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Resumo

O sistema relacional fuzzy proposto por Mamdani e Assilian em 1975 se popularizou devido

à sua fácil aplicação em problemas práticos e à interpretação gráfica bastante intuitiva.

Todavia, também é possível construir sistemas relacionais fuzzy baseados em implicações

fuzzy, que possuem uma interpretação lógica diferente do sistema de Mamdani. Neste

trabalho será feito um estudo de ambos os sistemas relacionais e duas representações de

uma base de regras fuzzy: conjuntiva e implicativa. Uma revisão dos trabalhos de Martin

Stepnicka, Bernhard Moser e Mirko Navara também será feita, onde foram estabelecidos

uma série de critérios analíticos para avaliar as combinações de composições de relações

fuzzy e bases de regras fuzzy. Por fim, avaliamos a aplicação dos sistemas relacionais em

alguns problemas de regressão que são um referencial dentro da área.

Palavras-chave: Sistemas relacionais fuzzy. Aprendizado de regras fuzzy. Regressão.



Abstract

The fuzzy relational system proposed by Mamdani and Assilian in 1975 became popular

due to its ease of application in practical problems and intuitive graphical interpretation.

Nevertheless, it is also possible to build fuzzy relational systems based on fuzzy implications,

which have a different logic interpretation from the one of the Mamdani system. In this

work, we will study both relational systems and two representations of fuzzy rule bases:

conjunctive and implicative. We will also discuss the works of Martin Stepnicka, Bernhard

Moser and Mirko Navara, who established a series of analytical criteria to evaluate such

combinations of compositions of fuzzy relations and fuzzy rule bases. Finally, we evaluate

the performance of the relational systems applied in some benchmark regression problems.

Keywords: Fuzzy relational systems. Fuzzy rules learning. Regression.
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1 Introduction

Fuzzy relational systems (FRSs) have been used in many applications during the

last decades, with special emphasis on control problems. Their wide range of applications

(NGUYEN; WALKER; WALKER, 2018) (BARROS; BASSANEZI; LODWICK, 2017)

(PEDRYCZ; GOMIDE, 2007) (ROSS, 2005) (KLIR; YUAN, 1995) (MOURA; SUSSNER,

2018) emphasizes the importance of studying FRSs.

The fuzzy relational system proposed by Mamdani and Assilian (MAMDANI;

ASSILIAN, 1975) gained popularity due to its ease of implementation and low compu-

tational cost, allowing it to be used in microcontrollers with small processing capacity.

However, despite its widespread use, the FRS proposed by Mamdani-Assilian has a different

interpretation than we are used to from the point of view of propositional logic, as will be

seen in Chapter 3.

This work proposes to explore other relational systems, which have highly

desirable characteristics such as the interpolability and significance of outputs generated. It

is mostly motivated by the investigations of Martin Stepnicka (STEPNICKA; MANDAL,

2015) (STEPNICKA, 2016) (STEPNICKA; MANDAL, 2018) on the suitability of FRSs

as inference systems.

In Chapter 2 we review the mathematical concepts relevant to theory of the

fuzzy sets, which will be necessary for further development of the topics covered.

In Chapter 3, we define the theory of the fuzzy relational systems and develop

some propositions to deepen the study of these systems. This study is accompanied by

numerical examples and visualizations to aid understanding. Then, in Chapter 4 we discuss

the axioms proposed by Moser and Navara (MOSER; NAVARA, 2002), as well as the

developments made by Stepnicka (STEPNICKA; MANDAL, 2015) (STEPNICKA, 2016)

(STEPNICKA; MANDAL, 2018), for evaluation of FRSs according to analytical criteria,

and also the discussion some properties of these relational systems.

In Chapter 5 we recall the Wang-Mendel algorithm for generating fuzzy rules

proposed in (WANG; MENDEL, 1992). This algorithm is applied to a series of benchmark

regression problems and the rules generated are used to compose the relational systems

discussed in Chapter 3. Finally, the results presented by the FRSs are compared with each

other.

In Chapter 6, we make some conclusions about the discussed subjects and

indications for possible future work.
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2 Mathematical Concepts

In this chapter, there will be presented the basic concepts of fuzzy set theory

and how they can be used to extend the operators of classical propositional logic giving

rise to the known fuzzy logic.

2.1 Basic concepts of fuzzy set theory

Lofti A. Zadeh introduced the concept of a fuzzy set in 1965 (ZADEH, 1965) as

an extension of the classical notion of a set, the latter being called by crisp sets. A fuzzy

set A is defined in a universe X and represented by a membership function µA : X Ñ r0, 1s.

In the rest of the work, we will indistinctly adopt the notations Apxq and µApxq for the

membership function of the set A, without risk of misunderstanding.

The membership function indicates the degree of membership of an element

x P X to the set A, where µApxq “ 1 represents the element’s total membership to the set

and µApxq “ 0 represents the element not belonging to the set. The collection of all fuzzy

sets defined in the universe X is represented by the symbol FpXq. If there is at least one

x P X such that µApxq “ 1, we say that the fuzzy set A is normal. The support of a fuzzy

set A, denoted by SupppAq, is given by the set tx P X|µApxq ą 0u.

Thus, it is possible to view the class of crisp sets as a particular case of fuzzy

sets. That is, given a crisp set A, this set can be seen as a fuzzy set where µApxq only takes

values in t0, 1u. Finally, we define the fuzzy sets X P FpXq (universe) and H P FpXq

(empty), such that µXpxq “ 1 and µHpxq “ 0 for all x P X.

2.2 Operations on fuzzy sets

Using this idea, Boolean logical operators can be extended giving rise to a

family of operators between fuzzy sets (KLIR; YUAN, 1995).

Definition 1. A fuzzy conjunction Cpx, yq is a function C : r0, 1s ˆ r0, 1s Ñ r0, 1s,

increasing in both arguments and which satisfies the following truth table:

x y Cpx, yq
0 0 0
1 0 0
0 1 0
1 1 1

Table 1 – Truth table of a fuzzy conjunction



Chapter 2. Mathematical Concepts 13

Definition 2. A fuzzy conjunction C is called a t-norm if it obeys the following properties

for x, y, z P r0, 1s:

1. Commutativity: Cpx, yq “ Cpy, xq

2. Associativity: Cpx, Cpy, zqq “ CpCpx, yq, zq

3. Neutral element: Cp1, xq “ x

4. Monotonicity: if x ď y ñ Cpx, zq ď Cpy, zq

In the remaining of the work we will adopt the notation x ˚ y to represent a

t-norm. Some examples of t-norms are:

• Mínimum: x ˚M y “ x ^ y “ mintx, yu

• Product: x ˚P y “ x ¨ y

• Lukasiewicz: x ˚L y “ 0 _ px ` y ´ 1q

• Drastic Product: x ˚D y “

$

’

’

’

&

’

’

’

%

x, if y “ 1

y, if x “ 1

0, otherwise

Lemma 1. (KLIR; YUAN, 1995) Let ˚ be a t-norm, then for any x, y P r0, 1s we have

that

x ˚D y ď x ˚ y ď x ˚M y. (2.1)

A t-norm is said to be left continuous (KLEMENT; MESIAR; PAP, 2000) if,

for a given y P r0, 1s and any non-decreasing sequence txnunPN, we have

lim
nÑ8

pxn ˚ yq “ p lim
nÑ8

xnq ˚ y. (2.2)

Another category of t-norms that will be important for our study are t-norms

without zero divisors. A t-norm ˚ is said to be without zero divisors (KLEMENT; MESIAR;

PAP, 2000) if it meets the following condition:

x ˚ y “ 0 ñ x “ 0 or y “ 0.

Definition 3. A fuzzy disjunction Dpx, yq is a function D : r0, 1sˆr0, 1s Ñ r0, 1s increasing

in both arguments and which satisfies the following truth table:
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x y Dpx, yq
0 0 0
1 0 1
0 1 1
1 1 1

Table 2 – Truth table of a fuzzy disjunction

Definition 4. A fuzzy disjunction is called a t-conorm (or s-norm) if it obeys the following

properties for x, y, z P r0, 1s:

1. Commutativity: Dpx, yq “ Dpy, xq

2. Associativity: Dpx, Dpy, zqq “ DpDpx, yq, zq

3. Neutral element: Dp0, xq “ x

4. Monotonicity: if x ď y ñ Dpx, zq ď Dpy, zq

We will use the symbol xSy to denote a t-conorm. Some examples of t-conorms

are:

• Maximum: xSMy “ x _ y “ maxtx, yu

• Probabilistic Sum: xSP y “ x ` y ´ x ¨ y

• Lukasiewicz: xSLy “ 1 ^ px ` yq

• Drastic Sum: xSDy “

$

’

’

’

&

’

’

’

%

x, if y “ 0

y, if x “ 0

1, otherwise

Lemma 2. (KLIR; YUAN, 1995) Let S be a t-conorm, then for any x, y P r0, 1s we have

that

xSMy ď xSy ď xSDy. (2.3)

Definition 5. A fuzzy implication Ipx, yq is a function I : r0, 1sˆr0, 1s Ñ r0, 1s, descending

on the first argument and increasing in the second argument, which satisfies the following

truth table:

x y Ipx, yq
0 0 1
1 0 0
0 1 1
1 1 1

Table 3 – Truth table of a fuzzy implication
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A special class of fuzzy implications are the fuzzy residual implications (R-

implications), they are built from a t-norm in the following way:

x Ñ y “
ł

tz P r0, 1s|x ˚ z ď yu, (2.4)

where ˚ is a left-continuous t-norm and x, y P r0, 1s. An obvious property of the fuzzy

residual implications is the fact that x Ñ y “ 1 always that x ď y since for any t-norm

x ˚ 1 “ x by the property of the neutral element. In this work we will focus exclusively on

this class of fuzzy implications. Some examples of fuzzy residual implications are:

• Gödel: x ÑM y “

$

&

%

1, if x ď y

y, if x ą y

• Goguen: x ÑP y “

$

&

%

1, if x ď y
y

x
, if x ą y

• Lukasiewicz: x ÑL y “ 1 ^ py ´ x ` 1q

Lemma 3. (KLIR; YUAN, 1995) Let Ñ be a fuzzy residual implication, then for any

x, y P r0, 1s we have that

x ÑM y ď x Ñ y. (2.5)

2.3 Crisp and fuzzy relations

The classical concept of relation between sets is given by a subset of the

Cartesian product X ˆ Y , where X and Y are any universe sets. In other words, a relation

Rpx, yq with x P X and y P Y can be seen as a map R : X ˆ Y Ñ t0, 1u. More formally,

we will use the following definition for a crisp binary relation over fuzzy sets:

Definition 6. Given two fuzzy sets A P FpXq and B P FpY q and a binary operator

„: r0, 1s ˆ r0, 1s Ñ t0, 1u, we define a binary relation RA„B as the set of ordered pairs

px, yq so that

px, yq P RA„B ô Apxq „ Bpyq. (2.6)

Using this definition of crisp binary relation, we will introduce a notation for

selecting subsets of the space X.

Definition 7. Let A P FpXq, B P FpY q, a binary operator „: r0, 1s ˆ r0, 1s Ñ t0, 1u and

y P Y be arbitrary. The set XA„Bpyq is given by

XA„Bpyq “ tx P X|px, yq P RA„Bu. (2.7)

Let us look at one example of set generated according to Definition 7.
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Example 1. Let A P FpXq, B P FpY q, and y P Y be arbitrary. The set XAěBpyq Ď X is

given by

XAěBpyq “ tx P X|Apxq ě Bpyqu. (2.8)

It is interesting to note that, for a given fixed y, the set XAąBpyq is equivalent

to the α-cut of A with α “ Bpyq.

Figure 1 – Subset XAěBpyq of X.

Now considering two fuzzy sets defined in the same domain, that is Y “ X, we

define the following notation:

Definition 8. Let A, B P FpXq and a binary operator „: r0, 1s ˆ r0, 1s Ñ t0, 1u. The set

XA„B is given by

XA„B “ tx P X|px, xq P RA„Bu. (2.9)

One example of application of this notation is the following:

Example 2. Let A, B P FpXq. The set XAăB Ď X is given by XAăB “ tx P X|Apxq ă

Bpxqu.

Figure 2 – Subset XAăB of X.

Naturally this concept of classical (or crisp) relations can be extended using

the notion of fuzzy sets defined earlier, so a fuzzy relation is given by R : X ˆ Y Ñ r0, 1s,

where Rpx, yq can be interpreted as the degree of relation between x and y (Di NOLA

et al., 1989). The operations between fuzzy sets seen on the last section are examples of

fuzzy relations.
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We can also define compositions of fuzzy relations (PEDRYCZ; GOMIDE,

2007). In particular, we will use two kinds of composition operators in this work: Sup-t

and Inf-I compositions.

Definition 9. Let G : X ˆ Z Ñ r0, 1s and W : Z ˆ Y Ñ r0, 1s be fuzzy relations and ˚ a

t-norm. The Sup-t composition Ř “ G ˝ W is a fuzzy relation with membership function

given by

Řpx, yq “
ł

zPZ

pGpx, zq ˚ W pz, yqq, @x P X and @y P Y.

Definition 10. Let G : X ˆ Z Ñ r0, 1s and W : Z ˆ Y Ñ r0, 1s be fuzzy relations and

Ñ a residual implication. The Inf-I composition R̂ “ G Ÿ W is a fuzzy relation with

membership function given by

R̂px, yq “
ľ

zPZ

pGpx, zq Ñ W pz, yqq, @x P X and @y P Y.

These definitions of compositions between relations will be used in Chapter 3

to build fuzzy relational systems.

2.4 Residuated lattices

Since we are dealing with residual implications in this work, it is important

to introduce the concept of a residuated lattice. This algebraic structure that has some

properties that will be very useful for developing fuzzy relational systems in the next

chapter.

Definition 11. (BIRKHOFF, 1940) A partially ordered set U is a set in which a binary

relation x ď y is defined, which satisfies for all x, y, z P U the following conditions:

• Reflexive: x ď x

• Antisymmetric: If x ď y and y ď x, then x “ y

• Transitive: If x ď y and y ď z, then x ď z

If x ď y it is said that x "is less than" or "is contained in" y. On the other way,

it can also be read as y "contains" x.

The sup between two elements x and y from a partially ordered set P , denoted

by x _ y, is the is the smallest element of P that is greater than or equal to both x and y.

(BIRKHOFF, 1940).

Similarly, the inf between two elements x and y from a partially ordered set

P , denoted by x ^ y, is the greatest element of P that is smaller than or equal to both x

and y (BIRKHOFF, 1940).
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Definition 12. (BIRKHOFF, 1940) A lattice is a partially ordered set P in which any

two of its elements have a sup (x _ y) and an inf (x ^ y).

A lattice P is called complete if
ľ

X and
ł

X exists in P for any subset

X Ď P (GRATZER, 1971). One special kind of lattice is the residuated lattice, that is

defined as follows:

Definition 13. (PERFILIEVA, 2005) A residuated lattice is an algebra L “ xL, _, ^, ˚, Ñ

, 0, 1y with four binary operations and two constants such that:

• xL, _, ^, 0, 1y is a lattice with the ordering ď defined using the operations _, ^ as

usual and 0, 1 are the smallest and largest elements, respectively;

• xL, ˚, 1y is a commutative monoid, that is, ˚ is a commutative and associative

operation with the identity x ˚ 1 “ x;

• the Ñ is a residuation operation with respect to ˚, that is

x ˚ y ď z ô x ď y Ñ z. (2.10)

This algebraic structure has some properties that will be very useful in the

next chapter, when we present the fuzzy relational systems. Now, we will look at some of

these properties found on the literature.

Lemma 4. (NOVAK; PERFILJEVA; MOCKOR, 1999) Let L be a residuated lattice.

Then for every a, b, c P L the following holds true.

1. a ˚ b ď a and a ˚ b ď b

2. b ď a Ñ b

3. a ˚ pa Ñ bq ď b and b ď a Ñ pa ˚ bq

4. if a ď b then

a) c Ñ a ď c Ñ b

b) a Ñ c ě b Ñ c

5. a ˚ pa Ñ 0q “ 0

6. a Ñ pb Ñ cq “ pa ˚ bq Ñ c

7. a ď b iff a Ñ b “ 1

8. pa _ bq ˚ c “ pa ˚ cq _ pb ˚ cq

9. a _ b ď ppa Ñ bq Ñ bq ^ ppb Ñ aq Ñ aq
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Proposition 1. (GALATOS et al., 2007) Let x, y and z be elements of a residuated

lattice with the operations ˚, ^, _ and Ñ. The following properties hold true:

1. x ˚ py _ zq “ px ˚ yq _ px ˚ zq

2. x Ñ py ^ zq “ px Ñ yq ^ px Ñ zq

3. x Ñ py _ zq “ px Ñ yq _ px Ñ zq

4. x Ñ py Ñ zq “ px ˚ yq Ñ z

5. 1 Ñ x “ x

If a residuated lattice L is complete, then we speak of a complete residuated

lattice (SUSSNER, 2015) (BELOHLÁVEK, 2012). A well-known example of a complete

residuated lattice is the algebra L˚ “ xr0, 1s, _, ^, ˚, Ñ, 0, 1y, where ˚ is a left-continuous

t-norm and Ñ is its adjoint residual implication (HOLČAPEK; QUOC; FERBAS, 2022)

(BELOHLÁVEK, 2012). Using this well-known example, we will state two last propositions

that will be very useful for developing fuzzy relational systems in the next chapter.

Proposition 2. Let L˚ be a complete residuated lattice and a, b, c P L. If a ą b then we

have that

a Ñ pb ˚ cq “ pa Ñ bq ˚ c. (2.11)

Proof. Using the definition of residual implication

a Ñ pb ˚ cq “
ł

tz P r0, 1s|a ˚ z ď b ˚ cu “
ł

Z “ z1 (2.12)

and also

a Ñ b “
ł

ty P r0, 1s|a ˚ y ď bu “
ł

Y “ y1. (2.13)

Let it be a y P Y , by the definitions above we have

y ˚ c ď z1

ñY ˚ c Ď Z

ñpa Ñ bq ˚ c ď a Ñ pb ˚ cq. (2.14)

If a ą b ñ a ą b ˚ c. As ˚ is left-continuous and increasing, z1 “ a Ñ pb ˚ cq

satisfies a ˚ z1 “ b ˚ c. In the same way, y1 “ a Ñ b satisfies a ˚ y1 “ b. Since ˚ is

continuous, then Dyz such that z1 “ yz ˚ c. As y1 is the maximal element that satisfies

a ˚ py1 ˚ cq “ pa ˚ y1q ˚ c “ b ˚ c, so we have that
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z1 “ yz ˚ c ď y1 ˚ c ô a Ñ pb ˚ cq ď pa Ñ bq ˚ c. (2.15)

Therefore, from 2.14 and 2.15 we conclude the demonstration.

Proposition 3. Let L˚ be a complete residuated lattice and a, b, c P L. If b ą c then we

have that

a ˚ c ď a ˚ pb Ñ cq ď a ^ pb Ñ cq. (2.16)

Proof. Using the fact that the minimum is the greatest t-norm from Lemma 1 we have

a ˚ pb Ñ cq ď a ^ pb Ñ cq. (2.17)

On the other hand, using the fact that the Godel implication is the smallest

residual implication from Lemma 3 we have

a ˚ pb Ñ cq ě a ˚ c. (2.18)

Note that this dual case is undetermined unlike the first case in Proposition 2.

It depends on the specific pair of t-norm and fuzzy residual implication considered.

With these concepts of fuzzy set theory defined and the algebraic properties

derived from the residuated lattices, we now present fuzzy relational systems, which are

the main topic of this work.
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3 Fuzzy Relational Systems

3.1 Rule bases

In general, inference is a process to obtain new information using existing

knowledge (LEE, 2004). One type of deductive procedure to perform inferences is the

classical modus ponens (NGUYEN; WALKER; WALKER, 2018). The general form of an

inference following the modus ponens procedure is as follows:

premise: If x is A then y is B

fact: x is A

conclusion: y is B

Approximate or fuzzy reasoning refers to processes by which imprecise conclu-

sions are inferred from imprecise premises (NGUYEN; WALKER; WALKER, 2018). To

this end, one can use a generalized version of the modus ponens procedure:

premise: If x is A then y is B

fact: x is A1

conclusion: y is B1

It is possible to observe that, even in a scenario with uncertainties, it is still

possible to reach a conclusion in light of the facts. Thus, modeling the generalized modus

ponens using the concepts of fuzzy set theory we obtain a fuzzy inference mechanism.

The set of premises in a fuzzy inference system is called the fuzzy rule base. A

fuzzy rule base can be represented using the concepts of fuzzy relations and sets seen in

the previous section. In this work we will use two approaches to this modeling (PEDRYCZ;

GOMIDE, 2007):

Definition 14. Given a finite set of rules of the form

If x is Ai then y is Bi i “ 1, . . . , n,

we define a fuzzy rule base as follows:

1. Conjunctive rule base: Řpx, yq “
n

ł

i“1

Aipxq ˚ Bipyq.

2. Implicative rule base: R̂px, yq “
n

ľ

i“1

Aipxq Ñ Bipyq.
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Dubois and Prade made an important study (DUBOIS; PRADE, 1996) about

the semantics of a conjunctive rule base, that we will quote here:

“It seems that fuzzy rules modeled in this way are not seen as restrictions, but

rather pieces of information. So, the aggregation by the maximum expresses

the accumulation of information.”

It is interesting to note that this approach does not directly correspond to the

IF-THEN rule model, so the notation most suitable for a rule base modeled in this way

would be the following:

x is Ai and y is Bi i “ 1, . . . , n

However, this form of modeling has gained much popularity thanks to the

pioneering work of Mamdani and Assilian (MAMDANI; ASSILIAN, 1975) demonstrating

its use in practical applications. For this reason it is very common to find in the literature

the nomenclature “Mamdani-Assilian rule base” referring to conjunctive rule bases using

the minimum t-norm ^ as conjunction.

Dubois and Prade also studied the semantics of an implicative rule base

(DUBOIS; PRADE, 1996). Quoting the authors again:

“In this view, each piece of information (fuzzy rule) is seen as a restriction.

This view naturally leads to a conjunctive way of aggregating the individual

pieces of information since the more information, the more constraints and

fewer possible values that satisfies them.”

In the work of Klawonn and Novák (KLAWONN; NOVáK, 1996) there is an

interesting discussion about the role of these two kinds of rules, especially about the role

of the conjunctive rule base. According to the authors, this model works more like an

interpolation, mapping inputs to outputs through a similarity relation. On the other hand,

the implicative rule base is appropriate to model the generalized modus ponens inference

process due to its implicative nature.

Let us use a numerical example to better visualize graphically the differences

between these two types of rule bases.

Example 3. Consider the following fuzzy sets:

A1pxq “

$

’

’

’

&

’

’

’

%

x ´ 1

2
, if 1 ă x ď 3,

5 ´ x

2
, if 3 ă x ď 5,

0, otherwise.

; A2pxq “

$

’

’

’

&

’

’

’

%

x ´ 3

2
, if 3 ă x ď 5,

7 ´ x

2
, if 5 ă x ď 7,

0, otherwise.

; A3pxq “

$

’

’

’

&

’

’

’

%

x ´ 5

2
, if 5 ă x ď 7,

9 ´ x

2
, if 7 ă x ď 9,

0, otherwise.

;
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B1pyq “

$

’

’

&

’

’

%

y ´ 1, if 1 ă y ď 2,

3 ´ y, if 2 ă y ď 3,

0, otherwise.

; B2pyq “

$

’

’

&

’

’

%

y ´ 3, if 3 ă y ď 4,

5 ´ y, if 4 ă y ď 5,

0, otherwise.

; B3pyq “

$

’

’

&

’

’

%

y ´ 5, if 5 ă y ď 6,

7 ´ y, if 6 ă y ď 7,

0, otherwise.

.

Also consider the two types of rule bases (conjunctive and implicative) from

Definition 14, expressed as fuzzy relations:

Řpx, yq “
3

ł

i“1

Aipxq ˚ Bipyq; R̂px, yq “
3

ľ

i“1

Aipxq Ñ Bipyq.

Taking the Minimum t-norm (Conjunctive rule base) and the Gödel implication

(Implicative rule base), we have the following visualizations of these fuzzy relations in a

three-dimensional space:

Figure 3 – Representation of the Conjunctive and Implicative fuzzy rule bases.

This graphical example clarifies the meaning of "snippets of information" (con-

junctive rule base) and "constraints" (implicative rule base) cited in the work of D. Dubois

and H. Prade.

3.2 Fuzzy Relational Systems and combinations

Given a fuzzy rule base represented by a fuzzy relation R P FpX ˆ Y q, and an

input represented by a fuzzy set A1 P FpXq, we can obtain an output B1 P FpY q from the

composition of fuzzy relations using Definitions 9 and 10:

1. Sup-t composition: B1pyq “ A1pxq ˝ Rpx, yq “
ł

xPX

A1pxq ˚ Rpx, yq.

2. Inf-I composition: B1pyq “ A1pxq Ÿ Rpx, yq “
ľ

xPX

A1pxq Ñ Rpx, yq.
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The Sup-t composition described here is known in the literature as the Compo-

sitional Rule of Inference or CRI (ZADEH, 1973); the Inf-I composition is also known as

the Bandler-Kohout Subproduct or BKS (BANDLER; KOHOUT, 1980). Therefore, we

will refer to them as CRI and BKS compositions respectively.

Thus, we have 4 types of fuzzy relational systems formed by the combinations

of compositions and rule bases (STEPNICKA; MANDAL, 2018) (STEPNICKA, 2016)

(STEPNICKA; MANDAL, 2015):

1. Conjunctive rules and CRI: B1pyq “ A1pxq ˝ Řpx, yq

2. Implicative rules and CRI: B1pyq “ A1pxq ˝ R̂px, yq

3. Conjunctive rules and BKS: B1pyq “ A1pxq Ÿ Řpx, yq

4. Implicative rules and BKS: B1pyq “ A1pxq Ÿ R̂px, yq

In the next section we will study these fuzzy relational systems in more details

applying the concepts and properties seen on Chapter 2.

3.3 Characterization of the outputs of Fuzzy Relational Systems

To facilitate the understanding of the study of the FRSs, we will divide our

analysis in three cases with increasing levels of complexity.

3.3.1 Crisp input

In the first case, let us consider a crisp input A1
x1pxq, that is, there is a x1 P X

such that

A1
x1pxq “ crisppx, x1q “

$

&

%

1, if x “ x1,

0, otherwise,
(3.1)

and a finite rule base R “ pAi, Biq for i “ 1, . . . , n, where Ai P FpXq e

Bi P FpY q. This crisp input A1
x1pxq is graphically represented in Figure 4.

Figure 4 – Crisp set A1
x1pxq
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For the combination of CRI composition with conjunctive rules, we have that

B1pyq “ A1
x1pxq ˝ Řpx, yq “

ł

xPX

A1
x1pxq ˚

n
ł

i“1

pAipxq ˚ Bipyqq. (3.2)

Separating the domain X in tx1u and Xztx1u,

B1pyq “ rA1
x1px1q ˚

n
ł

i“1

pAipx
1q ˚ Bipyqqs _

ł

xPXztx1u

rA1
x1pxq ˚

n
ł

i“1

pAipxq ˚ Bipyqqs

“ r1 ˚
n

ł

i“1

pAipx
1q ˚ Bipyqqs _

ł

xPXztx1u

r0 ˚
n

ł

i“1

pAipxq ˚ Bipyqqs

“
n

ł

i“1

pAipx
1q ˚ Bipyqq _ 0

“
n

ł

i“1

pAipx
1q ˚ Bipyqq. (3.3)

As for the combination of BKS composition with conjunctive rules, we have

B1pyq “ A1
x1pxq Ÿ Řpx, yq “

ľ

xPX

A1
x1pxq Ñ

n
ł

i“1

pAipxq ˚ Bipyqq. (3.4)

Separating the domain X in tx1u and Xztx1u,

B1pyq “ rA1
x1px1q Ñ

n
ł

i“1

pAipx
1q ˚ Bipyqqs ^

ľ

xPXztx1u

rA1
x1pxq Ñ

n
ł

i“1

pAipxq ˚ Bipyqqs

“ r1 Ñ
n

ł

i“1

pAipx
1q ˚ Bipyqqs ^

ľ

xPXztx1u

r0 Ñ
n

ł

i“1

pAipxq ˚ Bipyqqs

“
n

ł

i“1

pAipx
1q ˚ Bipyqq ^ 1

“
n

ł

i“1

pAipx
1q ˚ Bipyqq. (3.5)

By developing Equations 3.3 and 3.5 we can conclude the following proposition:

Proposition 4. Given a crisp input A1
x1pxq, the combinations of CRI composition with

conjunctive rules and BKS composition with conjunctive rules are equal, which means

A1
x1pxq ˝ Řpx, yq “ A1

x1pxq Ÿ Řpx, yq “
n

ł

i“1

pAipx
1q ˚ Bipyqq. (3.6)

On the other hand, for the combination of CRI compostion with implicative

rules, we have that

B1pyq “ A1
x1pxq ˝ R̂px, yq “

ł

xPX

A1
x1pxq ˚

n
ľ

i“1

pAipxq Ñ Bipyqq. (3.7)
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Separating the domain X in tx1u and Xztx1u,

B1pyq “ rA1
x1px1q ˚

n
ľ

i“1

pAipx
1q Ñ Bipyqqs _

ł

xPXztx1u

rA1
x1pxq ˚

n
ľ

i“1

pAipxq Ñ Bipyqqs

“ r1 ˚
n

ľ

i“1

pAipx
1q Ñ Bipyqqs _

ł

xPXztx1u

r0 ˚
n

ľ

i“1

pAipxq Ñ Bipyqqs

“
n

ľ

i“1

pAipx
1q Ñ Bipyqq _ 0

“
n

ľ

i“1

pAipx
1q Ñ Bipyqq. (3.8)

Finally, in the combination of BKS compostition with implicative rules, we

have that

B1pyq “ A1
x1pxq Ÿ R̂px, yq “

ľ

xPX

A1
x1pxq Ñ

n
ľ

i“1

pAipxq Ñ Bipyqq. (3.9)

Separating the domain X in tx1u and Xztx1u,

B1pyq “ rA1
x1px1q Ñ

n
ľ

i“1

pAipx
1q Ñ Bipyqqs ^

ľ

xPXztx1u

rA1
x1pxq Ñ

n
ľ

i“1

pAipxq Ñ Bipyqqs

“ r1 Ñ
n

ľ

i“1

pAipx
1q Ñ Bipyqqs ^

ľ

xPXztx1u

r0 Ñ
n

ľ

i“1

pAipxq Ñ Bipyqqs

“
n

ľ

i“1

pAipx
1q Ñ Bipyqq ^ 1

“
n

ľ

i“1

pAipx
1q Ñ Bipyqq. (3.10)

By developing Equations 3.8 and 3.10 we can conclude the following proposition:

Proposition 5. Given a crisp input A1
x1pxq, the combinations of CRI composition with

implicative rules and BKS composition with implicative rules are equal, which means

A1
x1pxq ˝ R̂px, yq “ A1

x1pxq Ÿ R̂px, yq “
n

ľ

i“1

pAipx
1q Ñ Bipyqq. (3.11)

To finish this case, let us observe the behavior of these different combinations

in a numerical example.

Example 4. Consider the sets X, Y “ r0, 10s Ă R, an input A1
3.5pxq “ crisppx, 3.5q and

the following rule base:

Antecedents Consequents

A1 “ triangpx, 1, 3, 5q B1 “ triangpy, 1, 2, 3q
A2 “ triangpx, 3, 5, 7q B2 “ triangpy, 3, 4, 5q
A3 “ triangpx, 5, 7, 9q B3 “ triangpy, 5, 6, 7q
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where triangpx, a, b, cq represents the triangular membership function

triangpx, a, b, cq “

$

’

’

’

’

&

’

’

’

’

%

x ´ a

b ´ a
, if a ă x ď b,

c ´ x

c ´ b
, if b ă x ď c,

0, otherwise.

Also consider the minimum t-norm ^ and its adjoint Gödel implication ÑM .

Propositions 4 and 5 imply that for crisp inputs, the output depends only on the type of

rules (conjunctive or implicative). Graphically, we have the solutions represented in the

Figures 5 and 6:

Figure 5 – Output for conjunctive rules
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Figure 6 – Output for implicative rules

It is interesting to note that even with A1 X pA1 Y A2q ‰ H, we have that the

output is equal to 0 for the combinations using implicative rules. Let us look at another

similar example, but with consequents that have a non-empty intersection.

Example 5. Consider the sets X, Y “ r0, 10s Ă R, an input A1
3.5pxq “ crisppx, 3.5q and

the following rule base:

Antecedents Consequents

A1 “ triangpx, 1, 3, 5q B1 “ triangpy, 1, 3, 5q
A2 “ triangpx, 3, 5, 7q B2 “ triangpy, 3.5, 5.5, 7.5q
A3 “ triangpx, 5, 7, 9q B3 “ triangpy, 7, 8, 9q

Also consider the minimum t-norm ^ and its adjoint Gödel implication ÑM .

Again, Propositions 4 and 5 imply that for a given type of rules, the output is equivalent for

CRI and BKS compositions on crisp inputs. Graphically, we have the solutions represented

in the Figures 7 and 8:
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Figure 7 – Output for conjunctive rules
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Figure 8 – Output for implicative rules

In this case, we obtained a significative output (different from 0) for implicative

rules.

3.3.2 Fuzzy input and one rule

Now let us look at a slightly more complex case, where the input A1 is a normal

fuzzy set and the rule base has only a single rule R “ pA1, B1q.

For the combination of CRI composition with a single conjunctive rule, applying

the associative property of the t-norm we have that

B1pyq “
ł

xPX

A1pxq ˚ pA1pxq ˚ B1pyqq

“
ł

xPX

pA1pxq ˚ A1pxqq ˚ B1pyq

“ α ˚ B1pyq, (3.12)
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where α “
ł

xPX

pA1pxq ˚ A1pxqq is defined as the "degree of activation" of the rule. The value

of α is fixed and independent of y.

In the combination of the BKS composition with a single conjunctive rule, we

have that B1pyq “
ľ

xPX

A1pxq Ñ pA1pxq ˚ B1pyqq. Using Definition 8 to partition the domain

X as in Example 2 leads to

B1pyq “
ľ

xPXA1ďA1

A1pxq Ñ pA1pxq ˚ B1pyqq ^
ľ

xPXA1ąA1

A1pxq Ñ pA1pxq ˚ B1pyqq. (3.13)

As we are working with normal fuzzy sets, it is guaranteed that XA1ďA1
‰ H.

However, the same cannot be said about the set XA1ąA1
.

Proposition 6. Let A1, A1 P FpXq be normal and b P r0, 1s. If XA1ąA1
‰ H, then

ľ

xPX

A1pxq Ñ pA1pxq ˚ bq “
ľ

xPXA1ąA1

A1pxq Ñ pA1pxq ˚ bq. (3.14)

Proof. Since X “ XA1ďA1
Y XA1ąA1

, we have
ľ

xPX

A1pxq Ñ pA1pxq ˚ bq “
ľ

xPXA1ďA1

A1pxq Ñ pA1pxq ˚ bq ^
ľ

xPXA1ąA1

A1pxq Ñ pA1pxq ˚ bq.

(3.15)

On the one hand, using the fact that the implication is decreasing in the first

argument, we have that
ľ

xPXA1ďA1

A1pxq Ñ pA1pxq ˚ bq ě
ľ

xPXA1ďA1

A1pxq Ñ pA1pxq ˚ bq. (3.16)

Property 3 from Lemma 4 (b ď a Ñ pa ˚ bq) implies that
ľ

xPXA1ďA1

A1pxq Ñ pA1pxq ˚ bq ě b. (3.17)

On the other hand, from the definition of residual implication we have that

A1pxq Ñ pA1pxq ˚ bq “
ł

tz P r0, 1s : A1pxq ˚ z ď A1pxq ˚ bu. (3.18)

Let z1 “ A1pxq Ñ pA1pxq ˚ bq. For any x P XA1ąA1
, we have that A1pxq ą A1pxq.

By the monotonicity property of the t-norm, we have

A1pxq ˚ z1 ď A1pxq ˚ b ñ
ľ

xPXA1ąA1

A1pxq Ñ pA1pxq ˚ bq ď b (3.19)

ñ
ľ

xPX

A1pxq Ñ pA1pxq ˚ bq “
ľ

xPXA1ąA1

A1pxq Ñ pA1pxq ˚ bq. (3.20)
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Corollary 1. Let A1, A1 P FpXq be normal and b P r0, 1s. If XA1ąA1
‰ H, then

ľ

xPX

A1pxq Ñ pA1pxq ˚ bq “ β ˚ b, (3.21)

where β “
ľ

xPXA1ąA1

pA1pxq Ñ A1pxqq.

Proof. If 0 ď di ă ci ď 1 such that i P I for some arbitrary index set I and e P r0, 1s, then

Proposition 2 implies that ci Ñ pdi ˚ eq “ pci Ñ diq ˚ e. Taking the infimum over the set I

we have

ľ

iPI

rci Ñ pdi ˚ eqs “
ľ

iPI

rpci Ñ diq ˚ es “
ľ

iPI

rci Ñ dis ˚ e (3.22)

ñ
ľ

xPXA1ąA1

A1pxq Ñ pA1pxq ˚ bq “
ľ

xPXA1ąA1

pA1pxq Ñ A1pxqq ˚ b “ β ˚ b, (3.23)

where β “
ľ

xPXA1ąA1

pA1pxq Ñ A1pxqq. A brief glance at Proposition 6 suffices to

conclude that the claim of Corollary 1 is satisfied.

If XA1ąA1
“ H, then A1 Ď A1 and we obtain the following result:

Corollary 2. Let A1, A1 P FpXq be normal and b P r0, 1s. If XA1ąA1
“ H, then

ľ

xPX

A1pxq Ñ pA1pxq ˚ bq “ b. (3.24)

Proof. Since XA1ąA1
“ H, we have that

ľ

xPX

A1pxq Ñ pA1pxq ˚ bq “
ľ

xPXA1ďA1

A1pxq Ñ pA1pxq ˚ bq ^
ľ

xPXA1ąA1

A1pxq Ñ pA1pxq ˚ bq

“
ľ

xPXA1ďA1

A1pxq Ñ pA1pxq ˚ bq ^
ľ

xPH

A1pxq Ñ pA1pxq ˚ bq

“
ľ

xPXA1ďA1

A1pxq Ñ pA1pxq ˚ bq ^
ľ

H

“
ľ

xPXA1ďA1

A1pxq Ñ pA1pxq ˚ bq ^ 1

“
ľ

xPXA1ďA1

A1pxq Ñ pA1pxq ˚ bq. (3.25)

As we have seen in the demonstration of Proposition 6, using the fact that the

implication is decreasing in the first argument and Property 3 from Lemma 4, we have
ľ

xPXA1ďA1

A1pxq Ñ pA1pxq ˚ bq ě
ľ

xPXA1ďA1

A1pxq Ñ pA1pxq ˚ bq ě b. (3.26)
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Now, since A1 and A1 are normal fuzzy sets, there exists a x1 P X such that

A1px1q “ 1 and therefore A1px1q “ 1. In view of Proposition 1, this leads to

A1px1q Ñ pA1px1q ˚ bq “ 1 Ñ p1 ˚ bq “ b. (3.27)

Thus,
ľ

xPX

A1pxq Ñ pA1pxq ˚ bq “ b.

Therefore, using the results from Proposition 6, Corollary 1 and Corollary 2,

we can conclude that

B1pyq “
ľ

xPX

A1pxq Ñ pA1pxq ˚ B1pyqq “ β ˚ B1pyq, (3.28)

since if X 1
A1ąA1

“ H we would have β “
ľ

H “ 1.

For the combination of CRI composition with a single implicative rule, we have

that B1pyq “
ł

xPX

A1pxq ˚ pA1pxq Ñ B1pyqq. As a generalization of Proposition 6, we obtain

the following result:

Proposition 7. Let A1, A1 P FpXq be normal and b P r0, 1s. If XA1ąA1
‰ H and there

exists x˚ such that A1px˚q “ 1 ą A1px˚q, then

ł

xPX

A1pxq ˚ pA1pxq Ñ bq “
ł

xPXA1ąA1

A1pxq ˚ pA1pxq Ñ bq. (3.29)

Proof. Property 3 of Lemma 4 states that a ˚ pa Ñ bq ď b. Therefore,
ł

xPXA1ďA1

A1pxq ˚ pA1pxq Ñ bq ď
ł

xPXA1ďA1

A1pxq ˚ pA1pxq Ñ bq ď b. (3.30)

On the other hand, consider x˚ P X such that A1px˚q ă 1 “ A1px˚q:
ł

xPXA1ąA1

A1pxq ˚ pA1pxq Ñ bq ě 1 ˚ pA1px˚q Ñ bq “ A1pxq Ñ b ě b. (3.31)

Note that
ł

xPX

A1pxq ˚ pA1pxq Ñ bq can be written as follows:

ł

xPX

A1pxq ˚ pA1pxq Ñ bq “
ł

xPXA1ďA1

A1pxq ˚ pA1pxq Ñ bq _
ł

xPXA1ąA1

A1pxq ˚ pA1pxq Ñ bq.

(3.32)

Using a combination of Equations 3.30 and 3.31 we can conclude the following:
ł

xPX

A1pxq ˚ pA1pxq Ñ bq “
ł

xPXA1ąA1

A1pxq ˚ pA1pxq Ñ bq. (3.33)
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Corollary 3. Let A1, A1 P FpXq be normal and b P r0, 1s. If XA1ąA1
“ H, then

ł

xPX

A1pxq ˚ pA1pxq Ñ bq “ b. (3.34)

Proof. Since XA1ąA1
“ H, we have that

ł

xPX

A1pxq ˚ pA1pxq Ñ bq “
ł

xPXA1ďA1

A1pxq ˚ pA1pxq Ñ bq _
ł

xPXA1ąA1

A1pxq ˚ pA1pxq Ñ bq

“
ł

xPXA1ďA1

A1pxq ˚ pA1pxq Ñ bq _
ł

xPH

A1pxq ˚ pA1pxq Ñ bq

“
ł

xPXA1ďA1

A1pxq ˚ pA1pxq Ñ bq _
ł

H

“
ł

xPXA1ďA1

A1pxq ˚ pA1pxq Ñ bq _ 0

“
ł

xPXA1ďA1

A1pxq ˚ pA1pxq Ñ bq. (3.35)

By Equation 3.30

ł

xPXA1ďA1

A1pxq ˚ pA1pxq Ñ bq ď
ł

xPXA1ďA1

A1pxq ˚ pA1pxq Ñ bq ď b. (3.36)

Since A1 and A1 are normal fuzzy sets, there exists x1 P X such that A1px1q “

A1px1q “ 1. This leads to

A1px1q ˚ pA1px1q Ñ bq “ 1 ˚ p1 Ñ bq “ b. (3.37)

Thus,
ł

xPX

A1pxq ˚ pA1pxq Ñ bq “ b.

As we saw in Proposition 3, the scenario where XA1ąA1
‰ H depends on

the t-norm and implication considered. Let us consider some specific cases in the next

corollaries.

Corollary 4. Let A1, A1 P FpXq be normal and b P r0, 1s. Considering a t-norm ˚ and its

adjoint implication Ñ, we have that
ł

xPXA1ďb

A1pxq ˚ pA1pxq Ñ bq “
ł

xPXA1ďb

A1pxq. (3.38)

Proof. Property 7 of Lemma 4 states that A1pxq Ñ b “ 1 is equivalent to A1pxq ď b.

Therefore,
ł

xPXA1ďb

A1pxq ˚ pA1pxq Ñ bq “
ł

xPXA1ďb

A1pxq ˚ 1 “
ł

xPXA1ďb

A1pxq. (3.39)
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Corollary 5. Let A1, A1 P FpXq be normal and b P r0, 1s. Considering the minimum

t-norm ^ with the Gödel implication ÑM , the product t-norm ¨ with the Goguen implication

ÑP and the Lukasiewicz t-norm ˚L with the Lukasiewicz implication ÑL, we obtain the

following identities:

•

ł

xPX

A1pxq ^ pA1pxq ÑM bq “
ł

xPXA1ďb

A1pxq _ p
ł

xPXA1ąb

A1pxq ^ bq;

•

ł

xPX

A1pxq ¨ pA1pxq ÑP bq “
ł

xPXA1ďb

A1pxq _ p
ł

xPXA1ąb

A1pxq ¨
b

A1pxq
q;

•

ł

xPX

A1pxq ˚L pA1pxq ÑL bq “
ł

xPXA1ďb

A1pxq _
ł

xPXA1ąb

r0 _ pA1pxq ` b ´ A1pxqqs.

Proof. Since X “ XA1ďb Y XA1ąb, considering a t-norm ˚ and its adjoint implication Ñ,

we have

ł

xPX

A1pxq˚pA1pxq Ñ bq “
ł

xPXA1ďb

A1pxq˚pA1pxq Ñ bq_
ł

xPXA1ąb

A1pxq˚pA1pxq Ñ bq. (3.40)

Corollary 4 implies that
ł

xPXA1ďb

A1pxq ˚ pA1pxq Ñ bq “
ł

xPXA1ďb

A1pxq. Thus,

ł

xPX

A1pxq ˚ pA1pxq Ñ bq “
ł

xPXA1ďb

A1pxq _
ł

xPXA1ąb

A1pxq ˚ pA1pxq Ñ bq (3.41)

Substituting the aforementioned pairs of t-norms and adjoint implications, we

derive the equations of Corollary 5.

Finally, for the combination of BKS composition with a single implicative

rule, we have that B1pyq “
ľ

xPX

A1pxq Ñ pA1pxq Ñ B1pyqq. Property 4 of Proposition 1 of

residuated lattices states that x Ñ py Ñ zq “ px ˚ yq Ñ z. Then, we can use this result to

obtain

B1pyq “
ł

xPX

pA1pxq ˚ A1pxqq Ñ B1pyq “ α Ñ B1pyq, (3.42)

where α “
ł

xPX

pA1pxq ˚ A1pxqq.

To finish this case, let us look at these results in a couple of numerical example.

Example 6. Consider the sets X, Y “ r0, 10s Ă R, an input A1pxq “ triangpx, 2, 3, 4q

and the following rule base with just a single rule:
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Antecedents Consequents

A1 “ triangpx, 1, 4, 7q B1 “ triangpy, 1, 3, 5q

Table 4 – Rule base with a single fuzzy rule

Also, consider the minimum t-norm ^ and the Gödel implication ÑM . Doing

the calculations we obtain the following values of α and β:

α “
ł

xPX

pA1pxq ^ A1pxqq “ 0.75,

β “
ľ

xPX

pA1pxq ÑM A1pxqq “ 0.5.

For the combination of CRI and a single conjunctive rule, we can replace the

value of α in Equation 3.12 to obtain the output B1pyq “ 0.75 ^ B1pyq, represented in

Figure 9.

(a) Input fuzzy set and antecedent (b) Output fuzzy set and consequent

Figure 9 – Input and output for the combination of CRI and a single conjunctive rule

For the combination of BKS and a single conjunctive rule, we replace the value

of β in Equation 3.28 to obtain the output B1pyq “ 0.5 ^ B1pyq, represented in Figure 10.

(a) Input fuzzy set and antecedent (b) Output fuzzy set and consequent

Figure 10 – Input and output for the combination of BKS and a single conjunctive rule

For the combination of CRI and a single implicative rule, first we need to obtain
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the sets XA1ďB1pyq and XA1ąB1pyq as follows:

XA1ďB1pyq “ r0, 3B1pyq ` 1r Y s7 ´ 3B1pyq, 10s, (3.43)

XA1ąB1pyq “ r3B1pyq ` 1, 7 ´ 3B1pyqs. (3.44)

Then, doing the calculations, we have that

ł

xPXA1ďB1pyq

A1pxq “

$

’

’

’

&

’

’

’

%

0, if B1pyq ď 0.333,

B1pyq ´ 0.333

0.333
, if 0.333 ă B1pyq ď 0.666,

1, otherwise

(3.45)

ł

xPXA1ąB1pyq

A1pxq ^ B1pyq “

$

&

%

B1pyq, if B1pyq ď 0.75,

1 ´ B1pyq

0.333
, otherwise.

(3.46)

Finally, we replace these results in Corollary 5 to get the following output

represented in Figure 11:

B1pyq “
ł

xPXA1ďb

A1pxq_p
ł

xPXA1ąB1pyq

A1pxq^B1pyqq “

$

’

’

’

&

’

’

’

%

B1pyq, if B1pyq ď 0.5,

B1pyq ´ 0.333

0.333
, if 0.5 ă B1pyq ď 0.666,

1, otherwise.

(a) Input fuzzy set and antecedent (b) Output fuzzy set and consequent

Figure 11 – Input and output for the combination of CRI and a single implicative rule

For the combination of BKS and a single implicative rule, we replace the value

of α in Equation 3.42 to get the output B1pyq “ 0.75 ÑM B1pyq shown in Figure 12.

(a) Input fuzzy set and antecedent (b) Output fuzzy set and consequent

Figure 12 – Input and output for the combination of BKS and a single implicative rule
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Example 7. Considering the same rule base from Table 4 and input as before, take now

the product t-norm ¨ and the associated Goguen implication ÑP . Calculating the values of

α and β we have

α “
ł

xPX

pA1pxq ¨ A1pxqq « 0.67,

β “
ľ

xPX

pA1pxq ÑP A1pxqq « 0.67.

For the combination of CRI and a single conjunctive rule, we replace the value

of α in Equation 3.12 to get the output B1pyq « 0.67 ¨ B1pyq represented in Figure 13.

(a) Input fuzzy set and antecedent (b) Output fuzzy set and consequent

Figure 13 – Input and output for the combination of CRI and a single conjunctive rule

For the combination of BKS with a single conjunctive rule, we replace the value

of β in Equation 3.28 to obtain B1pyq « 0.67 ¨ B1pyq as shown in Figure 14.

(a) Input fuzzy set and antecedent (b) Output fuzzy set and consequent

Figure 14 – Input and output for the combination of BKS and a single conjunctive rule

For the combination of CRI and a single implicative rule, we can use some

results from the previous example. Specifically, the sets on Equations 3.43 and 3.44, and

also the result in Equation 3.45. Then, doing the calculations we obtain

ł

xPXA1ąB1pyq

A1pxq ¨
B1pyq

A1pyq
“

$

’

&

’

%

B1pyq

0.666
, if B1pyq ď 0.666,

1 ´ B1pyq

0.333
, otherwise.
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Using this results in Corollary 5 we get the following output represented in

Figure 15:

B1pyq “

$

&

%

B1pyq

0.666
, if B1pyq ď 0.666,

1, otherwise.
« 0.67 ÑP B1pyq.

(a) Input fuzzy set and antecedent (b) Output fuzzy set and consequent

Figure 15 – Input and output for the combination of CRI and a single implicative rule

Finally, for the combination of BKS and a single implicative rule, we Replacing

the value of α in Equation 3.42 to obtain the output B1pyq « 0.67 ÑP B1pyq, shown in

Figure 16.

(a) Input fuzzy set and antecedent (b) Output fuzzy set and consequent

Figure 16 – Input and output for the combination of BKS and a single implicative rule

Example 8. Finally, consider the Lukasiewicz t-norm ˚L and Lukasiewicz implication

ÑL. Again, calculating the values of α and β we have

α “
ł

xPX

pA1pxq ˚L A1pxqq « 0.67,

β “
ľ

xPX

pA1pxq ÑL A1pxqq « 0.67.

For the combination of CRI and a single conjunctive rule, we replace the value

of α in Equation 3.12 to obtain the output B1pyq « 0.67 ˚L B1pyq « 0 _ pB1pyq ´ 0.33q,

that is represented in Figure 17.
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(a) Input fuzzy set and antecedent (b) Output fuzzy set and consequent

Figure 17 – Input and output for the combination of CRI and a single conjunctive rule

For the combination of BKS with a single conjunctive rule, we replace the

calculated value of β in Equation 3.28 to obtain as output B1pyq « 0.67 ˚L B1pyq «

0 _ pB1pyq ´ 0.33q. This result is equal to the one obtained from the combination of CRI

and conjunctive rules, as shown in Figure 18.

(a) Input fuzzy set and antecedent (b) Output fuzzy set and consequent

Figure 18 – Input and output for the combination of BKS and a single conjunctive rule

For the combination of CRI and a single implicative rule, we can again use the

sets obtained in Equations 3.43 and 3.44, and also the result from Equation 3.45. Then, to

apply Corollary 5, we do the calculations to obtain

ł

xPXA1ąB1pyq

r0 _ pA1pxq ` B1pyq ´ A1pxqs “

$

&

%

B1pyq ` 0.33, if B1pyq ď 0.666,

1 ´ B1pyq

0.333
, otherwise.

Then, we get the following output also represented in Figure 19:

B1pyq “

$

&

%

B1pyq ` 0.33, if B1pyq ď 0.666,

1, otherwise.

« 0.67 ÑL B1pyq « 1 ^ pB1pyq ` 0.33q.
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(a) Input fuzzy set and antecedent (b) Output fuzzy set and consequent

Figure 19 – Input and output for the combination of CRI and a single implicative rule

Finally, for the combination of BKS with a single implicative rule, we replace the

value of α in Equation 3.42 to get the output B1pyq « 0.67 ÑL B1pyq « 1 ^ pB1pyq ` 0.33q.

Analogously, this result is equal to the combination of CRI and implicative rules, as shown

in Figure 20.

(a) Input fuzzy set and antecedent (b) Output fuzzy set and consequent

Figure 20 – Input and output for the combination of BKS and a single implicative rule

3.3.3 Fuzzy input and multiple rules

To conclude this study, let us look at the general case of a fuzzy input A1 and

a fuzzy rule base with a finite number of rules R “ pAi, Biq for i “ 1, . . . , n.

For the combination of CRI composition with conjunctive rules, we have that

B1pyq “
ł

xPX

rA1pxq ˚
n

ł

i“1

pAipxq ˚ Bipyqqs. (3.47)

Proposition 8. Let A1, Ai P FpXq, Bi P FpY q, and αi “
ł

xPX

pA1pxq ˚ Aipxqq

B1pyq “
ł

xPX

rA1pxq ˚
n

ł

i“1

pAipxq ˚ Bipyqqs “
n

ł

i“1

αi ˚ Bipyq. (3.48)

Proof. This is a straightforward application of the previous results as

ł

xPX

rA1pxq ˚
n

ł

i“1

pAipxq ˚ Bipyqqs “
n

ł

i“1

ł

xPX

rA1pxq ˚ pAipxq ˚ Bipyqqs, (3.49)
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by Property 1 of Proposition 1. In addition, Equation 3.12 implies that

n
ł

i“1

ł

xPX

rA1pxq ˚ pAipxq ˚ Bipyqqs “
n

ł

i“1

αi ˚ Bipyq. (3.50)

For the combination of the BKS composition with conjunctive rules, we have

that

B1pyq “
ľ

xPX

rA1pxq Ñ
n

ł

i“1

pAipxq ˚ Bipyqqs. (3.51)

The next two theorems describe the values assumed by this equation for some

specific cases.

Theorem 1. (STEPNICKA; JAYARAM, 2016) Let A1, Ai for all i P r1, ns be normal.

If for each i there exists an xi P X such that

Aipxiq “ 1 and Ajpxiq “ 0, whenever i ‰ j,

then we have that

B1pyq “
ľ

xPX

rAipxq Ñ
n

ł

i“1

pAipxq ˚ Bipyqqs “ Bipyq. (3.52)

This is the interpolativity property which will be studied in more details in

the next chapter. The condition that Aipxiq “ 1 and Ajpxiq “ 0 whenever i ‰ j, is very

reasonable and can be seen in the vast majority of applications.

Theorem 2. (STEPNICKA; MANDAL, 2018) Let A1 be normal. Consider the set of

activated rules given by I “ ti P r1, ns|SupppA1qXSupppAiq ‰ Hu. The following inequality

is satisfied for every y P Y :

B1pyq “
ľ

xPX

rA1pxq Ñ
n

ł

i“1

pAipxq ˚ Bipyqqs ď
ł

iPI

Bipyq. (3.53)

This sets an upper bound for the output of this combination. More precisely,

we can write the following proposition using the previous results of the single fuzzy rule

case.

Proposition 9. Let A1, Ai P FpXq be normal, Bi P FpY q and y P Y . Let X 1 “ SupppA1q

and X 1
l Ď X 1 be such that

m
ď

l“1

X 1
l “ X 1, and there exists il P I “ ti P r1, ns|SupppA1q X
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SupppAiq ‰ Hu for some l “ 1, ..., m, such that
ł

iPI

pAipxq ˚ Bipyqq “ Ail
pxq ˚ Bil

pyq for

every x P X 1
l . The following equation holds true:

B1pyq “
ľ

xPX 1

rA1pxq Ñ
n

ł

i“1

pAipxq ˚ Bipyqqs “
m

ł

l“1

pβil
˚ Bil

pyqq, (3.54)

where βil
“

ľ

xPX 1
l
A1ąAil

rA1pxq Ñ Ail
pxqs.

Proof. Let y P Y be arbitrary. Since X “ X 1 Y XzX 1, Equation 3.51 can be rewritten as

follows:

B1pyq “
ľ

xPX 1

rA1pxq Ñ
n

ł

i“1

pAipxq ˚ Bipyqqs ^
ľ

xPXzX 1

rA1pxq Ñ
n

ł

i“1

pAipxq ˚ Bipyqqs. (3.55)

Note that
ľ

xPXzX 1

rA1pxq Ñ
n

ł

i“1

pAipxq ˚ Bipyqqs “
ľ

xPXzX 1

r0 Ñ
n

ł

i“1

pAipxq ˚ Bipyqqs “ 1 (3.56)

holds true not only for XzX 1 ‰ H, but also for XzX 1 “ H because
ľ

H “ 1. So, this

implies that

ľ

xPX

rA1pxq Ñ
n

ł

i“1

pAipxq ˚ Bipyqqs “
ľ

xPX 1

rA1pxq Ñ
n

ł

i“1

pAipxq ˚ Bipyqqs. (3.57)

Using the definitions of il and X 1
l , as well as the fact that

m
ď

l“1

X 1
l “ X 1, we can

write Equation 3.57 by partitioning the set X 1 into subsets as follows:

ľ

xPX 1

rA1pxq Ñ
n

ł

i“1

pAipxq ˚ Bipyqqs “
ľ

xPX 1
1

rA1pxq Ñ pAi1
pxq ˚ Bi1

pyqqs

. . .

_
ľ

xPX 1
m

rA1pxq Ñ pAim
pxq ˚ Bim

pyqqs. (3.58)

Note that for each of these partitions X 1
l we obtain the single fuzzy rule case

studied before. Therefore we can apply the previous results. For every l, we can split the

set X 1
l into two smaller subsets as

ľ

xPX 1
l

rA1pxq Ñ pAil
pxq ˚ Bil

pyqqs “
ľ

xPX 1
l
A1ďAil

rA1pxq Ñ pAil
pxq ˚ Bil

pyqqs

^
ľ

xPX 1
l
A1ąAil

rA1pxq Ñ pAil
pxq ˚ Bil

pyqqs. (3.59)
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If X 1
lA1ąAil

‰ H, then Corollary 1 implies that

ľ

xPX 1
l

rA1pxq Ñ pAil
pxq ˚ Bil

pyqqs “
ľ

xPX 1
l
A1ąAil

rA1pxq Ñ Ail
pxqs ˚ Bil

pyq “ βil
˚ Bil

pyq, (3.60)

where βil
“

ľ

xPX 1
l
A1ąAil

rA1pxq Ñ Ail
pxqs.

If X 1
lA1ąAil

“ H, then Corollary 2 implies that

ľ

xPX 1
l

rA1pxq Ñ pAil
pxq ˚ Bil

pyqqs “ Bil
pyq. (3.61)

A combination of Equations 3.60 and 3.61 yields

ľ

xPX 1
l

rA1pxq Ñ pAil
pxq ˚ Bil

pyqqs “ βil
˚ Bil

pyq. (3.62)

Note that for X 1
lA1ąAil

“ H we have βil
“

ľ

H “ 1. This outcome is similar to

Equation 3.28 for the single rule case. Finally, combining Equations 3.62 and 3.58 yields

ľ

xPX 1

rA1pxq Ñ
n

ł

i“1

pAipxq ˚ Bipyqqs “
m

ł

l“1

pβil
˚ Bil

pyqq, (3.63)

where βil
“

ľ

xPX 1
l
A1ąAil

pA1pxq Ñ Ail
pxqq.

We will visualize the application of this Proposition 9 in a numerical way using

Examples 9, 10 and 11 afterwards in this work.

For the combination of CRI composition with implicative rules, we have that

B1pyq “
ł

xPX

rA1pxq ˚
n

ľ

i“1

pAipxq Ñ Bipyqqs. (3.64)

Again, we will state two theorems about the values assumed by Equation 3.64

for certain specific cases.

Theorem 3. (STEPNICKA; JAYARAM, 2016) Let A1, Ai for all i P r1, ns be normal.

If for each i there exists an xi P X such that

Aipxiq “ 1 and Ajpxiq “ 0, whenever i ‰ j
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then we have that

B1pyq “
ł

xPX

rAipxq ˚
n

ľ

i“1

pAipxq Ñ Bipyqqs “ Bipyq. (3.65)

Once more, we have the interpolativity property for this combination that will

be studied in more details in the next chapter.

Theorem 4. (STEPNICKA; MANDAL, 2018) Let A1 be normal. Consider the set of

activated rules given by I “ ti P r1, ns|SupppA1qXSupppAiq ‰ Hu. The following inequality

is satisfied for every y P Y :

B1pyq “
ł

xPX

rA1pxq ˚
n

ľ

i“1

pAipxq Ñ Bipyqqs ě
ľ

iPI

Bipyq. (3.66)

This sets a lower bound for the output of this fuzzy relational equation. Likewise,

we can write a general proposition using the previous results of the single fuzzy rule case.

Proposition 10. Let A1, Ai P FpXq be normal, Bi P FpY q and an arbitrary y P Y . Let

X 1 “ SupppA1q and X 1
l Ď X 1 be such that

m
ď

l“1

X 1
l “ X 1, and there exists il P I “ ti P

r1, ns|SupppA1q X SupppAiq ‰ Hu for some l “ 1, ..., m, such that
ľ

iPI

pAipxq Ñ Bipyqq “

Ail
pxq Ñ Bil

pyq for every x P X 1
l . The following equation holds true:

B1pyq “
ł

xPX

rA1pxq ˚
n

ľ

i“1

pAipxq Ñ Bipyqqs

“
m

ł

l“1

#

ł

xPX 1
lAil

ďBil
pyq

A1pxq _
ł

xPX 1
lAil

ąBil
pyq

rA1pxq ˚ pAil
pxq Ñ Bil

pyqqs

+

(3.67)

Proof. Let y P Y be arbitrary. Since X “ X 1 Y XzX 1, Equation 3.64 can be rewritten as

follows:

B1pyq “
ł

xPX 1

rA1pxq ˚
n

ľ

i“1

pAipxq Ñ Bipyqqs _
ł

xPXzX 1

rA1pxq ˚
n

ľ

i“1

pAipxq Ñ Bipyqqs (3.68)

Note that

ł

xPXzX 1

rA1pxq ˚
n

ľ

i“1

pAipxq Ñ Bipyqqs “
ł

xPXzX 1

r0 ˚
n

ľ

i“1

pAipxq Ñ Bipyqqs “ 0 (3.69)

holds true not only for XzX 1 ‰ H, but also for XzX 1 “ H because
ł

H “ 0. So, this

implies that

ł

xPX

rA1pxq ˚
n

ľ

i“1

pAipxq Ñ Bipyqqs “
ł

xPX 1

rA1pxq ˚
n

ľ

i“1

pAipxq Ñ Bipyqqs (3.70)
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Using the definitions of il and X 1
l , as well as the fact that

m
ď

l“1

X 1
l “ X 1, we can

write Equation 3.70 by partitioning the set X 1 into subsets as follows:

ł

xPX 1

rA1pxq ˚
n

ľ

i“1

pAipxq Ñ Bipyqqs “
ł

xPX 1
1

rA1pxq ˚ pAi1
pxq Ñ Bi1

pyqqs

. . .

_
ł

xPX 1
m

rA1pxq ˚ pAim
pxq Ñ Bim

pyqqs (3.71)

Note that for each of these partitions X 1
l we obtain the single fuzzy rule case

studied before. Therefore we can apply previous results. For every l, we can split the set

X 1
l into two smaller subsets as

ł

xPX 1
l

rA1pxq ˚ pAil
pxq Ñ Bil

pyqqs “
ł

xPX 1
lAil

ďBil
pyq

rA1pxq ˚ pAil
pxq Ñ Bil

pyqqs

_
ł

xPX 1
lAil

ąBil
pyq

rA1pxq ˚ pAil
pxq Ñ Bil

pyqqs. (3.72)

By Corollary 4 we have

ł

xPX 1
lAil

ďBil
pyq

rA1pxq ˚ pAil
pxq Ñ Bil

pyqqs “
ł

xPX 1
lAil

ďBil
pyq

A1pxq. (3.73)

Using the result from Equation 3.73 we can rewrite Equation 3.72 as

ł

xPX 1
l

rA1pxq˚pAil
pxq Ñ Bil

pyqqs “
ł

xPX 1
lAil

ďBil
pyq

A1pxq_
ł

xPX 1
lAil

ąBil
pyq

rA1pxq˚pAil
pxq Ñ Bil

pyqqs.

(3.74)

Combining Equations 3.74 and 3.71 yields

ł

xPX

rA1pxq ˚
n

ľ

i“1

pAipxq Ñ Bipyqqs “

m
ł

l“1

t
ł

xPX 1
lAil

ďBil
pyq

A1pxq _
ł

xPX 1
lAil

ąBil
pyq

rA1pxq ˚ pAil
pxq Ñ Bil

pyqqsu

(3.75)

Once again, we can simplify this result by considering some specific pairs of

t-norms and adjoint residual implications, like we did in Corollary 5 for the single rule

case.
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Corollary 6. Let A1, Ai P FpXq be normal and Bi P FpY q. Let X 1 “ SupppA1q and X 1
l Ď

X 1 be such that
m
ď

l“1

X 1
l “ X 1 and there exists il P I “ ti P r1, ns|SupppA1qXSupppAiq ‰ Hu

for some l “ 1, ..., m, such that
ľ

iPI

pAipxq Ñ Bipyqq “ Ail
pxq Ñ Bil

pyq for every x P X 1
l .

Considering the minimum t-norm ^ with the Gödel implication ÑM , the product t-norm

¨ with the Goguen implication ÑP and the Lukasiewicz t-norm ˚L with the Lukasiewicz

implication ÑL, we obtain the following identities:

•

ł

xPX

rA1pxq^
n

ľ

i“1

pAipxq ÑM Bipyqqs “
m

ł

l“1

r
ł

xPX 1
lAil

ďBil
pyq

A1pxq_
ł

xPX 1
lAil

ąBil
pyq

pA1pxq^Bil
pyqqs;

•

ł

xPX

rA1pxq ¨
n

ľ

i“1

pAipxq ÑP Bipyqqs “
m

ł

l“1

r
ł

xPX 1
lAil

ďBil
pyq

A1pxq _
ł

xPX 1
lAil

ąBil
pyq

pA1pxq ¨
Bil

pyq

Ail
pxq

qs;

•

ł

xPX

rA1pxq ˚L

n
ľ

i“1

pAipxq ÑL Bipyqqs “
m

ł

l“1

t
ł

xPX 1
lAil

ďBil
pyq

A1pxq _
ł

xPX 1
lAil

ąBil
pyq

r0 _ pA1pxq `

Bil
pyq ´ Ail

pxqqsu.

Proof. Substituting the aforementioned pairs of t-norms and adjoint implications on

Equation 3.75, we derive the equations of Corollary 6.

We will also visualize the application of the Corollary 6 in a numerical way

later on Examples 9, 10 and 11.

Finally, for the combination of BKS composition with implicative rules, we

have that

B1pyq “
ľ

xPX

rA1pxq Ñ
n

ľ

i“1

pAipxq Ñ Bipyqqs. (3.76)

Proposition 11. Let A1, Ai P FpXq and Bi P Fpyq. Defining αi “
ł

xPX

pA1pxq ˚ Aipxqq,

then we have
ľ

xPX

rA1pxq Ñ
n

ľ

i“1

pAipxq Ñ Bipyqqs “
n

ľ

i“1

αi Ñ Bipyq. (3.77)

Proof. Again, this is a straightforward application of the previous results as

ľ

xPX

rA1pxq Ñ
n

ľ

i“1

pAipxq Ñ Bipyqqs “
n

ľ

i“1

ľ

xPX

rA1pxq Ñ pAipxq Ñ Bipyqqs, (3.78)

using the property 2 of Proposition 1. Also

n
ľ

i“1

ľ

xPX

rA1pxq Ñ pAipxq Ñ Bipyqqs “
n

ľ

i“1

αi Ñ Bipyq, (3.79)

using the result of Equation 3.42.



Chapter 3. Fuzzy Relational Systems 48

Once again, let us finish the analysis of this case with some numerical examples.

Example 9. Consider the sets X, Y “ r0, 10s Ă R, an input A1pxq “ triangpx, 2.5, 3.5, 4.5q

and the following rule base:

Antecedents Consequents

A1 “ triangpx, 1, 3, 5q B1 “ triangpy, 1, 3, 5q
A2 “ triangpx, 3, 5, 7q B2 “ triangpy, 3.5, 5.5, 7.5q
A3 “ triangpx, 5, 7, 9q B3 “ triangpy, 7, 8, 9q

Table 5 – Rule base with multiple fuzzy rules

Also, consider the minimum t-norm ^ and the Gödel implication ÑM . Then,

we can calculate the values of αi for each rule to obtain the following values:

α1 “
ł

xPX

pA1pxq ^ A1pxqq “ 0.83;

α2 “
ł

xPX

pA1pxq ^ A2pxqq “ 0.5;

α3 “
ł

xPX

pA1pxq ^ A3pxqq “ 0.

For the combination of CRI and conjunctive rules, we replace these values in

Proposition 8 to get the output B1pyq “ p0.83 ^ B1pyqq _ p0.5 ^ B2pyqq, that is represented

in Figure 21.

(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 21 – Input and output for the combination of CRI and conjunctive rules

For the combination of BKS and conjunctive rules, first we need to obtain the

set of activated rules, that is I “ ti P r1, 3s|SupppA1qXSupppAiq ‰ Hu “ t1, 2u, and define

the set X 1 “ SupppA1q “ r2.5, 4.5s. Then, in order to apply Proposition 9, we must obtain

the indexes il and the sets X 1
l such that

m
ď

l“1

X 1
l “ X 1 and

ł

iPI

pAipxq˚Bipyqq “ Ail
pxq˚Bil

pyq

for every x P X 1
l . Evidently, these variables are dependent of y, so doing the calculations

for each fixed value of y we obtain
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X 1
1

“

$

’

’

’

&

’

’

’

%

r2.5, 4.5s, if y ď 4,

r2.5, 8.5 ´ ys, if 4 ă y ď 5,

H, otherwise.

; X 1
2

“

$

’

’

’

&

’

’

’

%

H, if y ď 4,

s8.5 ´ y, 4.5s, if 4 ă y ď 5,

r2.5, 4.5s, otherwise.

.

Now, we can calculate βi “
ľ

xPX 1
i
A1ąAi

rA1pxq Ñ Aipxqs for i “ 1, 2, of these

regions of y according to Proposition 9. The obtained outputs are shown in Figure 22 and

described as follows:

β1 “

$

’

’

’

&

’

’

’

%

0.5, if y ď 4.3,

p0.5 ¨ y ´ 1.75q, if 4.3 ă y ď 5,

1, otherwise.

; β2 “

$

’

’

’

&

’

’

’

%

1, if y ď 4.3,

p2.75 ´ 0.5 ¨ yq, if 4.3 ă y ď 5,

0, otherwise.

.

(a) Output fuzzy set β1 ˚ B1 relative to conse-
quent B1

(b) Output fuzzy set β2 ˚ B2 relative to conse-
quent B2

Figure 22 – Partial outputs for the combination of BKS and conjunctive rules

Finally, combining these partial results we obtain the following output fuzzy set

that is represented in Figure 23:

B1pyq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0.5 ^ B1pyq, if y ď 4,

p0.5 ^ B1pyqq _ pB2pyqq, if 4 ă y ď 4.3,

rp0.5 ¨ y ´ 1.75q ^ B1pyqs _ rp´0.5 ¨ y ` 2.75q ^ B2pyqs, if 4.3 ă y ď 5,

0, otherwise.

“ 0.5 ^ B1pyq.
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(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 23 – Input and output for the combination of BKS and conjunctive rules

For the combination of CRI and implicative rules, we already have the sets I

and X 1 “ SupppA1q defined from the previous combination. To apply Corollary 5 we must

obtain the indexes il and the sets X 1
l such that

m
ď

l“1

X 1
l “ X 1 and

ľ

iPI

pAipxq Ñ Bipyqq “

Ail
pxq Ñ Bil

pyq for every x P X 1
l , like we did before. Doing the calculations we arrive at

the following sets:

X 1
1

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

r2.5, 4.5s, if y ď 1,

r2.5, 3s, if 1 ă y ď 3.5,

r2.5, y ´ 0.5s, if 3.5 ă y ď 4.5,

r2.5, 4.5s, otherwise.

; X 1
2

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

H, if y ď 1,

s3, 4.5s, if 1 ă y ď 3.5,

sy ´ 0.5, 4.5s, if 3.5 ă y ď 4.5,

H, otherwise.

.

Calculating the output for each of these regions of y according to Corollary 5,

we obtain the following partial outputs shown in Figure 24:

γ1 “
ł

xPX 1
1A1ďB1pyq

A1pxq _
ł

xPX 1
1A1ąB1pyq

pA1pxq ^ B1pyqq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

B1pyq, if y ď 2,

0.5, if 2 ă y ď 3,

0.75 ¨ y ´ 2.12, if 3.5 ă y ď 3.7,

B1pyq, if 3.7 ă y.

;

γ2 “
ł

xPX 1
2A2ďB2pyq

A1pxq _
ł

xPX 1
2A2ąB2pyq

pA1pxq ^ B2pyqq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

B2pyq, if y ď 3.5,

y ´ 3, if 3.5 ă y ď 3.7,

B2pyq, if 3.7 ă y ď 4.2.

0, if 4.2 ă y.

.
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(a) Output fuzzy set γ1 relative to consequent
B1

(b) Output fuzzy set γ2 relative to consequent
B2

Figure 24 – Partial outputs for the combination of CRI and implicative rules

Combining these partial results we obtain the following output fuzzy set that is

represented in Figure 25:

B1pyq “

$

’

’

’

&

’

’

’

%

0.5 ^ B1pyq, if y ď 3.5,

y ´ 3, if 3.5 ă y ď 3.7,

B1pyq, otherwise.

(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 25 – Input and output for the combination of CRI and implicative rules

For the combination of BKS with implicative rules, we replace the calculated

values of αi in Proposition 11 to obtain the output fuzzy set B1pyq “ p0.83 ÑM B1pyqq ^

p0.5 ÑP B2pyqq, that is shown in Figure 26.

(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 26 – Input and output for the combination of BKS and implicative rules
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Example 10. Now, consider the product t-norm ¨ and its associated Goguen implication

ÑP with the same input A1pxq “ triangpx, 2.5, 3.5, 4.5q and the rule base from Table 5.

First, we need to calculate again the values of αi for each rule as follows:

α1 “
ł

xPX

pA1pxq ¨ A1pxqq “ 0.75;

α2 “
ł

xPX

pA1pxq ¨ A2pxqq « 0.28;

α3 “
ł

xPX

pA1pxq ¨ A3pxqq “ 0.

For the combination of CRI with conjunctive rules, we replace the calculated

values of αi in Proposition 8 and obtain as output the set B1pyq « p0.75 ¨ B1pyqq _ p0.28 ¨

B2pyqq. This output is represented in Figure 27.

(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 27 – Input and output for the combination of CRI and conjunctive rules

For the combination of BKS and conjunctive rules, we can use the sets I “ t1, 2u

and X 1 “ r2.5, 4.5s defined in the last example. Then, to apply Proposition 9, we determine

the sets X 1
l as

X 1
1

“

$

’

’

’

&

’

’

’

%

r2.5, 4.5s, if y ď 4,

r2.5, 8.2 ´ ys, if 4 ă y ď 5,

H, otherwise.

; X 1
2

“

$

’

’

’

&

’

’

’

%

H, if y ď 4,

s8.2 ´ y, 4.5s, if 4 ă y ď 5,

r2.5, 4.5s, otherwise.

.

Calculating βi “
ľ

xPX 1
i
A1ąAi

rA1pxq Ñ Aipxqs for i “ 1, 2, for each of these regions

of y according to Proposition 9, we obtain the following results represented in Figure 28:

β1 “

$

&

%

0.75, if y ď 5,

1, if 5 ă y.
; β2 “

$

’

’

’

&

’

’

’

%

1, if y ď 4.5,

p7.5 ´ 1.5 ¨ yq, if 4.5 ă y ď 5,

0, if 5 ă y.

.
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(a) Output fuzzy set β1 ˚ B1 relative to conse-
quent B1

(b) Output fuzzy set β2 ˚ B2 relative to conse-
quent B2

Figure 28 – Partial outputs for the combination of BKS and conjunctive rules

Combining these results we obtain the following output fuzzy set that is repre-

sented in Figure 23:

B1pyq «

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0.75 ¨ B1pyq, if y ď 4,

p0.75 ¨ B1pyqq _ pB2pyqq, if 4 ă y ď 4.5,

p0.75 ¨ B1pyqq _ rp´1.5 ¨ y ` 7.75q ¨ B2pyqs, if 4.5 ă y ď 5,

0, otherwise.

.

(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 29 – Input and output for the combination of BKS and conjunctive rules

For the combination of CRI with implicative rules, we also can use the sets

I “ t1, 2u and X 1 “ r2.5, 4.5s defined in the last example. Then, to apply Corollary 5, we

calculate the sets X 1
l as

X 1
1

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

r2.5, 4.5s, if y ď 1,

r2.5, 3s, if 1 ă y ď 3.5,

r2.5, y ´ 0.5s, if 3.5 ă y ď 4.5,

r2.5, 4.5s, otherwise.

; X 1
2

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

H, if y ď 1,

s3, 4.5s, if 1 ă y ď 3.5,

sy ´ 0.5, 4.5s, if 3.5 ă y ď 4.5,

H, otherwise.

.
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Again, we calculate the output for each of these regions of y according to

Corollary 5 and we obtain the following results represented in Figure 30:

γ1 “
ł

xPX 1
1A1ďB1pyq

A1pxq _
ł

xPX 1
1A1ąB1pyq

pA1pxq ¨
B1pyq

A1pxq
q “

$

&

%

0.5 ¨ B1pyq, if y ď 4,

1.33 ¨ B1pyq, if 4 ă y.
;

γ2 “
ł

xPX 1
2A2ďB2pyq

A1pxq _
ł

xPX 1
2A2ąB2pyq

pA1pxq ¨
B2pyq

A2pxq
q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

B2pyq, if y ď 3.5,

y ´ 3, if 3.5 ă y ď 3.7,

B2pyq, if 3.7 ă y ď 4.2.

0, if 4.2 ă y.

.

(a) Output fuzzy set γ1 relative to consequent
B1

(b) Output fuzzy set γ2 relative to consequent
B2

Figure 30 – Partial outputs for the combination of CRI and implicative rules

Combining these partial results we obtain the following output fuzzy set that is

represented in Figure 31:

B1pyq “

$

’

’

’

&

’

’

’

%

0.5 ¨ B1pyq, if y ď 3.5,

y ´ 3, if 3.5 ď y ă 3.7,

1.33 ¨ B1pyq, otherwise.

(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 31 – Input and output for the combination of CRI and implicative rules
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Finally, for the combination of BKS and implicative rules, we replace the values

of αi in Proposition 11 to obtain the output B1pyq « p0.75 ÑP B1pyqq ^ p0.28 ÑP B2pyqq,

that is represented in Figure 32.

(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 32 – Input and output for the combination of BKS and implicative rules

Example 11. Finally, consider the Lukasiewicz t-norm ˚L and the Lukasiewicz implication

ÑL. Also, consider the same input fuzzy set A1pxq “ triangpx, 2.5, 3.5, 4.5q as before and

the rule base from Table 5.

Calculating the values of αi for each rule, we obtain the following values:

α1 “
ł

xPX

pA1pxq ˚L A1pxqq “ 0.75;

α2 “
ł

xPX

pA1pxq ˚L A2pxqq “ 0.25;

α3 “
ł

xPX

pA1pxq ˚L A3pxqq “ 0.

For the combination of CRI and conjunctive rules, we replace these values in

Proposition 8 to obtain the following output represented in Figure 33:

B1pyq “ p0.75 ˚L B1pyqq _ p0.25 ˚L B2pyqq

“ r0 _ p0.75 ` B1pyq ´ 1qs _ r0 _ p0.25 ` B2pyq ´ 1qs

“ r0 _ pB1pyq ´ 0.25qs _ r0 _ pB2pyq ´ 0.75qs

“ r0 _ pB1pyq ´ 0.25q _ pB2pyq ´ 0.75qs.

(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 33 – Input and output for the combination of CRI and conjunctive rules
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For the combination of BKS and conjunctive rules, we can use the sets I “ t1, 2u

and X 1 “ r2.5, 4.5s defined in the last examples. Then, to apply Proposition 9, we determine

the sets X 1
l as

X 1
1

“

$

’

’

’

&

’

’

’

%

r2.5, 4.5s, if y ď 4,

r2.5, 8.5 ´ ys, if 4 ă y ď 5,

H, otherwise.

; X 1
2

“

$

’

’

’

&

’

’

’

%

H, if y ď 4,

s8.5 ´ y, 4.5s, if 4 ă y ď 5,

r2.5, 4.5s, otherwise.

;

Again, we calculate βi “
ľ

xPX 1
i
A1ąAi

rA1pxq Ñ Aipxqs for i “ 1, 2, for each of these

regions of y according to Proposition 9 and obtain the following partial outputs shown in

Figure 34:

β1 “

$

&

%

0.75, if y ď 5,

1, if 5 ă y.
; β2 “

$

’

’

’

&

’

’

’

%

0.25, if y ď 4.5,

p7.5 ´ 1.5 ¨ yq, if 4.5 ă y ď 5,

0.25, if 5 ă y.

.

(a) Output fuzzy set β1 ˚ B1 relative to conse-
quent B1

(b) Output fuzzy set β2 ˚ B2 relative to conse-
quent B2

Figure 34 – Partial outputs for the combination of BKS and conjunctive rules

Combining these partial results we obtain the following output fuzzy set that is

represented in Figure 35:

B1pyq «

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0.75 ˚L B1pyq, if y ď 4,

p0.75 ˚L B1pyqq _ pB2pyqq, if 4 ă y ď 4.5,

p0.75 ˚L B1pyqq _ rp´1.53 ¨ y ` 7.8q ˚L B2pyqs, if 4.5 ă y ď 5.

0.25 ˚L B2pyq, otherwise.

“ p0.75 ˚L B1pyqq _ p0.25 ˚L B2pyqq.
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(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 35 – Input and output for the combination of BKS and conjunctive rules

For the combination of CRI with implicative rules, we still use the sets I “ t1, 2u

and X 1 “ r2.5, 4.5s defined in the lasts examples. Then, to apply Corollary 5, we calculate

the sets X 1
l as

X 1
1 “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

r2.5, 4s, if y ď 1,

r2.5, 4.5 ´ 0.5 ¨ ys, if 1 ă y ď 3,

r2.5, 0.75 ¨ y ` 0.75s, if 3 ă y ď 5,

r2.5, 4.5s, otherwise.

; X 1
2 “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

s4, 4.5s, if y ď 1,

s4.5 ´ 0.5 ¨ y, 4.5s, if 1 ă y ď 3,

s0.75 ¨ y ` 0.75, 4.5s, if 3 ă y ď 5,

H, otherwise.

.

Calculating the output for each of these regions of y according to Corollary 5

we obtain the following results represented in Figure 36:

γ1 “
ł

xPX 1
1A1ďB1pyq

A1pxq _
ł

xPX 1
1A1ąB1pyq

r0 _ pA1pxq ` B1pyq ´ A1pxqqs

«

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0.75 ÑL B1pyq, if y ď 2,

1.25 ´ 0.25 ¨ y, if 2 ă y ď 3.

0.57 ¨ y ´ 1.25, if 3 ă y ď 3.7,

0.75 ÑL B1pyq, if 3.7 ă y.

;

γ2 “
ł

xPX 1
2A2ďB2pyq

A1pxq _
ł

xPX 1
2A2ąB2pyq

r0 _ pA1pxq ` B2pyq ´ A2pxqqs

«

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0, if y ď 1,

0.25 ÑL B2pyq, if 1 ă y ď 3.7,

3.1 ´ 0.61 ¨ y, if 3.7 ă y ď 5.

0, if 5 ă y.

.
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(a) Output fuzzy set γ1 relative to consequent
B1

(b) Output fuzzy set γ2 relative to consequent
B2

Figure 36 – Partial outputs for the combination of CRI and implicative rules

Combining these partial results we obtain the following output fuzzy set that is

represented in Figure 37:

B1pyq “ pB1pyq ` 0.25q ^ pB2pyq ` 0.75q

(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 37 – Input and output for the combination of CRI and implicative rules

Finally, for the combination of BKS with implicative rules, we replace the

calculated values of αi in Proposition 11 as follows to obtain the output represented in

Figure 38:

B1pyq “ p0.75 ÑL B1pyqq ^ p0.25 ÑL B2pyqq

“ r1 ^ pB1pyq ´ 0.75 ` 1qs ^ r1 ^ pB2pyq ´ 0.25 ` 1qs

“ r1 ^ pB1pyq ` 0.25qs ^ r1 ^ pB2pyq ` 0.75qs

“ r1 ^ pB1pyq ` 0.25q ^ pB2pyq ` 0.75qs.
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(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 38 – Input and output for the combination of BKS and implicative rules

In these examples, we could see the behaviours of different pairs of t-norms

and implications among the studied combinations. It is interesting to note that the

combination of CRI and implicative rules in general results in more complex outputs,

as it where expected from the development of equations for a single fuzzy rule. Another

interesting fact is that, for this input and rule base, using the Lukasiewicz t-norm and

implication the output was related only to the type of fuzzy rules chosen (conjunctive or

implicative).

Example 12. Consider the sets X, Y “ r0, 10s Ă R, an input A1pxq “ triangpx, 0, 0.5, 1q

and the same rule base as before:

Antecedents Consequents

A1 “ triangpx, 1, 3, 5q B1 “ triangpy, 1, 3, 5q
A2 “ triangpx, 3, 5, 7q B2 “ triangpy, 3.5, 5.5, 7.5q
A3 “ triangpx, 5, 7, 9q B3 “ triangpy, 7, 8, 9q

Table 6 – Rule base with multiple fuzzy rules

First, calculating the values of αi for each rule we have

αi “
ł

xPX

pA1pxq ˚ Aipxqq “ 0, @i P r1, 3s,

independently of the t-norm ˚ used.

This implies that in the combination of CRI and conjunctive rules, from Propo-

sition 8, we will have the output B1pyq “ 0.

Similarly, for the combination of BKS and conjunctive rules, taking any x P X 1

according to Proposition 9 we will have that
3

ł

i“1

pAipxq ˚ Bipyqq “
3

ł

i“1

p0 ˚ Bipyqq “ 0. Then,

ľ

xPX 1

pA1pxq Ñ 0q “ A1p0.5q Ñ 0 “ 1 Ñ 0 “ 0. So, the output for this combination will also

be B1pyq “ 0.
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From this, we can conclude that independently from the t-norm and adjoint

implication chosen, when we use conjunctive rules in this case we will have the output

represented in Figure 39.

(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 39 – Input and output for the combinations using Conjunctive rules

For the combination of CRI and implicative rules, following Proposition 10,

taking any x P X 1 we will have
3

ľ

i“1

pAipxq Ñ Bipyqq “
3

ľ

i“1

p0 Ñ Bipyqq “ 1. Then,

ł

xPX 1

pA1pxq ˚ 1q “ A1p0.5q ˚ 1 “ 1 ˚ 1 “ 1. So, for this combination the output will be

B1pyq “ 1.

For the combination of BKS and implicative rules, since αi “ 0 as seen before,

applying Proposition 11 we have that
3

ľ

i“1

αi Ñ Bipyq “
3

ľ

i“1

0 Ñ Bipyq “ 1. So, we have as

output the fuzzy set B1pyq “ 1.

For implicative rules, we have the following results in Figure 40: Similarly, we

can conclude that independently from the t-norm and adjoint implication chosen, when we

use implicative rules in this case we will have the output represented in Figure 40.

(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 40 – Input and output for the combinations using Implicative rules

In this example we have seen that for this scenario where there is no intersection

between the input and the fuzzy rules, the output is related only on the type of the rules,

independent of the t-norm and residual implication used.
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To finish this study, we will look at three more examples where the input is

totally contained in one of the antecedents.

Example 13. Consider the sets X, Y “ r0, 10s Ă R, an input A1pxq “ triangpx, 4, 5, 6q

and the same rule base as before:

Antecedents Consequents

A1 “ triangpx, 1, 3, 5q B1 “ triangpy, 1, 3, 5q
A2 “ triangpx, 3, 5, 7q B2 “ triangpy, 3.5, 5.5, 7.5q
A3 “ triangpx, 5, 7, 9q B3 “ triangpy, 7, 8, 9q

Table 7 – Rule base with multiple fuzzy rules

Also, consider the minimum t-norm ^ and the Gödel implication ÑM . With

this, we can calculate the following values of αi for each rule:

α1 “
ł

xPX

pA1pxq ^ A1pxqq « 0.33;

α2 “
ł

xPX

pA1pxq ^ A2pxqq “ 1;

α3 “
ł

xPX

pA1pxq ^ A3pxqq « 0.33.

For the combination of CRI and conjunctive rules, we replace these values in

Proposition 8 to obtain the output fuzzy set B1pyq « p0.33^B1pyqq_B2pyq_p0.33^B3pyqq

represented in Figure 41.

(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 41 – Input and output for the combination of CRI and conjunctive rules

For the combination of BKS and conjunctive rules, we apply Theorem 1 we

obtain B1pyq “ B2pyq as output, that is shown in Figure 42.
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(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 42 – Input and output for the combination of BKS and conjunctive rules

Likewise, for the combination of CRI and implicative rules, we apply Theorem

3 to also get B1pyq “ B2pyq as output, that is shown in Figure 43.

(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 43 – Input and output for the combination of CRI and implicative rules

Finally, for the combination of BKS with implicative rules, we use the calculated

values of αi on Proposition 11 to obtain the output B1pyq “ p0.33 ÑM B1pyqq ^ B2pyq ^

p0.33 ÑM B3pyqq “ 0, that is represented in Figure 44.

(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 44 – Input and output for the combination of BKS and implicative rules

Example 14. Considering now the product t-norm ¨, the Goguen implication ÑP , the

same input A1pxq “ triangpx, 4, 5, 6q and the same rule base from Table 7.
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Firstly, calculating the values of αi for each rule, we have

α1 “
ł

xPX

pA1pxq ¨ A1pxqq “ 0.125;

α2 “
ł

xPX

pA1pxq ¨ A2pxqq “ 1;

α3 “
ł

xPX

pA1pxq ¨ A3pxqq “ 0.125.

For the combination of CRI with conjunctive rules, we replace these values in

Proposition 8 to obtain the output B1pyq “ p0.125 ¨ B1pyqq _ B2pyq _ p0.125 ¨ B3pyqq, that

is shown in Figure 45.

(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 45 – Input and output for the combination of CRI and conjunctive rules

For the combination of BKS with conjunctive rules, we just apply Theorem 1

to obtain the output B1pyq “ B2pyq, that is represented in Figure 46.

(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 46 – Input and output for the combination of BKS and conjunctive rules

Similarly, for the combination of CRI and implicative rules, we just apply

Theorem 3 to obtain as output B1pyq “ B2pyq, shown in Figure 47.
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(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 47 – Input and output for the combination of CRI and implicative rules

For the combination of BKS and implicative rules, we use the calculated values

of αi on Proposition 11 to obtain the output B1pyq “ p0.125 ÑP B1pyqq^B2pyq^p0.125 ÑP

B3pyqq “ 0, that is represented in Figure 48.

(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 48 – Input and output for the combination of BKS and implicative rules

Example 15. Considering the Lukasiewicz t-norm ˚L, the Lukasiewicz implication ÑL,

the same input A1pxq “ triangpx, 4, 5, 6q and the same rule base from Table 7.

Again, calculating the values of αi for each rule, we have

α1 “
ł

xPX

pA1pxq ˚L A1pxqq “ 0;

α2 “
ł

xPX

pA1pxq ˚L A2pxqq “ 1;

α3 “
ł

xPX

pA1pxq ˚L A3pxqq “ 0.

For the combination of CRI and conjunctive rules, we replace these values in

Proposition 8 to obtain the output B1pyq “ B2pyq.

For the combination of BKS with conjunctive rules, using Theorem 1 we also

obtain B1pyq “ B2pyq as output.

Similarly, for the combination of CRI and implicative rules, just applying

Theorem 3 we obtain the output B1pyq “ B2pyq.
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Finally, for the combination of BKS and implicative rules, we use the values

of αi in Proposition 11 to also get the output B1pyq “ B2pyq.

As we can see, in this scenario where the input is completely contained in

one of the antecedents and we are using the Lukasiewicz t-norm and implication, the

output is equal to the corresponding consequent, independently of the combination. This is

represented in Figure 49.

(a) Input fuzzy set and antecedents (b) Output fuzzy set and consequents

Figure 49 – Input and output for the combinations using Lukasiewicz t-norm and implication

In these examples we could see an interesting property of the combinations BKS

with conjunctive rules and CRI with implicative rules. For these combinations, when the

input is totally contained in one of the antecedents, the output is equal to the correpondent

consequent. This property is known as interpolativity and it will be seen again in the next

chapter. Another remark can be made for the example using the Lukasiewicz t-norm and

implication, in this case all combinations presented this interpolativity property.
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4 Moser-Navara Axioms

4.1 Original Moser-Novara Axioms and its adaptation for implica-

tive systems

To ensure the robustness and coherence of fuzzy relational systems, B. Moser

and M. Navara (MOSER; NAVARA, 2002) proposed three axioms that these systems

should obey primarily.

Conceptually the axioms are as follows:

1. Interpolation: Given an input A1 equals to and antecedent Ai, the output of the

system should be equal to the corresponding consequent Bi.

2. Significance of the generated outputs: For all normal input A1 (Dx P X|A1pxq “ 1),

the system produces a non-trivial output, which means, Dy P Y |B1pyq ‰ 0 in case of

conjunctive rules and Dy P Y |B1pyq ‰ 1 in case of implicative rules.

3. Robustness: Given any input, the corresponding output must be contained in the

union of the consequents of the activated rules (A1 X Ai ‰ H) in case of conjunctive

rules; or must contain the intersection of consequents of activated rules in case of

implicative rules.

Stepnicka and Mandal (STEPNICKA; MANDAL, 2015) (STEPNICKA, 2016)

(STEPNICKA; MANDAL, 2018) presented a formal definition of these axioms considering

any composition @ (CRI ˝ or BKS Ÿ) with conjunctive rules:

AC1 For all i P 1, . . . , n

Ai@Ř “ Bi;

AC2 For each normal input A1 P FpXq there exists an index i such that

A1@Ř Ę Bi;

AC3 The output A1@Ř belongs to the union of consequents Bi of activated rules, which

means,

A1@Ř Ď
ď

iPF

Bi



Chapter 4. Moser-Navara Axioms 67

where F “ ti|SupppAiq X SupppA1q ‰ Hu, pBi Y Bjqpyq “ Bipyq _ Bjpyq.

And analogously for implicative rules:

AI1 For all i P 1, . . . , n

Ai@R̂ “ Bi;

AI2 For each normal input A1 P FpXq there exists an index i such that

A1@R̂ Ğ Bi;

AI3 The output A1@R̂ contains the intersection of consequents Bi of activated rules,

which means,

A1@R̂ Ě
č

iPF

Bi

where F “ ti|SupppAiq X SupppA1q ‰ Hu, pBi X Bjqpyq “ Bipyq ^ Bjpyq.

Originally, Moser and Navara proposed these axioms for the combination of the

CRI composition with conjunctive rules and demonstrated that this combination does not

satisfy axioms 1 and 2 simultaneously under general conditions according to the following

proposition:

Proposition 12. (MOSER; NAVARA, 2002) Be ˚ a t-norm without zero divisors. Be

the fuzzy sets Ai, i “ 1, . . . , n continuous and normal; and Bi, i “ 1, . . . , n with mutually

distinct supports. So the combination of the conjunctive rules model Ř and the CRI

composition ˝ do not satisfy axioms AC1 and AC2 simultaneously.

This proposition can be illustrated with a simple example.

Example 16. Considering the minimum t-norm ^, the universes X “ Y “ r0, 10s Ď R

and the following fuzzy rule base:

Antecedents Consequents

R1: A1pxq “ triangpx, 0, 2, 4q B1pyq “ triangpy, 1, 2, 3q
R2: A2pxq “ triangpx, 2, 4, 6q B2pyq “ triangpy, 4, 5, 6q
R3: A3pxq “ triangpx, 4, 6, 8q B3pyq “ triangpy, 7, 8, 9q

Table 8 – Fuzzy rule base.

Suppose an input A1pxq “ A2pxq “ triangpx, 2, 4, 5q, then the output B1pyq of

a CRI composition with conjunctive rules is given in Figure 50.



Chapter 4. Moser-Navara Axioms 68

Figure 50 – Example of axioms violation.

Clearly, we have a violation of the axiom AC1, because given an input A1pxq “

A2pxq we have an output B1pyq ‰ B2pyq.

Analogously to the proposition that accompanies the original formulation of

the axioms, Stepnicka and Mandal showed that the combination of implicative rules with

the BKS composition does not satisfy axioms 1 and 2 simultaneously.

Proposition 13. (STEPNICKA; MANDAL, 2015) Let ˚ be a left-continuous t-norm and

without zero divisors. Let Ai, i “ 1, . . . , n be continuous and normal and let Bi, i “ 1, . . . , n

fuzzy sets with mutually different supports. So the model of implicative rules R̂ (with the

residual implication derived from the t-norm ˚) and the BKS composition Ÿ do not satisfy

axioms AI1 and AI2 simultaneously.

Once again, let us illustrate this proposition using the last example as a basis.

Example 17. Considering Gödel’s implication ÑM , the universes X “ Y “ r0, 10s Ď R

and the same fuzzy rule base as before:

Antecedents Consequents

R1: A1pxq “ triangpx, 0, 2, 4q B1pyq “ triangpy, 1, 2, 3q
R2: A2pxq “ triangpx, 2, 4, 6q B2pyq “ triangpy, 4, 5, 6q
R3: A3pxq “ triangpx, 4, 6, 8q B3pyq “ triangpy, 7, 8, 9q

Table 9 – Fuzzy rule base.
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Suppose an input A1pxq “ A2pxq “ triangpx, 2, 4, 6q, then the output B1pyq of

a BKS composition with implicative rules is given in Figure 51.

Figure 51 – Example of axioms violation.

Again we have a violation of the first axiom AI1.

4.2 Ideal combinations

Continuing his work, Martin Stepnicka (STEPNICKA, 2016) analyzed the

combinations between: CRI (˝) and implicative rules (R̂); and BKS (Ÿ) and conjunctive

rules (Ř). These combinations satisfy the axioms under some restrictions as will be seen

below.

Theorem 5. (STEPNICKA, 2016) Be pAi, BiqNn
an implicative fuzzy rule base, let Ai be

normal and let

I1 "covering antecedents":

ľ

xPX

n
ł

i“1

Aipxq ě c, c P p0, 1s

I2 "disjointness of antecedents": @i P Nn, Dxi such that

Aipxiq “ 1 e Ajpxiq “ 0, whenever i ‰ j
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I3 "specificity of consequents": for each i P Nn, there is a yi P Y such that for all j ‰ i:

Bipyiq ą c Ñ Bjpyiq

if the input A1 is normal and using the CRI composition ˝, then all three axioms AI1 -

AI3 are simultaneously satisfied.

Theorem 6. (STEPNICKA, 2016) Be pAi, BiqNn
a conjunctive fuzzy rule base, let Ai be

normal and let

C1 "covering antecedents":

ľ

xPX

n
ł

i“1

Aipxq ě c, c P p0, 1s

C2 "disjointness of antecedents": @i P Nn, Dxi such that:

Aipxiq “ 1 e Ajpxiq “ 0, whenever i ‰ j

C3 "specificity of consequents": for each i P Nn, there is a yi P Y such that for all j ‰ i:

Bipyiq ă c ˚ Bjpyiq

If the input A1 is normal and using the BKS composition Ÿ, then all three axioms AC1 -

AC3 are simultaneously satisfied.
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5 Applications

In this chapter, we will apply the relational systems presented before to a

series of reference problems, available in the repository Knowledge Extraction Based on

Evolutionary Learning (ALCALA-FDEZ et al., 2011).

5.1 Wang-Mendel fuzzy rule learning algorithm

Learning the fuzzy rule base is done using the procedure proposed in (WANG;

MENDEL, 1992). The learning algorithm performs the following steps:

1. Partitioning of attribute spaces and outputs into fuzzy sets:

a) Be the attributes xi, i P r1, ns, and the output y.

b) Taking their domain intervals Xi “ rx´
i , x`

i s and Y “ ry´, y`s.

c) Each one of these intervals is divided into N fuzzy regions (N can be different

for each attribute).

Obs: In this work, triangular membership functions will be used for each fuzzy region,

so that one of the vertices is in the central position of the fuzzy region with

unit value and the other two are in the centers of the neighboring regions.

2. For each training data, a new rule is defined and its "strength" is calculated:

a) First, the degrees of membership of the inputs and outputs in each of the fuzzy

regions are calculated.

b) A fuzzy rule is composed of the fuzzy regions with the highest membership

degrees for each variable.

c) Finally, a "strength" is associated to the rule, given by the product of the

membership degrees of each variable.

3. Cleaning the rules:

a) For identical rules, the highest "strength" found prevails and duplicates are

removed.

b) For the equal rules with different consequents, the one with the greatest

"strength" prevails and the inconsistent ones are removed.

After this training phase (learning the fuzzy rules), the fuzzy relational systems

discussed in the previous chapters are applied and at the end the centroid and mean of
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maximum (MOM) methods are used for the defuzzification of the results (KLIR; YUAN,

1995)(PEDRYCZ; GOMIDE, 2007)(BARROS; BASSANEZI; LODWICK, 2017).

5.2 Regression problems

The reference regression problems considered in this work are: Diabetes, Ele-

1, Plastic, Quake, Laser, Ele-2, AutoMPG6, MachineCPU, Dee and AutoMPG8. More

information about these datasets can be found in the links of Appendix A.

The Table 10 contains basic information about the datasets: the number of

samples, the quantities of numerical attributes and the number of rules learned by the

Wang-Mendel algorithm.

Number of samples Numerical attributes # of rules learned

Diabetes 43 2 15
Ele-1 495 2 13

Plastic 1650 2 15
Quake 2178 3 53
Laser 993 4 58
Ele-2 1056 4 65

AutoMPG6 392 5 115
MachineCPU 209 6 35

Dee 365 6 177
AutoMPG8 392 7 161

Table 10 – Description of the datasets

In the fuzzy relational systems, the t-norm of the minimum ^ and its adjunct

implication ÑM (Gödel’s implication) were used. The conjunction used to aggregate the

antecedents Aij of an i rule was the minimum ^. Each of the domain ranges Xi and Y

was divided into N “ 5 fuzzy regions, just to be able to draw a comparison between the

different combinations of compositions and fuzzy rules.

In each experiment, the root mean square error (RMSE) is calculated for each

combination and the values can be seen in Tables 11 and 12. The numbers written in italic

text are the best results in each experiment configuration (i.e. in each row of each table),

and the numbers written in bold text are the best results for each dataset independent

of the defuzzification method (i.e. best for each row in each pair of tables). In this first

simulation, crisp inputs were considered for the relational systems.
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Conjunctive

Rules

+

CRI

Conjunctive

Rules

+

BKS

Implicative

Rules

+

CRI

Implicative

Rules

+

BKS

Diabetes 0.47 0.47 0.52 0.52
Ele-1 715.7 715.7 1167.3 1167.3

Plastic 1.76 1.76 2.37 2.37
Quake 0.21 0.21 0.28 0.28
Laser 10.8 10.8 28.4 28.4
Ele-2 267.3 267.3 644.9 644.9

AutoMPG6 4.1 4.1 6.6 6.6
MachineCPU 153.4 153.4 119.8 119.8

Dee 0.56 0.56 0.73 0.73
AutoMPG8 4.2 4.2 7.1 7.1

Table 11 – Results using centroid defuzzification

Conjunctive

Rules

+

CRI

Conjunctive

Rules

+

BKS

Implicative

Rules

+

CRI

Implicative

Rules

+

BKS

Diabetes 0.74 0.74 0.74 0.74

Ele-1 1141.02 1141.02 1183.04 1183.04
Plastic 2.68 2.68 3.25 3.25
Quake 0.30 0.30 0.39 0.39
Laser 29.95 29.95 43.35 43.35
Ele-2 638.77 638.77 509.38 509.38

AutoMPG6 5.56 5.56 4.71 4.71
MachineCPU 120.47 120.47 109.47 109.47

Dee 0.71 0.71 0.64 0.64
AutoMPG8 4.91 4.91 4.25 4.25

Table 12 – Results using MOM defuzzification

As already highlighted in Chapter 3, the results of combinations with conjunc-

tive rules are the same, considering a crisp input. Analogously for relational systems with

implicative rules. Regarding the accuracy of the results, it can be noted that in most

problems the relational systems with conjunctive rules obtained a better performance

using the centroid defuzzification. The MOM defuzzification seems to be more adequate

for FRSs that use implicative rules, specially in problems with higher number of input

variables.

Next, in Tables 13 and 14 we have the results of a simulation with the same

regression problems but now considering a fuzzy input. For the fuzzification of the inputs,

triangular membership functions centered on the point in question xi and with vertices at

xi ´ r and xi ` r were considered, where r is 5% of the domain interval of that variable .

That is, r “ 0.05px`
i ´ x´

i q and A1
ipxq “ triangpx, xi ´ r, xi, xi ` rq.
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Conjunctive

Rules

+

CRI

Conjunctive

Rules

+

BKS

Implicative

Rules

+

CRI

Implicative

Rules

+

BKS

Diabetes 0.69 0.67 1.78 1.77
Ele-1 727.4 975.8 1206.5 1760.6

Plastic 2.23 2.08 4.8 5.6
Quake 0.28 0.48 0.74 0.83
Laser 19.4 15.8 70.3 78.8
Ele-2 367.4 488.1 808.7 1584.9

AutoMPG6 3.7 6.3 15.0 22.4
MachineCPU 186.7 187.3 137.9 156.1

Dee 0.64 0.68 1.71 2.27
AutoMPG8 5.5 5.6 7.8 11.2

Table 13 – Results considering a fuzzy input using centroid defuzzification

Conjunctive

Rules

+

CRI

Conjunctive

Rules

+

BKS

Implicative

Rules

+

CRI

Implicative

Rules

+

BKS

Diabetes 0.64 0.64 0.79 0.81
Ele-1 1142.38 1112.94 1057.77 1698.88

Plastic 2.73 2.73 3.11 3.35
Quake 0.33 0.33 0.37 0.39
Laser 26.46 25.45 34.04 46.29
Ele-2 663.31 640.56 404.56 782.84

AutoMPG6 4.7 5.02 4.28 5.46
MachineCPU 108.17 146.79 119.12 145.04

Dee 0.6 0.65 0.55 0.60
AutoMPG8 4.78 4.4 3.22 3.59

Table 14 – Results considering a fuzzy input using MOM defuzzification

As expected, the results were a little worse than in previous experiments due to

the uncertainty considered in the inputs. It is also possible to conclude that performance

is more related to the choice of fuzzy rules representation (conjunctive or implicative rules)

and defuzzification method, than to the composition (CRI or BKS). This fact could also

be deduced from the results presented in Chapter 3.

It is interesting to note that for the problems with a higher number of variables

(specifically the last four), the results obtained using a fuzzy input were the best overall.

This could indicate that the datasets are not large enough to learn an exhaustive rule

base, and in this case an uncertainty in the inputs is beneficial for the performance.

In general, the relational systems using implicative rules had worst performance.

This can be explained by the way that the Wang-Mendel algorithm works: it learns

conjunctive rules by acumulating information, and not excluding possibilities, which aligns

with the interpretation made by Dubois et al. (DUBOIS; UGHETTO; PRADE, 1999).
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6 Final considerations

In this master’s thesis, a bibliographic review of three important works related

to fuzzy relational systems was made: the study of combinations of fuzzy compositions

and conjunctive/implicative fuzzy rules by Martin Stepnicka et al. and, consequently, the

axioms proposed by Bernhard Moser and Mirko Navara for evaluating inference systems;

the interpretation of conjunctive and implicative fuzzy rules proposed by Didier Dubois et

al.; and the fuzzy rule learning algorithm of Li-Xin Wang and Jerry Mendel.

The results presented do not intend to draw definitive conclusions about the

fuzzy relational systems, but rather to provoke discussions on the subject and also to

present different points of view, possibly new for some readers.

As mentioned throughout the text, the Mamdani-Assilian relational system

(MAMDANI; ASSILIAN, 1975) has historically been the most used in practical applications.

This application on a large scale is undoubtedly beneficial for the dissemination of knowledge

of fuzzy set theory, but its indiscriminate use can also generate negative effects, such as

the use of methods without proper knowledge of the theoretical bases. In this sense, we

saw that there are alternatives to this combination of CRI composition with conjunctive

rules, which can be as good or even more adequate depending on the situation.

The applications to real problems in Chapter 5, although simple, highlight an

important fact: the choice of how to model the fuzzy rules directly influences the obtained

results, more than the choice of the fuzzy composition. On this subject, there is a fertile

field for the elaboration of new, more extensive studies, mainly in the sense of validating

the hypothesis raised by Didier Dubois et al. (DUBOIS; UGHETTO; PRADE, 1999) that

conjunctive rules are more suitable for modeling the knowledge acquired through data

(observations), while implicative rules would be more suitable for modeling an expert’s

knowledge (constraints). In fact, another theme also suggested by this author is the

combination of these two types of rules in a single fuzzy rule base, in order to complement

each other.

Finally, the presentation of the Moser-Navara axioms and the most recent

results obtained by Martin Stepnicka et al. was made in order to add more theoretical

foundation to the discussed subject. However, despite violating the axioms, the combination

of CRI composition with conjunctive rules performs well in real problems. This is directly

related to the way that the rules are generated by the Wang-Mendel algorithm and the

chosen defuzzification method. Once again, there is much room for further work exploring

the possible negative implications that violating these axioms can have.
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APPENDIX A – Regression problems

In the following list are the electronic addresses for the reference problems used

in the Applications chapter of this work. In these addresses it is possible to see a brief

description of each dataset and the attributes that compose them.

Diabetes <http://sci2s.ugr.es/keel/dataset.php?cod=45>

Ele-1 <http://sci2s.ugr.es/keel/dataset.php?cod=39>

Plastic <http://sci2s.ugr.es/keel/dataset.php?cod=74>

Quake <http://sci2s.ugr.es/keel/dataset.php?cod=75>

Laser <http://sci2s.ugr.es/keel/dataset.php?cod=47>

Ele-2 <https://sci2s.ugr.es/keel/dataset.php?cod=40>

AutoMPG6 <https://sci2s.ugr.es/keel/dataset.php?cod=80>

MachineCPU <https://sci2s.ugr.es/keel/dataset.php?cod=82>

Dee <https://sci2s.ugr.es/keel/dataset.php?cod=46>

AutoMPG8 <https://sci2s.ugr.es/keel/dataset.php?cod=79>
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