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ABSTRACT

The main goal of the present work was to enhance my expertise in the Nuclear

Magnetic Resonance (NMR) technique, especially in the field of superconductivity, and to be

able to characterize two distinct types of superconductors — the BCS MgB2 and the uncon-

ventional BaFe1.91Co0.09As2 — both single crystalline samples. The reason for these choices

was mainly because these superconductors are well known and were widely studied since

their discovery.

For MgB2 single crystals, some novel and compelling results were observed. In

bulk magnetization data, the superconducting transition was observed at 36 K near zero field

(25 Oe), however it was suppressed for increasing magnetic field, being undetectable for H

g 3 T. There was no presence of superconducting hysteresis loop observed as well. For the

Knight shift data, acquired by NMR, one observed the onset of superconductivity at ≈ 18 K,

only the Knight shift increased rather than decreased below Tc . The superconducting state

can also be observed by the broadening of the NMR line, from 4 kHz (60 K) to 7 kHz (4.3 K).

Furthermore, from the NMR spectra in different orientations (H||c and H§c) and at 4.2 K,

we could calculate the quadrupolar frequency for our sample. By comparing it to published

values on both single and polycrystalline samples in the normal state, we can assume there

is no significant changes in the lattice parameters of MgB2 in the superconducting state, as

expected. Moreover, from the spin-lattice relaxation rate data, two peaks were observed:

one below 39 K and the other around 20 K. This is most likely a first-time observation of two

Hebel-Slichter peaks by NMR in MgB2 single crystals, associated with both superconducting

gaps, Ã and Ã.

Finally, for BaFe1.91Co0.09As2 single crystals, we could observe typical supercon-

ducting characteristics on both magnetization and Knight shift experiments. The key aspects

were the decrease in magnetization due to diamagnetic shielding (and thus the critical tem-

perature was obtained for both zero field and 7 T), as well as the hysteresis superconducting

loop in 4 K. In the NMR data, a decrease in Knight shift below Tc and a broadening of the

line indicate the superconducting transition. At last, the spin-lattice relaxation rate data

point to a SDW transition at 20 K (exactly where the NMR line starts to become too broad

and featureless), a small dip at 18 K and then another increase at 16 K, marking the onset of

superconductivity and the coexistence of SC and SDW states.



RESUMO

O principal objetivo deste trabalho foi aprimorar meu conhecimento na técnica

de Ressonância Magnética Nuclear (RMN) como estudante, especialmente na área de su-

percondutividade, e ser capaz de caracterizar diferentes tipos de supercondutores: MgB2

(BCS) e BaFe1,91Co0,09As2 (não convencional), ambos em amostras monocristalinas. A es-

colha desses materiais se deu principalmente pelo fato de serem supercondutores bem con-

hecidos e amplamente estudados desde sua descoberta.

Para os monocristais de MgB2, foram observados alguns resultados novos e inter-

essantes. Nos dados de magnetização em volume, a transição supercondutora foi observada

a 36.0(5) K em campo próximo de zero (25 Oe), sendo suprimida com o aumento do campo

magnético, tornando-se indetectável para H g 3 T. Também não foi observada a presença de

um loop de histerese supercondutor. Nos dados de Knight shift, obtidos por RMN, observou-

se o início da supercondutividade por volta de 18 K, mas, ao invés de diminuir abaixo de Tc ,

o Knight shift aumentou. O estado supercondutor também pôde ser observado pelo alarga-

mento da linha de RMN, de 4 kHz (a 60 K) para 7 kHz (a 4,3 K). Além disso, a partir dos

espectros de RMN em diferentes orientações (H||c e H§c) e a 4.2 K, foi possível calcular a

frequência quadrupolar da nossa amostra. Comparando-a com os valores publicados tanto

para amostras monocristalinas quanto policristalinas no estado normal, podemos assumir

que não há mudanças significativas nos parâmetros de rede do MgB2 no estado supercondu-

tor, como era esperado. Ademais, nos dados da taxa de relaxação spin-rede, foram observa-

dos dois picos: um em 35 K e outro abaixo de 18 K. Esta é, muito provavelmente, a primeira

observação de dois picos de Hebel-Slichter por RMN em monocristais de MgB2, associados

aos dois gaps supercondutores, Ã e Ã.

Por fim, para os monocristais de BaFe1,91Co0,09As2, foi possível observar carac-

terísticas típicas da supercondutividade tanto nos experimentos de magnetização quanto

nos de Knight shift. Os principais aspectos foram a diminuição da magnetização devido à

blindagem diamagnético (e, assim, a temperatura crítica foi obtida tanto para campo zero

quanto para 7 T), bem como o ciclo de histerese supercondutor a 4 K. Nos dados de RMN, a

diminuição do Knight shift abaixo de Tc e o alargamento da linha indicam a transição super-

condutora. Por fim, os dados da taxa de relaxação spin-rede apontam para uma transição

SDW a 20 K (exatamente onde a linha de RMN começa a se tornar muito larga e sem estru-

tura), uma leve queda a 18 K e, em seguida, um novo aumento a 16 K, marcando o início

da supercondutividade e a coexistência dos estados supercondutor (SC) e de onda de densi-

dade de spin (SDW).
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1 INTRODUCTION

In this thesis, we have studied the physical properties of conventional and un-

conventional superconductors by means of solid state nuclear magnetic resonance (NMR),

by measuring NMR parameters such as Knight shift and spin-lattice relaxation time, T1. The

main motivations lie in the detailed information gathered through NMR that are hardly ac-

cessed by other experimental techniques, and in my wish, as a physicist, to specialize in this

technique and the subject of superconductivity. Therefore, two key materials were chosen

for this study: MgB2 and Co-doped BaFe2As2. These compounds were largely studied af-

ter they were discovered as superconductors, consequently a lot of information about their

physical properties and high quality single crystals are now available. This leads to better

and reliable NMR experiments results, and allows one to explore both anisotropy effects and

quadrupolar interactions.

1.1 A brief Historical Background on Superconductivity

Superconductivity is a quite fascinating physical phenomenon that sparks a lot

of interest in the scientific community ever since its discovery in 1911 by H. Karmelingh

Onnes [1]. He observed a sharp drop in the resistivity of Hg at a critical temperature Tc when

studying the conductivity of metals in lower temperatures. For this discovery, Onnes was

awarded a Nobel prize in 1913. Later, in 1933, the Meissner-Ochsenfeld effect was discovered

in superconductors: it is the screening of magnetic field from the interior of a superconduc-

tor during its transition as the temperature is cooled below Tc [2]. This is a key characteris-

tic that differs superconductors from perfect conductors used in classical Electrodynamics

models.

After such discoveries, phenomelogical theories were proposed to describe su-

perconductivity: i) the London equations (1935), focused on the behaviour of electric and

magnetic fields in the interior of superconductors [3], i.e., the Meissner effect, and the ii)

Ginzburg-Landau theory (1950), which describes the behavior of superconducting electrons

in the intermediate region between normal and superconducting domains [4]. Although

successful theories, the explanation for why a material superconduct was achieved by the

Bardeen-Cooper-Schrieffer (BCS) theory in 1957, which proposed that electrons can pair un-

der certain conditions through electron-phonon interactions, and these Cooper pairs are the

charge carriers in this case [5]. For this groundbreaking discovery, the trio of physicists were

awarded the Nobel prize in 1972. These theories will be discussed in Chapter 2.

However, the questions on this topic were not closed indefinitely, as in 1979 a new
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class of superconductors was discovered: the so called heavy fermion compounds [6]. The

superconductivity in these compounds arise from the 4 f electrons in the rare earth metals,

and their pairing mechanism is not explained by electron-phonon interaction. Moreover, in

their phase diagrams, the superconductivity is always in the vicinity of an antiferromagnetic

phase, which seems quite antagonic since magnetism usually opposes, or does not favour,

superconductivity. The same happens for cuprate (discovered in 1986, [7]1) and Fe-based su-

perconductors(FeSC), discovered in 2008, [8]. One can see in Figure 1.1 the different classes

of superconductors, the year they where discovered and their Tc . Another class of uncon-

ventional superconductors is the organic superconductors, first discovered in 1980 by Klaus

Bechgaard and Denis Jérome in (TMTSF)2PF6, with Tc = 0.9 K at an applied pressure of 12

kbar.

It is important to highlight the discovery of YBCO superconductors, shortly found

after the discovery of cuprate superconductors, as its critical temperature (92 K) is above

the temperature of liquid nitrogen (77 K). It then became more feasible to implement su-

perconductors in technological applications due to the low cost production of liquid nitro-

gen when compared to liquid helium. Achieving superconductivity at ambient conditions

would revolutionize numerous technologies, including power grids, magnetic levitation and

magnetic resonance imaging (MRI), by eliminating energy losses in electrical transmission

and enabling highly efficient electronic devices. Recent advances, particularly in hydrogen-

rich materials under extremely high pressure, have brought scientists closer to this goal,

though practical, stable, and scalable room-temperature superconductors remain a major

challenge. Currently, the highest Tc for ambient pressure is for Hg-Ba-Cu-O systems, 130

K [9], whereas for extremely high pressures (170 GPa), it is 250 K for LaH10 [10].

Figure 1.1: Critical temperature Tc as function of their discovery years for distinct classes of superconductors.
Courtesy of Prof. Urbano.

Now, for the sake of chronological order, I will briefly outline the physics of MgB2,

whose superconducting properties were discovered in 2001 and are the subject of this thesis,

1Bednorz and Müller were awarded the Nobel prize in 1987 for their fascinating discovery.
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before I further discuss the unconventional superconductivity of Fe-based superconductors,

also subject of this work. Magnesium diboride is by no means an ordinary superconduc-

tor: despite being a BCS superconductor, it has two superconducting gaps. This is the first

observation of two-gap superconductivity and has sparkled great interest of the scientific

community at the time. Moreover, it has a Tc of 39 K, the highest among intermetallic com-

pounds at that point, which raised questions whether it was another unconventional class

of superconductors being discovered.

The evidences in favor of conventional superconductivity lies mainly on the ob-

servation of the isotope effect in these compounds: when grown with 10B instead of 11B, the

Tc of Magnesium diboride increases by 1 K [11, 12]. This is not observed in substituting Mg

isotopes, indicating that the superconductivity lies on B electronic bands. This is further

supported by photoemission, scanning tunneling microscopy and neutron scattering exper-

iments [13–15], by the form of the temperature dependency of the gap energy, consistent

with the BCS theory.

Despite the initial excitement over this discovery, growing MgB2 is no simple task.

Elemental Mg has a high vapor pressure and MgB2 decomposes rather than melts, mak-

ing simple crystal growth to be near unmanageable. A way to avoid this is reacting B with

Mg vapor at around 900° to produce powder samples [16]. Nonetheless, probing powder

samples through nuclear magnetic resonance yields the following problem: for samples as

anisotropic as MgB2, the random orientation of the powder in regards to the magnetic field

results in several NMR lines, or a very broad peak, instead of a clear, narrow resonance peak.

Hence, shortly after its discovery, MgB2 was studied by NMR, but the polycrystalline samples

available soon proved themselves troublesome. Moreover, measuring and calculating spin-

lattice relaxation times was complex, and only one study was able to prove the existence of

the Hebel-Slichter coherence peak in MgB2, a signature expected for BCS superconductors.

Regardless of the difficulties faced, after a while MgB2 single crystals were finally

grown using high pressure, high temperature methods [17]. This opened a door for first time

studies on the anisotropic magnetic properties, as well as NMR experiments with proper

alignment of the crystal with respect to the magnetic field. There is only one NMR study on

MgB2 single crystals so far. However, the authors claimed no reliable data on Knight shift

were obtained in the superconducting phase. It is in light of this scenario that this study

is inspired: to shed a new light onto the superconducting state of MgB2 single crystals by

using NMR, and establish a comparison with what is known for polycrystalline samples. The

samples used in this thesis were grown and characterized by Prof. Dr. Raquel Ribeiro in the

group of Prof. Paul Canfield from Ames Laboratory, IA.

Now, let us go back to FeSC, whose discovery in 2008 took the whole community

by storm [8], given that Fe atoms are strongly magnetic, and one would expect magnetism

to be antithetical to superconductivity. Moreover, the BCS theory is not sufficient to explain

superconductivity in these compounds, and a large body of scientific evidences point in the
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Figure 1.2: Phase diagram for BaFe2As2. Image extracted from Ref. [23].

direction of spin fluctuations playing the role of mediators in the electron pairing [18–22].

Another surprising feature of such materials is the different ways in which the

presence of multiple atomic orbitals can manifest in unconventional superconductivity, giv-

ing rise to a rich landscape of gap structures that share the same dominant pairing mecha-

nism [23]. Due to the multi-orbital character of these materials, the Hund’s interaction plays

the most relevant role in determining the electronic correlations in the normal state [24].

Another distinguishing feature of FeSC is the orbital differentiation: although multiple or-

bitals are subjected to the same interaction, they experience different degrees of correla-

tion [25–30]. It is this correlated normal state that gives rise to superconductivity and also

other electronic ordered states in these compounds.

The vast majority of family of FeSC compounds order magnetically (see example

in Figure 1.2). Specifically the 122-family (for example BaFe2As2) exhibit a spin-density wave

phase of stripe-type below a critical temperature of 134 K. It is the observation of magnetic

fluctuations at the stripe-type wave vectors that has been widely interpreted as evidence for

magnetic fluctuations playing a key role in the pairing interaction. It is by suppressing the

antiferromagnetic (AFM) phase, either by applying pressure or chemical substitution, that

superconductivity arises [31]. Lastly, another important aspect of the FeSC phase diagrams

is a structural transition from tetragonal to orthorrombic phase at Ts , which occurs either at

the same temperature or anticipating the magnetic transition.

1.2 What is the role of NMR in studying Superconductivity?

The 50’s were certainly an exciting decade for condensed matter physics and the

theory of superconductivity. It started off with the discovery of the isotope effect [32, 33]

and the paper by Ginzburg and Landau on superconductivity [4]. Later on, the paper by

Abrikosov [34] made a groundbreaking discovery on the type-II superconductors, not known
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until then, and the penetration of magnetic field in a very specific manner. This bypasses

the difficulty imposed by the Meissner effect on superconductors, which a magnetic field

is expelled from the material, allowing for the study of superconductors using techniques

such as nuclear magnetic resonance (NMR). In 1957 as well, we finally have the BCS paper

presenting a successful microscopic theory of superconductivity. Finally, the decade ended

in 1959 with Gor’kov’s work that brought together the Ginzburg-Landau and BCS theories,

showing that the former is a limiting form of the latter, and that the order parameter of the

GL theory È is proportional to the BCS energy gap parameter, ∆.

All of these discoveries and theoretical advances needed an experimental backup,

and that’s where NMR, among other techniques, come into the picture. Charles Slichter

played a central role in NMR studies in the 50’s by studying relaxation times in Al [35]. He

was inspired by a talk by Bardeen in 1954 on the electron-phonon theory giving rise to an

energy gap. Slichter noticed that in alkali metals, it is the electrons with energies close to the

Fermi level that contribute the most to the mechanism for spin-lattice relaxation in a metal.

Therefore, the presence of such a gap would produce a major effect on the temperature de-

pendency of T1, the longitudinal (or spin-lattice) relation time.

This was not an easy task, however. At that point, type-II superconductors have

not been discovered yet and the type-I ones presented the Meissner effect: the shielding of

magnetic field mitigates the polarization of spins, from which NMR information is acquired.

Slichter and his student Hebel proceeded by performing a series of magnetic field cycling,

where the polarization happened in the normal state. Since a sufficiently strong magnetic

field suppresses superconductivity, one could start with a field intense enough to bring the

sample into its normal state, allowing the nuclei to be polarized. Lowering the field to zero

would then demagnetize the nuclei, reducing their spin temperature to a level much lower

than the lattice temperature while restoring the sample’s superconducting state. In this state,

the nuclear spin temperature gradually increases toward the lattice temperature. Finally,

raising the magnetic field back to a strong value would return the sample to its normal state,

enabling observation of the final nuclear polarization. By analyzing the final signal’s strength

as a function of the time the sample remains superconducting, one could determine the

spin–lattice relaxation rate in the superconducting state.

After obtaining such T1 results, Slichter and Hebel shared them with Bardeen.

They expected T1 to be longer in the superconducting state than that at the same tempera-

ture in the normal state, because an energy gap would suppress excitations. However, they

found that the relaxation rate at the lowest temperature was twice as fast as it would be at the

same temperature. The only explanation was an enhancement of the density of states near

the edge of the gap, which Bardeen agreed to be reasonable.

Furthermore, in 1962, the experimental observation of type-II superconductiv-

ity2 in Nb [36] and Nb3Sn, Nb3Al, V3Ga and V3Si [37] lifted the spirits for the NMR commu-

2through the observation of negative surface energy at an interface between normal and superconducting
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nity: now one can access the superconducting state by the vortex (or intermediate) state,

where the magnetic flux penetrates the sample in the form of fluxoids. This regime arises

when the applied magnetic field is greater than a lower critical field Hc1 but less than an

upper critical field Hc2. Such fluxoid lattice produces a characteristic NMR line shape: the

highest frequency corresponds to nuclei closer to the vortex core. In the case of a square flux-

oid lattice, the lowest frequency corresponding to nuclei in the center of the vortex core, and

the absorption spectrum has the greatest intensity for nuclei between two nearest neighbour

vortices (see Figure 1.3). One can use this information to also study how T1 (longitudinal)

and T2 (transverse) relaxation times vary locally within the vortex lattice. [38].

Figure 1.3: 205 Tl-NMR spectrum (solid line) at 5 K for Tl2Ba2CuO6. The intensity is plotted in a linear scale.
The red dotted line represents the simulation spectrum convoluted with Lorentzian broadening function. The
red filled circles show the frequency dependence of T −1

1 at the Tl site. Inset: the image of the field distribution
in the vortex square lattice; center of vortex core (A), saddle point (B), and center of vortex lattice (C). Image
extracted from Ref. [39]

Therefore, the NMR resonance line in the superconducting state should then be

a direct convolution of a Lorentzian line shape and the internal magnetic field distribution

due to the vortex lattice. Moreover, a careful spectral analysis should provide relevant infor-

mation on the superconducting state.

The Pairing State and NMR

An important information to obtain by means of NMR is the pairing state of a su-

perconductor. For a BCS superconductor, the wave functions correspond to electron pairs of

zero total spin S and zero orbital angular momentum L. Nonetheless, other pairing states are

possible if there are other pairing mechanisms involved. For instance, in high-Tc cuprates,

the pairing mechanism is based on spin fluctuations, and the pairing state is believed to be

S = 0,L = 2 [40]. However, it must be noted that knowledge of the pairing state does not

predict the pairing mechanism by itself.

The way NMR determines the spin state is by measuring the shift of the NMR fre-

quency relative to that of a reference material. For weakly paramagnetic materials such as

metals.
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metals, the polarization of the electron spins produces a shift named Knight shift, after its

discoverer Walter Knight [41]. An example is illustrated in Figure 1.4a. Such shift is propor-

tional to the spin susceptibility for one-component systems, and by measuring the Knight

shift one gets information on the temperatures dependency of the spin susceptibility of the

system (K ∝ Çs(0)). For S = 0, the spin susceptibility vanishes at T = 0, whereas for S = 1, it

does not [42]. An example of this is the nonvanishing spin contribution of Co and Ga shifts

in PuCoGa5 reported by Curro et al. [43], a heavy fermion (unconventional) superconductor

(Figure 1.4b).

(a) (b)

Figure 1.4: a) NMR spectra of 71Ga at 8 T at a series of temperatures through Tc ≈ 16 K. The spectra have been
offset vertically for clarity. Solid lines are gaussian fits. b) Normalized spin susceptibility in the superconducting
state. The 59Co and 71Ga data, as well as the calculations for pure d-wave (dotted line) and dirty d-wave (solid
line) gap functions are shown. Images extracted from Ref. [43]

Apart from the Knight shift, the spin-lattice relaxation rate further corroborates

to identify the pairing state. For L = 0, 1/T1 is expected to have a coherence peak just below

Tc , similar to what was reported for Al. At lower temperatures, 1/T1 varies exponentially as a

function of −∆/T . For L ̸= 0, no such peak is observed due to lifetime effects that broaden the

electron energy levels, and one gets a power law T-dependence of 1/T1: typical of a d-wave

is a T3 dependence below Tc for point nodes, whereas T5 is expected for line nodes. One can

see such difference in Figure 1.5 for heavy fermion PuCoGa5.

In conclusion, one can see the relevance of the GL equations as well as the BCS

theory, which paves the way for studying superconductivity through type-II SC. This allowed

NMR physicists to join the party of extraordinary beauty of superconductivity and contribute

to its advances using this powerful experimental technique.
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Figure 1.5: The spin-lattice relaxation rate in the normal and superconducting states, 1/T1 for the 69Ga as well
as the calculations for the BCS isotropic s-wave (dashed line), pure (dotted line) and dirty (solid line) d-wave
gap functions. Image extracted from Ref. [43]

Thesis Structure

Chapter 2 presents the theory of conventional superconductivity, beginning with

the general characteristics of superconductors and progressing through phenomenologi-

cal models, including the London and Ginzburg-Landau theories. The chapter concludes

with the BCS theory. Chapter 3 introduces the fundamentals of nuclear magnetic resonance

(NMR), covering nuclear spins in a magnetic field, spin echoes, the Bloch equations and

their solutions, and the principles of resonance measurement in the laboratory. Chapter

4 outlines the methodology and experimental setup, detailing the SQUID-VSM system and

the NMR spectrometer. Chapter 5 presents experimental results on MgB2, discussing the

findings in the context of its two-gap superconductivity. Finally, Chapter 6 explores the ex-

perimental results of Co-doped BaFe2As2, following a brief theoretical introduction.
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2 CONVENTIONAL SUPERCONDUCTIVITY

Superconductivity is a physical phenomenon with highly interesting properties.

It is a state that arises in certain materials below a critical temperature Tc , which presents

both perfect conductivity and perfect diamagnetism. The latter is of utmost importance,

since it cannot be explained through Maxwell equations and classic Electromagnetism (ex-

plained in further detail below).

It was discovered in 1911 by H. Kamerlingh Onnes when studying the effects of

low temperatures in resistivity [1]. He observed that, when the temperature was around 4 K,

the resistivity of mercury (Hg) dropped abruptally to extremely low values (R ≈ 10−5
Ω). Later

on, this remarkable property was observed on other metals, such as Al, Sn and Pb. Due to his

ground breaking discovery, Onnes was awarded the Nobel prize in 1913.

On the other hand, the property of perfect diamagnetism was only discovered

years later, in 1933, by Meissner and Ochsenfeld [2]. They observed that when a supercon-

ductor is in its normal state and a magnetic field is applied, it behaves as a paramagnet.

However, once the temperature goes below Tc , there is an immediate expulsion of the mag-

netic field, which can now only enter the superconductor a couple of nm. This phenomenon

can be seen in Figure 2.1. That effect is not explained by the Faraday’s law or any other

Maxwell equation, thus being a quantum effect. Furthermore, this immediate repulsion of

magnetic field (the Meissner-Ochsenfeld effect) is what differs between a superconductor

and the perfect conductor used as model in classic Electrodynamics.

H H

T > T T < T
c c

Figure 2.1: The immediate screening from the interior of the superconductor happens as soon as the super-
conducting transition occurs.

A quick note on the Meissner Effect

To detect experimentally the Meissner effect, one can perform magnetization ex-

periments as a function of temperature. Two different protocols must be performed: ZFC

and FC. ZFC stands for zero field cooling, and means that first the sample will be cooled
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to a low temperature (lower than Tc ) in zero magnetic field. When the low temperature is

achieved, the magnetic field will be turned on. Since the sample is in its superconducting

state, the field will not be able to penetrate the sample (see Figure 2.2a). On the other hand,

FC means field cooling, which means that the magnetic field will be turned on whilst the

sample is in room temperature. Afterwards, the temperature will be cooled below Tc , so the

material enters the superconducting state with an applied magnetic field. That means that

the field, that was once inside the sample, will be immediately screened from it, as shown

in Figure 2.2b. This showcases exactly how the perfect diamagnetism works: it is not only

diamagnetic when you turn on the field and it is in its superconducting state, but it will expel

the field that was penetrating the sample before the superconducting transition.

T > T
c

T < T
c

H

H = 0

(a)

T > T
c

T < T
c

H

H = 0

(b)

Figure 2.2: Behavior of a superconductor when either a) ZFC b) or FC is performed.

The presence of the Meissner effects implies there is a critical field Hc , above

which the superconductivity is destroyed. It is related to the free energy difference between

normal and superconducting states, in field zero:

H 2
c (T )

8Ã
= fn(T )− fs(T ) = Fs(T ) (2.1)

where Fs(T ) is the condensation energy of the superconducting state.

Empirically, Hc (T ) can be approximated by a parabolic law:

Hc (T ) ≈ Hc (0)[1− (T /Tc )2] (2.2)

2.1 Phenomenological Theories

The following content of this chapter will be based on Reference [44].
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2.1.1 The London Theory

In 1935, Fritz and Heinz London proposed a phenomenological theory on super-

conductivity [3]. They proposed two equations that would explain the behavior of electric

and magnetic fields inside a supercondutor:

E = ∂

∂t
(ΛJs ) (2.3)

h =−c∇× (ΛJs ) (2.4)

where

Λ= 4Ã¼2

c2
= m

nse2
(2.5)

is a phenomenological parameter, ¼ is the penetration depth (explained below) and ns is

the density of superconducting electrons. Equation 2.3 describes a perfect conductor: the

electric field accelerates the superconducting electrons, rather than simply sustaining their

speed. The second London equation 2.4 can be combined to the Maxwell equation ∇×h =
4ÃJ/c to get the following result:

∇2h = h

¼2
(2.6)

Equation 2.6 states that a magnetic field is screened from the superconductor

with a penetration depth ¼: therefore, it describes the Meissner effect.

A more quantum motivation for the London equations can be seen by using a

vector potential A, given by F. London [45]. Since the canonical momentum is given by p =
(mv +e A/c), and the net momentum is zero when the applied field is zero, one arrives at the

following relation for the average velocity (in the absence of field):

+vs, =
−e A

mc
(2.7)

Taking ns as the superconducting electrons density and that their wavefunction

is in a "rigid" ground state (i.e., it retains the property +p, = 0), the superconducting current

density is:

Js = nse+vs, =
−nse2 A

mc
= −A

Λc
(2.8)

Taking the time derivative on both sides yields Equation 2.3, whereas taking the

curl yields 2.4. Therefore, Equation 2.8 contains both London equations in a compact form.

Note that Equation 2.8 is not gauge-invariant; it only works for a particular choice of A, which

is the London gauge. It satisfies the following conditions:
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1. ∇· A = 0;

2. the normal component of A over the surface is related to any supercurrent through the

surface by 2.8;

3. A → 0 in the interior of bulk samples.

2.1.2 Ginzburg-Landau Theory

In 1950, Vitaly Ginzburg and Lev Landau took yet another step towards the the-

ory of superconductivity. They proposed another phenomenological theory [4], this time

focused on understanding the behaviour of the superconducting electrons, introducing a

complex pseudowavefunction È as an order parameter in Landau’s theory of second order

phase transitions. È describes de superconducting electron and relates to the density of

superconducting electrons by ns = |È(x)|2. Moreover, this wave function can be written in

terms of a phase in the following manner:

È(x) = |È(x)|e iÆ =p
nse iÆ (2.9)

Although not fully appreciated when it first came out, the GL theory soon proved

to the a quite ingenious way of describing the macroscopic quantum-mechanical nature

of the superconducting state, which is crucial for understanding its unique electrodynamic

properties. Even though it has some limitations such as only valid near Tc (Landau’s theory is

valid only in the neighborhood of the transition) and neither È or A can vary too rapidly, it is

an astonishing theory capable of dealing with spatially inhomogeneous superconductivity.

The basic postulate of the GL theory is that, if the order parameter È is small and

varies slowly in space, the free energy density f can be expanded in a series:

f = fn0 +³|È|2 + ´

2
|È|4 + 1

2m∗

∣

∣

∣

∣

(ħ
i
∇− e∗

c
A

)

È

∣

∣

∣

∣

2

+ h2

8Ã
(2.10)

Note that, evidently, when È→ 0, this is the normal state free energy: fn0+h2/8Ã,

where fn0(T ) = fn0(0)−µT 2/2. Thus, the three remaining terms describe the Superconduc-

tivity effects.

In the absence of fields and gradients, we have:

fs − fn =³|È|2 + 1

2
´|È|4 (2.11)

which can be seen as a series expansion in powers of |È|2. ´ must be positive, in order not to

have |È|2 arbitrarily large. Therefore, two cases arise:

• ³> 0: the minimum of the free energy occurs at |È|2 = 0 ⇒ normal state (Figure 2.3a);

• ³< 0 (Figure 2.3b)
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(a) (b)

Figure 2.3: Ginzburg-Landau free-energy functions for a) T > Tc (³ > 0) and for b) T < Tc (³ < 0). Heavy dots
indicate equilibrium positions.

In order to obtain the GL equations, one must first minimize fs in regards to È∗:

∂ fs

∂È∗ = 2³È+ ´4

2
|È|3 = 0 (2.12)

Solving this equation yields:

È(2³+2´|È|2) = 0 ⇒ 2³+2´|È|2 = 0 (2.13)

Therefore, one gets the following relation for the order parameter:

|È|2 =−³

´
≡È2

0,T < Tc , ³< 0 (2.14)

Substituting È2
0 back into Equation 2.11 yields:

fs − fn =−³2

2´
=−

H 2
c

8Ã
(2.15)

using the definition of the thermodynamical critical field Hc .

To obtain the second GL equation, one must minimize fs now in regards to A:

∂ fs

∂A
=− e∗2

1m∗c2

[

È∗
(

iħc

e∗ ∇+ A

)

È−È

(

iħc

e∗ ∇− A

)

È∗
]

+ 1

4Ã
∇× (∇× A) = 0 (2.16)

Using Ampère’s Law: ∇× A = 4Ã
c

Js :

Js =− e∗2

2m∗c

[

iħc

e∗ (È∗∇È−È∇È∗)+ (È∗AÈ−ÈAÈ∗)

]

(2.17)

which yields, when substituting È=p
nse iÆ:

Js =− e∗ħ
2m∗ |È|2

(

∇Æ+ e∗

ħc
A

)

(2.18)



2. Conventional Superconductivity 31

which describes the behavior of the supercurrent.

We have finally arrived at the Ginzburg-Landau differential equations:

³È+´|È|2È+ 1

2m∗

(ħ
i
∇− e∗

c
A

)2

È= 0 (2.19a)

Js =
e∗

m∗ |È|2
(

ħ∇Æ− e∗

c
A

)

(2.19b)

Furthermore, the parameters follow the relations near criticality:

³(t ) =³′(t −1),³’ > 0, t = T /Tc (2.20a)

|È|2 ∝ (1− t ) (2.20b)

To make these considerations quantitative, we take a look at the last term of

Equation 2.10:

1

2m∗

∣

∣

∣

∣

(ħ
i
∇− e∗

c
A

)

È

∣

∣

∣

∣

2

+ h2

8Ã
(2.21)

The first term is the energy associated with gradients in the order parameter,

whereas the second one is the kinetic energy associated with supercurrent. In the London

gauge, Æ is constant, thus the term is simply

Ksc =
e∗2 A2|È|2

2m8c2
(2.22)

Equating this to the energy density for a superconductor in the London theory

(A2/8Ã¼2
eff), one gets:

¼2
eff =

m∗c2

4Ã|È|2e∗2
(2.23)

which agrees with the usual definition for the London penetration depth, apart from the

starred numbers (the explanation for these will be covered in the next section; no need to

worry about it now).

With these definitions, we can now write down the parameters of the Ginzburg-

Landau theory:

|È|2 ≡ ns =
m∗c2

4Ãe∗2¼2
eff

(2.24a)

³(T ) =− e∗2

m∗c2
H 2

c (T )¼2
eff(T ) (2.24b)

´(T ) = 4Ãe∗4

m∗2c4H 2
c (T )¼4

eff(T )
(2.24c)
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Furthermore, the theory also introduced a new parameter, now called the co-

herence length. We can obtain it by exploring further the Equation 2.19a, considering the

one-dimentional case without any fields (A = 0) and introducing a normalized wave func-

tion Ψ=È/È0:

ħ2

2m∗|³|
d 2

Ψ

d x2
+Ψ−Ψ

3 = 0 (2.25)

À2(T ) = ħ2

|2m∗³(T )|
∝ 1

1− t
(2.26)

which caracterizes the spatial extent over which È(r ) can vary without undue energy in-

crease. Thus, it provides a measure for how far superconducting correlations persist in space.

To calculate its value, one must susbtitute the value of ³ from Equation 2.24b

into the definition of À:

À(T ) = Φ0

2
p

2ÃHc (T )¼eff(T )
(2.27)

where Φ0 = hc/e∗ is the fluxoid quantum (explained in the next section).

Moreover, the ratio of the two characteristic lengths is called the Ginzburg-Landau

parameter:

»= ¼

À
(2.28)

For typical classic superconductors at the time, ¼ ≈ 500 Åand À ≈ 3000 Å, thus

»j 1. In this case, there is a positive surface energy associated with the boundary between

normal and superconducting states. Such surface energy favours the formation of domain

patters in the intermediate state: it is energetically favorable to be subdivided into normal

and superconducting state rather than being fully one or another. The sizes of such domains

vary between the coherence length À and the sample size.

There are a handful of achievements the Ginzburg-Landau (GL) theory has ac-

complished, extending the scope of the London theory. Namely:

1. nonlinear effects of fields strong enough to change ns ;

2. the spatial variation of ns ;

3. handling the intermediate state (when H ≈ Hc ) - see Figure 2.4.

Type-I and Type-II Superconductors

In 1957, Alexei A. Abrikosov published a remarkable paper [34] investigating what

would happen if instead » was large, i.e., À<¼. This would lead to a negative surface energy
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x

superconducting normal

Figure 2.4: Interface between normal and superconducting domains in the intermediate state.

(instead of positive one explained above), which limits the process of subdivision into do-

mains to the size of À. Since this is radically different from the previous behaviour, Abrikosov

named these "type-II superconductors", and predicted the breakpoint between the types to

be at »= 1/
p

2:

• »< 1/
p

2 ⇒ type-I superconductor;

• »> 1/
p

2 ⇒ type-II superconductor.

The difference between type-I and type-II in terms of À and ¼ can be seen in

Figure 2.5:

(a) »j 1 (b) »k 1

Figure 2.5: Schematic diagram of variation of h and È in a domain wall. a) Refers to a type-I superconductor,
whereas b) is the case for a type-II.

For the»k 1, he discovered the magnetic flux didn’t penetrate the sample through

a discontinuous breakdown of superconductivity at Hc , but rather was continuosly increased

above a lower critical field Hc1 until an upper critical field Hc2, above which the supercon-

ductivity is destroyed. Since Hc2 =
p

2»Hc , the diamagnetic cost of keeping the magnetic

field out is less than for type-I, therefore making it possible to have high-field superconduct-

ing magnets (widely used nowadays especially in NMR).

The state between fields Hc1 and Hc2 is called the mixed or Schubnikov phase,

and the magnetic flux does not penetrate in a laminar flux, but in a regular array of flux tubes,

each carrying a quantum of flux.

Φ0 =
hc

2e
= 2.07×10−7G cm2 (2.29)
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Within each tube, there is a vortex of supercurrents that concentrates the flux to-

ward the vortex center. The most favorable configuration of such vortex arrays is a triangular

one.

2.2 Microscopic Theory: Bardeen-Cooper-Schrieffer

After such prolific advances were made in the field of superconductivity, one

question still persisted: What essentially makes electrons superconduct? No one still had

that answer, but in the beginning of the ’50s, that started to change.

In 1950, E. Maxwell published the discovery of the isotope effect in mercury (Hg)

[32]. Around the same time, Reynolds and his peers carried out a more specific study on

the isotope effect of Mercury, varying the atomic mass further to strengthen their thesis [33].

They realized that for elements with different isotopes, which is the case for Hg, the criti-

cal temperature changed with the isotopic mass. More specifically, they obey the following

relation:

Tc ∝ M−³ (2.30)

where ³≈ 1/2 for most metals and M is the atomic mass.

At almost the same time as Maxwell and Reynolds, Herbert Fröhlich introduced

the idea that the electron-phonon interaction was responsible for creating an attractive force

between electrons, which made them superconduct. In his paper [46], Fröhlich realised

that electrons can have an attractive interaction mediated by lattice vibrations. He proved it

through the isotope effect: The dependence of the critical temperature on the atomic mass

is the same as the Debye frequency (the maximum frequency of the lattice vibrations in a

solid), ωD ∝ M−1/2. He was the first to suggest that superconductivity was caused by the

electron-phonon interaction. This was an essential discovery to pave the way for the BCS

theory to rise.

In the following sections, the BCS theory will be explained and a more palpable

approach to the mathematics of it will be adopted, for the sake of keeping this reading in-

teresting. In addition to reference [44], reference [47] will also be used to construct such

sections.

Cooper Instability

Let us start with the concept of Cooper instability. He introduced the idea in 1956

[48], and proved that the ground state of a normal metal was unstable at zero temperature. In

this condition, the material prefers to be in the superconducting state. He further suggested

that the instability was caused precisely by the scattering between pairs of electrons, and

that the scattering potential is the exchange of phonons:
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Vs(q ,ω) =
vq

ϵ(q ,ω)
+

2ω¼M 2
q

ϵ(q)2[ω2 −ω¼(q)2]
(2.31)

The first term is the Coulomb repulsion between the two electrons. The second

term is the electron-phonon interaction. It is, on the average, weaker than the Coulomb

interaction. However, the denominator can be small and negative as long as ω < ωD , mak-

ing the second term larger as a whole. The idea is that a material can superconduct if the

energy of the electron-phonon interaction is relatively larger; the electrons must possess a

wave function which selects a frequency inside the range pointed above, thus creating an

attractive energy.

To proceed with the calculations, we will replace the previous potential by a sim-

pler model1:

Vs(q ,ω) =







−V0 for |Àq | <ωD ,

0 for |Àq | >ωD

(2.32)

where Àq is the energy of an electron with momentum q and V0 > 0. Therefore, the potential

is constant and attractive for energies up to the Debye energy ωD .

In Cooper’s model, the free-electron model is assumed. In the zero temperature

limit, the Fermi surface has a sharp step in energy, and the electrons are allowed to have such

attrative interaction. We assume a mutual scattering process, where the electrons possess

equal and opposite moments k and −k and spins ↑ and ³.

Now, consider a double scattering event. This is the scattering in the second Born

approximation, and the dashed line represents the interaction of Equation 2.32. The two

electrons start with momentum k and −k , and a momentum transfer q leaves them with

(opposite) momentums (k +++q) and −−−− (k +++q). The moments ±kI in the figure are the in-

termediate states of the scattering, whereas ±k ′′′ are the final ones.

After some calculations, one arrives at the following effective scattering in the

first and second Born approximations:

Veff =−V0

[

1−NF V0 ln

(

À

ωD

)]

(2.33)

The term −NF V0 ln(À/ωD ) is the vertex correction which results from the addi-

tional scattering between electrons. If we consider a sum of n +1 diagrams, there will be n

contributions of:

−V0

[

−NF V0 ln

(

À

ωD

)]n

(2.34)

The summation of such terms yields to the effective potential:

1The initial BCS calculations were performed with this potential
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Veff =−V0

∞
∑

N=0

[

−NF V0 ln

(

À

ωD

)]n

(2.35)

=− V0

1+NF V0 ln(À/ωD )
(2.36)

Note that the potential has a pole at:

À0 =ωD exp[−1/NF V0], (2.37)

which is sufficient to cause the instability. The electrons near the Fermi energy will interact

with their pair on the opposite side of the Fermi sea. The mutual scattering produces a pole

in the scattering amplitude, which makes the electrons bind as pairs. This happens to all the

electrons in the Fermi energy, hence a phase transition occurs.

Furthermore, seeing the instability as a function of temperature, one can see that

the effective potential has an energy denominator of the form:

Veff =− V0

1+NF V0 ln
(

√

À2 + (kB T )2/ωD

) (2.38)

At zero energy (À= 0), Veff becomes singular when the temperature is lowered to

the Tc :

kB Tc =ωD exp

[

− 1

NF V0

]

(2.39)

This correctly predicts the form of the transition temperature for the BCS theory:

kB Tc = 1.14ωD exp

[

− 1

NF V0

]

(2.40)

Note how the result is proportional to the Debye energy, just as the isotope effect.

Therefore, the physical idea behind the pairing is that the first electron polarizes

the medium by attracting positive ions; which in turn attract the second electron, giving

rise to an attractive interaction between the electrons. If this attraction is strong enough to

overcome the Coulomb interaction between these electrons, then they will have an attractive

interaction and superconductivity results. These electrons form a pair now called Cooper

pairs, after physicist Leon Cooper and his work just prior to the BCS paper [48]. The Cooper

pairs, in the superconducting state, are the charge carriers, and since they are now bosons

(because they are made of two fermions), they are condensed in the same state and thus can

conduct electric currents without scattering and energy loss.
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The BCS Ground State

We have now seen that the Fermi sea is unstable against the formation of a bound

Cooper pair when there is an attractive interaction, so we must expect pairs to condense

until an equilibrium point is achieved. This will happen when the state of the system is so

changed from the Fermi sea that the binding energy for an additional pair has gone to zero.

To handle this mathematically, John Bardeen, Leon Cooper and John Schrieffer proposed a

very interesting mathematical form: the BCS wave function.

The wave function which describes pairs of electrons is more conveniently writ-

ten using the language of second quantization. We denote the occupied states by creation

operators c†
k↑, whereas the annihilation operator ck↑ empties the corresponding state. The

most general N-electron wave function in terms of momentum eigenfunctions and with the

Cooper pairing is:

∣

∣ÈN

〉

=
∑

g (ki , ...kl )c†
ki ↑c†

−−−ki ³...c†
kl ↑

c†
−−−kl ³

∣

∣Æ0
〉

(2.41)

where
∣

∣Æ0
〉

is the vacuum state with no particles, ki and kl are the first and last of the M k

values of the band which are occupied and g is a weighing coefficient with which the product

of this set of N /2 pairs of creation operators appears.

To simplify the calculations, BCS argued that the occupancy of each state k is

dependent only on the average occupancy of other states, instead of summing over all the

possible ways of choosing the N /2 states for pair occupancy. Essentially, we work with a

grand canonical ensemble. Therefore, the ground state for the BCS theory is:

∣

∣ÈG

〉

=
∏

k===k1,...,kM

(uk + vk c†
k↑)c†

−−−k³
∣

∣Æ0
〉

(2.42)

where |uk |2+|vk |2 = 1. The probability of the pair (k ↑,−−−k ³) is |vk |2, whereas the probability

of it being unoccupied is |uk |2 = 1−|vk |2.

At last, the pairing Hamiltonian is:

Ĥ =
∑

kÃ

ϵk nkÃ+
∑

kl

Vkl c†
k↑c†

−−−k³c−−−l³cl↑ (2.43)

where ϵk is the energy of an electron and Vkl is the attractive interaction between them.

With this Hamiltonian and the ground state wave function, one can define the

following quantities:

∆≡−
∑

l

Vkl ul vl (2.44)

and

Ek ≡ (∆2 +À2
k )1/2 (2.45)
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where Àk is the single-particle energy. Ek is the excitation energy of a quasi-particle of mo-

mentum ħk and ∆ is the minimum excitation energy, or energy gap. In the weak coupling

limit, N (0)V j 1, thus:

∆≈ 2ħωD exp

(

− 1

N (0)V

)

(2.46)

In the BCS theory, when the electrons pair up and transition to the superconduct-

ing state, an energy gap opens up in the Fermi level, given by 2.46. . At first, before the tran-

sition, the electrons are unpaired; thus, they behave as fermions (they obey the Fermi-Dirac

statistics). After the transition, they form bosons (S = 0) and can move freely in the region

of occupied states (there is no restriction in their quantum numbers because they now obey

the Bose-Einstein statistics). Hence, the Cooper pairs can conduct electric currents without

dissipation.

However, if one provides energy E > ∆, the pairs break and are no longer super-

conducting. Note that one cannot break one or another pair: the energy one must provides

either break all of them (E >∆) or none of them (E <∆).
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3 NUCLEAR MAGNETIC RESONANCE

This Chapter builds the theoretical foundations to understand the resonance

phenomenon in nuclei, and are mostly based on Reference [49]. The goal is to familiarize

the reader with this technique using a semi-classical approach of nuclei in a static magnetic

field, and to use this knowledge to understand how one measures nuclear resonances in the

laboratory.

3.1 Introduction

The phenomenon of nuclear magnetic resonance (NMR) is found in systems

which possess both angular and magnetic moments (i.e., when the nuclear spin is nonzero).

It was first observed by physicist Isidor Rabi in 1938 [50], while working with molecular

beams in the Stern-Gerlach experiment. Felix Bloch and Edward Purcell expanded the tech-

nique for both solids and liquids [51, 52] in 1946. What all of them observed is that the nu-

clei, when inserted in a magnetic field, could absorb energy in the range of radio-frequency

(RF) waves; in such situation, the nucleus is said to be in resonance. Moreover, for the same

magnetic field, the energy absorption happens in different frequencies for different isotopes.

Each isotope precesses at an specific value of frequency when in a static magnetic field; this

frequency is called Larmor frequency. For nuclear spins, this frequency lies in the range of

radio-frequency (up to 900 MHz), whilst for electron spins, the frequency range is microwave

(up to 300 GHz).

The most prominent feature of this technique is the possibility to single out the

magnetic susceptibility of the isotope observed, rather than the total bulk magnetic suscep-

tibility. This allows for complex information to be obtained: in Physics, its relevance lies in

gathering information on atomic level not obtainable in other ways [49], whereas in Chem-

istry, such technique provides information on the molecule composition, such as its atoms

and the chemical bonds between them.

3.2 Theory of the Resonance Phenomenon

Our system, composed of many nuclei, possesses a total magnetic moment µ

and a total angular momentum J. Taking both vectors to be parallel:

µ= µJ, (3.1)

where µ= e
2mc

is the gyromagnetic ratio of the isotope.
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The application of a magnetic field H produces an interaction energy of the nu-

cleus of −µ ·H. Then, the Hamiltonian can be written as:

H =−µ ·H ⇒H =−µħH0Iz , (3.2)

where H0 is the static magnetic field and Iz is the z-component of the nuclear spin.

The allowed energies are the eigenvalues of this Hamiltonian:

Em =−µħH0m,m = -1, ..., 1, (3.3)

i.e., a set of 2m +1 eigenenergies separated by an energy µħH0.

It is possible to detect the presence of such energy level by spectral absorption.

Therefore, it is necessary to have an interaction in the system that can cause transitions be-

tween those levels. In order to satisfy conservation of energy, this interaction must be time

dependent and of angular frequency ω such that:

ħω=∆E = µħH0 ⇒ (3.4)

ω= µH0 (3.5)

where ∆E is the energy difference between the Zeeman energies. Note that the Planck’s

constant no longer appears in the resonance condition. That suggests us that a classical

approach is quite valid for resonance theory. Therefore, such approach will be introduced

shortly, and later on the quantum description will also be explored.

3.3 Dynamics of Spin Populations

3.3.1 Classical Treatment of the Motion of Spins

We aim to analyze the motion of a spin in a time-dependent magnetic field H ,

which can exert a torque on the spin given by µ×××H . Assuming the field is constant in time

and there are no energy losses, the magnetic moment would oscillate around its equilibrium

position. Otherwise, if there are energy losses, it would stop oscillating and align with the

magnetic field.

Since the spin also possesses angular momentum, it also acts as a gyroscope in

this scenario. Therefore, the torque and angular momentum follow the relation:

d J

d t
=µ×H (3.6)

Since µ= µJ, one gets:
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dµ

d t
=µ× (µH) (3.7)

Equation 3.7 can be solved using a rotating coordinate system. Consider a vector

function of time F (t ) which can be written in rectangular coordinates:

F = i Fx + j Fy +kFz

Now, we assume vectors i , j and k are of fixed length, but can rotate with angular

velocity Ω. Thus:

di

d t
=Ω××× i (3.8)

The time derivative of F is:

dF

d t
= ¶F

¶t
+Ω×××F (3.9)

Applying Equation 3.7 to 3.9:

¶µ

¶t
+Ω×××µ=µ×µH ⇒ ¶µ

¶t
=µ× (µH +++Ω) (3.10)

Note that 3.10 tells us there is an equivalence in the equation of motion for the

rotating reference and the laboratory system, as long as the magnetic field is replaced by an

effective field He :

He = H +Ω

µ
(3.11)

Assuming the field is in the z-direction, H = k H0, the equation of motion can be

solved by choosing Ω such that He = 0. Therefore:

Ω=−µH0k (3.12)

Consequently, the magnetic moment rotates with an angular velocity Ω, as de-

fined in Equation 3.12, relative to the laboratory reference frame. The angular frequency µH0

is known as the Larmor frequency.

3.3.2 Quantum Mechanical Description of a Spin in a Magnetic Field

It was stated previously that the available energies for a spin in a magnetic field

are given by Equation 3.4. Denoting the corresponding eigenfunctions of the time- indepen-

dent Schrödinger equation by uI ,m , the time-dependent solution for a value of m is:

ΨI ,m(t ) = uI ,me−(i /ħ)Em t (3.13)
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Therefore, the most general solution is:

Ψ(t ) =
+I
∑

m=−I

cmuI ,me−(i /ħ)Em t (3.14)

where cm ∈C.

We can use Ψ(t ) to compute the expectation value of any observable. Let us do it

for the x-component of the magnetic moment:

+µx(t ), =
∫

Ψ
∗µxΨ(t ) (3.15)

Using µx = µħIx , we get:

+µx(t ), =
∑

m,m′
µħc∗m′Cm(m′|Ix |m)e(i /ħ)(Em′−Em )t (3.16)

where (m′|Ix |m) ≡
∫

u ∗Im′ IxuImdÄ.

The expectation values will generally be time-dependent with terms that oscillate

harmonically with frequencies (Em′−Em)/ħ, which are simply the absorption or emission of

energy between states m and m′.

Since the matrix elements (m′|Ix |m) vanish unless m′ = m±1, all terms in Equa-

tion 3.16 exhibit angular frequencies of +µH0 or −µH0. Consequently, the expectation val-

ues +µx(t ), and +µy (t ), oscillate over time. However, it can be shown that +µz(t ), remains

constant, implying that +µ, undergoes precession in the x-y plane while maintaining a fixed

angle with the z-axis.

To establish the equivalence between classical and quantum descriptions, we

employ the equations of motion for the expectation value +µ,. Using the Zeeman Hamil-

tonian (Equation 3.2) and the commutation relation for I , namely [Ix , Iy ] = i Iz , we obtain

the time derivatives of the components of I :

d Ix

d t
= µH0Iy (3.17)

d Iy

d t
= µH0Ix (3.18)

d Iz

d t
= 0 (3.19)

These are the component equations corresponding to the vector equation of mo-

tion:

d I

d t
= I ×µH (3.20)

Since µ= µħI , the expectation value for the magnetization is simply:
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d+µ,
d t

= +µ,×µH (3.21)

This result precisely matches the classical equation, demonstrating that the ex-

pectation value of the magnetization follows the classical equation of motion. It is important

to emphasize that Equation 3.21 remains valid even for a time-dependent H , not just a static

field.

3.3.3 Classical Description of the Effects of an Alternating Magnetic Field

For now, we turn our attention to the effects on the motion of spins of an alternat-

ing field, and here it will suffice to use the classical approach. Let us begin with the following

field:

H1 = H1(i cos(ωz t )+ j sin(ωz t )) (3.22)

where ωz is the z-component of ω. Thus, our equation of motion for a spin (under the influ-

ence of H0 and H1) becomes:

dµ

d t
=µ×µ[H0 +++H1(t )] (3.23)

We can eliminate the time dependence of H1 by switching to a coordinate system

that rotates about the z-axis with frequency ωz . Note that H0 will also be static in this ref-

erence frame for it lies along the rotation axis (remember: H0 === k Ho). Therefore, Equation

3.23 becomes:

¶µ

¶t
=µ× [k(ωz +µH0)+ iµH1] (3.24)

One can rewrite Equation 3.24 to emphasize that, near resonance, ωzµH0
∼= 0.

Setting ωz =−ω (ω> 0):

¶µ

¶t
=µ×µ

[(

H0 −
ω

µ

)

k +H1i

]

(3.25)

=γ×××Heff (3.26)

where

Heff = k

(

H0 −
ω

µ

)

+H1i (3.27)

Physically, this implies that in the rotating frame, the magnetic moment experi-

ences an effective static field Heff and undergoes precessional motion, tracing a conical path

with a fixed angle around the direction of this field. This behavior is depicted in Figure 3.1.
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Figure 3.1: a) Effective field. b) Precessional motion of the magnetic moment µ in the rotating reference frame.

When the resonance condition is met (ω = µH0), the effective field reduces to

i H1. Consequently, a magnetic moment initially aligned with the static field will precess

within the y-z plane while remaining perpendicular to H1. If there is such a situation in

which the spin is parallel to the static field (along k) and an oscillating field is turned on for

short time tω, the magnetic moment would then precess at an angle ¹ = µH1tω. If ¹ =Ã/2, the

moment will align with the y-axis, instead of the z-axis, whereas if ¹ =Ã, the pulse will invert

the moment (align with the −z-direction). By turning off H1, the moment would remain at

rest in the rotating frame, therefore precess in the lab frame, pointing normal to the static

field.

Building on this concept, we can devise a straightforward method for detecting

nuclear magnetic resonance. The sample is placed inside a coil whose axis is perpendicular

to H0. In thermal equilibrium, the magnetic moments align with H0. An alternating mag-

netic field (H1 §§§ H0) is generated by applying an alternating voltage to the coil. By carefully

tuning the values of H1 and ωt , a Ã/2 pulse is applied. As a result, the excess magnetization

becomes perpendicular to H0 and precesses at an angular frequency µH0. This precession

induces a flux through the coil, generating an electromotive force (emf) that can be detected.

This process is illustrated in Figure 3.2.

H

(a)

H

(b)

Figure 3.2: a) Coil containing the sample, where an excess of magnetic moments aligns with H0 in thermal
equilibrium. b) After applying a Ã/2 pulse, the magnetic moments precess perpendicular to H0.

In practice, due to interactions with neighbouring spins, the induced emf decays,
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which lasts typically 100 µs for solids. Still, the moments will precess for several periods

before decay. This technique is called "free induction decay" (or FID), a decay "free" of H1,

and can be very useful for observing resonances.

3.3.4 Bloch Equations and Relaxation Processes

We have seen in that the motion of noninteracting spins have a periodic mo-

tion of the magnetization in the rotating frame. However, there are certain interactions of

the spins that can alter such behaviour. The Bloch Equations are a set of equations which

describe the dynamics of nuclear magnetization in the presence of a magnetic field. By def-

inition, the magnetization of a spin population, each one with magnetic moment γ is:

M = 1

V

∑

µ (3.28)

where V is the volume of the system.

For a spin 1/2 system in a static magnetic field H0, the resulting magnetization

arises from the population difference between the energy levels E ±µħH . In thermal equi-

librium, the state with energy −µħH0 is the most energetically favorable, hence the mag-

netization tends to align with the static field. In this case, the magnetization has only one

component, Mz = M0.

Once the pulse field H1 is applied (and satisfies the resonance conditions), the

system is removed from the equilibrium position. For instance, applying a Ã/2 pulse makes

the population of the energy levels E ±µħH become equal, by absorbing the pulse energy.

Now, considering a heat reservoir (in our case, it can be either the crystalline lattice or the

LHe bath in which the sample lies) to change the sample’s temperature, it is reasonable to

assume that, after the perturbation, the magnetization will tend to its equilibrium position

in a rate proportional to M0 −Mz , i.e.:

d Mz

d t
= M0 −Mz

T1
(3.29)

where T1 is the spin-lattice relaxation time and describes how long the z−component of the

magnetization takes to return to its equilibrium position, parallel to H0. After a Ã/2 pulse,

the magnetization is taken to the x − y plane. Then, the x y−component starts to lose its

intensity, whereas the z-component starts increasing again, until M0 is again aligned with

the static field H0. This process is called relaxation, hence T1 is a relaxation time.

Combining 3.29 with the equation for the torque, we finally get:

d Mz

d t
= M0 −Mz

T1
+µ(M ×××Hz) (3.30)

Moreover, expressing the fact that the magnetization tends to be parallel to H0 in

thermal equilibrium under a static field. Thus, the x− and y−components tend to zero:



3. Nuclear Magnetic Resonance 46

d Mx

d t
= µ(M ×××H)x −

Mx

T2
(3.31a)

d My

d t
= µ(M ×××H)y −

My

T2
(3.31b)

where T2 is the spin-spin relaxation time, which describes how long it takes for Mxy to return

to zero, after M0 is removed from equilibrium by a Ã/2 pulse. Note how the relaxation time

for the x− and y−components is the same, but it is different to the one for the z−component.

This is due to the fact that the transverse decay conserves energy in the static field, whereas

that is not true for the longitudinal decay.

Equations 3.30 and 3.31b, first published by Felix Bloch in 1946, are commonly

referred to as the Bloch equations [51].

As an example, we can solve the Bloch equations for low H1. We begin by trans-

forming to the rotating reference frame at ωz , aligning H1 along the x-axis, and denoting

H0 + (ωz/µ) as h0. Thus:

d Mz

d t
=−µMy H1 +

M0 −Mz

T1
(3.32a)

d Mx

d t
= µMy h0 −

Mx

T2
(3.32b)

d My

d t
= µ(Mz H1 −Mxh0)−

My

T2
(3.32c)

Since Mx and My must vanish as H1 → 0, we note from 3.32a that in a steady

state, Mz differs from M0 to order H 2
1 . We therefore replace Mz by M0 in Equation 3.32c.

The solutions to these equations can be written as:

Mx =Ç0(ω0T2)
(ω0 −ω)T2

1+ (ω−ω0)2T 2
2

H1 (3.33a)

My =Ç0(ω0T2)
1

1+ (ω−ω0)2T 2
2

H1 (3.33b)

Equation 3.33b demonstrates that the magnetization remains constant in the ro-

tating frame, meaning it rotates at a frequency ω in the laboratory frame. Since the magne-

tization can be measured by the emf it induces in a fixed coil (in the laboratory frame), one

can calculate this emf from the magnetization MX .

The components of the magnetization in both frames can be related in the fol-

lowing manner (see Figure 3.3):

MX = Mx cosωt +My sinωt (3.34)
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X

Y

Figure 3.3: Rotating axes x, y relative to laboratory axes X ,Y .

Since the magnetic field is linear:

HX (t ) = HX 0 cosωt (3.35a)

2H1 = HX0, (3.35b)

one sees that both Mx and My are proportional do HX0, thus:

MX (t ) = (Ç′ cosωt +Ç′′ sinωt )HX0, (3.36)

where the quantities Ç′ and Ç′′ are defined by:

Ç′ = Ç0

2
ω0T2

(ω0 =ω)T2

1+ (ω−ω0)2T 2
2

(3.37)

Ç′′ = Ç0

2
ω0T2

1

1+ (ω−ω0)2T 2
2

(3.38)

Therefore, we can define the complex susceptibility by:

Ç=Ç′− iÇ′′ (3.39)

Both Ç′ and Ç′′ are solutions to the Bloch equations. They are shown in Figure 3.4

and are often of the format of a Lorentzian line.

3.4 How do we measure a magnetic resonance?

We have seen in the previous sections the behavior of magnetic moments in a

static field H0, and how they behave once a pulse field H1 is applied perpendicular to H0.

Such pulse field is generated by a coil, inside of which goes the sample. What happens after
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Figure 3.4: Ç′ and Ç′′ from the Bloch equations plotted versus x ≡ (ω0 −ω)T2

the pulse is a change in the impedance of the coil due to the resonant absorption of the

sample.

If a coil has inductance L0, after a sample is inserted inside of it, it changes to a

new value of:

L = L0[1+4ÃÇ(ω)] (3.40)

Since the dynamic susceptibility of the sample is a complex value, not only will

there be a change in the magnetude of the flux, but also in its phase. The impedance of the

coil can be written as:

Z = i Lω+R (3.41)

where R is the resistance of the coil. Substituting Equation 3.40 into 3.41, one gets, after

some manipulation:

Z = i [L0ω(1+4ÃÇ′(ω))]+ [R +L04ÃωÇ′′(ω)] (3.42)

Equation 3.42 shows us that the real part of the susceptibility alters the induc-

tance of the coil, whereas the imaginary part changes its resistance.

Assuming uniform magnetic fields within a volume V , the maximum magnetic

energy stored due to an alternating current is:

1

2
L0i 2

0 = 1

8Ã
H 2

X0V (3.43)

where i0 is the maximum value of the alternating current.

Therefore, the average power dissipated by the nuclei P is:
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P = 1

2
I 2

0 L0ω4ÃÇ′′ ⇒ (3.44)

P = 1

2
ωH 2

X0Ç
′′V (3.45)

This gives a simple connection between the power absorbed, Ç′′, and the inten-

sity of the pulse field H1.

3.5 Spin echoes

Finally, to end this chapter on the basis of nuclear magnetic resonance, we must

explore the notion of spin echo (or Hahn echo, named after the physicist who discovered

the phenomenon), which builds the grounds for the pulse methods in NMR, used in the

experiments of this thesis.

Suppose a Ã/2 pulse is applied to a group of spins to observe the Free Induction

Decay (FID) signal. From the Bloch equations, we know that the FID signal decays exponen-

tially with a time constant T2. Due to this decay, the resonance line for solids typically has a

width of several Gauss. This results from the inhomogeneity within the sample, which causes

the spins to precess at different rates, leading to them getting out of phase with one another.

Consequently, the FID signal decreases in intensity, as it is the sum of all contributions from

different parts of the sample.

Erwin Hahn made the groundbreaking discovery that, if a Ã pulse is applied at a

time Ä after the first pulse, a second FID signal appears at a time 2Ä after the initial pulse [53].

He named this new signal the "spin echo." The emergence of this signal indicates that the Ã

pulse refocuses the spins, causing them to realign and return to phase. This discovery be-

came a powerful tool for measuring line widths much narrower than those caused by mag-

netic inhomogeneity, which is particularly useful in solids.

This refocusing pulse is referred to as a Ã/2−Ã pulse and was first introduced by

Carr and Purcell in 1954 [54]. Consider a set of spins initially aligned in the z-direction by

a static magnetic field H (Figure 3.5a). At time t = 0, a rotating magnetic field H1 is turned

on, which must be in resonance with both the static field H0 and the Larmor frequency of

the nuclei (remember the golden rule: ω = µH0). By adjusting the pulse duration tp appro-

priately, the spins are tilted into the x − y plane, generating a Ã/2 pulse (Figure 3.5b). Over

time, the spins lose coherence and begin to precess at different rates. After a time t = Ä, the

magnetization ¶M of a small portion of the sample will shift from the −y-direction by an

angle ¹ such that:

¹ = µ¶HÄ, ¶H = H −H0, (3.46)

where ¶H is the inhomogeneity in H. This is represented in Figure 3.5c. Now, we apply a
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pulse Ã at a time t = Ä (Figure 3.5d). Again the magnetization will advance through an angle

¹, bringing it to a position aligned with the y−axis at t = 2Ä (Figure 3.5e).
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(a) t = 0−
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M
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(b) t = 0+
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(c) t = Ä−
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(d) t = Ä+
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y

z

M
0

(e) t = 2Ä

Figure 3.5: The formation of a spin echo using a Ã/2−Ã pulse sequence, as observed in the rotating reference
frame: a) At t = 0−, the magnetization M0 is in thermal equilibrium and lies along the z-direction. b) Imme-
diately after the Ã/2 pulse, the magnetization is rotated into the x − y plane. c) An element of magnetization
¶M precesses at a different rate due to magnetic field inhomogeneity, resulting in an extra angle ¹ between
different portions of the sample. d) The application of the Ã pulse refocuses the magnetization by reversing the
precession direction, aligning the spins that were out of phase. e) At a time 2Ä, all elements of the magnetiza-
tion have refocused and are aligned along the +y-direction.

Although the spins are in phase at this moment, they will gradually get out of

phase again due to the field inhomogeneity, causing the free induction signal to decay once

more. The final form of the pulse sequence and the resulting echo signal are shown in Figure

3.6. Note how the shape of the echo at t = 2Ä+ is symmetric to its shape at t = 2Ä−.

Figure 3.6: The decay of the echo (green) from t = 2Ä onward follows the same time dependence as the free
induction decay signal (pink) from t = 0+ onward. It is important to note that the buildup of the echo before
t = 2Ä is the mirror image in time of the decay after t = 2Ä. Additionally, no FID signal is produced immediately
following the Ã pulse.
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3.6 Nuclear Hamiltonian

We end this chapter by exploring the interactions of the nuclei in the case of

solids. The complete Hamiltonian can be written as:

Ĥnuc = ĤZ +Ĥhf +ĤQ +Ĥn-n (3.47)

This Hamiltonian takes into account both magnetic and electronic interactions

in the crystalline lattice.

The first term is the Zeeman interaction, already mentioned in the beginning of

the chapter, which arises in the presence of an applied magnetic field. It is defined as:

ĤZ ≡ gµn Î ·H0, (3.48)

where gµn I =µ is the magnetic moment of the nucleus.

The second term in Equation 3.47 is the hyperfine interaction between the un-

paired electrons and the neighbouring nuclei. Thus:

Ĥhf ≡ Î ·←→A hf · Ŝ, (3.49)

where I and S are the nuclear and electronic spins, and
←→
A hf is the hyperfine coupling con-

stant for their interaction.

3.6.1 Knight shift

It is convenient to rewrite both of these terms as:

ĤZ +Ĥhf =µ0µ(1+K )Î ·H0 (3.50)

=µ0µ(1+K )Î ·H0 (3.51)

=µ0µÎ ·Heff (3.52)

where Heff = (1+K )H0 is an effective field the nuclei experiences and K is the Knight shift.

It takes into account both the Zeeman effect and the hyperfine interaction. In NMR this is

-a relevant and convenient form for this part of the Hamiltonian-, since the Knight shift is

measured directly from the NMR lines.

The Knight shift is named after Walter Knight, who first observed it when per-

forming resonance experiments of 63Cu [41]. He noticed the resonance frequency was 0.23%

higher than the frequency observed for CuCl at the same static field. Later on, it was discov-

ered to be a common occurrence for all metals. Such frequency displacement can be written

as:
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ωm =∆ω+ωd , (3.53)

where ωm is the observed resonance frequency in the metal, ωd is the frequency for a dia-

magnetic reference, and ∆ω is the observed shift.

The Knight shift exhibits four key properties:

1. ∆ω> 0 (with rare exceptions);

2. If ωd is changed by altering the static field, the fractional shift ∆ω/ωd remains con-

stant;

3. The fractional shift is nearly independent of temperature;

4. The fractional shift generally increases with the nuclear charge Z ;

The Knight shift arises from the magnetic field experienced by the nucleus due

to the interaction with conduction electrons through the s-state hyperfine coupling. Since

these electrons can move between atoms, each nucleus senses a magnetic coupling with

many electrons. Thus, one must average the coupling to electron spins over the spin ori-

entation of many electrons. When there is no applied magnetic field, the electron spins do

not prefer any specific orientation, resulting in no net magnetic coupling. However, when a

static field H0 is applied, it polarizes the electron spins, creating a nonzero average magnetic

coupling to the nuclei. As a result, the effective field at the nucleus increases, as the nuclei

experience a magnetic field that is parallel to the magnetic moment (since it is an s-state

interaction), and the electron moments are aligned with H0.

Since the frequency shift is proportional to the degree of electron spin polar-

ization, it is also proportional to H0 (or ωd ). Additionally, because electron polarization is

temperature-independent, the shift is also temperature-independent. Finally, the depen-

dence on nuclear charge arises from the fact that the wave function of the electrons is more

spatially extended at the position of a higher Z nucleus. From these observations, it is clear

that the hyperfine coupling mechanism can fully explain the properties of the Knight shift.

In practice, the Knight shift is measured through the following relation:

K = ωm

µH0
−1, (3.54)

where ωm is the observed resonance.

3.6.2 Quadrupolar interactions

A relevant interaction worth mentioning is the quadrupolar interaction, which

arises from interactions between electrons in the crystalline lattice. It arises only in cases
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of quadrupolar momentum Q ̸= 0, spin I > 1/2 and reduced site symmetry. Under these

conditions, there is an Electric Field Gradient (EFG) which acts on the quadrupolar moment

and gives rise to the term ĤQ in Equation 3.47.

When a nucleus has spin 1/2, it has a spherical charge distribution and therefore

the quadrupolar effects cancel out. This is not the case for I > 1/2. Suppose the nucleus

is elongated, rather than spherical, and under the influence of the charges shown in Figure

3.7. In Figure 3.7b, we have a lower energy configuration, for the positive nuclear charges are

closer to the electric external charges. Thus, there is an electrostatic energy that varies with

the nuclear orientation, which splits the mI degeneracy.

+q

-q

-q

+q

(a)

-q

-q

+q +q

(b)

Figure 3.7: a) A cigar-shaped nucleus in the field of four charges, +q on the x−axis and −q on the y−axis. The
configuration of b) is more energetically favorable because it puts the positive charge of the ends of the cigar
closer to the negative charges −q .

The Nuclear Quadrupolar Hamiltonian can be written as:

ĤQ = e2qQ

4I (2I −1)

[

3I 2
z − I (I −1)+ ¸

2
(I 2

++ I 2
−)

]

(3.55)

where the components of the EFG tensor are in the terms eq = Vzz and ¸ = (Vxx −Vyy/Vzz)

and are given by:

V³´ = ∂2V

∂x³∂x´
(3.56)

The term 3.55 is the second order term of the multipolar expansion of the elec-

trostatic interaction between the nuclear charge and the electric charges around the nuclei.

Therefore, in the case of spin I > 3/2 nuclei (which is the case for both nuclei

studied in this thesis), in the absence of an external static magnetic field, there are two de-

generate states available, thus only one transition (i.e., one resonance line), ±3/2 ´±1/2, is

expected. However, in the presence of the Zeeman interaction, there are 2I+1 = 4 energy lev-

els available, thus three expected transitions: a central resonance transition (−1/2 ´+1/2)

and two satellites (−3/2 ´−1/2 and +1/2 ´+3/2). Both cases are shown in Figure 3.8.
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Figure 3.8: The possible transitions for I = 3/2. In the first case, H = 0, so there is a partial breaking of degener-
acy due to the electric field gradient. When the magnetic field is applied, there is the full splitting of the energy
into quantum finite energy levels, and all three transitions are observed.
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4 EXPERIMENTAL DETAILS

The goal of this chapter is to introduce the reader to the important experimental

details regarding the equipments used to acquire the data for this thesis. Before actually per-

forming the NMR experiments, the samples’ magnetic properties are studied using SQUID-

VSM data, such as magnetic moment as a function of temperature (fixed applied magnetic

field) or applied magnetic field (fixed temperature). This is due to the fact that the magnetic

susceptibilty (accessible via SQUID) is proportional to the Knight shift (accessible via NMR):

Kspin(T ) ∝ AhfÇspin(T ), as well as to give a sense on what is the behavior of the sample espe-

cially under high magnetic fields, since that’s what we work with in NMR.

4.1 SQUID-VSM

A SQUID-VSM (Superconducting QUantum Interference Device - Vibrating Sam-

ple Magnometer) is a device sensible to very low magnetic field changes. It consists of two

Josephson junctions, responsible for the signal detection and a superconducting coil to pro-

duce very high magnetic fields (up to 7 T). When the sample is in a magnetic field, as weak as

it may be, and it is vibrated vertically, this change in magnetic flux is detected by the system,

inducing a current in the junctions which is then converted into a measurable voltage and

read as electronic signal by the computer. This setup yields extremely sensitive results, up to

10−6 emu. Besides, the cryostat allows temperatures from 1.8 K to 400 K. The SQUID-VSM

used in our laboratory can be seen in Figure 4.1:

Figure 4.1: SQUID-VSM experimental setup.
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The experiments performed in the SQUID-VSM consist of two magnetization

curves as a function of temperature (denoted by M vs. T or simply M(T)), one in H = 25

Oe and the other in 7 T, as well as a magnetization as a function of applied magnetic field,

M(H). With the first two curves, one aims to learn the critical temperature (Tc ) of the Su-

perconducting sample, both in "zero field" and in high magnetic field. This allows for more

precise and attentive measurements around the transition temperature during the NMR ex-

periments, since most parameters change in this temperature range. From the last curve,

one learns about the behavior of the magnetization under different fields, which is of high

importance in the case of superconductors.

4.2 NMR Experimental Setup

A typical NMR setup involves a handful of equipments and a complex NMR spec-

trometer. The aim of this section is to familiarize the reader with the essencial steps that

precede the experiment, as well as to unravel details on the NMR spectrometer used.

The full setup involves the following components:

• A Superconducting magnet, capable of producing strong and stable magnetic fields;

• A probe, which allows the coil to produce the RF pulses and receive the signal created

by the sample;

• A RF transmitter to produce such pulses;

• A receiver to amplify the NMR signals;

• An ADC to convert the incoming electronic NMR signal into digital form, to be pro-

cessed by the computer;

• A "pulse programmer" to produce such RF pulses and delays.

The setup used throughout this thesis is available at the Gleb Wataghin Institute

of Physics, in the laboratory of Prof. Dr. Ricardo R. Urbano. The setup is shown in Figure 4.2.

In the following pages, these components will be further explored.

4.2.1 The Pick-up Coil

In NMR experiments, one wants to perform spin echoes sequencies and relax-

ation times measurements. For both of them, it is necessary to align the spin population

in a given axis (using an external field H0) and then tilt them to different axes or planes.

This can be achieved by applying, shortly, a perpendicular magnetic field, called H1, which

is generated by passing a current through a pick-up coil, inside of which goes the sample.
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Figure 4.2: NMR system. A: LHe level monitor from the magnet dewar (Cryomagnetics model LM-510). B:
Osciloscope (Tektronix, Inc. model TDS3052C). C: Temperature controller (Lakeshore, Inc. modelo 336). D:
Magnet current source (Cryomagnetics, Inc. 4G Superconducting Magnet Power Supply). E: NMR spectrometer
(TecMag, Inc. Redstone model). F: Power amplifier (Tomco, Inc. Alpha model) G: Cryostat (Janis, Inc.). H:
Magnet dewar (Cryomagnetics, Inc.-12 T).

Then, when the spins are going back to their original position, they induce a RF signal in the

pick-up coil, which in turn is processed as an electronic signal and read by the computer

software.

It is said that NMR experiments begin with the pick-up coil. First of all, each

nucleus has a different gyromagnetic ratio; therefore, studying different nuclei requires dif-

ferent pick-up coils for each. (remember the golden rule: ω= µH). Thus, in this preliminary

part, one must think of the frequency range or the magnetic field that one is going to work

with. There are some relevant parameters of the pick-up coil to bear in mind when making

it for the experiment: number of turns, thickness of the wire used (generally, copper wires)

and diameter of the coil.

The frequency of the coil is inversely proportional to the number of turns. The

thickness of the wire and the coil’s diameter are relevant when thinking of the filling factor:

the smaller the sample, the smaller the coil should be, in order to make sure H1 is perfectly

aligned with the sample. Additionally, when a large number of turns is required, it is best

to work with a thinner wire, so that the coil won’t be too long (and the filling factor remains

optimal). Moreover, a flat coil is the best form to further increase the filling factor when

working with single crystals or extremely small samples.
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In this work, two samples were studied: MgB2 and BaFe1.92Co0.08As2. For both of

them, flat coils were used, however different number of turns were made for them:since we

probed 11B and 75As nuclei, their gyromagnetic ratios are 13.6552 MHz/T and 7.2919 MHz/T

respectively.

For 11B experiments, the coil used is presented in Figure 4.3, as well as the single

crystal used. The number of turns used was - , freq - and mag field -

(a) (b)

Figure 4.3: a) MgB2 single crystal. b) Pick-up coil used in 11B experiments.

For 75As experiments, the coil and the sample are in Figure 4.4. The magnetic

field was of 10.78 T and the frequency of the tank circuit was 78.35 MHz.

(a) (b)

Figure 4.4: a) BaFe1.91Co0.9As2 single crystal. b) Pick-up coil used in 75As experiments.

4.2.2 The Experimental Setup and its parts

The NMR Probe

The probe used in our equipment consists of two capacitors (one for tuning and

one for matching) of variable capacitances and the coil. Together, they form an RLC circuit

(Figure 4.5), or tank circuit, whose frequency ωc has to be the same as the Larmor frequency

of the studied nucleus (resonance condition). Thus, one aims at making the coil with the

number of turns needed to vary the capacitance as little as possible. This is important when

working with low temperatures as it makes the resonance frequency shift considerably. Since
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we cannot change the number of turns (inductance) of the coil mid-experiment, one must

vary the capacitance to make up for the changes in resistivity and inductance induced by low

temperatures.

Rx/Tx

coil + sample

B0

Figure 4.5: Tank circuit of the NMR probe.

After the coil is prepared, its ends are soldered to the probe and properly aligned

in regards to the applied magnetic field using a goniometer. A picture of the coil on the probe

is in Figure 4.6.

Figure 4.6: NMR coil with the sample inside, soldered to the probe.

Cryostat and Magnet

In Figure 4.2, one can see the NMR setup present in the LaRMNuQ at IFGW,

where all the NMR data were acquired.

The cryostat available at IFGW, Unicamp is a JANIS open cycle 4He dewar, com-

bined with a superconducting magnet (made of NbTi) that produces magnetic fields as high

as 12.1 T. For the magnet to produce such fields, it is kept in a liquid Helium (LHe) bath.

To change the temperature of the sample, one uses the needle valve which gives

access from the helium bath to the sample chamber. The temperature is then controlled

with a Lakeshore Temperature Controller, but it is still very important to control the LHe



4. Experimental Details 60

flow with the needle valve: for low temperatures, the flow cannot be too low, whereas for

high temperatures, a large flow might cause the temperature to oscillate considerably.

The NMR spectrometer

Figure 4.7 shows the main components of a NMR spectrometer. First of all, a

synthesizer is used as a source of RF waves with well-defined frequencies and is capable of

making phase shifts, necessary for detection. Since the RF is applied for a short period of

time, there is a gate on the output of the synthesizer.

GATE

ATTENUATORSYNTHESIZER AMPLIFIER

TRANSCOUPLERPRE AMPRECEPTOR
Tx

Rx

λ/4

RF TRANSMITTER

Figure 4.7: Main components of a NMR spectrometer. Image adapted from Ref. [55]

The source produces low power signals (∼mW), so it is necessary to amplify them

so the H1 field has a minimal amplitude for detection (∼100 W).

On the other hand, when the RF power is applied, a high voltage is generated

across the capacitor. It may be high enough to generate a discharg or arc, and this probe

arcing can damage the coil and the capacitor. In order to avoid this, an attenuator comes in

hand between the synthesizer and the amplifier. It allows for the choice of power of the RF

signal sent to the probe.

The NMR signal coming from the coil is rather small (∼ µV), so one uses a pre

amplifier to boost the signal and allow its digitalization. Moreover, the coil needs to generate

the H1 field and to pick up the signal originating from the relaxation of the nuclear magnetic

moments. The applied pulse (∼10-100 W) cannot be sent to the receptor, which is quite

sensitive. Therefore, the separation of these signals is performed by the transcoupler.

Furthermore, an ADC (analogue to digital converter) converts the NMR signal

(voltage) in a binary code which can be stored as computer memory. It discretizes the NMR

signal in order to have a set of equally-spaced points. The interval between points is called

dwell time (denoted by dt ).

One question that arises at this point is how long this interval can be, in order not

to miss information of the wave form. The dwell time is the highest frequency which can be

represented correctly:

fmax = 1

2dt
(4.1)

Moreover, we can distinguish between positive and negative frequencies, so a

dwell time of dt means we can represent correctly frequencies in the range− fmax f f f fmax .
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Another problem that arises at this point is the fact that typical NMR frequen-

cies are of the order of hundreds of MHz. However, there are no available ADC to work fast

enough to digitize accurately such a waveform. The solution to this is using a mixer as to mix

down to a lower frequency.

The mixer uses an artificially generated signal (local oscillator) and the NMR sig-

nal. It sums and substracts them in a way that we are left with a much lower frequency (which

is called the receiver frequency). One of the inputs of the mixer is generated locally by a syn-

thesizer and is called local oscillator. The other input is the NMR signal from the probe. The

summed frequency will be much larger than the subtracted frequency, therefore it will be

filtered by a low pass filter and only the subtracted one will the passed to the ADC.

Lastly, one needs to separate between the negative and positive frequencies that

arrive at the ADC. To achieve this, the method of quadrature detection is used. Figure 4.8

illustrates the problem. In order to be able to distinguish between positive and negative

frequencies, one needs to know both the x and y components of the magnetization. One

way to detect different components is to have two coils, one in the x axis and the other in

the y axis. However, in practice this would be very challenging to achieve, so this calls for an

easier alternative: two separate mixers, where the phase of one is shifted by 90 °relative to

the other.

ADC

ADC

Mx

My

mixer

�lter

�lter
low pass

low pass

from
probe

local oscillator

90°
phase
shift

mixer

Figure 4.8: Schematic of the arrangement for quadrature detection.

From Figure 4.8, one can see that there is a phase shift before one of the mixers.

Suppose that the siginal coming from the probe can be written as A cos(ω0t ), where ω0 is the

Larmor frequency, whereas the local oscillator signal is given by cos(ωr x t ). Multiplying both

signals yields the following output for the upper mixer in Figure 4.8:

A cos(ω0t )cos(ωr x t ) =
1

2
A[cos(ω0 +ωr x)t +cos(ω0 −ωr x)t ] (4.2)

After the low pass filter, only the subtraction term cos(ω0 −ωr x)t survives. Thus,

the signal takes the form of a cosine modulation; it is the same as detecting the x component

of the magnetization in the rotating frame.

On the other hand, if there is a 90 °before the mixer, this is the same as saying that

the local oscillator signal is −sin(ωr x t ). Thus, the mixer’s output is now:
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A cos(ω0t )×−sin(ωr x t ) =
1

2
A[−sin(ω0 +ωr x)t + sin(ω0 −ωr x)t ] (4.3)

Note how the difference frequency term is sine modulated at the offset frequency:

it is the same as the y component in the rotating frame. Thus, one can distinguish between

x and y components of the magnetization in the rotating frame simply by shifting the phase

of the local oscillator signal.
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5 BCS SUPERCONDUCTOR: MGB2

In this Chapter, we will present our data for experiments on MgB2. The first sec-

tion explores the most interesting features of this superconductor, such as the two-gap su-

perconductivity. Section 2 displays the magnetization data obtained for several values of

applied magnetic field and temperature, as well as the NMR results. First, a NMR spectrum

is shown for 4.2 K, which is the first novel result of this thesis, and then a study on anisotropy

of quadrupolar effects is displayed in comparison as well. The results of Knight shift are pre-

sented, where one can see the Tc and an anomalous Knight shift behaviour below Tc . Lastly,

the results for T1 are shown, where different fits were used on our data. The fact that, in the

superconducting state, a two-component T1 fit is the best match is a strong indication of the

two-gap superconductivity in MgB2.

5.1 What is so interesting about Magnesium Diboride?

Magnesium diboride, although a conventional superconductor, is by no means

an ordinary material. When it was discovered, its high Tc ≈ 39 K in regards to the intermetal-

lic compounds known then sparked great interest of the scientific community. First, it was

suspected that its high Tc was evidence for unconventional superconductivity. However, it

was observed soon after its discovery that the Tc can be increased when 10B is used instead of
11B, thus pointing to isotope effect. This observation made it clear that in MgB2 the Cooper

pairs bind through electron-phonon interaction and that it is the B electrons that form the

Cooper pairs (Figure 5.1 for crystal structure). The BCS mechanism was also observed by

experimental techniques such as photoemission spectroscopy [13], neutron scattering [15]

and scanning tunneling microscopy (STM) [14].

Figure 5.1: Crystal structure of MgB2.Boron atoms form stacks of honeycomb layers and magnesium atoms are
in between the boron layers at the center of the hexagons.
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A very interesting aspect of such compound is the presence of two supercon-

ducting gap, shown in Figure 5.2. Although such existence was theoretically proposed in

1959 [56], it was not observed until superconductivity was found in magnesium diboride.

Normally in a superconductor below Tc , there exists one temperature-dependent energy gap

∆(T ) such that a minimum energy of 2∆(T ) is needed to break a Cooper pair into two quasi-

particles. It was observed experimentally that there are two of such gaps in MgB2, one with

∆(0) ≃ 2 meV and another ∆(0) ≃ 7 meV [57]. Both gaps follow BCS temperature dependency

and disappear as the same value of Tc [58], as one can see in Figure 5.2. According to the

BCS theory, 2∆(0) = 3.53kB Tc , thus making the gaps correspond to two different transition

temperatures of 15 K and 45 K, respectively. Nevertheless, the critical temperature of 39 K is

due to the finite coupling between these gaps [59].

Figure 5.2: Values of the two gaps in MgB2 extracted from the scanning tunneling spectroscopy as a function of
temperature. The lines are the BCS ∆(T). Image extracted from Ref. [58].

The two gaps originate in the Ã and Ã bands of boron electrons [60] (Figure 5.3),

and was quickly confirmed experimentally by measurements of specific heat [61], Raman

spectroscopy [62], photoemission spectroscopy [63] and STM [64]. Such observation brings

a lot of questions to what is known about vortex dynamics in two-band superconductiv-

ity. With two coherence lengths and two sets of supercurrents around the vortex core, the

concepts of flux pinning, vortex fluctuations and phase diagrams that apply to one-gap su-

perconductors need to be reevaluated.

5.2 Results and Discussions

5.2.1 Magnetization

Initially, we performed magnetization experiments in a SQUID-VSM both as func-

tion of temperature (M ×T ) and applied magnetic field (M ×H). The goal was to obtain the

critical temperature1 (for polycrystalline sample, Tc = 39 K [65]) before performing the NMR

experiments, as well as getting a preview of the single crystals behaviour in higher magnetic

fields. The behavior of the MgB2 single crystal is in Figures 5.4 and 5.6.

1For both magnetization and Knight shift data, Tc values were obtained by the onset of superconductivity
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(a)

(b)

(c)

Figure 5.3: a) The Fermi surface of MgB2 from band structure calculation. Green and blue cylinders (hole-
like) are the Ã bands, and the blue (hole-like) and the red (electron-like) tubular networks are the Ã bands.
Figure extracted from Ref. [60]. b) The superconducting energy gaps on the Fermi surface for MgB2 from the
band structure calculation. The color scale corresponds to the distribution of gap values shown in c). Figure
extracted from Ref. [57].
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Figure 5.4: Magnetization as function of temperature for several values of applied magnetic field.

For all M×T , it was performed two types of experiments: ZFC and FCC. The zero-

field cooling protocol means that the sample was cooled to the lowest temperature (here, 4

K) at zero field, then, the field was turned on and data was acquired as the temperature was

swept, up to 50 K (above the critical temperature). On the other hand, the FCC protocol

stands for field cooling on cooling: the magnetic field was turned on at 50 K in the normal

state, then data acquisition started while sweeping the temperature down to 4 K.

From Figure 5.4, it is clear that Tc ≈ 36 K at H = 25 Oe for our MgB2 single crystal,

quite close to the reported Tc . The small difference between ZFC and FCC lines is a sign of

few pinning centers, hence a very clean sample. Once the magnetic field was increased, one

can note the arising of a paramagnetic-like effect. With magnetic fields H = 0.5 T and H = 1

T, one can still see the onset of superconductivity despite de increase of the magnetization

below this temperature, but not for H ≥ 3 T. These values of Tc are plot together in Figure
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5.5 with data from Ref. [66], as well as data previously acquired by the author from another

batch during her undergraduate studies. We can see that our data are in good agreement

with what was published for single crystals, and similar parameters were obtained from the

fit for Hc2. The following equation was used:

Hc2(t ) = Hc2(0)[1− (T /Tc )α]β (5.1)

where Tc is the critical temperature and Hc2(0), α and β are fit parameters. Table 1 presents

the parameters for data in Ref. [66] and for our data.

Parameters Ref. [66] This work

Hc2(0) (T) 14.3(1) 14.1(3)

α 1.82(4) 1.83(5)

β 1.28(5) 1.35(6)

0 10 20 30 40 50 60 70 80
Tc (K)

0

2

4

6

8

10

12

14

H c
2 (

T)

H || ab (Ref. [66])
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H || c (Ref. [66])
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Fit Ref.[66]
Hc2(t) = Hc2(0)[(1-T/Tc)1.83]1.35

Figure 5.5: Critical fields Hc2 as function of Tc . The light gray dots are data extracted from Ref. [66], the pink

and orange dots are data from the author using another batch (during undergraduate studies) and the green

dots are Tc obtained from Figures 5.4.

The same phenomenon was observed for the M ×H curves, presented in Figure

5.6, where the superconducting hysteresis loop is overcome by a magnetic distribution. At 4

K (Figure 5.6b), one can see that for lower fields, there is a superconducting hysteresis loops,

with the same shape as Ref. [66] (Figure 5.7). Nevertheless, at 100 K (Figure 5.6c), there is

no observable ferromagnetic hysteresis loop that could explain the behaviour observed for

higher magnetic fields.

The origin of this unexpected effect at higher magnetic fields could be associ-

ated with some contamination of the sample in the process of high pressure synthesis. The

sample can contain some elements which are paramagnetic and their response to strong

magnetic fields can overcome the superconducting transition, leading to the data observed.

On the other hand, a strong piece of evidence against the contamination hypothesis is the

similarity in the hysteresis loop observed in Figure 5.6b and previously reported data for
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Figure 5.6: a) Magnetization as a function of magnetic field for several values of temperature. Close-up visual-

ization of magnetization for b) 4 K and c) 100 K, for low values of applied magnetic field.

MgB2 single crystals (Figure 5.7), which corresponds to samples grown by a different research

group. Since these single crystals were produced independently, this consistency strongly

suggests that our sample is indeed clean.

Figure 5.7: Hysteresis loops of sample A for a) H||c and b) H||ab. Inset: Irreversibility line of samples A and B for

H||c and H||ab. Figure extracted from Ref. [66]

5.2.2 NMR Results

Starting with the NMR experiments, a full spectrum was obtained for MgB2 at 4.2

K, the first novel result of this work, presented in Figure 5.8. As stated previously, this is the

first observation of the superconducting state by NMR in MgB2 single crystals. An aspect

worth mentioning at this stage is that the lines observed were extremely narrow, which is a

strong indication of the high quality of these samples, as defects can alter and broaden the

line shape.

The NMR probe used is 11B nuclei, which has spin I = 3/2 in hexagonal symmetry

(Figure 5.9b). Thus, electric quadrupolar effects arise besides the Zeeman interaction, result-

ing in two extra resonance lines, which we call satellite lines (SL). Therefore, three transitions

are expected, with frequencies given by Equation 5.2:
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Figure 5.8: Full NMR spectrum for θ =π/2 (H⊥c
0 = 9.0 T). The solid green line is the spectrum, whilst the dashed

line is a Lorentz fit using Equation 5.4

νm↔m−1 =
11 γ(1−K )H0 +

νzz

2
(m −1/2)(3cos2(θ)−1+ηsin2(θ)cos

(

2φ
)

)+O
2 (5.2)

where the first term is the effective magnetic field Heff and K is the Knight shift. The sec-

ond term is the first order quadrupolar shift for the allowed transitions (∆m ± 1), η is the

asymmetry parameter of the electric field gradient (EFG). Since it is an hexagonal lattice (C6

symmetry), η= 0.

By plotting both spectra in different orientations and fitting νm↔m−1 in Equation

5.2, we get the quadrupolar frequency: νzz = νQ = 0.825(5)M H z, which is the frequency

difference between the CL and the SL when θ = 0 (Figure 5.9). This difference is exactly half

for θ =π/2, just as expected, and confirms the aligning of the single crystal with the magnetic

field. This value of quadrupole frequency has also been observed in a work by Strässle et al.

[67], which performed a study on the normal phase of MgB2 single crystals. Both results on

single crystals are also in good agreement with 11B NMR experiments performed on powder

samples [68–72]. Moreover, the fact that the quadrupolar frequency in our superconducting

samples is the same as the one found in normal state samples, we can conclude that there

no significant changes in the lattice parameters in the superconducting state.

Since the quadrupolar frequency is a footprint of the interactions of the probing

nuclei with the surrounding electrons and external magnetic field, any significant changes

in the sample structure, such as defects, would induce major changes in the NMR spectrum.

The fact that our quadrupole frequency agrees well with the data on polycrystalline and sin-

gle crystals makes it safe to assume there is no contamination in the sample.

After full spectra in both orientations were obtained, a detailed measurement

spanning from 4.2 K to 50 K was performed. This way, one can clearly see the supercon-

ducting transition from both the resonance frequency shift (the Knight shift explained in
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H = 9.0 T

MgB2

(a)

(b)

Figure 5.9: a) Joint plot of NMR spectra for both H||c (θ = 0) and H⊥c (θ = π/2), at 4 K. The red lines are the

functions for Eq. 5.2, where νQ− is νm↔m−1 for m = -1/2 and νQ+ is νm↔m−1 for m = +1/2. b) Crystal structure

of MgB2. Image adapted from [73]

Chapter 3), as well as the NMR line width broadening. For this purpose, only the central line

(CL, transition −1/2 ↔ 1/2) was measured. Both ZFC and FCC procedures were performed,

to compare to the SQUID-VSM data. For this part of the experiment, the field is always per-

pendicular to the c-axis, H⊥ c, due to the fact the upper critical field Hc2 is greater in this

orientation than in the other. For MgB2, the anisotropy factor is: γ = H⊥c
c2 /H

||c
c2 = 4.6 [66].

Therefore, working in the perpendicular direction allows us to apply higher magnetic field

and still remain in the interval Hc1 < H0 < Hc2.

The Knight shift is calculated from the resonance frequencyω and the static mag-

netic field H0:

K =
ω

γH0
−1 (5.3)

Since the Knight shift is proportional to the magnetic susceptibility, K ∝ Ahfχs(0),

the nucleus frequency must follow the same behaviour as the spin susceptibility (and the

magnetization). The Knight shift data are in Figure 5.10a.

At this point, we want to obtain the critical temperature by measuring the Knight

shift through the transition. From Ref. [66], we know that Tc ≈ 18K for a magnetic field

H⊥c
0 = 9.0 T. Thus, around this value, the temperature step was of 2 K, whereas in the nor-

mal phase it was 5 or 10 K. Through Figure 5.10a, we see the onset of the Knight shift at

18 K. Nonetheless, the Knight shift increases below this temperature, instead of decreasing

as would be expected for a superconducting transition. Still, this transition is much sharper

and clearer than in the SQUID-VSM experiments. This is one of the advantages of NMR tech-

nique: by probing the specific nuclear susceptibility rather than the bulk susceptibility, one
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Figure 5.10: a) Central line Knight shift (ZFC), at H⊥c
0 = 9.0 T, from 4.5 K to 60 K. The dashed line is the resonance

frequency for the normal state, 60 K. The black line is a Lorentzian fit, whereas the coloured dots are the NMR

data. b) Knight shift as a function of temperature. The onset of K marks a transition. The dashed line at

45 K represents another possible transition. c) Line width w (obtained from Equation 5.4) as a function of

temperature.

can gather more precise and detailed information about the nuclei.

Moreover, the Knight shift for 60 K (normal state) and 4.5 K (SC state) present a

slight difference, as one can see in Figure 5.10a. For 4.5 K, ω= 123.0918 MHz, whereas for 60

K, ω= 123.086 MHz. Besides the change in the frequency, one can see that the line at 4.5 K is

broader than the line at 60 K: the first is 13 kHz, whereas the latter is 8 kHz. In order to obtain

such parameters, a Lorentzian fit was performed for the central line for each temperature:

y(x) =
2A

π

w

4(x −xc )2 +w 2
, (5.4)

where A is the area under the curve, w is the full width at half maximum and xc is the reso-

nance frequency.

The line broadening (Figure 5.10c) can be explained by the internal magnetic

field distribution. As explained in Chapter 3, in the mixed state of type-II superconductors,

the magnetic field is able to penetrate the material through quantum flux, arranged in a tri-

angular pattern (in most cases). Therefore, the vortices can change the line shape and width,
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which can be seen in NMR experiments and the Knight shift. This is one of the objectives of

this project.

Although there was a line broadening throughout the transition, there was no

significant line distortion as usually is observed for superconductors. This is an indication

of extremely clean sample, where there aren’t many defects to act as pinning centers for the

vortices. Thus, the vortices are moving, in a flux flow regime, which accounts for the very

narrow NMR lines and low intensity magnetic field distribution. This also leads to low critical

currents, which explains why the superconducting loop wasn’t that pronounced in Figure

5.6.

Lastly, the spin-lattice relaxation rate experiments are presented in Figure 5.11.

Each point in Figure 5.11b was obtained through saturation recovery experiments, meaning

that a saturation pulse (π/2) was applied prior to the spin-echo pulse sequence. Between

them, there is a new time variable called T1, and by varying this time (between 1 s and 2400

s in the case of Figure 5.11), one obtains the curve from such Figure.
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Figure 5.11: Normalized nuclear magnetization curves of 11B for MgB2 our single crystal at 14.5 K, 20 K and 40

K a) Example of 1−M/M0 × t obtained through saturation recovery procedure. This way, one can see how well

the single-component fit (Equation 5.5) matches the data. b) (T1T )−1
×T to verify the Hebel-Slichter peak.

The following function is used to fit T1 for I = 3/2:

M(t ) = (1− f )
[

0.1exp(−t/T1)+0.9exp(−6t/T1)
]

(5.5)

where f = 1−M∞/M0, M∞ is the maximum value of the magnetization and M0 is the lowest

value [74].

The first aspect that stands out from these data is the extremely long T1 values ob-

served in our single crystals. Whereas for published data on polycrystalline samples, (T1T )−1

was of the order of 1 s−1K−1 [71, 75], for our sample it is of the order of 10−4 s−1K−1. This is

another indication that our samples are extremely clean, have few defects and few pinning

centers, leading to few relaxation mechanisms that make the spins return to the equilibrium

position.
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Furthermore, this is the first observation of T1 for MgB2 single crystals in both

normal and superconducting phases. For polycrystalline samples, a tiny coherence peak in

the SC state was observed [75]. However, performing such experiment on powder samples

may not lead to such observation [76], precisely due to the powder’s random orientation with

regards to the applied field and the strong critical field anisotropy. Therefore, our results

show clearly the high quality of the single crystals and a well defined transition followed by

the Hebel-Slichter peak.

Moreover, there are two anomalies observed in the spin-lattice relaxation rate,

(T1T)1. The more pronounced one occurs below 40 K, which is exactly the critical tempera-

ture for zero field. The less pronounced one appears around 20 K, which is near the critical

temperature for H⊥c
0 = 9.0 T, the applied magnetic field for T1 measurements. Therefore, we

conclude that this is an observation of the Hebel-Slichter peak expected for a BCS Supercon-

ductor.

Another possibility that arises in this scenario is that T1 experiments performed

on a high-quality single crystal could probe both the superconducting gaps present in MgB2.

From STM experiments, such gaps are of energies∆(0) ≈ 2 meV and∆(0) ≈ 7 meV. Therefore,

there are two distinct Tc of 15 K and 45 K, respectively [77]. The finite coupling between the

two gaps results in a single Tc of 40 K [59]. Following these steps, it is likely that both super-

conducting gaps and their transitions were probed through spin-lattice relaxation rates.

In light of the observation of two different energy scales, associated with both

superconducting gaps, the Mz(t ) curves were reanalyzed due to the fact that both gaps could

each have its own T1, as nuclear spins interacting with electrons subjected to different gaps

can relax at different rates. Therefore, besides Equation 5.5, two other equations were used:

M(t ) = (1− f )
[

0.1exp(−t/T1)β+0.9exp(−6t/T1)β
]

(5.6)

which is called a stretched fit (β is a stretching factor), and:

M(t ) = (1− f )
([

0.1exp(−t/T1S)+0.9exp(−6t/T1S)
]

+ (5.7)
[

0.1exp(−t/T1L)+0.9exp(−6t/T1L)
])

(5.8)

where T1S and T1L are short and long T1 components, respectively. This accounts for two

different relaxation mechanisms involved in the materials, whereas the stretched fit comes

in hand when other effects (such as magnetic fluctuations) are responsible for a distribution

of T1.

In order to verify and compare such fits, instead of plotting Mz × t , we opt for

plotting 1−M/M0, where M0 = Mz(t = 0): this gives a much clearer visualization on regions

of large t and M∞ and whether the fit is actually suitable for the entire range of t or not. Two

examples are seen in Figure 5.12.
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Figure 5.12: (1−M/M0) of 11B for our MgB2 single crystal at a) 17.5 K and b) 33 K. The orange line is the single-

component fit, Equation 5.5; the purple, two-component fit, Equation 5.8 and the pink is the stretched fit,

Equation 5.6.

For larger t , one can see in Figure 5.12a that the best fit is indeed a two-component

T1. This was observed for all T ≤ 18 K, the critical temperature for H = 9 T, indicating that

at this point, both SC gaps are present. Although this is a negligible difference, it is still no-

ticeable to the point that it is not observed for higher temperatures. Note how for T = 33 K

(Figure 5.12b), it is the single component fit that most closely fits the data points for larger t .

This means that one of the superconducting gaps is not present at that temperature range,

only below Tc .

Using these new fit, the new (T1T )−1
×T data are presented in Figure 5.13.
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Figure 5.13: (T1T )−1
×T for 11B of MgB2, now with short and long components of T1. Tc = 18 K is marked by

a dashed line: for T ≤ 18 K, a two-component fit was used (Equation 5.8), and both components are plotted,

with the short component being the lightest colour and the long being the intermediate shade of purple. The

darkest shade represents T1 obtained through the single-component fit.

Furthermore, note how there is a clear peak right below 18 K for both short and

long components, meaning that this is the Hebel-Slichter peak expected for BCS supercon-

ductors. On the other hand, the peak at 35 K is a peak directly related to the transition, but
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not a coherence Hebel-Slichter peak. In that sense, we can infer that this is a time-resolved

observation of the Hebel-Slichter peak in a BCS superconductor, and the first observation of

the two superconducting gaps of MgB2 using relaxation processes.

One noteworthy aspect is that the long component of T1 is closer to the T1 ob-

tained from a single-component fit than the short component. This can be understood con-

sidering that the long component is linked to the higher superconducting gap, originating

from the σ bands of B, while the short component corresponds to the lower superconduct-

ing gap associated with the π bands. For the highest SC gap, Tc = 35 K and the BCS gap is

∆(0) ≈ 5.31 meV; for the lowest SC gap, Tc = 18 K and the BCS gap is ∆(0) ≈ 2.73 meV.

5.3 Partial Conclusions

For this part of the work, very intriguing results were obtained. It is exciting that

this is the first observation of NMR signal of 11B in MgB2 single crystals, as there are no re-

ported data on this phase and in this type of samples despite being a widely studied material.

The fact that the Knight shift increases rather than decreases in the superconducting state is

still an open question.

As for the quadrupolar frequency, νQ = 0.825(5) MHz is in good agreement with

data already published for both single and polycrystalline samples. This means that there are

no accentuated variation of the lattice parameters in the superconducting state, as expected

for MgB2.

Further measurements can be performed in the future as to completely char-

acterize the sample, such as specific heat, WDS/EDS (Wavelength/energy-dispersive X-ray

spectroscopy) and resistivity. This can shed further light in the question of contamination of

the sample and its superconducting state. Besides not being in the scope of the studies of

this work, which focused on NMR, they are most likely not feasible on such small samples,

and therefore these experiments were not performed to further study the sample.

Lastly, this is the first observation of two peaks in the spin-lattice relaxation rates,

most likely due to the two superconducting gaps σ and π. This is quite fascinating, since not

all papers published on (T1T )−1 have observed a coherence peak in polycrystalline samples,

and this reveals that using a single crystal allows one a clearer observation of such peaks

associated with both superconducting gaps. The fact that there are two components of for

T ≤ 18 K leads to the conclusion that this is the first time-resolved observation of two super-

conducting gaps using NMR and relaxation processes. One of the peaks observed is indeed

a coherence Hebel-Slichter peak, for it happens exactly below Tc for the applied magnetic

field, whereas the other peak is an indication of the opening of the higher energy SC gap

(originating from the σ bands), whereas the π bands open the SC gap at Tc .
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6 SUPERCONDUCTIVITY IN FE-BASED COM-

POUNDS

In this Chapter, the results for the Fe-based superconductor are presented. We

begin with a theoretical introduction to these compounds and their unconventional super-

conductivity, phase diagram and crystal structure. The first data presented are for bulk mag-

netization, as function of applied magnetic field and temperature. We were able to obtain

the critical temperature in different magnetic fields and a superconducting hysteresis loop,

as well as its critical current for a field of 4 T. For NMR data, we were able to observe the

Knight shift change as the temperature lowered and could extract the critical temperature of

14 K at 10.78 T. Finally, we present our T1 data and compared to already published results for

these compounds.

6.1 Introduction

The Fe-based superconductors form an interesting set of materials that changed

the scientific community views of unconventional superconductivity. First discovered by

Kamihara et al in 2008 [8], the LaFeAs(O1−xFx) has a critical temperature of 26 K. This is a re-

markable discovery since Fe is a strong magnetic ion, and magnetism does not get along with

superconductivity. Soon after this, more Fe-based compounds were found wil progressively

higher Tc values, yielding this class of materials the title of "high Tc superconductors".

There is large evidence to this day that de Fe-based superconductors (FeSCs) are

in fact unconventional, meaning the Cooper pairs are not formed through phonon interac-

tions [18–22]. Furthermore, they defy our understanding of the Cooper pairs even in uncon-

ventional SC. Before their discovery, it was believed that Cooper pairs had non-zero angular

momentum and gap nodes, which give rise to the d-wave superconductivity in cuprates [78].

However, there is strong evidence have zero angular momentum and the unconventional su-

perconductivity arise from the different phases they take in different bands [19, 20].

In addition, the normal state of FeSC is quite unusual. The electron-electron in-

teractions play an important role in shaping their phase diagram, and due to the multiorbital

characer of these compounds, it is the Hund’s interaction that possibly has the strongest role

in this state [24]. Since the electronic correlation is mostly described by this interaction,

this new metal, called Hund metal [25], exhibit a mixture of itinerant (conducting) and lo-

calized (strongly correlated) electron behavior. At intermediate temperatures, charge and

orbital degrees of freedom seem itinerant, whereas spin degrees of freedom appear local-

ized [79]. This same interaction is also responsible for the so called oribital differentiation:
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even though different Fe orbitals are under the same interactions, they experience different

degrees of correlation [25–30].

It is precisely from this Hund metal phase that superconductivity and other or-

dered states arise. Most FeSCs exhibit magnetic order, with BaFe2As2 exhibiting an stripe-

type antiferromagnetic phase below 134 K (Figure 6.1a). In superconducting compounds,

magnetic fluctuations at the stripe-order wavevectors are frequently observed. Additionally,

neutron scattering reveals a resonance peak in the magnetic spectrum at this wavevector,

which is interpreted as evidence for a sign-changing superconducting gap. This also points

in the direction of magnetic fluctuations playing a crucial role in the pairing mechanism of

superconducting electrons.

c b
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Figure 6.1: a) M Single stripe-type configuration of de Fe spins, realized in most FeSCs. b) Phase diagram for

most FeSC. TS is the temperature of the tetragonal-orthorhombic transition, TSDW is the temperature of the

AFM transition (PM-SDW) and TC is the critical transition (PM-SC).

The structure of these FeSCs consists of one layer of FePn, where Pn is a pnictide

or a chalcogen. In this layer, the Fe+2 ions form a square lattice and conjugate tetrahedrally

with Pn ions (see Figure 6.2). This arrange, locally, causes the Fe+2 ions to sense a crystalline

field that can either be of tetragonal symmetry, where the orbitals t2g (dx y , dxz and dy z), are

of lowest energies, or tetrahedral, where the orbitals eg (dx2−y2 and d3z2−r 2 ) possess the low-

est energies. In this intermediate configuration, all five d orbitals of Fe+2 (3d6) are relevant

for the physical description of this superconductor class.

The 122 family, in particular, crystallizes in the tetragonal ThCr2Si2-type struc-

ture (I 4/mmm) and undergoes a structural distortion closely linked to the SDW transition.

Notably, this SDW phase can be driven toward a SC state through both substitution (isova-

lent or "electron/hole") and applied pressure, indicating that structural tuning plays a role

similar to that in heavy-fermion systems. Furthermore, theoretical calculations based on a

supercell approach within density functional theory (DFT) suggest that these substitutions

act as chemical pressure rather than effective doping [80].

Furthermore, there is a compelling relation between the structure of these com-

pounds and the emergence of superconductivity. As the SDW phase is suppressed due to

changes in structural parameters, the 3d electrons tend to localize within the Fe-As plane,

regardless of the specific transition metal substitution. When the Fe-As distances decrease,
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Figure 6.2: Crystal structure for 122 compound family. Figure adapted from [23].

either through chemical substitution or hydrostatic pressure, the crystal field splittings are

modified, significantly enhancing the planar (xy/x²–y²) orbital character of the Fe 3d bands

at the Fermi level. These effects, along with the resulting orbital differentiation, contribute

to the suppression of the itinerant SDW magnetic order and the subsequent emergence of

magnetically mediated superconductivity in these materials [81].

6.2 Phase Diagram of FeSC

A compelling aspect of this class of superconductors is the phase diagram they

present under chemical substitution and pressure. An example is shown in Figure 6.1b.

Similar to cuprates, the FeSCs also present superconductivity in the vicinity of a magnetic

phase [82]. At high temperatures, they exhibit tetragonal structure and Pauli paramagnetism.

On the left-most part of the diagram (low x or P ), these compounds present both a structural

transition to orthorrombic (with loss of C4 symmetry) and a magnetic one when the temper-

ature is low enough. Nowadays, this new magnetic phase is believed to be antiferromagnetic

spin-density wave (SDW) type [26], where the spin density oscillates periodically as a func-

tion of space. One can see from the diagram of Figure 6.1b that superconductivity is achieved

by suppressing such magnetic state [31].

Besides the structural and magnetic transitions, there is also a nematic phase

arising from electron doping, in which interactions among electronic degrees of freedom

break the discrete rotational symmetry without affecting the translational symmetry. Since

nematic fluctuations has been observed in the phase diagram, one must ask what is the role

of nematicity in these materials and its relation to superconductivity.

Thus, the proximity and coexistence [83–86] between these phases makes a com-

pelling argument for the scientific community to believe that the superconducting pairing

is mediated by spin fluctuations. It is mostly believed that the superconducting gap sym-

metry is given by an order parameter of type s± (singlet) [22, 87, 88], with inversion of signal

associated with hole pockets and electrons in the Fermi surface [87] (see Figure 6.3).
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Figure 6.3: Typical Fermi surface for iron-based superconductor. The Fermi surface (projected onto kx -ky

plane, where k is the electron moment) is calculated for LaFeAsO with 10% electronic doping, considering

the tetragonal structure with one Fe atom per unit cell. In the vertices of the kx -ky plane are the hole pockets,

whereas the electron pockets are in the center of the plane. The moment vector that connects the electron

and hole pockets is represented by the black arrow. Magnetic fluctuations with this moment are predicted and

experimentally observed.

6.3 Unconventional Superconductivity

The FeSCs show a wide range of critical temperatures, as shown in Figure 6.4a.

The largest, Tc ≈ 65 K is observed in monolayer of FeSe grown on SrTiO3. There are undoped

compounds which naturally display superconductivity, such as FeSe, LiFeAs and CaKFe4As4.

For other families, such as BaFe2As2 and LaFeAsO, the magnetic and nematic orders need

to be suppressed in order to achieve superconductivity, via doping, chemical substitution or

pressure.

As the DFT (Dynamic Field Theory)-calculated electron-phonon coupling can-

not explain the Tc observed for these compounds, an electronic mechanism has been pro-

posed [18,21,22]. Nevertheless, this does not fully exclude the role of phonons in the pairing

mechanism, as they can be enhanced by electronic correlations, as was proposed for mono-

layer FeSe [89]. Generally, electronic repulsion forces the gap function to change sign in real

or momentum space. For multiple small Fermi pockets, as in FeSCs, the gap can remain

nearly isotropic around each Fermi surface, as long as it acquires different phases (i.e., signs)

on different pockets. Any gap that satisfies this criterion is referred to as s±-wave. In FeSCs,

a strong repulsive pairing interaction is believed to be promoted by magnetic correlations

associated with the nearby stripe magnetic state [23].

As for the gap structures, there are many configurations possible for the s±-wave,

depending on the Fermi surface and orbital degrees of freedom. Some of these gap struc-

tures in the Fe Brillouin zone are illustrated in Figure 6.4. These are motivated by theoretical

considerations and consistent with ARPES, STM and neutron scattering measurements. One

question that arises in this diverse scenario, with so many different families of FeSCs and a
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wide range of gap structures, is whether there is a common pairing mechanism between all

FeSCs. An argument in favour of that is the dimensionless ratio 2∆max/(kB Tc ), where ∆max

is the zero-temperature value of the largest gap: this ratio is between 6.0 and 8.5 for many

FeSCs, in contrast to the 3.5 - 4.5 range observed for BCS superconductors (Figure 6.5).

Figure 6.4: a) Superconducting critical temperatures, Tc, of six canonical Fe-based superconductors.

b)Schematic gap structures for Fe-based superconductors in the 1-Fe Brillouin zone (borders coloured accord-

ing to a)) based on weak-coupling calculations, ARPES and STM experiments. The line thickness represents

the magnitude of the gap, and the different colours denote different signs. Figure adapted from [23].

Figure 6.5: Ratio between 2∆max, based on ARPES data, and kbTc of FeSCs compared with that of conventional

superconductors. Figure adapted from [23].

6.4 Results and Discussions

For this part of the project, the chosen sample was BaFe1.91Co0.09As2, an opti-

mally doped superconductor. It is expected to completely suppress the magnetic ordering

state and provide a direct transition between normal and superconducting states. The single

crystals were grown using solid state techniques with In flux, where there is no incorporation

of In to the crystal.

The same procedure as MgB2 was adopted: first, a bulk magnetization experi-

ment was performed to calculate its Tc for higher magnetic fields, as well as to observe the

magnetic hysteresis typical of superconductors when cycling through different intensities of

magnetic field.
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6.4.1 Magnetization experiments

The results for FeSC single crystals is in Figure 6.6. In Figure 6.6a, one can see

that, for H ⊥ c = 25 Oe, there is a strong diamagnetic response, which persists for H ⊥ c = 7 T

(Figure 6.6b). This is a good indication that the sample is becoming indeed superconducting

at low temperatures. From the onset of superconductivity, one can extract the critical tem-

peratures of 26 K and 22 K, respectively. The Tc for zero field is in good agreement with data

already published [90].
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Figure 6.6: Magnetization as function of temperature for applied magnetic field a) 25 Oe and b) 7 T. c) Mag-

netization as function of applied magnetic field at 4 K. The arrows indicate the sequence of the magnetic field

application.

Moreover, the superconducting hysteresis loop in seen clearly in Figure 6.6c: as

the magnetic field first increases and T < Tc , there is a strong diamagnetic response to it,

which peaks at Hc1 ≈ 600 Oe. Above this intensity of magnetic field, the sample is in its mixed

phase, thus the magnetic field is able to penetrate it in the form of quantum flux vortice.

The higher the magnetic field, the bigger the vortice become, so that the normal state re-

gions increase and the superconducting regions decrease, which decreases the diamagnetic

response seen by the magnetic moments. This happens until H = Hc2, where superconduc-

tivity is broken and the sample is completely in the normal state. This is not observed here

because the maximum magnetic field (7 T) is much smaller than the Hc2 for this sample,

which is around 40 T for iron-arsenide compounds.

By performing the sequence of 0 T → 7 T → 0 T → - 7 T → 0 T, it is clear that the

magnetic moments are not zero by the end of it. Instead, they are quite large in intensity.

This happens due to flux pinning, caused by imperfections in the sample that act as pinning

centers for vortices. Therefore, even if the magnetic field is again zero, there is still some

remanant magnetization.

Moreover, one can calculate the supercurrent density using the Bean’s formula

[91]:

Jc =
2∆M

w
(

1− w
3b

) (6.1)

where ∆M is the difference in magnetization for the same magnetic field and w and b are
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the width and base of a parallelepiped [92]. For our sample, and H = 4 T, the supercurrent

density is Jc ≈ 60,9 A/cm2.

6.4.2 NMR experiments

For NMR experiments, the choice of H0 was of 10.78 T (ν ≈ 78.95 MHz), which

is intermediate between Hc1 and Hc2, thus allowing us to probe the mixed phase of this su-

perconductor. Spin echo sequences were performed in temperatures spanning from 4.5 K

to 40 K in order to observe both the line broadening and the frequency shift of the central

line. Such results are in Figure 6.7. The resonance peaks were fit using a Lorentzian function

(Equation 5.4).
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Figure 6.7: a) Central line Knight shift (ZFC), at H§c
0 = 10.78 T, from 4.5 K to 40 K for BaFe1.91Co0.09As2. The

black line is a Lorentzian fit, whereas the coloured lines are the NMR data. b) Knight shift K as a function of

temperature. The dashed line marks the onset of superconductivity. c) Line broadening, where the line width

is the parameter w in Equation 5.4.

From Figures 6.7a and 6.7c, the broadening of line due to the quantum flux vor-
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tices is clear: the full width at half maximum at 40 K is 37.04(3) kHz, whereas it is 99.1(4) kHz

at 4.5 K. Moreover, the clear shift in frequency was observed: whereas in normal state, the

resonance frequency is ν= 78.9868(2) MHz, is it ν= 78.885(2) MHz in the mixed state.

This extreme line broadening near and below 20 K could also reveal a coexistence

between antiferromagnetic and superconducting states. Although it is not expected for this

Co doping level, it has already been reported for a slightly higher doping, [93], and this NMR

study reveals similar observations as our study. This overall broadening of all transitions can

be attributed to an incommensurate SDW phase, where the periodicity of the spin-density

wave does not match that of the lattice. This is in contrast to what happens in the parent

compound BaFe2As2, where commensurate SDW presents itself through NMR by two very

distinct and narrow lines.

Furthermore, the line broadens in a homogeneous fashion, which points to the

fact that frozen moments develop on all Fe atoms of the sample. Had it developed only in a

fraction of these atoms, the line shape would rather be a narrow peak surrounded by a broad

line distribution.

The coexistance of incommensurate SDW and SC can be understood in an itin-

erant picture. In the parent compound, the commensurate nesting between electron and

hole pockets leads to a commensurate SDW order. When doping with Co (electron doping),

one increases the size of the electronic pockets, thus deteriorating the nesting and decreas-

ing TSDW and the moments, which leads to icommensurability. At intermediate dopings,

Vorontsov et al. proved that this SDW may coexist with SC if TSDW/Tc is rather large and

if SDW is incommensurate [94]. This is further supported by the fact that the hole doped

Ba1−xKxFe2As2 does not display coexistence and smaller TSDW/Tc ratio.

Furthermore, the Knight shift was calculated using Equation 5.3, and its plot as a

function of temperature can be seen in Figure 6.7b. From the onset of superconductivity, it

can be seen that Tc = 14 K. The shift towards lower frequencies is the expected behavior for

a superconductor, since the Knight shift is proportional to the spin susceptibility by a factor

Ahf, which is the hyperfine coupling and the susceptibility lowers below Tc (see Figure ??).

Lastly, the results for spin-lattice relaxation rate (T1T )−1 are in Figure 6.8a. The

values above Tc are relatively close, and at T = 13 K the value of (T1T )−1 is smaller than the

others. It is expected for there to be a peak exactly at Tc due to the transition, but not below

it, since this is an unconventional superconductor. Naturally, for this analysis, more data

need to be acquired around this temperature.

The values found for (T1T )−1 are on average five times smaller than values al-

ready published for this level of Co doping [93, 95]. What was also observed in Ref. [93] (Fig-

ure 6.8b) is an increase at T ∼ 31 K of (T1T )−1, forming a broad peak around this temperature

due to the SDW transition. This was not observed in our data for T ∼ 31 K, but rather at 40

K. Moreover, a peak just below Tc was observed in Ref. [93] which is also not the case for our

data: the only data point below Tc (T = 13K ) is smaller than the points just above it. By com-
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Figure 6.8: a) Spin-lattice relaxation rate (T1T )−1 as a function of temperature. The dashed line marks the

estimated Tc obtained through Knight shift data. b) 1/(T1T ) measured for H||ab (left axis) shows two peaks at

both SC and SDW transitions, while detuning of the NMR cavity (right axis) demonstrates the apparition of SC.

Figure extracted from Ref. [93].

paring to our data, one could say the SDW transition observed in Ref. [93] at 30 K is the same

we observed at 20 K, and the SDW + SC transition at 17 K is also observed in our data at 16 K.

The lowest point between these two temperatures, in our data, is at 19 K, whereas in Ref. [93]

it is at 25 K. The difference in these temperatures can be explained by different actual doping

levels of Co in our samples.

Another set of (T1T )−1 for this level of doping is published in Ref. [95]. They have

not observed any peaks above Tc , instead (T1T )−1 increases monotonically as T lowers (T >

Tc ) in the same temperature range as our experiment. This increase is not observed in our

data.

It is worth mentioning that for this sample, it was necessary to fit it with another

function for Mz(t ), Equation 5.6. The difference between this and the function used for MgB2

(Equation 5.5) is that an exponent β is now present; this is called a stretched fit. This means

that T1 for this sample is not single component, but rather it has a distribution of values for

the same temperature. The factor β accounts for this distribution. One can see a comparison

between non-stretched (β= 1) and stretched (β ̸= 1) fits in Figure 6.9.

An interesting feature of such factor is the fact that it showed a dependency on

temperature (see Figure 6.10). Around 20 K, the NMR line lost most of its intensity and be-

came broader as well, and it’s around this temperature that β also starts to increase, mean-

ing this could be another indication of the SDW phase present in this sample, besides the

increase in (T1T )−1 observed in Figure 6.8a. The lowest value for β is also at 19 K, as it is for

(T1T )−1. Furthermore, the increase in β below 19 K points towards the presence of the su-

perconducting transition, as well as the SDW phase. Thus, one can assume that, at this level

of Co doping, there is a coexistence of superconductivity and spin-density wave phases.
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Figure 6.9: Comparison between a non stretched fit (using Equation 5.5) and a stretched fit (using Equation

5.6). The latter fits better on the region for smaller t .
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Figure 6.10: β stretching factor as a function of temperature. The dashed line marks the estimated critical

temperature of 14 K for H0 = 10.78 T.

6.5 Partial Conclusions

For this part of the thesis, we obtained in general expected results for a super-

conductor, both in magnetization and in NMR experiments. First of all, we could get a

well-defined Tc in magnetization experiments, indicating the presence of the diamagnetic

shielding characteristic of superconductor. There was also a hysteresis loop in the M v s. H

experiments, consistent with the superconducting hysteresis loop.

Moreover, from the spectral analysis in NMR experiments, the superconducting

transition was observed through the Knight shift behaviour in lower temperatures. A signa-

ture aspect of such state is the broadening of the NMR line due to the quantum vortice lattice

in the mixed phase, which was also present in our set of results. As for the Knight shift, since

K ∝ χspin, the same behavior of K was observed for the magnetization as a function of tem-

perature, and from that and the onset of superconductivity, we could estimate Tc ≈ 14 K.

Finally, from the spin-lattice relaxation rate data, although more data points would

be necessary, one can see that two peaks were observed, just as it was reported in Ref. [93]
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for a quite similar doping level. The both peaks indicating a SDW transition as well as a

SDW+SC state matches our observations from Knight shift and (T1T )−1: the SDW transition

starts at ≈ 20 K, observed from the extreme broadening and the loss of features from the

NMR line. This is where the first peak in (T1T )−1 happens. Moreover, a decrease in (T1T )−1

at 19 K matches the one observed in 25 K in Ref. [93]. Below this temperature, another peak

is observed at 16 K (and 17 K for Ref. [93]) which marks the onset of superconductivity and,

therefore, the coexistence of SC and SDW below this temperature. Such observations are

consistent with the behaviour of the stretching factor β, indicating the presence of an anti-

ferromagnetic phase.
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7 CONCLUSION AND FUTURE PERSPECTIVES

As for general conclusions of this work, the past two years were quite productive

and enlightened me in the use of NMR for studying superconductors. In spite of using differ-

ent type of superconductors in my studies, some similarities have been observed using NMR:

changes in the NMR resonance line due to the superconducting state, such as change in the

Knight shift and line broadening due to the diamagnetic shielding. One can also estimate Tc

throught the onset of superconductivity using Knight shift data as function of temperature.

Some of the differences between both superconductors is the absence of coher-

ence peaks in (T1T )−1 data for an unconventional superconductor. The most striking differ-

ence is that, for MgB2, T1 was found to be quite long and single component (β= 1), whereas

for BaFe1.91Co0.09As2, a stretched magnetization recovery behavior was discovered even in

the normal state, indicating a distribution of T1 given by β, a signature of inhomogeneity.

This multicomponent aspect of T1 may indicate magnetic fluctuations associated with the

SDW phase.

As for future perspectives, some further experiments could be performed. For

instance, in order to confirm the origin of the two anomalies observed in spin-lattice relax-

ation data, one could measure the specific heat of MgB2 single crystals to compare both data.

As for the contamination hypothesis, due to the discrepancy observed in expected magne-

tization behaviour, this could be verified by XRD or WDS experiments. What makes these

experiments unfeasible is the micro size of the samples, which might not provide enough

response to the equipments if one uses only one single crystal.

Naturally, more data would be needed for spin-lattice relaxation rate for Co-doped

FeSC in order to verify the observed peaks and the absence of the Hebel-Slichter peak below

Tc . However, the extreme line broadening below 20 K (a wipe-out effect probably associated

with faster T2) made it impossible to acquire T1 data at this temperature range. This suggests

that strong magnetic fluctuations must remain even in the optimally doped BaFe2As2.
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