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“To effectively contain a civilization’s

development and disarm it across such a long

span of time, there is only one way:

kill its science.”

(Liu Cixin in The Three-Body Problem)

“The incomplete is to blame for the unknown right now...

Not everything unanswered needs an answer

The harder it is, the more fun it gets

We have to be logical, I know it

Let’s oppose this crisis.”

(BiSH "in case..." in Godzilla Singular Point)



Resumo

Nesta tese, apresentamos uma jornada de investigação da relação entre contextualidade,

topologia e geometria. Utilizamos duas abordagens para a contextualidade: a Abordagem

de Feixes (Sheaf Approach) e a Abordagem de Contextualidade Generalizada, assim

como representações gráficas em feixe (bundle) dos modelos empíricos. Tomando como

objetos fundamentais as medições e os contextos de compatibilidade, a Abordagem de

Feixes nos permite uma parcial identificação topológica da contextualidade. Utilizando

a fração contextual, apresentamos a n-contextualidade, uma hierarquia na construção

do cenário de medição por sua estrutura de complexo simplicial que permite verificar

a influência da topologia do cenário de medição sobre o comportamento contextual. A

Abordagem de Contextualidade Generalizada se volta a uma representação geométrica

das representações ontológicas clássicas e da contextualidade, e possui processos como

objetos fundamentais. É para esta abordagem que nos voltamos ao identificar as limitações

de tratar as medições como fundamentais, e sua forma mais geral de contextualidade

baseada no Princípio da Identidade dos Indiscerníveis de Leibniz nos permite construir

uma abordagem baseada em geometria e topologia diferencial. Nela, a contextualidade de

uma representação ôntica se expressa de uma maneira superior às probabilidades, como

uma forma diferencial análoga ao tensor eletromagnético. Codificar esta forma se relaciona

com a escolha do tipo de realismo escolhido. Esta abstração do gerador da contextualidade

nos permite relacioná-lo à fração contextual, interferência em teoria de medida quântica,

não-comutatividade, medidas com sinal e mergulho ontológico, permitindo-nos generalizar

o teorema de Voroby’ev e tratar modelos perturbativos. Neste nível de abstração, nós nos

voltamos ao caso específico do problema de marginalização do conhecimento de agentes,

conhecido como paradoxos em cenários multi-agente, tendo como exemplo cenários de

Amiga de Wigner estendidos. Generalizando o conceito de confiança entre conjuntos de

agentes e identificando a construção de uma Verdade Fundamental efetiva, nós utilizamos

a topologia induzida explícita na Abordagem de Feixes para construir seu equivalente na

semântica topológica da lógica multi-modal do conhecimento de agentes. Munidos de tal

mapa e conhecendo suas limitações, nós recuperamos o uso da lógica multi-modal para

cenários não-clássicos e identificamos que a origem dos paradoxos nos principais exemplos

de cenários de Amiga de Wigner estendidos são gerados pela contextualidade.

Palavras-chave: Contextualidade; Holonomia; Cohomologia; Abordagem de Feixe; Abor-

dagem Diferencial; Lógica Modal; Cenários Multi-Agente.



Abstract

In this thesis, we present an investigative journey into the relationship between contex-

tuality, topology, and geometry. We utilize two approaches to contextuality: the Sheaf

Approach and the Generalized Contextuality Approach, as well as bundle representations

of empirical models. Taking measurements and compatibility contexts as fundamental

objects, the Sheaf Approach allows us to partially identify the topological nature of

contextuality. Using the contextual fraction, we present n-contextuality, a hierarchy in

constructing the measurement scenario through its simplicial complex structure, which

allows us to verify the influence of the measurement scenario’s topology on contextual

behavior. The Generalized Contextuality Approach focuses on a geometric representation

of classical ontological representations and contextuality, with processes as fundamental ob-

jects. We turn to this approach when identifying the limitations of treating measurements

as fundamental, and its more general form of contextuality based on Leibniz’s Principle

of the Identity of Indiscernibles allows us to construct an approach based on differential

geometry and topology. In this approach, the contextuality of an ontic representation is

expressed in a manner superior to probabilities, as a differential form analogous to the

electromagnetic tensor. Encoding this form relates to the choice of the type of realism

selected. This abstraction of the generator of contextuality allows us to relate it to the

contextual fraction, interference in quantum measure theory, non-commutativity, signed

measures, and ontological embedding, enable us to generalize Voroby’ev theorem and

address disturbing models. At this level of abstraction, we turn to the specific case of

the marginalization problem of agents’ knowledge, known as paradoxes in multi-agent

scenarios, using extended Wigner’s Friend scenarios as examples. By generalizing the

concept of trust among sets of agents and identifying the construction of an effective

Fundamental Truth, we use the explicitly induced topology in the Sheaf Approach to

construct its equivalent in the topological semantics of the multi-modal logic of agents’

knowledge. Armed with such a map and knowing its limitations, we recover the use of

multi-modal logic for non-classical scenarios and identify that the origin of the paradoxes

in the main examples of extended Wigner’s Friend scenarios is generated by contextuality.

Keywords: Contextuality; Holonomy; Cohomology; Sheaf Approach; Differential Ap-

proach; Modal Logic; Multi-Agent Scenarios.
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1 Introduction

1.0.1 Justifications and Objectives

Why should one delve into learning topology, cohomology, and geometry for

contextuality? The most straightforward answer is that you don’t need to if your application

doesn’t require it. A generalization, so common in mathematics, does not focus on the

application, but on the foundation of the concept. The same is true for contextuality.

Leaving a more formal concept serves its broad application in areas that are

sometimes far from its origin. For example, leaving it free for semi-ring valuation is justified

by its use in computer science. But the math can scale so fast that, in the end, few people

will exploit such results for application: they may be too general for the original concept to

be identifiable. The hope is that in the future, this level of abstraction will be useful if an

application is found that needs more depth. An already evident application is the possibility

of questioning what contextuality really is. Fundamentally, what are we dealing with? An

example is the Kochen-Specker theorem, which is logically defined and rarely encountered

by the vast majority of physicists in their careers. In any case, there is the possibility of

interpreting contextuality as a violation of logic. Fundamentally clear formalism does not

necessarily imply direct application, but it has a lot of strength in general.

It’s the physicist’s problem: they can only delve into the mathematics needed

and won’t go further once the objective is to come up with results. Many mathematical

works do not even have a conclusion, as if the author had been lost in mathematics,

perhaps for some aesthetic value. However, the path taken is already self-justified by

simple exploration, leaving it to the reader to make connections with possible applications.

Mathematicians seek to open the way. It’s okay to dig deep enough to come back with

results, but it’s interesting to know that if you want or need a little more, there is something

deeper. If you cannot find what you want at a certain depth, it may be interesting to delve

a little further to gain perspective on what is being explored, and it is of great importance

that the path is already signposted and explored.

This thesis follows a journey in seeking to understand contextuality within

the intersection between topology and geometry. The idea is to follow the intuition that

contextuality is a failure of a local structure to be seen as the marginalization of a global

one, similar to how charts in a topological manifold may or may not be described by a

single chart. Our main objective is to explore this analogy, seeking to deepen and simplify

the intuition and clarify the formalization. With this, a series of applications becomes

possible, where contextuality is expressed in different forms, all seeking to represent the

same underlying phenomenon. With contextuality taking a deeper form, it is possible
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to identify it in logical paradoxes, those related to marginal problems of some kind. In

our case, we focus on the problem of marginalization of agents’ knowledge, which our

mathematical tools can, albeit superficially, identify as contextuality, the same that is

present in quantum systems, but in a different guise. This journey ends up having another

objective that is expressed in a dialectical manner, that contextuality is the most important

resource for non-classical technologies, and it is also a deeper phenomenon than we can

ontologically capture.

1.1 Historical Perspective

To understand the objectives and justifications of an author in his/her studies

of a subject, one needs to know the historical evolution of the subject and the personal

reasons of the author to clearly see the forces orienting the development of the present

thesis. I will provide here, with some limitations, the historical evolution of contextuality

with some key references.

1.1.1 Until 1950

Something was wrong. It had been more than two hundred years since Isaac

Newton presented his ideas, which gave rise to a systematic formalization of classical

mechanics, with unprecedented developments in the eighteenth and nineteenth centuries.

The classical realm began to face challenges, imposing modifications on how we view its

components, which had been so well accepted since at least ancient Greece. But such

modifications were nothing compared to the perfect storm at the beginning of the twentieth

century. The newborn quantum theory was a necessary formalism to address contradictory

empirical data. However, prominent figures like Erwin Schrödinger, with his famous wave

description [Schrödinger 1926], attempted to keep it at the level of modifications to

classical theory, as had been done with Albert Einstein’s relativity. These efforts, however,

were in vain. The probabilistic interpretation of Schrödinger’s wave function by Max

Born [Born and Jordan 1925] agreed, as shown by Schrödinger himself [Schrödinger 1926],

with the point of view introduced by Werner Heisenberg [Heisenberg 1925] and developed

by him and Paul Dirac [Dirac 1935], Born, Pascual Jordan, and Wolfgang Pauli, where

the quantum properties can only be said to be real when observed. Apparently, reality as

we understand it is just a fantasy1.

John von Neumann formalized quantum theory mathematically [Neumann

2018] and was the first to question the impossibility of a classical representation of it. Once

accepting the amazing results of quantum theory, one could ask about its completeness. The
1 For a presentation in a scientific dissemination manner of the history of quantum theory, see Refs. [Rovelli

2020,Hürter 2021].
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discussion between Niels Bohr and Einstein was exactly about accepting the consequences of

the completeness of quantum theory, with the Einstein–Podolsky–Rosen paradox [Einstein,

Podolsky and Rosen 1935] being an example of how strange and crazy quantum behavior

was and still is to the scientific community. Einstein wished for a realistic description of

quantum phenomena that preserved classical behavior, with a modification as a hidden

ontic variable. The anti-realist view and the Copenhagen interpretation were defended by

Bohr as a way to think about quantum phenomena. It had increased acceptance following

the necessity of applications in the Second World War and the importance of those after

it, to the detriment of a new journey in the foundations [Ronde 2020].

1.1.2 1950s and 1960s

A realistic description of quantum theory was first introduced by Louis de

Broglie and later completed by David Bohm [Bohm 1952a,Bohm 1952b], but it did not

gather much attention in the community. The anti-realistic view was too strong after the

war, and some features of the pilot wave theory, like its explicit nonlocality, invalidated it

as a classical hidden variable theory2. Also, the modification imposed by it in classical

mechanics is the introduction of a new object, disconnected from our daily life, out of our

control. The cost looks too high to be paid only for the belief in realism. In the same decade,

Andrew M. Gleason demonstrated his famous theorem [Gleason 1957], and consequently

showed the impossibility of many classical hidden variable theories. The realistic view

lost even more space. Some problems with the standard Copenhagen interpretation were

already evident in the second half of the last century, once Eugene Wigner proposed

his friend paradox to show the problems with Heisenberg’s cut between observer and

observed system [Wigner 1961]. Hugh Everett III introduced in his thesis the Many-World

interpretation [Everett 1957], giving a new anti-realistic way to understand quantum theory.

Different from Copenhagen’s, where the operation of measurement was clear as a generic

process in a laboratory, Many-Worlds imposes the existence of inaccessible realities. Again,

we need to believe in something beyond our reach but which would influence empirical

results.

Bohm’s interpretation and subsequent results inspired John Bell to propose a

method to empirically test the classical reality of a model [Bell 1964]. Using a relativistic

argument to define locality, he mathematically showed the nonlocal, and therefore non-

classical, behavior of quantum theory. It was the renascence of research in foundations3.

In the next year, Simon B. Kochen and Ernst Specker presented a no-go theorem without

the necessity of a relativistic argument [Kochen and Specker 1967], showing that some
2 According to John Stewart Bell, the famous originator of Bell’s theorem, de Broglie and Bohm did the

impossible by constructing a hidden variable theory for quantum mechanics, which had been considered
non-existent since von Neumann’s work [Bell 1982].

3 Abner Shimony called “experimental metaphysics” the use of scientific experiments, such as those
involving Bell’s theorem, to investigate metaphysical questions [Shimony et al. 1997].
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models in quantum theory described by partial Boolean algebras cannot be represented

by a classical hidden variable model described by a Boolean algebra. Such non-classical

behavior was called “contextuality” because of the importance of the contexts of compatible

measurements involved.

In all this development on the foundation front, quantum theory was applied to

an enormously large set of problems. Of our interest here is the development of quantum

field theory from Dirac and his work with the electromagnetic field to the quantization

methods of general relativity, as in the work by John Archibald Wheeler and Bryce

DeWitt [DeWitt 1967]. The first was deeply explored and extended to gauge theory,

resulting in the Standard Model of particle physics4 The second was, in some sense,

ignored as a distant possibility.

1.1.3 1970s, 1980s and 1990s

With the development of the Standard Model and its empirical validation,

further theoretical investigations were proposed to incorporate gravity, such as in string

theory and loop quantum gravity. The former is rooted in the mathematical framework

of quantum chromodynamics prior to the discovery of quarks, while the latter involves

modifications to gravitational formalism by Wheeler and DeWitt. Both are active fields that

rely on quantum theory, stimulating the advancement and acceptance of interpretations

of the theory, even during a period not particularly inclined towards interpretations.

Unfortunately, these and other theoretical endeavors in particle physics lacked experimental

validation, either due to energy constraints that are not foreseeable in the near term or

due to the identification of models that render predictability unattainable. This practically

resulted in the stagnation of particle physics, which persists.

In the experimental domain, a series of experiments were conducted to test

Bell’s theorem. John Clauser and Stuart Freedman were the first to perform such an

experiment [Freedman and Clauser 1972], followed by Alain Aspect and collaborators,

who used distant detectors, partially closing the locality loophole [Aspect, Dalibard and

Roger 1982]. This loophole was only fully closed with more sophisticated experiments, first

performed by Anton Zeilinger and his collaborators [Weihs et al. 1998]5. Although some

loopholes remain open for future experiments6, these results already strongly indicated
4 For an informal introduction to gauge theory and the Standard Model, see Ref. [Han 2004], while

an undergraduate introduction can be found in Ref. [Zee 2013]. A more complete presentation is in
Ref. [Schwartz 2013], and a more mathematical presentation is in Ref. [Ticciati 2008].

5 Alain Aspect, John F. Clauser, and Anton Zeilinger were awarded the 2022 Nobel Prize in Physics
“for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering
quantum information science” [The Royal Swedish Academy of Sciences 2022].

6 The locality and detection loopholes were closed in experiments in 2015 [Hensen et al. 2015,Giustina
et al. 2015,Shalm et al. 2015], showing the impossibility of a realistic description of our reality within
a classical theory.
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that quantum theory is much stranger than previously imagined. Something new was

necessary to explain contextuality and nonlocality.

The experimental verification of nonlocality sparked renewed interest in purely

quantum phenomena and their technological applications. For instance, Richard Feynman’s

work on quantum computing for simulating physical systems [Feynman and Hey 1996]

and the encryption method utilizing a quantum protocol devised by Charles Bennett and

Gilles Brassard [Bennett and Brassard 2014] are notable examples.

In the theoretical domain, Arthur Fine’s theorem [Fine 1982] is particularly

important for modern approaches to the phenomenon of non-classicality. This theorem

establishes an equivalence between a deterministic hidden-variables model, a factorizable

stochastic model, a joint distribution for the observables, and the validity of Bell inequalities.

Paving the way for future advancements in exploring the non-classicality of quantum

theory, Artur Ekert’s famous work applied Bell’s theorem to key distribution processes

in cryptography [Ekert 1991]. It was through this work that a series of applications for

previously metaphysical questions in quantum theory were developed.

Famous quantum protocols were developed, such as teleportation [Bennett

et al. 1993], integer factorization by Peter Shor [Shor 1994], and Lov Grover’s quantum

search algorithm [Grover 1996]. The potential for utilizing quantum behavior in advanced

technologies compelled physicists to delve into quantum information theory. Entanglement,

perhaps the most prominent resource to date, has been utilized in non-classicality theorems

like Bell’s and has been present since the Einstein-Bohr debates. Investigating its role as a

resource and delving into its properties gave rise to a thriving field that remains robust

today [Chitambar and Gour 2019].

1.1.4 New Millennium

Evidence of serious flaws in the formalism of quantum field theory has already

been acknowledged, such as causality violations [Anastopoulos and Savvidou 2021], prob-

lems with the quantization of gravity, and a lack of evidence to determine if quantization

is necessary [Jacobson 1995], along with issues regarding its mathematical formalization

itself. Alongside the promise of technological applications, one potential solution to these

problems lies in understanding the fundamentals of quantum theory, deciphering its

true implications. A crucial initial step involves grasping what makes quantum theory

non-classical, and this is where contextuality takes center stage. Robert W. Spekkens’

approach [Spekkens 2005] emerges as particularly intriguing, delving into the philosophical

inquiry of contextual definitions for all aspects of an operation, while also employing the

concept of process as the subject of study.

The profound mathematical formalism of topos theory by Christopher J. Isham,
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Jeremy Butterfield, and Andreas Döring [Isham and Butterfield 2000,Döring and Isham

2010] has advanced with the aim of understanding the logical underpinnings of quantum

theory, seeking to revive lost realism. They have identified contextuality as the root cause

of the peculiar behaviors exhibited by quantum systems [Döring and Frembs 2020]. This

has spurred a wave of various axiomatizations, beginning with Hardy’s work [Hardy 2001],

aiming to create the quantum equivalent of Einstein’s simple axioms for special relativity.

The exploration of interpretations, now gaining prominence in the revitalized

field of theoretical foundations, has been dubbed by Cabello as the “Map of Madness”

[Cabello 2017]. However, consensus seems distant on the horizon. New robust interpretations

have been proposed, driven by a philosophical inclination towards realism and the necessity

in quantum cosmology, where there exists no observer [Bojowald 2015]. Yet, no-go results,

such as those related to the Wigner’s friend scenario, seem to lean towards anti-realism,

suggesting a possible inherent inconsistency in reality itself [Frauchiger and Renner

2018, Brukner 2018]. To address paradoxes of this kind, new interpretations have been

developed. Notably, Quantum Bayesianism, also known as Qbism [Caves, Fuchs and Schack

2002], stands out. In this interpretation, the agent’s perspective is taken as central, making

many aspects of quantum theory subjective, as it deals not with elements of reality but

with the agent’s belief about the outcomes of experiments.

With the realization that nonlocality is merely a form of contextuality [Abram-

sky and Brandenburger 2011], it becomes apparent that contextuality is not only the

wellspring of the technological advancements we seek [Howard et al. 2014,Shahandeh 2021],

but also the source of perplexity in understanding the foundational aspects of the theory.

Different approaches to contextuality have emerged depending on the intended application.

For technological purposes, measurement contextuality suffices in most cases, following the

research of Kochen and Specker, rendering generalized contextuality overly broad. In the

realm of theoretical computing foundations, Samson Abramsky and Adam Brandenburger

have proposed the sheaf approach [Abramsky and Brandenburger 2011]; for computational

application, Cihan Okay and Robert Raussendorf’s homological approach [Okay and

Raussendorf 2020] and Abramsky and Bob Coecke’s categorical formalism [Abramsky and

Coecke 2004] alongside diagrammatic calculations derived from it [Coecke and Kissinger

2017] are viable options; for studying correlations, the exclusivity graph approach [Cabello,

Severini and Winter 2010,Cabello, Severini and Winter 2014,Vandré and Terra Cunha

2022] remains highly developed; rooted in probability theory, Dzavarov’s approach [Dzha-

farov, Kujala and Cervantes 2015] stands out; philosophically grounded, the generalized

contextuality approach [Spekkens 2005] has evolved to be studied within generalized prob-

abilistic theories [Janotta and Hinrichsen 2014,Schmid et al. 2021]. There exist numerous

formalisms for contextuality, intricately interconnected, prompting the consideration of

unification as a primary challenge to tackle.
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1.1.5 Some Historical Examples

To demonstrate how this idea of contextuality manifests in the literature, we’ll

examine a few specific examples of frameworks. They are presented in historical order

and in an informal manner. For a more precise exposition, refer to Ref. [Varadarajan

1968,Selleri 1990,Budroni et al. 2022,Masse 2021]. Let’s begin with the earliest works on

non-classicality.

Example 1 (Birkhoff and von Neumann). In 1936, Birkhoff and von Neumann [Birkhoff

and Neumann 1936] presented a semi-lattice structure to explore the logic of propositions in

quantum theory. The quantum object M is identified as the Hilbert lattice LpHq, the lattice

of closed linear subspaces of a Hilbert space H, or equivalently the lattice of projective

measurements of H. They questioned the properties satisfied and found the violation of

the distributive identity, indicating the impossibility of explaining it via classical, Boolean

logic. As we now know, one can use Boolean valuation and get a contradiction. Therefore,

the following diagram generally does not commute:

LpHq t0, 1u

PpAq

i . (1.1)

There is the well-known use of such a formalism to define quantum logic. More importantly

to us, this formalism has the limitation of dealing only with projective measurements,

which imposes outcome-determinism. There is also the restriction to quantum theory of

the phenomenon of non-classicality.

Example 2 (Gleason). In 1957, Gleason proved his famous theorem in Ref. [Gleason

1957]. He used the unital C˚-algebra BpHq of bounded operators on a Hilbert space H,

the usual mathematical framework of quantum theory, to derive the states represented by

density operators and the Born rule for dimpHq ě 3: any function f : BpHq ÞÑ r0, 1s has

the form fpxiq “ TrtpΠiρqu, with state ρ and Πi the projection operator onto the basis

vector corresponding to the measurement outcome i of a observable. This result can be used

to find inconsistencies [Budroni et al. 2022] using an infinite set of measurements. One

can informally describe them as that impossibility of a measure on the rays of a Hilbert

space with dimH ě 3 that describes “yes/no” questions. The point of Gleason’s theorem is

that if we have a hidden variable explanation of quantum theory, we could map subjectively

the C˚-algebra in a commutative sub-algebra. As a commutative C˚-algebra is equivalent

to a complete Boolean algebra, and any sub-algebra of it is also a Boolean algebra, these

inconsistencies are showing the non-commutativity of the diagram

BpHq r0, 1s

PpAq

i . (1.2)
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Two limitations follow from this framework: the restriction to outcome-deterministic models

and the restriction to quantum theory. The latter follows from the Gelfand–Naimark theorem

[Gelfand 1943]. This result is related to an already proposed (but not formally proved)

result by von Neumann in his famous book where he formalized quantum theory [Neumann

2018], as explained in [Bell 1966].

The rebirth of quantum foundations and the quantum explanation of hidden

variables started with the work by Bell. The important change is the passage from a formal,

mathematical description of non-classicality to an empirical, but not less formal, point

of view. To achieve this, the set of measurements necessary to detect violations becomes

finite.

Example 3 (Bell). The work by Bell [Bell 1964] of 1964 marked a change in the way

hidden variables are viewed. Here we have the use of a relativistic argument to isolate

quantum systems A and B, and the formalization of what a hidden variable is with well-

defined properties. The result was not a theorem on the mathematical structure of quantum

theory, but a formal empirical challenge. Therefore, one could test if quantum theory is

explained or not by hidden variables Λ. In the diagram

Ab B r0, 1s

Aˆ B ˆ Λ

i . (1.3)

The use of inequalities, and thus a convex set of models that satisfy the imposed condition of

nonlocality on probabilities, allowed the expansion of this framework to more general theories

than quantum. This condition lies on inequalities of the accessible (marginal) probability

distributions, and such a violation results from logical inconsistencies [Abramsky 2020,Boole

1862]. The use of relativity is a limitation in Bell’s work, and outcome-determinism is

implicit by the use of projective measurements.

Example 4 (Kochen and Specker). In 1967, the usual notion of contextuality was intro-

duced. Using Gleason’s theorem, one can rewrite the problem back to a possibilistic problem.

Kochen and Specker [Kochen and Specker 1967] were inspired by this idea to codify a

quantum system as a partial Boolean algebra PB, but with a finite number of measure-

ments. The main idea is to identify the contexts: sets of jointly measurable measurements,

here understood as measurements that commute [Heinosaari and Wolf 2010]. Contexts

are the fundamental elements, as the parts of the system that are accessible by their joint

measurement, and so they define Boolean algebras. Contextuality here is the impossibility

of embedding the combination of the set of Boolean algebras satisfying the condition to be

a partial Boolean algebra into a Boolean algebra, translated as the non-commutativity of
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the diagram

PB t0, 1u

B

i . (1.4)

Quantum theory presents sets of measurements and states with a non-commutative diagram.

In contrast to the Bell framework, there is no need for relativistic arguments to achieve

non-classical behavior; generally, one explores logical contradictions. Again, the use of

projective measurements and the initial restriction to quantum theory are evident. The

initial framework uses possibilistic models, but one can also use probabilities, inequalities,

and convex theory to deal with general models. A beautiful example is in Ref. [Araújo et al.

2013].

A lot has been done to explore the limits of quantum and classical models.

Bell scenarios were extended to more complex systems, and new nonlocality inequalities

were systematically explored. The same was done for contextuality and scenarios without

the necessity of local systems. Applications of quantum systems, such as in quantum

computation and quantum technologies [Cabello 2000], bring up questions about what

causes the increase in performance in relation to the methods already used. At the same

time, and not independently, the increasing interest in the foundations of quantum theory

led to the construction of new methods, some even oriented to specific tasks, in the last two

decades. An important achievement is the identification of nonlocality as the contextuality

of multiple, isolated systems, by the Fine–Abramsky–Brandenburger theorem [Abramsky

and Brandenburger 2011].

Example 5 (Graph Approach). Continuing on the same path as Kochen and Specker’s

work, still dealing with inequalities, convex theory, and now with computational tools, a

systematic framework to construct and explore scenarios was developed without the logical

formalism [Cabello, Severini and Winter 2010,Amaral and Terra Cunha 2018]. The point

is to define the object on which the (usually probabilistic) valuation will be made. As a

mathematical relation, belonging to a context can be codified in a hypergraph [Montanhano

2021]. A different construction is by exclusivity [Cabello, Severini and Winter 2014,Amaral

2015], that can emerge from general theories [Chiribella et al. 2020], where the object is a

graph where outcomes that do not happen together (they are exclusive) are linked by an edge.

Amazing results are the identification of the noncontextual, quantum, and non-disturbing
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convex sets as graph invariants, and that the sub-diagrams of the diagram

NC r0, 1s

Q r0, 1s

ND r0, 1s

i

i

(1.5)

commutes, but the sub-diagrams of the diagram

ND r0, 1s

Q r0, 1s

NC r0, 1s

i

i

(1.6)

do not. There is also the identification of the quantum correlations from first axioms in

certain scenarios [Cabello 2019,Cabello 2019]. Non-disturbance and outcome-determinism

are usual restrictions, and the origin of the main limitations to empirical exploration of

this formalism, due to the problems these restrictions cause in dealing with experimental

applications.

Example 6 (Contextuality by Default). In the Contextuality by Default framework

[Dzhafarov, Kujala and Cervantes 2015, Dzhafarov 2021], the origin of contextuality in

quantum theory isn’t the main point: contextuality is seen as the nonexistence of a maximal

coupling of random variables. Contexts are seen at first as independent, and contextual

behavior appears as a violation of concordance in the marginals, which can be interpreted

as the non-existence of a coupling satisfying concordance in relation to all the contexts

(for more general cases, as in disturbing models, the coupling must be modified). In the

diagram

R r0, 1s

S

i , (1.7)

the set of random variables R is coupled in S by a map i, with the non-existence of a

coupling captured by non-commutativity of the diagram. This framework deals naturally

with disturbing models, allowing experimental exploration and interesting applications, like

in human behavior where non-disturbance doesn’t hold [Wang et al. 2021].

Example 7 (Homotopical Approach). The homotopical approach [Okay et al. 2017,

Okay and Raussendorf 2020] has as its main idea to codify a group element for each

measurement, and with it an orientation codified by a negative or positive signal. Quantum
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theory is described with transformations on each context depending on each measurement

contributing individually to the overall transformation. In contrast, classical theory is

described by transformations that depend solely on the context, independent of the individual

measurements. This fundamental distinction results in path dependence in the quantum

case, which can be effectively analyzed using topological tools. This approach is particularly

suited for computational applications of quantum theory, especially measurement-based

quantum computation (MBQC), due to its natural ability to identify state-independent

proofs of measurement contextuality. One can represent a model as a topological space, and

the possibility of a classical representation is equivalent to this space being topologically

trivial. Diagrammatically,

π1pXq Upnq{ 〈ω〉

Upnq

i , (1.8)

where the objects involved are groups, with the fundamental group being said to be classically

realizable if the fundamental representation of the fundamental group lifts to a linear

representation. It is interesting to see the interpretation of Mermin’s square and star by

representing them as tori and using non-trivial topology to detect contextual behavior,

something similar to the non-trivial field in electromagnetism. But the inclusion of a

group structure for each measurement is a representation of a model that takes its toll by

allowing a breach of the contextual behavior detection tool. Also, the homotopical approach

is constructed to deal with quantum models and is limited by them.

Example 8 (Sheaf Approach). The sheaf approach [Abramsky and Brandenburger 2011]

is articulated in a categorical language of presheaves, starting from the hypergraph of

compatibility C with contexts as hyperedges and the set of measurements X as vertices. A

sheaf E attaches the outcomes to each measurement, and a presheaf attaches the distribution

with a semi-ring (usually probabilistic, possibilistic, or the real numbers). Contextuality is

identified by the Fine–Abramsky–Brandenburger theorem as the failure of a local section to

have an extension to a global section. In the diagram

EC r0, 1s

EX

i . (1.9)

It also has a cohomological tool to examine contextual behavior, using Čech cohomology of

a presheaf [Abramsky, Mansfield and Barbosa 2012,Abramsky et al. 2015]. The idea is to

codify the model with a presheaf of Abelian groups F and identify non-trivial obstructions

as a sufficient condition for contextual behavior. The diagram is now represented by groups
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C FC

X

F

i . (1.10)

But since this group structure is a representation of the model, it can have contextual

models without cohomological characterization [Carù 2017]. One can overcome this failure,

but much of the cohomological structure is lost [Montanhano 2021]. The sheaf approach is

related to the previously mentioned ones:

• The models used to prove non-classicality with finite measurements presented by Bell

and Kochen-Specker, and others like Hardy’s model [Hardy 1992,Hardy 1993], can be

constructed in this formalism.

• The graph approach can be related to the sheaf approach, and the notion of strong

contextuality in the former is identified as the cause of contextual models [Silva

2017]. In particular, inequalities obtained in the graph approach can be explained

by the contextual fraction [Abramsky, Barbosa and Mansfield 2017], a measure of

contextuality constructed in the sheaf approach.

• In the restriction to non-disturbing models, the sheaf approach and Contextuality by

Default can both detect the same contextual behavior [Dzhafarov 2020]. Contextual

fraction can also be explored in this framework [Kujala and Dzhafarov 2019].

• The relation with the homotopical approach was explored in relation to their co-

homological tools to identify contextual behavior [Aasnæss 2020]. It concludes that

Čech cohomology can capture any contextual behavior that the cohomology in the

homotopical approach can identify.

The restrictions of this approach are the imposition of outcome-determinism to link contex-

tuality and factorizability, and non-disturbance to fix the intersection between contexts.

Example 9 (Bundle Approach). A way to visualize a model, particularly the possibilistic

ones, is through bundle diagrams [Beer and Osborne 2018]. Logical contradictions present

in some models can be seen as the failure of a trivial fiber bundle [Terra Cunha 2019],

constructed with the hypergraph of compatibility as the base and finite outcomes and measure-

ments as fibers. To deal with more general fibers and measures on a semi-ring R, one must

formalize the R-measure bundle [Montanhano 2021]. Again, the notion of a local section to

be extended to a global section is important, and it is linked to the triviality of the bundle,

which is initially trivial only locally in a context. The Fine–Abramsky–Brandenburger

theorem can be generalized to this level of generality, formalizing the intuition of a trivial
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bundle being noncontextual. In a diagram

R R

T

i , (1.11)

with the measure bundle R representing the model and T its trivial equivalent. This

framework is interesting because it allows us to understand the influence that the topology

of the base has on a model and the relationship between contextual behavior and the

geometry of the bundle, by drawing a parallel with differential geometry. It gives rise to

non-trivial holonomy as a signal of contextuality in some models, but again the group

structure is imposed as a representation, resulting in violations of the characterization.

Example 10 (Generalized Approach). The generalized approach to contextuality [Spekkens

2005] was initially developed using more philosophical concepts to construct an ontological

representation of physical processes, which differentiates it from other approaches right from

the start. It is based on the idea that an ontology must capture all empirical information

of a physical process, and that being classical means it should not admit more than one

representation for the same process. This is an application of Leibniz’s principle of the

identity of indiscernibles to physical theories. This approach can be naturally formalized

and constructed in categorical language, albeit more generally than the sheaf approach,

using process theory and generalized probabilistic theories [Amaral 2014]. By encompassing

all parts of a process within its framework, it can be applied to various scenarios depending

on the imposed structure. A process in a given scenario is divided into three types: a set of

preparations P, a set of transformations T , and a set of effects E . Noncontextuality implies

that the processes can be represented as classical processes: a simplex of preparations of

classical probability distributions S, a set of transformations of these distributions M, and

a set of classical effects dual to the simplex, represented by a hypercube H. This can be

depicted as commutativity of the following diagram:

tP , T , Eu r0, 1s

tS,M,Hu

i , (1.12)

Since it is constructed at the level of effects, this approach is inherently limited by the non-

disturbance condition, which presents challenges in addressing the inevitable uncertainties in

experimental implementations. When this condition is satisfied, and under the assumptions

of outcome-determinism, no transformations, and a single preparation, the set of effects

can be encoded as an empirical model within the sheaf approach.

All these examples and developments are still active and yielding interesting

results. They are all present in the structure of contextuality discussed earlier. As a
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probabilistic concept, the natural generalization is to define each context as a σ-algebra

where a measure can be defined, and even outcome-determinism can be violated (by

working not with subsets of the set of outcomes, but with functions on it). Naturally, the

σ-algebra can be identified as a Boolean algebra, justifying its use as a fundamental object

in Kochen and Specker’s work and the logic behind contextuality.

1.2 Structure of the Thesis

This thesis is structured in three parts. The first part presents the approaches

to contextuality used and the initial results that motivated the study of such a phenomenon

in a topological and geometric language. The following two parts are independent, each

following the papers that originate them [Montanhano 2022, Montanhano 2023]. The

chapters are not disconnected: they describe the journey that follows from the exploration

of the intersection between contextuality, geometry, and topology.

Starting with the definition of contextuality in the Sheaf Approach and the

Generalized Contextuality Approach, we explore some results that explicitly show the

influence of topology on contextual behavior. From these results and what we have learned

from them, we can construct a differential representation to capture contextuality in its

many forms. It is through the connection that topology, already explicitly linked to the

phenomenon of contextuality, has with logic that we can identify it in paradoxes emerging

from the combination of agents’ knowledge and non-classical theories.

1.2.1 Part 1: Topology and Contextuality

Part I of the thesis initially serves a dual function: presenting the notations

and objects to introduce contextuality, and showing how topology can influence the extent

of this non-classical behavior. In chapter 2, we present the fundamental objects of most

contextuality approaches (section 2.1): measurements and contexts. With these, we form

measurement scenarios by linking contexts to their respective sets of outcomes, such that

the marginalization of these outcomes in sub-contexts is consistent. We then introduce the

intuition of contextuality as a marginal problem and an analogy between empirical models

and manifolds. To formalize the concept of contextuality, we present two approaches that

will be used in the other two parts of the thesis, the Sheaf Approach and the Generalized

Contextuality Approach (sections 2.2 and 2.3).

In chapter 3 we first explore examples and their bundle diagrams, which are very

natural in the Bundle Approach, and we see how contextuality appears to be topological,

but reality is a bit more complicated 3.1. The cohomology in the Sheaf Approach also

fails to get a topological characterization of contextuality; the imposition of the use of

algebraic groups allows for violations, although certain cases can be detected through sheaf
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cohomology (section 3.2). Restricting ourselves to the topology of measurement scenarios,

which apparently has no direct influence on contextual behavior, we present a hierarchy

constructed by applying the contextual fraction at each step of the inductive construction

of the simplicial complex (section 3.3), showing that there is indeed some influence of

topological defects on contextual behavior, even for defects larger than those detected by

the first homology group.

We conclude this first part with chapter 4, where we discuss the limitations of

the described approaches and methods. Considering these limitations and the similarities

to a marginal problem of distributions, we seek the change of fundamental objects proposed

by the Generalized Contextuality Approach and then apply the topological and geometric

ideas suggested by the Sheaf Approach. This sets the stage for the second part of the

thesis.

1.2.2 Part 2: Differential Geometry of Contextuality

In Part II we focus on the use of geometrical and topological ideas of differential

geometry for Generalized Contextuality. This approach deals directly with processes to

define sets of effects, states, and transformations, allowing us to explore the contextual

behavior of other parts of a process. Contextuality now depends on an ontic representation,

which in the Sheaf Approach follows directly from the global sections due to the outcome-

determinism condition. It is also defined differently, based on Leibniz’s Principle of the

Identity of Indiscernibles, and can be described as the existence of a phase in the valuation

when applied to a discrete loop in the real vector space where the set of processes of the

ontic representation is encoded. In this version, we can use discrete differential geometry

(section 5.1) and generalize to the continuous case the encoding of contextual behavior.

We present a differential approach to the contextuality of an ontic representation

(section 5.2), drawing an analogy with manifolds, and identifying violations of classicality

with two possible causes: topological and geometric. We name these causes the Heisenberg

and Schrödinger views, respectively. Both causes are realizations of contextuality, which is

now at a higher level than valuations as a differential form that corrects them, analogous

to how the electromagnetic tensor corrects the movement of charges. The difference is that

we can choose whether contextuality presents itself as a direct correction of valuation by

holonomy or if it identifies by monodromy the topological defects that represent “holes in

reality.”

This freedom of choice allows us to explore other concepts of non-classicality

and their relationship to contextual behavior (section 5.3). For the restriction to the Sheaf

Approach, the ontic representation and the Schrödinger view are fixed, and the contextual

form presents itself explicitly in the contextual fraction. Still in the Schrödinger view, the

interference of quantum measure theory places the contextual form as the non-classical
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contribution of the term that violates Kolmogorov’s third axiom for probabilities. The need

for signed measures results from this non-classical part that follows from contextuality, while

the impossibility of embedding in a classical theory follows from how in any of the views, the

contextuality of the representation cannot be classically encoded without dependence on

contexts. The Differential Approach has a direct way of dealing with disturbance through

non-trivial transition maps, realizing this intuition of the analogy with manifolds. The

Voroby’ev theorem, which when thought of in measurement scenarios is not topological,

in the Differential Approach becomes explicitly topological when viewed through the

Heisenberg view, being merely a statement about the triviality of the first cohomology

group. We end this second part with a verification of how quantum interpretations choose

which view of quantum contextuality they use, and the relationship between the two views

and the choice of which type of realism of the interpretations.

1.2.3 Part 3: Wigner and Friends, a Map is Not the Territory! Contextuality

in Multi-Agent Paradoxes

Part III is an indirect application of the ideas developed so far. We start with

chapter 7, with a review of multi-modal logic (section 7.1). Of special importance to us

is the construction of the S4 system, which is the weakest and therefore most general

system for dealing with epistemic logic, the logic of knowledge and belief. Its Kripke and

topological semantics allow for an almost immediate relationship with the topological

content present in the Sheaf Approach. The definition of knowledge operators and the

concepts of soundness and completeness will be essential to understanding how the choice

of one of the knowledge operators and its respective topology can violate the relationship

between syntax and semantics.

The axioms of the S4 system impose an absolute truth, which does not align

with a relational treatment of knowledge (section 7.2). We review the concept of trust,

which defines a relationship between agents’ knowledge operators, and which replaces

an underlying absolute truth. We present generalizations of the trust relationship that

deal with sets of agents and different knowledge operators of these sets. It is through the

relationship between these different operators, viewed through their respective topologies,

that we can construct an effective absolute truth for a given set of agents, explaining the

preservation of multi-agent paradoxes even when considering only trust.

The construction of effective absolute truths is the first step in constructing the

map between empirical models and multi-agent scenarios that we obtain in chapter 8. We

start by identifying agents and measurements, then impose conditions for the generalized

versions of the trust relationship to define compatibility contexts, and finally take the

main step of the construction and analyze its consequences (section 8.1). The step is to

change the way Kripke semantics is defined, inspired by pointless topology applied to
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topological semantics, where the possible worlds are defined by the opens of the topology

of a knowledge operator of the set of agents, and not by assuming the possible worlds

beforehand. With this step, and respecting the limitations imposed by the Sheaf Approach,

we identify the sections of the sheaf of events as given by the basis topology, obtaining the

desired map.

An immediate consequence of constructing the map that turns any empirical

model into a multi-agent scenario is the identification of contextuality as being generated

by the implicit use of a knowledge operator that limits possible worlds to those that

have no dependence on contexts, which is encoded as a violation of soundness. If we

switch the operator to the one that generates an effective fundamental truth, we can use

multi-modal logic in the usual way. This choice of where to place contextuality, either in

the context-dependence of possible worlds or in the violation of the soundness condition, is

the realization of the Schrödinger and Heisenberg views presented in Part II, respectively.

Despite the limitations, in the main examples of multi-agent paradoxes, there is an inverse

map that allows transforming multi-agent scenarios into empirical models and expressing

the paradoxes as contextual behavior (section 8.2). We conclude this part of the thesis

by analyzing the contextuality of three examples: the famous Wigner’s Friend scenario in

quantum theory and two generalizations consisting of two correlated copies of this scenario,

the Frauchiger-Renner scenario based on Hardy’s paradox, and the Vilasini-Nurgalieva-del

Rio scenario that uses a Popescu-Rohrlich box and exemplifies paradox beyond quantum.

1.2.4 Final Considerations

In the last part of the thesis, chapter 10, we discuss the presented results and

their connections. The journey undertaken points to a path that possibly generalizes the

concept of contextuality by defining it in a modal approach, with topology and geometry

being explicitly used, and with the Differential Approach as a possible representation.

Naturally, future research paths are presented, making the end of this journey the beginning

of many others.
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Part I

Topology and Contextuality
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2 Approaches to Contextuality

2.1 Basic Objects

Contextuality is, informally, the property of a physical system that cannot be

explained classically, where this classicality is thought of as an ontological reality that is

coarse-grained to the system1. The most common approaches choose as the fundamental

objects the measurements and their joint measurability. The set of outcomes of each

measurement, which consistently extends to the outcomes of the contexts, completes what

we call a measurement scenario. Contextuality appears as a behavior of the probabilistic

distributions on the outcomes, defining what we call an empirical model. Let’s define these

objects.

2.1.1 Measurements

As in Ref. [Terra Cunha 2019] we will define measurements in a generic manner

by their outcomes, also called events. For simplicity, we will keep all the sets with a finite

number of elements.

Definition 1. A measurement M is a set of labels tsiuni“1
for the possible n events. We

will denote by M rsis the event si of the measurement M .

The formal definition of a measurement in a physical theory depends on the

theory in which it is constructed. A well-known example of measurement is given by a

positive operator-valued measure in quantum theory. Its events are given by its outcomes,

the effects that sum to the identity.

2.1.2 Compatibility Between Measurements

The measurements are organized as a covering through compatibility, or joint

measurability. One can understand compatibility as classicality at the ontological level. It

is a property between measurements and their respective outcomes given by the theory,

not dealing with distributions over outcomes. It is a condition of classicality stronger than

the concept of noncontextuality, which is epistemic in nature and arises from classicality

at the level of distributions over outcomes, as we will see later. Compatibility imposes the

existence of a “mother” measurement, such that our accessible measurements have origin

by classical post-processing2.
1 See Ref. [Budroni et al. 2022,Masse 2021] for a general revision of contextuality.
2 Both notions are equivalent, see Ref. [Filippov, Heinosaari and Leppäjärvi 2017].
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Definition 2. Let tMkumk“1
be a set of measurements with a respective set of events

Opkq “ tspkqu. They are jointly measurable if there exists a measurement G with a set of

events Op1q ˆ ...ˆOpmq satisfying

Mkrspkqs “
ÿ

spjq:j‰k

Grsp1q, ..., spkq, ..., spmqs (2.1)

for all k.

Therefore, a set of compatible measurements allows the existence of a measure-

ment that can recover the original measurements when appropriately marginalized. As

shown in Ref. [Heinosaari and Wolf 2010], in quantum theory commuting implies jointly

measurable, and the inverse holds if the measurements are sharp.

2.1.3 Measurement Scenarios

The covering of measurements given by the jointly measurable measurements

has as elements the contexts. Its most general version has a hypergraph structure, and

along with the events, they form what we call a measurement scenario [Abramsky 2018].

Definition 3. A measurement scenario 〈X,U , pOxqxPX〉 is a hypergraph3 〈X,U〉, where

X is the set of measurements and U a covering of contexts (a family of sets of compatible

measurements), plus the sets pOxqxPX for each x P X are called outcome sets, with their

elements the possible events of each measurement.

For simplicity, let’s suppose that outcome sets are finite, and therefore one can

define an outcome set O for all the measurements x4. We will also work with a measurement

scenario with a simplicial complex structure of contexts since in physical systems the

sub-contexts can reconstruct a context of the covering.

2.1.4 Contextuality as a Marginal Problem

Based on the objects already defined, we can define an empirical model and its

contextuality. Here we will limit ourselves to seeing contextuality as a marginal problem.

Contextuality can appear when one deals with the collection U of contexts that can be

understood as a covering of a more fundamental set, usually of measurements. Each context

is accessible in the sense of a given data defined on it by a map, which we will call a

valuation map, which defines distributions on the events. We need to fix where this data
3 Usually one imposes the hypergraph has some additional structure, usually enough to identify it as

a simplicial complex. See Ref. [Montanhano 2021] for a justified construction of the measurement
scenario.

4 We can codify any Ox through an injective function fx : Ox Ñ O; we just need to ignore elements that
aren’t in the image of fx, such that these elements aren’t in the distribution’s support.
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is codified, usually an algebraic object R as a semi-ring or a group, such as the Boolean

semiring B, the reals R, or the probability semiring R`. We can define R-empirical models,

or just empirical models when R is implied. The choice of an R defines a way to probe the

model.

Definition 4. An empirical model is given by a set of distributions
!
µO

U

R

)
over the

outcomes pOUqUPM of a measurement scenario 〈X,U , pOxqxPX〉.

We can write the valuation map µ that defines an empirical model M acting

on each context diagrammatically as:

M R
µ

. (2.2)

One can ask if we can understand M and its valuation without the use of contexts. If so,

the local data we can access can be explained as the marginalization of a global object

X , where M is embedded by a map i, and where clearly the structure of X imposes a

limit on its valuation. Contextuality, in a generic manner, is the noncommutativity of the

following diagram
M R

X

µ

i . (2.3)

But one can map such a diagram to other objects, like in some examples where contextuality

is explored through non-trivial topology.

Once assuming that the events given by the outcomes can be extended to global

events, that is, events over the entire set of measurements X and not only limited to the

contexts, we have that all contextual behavior can only appear in the distributions, which

by definition are limited to the contexts. Conditions that will be important to us are no-

disturbance and outcome-determinism. The first is defined in the intersection of contexts:

if the valuation of an intersection (when one defines it) µpC XC 1q is independent of C and

C 1 for all pairs of contexts, then M is said to be non-disturbing. It is related to parameter-

independence [Brandenburger and Yanofsky 2008, Barbosa et al. 2019]. The second is

defined in the valuation: the outcomes defined on the contexts where the distribution

is defined can be explained in a deterministic way. It is equivalent to restricting our

interest to ideal measurements, which one can easily criticize when thinking of empirical

applications [Spekkens 2014].

2.1.5 An Analogy with Manifolds

The definition of a manifold M is given by charts tφiuiPI , homeomorphisms

φi : Ci ÞÑ U Ď R
n of open sets of M to an open set of Rn, with a set of charts that covers

the manifold being an atlas, describing locally the data of the manifold. The passage of
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a chart C to another chart C 1 is codified by a transition map tC1C : C|CXC1 ÞÑ C 1|CXC1 .

The non-trivial topology can be understood by the notion of contractibility, when one can

continuously deform the manifold into a point. Every chart is contractible, and topological

failures result in the failure of this property. In diagram,

M R
n

U P Rn

i , (2.4)

where being contractible is codified as a deformation to an open set U P R
n, and the

valuation is the charts.

The analogy between manifolds and empirical models is intriguing: contexts

as charts; transition maps being the local data, that when no-disturbance holds, implies

identity maps; contractibility as being described by hidden variables. The analogy goes

even further. The use of cohomology in both areas, contextuality and topology, is an

example of how far it can go. In models, we are not doing our valuation in R
n, but

rather working with measurements and outcomes. Precisely, locally, we have σ-algebras of

outcomes that are given by the events of each context. We can define trivial transitions

by imposing no-disturbance and define valuation as a probabilistic map. Contextuality is

interpreted as the possibility of embedding this object described by local σ-algebras into a

σ-algebra such that by marginalization we obtain the local valuations in the beginning

tΣi, tijui,jPI R

Λ

i (2.5)

2.2 Sheaf Approach to Contextuality

Before presenting the approaches to contextuality that we will see in this thesis,

we will review some basic concepts of category theory.

2.2.1 Category Theory

Introduced by Samuel Eilenberg and Saunders Mac Lane, in some sense following

the ideas of Emmy Noether and others about the necessity of formalizing abstract processes.

The idea behind it is to understand a mathematical structure by the processes that

preserve it, like the use of Abelian groups to understand non-trivial topological spaces by

a process that relates them, as for example, homologies and cohomologies. Interestingly,

the mathematical objects they wanted to explore were those that related to such processes,

known today as natural transformations, not the processes themselves. Later, when

applications of formalism appeared, the systematization of category theory was identified
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with other abstract objects. An example of this is the Grothendieck topoi used in studies

of topological spaces by algebraic geometry, which were generalized by the concept of

elementary topoi, which is closely related to higher-order logic and the foundations of

mathematics itself.

The sheaf approach is defined by the identification of the compatibility hy-

pergraph as a category. The first chapter of this thesis already has some commentaries

about such categorical properties, but it is in the second chapter that the concept is highly

necessary. Here I will present some introductory concepts about category theory, just

enough to follow the main text and provide references for the interested reader. Let’s start

with a definition.

Definition 5. A category C consists of objects A,B,C, ... P obpCq and morphisms f, g, h, ... P
CpA,Bq between each pair of objects A and B, such that there is composition between consec-

utive morphisms, there are identity morphisms 1A P CpA,Aq satisfying f ˝1A “ 1B ˝f “ f

for all f P CpA,Bq, and the composition is associative.

The collection of objects and morphisms may not be sets, in the mathematical

sense, which gives absolute strength to category theory. If the collections of objects and

morphisms are sets, then the category is called small (there are more details in the definition

of sets that I won’t enter). If each CpA,Bq is a set, the category is said to be locally small.

Examples of categories are plentiful and common. Taking sets as objects

and functions as morphisms, we have the category of sets Set; groups as objects and

homomorphisms as morphisms, we have the category of groups Grp; topological spaces

as objects and continuous functions as morphisms, we have the category of topological

spaces Top. Any group can be understood as a category with just one object, where the

morphisms are identified as the elements of the group.

A functor is a process between two categories, mapping not just the objects,

but the data of the morphisms as well. As we can use the morphisms of an object as a

way to define it, a functor is a way to translate this data to another category with easier

understanding. It is the case of cohomology, as used in the main text, where groups and

homomorphisms have useful algebraic properties for working than topological spaces and

continuous functions, or hypergraphs and inclusions.

Definition 6. A functor F : C Ñ C1 between two categories C and C1 is given by an object

map F : obpCq Ñ obpC1q :: A ÞÑ FA, a morphism map F : CpA,Bq Ñ C1pFA, FBq :: f ÞÑ
Ff , satisfying preservation of identity F p1Aq “ 1FA and preservation of composition

F pf ˝ gq “ Ff ˝ Fg.

For a first read on more topics in category theory applied to quantum theory,

see Ref. [Coecke 2008], while a formal book-length option is Ref. [Heunen and Vicary 2019].
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A more mathematical introduction is in the book of one of its creators, Ref. [Lane 2010].

2.2.2 Presheaves and Sheaves

Definition 7. A presheaf is a functor F : Cop Ñ Set of a category C to the category of

sets.

Let pC, Jq be a site, a small category C equipped with a coverage J . In other

words, any object U P C admits a collection of families of morphisms tfi : Ui Ñ UuiPI
called covering families.

Definition 8. A presheaf on pC, Jq is a sheaf if it satisfies the following axioms

• Gluing: if for all i P I we have si P F pUiq such that si|UiXUj
“ sj|UiXUj

, then there is

s P F pUq satisfying si “ s|Ui
;

• Locality: if s, t P F pUq such that s|Ui
“ t|Ui

for all Ui, then s “ t.

Definition 9. Elements s P F pUq of the image of a presheaf are called local sections if

U ‰ X, and global sections if U “ X.

Definition 10. A compatible family is a family of sections tsi P F pUiquiPI such that for

all j, k P I holds sj|UjXUk
“ sk|UjXUk

in F pUj X Ukq.

2.2.3 Sheaf of Events

The covering U can be restricted to maximal contexts, which will also be

denoted by U , so that 〈X,U〉 can be understood as a set X with a covering U of maximal

contexts UjPI indexed by an ordered set I5. Since the intersection of contexts is a context,

we can define the inclusion morphism ρpjk, jq : Uj X Uk Ñ Uj, which turns the set of

contexts and the inclusion morphisms into a small category6.

Definition 11. The outcome sets are defined by a functor E : 〈X,U〉op Ñ Set, with

E :: U ÞÑ OU “
ą

xPU

Ox and E :: ρ ÞÑ ρ1, such that for each element U P U we have an

outcome set OU of the context and ρ1 is the restriction to the outcome sets, ρ1pj, kjq : Oj Ñ
Okj “ EpUj X Ukq :: sj ÞÑ sj|kj.

Proposition 1. The functor E is a sheaf in the site of measurements and contexts, called

the sheaf of events of a given measurement scenario.
5 Given a covering, one can construct a locale, a pointless space, using unions and intersections. This

means that the measurements are not the fundamental objects, but rather the minimal contexts become
the effective measurements of the scenario, depending on how one chooses the covering. A physical
example of refinement is spin degeneration, where refinement occurs by applying a suitable magnetic
field.

6 From Ref. [Johnstone 2002], we can see that the category of contexts with the inclusion is a site.
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2.2.4 Empirical Models in Sheaf Approach

To define R-empirical models in Sheaf Approach, we use another functor

DR : Set Ñ Set :: OU ÞÑ
!
µO

U

R

)
, taking a set of local events to the set of R-distributions

defined on it µO
U

R : P
`
OU

˘
Ñ R that satisfies µO

U

R pOUq “ 1R, in analogy with probabilistic

distributions. We will denote by µR :: U P U ÞÑ µO
U

R a set of R-distribution defined

in each element of U , and call it a state. In the morphisms, DR :: ρ1pj, kjq ÞÑ ρ2pj, kjq,
with ρ2pj, kjq :: µO

j

R ÞÑ µ
Oj |kj

R “ µO
j

R |kj the marginalization of the R-distribution j on the

intersection kj.

Definition 12. The tuple pX,U , E , µRq “ eR is called an R-empirical model over the

measurement scenario 〈X,U , pOxqxPX〉 “ p〈X,U〉 , Eq given by the state µR, defining a set

of local sections
!
µO

U

R P DREpUq;U P U
)

.

2.2.5 No-Disturbance

As already mentioned, the no-disturbance condition says that µO
j

R |kj “ µO
k

R |kj
for all k and j, which means there is local agreement between contexts. This condition is

equivalent to the existence of a compatible family to DRE , but it doesn’t imply DRE to

be a sheaf. Since we can only have access to contexts, it is possible to define the functor

DRE through a state that can’t be extended to a distribution in the global events.

No-disturbance is equivalent to the notion of parameter-independence, as

explained in Ref. [Barbosa et al. 2019], a property that, if violated, means the existence of

non-trivial data between contexts. As stated in Ref. [Dzhafarov and Kujala 2018], where

disturbance is called inconsistent connectedness: “Intuitively, inconsistent connectedness is

a manifestation of direct causal action of experimental set-up upon the variables measured

in it”. We will work with non-disturbing models.

2.2.6 Contextuality

Contextuality is the impossibility of describing a given R-empirical model in

classical terms, but one must first define which classical notion to use. We will call it

R-contextuality to make explicit the chosen semiring. First, we know that any distribution

can be described as the marginalization of another one,

µO
U

R pAq “
ÿ

λPΛ

kO
U pλ,Aq , (2.6)

for all A P PpOUq, where kO
U

: Λ ˆ PpOUq Ñ R is an R-distribution that satisfiesÿ

λPΛ

kO
U `
λ,OU

˘
“ 1R. In the literature of contextuality and nonlocality, Λ is called the set

of hidden variables, which is statistically taken into account but is empirically inaccessible.
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To impose a classical behavior, the hidden variables must be independent

of the contexts, a property called lambda-independence7. To reflect such behavior of

independence, our model must show independence between measurements, in other words,

be factorizable. Such independence allows us to write

µO
U

R pAq “
ÿ

Λ

p pλ,Aq
ź

xPU

µO
x

R pρ1pU, xqpAqq, (2.7)

with the assistance of the set of hidden variables Λ being statistically taken into account

by a distribution p : Λˆ PpOUq Ñ R. Summing it up with lambda-independence implies

µO
U

R pAq “
ÿ

Λ

p pλq
ź

xPU

µO
x

R pρ1pU, xqpAqq, (2.8)

with ppΛq “ 1R, closing the representation of an R-empirical model as a classical system.

Definition 13. An R-empirical model is said to be R-noncontextual if there is an R-

distribution p and a set of hidden variables Λ such that equation 2.8 holds for all U P U .

Another property we can impose is outcome-determinism, which is the property

of logically distinguishing between outcomes.

Definition 14. Outcome-determinism in an R-distribution of an empirical model is defined

as for all λ P Λ there is an outcome o P OU such that kO
U pλ,Aq “ δopAq. Equivalently, an

empirical model is outcome-deterministic if it satisfies
ź

xPU

µO
x

R pρ1pU, xqpAqq P t0, 1u.

In combination with no-disturbance, we get the following result [Abramsky

and Brandenburger 2011,Abramsky, Barbosa and Mansfield 2017].

Proposition 2. A non-disturbing R-empirical model that satisfies the outcome-determinism

condition has as its hidden variables exactly its global events.

With this result, one can prove the Fine–Abramsky–Brandenburger Theorem

[Abramsky and Brandenburger 2011], where R-contextuality can be understood as the

non-extendability of a local section to a global section of DRE , or in other words, as the

nonexistence of a global R-distribution with marginalization to a context U P U .

Theorem 1 (Fine-Abramsky-Brandenburger). For an empirical model satisfying no-

disturbance and outcome-determinism, the following are equivalent:

• to be described by deterministic hidden variables described by equation 2.8;
7 Lambda-independence is related to the concept of free choice in nonlocality [Cavalcanti 2018,Abramsky,

Brandenburger and Savochkin 2014]. It can be understood as a dependence of the hidden variables,
sometimes called ontic variables, on the contexts. Such dependence can store contextuality, as free choice
can be understood as storing nonlocality [Blasiak et al. 2021]. For more details on the classification of
hidden variables in the subject of nonlocality, see Ref. [Brandenburger and Yanofsky 2008].
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• all local sections extending to global sections;

• a distribution µO
X

R that marginalizes to µO
U

R .

We can graphically describe noncontextual behavior as the commutation of the

diagram
EpUq R

EpXq

µR

i1 νR (2.9)

The global events define a global R-distribution µO
X

R , and the commutation implies the

realization of the R-empirical model by it. Here, i1 is the inclusion of local events in global

events. As explored in Ref. [Montanhano 2022] and in part II of this thesis, the failure of

commutativity can be seen in two independent ways: the first due to i1, which is linked

to anti-realist interpretations, and the second due to νR, linked to realist interpretations.

With the previous results, the Sheaf Approach chooses to attribute the failure to νR by

imposing the sheaf condition on events.

2.2.7 A Hierarchy of Contextuality

The Sheaf Approach generally restricts itself to models satisfying outcome-

determinism and no-disturbance to be able to utilize the strong prior results. Under such

conditions, we will cite some facts that follow from the choice of a semi-ring R.

Every noncontextual non-disturbing R-empirical model is equivalent to a non-

disturbing r0, 1s-empirical model. If the R-empirical model allows a non-negative descrip-

tion, then it is r0, 1s-noncontextual. r0, 1s-contextuality is referred to as probabilistic

contextuality. An example is the Bell-Clauser-Horne-Shimony-Holt model [Bell and Aspect

2004,Clauser et al. 1969], which exhibits contextuality only when dealing with probabilities

since it does not feature any local event that does not allow an extension to a global event.

In other words, contextuality is only observable through probability distributions and not

logically.

B-contextuality is called logical or possibilistic. A B-contextual empirical model

has at least one local event that does not allow extension to a global event, and therefore

the model allows verification of non-classicality through logical methods. An example of this

case is the Hardy model [Hardy 1992,Hardy 1993,Cabello et al. 2013]. If the B-contextual

empirical model does not exhibit any local event that can be extended to a global event,

then it is said to exhibit strong contextuality, the highest level of contextuality a model

can exhibit. Examples of this case include the Popescu-Rohrlich boxes model [Popescu

and Rohrlich 1994], the Klyachko-Can-Binicioğlu-Shumovsky pentagram model [Klyachko

et al. 2008], and the Greenberger-Horne-Zeilinger model [Greenberger, Horne and Zeilinger
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2007]. Every r0, 1s-empirical model can be decomposed into a noncontextual part and a

strong contextual part.

A B-empirical model uniquely defines a r0, 1s-model induced by the standard

map r0, 1s Ñ B defined by 0 ÞÑ 0 and p0, 1s ÞÑ 1B. This determines that logical contextuality

is stronger than probabilistic contextuality, as there exist models that do not exhibit logical

contextuality even when they are contextual. On the other hand, strong contextuality is a

special case of logical contextuality, since no local event admits an extension. We then

have a hierarchy relating the contextuality of non-disturbing models:

strongly contextual ą logical contextual ą probabilistic contextual ą noncontextual

(2.10)

2.2.8 Contextual Fraction

The contextual fraction is a quantification of contextuality, based on the fact

that a noncontextual model can be written as a convex combination of global events. The

finite version was present in Ref. [Abramsky, Barbosa and Mansfield 2017], and the more

general case of non-finite fibers in Ref. [Barbosa et al. 2019].

Formally, each measurable bundle defines an incidence matrix

M pσU , σBq “

$
&
%

1 if σB|U “ σU ;

0 otherwise.
(2.11)

It has the possible global events indexing the columns and the possible local

events of maximal contexts indexing the rows, such that the entry will only be non-

null if the local event is a restriction to the context of the global event. A model to be

noncontextual per section is to be a convex combination of global events, and therefore we

will have a weight bi for each of them, which should add 1. It is equivalent to

M~b :“ ~p (2.12)

where ~p is the vector of the probabilities of the outcome in each context (certain care

must be taken so that the vector, which originates in the usual probability table, is in the

correct position in the incidence matrix).

Definition 15. The noncontextual fraction NCF is defined as the maximum value ofÿ

i

bi such that bi ě 0 and
ÿ

j

Mijbj ď pi, i.e.,

NCF :“ max
~b

#ÿ

i

bi; bi ě 0,
ÿ

j

Mijbj ď pi

+
. (2.13)

The contextual fraction is then defined as CF “ 1´NCF .
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Because of its linear definition, one can easily define NCF as a linear program-

ming problem, that presents a well explored literature. The contextual fraction is related to

the contextuality inequalities in the literature, given the maximal violation of inequalities

of the measurable bundle, and has the necessary properties to be considered a "good"

quantification of contextuality. In the case of interest in such properties, the references

already mentioned have more details, and Ref. [Amaral and Cunha 2017] presents a good

review.

2.3 Generalized Contextuality and Generalized Probability Theories

Let’s review here some concepts regarding generalized probability theories. Such

theories will be important for formalizing sets of operational objects that are accessible

for probabilistic valuation. They will serve as a substrate for subsequent analyses.

The objective of operational probability theories is to provide an operational

description of physical theories, serving as an initial construction for their purely operational

depiction [Schmid et al. 2020]. We will work with standard probabilities and with only one

system, so it is unnecessary to define how to combine systems together. This restriction

categorizes operational probability theories as generalized probability theories, or GPTs.

2.3.1 Generalized Probability Theories

A GPT can be described as a category. A category is given by a class of

objects and a class of morphisms between each pair of objects, with one as the source

and the other as the target, where there exists composition of morphisms, and such

composition is associative. In the case of GPTs, the morphisms define operations that

represent physical operations between the objects, and we have a trivial object that serves

as a fundamental element for the construction of processes and their valuation. For a

presentation of category theory aimed at applications in quantum theory, see Refs. [Coecke

2008,Coecke and Paquette 2011].

The operations from the trivial object, which we denote by K, to any other

object are called states, denoted generally by P or categorically by f Ð K, and we will

denote them as |P y for reasons that will become clear later on. The set of operations

from objects other than the trivial one to it are called effects, denoted generally by E or

categorically by K Ð f , and we will denote them as xE|.

The other morphisms between two non-trivial objects can be understood as

representations of transformations. Any transformation f Ð g can be thought of as a

transformation that takes the state f Ð K to the state g Ð K, which we can denote as

T |Pfy “ |Pgy, with T denoting the transformation in question. The same reasoning applies
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analogously to effects. This identifies physically interesting transformations as functions of

the set of states to itself, or equivalently as functions of the set of effects to itself.

The automorphisms of the trivial object possess a structure of scalars, usually

taken as a semiring or semifield, such as the Boolean semiring B given by 0, 1, and the

probabilistic semifield R` given by r0, 1s. Here, we will focus on the probabilistic semifield

R`. The sets of states P , transformations T , and effects E provide us with the probabilities

of a process in the system they represent through a function:

p : P ˆ T ˆ E Ñ r0, 1s :: pP, T,Eq ÞÑ ppE|T, P q (2.14)

interpreted as the probability of obtaining the outcome E when starting with a state P

that underwent a transformation T . The composition of operations used in the argument

of the function ppE|T, P q can be understood as a path from the trivial object to itself,

passing through the operations that define P first, then the operations that define T , and

finally the operation of E, closing the loop in the category of operations. This identifies p

as a function of loops passing through K to the set of scalars, in our case, the probabilistic

one.

Usually, we can use the bracket notation that we have already introduced to

write

ppE|T, P q “ xE|T |P y , (2.15)

indicating that this is an identification with a loop of processes and in analogy with

quantum theory and linear algebra. To turn this analogy into an identification, one

imposes that the function p preserves mixtures of operations, i.e., the convex combination

with scalar coefficients. From the preservation of mixtures and their identification as valid

operations, the convexity of the sets of operations naturally follows. This preservation of

mixtures can be further extended to establish the linearity of p, enabling the representation

of states and effects in a vector space, with transformations described as linear maps acting

on them while preserving the sets of states and effects. Naturally, the identification of the

bracket notation arises from associating p with an inner product in this vector space.

Example 11. Let’s explicitly illustrate, as an example, the GPT structure of a qubit,

the two-dimensional quantum system. Naturally, we can begin with the Bloch sphere

representation, where a state ρ is encoded as a vector ~a on a unit sphere in R3, thus |~a| ď 1.

Here, we have

ρ “ 1

2
pI ` ~a ¨ ~σq, (2.16)

where I is the identity matrix and ~σ is the vector given by the Pauli matrices basis. The

origin of the space can be identified with K, and every vector from the origin to a point

within the sphere determines the process defining the state given by that point.

To define the effects, let us use the fact that quantum theory satisfies the

condition of strong duality [Müller and Ududec 2012]. This property allows the set of states
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and effects to be represented in the same way, with the difference that the process occurs in

the opposite direction, from the point on the sphere to the origin, but also uniquely defining

a vector to represent the effect.

Another property of quantum theory is that its set of physical transformations is

maximal, meaning that all possible transformations are physically feasible. Due to linearity,

we have that a transformation will be represented by a linear map T with induced norm

|T | ď 1.

With all this representation in a space R3, it is natural that probabilistic

valuation be given by an inner product, which indeed occurs by the Born rule. We have

that the trace can be calculated as

ppE|T, P q “ TrteTρu “ 1

4
p1` ~aeᵀT~aρq. (2.17)

There are further intriguing mathematical intricacies regarding this construction.

For a more formal exposition, see Refs. [Amaral 2014,Janotta and Hinrichsen 2014,Müller

2021,Selby, Scandolo and Coecke 2021].

2.3.2 Ontic Representation

A (classical) ontic representation of a (physical) theory involves embedding its

vector space representation into classical probability theory. In such a theory, a simplex is

defined as a set of states, and its dual as the set of effects. The primary aim of an ontic

representation is to expand upon the original theory by refining the involved variables, thus

enabling an explanation of the statistics of the GPT as a sub-model of classical theory.

Example 12. As a second example of GPT, which is important for addressing ontic

representation, we have a theory of classical probabilities. In it, the states already directly

represent the probabilities. In a classical system generated by n possible outcomes, we have

a vector in Rn whose elements are nonnegative real numbers that sum to 1 as a state. In

other words, the set of states P is given by a simplex in Rn.

Probabilistic valuation is nothing more than the entries of the vector, and by

taking the maximal set of effects, we have that the set of effects E will be given by the dual

set of vectors. This defines a hypercube in Rn, with vertices on each of the coordinate axes,

at the origin, and on the vector with entries being 1, which acts as the identity vector.

Transformations are also taken as the maximal set, given by linear maps that

preserve probabilities. These are stochastic maps, or Markov maps.

We can always do an embedding into a classical GPT, and the probability of

the model will be given by the chain rule

ppEr|Tt, Psq “
ÿ

λ,λ1

ξpEr|λ1qΓpλ1, T, λqµpλ|Psq, (2.18)
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the valuation functions ξ, Γ, µ, and the set of ontic variables denoted by Λ. However,

this does not guarantee classicality, as one needs to impose conditions on the valuation

functions to ensure they do not violate any classical behavior.

We need to impose the independence of the measurements to which the effects

belong. But note that such representation is independent of measurements, once the

function ξ has the outcomes as its domain, in the form of a set of effects. Thus, it is

restricted to non-disturbing models8, or in other words, for measurements m and n, it

holds

ξpEr|λ,mq “ ξpEr|λ, nq “ ξpEr|λq, (2.19)

fixing the conditions for embedding to preserve classical GPT.

At this level of generality, outcome-determinism9 is not required, unless one

wants to use factorizability as a condition for noncontextuality, as in the Sheaf Approach

[Wester 2018]10. Once the outcomes are fundamental in this framework, represented in

the events, and deal with the non-classicality of all the steps in a physical process, it is

natural that this is the strongest framework to construct new generalized models up to

the limitation by no-disturbance.

2.3.3 Generalized Contextuality

Generalized contextuality [Spekkens 2005] deals with preparations, transforma-

tions, and unsharp measurements (the latter equivalent to effect algebras defined by the

set of effects in a GPT). It is a method to investigate the classicality of a system through

operational equivalences. This approach is based on Leibniz’s principle of indiscernibles,

which states that if two objects possess the same properties, and therefore are indiscernible,

then they are identical.

Generalized contextuality [Spekkens 2005] deals with preparations, transforma-

tions, and unsharp measurements (the latter equivalent to effect algebras defined by the

set of effects in a GPT). It is a method to investigate the classicality of a system through

operational equivalences. This approach is based on Leibniz’s principle of indiscernibles,

which states that if two objects possess the same properties, and therefore are indiscernible,

then they are identical.
8 No-disturbance is defined in the intersection of contexts: if the valuation of an intersection (when

one defines it) ξpC X C 1q is independent of C and C 1 for all pairs of contexts, then M is said to be
non-disturbing. It is related to parameter-independence [Brandenburger and Yanofsky 2008,Barbosa
et al. 2019].

9 Outcome-determinism is defined in the valuation: the outcomes defined on the contexts where the
distribution is defined can be explained in a deterministic way. It is equivalent to restricting our interest
to ideal measurements, which one can easily criticize when thinking in empirical applications [Spekkens
2014].

10 Outcome-determinism implies that ξ : E ˆ Λ Ñ t0, 1u, thus codifying the determinism of this valuation.
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Using linearity to represent the construction of the final process from basic

processes by their summation with certain coefficients, and rearranging the equation to

make the linear dependence explicit, we find that for the states, the effects, and the

transformations, operational equivalences can be expressed as linear conditions [Selby et

al. 2021] ÿ

s

apαq
s Ps “ 0, (2.20)

ÿ

r

bpβq
r Er “ 0, (2.21)

ÿ

t

c
pτq
t Tt “ 0, (2.22)

indexed by α, β, and τ . This form will be important for what follows in the next sections.

Note that although the initial construction imposes that the processes remain within the

set of processes, and therefore limits the values of the coefficients, the reorganization in

the linear conditions above allows the coefficients to turn the vectors into objects outside

the set of processes.

Definition 16. A theory is noncontextual if for a classical ontic representation the

operational equivalences are preserved in the probabilities given by the valuation maps

ÿ

s

apαq
s µpλ|Psq “ 0, (2.23)

ÿ

r

bpβq
r ξpEr|λ1q “ 0, (2.24)

ÿ

t

c
pτq
t Γpλ1, Tt, λq “ 0, (2.25)

for all λ and λ111.

As the ontic representation is an embedding in a classical GPT, the ontic

space Λ is a simplicial set. The conditions of noncontextuality stated above assert that

the original theory, its states, effects, and transformations, can be embedded in Λ, and

its probabilities encoded in it as a coarse graining without violating classical probability

theory in the sense of the Kolmogorov axioms [Schmid et al. 2020, Schmid et al. 2021].

Interestingly, this is equivalent to there being no need for negative values for the functions

ξ, Γ, and µ when represented in an embedding as described above [Spekkens 2008].
11 This approach is more refined than other frameworks because of its operational interpretation, which

allows the exploration of non-classicality beyond measurement and effects. The outcome-determinism
is not imposed, but when imposed this approach is equivalent to the Sheaf Approach to contextuality
[Staton and Uijlen 2015].
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A property of valuation functions is their linearity within the convex set of

objects in the domain. As an example, let’s confine ourselves to the set of effects E , though

the same argument holds for states and transformations. Let A,B P E , and A ` B P E ,

then

ppA`Bq “ ppAq ` ppBq (2.26)

if and only if

ξpA`B|λ1q “ ξpA|λ1q ` ξpB|λ1q, (2.27)

which follows from the definition of ontic representation. Another way to see this is to

note that if A`B P E , then tA,B,1´ pA`Bqu is a valid measurement, thus

1 “ξp1|λ1q
“ξp1´ pA`Bq|λ1q ` ξppA`Bq|λ1q
“ξp1´ pA`Bq|λ1q ` ξpA|λ1q ` ξpB|λ1q

(2.28)

and linearity follows, since ξpC|λ1q ` ξp1´ C|λ1q “ 1 for every effect C. But there is no

guarantee that such linearity holds outside E , as the following example shows.

Example 13. The Wigner’s representation of quantum mechanics is an ontic represen-

tation of quantum theory, and it is linear for mixed states. However, as explained in

Ref. [Case 2008], Wψ “ Wα `Wβ with ψ “ ψα ` ψβ generally does not hold. On the

other hand, this holds for classical theories, which follow from the Kolmogorov axioms for

probabilities.
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3 The Influence of Topology

3.1 Empirical Models and Bundles

We will study some well-known examples of empirical models through their

bundle diagrams and expose their contextual or noncontextual behaviors. Our goal is to

see how an initial intuition of the relationship between contextuality and topology fades

as we advance to more complicated examples. Let’s begin with two emblematic examples

that have a representation in bundle diagrams illustrating their behavior.

Example 14 (Trivial). The standard trivial example of a non-disturbing empirical model,

analogous to the informal description of a trivial bundle, is given by Table 1. The contexts

of this example are U “ tab, bc, cd, de, ea, a, b, c, d, eu, with measurements X “ ta, b, c, d, eu.
All the sets of outcomes for measurements are the same, Oi “ t0, 1u. Its table gives the

probabilities for each event of each maximal context. Examples with finite outcomes can be

described by the values of each element of OU , using the discrete σ-algebra. The bundle

diagram is the possibilistic coarse-graining of the model, showing only the non-null events.

All events at all intersections have a probability of
1

2
. It can be described as two global

events each with a probability of
1

2
. Its non-disturbance follows from the fact that all

marginalizations over the probabilities of measurement outcomes also yield
1

2
each. It is

noncontextual, as it can be described as the combination of two global events,

strivialX “
"

1

2
pabcdeÑ 00000q ` 1

2
pabcdeÑ 11111q

*
, (3.1)

in agreement with noncontextual fraction NCF “ 1.

Example 15 (Liar cycle). An example of non-disturbing empirical model with no descrip-

tion by global events is the liar cycle, Table 2, here with five measurements. It could be

understood as a set of individuals saying that the next one will say the truth, cyclically,

but the last one saying that the first one lied, such that a paradox occurs. The structure

of the measurement scenario is the same as the previous example, it only differs in the

valuation. The model is non-disturbing. It can’t be described as a combination of global

events. The cause is the swap in the context ea, giving a contextual behavior for this model,

with noncontextual fraction NCF “ 0.

The liar n-cycles is an important example of n-cycle scenarios, i.e. scenarios

with n measurements organized as a cycle, once one can construct any paradoxical behavior

on n-cycle scenarios by them [Santos and Amaral 2021]. It is also important as an example
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Figure 1 – The visualization of the triv-
ial example of an empirical
model through its bundle di-
agram.
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2

Table 1 – Table of outcome probabilities
of each context of the trivial
example.
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Figure 2 – The visualization of the liar
cycle example through its
bundle diagram. There isn’t
any global event, caused by
the swap of elements in the
path ea.
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Table 2 – Table of outcome probabilities
of each context of the liar cycle
example.

of nonlocal “superquantum” correlations genarated by the well-known Popescu-Rohrlich

boxes [Popescu and Rohrlich 1994].

Example 16 (KCBS). The next example appears to be an extreme version of the liar

cycle, but it simply repeats the permutation of elements of the outcome fiber in every

context. In logical terms, each participant claims that the subsequent one is lying, as

shown in Table 3. The measurement scenario remains unchanged; the difference lies in

the distributions, which defines the maximal violation of the Klyachko-Can-Binicioglu-

Shumovsky inequality [Klyachko et al. 2008]. The example in Table 3 follows similar
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reasoning to the previous one. It cannot be described by a combination of global events due

to an odd number of swaps, hence it exhibits contextuality, consistent with a noncontextual

fraction NCF “ 0.

a

b

c
d

e

1

0

Figure 3 – The visualization of the
KCBS example through its
bundle diagram. Every local
section is a swap, implying
that for an odd number of
sides there isn’t any well de-
fined global event.
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Table 3 – Table of outcome probabilities
of each context of the KCBS
example.

Previous examples can be represented as fiber bundles, and contextuality

appears as a consequence of the non-trivial topology of the fiber bundle. At this point,

the reader must be alerted that this reasoning only works because of the triviality of

these examples, where the global events are distinguishable and there is a clear topological

translation. Future examples will lose such a direct topological interpretation.

Example 17 (Hardy). The example in Table 4 is more complicated, but one can still

determine its contextuality just by examining the events. It was first introduced in Ref.

[Cabello et al. 2013] as a Hardy-like model [Hardy 1992,Hardy 1993] exhibiting contextual

behavior in quantum theory, with a noncontextual fraction NCF “ 7

9
. The model is

non-disturbing and contextual. It includes global events such as pab Ñ 00q, pcd Ñ 00q,
and peaÑ 00q, but there are events that cannot be extended globally, such as pabÑ 01q,
pabÑ 10q, pcdÑ 01q, pcdÑ 10q, peaÑ 01q, and peaÑ 10q.

Example 18 (Bell). The model of Table 5 is a well-known example of a non-disturbing

contextual model in quantum mechanics. It is also known as the Bell-CHSH model, due

to its application in the Clauser-Horne-Shimony-Holt inequality and its importance as an

example of bipartite scenarios exhibiting nonlocal behavior [Bell and Aspect 2004,Clauser

et al. 1969]. The ab local section is trivial, but the others have probabilities that reflect the
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Figure 4 – The visualization of the
Hardy example through its
bundle diagram. This model
has global events, but some lo-
cal events can’t be extended
to a global one.
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Table 4 – Table of outcome probabilities
of each context of the Hardy
example.

liar cycle. In this sense, this model can be understood as a combination of a trivial example

and three liars, which agrees with the noncontextual fraction NCF “ 3

4
. As can be seen

from its bundle diagram, all events are defined as restrictions of global events. Therefore,

its contextual behavior only manifests when considering the values of distributions.

a

b

c

d

1

0

Figure 5 – The visualization of the Bell exam-
ple through its bundle diagram. This
model has only global events, and the
contextual behavior only appears be-
cause of the impossibility to explain it
with positive real numbers.
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Table 5 – Table of outcome proba-
bilities of each context of
the Bell example.

In ref. [Montanhano 2021], the topological structure of bundles generated

by empirical models in the Bundle Approach is studied. The use of holonomy in the

corresponding frame bundle is proposed, formalizing the intuition that contextuality
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generates logical paradoxes that can be seen through bundle topology. However, the

holonomy applied in this structure does not allow for a characterization. This limitation

arises from the need to use group structures that are not natural to empirical models, as

we will discuss in the next section.

3.2 Sheaf Cohomology to Detect Contextuality

To define the Čech cohomology, we utilize the covering U , disregarding individual

measurements. We define the nerve NpUq as the collection of contexts and their non-empty

intersections, with elements σ “ pUj0 , ..., Ujqq given by |σ| “
qč

k“0

Ujk ‰ H, where jk P I

are ordered. The nerve of a covering defines an abstract simplicial complex, where the

q-simplices form a collection NpUqq. Note that for this to hold, the contexts forming σ

must be distinct1. We define the map

Bjk : NpUqq Ñ NpUqq´1 (3.2)

as Bjkpσq “ pUj0 , ..., xUjk , ..., Ujqq, where the hat denotes the omission of the context.

3.2.1 Cohomological Contextuality

The Čech cohomology for contextuality is defined not by DRE , but by a functor

F : NpUq Ñ AbGrp from the nerve to the category of Abelian groups, representing the

presheaf DRE . Typically, F “ FSL, where L is at least a subsheaf of E and FS : Set Ñ
AbGrp assigns to a set O the free Abelian group FSpOq generated by it related to the

ring S. Specifically, it is defined as a free module on a ring S (see Ref. [Abramsky et al.

2015]). In other words, it is a representation of E . Such a presheaf must satisfy:

• FpUq ‰ H for all U P U

• F is flasque beneath the cover (the restriction map ρFpU 1, Uq on F is surjective

whenever U Ď U 1 Ď V , V P U)

• any compatible family given by just one of the events for each context, here thought

of as an element of the basis, induces a unique global section.

The first condition implies that a context must have a non-trivial image by F ,

and the second one codifies that the information given by F in a subcontext is already in

the context that contains it. The third condition follows from the imposition of Gluing

and Locality axioms on the basis and is induced by the sheaf structure of the events.
1 There is an equivalence between ordered and unordered Čech cohomology, where in the latter, contexts

can be repeated. For clarity, I work with the ordered version.
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We can define an augmented Čech cochain complex:

0 C0pU ,Fq C1pU ,Fq C2pU ,Fq . . .
d0 d1 d2

(3.3)

where the Abelian group of q-cochains is:

CqpU ,Fq “
ź

σPNpUqq

F p|σ|q (3.4)

and the coboundary map dq : CqpU ,Fq Ñ Cq`1pU ,Fq is the group homomorphism given

by:

dqpωqpσq “
q`1ÿ

k“0

p´1qkρ1p|Bjkσ| , |σ|qωpBjkσq (3.5)

with ω P CqpU ,Fq and σ P NpUqq`1. One can show that dq`1dq “ 0, allowing construction

of the cohomology of this cochain complex.

The Abelian group of q-cocycles is defined by:

ZqpU ,Fq “ tc P CqpU ,Fq|dqc “ 0u “ kerpdqq. (3.6)

The Abelian group of q-coboundaries is defined by:

BqpU ,Fq “
 
c P CqpU ,Fq|c “ dq´1z, z P Cq´1pU ,Fq

(
“ Impdq´1q. (3.7)

Clearly, BqpU ,Fq Ď ZqpU ,Fq, and we define the q-th Čech cohomological

group as the quotient H̆qpU ,Fq “ ZqpU ,Fq{BqpU ,Fq.

3.2.2 Cohomological Contextuality

Let’s explore two well-known results in the literature of Čech cohomology and

cohomological contextuality [Abramsky, Mansfield and Barbosa 2012]. The first result

establishes a bijection between compatible families and elements of the zeroth cohomology

group H̆0pU ,Fq.

Proposition 3. There exists a bijection between compatible families and elements of the

zeroth cohomology group H̆0pU ,Fq.

This result follows from the observation that, in the augmented cochain complex,

the coboundary group B0pU ,Fq is trivial. This allows the use of elements from H̆0pU ,Fq
in the search for an extension to a compatible family.

The second result characterizes what is known as cohomological contextuality.

It involves constructing an obstruction on an initial 0-cochain that codifies the local

sections of F on the covering U .
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To establish this, we introduce an auxiliary presheaf F |UpV q “ FpU X V q, and

the canonical presheaf map p : F Ñ F |U :: pV : r ÞÑ r|UXV . Another auxiliary presheaf is

FŪpV q “ kerppV q, defining the exact sequence of presheaves:

0 ÝÑ FŪ ÝÑ F
pÝÝÑ F |U (3.8)

The U -relative cohomology is defined as the Čech cohomology of the presheaf FŪ .

Elements of H̆0pU ,FŪj
q are in bijection with compatible families trku where

rj “ 0. Starting with a local section sj0 of Uj0 , the no-disturbance condition implies the

existence of a family tsjku such that sj0 |j0jk “ sjk |j0jk for all k ‰ 0. Defining c “ tsjku0ďk P
C0pU ,Fq, a trivial computation shows that z “ dc P Z1pU ,FŪj0

q, and we define the

obstruction γpsj0q as the cohomology class rzs P H̆1pU ,FŪj0

q2.

Proposition 4. Let U be connected, Uj0 P U , and sj0 P FpUj0q. Then γpsj0q “ 0 if and

only if there exists a compatible family trjk P FpUjkquUjk
PU

such that rj0 “ sj0.

The idea behind this construction is to take a local section and investigate the

possibility of extending it to a global section, examining the triviality of the obstruction. It

provides a sufficient condition for contextual behavior, indicating a non-trivial obstruction

in some local sections, but it is not a necessary one. A model presenting at least one

non-trivial obstruction will be termed logically cohomological contextual, distinguishing it

from the usual possibilistic contextual models.

3.2.3 The Failure of Cohomological Characterization

The intuition behind using cohomology in contextuality is as a way to encode,

in an Abelian group, the data in each context, outcome set, and possible measures, and use

them to study their behavior. It is natural to use the free Abelian group generated by the

outcome set given by a functor over the category of contexts, thereby encoding contexts

and outcomes. We can understand it in the following way. Assume enough conditions are

presented such that contextual behavior appears as the non-factorizability of the model.

Graphically:

EpNpUq0q S

EpXq

i1 (3.9)

where we start with the data of EpNpUq0q Ñ S, and ask for the existence of the data of

EpXq Ñ S plus a map i1 such that the diagram commutes. We are asking for a factorization

of the local events to global events when using FS as the tool to quantify the measurement

scenario. These diagrams are an informal way to show the data in H̆0pU ,Fq Ñ C0pU ,Fq
2 Another way to show this is by using the snake lemma [Abramsky et al. 2015].
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for F “ FSE . The previous construction of cohomology asks for the data that can’t be

encoded in a context, and cohomological contextuality is the existence of more data than

the context can store. However, the choice of the ring S for the definition of the group does

not come from the measure. This is the reason for the impossibility of the characterization

with standard Čech cohomology.

The categories of rings, Abelian groups, and modules are canonically related,

as are the categories of semi-rings, Abelian monoids, and semi-modules. So, the relation

between these algebraic structures is simply encoded by the canonical forgetful functor

F : Ring Ñ Rig, which forgets the negatives of the ring category. To study such a functor,

let’s review what we can forget with it [Baez and Shulman 2009].

Definition 17. Let F : A Ñ B be a functor. It

• is called full if, for all pairs of objects A,A1 of A, the map F : hompA,A1q Ñ
hompF pAq, F pA1qq induced by F is surjective; it forgets structure if it is not full;

• is called faithful if the induced map is injective for all pairs of objects; it forgets stuff

if it is not faithful;

• is called essentially surjective if, for any object B of B, there is an object A of A such

that F pAq is isomorphic to B; it forgets properties if it is not essentially surjective;

• forgets nothing if it is full, faithful, and essentially surjective, or equivalently, F

admits an inverse, and the categories are called equivalent.

A known result is that a semi-ring can be completed into a ring if and only if

the semi-ring is cancellative3. As an example, the Boolean ring B isn’t cancellative since

1B ` 1B “ 1B “ 1B ` 0B (3.10)

implies that 1B “ 0B if the cancellative property holds, which is absurd. Therefore, the

functor F : Ring Ñ Rig forgets properties. Also, there are more homomorphisms between

objects of Rig than in objects of Ring, implying that F forgets structure. However, it

doesn’t forget stuff since every ring in Ring is a semi-ring in Rig, with the morphisms

being preserved.

In conclusion, there is too much structure and property in Ring, the category

we use to define the cohomology with Abelian groups. Extra property plus structure

allows the violation of the cohomological characterization of contextual behavior, providing

too many ways to justify noncontextuality4. A characterization of contextuality can be
3 The left adjoint of the forgetful functor F : Ring Ñ Rig is not monic if the additive monoid of R is

not cancellative.
4 Categorically, we can construct a natural transformation between the functors DR and FS . With the

forgetful map, one can show that usually there isn’t a natural equivalence between them, allowing for
violations even for strong contextual models, see Ref. [Carù 2018,Carù 2017].
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obtained with sheaf cohomology of semi-modules [Montanhano 2021] that do not modify

the semiring used. The setback occurs in the loss of the cochain complex structure, which

depends on the group structure. The complexity of the construction makes it impractical

even for simple models.

3.3 Topology of Measurement Scenarios and Vorob’ev Theorem

In Ref. [Montanhano 2021], we study the topology of measurement scenarios

and its influence on contextuality, which we explore in this section. The argument about

this influence begins with the Vorob’ev theorem [Vorob’ev 1959], linked with the notion of

cyclicity, in the sense of Graham’s reduction.

Definition 18. A hypergraph pX, Cq is acyclic if it can be reduced to the empty set

through Graham’s reduction, an algorithm achieved by repeated application of the following

operations:

• If m P X belongs to a single hyperedge, then delete m from this hyperedge.

• If V ( U , with V, U P C, then delete V from C.

The Graham’s reduction algorithm can be interpreted as a coarse-graining of

contexts, “forgetting” contexts that can be described by marginalization. Contextuality

depends on maximal contexts and their intersections, as seen in the contextual fraction

algorithm. Graham’s reduction removes measurements that do not intersect and contexts

that are not maximal, also erasing the minimal context of each measurement from the

hypergraph. Hence, acyclic scenarios allow arbitrary simplification, while cyclic scenarios

do not. Importantly, Graham’s reduction does not preserve the simplicial complex structure

of the scenario, as shown in Ref. [Barbosa 2015]. The property of being cyclic, although

appearing to be a topological property in capturing “holes” in the hypergraph, is not a

topological invariant, as illustrated in the following example.

Example 19. The first triangle in the Graham process in Fig. 6 is simply connected when

equipped with the topology of its geometric representation, and therefore collapsible. It is

also acyclic when considered as a hypergraph, as depicted. In the case of the triangle with

H

Figure 6 – Graham reduction of a filled triangle. The steps are: to exclude the edges;
to exclude the isolated vertices. The result is the empty set, therefore the
hypergraph is acyclic.
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barycentric subdivision, the first of the Graham process in Fig. 7, despite being simply

connected when equipped with the topology of its geometrical representation and therefore

collapsible, being homeomorphic to the previous case, it is not an acyclic hypergraph and

can be a measurable scenario for an empirical model as we will see in a following example.

?

Figure 7 – Graham reduction of a triangle with barycentric subdivision. The first and
unique allowed step is to exclude the edges. There isn’t any other possible step,
therefore the hypergraph is cyclic.

Having a topologically trivial base doesn’t imply a noncontextual empirical

model, a marked difference from fiber bundle theory, where having a topologically trivial

base (when equipped with a group structure) implies a topologically trivial total space

[Schwarz 1994]. This example also shows that the role of topology in contextuality, if any,

should be more subtle.

We can rewrite Vorob’ev theorem as follows:

Theorem 2 (Vorob’ev’s theorem). Given a measurement scenario, any non-disturbing

empirical model defined on it is noncontextual if and only if its base, seen as a hypergraph,

is acyclic.

In short, contextuality does not directly follow from the standard topology of

the scenario, even with acyclicity structurally linked with noncontextuality [Karvonen

2019]. The examples in Figures 6 and 7 demonstrate the independence in terms of topology

by dissociating the topology of the simplicial complex from its suitability as a measurement

scenario for an empirical model.

3.3.1 A Hierarchy in the Simplicial Complex: n-contextuality

Given an empirical model and once the simplicial complex structure of scenarios

is identified, one can investigate the relation between the inductive definition of a simplicial

complex (by incrementing the dimension of the included simplices at each step) and the

contextuality demonstrated at each step of such induction in the measurement scenario.

Definition 19. Given an empirical model, its 0-skeleton consists of the set of measurements

X and their sections; its n-skeleton for n ě 1 consists of the set of measurements X and

the contexts involving up to n` 1 measurements, and their sections.
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One can also define this construction as the marginalization of the empirical

model on the set of contexts in the n-skeleton. The following definition addresses the

question of contextuality induced by the n-skeleton using the contextual fraction.

Definition 20. Let CFn be the contextual fraction of the empirical model induced by the

marginalization of a given empirical model on the n-skeleton of its base. The n-contextuality

is defined as the difference CFn ´ CFn´1 between two steps in the inductive definition of

the scenario.

The concept of n-contextuality is well-defined once for vertices the scenario is

acyclic, and therefore noncontextual (CF0 “ 0), and also due to its monotonicity concerning

the free operations in a resource theory of contextuality [Amaral 2019]. Specifically, the

sum of the contextual fractions of disjoint sub-models is less than the contextual fraction of

the entire model: for any empirical model represented by two disjoint parts M “ M1\M2,

CF pMq ě CF pM1q ` CF pM2q (3.11)

This generalizes to any finite disjoint union of sub-models. By construction of the contextual

fraction, the following holds:

1 ě CF pMq ě
nÿ

k“1

CF pMkq (3.12)

for any empirical model M “
nğ

k“1

Mk. Therefore, adding edges can induce contextuality,

and we can define the sequence:

0 “ CF0 ď CF1 ď ... ď CFn “ CF. (3.13)

n-contextuality offers a means to explore the influence of topological proper-

ties of the scenario on the empirical model’s contextual behavior, isolating topological

properties by the dimension of the n-skeleton. A question in the literature [Terra Cunha

2019] regarding the relationship between scenario topology and acyclicity is whether all

contextual behavior arises due to topological flaws captured by the first homology group, or

equivalently, whether there exists n-contextuality for n ą 1, as the 1-skeleton captures any

property of the scenario’s first homology group. While an example previously illustrated

the separation of standard topology and cyclicity, the question remains: for n ą 1, can

contextuality arise solely due to n-dimensional objects? The next example shows that it

can.

Example 20. Consider a scenario defined by the boundary of a tetrahedron, exhibiting

non-trivial cyclicity with only four vertices, six edges, and four faces. Table 6 presents

the probabilities of obtaining specific outcomes within maximal contexts, where outcomes
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Table 6 – Table of outcome probabilities of each context for the tetrahedron model.
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t0, 1u are associated with each measurement, and the base has contexts represented by the

tetrahedron’s boundary with measurements ta, b, c, du. This construction originated from

Svetlichny’s box [Barrett et al. 2005] as detailed in Ref. [Barbosa 2014], and is described

in Table 8. 5 As one can see, the probabilities in any subcontext represented by the edges

are maximally random, implying noncontextuality when restricted to the 1-skeleton. There

is concordance between the faces; thus, it is a non-disturbing empirical model. It is also a

contextual empirical model once it has a non-null contextual fraction [Abramsky, Barbosa

and Mansfield 2017], CF “ 3

4
. In conclusion, the contextual behavior of this model does

not originate from the 1-skeleton but from the 2-skeleton; thus, this is an example of

2-contextuality and a counter-example to the assertion that contextuality follows, even

indirectly, from the first holonomy group of the scenario with the standard topology of its

geometric representation.

Another question one can ask is whether quantum theory has any examples

of n-contextuality for n ą 1. The next example shows quantum theory has a well-known

example for all n ě 1.

Example 21. The n-dimensional GHZ model is a scenario with n` 1 parts, each with

two measurements and fibers with two elements. For n “ 1 we have the Bell scenario, a

graph with a square form and an example of 1-contextuality. For n “ 2, the scenario has

an octahedron shape. The model is defined when choosing the quantum state

|GHZy “ |0ybpn`1q ` |1ybpn`1q

?
2

(3.14)

which is maximally entangled. By theorem 1 and the structure of measurements in quantum

theory, it is always possible to find a set of measurements that exhibit contextuality for

this model. The marginalized measures are maximally uniform (a reflection of the state’s
5 This example was independently constructed by the author of this thesis, but was previously reported

in Ref. [Dzhafarov, Kujala and Cervantes 2020].
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Table 7 – Table of outcome probabilities of each context for the GHZ model.
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non-biseparability), and therefore the contextuality does not appear in simplices of smaller

dimension than n.

The case of the GHZ model in an octahedral shape is well-known, and its

standard version presents the joint probability table given in Table 7. In this model, each

of the three parties can perform Pauli X or Y measurements on the state

|GHZy “ |000y ` |111y?
2

, (3.15)

which can be verified as a strongly contextual model (NCF “ 0). In Table 7, we have

A,B,C as X, and a, b, c as Y .

Its importance as a model has direct applications even in the foundations

[Lawrence, Markiewicz and Żukowski 2023], placing n-contextuality as an important phe-

nomenon to validate interpretations of quantum theory. Another example, also exhibiting

strong contextuality but being super-quantum, which inspired the tetrahedron model in

example 20, is Svetlichny’s box from Table 8. which also has maximally uniform marginals,

and therefore only exhibits contextuality in dimension n “ 2.

3.3.2 An Example of Topological Influence

Armed with n-contextuality, we can explore whether the topology of the scenario

interferes, even indirectly, with the degree of contextuality. Here, we will construct an
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Table 8 – Table of outcome probabilities of each context for the Svetlichny’s box.
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example that allows us to observe this influence. Let’s start with an empirical model in a

barycentric triangle, which ends up being a sub-model of the tetrahedron presented in

example 20. In this model, the face abc is ignored, resulting in a noncontextual fraction

of NCF “ 1

2
, while the complete tetrahedron has NCF “ 1

4
. We have two possible

explanations:

• either the face adds
1

4
of contextuality to the model,

• or it occurs due to a change in topology.

To test these possibilities, we can study the local sections on the face, since

the marginals are maximally uniform. Observing that local sections in the triangle satisfy

the system of linear equations:

ÿ

x

ppx, y, z|a, b, cq “ ppy, z|b, cq (3.16)

ÿ

y

ppx, y, z|a, b, cq “ ppx, z|a, cq (3.17)

ÿ

z

ppx, y, z|a, b, cq “ ppx, y|a, bq (3.18)
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Table 9 – Table of outcome probabilities of each context for the tetrahedron model with
generic context abc.
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ÿ

x,y,z

ppx, y, z|a, b, cq “ 1, (3.19)

which are valid due to no-disturbance and the probability condition, we observe that the

triangle abc has a generic section on the face represented by the vector:
ˆ

1

4
´ η, η, η, 1

4
´ η, η, 1

4
´ η, 1

4
´ η, η

˙
, (3.20)

with η P r0, 1

4
s, and the maximally uniform case occurring at η “ 1

8
. However, when adding

the face to the model, one obtains the generic case as shown in Table 9. Contextuality

remains the same, with NCF “ 1

4
, corroborating the option of topological dependency.

Therefore, the simple addition of a face, regardless of which one, generates more contex-

tuality, in line with the topological influence option. A formalization of this dependency

must be constructed so that something more can be said about this result.
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4 The Learned Path

Topology expresses itself more subtly in contextuality than contexts allow us to

see. The Bundle Approach and its diagrams fail as soon as determinism disappears from

the model. Even its refinement through holonomy presents serious flaws in capturing the

contextual behavior of simple models. At this point, a more comprehensive mathematical

approach seems to be suggested.

The Sheaf Approach appears to be such an approach. It naturally allows the use

of cohomology to attempt to capture contextuality, but even strong contextual behaviors

escape. One characterization causes the mathematical structure itself to break and become

somewhat useless. In addition, the approach has limitations in the face of the different parts

in which contextual behavior presents itself in physical processes. What both approaches

have in common is the use of measurements as fundamental, forcing mathematical tools to

use groups. Here we identify that the previous construction, with a description of contexts

and measurements, should take a back seat. The influence of topology appears imperfectly,

a sign that if it does indeed play a role, then we need to base models on other objects.

A description of processes seems to be the most natural path, which operational

theories and their representation in generalized probabilistic theories allow us. The Gener-

alized Contextuality Approach generalizes and puts a philosophical basis on contextuality.

In it, contexts and measurements become questions that can be asked, propositions. It is

in this approach that we will explore contextuality and its geometric and topological roots.

With this lesson, we can tread the path that will give us the main fruits of our

journey.
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Part II

Differential Geometry of Contextuality
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Contextuality, the ultimate form of non-classicality, has many diverse mathe-

matical approaches. Each approach was built for a specific purpose or strategy to exploit

its characteristics, and some were developed long before being identified as contextuality.

They all start from the encoding of physical systems into some mathematical structure that

cannot be represented by another structure called classical. There are already examples of

topological representations [Abramsky and Brandenburger 2011,Abramsky, Mansfield and

Barbosa 2012,Abramsky et al. 2015,Okay et al. 2017,Okay and Raussendorf 2020,Montan-

hano 2021], and algebraic representations [Birkhoff and Neumann 1936,Bell 1964,Kochen

and Specker 1967,Gleason 1957]. Some have evolved into a geometrical representation due

to the relationship between inequalities and convex sets [Cabello, Severini and Winter

2014,Amaral and Cunha 2017], and others seek a foundation in measure theory [Dzhafarov,

Kujala and Cervantes 2015]. Other notions [SORKIN 1994,Spekkens 2008,Schmid et al.

2021] are known to be related to standard contextuality, and they are more or less explored

in the literature.

Non-classicality has an incredible number of applications, and more are be-

ing presented each day. Contextuality is the fuel for this revolution. It is known that

contextuality is the origin of quantum behavior [Döring and Frembs 2020], and it is the

generalization of the famous notion of nonlocality [Abramsky and Brandenburger 2011]. It

is necessary for any computational advantage over classical computers [Shahandeh 2021],

and it is explicitly the “magic” required for some types of quantum computers [Howard

et al. 2014]. But this phenomenon is not just a resource for technological applications.

Understanding contextuality in a more general formulation is essential to understand why

and how we live in a quantum reality, and whether we need to search for more general

theories than quantum theory itself. This fundamental exploration ultimately aims to

establish the framework where future theories and technologies will be built.

In this Part, we will explore the geometric or topological origins of contextuality.

We will use its more generic version, generalized contextuality [Spekkens 2005], restricting

as necessary to treat tools from other approaches. The general strategy will be to rethink

the operational equivalences of the ontic representation as loops with discrete parts in the

tangent space of a suitable manifold, usually piecewise linear given by the elements of

a process (for example, an extension of the set of effects). The noncontextual condition

becomes the preservation of probabilistic valuation maps for these loops, thus, without

the presence of non-trivial phases.

A relevant ontic representation will be the one present in generalized probability

theories [Janotta and Hinrichsen 2014]. Generally, generalized probability theories are

constructed with a finite set of extremal effects, and demonstrations of contextual behaviors

use them. But there are theories where the set of such effects is infinite and, like quantum

theory, even continuous. This implies the possibility of different types of operational
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equivalences. The framework we build explores all operational equivalences on equal

footing. The condition of contextual behavior, described through discrete differential

geometry, ends up generalizing to the domain of differential geometry for the continuous

case, again as non-trivial phases of probabilistic valuation maps.

With this framework, we present two ways to interpret contextuality, depending

on the choice of how to encode the physical system. The violation of phase triviality in

valuation results from holonomy or monodromy, respectively, linked to the intrinsic-realistic

and participatory-realistic views of the theory. Holonomy follows from a geometric cause,

by imposing that the ontological set be classically complete, which imposes on valuations

the correction of contextual behavior, expressed by a curvature term. Monodromy follows

from a topological cause, by imposing that the valuation must be classical in the sense of

measure theory, expressed by topological defects in the ontological set. They are equivalent

and have dual interpretations of the fact that we have lost classicality.

We will use these two equivalent interpretations to explore the relationship

between contextual behavior and different notions of non-classicality. Using the geometric

version, called “Schrödinger”, we start by imposing outcome determinism, making the

contextual fraction, a quantifier of contextuality [Abramsky, Barbosa and Mansfield 2017],

to be defined in its usual form. We show that the resource it is quantifying is nothing more

than the curvature term that corrects valuation. The same occurs with the interference term

in the sense of quantum measure theory [SORKIN 1994,Sorkin 1995], where the interference

part that cannot be explained classically also arises from the curvature term. The need

for signed measures for valuation maps [Spekkens 2008, Abramsky and Brandenburger

2011] follows analogously as we force the corrected valuation to be treated in the same

way as a classical measure, even though we have already imposed the non-existence of

topological defects. Using the topological version, called “Heisenberg”, we identify it as the

cause of the impossibility of incorporation into a classical mathematical structure [Schmid

et al. 2021, Schmid et al. 2020]. The topological view also offers a generalization of

the famous Vorob’ev theorem [Vorob’ev 1959], which characterizes the inevitability of

noncontextuality, while the geometric view establishes a relationship between transition

maps and disturbance [Montanhano 2021,Amaral and Duarte 2019]. They also allow for a

clearer understanding of how quantum interpretations deal with contextuality, in a way

mapping the madness of interpretations [Cabello 2017].

This Part is divided as follows. A brief presentation of differential geometry

(5.1.1) and discrete differential geometry (5.1.2) is given in section 5.1. In section 5.2,

contextuality is identified as a phase of the valuation functions. Beginning with the formal

identification (5.2.1), we construct its two interpretations. In the geometric view (5.2.2),

we have the notion of contextual curvature for a generalized probability theory. In the

topological view (5.2.3), we have the relationship between contextuality and non-trivial



Part II. Differential Geometry of Contextuality 69

topology. As equivalent interpretations, they can be translated into each other (5.2.4).

The tour of already known non-classical phenomena and their relations with contextuality

begins in section 5.3. We start with the identification of contextual fraction (5.3.1), the

interference in quantum measure theory (5.3.2), and with the special example of quantum

theory and its dependence on Planck’s constant. We then explore the necessity of signed

measures and the impossibility of embedding the process in a classical mathematical object

(5.3.3), and generalize the Vorob’ev theorem with the topological view (5.3.4). We propose

a generalized framework for generalized probabilistic theories, incorporating non-trivial

transition functions to introduce zeroth-order processes that codify disturbance. This adds

a new term to the valuation decomposition, referred to as the disturbance fraction (5.3.5).

We finalize this section with an exposition of the main interpretations of quantum theory

and its relation to the interpretations of the origin of contextuality (5.3.6). Chapter 6

follows, where we discuss the results and potential future avenues.
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5 A Differential Approach to Contextuality

In the previous Part, we introduced the concepts of GPT, ontic representation,

and how noncontextuality is expressed in such a formalism. In this chapter, we will present

tools to glimpse what contextuality is actually doing in a physical model.

5.1 Concepts of Differential Geometry and Topology

5.1.1 Differential Geometry

Let’s quickly introduce the main concepts of differential geometry that we will

use in the upcoming sections. The connection with what we have already presented will

occur in the second part of this section, where we discretize what we will present here.

With this, we will be able to present a characterization of contextuality in differential

geometry in Section 5.2 that can be immediately generalized to the continuous case. This

will have important implications for the applications presented in Section 5.3.

We begin with smooth manifolds, which are locally similar to a vector space so

that we can utilize calculus. We define a smooth manifold M as a topological space with

topology τ that is covered by domains of homeomorphisms called charts ϕ : U P τ Ñ Rn,

such that for every pair of charts ϕa, ϕb, the transition map ϕa ˝ ϕ´1

b is smooth. A set of

charts that cover M is called an atlas, and it fully describes M.

With this structure, we can work with the tangent vector space at a point p P M,

denoted by TpM, which is given by a chart containing it that serves as a neighborhood.

As in Rn, we can define directional derivative Bk “
B
Bxk

. We are interested in studying how

infinitesimal objects behave in this local environment and what properties they exhibit

when seeking to extend them globally throughout M. Since each point in M has its

tangent vector space, we have a tangent bundle TM.

The dual vector space of a tangent space is called the cotangent space, denoted

by T ˚
p M, which is also defined at each point and generates a bundle T ˚M called the

cotangent bundle. It is important to note that this duality depends on which value we

want to obtain from the application of an object from the cotangent space to the tangent

space. Here we will deal with values in R, meaning that if xπ| P T ˚
p M and |ωy P TpM,

then xπ|ωy P R. The objects of T ˚
p M are the covectors, and we can also define infinitesimal

elements dxk dual to differentials Bk, known as differential 1-forms.

The next step will be to think of B and d as operators by themselves. Continuing

with the informality level of this presentation, B acts as a boundary operator on a region,
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effectively reducing its dimension by one unit. Notice that each piece has its orientation,

which is captured by the differential. We can define CnpMq as the entire finite set of n-

dimensional pieces of M. The boundary operator is nothing more than a map B : Cn Ñ Cn´1,

and since the boundary of a boundary is always an empty set, we have BB “ 0, and we

obtain the chain complex

0 C0pMq C1pMq C2pMq . . .
B0 B1 B2 B3

(5.1)

We can explore the topology of M through its pieces and the natural group

structure of these pieces via homology groups. First, we define the kernel of Bn denoted by

ZnpMq, whose elements are called n-cycles. Meanwhile, the image of Bpn`1q denoted by

BnpMq, consists of n-boundaries. The group given by HnpMq “ ZnpMq{BnpMq is the

n-homology group, which intuitively captures topological failures of dimension n´ 1 in M.

For instance, Z1pMq will consist of all one-dimensional objects in M that have no boundary,

while B1pMq will consist of all boundaries of two-dimensional objects. Since the latter

necessarily have no boundary themselves, HnpMq is capturing one-dimensional objects

without boundaries that are not boundaries of any two-dimensional piece, identifying a

failure in having such a piece, a “missing” point.

With d, referred to as the coboundary operator, we can utilize its duality with

B to show that dd “ 0, obtaining the cochain complex

0 C0pMq C1pMq C2pMq . . .
d0 d1 d2 (5.2)

Where Cn are the duals of Cn, which are infinitesimally generated by n-differential forms.

The n-forms possess a beautiful mathematical structure which unfortunately will not

be presented here. What will be important for us is that we can once again explore the

topology of M with the n-forms, but this time not directly with pieces of M but rather

with the functions that act upon these pieces. The kernel of dn is denoted by ZnpMq,
with elements called n-cocycles or closed n-forms, while the image of dpn´1q is denoted by

BnpMq, with elements called n-coboundaries or exact n-forms. The resulting algebraic

structure HnpMq “ ZnpMq{BnpMq is called the de Rham n-cohomology.

To conclude this brief presentation on elements of differential geometry, there

are three theorems that will appear during this differential approach to contextuality and

its immediate applications. The first is the generalized version of Stokes’ theorem.

Theorem 3. Let ω be a smooth pn ´ 1q-form with compact support on an oriented, n-

dimensional manifold-with-boundary S, where BS is given the induced orientation. Then

ż

BS

ω “ xω|BSy “ xdω|Sy “
ż

S

dω. (5.3)
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This theorem is the direct verification that the region S can be seen as analogous

to a region in Rn, with the n-form dω being in some way extended throughout the entire

region.

Another important theorem is the Ambrose-Singer theorem, which relates the

holonomy of a principal bundle to the curvature in the region where the holonomy is found.

It identifies that the holonomy is the expression of curvature, and that curvature generates

holonomy.

Theorem 4. In a smooth manifold M with a principal bundle P over M and a connection

1-form ω, the holonomy algebra at a point p P P is generated by the curvature form F

derived from ω and evaluated along loops based at p. Specifically, the holonomy algebra is

determined by the curvature form F and its covariant derivatives evaluated on all possible

pairs of horizontal vector fields at p.

The relationship between holonomy and curvature allows us to identify geometry

through the phases of transport in loops. The curvature associated with the 1-form ω

is nonzero at a point in M if and only if there exists a nontrivial closed curve passing

through that point whose holonomy phase along it is nontrivial.

Lastly, we have the Poincaré Lemma, which states that in a contractible

manifold isomorphic to a region of Rn, all closed forms are exact.

Theorem 5. Let M be a smooth, orientable manifold of dimension n that is isomorphic

to Rn. Then for every closed differential form ω of degree k on M (i.e., dω “ 0), there

exists a differential form η of degree k ´ 1 on M such that dη “ ω.

5.1.2 Discrete Differential Geometry

As is customary in foundational studies, we initially confine ourselves to dealing

with finite sets to elucidate non-classical behavior. This means that contextuality is

initially addressed in finite structures, as are the usual versions of generalized contextuality.

Furthermore, many GPTs, such as the classical one, feature edges that are obviously not

smooth. Therefore, we need to take a step back and seek a way to incorporate contextuality

into a formulation that is compatible with these conditions. This is the role of discrete

differential geometry, which we will now briefly review.

An operational equivalence, as defined through a linear condition as above,

encodes a discrete loop in its respective space. Contextuality is expressed in how the

functions ξ, Γ, and µ deal with such loops. The noncontextual conditions can be thought

of as discrete parallel transport of the probability functions that present no phase in a

closed loop. Contextuality, as the violation of such conditions, is the discrete phase in each
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set. To formalize it, we will employ discrete differential geometry, or DDG [Crane et al.

2013,Grady and Polimeni 2010].

The formalism of DDG arises from the need for discrete methods to describe

approximately smooth manifolds, as in computer graphics and geometry processing. While

it’s always possible to triangulate a smooth manifold, DDG, without imposing the usual

differential structure, enables the study of more general topological manifolds known as

piecewise linear manifolds.

We begin with a piecewise linear manifold M “
ď

n

Cn, composed of sets of n-

simplices Cn. An n-simplex is treated as an n-dimensional “unit of space”, and the topology

is derived from the topology of the simplicial complex. To be valid as an approximation,

each simplex is regarded as the tangent space of a point in a hypothetical smooth manifold.

For calculus operations on this simplicial complex, we can introduce the formalism of

discrete differential forms, which can be loosely understood as a method to quantify the

“size” of the simplices. Discrete differential forms are defined as linear duals of the simplices,

denoted by Cn representing the set of n-forms. If ω P Cn, then we have

ω : Cn Ñ R

|Sy ÞÑ 〈ω|S〉 “
ż

S

ω.
(5.4)

The first operator in DDG is the boundary B : Cn Ñ Cn´1, defined as usual by

the orientation defined in the simplicial complex

Bta1a2...anu “ ta2...anu ´ ta1a3...anu ` ...˘ ta1a2...an´1u. (5.5)

As an example, a tetrahedron tabcdu has boundary

Btabcdu “ tbcdu ´ tacdu ` tabdu ´ tabcu (5.6)

in an alternate way. The second one is the coboundary d : Cn Ñ Cn`1. It is defined as the

unique linear map that satisfies the generalized Stokes theorem for DDG
ż

BS

ω “ xω|BSy “ xdω|Sy “
ż

S

dω, (5.7)

where the bracket notation will be used to denote the action of a n-form on a m-dimensional

region, n ě m, both for the discrete and continuum cases. See that the integral gives a

pn´mq-form as expected, and 0-forms are identified as scalar.

The homology of the manifold M follows the simplicial homology [Hatcher

2000], and explores the topological structure of M through its simplicial complex structure

and the boundary operator. Once the boundary of a boundary is empty, we have BB “ 0,

and we also obtain the chain complex

0 C0pMq C1pMq C2pMq . . .
B0 B1 B2 B3

(5.8)
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The kernel of Bn, denoted by ZnpMq, will have as its elements the n-cycles, while the image

of Bpn`1q, denoted by BnpMq, will have as its elements the n-boundaries. The algebraic

structure HnpMq “ ZnpMq{BnpMq is the n-homology. It explores the shape of M by

directly studying the “quanta of space”, or equivalently, the tangent space of M that is

locally isomorphic to itself. Non-trivial n-holonomy implies an n-dimensional topological

failure in the simplicial complex.

On the other hand, cohomology deals with the dual of the simplices, the discrete

differential forms, and the coboundary operator. By the property dd “ 0, which follows

from the definition of the coboundary using the generalized Stokes theorem, we have the

cochain complex

0 C0pMq C1pMq C2pMq . . .
d0 d1 d2 (5.9)

The kernel of dn is denoted by ZnpMq, and it comprises the n-cocycles, also known as

closed n-forms. The image of dpn´1q, denoted by BnpMq, comprises the n-coboundaries,

also called exact n-forms. The algebraic structure HnpMq “ ZnpMq{BnpMq is the de

Rham n-cohomology. It involves studying what we integrate on M and how it relates to

the shape of M.

5.2 Differential Geometry of Contextuality

Cohomology studies the failure of solutions to equations of the form dω “ σ,

which reside in the cotangent space. Generally, the equation dω “ σ seeks a global cause

for the local relationship it describes. Our aim here is to identify that contextual behavior

is the inability to obtain such a global solution.

To this end, we demonstrate that it is possible to represent it in its usual

form in discrete differential geometry, with the possibility of using differential geometry

as a generalization. Such a description allows us to have a more natural view of the

phenomenon of contextuality in ontic representations, both because it is mathematically

akin to the well-known mathematics in physical applications and because it allows for

the direct interpretation of mathematical objects regarding what is happening with the

physical model.

5.2.1 Operational Equivalences and Contextuality

Effects, states, and transformations live in a real vector space by construction,

which is isomorphic to its own tangent space. They form convex subsets through the

imposition of convex combinations. This naturally gives rise to piecewise linear manifolds

embedded in real vector spaces.
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Each operational object is represented as an element of these manifolds. In the

tangent space, they are represented not by points, but by vectors. To differentiate the

objects from their vector representation, we will use the bracket notation to the former.

Vectors are oriented pieces, quantities, of the manifold, and therefore reside in C1. The

equations 2.20, 2.21 and 2.22 are just saying that an operational equivalence is a closed

discrete loop γ in the tangent space,

ÿ

s

apαq
s |Psy “ γpαq, (5.10)

ÿ

r

bpβq
r |Ery “ γpβq, (5.11)

ÿ

t

c
pτq
t |Tty “ γpτq. (5.12)

Operational equivalences and closed loops generated by elements of each subset encode

the same information. What was described as two processes generating the same final

process here is depicted as two distinct paths departing and arriving at the same point.

The rearrangement under linear conditions turns the paths into a loop.

The noncontextual conditions presented in equations 2.23, 2.24, and 2.25 are

defined by probabilistic functions ξ, Γ, and µ, indexed by ontic variables λ P Λ. They live

in the cotangent space as differential forms, acting on vectors and giving us a probability.

Rewriting equations 2.23, 2.24, and 2.25, we obtain

φpαq “
ÿ

s

apαq
s µλpPsq “ xµλ|

˜ÿ

s

apαq
s |Psy

¸
“ 0, (5.13)

φpβq “
ÿ

r

bpβq
r ξλ1pErq “ xξλ1 |

˜ÿ

r

bpβq
r |Ery

¸
“ 0, (5.14)

φpτq “
ÿ

t

c
pτq
t Γλ1λpTtq “ xΓλ1λ|

˜ÿ

t

c
pτq
t |Tty

¸
“ 0, (5.15)

for all λ and λ1. The noncontextual conditions become just the valuation of the 1-forms

given by the functions ξ, Γ and µ in each space given by the ontic representation to

preserve the flat behavior of the vector spaces involved. In other words, we can understand

such functions as potential vector fields in our discrete space, and ask for the preservation

of the convex combination in the sense that the phase φ “ 0 when evaluated on a loop γ.

A comment on linearity in the forms. The map that defines the vectors is

E ÞÑ |Ey, but generally, a vector
ÿ

r

cr |Ery is different from

∣

∣

∣

∣

∣

ÿ

r

crEr

G
, since the latter

can lie outside E . It can also include negative elements, so even the linear operations in

equations 2.20, 2.21, and 2.22 generally lie outside of E . This is necessary to deal with
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noncontextuality: the objective is to classically complete the theory, thus embedding it

into a classical one, where
ÿ

r

cr |Ery “
∣

∣

∣

∣

∣

ÿ

r

crEr

G
.

An important part of this construction is the immediate application in non-

discrete loops. For any loop γ, we can integrate the differential form representing the

valuation function of the ontic representation, obtaining a phase φ. As we will see, in

quantum theory this phase is already a well-studied non-classical phenomenon.

In summary, the present approach captures the sets of operational objects

— preparations, transformations, and effects — and represents them as piecewise linear

manifolds. A straightforward way to achieve this is by utilizing the real linear space

representation of the generalized approach and restricting it to convex sets. The tangent

space of each manifold corresponds to the respective real linear space itself, but now

unrestricted to the convex sets. In this space, operational objects are represented as

vectors, and an operational equivalence corresponds to a loop. Given a classical ontological

representation, we have a probabilistic valuation function, which resides in the cotangent

space as a differential form. It is the failure of this form to respect the loop, by presenting a

non-trivial phase, that characterizes contextuality, consistent with the generalized approach.

5.2.2 Schrödinger’s View: Geometric Contextual Behavior

Let’s keep our model in a flat space, such as understanding it as a submodel of

a classical theory. This assumption is the trivial extension of the convex set to all vector

spaces without any topological failure. Without such failures, all loops are just boundaries,

γ “ BS, and noncontextuality conditions can be rewritten as

xµλ|BSαy “ 0, (5.16)

xξλ1 |BSβy “ 0, (5.17)

xΓλ1λ|BSτy “ 0, (5.18)

in the language of differential forms. Here we can use Stokes theorem to define the

coboundary operator and get

xdµλ|Sαy “ 0, (5.19)

xdξλ1 |Sβy “ 0, (5.20)

xdΓλ1λ|Sτy “ 0. (5.21)
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Again, this is possible because we are in Rn, with states, effects, and transformations

represented by vectors in its tangent space, making sense of Sα, Sβ, and Sτ as regions in

Rn.

In these conditions, every closed differential form is exact: if xdξλ1 |Sy “ 0 for

all regions S, then dξ1
λ “ 0, which means it is closed and thus exact, ξλ1 “ dcλ1 with cλ1

a function. The failure of noncontextual conditions implies that ξλ1 “ dcλ1 ` ωλ1 , where

dωλ1 ‰ 0, and by

xdξλ1 |Sβy “ xddcλ1 |Sβy ` xdωλ1 |Sβy
“ xdωλ1 |Sβy

(5.22)

we see that ωλ1 is the connection that generates contextual behavior, and Fλ1 “ dωλ1 as

the curvature 2-form. The same holds for states and transformations.

Theorem 6. Noncontextuality for measurements (transformations; states) of an ontic

representation is equivalent to a null contextual curvature 0 “ Fλ1 “ dξλ1 (respectively

0 “ Fλ1λ “ dΓλ1λ; 0 “ Fλ “ dµλ) for all hidden variables that index it.

Geometrically, we can view each valuation and set of objects as defining a fiber

bundle, with R regarded as a commutative group. As an R-bundle, it is isomorphic to the

trivial bundle Rn ˆR, and with the restriction E ˆ r0, 1s well defined (and analogously for

T and P). The curvature F is in the lifting by the valuation function of the set of objects

in the fiber bundle.

In this view there is no topological failure; it is a geometrical question. It is

analogous to electromagnetism, with an electromagnetic tensor F that can be written

through holonomic loops [Rosenstock and Weatherall 2016,Weatherall 2016]. The geomet-

rical view identifies contextuality with non-trivial holonomy of the contextual connection

ω.

Example 22. The Sheaf approach [Abramsky and Brandenburger 2011], as well as the

Kochen-Specker contextuality [Kochen and Specker 1967], impose a classical structure on

local events by forcing them to be elements of their Boolean completion. In the Sheaf

approach, this is done by imposing the sheaf properties on the presheaf of events that encode

the outcomes. Since events are treated deterministically, they are identified as vertices

in a classical GPT. Once completed in a Boolean structure given by the classical GPT,

any contextual behavior is expressed in the valuations. For example, it is the presheaf

that defines the distributions that need to be studied to verify the model’s contextuality.

Therefore, in its construction, they use Schrödinger’s view.
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5.2.3 Heisenberg’s View: Topological Contextual Behavior

Let’s reject the use of curvature to explain contextuality. This means that we

want a valuation to satisfy the properties of a classical probability distribution, satisfying

Kolmogorov’s axioms. Thus, F “ 0, and contextuality is not a correction in the valuation

but lies in a different part of the model.

Theorem 7. If F “ 0, then contextuality of an ontic representation is equivalent to

monodromy.

Proof. Contextuality implies a correction in the valuation, once that by construction the

form dc satisfies the noncontextuality conditions. Thus the valuation must be dc ` ω

with φ “ xω|γy. As F “ dω “ 0, the 1-form must be closed but not exact to show any

non-trivial phase φ, which only happens when the loop γ is not the boundary BS of a

region S when seen by the valuation. In other words, the valuation cannot be defined in S,

implying that the ontic representation in Rn does not preserve the topology induced by the

set of objects E , P or T . The form ω capts such topological failures through monodromy

φ, once we cannot access these topological failures.

Without curvature, we still need to define a correction ξλ1 “ dcλ1`ωλ1 , with F “
dωλ1 “ 0. But now closed forms cannot be exact, which means ωλ1 is a representation of a

topological failure. Specifically, it represents a non-trivial element of the first cohomological

group rωλ1s P H1 defined on the set of objects. In the topological view, even with the fiber

R and with the restriction E well defined (and analogously for T and P), the fiber bundle

is not trivial. The basis is not topologically trivial, and so is the fiber bundle. And this is

what the valuation detects.

The topological view allows us to generalize results from the standard contex-

tuality framework to the generalized one [Montanhano 2021].

Theorem 8. The R-fiber bundle described by a model on an ontic representation is trivial

in the topological view and so noncontextual if and only if any local section admits an

extension to a global section.

This result follows from the equivalence of the extendability of local sections

and triviality for the R-fiber bundle. The ontic representation is noncontextual for a

given valuation if and only if the fiber bundle presents no phase, which is equivalent to

present extensions to global sections for any ontic variable λ (or the pair λ and λ1 for

transformations), implying the fiber bundle being trivial.

Por ser fiel a contextualidade generalizada, na visão topológica temos a fiel

identificação da contextualidade como um fenômeno topológico. A abordagem aqui descrita

refina o uso de ferramentas cohomologicas para identificar contextualidade na abordagem
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de sheaf [Abramsky, Mansfield and Barbosa 2012,Abramsky et al. 2015], que sofre com

modelos contextuais não sendo identificados como tais. Consequentemente, ele também

generaliza a identificação de uma topologia não-trivial com o comportamento contextual

da abordagem homotópica [Okay et al. 2017,Okay and Raussendorf 2020].

Being faithful to generalized contextuality, the topological view of this approach

provides an accurate identification of contextuality as a topological phenomenon. It

refines the use of cohomological tools to identify contextuality within the sheaf approach

[Abramsky, Mansfield and Barbosa 2012, Abramsky et al. 2015], which struggles with

contextual models not being properly recognized as such. Consequently, it also generalizes

the identification of non-trivial topology with the contextual behavior in the homotopical

approach [Okay et al. 2017,Okay and Raussendorf 2020].

Example 23. In quantum theory, Gleason’s theorem relates the properties of the set

of effects of a quantum system of dimension 3 or more with the quantum probabilistic

valuation given by the Born rule. To do this, it imposes certain conditions.

The first is that the set of effects will be studied in its representation as rays

of a Hilbert space. The second is that all states with probabilistic valuations over the set

of effects are valid, thus defining the physical states. The third condition imposes the

continuity of such valuation, thus relating the topology of the set to what the valuation is

capturing. The last condition is the noncontextuality of the valuation, which is nothing

more than the imposition that the valuation does not carry the contextuality of the effects,

i.e., there is no curvature.

When making the ontic representation, the condition of no curvature is main-

tained, but the representation cannot capture all the details of quantum theory. We conclude

that the Born rule in the standard representation of a quantum system arises from Heisen-

berg’s view, imposing all the contextuality in the topology of the set of effects. In such a

topology, the contextuality is encoded, and it is by exploring its expressions that fundamen-

tally quantum phenomena can be identified.

5.2.4 The Nature of Contextuality: A Choice Between Topology and Geometry

Contextuality is a property presented by an ontic representation. A theory will

be contextual if and only if no ontic representation can describe it. A representation of a

given set of objects, be it effects, states, or transformations, occurs in two ways: in the

encoding of the processes; and in the encoding of the valuation function that acts on these

processes to give us the probabilities. Taking all processes and levels of encoding into

account, there are many different ways contextuality can be encoded in the representation.

This shows its lack of empirical fundamentality and guides us to what is truly fundamental

in the model. That’s what we’ll discuss here.
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Contextual behavior can be encoded in each part of the process depending

on the ontic representation, but that’s not what we’ll address here. What we aim to

demonstrate here is the structure that the process/valuation levels possess, and the

freedom of representation that it allows. We can codify what is going on with a diagram

(here I will use E , but the same can be said about P and T ), , where contextuality arises

from the non-commutativity of the diagram

E r0, 1s

S

p

i ξ
λ1 . (5.23)

The three elements, the system E , the classical representation S, and the target for

valuation r0, 1s, are all fixed, as is the map p. As contextuality is the failure of one of

the maps to keep the data of the system, the inclusion i or the valuation ξλ1 of the

representation fail.

The first case, failure of inclusion, is the usual interpretation in terms of

contextuality. This is the topological view, where we interpret that it’s the inclusion of the

system that causes the problem. The noncommutativity of the diagram is fundamental,

and it cannot be understood in any other way than as a departure from our notion of

reality, as in the participatory-realistic interpretations of quantum theory. A justification

for its use is that a loop could not be immediately written as the boundary of a region since

an inner region is not supposed to exist in the first place, at least not for every loop. Thus,

the curvature could not be defined. To avoid such a problem, the extreme is to suppose

F “ 0 everywhere, which one can interpret as the non-existence of a correction in the

valuation changing the classical behavior. It is an intrinsic description, whose contextuality

depends on the set of objects itself. Therefore, we have failures in reality itself, which

defines the topological description as an participatory-realistic point of view.

The second case, the failure of valuation, imposes embedding. It’s the inadequate

valuation that causes problems. All the properties of the original system can be captured

once one uses a modified valuation. It’s not just hidden variables of the ontic representation;

it also needs new rules to extract the probabilities. This is what happens in intrinsic-

realistic interpretations of quantum theory, and this is the point of the geometrical view.

The trivial fiber bundle is imposed, but curvature in the connection creates the phases

by holonomy, following the Ambrose–Singer theorem. The geometrical view changes the

valuation function by a generator of non-classicality. It can be thought of as curvature of

the valuation on a set of classical objects. It’s a modification of our classical laws by a

hidden nature.

Both notions are equivalent, and one can argue that both causes can coexist.

Choosing to what extent the topological and geometric causes generate non-classicality is

just a matter of representing a deeper phenomenon: contextuality. While there are no ways
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to differentiate between different representations by verifying that they aren’t faithful to

some level of reality yet to be explored, for example, empirically verifying in which ontic

representation the model works, it doesn’t make much difference what is actually going on

at the ontic level.

5.3 Applications of the Differential Approach

We are in a position to apply the understanding of the contextuality that the

description by differential geometry provides us. The strategy in all of them is simple:

to look for where the 1-form that carries the contextual behavior is in the respective

formalism and, respecting its constraints, explore where it is expressed.

Each application has a preference for one of the views we described earlier. It’s

important to keep in mind that this is a choice for building each application, but it’s not

the natural description in which contextual behavior is encoded. Such a description is

indifferent to interpretations, and as we’ll see, it presents itself differently for each of the

interpretations of quantum theory.

5.3.1 Contextual Fraction

The contextual fraction [Abramsky, Barbosa and Mansfield 2017,Barbosa et al.

2019] was introduced in the Sheaf approach [Abramsky and Brandenburger 2011]. Usually,

it is applied in response to the limitations of this approach, only exploring the contextuality

of effects, known as measurement contextuality, and imposing outcome-determinism. To

achieve this, we fix a state and do not apply any transformation. An ontic representation

will have this form

ppEq “
ż

Λ

µpλqξpE|λq, (5.24)

with µ a measure on the set of ontic variables Λ. Due to the condition of outcome-

determinism, the valuation function ξ will assume only the values 0 or 1, and, for simplicity,

we assume the finiteness of the sets.

With these constraints, the contextual fraction can be used in its usual form,

and we can express the probability p as a decomposition

ppEq “ pNCFqpNCpEq ` pCFqpSCpEq, (5.25)

with the noncontextual fraction (NCF) and the contextual fraction (CF), where pNC
represents the probabilistic distribution of a noncontextual model, and pSC represents the

probabilistic distribution of a strong contextual model, the part without any noncontextual

contribution. For the definition of CF and NCF, we seek to maximize the quantity of

NCF among the set of distributions in the ontic variables µ that can be used. Even with
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the maximization of NCF, the distributions pNC and pSC are not uniquely defined. The

fractions also satisfy the sum property of probability

1 “
ÿ

r

ppErq

“ pNCFq
ÿ

r

pNCpEq ` pCFq
ÿ

r

pSCpEq

“ NCF` CF,

(5.26)

exposing the meaning of CF and NCF being referred to as fractions.

Just like the Sheaf approach, contextual fraction follows Schrödinger’s view,

embedding the effects in a classical GPT. The outcome-determinism condition implies

that the valuation function must have Boolean values, thus forcing the effects to be fixed

on the vertices of the effect hypercube. To expose contextuality, we need to choose the

probabilistic distribution over ontic variables that maximizes NCF.

The maximization is in terms of µ, and it pertains to how the valuation of

the ontic representation encodes the behavior of the effects, given by the probabilistic

weight of µ when embedding the set of effects in the ontic representation. For the valuation

function ξ, we have that the previous conditions fix the set Λ and its relation with E , thus

also fixing ξ. This means that the 1-forms are not subject to maximization, as they are

intrinsic to the ontic representation previously fixed.

We can do the decomposition of the valuation ξ “ dc` ω

ppEq “
ż

Λ

µpλq xdcλ|Ey `
ż

Λ

µpλq xωλ|Ey , (5.27)

that also satisfies the sum property of probability

1 “
ÿ

r

ppErq “
ÿ

r

ż

Λ

µpλq xdcλ|Ery `
ÿ

r

ż

Λ

µpλq xωλ|Ery . (5.28)

Let’s assume that the maximization of NCF has already been done. Identifying

the contextual and noncontextual parts of the previous equation as those containing ω

and dc, respectively, we get the fractions

NCF “
ÿ

r

ż

Λ

µpλq xdcλ|Ery , (5.29)

CF “
ÿ

r

ż

Λ

µpλq xωλ|Ery , (5.30)

and the probabilistic distributions

pNCpEq “
ş

Λ
µpλq xdcλ|Eyř

r

ş
Λ
µpλq xdcλ|Ery

, (5.31)
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pSCpEq “
ş

Λ
µpλq xωλ|Eyř

r

ş
Λ
µpλq xωλ|Ery

, (5.32)

which are not unique since they depend on the choice of µ in the set that maximizes NCF.

In particular, a property of the contextual fraction is that the maximal violation

of a generalized Bell inequality of the model is given by CF [Abramsky, Barbosa and

Mansfield 2017]. Since CF “
ÿ

r

ż

Λ

µpλq xωλ|Ery, we have the explicit dependence on the

contextual correction of the valuation.

5.3.2 Interference in Quantum Measure Theory and Quantum Theory

Interference is a natural property of quantum theory when described by wave

functions. Richard Feynman said that interference “contains the only mystery” of quantum

theory [Feynman, Leighton and Sands 1965]. Rafael Sorkin [SORKIN 1994,Sorkin 1995]

introduced a generalized notion of interference as a correction to the standard measure

theory based on Kolmogorov axioms, by modifying the disjoint rule to

ppA\Bq “ ppAq ` ppBq ` I2pA,Bq (5.33)

for two disjoint sets,

ppA\B \ Cq “ppAq ` ppBq ` ppCq
´ I2pA,Bq ´ I2pB,Cq ´ I2pA,Cq
` I3pA,B,Cq

(5.34)

for three disjoint sets, and so on, following analogously to the inclusion-exclusion principle

in combinatorics.

With valuation functions that allow interference terms In, we have a gener-

alization of the usual measure theory, which is called quantum measure theory. The set

on which the probability measure acts is taken as a measurable set, and since we are

dealing with the finite case, it has a natural Boolean structure. This implies that we are

embedding the processes into a classical GPT and imposing that any correction must be

expressed in the valuation function, specifically in the interference terms In. Therefore,

quantum measure theory follows Schrödinger’s view.

Here our interest will be in how such formalism can be used to capture con-

textuality, as already explored in Refs. [Craig et al. 2006,Dowker and Ghazi-Tabatabai

2008,Dowker, Henson and Wallden 2014].

Example 24. Quantum theory presents only the correction I2 fundamentally non-trivial,

which can be seen clearly in the path integral approach. The form of I2 follows directly from

the calculation of quantum probabilities from the Born rule. For sharp effects e and e1,
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which we assume are not in the same subspace to be disjoint, and a pure state ρ “ |ρy xρ|,
we can write

| xe_ e1|ρy |2 “ xe_ e1|ρy ` xρ|e_ e1y
“ | xe|ρy |2 ` | xe1|ρy |2 ` Iρ2 pe, e1q

(5.35)

with

I
ρ
2 pe, e1q “ xe|ρy xρ|e1y ` xe1|ρy xρ|ey (5.36)

the symmetric interference function.

The relationship with the interference of a double-slit experiment follows from

treating each effect as a distinct path from the slit, which is explored by a state ρ. In this

case, we can identify the isolated terms | xe|ρy |2 and | xe1|ρy |2 as closed paths that loop

back on themselves. As for the term I
ρ
2 pe, e1q, it comprises two terms accounting for the

two directions in which we can loop through the two paths. Interpreting them as “passing

through both paths simultaneously” is what generates the notion of interference, as well as

the non-classicality that such a term may carry.

For sharp effects, only I2 is non-trivial, which follows from Specker’s Principle

[Specker 2009,Cabello 2012]. For unsharp ones, high-order interference appears, but they

are non-fundamental once they can be rewritten from the intersections (^) and I2.

Interference terms are necessary but not sufficient for contextualilty in a

model. For instance, classical systems can exhibit interference, imposing a correction term

on distributions. This term is given by classical correlations that are generated when

marginalizing a GPT that captures all classical details into a smaller GPT through a

marginalization process that acts as coarse graining. The difference is that the terms In
need not be non-negative, which, for the case of outcome-determinism and restricted to

effects, is a sign of contextualilty [Abramsky and Brandenburger 2011,Spekkens 2008].

For the ontic representation given by quantum measure theory, the set of

objects in the ontic representation is such that any correction to Kolmogorov’s axioms

follows from the connection ω. This follows from the property of dc satisfying the axioms

in the ontic representation when subjected to the condition of outcome-determinism, as it

arises from a probabilistic distribution over a set of effects of a Boolean GPT. Any part of

ω that ends up being classical follows from the non-refinement of the ontic representation,

as discussed in the previous paragraph.

Aware of this limitation, we can see how ω appears as the generator of the

interference term. Suppose the effects E, E 1, and E _E 1 are not in a Boolean sub-algebra.
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Since dcλ1 satisfies Kolmogorov axioms, we have that

ppE _ E 1q “
ż
dµ xξ|E _ E 1y

“
ż
dµ pxdc|E _ E 1y ` xω|E _ E 1yq

“
ż
dµ pxdc|Ey ` xdc|E 1y ` xω|E _ E 1yq

“
ż
dµ xξ|Ey `

ż
dµ xξ|E 1y

`
ż
dµ pxω|E _ E 1y ´ xω|Ey ´ xω|E 1yq

“ppEq ` ppE 1q`
ż
dµ pxω|E _ E 1y ´ xω|Ey ´ xω|E 1yq .

(5.37)

So, for disjoint effects,

I2pE,E 1q “
ż
dµ pxω|E _ E 1y ´ xω|Ey ´ xω|E 1yq (5.38)

showing that the failure of ω to satisfy the Kolmogorov disjoint axiom is the cause of

interference. Note that what is measured in the geometrical view is the failure of the

parallelogram law of the valuation function captured by the distribution µ that represents

the relationship between the state and the ontic representation. The analogous construction

can be made with high-order interference.

As shown in [Anastopoulos and Savvidou 2002], in quantum theory, the de-

coherence functional [Dowker and Halliwell 1992] is determined by geometric phases.

However, only its real part possesses “reality” due to being Hermitian, a property that

arises from strong positivity [Wilkes 2019]. This real part induces interference, which is the

primary focus of quantum measure theory [SORKIN 1994,Sorkin 1995,Surya and Wallden

2008,Gudder 2009]. Therefore, the connection between interference and geometric phase is

profound in quantum theory, and it can be utilized to detect non-classicality [Asadian et

al. 2015].

Example 25. Noncommutativity in sharp quantum theory is where contextual behavior

on effects is hidden. This follows from the capacity of using unitary transformations in

relation to a fixed effect to define any other effect. As incompatibility of sharp effects is

necessary for contextuality, and it is equivalent to noncommutativity [Heinosaari, Reitzner

and Stano 2008,Heinosaari and Wolf 2010], the non-exact part ω of the valuation depends

on the non-trivial commutator.

For two noncommutative unitaries, U and U 1, the structure constant depends

on ~, and defines a loop U´1U 1´1UU 1. Noncommutativity implies a geometric phase that

can generate an interference correction, thus given by the non-exact term ω. The limit



Chapter 5. A Differential Approach to Contextuality 86

~Ñ 0 cancels the non-classical behavior, which means we can write ω “ ~ω̃, to explicitly

denote its dependence on ~,

ξλ1 “ dcλ1 ` ~ω̃λ1 . (5.39)

This also holds for states and transformations, which can exhibit non-classicality,

as exemplified by the Bargmann invariants [Bargmann 1964] and the Aharonov–Bohm

effect [Popescu 2010]. For this, one can use unitary transformations on them, analogous

to what has already been done in addressing the relationship between contextuality and the

Wigner function representation of quantum theory [Kocia, Huang and Love 2017,Kocia

and Love 2017,Kocia and Love 2018].

5.3.3 Signed Measures and Embedding of GPTs

The relationship between contextuality and negativity has already been explored

in Refs. [Abramsky and Brandenburger 2011,Spekkens 2008], as well as the relationship

between embedding and contextuality in Refs. [Shahandeh 2021,Schmid et al. 2021]. The

unification of contextuality, embedding, and negativity was achieved in Ref. [Schmid et al.

2020], within the formalism of GPTs. Our goal here is to discuss how the term ω and the

two views on its nature allow us to understand such relationships, given that a classical

ontic representation is defined by the commutation of diagram 5.23, and each view of

noncommutativity explains the origin of these non-classical notions.

As shown in Ref. [Spekkens 2008], the necessity of signed measures for all

ontic representations is equivalent to the violation of the noncontextual conditions, thus

implying the existence of non-trivial phases in the valuation maps. It is in the correction

term, which arises from the curvature in Schrödinger’s view, that codifies the negative

part of the valuation function. Heisenberg’s view explains why we cannot access negative

probabilities. When translated into Heisenberg’s view, the negative values of the valuation

become topological failures; therefore, they are not within the set of physical processes.

In the geometrical view, a classical model cannot have non-trivial curvature to correct

the valuation, and any theory that exhibits such curvature for all ontic representation

cannot be represented by a classical model. Since the necessity of negative values implies

the existence of curvature that does not preserve the valuation function, we conclude that

it characterizes the contextuality of the theory.

The embedding of the model into a classical GPT is equivalent to an ontic

representation. In GPTs, such an embedding is a set of linear maps, each mapping to a

set of objects that form the processes, such that the valuation is preserved. One way to

determine if a theory is contextual is to verify that for every embedding in any classical

GPT, a valuation map is not preserved. Another way is to show that if the map preserves

the valuation functions, then for any embedding, at least one set of objects will be larger
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than the respective set of objects in the classical model. In the topological view, a classical

model exhibits no topological failure, thus monodromy is impossible, and a theory with

monodromy for all ontic representations cannot be represented by a classical model. The

impossibility of embedding while preserving the valuation function implies the expression

of these failures by imposing the valuation on them, which also characterizes contextual

behavior.

All these non-classical notions are just different ways to explain to our classical

eyes what contextuality is. They are just different representations of this phenomenon.

5.3.4 Generalizing Vorob’ev Theorem

For measurement contextuality satisfying outcome-determinism and no-disturbance,

the measurements can be represented by a hypergraph of compatibility, where measure-

ments are vertices and the contexts with mutually compatible measurements are the

hyperedges connecting them1. Vorob’ev theorem [Vorob’ev 1959] imposes conditions for

the hypergraph of compatibility to only describe noncontextual models. In the language of

the hypergraph of compatibility, it takes the following form2:

Theorem 9. A hypergraph of compatibility pM, Cq has only noncontextual behavior if and

only if it is acyclic, which means it can be reduced to the empty set by the operations known

as Graham’s reduction:

• if m P C belongs to only one hyperedge, then delete m;

• if C ( C 1, with C,C 1 P C, then delete C.

We can rethink what these operations mean for the structure of the measure-

ment’s effects. Remembering that we are considering each context with a finite set of

outcomes. Let us also assume, without loss of generality, that the set of outcomes is the

same for each the measurement. A context is identified by its σ-algebra of local events,

with the elements of the σ-algebra having the structure of a set of deterministic effects of

a classical GPT, thus a Boolean structure. In other words, each context can be defined as

a classical sub-set of effects.

The separation of an effect into its context and the outcome it codifies turns

the set of effects in a fiber bundle with a base set given by the compatibility hypergraph

and the fibers as a finite σ-algebra. Vorob’ev theorem being restricted to the compatibility
1 See Ref. [Montanhano 2021] and references therein for the construction of these scenarios.
2 Here, the Graham reduction acts on a hypergraph, allowing the deletion of a sub-hyperedge σ ( C

without requiring the deletion of the hyperedge C. This is not possible in simplicial complexes, as in
Ref. [Barbosa 2015], which restricts the Graham reduction to its first step. For the construction that
follows, we will use the full version of the Graham reduction on hypergraphs, as already applied in
Ref. [Budroni, Miklin and Chaves 2016].



Chapter 5. A Differential Approach to Contextuality 88

hypergraph is equivalent to identifying that the Boolean structure of the fibers in the

bundle does not interfere with a necessary and sufficient condition for always having

noncontextuality. Even as a property projected onto the base set, it is still a property of

the total set, the set of effects.

As a fiber bundle, we can define the projection π : E Ñ C projecting the set of

effects into its contexts, where E “ O ˆ C means the effects can be rewrite as a pair of

outcome and context. The projection maps the σ-algebra of outcomes of a context to the

σ-algebra given by the context and its subcontexts. The measurements are nothing more

than the atoms of this resulting structure. With this fact in mind, it is easy to rewrite

Graham’s reduction:

• if an atom is just in one σ-algebra, we can ignore it.

• if a sub-σ-algebra is proper, we can simplify it as a trivial σ-algebra, consequently

coarse-graining the σ-algebra which contains it.

We can initiate this version of Graham’s reduction without performing the projection,

by considering the effects as the atoms. The projection follows from the reduction itself,

specifically from the second item, where the proper sub-σ-algebra of the outcomes O is

erased. Therefore, Graham’s reduction and Vorob’ev theorem can be extended to the level

of effects, and are not restrict as a property of contexts.

Measurement contextuality follows from a loop γ in the set of effects. As

any loop in a Boolean structure has a trivial contextual connection when viewed as a

classical GPT, ω “ 0, only loops defined through different Boolean structures can show any

contextuality. Vorob’ev theorem identifies the fact that without such loops, no contextual

behavior appears. Graham’s reduction simplifies the set of effects by erasing the internal

structures of the σ-algebras. For the argument to work such that we can recover the

standard Vorob’ev theorem, we need to make the dependence on contexts explicit in the

set of effects, placing us in Heisenberg’s view, therefore F “ dω “ 0.

Theorem 10 (Generalized Vorob’ev). A ontic representation is noncontextual if its first

de Rham cohomological group is trivial and F “ 0.

Proof. Once F “ 0, we need to use the topological view, and contextuality will appear

as topological failures that cause the monodromy of the probabilistic valuation. If the

first cohomological group is trivial, then there are no differential forms that capture these

failures, thus ω “ 0. Therefore, the ontic representation satisfies the noncontextuality

condition.

To identify the unavoidable contextual behavior of a model, we must exhaust

all possible ontic representations. In other words, all possible valuation 1-forms indexed by



Chapter 5. A Differential Approach to Contextuality 89

the ontic variables must present a cohomological obstruction. For the case of outcome-

determinism, we have a fixed ontic representation, as we discussed earlier, which allows

us to apply the previous theorem and obtain the noncontextuality of the model even

before knowing the valuation functions. Acyclicity is a special case in which, still in the

compatibility hypergraph, we can identify that there is no possibility of there being a loop

that allows the expression of contextual behavior.

An important point is that H1 is defined by the effects, not measurements.

Thus, the intuition that the first homology groups of the compatible hypergraph must

be non-trivial to show contextuality is false, even though the topological view holds that

φ “ xξλ1 |γy ‰ 0 is a failure also detected by H1. For discussion and counterexamples, see

Ref. [Montanhano 2021]. A study on the topological expression of Vorob’ev’s theorem will

be conducted in a future work.

5.3.5 Disturbance and Transition Functions

Disturbing models for measurement contextuality are not standard in almost

all frameworks. A well-known exception is the Contextuality by Default approach [Dzha-

farov, Kujala and Cervantes 2015]. Disturbance is necessary for describing experimental

applications. One way to indirectly address them is to modify the scenario [Amaral and

Duarte 2019], which seems to reflect William James’s point of view on contradiction: when

encountering a contradiction, make a distinction. The idea is to make the contradiction

that disturbance represents explicit in the scenario by adding new maximal contexts

representing the disturbing intersections. Due to its nature of being a discordance in the

intersections between contexts, it is natural to relate disturbance to transition maps in a

suitable approach where the latter are defined, such as in the bundle approach [Montanhano

2021].

A measurement is given by its effects, seen as possible events, not necessarily

deterministic. In the deterministic case, the set of effects has a natural σ-algebra struc-

ture. Seen in this way, no-disturbance is exactly the triviality of the transition maps on

intersections of σ-algebras. The set of measurements covers the set of effects and can be

seen as charts of an atlas. Each deterministic measurement is a classical GPT in itself, or

in other words, there exists an embedding of it as an entire classical GPT.

The geometrical view, where the contextual phases follow from holonomy,

provides a direct approach to deal with disturbance, given that holonomy can be encoded

in an element of a commutative group, the group of automorphisms of R. For the 1-form

ω, one can express such a phase as stated in [Waldorf 2020]

HolpBSq “ exp pxω|BSyq (5.40)

where we identify xω|BSy as an element of the Lie algebra of the Lie group of transformations
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of R. For discrete cases, one can embed the group in the Lie group of transformations of

R and the same argument follows. As a commutative group, one only needs to track each

chart, here σ-algebra,

HolpBSq “ exp

«ÿ

r

xω| pbr |Eryq
ff
. (5.41)

Let’s consider the disturbing case now. Due to the presence of disturbance, it

is not possible to have a global ontic representation, as it erases disturbance since classical

GPT is non-disturbing. It can only be done locally for each chart. Similar to in differential

geometry, the non-triviality between intersections defines the transition maps tr,r1 , with the

indices r and r1 denoting the charts, which lead from one chart to another. The holonomy

transformation can then be calculated, and it will be given by

HolpBSq “
ź

r

exp rxω| pbr |Eryqs
ź

r

tr,r´1, (5.42)

where commutativity was used to rearrange and combine the transition maps. They can

be put in the Lie algebra form, tr,r´1 “ exppηr,r´1q, to rewrite the holonomy term as

ÿ

r

xω| pbr |Eryq `
ÿ

r

ηr,r´1. (5.43)

What the transition map is doing in the geometrical view is taking one classical

GPT into another, carrying the effects on themselves, but changing the valuation. This

means that just as in contextual behavior, a correction term that is sensitive to chart

changes should be included in the valuation. For this adjustment, we can define a 1-form

|ηy that satisfies ηr,r´1 “ xη| pbr |Eryq, and rewrite the valuation function as

ξ “ dc` ω ` η. (5.44)

The first term values the global contribution, the second term values dependencies on

parallel paths, while the third term values changes in an effect when transitioning from

one chart to another.

The disturbance form η is on the same footing as contextuality, which is not

surprising, as charts are nothing more than contexts. In a certain sense, we have that it is

the same phenomenon, the dependence on contexts of the valuation. The difference is that

ω deals with paths, while η is pointwise on the effects. For this reason, just as the 1-form

ω depends on the ontic representation to be defined, the 1-form η depends on the atlas to

be defined.

The explicit construction of examples of this formalism to deal with disturbance

as transition maps will be done in a subsequent work. However, we can already identify

its relationship with extended contextuality [Amaral and Duarte 2019]. Adding contexts

and duplicating measurements that show disturbance is nothing more than turning the
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form η into an effective form ω of an ontic representation without disturbance by making

effects in the intersection into paths. Thus, the disturbance becomes contextuality. It can

explain the fact that disturbance consumes contextual behavior, as already noted in the

nonlocality literature [Abramsky, Brandenburger and Savochkin 2014,Blasiak et al. 2021].

In the same way as in contextual fraction, we can think of an analogous

quantifier for disturbance. Let’s suppose here that we already have the valuation ξ defined

in a fixed ontic representation, just as in the case of contextual fraction, which implies

that we already have c, ω, and η. The disturbance fraction (DF) will be given by

DF “
ÿ

r

ż

Λ

dµpλq xηλ|Ery (5.45)

through reasoning analogous to that of contextual fraction. Similarly, an induced maximally

disturbing model is given by

pDpEq “
ş

Λ
dµpλq xηλ|Eyř

r

ş
Λ
dµpλq xηλ|Ery

, (5.46)

with p “ pNCFqpNC ` pCFqpSC ` pDFqpD, where pDpEq concentrates all the disturbance.

The conditions for the explicit construction of this disturbance fraction, as well as its

relation to other proposals in the literature [Vallée et al. 2023], will be addressed in a

subsequent work.

5.3.6 Contextuality in Interpretations of Quantum Theory

An interpretation of quantum theory does not aim solely to create models for

isolated processes, but rather to create a consistent framework for the entire quantum

theory. The goal is to present an ontic structure and probabilistic valuation functions

capable of explaining quantum phenomena, even if some properties understood as classical

need to be violated.

At the core of all interpretations lies the measurement problem, the fact that

a measurement does not follow from the standard evolution of the theory. This problem

arises from the incompatibility of measurements and the impossibilities they generate.

Contextuality is at the root of the measurement problem; indeed, it is the phenomenon

that prevents a classical ontology, and it is the phenomenon that interpretations indirectly

deal with.

The number of interpretations grows exponentially, and it is beyond the scope

of this work to address them individually. We will use the classification by Cabello [Cabello

2017], exploring some specific examples a bit more deeply. Our goal is to try to identify

how the interpretations exhibit the correction of contextuality ω. Their incompatibilities

stem from choosing different ontic representations, or even where contextuality appears,

following one of the views presented in section 5.2.
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In [Cabello 2017], we have two types of interpretations, denoted as Type-I

and Type-II. The Type-I interpretations presume an intrinsic realism, that is, they seek

an ontological foundation. Within Type-I, there is a further distinction concerning the

ontological value of the quantum state. The ψ-Ontic interpretations assign ontological

value to the states. We will explore two well-known examples.

Example 26. Bohmian mechanics [Bohm 1952a,Bohm 1952b,Goldstein 2021] generates an

interesting interpretation in which we add a purely non-local term to classical deterministic

dynamics. The quantum state is taken as ontology and broken down into its local classical

and purely non-local quantum parts, which “pilot” classical objects.

The embedding of the theory into a classical framework is exact, with the

correction given by the influence that the global part of the ontology exerts on the local

classical part. This correction alters the valuation that an agent has access to, which is the

restriction of classical determinism with dependence on global properties.

The encoding in classical ontology shows that Bohmian mechanics utilizes

Schrödinger’s view. Describing an extra term to correct classical behavior, and that this

term is non-local, embodies the correction that quantum contextual behavior imposes.

Example 27. The Many Worlds Interpretation [Everett 1957,Vaidman 2021] takes the

quantum state as the ontological object. Reality would be entirely described by a quantum

state that evolves unitarily. Each state is possible as a classical reality, each possibility is a

reality in some world.

We immerse quantum theory in a classical theory, since we give reality to all

states in a multiverse. The difficulty lies in retrieving the quantum valuation rule once

the worlds are taken as real and can be treated as classical. This imposes restrictions on

the classical distribution that introduce correlations between worlds, thus modifying the

valuation function to fit the Born rule.

The Many Worlds Interpretation is expressed through Schrödinger’s view,

which is natural since this interpretation follows from assuming the absolute reality of

Schrödinger’s formalism.

In Type-I interpretations, those that are not ψ-Ontic are ψ-Epistemic. Such

interpretations remove the ontological value of the quantum state, proposing an ontology

that completes this state, resulting in an epistemic value for it. Let’s explore an example

for this case.

Example 28. Consistent Histories Interpretation [Griffiths 1984,Griffiths 2019] treats

events in a classical manner. Quantum theory would be given through a stochastic process

over events, forming histories. It is in the valuation that we have the expression of purely

quantum behavior, with the existence of incompatible histories. To make a measurement,
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the agent needs to choose a set of compatible histories, called a framework, where the

Kolmogorov axioms for classical probability hold.

Thought of as an ontic representation of quantum theory, Consistent Histories

Interpretation embeds the objects of processes in a classical structure. Classical valuation

undergoes modification akin to that presented in quantum measure theory, altering stochastic

behavior beyond the classical. A study of quantum theory in this interpretation seeks means

of recovering quantum statistics through physical principles in valuation functions, since

the events are already fixed.

This is an interpretation that explicitly employs Schrödinger’s view, with con-

textuality expressed in the geometric part given by the valuation of the ontic representation.

Type-II interpretations deal with a participatory realism, where the information

extracted from a system is not intrinsic to it, but rather a result of its relationship with the

observer. They also have a distinction into two types, but of a more epistemological nature.

The Type-II interpretations that deal with knowledge are those that treat the quantum

state as an object that encodes the observer’s knowledge. Let’s look at an example.

Example 29. Relational interpretation [Rovelli 1996,Laudisa and Rovelli 2024] proposes

that ontology lies not in states, but in a relational structure between agents and between

processes. It assumes that state concerns the knowledge of an agent and is no longer

fundamental but rather local. Consistency in this relational structure arises from an agent

having restricted knowledge of the process when positioned as an observer within a system.

For a third party, the system’s evolution alongside the agent would still be the usual unitary

evolution of quantum theory.

There is no completion of the theory, and probabilities are treated as classical.

What is lost is the absoluteness of the quantum state for each process as seen by each

agent, yet with agreement enforced by an underlying fundamental structure. There are no

local contradictions since the measurement is classical, but only when comparing such local

measurements.

This identifies this interpretation as utilizing Heisenberg’s view, but concealing

within the breakdown of the global into local the topological flaws that contextuality identifies.

The Type-II interpretations that deal with belief treat the quantum state not

as knowledge but as an object that encodes the agent’s expectation. Let’s explore an

example of this type of interpretation.

Example 30. Quantum Bayesianism [Caves, Fuchs and Schack 2002,Healey 2023] takes

a step further and presents an interpretation that avoids ontology. Agents’ beliefs are

optimized by imposing the Born rule valuation on the quantum state that represents those

beliefs. This explicit non-realism positions the Born rule merely as a function that selects
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certain events, which only hold if they can be experimentally accessible. This highlights

complete freedom regarding the structure of events.

It is within events that the expression of contextuality occurs, as valuations are

merely classical mechanisms that an agent employs. We are adopting Heisenberg’s view, in

a position where no ontology holds any meaning other than that of mere representation.

The examples in this section make explicit the relationship that the views

presented in section 5.2 have with the interpretations of a non-classical theory. Schrödinger’s

view is the intrinsic-realistic treatment of the model, with ontology being represented

classically, and with all modifications occurring in the valuation of such ontic variables. It is

in the geometry of this valuation that contextual behavior is found, usually as a correction

term when forcing measurements outside the classical scope. Heisenberg’s view is the

participatory-realistic treatment, presupposing that ontology is not classical due to flaws

in accessible propositions. These are “holes” in reality, and it can only be seen in pieces, by

a covering of classical pieces. It is the identification of these “holes” as topological failures

that allows contextuality to appear in valuation even if it is classical.
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6 Discussion of Part II

In this Part, we looked for an alternative description of contextuality in the

generalized approach by constructing a representation of contextuality as a differential

geometry problem.

The approach we used involved identifying the operational equivalences as

discrete loops in the vector space where the objects are represented, and contextuality

for them as the non-preservation of such discrete loops by the valuation functions. This

identification allows the use of discrete differential geometry to deal with contextuality

and naturally extends to non-discrete cases.

There are two different ways in this approach to understand contextual behavior,

different views of contextuality. In the first case, the classical ontic representation is

imposed, which implies the existence of a correction to the valuation function. In the

second case, the classical probabilistic valuation is imposed, thus forbidding a correction

without a fundamental cause, the non-triviality of the topology of the set of objects itself.

Both notions are equivalent, and they are expressed in other concepts of non-classicality:

contextual fraction, interference, signed measures, and non-embeddability. Rethinking

contextuality of an ontic representation allows us to rethink and generalize the Vorob’ev

theorem, and also gives us a natural way to deal with models that violate non-disturbance.

Contextuality is more than just topological [Mansfield 2020], even if it can

be expressed as such if we assume Heisenberg’s view. It is a higher-level phenomenon

than that expressed in representations and interpretations. The choice of how to bring

such a phenomenon to this level can be related to notions of realism. For example [Myers

2021], if we consider Fixed Realism, where there is one model, and the real is what is

true in it, then we impose that contextuality is no longer topological, but geometric as

in Schrödinger’s view. Even if we consider Covariant Realism, where we have equivalent

models, and the real is how things change when one changes the model, still the global

realism would impose a view with correction in the valuation, and not in the events. Now,

if we consider Local Realism, where there are nonequivalent models, and the real is how

to handle disagreement, then we can use this disagreement to bring contextuality to be

encoded at the level of events, allowing the valuation not to be modified.

In the first two cases of realism, Fixed and Covariant, we have an intrinsic-

realistic view, where what matters is the reality itself and how we see it. Examples of

interpretations of quantum theory that are of this type are Many Worlds, Bohmian

Mechanics, and Consistent Histories, with the latter being explicitly of the second case.

The third case, Local Realism, is a participatory-realistic view, where the most important
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thing is a pragmatic description of what is observed. Contextuality is generally presented

in this way, in its nonlocality version. The topological view explains that non-trivial

cohomology is a signal of disagreement, in this case, contextual behavior. It is a matter of

pragmatism, where if we accept the existence of new hidden features, we can recover the

intrinsic-realistic [Biagio and Rovelli 2021].

Some open questions for future exploration naturally follow. The exploration

of the relationship between the curvature of the sets of states, effects and transformations

that naturally appear in quantum theory, and the curvature in Schrödinger’s view is an

important step to make quantum contextuality explicit. More generally, a deep exploration

of models and interpretations, with the explicit construction of their connection and

curvature, or their topological failures. The importance of this exploration goes beyond

the foundations of non-classical theories and their applications, as it would elucidate

the main resource to be explored in emerging technologies. To make contact with such

technologies, a next step would be to explore how the classical limit would be expressed

with the approach presented here, and its relationship with mechanisms that erase the

contextual connection. Furthermore, as disturbance is natural in experimental issues,

the identification of transition maps as representations of disturbance is a way to bring

the formalism of contextuality to such issues. And the identification also points to the

exploration of higher holonomies and their possible relationship with the contextuality

of higher-level processes. An explicit construction of the bundles, especially with the

same language used in other areas of physics like field theory, would enable a greater

understanding of the phenomenon of contextuality. In contact with areas of computation,

an explicit construction of a topological characterization of the Vorob’ev theorem would

also provide a more intuitive view of it.

If the contextuality presented by certain processes causes discomfort when

thought of as something about the questions we can empirically ask, questions that we

unjustifiably assume exist, we can change the point of view and faithfully represent the

same phenomenon with all the questions we assume but with a correction in the answers.

It’s another lesson in humility that nature gives us, but also of our inventiveness. We can’t

ask the questions we want, we don’t have the power to force it into an interrogation. We

only receive answers that we are ready to receive, and only what it allows us to access.

However, we can interpret the answers and represent the reality in which we live. Our

confusion over quantum theory and its contextual behavior maybe stems more from our

arrogance in forcing ourselves into the first case than our wisdom in adapting to the second

case.
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Part III

Wigner and Friends, a Map is Not the

Territory! Contextuality in Multi-Agent

Paradoxes
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Multi-agent paradoxes [Frauchiger and Renner 2018,Nurgalieva and Renner

2020,Vilasini, Nurgalieva and Rio 2019] are violations of agreement among agents about

some global information. They appear in generalizations of the Wigner’s friend (thought

experimental) scenario [Wigner 1961,Deutsch 1985], which itself extends Schrödinger’s

famous thought experiment with his cat [Schrödinger 1935]. The exploration of such

paradoxes and other related phenomena has proven to be significant for the fundamental

understanding of quantum theory and its interpretations [Brukner 2015,Brukner 2018,

Bong et al. 2020, Cavalcanti and Wiseman 2021, Haddara and Cavalcanti 2023, Relaño

2020, Rossi and Soares-Pinto 2021, Guérin et al. 2021, Schmid, Yı̄ng and Leifer 2023].

The formal construction of these paradoxes employs the language of modal logic [Garson

2021,Smets and Velázquez-Quesada 2019,Rendsvig and Symons 2021] to show how (thought

experimental) scenarios, found both in quantum theory and in other non-classical theories

beyond quantum theory, presents a violation in the structure of classical logic.

Contextuality in its standard definition [Kochen and Specker 1967] deals with

global inconsistencies in measurements even when there is local consistency, that is, even

if the model is non-disturbing, generalizing the famous phenomena of nonlocality [Bell

1964] and the condition of no-signaling between observers [Abramsky and Brandenburger

2011]. This concept has been formalized in various ways in the literature, including

the topological [Abramsky and Brandenburger 2011,Abramsky, Mansfield and Barbosa

2012,Abramsky et al. 2015,Okay et al. 2017,Okay and Raussendorf 2020,Montanhano 2021],

the algebraic [Birkhoff and Neumann 1936,Bell 1964,Kochen and Specker 1967,Gleason

1957], the geometrical [Cabello, Severini and Winter 2014, Amaral and Cunha 2017]

and generalizations [Dzhafarov, Kujala and Cervantes 2015, SORKIN 1994, Spekkens

2008,Schmid et al. 2021,Montanhano 2022]. This phenomenon has a significant impact

on the fundamental properties of quantum theory [Döring and Frembs 2020], and is

necessary for any potential computational advantage over classical computers [Schmid et al.

2022,Shahandeh 2021,Howard et al. 2014]. Its formal description employs the categorical

language of sheaves and presheaves [Abramsky and Brandenburger 2011], enabling the

construction of bundle diagrams for each model [Beer and Osborne 2018]. Equivalently, a

contextual model implies the inability to describe it classically, in the sense of an embedding

of propositions into a set of Boolean propositions with probabilistic valuation satisfying

Kolmogorov’s probability axioms, even with additional propositions in the set of Boolean

propositions serving as hidden variables.

Our objective in this part is to construct a map between empirical model and

multi-agent scenarios such that the contextuality of the first and the multi-agent paradox of

the second could be identified as the same phenomenon. To achieve this objective, we will

need to rewrite the Sheaf Approach [Abramsky and Brandenburger 2011], the formalism of

contextuality closest to multi-modal logic, in such a way that we can understand how each

part of the construction of empirical models can be identified in a multi-agent scenario. This
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will require a more refined treatment of multi-modal logic, as concepts like fundamental

truth become elusive when non-classicality is present. Such refinement, which explicitly

utilizes knowledge operators and the trust relation defined between sets and agents, can be

understood as the logical formalization of Alfred Korzybski’s statement “A map is not the

territory” [Korzybski 1933] applied to the knowledge that agents can access. Consequently,

our main finding is that, contrary to what is claimed in the literature [Nurgalieva and Rio

2019], modal logic is suitable for quantum and other non-classical settings. To illustrate

this, we analyze three famous examples that accept the inverse in the constructed map.

The part is structured as follows. The section 7.1 serves to fix the notation used

and give the basics of modal logic. We employ the topological semantics of multi-modal

logic (specifically the S4 system) to initially investigate the application of trust [Nurgalieva

and Rio 2019, Vilasini, Nurgalieva and Rio 2019] when the knowledge operators are

explicitly utilized. This exploration is grounded in the idea that knowledge is inherently

relational—something is not merely known; it must be known by someone. Trust can be

understood as a relational way to define the Truth Axiom; in fact, they are equivalent

when seen by the topology induced by distributed knowledge of the agents, as shown in

section 7.2. We can thus use the knowledge operators and trust to create a translation

between multi-agent scenarios and empirical models up to restrictions. In section 8.1,

we systematically identify the elements of an empirical model as elements of a multi-

agent scenario in multi-modal logic, exploring the implications of this identification, and

discussing the limitations of empirical models in handling generic multi-agent scenarios.

The violation of soundness described in Ref. [Nurgalieva and Rio 2019] that appears as the

failure of classical logic to deal with quantum theory is identified as the hidden imposition

of mutual knowledge on the agents. This implies the conclusion that modal logic fails

to deal with multi-agent paradoxes. Interestingly, this issue disappears when distributed

knowledge is imposed. A similar resolution occurs when translating the contextuality

conditions to multi-modal language, albeit with the cost of lambda-dependence. Next, in

section 8.2, we work out the three examples of multi-agent paradoxes: the Wigner’s friend

scenario, the Frauchiger-Renner scenario, and the Vilasini-Nurgalieva-del Rio scenario, in

topological semantics and translate them to their sheaf representation. We then identify

contextuality as the origin of their paradoxes when they appear. In chapter 9, we provide

insights into the results and explore future research possibilities.
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7 Modal Logic

7.1 Multi-Modal Logic

A modal logic is defined with a set Ω of propositional variables and the usual

set of connectives  (“not”), ^ (“and”), _ (“or”), Ø (“if and only if”), Ñ (“if . . . then”),

besides the use of parentheses.

In addition to the usual connectives, a modal logic has a modal operator called

“possibility” ♦. When combined with  one can define the modal operator “necessity” l

as  ♦ .1

When dealing with a set of agents indexed by a finite set I Q i, one can define

♦i (and consequently li) as the necessity modal operator from the point of view of agent

i. This defines a multi-modal logic, with one modal logic for each agent, but all of them

agreeing on the usual propositional logic structure.

Once the set of propositional variables Ω and symbols are defined, one can

define the formulas as follows:

• All the propositional variables are formulas.

• If A is a formula, then  A, ♦A, and lA are formulas.

• If A and B are formulas, then pA^ Bq, pA_ Bq, pAØ Bq, and pAÑ Bq are also

formulas.

• There are no other formulas.

The collection of propositions Φ is defined by the possible formulas.

7.1.1 Kripke Semantics of Multi-Modal Logic

A Kripke frame 〈Σ, R〉 is a pair consisting of a non-empty set of states or worlds

Σ and a binary relation R on Σ, called the accessibility relation, such that aRb means “b

is possible given a” or “b is accessible by a”.

A relational structure 〈Σ, tRiuiPI〉 is a finite set of Kripke frames with the same

Σ, where each Ri is given by an agent i. In other words, aRib is understood as “b is possible

given a in the point of view of agent i” or “b is accessible by a in the point of view of

agent i”.
1 One can also start with l and to define ♦ as  l , but certain care must be taken when defining the

modal operator in this dual manner [Smets and Velázquez-Quesada 2019].
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A Kripke structure M “ 〈Σ, tRiuiPI , ν〉 is a relational structure 〈Σ, tRiuiPI〉
equipped with a Boolean valuation ν : Ω Ñ PpΣq, with PpΣq the power set of Σ, that

indicate the worlds where a proposition variable is true: given A P Ω, νpAq P PpΣq is

the set of worlds where A is true. The valuation of a generic proposition in Φ obeys the

ordinary rules of propositional logic for each world, plus rules to the modal operators as

we will see.

7.1.2 Rules, Soundness and Completeness

Given a Kripke structure M “ 〈Σ, tRiuiPI , ν〉 with possible worlds w P Σ we

define M,w � φ as the proposition φ being true for the world w P Σ of the Kripke structure

M . Equivalently, we write M,w � φ if w P νpφq in the Kripke structure M .

Sentences, also known as closed formulas, are formulas without free variables.

Let Q be a sentence. The symbol Q � φ, where φ P Φ, can be read as “Q semantically

entails φ”, meaning that if Q is true, then φ is also true. We can have a finite set

of sentences Q1, ..., Qn semantically entailing φ, Q1, ..., Qn � φ, which reads as “if the

sentences Q1, ..., Qn are true, then φ is true.”

Another symbol $ can be read as “Q syntactically entails φ”, meaning Q

proves φ. Again, we can have a finite set of sentences Q1, ..., Qn syntactically entailing φ,

in symbols Q1, ..., Qn $ φ, which is read as “the sentences Q1, ..., Qn prove φ.”

The ordinary rules of propositional logic hold here for each world, and additional

rules for the modal operators in Kripke semantics are added:

• pM,w � lφq Ø @upwRuÑ pM,u � φqq.

• pM,w � ♦φq Ø DupwRu^ pM,u � φqq.

A system satisfies completeness (also called semantic completeness) if Q � φ implies Q $ φ,

and a system satisfies soundness if Q $ φ implies Q � φ.

7.1.3 Knowledge Operators

The valuation ν being unique for all agents reflects the philosophical statement

that truth is independent of any agent; it is absolute. This can be understood as a strong

axiom to determine the distinction between knowledge and belief, with the former being a

direct consequence of truth and the latter not needing any relation to it. This definition of

knowledge is Plato’s “justified true belief.” However, as one can readily see, different agents

have different knowledge, which is a coarse-graining of the fundamental truth. Therefore,

for multi-agent scenarios, we must use the knowledge of each agent to valuate propositions.
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One can define, for an agent, the basic modal operator of epistemic logic K

that means “it is known that”. Let Rpwq “ tu|wRuu, and for A Ď Σ denote M,A � φ as

M,u � φ for all u P A. Them, in Kripke semantics, one add a new rule to define knowledge:

• pM,w � Kφq Ø pM,Rpwq � φq.

In the case of multiple agents indexed by a set I, one can define an operator Ki for each

agent i, where Kiφ can be read as “agent i knows that φ”. We need to add a new item to

the list of formulas:

• If A is a formula, then KiA for all i P I is a formula.

To preserve the truth by the knowledge operators, one imposes the Knowledge

generalization rule, also known as N and Necessitation Rule, that says for a Kripke

structure M and any φ P Φ, we have

pM,w � φq@w Ñ pM,w � Kiφq@i. (7.1)

This rule can be written as well for modal operators,

pM,w � φq@w Ñ pM,w � lφq. (7.2)

There are two more modal operators dealing with knowledge of a subset of

agents U Ă I that are interesting to us. Mutual or common knowledge EG means “every

agent in G knows”. Formally, for all φ, we define the mutual knowledge operator as follows:

EGφ “
ľ

iPU

Kiφ, (7.3)

which defines a relation

REG
“

ď

iPG

Ri (7.4)

that allows the addition of the following rule in the Kripke semantics:

• pM,w � EGφq Ø pM,REG
pwq � φq.

Distributed knowledge DG means “it is distributed knowledge to the whole U”, not just

describing the knowledge of individual agents but all knowledge combined of U as an

entity itself. Formally, for all φ, we define mutual knowledge operator by its relation

RDG
“

č

iPG

Ri (7.5)

which defines the operator DG by the addition of the following rule in the Kripke semantics:

• pM,w � DGφq Ø pM,RDG
pwq � φq.
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7.1.4 Axioms of System S4

Different axioms can be imposed on the accessibility relation of a frame (Frame

Conditions) that equivalently2 result in properties of modal (Modal Axioms) and knowledge

(Axioms of Knowledge) operators, thus defining different systems of modal logic [Garson

2021,Rendsvig and Symons 2021].

Axiom 1 (Distribution Axiom or K). It holds true for any frame. For modal operators,

we have that for any ψ, φ P Φ it holds that

plpψ Ñ φqq Ñ plψ Ñ lφq (7.6)

while for knowledge operators, for any ψ, φ P Φ, we have

pKiφ^KipφÑ ψqq Ñ Kiψ. (7.7)

System K is the simplest kind of logic described by Kripke semantics and

establishes modus ponens for each world. An equivalent way to write it as a Modal Axiom

is

lpφ^ pφÑ ψqq Ñ lψ, (7.8)

in a similar format to the respective Axiom of Knowledge. Normal Modal System is defined

as a system K satisfying Rule N.

Axiom 2 (Truth Axiom, or T, or M). For any frame and φ P Φ:

• (Frame Condition) The accessibility relation is reflexive.

• (Modal Axiom) lφÑ φ.

• (Axiom of Knowledge) KiφÑ φ.

As a result of this axiom, one can show that φ Ñ ♦φ holds. System T (also

known as System M) is defined as a System K satisfying the Truth Axiom.

Axiom 3 (Positive Introspection Axiom or 4). For any frame and φ P Φ:

• (Frame Condition) Accessibility relation is transitive.

• (Modal Axiom) lφÑ llφ.

• (Axiom of Knowledge) KiφÑ KiKiφ.

2 They follow from the preservation of such properties on the accessible worlds of each world.
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A result of this Axiom is that holds ♦♦φ Ñ ♦φ. System S4 is defined as a

System T satisfying Axiom 4.3

7.1.5 Topological Semantics of Multi-Modal Logic

A natural semantics for the system S4 is the topological [AWODEY and

KISHIDA 2008,Coniglio and Prieto-Sanabria 2017,Sustretov 2007,Awodey and Kishida

2012].

Definition 21. A topological model is a pair pT, νq where T “ pX, τq is a topological space

and a function ν : Φ Ñ PpXq, called interpretation, that satisfies for any φ, ψ P Φ

νpφ^ ψq “ νpφq X νpψq
νpφ_ ψq “ νpφq Y νpψq
νp φq “ νpφq{

νplφq “ ˚νpφq
νp♦φq “ νpφq,

with Å, A and A{ respectively the topological interior, closure and complement of A P PpXq.

The elements of X are the worlds, and ν can be understood as the valuation

in the topological semantics, by giving the set of worlds where a formula is true, M,w � φ

if and only if w P νpφq. Also, for any two formulas φ, ψ P Φ one can prove φ $ ψ if and

only if νpφq Ď νpψq. One can show that this semantics imposes system S4 to the logic. In

this sense, the system S4 is said to be the logic of topological spaces.

An Alexandrov topological space is a topological space where every point of the

space has a minimal neighborhood. Alexandrov topologies can also be defined as topological

spaces where arbitrary intersections of open sets are open sets. In particular, any finite

topology, i.e., only finitely many open sets, is an Alexandrov topology. A well-known result

is the equivalence between Kripke and topological semantics for Alexandrov topological

spaces [McKinsey and Tarski 1944]:

Theorem 11. For any Alexandrov topological space pX, τq there exists a binary relation

R such that for any Boolean valuation ν and for any formula φ P Φ, pX, τ, νq, w � φ if

and only pX,R, νq, w � φ. For any transitive reflexive frame pΣ, Rq, equivalently a frame

satisfying S4, there exists a topology τ on Σ such that for any valuation ν and for any

formula φ P Φ, pΣ, R, νq, w � φ if and only pΣ, τ, νq, w � φ.
3 Another important axiom known as Negative Introspection Axiom or 5 is the imposition of symmetry

of the accessibility relation, resulting for any φ P Φ the validity of  Kiφ ùñ Ki Kiφ for knowledge
operators and ♦φ Ñ l♦φ for modal operators. System S5 is defined as a System S4 satisfying Axiom
5, and is exactly the system where the accessibility relation is an equivalence relation. Usually one
drops 5 once when an agent does not know something, it is hard to such agent judge its own lack of
knowledge.
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This result [Davoren 2007] follows from the identification of the accessibility

relation R with the specialization pre-order ď, x ď y if and only if @U P τ we have

px P Uq Ñ py P Uq, which turns pX,ďq into a poset. Such a relation defines a topology

generated by the basis of open sets Ux “ ty|y ď xu, which is an equivalent definition

of the Alexandrov topology4, and any Alexandrov topology has such natural pre-order

that defines the semantics satisfying S4. Also, the system S4 satisfies completeness and

soundness in relation to the topological semantics of Alexandrov topological spaces.

7.2 Knowledge, Trust, and the Construction of Fundamental Truth

In this section, we will address the concept of truth in modal logic and its

relationship with different types of knowledge operators. The Truth Axiom T, which states

that if a proposition is known by an agent, then it is true, appears to be too strong to

handle multi-agent scenarios. Hence, as is conventional in the literature of multi-agent

scenarios, we will not directly assume the Truth Axiom T. Instead, we will use trust

between agents, as suggested by [Nurgalieva and Rio 2019], to weaken the classical notion

of fundamental truth. Even with this more relational approach to multi-agent scenarios,

the same paradoxes arise. The reason for this, as we will see, is that we can use the

more refined knowledge operator in the hierarchy of operators, distributed knowledge, to

reconstruct a fundamental truth, which would be equivalent to the Truth Axiom.

We will work with the system S4, which imposes Kripke semantics (Distribution

Axiom) of possible worlds and accessibility relations, the transitivity (Positive Introspection

Axiom) and the reflexive (Truth Axiom) properties of the accessibility relations, standard

when dealing with epistemic logic [Rendsvig and Symons 2021]. In particular we will mostly

work with the topological semantics of the system S4, naturally related to a topological

view of the Sheaf Approach. In such semantics, we can think of the propositions of the

system S4 as open sets in a set of possible worlds, with the usual operations between open

sets (union, intersection, complement, interior, closure, complement) playing the role of

logical operations between propositions (or, and, negation, necessity, possibility).

7.2.1 Trust Instead of Fundamental Truth

Let’s introduce and justify the concept of trust between agents as an alternative

to a fundamental truth. Multi-agent scenarios defined with modal logic in the literature

use only trust between agents. To construct the map we aim for between empirical models

and multi-agent scenarios in the next section, we will define here a generalization of the
4 This is the upper Alexandrov topology, and one can think of it as defining open sets as generated by

the causal past cones of points. The lower Alexandrov topology, with the basis Uy “ tx|y ď xu, is
given by the future causal cones [Bennequin et al. 2020].
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concept of trust that also applies to sets of agents. With such trust relation, we will

formally define multi-agent scenarios.

Knowledge, mutual knowledge, and distributed knowledge operators are impor-

tant for writing formulas when one imposes the following principle: there is no knowledge

without an agent. This principle can be understood as the embodiment of the obvious

idea that fundamental truth, in the sense of being absolute to all agents, following Plato’s

“justified true belief” definition of knowledge, is a philosophical position rather than an

empirical fact. One can only assume something is true for all agents, but cannot test such

a thing.

As we will see in the examples in Section 8.2, quantum theory imposes limita-

tions on this Platonic view of knowledge aforementioned. One way to attempt to circumvent

such limitations is to weaken the concept of knowledge to the “justified belief” definition,

which does not presuppose any fundamental truth, but rather relies on justification based

on the inevitably incomplete data accessible to the agent. Therefore, every formula must be

evaluated through a knowledge operator. Axioms K and 4 do not present any issues once

the operator is introduced. However, T relies on the notion of fundamental truth, leading

to certain philosophical complications. Let’s ignore them by allowing beliefs to be on the

same level as knowledge. To simplify matters, we will assume any further mechanism

beyond the scope of this thesis to distinguish them. Given the absence of an absolute

notion of knowledge, we must find knowledge by trust between agents [Vilasini, Nurgalieva

and Rio 2019,Nurgalieva and Rio 2019].

Axiom 4 (Trust). The trust relation  between agents i and j is given by

pj  iq Ø pKiKjφÑ Kiφq@φ, (7.9)

meaning “i trusts j”.

This notion of trust between agents must be generalized to deal with sets of

agents, as it will become important when we discuss the relationship between the trust

relation and contexts. An agent i could not trust the agents of a set G separately, but

only when seen as a collective entity. In other words, the agent i trusts the distributed

knowledge of G. In this sense, “i trusts G” if and only if, for all propositions, the knowledge

of i that the distributed knowledge of G implies the knowledge of i. This is the weakest

way to describe such a relation, where all agents in G could not know φ individually5.

Since for an agent i, we have that Ki, Di, and Ei are equivalent, we can generalize agent i
5 A simple example of applying this concept of trust arises in a presidential election within a presidential

system with direct voting. Agent i wishes to determine which candidate has been elected. Immediately
before the election results are disclosed and the winner becomes mutual knowledge, agent i cannot rely
solely on individual agents to ascertain the victor, as knowledge is distributed across the electorate. It
is agent i’s trust in the electorate as a whole, denoted as G, that leads them to accept the election
outcome.
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to a set G1 of agents with the mutual knowledge operator EG1 in the previous argument

with minimal modifications, or even restrict trust in G to the mutual knowledge of its

agents. The two trust relations can thus be defined as follows.

Axiom 5 (Trust (sets of agents)). The trust relation  
D

between a set of agents G1 and a

set of agents G is given by

pG D G1q Ø pEG1DGφÑ EG1φq@φ, (7.10)

meaning “G1 trusts G”, and the trust relation  
E

pG E G1q Ø pEG1EGφÑ EG1φq@φ, (7.11)

meaning “G1 trusts the consensus of G”.

We can formally define multi-agent scenarios through Kripke semantics, knowl-

edge operators, and the generalization of the concept of trust relation.

Definition 22. A multi-agent scenario is given by a tuple

pΣ, I, tKiuiPI , tEGuGPPpIq, tDGuGPPpIq, 
D

, 
E q, (7.12)

where each element i P I is an agent, Σ is the set of possible worlds the agents explore,

tKiuiPI are the knowledge operators of each agent, tEGuGPPpIq and tDGuGPPpIq are the

operators of mutual and distributed knowledge among sets of agents,  
E

and  
D q are the

trust relations between sets of agents.

7.2.2 The Relation between the Topology of Different Kinds of Knowledge

The topological semantics of the system S4 is deeply related to knowledge. The

definition of the knowledge operator K in Kripke semantics can be rewritten as:

pM,w � Kφq Ø pM,Uw � φq (7.13)

In other words, in the world w, the agent knows something if and only if for all worlds in

the element Uw of the topological basis of the Alexandrov topology, that something is true.

Here again, we have the problem of fundamental truth, with the important property by T

that w P Uw, which allows one to interpret Uw as the natural neighborhood of w. In this

sense, an agent knows something in a world if it is true in a neighborhood of such a world.

Epistemic logic with more than one agent defines an Alexandrov topology for

each accessibility relation, which can be interpreted as different ways the agents perceive

the worlds. We have the following relationship:

pKiφÑ Kjφq@φØ pRj Ď Riq Ø pτj Ď τiq (7.14)
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between the knowledge operators, the induced relation, and the topology, respectively, in

Kripke and topological semantics. In particular, one can show that the relationships

pKiφÑ DIφq@φØ pRDI
Ď Riq Ø pτDI

Ď τiq (7.15)

and

pEIφÑ Kiφq@φØ pRi Ď REI
q Ø pτi Ď τEI

q (7.16)

hold. They state that something known to an agent i P I is also known distributively, and

that something mutually known is known to any agent in i P I, respectively. Additionally,

one can show that a fundamental property of distributed knowledge is

pDIφÑ φq@φ, (7.17)

meaning the distributed knowledge of something implies its truth, which follows from the

Truth Axiom T.

The hierarchy of knowledges presented in the previous paragraph (mutual

knowledge implies individual knowledge from 7.16; individual knowledge implies distributed

knowledge from 7.15; distributed knowledge implies fundamental truth from 7.17) will be

important in which follows. Each relationship between the knowledge operators, usually

represented by its topological incarnation in topological semantics, will be explored in the

translation of an empirical model. But first, as said before, we need to address fundamental

truth.

7.2.3 Recovering Fundamental Truth from Trust

By definition, the finest topology generated by all agents is τDI
, the topology

given by the distributed knowledge operator of the set of all agents, which implies that the

most refined knowledge that this set of agents can construct is given by the distributed

knowledge. Therefore, there is no way to construct any other knowledge operator that

captures more knowledge of fundamental truth than DI . Once we need to understand

knowledge in a relational manner, always explicitly specifying the knowledge operator,

and both pDIφÑ φq@φ and pEIφÑ Kiφq@φ hold, we obtain the following proposition.

Proposition 5. The following statements are valid:

• Axiom T turns trust relations vacuous.

• The trust relation  
D

, along with the condition that pφØ DIφq@φ, induces a funda-

mental truth.

Proof. According to Axiom T, we have pKjφÑ φq@φ, which implies pKipKjφq Ñ Kiφq@φ.

In other words, the existence of fundamental truth makes the knowledge of every agent
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reliable. This allows us to generalize to sets of agents and trust relations given by DG

and EG by means of pDIφÑ φq@φ and pEIφÑ φq@φ, which follow from their definitions.

Hence, we have pKipDIφq Ñ Kiφq@φ and pKipEIφq Ñ Kiφq@φ, meaning they are also

rendered reliable. Therefore, we obtain vacuity.

Suppose a set I of agents and their trust relation  
D

. The construction of DI ,

even more explicitly in its topology τDI
, depends on the trust relation  

D

between sets

of agents. We can define an effective fundamental truth by imposing that pφØ DIφq@φ,

which is saying that the distributed knowledge is equivalent to a fundamental truth. In

fact, as it has the finest topology, there is no other knowledge that the agents can access

beyond what is captured by DI . Furthermore, pKiDIφ Ñ Kiφq@φ, meaning all agents

trust the distributed knowledge.

What the above proposition intuitively means is that one can say there is a

limit to the knowledge a set of agents can access, which is the distributed knowledge, and

there is no way to distinguish this limit from a fundamental limit of reality6,7.

6 In this sense, it is not surprising that an isolated population in an approximately stable environment
that comes into contact with another civilization can suffer a significant impact on their culture. If
they survive, their distributed knowledge usually loses its fundamentality.

7 One could use a Bayesian vision to justify the existence of absolute truth through an induction argument,
which holds in a classical description of reality, but it must be limited by Kant’s epistemology.



110

8 Multi-Agent Scenarios

8.1 The Modal Logic of an Empirical Model and Contextuality

In this section, we will construct the map that turns a generic empirical model

into a multi-agent scenario in such a way that we can identify the paradoxes of the former

with the contextuality of the latter. For simplicity, we will deal with finite objects.

As we will see, assumptions about the nature of a scenario, such as classicality

manifested in the form of global concordance between agents, impose restrictions on the

possible worlds presumed to be accessible to agents through their topologies. We will

demonstrate that paradoxes arise when an agent discovers that these worlds are insufficient

to explain the scenario, potentially leading to the mistaken conclusion that modal logic is

incapable of handling non-classical cases. We adopted a strategy of explicitly defining the

knowledge operators, with a particular focus on identifying limits on the knowledge of a

set of agents. This approach leads to another interesting consequence—the possibility of

rethinking how possible worlds are chosen. We will use this when dealing with events in

an empirical model.

Another important point is that we need to make it clear that the agents’

knowledge will not be distorted when transferred between agents. In order for the trust

relationship to truly be trustworthy, we need to define what makes someone trustworthy,

even if there is trust.

Definition 23. Given that j  i, an agent j is trustworthy to the agent i if pKiKjφÑ
Kjφq@φ, i.e. if any information that agent i knows from agent j must also be known by

agent j.

This condition is essential to prevent any hidden information; therefore, trust

implies that the topology of the trusting party is finer than the trustworthy part. With

trust, an agent can reconstruct all the information provided by its trustworthy part, which

encompasses all of its information. An agent that is terminal in the network generated by

the trust relation can, under this condition, reconstruct the information of all the agents,

obtaining a global perspective of the knowledge.

8.1.1 A Measurement to each Agent

To construct the map we seek, we will follow the steps involved in building

an empirical model. First, we start with a set X containing elements referred to as

measurements. Subsequently, we define a cover of contexts M Ă PpXq that satisfies
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ď

M “ X, and C 1 Ă C P M implies C 1 P M. Next, we apply a sheaf of events

E : 〈X,M〉op Ñ Set, associating outcomes OU with each context U P U — the local events

— thus defining a measurement scenario. The global events follow from the sheaf property of

E . An empirical model is then characterized by a presheaf DR : Set Ñ Set :: OU ÞÑ
!

µO
U

R

)

,

with R a semiring, typically of the probabilistic or boolean type. Such a presheaf specifies

distributions with values in R for the outcomes of each context, usually imposing the

no-disturbance condition µO
j

R |kj “ µO
k

R |kj. Finally, contextuality arises when it becomes

impossible to explain these distributions as marginalizations of a distribution on the global

events.

The natural mapping of the measurements of an empirical model to a multi-

agent scenario is achieved through the agents’ measurements, as each agent in a multi-agent

scenario is restricted to a measurement. Our first identification is as follows:

• The measurements of an empirical model are mapped to the agents of its correspond-

ing multi-agent scenario.

It’s important to note that what we are identifying here is each measurement of an

empirical model with a measurement of an agent in a multi-agent scenario. This constraint

differs from scenarios in which agents have multiple measurements and the free will to

choose among them, as in standard nonlocality scenarios. Through distributed knowledge,

we have:

pKipKiφq Ñ DIpKiφq Ñ Kiφq@φ, (8.1)

which means that an agent trusts itself. This is in contrast to scenarios where an agent can

choose between incompatible measurements. Therefore, agents in a multi-agent scenario

cannot choose their measurements. If they could, each measurement would define different

agents who cannot trust each other due to the incompatibility of their measurements.

8.1.2 Contexts Come from Trust

Contexts can be understood as an island of classicality at the measurement level.

Every measurement is nothing more than the marginalization of the “mother” measurement

of the entire context. Such a definition of a context allows the construction of stochastic

maps between all subcontexts, and these maps can define the probabilities of the context

given the marginals.

Once the measurements are identified with the agents in the multi-agent scenario,

the covering of contexts locally define agents who are in a classical environment, with the

maps transmitting knowledge from one subcontext to another. Since the subcontexts, and

therefore the agents, are terminal in the network of maps between subcontexts, and by

imposing that they are all trustworthy, a condition called “flasque beneath the cover” in
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the literature of the Sheaf Approach, they all have a global view of the context U in which

they are. In logical notation, for any subcontexts G,G1 P U we have the following:

pEGEG1φÑ EGφq@φ. (8.2)

Thus, in a context its classicality imposes that for any two subcontextsG,G1 P U
the trust relation G  

E

G1 holds, with  
E

being an equivalence relation between the

subcontexts of U (reflexivity follows from trust itself, symmetry follows from the symmetry

in the choice of subcontexts of U , and transitivity follows from the transitivity of maps

between subcontexts), identified with the stochastic maps. Our second identification is as

follows:

• Contexts are sets of agents in which the trust relation  
E

is an equivalence relation

between subcontexts.

With these two identifications, we can rewrite the hypergraph of compatibility 〈X,U〉 of

any empirical model as parts of a multi-agent scenario with the property of being covered

by sets of agents with an equivalence trust relation  
E

between their subsets.

8.1.3 Global Events Follow from the Topology of Mutual Knowledge

The next step is to identify the events of the empirical model given by the

Sheaf of events. As elements of reality to which we have empirical access, such events

must naturally be associated with some structure involving the possible worlds. However,

worlds are defined globally, while events do not need to be. Here, we will see that such a

distinction is related to the topology we are dealing with.

To overcome this apparent obstacle, the strategy is to use pointless topology

[Johnstone 1983]. In this formalism, we start with the topology and its elements — the open

sets — as the primitives of the topological space. In the topological semantics of modal

logic, the use of pointless topology implies that we will take propositions, represented

by the open sets, as the primitives, which is equivalent to the standard formalism where

possible worlds are the primitive objects. When propositions are considered as primitives,

the focus shifts to the operator of knowledge, its topology, and the set of agents that

define it, with possible worlds emerging as consequent constructions derived from the

propositions.

One cannot know the fundamental possible worlds, even if they exist, but only

the propositions one can access. In other words, the worlds are defined by the propositions,

and not the other way around. Therefore, possible worlds must be defined by the topology

to which an agent has access, as the elements of a basis of such topology. Even with the

most refined set of propositions, the questions that agents pose about the world cannot be
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taken as refined as the fundamental truth. Thus, any construction must begin with the

limitation of the agents in “mapping the territory.” In an empirical model, this situation

becomes more complicated, as we also have the local events organized into contexts as the

propositions attempting to find out the possible world in which the scenario is in a locally

classical way. Generally, there isn’t a “global map” of the “territory” when dealing with

empirical models.

Let 〈X,U〉 be the hypergraph of compatibility of a connected measurement

scenario. Since it is connected and  
E

satisfies the conditions that determine a context,

every element of U is a terminal object in the trust between sets of agents. In logical

terms, for any G P PpIq representing a element of U , with PpIq being the power set of I,

we have pEGφÑ EIφq@φ, implying τEG
“ τEI

for all G representing a context, as G Ď I

implies τEI
Ď τEG

and pEGφÑ EIφq@φ implies τEG
Ď τEI

. Let’s call BEI
the basis of τEI

.

We define the possible worlds as Σ “ BEI
, and the accessible relations Ri as induced by

τi “ τEI
. The elements of BEI

are global and atomic objects, such as global events. Our

next identification is as follows:

• Global events correspond to the basis topology of the mutual knowledge operator.

Therefore, any global description of an empirical model is given by the possible worlds

Σ “ BEI
induced by the mutual knowledge. Therefore, according to Fine-Abramsky-

Brandenburger Theorem 1, we can conclude the following.

Result 1. Mutual knowledge is the knowledge that logically explains non-disturbing

outcome-deterministic noncontextual empirical models.

8.1.4 Local Events Follows from the Topology of Distributed Knowledge

In an analogous way to the previous argument, we can identify local sections

as the elements of the basis of the topology induced by the mutual knowledge of their

respective context. Since in a context G, every subcontext trusts each other, we have

DG “ EG: all distributed knowledge is described by mutual knowledge between the agents,

with each of them having the information of all G. This is an example of how the trust

relation influences the definition of distributed knowledge. Local events are the most

refined propositions that can be made in the empirical model while respecting the contexts

and the non-disturbing condition, and thus generate the most refined topology. On the

other hand, the topology generated by the distributed knowledge operator is the most

refined topology possible among a set of agents. Therefore, we can identify BDI
as given

by the local events. Our final identification of an element of a measurement scenario is as

follows:

• Local events correspond to the basis topology of the distributed knowledge operator.
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The mapping of a measurement scenario to its respective multi-agent scenario

is summarized in the following dictionary:

Result 2. Given a measurement scenario 〈X,U , pOxqxPX〉 with the sheaf of events E , the

identification in the table below defines a multi-agent scenario with a set of agents I, trust

relation  
E

and knowledge operators DI and EI induced by the basis topologies BDI
and

BEI
, respectively.

Measurement scenario Multi-agent scenario

X I

U
G Ă I with  

E

an equivalence relation

EpXq BEI

EpUqUPU
BDI

8.1.5 Logic Contextuality is the Failure of Soundness

How does contextuality manifest when viewed from a modal perspective and

how does it relate to multi-agent paradoxes? The map presented in Result 2 allows us

to answer this question, as we will do below. For simplicity, we will limit ourselves to

Boolean valuation functions, while making it clear that the probabilistic case with outcome-

determinism follows from probabilistic distribution over the logical events identified by

such Boolean valuation functions.

Previously, we saw that if an agent is terminal in the trust relationship, it

has access to all the information of the other agents and sets of agents. Therefore, it can

reconstruct the global view of the multi-agent scenario, and every other terminal agent

will also agree with this description. What happens if the agents cannot agree on their

global description? Well, one can argue that trust between agents and the sharing of

information are not enough to access all the information of a scenario; DI ‰ EI . In other

words, the fundamental truth cannot be accessed by any agent individually. This is the

key to characterizing contextual behavior, as we will see.

In an empirical model with Boolean valuation, the equation that represents

noncontextuality remains as follows:

µO
U

R pAq “
ÿ

Λ

p pλq
ź

xPU

µO
x

R pρ1pU, xqpAqq, (8.3)

but now every function is a Boolean function. Let’s translate this equation into logical

terms. In the Sheaf Approach we are dealing with, the hidden variables λ P Λ are identified

as the deterministic global events. It evaluates a formula φ, which encodes a local event

given by the context U and the outcome A, represented by the left-hand side of the
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equation. It asks whether, given all possible worlds, one can semantically evaluate that

there is at least one deterministic global event λ such that it marginalizes to φ in the

empirical model, λ Ñ φ. On the other hand, this always holds syntactically, since in a

measurement scenario, a local event is always the marginalization of at least one global

event. This can be expressed as:

Result 3 (Logical contextuality). The definition of logical noncontextuality condition in

logical notation takes the form of

φ �
ł

λPΛ

pλ^ pλÑ φqq, (8.4)

where due to the S4 system always holds that

φ $
ł

λPΛ

pλ^ pλÑ φqq. (8.5)

Therefore, it is the violation of soundness which gives contextuality in the logical form.

In Ref. [Nurgalieva and Rio 2019], it is stated that we have an “inadequacy of

modal logic in quantum settings” precisely because we have multi-agent scenarios that

exhibit logical paradoxes resulting from violations of soundness. Without the violation of

soundness, multi-agent paradoxes do not arise1. However, the identification we made in

Result 2 allows us to have an insight into what is actually happening, but which is left

implicit in the literature. We can rewrite Result 3 as follows:

Result 4 (Logical contextuality with knowledge operators). The definition of logical

noncontextuality condition in logical notation and with explicit knowledge operators as

identified in Result 2 takes the form of

Kiφ �
ł

EIλPBEI

pEIλ^ pEIλÑ Kiφqq. (8.6)

This semantic equation does not always hold even if

Kiφ $
ł

EIλPBEI

pEIλ^ pEIλÑ Kiφqq (8.7)

holds syntactically. In other words, the logical form of contextuality follows from the

violation of soundness when we define possible worlds as the elements of BEI
.

The last equation of Result 4 states that if one can describe φ using elements

from BEI
that are true, then the agents know it. This differs from the semantic equation,

where all φ must be described by it. This time, contextuality is not the failure of soundness
1 Since we trivially have completeness of the valuation in a multi-agent scenario, it is inconsistencies

that give rise to multi-agent paradoxes. Soundness implies consistency, thereby avoiding the paradoxes.
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that renders modal logic inadequate to deal with paradoxical behavior. Instead, it is the

choice of the set of possible worlds as Σ “ BEI
that forces the logical violation to manifest

in this way. There are insufficient possible worlds to adequately describe non-classical

settings.

8.1.6 Modal Logic is Suitable for Non-Classical Settings

Paradoxes do not imply that modal logic is inadequate, as it is sound and

complete in topological semantics. The problem is that we assume all descriptions must be

consistent and global, which is not true. In other words, the worlds we are constructing in

our scenario are too simplistic; they are defined by EI , thereby disregarding any information

beyond mutual knowledge.

We need to encode the information from all the empirical models, describing

every detail of the agents, including their trust relationships, into the possible worlds.

This is the case where the model exhibits lambda-dependence, where the worlds depend

on the contexts. The elements of the basis must be the set of local events with their

respective contexts, which, according to Result 2, is exactly given by τDI
. With this new

set of possible worlds, contextuality ceases to be the failure of soundness and becomes a

matter of the empirical model not being described by classical worlds.

Result 5 (Logical contextuality as EI ‰ DI). Due to soundness and completeness of the

topological semantics,

Kiφ �
ł

DIλPBDI

pDIλ^ pDIλÑ Kiφqq. (8.8)

if and only if

Kiφ $
ł

DIλPBDI

pDIλ^ pDIλÑ Kiφqq. (8.9)

Therefore, contextuality is the difference between EI and DI .

The fundamental set of worlds is Σ “ BDI
, while for a classical description, we

are assuming that BEI
is the set of words, a coarse-graining of the fundamental truth. In

fact, Result 5 allows us to reach the following:

Corolary 1. Modal logic is able to deal with the apparent violations if we do not restrict

the knowledge to a mutual one, which we usually implicitly do.

8.1.7 Limitations of the Map for Multi-Agent Scenarios

The map constructed here has limitations in handling multi-agent scenarios with

the contextual toolkit, and the cause of these limitations lies in the stringent constraints
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of the Sheaf Approach. To meet the criteria for analysis using the Sheaf Approach to

contextuality, certain conditions must be fulfilled.

Firstly, the agents should have only one measurement each, and these mea-

surements must satisfy outcome-determinism, i.e., in quantum theory, they must be

projection-valued measures2. The trust relation defined between agents, and more generally

between elements of the power set of the set of agents, must conform to the structure of

contexts, specifically the equivalence trust relation. In particular, it must be symmetric,

which prohibits the use of the map to address non-classicality in causal structures, a

significant kind of generalization of the Wigner’s friend scenario. Once these conditions

are met, the measurement scenario becomes well-defined.

To establish an empirical model, the events must satisfy the sheaf conditions,

while the valuation must satisfy the no-disturbance condition. When these conditions are

met, equivalence becomes possible, allowing one to explore the multi-agent paradox as

contextuality using the tools of the Sheaf Approach.

8.2 Three Examples of Contextuality in Multi-Agent Scenarios

We will apply the previous results to analyze three well-known examples of

multi-agent scenarios: Wigner’s friend scenario, Frauchiger-Renner scenario, and Vilasini-

Nurgalieva-del Rio scenario. Before delving into the actual examples, let’s discuss common

properties of these three scenarios.

The scenarios are formed by a set I of agents. We will use names for Wigner,

his friend (Alice), and their duplicated versions (Ursula and Bob respectively).

The trust relation in all examples occurs between individual agents, simplifying

the trust relations of Proposition 5 to the usual definition in Axiom 4. Furthermore, the

trust relation is symmetric in all examples. Therefore, we can represent the multi-agent

scenarios as empirical models. They have contexts with two measurements defining a

covering of contexts as a graph, where the measurements are identified as the vertices and

the maximal contexts as the edges. All measurements have two outcomes, defining four

local events.

All examples begin with a system in a certain initial state (Wigner’s friend

and Frauchiger-Renner scenarios a quantum states, Vilasini-Nurgalieva-del Rio scenario

a Popescu-Rohrlich box). As shown in Ref. [Vilasini, Nurgalieva and Rio 2019], the act

of an agent measuring the state defines an isomorphism between the system and the

agent, allowing us to ignore the system and deal only with agents. In the same reference,

it is also shown that the scenarios satisfy the property called "information-preserving
2 One can generalize the Sheaf Approach to deal with outcome-indeterminism [Wester 2018], but that is

outside the scope of this part since the examples satisfy outcome-determinism.
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memory update," which implies the same data being accessed by all the agents, i.e., there

is trustworthiness among the agents who trust each other.

8.2.1 Wigner’s Friend Scenario Is Noncontextual

The standard Wigner’s Friend scenario is defined with Alice A performing a

measurement on the system R, and with Wigner W describing R and A in an entangled

state due to her previous measurement. It asks for the different points of view between

Alice and Wigner in the fundamental description of the nature of the probabilities involved.

The scenario deals with an initial state |φy “ α |0y ` β |1y, with Alice’s mea-

surement in the basis t|0y , |1yu. The problem here is where to put the Heisenberg’s cut,

before or after Alice. From Alice’s point of view, after her measurement, the state is in

a classical probability distribution pRp0q “ α2 and pRp1q “ β2, and if she has already

observed the result, it is certain to be one given eigenvalue. However, from Wigner’s point

of view, R and A defines a system R b A in a superposition being described by |φy, thus

the system and therefore Alice are described by a quantum superposition of states.

There is no empirical contradiction here, as the classical probability distribution

and the quantum state will give the same probabilities, and no discordance appears

between Alice and Wigner. The problem that the Wigner’s Friend scenario brings up is of

an ontological nature: what is really happening with Alice?

Let’s construct the empirical model of this scenario. Let Wigner perform a

measurement in the system given by R b A. We identify Alice and Wigner as the agents

and we ignore the system R. There are two possibilities. The first one deals with Wigner’s

measurement being compatible with Alice’s, which results in both of them trusting each

other and defining a context

A! W. (8.10)

The second possibility changes the basis in which Wigner performs his measurement to an

incompatible one, for example |`y “
c

1

2
p|0y ` |1yq and |´y “

c

1

2
p|0y ´ |1yq. To Wigner,

Alice’s measurement is represented as a unitary transformation on R b A that changes

Alice’s state to a superposition. To him, the probability will be pRbAp`q “
pα ` βq2

2

and pRbAp´q “
pα ´ βq2

2
. To Alice, there is no probability at all if she already saw the

measurement result and Wigner’s measurement will just project the reduced state to his

new basis. The problem here is that she knows her result, and Wigner erased it with his

measurement, allowing no contradiction once the measurement erased Alice’s memory as

well3.
3 There is the problem of how to do it with a macroscopic entity, but this is not the point here. Our

objective is not to address the possibility of implementing the scenario but rather to identify the source
of paradoxical behavior in a generic and formal manner.
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Both possibilities allow analysis by considering only the measurement scenario.

The first one has only one context, thus it must be noncontextual. The second one differs

from the first by displaying two nonconnected contexts, making it a noncontextual empirical

model. We can conclude:

Result 6. Wigner’s friend scenario is represented by an empirical model with nonconnected

contexts, therefore it is noncontextual and, consequently, shows no multi-agent paradox.

A realization of this result can be found in Ref. [Lostaglio and Bowles 2021],

where the authors construct a noncontextual model for Wigner’s friend scenario.

8.2.2 Frauchiger-Renner Scenario is Logic Contextual

The Frauchiger-Renner scenario [Frauchiger and Renner 2018] starts with an

entangled state

|φy “
c

1

3
|0y b |0y `

c

2

3
|1y b

c

1

2
p|0y ` |1yq . (8.11)

between two systems, R and S, measured in the basis t|0y , |1yu by a respective friend,

Alice A and Bob B. After measurement, R b A and S b B are isomorphic to agents A

and B, respectively. As mentioned before, we can thus ignore the systems R and S. The

system A measured by Ursula U and the system B measured by Wigner W are measured

in the basis t|`y , |´yu, with |`y “
c

1

2
p|0y ` |1yq and |´y “

c

1

2
p|0y ´ |1yq. A locality

argument can be used to describe who trusts whom. As we can ignore R and S, the agents

are Alice, Bob, Ursula, and Wigner. Trust is symmetric, and Alice’s (Bob’s) measurement

is incompatible with Ursula’s (Wigner’s) measurement. Thus we get A! W , U! B,

A! B, and U! W .

Once we are given the outcomes of the measurements, we can define the possible

worlds using the knowledge operators of each agent. The topology induced by the mutual

knowledge EI is generated by the elements of the basis, which consist of all 24 combinations

of the outcomes from the four agents. The outcome of a single agent is represented by the

union of all the elements of this basis that contains such an outcome. The valuation is given

by the initial state, but can only be calculated for the set of agents which mutually trust.

|φyA!B can be written exactly like equation 8.11, while the state that will be measured

by U! W will be

|φyU!W “
c

1

12
p|`y ` |´yq b p|`y ` |´yq `

c

1

3
p|`y ´ |´yq b |`y , (8.12)

and for U! B

|φyU!B “
c

1

6
p|`y ` |´yq b |0y `

c

1

6
p|`y ´ |´yq b p|0y ` |1yq , (8.13)
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and finally for A! W

|φyA!W “
c

1

6
|0y b p|`y ` |´yq `

c

2

3
|1y b |`y . (8.14)

Calling the outcomes ` and ´ of Ursula and Wigner respectively as 0 and 1, we can

construct the table of the probabilities as shown in Table 10.

00 01 10 11

A! B
1

3
0

1

3

1

3

A! W
1

6

1

6

2

3
0

U! W
3

4

1

12

1

12

1

12

U! B
2

3

1

6
0

1

6

Table 10 – Probabilities of the Frauchiger-Renner scenario. We call the outcomes ` and
´ of Ursula and Wigner respectively as 0 and 1. Section 11 of the context
U! W does not have a global event. Like Hardy’s model, it shows possibilistic
contextuality.

Let’s follow the sequence of trust presented in Ref. [Nurgalieva and Rio 2019]:

A B  U  W  A. (8.15)

If Ursula measures |´y, then Bob must measure |1y since pp10|U! Bq “ 0. Consequently,

Alice must measure |1y since pp01|A! Bq “ 0, and Wigner must measure |`y since

pp11|A ! W q “ 0. However, as shown in Table 10, Wigner can measure |´y since

pp11|U ! W q “ 1

12
, contradicting Ursula’s conclusion of pp11|U ! W q “ 0. This

is the violation presented in Ref. [Frauchiger and Renner 2018]. The assumptions in

Ref. [Frauchiger and Renner 2018] are as follows:

• (Q) All agents use quantum theory.

• (C) Agents can use the results from another agent.

• (S) A measurement by an agent has an output defined for that agent.

The assumptions are an informal description of the definition of a multi-agent scenario,

with assumption (S) defining the local events of each agent, assumption (C) connecting

these events in global events, and assumption (Q) saying the valuation will be calculated by

quantum mechanics. Such use of colloquial language was avoided by the formal construction
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of multi-modal logic multi-agent scenarios, but the conclusion remains: something in the

assumptions must be weakened to explain the paradoxical behavior.

The empirical model can be constructed directly from Table 10, which is

equivalent to the previous equivalence. The possible worlds are defined as the basis of

the topology generated by the mutual knowledge EI and identified as the global events.

The empirical model that results from the valuation is non-disturbing, as one can directly

verify, and contextual4. The possibilistic bundle diagram of Table 10 is given by Figure

8. The section 11 of the context U! W does not have a possibilistic global event, and

by imposing Ursula’s conclusion, pp11|U! W q “ 0, the induced possibilistic empirical

model becomes noncontextual, showing that it is the cause of the possibilistic contextuality

and equivalently the cause of the multi-agent paradox in the Frauchiger-Renner scenario.

Thus we have the following conclusion:

Result 7. Frauchiger-Renner scenario is mapped as an empirical model presenting logic

contextuality, the result of its multi-agent paradox with quantum origin.

As mentioned earlier, from the Result 5, we conclude that if we extend the

possible worlds to encompass all local sections indexed by their contexts, the paradox

also disappears. However, indexing leads to lambda-dependence, a non-classical property

that ultimately embodies contextuality. This affirms a claim made in Ref. [Nurgalieva

and Rio 2019] stating that the inclusion of contexts as data in propositions avoids logical

contradictions in the Frauchiger-Renner scenario.

B

U

W

A

0

1

Figure 8 – Possibilistic bundle of the Frauchiger-Renner scenario.

8.2.3 Vilasini-Nurgalieva-del Rio Scenario is Strongly Contextual

Another example is the Vilasini-Nurgalieva-del Rio scenario [Vilasini, Nurgalieva

and Rio 2019]. It generalizes the conditions for multi-agent paradoxes in generalized

4 Using the noncontextual fraction [Abramsky, Barbosa and Mansfield 2017], one can find NCF “
5

12
.
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probability theories using modal logic and explicitly constructs a paradox for the box

world. The construction of the multi-agent scenario in Ref. [Vilasini, Nurgalieva and

Rio 2019] has equivalent assumptions to those described at the beginning of the section,

in addition to requiring treatment of states, effects, and the channels that the trust

relation defines between the agents, all using the formalism of Generalized Probabilistic

Theories [Janotta and Hinrichsen 2014, Müller 2021, Selby, Scandolo and Coecke 2021]

applied in the box world defined with Popescu-Rohrlich boxes [Popescu and Rohrlich

1994]. Here, we will limit ourselves to what is necessary for the calculation of valuations

and the construction of the empirical model, leaving the original article as a reference for

the detailed construction of the multi-agent scenario.

The structure of the agents, trust relation, and the possible worlds is identical

to the one presented in the Frauchiger-Renner scenario. We have two systems R and S,

two friends Alice A and Bob B, Wigner W and Ursula U , with a symmetric trust relation

given by A! W , U ! B, A! B, and U ! W , while the systems can be ignored

due to their isomorphism with the friends. Each measurement will have two outcomes,

defining the 24 possible worlds given by EI .

The valuation follows the initial state given by the sharing of a Popescu-Rohrlich

box between R and S, thus satisfying XiXj “ xi ‘mod2 xj with Xi measurements and xi

outcomes. The authors of [Vilasini, Nurgalieva and Rio 2019] show that all pairs of agents

trusting each other can be understood as being correlated by Popescu-Rohrlich boxes. By

using trustworthy and fixing the conditions XU “ XA ‘mod2 1, XW “ XB ‘mod2 1, the

measurements XA “ XB “ 0 and the outcomes xi P t0, 1u, we can propagate the initial

correlation between R and S to obtain the possibilistic values presented in Table 11.

00 01 10 11

A! B 1 0 0 1

A! W 1 0 0 1

U! W 0 1 1 0

U! B 1 0 0 1

Table 11 – Prossibilities of the Vilasini-Nurgalieva-del Rio scenario. It defines the well-
known Popescu-Rohrlich box empirical model, showing the Liar Cycle paradox
with four agents. It is strong contextual once all local sections show violations,
thus making it stronger than the previous example.

As shown in Ref. [Vilasini, Nurgalieva and Rio 2019], all agents find a con-

tradiction in any chosen sequence of agents, presenting a stronger violation than the

one presented by the Frauchiger-Renner scenario. Using the same assumptions as the

Frauchiger-Renner scenario, with the necessary modification that in (Q) the agents use

the box world, at least one of them would need to be violated to explain the paradoxical

behavior.
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The identification with an empirical model follows the exact same construction

to the one for the Frauchiger-Renner scenario, but now we are dealing with possibilistic

values, thus allowing a faithful representation of Table 11 as the bundle diagram in Figure

9. It defines the well-known Popescu-Rohrlich box empirical model, showing the Liar Cycle

paradox with four agents. Once all local sections show violations,thus making it stronger

than the empirical model of the previous example, we have the following conclusion:

Result 8. Vilasini-Nurgalieva-del Rio scenario is mapped as an empirical model known as

Popescu-Rohrlich box empirical model, a main example of strong contextuality, the result

of its multi-agent paradox with post-quantum origin.

Since they share the same measurement scenario, both the Frauchiger-Renner

scenario and the Vilasini-Nurgalieva-del Rio scenario have the same set of possible worlds

given by BDI
. Similarly to the previous example, we can use Result 5 to rectify the

paradoxical behavior at the expense of lambda-dependence.

B

U

W

A

0

1

Figure 9 – Possibilistic bundle of the Vilasini-Nurgalieva-del Rio scenario.
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9 Discussion of Part III

Multi-agent paradoxes and the phenomenon of contextuality are examples of

systems with local, marginal access to a given global whole that cannot be adequately

explained in a classical manner. Alfred Korzybski’s statement, “a map is not the territory”

[Korzybski 1933], serves as a reminder that even when dealing with the classical world,

we need to keep in mind that we do not have the capacity to discern all the details of

the “territory”; we are only capable of constructing “maps.” An agent’s knowledge only

extracts parts of a “map” of the “territory” we call physical reality. This aligns with

Refs. [Santo and Gisin 2019,Gisin 2019,Gisin 2021] regarding the ontological assumptions

made in physical theories when using mathematical objects that do not align with a purely

empiricist viewpoint and how such assumptions can be understood as the hidden variables

of classical theory. The non-classical world imposes an even greater limitation on us by

isolating us in classical islands, which, much like the concept of charts in the theory of

manifolds, can only be connected through an atlas but lose something essential that a

map of a single chart possesses. In a non-classical world, we not only have to remember

that a map is not the territory, but also that the map is merely a chart in an atlas.

There is something beyond what we can individually perceive with our classically limited

perspective, making Korzybski’s statement even more imperative.

The main point we obtained was that multi-modal logic can be used to handle

non-classical scenarios, provided that due care is taken with the agents’ knowledge. During

our journey to build the map between empirical models and multi-agent scenarios, we

encountered other results. Here are the results we have obtained in this part:

• We generalized the concept of trust to also apply to sets of agents.

• We have identified a construction of a fundamental truth from the trust relation

between agents, which is used in the literature to weaken the Truth Axiom, thus

recovering the Truth Axiom from trust.

• We have translated the components of an empirical model (measurements, contexts,

events) into the components of a multi-agent scenario (measurement by an agent,

equivalence trust relation, elements of the basis topology of a knowledge operator),

exposing the limitation of such a mapping to describe a generic multi-agent scenario

as an empirical model.

• We have shown that contextuality is the violation of soundness, precisely the violation

that causes multi-agent paradoxes.
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• We have demonstrated that contextuality only appears because of the imposition

of the mutual knowledge operator as the generator of events, imposing exactly the

classicality captured by noncontextuality.

• By allowing the operator that generates events to be that of distributed knowledge,

we have shown that we recover soundness at the cost of lambda-dependence, proving

a generalized version of the conjecture in Ref. [Nurgalieva and Rio 2019] that says

the inclusion of contexts as data of propositions avoids logical contradictions.

• We have translated the three main examples of multi-agent scenarios, Wigner’s

Friend, Frauchiger-Renner, and Vilasini-Nurgalieva-del Rio scenarios, into empirical

models and identified their types of contextuality that generate their multi-agent

paradoxes.

These results enable the creation of new multi-agent paradoxes and the appli-

cation of mathematical tools from the Sheaf Approach to contextuality in these scenarios.

The discussed examples in section 8.2 illustrate how the map can identify paradoxes in

a clear manner, with the possibility of even quantifying them using tools already known

in the literature on contextuality. It’s interesting to highlight the types of contextuality

that emerge from the explored example scenarios. In the Wigner’s Friend scenario, no

contextuality appears, clearly indicating its non-empirical nature. On the other hand,

the Frauchiger-Renner scenario exhibits logical contextuality, demonstrating its already

noted similarity to the well-known Hardy’s paradox. The Vilasini-Nurgalieva-del Rio

scenario demonstrates strong contextuality, as expected since it was constructed with

Popescu-Rohrlich boxes. The results also facilitate the translation of contextual empirical

models into multi-agent scenarios with probabilistic paradoxes, and possibilistic contextual

empirical models into logical multi-agent paradoxes.

The examples show us that paradoxes and contextuality are the same phe-

nomenon, at least in scenarios that accept the inverse map, and through their valuations, it

is evident that there is more knowledge than the mutual one. They point to the argument

we use to construct events, which is that we cannot define the worlds our logic will work

out, but by the knowledge we can explore and refine the worlds we can have access to in a

more empiricist and relational sense. Distributed knowledge is the finest way to understand

what is happening, as it encodes all the data in the propositions, safeguarding our classical

logic from the non-classical nature of phenomena. It also demonstrates that we have more

data than classical mutual knowledge, more possible worlds, and, as we can observe today

with quantum technology, more resources to explore.

An immediate path for future research would be to seek generalizations of

the Sheaf Approach, as explored in Ref. [Gogioso and Pinzani 2021,Gogioso and Pinzani

2023,Abramsky, Barbosa and Searle 2023], in order to expand the scope of application
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of the map constructed here. The ultimate goal is to enable the representation of every

multi-agent scenario with empirical models, allowing the use of sheaf theory tools to

investigate their non-classicality. Another avenue is to leverage the relationship that

the Sheaf Approach has with other approaches to the phenomenon of contextuality, as

organized in Ref. [Masse 2021] and references therein, to describe multi-agent paradoxes

in these languages. In particular, utilizing their different domains of application to further

extend the map constructed here. Both of these aforementioned paths would be highly

valuable for formalizing the language of protocols that present extended versions of the

Wigner’s friend scenario, especially those with a causal structure [Schmid, Ȳıng and Leifer

2023]. While an extension of the map between empirical models and multi-agent scenarios

is not yet constructed, it would be interesting to identify and develop examples that allow

analysis through the standard Sheaf Approach, with ideal candidates already existing in

Ref. [Leegwater 2022,Schmid, Yı̄ng and Leifer 2023,Walleghem et al. 2023,Walleghem

et al. 2024]. Furthermore, the use of multi-modal logic and the construction done here

using topological semantics and pointless topology may shed light on the formalization of

interpretations of quantum theory, such as the relational interpretation in Ref. [Lawrence,

Markiewicz and Żukowski 2023,Laudisa and Rovelli 2024].
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10 Final Considerations

As the title of this thesis suggests, it presents a journey. The initial proposal

to use topology and geometry to find generators of quantum contextuality began with

the Bundle Approach, its diagrammatic representation, and the use of holonomy to

detect contextuality. This evolved through a transitional phase in the Sheaf Approach

and cohomological detection methods, culminating in the development of a differential

approach based on the Generalized Contextuality Approach. This approach identifies

generators of contextuality for an ontic representation and enables a more controlled

exploration of applications. The journey was inspired by the similarity between topological

manifolds and empirical models, both problems of marginalization seeking to extend from

local to global, dealing with the phenomenon where such extension is not always possible.

In this thesis, we have seen several results, starting with the concept of n-

contextuality and the construction of examples of empirical models with contextuality

that depend on the dimension of topological failures. We not only constructed an example

with a tetrahedron scenario, but also identified a generic model based on the Greenberger-

Horne-Zeilinger state for all levels of the hierarchy within quantum theory. It would be

interesting to further explore this hierarchy, although the usual topology of a measurement

scenario is not suitable to advance the endeavor of using topology to handle contextuality,

leaving all this construction only as an indication of the influence that the topology of the

measurement scenario has on the contextuality of an empirical model.

The difficulty in studying topology is not limited to the influence mentioned

above, but also in identifying indicators of contextual behavior. All suffer from the problem

of imposing group structure, which leads to violations of characterization. This indicates

that the fundamental objects chosen to construct the model need to be changed, not just

the topology on them. Hence the shift to an approach where events become fundamental

and measurements are merely special sets of events. With this change, which generalizes

contextuality to deal with more parts of a process and admits the study of situations

that violate the outcome-determinism condition, we can ground contextuality in a clear

philosophical principle and represent it, now from a certain ontic perspective, as nothing

more than the non-preservation of loops by probabilistic valuations.

Contextuality, now viewed through a generator, the contextual form, allows

us to explicitly articulate choices made both in interpretations of quantum theory and

in approaches to contextuality, finding it in other non-classical phenomena. The most

important lesson from the Differential Approach is not its construction itself, but where it

situates contextuality, as the corrective term of a description with classical ontology. This
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privileged position places contextuality as an object beyond interpretations, capable of

taking many forms. It places this phenomenon at the heart of what makes classical models

so different from non-classical ones. It is contextuality that prevents completing empirical

access with hidden variables, a natural occurrence in any theory allowing classical ontic

representation. On the other hand, this gives us the freedom to treat contextual behavior

in fundamentally different ways, choosing the most suitable approach to address the

process in question. Topological characterization is regained, with cohomology highlighted,

while geometry can be explicitly expressed through holonomy, depending on the chosen

viewpoint. The group structure that previously caused problems becomes natural in the

Differential Approach, clearly exposing the influence of topology identified in measurements

and contexts.

It is in the description as a logical paradox that contextuality takes its original

form, and it is natural for its study to develop in the logical formalism of knowledge and

in the relationship of trust between sets of agents. Even more natural is the topological

structure of propositions, maintaining the fundamental objects used in the developed

approach. It is in this type of mathematical structure that contextuality presents itself

masterfully, translating measurements, contexts, and outcomes into propositions that

express their topological contextuality. Manifesting as a failure in the relationship between

semantics and syntax, it suggests that reality has gaps in propositions that do not exist,

true “holes” in a classical view of reality. If we want to close these gaps and restore

classical sanity to knowledge, we must pay the price that contexts are expressed into the

probabilistic valuations. It is our choice to expand possible worlds so that there are no

gaps, or to accept living with these gaps for empirical purity. Either way, there is no escape;

contextuality will appear.

The end of this journey is only the beginning of many others. Paths for future

research are diverse, and we will describe some of them below:

• A topological Vorob’ev theorem was described in this thesis. Detailing its construction

would be a first step to understand the influence that the topology of measurement

scenarios seems to exert. The general idea is quite simple: just identify Graham’s

reduction in processes with a single state and no transformations. Effectively, we

will extract from the valuation function the generators of contextuality, i.e., the

contextual form of the scenario.

• The Bundle Approach has great elegance due to the use of bundle theory to model

physical theories. Its encoding in operational structure, even if restricted to effects,

has interesting potential. The fibers will no longer be made of outcomes, as these are

now at the base of the bundle as effects, but will be given by valuation. Contextuality

will ultimately be expressed in a principal bundle, with direct influence of the base’s
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topology on valuation functions.

• The failure of the Sheaf Approach already indicates a path to be pursued, expanding

its formalism to more complicated situations that include different kinds of relations

between its constituents. Much work is already being done in this direction. The

contexts themselves must be modified, and even the sheaf of events will end up

changing entirely in meaning. Once in the hands of such a simple approach, we can

explore contextuality in a much larger set of already studied phenomena.

• Quantifiers for contextuality are important to know how much of this resource we

have in a model. Their axiomatic construction would be of great importance in future

technological applications. Especially if quantifiers enable their use in situations

where disturbance, outcome-indeterminism, and even context dependence occur.

Such situations occur to a greater or lesser extent in the laboratory and need to be

controlled. A formally constructed quantifier of contextuality would be an excellent

tool, but it needs a theoretical background like those described above to be built.

Research in contextuality and its topological and geometric representations

can bring new tools to deal with this behavior, which, in our classical view, is strange. It

will allow us to apply this knowledge to technological tools that are still being imagined

and contribute to the debate on how best to deal with non-classicality, essential for the

development of our future understanding of reality.
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