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“Que no meio do caminho da educação havia uma pedra.

E havia uma pedra no meio do caminho.”

— Criolo, Duas de Cinco (2014)

“Lembra a vó, ó, dá mó dó.

Criança na periferia vive sem estudo e só.

A mercê da mó’, two, three, sabó’.

[...]

Destino indica a correria de um homem.

Alternativa pra criança aprender basta quem ensina.

Essa é a verdade, criança aprende cedo a ter caráter.”

— Sabotage, Canão Foi Tão Bom (2016)



Resumo

Esta tese investiga as propriedades ergódicas de fluxos que exibem diversas formas

de comportamento hiperbólico, com enfoque em dinâmica parcialmente hiperbólica e não

uniformemente hiperbólica. Uma classe central de exemplos considerados é a de fluxos

geodésicos. Neste contexto, a tese apresenta a construção de diversos exemplos de fluxos

geodésicos parcialmente hiperbólicos, mas não Anosov, com propriedades geométricas e

ergódicas ricas, bem como propriedade misturadora, unicidade de medidas de máxima en-

tropia e expansividade. Além disso, estuda como a variação da dinâmica do fluxo geodésico

se relaciona com deformações da métrica riemanniana. Além de fluxos geodésicos, a tese

também explora fluxos mais gerais analizando a relação entre classes homoclínicas, ergod-

icidade e unicidade de medidas de Sinai-Ruelle-Bowen (SRB).

Keywords: Fluxos geodésicos, dinâmica parcialmente hiperbólica, Teoria de Pesin,

Deformação de métricas riemannianas.



Abstract

This dissertation investigates the ergodic properties of flows exhibiting various forms

of hyperbolic behavior, with a focus on partially hyperbolic and non-uniformly hyper-

bolic dynamics. A central class of examples considered is that of geodesic flows. In

this context, the dissertation presents the construction of several non-Anosov, partially

hyperbolic geodesic flows exhibiting rich ergodic and geometric features, including mix-

ing, uniqueness of the measure of maximal entropy, and expansivity. Furthermore, it

examines how the dynamics of geodesic flows relates to deformations of the underlying

Riemannian metric. Beyond geodesic flows, the dissertation also explores more general

flows, analyzing the interplay between homoclinic classes, ergodicity, and the uniqueness

of Sinai–Ruelle–Bowen (SRB) measures.

Keywords: Geodesic flows, partial hyperbolicity, Pesin Theory, deformation of Rie-

mannian metrics.
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Introduction 13

Introduction

A dynamical system can be understood as the process of iteration of certain rules on

a fixed phase space. Typically, the study of dynamical systems focus in understanding

the behavior of the possible states of a particle after a large number of iterations of these

rules. As an illustration, let us consider the following fanciful situation: consider that

T is a ghost train traveling along 5 ghost cities with stations named Ci, for i = 1, ..., 5,

placed as a circular ghost railway. Our imaginary ghost train never stops, but at the

ghost stations Ci. It moves all the way from station C1 to station C5 stopping at each

station in between and then it goes from C5 to C1. We can think this motion of the ghost

train as a dynamical system for which the "rule of motion" is simply moving to the next

station. In this case, the phase space is the set M = {C1, C2, C3, C4, C5} and if we call

the application of the rule "next station" by f , this dynamical system has a single orbit,

i.e. for each x ∈ M the set of iteration {fn(x)}∞
n=1 coincides with M . Of course, this is a

very simple model and we are interested in more general examples of dynamical systems,

but it illustrates well this notion of "movement" and "moving to the next step" associated

to dynamical systems. In fact, during this dissertation we will be mostly interested in

study a particular family of dynamical systems called Geodesic flows.

The Geodesic flow is a dynamical systems naturally associated to any Riemmannian

metric and is a very important model for several properties and techniques known nowa-

days in the class of Smooth Dynamical Systems. Given a Riemannian manifold (M, g),

the Geodesic flow is dynamical system with phase space the tangent bundle of M (or the

unit tangent bundle) that associates for each tangent vector v the velocity of the geodesic

with starting velocity v (check Section 1.2 for the formal definition). The study of the

dynamics of the geodesic flow lead to the understanding of several more general chaotic

systems and their behavior from the statistical point of view, mainly studied as Ergodic

theory.
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The starting point of Ergodic theory is commonly understood as the formulation of

the so-called Boltzmann’s Ergodic Hypothesis and is dated back to the 19th century’s

last decades. In modern language (although it was not exactly formulated like this), if

f : M → M is a diffeomorphism, U ⊂ M is a measurable set and µ a f−invariant

probability measure (f ∗µ = µ and µ(M) = 1) then the mean sojourn time

τ(x, U) := lim
n→∞

#{j = 0, ..., n − 1 : f j(x) ∈ U}
n

should coincide with the measure of the set U for almost every point x (check [VP91]

for a more complete historical exposition of the Boltzmann’s Ergodic Hypothesis). If this

hypothesis holds for every measurable set U , then we say that the dynamical system

(f, µ) is Ergodic. Sometimes, in the literature, ergodicity of a dynamical system can be

stated as “f is ergodic with respect to the measure µ” or “µ is an ergodic measure for

the diffeomorphism f”, thus let us fix it here that all this possible formulations mean the

same definition as above. Beyond several interesting equivalent conditions to the definition

above is the notion that ergodic systems can not be “broken“ into subsystems which do not

interact with each other. More precisely, ergodicity is equivalent to the statement "any

measurable set A that is invariant by the dynamics (f−1(A) = A) necessarily satisfies

µ(A) ∈ {0, 1}".

Given a closed and connected Riemannian manifold (M, g), one of the oldest open

problems in the area of dynamical systems and ergodic theory is determining conditions

that guarantee ergodicity of the geodesic flow with respect to the Liouville measure. A

classical result states that the geodesic flow is of Anosov type when all the sectional cur-

vatures are strictly negative. This connection is indeed the first model of Anosov systems

and the origin of the well-known (and still standard) technique called Hopf Argument,

which is very useful for obtaining ergodicity. It is still not a completely solved question

whether the geodesic flow for a surface of genus g ≥ 2 and non-positive curvature is er-

godic with respect to the Liouville measure. However, Pesin obtained great advances in

[Pes77b]. In this work, Pesin proves that if the action of the geodesic flows is restricted

to vectors for which the curvature is negative along its underlying geodesic, then this flow

is conjugated to a Bernoulli flow, and in particular, it is ergodic.

The analogous question in higher dimensions is determining the ergodicity for non-

positively curved Riemannian metrics that are rank one. The rank of a tangent vector

v ∈ TxM is the dimension of the space of parallel orthogonal Jacobi Fields along the
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geodesic γ(x,v)(t) and the rank of the manifold (M, g) is defined as the infimum of the

rank of the unitary tangent vector. Celebrated works from the 80’s, such as [BB82] and

[Bur83], explored the relation between the ergodicity of the geodesic flow and the rank of

the metric. They concluded, for example, that the restriction of the geodesic flow to the

set of rank one vectors is also Bernoulli.

It is natural to ask if non-positivity of the curvature is essential to obtain ergodicity

for the geodesic flow. In [BG89] and [Don06] a negative answer to this question is given.

They obtain examples of ergodic geodesic flows in surfaces with some positive curvature. It

is worth mentioning that, in their case, the presence of negative curvature is still essential

to obtaining ergodicity. It is also not true that the Anosov property for the geodesic

flow must imply negative curvature, indeed in [Ebe73] Eberlein states several equivalent

conditions to the Anosov property. Essentially negative curvature must appear along any

geodesic, but it does not prevent positive curvature from existing. In fact, in [Gul75],

Gulliver constructs examples of Anosov geodesic flows such that the underlying metric

has some positive sectional curvatures.

The time one map (g1) of an Anosov geodesic flow (gt) is one of the most classical

examples of partially hyperbolic systems. By partial hyperbolicity we mean that there is

a continuous splitting of the tangent bundle TM = Es ⊕ Ec ⊕ Eu into three non-trivial

invariant subbundles, where Es is uniformly contracted for the future, Eu is uniformly

contract for the past and Ec has an intermediate behavior, i.e. it does not contracts

nor expands as much as the other two. It is a famous conjecture by Pugh and Shub

the genericity of ergodic systems inside this class (check [RHRHTU11a], [BRHRH+08]

and [BW10]). According to the Pugh and Shub program, this main conjecture may be a

consequence of another two conjectures: accessibility is dense among partially hyperbolic

systems and accessibility implies ergodicity.

It is well known that geodesic flows are examples of contact flows, i.e. the geodesic

vector field is the Reeb flow of the contact form induced by the Riemannian metric. In

[CP14] Carneiro and Pujals constructed the first class of examples of partially hyperbolic

geodesic flows and in [FH22] Fisher and Hasselblatt proved that is possible to perturb

any contact form for which the Reeb flow is partially hyperbolic to make it accessible.

However, there is a lack of examples in this class of systems and one of the consequences of

the present work is to present new examples and the study of new techniques to produce
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them. Besides the genericity of the ergodic property in some classes inside the partially

hyperbolic setting, it is a delicate problem to produce examples of ergodic systems of some

predetermined class that are not of Anosov type. It is even more delicate to produce such

examples in the class of geodesic flows. In the two-dimensional setting, there are simple

constructions one can think of, for example, the surface of revolution obtained by rotating

the graph of f(x) = x4 + 1, defined in some interval [−a, a], around the x−axis and then

gluing two negatively curved surfaces to this neck. The obtained surface is non-positively

curved, and moreover it has negative Gaussian curvature besides a central closed geodesic

at x = 0 for which the Gaussian curvature is identically zero. Such an example has a

Bernoulli geodesic flow that is not of Anosov type by the previously mentioned works of

Pesin and Eberlein. This example also presents more interesting dynamical properties,

for example the decay of correlations studied in [LMM24]. One realizes very fast that

this construction of examples by rotating the graph of a function cannot be generalized to

higher dimensions to obtain non-positively curved manifolds with a single geodesic with

vanishing sectional curvatures, hence different techniques and approaches are needed.

In [Rug91a] Ruggiero proved that the C2−interior of the set of Riemannian metrics

without conjugate points, say N C(M), coincides with the set of Riemannian metrics for

which the geodesic flow is of Anosov type, say A(M). It is still not well understood the

set of metrics on the boundary of N C(M) nor the relation with the expansivity of the

geodesic flow. We say that a continuous flow is expansive if two different orbits eventually

grow apart. It is known in the two-dimensional setting that expansivity of the geodesic

flow implies the absence of conjugate points (see [Pat93]), however, it is a Conjecture

attributed to Ricardo Mañe that this result should be true for higher dimension as well.

Notice that the converse is not true, since we can consider a piece of flat cylinder and glue

two negatively curved surfaces to the boundary of this flat neck. For this construction we

have that for every ε > 0, there exist two closed geodesics γ1(t) and γ2(t) in the cylinder

that are ε−close for every t ∈ R. This phenomenon is detected by the Flat Strip Theorem

which states that if the geodesic flow is not expansive, then for every ε > 0 there exist two

distinct geodesics γ1 and γ2 such that d(γ1(t), γ2(t)) < ε, for all t ∈ R, thus we can find

a a flat strip on the universal cover, i.e. an isometric copy of an [−δ, δ] × Rn. Therefore,

to produce expansive geodesic flows that are not of Anosov type it is necessary to have

some control on the amount of zero curvature in the non-positively curved setting. It is
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interesting to remark that in [Rug97] Ruggiero proves that expansive geodesic flows with

no conjugated points have density of periodic points and a local product structure, which

implies they are topologically transitive, that is they admit a dense forward orbit. Hence,

examples of such geodesic flows are rich from the geometric and dynamical point of view.

Just like the ergodicity in the non-Anosov case, there is a shortage of higher dimen-

sional examples of expansive geodesic flows admitting some zero sectional curvatures. A

natural attempt would be starting with two negatively curved manifolds, say (M1, g1) and

(M2, g2), and then considering the Riemannian product manifold (M1 × M2, g1 + g2). In

this case, the product metric admits several vanishing sectional curvatures and it is not

even partially hyperbolic as proved in [CP14]. Therefore it is crucial to develop techniques

of metric deformation. By this, we mean the construction of examples by changing the

curvature of a negatively curved metric in a controllable way. In this dissertation, we

explore the use of conformal deformation in order to produce the above-mentioned exam-

ples. We say that two Riemannian metrics g and g∗ are Ck−conformally related if there

exists a positive function φ : M → R>0 of class Ck such that g∗ = φg. It is clear that

the conformality of Riemannian metrics is an equivalence relation, thus we can consider

the conformal class of a metric. In [Kat82], [Kat88] and [BE21], Katok, Barthelmé, and

Erchenko study rigidity and flexibility on the dynamics inside the conformal class of a

Riemannian metric, namely they study the variation of the entropy and length spectra

for some conformally related metrics. This technique of deformation was also used by

Ruggiero in the previously mentioned paper [Rug91a].

Understanding ergodicity often involves decomposing the system into "fundamental

pieces" where detailed analysis can be carried out. Identifying these pieces is a challeng-

ing problem but significantly enhances our understanding of ergodicity. While one might

expect a version of the Hopf Argument to apply within these "fundamental pieces," extend-

ing Hopf’s ideas to systems lacking uniform rates of contraction or expansion is neither

straightforward nor trivial. In [RHRHTU11a], the authors introduced a new notion of

ergodic homoclinic classes in the context of non-uniform diffeomorphisms, providing an el-

egant description of the potential "fundamental pieces". Aiming to explore and developing

tools to understand the ergodic phenomena of the geodesic flow, this dissertation studies

an analogous decomposition for a more general class of flows. The description of ergodic

homoclinic classes is as follows (see Chapter 1 for details): consider the flow ϕt : M → M
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generated by a vector field X and γ a closed periodic hyperbolic orbit for ϕt, i.e. there

exists T > 0 such that ϕT (p) = p for all p ∈ γ and a decomposition TγM = Es ⊕RX ⊕Eu,

with Es contracted by Dϕt and Eu expanded by Dϕt. In this context we can consider the

stable and unstable Pesin’s manifolds of the orbit γ, denoted by W τ (γ) τ = s, u. Then,

the stable (resp. unstable) homoclinic class of γ, which we are going to denote by Λs(γ)

(resp. Λs(γ)), is constitutes by the points x with well defined stable (resp. unstable)

Pesin’s manifold which present transverse intersection to W u(γ) (resp. W s(γ)). Finally,

the ergodic homoclinic class is defined by Λ(γ) = Λs(γ) ∩ Λu(γ).(see Section 1.4 for fur-

ther details). Notice that apriori there is no reason to believe that this intersection is

non-empty. Our results (Theorems C, D and E) presented below give sufficient conditions

to get non-empty intersection. These sets are the objects we study in Chapter 3.

An essential property of smooth measures for the Hopf Argument is Absolute Con-

tinuity (check Definition 1.4.11). This is a property also satisfied by the so called SRB

measures introduced by Sinai, Ruelle and Bowen in the 70s. SRB measures are known as

the invariant measures that are most compatible with a volume measure for non conserva-

tive systems and play an important role in the general ergodic theory. Such measures had

been studied in several different context and many questions about them remain open,

we mention existence, uniqueness and ergodicity. It is also not well understood which

properties of the systems are beneficial to these questions. Inspired in [RHRHTU11b], we

study how the presence of the previously defined homoclinic classes relates to ergodicity

and uniqueness of SRB measures in the flow setting.

Within the context given by the paragraphs above, the main goals of this dissertation

are the following:

(1) Produce examples of ergodic geodesic flows which are not Anosov in higher dimen-

sion.

(2) Develop a theory of "control of the dynamics" of the geodesic flow via deformations

of Riemannian metrics, in the sense of flexibility of the hyperbolic behavior.

(3) Study rigidity of the dynamics of geodesic flows for metrics in the same conformal

class.

(4) Construction of partially hyperbolic geodesic flows.

(5) Explore the possible dynamical properties of metrics on the boundary of N C(M).
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(6) Construct other examples of partially hyperbolic contact flows.

(7) Study general properties of partially hyperbolic contact flows.

(8) Investigate the existence of partially hyperbolic contact flows in dimension 5.

(9) Develop a new approach to ergodicity of flows that present some kind of hyperbol-

icity.

(10) Understand the relations between homoclinic classes of flows and SRB measures.

The development of the next result encompass the above objectives from (1) to (4):

Theorem A. Let (M, g) be a compact Kähler manifold of holomorphic curvature −1 or

a compact locally symmetric quaternionic Kähler manifold of negative curvature. Then

there exists a conformal metric g̃ = φg such that the geodesic flow g̃t is partially hyperbolic

and not Anosov.

The Riemannian manifolds considered in this result are contained in a larger class of

interesting Riemannian manifolds called Locally Symmetric Manifolds (it is also common

to just say locally symmetric metric since it is as metric property). By definition, a metric

is said to be Locally Symmetric if its curvature tensor is parallel with respect to the Levi-

Civita connection, i.e. ∇R ≡ 0. One of the interesting properties of this class of metrics,

from the geometry point of view, is the fact that the sectional curvatures K are not affected

by parallel transport. This means that given two tangent vectors X, Y , then if X̃(t) and

Ỹ (t) denote their parallel transport along a geodesic, then K(X̃, Ỹ )(t) = K(X̃, Ỹ )(0) =

K(X, Y ). From the dynamical point of view, since we are considering negatively curved

metrics, the correspondent geodesic flow is of Anosov type. However, the action of the

derivative of the geodesic flow on the canonical contact structure also has a partially

hyperbolic structure, i.e. the splitting occurs not only into two invariant subbundles but

in four invariant subbundles in a way that we have stronger and weaker behavior (see

Lemma 2.3.2). Besides this splitting property, the class of locally symmetric Riemannian

metrics also has an interesting behavior with respect to the topological entropy of its

geodesic flow. In [Kat82], Katok proved that for surfaces of genus bigger or equal than

two we have a fascinating comparison between the measure entropy for the Liouville

measure and topological entropy of different Riemannian metrics. More precisely, let g be
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any negatively curved Riemannian metric and g∗ be a Riemannian metric with constant

negative curvature. Suppose in addition that g and g∗ determine the same area, then

hLiou(g) ≤ hLiou(g∗) and htop(g) ≥ htop(g∗). The inequalities are strict when g has non-

constant negative curvature. This result led Katok to state the following conjecture for

negatively curved Riemannian metrics

Conjecture 1 ([Kat82]). One has htop(g) = hLiou(g) on a compact manifold if, and only

if, g is a locally symmetric Riemannian metric.

Conjecture 1 was proved by Katok himself in [Kat82] for metrics that are conformal

to a locally symmetric one. In particular, it implies that the result is true for surfaces.

It is known by [KKW91] that locally symmetric metrics are critical points for both htop

and hLiou when seen as functions from the space of Riemannian metrics. More about

this conjecture can be found in [BCG95]. We are unable to relate the above conjecture

to the conformal deformation construction in Theorem A since we do not know if the

resulting metric is even non-positively curved, the best we can state is that if some positive

curvature is created, then it can be made as small as we want. However, working in a

slightly different and less rigid kind of deformation, we are able to produce an example

with non-positive curvature and this encompass the above objectives from (1) to (5).

More specifically,

Theorem B. Let (M, g) be a compact Kähler manifold of holomorphic curvature −1 or

a compact locally symmetric quaternionic Kähler manifold of negative curvature, then

there exists a C2−deformation g̃ of the metric g with the following properties

(1) g̃t is partially hyperbolic.

(2) There exists a closed geodesic γ with a parallel Jacobi field along it.

(3) The sectional curvatures K̃ are all negative outside γ.

As a consequence of the construction of Theorem B we get the following corollary:

Corollary B.1. There exists a Riemannian manifold (M, g) with no conjugate points such

that its geodesic flow is partially hyperbolic, non-Anosov, ergodic for Liouville, mixing,

expansive and has a unique measure of maximal entropy.
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We highlight the ergodicity for the Liouville measure, which was a question stated

in [CP14]. It is somehow possible to relate the previous result to the mentioned Katok’s

conjecture in the sense that we obtain a unique measure of maximal entropy. However,

the metrics are non-positively curved and they are not negatively curved. Besides that,

we are unable to say if the measure of maximal entropy is the Liouville measure or not.

In [CP14] the authors do not guarantee the existence nor absence of conjugate points

in their examples, indeed they use a curve (a straight line) of metrics to prove the existence

of a metric with partially hyperbolic geodesic flows and non-conjugate points. We were

unable to find a reference that guarantees that the set of metrics for which the geodesic flow

is partially hyperbolic is convex or at least path-connected. Thus the previous corollary

guarantees by other arguments the absence of conjugate points for the resulting metric.

Furthermore, we also can prove the existence of examples with conjugate points in the

following way: recall that Ruggiero proved in [Rug91a] that the C2−interior of the set

of Riemannian metrics without conjugate points coincides with the set of Riemannian

metrics for which the geodesic flow is of Anosov type. The metrics obtained via Theorem

B are on the boundary of N C(M) and their geodesic flows are partially hyperbolic. Since

partial hyperbolicity is an open condition, it implies that there exist Riemannian metrics

with conjugate points and partially hyperbolic, non-Anosov, geodesic flows. In other

words, we obtain

Corollary B.2. There exists a metric C2-close to g̃ that has conjugate points and a

partially hyperbolic geodesic flow. Moreover, there exists a C2−open set of Riemannian

metrics with conjugate points for which the geodesic flow is partially hyperbolic.

Preliminary results were obtained in the direction of objectives from (6) to (8). They

are presented in Section 2.5.

A few results were obtained about the general class of flows. The results obtained

here are analogous to those obtained in [RHRHTU11a] and [RHRHTU11b], but in the

flow setting. Although they are interesting by themselves, we believe they are going

to be useful in future works. It is worth mentioning that some new treatments were

needed to adapt some of the proofs and deal with the flow direction, which does not

appear for diffeomorphism. The definitions of the stable and unstable homoclinic classes,

respectively, Λs(γ) and Λu(γ), are given more explicitly by (1.4.1) and (1.4.2). Recall

also that we have defined the ergodic homoclinic class of γ as the intersection Λ(γ) =
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Λs(γ) ∩ Λu(γ). The results stated bellow complete the final objectives (9) and (10) of this

dissertation:

Theorem C. Let ϕt : M → M be a C2-flow on a closed connected Riemannian manifold

M and let m be a smooth ϕt-invariant measure. If m(Λs(γ)) · m(Λu(γ)) > 0 for a certain

hyperbolic periodic orbit γ, then:

i) Λ(γ) = Λu(γ) = Λs(γ) mod 0,

ii) Λ(γ) is a hyperbolic ergodic component for ϕt.

Theorem D. Let ϕt : M → M be a C2-flow on a closed connected manifold and µ a

SRB measure. If µ(Λs(γ)) · µ(Λu(γ)) > 0, then Λu(γ) ⊂ Λs(γ) mod 0. In addition, µ

restricted to Λ(γ) is ergodic, non-uniformly hyperbolic and physical measure.

Theorem E. Let ϕt : M → M be a C2-flow on a closed connected manifold, m a smooth

measure and µ a SRB measure. If m(Λs(γ)) · µ(Λu(γ)) > 0, then Λu(γ) ⊂ Λs(γ) mod 0.

Furthermore, µ restricted to Λ(γ) is a hyperbolic ergodic measure.

These results show a close relation between the ergodic phenomena and the existence

of "significant" homoclinic classes from the point of view of the measure itself. Next results

deal with the existence of a homoclinic class related to a SRB measure in some cases and

also provide us a criterion for obtaining uniqueness of SRB measures from homoclinic

classes.

Theorem F. Let ϕt : M → M be a C2-flow on a compact manifold and µ a regular,

hyperbolic and SRB invariant measure. Then for every ergodic component ν of µ there

exist a hyperbolic closed orbit γ such that ν(Λ(γ)) = 1.

Theorem G. Let ϕt : M → M be a C2-flow on a compact manifold and µ and ν two

ergodic SRB measures. Suppose that there exist a periodic hyperbolic orbit γ such that

µ(Λ(γ)) = ν(Λ(γ)) = 1. Then, µ = ν.

Notice that because of Theorem D, the ergodicity assumption in the previous theorem

is somehow redundant. We choose to state the theorem in this manner since ergodicity

is a key property for the proof, which is basically showing that the basins of the two

measures must intersect.
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In general, it is highly non-trivial to obtain known results for diffeomorphisms in

the flow setting by two main reasons: perturbations results for diffeomorphisms are not,

in general, applicable for flows and in hyperbolic dynamics there is no contraction nor

expansion in the flow direction, hence many of the arguments which depend on this kind

of structure are not adaptable. In the same direction of our propose we may cite the

recent work by Boris Hasselblatt and Todd Fisher [FH22], where the authors need to

overcome many difficulties to obtain analogous results from [ACW22] in the flow setting.

The other way around is also tremendously difficult in many cases, as an example we

cite the celebrated work by Artur Avila [Avi10] on the regularization of conservative

diffeomorphisms. It is worth mentioning that flows with some non-uniform hyperbolic

behavior appear naturally in dynamical systems, in particular in the context of geodesic

flows for non-positively curved Riemannian metrics. Therefore, it is extremely important

to develop tools to study such systems and it illustrates well the power of the results

presented by this dissertation.

This dissertation is structured as follows: in Chapter 1 we present the necessary

background from Riemannian geometry, partially hyperbolic dynamics, non-uniform hy-

perbolic systems and the dynamics for the geodesic flow. For some elementary compu-

tations within Riemannian geometry, we were unable to find a reference, so we provided

short proofs for completeness. Chapter 2 encompass the content of the preprint [dJPR24].

In Section 2.2, we show how to use conformal deformations in order to destroy the Anosov

property of the geodesic flow. The construction consists of deforming the initial metric

g by multiplying it by a conformal factor supported in a tubular neighborhood of closed

geodesic, which we will mention as central geodesic. We investigate the necessary condi-

tions on the multiplying factor and show how to construct it in general. The construction

can be made with a multiplying function as regular as needed, at least of class C4. It is

also possible to make it smooth, however, with this technique, we can not control how

large is the positive curvature that appears. In section 2.3, we show that the resulting

flow is partially hyperbolic by using the cones criterion (check Section 1.3.2). We begin

by explicitly exhibiting the invariant splitting along the central geodesic, which gives us

the candidates for the invariant cone families. We compute the variation of the cones’

openness along a general orbit of the flow, then the proof splits into some cases: for

geodesics that are parallel to the central geodesic or almost parallel, we show that open-
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ness variation is approximated by a positive quantity and this implies cone invariance.

We then show that we can shrink the deformed region in order to prevent transversal

geodesics of losing hyperbolicity, and then we also obtain invariance of the cone family.

The proof is completed by using the symplectic behavior of the derivative of the geodesic

flow acting on the contact structure (check Lemma 1.3.1). This strategy is also used in

[CP14], however the computations that appear are completely different and allow us to

control better the deformation on the curvature. In Section 2.4, we prove Theorem B and

Corollary B.1. The proof of partial hyperbolicity with a different deformation works in

the same way, thus we are left to analyze the curvature. We show that every sectional

curvature can be bounded by a non-positive function, which vanishes just along the central

geodesic. In Section 2.5, are presented extra properties for the constructed geodesic flows,

partial results on partially hyperbolic contact flows and some derived questions from this

work. Chapter 3 is devoted to present results from the preprint [dJEP25] on Homoclinic

classes for flows. The development of this chapter is essentially straightforward in the

sense that no extra tools are needed, each section is composed by the proof of one of the

above theorems. Theorems C, D and E are proved in Sections 3.2 and 3.3. Section 3.4

consists of the proof of Theorem F and finally we prove Theorem G in Section 3.5.
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Chapter 1

Preliminaries

For this dissertation, we will assume that (M, g) is a compact smooth Riemannian

manifold without boundary and dimension n ≥ 2, and we will denote by TM the tangent

bundle of M . We will see that, associated with a Riemannian metric g, it is important for

the study of the geodesic flow considering the so-called unit tangent bundle defined by:

T 1M := {v ∈ TM : g(v, v) = 1}.

Remark 1.0.1. Many different notations, such as UM and SM , can appear in the

literature. To avoid some possible confusion of notation with other structures we are

going to define later, we have chosen the above notation for this space.

Remark 1.0.2. It is clear that the unit tangent bundle depends on the fixed Riemannian

metric. However, we are not going to explicitly state its dependence on the notation for

a matter of simplicity. If any confusion can appear when dealing with different metrics,

then we are going to be careful with the notation.

Let us fix some usual ergodic theory definitions:

Definition 1.0.1. we are going to use: a set A ⊂ M will be called ϕ-invariant if ϕt(A) =

A, for every t ∈ R.

Definition 1.0.2. A Borel probability measure µ is called ϕ-invariant if µ(ϕt(A)) = µ(A),

for every t ∈ R and every Borel set A.

Definition 1.0.3. A ϕ-invariant measure is called ergodic if µ(A) = 1 or µ(A) = 0, for

every invariant measurable set A.
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Definition 1.0.4. Given a C1 vector field X on M , an invariant measure µ is said to

be regular if µ(Sing(X)) = 0, where Sing(X) denotes the set of points in M where X

vanishes.

1.1 Riemannian Geometry

In this section we are going to discuss some of the important concepts of Riemannian

geometry that are necessary to understand the dynamics of the geodesic flow. Although

we tried our best to make this dissertation as self-contained as possible, many interesting

and useful concepts are left out of our exposition on this topic. Therefore, for a more

complete approach of the theory of Riemannian manifolds, we suggest the books [Lee18],

[DCF92] and [Wal04].

Many computations in Riemannian Geometry can become very complicated to read

when summing with different indices, for example, when tensors are expressed in coor-

dinates. For simplicity of notation, and to avoid writing too many summation symbols,

we are going to use the Einstein summation convention: we are going to write xiEi to

mean
∑

i xiEi whenever the index i appears once as an upper index and once as a lower

index and the summation is considered among all possible values of i. It can seem to be

a silly simplification when summing only on one symbol, but the above situation is very

common when making computations with tensors:

n∑

i=1

n∑

j=1

n∑

k=1

f i,j,k
l Ei,j,k,l := f i,j,k,lEi,j,k

We are going to use the summation sign whenever any confusion with indices is possible.

1.1.1 Basic concepts

A classical problem that arises when studying manifolds is defining a notion of deriva-

tive for vector fields; this is solved by the notion of connections. Although this notion can

be studied in general situations such as fiber bundles, we are going to restrict ourselves

to the tangent bundle of a manifold M . Let us denote by X (M) the set of smooth vector

fields on M and by C∞(M) the set of real-valued smooth functions on M . We make the

following definition:
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Definition 1.1.1. A smooth connection is a map ∇ : X (M) × X (M) → X (M), denoted

by ∇XY and satisfying the following properties:

(1) Given α, β ∈ R, and X, Y and Z ∈ X (M), then

∇X(αY + βX) = α∇XY + β∇XZ.

(2) Given f, g ∈ C∞(M) and X, Y and Z ∈ X (M), then

∇fX+gY Z = f∇XZ + g∇Y Z.

(3) Given f ∈ C∞(M), and X and Y ∈ X (M), then

∇X(fY ) = Xf · Y + f · ∇XY.

In particular, a smooth connection gives rise to the notion of derivative of vector

fields along curves: given a smooth curve α : I → M we say that X is a vector filed along

α if X : I → TM and X(t) ∈ Tα(t)M for all t ∈ I. Of course, α′(t) is a vector field along

α. Given a smooth connection ∇, it induces a map ∇ : X (α) × X (α) → X (α), where

X (α) is the space of vector fields along α. A vector field X along α will be called parallel

if ∇α′X(t) = 0, for all t ∈ I. For completeness, we are going to state a proposition on the

existence of parallel vector fields along curves given initial conditions. The proof can be

found in [Lee18, Theorem 4.32].

Proposition 1.1.1. Given a smooth curve α : I → M , with t0 ∈ I, a smooth connection

∇ and v ∈ Tα(t0)M , then there exists an unique parallel vector field V along α such that

V (t0) = v.

Last Proposition implies the existence of a well-defined map Pt0t : Tα(t0)M → Tα(t)M

given by

Pt0t(v) = V (t).

The map Pt0t is called the Parallel Transport along α from t0 to t and it will be important

for setting up the constructions made in the next Chapter.

In this context, we can also define one of the most important concepts for the study

developed by this dissertation, the geodesics:

Definition 1.1.2. A curve α will be called a geodesic for the connection ∇ if α′ is a

parallel vector field along α, i.e. ∇α′α′(t) = 0, for all t ∈ I.
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A smooth connection ∇ : X (M)×X (M) → X (M) is totally determined by its values

on an local frame in the following sense: given a local frame {Ei}, we know that for each

pair of indices (i, j) ∇Ei
Ej ∈ X (M), therefore it can be written in terms of the local

frame {Ei}, i.e. there exit smooth functions Γk
ij (locally defined wherever the local frame

is defined) such that

∇Ei
Ej = Γk

ijEk.

Now, suppose that X and Y are any smooth vector fields written locally as X = X iEi

and Y = Y jEj, then by the properties in Definition 1.1.1 we get

∇XY = ∇XiEi
(Y jEj) = X i∇Ei

(Y jEj) = X i(EiY
j · Ej + Y j · ∇Ei

Ej)

= X i(EiY
j · Ej + Y j · Γk

ijEk) = (X i · EiY
k + X iY j · Γk

ij)Ek.

Thus, the vector field ∇XY can be determined by the coordinates of X and Y in the given

local frame and the functions Γk
ij. These functions are called the Christoffel Symbols of

the connection ∇ with respect to the local frame {Ei}.

So far, we have not assumed any relation between connections and the Riemannian

metric g. Indeed, the theory of connections is general and does not depend on any notion

of metric. For the purpose of this dissertation, it is important to relate both theories, i.e.

we are going to be interested in connections that are defined in terms of the Riemannian

metric. A classical result of Riemannian geometry guarantees the existence of a unique

smooth connection with the following two properties:

(1) Given X, Y and Z ∈ X (M), then

Xg(Y, Z) = g(∇XY, Z) + g(Y, ∇XZ).

(2) Given X and Y ∈ X (M), then

∇XY − ∇Y X = [X, Y ].

The unique smooth connection satisfying 1. and 2. is called the Levi-Civita connection.

Essentially its existence and uniqueness is proved by exhibiting its Christoffel Symbols

for any local charts: let (U, (xi)) be a local chart and gij := g
(

∂
∂xi ,

∂
∂xj

)
. Denote by gij
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the entries of the inverse matrix of (gij), then the Christoffel Symbols of the Levi-Civita

connection are given by:

Γk
ij =

gkl

2
(∂iglj + ∂jgli − ∂lgij).

Although the Levi-Civita connection theory is very rich and interesting, we are not going

to explore it here. The important concept in this context is geodesics:

Definition 1.1.3. We are going to call a curve α a geodesic for the metric g if it is a

geodesic for the Levi-Civita connection.

The theory of Ordinary Differential Equations guarantee that given p ∈ M and

v ∈ TpM there exists a unique geodesic γ satisfying





γ(0) = p

γ′(0) = v

Let us also fix some notation: the geodesic with initial conditions (p, v) will be

denoted by γ(p,v). Given a curve α we will use the notation Dt := ∇α′ if there is no

confusion on the curve we are considering, so α is a geodesic if, and only if, Dtα
′ = 0. We

are also going call the operator Dt the "covariant derivative in the direction of α′".

We now introduce an important concept for the study of the dynamics of the Geodesic

Flow: the Riemann curvature tensor.

First, let us define the curvature endomorphism as the map R : X (M) × X (M) ×
X (M) → X (M) given by

R(X, Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z,

for X, Y and Z ∈ X (M). It is worth mentioning that there is a sign convention in

the expression above; it can be found in the literature (check [DCF92]), the curvature

endomorphism tensor with opposite sign to ours, so the reader may find some expressions

that we are going to use also with different signs. In general, this convention will not

impact our analysis.

Another very important tool in Riemannian geometry is the exponential map: given

p ∈ M we can define a map expp : TpM → M by

expp(v) := γ(p,v)(1).
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This map is well-defined in a small neighborhood of 0 ∈ TpM and it is in fact a local

diffeomorphism. Therefore, the collection of exponential maps can also be used to define

a smooth atlas for M . Each chart of this atlas is called Normal Coordinates. A particularly

interesting property of Normal Coordinates is the fact that Christoffel Symbols vanish on

the base point, i.e. if (U, expp) is a Normal Chart around p, then Γk
ij(p) = 0.

Now, given two tangent vectors X, Y ∈ TpM we can consider the plane spanned by

them Π(X, Y ) = span{X, Y } and its image under the exponential map S := expp(Π),

which is a 2-dimensional embedded submanifold of M . Therefore, the metric g induces a

metric on S and since it is 2-dimensional, we can consider its Gaussian Curvature at p,

say Kp. It can be proved that with this construction, the Gaussian Curvature coincides

with the following quantity:

K(Π) := K(X, Y ) =
g(R(X, Y )Y, X)

|X ∧ Y |2 , (1.1.1)

where |X ∧ Y | =
√

g(X, X)g(Y, Y ) − g(X, Y ). This makes clear that the whole

construction does not depend on X and Y in the sense that if X ′ and Y ′ form another

basis for Π, then we get the same quantity in (1.1.1).

To organize this text, we are going to prove two Lemmas, which are just elementary

computations with tensors. It will be useful to have these computations done, so we

can refer to them in future computations. To simplify the notation, we are going to use

∂s := ∂
∂xs .

Lemma 1.1.1. If gij are the components of a Riemannian metric in coordinates and gij

of its inverse, then the following expressions hold

(1)

∂sg
ikgkj = −gik∂sgkj. (1.1.2)

(2)

∂pgms = gnsΓ
n
pm + gnmΓn

ps. (1.1.3)

Proof. To prove (1 ), remember that gikgkj = δi
j, where

δi
j =





1, if i = j

0, if i 6= j
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Then, taking the derivative ∂s on both sides of the above expression, we get from one side

∂s(g
ikgkj) = ∂sg

ik · gkj + gik · ∂sgkj.

On the other hand, we have

∂sδ
i
j = 0.

From both equalities we get (1 ). To prove (2 ) we apply property (1 ) of the Levi-Civita

connection:

∂pgms =
∂

∂xp
g

(
∂

∂xm
,

∂

∂xs

)
= g

(
∇ ∂

∂xp

∂

∂xm
,

∂

∂xs

)
+ g

(
∂

∂xm
, ∇ ∂

∂xp

∂

∂xs

)

= g

(
Γn

pm

∂

∂xn
,

∂

∂xm

)
+ g

(
∂

∂xm
, Γn

ps

∂

∂xn

)
= gnsΓ

n
pm + gnmΓn

ps.

■

Similarly, as we have done to define the Christoffel symbols as the components of the

connection in coordinates, let us express the curvature tensor in coordinates. Given any

chart (U, (xi)) we know that R
(

∂
∂xi ,

∂
∂xj

)
∂

∂xk ∈ X (M), so there exists a family of smooth

functions Rl
ijk defined on U such that R

(
∂

∂xi ,
∂

∂xj

)
∂

∂xk = Rl
ijk

∂
∂xl . In the next Lemma, we

express Rl
ijk in terms of the Christoffel symbols and their partial derivatives.

Lemma 1.1.2. The components of the curvature endomorphism Rl
ijk can be expressed as

Rl
ijk = ∂jΓ

l
ik + Γr

ikΓl
jr − ∂iΓ

l
jk − Γr

jkΓl
ir

Proof. Consider a coordinate system (U, (xi)) and denote by Xi :=
∂

∂xi
. We know that

the Christoffel Symbols satisfy

∇Xi
Xj = Γk

ijXk

Since [Xi, Xj] (because these are coordinate vectors), it follows that

R(Xi, Xj)Xk = ∇Xj
∇Xi

Xk − ∇Xi
∇Xj

Xk

= ∇Xj
(Γr

ikXr) − ∇Xi
(Γr

jkXr)

= ∂jΓ
r
ikXr + Γr

ik∇Xj
Xr − ∂iΓ

r
jkXr − Γr

jk∇Xi
Xr

= ∂jΓ
r
ikXr + Γr

ikΓl
jrXl − ∂iΓ

r
jkXr − Γr

jkΓl
irXl

= (∂jΓ
l
ik + Γr

ikΓl
jr − ∂iΓ

l
jk − Γr

jkΓl
ir)Xl

= Rl
ijkXl

■
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It will also be useful to express the following components of the curvature tensor

g(R(Xi, Xj)Xk, Xs) = Rl
ijkgls =: Rijks.

in terms of the components of the metric g and its Christoffel symbols:

Lemma 1.1.3. In any coordinates, the curvature tensor can be expressed as

Rijks := Rl
ijkgls = −1

2
(∂2

jsgik + ∂2
ikgjs − ∂2

isgjk − ∂2
jkgis) − gmn(Γm

kiΓ
n
js − Γm

siΓ
n
jk). (1.1.4)

Proof. To prove the above equality, we expand the expression from the previous lemma.

To be careful, we will analyze each part of the sum we are interested in. From the previous

lemmas, we get

gls∂jΓ
l
ik =

1

2
(gls∂jg

ml(∂kgmi + ∂igmk − ∂mgik) + glsg
ml(∂2

jkgmi + ∂2
jigmk − ∂2

jmgik))

=
1

2
(−gml∂jgls(∂kgmi + ∂igmk − ∂mgik) + δm

s (∂2
jkgmi + ∂2

jigmk − ∂2
jmgik))

= −∂jglsΓ
l
ik +

1

2
(∂2

jkgsi + ∂2
jigsk − ∂2

jsgik)

= −(gnsΓ
n
jl + gnlΓ

n
js)Γ

l
ik +

1

2
(∂2

jkgsi + ∂2
jigsk − ∂2

jsgik)

=
1

2
(∂2

jkgsi + ∂2
jigsk − ∂2

jsgik) − gnsΓ
n
jlΓ

l
ik − gnlΓ

n
jsΓ

l
ik

By an analogous calculation, we have

gls∂iΓ
l
jk =

1

2
(∂2

ikgsj + ∂2
ijgsk − ∂2

isgjk) − gnsΓ
n
ilΓ

l
jk − gnlΓ

n
isΓ

l
jk.

Subtracting the last two equations, we get,

gls∂jΓ
l
ik − gls∂iΓ

l
jk =

1

2
(∂2

jkgsi + ∂2
isgjk − ∂2

jsgik − ∂2
ikgsj)

+ gnsΓ
n
ilΓ

l
jk + gnlΓ

n
isΓ

l
jk − gnsΓ

n
jlΓ

l
ik − gnlΓ

n
jsΓ

l
ik

Finally, Rijks will be given by

Rijks = gls∂jΓ
l
ik − gls∂iΓ

l
jk + glsΓ

r
ikΓl

jr − glsΓ
r
jkΓl

ir

=
1

2
(∂2

jkgsi + ∂2
isgjk − ∂2

jsgik − ∂2
ikgsj)

�
�

�
�
�
�

+gnsΓ
n
ilΓ

l
jk + gnlΓ

n
isΓ

l
jk��

�
�
�
�−gnsΓ

n
jlΓ

l
ik − gnlΓ

n
jsΓ

l
ik

�
�

�
�
��

+glsΓ
r
ikΓl

jr −
�
�
�

�
�

glsΓ
r
jkΓl

ir

■
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From the above lemma, we see that in order to change sectional curvatures of a given

metric via deformations, we need to deform the metric at least at order 2, i.e. if two

metrics are C2-close, then their curvatures will also be close to each other. The key point

of our results presented in Chapter 2 is the development of a theory of metric deformations

to control the behavior of the Geodesic Flow. Several deformations can be used to study

how to change and control the dynamics of the Geodesic Flow, but in this work, we have

chosen to study conformal deformations. There are several advantages to this approach,

especially it is not difficult to relate some of the Riemannian objects we have defined for

conformal metrics. In the next subsection, we describe all the relations that are going to

be useful for our purposes.

We introduce now a key object in the study of the dynamics of geodesic flows known

as Jacobi Fields. The intuition is the following: suppose γ is a geodesic defined on an

interval I containing 0 and consider F : I × (−ε, ε) → M a variation of γ by geodesics, i.e.

F (t, 0) = F0(t) = γ(t) and each curve γs0(t) := F (t, s0), with s0 ∈ (−ε, ε), is a geodesic.

In this context we can also consider the curves αt0(s) := F (t0, s), with t0 ∈ I, then we

have a well-defined vector field along γ given by

J(t) :=
d

ds
αt(s)|s=0.

A vector field J(t) constructed as above is called a Jacobi Field. It can be shown that a

γ

αt0(s)

J(t0)

γ(t0)

F (t, s)

Figure 1.1: Definition of Jacobi Fields by geodesic variation

Jacobi Field defined as above satisfies the following equation:

J ′′ + R(J, γ′)γ′ = 0, (1.1.5)

where J ′′ = D2
t J . In fact, since the curves γs(t) = F (t, s) is a geodesic, then

Dt
d

dt
γs(t) ≡ 0.
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Therefore, DsDt
d

dt
γs(t) ≡ 0 and by the defintion of R and using the symmetric property

of the connection we get

0 = DsDt
d

dt
γs(t) = DtDs

d

dt
γs(t) + R

(
d

ds
αt(s), γ′

s(t)

)
γ′

s(t)

= DtDt
d

ds
αt(s) + R(α′

t(s), γ′
s(t))γ

′
s(t)

Applying for s = 0, we get α′
t(0) = J(t) and γ′

0(t) = γ′(t), which gives us (1.1.5). Again,

the theory of ordinary differential equations guarantees the following result as a direct

application:

Proposition 1.1.2. Let γ : I → M be a geodesic and v, w ∈ Tγ(0)M . Then there exists a

unique Jacobi Field J : I → TM such that





J(0) = v,

J ′(0) = w

The description of Jacobi Fields by Equation (1.1.5) is interesting as it gives us an

idea of how the geodesics behave around each other in the presence of curvature. Indeed,

we are going to see below how the sign of the curvature can interfere on the behavior of

the function f(t) := ‖J(t)‖, where J is a Jacobi Field along some geodesic γ and as a

consequence it will give us information on the behavior of geodesics.

Lemma 1.1.4. Let γ be a unit geodesic with perpendicular Jacobi Field J . Suppose

the sectional curvatures are all uniformly bounded from above by a constant C, that is

K(X, Y ) ≤ C, for all X, Y ∈ TM . Then, f ′′(t) ≥ −Cf(t), for all t ∈ R for which

f(t) = ‖J(t)‖ 6= 0.

Proof. This will be followed by direct computation. First, notice that

f ′ =
g(J ′, J)√

g(J, J)
.
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Then, using the Cauchy-Schwarz inequality

f ′′ =

√
g(J, J)(g(J ′′, J) + g(J ′, J ′)) − g(J ′, J) g(J ′,J)√

g(J,J)

g(J, J)

=
1√

g(J, J)
(−g(R(J, γ′)γ′, J) + ‖J ′‖2

) − g(J ′, J)2

‖J‖3

=
1

‖J‖3 (−g(R(J, γ′)γ′, J) ‖J‖2 + ‖J ′‖2 ‖J‖2 − g(J ′, J)2)

≥ −K(J, γ′) ‖J‖4

‖J‖3

≥ −C ‖J‖

■

This Lemma shows us that if the sectional curvatures are non-positive, then f(t) is a

convex function, indeed, this is true without assuming g(J, γ′) = 0. This fact is interesting

because of the following definition

Definition 1.1.4. Let γ : I → M be a unit speed geodesic. We say that two points γ(a)

and γ(b) are conjugate if there exists a non-trivial Jacobi Field along γ satisfying J(a) = 0

and J(b) = 0.

Intuitively, two points are conjugate if there exists a variation of γ by geodesics

emanating from γ(a) and meeting again in γ(b) (see Figure 1.2 below). A simple example

is given by the sphere Sn in Rn+1 with the induced metric. It is well known that geodesics

in this case are great circles, then any two distinct geodesics emanating from the north

pole will meet again at the south pole. Therefore, the north and south poles are conjugate

points. The previous Lemma gives us that f(t) is a convex function; thus, if it vanishes

at two different points, it must be identically zero. Consequently we have

Corollary 1.1.1. If (M, g) is a Riemannian metric with non-positive sectional curvatures,

then it has no conjugate points.

Below, in Figure 1.3, we see an illustration of how the norm of a Jacobi Field van-

ishing at t = 0 behaves when the sectional curvature is constant. Although it is easy to

analyze the norm of Jacobi Fields in constant curvature, in general, it is very difficult

to understand it when the curvature varies. One may wonder if conjugate points should
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γ

J(t)

γ(a) γ(b)

Figure 1.2: Illustration of two conjugate points

imply positive curvature. However, it was proved by Robert Gulliver in [Gul75] the exis-

tence of Riemannian metrics admitting planes with both positive and negative sectional

curvatures but not presenting conjugate points. In light of subsections 1.2 and 1.3, it is

interesting to point out that Gulliver also proves that the examples satisfy the Anosov

property for the geodesic flow.

‖J(t)‖

t

K = 0

K < 0

K > 0

Figure 1.3: Norm of Jacobi Fields on constant sectional curvature.

The following results will not be directly used, but they are interesting to enrich our

analysis and presentation.

Lemma 1.1.5. Let (M, g) be a compact Riemannian manifold with non-positive sectional

curvatures. Suppose γ : R → M is a unit speed geodesic with J a Jacobi Field, then the

following claims are equivalent:



CHAPTER 1. PRELIMINARIES 37

(1) J is a parallel vector field.

(2) ‖J(t)‖ = ‖J(0)‖, for all t ∈ R.

(3) There exists a constant C > 0 such that ‖J(t)‖ ≤ C, for all t ∈ R.

Furthermore, (1 ), (2 ) or (3 ) implies g(R(J(t), γ′(t))γ′(t), J(t)) = 0, for all t ∈ R.

Proof. To see (1 ) =⇒ (2 ) just observe that d
dt

‖J(t)‖2 = 2g(J ′(t), J(t)) ≡ 0. (2 ) =⇒
(3 ) is obvious. Now, (3 ) =⇒ (2 ) follows by the convex property of f(t) = ‖J(t)‖.

Finally we prove (2 ) =⇒ (1 ): since ‖J(t)‖2 is constant, then

0 =
d

dt
g(J(t), J(t)) = 2g(J ′(t), J(t)).

Therefore, by the Jacobi Equation

0 =
d

dt
(2g(J ′(t), J(t))) = 2(g(J ′(t), J ′(t)) + g(J ′′(t), J))

= 2(g(J ′(t), J ′(t)) − g(R(J(t), γ′(t))γ′(t), J)).

Since −g(R(J(t), γ′(t))γ′(t), J) ≥ 0, last equation implies J ′(t) ≡ 0. ■

We end this subsection by presenting, without proving, some results about the com-

parison of Jacobi Fields norms. For the proofs check, respectively, [Bal95, 2.9 Proposition]

and [Lee18, Theorem 11.9].

Proposition 1.1.3. (2.9 Proposition in [Bal95]) Let (M, g) be a compact Riemannian

manifold with non-positive sectional curvatures. Suppose γ : R → M is a unit speed

geodesic with J a Jacobi Field satisfying ‖J(t)‖ ≤ C for some positive constant C ∈ R

and all t ≥ 0. Then the following claims hold:

(1) If there exists a constant a ∈ R such that Kγ(t)(X, Y ) ≤ −a2 ≤ 0, for all t ∈ R and

X, Y ∈ Tγ(t)M , then

‖J(t)‖ ≤ ‖J(0)‖ e−at , ‖J ′(t)‖ ≥ a ‖J(t)‖ , ∀ t ≥ 0

(2) If there exists a constant b ∈ R such that Kγ(t)(X, Y ) ≥ −b2 ≥ 0, for all t ∈ R and

X, Y ∈ Tγ(t)M , then

‖J(t)‖ ≥ ‖J(0)‖ e−bt , ‖J ′(t)‖ ≤ b ‖J(t)‖ , ∀ t ≥ 0
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Define the following family of functions sc(t):

sc(t) :=





t, if c = 0

R sin t
R

, if c = 1
R2

R sinh t
R

, if c = − 1
R2

Theorem 1.1.5. (Theorem 11.9 in [Lee18]) Let (M, g) be a compact Riemannian mani-

fold, with sectional curvatures K, γ : [0, b] → M a unit-speed geodesic segment, and J an

orthogonal Jacobi Field. Then we get

(1) If K ≤ c, then

‖J(t)‖ ≥ sc(t) ‖J ′(0)‖ ,

for all t ∈ [0, b1], where b1 = b if c ≤ 0 and b1 = min(b, πR) if c = 1
R2 .

(2) If K ≥ c, then

‖J(t)‖ ≤ sc(t) ‖J ′(0)‖ ,

for all t ∈ [0, b2], where b2 ∈ [0, b] is such that γ(b2) is a conjugate point to γ(0) and

there no conjugate point to γ(0) for t ∈ [0, b2). Otherwise, if there is no conjugate

point along γ, then b2 = b.

1.1.2 Conformal metrics

In this section we are going to present the main technique of deformation we are

going to use to prove Theorem A. Essentially, two Riemannian metrics are said to be

conformal if one is obtained by multiplying the other by a positive function. It is easy

to see from the definition bellow that conformal deformations preserve angles between

vectors and "being conformal" is an equivalence relation between Riemannian metrics,

therefore it make sense to talk about the conformal class of a Riemannian metric. This

two trivial observations together with relations we can see between geometric quantities

of two conformally related metrics justify our choice for this technique. We are going

to see in the next chapter that some of the computations to produce our examples can

be verified very explicitly and without to much effort. Therefore, the development is

somehow "clean".

Let us start with the formal definition:
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Definition 1.1.6. We say that two Riemannian metrics g and g̃ are conformally related

if there exists a smooth positive function φ ∈ C∞(M) such that g̃ = φg.

Since φ > 0, it will be very useful for our computations to write φ = eh and write the

formulas in terms of the function h ∈ C∞(M). Let us start by relating their Christoffel

symbols:

Lemma 1.1.6. If g̃ = ehg are two Riemannian metrics conformally related, then their

Christoffel symbols are related by the following formula:

Γ̃k
ij = Γl

ij +
1

2
(∂ihδk

j + ∂jhδk
i − ∂lhglkgij), (1.1.6)

Proof. First, notice that g̃ij = e−hgij. Then, by the expression of Christoffel symbols in

coordinates, we get

Γ̃k
ij =

g̃kl

2
(∂ig̃lj + ∂j g̃li − ∂lg̃ij)

=
e−hgkl

2
(∂i(e

hglj) + ∂j(e
hgli) − ∂l(e

hgij))

=
e−hgkl

2
(eh(∂ihglj + ∂iglj + ∂jhgli + ∂jgli − ∂lhgij − ∂lgij))

=
gkl

2
(∂iglj + ∂jgli − ∂lgij) +

1

2
(∂ihgklglj + ∂jhgklgli − ∂lhgklgij)

= Γk
ij +

1

2
(∂ihδk

j + ∂jhδk
i − ∂lhglkgij)

■

We can now give a relation between the Levi-Civita connection for conformal metrics.

Remember that the Riemannian Gradient of a smooth function is defined as the only

vector field ∇gh which satisfies the relation

X(h) = g(∇gh, X)

In coordinates, it can be expressed as

∇gh = gij∂jh
∂

∂xi
.

When the metric g is clear by the context or there is no need to be precise, we are going

to use the notation ∇h instead of ∇gh to simplify the notation.

Lemma 1.1.7. If g̃ = ehg are two Riemannian metrics conformally related, then their

Levi-Civita connections are related by the following formula:

∇̃V W = ∇V W +
1

2
(V (h)W + V (h)W − g(V, W )∇gh), (1.1.7)
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Proof. We only need to check the above relation locally. So, let us fix a chart (U, (xi))

and suppose we can write V = V iXi and W = W jXj, with Xi :=
∂

∂xi
, V i, W j ∈ C∞(U).

Remember that the connection applied to the pair (V, W ) is totally determined by the

functions V i, W j and the Christoffel symbols:

∇̃V W = (V i · XiW
k + V iW j · Γ̃k

ij)Xk.

Using the previous Lemma, we get

∇̃V W = (V i · XiW
k + V iW j · Γk

ij)Xk +
V iW j

2
(∂ihδk

j + ∂jhδk
i − ∂lhglkgij)Xk

= ∇V W +
1

2
((V i∂ih)(W jδk

j )Xk + (W j∂jh)(V iδk
i )Xk − (V iW jgij)(g

lk∂lh)Xk)

= ∇V W +
1

2
(V (h)W kXk + W (h)V kXk − g(V, W )∇gh)

= ∇V W +
1

2
(V (h)W + W (h)V − g(V, W )∇gh)

■

It is interesting to observe that if two metrics are conformally related, it does not

imply that they have the same geodesics. Assume for example that γ is a geodesic for the

metric g, then Dtγ
′ = 0 and by the previous Lemma we get

D̃tγ
′ = Dtγ

′ + γ′(h)γ′ − 1

2
‖γ′‖2 ∇h = g(∇h, γ′)γ′ − 1

2
‖γ′‖2 ∇h.

Thus, γ is also a geodesic by the metric g̃ if ∇h|γ = 0, i.e. γ is a critical set for the

function h.

Another straightforward computation (but way longer, so it is going to be omitted.

Check [Wal04].) gives us the relation between the curvature endomorphisms:

Lemma 1.1.8. If g̃ = ehg are two Riemannian metrics conformally related, then their

curvature endomorphisms are related by the following formula:

R̃(X, Y )Z = R(X, Y )Z +
1

2
{g(∇X∇h, Z)Y − g(∇Y ∇h, Z)X

+ g(X, Z)∇Y ∇h − g(Y, Z)∇X∇h}

+
1

4
{((Y h)(Zh) − g(Y, Z)|∇h|2)X − ((Xh)(Zh) − g(X, Z)|∇h|2)Y

+ ((Xh)g(Y, Z) − (Y h)g(X, Z))∇h}. (1.1.8)
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We are finally able to relate the sectional curvatures for conformal metrics. This is

the key relation we are going to use to "break" the Anosov property (check Section 1.3)

of some class of Riemannian metrics.

First, observe that ˜|X ∧ Y |
2

= g̃(X, X)g̃(Y, Y ) − g̃(X, Y )2 = e2h|X ∧ Y |2. Then,

using the previous Lemma for any pair of linearly independent vectors X, Y , the sectional

curvature of the plane Π = span{X, Y } is given by

ehK̃(X, Y ) = K(X, Y ) +
1

2|X ∧ Y |{g(∇X∇h, Y )g(Y, X) − g(∇Y ∇h, Y )g(X, X)

+ g(X, Y )g(∇Y ∇h, X) − g(Y, Y )g(∇X∇h, X)}

+
1

4
{((Y h)(Y h) − g(Y, Y )|∇h|2)g(X, X)

− ((Xh)(Y h) − g(X, Y )|∇h|2)g(Y, X)

+ ((Xh)g(Y, Y ) − (Y h)g(X, Y ))g(∇h, X)}.

An interesting property that holds for any two metrics in the same conformal class is

orthogonality of any two tangent vectors, i.e. if =̃ehg, then X and Y are orthogonal for

g if, and only if, g̃. Then we can state the following Lemma

Lemma 1.1.9. If g̃ = ehg are two Riemannian metrics conformally related, then their

sectional curvature of a plane Π with orthogornal basis {X, Y }, with g(X, X) = g(Y, Y ) =

1, are related by the following formula:

ehK̃(X, Y ) = K(X, Y ) − 1

2
(g(∇X∇h, X) + g(∇Y ∇h, Y )) − 1

4
(|∇h|2 − (Xh)2 − (Y h)2).

(1.1.9)

The term g(∇X∇h, Y ) in the previous Lemma is called Riemannian Hessian of the

function h and is also typically denoted by Hess(h)(X, Y ).

1.1.3 Locally symmetric metrics

Our constructions made in Chapter 2 work for a particular class of Riemannian

manifolds called Locally Symmetric. We are going to introduce the definition and present

a classification of such spaces. We also going to explore some of the interesting properties

we are going to need for our constructions and fix some notation. For further results

about such spaces, we refer to [Mos73] and [Jos08].
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Definition 1.1.7. A Riemannian metric g is called locally symmetric if, and only if,

the curvature endomorphism R is parallel with respect to the Levi-Civita connection, i.e.

∇R ≡ 0.

Remember that ∇R : X (M)4 → X (M) is defined by

∇R(X, Y, Z, W ) := (∇W R)(X, Y, Z)

= ∇W (R(X, Y )Z) − R(∇W X, Y )Z − R(X, ∇W Y )Z − R(X, Y )∇W Z.

Classical examples of locally symmetric manifolds are Kähler manifolds [Mor07].

It is known that compact locally symmetric Riemannian manifolds are obtained by

compact quotients of hyperbolic spaces:

Proposition 1.1.4. A Riemannian closed manifold (M, g) is a compact locally symmetric

manifold of negative sectional curvatures if, and only if, it is a compact quotient of the

following hyperbolic spaces:

(1) RHn: real hyperbolic space.

(2) CH
n
2 : complex hyperbolic space.

(3) HH
n
4 : quaternionic hyperbolic space.

(4) OH2: octonionic hyperbolic space.

The sectional curvatures are bounded by an interval depending on the holomorphic

curvature of each space in the following way: let us call the holomorphic curvature by

−H2, then

(1) RHn: K = −H2.

(2) CH
n
2 : −4H2 ≤ K ≤ −H2.

(3) HH
n
4 : −4H2 ≤ K ≤ −H2.

(4) OH2: −4H2 ≤ K ≤ −H2.

From now on, for our computations, we are going to consider H = 1
2
, but everything can

be adapted modulo changing some constants in the computations.
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The first interesting property we highlight is the invariance of sectional curvatures

by parallel transport, that is suppose γ(t) is a geodesic and X(t), Y (t) are two parallel

vector fields along γ(t) we claim that K(X(t), Y (t)) ≡ K(X(0), Y (0)). Indeed, suppose

with no lost of generality that {X(t), Y (t)} are orthonormal, then

d

dt
g(R(X, Y )Y, X) = g(DtR(X, Y )Y, X) + g(R(X, Y )Y, DtX)

= g(R(DtX, Y )Y, X) + g(R(X, DtY )Y, X) + g(R(X, Y )DtY, X)

= 0

Another property that is going to be very useful for us is a characterization of the

sectional curvatures: let γ(t) be a geodesic, then there exists an orthonormal parallel

frame along γ, say {e0(t), e1(t), . . . , er(t), er+1(t), . . . , en−1(t)} such that for, i 6= 0, we

have R(ei(t), e0(t))e0(t) = −λ2
i ei(t), where λi = 1, 1

4
depending on i. Therefore, the

possible sectional curvatures are K(ei(t), e0(t)) = −λ2
i = −1 or − 1

4
. Here we make a

distinction on the index r above because depending on each case of Proposition 1.1.4 we

consider, there will be a fixed number of directions for which −λ2
i = −1 and −λ2

i = −1
4
,

then let us fix that

−λ2
i =





−1, if i = 1, ..., r

−1
4
, if i = r + 1, ..., n − 1

For example, for RHn r is equal to n − 1, then we have a manifold of constant curvature

−1. On the other hand, for CH
n
2 r is equal to n − 2, that is there is only one direction

i = n − 1 such that K(en−1(t), e0(t)) = −1
4
.

The examples of compact locally symmetric Riemannian manifolds from Proposition 1.1.4

we are going to consider are the following:

(1) Compact Kähler manifolds of holomorphic curvature −1 (cf. [Gol99]).

(2) Compact locally symmetric quaternionic Kähler manifolds of negative curvature (cf.

[Bes07]).

As we observed above, for a fixed tangent vector v ∈ TxM , the tangent space (minus the

direction Rv) splits into two distinct subspaces for which the sectional curvatures are −1

and −1
4
. We are going to denote these spaces by A(x, v) and B(x, v), respectively, rather

than indicating in the notation the numbers −1 and −1
4

so we can simplify the notation



CHAPTER 1. PRELIMINARIES 44

(see (1.1.10)) when dealing with the computations. Let us make this notation explicit to

avoid any confusion: for every v ∈ TxM , let us define the following spaces

A(x, v) := {w ∈ TxM : K(v, w) = −1}

B(x, v) :=
{

w ∈ TxM : K(v, w) = −1

4

}

Again, for locally symmetric manifolds (check [Jos08]) we get that

{v}⊥ = A(x, v) ⊕ B(x, v).

Denote by PrC the projection to the space C(x, v), with C = A, B. For any vector field

X we will use the following notations: if α is any geodesic and
D

dt
= ∇α′ is the covariant

derivative along α, then 



XC := PrCX

X ′
C := PrC

(
DX

dt

)

(XC)′ :=
D

dt
(PrCX)

XC′ :=
(

D

dt
PrC

)
X

(1.1.10)

Since ∇R ≡ 0, the subbundles C(x, v) are parallel, i.e. the parallel transport of vectors

in C(x, v) along a smooth curve α remain in the correspondent space C(α, α′). Then for

any vector field X along a geodesic α we have

D

dt
(PrCX) = PrC

(
DX

dt

)
.

Another way to state this is the following: saying that C is parallel also means that the

covariant derivative of its projection is parallel. Remember that for any endomorphism

F : TM → TM (also (1, 1)-tensor) its covariant derivative is given by

∇XF = ∇X ◦ F − F ◦ ∇X .

So, if PrC is parallel along every geodesic γ, then

(∇γ′PrC) = ∇γ′ ◦ PrC − PrC ◦ ∇γ′ = 0.

Therefore, the above notation gives us XC′ = 0 and (XC)′ = X ′
C . This remark will

be important when we deform the metric since the deformed metric will not be locally

symmetric, thus, the computations must consider the term "XC′". In addition, the parallel

transport of the spaces A and B along a closed prime geodesic also preserves orientation.
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With our notation, the property we mentioned before about the behavior of R(X, v)v

will be written as follows (check [Jos08]):

R(X, v)v = −1

4
XB(x,v) − XA(x,v). (1.1.11)

1.2 Geodesic Flow

One of the most natural dynamical systems arising from Riemannian geometry is

the geodesic flow. It describes the motion of a tangent vector to the trajectory of a free

particle traveling along geodesics at constant speed on a Riemannian manifold. More

precisely, the geodesic flow is a smooth flow on the unit tangent bundle of the manifold,

associating to each unit tangent vector the velocity of the unit-speed geodesic determined

by that initial condition. This flow not only encodes the geometry of the manifold but

also exhibits rich dynamical behavior, particularly in the presence of negative curvature.

Beyond its geometric origin, the geodesic flow fits into several broader mathematical

frameworks. It is a special case of a Hamiltonian system, where the dynamics are governed

by the kinetic energy H(x, v) = 1
2
gx(v, v) and the canonical symplectic structure on T ∗M .

This places a relation between the geodesic flow and symplectic and contact geometry.

Because of this interplay between geometry, dynamics, and analysis, the geodesic flow

serves as a central object in several areas of mathematics, including spectral geometry,

microlocal analysis, and topological dynamics.

In this section, we are going to define and explore the geometric and dynamical

properties of the geodesic flow. In here, we intend to restrict ourselves to the properties

that are going to be useful for the understanding of our results and we have no intention

to completely develop the general theory. For a more complete exposition we refer the

great book by Gabriel Paternain [Pat99].

We are going to denote a general element of TM by θ = (p, v) or just v when

convenient.

Definition 1.2.1. Given a Riemannian manifold (M, g) we define the Geodesic Flow

gt : TM → TM as the family of diffeomorphisms given by

gt(p, v) = (γ(p,v)(t), γ′
(p,v)(t)).

The image below illustrates some possible behaviors of orbits of the geodesic flow.

Notice that even though the geodesic with γ′(0) = 0 on the image has self-intersection,



CHAPTER 1. PRELIMINARIES 46

v

gt(v)
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w′

u
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Figure 1.4: The geodesic flow on a surface of genus 3.

it does not represent a closed orbit of the geodesic flow once u 6= gt(u). Differently, we

observe that the geodesic with γ′(0) = x represents a closed orbit for the geodesic flow. It

is known that there are plenty of closed orbits for the geodesic flow in negatively curved

manifolds, and also, there exists at least one dense orbit.

There are many interesting questions about the dynamical system (TM, gt). How-

ever, we are particularly interested in the Anosov property, and generally the partially

hyperbolic property, which occurs for some classes of geodesic flows (check Section 1.3).

We are going to properly define these properties later, but let us mention that partial

hyperbolicity of a diffeomorphism f : M → M concerns the behavior of its derivative

acting on TM . Essentially, a diffeomorphism has the partial hyperbolicity property if

TM decomposes into three Df -invariant subbundles Es, Eu and Ec such that vectors in

Es are uniformly contracted by the action of Df , vectors in Eu are uniformly contracted

by the action of Df−1 and vectors in Ec have an intermediate behavior. For us now it is

important to understand the phase space of Df in the context of the geodesic flow, i.e.

the geodesic flow acts on TM , thus Dgt acts on the tangent bundle of TM , say T (TM).

Initially, it is not clear what the space T (TM) is and how to study it, but there are some

strategies from Riemannian Geometry which are very useful.

Let us start by introducing special coordinates in T (TM): denote by π the canonical

projection of the vector bundle π : TM → M . For θ ∈ TM we define the Vertical Space at

θ as the space V (θ) := ker Dπθ. Intuitively, we can see this space as the space of tangent

vectors to curves inside a single fiber of π : TM → M . Suppose α : (−ε, ε) → TM is a

curve inside some fiber of π : TM → M , i.e. π ◦ α(t) = π(α(0)) for all t ∈ (−ε, ε). Taking
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the derivative on t, we get

Dπα(t)α
′(t) = 0.

Thus, α′(t) ∈ V (α(t)). Notice that V (θ) is a subspace of TθTM of dimension n because

π is a submersion.

For each θ ∈ TM one could chose any complementary space H(θ) ⊂ TθTM of

dimension n such that TθTM = V (θ) ⊕ H(θ). However, there is no canonical way to

choose such a space H(θ) so that it defines a subbundle structure in TTM from the

bundle structure. Here, the notion of connection plays an important role in defining the

spaces H in a coherent way. The construction is general, but let us assume that ∇ is

the Levi-Civita connection for some Riemannian metric g. Let us show how to use the

connection to define a bundle map K : TTM → TM : let θ ∈ TM and ξ ∈ TθTM and

choose a curve α : (−ε, ε) → TM such that




α(0) = θ

α′(0) = ξ

Since α(t) ∈ TM , we can write α(t) = (α̃(t), W (t)), where α̃(t) = π ◦ α(t) and W (t) is a

vector field along α̃. Therefore, we can define K as

Kθ(ξ) := (∇α̃W )(0).

Since Kθ(ξ) := (∇α̃W )(0) depends only on the coordinates of α̃(0), W (0) and Christoffel

symbols, the map K does not depend on the choice of α, so it is well-defined. By the

properties of smooth connection (remember Definition 1.1.1), it is not difficult to see that

Kθ is a linear map. Finally we define the Horizontal Space as H(θ) := ker Kθ.

Lemma 1.2.1. Given θ = (p, v), then the following maps are linear isomorphisms:

(1) Dπθ|H(θ) : H(θ) → TpM .

(2) Kθ|V (θ) : V (θ) → TpM .

Proof. We prove (2 ) first. Since dim V (θ) = n it is enough to prove that Kθ is injective.

In fact, suppose Kθ(ξ) = 0 and ξ ∈ V (θ). Let α : (−ε, ε) → TM such that




α(0) = θ,

α′(0) = ξ
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Since ξ ∈ V (θ) it implies that π ◦ α(t) = π ◦ α(0) = p. As before, write α(t) =

(α̃(t), W (t)) = (α̃(0), W (t)) and we have Kθ(ξ) = (∇α̃′W )(0) = 0. Working in a co-

ordinate system we get (α̃i)′(t) = 0 and from the last equality that

(W k)′(t) = −W j(t)(α̃i)′(t)Γk
ij = 0.

Therefore, W (t) ≡ W (0) = v. We conclude that α(t) ≡ (p, v), so α′(t) ≡ 0. In particular,

α′(0) = ξ = 0. To prove (1 ) it is enough to observe that dim H(θ) = dim TθTM −
dim ImKθ = 2n − n = n and the proof is the same as in (2 ). ■

The previous Lemma gives us that TθTM = V (θ) ⊕ H(θ). Moreover, we have that

the map j
θ
: T

θ
TM → TpM × TpM given by

j
θ
(ξ) = (Dπθ(ξ), K

θ
(ξ))

defines a linear isomorphism. For simplicity, we are going to use the following notation

based on the previous result 



ξh = Dπθ(ξ),

ξv = Kθ(ξ)

So, an element ξ of TθTM will be written as ξ = (ξh, ξv).

The first interesting application of this construction we are going to see is a description

of the behavior of the Geodesic Vector Field, i.e, the vector field G : TM → TTM that

generates the geodesic flow gt. In other words, the Geodesic Vector Field is given by

G(θ) =
d

dt
gt(θ)|t=0 =

d

dt
(γ(p,v)(t), γ′

(p,v)(t))|t=0

Lemma 1.2.2. Let θ = (p, v), then the Geodesic Vector Field G satisfies G(θ)h = v and

G(θ)v = 0.

Proof. The proof is essentially two elementary computations:

G(θ)h = DπθG(θ) =
d

dt
π ◦ (γ(p,v)(t), γ′

(p,v)(t))|t=0 =
d

dt
γ(p,v)(t)|t=0 = v.

By definition, we have

G(θ)v = Kθ(G(θ)) = (∇γ′

(p,v)
γ′

(p,v))(0) = 0

. ■
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Our second application of the decomposition TθTM = V (θ) ⊕ H(θ) is the definition

of a symplectic structure on TM invariant by the geodesic flow: first, notice that we have

naturally a well-defined complex structure on TθTM given by

Jθ(ξh, ξv) := (−ξv, ξh),

i.e. mcJθ is a linear isomorphism satisfying J 2
θ = −IdTθT M . Now, let us define a Rieman-

nian metric on TM called Sasaki Metric by

ĝ((ξh, ξv), (ηh, ηv)) := g(ξh, ηh) + g(ξv, ηv).

Thus, H(θ) and V (θ) are orthogonal with respect to the Sasaki Metric. Finally,

define the following 2-form on TM :

Ωθ((ξh, ξv), (ηh, ηv)) := ĝ(Jθ(ξh, ξv), (ηh, ηv)) = g(ξh, ηv) − g(ξv, ηh)

Lemma 1.2.3. The 2-form Ω defined above satisfies the following properties:

(1) Ω is anti-symmetric.

(2) Ω is non-degenerated.

(3) Ω is invariant by the geodesic flow.

Proof. To see (1 ), we compute Ωθ((ξh, ξv), (ηh, ηv)):

Ωθ((ξh, ξv), (ηh, ηv)) = ĝ(Jθ(ξh, ξv), (ηh, ηv)) = g(ξh, ηv) − g(ξv, ηh)

= −(g(ξh, −ηv) + g(ξv, ηh)) = −ĝ(Jθ(ηh, ηv), (ξh, ξv))

= −Ωθ((ηh, ηv), (ξh, ξv))

To see (2 ), let (ξh, ξv) ∈ TθTM and consider (−ξv, ξh) ∈ TθTM , then

Ωθ((ξh, ξv), (−ξv, ξh)) = g(ξh, ξh) + g(ξv, ξv) ≥ 0

then Ωθ((ξh, ξv), (−ξv, ξh)) = 0 if, and only if, (ξh, ξv) = (0, 0). Finally, let us prove (3 ) by

showing that G(θ) is the Hamiltonian Vector Field of H(v) := 1
2
g(v, v) with respect to Ω,

i.e. dH(·) = Ω(G, ·): let ξ ∈ TθTM and α : (−ε, ε) → TM be a curve α(t) = (α̃(t), v(t)),

with α(0) = θ = (p, v) and α′(0) = ξ, then

dHθ(ξ) =
d

dt
H ◦ α(t)|t=0 =

d

dt

1

2
g(v(t), v(t))|t=0 = g(∇α̃′v(0), v(0)) = g(ξv, v)
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On the other hand, by Lemma 1.2.2

Ωθ(G(θ), ξ) = g(G(θ)h, ξv) − g(G(θ)v, ξh) = g(v, ξh)

■

The previous Lemma together with the following Proposition gives us that Ω is a

symplectic form for TM :

Proposition 1.2.1. (Proposition 1.24 in [Pat99]) The 2-form Ω satisfies

Ω = −dα,

where α is the 1-form

αθ(ξ) := ĝ(G(θ), ξ) = g(v, ξh)

Proof. See [Pat99] Proposition 1.24 for the proof. ■

The last proposition is a key step to define a structure we will be very interested in

when studying the dynamics of the geodesic flow known as Contact Structure.

Definition 1.2.2. For a compact manifold M2n+1, a smooth non-vanishing 1-form α is

called a Contact Form if dα|ker α is non-degenerated. Alternatively, α is called a Contact

form if α ∧ (dα)n is a volume form.

Definition 1.2.3. Given a contact form α, we will call the distribution ker α a Contact

Structure.

The following result is elementary from the theory of contact geometry:

Proposition 1.2.2. Given a contact form α, there exists a unique vector field Rα, called

The Reeb Vector Field of α, determined by α(Rα) ≡ 0 and dα(Rα, ·) ≡ 0.

Observe that contact forms can only be defined in odd-dimensional manifolds, then

there is no way we can define such a structure on TTM . However, remember that TM

is not a compact manifold and we are interested in studying the dynamics in compact

manifolds so we are going to restrict its action to the Unit Tangent bundle

T 1M := {(x, v) ∈ TM : g(v, v) = 1},
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which is a compact manifold whenever M is. Since geodesics are curves with constant

speed

(
d

dt
g(γ′, γ′) ≡ 0

)
, then the geodesic flow leaves T 1M invariant. Therefore, it makes

sense to study the dynamical systems gt : T 1M → T 1M with the restricted Sasaki metric

ĝ. Next Lemma shows us that α|T 1M defines a contact form with contact structure

S(θ) := ker α(θ). Notice that S(θ) consists of the vectors in T 1M orthogonal to R · G(θ)

with respect to the Sasaki metric.

Lemma 1.2.4. Given θ = (p, v) the following properties hold

(1) An element ξ ∈ TθTM is an element of TθT
1M if, and only if, g(ξv, v) = 0.

(2) Ω|S(θ) is non-degenerate.

Proof. A tangent vector ξ ∈ TθT
1M if, and only if, it is the tangent vector to a curve

in T 1M , say α. It means that g(α(t), α(t)) ≡ 1 and taking the derivative on both sides

and using the definition of ξv we get (1). Now, notice that ξ ∈ S(θ) ⊂ TθT
1M if, and

only if, g(ξv, v) = g(ξh, v) = 0. Thus, as before, given ξ ∈ S(θ) ⊂ TθT
1M consider

(−ξv, ξh) ∈ S(θ) ⊂ TθT
1M to get Ωθ((ξh, ξv), (−ξv, ξh)) ≥ 0. ■

Corollary 1.2.1. α|T 1M defines a contact form with Reeb Vector field G.

Since M is a compact manifold, any contact form induces a probability measure on

T 1M .

Definition 1.2.4. Let α be the contact form defined above on T 1M , then the induced

volume form α∧(dα)n induces a probability measure called Liouville Measure and denoted

by Liou.

One of the most remarkable results in the modern theory of dynamical systems is

the ergodicity of the Liouville Measure for the geodesic flow when the metric is nega-

tively curved. This result was proved by Anosov by using the known Hopf’s Argument

(which will be discussed in Chapter 3) by proving that in this case the geodesic flow has

the Uniform Hyperbolic Property or Anosov Property (which will be defined below and

explored more closely in Section 1.3). Remember that we have already introduced this

notion above, and it refers to the behavior of Dgt, so let us explore how to connect the

sign of the curvature with Dgt. We will see that the relation is due the Jacobi Equation

(1.1.5)
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Proposition 1.2.3. The action of the derivative of the geodesic flow (Dgt)θ : TpM ×
TpM → Tγ(p,v)(t)M × Tγ(p,v)(t)M is given by

(Dgt)θ(ξh, ξv) = (Jξ(t), J ′
ξ(t)),

where Jξ is the Jacobi Field along γ(p,v) with initial conditions Jξ(0) = ξh and J ′
ξ(0) = ξv.

Proof. Let α : (−ε, ε) → TM be a curve of the form α(s) = (π ◦ α(s), W (s)) such that




α(0) = θ

α′(0) = ξ

Consider the variation of the geodesic γ(p,v)(t) by geodesics given by

F : R × (−ε, ε) → TM

(t, s) 7→ π ◦ gt(α(s))

It implies that J(t) := ∂F
∂s

|s=0(t) is a Jacobi Field along γ(p,v) with initial conditions

J(0) =
∂

∂s
π ◦ gt(α(s))|s=0 = (Dπ)θξ

and

J ′(0) =
D

dt

∂F

∂s
|t,s=0 =

D

dt

∂

∂s
π ◦ gt(α(s))|t,s=0 =

D

ds

∂

∂t
π ◦ gt(α(s))|t,s=0

=
D

ds
W (s)|s=0 = Kθ(ξ)

On the other hand, we have

J(t) =
∂F

∂s
(t)|s=0 =

∂

∂s
π ◦ gt(α(s))|s=0 = (Dπ ◦ gt)θ(ξ) = Dπgt(θ)(Dgt)θ(ξ)

and the symmetry of the Levi-Civita connection, we get

J ′(t) =
D

dt

∂F

∂s
(t)|s=0 =

D

dt

∂

∂s
π ◦ gt(α(s))|s=0 =

D

ds

∂

∂t
π ◦ gt(α(s))|s=0

=
D

ds
γ′

α(s)(t)|s=0 = Kgt(θ)((Dgt)θ(ξ))

■

Last Proposition combined with the comparison results for Jacobi Fields we have

presented in 1.1 indicates that Dgt should exponentially contract and expand vectors

somehow in the presence of negative curvature. Let us define Anosov Geodesic Flows and

explore this property through the lens of the celebrated work by Patrick Eberlein [Ebe73].

We are going to study this property in a more general setting in Section 1.3.
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Remark 1.2.1. We denote the space generated by a vector V by RV .

Definition 1.2.5. The geodesic flow gt : T 1M → T 1M is called an Anosov flow (with

respect to the Sasaki metric on T 1M) if T (T 1M) has a splitting T (T 1M) = Ess⊕RG⊕Euu

such that there exist constants C > 0 and λ < 0 satisfying

(Dgt)θ(E
ss(θ)) = Ess(gt(θ)),

(Dgt)θ(E
uu(θ)) = Euu(gt(θ)),

||(Dgt)θ

∣∣∣
Ess

|| ≤ Ceλt,

||(Dg−t)θ

∣∣∣
Euu

|| ≤ Ceλt,

for all t ≥ 0.

We now give an intuition on the meaning of this property in terms of the dynamics

of gt: the general theory of Anosov systems guarantees that Ess and Euu are integrable

distributions by submanifolds Wss and Wuu satisfying that for η ∈ Wss(θ) (resp. Wuu(θ)),

we have d(gt(θ), gt(η)) → 0 as t → ∞ (resp. t → −∞).

θ

θs

θu

gt(θ)

gt(θ
s)

gt(θ
u)

Wss(θ)

Wuu(θ)

Wuu(gt(θ))
Wss(gt(θ))

TθT
1M Tgt(θ)T

1M

Figure 1.5: Illustration of an Anosov geodesic flow

Essentially, a geodesic flow is of Anosov type if there exist complementary directions

to the flow lines such that we have contraction or expansion of distances. Previously, we

mentioned that the Anosov property for the geodesic flow is closely related to the sign of
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the sectional curvatures. This relation is not trivial, but comparing Theorem 1.1.5 and

Proposition 1.2.3 can give us an idea of the behavior of Dgt acting on vectors. To get a

better idea, let us explore some simple examples.

Example 1.2.6. Suppose K ≡ −1 a consider γ : R → M an unit-speed geodesic.

To evaluate the Jacobi Fields in this case we can proceed as follows: let {e0(t) :=

γ′(t), e1(t), . . . , en−1(t)} be an orthonormal parallel frame along γ, i.e. the following prop-

erties are satisfied

(1) g(ei(t), ej(t)) = δij.

(2) Dtei(t) = 0, for all i = 0, ..., n − 1.

(3) span{e0(t), ..., en−1(t)} = Tγ(t)M .

A Jacobi field along γ can be written as J(t) = J i(t)ei(t), with J i : R → R, and it satisfies

J ′′(t) = (J i)′′ei(t). Then g(J ′′, ei) = (J i)′′ = −g(R(J, γ′)γ′, ei) = −J iK(ei, γ′) = J i.

Then, J i = (J i)′′ and solving this ODE we get

J i(t) =

(
J i(0) − (J i)′(0)

2

)
e−t +

(
J i(0) + (J i)′(0)

2

)
et.

Since Jacobi Fields are determined by the initial conditions, we can see that if J(0) =

−J ′(0), then ‖Dgt(J(0), −J(0))‖ ≤ Ce−t for some big enough constant C > 0. In this

case is easy to see that for Dgt exponentially contracts vectors of the form (v, −v) and

t > 0. The same analysis works for vectors of the form (v, v). ♦

Example 1.2.7. Suppose K ≡ 0 and proceeding as in the previous example, we get that

Jacobi Fields have coordinates satisfying (J i)′′ = 0. Therefore, J i(t) = (J i)′(0)t + J i(0)

and there is no exponential contraction nor expansion of the norm of a Jacobi field along

time. In this case, the geodesic flow does not satisfy the Anosov property. ♦

Example 1.2.8. Suppose K ≡ 1. By the work of Wilhelm Klingenberg [Kli74], we know

that if the geodesic flow is of Anosov type, then (M, g) has no conjugate points. It implies

that if K ≡ 1, then the geodesic flow can not present the Anosov property. ♦

Beyond constant curvature examples, it is nontrivial to determine if the geodesic

flow presents the Anosov property. It is worth remembering that exploring the Anosov

property for the geodesic flow was crucial in the study of ergodicity for the Liouville
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measure. First results on this direction were obtained by Eberhard Hopf in [Hop39] and

[Hop40] for surfaces and constant curvatures. Hopf developed a very beautiful idea to

obtain ergodicity, now known as the Hopf’s Argument. We will extensively explore this

idea in Chapter 3 when proving ergodicity of the restriction of a flow to ergodic homoclinic

classes. Later, Dmitry Anosov and Yakov Sinai generalized the results by Hopf for the

general setting of any dimension and varying negative curvature in [Ano67] and [AS67].

At this point, Anosov formalized the proof of the property geodesic flows satisfy for

negatively curved metrics, the previously defined Anosov property:

Theorem 1.2.9 ([Ano67]). If (M, g) is a compact Riemannian manifold with negative

sectional curvatures, then gt is of Anosov type.

A natural question is whether the only Anosov geodesic flows are those for which the

sectional curvatures are all negative. However, there are also examples of compact mani-

folds with regions of zero and positive curvature whose geodesic flow is Anosov ([Gul75],

[DP03], and [Ebe73]). Nevertheless, the Anosov condition is inherently connected to the

presence of negative curvature as explored in the celebrated paper by Patrick Eberlein

[Ebe73]. The classification made by Eberlein is one of the key points for our work in order

to break the Anosov property of some class of metrics. We are going to present his results

not in full generality since we have not defined many of the objects that appear in his

paper, but we are going to explicitly indicate how we are going to use them in Chapter 2.

Theorem 1.2.10. (Theorem 3.2 in [Ebe73]) The following are equivalent:

(1) The geodesic flow in T 1M is of Anosov type.

(2) There exists no nonzero perpendicular Jacobi vector field J(t) along a unit-speed

geodesic γ(t) such that ‖J(t)‖ is bounded for all t ∈ R.

The above theorem has the following consequence:

Proposition 1.2.4. (Corollary 3.4 in [Ebe73]) Let (M, g) be a Riemannian manifold.

If the geodesic flow gt is of Anosov type, the following holds: Let γ be any unit speed

geodesic of M , and X(t) be any nonzero perpendicular parallel vector field along α. Then

the sectional curvature K(X, α′)(t) < 0 for some t ∈ R.

Last proposition can be understood as an obstruction for a Jacobi field J to be

parallel along a geodesic γ once a Jacobi field is parallel if, and only if, the planes Π(t) =
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span{J(t), γ′(t)} all have zero sectional curvature. It also indicates how to break the

Anosov property in the sense that if we start with a metric g for which the geodesic

flow is of Anosov type, then we can obtain a non-Anosov geodesic flow by performing a

C2-deformation (remember Lemma 1.1.3) on g to produce a parallel Jacobi Field. This

is done in Subsection 2.2. This result also makes it trivial to check if some surfaces have

Anosov geodesic flows. Let us consider the following examples (check the Figure below):

Example 1.2.11. Let S be the surface of revolution obtained by rotating the graph of

f(x) = x4 + 1, defined in some interval [−a, a], around the x-axis and then gluing two

negatively curved surfaces to this neck. The obtained surface is non-positively curved,

and moreover, it has negative Gaussian curvature besides a central closed geodesic γ at

x = 0 for which the Gaussian curvature is identically zero. Since the dimension is 2, the

Gaussian curvature determines the only possible sectional curvature. Then, any parallel

vector field along γ is a Jacobi Field, thus, the geodesic flow is not of Anosov type. ♦

Example 1.2.12. Another easy example is obtained by considering a piece of cylinder

C and then gluing to negatively curved surfaces to this neck. The obtained surface has

a large set of closed geodesics with null Gaussian curvature (the whole C), thus by the

same arguments, the geodesic flow is not Anosov. ♦

(a) Surface of Example 1.2.11 (b) Surface of Example 1.2.12

We are not going to prove ergodicity of Anosov geodesic flows in this dissertation but

we refer to the beautiful book by Werner Ballmann [Bal95] where the reader can find many

nice results about the geodesic flow for the general setting of non-positively curved metrics

and an Appendix by Misha Brin about the ergodicity of the geodesic flow. Ergodicity for

the Liouville measure is not exclusive of Anosov geodesic flow. Indeed, our results show the

existence of ergodic geodesic flows with a weaker notion of hyperbolicity called Partial
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Hyperbolicity (check Section 1.3 for the definition). We get ergodicity by using more

general results obtained back in the 80s as [BBE85], [BB82], and [Bur83]. Their results

concern metrics with rank one: the rank of a tangent vector v ∈ T 1M is the dimension of

the vector space of parallel Jacobi fields along the geodesic with initial condition γ′(0) = v

and the rank of the Riemannian metric is rank(M, g) = infv∈T 1M rank(v). The only issue

with their results is the assumption that rank one implies that the set of vectors with

rank bigger than one has measure zero. If this condition holds and the curvature is non-

positive, then the geodesic flow has even more chaotic behavior, such as mixing and the

Bernoulli property. Combining their results we can state the following theoem

Theorem 1.2.13 ([BB82],[BBE85], [Bur83]). Let (M, g) be a Riemannian metric with

non-positive sectional curvatures and rank one. If the set of vectors with rank bigger

than one has measure zero, then the geodesic flow is a Bernoulli flow. In particular, the

geodesic flow is ergodic for the Liouville measure.

The setting of the theorem above is precisely the setting of our Theorem B and

also Example 1.2.11. Non-positive curvature is also not a necessary condition to get

hyperbolicity, some results by Burns, Gerber, Donnay, and Gulliver in [BG89], [DP03],

[Don06], and [Gul75].

1.3 Partial Hyperbolicity

In this section, we are going to present all the definitions in the particular setting of

the geodesic flow, however, the definitions are the same for the general case of flows and

diffeomorphisms. We are not going to use many of the interesting properties of a partially

hyperbolic system, but the definition and equivalent relations. Therefore, we are going

to make this section concise and direct to the results we need. The classical definition of

partial hyperbolicity is the following:

Definition 1.3.1. A geodesic flow gt : T 1M → T 1M is called Partially Hyperbolic if there

exists a nontrivial Dgt-invariant splitting T (T 1M) = Ess ⊕ Ec ⊕ RG ⊕ Euu such that

‖(Dgt)θ|Ess‖ < Ceλt,

‖(Dgt)θ|Euu‖ ≤ Ce−λt,

Ceµt ≤ ‖(Dgt)θ|Ec‖ ≤ Ce−µt,
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for some λ < µ ≤ 0 < C and for all θ ∈ T 1M .

In other words, it means that the dynamics decomposes in directions for which dis-

tances are exponentially contracting for positive time, exponentially contracting for neg-

ative time, and an intermediate behavior. The action of Dgt on Ec may be contracting

or expanding the size of vectors as well as be an isometry on some vectors, the important

property that we should have in mind is that if there are expansion (resp. contraction)

it is not as strong as the contraction (resp. expansion) of Ess (resp. Euu). It is worth

clarifying the meaning of "nontrivial" in Definition 1.3.1: by "nontrivial" we mean that

Ess 6= {0} and Euu 6= {0} so the system always presents some exponential contraction

and expansion. However, we do not require Ec 6= {0}. Indeed, it leads us to the first

example:

Example 1.3.2. From Definition 1.2.5 we have that Anosov geodesic flows are examples

of Partially hyperbolic geodesic flows with Ec = {0}. Then, from the discussion at the

end of the previous Section, we see that negatively curved compact Riemannian manifolds

present partially hyperbolic geodesic flows. Our results, Theorem A and Theorem B, are

precisely the construction of Partially hyperbolic geodesic flows which are not Anosov. ♦

Notice that no surface can present a partially hyperbolic geodesic flow that is not

Anosov. This is just a matter of dimension since dim T 1S = 3. So, for our construction,

we must consider higher-dimensional manifolds. Indeed, we can not visualize partially

hyperbolic flows which are not Anosov because this is a phenomenon of dimension at

least 4. However, we can analogously define partial hyperbolicity for diffeomorphisms:

Definition 1.3.3. A diffeomorphism f : M → M is called Partially Hyperbolic if there

exists a nontrivial Df -invariant splitting TM = Ess ⊕ Ec ⊕ Euu such that

‖(Dfn)x|Ess‖ < Ceλn,

‖(Dfn)x|Euu‖ ≤ Ce−λn,

Ceµn ≤ ‖(Dfn)x|Ec‖ ≤ Ce−µn,

for some λ < µ ≤ 0 < C and for all x ∈ M .

Examples in dimension 3 are now possible and not difficult to produce:
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Example 1.3.4. Consider the following matrix

A =




2 1 0

1 1 0

0 0 1




The matrix A induces a partially hyperbolic diffeomorphism fA on T3 = R3/Z3. ♦

Example 1.3.5. Let ϕt : M3 → M3 be an Anosov flow (for example, the geodesic flow for

a negatively curved Riemannian metric), then for each T > 0 the diffeomorphism f = ϕT

as the time−T map is a partially hyperbolic diffeomorphism. In this case Ec = RX,

where X is the vector field which generates the flow ϕt. ♦

On the other hand, there is a simple construction to produce a flow example from a

diffeomorphism.

Example 1.3.6. Suppose f : M → M is a partially hyperbolic diffeomorphism, then any

suspension flow ϕt inherits a partially hyperbolic structure. ♦

Another way to present some kind of partial hyperbolicity appears as the so-called

Dominated Splitting, which we present below

Definition 1.3.7. An Dgt-invariant splitting E⊕F of T (T 1M)/RG is called a dominated

splitting if

(1) E and F are Dgt-invariant: DgtE(θ) = E(gt(θ)) and DgtF (θ) = F (gt(θ)), for all

θ ∈ T 1M and i = 1, ..., k.

(2) The following inequality holds

‖(Dgt)θ|E(θ)‖ · ‖(Dg−t)gt(θ)|F (gt(θ))‖ < Ce−λt,

for some C, λ > 0 and for all θ ∈ T 1M .

In general, we say that a splitting T (T 1M)/RG = E1 ⊕ · · · ⊕ Ek is dominated if

(1) Each Ei is Dgt-invariant: DgtEi(θ) = Ei(θ), for all θ ∈ T 1M and i = 1, ..., k.

(2) The following inequality holds

‖(Dgt)θ|Ei(θ)‖ · ‖(Dg−t)gt(θ)|Ei+1(gt(θ))‖ < Ce−λt,

for some C, λ > 0 and for all θ ∈ T 1M .
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The concepts of splitting domination and partial hyperbolicity are related by the

following result

Proposition 1.3.1. A geodesic flow gt : T 1M → T 1M is partially hyperbolic if, and only

if, there exists a dominated splitting T (T 1M)/RG = Ess ⊕ Ec ⊕ Euu such that vectors in

Ess are exponentially contracted by Dgt and t ≥ 0 and vectors in Euu are exponentially

expanded by Dgt and t ≥ 0.

Dominated splitting and the uniform contraction expansion in Ess and Euu in the

definition of partial hyperbolicity are, in general, different. However, in the special case

of symplectic dynamics (as the case of geodesic flows), we have a beautiful connection

from the works [Con02] and [Rug91b] (see also [CP14, Lemma 2.8]).

Lemma 1.3.1. Let (N, ω) be a symplectic manifold, ω its symplectic 2-form and φt : N →
N a flow on N generated by a vector field X such that LX(ω) = 0, i.e., the flow preserves

the symplectic structure of N . If there is a dominated splitting TN/RX = E ⊕ Ec ⊕ F

such that dim(E) = dim(F ), then for all x ∈ N there exist C > 0 and λ < 0 such that

‖(Dφt)x|E‖ ≤ Ceλt, ‖(Dφ−t)x|F ‖ ≤ Ceλt.

Essentially, the previous lemma says that in symplectic dynamics, if there is a dom-

inated splitting with extremal subbundles of the same dimension, then the dynamics is

partially hyperbolic. This connection will be important in our case because our proof

of partially hyperbolicity in Chapter 2 is based on proving the existence of a dominated

splitting for the constructed geodesic flow, then concluding partial hyperbolicity via this

lemma.

To prove the existence of dominated splitting in the next chapter, we are going to

use a classical result on hyperbolicity and partial hyperbolicity called the Cone Criteria.

Let us start by defining what a cone is in our context:

Definition 1.3.8. Given θ ∈ T 1M , a subspace E(θ) ⊂ TθT
1M , and δ > 0, we define the

cone at θ centered around E(θ) with angle δ (or opening of the cone) as

C(θ, E(θ), δ) := {ξ ∈ TθT
1M : "(ξ, E(θ)) < δ},

where "(ξ, E(θ)) is the angle between ξ and E(θ). Alternatively, one may define a cone

by any non-degenerate quadratic form Q on Tθ(T
1M) as

CQ
θ = {ξ ∈ Tθ(T

1M) : Q(ξ) ≥ 0}.
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In any of the above cases, a cone field is a continuous choice of cones Cθ, for each θ ∈
T 1M . It is possible to consider variations on the metric which are being considered here

but it can be proved that partial hyperbolicity does not depend on the considered metric.

Therefore, we are going to always assume the results for any previously fixed metric. So,

for example, when considering the angle between two tangent vectors ξ, ξ′ ∈ Tθ(T
1M) it

is the number Θ ∈ [0, π) such that

cosΘ =
ĝ(ξ, ξ′)

‖ξ‖ ‖ξ′‖ ,

where ĝ is the Sasaki metric. Then, a cone as defined above can be written as

C(θ, E(θ), δ) = C∗(θ, E(θ), c) = {ξ ∈ Tθ(T
1M) : cosΘ(ξ, E(θ)) ≥ c}

The next proposition gives us an equivalent definition for partially hyperbolicity by using

cones:

Proposition 1.3.2 (Cone criterion). The geodesic flow gt is partially hyperbolic if there

are δ > 0, T > 0, and two continuous families of cones C(θ, E1(θ), δ) and C(θ, E2(θ), δ)

such that:

(1) (Dgt)θ(C(θ, E1(θ), δ)) & C(θ, E1(gt(θ)), δ)

(2) (Dg−t)θ(C(θ, E2(θ), δ)) & C(θ, E2(g−t(θ)), δ)

(3) ‖(Dgt)θ(ξ1)‖ < Keλt

(4) ‖(Dg−t)θ(ξ2)‖ < Keλt

for all t > 0, ξ1 ∈ C(θ, E1(θ), δ), ξ2 ∈ C(θ, E2(θ), δ), and some constants K > 0, λ < 0.

We highlight that conditions (1 ) and (2 ) guarantee the existence of a dominated

splitting T (T 1M)/RG = E1 ⊕ Ec ⊕ E2 and conditions (3 ) and (4) imply exponential

contraction and expansion, then partial hyperbolicity is satisfied as state in Proposition

1.3.1.

Remark 1.3.1. Wrapping everything together, we see that in the case of symplectic

dynamics (see Lemma 1.3.1) it is enough to check the invariance of the cone families, i.e.

conditions (1 ) and (2 ). This is indeed the strategy used in Section 2.3.2. We also are

able to prove in Section 2.3.1 the presence of dominated splitting for the initial locally

symmetric Riemannian metrics.
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(Dgt)θ

E1(θ)

C(θ, E1(θ), δ)

C(θt, E1(θt), δ)

(Dgt)θC(θ, E1(θ), δ)

Figure 1.7: Cone criteria for partial hyperbolicity for θt = gt(θ).

In the following, we present a strategy to prove that a family of cones is invariant along

any orbit of the geodesic flow, and also that it is enough to check it for the boundary of the

cone. Let E be a vector bundle over T 1M which is a subbundle of TT 1M and πE : E →
T 1M its canonical projection. Let PrE : TT 1M → E be the orthogonal projection to E.

We define the real function ΘE : TT 1M → R as

ΘE(ξ) :=
g(PrE(ξ), PrE(ξ))

g(ξ, ξ)
. (1.3.1)

Lemma 1.3.2. [CP14, Lemma 2.10] For a δ > 0, and a fixed vector bundle E on T 1M ,

if
d

dt
ΘE(gt(θ))((Dgt)θ(ξ)) > 0, (1.3.2)

for ξ ∈ ∂C(θ, E(θ), δ) := {ξ ∈ TθT
1M : "(ξ, E(θ)) = δ}, then the family of cones

C(θ, E(θ), δ) is invariant for he geodesic flow.

1.4 Nonuniform hyperbolicity

In this section, we present another notion that generalizes the Anosov property called

Nonuniform hyperbolicity. The theory of Nonuniform Hyperbolic systems are also known

as Pesin’s Theory due the work of Yakov Pesin, who introduced and formalized this weaker

notion of hyperbolicity in [Pes74], [Pes76], [Pes77a] and [Pes77b]. In the last one, Pesin

proves stronger results about the chaotic behavior of the geodesic flow of surfaces (and

also some cases in higher dimensions). He proves that for a surface of genus bigger than

one and without focal points, the geodesic flow is conjugate to a Bernoulli flow, which

implies ergodicity in particular.
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Here we are not going to restrict ourselves to the case of geodesic flow, although

many of the techniques here were developed in order to understand this kind of dynamical

system, and also this class of systems presents many important examples, such as Example

1.2.11.

Remember that the notion of Anosov systems and, more generally, partially hyper-

bolic systems requires some exponential rate of expansion and contraction. In some sense,

this quantity can be "almost always" calculated as a notion called Lyapunov Exponents

(check definition below). In the nonuniform hyperbolic case, we will see that these quan-

tities are neither constant nor can be continuously bounded away from 0 as in Anosov

systems. We also point out that for the general scenario of Nonuniform hyperbolicity, the

constant C in Definition 1.3.1 will be substituted by a measurable function,n and this is

one of the important differences of the generalization.

Once again, to make this dissertation as self-contained as possible, but still concise

we chose to present the definitions and results we are going to use and give the appropriate

references for the proofs. Among several nice references available on this topic, we indicate

the books by Yakov Pesin and Luis Barreira [BP02] and [BP07].

Let us start by defining a key concept to the study of Nonuniform hyperbolic systems

called Lyapunov Exponents. Indeed, Lyapunov Exponents are fundamental tools in the

study of dynamical systems as they quantify the exponential rates at which nearby tra-

jectories diverge or converge over time. Let us properly define this concept for the general

setting of a flow with no restriction whatsoever to geodesic flows: let ϕt : M → M be a

C1-flow

Definition 1.4.1. For each x ∈ M and v ∈ TxM we define the Lyapunov Exponent

associated to (x, v) as

χ(x, v) = lim sup
|t|→∞

1

|t| log ‖(Dϕt)xv‖ ,

when the above limit exists.

For each x ∈ M , it can be proved that χ(x, ·) attains finitely many distinct values on the

tangent space at x, so we denote them by

χ1(x) < · · · < χl(x)(x).

At any point x ∈ M , the Lyapunov Exponents define a filtration of the tangent space at
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x, i.e. a sequence of subspaces {Wi(x)}l(x)
i=0, defined by

Wi(x) = {v ∈ TxM : χ(x, v) ≤ χi(x)},

which satisfies {0} = W0(x) ª W1(x) ª · · · ª Wl(x)(x) = TxM . The multiplicity of each

Lyapunov Exponent is the number ni(x) = dim Wi+1(x) − dim Wi(x).

The first natural question that arises about Lyapunov Exponents is why or when the

limit in Definition 1.4.1 exists. This question is answered by one of the most fundamental

theorems in the theory of nonuniform hyperbolic systems, and it is a consequence of the

Multiplicative Ergodic Theorem by Valery Oseledets [Ose68]:

Theorem 1.4.2 (Oseledets’ Decomposition). Let ϕt : M → M be a C1-flow on a closed

Riemannian manifold M . There exists an invariant set R ⊂ M of full measure with

respect to any invariant Borel probability measure µ, such that for every x ∈ R:

(1) The tangent space TxM admits a splitting:

TxM =
l(x)⊕

i=1

Ei(x),

where Ei(x) are called the Oseledets subspaces and l(x) is the number of distinct

Lyapunov exponents at x.

(2) There exist real numbers χ1(x) < · · · < χl(x)(x) such that for any v ∈ Ei(x) \ {0}:

lim
|t|→∞

1

t
log ‖Dϕt(x)v‖ = χi(x).

(3) The subspaces Ei(x) are invariant under the derivative of the flow:

Dϕt(x)(Ei(x)) = Ei(ϕt(x)).

(4) For any disjoint subsets I, J ⊂ {1, . . . , l(x)}, let EI(x) =
⊕

i∈I Ei(x) and EJ(x) =
⊕

j∈J Ej(x). Then:

lim
|t|→∞

1

t
log"(Dϕt(x)EI(x), Dϕt(x)EJ(x)) = 0.

(5) The growth rate of the determinant of the derivative of the flow is given by:

lim
|t|→∞

1

t
log det(Dϕt(x)) =

l(x)∑

i=1

χi(x) dim Ei(x).
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(6) The functions χi(x) and dim Ei(x) are ϕt-invariant. In particular, if µ is ergodic,

then χi(x) and dim Ei(x) are µ-almost everywhere constant.

Definition 1.4.3. The set R is called the set of Regular Points.

We now outline essential results from Pesin’s Theory, focusing on their application

to flows, which is our main interest in this dissertation. All the presented results have

analogous for diffeomorphisms. We are not going to present the proofs here since they

are mostly technical and go beyond the purpose of this dissertation. For the complete

development of the theory, we refer to [BP02] and [BP07].

Definition 1.4.4. Let µ be an ergodic measure. If, there exists a µ-full measure set

R̃ ⊂ R such that for x ∈ R̃ we have: the subspace E0(x), generated by the vectors

with zero Lyapunov exponents, satisfies E0(x) = RX, where X is the vector field that

generates the flow ϕt. Then the flow is said to be nonuniformly hyperbolic on R̃, and µ

is called a hyperbolic measure on R̃.

For the points x ∈ R̃ notice that there exists k ∈ N such that χk(x) < 0 < χk+1(x)

and we can define

Es(x) =
⊕

χi(x)<0

Ei(x) and Eu(x) =
⊕

χi(x)>0

Ei(x).

We have the following results that summarize the properties of these spaces

Theorem 1.4.5. [BP02, Theorem 2.1.3] The following properties hold for x ∈ R̃:

(1) Es(x) and Eu(x) depend measurably on x ∈ R̃.

(2) We have the splitting TxM = Es(x) ⊕ RX ⊕ Eu(x).

(3) (Dϕt)xEs,u(x) = Es,u(ϕt(x)), for all t ∈ R.

There exists ε0 > 0 and Borel functions C(x, ε) > 0 and K(x, ε) > 0 such that for all

x ∈ R̃ and 0 < ε ≤ ε0

(1) For all v ∈ Es(x) and t > 0 it holds that

‖(Dϕt)xv‖ ≤ C(x, ε)e(χk+ε)t ‖v‖ .
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(2) For all v ∈ Eu(x) and t < 0 it holds that

‖(Dϕt)xv‖ ≤ C(x, ε)e(χk−ε)t ‖v‖ .

(3) The angle between the spaces Es(x) and Eu(x) is bounded from below by the function

K(x, ε).

(4) The functions C(x, ε) and K(x, ε) are not ϕt-invariant in general but they satisfy

C(ϕt(x), ε) ≤ C(x, ε)eε|t|

and

K(ϕt(x), ε) ≥ K(x, ε)e−ε|t|

From now on, let us denote R̃ by R, just to simplify our notation. We can provide

a more detailed description of the structure of a nonuniform hyperbolic set R of Regular

Points. Let ε > 0 and l > 0, we define the Pesin block (of level l) as the following set:

Ri,j
ε,l =

{
x ∈ R : C(x, ε) ≤ l, K(x, ε) ≥ 1

l
, dim Es(x) = i and dim Eu(x) = j

}
.

Sometime we will simply consider

Rl :=
{

x ∈ R : C(x, ε) ≤ l, K(x, ε) ≥ 1

l

}
.

This set has the following fundamental properties:

(1) TxM =
⊕

λ<0 Eλ(x) ⊕ Ec(x)
⊕

λ>0 Eλ, where Ec(x) = E0(x) ⊕ X(x).

(2) Ri,j
ε,l ⊂ Ri,j

ε,l+1;

(3) for any t ∈ R, ϕt(Ri,j
ε,l) ⊂ Ri,j

ε,l′ , where l′ = l exp(|t|ε);

(4) the subspaces Es(x) and Eu(x) depend continuously on x ∈ Ri,j
ε,l.

(5) There exists δ := δ(i, j, ε, l) > 0 such that for any x ∈ Ri,j
ε,l, W s(x) and W u(x)

contain open disks containing x of dimension i and j, respectively, and uniform

diameter δ. They are called, respectively, local stable and unstable manifolds of x

and are denoted, respectively, by W s
loc

(x) and W u
loc

(x).

Now we present the Stable Manifold Theorem of Pesin, a fundamental result in the

theory of nonuniformly hyperbolic dynamical systems, particularly in the context of flows.
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Theorem 1.4.6. [BP02, Stable manifold for flows] Let R be a nonuniformly hyperbolic

set for a smooth flow ϕt. Then, for every x ∈ R, there exist a local stable manifold W s
loc(x)

and a local unstable manifold W u
loc(x) such that:

(1) x ∈ W s
loc(x), TxW s

loc(x) = Es(x), and for any y ∈ W s
loc(x) and t > 0,

d(ϕt(x), ϕt(y)) ≤ T (x)λteεtd(x, y),

where T : R → (0, ∞) is a Borel function satisfying, for all s ∈ R,

T (ϕs(x)) ≤ T (x)e10ε|s|.

(2) x ∈ W u
loc(x), TxW u

loc(x) = Eu(x), and for any y ∈ W u
loc(x) and t < 0,

d(ϕt(x), ϕt(y)) ≤ T (x)λ−teε|t|d(x, y).

Definition 1.4.7. The manifolds W s,u
loc (x) are called the (un)stable Pesin’s manifolds.

For a regular point x ∈ M , denote its orbit by γ := {ϕt(x)}t∈R. So we can define its

global (un)stable manifold as

W s(x) =
⋃

t≥0

ϕ−t(W
s
loc(ϕt(x)), W u(x) =

⋃

t≥0

ϕt(W
s
loc(ϕ−t(x)).

We also define for every x ∈ R its global weakly stable manifolds and global weakly unstable

manifolds at x by

W ws(x) =
⋃

t∈R
W s(ϕt(x)), W wu(x) =

⋃

t∈R
W u(ϕt(x))

For a hyperbolic orbit γ = {ϕt(x)}t∈R, we denote also the global weakly stable and

unstable manifolds in x by W s(γ) and W u(γ), respectively.

We are now finally able to define the main object for our study in Chapter 3, the

Ergodic Homoclinic classes for flows: given a periodic hyperbolic orbit γ, we define the

stable and unstable homoclinic class of γ as follows:

Λs(γ) = {x ∈ M : x is a regular point and W s(x) ⋔ W u(γ) 6= ∅}, (1.4.1)

and

Λu(γ) = {x ∈ M : x is a regular point and W u(x) ⋔ W s(γ) 6= ∅}. (1.4.2)
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Definition 1.4.8. Here, the symbol "⋔" means the following: given two submanifolds of

M , say N1 and N2, then N1 ⋔ N2 6= ∅ if

(1) N1 ∩ N2 6= ∅.

(2) For every z ∈ N1 ∩ N2, one has TzN1 + TzN2 = TzM .

In this case, we say that N1 and N2 have a transverse intersection.

For the above definitions, we are not assuming that Sing(X) = ∅ nor that γ is not

a singular orbit; it could be that X|γ = 0. We also highlight that Λs(γ) is s-saturated,

Λu(γ) is u-saturated, i.e. for every x ∈ Λs,u(γ) we have W s,u(x) ⊂ Λs,u(γ). We also have

that both sets are ϕt-invariant. The Ergodic homoclinic class of γ is then defined as the

s, u-saturated and ϕt-invariant set:

Λ(γ) = Λs(γ) ∩ Λu(γ).

γ

W s(γ)

W u(γ)

z W s(z)

W u(z)

Figure 1.8: Illustration of the local dynamics around a point z ∈ Λ(γ).

A prior, there is no reason to believe that the above set is not empty. Indeed, it is

precisely the result obtained by Theorem C to state conditions that guarantee that Λ(γ)

is nonempty.

We now discuss the main property we are going to use to prove the results in Chapter

3 the Absolute Continuity of the stable and unstable partitions by W s and W u. Essentially,
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it says that we can transfer information from a lamination W u(x) to another W u(y) by

flowing through W s(x) without losing too much information from the measure theoretical

point of view. Below, we are going to make precise the expression "flowing through W s(x)"

as the holonomy maps. Absolute Continuity is the core property of the Hopf’s Argument.

Definition 1.4.9. A partition ξ of M is called a Measurable Partition if the quotient

space M/ξ can be generated by a countable collection of measurable sets.

When M is a Lebesgue space, the quotient space M/ξ obtained from a measurable par-

tition ξ is also a Lebesgue space [Roh52] (see also the chapter 15 of [Cou16]). Measure

partitions are important from the measure-theoretical point of view since they allow us

to decompose a measure into measures along the "pieces" of the partition:

Proposition 1.4.1. For any measurable partition ξ of a Lebesgue space (M, B, m), there

exists a canonical system of Conditional Measures mξ
x with the following properties:

(1) The conditional measures mξ
x are defined in ξ(x), the partition element containing

x.

(2) For any A ∈ B, the set A ∩ ξ(x) is measurable in ξ(x) for almost all ξ(x) ∈ M/ξ.

(3) The mapping x 7→ mξ
x(A ∩ ξ(x)) is measurable, and the measure m satisfies:

m(A) =
∫

M/ξ
mξ

x(A ∩ ξ(x)) dmT ,

where mT denotes the quotient measure in M/ξ.

This canonical system of conditional measures is unique (mod 0) for any measurable

partition. Conversely, if a canonical system of conditional measures exists for a partition,

the partition must be measurable.

Proof. See the Chapter 5 of [VO16]. ■

Definition 1.4.10. A measurable partition ξ is said to be subordinate to the unstable

partition W u if, for m-almost every x ∈ M , the following conditions hold:

(1) ξ(x) ⊂ W u(x)

(2) ξ(x) contains a neighborhood of x that is open in the topology of W u(x).
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Given a Riemannian metric g for M , it induces Riemannian measures on each W τ (x)

which we are going to denote by λτ
x, τ = s, u.

Definition 1.4.11. We say that a measure ν has absolutely continuous conditional mea-

sures with respect to the unstable (resp. stable) manifolds if for any measurable partition

P subordinated to W u (resp. W s) we have νP
x << λu

x (resp. λs
x) for ν-a.e. x.

We are now able to make sense to the previously used expression "transfer information

from a lamination W u(x) to another W u(y)" which is the notion of Holonomy Map: let

Ri,j
ε,l be a Pesin block. For each point x ∈ Ri,j

ε,l that admits a negative (resp. positive)

Lyapunov exponent, there exists the local Pesin stable (resp. unstable) manifold, denoted

by W s
loc

(x) (resp. W u
loc

(x)), with diameter at least δ > 0. For such x ∈ Ri,j
ε,l and given two

transversal disks D1 and D2 to W u
loc

(x) (resp. W s
loc

(x)) and close to each other, the stable

(resp. unstable) holonomy map hs,u : D′
1 ⊂ D1 → D2 is defined as:

hs,u(z) := W s,u(z) ∩ D2,

where

D′
1 := {z ∈ D1 ∩ Ri,j

ε,l : W s,u
loc (z) ⋔ D1,2 6= ∅}

Essentially, for a point on D1 we consider (when it exists) its stable (resp. unstable) Pesin

manifold and its intersection with D2. Analogously, we can define the weak-stable and

weak-unstable holonomy maps by switching W s,u
loc by W ws,wu

loc .

Theorem 1.4.12. [BP02, Theorem 4.3.1] The (weak) holonomy maps (hws,wu) hs,u are

measurable and absolutely continuous with respect to the Lesbegue measures induced on

D1 and D2, that is they send sets of zero Lesbegue measure into sets of zero Lesbegue

measure.

1.4.1 Sinai-Ruelle-Bowen measures

In this subsection, we will recall a particular class of measures called Sinai-Ruelle-

Bowen measures or only SRB measures. These are the measures treated in Theorems D,

E, F, and G. We do not intend to develop the whole theory about these measures since

we are going to use mostly their definition. For a broader treatment, we refer to [You02].

SRB measures are frequently introduced as "the invariant measures most compatible with
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x
W s

loc
(x)

z hs(z)

D1 D2

Figure 1.9: Representation of the stable holonomy map

volume when volume is not preserved" (see [You02]). The most important property for

us is going to be absolute continuity of conditional measures:

Definition 1.4.13. A measure ν is called an SRB (Sinai-Ruelle-Bowen) measure if it

has a positive Lyapunov Exponent at ν-almost every point x and absolutely continuous

conditional measures with respect to the unstable manifolds.

Although other equivalent definitions are possible, the above definition presents pre-

cisely the important property that allow us to perform a version of the Hopf Argument in

our context. Remember that our results deal with the relations between SRB measures

and homoclinic classes for flows, and no further directions are considered in this disserta-

tion. The techniques we use to obtain Theorem C are extremely similar to those for SRB

measure because of the absolute continuity property. Besides that, in some cases it is

easier to work with the equivalent definition after the work of Ledrappier-Young [LY85]:

absolute continuity with respect to the unstable manifolds is equivalent to Pesin’s formula,

i.e., it holds that

hν(ϕt) =
∫ ∑

λ(x)>0

λ(x)dν.

Recall that Theorem F refers to ergodic components of a metric. This notion is due

the classical result Ergodic decomposition theorem, which we state below for completeness

in the manifold setting. For the proof, we recommend the book of Marcelo Viana and
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Krerley Oliveira [VO16] Chapter 5. Remember that given a partition P of a probability

space (M, µ) into measurable sets, then there exists a canonical structure of probability

space (P , µ̂).

Theorem 1.4.14 (Ergodic decomposition). If M is a compact manifold, f : M → M a

measurable transformation and µ a probability measure. Then, there exist a measurable

set M0 with full measure, a partition P of M0 into measurable subsets and a collection of

probability measures in M , say {µP : P ∈ P}, such that the following hold:

(1) µP (P ) = 1, for µ̂ almost every P ∈ P.

(2) For any measurable subset E ⊂ M , the map P 7→ µP (E) is measurable.

(3) For µ̂almost every P ∈ P, µP is f -invariant and ergodic.

(4) For any measurable subset E ⊂ M , it holds:

µ(E) =
∫

P
µP (E)dµ̂(P ).

For the proof of Theorem F, we are going to use the following flow version of a result

by Katok in [Kat80] whose proof can be found in [LLL24]:

Theorem 1.4.15 ([Kat80, LLL24]). Let µ be a regular hyperbolic ergodic measure of a

C2 flow ϕt. Then there exists a hyperbolic periodic orbit γ such that supp(µ) ⊂ Λ(γ) and

µ is homoclinically related with γ. In particular, for µ-almost every point x, ϕt(W
u(x))

accumulates on W u(γ) as t goes to infinity.
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Chapter 2

Partially hyperbolic geodesic flows

This chapter encompasses the content of the preprint [dJPR24], which is a work in

collaboration with Luis Piñeyrúa (Udelar - Uruguay) and Sergio Romaña (Sun Yat-sen

Univ. - China), about constructions of partially hyperbolic geodesic flows. In particu-

lar, we discuss the use of conformal deformations of Riemannian metrics with Anosov

geodesic flow. As mentioned in the introduction, it is not known whether there exists a

Riemannian metric constructed by standard techniques that presents a non-Anosov par-

tially hyperbolic geodesic flow. As an illustration, we mention the following results by

Fernando Carneiro and Enrique Pujals [CP14], which is the paper that motivates our

work here:

Theorem 2.0.1. (Theorem 3.2 in [CP14]) Let (M1, g1) and (M2, g22) be two Riemannian

manifolds whose geodesic flows are Anosov. Then the geodesic flow of the Riemannian

manifold (M1 × M2, g1 + g2) is not Anosov.

Theorem 2.0.2. (Theorem 3.3 in [CP14]) Let (M1, g1) and (M2, g22) be two Riemannian

manifolds whose geodesic flows are Anosov. Then the geodesic flow of the Riemannian

manifold (M1 × M2, g1 + g2) is not partially hyperbolic.

Thus, we can state the following general questions:

Question 2.1. How can examples of partially hyperbolic geodesic flows that are not

Anosov be constructed?

Question 2.2. Which dynamic and ergodic properties can partially hyperbolic geodesic

flows satisfy?
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Since geodesic flows are, in particular, contact flows, we may also ask:

Question 2.3. How can examples of partially hyperbolic contact flows that are not Anosov

be constructed? Are there examples that are not geodesic flows? (see Section 2.5)

This dissertation aims to give some answers to the above questions, in particular,

Theorems A and B answer the first two questions.

From subsections 1.1 and 1.2, in particular Theorem 1.1.5, Proposition 1.2.3 and

Theorem 1.2.4 one realizes that if the geodesic flow is not of Anosov type, then some zero

or positive curvature must appear. Since the sectional curvature is a function of points

on the manifolds and 2-planes in its tangent bundle, it is highly non-trivial to control its

behavior by changing the metric itself. Furthermore, the curvature must be controlled

specially for planes generated by geodesics’ velocities and Jacobi Fields. Namely, to

obtain a partially hyperbolic geodesic flow the Riemannian metric must present, for each

geodesic γ, Jacobi Fields fields such that the planes {γ′, J} present "only mostly negative

curvature" so that ‖J(t)‖ is a function with exponential contraction or expansion. On the

other hand, if this is the only behavior we observe, then the geodesic flow may indeed be

Anosov. Thus, for some Jacobi fields directions, we must observe "only mostly nonnegative

curvature".

Our strategy is based on deformations of Riemannian metrics, which means we start

with a particular Riemannian metric with some nice properties (local symmetry), then

we modify it somehow in order to obtain a new Riemannian metric which is not close to

the initial one in some topology. The technique used to deform the metrics is a conformal

deformation, thus we can make good use of the several formulas presented in Subsection

1.1.2. This kind of technique was also used by Rafael Ruggiero in [Rug91a] to prove the

following interesting result

Theorem 2.0.3. (Theorem A in [Rug91a]) The C2-interior of the set of Riemannian

metrics with no conjugate points coincides with the set or Riemannian metrics for which

the geodesic flow is Anosov.

Besides the result by Ruggiero, there are still several open questions on the topology

of the set of Riemannian metrics with no conjugate points. For example, it is not known

if this set is convex or even path-connected. The metrics obtained by Theorem A are

not known to be inside this set or if it is true that partial hyperbolicity should imply no

conjugate points as the Anosov property. We also state the following question:
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g

g̃

Anosov

No conjugate points

Figure 2.1: The C2-interior of the metric with no conjugate points

Question 2.4. How are the metrics on the boundary of the set of metrics with no conju-

gate points? What dynamical and ergodic properties do they present?

The metrics obtained via Theorem B lie on the boundary of the set of metrics with

no conjugate points since all the sectional curvatures are non-positive and their geodesic

flows are not Anosov. Corollary B.1 lists several interesting properties for those metrics,

so it would be interesting to know which properties could be generalized for the general

setting. Ergodicity is not known in this context, for example.

Let us describe the steps of the construction:

(1) Start with a locally symmetric Riemannian metric g with spaces A and B as in

Subsection 1.1.3.

(2) Break the Anosov property with conformal deformations. This is done in Section

2.2.

(2.1) Consider a closed geodesic γ with γ′(0) = γ′(T ).

(2.2) Define a open tubular neighborhood U around γ with coordinates (t, x).

(2.3) Multiply the metric g by a conformal factor eh, with h supported on U .

(2.4) Find conditions on h so that g̃ = ehg admits a parallel Jacobi Field. Equiv-

alently, a geodesic with some direction with zero curvature along the whole

geodesic.



CHAPTER 2. PARTIALLY HYPERBOLIC GEODESIC FLOWS 76

(3) Control the effect on the curvature tensor so that there exist two families of invariant

cones. This is done in Section 2.3 by analyzing the angle variation for different

classes of geodesics.

(4) Use Theorem 1.3.1 to conclude.

This strategy works for Theorem A and B. However, to have more control over the be-

havior of the curvature endomorphism, we need to use a different deformation than a

conformal one. This allows us to show that the new metric is non-positively curved with

a single closed geodesic presenting some zero curvature. Thus, all the interesting ergodic

properties follow directly from the known results by Eberlein, Burns, Brin, Ballman, and

Knieper.

2.1 Setting up the deformation

We are going to perform a perturbation of the metric g in a tubular neighborhood of

a closed geodesic. Let γ be a closed geodesic with period T and γ′(0) = γ′(T ) just as in

[CP14]. For each x ∈ M and v ∈ TxM remember that we have defined

A(x, v) := {w ∈ TxM : K(v, w) = −1}

B(x, v) :=
{

w ∈ TxM : K(v, w) = −1

4

}

We consider an orthonormal frame field along γ, say {e0(t) := γ′(t), ..., en−1(t)}, such

that {e1(t), ..., er(t)} is a basis for A(γ(t), γ′(t)) and {er+1(t), ..., en−1(t)} is basis for

B(γ(t), γ′(t)). This can be done by choosing such a basis for Tγ(0)M and then considering

its parallel transport, since the metric is locally symmetric, the respective vectors are still

in the respective spaces A and B. Define the Fermi coordinates Ψ : [0, T ]×(−ε0, ε0)
n−1 →

M by

Ψ(t, x) = expγ(t)(x1e1(t) + ... + xn−1en−1(t)),

with ε0 less than the injective radius of the exponential map. In particular, for Fermi

coordinates we have that gij(t, 0) = δij and Γk
ij(t, 0) = 0. For each ε < ε0 we define the

following sets

• U := [0, T ] × (−ε0, ε0)
n−1.
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• U(ε) := [0, T ] × (−ε, ε)n−1.

• B(γ, ε) = Ψ(U(ε)).

The choice of ε small enough will be important to control the deformation of the metric

up to the first derivatives of its component functions.

We consider a conformal deformation of the initial metric given by g̃ = φg, with

φ = eh and h a function of class C2 supported in B(γ, ε) to be determined. We will

construct the function h to maintain γ as a geodesic for the new metric, and that g̃ is

C1-close to g and C2-far. It means that we will make a small perturbation on the norms

and Christoffel symbols of g, but a deformation on the curvature. Notice that if h is

C1-small, then g̃ is C1 close to g. Besides that, all pairs of orthogonal vectors for the

metric g are still orthogonal for the metric g̃. Furthermore, if we set h(t, 0) = 0, then

{e0(t), ...., en−1(t)} is still an orthonormal basis for Tγ(t)M considering the metric g̃.

γ

er(0)

er+1(0)

er(t)

er+1(t)B(γ, ε)

g̃ = ehg

g̃ = g

Figure 2.2: Tubular neighborhoods B(γ, ε) for ε small, where the metric is deformed.

The first property we need to obtain for the new metric is that γ is still a g̃-geodesic.

For any curve α we will denote by D̃t = ∇̃α′(·) and Dt = ∇α′(·) the covariant derivative

along α gave by the Levi-Civita connection of the metrics g̃ and g, respectively. By the

equation (1.1.7) we get for γ

D̃tγ
′ = Dtγ

′ + γ′(h)γ′ − ∇h|γ = g(∇h, γ′)γ′ − ∇h|γ

It is sufficient to have that γ is a critical set for h, i.e. ∇h|γ′ = 0. Furthermore, in this

case, by the same calculation every parallel vector field for the metric g along γ is still

parallel for the metric g̃, in particular for every k = 1, ..., n − 1 the vector field ek(t) is

parallel along γ for the metric g̃.
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2.2 For which h the Anosov Property is broken?

We are going to investigate which properties we need for the function h such that

the Anosov property is broken. We list some sufficient conditions to have a non-Anosov

geodesic flow. However, for a general function with those properties, it is not clear for us

whether the geodesic flow should be partially hyperbolic or present any other interesting

dynamical property. We can define explicitly an example of h for which our results hold.

We believe that techniques “from the PDE worl” should be useful for a different proof,

but this goes beyond our expertise.

The key phenomenon that guarantees the breaking of the Anosov property is es-

sentially the creation of a parallel 2-plane along γ and containing γ′. This is also a

manifestation of 0 sectional curvature. Remember that a parallel vector field X along a

geodesic γ is a Jacobi Field if, and only if K̃(X, γ′) ≡ 0. By Proposition 1.2.4, this is

precisely the situation we seek to break the Anosov property.

Remember from the previous section that if ∇h|γ = 0, then each ek(t) is still a parallel

vector field along γ, thus we must guarantee that some of them can be turned into Jacobi

Fields for the new metric. This is done by making K̃(ek(t), γ′(t)) to vanish. Let us

investigate the new curvature in Fermi coordinates. We are interested in K̃

(
∂

∂xk
, γ′

)

given by the equation (1.1.9). In coordinates, we have

∇h = gij ∂h

∂xj

∂

∂xi

and

∇X(∇h) = X

(
gij ∂h

∂xj

)
∂

∂xi
+ gij ∂h

∂xj
∇X

(
∂

∂xi

)

=

(
X(gij)

∂h

∂xj
+ gijX

(
∂h

∂xj

))
∂

∂xi
+ gij ∂h

∂xj
∇X

(
∂

∂xi

)

If Xk :=
∂

∂xk
, then

∇Xk
(∇h) =

(
Xk(gij)

∂h

∂xj
+ gijXk

(
∂h

∂xj

))
∂

∂xi
+ gij ∂h

∂xj
∇Xk

Xi

=

(
Xk(gij)

∂h

∂xj
+ gij ∂2h

∂xk∂xj

)
Xi + gij ∂h

∂xj
Γl

kiXl

=

(
Xk(gij)

∂h

∂xj
+ gij ∂2h

∂xk∂xj

)
Xi + glj ∂h

∂xj
Γi

klXi

=

(
Xk(gij)

∂h

∂xj
+ gij ∂2h

∂xk∂xj
+ glj ∂h

∂xj
Γi

kl

)
Xi
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Now, using Lemma 1.1.1 we get

g(∇Xk
∇h, Xk) =

(
Xk(gij)

∂h

∂xj
+ gij ∂2h

∂xk∂xj
+ glj ∂h

∂xj
Γi

kl

)
gik

= Xk(gij)gik
∂h

∂xj
+ gijgik

∂2h

∂xk∂xj
+ gljgik

∂h

∂xj
Γi

kl

= ∂k(gij)gik∂jh + ∂2
kkh + gljgik∂jhΓi

kl

= −gij∂kgik∂jh + ∂2
kkh + gljgik∂jhΓi

kl

= −gij(Γl
kiglk + Γl

kkgli)∂jh + ∂2
kkh + gljgik∂jhΓi

kl

= −gijgliΓ
l
kk∂jh + ∂2

kkh

= −δj
l Γl

kk∂jh + ∂2
kkh

= −Γj
kk∂jh + ∂2

kkh.

In particular, since the Christoffel symbols of g vanish along γ, we get

g(Dt∇h, γ′) = ∂2
00h − Γk

00∂kh = ∂2
00h(t, x).

Then the new sectional curvatures along γ are given by

φK̃(Xk, γ′) = K(Xk, γ′) − 1

2
∂2

kkh(t, 0) − 1

2
∂2

00h(t, 0).

If h does not depend on t, we get

(1) φK̃(Xk, γ′) = −1 − 1
2
∂2

kkh(0), for k = 1, ..., r.

(2) φK̃(Xk, γ′) = −1
4

− 1
2
∂2

kkh(0), for k = r + 1, ..., n − 1.

We summarize our discussion as the following proposition:

Proposition 2.2.1. In the context above, the geodesic flow g̃t is not Anosov for any

function h supported in B(γ, ε) satisfying the following properties

(1) h is of class at least C2.

(2) h does not depend on t.

(3) h(0) = 0

(4) ∇h|γ = 0.

(5) There exists s ∈ {r + 1, ..., n − 1} such that ∂2
ssh(0) = −1

2
.
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Proof. By properties (3 ) and (4 ), γ is a unit speed geodesic for g̃ and ek(t) is an unitary

parallel vector field along γ for g̃, for k = 1, ..., n−1. By property (2 ) and the computations

above, we get for k = r + 1, ..., n − 1

φK̃(Xk, γ′) = −1

4
− 1

2
∂2

kkh(0).

Thus, for k = s, we get that K̃(es(t), γ′(t)) ≡ 0. By Proposition 1.2.4, the geodesic flow

g̃t is not Anosov. ■

Concretely, we have

Dg̃t(es(0), 0) = (es(t), 0)

and so, for every t ∈ R,

‖Dg̃t(es(0), 0)‖ = ‖es(t)‖ = ‖es(0)‖ .

The last equality is since es(t) is parallel. It means that the derivative of the geodesic

flow g̃t acts as an isometry on the vector (es(t), 0).

We will now provide an example of such a function h. We are going to make some

choices for our construction to work, and also to find an example as close as we can to

the set of metrics with no conjugate points. For example, to avoid the creation of planes

with positive curvature along γ we are going to choose h such that the property (5) in

Proposition 2.2.1 is satisfied by a unique index s and such that ∂2
kkh(0) = 0 for all other

indices. This guarantees that there are no conjugate points along the central geodesic γ,

but we were not able to verify if some geodesics with conjugate points were created in the

process. The best we can expect is that all sectional curvatures are bounded from above

by a small constant depending on the size of the tubular neighborhood ε.

To construct the function h with the above properties, for each natural number n ≥ 2,

let sn be the following function sn : R → R

sn(x) =





1/8(x + 1)2n(x − 1)2n, x ∈ [−1, 1]

0, otherwise

Define also the functions rn(x) = x2sn(x). The family {rn}n is smooth in R \ {±1} and

is of class C2n in {±1}. It is easy to see that

• rn(0) = 0.
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• r′
n(0) = 0.

• r′′
n(0) = 1

4
.

It is also not difficult to see that |r′′
n(x)| < 1

4
if x 6= 0. Now, let fn : R → R be the function

fn(x) = x2sn

(
x
ε2

)
which is smooth in R \ {±ε2} and of class C2n in {±ε2}. The family

{fn}n satisfies the same properties as rn, we just changed the support of it to be [−ε2, ε2]

and we also have fn(x) ≤ ε4. The graphs of rn, r′
n, and r′′

n for n = 2 are shown below in

Figure 2.3.

(a) Graph of r2 (b) Graph of r
′
2 (c) Graph of r

′′
2

Figure 2.3: Behavior of r2

Finally, for a fixed s ∈ {r + 1, ..., n − 1} we define hk as the following product

hk(x0, x1, ..., xn−1) := φ
(

x1

ε

)
· · · (−2fk(xs)) · · · φ

(
xn−1

ε

)
,

where φ(x) are bump functions such that φ(0) = 1 and supported in [−1, 1]. For simplicity,

let us denote by Φ(x) = φ
(

x1

ε

)
· · · φ

(
xn−1

ε

)
the product of bump functions. Notice that

hk is smooth outside the region xs = ±ε2, where it is of class C2k. Constructing hk like

this, we get:

Lemma 2.2.1. hk satisfies the following properties

(1) hk(0) = 0.

(2) hk does not depend on t = x0.

(3) ∂jhk(0) = 0, for all j.

(4) ∂2
ijhk(0) = 0, if i 6= j or i = j 6= s.

(5) ∂2
sshk(0) = −1

2
.
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Proof. (1 ) and (2 ) are clear by definition. For (3 ), see that −2f ′
k(0) = 0 and φ′(0) = 0.

For (i, j) 6= (s, s), each derivative ∂2
ijhk(x) contains some term xs multiplying it, thus

∂2
ijhk(0) = 0. Finally, ∂2

sshk(0) = −2f ′′
k (0) = −2 ·2sn(0) = −4 · 1

8
= −1

2
, so we get (5 ). ■

Observe that hk is C1 close to zero, since

| − 2fk(x)| ≤ 2ε4

∣∣∣∣rk

(
x

ε2

)∣∣∣∣ ≤ 2

100
ε4 < ε4,

| − 2f ′
k(x)| = 2

∣∣∣∣2xrk

(
x

ε2

)
+ x2r′

k

(
x

ε2

)
1

ε2

∣∣∣∣

≤ 4ε2 1

100
+ ε2 4

100
< ε2

We also have (φ
(

x
ε

)
)′ ≤ 2

ε
and (φ

(
x
ε

)
)′′ ≤ M

ε2 . Once |φ(x)| ≤ 1, it follows that

Lemma 2.2.2. The following inequalities hold

(1) |hk(x)| ≤ ε4.

(2) |∂jhk| ≤ 2
ε
ε4 = 2ε3, if j 6= s.

(3) |∂shk| ≤ ε2.

(4) |∂2
ijhk| ≤ 2

ε
2
ε
ε4 = 4ε2, if i 6= j and non of them are equal to s.

(5) |∂2
sjhk| ≤ ε2 2

ε
= 2ε, if i 6= s.

(6) |∂2
iihk| ≤ M

ε2 ε4 = Mε2, if i 6= s.

(7) |∂2
sshk| ≤ 2|f ′′

k (xs)| ≤ 2
∣∣∣r′′

k

(
xs

ε2

)∣∣∣ ≤ 1
2
.

Now fix some k0 ≥ 2 and call h = hk0
. This will imply that we work with a function

of class C∞ outside xs = ±xs and of class C2k0 in {±xs}. Since our construction works

for any k0 ≥ 2, the resulting Riemannian metric can be made as regular as needed, but

not globally smooth.

2.3 The new geodesic flow is partially hyperbolic

We start this section by illustrating the behavior of the new flow. In the next Lemma,

we see that the orbit {g̃t(γ
′(0))} is not hyperbolic, but it is still partially hyperbolic. Our

construction allows us to verify precisely what the invariant splitting for the deformed

flow is. It will lead to the analysis of other trajectories g̃t.
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Lemma 2.3.1. The orbit {g̃t(γ
′(0))} is partially hyperbolic.

Proof. We will analyze the Jacobi equation for the new metric along γ. Define by J (γ)

the space of Jacobi fields orthogonal to γ′. Since {e1(t), ..., en−1(t)} is an orthonormal

parallel frame along γ we can write J ∈ J (γ) as J = J i(t)ei(t), then denoting D̃2
t J = J ′′

(the second covariant derivative) we get

J ′′ = (J i)′′ei = −J iR̃(ei, γ′)γ′.

Then, we get

g̃(J ′′, ej) = (J i)′′g̃ij = −J iK̃ij,

with K̃ij = g̃(R̃(ei, γ′)γ′, ej) =: R̃(ei, γ′, γ′, ej). From the computations above, we have

the following relation

R̃(ei, γ′, γ′, ej) = R(ei, γ′, γ′, ej) − 1

2
∂2

ijh.

We get

(1) R̃(ei, γ′, γ′, ej) = R(ei, γ′, γ′, ej), for i 6= j and i = j 6= s.

(2) R̃(es, γ′, γ′, es) = R(es, γ′, γ′, es) + 1
4

= 0.

Since the metric g is locally symmetric of nonconstant negative curvature, we can

apply the relation (1.1.11). Notice that, ei = (ei)A and (ei)B = 0 if i = 1, ..., r and if

i = r + 1, ..., n − 1, then ei = (ei)B and (ei)A = 0 . Hence if i 6= j

R(ei, γ′, γ′, ej) = λg(ei, ej) = 0,

where λ ∈
{

1
4
, 1
}

depending on i and j. For i = j ∈ {1, ..., r}

R̃(ei, γ′, γ′, ei) = R(ei, γ′, γ′, ei) = −1.

For i = j ∈ {r + 1, ..., n − 1} \ {s}

R̃(ei, γ′, γ′, ei) = R(ei, γ′, γ′, ei) = −1

4
.

We conclude that the matrix K̃ = (R̃(ei, γ′, γ′, ej))ij is

K̃ =



−Idr 0

0 In−r−1



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with In−r−1 the diagonal matrix with entries −1
4

but the entry (In−r−1)s∗s∗ = 0, with

s∗ = s − r. This implies that




(J i)′′ = J i, for i = 1, ..., r

(J i)′′ = 1
4
J i, for i = r + 1, ..., n − 1 and i 6= s

(Js)′′ = 0

it implies that the ODE solutions are




J i =
(

Ji(0)−(Ji)′(0)
2

)
e−t +

(
Ji(0)+(Ji)′(0)

2

)
et, for i = 1, ..., r

J i =
(

Ji(0)−2(Ji)′(0)
2

)
e− t

2 +
(

Ji(0)+2(Ji)′(0)
2

)
e

t
2 , for i = r + 1, ..., n − 1 and i 6= s

Js = (Js)′(0)t + Js(0)

From this, we can see that the splitting along γ′ is given by

Ess(γ′) = {(J, J ′) : J ∈ J (γ), J i(0) = −(J i)′(0), for i = 1, ..., r

and J i(0) = (J i)′(0) = 0 otherwise},

Euu(γ′) = {(J, J ′) : J ∈ J (γ), J i(0) = (J i)′(0), for i = 1, ..., r

and J i(0) = (J i)′(0) = 0 otherwise},

Es(γ′) = {(J, J ′) : J ∈ J (γ), J i(0) = −2(J i)′(0), for i = r + 1, ..., n − 1, i 6= s

and J i(0) = (J i)′(0) = 0 otherwise},

Eu(γ′) = {(J, J ′) : J ∈ J (γ), J i(0) = 2(J i)′(0), for i = r + 1, ..., n − 1, i 6= s

and J i(0) = (J i)′(0) = 0 otherwise},

Ec(γ) = span{(es(t), 0)}

This means that we have strong stable and unstable bundles Ess and Euu, weak stable

and weak unstable bundles Es and Eu with weaker but still exponential contraction and

expansion, and finally a center bundle Ec with no exponential contraction nor expansion.

Of course we also can consider Es(γ′) ⊕ Ec(γ′) ⊕ Eu(γ′) as a center bundle. ■

2.3.1 Cone invariance for the initial metric

In this section, we will analyze the behavior of other obits of the geodesic flow g̃t.

The strategy is similar to the one used by Carneiro and Pujals in [CP14]. For the sake



CHAPTER 2. PARTIALLY HYPERBOLIC GEODESIC FLOWS 85

of completeness and to build intuition, we first see that the contact structure for the

initial metric splits in four Dgt-invariant subbundles. From this analysis and Lemma

2.3.1, it will be made clear what the real effect of our deformation is in terms of the

dynamics. Remember that in Lemma 2.3.1 we have identified explicitly the strong stable

and unstable bundles. The key property for that was given by equation (1.1.11), which

works for the initial metric, and the relations found in Subsection 2.2. What we will see

is that the strong stable and unstable bundles for the initial metric coincide (or at least

they are arbitrarily close) to the candidates for strong stable and unstable bundles for g̃t.

Remember from Section 1.2 that the contact structure S(T 1M) → T 1M , given by

S(θ) = kerθ α, has naturally the following identification: S(θ) = (A(θ) ⊕ B(θ))2. As

mentioned before, the locally symmetric property implies that the spaces A(θ) and B(θ)

are parallel, i.e. if V0 ∈ A(θ) and V (t) is the vector field obtained by parallel transport

along a smooth curve γ, then V (t) ∈ A(γ(t), γ′(t)). Analogously for B(θ). (Proposition

1.24 in [Pat99])

Lemma 2.3.2. (Lemma 4.1 in [CP14]) The geodesic flow of the locally symmetric spaces

of non-constant negative curvature induces a hyperbolic splitting of the contact structure

defined on T 1M :

S(T 1M) = Ess ⊕ Es ⊕ Eu ⊕ Euu.

Proof. Define the invariant subbundles

P u
A(θ) = {(w, w) ∈ S(θ) : w ∈ A(θ)},

P u
B(θ) =

{(
w,

1

2
w
)

∈ S(θ) : w ∈ B(θ)
}

,

P s
A(θ) = {(w, −w) ∈ S(θ) : w ∈ A(θ)},

P s
B(θ) =

{(
w, −1

2
w
)

∈ S(θ) : w ∈ B(θ)
}

.

Proceeding as in Lemma 2.3.1 one can conclude that

Euu(θ) = P u
A(θ), Ess(θ) = P s

A(θ),

Eu(θ) = P u
B(θ), Es(θ) = P s

B(θ).

■

Previous Lemma together with Lemma 2.3.1 give us the candidates to spaces E1 and

E2 in Proposition 1.3.2.
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We are now going to define the family of cones that are invariant under the geodesic

flow gt. In essence, the cones we are considering are cones around the strong stable and

strong unstable spaces given by Lemma 2.3.2. In the next section, we show that the

same family of cones is invariant under the geodesic flow of the deformed metric, which

means that our deformation is not changing the dynamics in these directions. Although

our deformation does not make a big change on the spaces with smaller curvature, the

computations to show the cone invariance are much more complicated, and it will be

useful to have some of the computations done for the initial metric.

Remark 2.3.1. Remember that if E ⊂ TM is subbundle, if we denote by PrE the

projection to the subspace E, then we can define the quantity ΘE(v) = g(PE(v),PE(v))
g(v,v)

which is equal to the square of the cosine of the angle between the vector v and the space

E.

The family of invariant cone fields we are going to consider is the following

C(v, P u,s
A (θ), c) =

{
(ξ, η) ∈ SθT

1M : Θu,s
A (ξ, η) =

ĝ(PrP u,s
A

(θ)(ξ, η), P rP u,s
A

(θ)(ξ, η))

ĝ((ξ, η), (ξ, η))
≥ c

}
,

here ĝ is the Sasaki metric and P u,s
A (θ) are the spaces given in Lemma 2.3.2. It is enough

to see that this amount is increasing to guarantee the invariance. For the geodesic flow

gt we want to compute
d

dt
Θ

u,s
A ((Dgt)θ(ξ, η)).

By Proposition 1.2.3, it holds that

(Dgt)θ(ξ, η) = (J(t), J ′(t)),

where J is the Jacobi Field along the geodesic γ := π(gt(θ)) with initial conditions J(0) =

ξ and J ′(0) = η. For simplicity of notation, let us denote J(t) = ξ and J ′(t) = η, so they

are related by the equations (see also Proposition 1.2.3)




ξ′ = η,

η′ = −R(ξ, γ′)γ′.

Hence, we can write

Θ
u,s
A (ξ, η) =

g(ξA ± ηA, ξA ± ηA)

g(ξ, ξ) + g(η, η)
.

We calculate only
d

dt
Θ

u
A(ξ, η), because for Θs

A(ξ, η) it is analogous. The next Lemma is also

proved in Section 4.1.1 of [CP14]. We present the proof here because the computations

will be used in the next sections.
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Lemma 2.3.3. With the notation above,

d

dt
Θ

u
A(ξ, η) > 0.

Proof. The straightforward computation of the derivative gives us the following equality

d

dt
Θ

u
A(ξ, η) =

2g((ξA)′ + (ηA)′, ξA + ηA)(g(ξ, ξ) + g(η, η))

(g(ξ, ξ) + g(η, η))2

− 2
(g(ξ′, ξ) + g(η′, η))g(ξA + ηA, ξA + ηA)

(g(ξ, ξ) + g(η, η))2

A priori (ξA)′ = ξA′ + ξ′
A, but ξA′ = 0 since A is parallel. Then we write

d

dt
Θ

u
A(ξ, η) =2

g(ξ′
A + η′

A, ξA + ηA)

g(ξ, ξ) + g(η, η)

− 2
(g(ξ′, ξ) + g(η′, η))g(ξA + ηA, ξA + ηA)

(g(ξ, ξ) + g(η, η))2

Because ξ and η satisfies the following equations (remember that ξ is a Jacobi field)





ξ′ = η

ξ′
A = PrA(ξ′) = PrA(η) = ηA

η′ = −R(ξ, γ′)γ′

η′
A = PrA(η′) = PrA(−R(ξ, γ′)γ′) = −(R(ξ, γ′)γ′)A

then

d

dt
Θ

u
A(ξ, η) =2

g(ηA − (R(ξ, γ′)γ′)A, ξA + ηA)

g(ξ, ξ) + g(η, η)

− 2
g(ξA + ηA, ξA + ηA)

(g(ξ, ξ) + g(η, η))2
(g(η, ξ) + g(−R(ξ, γ′)γ′, η)) (2.3.1)

Because of the properties R(X, v)v = −1
4
XB − XA and A orthogonal to B, we have that

(R(ξ, γ′)γ′)A = −ξA

and

g(−R(ξ, γ′)γ′, η) =
1

4
g(ηB, ξB) + g(ηA, ξA)

So we get

d

dt
Θ

u
A(ξ, η) =2

g(ηA + ξA, ξA + ηA)

g(ξ, ξ) + g(η, η)

− 2
g(ξA + ηA, ξA + ηA)

(g(ξ, ξ) + g(η, η))2

(
g(η, ξ) +

1

4
g(ηB, ξB) + g(ηA, ξA)

)

=2
g(ηA + ξA, ξA + ηA)

(g(ξ, ξ) + g(η, η))2

(
g(ξ, ξ) + g(η, η) − g(η, ξ) − 1

4
g(ηB, ξB) − g(ηA, ξA)

)

(2.3.2)
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Define M := 2g(ηA+ξA,ξA+ηA)
(g(ξ,ξ)+g(η,η))2 > 0. Then,

d

dt
Θ

u
A(ξ, η) =M

(
g(ξ, ξ) + g(η, η) − g(η, ξ) − 1

4
g(ηB, ξB) − g(ηA, ξA)

)

=M


g(ξA, ξA) + g(ξB, ξB) + g(ηA, ηA) + g(ηB, ηB)

− g(ξA, ηA) − g(ξB, ηB) − 1

4
g(ξB, ηB) − g(ξA, ηA)




=M


g(ξA, ξA) − 2g(ξA, ηA) + g(ηA, ηA) + g(ξB, ξB)

− 5

4
g(ξB, ηB) + g(ηB, ηB)




=M
(

g(ξA − ηA, ξA − ηA) + g
(

ξB − 5

8
ηB, ξB − 5

8
ηB

)
+

39

64
g(ηB, ηB)

)

The last expression is trivially positive. ■

2.3.2 Cone invariance for the deformed metric

To prove that the geodesic flow g̃t is partially hyperbolic, we follow the same idea as

in [CP14]. We prove that there is a family of invariant cones around the candidates for

strong stable and unstable bundles. The strategy is to prove the invariance of the cones

for geodesics that are parallel to the central geodesic γ and geodesics that are “s-almost

parallel” by computing the angle variation. If a geodesic α enters the deformed region,

we can write it in coordinates as α′ = (α0, · · · , αn−1). Then α will be called a parallel

geodesic if α1 = · · · αn−1 = 0 and α0 6= 0. The geodesic α with controlled s-component,

that is |αs| < θ, for some small value of θ, will be called a s-almost parallel geodesic. For

transversal geodesics, we prove that by shrinking the deformed region, we can guarantee

that these geodesics spend just a small time in the deformed region in comparison to the

time they spend outside, thus we can conclude the cone invariance for those geodesics

too. Here we just need to do the computations for parallel and almost parallel geodesics

with controlled components in the s-direction once their arguments for the transversal

geodesics do not depend on the type of deformation made, so it automatically works in

our case.

As before, we are interested in the angle variation between the orbit of the derivative

of the geodesic flow and a subbundle of the contact structure for the new metric. Again,

it is given by the angle of the corresponding Jacobi field and the subbundle. For this
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subsection, we will use the same notation for the Jacobi Fields of the new metric, but we

need to keep in mind that it is not a Jacobi Field for the initial metric.

Let us again fix some notation. Remember that the angle we are interested in is

given by Θ̃Au,s((Dg̃t)θ(ξ, η)). Write α(t) = π ◦ g̃t(θ) and (Dg̃t)θ(ξ, η) = (ξ(t), η(t)), where

ξ(t) and η(t) satisfy 



ξ′(t) = η(t),

η′(t) = −R̃(ξ(t), α′(t))α′(t).

Once again, we write

Θ̃
u,s
A (ξ, η) =

g̃(ξA ± ηA, ξA ± ηA)

g̃(ξ, ξ) + g̃(η, η)

Remark 2.3.2. We need to be careful with the differences in the metric phenomena. For

instance, we will deal with a geodesic α for the deformed metric. Then, from equation

(1.1.7) we get

0 =
D̃

dt
α′ =

D

dt
α′ + α′(h)α′ − 1

2
g(α′, α′)∇h.

So, if the geodesic α lies outside the deformed region, then it is a geodesic for the initial

metric, but inside this region, it may not be a geodesic for the initial metric. The same

remark can be made about Jacobi Fields. For simplicity and to differentiate the operators
D̃

dt
and

D

dt
, we will use the notation D̃t :=

D̃

dt
and Dt :=

D

dt
. With this notation





D̃tξ = η,

D̃tη = −R̃(ξ, α′)α′.

Of course, if the geodesic α does not cross the deformed region, then the angle

variation is the same as before.

The Figure 2.4 represents the region we are interested in, that is the region of the

unit tangent bundle over the deformed region, say T 1M |B(γ,ε). In the figure, γ is the

central geodesic, and the small strip around it represents B(γ, ε), where we are deforming

the metric. The green small block represents the region of T 1M |B(γ,ε), where the vectors

have small components in the s-direction. For example, α represents a geodesic inside

B(γ, ε) which is s-transversal to the deformed region. Notice that on the fiber π−1(γ(0)),

we have that α′(0) is a point outside the green region. On the other side, β represents

a geodesic s-almost parallel to γ, then β′(0) lies inside the green region. Our argument

is basically proving that for geodesics with velocity vectors inside the green region, the
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γ

B(γ, ε)

θs < θ

α
β

β′(0)

α′(0)

π−1(γ(0))

π−1(B(γ, ε))

Figure 2.4: Region of interest in T 1M over the deformed region.

angle variation can be approximated by an expression close to that obtained in Lemma

2.3.3 for the initial metric plus a controlled term, thus invariance of the cone fields holds

for the new metric in this case. We proceed to observe that if a geodesic has velocity

outside the green region, then it must cross the region B(γ, ε) with time comparable to

ε and it does not enter again the deformed region for a while due to negative curvature

outside. Thus, the new cone fields inherit the contraction from the initial metric.
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2.3.2.1 Cone invariance for parallel geodesics

First, we will evaluate the variation of the angle for geodesics that point in the same

direction as the central geodesic, i.e. α′ = (α0, 0, . . . , 0). In general, we can write

d

dt
Θ̃

u
A(ξ, η) =2

g̃((ξA)′ + (ηA)′, ξA + ηA)

g̃(ξ, ξ) + g̃(η, η)

− 2
(g̃(ξ′, ξ) + g̃(η′, η))g̃(ξA + ηA, ξA + ηA)

(g̃(ξ, ξ) + g̃(η, η))2

=2
g̃(ξA′ + ξ′

A + ηA′ + η′
A, ξA + ηA)

g̃(ξ, ξ) + g̃(η, η)

− 2
(g̃(ξ′, ξ) + g̃(η′, η))g̃(ξA + ηA, ξA + ηA)

(g̃(ξ, ξ) + g̃(η, η))2

=2
g̃(ξ′

A + η′
A, ξA + ηA)

g̃(ξ, ξ) + g̃(η, η)
+ 2

g̃(ξA′ + ηA′ , ξA + ηA)

g̃(ξ, ξ) + g̃(η, η)

− 2
(g̃(ξ′, ξ) + g̃(η′, η))g̃(ξA + ηA, ξA + ηA)

(g̃(ξ, ξ) + g̃(η, η))2

Write N := g̃(ξ, ξ) + g̃(η, η) to make our notation simpler.

d

dt
Θ̃

u
A(ξ, η) =2

g̃(ξ′
A + η′

A, ξA + ηA)

N
+ 2

g̃(ξA′ + ηA′ , ξA + ηA)

N

− 2
(g̃(ξ′, ξ) + g̃(η′, η))g̃(ξA + ηA, ξA + ηA)

N2

=2
g̃(ηA − (R̃(ξ, α′)α′)A, ξA + ηA)

N
+ 2

g̃(ξA′ + ηA′ , ξA + ηA)

N

− 2
(g̃(η, ξ) + g̃(−R̃(ξ, α′)α′, η))g̃(ξA + ηA, ξA + ηA)

N2

The strategy to show that this quantity is positive is to approximate it by (2.3.1) plus

terms that can be made small or do not change its sign. Since h does not depend on x0,

we have that α′(h) = 0. We first deal with the term g̃(ηA − (R̃(ξ, α′)α′)A, ξA + ηA): from

the equation (1.1.8) and by the definition of the space A we get the following:

−(R̃(ξ, α′)α′)A = − (R(ξ, α′)α′)A +
1

2
Hess(h)(α′, α′)ξA

+
1

2
‖α′‖

2
(∇ξ∇h)A +

1

4
‖α′‖

2
‖∇h‖2 ξA − (ξh) ‖α′‖

2
(∇h)A

Notice that by the estimates in Lemma 2.2.2

• There exists C1 > 0 such that |Hess(h)(α′, α′)| ≤ C1ε
2.
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• There exists C2 > 0 such that 1
4

‖α′‖ ‖∇h‖2 ≤ C2ε
2.

• There exists C3 > 0 such that |(ξh) ‖α′‖2 ‖(∇h)A‖ ≤ C3 ‖ξ‖ ε2.

It implies that there exists C > 0 such that we can write

−(R̃(ξ, α′)α′)A = −(R(ξ, α′)α′)A +
1

2
‖α′‖

2
(∇ξ∇h)A + vA + wA, (2.3.3)

with vA, wA ∈ A such that ‖vA‖ ≤ Cε2 and ‖wA‖ ≤ C ‖ξ‖ ε2. We claim that we can

also control the norm of (∇ξ∇h)A. First, remember that since A is parallel to the initial

metric, we can write

(∇ξ∇h)A = ∇ξ(∇h)A.

Now,

∇ξ(∇h)A = ∇ξ

(
∂ih

(
∂

∂xi

)

A

)
= ξ(∂ih)

(
∂

∂xi

)

A

+ ∂ih∇ξ

(
∂

∂xi

)

A

.

Because the Christoffel symbols vanish at x = 0, there exists a constant D1 > 0 such

that the second term has norm less than or equal to D1 ‖ξ‖ ε2. For the first term also by

Lemma 2.2.2 we get that there exists D2 > 0 such that for all i 6= s
∥∥∥∥∥ξ(∂ih)

(
∂

∂xi

)

A

∥∥∥∥∥ ≤ D2 ‖ξ‖ ε.

For i = s
∥∥∥∥∥ξ(∂sh)

(
∂

∂xs

)

A

∥∥∥∥∥ =

∥∥∥∥∥∥

∑

j

ξj∂
2
jsh

(
∂

∂xs

)

A

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

∑

j 6=s

ξj∂
2
jsh

(
∂

∂xs

)

A

∥∥∥∥∥∥
+

∥∥∥∥∥ξs∂
2
ssh

(
∂

∂xs

)

A

∥∥∥∥∥ .

(2.3.4)

Then, there exists D3 > 0 such that
∥∥∥∥∥∥

∑

j 6=s

ξj∂
2
jsh

(
∂

∂xs

)

A

∥∥∥∥∥∥
≤ D3 ‖ξ‖ ε.

For the last term of (2.3.4) notice that

(
∂

∂xs

)

A(γ,γ′)

= 0, then, since α is parallel, by

continuity of the subbundle A, there exists D4 > 0 such that
∥∥∥∥∥ξs∂

2
ssh

(
∂

∂xs

)

A

∥∥∥∥∥ ≤ D4|ξs|ε.

We conclude that there exists D > 0 such that

‖(∇ξ∇h)A‖ ≤ D ‖ξ‖ ε.
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Back to equality (2.3.3), there exists a constant C̃ > 0 such that

−(R̃(ξ, α′)α′)A = −(R(ξ, α′)α′)A + vA + wA, (2.3.5)

with vA, wA ∈ A such that ‖vA‖ ≤ C̃ε2 and ‖wA‖ ≤ C̃ ‖ξ‖ ε. Finally, using the equality

(R(ξ, α′)α′)A = −ξA, we can write

g̃(ηA − (R̃(ξ, α′)α′)A, ξA + ηA) = g̃(ξA + ηA, ξA + ηA) + g̃(vA, ξA + ηA) + g̃(wA, ξA + ηA).

We have shown that 2 g̃(ηA−(R̃(ξ,α′)α′)A,ξA+ηA)
N

can be made arbitrarily close to 2 g̃(ξA+ηA,ξA+ηA)
N

,

which is similar to the first term that appears in (2.3.2). We now deal with g̃(−R̃(ξ, α′)α′, η):

from the relation (1.1.8) and the fact that η is orthogonal to α′ we get

g̃(−R̃(ξ, α′)α′, η) =g̃(−R(ξ, α′)α′, η) +
1

2
Hess(h)(α′, α′)g̃(ξ, η)

+
1

2
‖α′‖

2
Hess(h)(ξ, η) +

1

4
‖α′‖

2
‖∇h‖2 g̃(ξ, η)

+
1

4
(ξh) ‖α′‖

2
(ηh) (2.3.6)

Proceeding similarly as before and applying the estimates from Lemma 2.2.2, we have the

following:

• There exists C1 > 0 such that 1
2
|Hess(h)(α′, α′)| ≤ C1ε

2.

• There exists C2 > 0 such that 1
4

‖α′‖ ‖∇h‖2 ≤ C2ε
2.

• There exists C3 > 0 such that 1
4

‖α′‖2 |(ξh)(ηh)| ≤ C3 ‖ξ‖ ‖η‖ ε2.

We also can have some control on Hess(h)(ξ, η): there exists C4 such that

|Hess(h)(ξ, η) − ξsηs∂
2
ssh| ≤

∑

(i,j) 6=(s,s)

|ξiηj||∂2
ijh − Γk

ij∂kh| ≤ C4 ‖ξ‖ ‖η‖ ε.

Putting everything together, we guarantee that there exists C > 0 such that we can

rewrite equation (2.3.6) as

g̃(−R̃(ξ, α′)α′, η) = g̃(−R(ξ, α′)α′, η) −
1

2
‖α′‖

2
ξsηs∂

2
ssh + K1 + K2, (2.3.7)

with |K1| ≤ Cε2 and |K2| ≤ C ‖ξ‖ ‖η‖ ε. The last term we need to deal with is g̃(ξA′ +

ηA′ , ξA +ηA), but record that from our notation ξA′ = (D̃tPrA)η and D̃t is ε-close to Dt for

which we had DtPrA = 0 by the locally symmetric assumption. It implies that there exists



CHAPTER 2. PARTIALLY HYPERBOLIC GEODESIC FLOWS 94

E > 0 such that g̃(ξA′ + ηA′ , ξA + ηA) ≤ E ‖ξA + ηA‖ ε. All the above estimates imply, by

mimicking what we have done in equation (2.3.2) and using [CP14, Lemma 2.10], that

there exist constants K > 0 and K ′ > 0 such that we can write the angle variation as

d

dt
Θ̃

u
A(ξ, η) = 2

g̃(ηA + ξA, ξA + ηA)

(g̃(ξ, ξ) + g̃(η, η))2

(
g̃(ξ, ξ) + g̃(η, η) − g̃(η, ξ) −

1

4
g̃(ηB, ξB) − g̃(ηA, ξA)

−
1

2
‖α′‖

2
ξsηs∂

2
ssh
)

+ U1 + U2 + U3 + U4, (2.3.8)

with

• |U1| ≤ K ‖ξA+ηA‖
N

ε2 ≤ K ′ε2,

• |U2| ≤ K ‖ξA+ηA‖‖ξ‖
N

ε ≤ K ′ε,

• |U3| ≤ K ‖ξA+ηA‖2

N2 ε2 ≤ K ′ε2,

• |U4| ≤ K ‖ξA+ηA‖‖ξ‖‖η‖
N2 ε ≤ K ′ε.

Thus, it is sufficient to prove that the quantity inside the parentheses is positive and then

choose ε > 0 sufficiently small such that the expression (2.3.8) is positive. To see that,

notice that since α′ is a unit geodesic for the metric g̃, then ‖α′‖2 = g(α′, α′) = e−h does

not exceed e2ε4

. It follows from the construction of the function h that

−
1

2
‖α′‖

2
∂2

ssh ≤
e2ε4

4
≤

1

2
.

If ξsηs ≥ 0, then by the same computations for the initial metric, we can conclude that

the expression (2.3.8) is positive. If ξsηs < 0 then we must have

1

2
ξsηs ≤ −

1

2
‖α′‖

2
∂2

sshξsηs.

So, it is sufficient to show that the following function is positive

f(x) := g̃(ξ, ξ) + g̃(η, η) − g̃(η, ξ) −
1

4
g̃(ηB, ξB) − g̃(ηA, ξA) −

1

2
ξsηs.

Notice that f does not depend on ε, so we prove that f(0) > 0, and by shrinking the

deformed neighborhood if necessary, we guarantee that f(x) > 0.
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f(0) = g(ξ, ξ) + g(η, η) − g(η, ξ) −
1

4
g(ηB, ξB) − g(ηA, ξA) −

1

2
ξsηs

=
n−1∑

i=1

(ξ2
i + η2

i ) −
n−1∑

i=1

ξiηi −
1

4

n−1∑

i=r+1

ξiηi −
r∑

i=1

ξiηi −
1

2
ξsηs

=
r∑

i=1

(ξ2
i − 2ξiηi + η2

i ) +
n−1∑

i=r+1
i6=s

(
ξ2

i −
5

4
ξiηi + η2

i

)
+
(

ξ2
s −

7

4
ξsηs + η2

s

)

=
r∑

i=1

(ξi − ηi)
2 +

n−1∑

i=r+1
i6=s

(
ξi −

5

8
ηi

)2

+
39

64

n−1∑

i=r+1
i6=s

η2
i +

(
ξs −

7

8
ηs

)2

+
15

64
η2

s

> 0

We have proven the following proposition:

Proposition 2.3.1. There exists ε > 0 such that the family of cones C(v, P u,s
A (x, v), c) is

invariant along parallel geodesics that cross U(ε).

2.3.2.2 Cone invariance for s-almost parallel geodesics

Suppose that α′ = αi ∂

∂xi
is such that |αs| ≤ θ. We will prove that the cone family

is invariant along such geodesics if θ is small enough. The proof follows the same lines

as the proof for parallel geodesics, the difference here is that for some estimates we can

not assume that α′ has no components in other directions, but it is possible to obtain

essentially the same estimates for the first derivatives of h in the α′ direction and θ small

will control the Hessian of h applied to α′. Indeed, for a s-almost parallel geodesic, the

same analysis holds but for terms that are controlled by θ: by equation (1.1.8) we can see

that

−(R̃(ξ, α′)α′)A = −(R(ξ, α′)α′)A + vA + wA −
1

4
(α′(h))2ξA +

1

4
(ξh)(α′(h))(∇h)A

−
1

2
Hess(h)(α′, α′)(h)ξA,

With vA and wA as before. However, there exists C1 > 0 and C2 > 0 such that

∥∥∥∥−
1

4
(α′(h))2ξA −

1

4
(ξh)(α′(h))(∇h)A

∥∥∥∥ ≤ C1 ‖ξ‖ ε2

and

|Hess(h)(α′, α′)| ≤ C1 ‖α′‖
2

ε + C2θ
2.
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So, without losing generality, there exists a constant C > 0 such that we still can write

the relation (2.3.5) for s-almost parallel geodesics plus a term that is controlled by θ, i.e.

−(R̃(ξ, α′)α′)A = −(R(ξ, α′)α′)A + vA + wA + uA, (2.3.9)

where ‖uA‖ ≤ C ‖ξ‖ θ2. Analogously, there exists a constant D > 0 such that we can

rewrite the equation (2.3.7) for s-almost parallel geodesics as follows:

g̃(−R̃(ξ, α′)α′, η) =g̃(−R(ξ, α′)α′, η) −
1

2
‖α′‖

2
ξsηs∂

2
ssh + K1 + K2 + K3

−
1

4
(α′(h))2g̃(ξ, η) +

1

4
(ξh)(α′(h))(ηh).

Again, the extra terms satisfy the same properties as K1 and K2 and |K3| ≤ D ‖ξ‖ ‖η‖ θ2.

Then we can write, without losing generality, the equation (2.3.8) for s-almost parallel

geodesics plus a term controlled by θ2. Since we already proved that this expression is

positive, next Proposition follows:

Proposition 2.3.2. There exist numbers ε > 0 and θ > 0 such that the family of cones

C(v, P u,s
A (x, v), c) is invariant along any geodesic α with |αs| < θ that crosses U(ε).

Notice that the above proposition works for any ε∗ ≤ ε and θ∗ ≤ θ.

2.3.2.3 Cone invariance for s-transversal geodesics

Here we show how to control the time that a s-transversal geodesic spends inside the

deformed region.

Fix ε1 > 0 and θ1 > 0 given by Proposition 2.3.1 and Proposition 2.3.2. Since

Γk
ij(t, 0) = 0, then by relation (1.1.6) we get that Γ̃k

ij(t, 0) = 0 and also by the same

relation we can find a constant C > 0 such that |Γ̃k
ij(t, x)| ≤ Cε1. Then, denoting by G̃

the geodesic vector field for the metric g̃ we can find a constant D > 0 such that

∥∥∥G̃(v) − (v1, ..., vn, 0, ..., 0)
∥∥∥ ≤ Dε1.

Therefore, we have that any geodesic α′(0) = (v0, ..., vn−1) in U(ε1) is ε1-close to the

curve β(s) = (sv0, ..., svn−1). If |vs| > θ1, then for s ≥ 2ε1

θ1

the curve β(s) escapes the

neighborhood U(2ε1), so the geodesic α escapes the neighborhood U(ε1). Since θ1 is fixed,

let ε2 < ε1 such that we have 2ε2

θ1

< ε1.
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2.3.3 Proof of Theorem A

From Sections 2.3.1 2.3.2.1, 2.3.2.2, 2.3.2.3 the same arguments in [CP14] Section

5.3.6. imply the following proposition:

Proposition 2.3.3. There exists ε > 0 and b > 0 such that if h is supported in U(ε), the

family of cones C(v, P u,s
A (x, v), b) is invariant by the action of dg̃t.

For completeness we explain here the main idea. Let g̃t(v) be an orbit of the new

geodesic flow. If the geodesic π(g̃t(v)) never crosses the deformed region, then the compu-

tations for the initial metric shows that there is invariance of the cone field. Now, suppose

it crosses the region. Then it could be a parallel, s-almost parallel or s-transverse geodesic.

In the first two cases we have shown that once a geodesic points in the parallel or s-almost

parallel direction, then the family of cone fields is invariant. The last case to deal with

is the s-transverse one. In this case, the last section shows that the time a s-transverse

geodesic can spend in the deformed region is bounded from above by the size of the de-

formed region. The time a s-transversal geodesic spends outside is bounded from below

by a positive constant, therefore it must spend enough time outside the deformed region

to get invariance by the cone field. Therefore, we can shrink once again the deformed

region if necessary to get invariance of the cone field. Hence, we obtain the following

Corollary:

Corollary 2.3.1. The geodesic flow g̃t : T 1M → T 1M admits a dominated splitting of

the form ST 1M = Euu ⊕ Ec ⊕ Ess.

To conclude the proof of Theorem A, see that we have proved in Corollary 2.3.1 that

the geodesic flow Dg̃t : ST 1M → ST 1M is a symplectic flow with dominated splitting of

the form ST 1M = Es ⊕ Ec ⊕ Eu. Now Lemma 1.3.1 implies that the vectors in Eu and

Es are uniformly expanding and contracting, respectively, thus g̃t is partially hyperbolic

by the cone criterion.

We finish this section with some remarks:

Remark 2.3.3. The key property of h to guarantee the invariance of the cone fields is

−1
2

≤ ∂2
ssh ≤ 1

2
and it attains its minimum at x = 0. No other property is needed,

hence with Proposition 2.2 we can summarize the properties on h so that g̃ has a partially

hyperbolic and non-Anosov geodesic flow:
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(1) h is supported on B(γ, ε), for sufficiently small ε > 0.

(2) h is of class at least C2.

(3) h does not depend on t.

(4) h(0) = 0

(5) ∇h|γ = 0.

(6) There exists s ∈ {r + 1, ..., n − 1} such that ∂2
ssh(0) = −1

2
.

(7) −1
2

≤ ∂2
ssh ≤ 1

2
and it attains its minimum at x = 0.

Remark 2.3.4. We do not know a priori if the new metric has conjugate points. The best

we can expect to answer in this direction is the following: since −1
2
∂2

ssh ≤ 1
4
, K(X, Y ) ≤

−1
4
, the Lemma 2.2.2 and the estimates on the Christoffel Symbols for the initial metric, it

follows that K̃(X, Y ) ≤ Mε. So, the resultant sectional curvatures could be positive, but

it is still controlled by ε and can be made as small as we want. If we have uniform control

over the amount of time a geodesic can spend in a region of possible positive curvature,

then we can conclude the non-existence of conjugate points by the arguments in [Gul75].

Remark 2.3.5. For our construction, we fixed the s-direction for which we perform the

largest curvature deformation. However, under small adaptations to the arguments, it is

possible to produce partially hyperbolic examples by deforming the curvature in several

directions. To do this, consider some subcollection of indices I ⊂ {r + 1, ..., n − 1} and

let h be given by

h(x) =
∑

s∈I

hs(x),

where hs is the function constructed in Section 2.2 for the s-direction. However, by doing

so, we certainly create planes of positive curvature. More precisely, in the Kähler setting

we have that A(x, v) = span{Jv} and for some s, l ∈ I we may get

K̃(es(t), el(t)) = K(es(t), el(t)) −
1

2
∂2

ssh
s(0) −

1

2
∂2

llh
l(0) = −

1

4
+

1

4
+

1

4
=

1

2
.

Although some positive curvature does not imply immediately the existence of conjugate

points, this was something we wanted to avoid in this work.
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2.4 Proof of Theorem B

The proof of Theorem B is similar to Theorem A. We work in the same context and

with the same tubular neighborhood of a closed geodesic. The difference lies in the dif-

ferent deformations we make to have better control of the resulting sectional curvatures.

Here we present only the estimates on the curvature once the proof of partial hyperbolic-

ity is the same as presented in the previous section, since the curvature tensor estimates

needed still hold. The deformation goes as follows: let gij(t, x) and gij(t, x) be the compo-

nents of the initial locally symmetric metric and its inverse in Fermi coordinates defined

in the previous section. Considering h as the same function as before, the new metric g̃

is given by

g̃00(t, x) = ehg00(t, x)

g̃ij(t, x) = gij(t, x), (i, j) 6= (0, 0).

The new deformation is almost a conformal deformation of the initial metric, however,

we only multiply by a conformal factor the components of the metric in the geodesic

direction. By doing so, we prevent not only the curvature from becoming positive but

also we do not create other planes with zero curvature as before (remember that the

planes {es(t), ei(t)}, with i = r + 1, ..., n − 1 also have zero curvature). So, suppose some

sectional curvature is slightly growing when we move apart from γ, then we can prevent

it from becoming non-negative by pushing it to be negative along γ.

For this deformation we have g̃ij = gij for (i, j) 6= (0, 0) and g̃00 = e−hg00. Remember

that from the formula given by Lemma 1.1.3, the deformation we made is not changing

many of the components Rijkl, and it has just a small effect on a few of them, as we are

going to see.

Differently from a "complete" conformal deformation, the relation between some geo-

metric quantities is less clear. For instance, we do not have an explicitly formula relating

the covariant derivatives of the two metrics, however we are still able to show that γ is

still a geodesic by calculating the new Christoffel symbols (indeed any unitary parallel

vector field along γ is still unitary parallel with respect to the new metric).

Remark 2.4.1. The following identities for the derivatives of the new metric will be

useful in our calculations:

(1) ∂i(g̃00) = ∂ihg̃00 + eh∂ig00.
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(2) ∂2
ij(g̃00) = ∂2

ijhg̃00 + ∂ih∂jhg̃00 + eh∂ih∂jg00 + eh∂jh∂ig00 + eh∂2
ijg00

We will first evaluate the Christoffel Symbols of the new metric. A straightforward

computation proves:

Lemma 2.4.1. The Christoffel symbols for g̃ satisfy the following relations in B(γ, ε):

(1) i, j 6= 0

(1.1) k = 0

Γ̃0
ij =

g̃l0

2
(∂ig̃jl + ∂j g̃il − ∂lg̃ij)

=
∑

l 6=0

g̃l0

2
(∂ig̃jl + ∂j g̃il − ∂lg̃ij) +

g̃00

2
(∂ig̃j0 + ∂j g̃i0 − ∂0g̃ij)

=
∑

l 6=0

gl0

2
(∂igjl + ∂jgil − ∂lgij) +

e−hg00

2
(∂igj0 + ∂jgi0 − ∂0gij).

(1.2) k 6= 0

Γ̃k
ij = Γk

ij.

(2) i = 0, j 6= 0

(2.1) k = 0

Γ̃0
0j =

∑

l 6=0

g0l

2
(∂0gjl +∂jg0l −∂lg0j)+e−h g00

2
(∂0gj0 +eh∂jg00 −∂0g0j)+

g00

2
g00∂jh.

(2.2) k 6= 0

Γ̃k
0j =

∑

l 6=0

gkl

2
(∂0gjl + ∂jg0l − ∂lg0j) +

gk0

2
(∂0gj0 + eh∂jg00 − ∂0g0j) +

gk0

2
g00e

h∂jh.

(3) i = j = 0

(3.1) k = 0

Γ̃0
00 =

∑

l 6=0

(
g0l

2
(∂0g0l + ∂0g0l − eh∂lg00) − eh g0l

2
g00∂lh

)
+

g00

2
∂0g00.

(3.2) k 6= 0

Γ̃k
00 =

∑

l 6=0

(
gkl

2
(∂0g0l + ∂0g0l − eh∂lg00) − eh gkl

2
g00∂lh

)
+

gk0

2
∂0g00.
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The properties of h and the computations above prove that Γ̃k
ij(t, 0) = Γk

ij(t, 0) = 0,

so γ is still a geodesic for the metric g̃. Furthermore, we also have by the properties of h

that the contribution of the new Christoffel symbols to the curvature R̃s00s that appears

in the equation (2.4.1) below is close to the contribution of the initial Christoffel symbols

and with the same sign inside the deformed region. These terms are slightly smaller and

grow slightly slower. To see this, consider for instance the functions f̃nm(x) = Γ̃m
0sΓ̃

n
0s

and fnm(x) = Γm
0sΓ

n
0s. A straightforward computation shows that at x = 0 we get that

f̃nm and fnm are equal up to the second derivative. Indeed we have Γ̃m
0sΓ̃

n
0s ≤ Γm

0sΓ
n
0s by

computing higher order derivatives of the same functions for some indices (m, n), using

the properties of h and shrinking the deformed region if necessary. By doing the same

kind of comparison with the terms Γ̃m
00Γ̃

n
ss we get that −Γ̃m

ssΓ̃
n
00 ≤ −Γm

ssΓ
n
00.

2.4.1 Curvature over the central geodesic

In this Subsection, we show how to deal with the new geometric quantities since we

have no "nice" formula relating them to the previous one. We are still able to relate them

with some more work, especially along γ. Let us start by showing that the new geodesic

flow is not Anosov. We use the same type of argument with Proposition 1.2.4. Remember

that from Lemma 1.1.3 we can write

R̃ijkr = R̃l
ijkg̃lr =

1

2
(∂2

jrg̃ik + ∂2
ikg̃jr − ∂2

irg̃jk − ∂2
jkg̃ir) + g̃mn(Γ̃m

kiΓ̃
n
jr − Γ̃m

riΓ̃
n
jk). (2.4.1)

In particular, for j = k and i = r we get

R̃ikki =
1

2
(∂2

kig̃ik + ∂2
ikg̃ki − ∂2

iig̃kk − ∂2
kkg̃ii) + g̃mn(Γ̃m

kiΓ̃
n
ki − Γ̃m

ii Γ̃n
kk).

For k = 0 at x = 0, we get by Remark 2.4.1

R̃i00i =
1

2
(∂2

0ig̃i0 + ∂2
i0g̃0i − ∂2

iig̃00 − ∂2
00g̃ii)

=
1

2
(∂2

0igi0 + ∂2
i0g0i − eh∂2

iig00 − ∂2
00gii)

−
1

2
∂2

iihehg00 −
1

2
(∂ih)2ehg00 − eh∂ih∂ig00

= Ri00i −
1

2
∂2

iih
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Then, for i = s we get R̃s00s(t, 0) = 0 and for i 6= s R̃i00i(t, 0) = Ri00i(t, 0) < 0. For

Y = Y iXi a vector field orthonormal to Xs at x = 0 such that Y 6= X0 we get

R̃(Xs, Y, Y, Xs) = Y iY jR̃sijs =
1

2

∑

(i,j) 6=(0,0)

Y iY j(∂2
isgsj + ∂2

sjgis − ∂2
ssgij − ∂2

ijgss)

+
1

2
Y 2

0 (∂2
0sgs0 + ∂2

s0g0s − ∂2
ssg̃00 − ∂2

00gss)

= R(Xs, Y, Y, Xs) −
1

2
∂2

sshY 2
0

≤ −
1

4
+

1

4
Y 2

0

< 0

The inequality above shows that every sectional curvature is negative over the central

geodesic, but the sectional curvature of the plane Π = span{γ′, es}, which is zero.

2.4.2 Curvature outside the central geodesic

Notice that outside the central geodesic, we can write

R̃s00s = R∗
s00s −

1

2
∂2

sshehg00 −
1

2
(∂sh)2ehg00 − eh∂sh∂sg00,

where

R∗
s00s =

1

2
(∂2

0sgs0 + ∂2
s0g0s − eh∂2

ssg00 − ∂2
00gss) + g̃mn(Γ̃m

0sΓ̃
n
0s − Γ̃m

ssΓ̃
n
00),

which is similar to the expression for Rs00s but for the terms −eh∂2
ssg00 and the small

perturbation of the Christoffel Symbols, which does not change the sign of the contribution

of this part as mentioned before. In Fermi coordinates we have that gs0 6= 0 and gss 6= 1

for x 6= 0, therefore we can write

K̃(Xs, X0) = K̃

(
Xs

gss

, Y

)

where Y is the orthonormal (to Xs) vector field we obtain by applying Gram-Schmidt

process for the metric g̃:

Y =

(
gss

ehg00gss − g2
s0

)
X0 −

(
gs0

ehg00gss − g2
s0

)
Xs = α̃X0 + β̃Xs.

Notice that since Y is a normal vector, we get α̃ < 1 (for x 6= 0). Besides that, since

h ≤ 0 an easy computation shows that α̃ ≥ α, where α is the component we would obtain
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by the Gram-Schmidt process for the metric g, namely α = gss(g00gss − g2
s0)

−1. Then, we

can write

K̃(Xs, X0) = K̃

(
Xs

gss

, Y

)
= R̃

(
Xs

gss

, Y, Y,
Xs

gss

)

=
α̃2

g2
ss

R̃(Xs, X0, X0, Xs) =
α̃2

g2
ss

R∗
s00s

+
α̃2

g2
ss

(
−

1

2
∂2

sshehg00 −
1

2
(∂sh)2ehg00 − eh∂sh∂sg00

)
.

By the observations above and since R∗
s00s ≤ Rs00s < 0, we get

α̃2

g2
ss

R∗
s00s ≤

α2

g2
ss

Rs00s = K(Xs, X0) ≤ −
1

4

On the other hand, one has

−
1

2
∂2

sshehg00 −
1

2
(∂sh)2ehg00 − eh∂sh∂sg00 ≤ −

1

2
∂2

ssh − eh∂sh∂sg00,

and for the above inequality, we used the Taylor expansion of g00 in Fermi coordinates

(check [MM63] and adjust the indices), in our case, is given by

g00 = 1 − 2
∑

k

Rk00k|γx2
k + O(x3),

so, for ε > 0 small enough we guarantee that ehg00 ≤ 1. This expansion also gives us that

∂sg00 = 1
2
xs + O(x2

s), thus the term of order 1 determines the sign of ∂sg00. Hence, we

need to study the sign of the function

g(x) := −
1

2
∂2

ssh − eh∂sh∂sg00 =
(
f ′′(xs) + xsf

′(xs)e
h
)

Φ(x)

In fact, it is enough to analyze the behavior of p(xs) = f ′′(xs)+xsf
′(xs), once the delicate

part is analyzing for xs around 0 where xsf
′(xs) > 0, so since eh ≤ 1 the worst scenario

is given by p. Notice that

(1) p(0) = 1
4
.

(2) p′(0) = 0.

(3) p′′(0) = −12
ε4 + 1

2
< 0.

We conclude that x = 0 is a point of maximum value for p, indeed, it is a global maximum

by checking other critical points. See its graph in Figure 2.5 below.
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Figure 2.5: Graph of the function p for ε = 1

We conclude that |g(x)| ≤ 1
4

and equality holds if, and only if, x = 0. Finally,
α̃2

g2
ss

|g(x)| < 1
4
. Then, K̃(Xs, X0) ≤ 0 with equality if, and only if, x = 0.

More generally, for any other orthonormal (to Xs) vector field Y not equal to X0 we write

for x 6= 0

K̃

(
Xs

gss

, Y

)
=

1

g2
ss

R̃(Xs, Y, Y, Xs)

=
1

g2
ss

R∗(Xs, Y, Y, Xs) + Y 2
0

(
−

1

2
∂2

sshehg00 −
1

2
(∂sh)2ehg00 − eh∂sh∂sg00

)

< K(Xs, Y ) +
Y 2

0

4

< 0

We have proved the following proposition:

Proposition 2.4.1. All sectional curvatures for g̃ are negative but the sectional curvature

K̃(γ′, es) ≡ 0.

From this proposition, we conclude that (M, g̃) has non-positive sectional curvatures and

just one plane with zero curvature along a single closed geodesic. We prove the following

corollaries that imply Corollary B.1:

Corollary 2.4.1. The metric g̃ has no conjugate points.

Proof. This is immediate from non-positive curvature. ■

Corollary 2.4.2. The geodesic flow g̃t is expansive.

Proof. If the geodesic flow was not expansive, then by the well-known Flat Strip Theorem

[EO73] there would exist flat strips on the universal cover of (M, g̃), which is impossible

since (M, g̃) has only one closed geodesic with zero curvature and negative curvature

elsewhere. ■
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Corollary 2.4.3. The dynamical system (S(T 1M), g̃t, L̃iou) is ergodic.

Proof. The set of vectors with a rank bigger than one has measure zero, so it follows from

the arguments in [BB82] and [Bur83] that the geodesic flow is a Bernoulli flow; thus, it is

ergodic and also mixing. ■

Corollary 2.4.4. The geodesic flow g̃t has a unique measure of maximal entropy.

Proof. By Theorem 7.2 of [CP14], we know that the metric g̃ is rank 1 (indeed, this is

immediate in our case). Now, since K̃ ≤ 0, then the main theorem from [Kni98] implies

that g̃t admits a unique measure of maximal entropy. ■

2.5 Further results and questions

Previously, we have mentioned that the Anosov property implies the non-existence of

conjugate points, and indeed by Theorem 2.0.3 the C2-interior of the set of metrics with

no conjugate points coincides with the set of metrics with Anosov geodesic flows. One

may naturally ask:

Question 2.5. What about partially hyperbolic geodesic flows? Does partial hyperbolicity

imply the nonexistence of conjugate points?

We were unable to check if the examples given by Theorem A present any geodesic

with conjugate points, even though our construction "tries to avoid" such phenomena. On

the other side, examples given by Theorem B do not present conjugate points and are

not Anosov, thus they must lie on the topological boundary of the set of metrics with no

conjugate points. As a consequence of our construction,n we prove the following:

Theorem H. There exists a C2-open set U of Riemannian metrics such that if g ∈ U ,

then gt is partially hyperbolic, non-Anosov, and g has conjugate points.

Proof. Since partial hyperbolicity is a C1-open property, there exists a C2-open set U1 of

Riemannian metrics containing the metric g̃ obtained via Theorem B. Since g̃ lies on the

boundary of the set of Riemannian metrics with no conjugate points, we can find U ⊂ U1

with the desired property. ■
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In [CP14], the authors have a different approach to produce an example on the

boundary of the metrics with no conjugate points. Their strategy is to consider a straight

line of Riemannian metrics from the initial metric g to a metric with partially hyperbolic

geodesic flow non-Anosov with conjugate points, then the line of metrics must cross the

boundary, producing the existence of such an example. The issue with this argument is

due to the fact that it is unknown if the set of metrics with partially hyperbolic geodesic

flow is convex or even path-connected. Hence, our approach overcomes this difficulty.

Question 2.6. Do the metrics obtained via Theorem A have conjugate points?

If they do not, then their geodesic flows are topologically transitive, i.e., there exists

a dense orbit. It follows from [Ebe72] once the manifold admits a background metric for

which its geodesic flow is of Anosov type.

On the other side, Corollary B.1 states that g̃t are mixing and, in particular, they

are all topologically transitive. We can ask whether this property persists under a small

perturbation of the metric g̃. In other words:

Question 2.7. Is the geodesic flow g̃t robustly transitive inside the class of geodesic flows?

Although we do not have the necessary technology to approach this question yet,

we have made some advances by showing our examples present the so-called “SH-saddle”

property that can be helpful to approach this problem. SH is a short abbreviation to

“Some Hyperbolicity”. Essentially, it says that given a sufficiently large piece of unsta-

ble leaf, there is some point in it for which Dϕt presents some expansion in the center

direction. Let us properly define this property and prove that our examples satisfy it:

Let f be a partially hyperbolic diffeomorphism with a splitting of the form TM =

Ess ⊕ Ec ⊕ Euu and invariant foliations Wss and Wuu. We are going to denote by

k = dimEc. Then a d-center cone in x ∈ M is simply a cone C(x) in Ec(x) of dimension

d ≤ k. Recall that

Wτ
f (x, ε) := {y ∈ Wτ

f (x) : dWτ
f
(x, y) < ε}

is the ε-ball in Wτ
f of center x and radius ε for τ = ss, uu.

Definition 2.5.1. Given a partially hyperbolic diffeomorphism f , we say that the strong

unstable foliation Wuu has the SH-Saddle property of index d ≤ k if there are constants

L > 0, θ > 0, λ0 > 1 and C > 0 such that the following holds for every point x ∈ M :

there exists a point xu ∈ Wuu
f (x, L) such that:
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(1) There is a d-center cone field of opening θ along the forward orbit of xu which is

Df -invariant, i.e. there exist Cu
θ (f l(xu)) ⊂ Ec

f (f l(xu)) such that Df(Cu
θ (f l(xu))) ⊂

Cu
θ (f l+1(xu)) for every l ≥ 0.

(2)
∥∥∥Dfn

f l(xu)(v)
∥∥∥ ≥ Cλn

0 ‖v‖ for every v ∈ Cu
θ (f l(xu)) and every l, n ≥ 0.

Analogously, we define it for the stable foliation by considering f−1.

Definition 2.5.2. Given f a partially hyperbolic diffeomorphism, it has (d1, d2) SH-

Saddle property if the following conditions hold:

(1) Wss has the SH-Saddle property of index d1.

(2) Wuu has the SH-Saddle property of index d2.

Definition 2.5.3. Given a partially hyperbolic flow ϕt : M → M , we say that the strong

unstable foliation Wuu has SH-Saddle property of index d ≤ c if there exist T ∈ R

such that the induced partially hyperbolic diffeomorphism f := ϕT has strong unstable

foliation Wuu with SH-Saddle property of index d. Analogously, for the strong stable

foliation.

It is possible to prove that this property is open in the C1-topology (check [Piñ23]

and [PS06] for more information).

Before proceeding, let us fix some notation to simplify our development. Fix ε > 0

such that our construction works for a closed geodesic, and consider that we have done

the construction for ε
2
. Remember that we have defined the ε-tubular-neighborhood by

B(γ, ε). It means that the dynamics outside V ε
2

:= π−1
(
B
(
γ, ε

2

))
is hyperbolic. We will

use the notation Vε,θ for the subset of Vε of θ-parallel vectors. Remember that for the

initial geodesic flow gt, the splitting is of the form Ess ⊕ Ews ⊕RG(θ) ⊕ Ewu ⊕ Euu. Call

Es = Ess ⊕ Ews and Eu = Euu ⊕ Ewu and denote by Ws and Wu the stable and unstable

foliations tangent to these bundles, respectively.

Proposition 2.5.1. For every point θ ∈ T 1M , there exist points θu ∈ W̃uu
1 (θ) and

θs ∈ W̃ss
1 (θ) such that {g̃t(θ

u)}t≥0 and {g̃t(θ
s)}t≤0 never intersects Vε,θ.

Proof. For each θ ∈ T 1M we have two possibilities: either θ ∈ Vε or not. Suppose first

that θ ∈ V c
ε and denote by Wuu

β (θ) its local strong unstable manifold with β = supδ{δ ≥

0 : Wuu
δ (θ) ∩ Vε = ∅}. The set Vε is “ε-thin” in the direction transversal to the vertical
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fibers of π : T 1M → M , and the strong foliations are never tangent to the vertical fibers.

So, if β is bigger than 2ε and the orbit of θ enters the region Vε sometime in the future,

say g̃T (θ), then we always have a disk D inside Wuu(g̃T (θ)) ∩ g̃T (Wuu(θ)) of diameter

bigger or equal to ε outside Vε. The points in this disk can not enter the region for

some short time, because they are growing apart from g̃T (θ) exponentially fast, so they

spend enough time outside to grow the diameter of g̃t(D) up to 2ε. So we have found

a small disk D inside Wuu
β (θ) and outside Vε such that its orbit does not enter Vε until

it has a diameter bigger or equal to 2ε. By repeating the argument inductively we find

a sequence of compact disks · · · ⊂ Dn ⊂ Dn−1 ⊂ · · · ⊂ D0 = Wuu
β (θ) and an increasing

sequence of real numbers converging to infinity (tn)n such that ϕt(Dn) ∩ Vε = ∅ for all

t ≤ tn. We conclude that there exists θu ∈ ∩nDn which never enters the region Vε

for the future iterates. If β ≤ 2ε and the orbit of θ spend enough time outside Vε to

have βT = supδ{δ ≥ 0 : Wuu
δ (ϕT (θ)) ∩ Vε = ∅} ≥ 2ε we apply the previous argument.

Otherwise, the situation in which the orbit of θ enters the region in a shorter time happens

when the underlying geodesic of g̃t(θ) is a transversal one. In this case, it will stay in

the region for a very short time and then it will spend a longer time outside, which is

enough to make βT ≥ 2ε, so we repeat the argument again. The argument for the stable

foliations is analogous. ■

Corollary 2.5.1. g̃t satisfies the SH-property.

Proof. Given θ ∈ T 1M , then θu given by the previous Proposition has the desired property

since it is hyperbolic. ■

Now, let us turn our attention towards some possible generalizations of our study.

We have seen that geodesic flows are particular examples of a more general class called

Contact flows, that is, the flow generated by the Reeb Vector field of some contact form.

The results presented here raise several questions in this general setting:

Question 2.8. What kind of dynamical properties partially hyperbolic contact flows can

present?

Question 2.9. What kind of dynamical properties are general in this setting?

Question 2.10. What are other constructions of examples of partially hyperbolic contact

flows?
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From the best of our knowledge, the only known examples are given by our results

and by [CP14]. Indeed, in [CP14] the author prove the following result

Theorem 2.5.4. (Theorem 7.4 in [CP14]) If the geodesic flow is partially hyperbolic, then

the compact manifold M has even dimension.

Remember that if dim M = n, then dim T 1M = 2n−1. Since for surfaces dim T 1S =

3, then the previous Theorem implies that partially hyperbolic geodesic flows acting on

T 1M may exist only for dim T 1M ≥ 7. Therefore, the following question is open in the

general setting of contact flows:

Question 2.11. Is there any example of a contact partially hyperbolic flow acting on a

manifold of dimension 5?

We can give a partial answer to this question in the non-compact case via the product

of manifolds. To that end, let M = M1 ×M2 ×· · ·×Mk be a product manifold and denote

by πi : M → Mi the smooth projection. The following elementary result holds:

Lemma 2.5.1. If Mi is an orientable manifold for every i = 1, ..., k, with orientation form

ωi, then M is an orientable manifold with orientation form ω = π∗
1(ω1) ∧ · · · ∧ π∗

k(ωk),

where π∗
i denotes the pullback by πi.

The construction goes as follow: let S := S2 \ {N} denote the 2-sphere minus the

north pole in R3. It is known that S is orientable with orientation form in spherical

coordinates (θ, φ) given by

ωS = sin θdθ ∧ dφ.

Let (N, α) be a contact manifold with contact form α and suppose that its Reeb flow

is an Anosov flow with splitting TN = Es ⊕ RRα ⊕ Eu (e.g. let N be the unit tangent

bundle of a negatively curved Riemannian manifold with canonical contact form).

Consider the product manifold M = N × S, with the product Riemannian metric,

and define the 1-form in M by

β = π∗
1(α) + π∗

2(− cos θdφ).

Notice that d(− cos θdφ) = ωS .

Lemma 2.5.2. β is a contact form for M .
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Proof. Suppose dim N = 2n + 1, thus dim M = 2n + 3. Therefore we want to check that

β ∧ (dβ)n+1 6= 0. To see that, first notice that by the properties of pullback, we have

dβ = π∗
1(dα) + π∗

2(sin θdθ ∧ dφ) = π∗
1(dα) + π∗

2(ωS).

Since π∗
1(dα) and π∗

2(ωS) are 2-forms of M , then π∗
1(dα) ∧ π∗

2(ωS) = π∗
2(ωS) ∧ π∗

1(dα).

Moreover, dim N = 2n + 1 and dim S = 2 imply that (dα)n+1 = 0 and ω2
S = 0. We get

(dβ)n+1 =
n+1∑

k=0

(
n

k

)
π∗

1(dα)n+1−k ∧ π∗
2(ωS)k

= π∗
1(dα)n+1 + (n + 1)π∗

1(dα)n ∧ π∗
2(ωS)

= (n + 1)π∗
1(dα)n ∧ π∗

2(ωS)

Finally,

β ∧ (dβ)n+1 = (n + 1)π∗
1(α ∧ (dα)n) ∧ π∗

2(ωS).

By the previous Lemma, we get β ∧ (dβ)n+1 6= 0. Therefore, β is a contact form for

M . ■

Lemma 2.5.3. ker β = (Es ⊕ Eu, 0) ⊕ R(0, ∂θ) ⊕ R
(
Xα, 1

cos θ
∂φ

)
.

Proof. We know that dim ker β = 2n + 2, because it is a contact form. It is clear that the

space on the right-hand side also has a dimension equal to 2n + 2. We are left to prove

that it is indeed contained in ker β.

• β(Es ⊕ Eu, 0) = α(Es ⊕ Eu) = 0.

• β(0, ∂θ) = − cos θdφ(∂θ) = 0.

• β
(
Xα, 1

cos θ
∂φ

)
= α(Xα) − cos θdφ

(
1

cos θ
∂φ

)
= 1 − 1 = 0

■

Lemma 2.5.4. The Reeb vector field of β is given by Rβ(p, q) = (Rα(p), 0) ∈ TpN × TqS,

where Rα is the Reeb vector field of α.

Proof. We only need to check that β(Rβ) = 1 and dβ(Rβ, ·) = 0.

β(Rβ) =π∗
1(α)(Rβ) + π∗

2(− cos θdφ)(Rβ)

= α(Dπ1Rβ) − cos θdφ(Dπ2Rβ)

= α(Rα) − cos θdφ(0)

= 1.
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Moreover,

dβ(Rβ, ·) = π∗
1(dα)(Rβ, ·) + π∗

2(ωS)(Rβ, ·)

= (dα)(Dπ1Rβ, ·) + ωS(Dπ2Rβ, ·)

= (dα)(Rα, ·) + ωS(0, ·)

= 0.

■

Lemma 2.5.5. The Reeb flow is partially hyperbolic for the product Riemannian metric.

Proof. Let ϕα
t be the contact Anosov flow generated by Rα and ϕβ

t be the flow generated

by Rβ. It is not difficult to see that ϕβ
t (p, q) = (ϕα

t (p), q), hence

Dϕβ
t =



Dϕα

t 0

0 Id




Therefore, there exists a Dϕt-invariant splitting TM = (Es ⊕ Eu, 0) ⊕ RRβ ⊕ Ec,

where Es and Eu are the subbundles of TN given by the Anosov splitting for ϕα
t and

Ec = R(0, ∂θ) ⊕ R
(
Xα, 1

cos θ
∂φ

)
. Since Dϕα

t acts by isometry on the last space. We

conclude that ϕβ
t is a partially hyperbolic contact flow. ■

Consequently, we can construct examples of partially hyperbolic contact flows in di-

mension 5 by taking N to be the unit tangent bundle of a surface of negative curvature

with a canonical contact structure given by the Riemannian metric. We can also pro-

duce several examples by iterating this construction. Starting with a partially hyperbolic

contact flow, we can obtain:

Corollary 2.5.2. For any n, k ∈ N, with k < n − 1, there exists a partially hyperbolic

contact flow in dimension 2n + 1 with 2k-dimensional center acting on a non-compact

manifold.

Remark 2.5.1. We must highlight once more that this construction does not work in

the compact case because of Stokes’ theorem. Also, this type of construction would work

by switching S2 \ {N} by R2 and ωS by dx ∧ dy.

From the best of our knowledge, the only work that deals with dynamical properties

of partially hyperbolic contact flows is [FH22], where the authors prove that a partially
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hyperbolic contact flow can be perturbed inside this class to obtain Accessibility. By

Accessibility we mean that any two points can be joined by a concatenation (called su-

path) of a finite number of paths tangent to either Es or Eu. On the other hand, for the

above construction we get:

Lemma 2.5.6. The Reeb flow is not accessible.

Proof. The flow is not accessible since every path tangent to Es or Eu remains inside N ,

therefore, there is no way to go from a point (p, q) to a point (p, q∗) for q 6= q∗. ■

Remark 2.5.2. Notice that we can explicitly verify that the center bundle is not inte-

grable: [(0, ∂θ), (Xα, 1
cos θ

∂φ)] = ([0, Xα], [∂θ,
1

cos θ
∂φ]) = (0, sin θ

cos θ
∂φ) which does not belong

to Ec.

The property verified in the previous remark is general in the compact case: let

ϕt : M → M be a Cr partially hyperbolic flow contact flow on a compact manifold, then

we obtain:

Proposition 2.5.2. If TM = Es ⊕ RXα ⊕ Ec ⊕ Eu is the partially hyperbolic splitting,

then the distributions Es ⊕ Eu and Ec are not integrable at any point.

Proof. First, notice that ker α = Es ⊕ Ec ⊕ Eu since dim ker α = 2n and TM = Es ⊕

RRα ⊕ Ec ⊕ Eu, with Rα the Reeb vector field. Now, since Rα is the Reeb vector field,

then its flow ϕt preserves α. Hence it also preserves dα and α ∧ (dα)n.

Since Es and Eu are integrable, then dα(Xτ , Y τ ) = 0, where Xτ , Y τ ∈ Eτ and

τ = s, u:

dα(Xτ , Y τ ) = Xτ (α(Y τ )) − Y τ (α(Xτ )) − α([Xτ , Y τ ]) = −α([Xτ , Y τ ]) = 0

Since M is compact, then dα is bounded, i.e. there exist a constant C > 0 such that

|dα(X, Y )| ≤ C ‖X‖ ‖Y ‖ for any vectors X, Y ∈ TM . Then, we have for Xs ∈ Es and

Xc ∈ Ec

|dα(Xs, Xc)| = |dα(DϕtX
s, DϕtX

c)| ≤ C ‖DϕtX
s‖ ‖DϕtX

c‖
t→∞
−−−→ 0,

because the action of Dϕt on Es dominates the action of Dϕt on Ec. Analogously,

dα(Xu, Xc) = 0.
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Now, let {Rα, Xc
1, ..., Xc

2m, Xs
1 , ..., Xs

r , Xu
1 , ..., Xu

r } (check Lemma 2.5.7) be a local

frame for TM defined on an open set U such that Xτ
i ∈ Eτ , for τ = c, s, u. Since α

is a contact form, then α ∧ (dα)n is a volume form. On one side we have by the definition

of wedge product and using that ker α = Es ⊕ Ec ⊕ Eu

α ∧ (dα)n(X, Xc
1, ..., Xc

2m, Xs
1 , ..., Xs

r , Xu
1 , ..., Xu

r )

= α(X)(dα)n(Xc
1, ..., X2m, Xs

1 , ..., Xs
r , Xu

1 , ..., Xu
r ) 6= 0

On the other side, (dα)n(Xc
1, ..., X2m, Xs

1 , ..., Xs
r , Xu

1 , ..., Xu
r ) is composed by sums of n

products of terms of the forms dα(Xc
i , Xc

j ) and dα(Xs
i , Xu

j ), once dα(Xc
i , Xs,u

j ) = 0 for all

i, j and Es and Eu are integrable. Notice that we cannot have dα(Xc
i , Xc

j ) = 0 for all i, j

(for instance, when Ec is integrable) because this would contradict the inequality above.

Then for at least one pair (i, j) we must have dα(Xc
i , Xc

j ) 6= 0. Then, if Es ⊕ Eu were

jointly integrable we would get dα(Xs
i , Xu

j ) = −α([Xs
i , Xu

j ]) = 0, thus

(dα)n(Xc
1, ..., X2m, Xs

1 , ..., Xs
r , Xu

1 , ..., Xu
r ) = 0

which is a contradiction. We conclude that Es⊕Eu is not jointly integrable, nor is Ec. ■

This property is interesting since the most standard obstruction to accessibility is

joint integrability of Es ⊕ Eu. It is also known that if dim Ec = 1, then if Es ⊕ Eu is

not jointly integrable at some point p, then its accessibility class (the set of points su-

attainable from p) is open. Therefore, if Es ⊕ Eu is not jointly integrable at any point,

dim Ec = 1 and the manifold is connected, then accessibility holds. On the other hand,

in the case of partially hyperbolic contact flows with splitting TM = Es ⊕Ec ⊕RRα ⊕Eu

we have by the above computations

Lemma 2.5.7. dim Ec is even and dim Es = dim Eu

Proof. Since α is a contact form, then dα|ker α is non-degenerate, that is given X ∈ ker α

there must exist X ′ ∈ ker α such that

dα(X, X ′) 6= 0.

By the previous computation, it must happen that if X ∈ Ec, then X ′ ∈ Ec and if

X ∈ Es, then X ′ ∈ Eu. ■
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There are still several interesting open questions about partially hyperbolic contact

flows. Since contact flows are naturally volume-preserving, accessibility would imply

transitivity by the classical Brin’s argument. What is known so far by [FH22] is that

topological transitivity is dense among these systems.
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Chapter 3

Ergodic Homoclinic Classes for

Flows

The present chapter corresponds to the results obtained in the preprint [dJEP25],

which is a work in collaboration with Marcielis Espitia (UCC - Colombia) and Gabriel

Ponce (UNICAMP - Brazil), about the study of homoclinic classes for flows and its rela-

tionship to ergodicity and SRB measures. As mentioned in the introduction, this work is

a flow version of the results obtained by Federico Rodriguez-Hertz, Jana Rodriguez-Hertz,

Raul Ures and Ali Tahzibi in [RHRHTU11a] and [RHRHTU11b]. An important class of

systems given by flows that we intend to obtain a better understanding with the tech-

niques developed here is the class of geodesic flows. We have shown in the previous chapter

that determining which conditions may imply or prevent the ergodicity of the Liouville

measure for geodesic flows is far from been a completely solved problem. Therefore, we

believe that our results can be a starting point of new directions to be explored.

As mentioned in the introduction, the strategy of the proofs of Theorems C, D

and E follows the line of Hopf’s Argument. This is the standard argument to obtain

ergodicity (other than case-by-case studies) to obtain ergodicity of systems that present

many forms of hyperbolicity. The argument was first developed by Eberhard Hopf in

[Hop39] and [Hop40] to obtain ergodicity of the geodesic flow for metrics with constant

negative curvature and for negatively curved surfaces; later this argument was extend to

more general settings by Anosov, Sinai and Pesin (see [Ano67], [AS67], [Pes77a]). The

main difference between our setting and the one considered by Hopf, Anosov and Sinai is

that some important sets (which we will make precise) are not uniformly distributed along
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Pesin’s manifolds. Instead we will see that they are well distributed from the measure

point of view, but, in general, they are not fully su−saturated.

To make precise our statements, let us recall some important notions such as Birkhoff

average: for each function f ∈ L1
m(M ;R) the Birkhoff Ergodic Theorem assures that

m−almost everywhere the following limits are well-defined

f±(x) = lim
T →±∞

1

T

∫ T

0
f(ϕt(x))dt.

We also have that f+(x) = f−(x) for m−almost every x ∈ M and f± are ϕt−invariant.

The functions f± are called The Birkhoff’s average. Remember that ergodicity is equiva-

lent to f+ being constant almost everywhere and the key point of the technique developed

by Hopf is the use of transversality and absolute continuity of stable and unstable lami-

nations to show that the image of two points by f+ coincide (mod 0).

In the next section, we will see a description of the behavior of Birkhoff averages along

Pesin’s manifolds. Essentially, we will see that almost every point in the same (un)stable

Pesin’s manifold has the same Birkhoff average, in which case we say that the subset of

Pesin’s manifolds with constant Birkhoff average is well distributed along such manifolds

from the measure theoretical point of view.

Remember that, given a hyperbolic closed orbit γ of a C2−flow, we have defined its

stable and unstable homoclinic classes as

Λs(γ) = {x ∈ M : x is a regular point and W s(x) ⋔ W u(γ) 6= ∅},

and

Λu(γ) = {x ∈ M : x is a regular point and W u(x) ⋔ W s(γ) 6= ∅}.

Therefore, we have defined the Ergodic homoclinic classes as

Λ(γ) := Λs(γ) ∩ Λu(γ).

Remark 3.0.1. For the purpose of this chapter m will always denote a smooth measure.

We will also denote by mu,s
x its conditional measures with respect to the partitions W u,s

loc (x).

As stated in Chapter 1, these conditional measures are absolutely continuous with respect

to the Riemannian measures on each W u,s
loc (x).
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3.1 Typical points for smooth and SRB measures

The results of this section are completely analogous to those obtained in Section 4 of

[RHRHTU11a] for diffeomorphisms; few changes are needed to adapt to the flow setting,

but we are going to present the proofs for completeness. We remark that essentially no

extra difficults are found here nor new techniques are needed.

Lemma 3.1.1 (Typical points for continuous functions). There exists a ϕt−invariant

set M0, with m(M0) = 1, such that for any f ∈ C0(M) we have: if x ∈ M0, then

f+(x) = f+(w), for any w ∈ W s(x) and mu
x−almost every w ∈ W u(x).

Proof. The conclusion for the stable manifold is a consequence of continuity. Let w ∈

W s(x), in particular d(ϕt(x), ϕt(y)) → 0 as t → ∞. Let us fix any f ∈ C0(M), then

compactness of M implies that f is uniformly continuous. Therefore, let ε > 0 and chose

δ > 0 such that for all x, y ∈ M , with d(x, y) < δ, it holds that |f(x) − f(y)| < ε
2
. Now,

let T0 > 0 be such that d(ϕt(x), ϕt(w)) < δ, for t ≥ T0. We get,
∣∣∣∣∣
1

T

∫ T

0
(f(ϕt(x)) − f(ϕt(w))dt

∣∣∣∣∣ ≤
1

T

∫ T0

0
|f(ϕt(x)) − f(ϕt(w))|dt

+
1

T

∫ T

T0

|f(ϕt(x)) − f(ϕt(w))|dt

≤
I

T
+

(T − T0)

T

ε

2
,

where

I =
∫ T0

0
|f(ϕt(x)) − f(ϕt(w))|dt < ∞

It implies that for T > 0 sufficiently large, we get

∣∣∣∣∣
1

T

∫ T

0
(f(ϕt(x)) − f(ϕt(w))dt

∣∣∣∣∣ < ε.

Therefore, we conclude that f+(x) = f+(w), for every f ∈ C0(M).

Now, the conclusion for the unstable manifold is a little bit more delicate. We proceed

as follows: define the following full-measured set

S0 = {x ∈ M : f+(x) = f−(x) are well-defined, for all f ∈ C0(M)}.

We will prove that m−almost every point x of S0 is such that mu
x−almost every ξ ∈ W u

loc(x)

also lies inside S0. In fact, suppose this is not the case. Thus there exists a subset A ⊂ S0,

with m(A) > 0, such that for any x ∈ A there exists a set Bx ⊂ W u
loc(x) \ S0, with
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mu
x(Bx) > 0. Without losing generality, we can switch A by A ∩ Rl, where Rl is a Pesin

block such that this intersection has positive measure. Let y ∈ A be a Lesbegue density

point (in fact we only need it to be in supp(m)), that is

lim
ε→0

m(A ∩ Bε(y))

m(Bε(y))
= 1

So, for ε > 0 small enough we can consider a small disk T inside A ∩ Bε(y) that is

transverse to its points unstable manifolds and the set

B =
⋃

x∈T

B̃x,

where

B̃x = {w ∈ Bx : w ∈ Bε(y)}

satisfies

m(B) =
∫

T
mu

x(B̃x)dmT (x) > 0.

This is a contradiction because B is a positive measure set outside S0.

Define the full measure set

S1 = {x ∈ S0 : mu
x − almost every ξ ∈ W u

loc(x) lies inside S0}.

If ξ ∈ W u
loc(x), then for any x ∈ M , we have that f+(ξ) = f+(x). In addition if x ∈ S0 and

ξ ∈ W u
loc(x) ∩ S0, then by continuity f+(ξ) = f−(ξ) = f−(x) = f+(x). We conclude that

S1 consist of points in S0 such that mu
x−almost every ξ ∈ W u

loc(x) satisfies f+(ξ) = f+(x).

Since f is continuous, then f+ is constant on W s(x). Thus, by the invariance of f+ we

can find a full measure set M0 with the desired property. ■

Remark 3.1.1. Notice that by continuity the set M0 is s−saturated.

Lemma 3.1.2 (Typical set for L1 functions). For any f ∈ L1(M ;R) there exists a

ϕt−invariant set Tf , with m(Tf ) = 1, that satisfies: for all x ∈ Tf we have f+(z) = f+(x)

for ms
x−almost every z ∈ W s(x) and mu

x−almost every z ∈ W u(x).

Proof. Let f ∈ L1(M ;R) and consider a sequence (fn)n ⊂ C0(M) that converges to f in

the L1 − norm. Then, we have that (f+
n )n converges, in the L1 − norm, to f+. It implies

that there is a subsequence, say (f+
nk

)k, that converges almost everywhere to f+. Set

T0 = {x ∈ M : f+
nk

(x) → f+(x)}
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and define Tf := T0∩M0, where M0 is the set of typical points given by the previous lemma.

Of course m(Tf ) = 1. If x ∈ Tf , then f+
nk

(x) → f+(x) and, by the previous Lemma, we

also have f+
nk

(w) = f+
nk

(x), for all w ∈ W s(x) and mu
x−almost every w ∈ W u(x). Since

ms
x−almost every w ∈ W s(x) lies inside T0, we see that f+

nk
(w) = f+

nk
(x) converges both

to f+(w) and f+(x). The result follows. ■

If µ is an SRB measure, then its conditional measures are absolutely continuous along sta-

ble and unstable manifolds. Hence, the following two Lemmas can be proved analogously

by using a point in the support of µ instead of using a Lesbegue density point.

Lemma 3.1.3. Let µ be a SRB-measure, then there exists a ϕt−invariant set M0, with

µ(M0) = 1, such that for any f ∈ C0(M) we have: if x ∈ M0, then f+(x) = f+(w), for

any w ∈ W s(x) and mu
x−almost every w ∈ W u(x).

Lemma 3.1.4. For any f ∈ L1(M ;R) there exists a ϕt−invariant set Tf , with µ(Tf ) = 1,

that satisfies: for all x ∈ Tf we have f+(z) = f+(x) for ms
x−almost every z ∈ W s(x) and

mu
x−almost every z ∈ W u(x).

3.2 Proof of Theorem C

We are going to split the proof of Theorem C into two parts: first we prove that

ϕ|Λ(γ) is an ergodic flow. The proof of ergodicity is simpler and illustrates well the idea

to prove the first statement Λu(γ) = Λs(γ) mod 0.

The general idea is the following: for the second statement, we need to prove that

Birkhoff averages of continuous functions are almost everywhere constant on the ergodic

homoclinic classes. To this end, given two points x and y homoclinically related to γ, we

are going to use this relation to transfer the set of typical points from W u(y) and W u(x)

to W u(p), with p ∈ γ, via stable holonomy. The idea behind the first statement is similar,

but slightly more delicate since we will need to deal with Birkhoff averages of measurable

functions.

3.2.1 Proof of the second statement

For the sake of simplicity, let us fix some reference point p ∈ γ. We are going to consider

the case where γ is not a singular orbit, otherwise the proof is exactly the same as
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for diffeomorphism. The difficulty for the flow setting is precisely considering the flow

direction.

Define ∆ = Λ(γ)∩M0, where M0 is given by Lemma 3.1.1 and R is the set of regular

points. Let f ∈ C0(M) and let us prove that f+ is constant on ∆. For each Pesin block

Ri,j
ε,l intersecting ∆ in a positive measure set, denote by ∆i,j

ε,l = Ri,j
ε,l ∩∆. For points inside a

fixed Pesin Block the local stable and unstable Pesin manifolds have diameter uniformly

bounded away from 0, so let us by δ > 0 this uniform lower bound. By the Poincaré

Recurrence Theorem almost every points x, y ∈ ∆i,j
ε,l return infinitely many times to ∆i,j

ε,l,

i.e. there exist sequences (tk)k and (sl)l such that

(1) tk → −∞, xk = ϕtk
(x) ∈ ∆i,j

ε,l.

(2) sl → ∞, yl = ϕsl
(y) ∈ ∆i,j

ε,l.

For all q ∈ M0 we can define the mu
q −full measure sets

Aq = {ξ ∈ W u(q) : f+(ξ) = f+(q)} ⊂ M0

Since W s(yl) ⋔ W u(γ), we can find l >> 1 big enough such that d(yl, W u(γ)) < δ
4
.

Because yl ∈ Λ(γ), then yl is a hyperbolic point with dimensions of stable and unstable

equal to those of p ∈ γ and W ws(yl) ⋔ W u(ϕT (p)) (in a single point), where ϕT (p) is the

point in γ for which we have W s(yl) ∩ W u(ϕT (p)). Therefore, since yl is in a Pesin Block,

we can define the weak-stable holonomy in a positive mu
yl

−measure set which intersects

Ayl
∩ W u

loc(yl) is a positive mu
yl

−measure set. Since f+ is constant along weak-stable

manifolds and by absolute continuity, then the image of this intersection by the weak-

stable holonomy is a set of mϕT (p)−positive measure with the same Birkhoff average as yl.

Call this set BϕT (p) and notice that by s−saturation and invariance, we get BϕT (p) ⊂ M0.

Proceeding analogously with xk we produce a set BϕT ′ (p) ⊂ M0 ∩ W u(ϕT ′(p)) with

mu
ϕT ′ (p)−positive measure and same Birkhoff average as xk.

Now, since γ is periodic we take T̂ > 0 such that ϕT +T̂ (p) = ϕT ′(p), then ϕT̂ (BϕT (p)) is a

set with same Birkhoff average as yl of mu
ϕT ′ (p)−positive measure. Finally, BϕT ′ (p) ⊂ M0

and then there exist points in ϕT̂ (BϕT (p)) with the same Birkhoff average as xk. We

conclude that f+(x) = f+(xk) = f+(yl) = f+(y). Thus the restriction of f+ to ∆ is

constant.
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yl

p
γ

W u(γ)

W s(γ)

W u(yl)

Ayl
∩ W u

loc(yl) BϕT (p)

ϕT (p)

W ws(yl)

Figure 3.1: Construction of the set BϕT (p)

3.2.2 Proof of the first Statement

Consider the integrable function f = 1Λs(γ) and the full-measure set of typical points Tf

given by Lemma 3.1.2. Define the ϕt−invariant set ∆u = Λu(γ) ∩ Tf . We will see that

∆u ⊂ Λs(γ).

Let x ∈ ∆u, then W u(x) ⋔ W s(γ) 6= ∅. The strategy is to use an auxiliary point to

construct a subset of W wu(x) intersecting Λs(γ) with mwu
x −positive measure.

Let Ri,j
ε,l be a Pesin Block for which the set ∆s := Λs(γ) ∩ Tf ∩ Ri,j

ε,l has positive measure

and consider a point y ∈ ∆s such that there is a sequence of times (sl)l converging to

infinity satisfying yl := ϕsl
(y) ∈ ∆s and all yl are Lesbegue density points (indeed we

only need them to be in supp(m)). Choose a point z in W s(y) ⋔ W u(γ) and consider

zl := ϕsl
(z) ∈ W s(y) ⋔ W u(γ). Inside Ri,j

ε,l the Pesin’s manifolds admit an uniform lower

bound for the diameter, say diam(W s
loc(q)) ≥ δ > 0, for all q ∈ Ri,j

ε,l. By definition we

have that d(zl, yl) → 0, as l → ∞ so we can choose z0 = ϕsl0
(z) such that d(z0, y0) < δ

2
,

where y0 = ϕsl0
(y).

Since y0 is a Lesbegue density point of ∆s, we can find a small ball B centered in y0

satisfying the condition m(∆s ∩ B) > 0 and we can assume its diameter is at least δ. Let

F be a smooth foliation of B with dimension n − dim(W s(y0)) such that each leaf F(ξ)

is transverse to W s
loc(y0). By the Fubini property

0 < m(∆s ∩ B) =
∫

W s
loc

(y0)
mF

ξ (F(ξ) ∩ ∆s)dms
y0

(ξ),

we have that mF
ξ (F(ξ) ∩ ∆s) > 0 on a subset of W s

loc(y0) of ms
y−positive measure. Fix ξ0

such that mF
ξ0

(F(ξ0) ∩ ∆s) > 0.
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We now prove that for some iterate of x we get a transversal intersection between

W wu(ϕT (x)) and W s
loc(y0). To do that, we want to see that we can approximate W u(γ) by

iterating W u(x). In fact, since W u(x) ⋔ W s(γ), we may divide the reasoning in two cases.

First, if dimW u(x) + dimW s(γ) = n, we can call {w} = W u(x) ∩ W s(γ) and consider a

small saturation along the flow direction

D :=
⋃

t∈(−ε,ε)

W u(ϕt(x))

Now, D is a small disk transverse to W s(q), for some q ∈ γ and we can apply the λ−lemma

for the diffeomorphism ϕT , where T is the period of γ. This implies that ϕnT (D) converges

in the C1−topology to

D′ =
⋃

t∈(−ε,ε)

W u(q).

By taking big enough iterates we can make ϕnT (D) close enough to D′ such that after

flowing by ϕt for some 0 ≤ t ≤ T it enters B and since W s
loc(y0) ⋔ W u(γ) it must intersect

W s
loc(y0) transversally. The case where dimW u(x) + dimW s(γ) > n is easier to deal with

because we already have that W u(x) ⋔ W s(q) for some q ∈ γ, so we just apply the

λ−lemma for ϕnT and W u(x) directly to get that W s
loc(y0) ⋔ W u(ϕt(x)). So, let us fix

that xt := ϕt(x) satisfies W s
loc(y0) ⋔ W wu(xt) or W s

loc(y0) ⋔ W u(xt)

To proceed we need to split each case into two more cases, but the analysis is very

similar. First, if dim(W s(y0)) + dim(W wu(xt)) = n (see Figure 3.2) we consider the

holonomy map h between a subset of positive measure in F(ξ0) and W wu(xt), then h

sends the positive measure set F(ξ0) ∩ ∆s into a set of mwu
xt

−positive measure. Since

Λs(γ) is s−saturated, the last set lies inside Λs(γ). The second case we need to consider

occurs when dim(W s(y0))+dim(W wu(xt)) > n. In this case, we can assume without losing

any generality that we had choose the foliation F to be such that each leaf containing a

point of W wu(xt) is contained in W wu(xt). Consider S to be an open submanifold inside

W s(y0) ∩ W wu(xt). Integrating over S and using the holonomy maps from F(ξ0) to F(q),

for each q ∈ S, we construct a set A intersecting Λs(γ) with mwu
xt

−positive measure.

In any of those cases, using that Λs(γ) is ϕt−invariant, we found a set of mu
xt

−positive

measure inside Λs(γ). It means that W u(xt) contains a set of positive measure with

Birkhoff average f+ ≡ 1, but xt is a typical point, so f+(x) = f+(x0) = 1. We conclude

that x ∈ Λs(γ). The analysis for the case W s
loc(y0) ⋔ W u(xt) is exactly the same.

The proof of the reverse inclusion is analogous, so we conclude the proof of the theorem.
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y0

γ

W u(γ)

W s(γ)

W s
loc(y0) x

B

F(ξ0)

W u(x)

Figure 3.2: Case with dimW s(y0) + dimW u(γ) = n and dimW u(x) + dimW s(γ) = n.

3.3 Proof of Theorems D and E

The proof will be analogous to the proof of the first statement of Theorem C. Consider

f = 1Λs(γ) and let Tf be as in Lemma 3.1.4 and define ∆u := Λu(γ) ∩ Tf . We are

going to show that ∆u ⊂ Λs(γ). To do that, let us prove that for every x ∈ ∆u we get

f+(x) = 1. For now on fix x ∈ ∆u. The strategy is the same as before, we will consider

an auxiliary point y to construct some local foliation of a small ball such that we find a

leaf with intersection of positive measure with Λs(γ), then we transfer this information

to the unstable manifold of x also via holonomy. The only difference here is the choice of

the point y. Insted of a Lesbegue density point we choose y to be a point in the support

of the measure. The rest of the argument follows identically.

Let Rij
ε,l be a Pesin block such that ∆s := Rij

ε,l ∩Λs(γ) has positive measure and y ∈ ∆s be

such that there exists a sequence (tk)k converging to infinity such that yk = ϕtk
(y) ∈ ∆s

and yk belongs to the support of µ restricted to Λs(γ) ∩ Rij
ε,l. Again, for points in Rij

ε,l

their Pesin manifolds have a diameter bigger than a uniform constant δ > 0. As before,

let y0 = ϕtk0
(y) be such that d(y0, W u(γ)) < δ

2
. Since y0 is the support of µ, we can find

a small ball B centered in y0 satisfying the condition µ(∆s ∩ B) > 0. Let F be a smooth

foliation of B with dimension n − dim(W s(y0)) such that each leaf F(ξ) is transverse to

W s
loc(y0). By the Fubini’s property

0 < µ(∆s ∩ B) =
∫

W s
loc

(y0)
µF

ξ (F(ξ) ∩ ∆s)dµs
y0

(ξ),

we have that µF
ξ (F(ξ) ∩ ∆s) > 0 on a subset of W s

loc(y0) of µs
y−positive measure. Fix

ξ0 such that µF
ξ0

(F(ξ0) ∩ ∆s) > 0. Since µ is a hyperbolic measure and has absolutely
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continuous conditional measures, the proof follows from the same arguments.

3.4 Proof of Theorem F

The proof will be a consequence of Theorem 1.4.15 and the next Lemma:

Lemma 3.4.1. If µ is a regular, hyperbolic and SRB measure, then almost every one of

its ergodic components is regular, hyperbolic and SRB.

Proof. By the Ergodic Decomposition Theorem, there exist a partition P of M , a system

of ergodic probability measures {µP : P ∈ P}, which form a decomposition for µ, and a

measure µ̂ over P . Since µ is regular, then

0 = µ(Sing(X)) =
∫

µP (Sing(X))dµ̂(P ).

It follows that µ̂−almost every µP is regular. Now, we just need to check that µ̂−almost

every µP satisfies Pesin’s formula. Indeed, by the Margulis-Ruelle inequality and ergod-

icity we have

hµP
≤
∫ ∑

λ(x)>0

λ(x)dµP (x) =
∑

λ(µP )>0

λ(µP ).

On the other side, by Jacobs Theorem (check [VO16] Theorem 9.6.2) we get

hµ =
∫

hµP
dµ̂(P ),

and since µ is an SRB measure,

hµ =
∫ ∑

λ(x)>0

λ(x)dµ =
∫ 

∫ ∑

λ(x)>0

λ(x)dµP


 dµ̂(P ) =

∫ ∑

λ(µP )>0

λ(µP )dµ̂(P ).

It follows that
∫ 
hµP

−
∑

λ(µP )>0

λ(µP )




︸ ︷︷ ︸
≤0

dµ̂(P ) = 0,

hence µ̂−almost every µP satisfies Pesin’s formula. ■

By the previous Lemma, we can assume that µ is an ergodic measure. Now Theorem

1.4.15 implies that there exists a periodic hyperbolic orbit γ such that supp(µ) ⊂ Λ(γ)

and, in particular, for µ−almost every x satisfies ϕt(W
u(x)) acumulates on W u(γ) when

t goes to infinity and ϕt(W
s(x)) acumulates on W s(γ) as t goes to minus infinity. The

invariance of Λ(γ) implies that µ(Λ(γ)) = 1.
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3.5 Proof of Theorem G

The strategy here is to prove that in this situation, we must have intersection of the basins

of µ and ν, thus ergodicity will imply that they must coincide.

Let B(µ) and B(ν) be the basins of µ and ν, respectively. Since both measures are

ergodic, it implies that µ(B(µ)) = 1 and ν(B(ν)) = 1. By Birkhoff Ergodic Theorem we

can define the following µ−full measure and ν−full measure sets, respectively,

Bµ =

{
x ∈ M : lim

T →±∞

1

T

∫ T

0
f(ϕt(x))dt =

∫
fdµ, ∀f ∈ C0(M)

}

Bν =

{
x ∈ M : lim

T →±∞

1

T

∫ T

0
f(ϕt(x))dt =

∫
fdν, ∀f ∈ C0(M)

}
.

By hypothesis we get µ(Bµ ∩ Λ(γ)) = 1 and ν(Bν ∩ Λ(γ)) = 1. Apply Lemma 3.1.4 for µ

and the function f = 1Bµ∩Λ(γ) to find x ∈ Tf ∩ Bµ ∩ Λ(γ) such that µu
x(Bµ ∩ Λ(γ)) = 1.

Since µ is SRB, the conditionals µu
x are absolutly continuous with respect to the leaf

volume measure thus mu
x(Bµ ∩ Λ(γ)) = 1. Analogously, we find y ∈ Tf ′ ∩ Bν ∩ Λ(γ) such

that mu
y(Bν ∩ Λ(γ)) = 1, where f ′ = 1Bν∩Λ(γ). The strategy now is to transfer these sets

to the unstable manifold of the orbit γ. More precisely, define

Dx = Bµ ∩ Λ(γ) ∩ W u(x),

Dy = Bν ∩ Λ(γ) ∩ W u(y).

Fix the points p, q ∈ γ such that p and q are the points satisfying W s(x) ∩ W u(p) 6= ∅

and W s(x) ∩ W u(p) 6= ∅. By the definition of Λ(γ) and using the absolute continuity of

weak-stable holonomies, for every point z ∈ Dx we find a unique point w ∈ W u(p) such

that {w} = W ws(z) ⋔ W u(p). Since Bµ ∩ Λ(γ) is an invariant and s−saturated set, we

get that mu
p(Bµ ∩ Λ(γ)) = 1. Now, take T ∈ R such that ϕT (q) = p and use the same

argument to DϕT (y) to get mu
p(Bν ∩ Λ(γ)) = 1. This implies that B(µ) ∩ B(ν) 6= ∅, hence

µ = ν.

3.5.1 Further questions

In this dissertation we have not discussed the applicability of the results presented

in this chapter. This would be a very natural next step of our work.

Question 3.1. Can we apply Theorem C to get ergodicity of some generic class of flows?
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The previous question is wide open, but it is worth mentioning that we look forward to

understand homoclinic classes in the context of the geodesic flow, in special for manifolds

with rank(M) = 1.

Another very natural question, now in the context of SRB measures is:

Question 3.2. Can we apply Theorem G to get uniqueness of SRB measures in some

general setting of flows?
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