq∥W M̃l
p

∥

∥

∥

∥

lr
¤ C∥u∥

BW M̃l,s
p,r

∥v∥
BMM̃l,s

p,r
(4.9)

∥

∥

∥

∥

2jps�1q∥Rjpu, vq∥W M̃l
p

∥

∥

∥

∥

lr
¤ C∥u∥

BW M̃l,s�1

p,r
∥v∥

BMM̃l,s
p,r

(4.10)
∥

∥

∥

∥

2jps�1q∥Rjpu, vq∥W M̃l
p

∥

∥

∥

∥

lr
¤ ∥u∥

BW M̃l,s
p,r

∥v∥
BMM̃l,s�1

p,r
(4.11)

where we consider the usual modification for r � 8.

Lemma 7 (Product estimates). Let 1   p ¤ l ¤ 8, 1 ¤ r ¤ 8 and Ä ¡ 0. Then,

∥uv∥
BW M̃l,ρ

p,r
¤ C

�
∥u∥L8∥v∥

BW M̃l,ρ
p,r
� ∥u∥

BW M̃l,ρ
p,r

∥v∥L8

�
, (4.12)

for all u, v P BWM̃l,Ä
p.rXL8. Moreover, considering p   8 and assuming either s ¡ n{p�1

with 1 ¤ r ¤ 8 or s � n{p� 1 with r � 1, we have that

∥u �∇v∥
BW M̃l,s�1

p,r
¤ C∥u∥

BW M̃l,s�1

p,r
∥v∥

BW M̃l,s
p,r
, (4.13)

for all u P BWM̃l,s�1

p,r and v P BWM̃l,s
p,r.
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Proof. Proof of inequality (4.12) is given in [42]. We will prove inequality (4.13). From

inequality (4.12) and the homogeneous Littlewood-Paley decomposition of u and ∇v, we

have

∥u �∇v∥
BW M̃l,s�1

p,r
¤ C

�
∥u∥L8∥∇v∥

BW M̃l,s�1

p,r
� ∥u∥

BW M̃l,s�1

p,r
∥∇v∥L8

�
� C

�∥

∥

∥

∥

∥

∥

¸
j¥�1

∆̄ju

∥

∥

∥

∥

∥

∥

L8

∥∇v∥
BW M̃l,s�1

p,r
� ∥u∥

BW M̃l,s�1

p,r

∥

∥

∥

∥

∥

∥

¸
j¥�1

∆̄j∇v

∥

∥

∥

∥

∥

∥

L8

�
¤ Cp∥∇v∥

BW M̃l,s�1

p,r

¸
j¥�1

∥

∥

∥∆̄ju
∥

∥

∥

L8
� ∥u∥

BW M̃l,s�1

p,r

¸
j¥�1

∥

∥

∥∆̄j∇v
∥

∥

∥

L8
q

¤ Cp∥∇v∥
BW M̃l,s�1

p,r

¸
j¥�1

C2
j n

p

∥

∥

∥∆̄ju
∥

∥

∥

W M̃l
p

� ∥u∥
BW M̃l,s�1

p,r

¸
j¥�1

C2
j n

p

∥

∥

∥∆̄j∇v
∥

∥

∥

W M̃l
p

q,

in the last inequality, we have used inequality (2.7). Now, by using Holder inequality for

sequences, it follows that

∥u �∇v∥
BW M̃l,s�1

p,r
¤ C

�
∥∇v∥

BW M̃l,s�1

p,r
∥u∥

BW M̃l,s�1

p,r
� ∥u∥

BW M̃l,s�1

p,r
∥∇v∥

BW M̃l,s�1

p,r

	
¤ C∥u∥

BW M̃l,s�1

p,r
∥v∥

BW M̃l,s
p,r
,

in the cases asserted above. The last estimate follows from the Bernstein inequality

(2.6).

4.2 On the Well-Posedness of the SQG in the Modified Besov-

Morrey Spaces

In this section, we present our research’s other fundamental theoretical result,

which is the well-posedness of the SQG in modified Besov-weak-Morrey. Theorem 3

guarantees the existence, uniqueness, and continuous dependence of the solution of the

SQG equation in this space.

We start with a generic result that will be useful in the rest of this section.

Lemma 8. Let us consider 1   p ¤ l ¤ 8 and u � upx, tq for px, tq P R
n�r0,8q. Assume

that u0 � upx, 0q P WM̃l
p and $&%Btu� v �∇u � gpv, uq

v � RKu
(4.14)

where, RKu � p�R2u,R1uq and ∇ � v � 0. Then there is C ¡ 0 such that

∥uptq∥
BW M̃l,s

p,r
¤ C∥u0∥BW M̃l,s

p,r

� C

» t

0

�
∥vpÄq∥

BW M̃l,s
p,r

∥upÄq∥
BW M̃l,s

p,r
� ∥gpv, uqpÄq∥

BW M̃l,s
p,r

	
dÄ. (4.15)
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Proof. Applying the operator ∆̄j in the first equation of (4.14), adding and subtracting

the term Sj�2v �∇∆̄ju, we obtain

B
Bt∆̄ju� Sj�2v �∇∆̄ju � �Rjpv, uq � ∆̄jgpv, uq.

Since ∇ � v � 0, we immediately conclude that ∇ � ∆̄jv � 0, leading the system:$&%
B
Bt∆̄ju� Sj�2v �∇∆̄ju � �Rjpv, uq � ∆̄jgpv, uq
∇ � ∆̄jv � 0.

(4.16)

Let us consider the flow Xj : Rn � r0,8q ÝÑ R
n associated with the initial

value problem $&%
d

dt
Xjpx0, tq � Sj�2vpXjpx0, tq, tq

Xjpx0, 0q � x0

(4.17)

From chain rule, and considering (4.17) and (4.16), we have

d

dt
∆̄ju pXjpx0, tq, tq � ∇∆̄ju � Sj�2v � Sj�2v �∇∆̄ju�Rjpv, uq � ∆̄jgpv, uq

� �Rjpv, uq pXjpx0, tq, tq � ∆̄jgpv, uq pXjpx0, tq, tq .

Integrating from 0 to t and applying the norm ∥�∥W M̃l
p
, we obtain the estimate

∥

∥

∥∆̄ju pXjpx0, tq, tq
∥

∥

∥

W M̃l
p

¤
∥

∥

∥∆̄ju pXjpx0, 0q, 0q
∥

∥

∥

W M̃l
p

�
» t

0

p∥Rjpv, uq pXjpx0, Äq, Äq∥W M̃l
p

�
∥

∥

∥∆̄jgpv, uq pXjpx0, Äq, Äq
∥

∥

∥

W M̃l
p

qdÄ. (4.18)

Since ∇�Sj�2v � 0, we know that Xjp�, tq is a volume-preserving diffeomorphism

for each t ¥ 0 with Lipschitz constant µ ¥ 1. From Lemma 4, there exists a positive

constant C1 � C1pn, p, l, µq and C2 � C2pn, p, l, µq such that

∥

∥

∥∆̄juptq
∥

∥

∥

W M̃l
P

¤ C1

∥

∥

∥∆̄ju pXjpx0, tq, tq
∥

∥

∥

W M̃l
p

¤ C2

1

∥

∥

∥∆̄juptq
∥

∥

∥

W M̃l
p

C�1

2

∥

∥

∥∆̄jgpv, uqpÄq
∥

∥

∥

W M̃l
P

¤
∥

∥

∥∆̄jgpv, uq pXjpx0, Äq, Äq
∥

∥

∥

W M̃l
p

¤ C2

∥

∥

∥∆̄jgpv, uqpÄq
∥

∥

∥

W M̃l
p

.

Then, multiplying by C1 in (4.18) and using the last result, we obtain

∥

∥

∥∆̄juptq
∥

∥

∥

W M̃l
p

¤ C2

1

∥

∥

∥∆̄ju0

∥

∥

∥

W M̃l
p

� C1

» t

0

p∥Rjpv, uq pXjpx0, Äq, Äq∥W M̃l
p

� C2

∥

∥

∥∆̄jgpv, uqpÄq
∥

∥

∥

W M̃l
p

qdÄ
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So, we multiply by 2js on both sides of the inequality,and on the right side way, apply the

sequence norm lr (recall that ∆̄j � 0 for all j ¤ �2), from Lemma 6 and again by Lemma

4, we get

∥uptq∥
BW M̃l,s

p,r
¤ C2

1
∥u0∥BW M̃l,s

p,r
� C1

» t

0

p
∥

∥

∥

∥

2js∥Rjpv, uq pXjpx0, Äq, Äq∥W M̃l
p

∥

∥

∥

∥

ℓr

� C2∥g pv, uq pÄq∥BW M̃l,s
p,r
qdÄ

¤ C∥u0∥BW M̃l,s
p,r
� C

» t

0

p∥v pXjpx0, Äq, Äq∥BW M̃l,s
p,r

∥u pXjpx0, Äq, Äq∥BW M̃l,s
p,r

� ∥gpv, uqpÄq∥
BW M̃l,s

p,r
qdÄ

¤ C∥u0∥BW M̃l,s
p,r
� C

» t

0

�
∥vpÄq∥

BW M̃l,s
p,r

∥upÄq∥
BW M̃l,s

p,r
� ∥gpv, uqpÄq∥

BW M̃l,s
p,r

	
dÄ

Now, we define the sequence p¹mqm¥1 as the solution of the following iterative

scheme $'''&'''%
B
Bt¹

pm�1q � vpmq �∇¹pm�1q � 0

vpmq � RK¹pmq

¹pm�1qpx, 0q � Spm�1q¹0,

(4.19)

with ¹p1q � S1¹0. The following lemma guarantees that the sequence p¹mqm¥0 is bounded

in the Besov-modified-weak Morrey framework.

Lemma 9. There are T ¡ 0 and a constant C ¡ 0 such that
∥

∥

∥¹pmq
∥

∥

∥

L8
T
pBW M̃l,s

p,rq
¤ C, for all m ¥ 1.

Proof. Notice that, system (4.19) is a particular case of Lemma 8 with u � ¹pm�1q, v � vpmq

and g � 0. Then, it follows that

∥

∥

∥¹pm�1qptq
∥

∥

∥

BW M̃l,s
p,r

¤ C0∥¹0∥BW M̃l,s
p,r
� C

∥

∥

∥vpmq
∥

∥

∥

L8
T pBW M̃l,s

p,rq
» t

0

∥

∥

∥¹m�1 pÄq
∥

∥

∥

BW M̃l,s
p,r

dÄ.

By applying Gronwall’s inequality (integral version), we have
∥

∥

∥¹m�1ptq
∥

∥

∥

BW M̃l,s
p,r

¤ C∥¹0∥BW M̃l,s
p,r
exp

�
C∥vm∥

L8
T pBW M̃l,s

p,rqT
	

(4.20)

where 0   t   T . Notice that so far (4.20) was obtained from the application of the

Lemma 4, which in this case can only be used if Xm
j for all m is the volume-preserving

diffeomorphism associated and Lipschitz continuous function with the constant of Lipschtiz

µ ¥ 1 (see the proof of Lemma 8). To prove the general case, first note that Sj�2v
m is a

Lipschitz vector field provided that ∇vm P L8T pL8pRnqq and taking L1 as the Lipschitz

constant of Sj�2v
m, we have that, in general, the function pXm

j q� is Lipschitz continuous

on the second variable, this will be shown with the help of the following affirmation.
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Claim 4.2.1. ∥∇Sj�2v
m∥

L8
T
¤ C∥∇vm∥

BW M̃l,s�1

p,r
, where L8T :� L8T pL8pRnqq

In fact, from the homogeneous Littlewood-Paley decomposition, Young’s in-

equality and Lemma 3, equation (2.7), we get

∥∇Sj�2v
m∥

L8
T
¤

¸
j¥�1

∥

∥

∥Sj�2p∆̄j∇v
mq

∥

∥

∥

L8
T

¤
¸

j¥�1

C
∥

∥

∥∆̄j∇v
m

∥

∥

∥

L8
T

¤ C
¸

j¥�1

2
j n

p

∥

∥

∥∆̄j∇v
m

∥

∥

∥

W M̃l
p

(4.21)

and by hypothesis, we have the following cases:

1. If r � 1 then s � n

p
� 1, that is , s� 1 � n

p
. Hence, we have

C
¸

j¥�1

2
j n

p

∥

∥

∥∆̄j∇v
m

∥

∥

∥

W M̃l
p

� C
¸

j¥�1

2jps�1q
∥

∥

∥∆̄j∇v
m

∥

∥

∥

W M̃l
p

� C∥∇vm∥
BW M̃l,s�1

p,r
.

2. If r ¡ 1, then s ¥ n

p
� 1, that is,

n

p
� s� 1 ¤ 0. Hence, from Hölder’s inequality

¸
j¥�1

2
j n

p

∥

∥

∥∆̄j∇v
m

∥

∥

∥

W M̃l
p

¤
∣

∣

∣

∣

∣

∣

¸
j¥�1

2
jpn

p
�s�1q

2jps�1q
∥

∥

∥∆̄j∇v
m

∥

∥

∥

W M̃l
p

∣

∣

∣

∣

∣

∣

¤
� ¸

j¥�1

∣

∣

∣2
jpn

p
�s�1q

∣

∣

∣

r
r�1

� r�1

r
� ¸

j¥�1

∣

∣

∣

∣

2jps�1q
∥

∥

∥∆̄j∇v
m

∥

∥

∥

W M̃l
p

∣

∣

∣

∣

r
� 1

r

¤ C∥∇vm∥
BW M̃l,s�1

p,r
.

Hence, from (2.13), Claim 4.2.1 and Young’s inequality, we have

∣

∣

∣pXm
j q�1px0, tq � pXm

j q�1py0, tq
∣

∣

∣ ¤ e

» t

0

L1dÄ
|x0 � y0|

¤ e

» t

0

∥∇Sj�2v
m∥

L8
T
pL8pR2qqdÄ

|x0 � y0|

¤ e
T ∥Sj�2∇vm∥

L8
T
pBW M̃

l,s�1

p,r q|x0 � y0|

¤ e
T C∥∇vm∥

L8
T
pBW M̃

l,s�1

p,r q|x0 � y0|

¤ e
CT ∥vm∥

L8
T
pBW M̃

l,s
p,rq|x0 � y0|

that is, for 0 ¤ t ¤ T , we have

∣

∣

∣pXm
j q�1px0, tq � pXm

j q�1py0, tq
∣

∣

∣ ¤ e
CT ∥vm∥

L8
T
pBW M̃

l,s
p,rq|x0 � y0|. (4.22)
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Now, we show that for a T � T2 the sequence p¹mq is bounded in the space

L8T2
pBWM̃l,s

p,rq.
So, from Young’s inequality and choosing a suitable L for our ¹0, we get

∥

∥

∥¹1ptq
∥

∥

∥

BW M̃l,s
p,r

� ∥S1¹0∥BW M̃l,s
p,r

¤ L∥¹0∥BW M̃l,s
p,r

(4.23)

Claim 4.2.2. ∥vm∥
LT8

2

pBW M̃l,s
p,rq

¤
∥

∥

∥RK
∥

∥

∥∥¹m∥
L8

T2
pBW M̃l,s

p,rq
, where

∥

∥

∥RK
∥

∥

∥ � maxt∥R1∥, ∥R2∥u

In fact, as ∆̄�1f � F�1pÈ pfq, ∆̄j � F�1pφj
pfq @j ¥ 0 and Rl¹ � F�1

�
iÀl

|À|
p¹
,

then follows that

∆̄jR
K¹m � RK∆̄j¹

m.

On the other hand, in [42], it was shown that the Riesz transform is bounded

in the framework of modified Morrey spaces WM̃l
p (see Lemma 2.3); with this fact, we

show that the sequence of variables p¹mq limits the sequence of the speed field pvmq in the

framework of modified Besov-weak-Morrey spaces BWM̃l,s
p,r

∥vm∥
BW Ml,s

p,r
�

∥

∥

∥RK¹m
∥

∥

∥

BW M̃l,s
p,r

�
∥

∥

∥

∥

2js
∥

∥

∥∆̄jR
K¹m

∥

∥

∥

W M̃l
p

∥

∥

∥

∥

lr

�
∥

∥

∥

∥

2js
∥

∥

∥RK∆̄j¹
m

∥

∥

∥

W M̃l
p

∥

∥

∥

∥

lr

¤
∥

∥

∥

∥

∥

∥

∥RK
∥

∥

∥2js
∥

∥

∥∆̄j¹
m

∥

∥

∥

W M̃l
p

∥

∥

∥

∥

lr

�
∥

∥

∥RK
∥

∥

∥∥¹m∥
BW M̃l,s

p,r
.

Let C̃ ¡ 0, T2 ¡ 0 and µ such that

L∥¹0∥BW M̃l,s
p,r
¤ C̃

2∥RK∥
(4.24)

C̃

2∥RK∥
exp

 
LC̃T2

( ¤ C̃ (4.25)

exp
 
CT2C̃

( ¤ µ (4.26)

Claim 4.2.3. For T � T2 and m ¥ 1 we have ∥¹m∥
L8

T2
pBW M̃l,s

p,rq
¤ C̃

∥RK∥
.

In fact, for m � 1 de (4.23) and (4.24), we have
∥

∥

∥¹1ptq
∥

∥

∥

BW M̃l,s
p,r

¤ L∥¹0∥BW M̃l,s
p,r

¤ C̃

2∥RK∥

¤ C̃

∥RK∥
.
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Assuming it holds for m, we now show that it holds for m�1. So, from equation

(4.22) and (4.26),

∣

∣

∣pXm
j q�1px0, tq � pXm

j q�1py0, tq
∣

∣

∣ ¤ e
CT2∥vm∥

L8
T2

pBW M̃
l,s
p,rq|x0 � y0|

¤ e
CT2∥RK∥∥¹m∥

L8
T2

pBW M̃
l,s
p,rq|x0 � y0|

¤ e
CT2∥RK∥ C̃

∥RK∥ |x0 � y0|

¤ µ|x0 � y0|

for j ¥ �1 e t P r0, T2s. Hence (4.20) is true, from the Claim 4.2.2 and (4.25), we have

∥

∥

∥¹m�1ptq
∥

∥

∥

BW M̃l,s
p,r

¤ L∥¹0∥BW M̃l,s
p,r

exp
!
L∥vm∥

L8
T2
pBW M̃l,s

p,rqT2

)
¤ L∥¹0∥BW M̃l,s

p,r
exp

!
L∥R∥∥¹m∥

L8
T2
pBW M̃l,s

p,rqT2

)
¤ C̃

2∥RK∥
exp

"
L

∥

∥

∥RK
∥

∥

∥

C̃

∥RK∥
T2

*
¤ C̃.

Theorem 3. Let 1   p   8, 1   l ¤ 8 and p ¤ l. Assume either s ¡ n

p
� 1 with

1 ¤ r ¤ 8 or s � n

p
� 1 with r � 1.

1. (Existence and uniqueness) For ¹0 P BWM̃l,s
p,r there exists an existence-time T ¡ 0

such that IVP (4.1) has a unique solution

¹ P L8 �p0, T q;BWM̃l,s
p,r

�X C
�r0, T s;BWM̃l,s�1

p,r

�
.

Moreover, ¹ P C �r0, T s;BWM̃l,s
p,r

�
provided that r   8.

Proof. On the other hand, from (2.9) and (2.6) of Lemma 3 and Young’s inequality, we

get

∥

∥

∥∆̄j∆̄m�1¹0

∥

∥

∥

W M̃l
p

¤ C2�pm�1q
∥

∥

∥D∆̄m�1∆̄j¹0

∥

∥

∥

W M̃l
p

¤ C2�pm�1q2j
∥

∥

∥∆̄j∆̄m�1¹0

∥

∥

∥

W M̃l
p

¤ C2j�pm�1q
∥

∥

∥∆̄j¹0

∥

∥

∥

W M̃l
p

then,

∥

∥

∥∆̄m�1¹0

∥

∥

∥

BW M̃l,s�1

p,r

�
∥

∥

∥

∥

2jps�1q
∥

∥

∥∆̄j∆̄m�1¹0

∥

∥

∥

W M̃l
p

∥

∥

∥

∥

lr

¤
∥

∥

∥

∥

2jps�1qC2pj�m�1q
∥

∥

∥∆̄j¹0

∥

∥

∥

W Ml
p

∥

∥

∥

∥

lr

¤ C2�pm�1q
∥

∥

∥

∥

2js
∥

∥

∥∆̄j¹0

∥

∥

∥

W M̃l
p

∥

∥

∥

∥

lr

¤ C2�m∥¹0∥W M̃l,s
p,r
.
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Claim 4.2.4. The sequence p¹mq is Cauchy in the space L8T3
pBWM̃l,s

p,rq, for some T3 P
p0, T2s.

In fact, for any m ¥ 2, subtracting p4.19qm and p4.19qm�1, and adding in both

sides of the term vm �∇¹m, we have$'''&'''%
B
Btp¹

m�1 � ¹mq � vm �∇p¹m�1 � ¹mq � pvm�1 � vmq �∇¹m

∇ � pvm � vm�1q � RKp¹m � ¹m�1q
¹m�1

0
� ¹m

0
:� pSm�1 � Smq¹0

(4.27)

Notice that system (4.27) is a particular case of Lemma 8 with u � ¹m�1 �
¹m, v � vm and g � pvm�1 � vmq � ∇¹m. For simplicity of notation, we write zm�1 �
¹m�1 � ¹m and wm � vm � vm�1. So, we get from the Lemma 7 (equation (4.13))

C
∥

∥

∥zm�1ptq
∥

∥

∥

BW Ml,s�1

p,r

¤ C0

∥

∥

∥∆̄m�1¹0

∥

∥

∥

BW Ml,s�1

p,r

� C3

» t

0

∥vm∥
BW Ml,s�1

p,r

∥

∥

∥zm�1
∥

∥

∥

BW Ml,s�1

p,r

dÄ

� C2

» t

0

∥wm �∇¹m∥
BW Ml,s�1

p,r
dÄ

¤ C2�m∥¹0∥BW Ml,s
p,r
� C3T∥vm∥

L8
T
pBW Ml,s�1

p,r q

∥

∥

∥zm�1
∥

∥

∥

L8
T
pBW Ml,s�1

p,r q

� C2T∥wm∥
L8

T
pBW Ml,s�1

p,r q∥¹
m∥

L8
T
pBW Ml,s

p,rq

¤ C2�m∥¹0∥BW Ml,s
p,r
� C3T∥R∥∥¹m∥

L8
T
pBW Ml,s�1

p,r q

∥

∥

∥zm�1
∥

∥

∥

L8
T
pBW Ml,s�1

p,r q

� C2T∥R∥∥¹m∥
L8

T
pBW Ml,s

p,rq
∥zm∥

L8
T
pBW Ml,s�1

p,r q

¤ C2�m∥¹0∥BW Ml,s
p,r
� C3TC̃
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∥

∥zm�1
∥

∥

∥

L8
T
pBW Ml,s�1

p,r q

� C2TC̃∥zm∥
L8

T
pBW Ml,s�1

p,r q,

then,

∥

∥

∥zm�1ptq
∥

∥

∥

L8
T
pBW Ml,s�1

p,r q
¤ C2�m∥¹0∥BW Ml,s

p,r
� C3TC̃
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∥

∥zm�1
∥

∥

∥

L8
T
pBW Ml,s�1

p,r q

� C2TC̃∥zm∥
L8

T
pBW Ml,s�1

p,r q.

Consider 0   T ¤ T2 such that C3TC̃ ¤ 1

2
, and we get

1

2

∥

∥

∥zm�1ptq
∥

∥

∥

L8
T
pBW Ml,s�1

p,r q
¤ C2�m∥¹0∥BW Ml,s

p,r
� C2TC̃∥zm∥

L8
T
pBW Ml,s�1

p,r q.

By restringing a little more, if necessary, to 2C2TC̃ ¤ 1

2
, we obtain the estimate

∥

∥

∥zm�1
∥

∥

∥

L8
T3
pBW M̃l,s�1

p,r q
¤ C2�pm�1q∥¹0∥

BW M̃
l,s
p,r

� 1

2
∥zm∥

L8
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pBW M̃l,s�1

p,r q
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for all m ¥ 2. By an induction argument, it is easy to get that

∥

∥

∥zm�1
∥

∥

∥

L8
T3
pBW Ml,s�1

p,r q
¤ C∥¹0∥BW Ml,s

p,r
pm� 1q2�pm�1q � 2�pm�1q

∥

∥

∥z2
∥

∥

∥

L8
T3
pBW Ml,s�1

p,r q
,

for all m ¥ 2.

It is a standard argument to show that sequence p¹mqm¥1 is Cauchy. In fact,

for m ¡ n ¥ 2, we can compute

∥¹m � ¹n∥
L8

T3
pBW M̃l,s�1

p,r q ¤
m�1̧

i�n

∥

∥

∥zi�1
∥

∥

∥

L8
T3
pBW M̃l,s�1

p,r q

¤
m�1̧

i�n

�
C∥¹0∥BW Ml,s

p,r
pi� 1q2�pi�1q � 2�pi�1q

∥

∥

∥z2
∥

∥

∥

L8
T3
pBW Ml,s�1

p,r q



.

The convergence of the numerical series on the right-hand side implies that the right-hand

side is small as desired.

So, there is an Ã P L8T3
pBWM̃l,s�1

p,r q such that ¹m Ñ Ã in L8T3
pBWM̃l,s�1

p,r q.
Furthermore, from Claim 4.2.3, we have that p¹mq is bounded in L8T3

pBWM̃l,s
p,rq and from

[42, Lemma 3.6 ] the BWM̃l,s
p,r has a predual, i. e., there is a vector space whose dual space

(set of all continuous linear transformations on this vector space) is BWM̃l,s
p,r, in this case is

the modified Besov-block spaces, so by the Banach-Alaoglu Theorem there is a subsequence

p¹mkq and ¹ P L8T3
pBWM̃l,s

p,rq such that ¹mk á� ¹ in L8T3
pBWM̃l,s

p,rq; but that implies that

¹mk á� ¹ in L8T3
pBWM̃l,s�1

p,r q, since the parameter s indicates the degree of regularity, then

since L8T3
pBWM̃l,s

p,rq � L8T3
pBWM̃l,s�1

p,r q. On the other hand, as strong convergence implies

weak convergence and from the fact that every subsequence of a convergent sequence

converges to the same element, we have that ¹m Ñ Ã in L8T3
pBWM̃l,s�1

p,r q that ¹mk á� Ã

in L8T3
pBWM̃l,s�1

p,r q, then then, by the uniqueness of the weak limit �, we conclude that

¹ � Ã.

Then we prove that ¹ is a solution of the SQG equation; for each m P N, of

(4.19), we have to

B¹m�1

Bt � �vm �∇¹m�1

integrating from 0 to t

¹m�1p´, tq � ¹m�1p´, 0q �
» t

0

vm �∇¹m�1dÄ. (4.28)

Since p¹mq � C
�r0, T3s, BWM̃l,s�1

p,r

�
and ¹m converges to ¹ em L8T 3

�
BWM̃l,s�1

p,r

�
,

we have to ¹ P C �r0, T3s, BWM̃l,s�1

p,r

�
. Taking mÑ 8 em (4.28), we have that ¹ satisfies

¹ptq � ¹0 �
» t

0

v �∇¹dÄ (4.29)
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just as wanted.

It remains to show that ¹ is continuous in time with values in BWM̃l,s
p,r for

r   8. Considering Ék � Sk¹ with k P N,we have Ék converge to ¹in space L8T3

�
BWM̃l,s

p,r

�
and

∥Ékptq � Ékpsq∥BW M̃l,s
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�
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∥
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� 1

r

¤ C2k

�
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2jps�1qr
∥

∥

∥∆̄jp¹ptq � ¹psqq
∥

∥

∥

r

W M̃l
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� 1

r

¤ C2k∥¹ptq � ¹psq∥
BW M̃l,s�1
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.

Since ¹ P C
�r0, T3s;BWM̃l,s�1

p,r

�
, we have Ék P C

�r0, T3s;BWM̃l,s
p,r

�
for each k, and

consequently, ¹ P C �r0, T3s;BWM̃l,s
p,r

�
.

4.3 Numerical Study

In this section, our objective is to numerically study the SQG and obtain

computational information, such as global well-posedness, blowing-up, formation of sin-

gularities or formation of abrupt gradients in the numerical solution of the SQG. For

this study, we began in the first subsection by constructing the 2D fully-discrete nonlocal

Lagrangian–Eulerian scheme based on the concept of No-Flow curves to handle the two-

dimensional nonlocal operator Riesz transform R acting on the hyperbolic conservation

laws. The construction of the 2D nonlocal fully-discrete Lagrangian-Eulerian scheme for

this case is similar to Section 3.4.6 based on the new concept of No-Flow curves, which

was first introduced in [12] and has been presented and analyzed successfully for fully

discrete schemes in a solid mathematical foundation. The second subsection will focus

on approximating and numerically validating the two-dimensional nonlocal operator, the

Riesz Transform. In the final subsection, we present numerical simulations considering

different types of initial data.

Let us recall that the SQG in conservative form is given by$&%Bt¹ �∇ � p¹RK¹q � 0

¹px, y, 0q � ¹0px, yq

where ¹ � ¹px, y, tq is a scalar function, ¹ : R
2 � r0,8q ÝÑ R, which represents the

temperature potential of the fluid, v � pv1, v2q denotes a velocity field such that ∇ � v � 0.
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And the relationship between v and ¹ is through the Riesz transform R

v � RK¹ � p�R2¹,R1¹q � p�B2p�△q� 1

2 ¹, B1p�△q� 1

2 ¹q.

4.3.1 A Lagrangian–Eulerian scheme for the SQG

In this subsection, we discuss the new Lagrangian-Eulerian technique with

conservation properties for approximating the two-dimensional initial value problem for

hyperbolic conservation laws, where the flow is nonlocal. This hyperbolic conservation

laws is the SQG,$&%Bt¹ � Bxp�¹R2¹q � Byp¹R1¹q � 0, px, y, tq P Ω� pt0, T s
¹px, y, 0q � ¹0px, yq, px, yq P Ω,

(4.30)

where, Ω � R
2, t0 ¥ 0, T � tf ¡ 0, and ¹0 P LppR2q is a not necessarily regular function.

To develop the 2D fully-discrete nonlocal Lagrangian–Eulerian scheme for

solving the nonlocal IVP model (4.30), we first follow an analogous approach to that used

for the Lagrangian-Eulerian scheme in the 1D + 1/2 model, as outlined in [6] and [7].

So, we incorporate the concepts described in [6] and [3] to approximate the solution to

problem (4.30)

Θpxi, yj, t
nq � Θn

i,j �
1

∆y

1

∆x

» yn

j� 1

2

yn

j� 1

2

» xn

i� 1

2

xn

i� 1

2

¹px, y, tnqdxdy (4.31)

Θpxi, yj, t
n�1q � Θ

n�1

i,j � 1

∆y
n�1

1

∆x
n�1

» ȳn�1

j� 1

2

ȳn�1

j� 1

2

» x̄n�1

i� 1

2

x̄n�1

i� 1

2

¹px, y, tn�1qdxdy (4.32)

with the initial condition Θpx0

i , y
0

j , t
0q � Θ0

i,j in the cells�
x0

i� 1

2

, x0

i� 1

2

�
�
�
y0

j� 1

2

, y0

j� 1

2

�
for i, j P Z.

It is worth mentioning that the approximation value Θpxi, yj, t
n�1q is performed over the

region R
n�1

i,j .

To build the 2D scheme, we need to define the control volume of the Lagrangian-

Eulerian scheme, Dn
i,j, which is a solid in R

3 formed by the triples px, y, tq between the

region Rn
i,j and the region R

n�1

i,j where the region R
n�1

i,j is obtained by the No-Flow curves,

Ãn
i,jptq with i, j P Z and tn ¤ t ¤ tn�1. Then BDn

i,j � Rn
i,j Y Sn

i,j YR
n�1

i,j , where

• Rn
i,j � rxn

1� 1

2

, xn
1� 1

2

s � ryn
1� 1

2

, yn
1� 1

2

s � R
2 is the entry of the non-flow surface region,

• R
n�1

i,j � rxn�1

1� 1

2

, xn�1

1� 1

2

s � ryn�1

1� 1

2

, yn�1

1� 1

2

s � R
2 is the exit of the non-flow surface region,

and
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• Sn
i,j � R

3, is the lateral surface of the non-flow region.

Remark that in the equation (4.31) the ¹px, y, tq is the solution of

Bt¹ � pBxp�¹R2¹q � Byp¹R1¹qq � 0, @px, y, tq P Ω� R
�.

We assume there is non-flow through the surface Sn
i,j (that is, Sn

i,j is impervious;

that is natural in many applications [12], [9], [14], [13]). As a consequence, the surface

integral of Sn
i,j is zero; that is,¼

R
n�1

i,j

¹px, y, tn�1q dRn�1

i,j �
¼
Rn

i,j

¹px, y, tnq dRn
i,j (4.33)

referred to as the conservation identity in [6] and [3]. This can be written as» ȳn�1

j�1{2

ȳn�1

j�1{2

» x̄n�1

j�1{2

x̄n�1

j�1{2

¹px, y, tn�1qdx dy �
» yn

j�1{2

yn
j�1{2

» xn
j�1{2

xn
j�1{2

¹px, y, tnqdx dy (4.34)

At first, we do not know exactly what the no-flow surface Sn
i,j looks like; we only know that

the edge of the ingress coincides with BRn
i,j in the tn plane, and the outlet end of surface

Sn
i,j, which intersects the tn�1 plane. Let us suppose that the surface Sn

i,j is given by a

family of No-Flow curves, µptq with tn ¤ t ¤ tn�1, then we will take a µn
i�1{2,jptq, µn

i,j�1{2ptq
representative curve at the midpoint of each side of the edge BRn

i,j and it will be defined

with the help of the scalar functions, Ãn
i�1{2,jptq and Ãn

i,j�1{2ptq with tn ¤ t ¤ tn�1, such

that for t � tn we have Ãn
i�1{2,jptnq � xi�1{2, Ã

n
i,j�1{2ptnq � yj�1{2 and these four functions

in time tn�1 intersect the plane tn�1, see Figura 2 . Then to build R
n�1

i,j , we define the four

parametric curves,

µn
i�1{2,jptq � rÃn

i�1{2,jptq, yj, tsT , µn
i,j�1{2ptq � rxi, Ã

n
i�1{2,jptq, tsT with tn ¤ t ¤ tn�1.

(4.35)

So, we have to µn
i�1{2,jptq, µn

i,j�1{2ptq P Sn
i,j for tn   t   tn�1.

By [6], the construction of No-Flow side curves is not unique.

Notice that, for tn   t   tn�1, we have that µn
i�1{2,jptq is in plane-yj, µ

n
i,j�1{2,jptq

is in plane-xi, furthermore

d

dt
µn

i�1{2,jptq �
�
d

dt
Ãn

i�1{2,jptq, 0, 1
�T

and
d

dt
µn

i,j�1{2ptq �
�
0,
d

dt
Ãn

i,j�1{2ptq, 1
�T

Similar to a conservation law with partially nonlocal velocity, we obtain the following

initial value problems. It’s clear that the No-Flow curve depends directly on the approach
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of the operator.$'&'%
d

dt
Ãn

i�1{2,jptq � �¹pÃn
i�1{2,jptq, yj, tqR2¹pÃn

i�1{2,jptq, yj, tq
¹pÃn

i�1{2,jptq, yj, tq
Ãn

i�1{2,jptnq � xn
i�1{2

(4.36)

and $'&'%
d

dt
Ãn

i,j�1{2ptq � ¹pxi, Ã
n
i,j�1{2ptq, tqR1¹pxi, Ã

n
i,j�1{2ptq, tq

¹pxi, Ã
n
i,j�1{2ptq, tq

Ãn
i,j�1{2ptnq � yn

j�1{2.

(4.37)

approximating the Ãn
i�1{2,jptq and Ãn

i,j�1{2ptq curves by Taylor’s series, we obtain

Ãn
i�1{2,jptq � Ãn

i�1{2,jptnq �
d

dt
Ãn

i�1{2,jptnqpt� tnq

Ãn
i,j�1{2ptq � Ãn

i,j�1{2ptnq �
d

dt
Ãn

i,j�1{2ptnqpt� tnq.

Thus, from (3.102), we get an approximation for Ãn
i�1{2,jptq

Ãn
i�1{2,jptq � xn

i�1{2 � pt� tnqfn
i�1{2,j for tn ¤ t ¤ tn�1 (4.38)

where, fn
i�1{2,j � �R2¹pÃn

i�1{2,jptq, yn
j , tq.

Similarly, from (4.37), we get an approximation for Ãn
i,j�1{2ptq

Ãn
i,j�1{2ptq � yn

j�1{2 � pt� tnqgn
i�1{2,j for tn ¤ t ¤ tn�1 (4.39)

where, gn
i,j�1{2 � R1¹pxn

i , Ã
n
i,j�1{2ptq, tq.

So, a significant finding emerges: the No-Flow curves fn
i�1{2,j and gn

i,j�1{2 approx-

imate the velocity nonlocal R2¹pÃn
i�1{2,jptq, yn

j , tq and R1¹pxn
i , Ã

n
i,j�1{2ptq, tq, respectively,

for this conservation law.

Furthermore, the approximation to the control volume Dn
i,j is given by

Dn
i,j � tpx, y, tq| Ãn

i�1{2,jptq   x   Ãn
i�1{2,jptq, Ãn

i,j�1{2ptq   y   Ãn
i,j�1{2ptq, tn   t   tn�1u.

(4.40)

The conservative Lagrangian-Eulerian scheme for this case is given for the steps

next.

1. The Lagrangian evolution is given by

Θ
n�1

i,j � ApRn
i,jq

ApRn�1

i,j q
Θn

i,j with ApRn
i,jq � ∆x�∆y and ApRn�1

i,j q � ∆xn�1 �∆yn�1

(4.41)

where

∆xn�1 � ∆x� pfn
i�1{2,j � fn

i�1{2,jq∆t and ∆yn�1 � ∆y � pgn
i,j�1{2 � gn

i,j�1{2q∆t
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2. The Eulerian remap is given by

Θn�1

i,j � 1

ApRn�1

i,j q
pK1 �K2 �K3q (4.42)

where K1, K2 and K3 are defined as the 1D � 1{2 model along with the CFL

restriction.

4.3.2 Approximation of the Riesz transform

Let be ¹ a scalar function, ¹ : R2 � r0,8q ÝÑ R. We know that the Riesz

transform is defined as the integral singular operator,

Rjp¹qpx, tq � 1

2Ã
p.v.

»
R2

pxj � yjq
|x� y|3

¹py, tqdy. (4.43)

where x � px1, x2q and y � py1, y2q belong to R
2, t ¡ 0 and j � 1, 2.

For h ¡ 0, let be

Ä �  
xpm,nq : xpm,nq � pxm

1
, xn

2
q, where xm

1
� x0

1
�mh and xn

2
� x0

2
� nh

(N

m,n�0

a uniform grid on the plane of the pN � 1q2 cells that determine the closed region

CÄ � rx0

1
, xN

1
s � rx0

2
, xN

2
s. Given a fixed x P R

2 and assuming that the grid must be such

that the function ¹px, tq can be approximated by zero outside CÄ . Then, for each interior

point xpk,lq P Ä with k, l � 1, � � � , N � 1, then we can approximate the Riesz transform on

the plane,

R1p¹qpxpk,lq, tq � 1

2Ã
lim

ϵÑ0�

N�1̧

n�0

N�1̧

m�0

»
∥xpk,lq�y∥

max

¡ϵ

xk
1
� y1

∥xpk,lq � y∥
3

max

¹py, tqdy

� 1

2Ã

�
l�2̧

n�0

N�1̧

m�0

�
N�1̧

n�l�1

N�1̧

m�0

�
ļ

n�l�1

k�2̧

m�0

�
ļ

n�l�1

N�1̧

m�k�1

�
�

» xn�1

2

xn
2

» xm�1

1

xm
1

xk
1
� y1

∥xpk,lq � y∥
3

max

¹py, tqdy1dy2

� 1

2Ã
lim

ϵÑ0�

#» xl
2
�ϵ

xl�1

2

» xk�1

1

xk�1

1

�
» xl�1

2

xl
2
�ϵ

» xk�1

1

xk�1

1

�
» xl

2
�ϵ

xl
2
�ϵ

» xk
1
�ϵ

xk�1

1

�
» xl

2
�ϵ

xl
2
�ϵ

» xk�1

1

xk
1
�ϵ

+
�

xk
1
� y1

∥xpk,lq � y∥
3

max

¹py, tqdy1dy2.

As the values of ¹pxpk,lq.tq are known in each cell rxm
1
, xm�1

1
s � rxn

2
, xn�1

2
s, then

we can approximate the ¹py, tq :� ¹tpyq by the zero-degree Taylor polynomial

¹tpyq � ¹tpxm
1
, xn

2
q � B1¹tpÀ1, À2qpy1 � À1q � B2¹tpÀ1, À2qpy2 � À2q

� ¹tpxm
1
, xn

2
q
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where À1 P rxm
1
, y1s and À2 P rxn

2
, y2s.

On the other hand, note that
∥

∥

∥xpk,lq � y
∥

∥

∥

max
� max

!
∣

∣

∣xk
1
� y1

∣

∣

∣,
∣

∣

∣xl
2
� y2

∣

∣

∣ : xm
1
¤ y1 ¤ xm�1

1
and xn

2
¤ y2 ¤ xn�1

2

)
.

Then, we have the following approximations» xn�1

2

xn
2

» xm�1

1

xm
1

xk
1
� y1

∥xpk,lq � y∥
3

max

¹py, tqdy1dy2

�
∥

∥

∥xpk,lq � y
∥

∥

∥

�3

maxyPQ0

» xn�1

2

xn
2

» xm�1

1

xm
1

pxk
1
� y1q¹tpxm

1
, xn

2
qdy1dy2

�
∥

∥

∥xpk,lq � y
∥

∥

∥

�3

maxyPQ0

¹tpxm
1
, xn

2
q
» xn�1

2

xn
2

» xm�1

1

xm
1

pxk
1
� y1qdy1dy2

�
∥

∥

∥xpk,lq � y
∥

∥

∥

�3

maxyPQ0

¹tpxm
1
, xn

2
q1
2

�pxk
1
� xm

1
q2 � pxk

1
� xm�1

1
q2� pxn�1

2
� xn

2
q

� h

2

∥

∥

∥xpk,lq � y
∥

∥

∥

�3

maxyPQ0

¹tpxm
1
, xn

2
q �pxk

1
� xm

1
q2 � pxk

1
� xm�1

1
q2�

where Q0 � rxm
1
, xm�1

1
s � rxn

2
, xn�1

2
s.

lim
ϵÑ0�

» xl
2
�ϵ

xl�1

2

» xk�1

1

xk�1

1

xk
1
� y1

∥xpk,lq � y∥
3

max

¹py, tqdy1dy2

�
∥

∥

∥xpk,lq � y
∥

∥

∥

�3

maxyPQ1

lim
ϵÑ0�

» xl
2
�ϵ

xl�1

2

» xk�1

1

xk�1

1

pxk
1
� y1q¹tpxk�1

1
, xl�1

2
qdy1dy2

� 0

where Q1 � rxk�1

1
, xk�1

1
s � rxl�1

2
, xl

2
� ϵs.

lim
ϵÑ0�

» xl�1

2

xl
2
�ϵ

» xk�1

1

xk�1

1

xk
1
� y1

∥xpk,lq � y∥
3

max

¹py, tqdy1dy2

�
∥

∥

∥xpk,lq � y
∥

∥

∥

�3

maxyPQ2

lim
ϵÑ0�

» xl�1

2

xl
2
�ϵ

» xk�1

1

xk�1

1

pxk
1
� y1q¹tpxk�1

1
, xl

2
� ϵqdy1dy2

� 0

where Q2 � rxk�1

1
, xk�1

1
s � rxl

2
, xl�1

2
s.

lim
ϵÑ0�

» xl
2
�ϵ

xl
2
�ϵ

» xk
1
�ϵ

xk�1

1

xk
1
� y1

∥xpk,lq � y∥
3

max

¹py, tqdy1dy2

�
∥

∥

∥xpk,lq � y
∥

∥

∥

�3

maxyPQ3

lim
ϵÑ0�

» xl
2
�ϵ

xl
2
�ϵ

» xk
1
�ϵ

xk�1

1

pxk
1
� y1q¹tpxk�1

1
, xl

2
� ϵqdy1dy2

� 0
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where Q3 � rxk�1

1
, xk

1
s � rxl

2
, xl

2
s.

lim
ϵÑ0�

» xl
2
�ϵ

xl
2
�ϵ

» xk�1

1

xk
1
�ϵ

xk
1
� y1

∥xpk,lq � y∥
3

max

¹py, tqdy1dy2

�
∥

∥

∥xpk,lq � y
∥

∥

∥

�3

maxyPQ4

lim
ϵÑ0�

» xl
2
�ϵ

xl
2
�ϵ

» xk�1

1

xk
1
�ϵ

pxk
1
� y1q¹tpxk

1
� ϵ, xl

2
� ϵqdy1dy2

� 0

where Q4 � rxk
1
, xk�1

1
s � rxl

2
, xl

2
s.

Therefore,

R1p¹qpxpk,lq, tq � 1

2Ã

�
l�2̧

n�0

N�1̧

m�0

�
N�1̧

n�l�1

N�1̧

m�0

�
ļ

n�l�1

k�2̧

m�0

�
ļ

n�l�1

N�1̧

m�k�1

�
h

2

∥

∥

∥xpk,lq � y
∥

∥

∥

�3

maxyPQ0

�

¹tpxm
1
, xn

2
q �pxk

1
� xm

1
q2 � pxk

1
� xm�1

1
q2� (4.44)

Similarly, we can get

R2p¹qpxpk,lq, tq � 1

2Ã
lim

ϵÑ0�

N�1̧

n�0

N�1̧

m�0

»
∥xpk,lq�y∥

max

¡ϵ

xl
2
� y2

∥xpk,lq � y∥
3

max

¹py, tqdy

� 1

2Ã

�
l�2̧

n�0

N�1̧

m�0

�
N�1̧

n�l�1

N�1̧

m�0

�
ļ

n�l�1

k�2̧

m�0

�
ļ

n�l�1

N�1̧

m�k�1

�
�

» xn�1

2

xn
2

» xm�1

1

xm
1

xl
2
� y2

∥xpk,lq � y∥
3

max

¹py, tqdy1dy2

� 1

2Ã
lim

ϵÑ0�

#» xl
2
�ϵ

xl�1

2

» xk�1

1

xk�1

1

�
» xl�1

2

xl
2
�ϵ

» xk�1

1

xk�1

1

�
» xl

2
�ϵ

xl
2
�ϵ

» xk
1
�ϵ

xk�1

1

�
» xl

2
�ϵ

xl
2
�ϵ

» xk�1

1

xk
1
�ϵ

+
�

xl
2
� y2

∥xpk,lq � y∥
3

max

¹py, tqdy1dy2.

Each parcel can be approximated by» xn�1

2

xn
2

» xm�1

1

xm
1

xl
2
� y2

∥xpk,lq � y∥
3

max

¹py, tqdy1dy2

�
∥

∥

∥xpk,lq � y
∥

∥

∥

�3

maxyPP0

» xn�1

2

xn
2

» xm�1

1

xm
1

pxl
2
� y2q¹tpxm

1
, xn

2
qdy1dy2

� h

2

∥

∥

∥xpk,lq � y
∥

∥

∥

�3

maxyPP0

¹tpxm
1
, xn

2
q �pxl

2
� xn

2
q2 � pxl

2
� xn�1

2
q2�

where P0 � rxm
1
, xm�1

1
s � rxn

2
, xn�1

2
s.
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lim
ϵÑ0�

» xl
2
�ϵ

xl�1

2

» xk�1

1

xk�1

1

xl
2
� y2

∥xpk,lq � y∥
3

max

¹py, tqdy1dy2

�
∥

∥

∥xpk,lq � y
∥

∥

∥

�3

maxyPP1

lim
ϵÑ0�

» xl
2
�ϵ

xl�1

2

» xk�1

1

xk�1

1

pxl
2
� y2q¹tpxk�1

1
, xl�1

2
qdy1dy2

�
∥

∥

∥xpk,lq � y
∥

∥

∥

�3

maxyPP1

¹tpxk�1

1
, xl�1

2
q lim

ϵÑ0�

"
�1

2

�
ϵ2 � h2

� p2hq*
� h3

∥

∥

∥xpk,lq � y
∥

∥

∥

�3

maxyPP1

¹tpxk�1

1
, xl�1

2
q

where P1 � rxk�1

1
, xk�1

1
s � rxl�1

2
, xl

2
� ϵs.

lim
ϵÑ0�

» xl�1

2

xl
2
�ϵ

» xk�1

1

xk�1

1

xl
2
� y2

∥xpk,lq � y∥
3

max

¹py, tqdy1dy2

�
∥

∥

∥xpk,lq � y
∥

∥

∥

�3

maxyPP2

lim
ϵÑ0�

» xl�1

2

xl
2
�ϵ

» xk�1

1

xk�1

1

pxl
2
� y2q¹tpxk�1

1
, xl

2
� ϵqdy1dy2

�
∥

∥

∥xpk,lq � y
∥

∥

∥

�3

maxyPP2

¹tpxk�1

1
, xl

2
q lim

ϵÑ0�

"
�1

2
pp�hq2 � ϵ2qp2hq

*
� �h3

∥

∥

∥xpk,lq � y
∥

∥

∥

�3

maxyPP2

¹tpxk�1

1
, xl

2
q

where P2 � rxk�1

1
, xk�1

1
s � rxl

2
� ϵ, xl�1

2
s.

lim
ϵÑ0�

» xl
2
�ϵ

xl
2
�ϵ
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�ϵ
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1
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2
� y2

∥xpk,lq � y∥
3
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¹py, tqdy1dy2
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∥

∥
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∥

�3

maxyPP3

lim
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�ϵ
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�ϵ
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1
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2
� y2q¹tpxk�1

1
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2
� ϵqdy1dy2
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∥

∥
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∥

∥

∥
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maxyPP3

¹tpxk�1

1
, xl

2
q lim

ϵÑ0�

"
�1

2
pp�ϵq2 � ϵ2qph� ϵq

*
� 0

where P3 � rxk�1

1
, xk

1
s � rxl

2
� ϵ, xl

2
� ϵs.
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xk
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maxyPP4
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where P4 � rxk
1
, xk�1

1
s � rxl

2
, xl

2
s.
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Therefore,
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(4.45)

To test our numerical approximation of the Riesz transform, we study R1 (4.44)

and R2 (4.45), separately to the 2D Gaussian function u and validate our approximation

using the following identity

RiRjp△uq � � B2u

BxiBxj

. (4.46)

It is worth noting that the machine simulation time for the Figure 20 was

approximately 18 days. This simulation is a fundamental part of validating the numerical

approximation of the Riesz Transform that we are proposing.

Figure 17 – The laplacian of Gaussian 2D △u, where upx1, x2q � 1

Ã
e�

x2

1
�x2

2

8 .
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Figure 18 – Numerical approximation of the Riesz transform R1 for Laplacian of Gaussian,
considering a sequence of meshes m � 16, 32, 64, 128, 256.

m Error

16 1.0027
32 0.9680
64 0.7765
128 0.4593
256 0.1855

Table 1 – Error table for the numerical approximation of the Riesz transform to equation
(4.46).
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Figure 19 – Numerical approximation of the Riesz transform R2 for Laplacian of Gaussian,
considering a sequence of meshes m � 16, 32, 64, 128, 256.
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Figure 20 – Numerical approximation simulation of the Riesz transform for a sequence of

meshes m � 16, 32, 64, 128, 256. In the last picture we plot � B2u

BxiBxj

. However,

in the other pictures, we have a numerical approximation of the Riesz transform

RiRjp△uq, where upx1, x2q � 1

Ã
e�

x2

1
�x2

2

8 .
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Figure 21 – Plot of the numerical error for the approximation of the Riesz transform to
equation (4.46).
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4.3.3 Numerical Simulations for the SQG

In this section, we study numerically through simulations the issue of global

well-posedness, finite time blow-up, the formation of singularities or the formation of

abrupt gradients in solutions for the SQG considering measuring initial data, belonging to

the Schwartz spaces SpR2q.
We first focus on describing the “big picture” of the analysis of numerical results

by showing coherency between the theoretical arguments and numerical approximation.

The key idea is to investigate the characteristics of the measurable initial datum, which

might lead to a blow-up, global discussion, or formation of singularities in the numerical

solution of SQG. The blow-up can be viewed as a singular point with mass-preserving

accumulation.

Then our attention to a numerical experimental study of the nonlinear trans-

port equation characterized with a nonlocal flux function, the Riesz transform (1.1). As

mentioned before, we will use the Lagrangian-Eulerian method for solving this nonlinear

transport equation (1.1). This scheme were able to compute qualitatively correct approxi-

mations by showing strong evidence of blow-up of concentration type with mass-preserving

of the measure initial datum and measure initial datum measure weak-Morrey type with

respect to the underlying nonlinear transport equation with doubly nonlocal flux; also

this scheme were able to compute qualitatively correct approximations by showing strong

evidence of attenuation of regularization type with mass-preserving of the measure ini-

tial datum and measure initial datum measure weak-Morrey type with respect to the

underlying nonlinear transport equation with doubly nonlocal flux.

In order to perform the numerical study of the SQG equation nonlinear at

hand to get additional insights on the nonlinear interplay among nonlocal equations,

critical functional spaces, and singular measures, we also proposed a robust and consistent

way to treat the model (1.1) in a finite computational domain Ω � ra, bs � rc, ds. Our

prior rigorous results allow us to identify the most simple and mathematically correct

treatment of boundary conditions, namely, enlarge the domain far enough that these

spurious reflections cannot interfere with the numerical simulations. We rewrite model

(1.1) in the computational domain Ω � ra, bs � rc, ds,

$&%Bt¹ �∇ � p�¹R2¹, ¹R1¹q � 0, px, y, tq P Ω� p0, T s,
¹px, y, 0q � fpx, yq, px, yq P Ω,

(4.47)

where Rj with j � 1, 2 is the Riesz transform, which is given by (4.43). Furthermore,

fpx, yq can be the Gaussian, fpx, yq � e�
px2�y2q

8

Ã
, or other initial data as long as it is

measurable.
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As already pointed out in our results, the term blow-up of concentration type

means solutions assuming singular measures, e.g., giving mass to points (singular points

with mass concentration but preserving the initial total mass). Indeed, our analysis enables

us to shed light on the effects of the initial data fpx, yq as singular measures. Thus, possible

natural questions are: What is the maximum mass of Dirac measure (or any other singular

measure) so that we have the existence of a global-in-time flow in our framework? Do

solutions evolve as a singular measure? Or do they regularise (a diffusion mechanism and

mass-preserving) for t ¡ 0?

To better understand the qualitative behavior numerically of the SQG equation,

we will present the simulations in two subsections: Section 4.3.3 will look at simulations

with measurement data as initial data.

Simulations for measured data

In this subsection, we will show evidence of regularization of the attenuation

type for the solution ¹ of the SQG equation considering measured data, one of them being

the Gaussian. The machine simulation time was approximately 20 days.
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Figure 22 – Numerical simulations for Bt¹�∇ � p�¹R2¹, ¹R1¹q � 0 with a Gaussian initial
data, ³ � 0.5 and mesh m � 64 for a sequence of times T � 0, 1, 10, 100. On
the top, you can observe a decrease in height of the approximate solution
as time evolves, while on the bottom the approximate solution a shown
diffusion and reduction in height as time evolves. Evidence of attenuation of
regularization type.
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Figure 23 – Numerical simulations for Bt¹�∇ � p�¹R2¹, ¹R1¹q � 0 with a Gaussian initial
data, ³ � 0.5 and mesh m � 128 for a sequence of times T � 0, 0.1, 1, 10. At
the top, you can observe a decrease in height of the approximate solution as
time evolves, while at the bottom, the approximate solution exhibits diffusion
and a reduction in height over time. This provides evidence of an attenuation
of a regularization type.
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Figure 24 – Numerical simulations for Bt¹ �∇ � p�¹R2¹, ¹R1¹q � 0 with the initial data

fpx, yq � 3xy

2Ã
exp

 �px2 � y2q{5(, ³ � 0.5 and mesh m � 128 for a sequence

of times T � 0.0001, 0.1, 1, 10. At the top, you can observe a decrease in
height of the approximate solution as time evolves, while at the bottom, the
approximate solution exhibits diffusion and a reduction in height over time.
This provides evidence of an attenuation of a regularization type.
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5 Conclusions and Perspectives

This thesis aims to conduct an analytical-numerical study of two nonlinear

transport equations with nonlocal or doubly nonlocal flux. One of them is the well-known

SQG equation, and the other is a model we are proposing for studying this type of transport

equation, which we call a conservation law with partially nonlocal velocity. The nonlocal

flux and the nonlinear transport equation model the evolution of relevant flow problems in

pure and applied sciences. They appear in connection with dynamics models in continuous

fluid mechanics and dynamics of fluids in porous media; for instance, vortex sheet evolution,

the incompressible porous medium equation, interface models between incompressible

fluids, magnetostrophic flow equation, patch problems in meteorology, to name a few of

the significant interest on the subject matter of nonlocal models. The starting point is to

motivate the problem and to establish several bases and existence of “regular” solutions

for all time leading to important questions such as well-posedness, blow-up, asymptotic

behavior, self-similarity, among other. For concreteness, in the mathematical part, we

study the issue of well-posedness for these two nonlinear transport equations with nonlocal

or doubly nonloal flux with initial data belonging to in the framework of Besov spaces. In

order to obtain this part, new mathematical results were developed and demonstrated. On

the numerical part, the numerical solutions were obtained by using the novel Lagrangian-

Eulerian method, for this we develop and validate the numerical approximations of

nonlocal operators concerning those two transport equation; this numerical solutions were

discussed and compared with the mathematical results achieved. Indeed, the underlying

two transport equation problem analyzes in the framework of Besov spaces allows us to

consider measure initial data and measured data of weak-Morrey type. Therefore, in the

numerical approximations of the two aforementioned transport equations, under distinct

initial conditions, evidence of either blow-up or attenuation of solutions was observed.

This qualitative behavior depends on the sign of the flux and the conditions imposed on

the initial data.

There is much to learn from the current work of well-posedness and evidence

of blow-up or attenuation of solutions for SQG equation, a conservation law with partially

nonlocal velocity model and a conservation law with partially nonlocal velocity with rotation

with initial data in the framework of Besov spaces, from both viewpoints: theoretical

and numerical. For instance, the BWM̃l,s
p,r-space has been considered to study important

issues as a local-in-time well-posedness and blow-up criterion for the incompressible Euler

equations, covering critical and supercritical cases of the regularity. The Euler equations

can be seen as a particular case of the Navier-Stokes equations when viscosity is neglected.

On the other hand, less work appears in the literature concerning numerical convergence
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analysis for approximation methods to model nonlinear transport equations with nonlocal

flux and related equations. The functional space for numerical analysis convergence proofs

linked to the numerical schemes we consider in this thesis is of particular interest in this

subject matter.

In this chapter, we recapitulate the primary outcomes of the whole thesis and

give a glimpse of possible future extensions of the present work.

5.1 Concluding Remarks

Concerning a conservation law with partially nonlocal velocity,$&%Bt¹ �∇ � p¹Λ³�1

1
H1¹, ¹Λ

³�1

2
H2¹q � 0

¹px, y, 0q � ¹0

we were able to prove theoretical and numerical results such as:

• In the mathematical part, we studied the issues of well-posedness with initial data

belonging to the Besov space B¼
1,8 with ¼ ¡ 5. The well-posedness for the solution

was established through analytical study, and the novelty lies in the definition of

two nonlocal partial operators, namely the partial Hilbert transform and the partial

Riesz potential. This fact prompted us to establish the Bernstein inequality for these

partial nonlocal operators, with one of the new tools employed being the partial

Fourier Transform. Furthermore, another novelty is that two commuting operators

depend on the two nonlocal partial operators already mentioned. The estimates for

these commutator operators were derived by means of Bernstein’s inequality, which

was established in this work.

• In the numerical part, we have successfully implemented the fully discrete 2D

Lagrangian-Eulerian numerical scheme, and the novelty lies in its application to

the doubly nonlocal case. In this approach, we consider the velocity field to be a

composition of two nonlocal operators, the partial Hilbert transform and the partial

Riesz potential. These two nonlocal operators have previously been approximated

numerically. This marks the first instance of such an application in this context.

For this numerical study, we are considering two cases. In the first case, we analyze

a conservation law with partially nonlocal velocity and positive flux Bt¹ � ∇ �
p¹Λ³�1

1
H1¹, ¹Λ

³�1

2
H2¹q � 0 and obtain evidence of attenuation of regularization-

type. In the second case, we analyze a conservation law with partially nonlocal

velocity and negative flux Bt¹�∇ � p¹Λ³�1

1
H1¹, ¹Λ

³�1

2
H2¹q � 0 and obtain evidence

of blow-up of concentration-type; for both cases we consider measure initial data and

measure initial data weak Morrey type. The observations of the numerical solution
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of the transport equation (1.3) indicate both global well-posedness and finite time

blow-up of solutions. These results maintain the same qualitative behavior as the

one-dimensional case of the nonlinear transport equation (1.3) with doubly nonlocal

velocity. Furthermore, we study a conservation law with partially nonlocal velocity

with rotation Bt¹�∇ � p�¹Λ³�1

2
H2¹, ¹Λ

³�1

1
H1¹q � 0 we have obtained similar results

of SQG equation as rotating counterclockwise and losing regularity or formation of

abrupt gradients.

Hence, the proof of well-posedness and numerical evidence of blow-up or

attenuation from a conservation law with partially nonlocal velocity forces us to review

some results obtained for a nonlinear one-dimensional transport equation with nonlocal

velocity ut � puHuqx � ¿uxx, ¿ ¡ 0 in the pseudomeasure space PM (see [2]), as the

global well-posedness and finite time blow-up of solutions for this one-dimensional nonlocal

transport equation.

On the other hand, concerning the nonlinear transport equations with nonlocal

flux, the SQG, $&%Bt¹ �∇ � p¹RK¹q � 0

¹px, 0q � ¹0pxq

we were able to prove theoretical and numerical results such as:

• In the mathematical part, we studied the issues of well-posedness with initial data

belonging to the modified Besov-weak-Morrey spaces BWM̃l,s
p,r. The well-posedness

of a solution was established through an analytical study using some of the tools

described in [42].

• In the numerical part, we successfully fully implemented the fully discrete 2D

Lagrangian-Eulerian numerical scheme, and its novelty lies in its application to

the nonlocal case. In this approach, by its very definition, the velocity is a non-

local operator, the Riesz transform. This nonlocal operator has previously been

approximated numerically and validated with a well-known identity. This marks

the first instance of such an application in this context. For this numerical study

we are considering measure initial data and obtaining evidence of attenuation of

regularization-type. The observations of the numerical solution of the SQG equation

give us some indications of the global well-posedness of solutions. These results

maintain the same qualitative behavior as the nonlinear transport equation (1.3)

with doubly nonlocal velocity.
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5.2 Outlook for Future Work

Tracking the advancements in the state-of-the-art regarding the surface quasi-

geostrophic equation framework, we want to continue studying analytically and theoretically

to more understand this transport equation. Futhermore, We aim to persist in the analytical

and numerical exploration of a conservation law with partially nonlocal velocity, as it

represents a novel approach to studying nonlocal transport equations by defining partial

nonlocal operators in the velocity field. This approach has yielded mathematical insights,

including Bernstein’s inequality and estimates for the commutator operators associated

with the partial nonlocal operators. Therefore, we anticipate developing the following

research topics:

Analytical:

• As a conservation law with partially nonlocal velocity and negative flux offers

numerical evidence of blow-up of concentration type (similar to the 1D case), we

have more than one motive to prove the blow-up of solution this model in classical

Besov spaces. Additionally, would like to demonstrate the blow-up of solutions for

the in the modified Besov-weak-Morrey spaces.

• As a conservation law with partially nonlocal velocity and positive flux offers nu-

merical evidence of attenuation of regularization type (similar to the 1D case), we

have one motivation to prove the global well-posedness of solution for this model

in classical Besov spaces. Additionally, would like to demonstrate the blow-up of

solutions for the in the modified Besov-weak-Morrey spaces.

• As a first study, we proved the well-posedness of a conservation law with partially

nonlocal velocity in classical Besov spaces. Now, we would like to demonstrate the

well-posedness for this model in the modified Besov-weak-Morrey spaces.

• We would like to demonstrate the well-posedness of the SQG this time by obtaining

the velocity field through a composition of the Riesz transform with the Riesz

potential.

• As the numerical simulations of a conservation law with partially nonlocal velocity

with rotation exhibit similarities with the findings in the study of the geometric

properties of the SQG in [25]. So, we would like to investigate the geometric features

of the level curves of a conservation law with partially nonlocal velocity with rotation,

including loss of convexity and formation of sinks or sources or saddles.

Numerical:
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• Only a few numerical simulations have been presented for the SQG. Therefore, we

would like to conduct additional numerical simulations, incorporating diverse types

of initial data. Furthermore, we plan to enhance our study by refining the mesh.

• We observed that the numerical simulations for a conservation law with partially

nonlocal velocity with rotation closely resemble those obtained for the SQG in [31, 46]

and [25]. This new model could be considered a prototype for SQG. Consequently,

we aim to conduct additional numerical simulations to explore further and validate

this resemblance.

• We would like to prove of the convergence of the Lagrangian-Eulerian method of a

conservation law with partially nonlocal velocity and the SQG.

Theoretical-Numerical

• We would like to study the interplay between computation and analysis, which leads

to further theoretical insights based in numerical observations of the SQG and a

conservation law with partially nonlocal velocity with rotation.

For example, we would like to investigate global well-posedness, finite-time blowing-

up, the formation of singularities, and the emergence of abrupt gradients in solutions

for both the SQG and a conservation law with partially nonlocal velocity with

rotation.
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