
Universidade Estadual de Campinas
Instituto de Computação

Luiz Fernando Rodrigues da Fonseca

HVCFL: A Study of Centralized, Decentralized and

Hybrid Federated Learning in Vehicle Networks with

non-IID Data

HVCFL: Um Estudo de Aprendizado Federado

Centralizado, Descentralizado e Híbrido em Redes

Veiculares com Dados não-IID

CAMPINAS

2025

Luiz Fernando Rodrigues da Fonseca

HVCFL: A Study of Centralized, Decentralized and Hybrid

Federated Learning in Vehicle Networks with non-IID Data

HVCFL: Um Estudo de Aprendizado Federado Centralizado,

Descentralizado e Híbrido em Redes Veiculares com Dados

não-IID

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Luiz Fernando Bittencourt

Este exemplar corresponde à versão final da
Dissertação defendida por Luiz Fernando
Rodrigues da Fonseca e orientada pelo Prof.
Dr. Luiz Fernando Bittencourt.

CAMPINAS

2025

Ficha catalográfica
Universidade Estadual de Campinas (UNICAMP)

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Fonseca, Luiz Fernando Rodrigues da, 1996-

F733h HVCFL : a study of centralized, decentralized and hybrid federated

learning in vehicle networks with non-IID data / Luiz Fernando Rodrigues
da Fonseca. – Campinas, SP : [s.n.], 2025.

 Orientador: Luiz Fernando Bittencourt.
 Dissertação (mestrado) – Universidade Estadual de Campinas

(UNICAMP), Instituto de Computação.

1. Aprendizado federado. 2. Redes ad hoc veiculares (Redes de

computadores). I. Bittencourt, Luiz Fernando, 1981-. II. Universidade
Estadual de Campinas (UNICAMP). Instituto de Computação. III. Título.

Informações complementares

Título em outro idioma: HVCFL : um estudo de aprendizado federado centralizado,
descentralizado e híbrido em redes veiculares com dados não-IID
Palavras-chave em inglês:
Federated learning
Vehicular ad hoc networks (Computing networks)
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Luiz Fernando Bittencourt [Orientador]
Allan Mariano de Souza
Vinícius Fernandes Soares Mota
Data de defesa: 06-06-2025
Programa de Pós-Graduação: Ciência da Computação

Objetivos de Desenvolvimento Sustentável (ODS)
ODS: 9. Inovação e infraestrutura

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0009-0002-3249-2137
- Currículo Lattes do autor: https://lattes.cnpq.br/6220362529977978

• Prof. Dr. Luiz Fernando Bittencourt
Instituto de Computação - UNICAMP

• Prof. Dr. Allan Mariano de Souza
Instituto de Computação - UNICAMP

• Prof. Dr. Vinícius Fernandes Soares Mota
Departamento de Informática - UFES

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Acknowledgments

I would like to express my deepest appreciation to Prof. Luiz Fernando Bittencourt, my
advisor, for providing instructions, support, and guidance throughout my research journey
in Federated Learning. The ideas suggested and the bridge established with other research
teams, such as Hub de Inteligência Artificial e Arquiteturas Cognitivas (H.IAAC), were
very helpful throughout the process.

I also express my deepest gratitude to Prof. Hélio Pedrini for introducing me to the
research community during my undergraduate course. Prof. Pedrini also helped a lot
during the qualification exam, with a meticulous examination of the research proposal
and suggestions.

I could not have undertaken this journey without the full support of my family, espe-
cially my mother Cátia, my father Reinaldo, my brother João and my fiancee Mariane.
They provided the support and love to overcome challenges during difficult times. I am
also grateful to my uncle Carlos and my late grandfather Fernando.

Lastly, I would like to mention friends and colleagues I have made throughout my life.
A special thanks to Gabriel and Matheus, for the entertainment moments between the
studying sessions.

Resumo

Nos últimos anos, o Aprendizado Federado vem ganhando grande atenção por parte da co-
munidade científica, principalmente por permitir que modelos de aprendizado de máquina
sejam treinados com grandes quantidades de dados de forma distribuída, e mantendo a
privacidade dos dados dos usuários. Enquanto a arquitetura original desta abordagem
foca em servidores centralizados que agregam os modelos treinados nos clientes, novas
técnicas descentralizadas estão sendo propostas para melhorar a escalabilidade e robus-
tez, já que não existe um agente centralizador como único ponto de falha. Entretanto,
métodos descentralizados possuem uma maior deficiência quanto a quão rápida a infor-
mação se propaga na rede, pois cada cliente somente se comunica com seus vizinhos.
Outro desafio que impacta ambas as abordagens são dados não-IID (Não Independentes
e Identicamente Distribuídos), pois cada nó da rede pode possuir diferentes distribuições
de dados, e um único modelo pode não ser suficiente para atender todos os clientes com
uma boa performance.

Ao mesmo tempo, com o advento hoje das redes móveis 5G, e posteriormente 6G,
muitas aplicações que antes eram difíceis de serem implementadas estão ganhando es-
paço, como as VANETs (Redes Veiculares Ad Hoc). Estas são redes com protocolos de
comunicação curta, onde veículos se comunicam somente com seus vizinhos próximos e
com a infraestrutura de borda, como as Roadside Units (RSUs), apresentando desafios
tanto para abordagens de aprendizado federado centralizadas, já que veículos podem não
conseguir se comunicar a todo momento com a infraestrutura da rede, quanto para des-
centralizadas, uma vez que a rede é altamente dinâmica devido a mobilidade, dificultando
a disseminação da informação.

Desta forma, este trabalho propôs um método centralizado e outro híbrido de apren-
dizado federado para redes veiculares, chamados WSVC (Weight-Similarity Vehicle Clus-
tering) e HVCFL (Hybrid Vehicle Clustered Federated Learning). Foram feitos extensos
experimentos com diferentes conjuntos de dados e diversas distribuições não-IID, com-
parando seus resultados com métodos da literatura. Foram utilizadas ferramentas para
simulação de redes veiculares, de forma que o ambiente experimental consiga reproduzir
com maior fidelidade as características particulares destas redes, como potência de sinal
de curto alcance, objetos que bloqueiam o sinal (Shadowing), e a mobilidade. Assim, com
os resultados obtidos, foi possível listar pontos positivos e negativos de cada abordagem,
como o WSVC convergindo mais rapidamente com menos mensagens trocadas quando a
cobertura de RSUs era maior, e o HVCFL atingindo mais veículos, cobrindo toda a rede
e conseguindo uma acurácia balanceada maior.

Abstract

In the last few years, Federated Learning has gained an increased attention in the scientific
community, especially for allowing machine learning models to be trained with a large
quantity of data in a distributed way and keeping the privacy of user data. Although
the original architecture of this approach focuses on centralized servers that aggregate the
models trained by the clients, new decentralized techniques are being proposed to improve
the scalability and robustness because there is no centralized agent as a single point of
failure. However, decentralized methods have a greater deficiency in the speed with which
information propagates through the network, since each client only communicates with
its neighbors. Another challenge which impacts both strategies is non-IID data (Non-
Independent and Identically Distributed), because each node in the network may possess
different data distributions, and a single model might not be enough to accommodate
every client with a good performance.

At the same time, with the advent of the mobile 5G networks, and later 6G, many
application that were hard to implement are gaining space, like VANETs (Vehicle Ad Hoc
Networks). They are networks with short-range message protocols, where the vehicles only
communicate with their nearest neighbors and with the edge infrastructure, like Roadside
Units (RSUs), presenting challenges not only to centralized federated learning strategies,
as vehicles might not be able to reach the network infrastructure all the time, but also to
decentralized strategies, because the network is highly dynamic due to mobility, hindering
the dissemination of information.

Therefore, this work proposed one centralized and one hybrid method for federated
learning in vehicle networks, called WSVC (Weight-Similarity Vehicle Clustering) and
HVCFL (Hybrid Vehicle Clustered Federated Learning). Extensive experiments were
performed with different datasets and non-IID data distributions, comparing their results
with methods from the literature. Vehicle network simulation tools were used in a way
that the experimental environment was able to reproduce with higher fidelity the specific
features of these networks, such as short-range signal power, objects that block the sig-
nal (Shadowing), and mobility. Thus, with the results obtained, it was possible to list
the pros and cons of each approach, such as WSVC having a faster convergence with
fewer messages exchanged when the RSU coverage was larger, and HVCFL reaching more
vehicles, covering all the network and achieving a higher balanced accuracy.

List of Figures

1.1 VANET Architecture . 13
1.2 Centralized and Decentralized Federated Learning 14

2.1 Simple CNN Example . 20
2.2 Centralized Federated Learning . 22
2.3 Decentralized Federated Learning . 25
2.4 Gradients Divergence . 27
2.5 Affinity Propagation . 29

4.1 Solution Architecture . 47
4.2 HVCFL Sequence Diagram . 50

5.1 Veins Architecture . 53
5.2 LuST . 53
5.3 12 RSUs Scenario . 55
5.4 8 RSUs Scenario . 55
5.5 6 RSUs Scenario . 56
5.6 Datasets . 59
5.7 Datasets Separation . 60
5.8 Lenet-5 Diagram . 64
5.9 MicronNet Diagram . 64
5.10 Fashion MNIST 4 Rotations 8 RSUs Validation Results 66
5.11 CIFAR10 WSCC 8 RSUs Validation Results 67
5.12 GTSRB Dirichlet 8 RSUs Validation Results 68
5.13 GTSRB Dirichlet 6/12 RSU Validation Results 72
5.14 GTSRB Dirichlet Traces Validation Results 76

List of Tables

3.1 Centralized Methods . 36
3.2 Decentralized Methods . 39
3.3 Hybrid Methods . 40

5.1 Simulation Parameters . 56
5.2 Timing Parameters . 57
5.3 Fashion MNIST WSCC Distribution . 60
5.4 CIFAR10 MNIST WSCC Distribution . 61
5.5 Fashion MNIST Lenet-5 . 62
5.6 CIFAR10 Lenet-5 . 62
5.7 GTSRB MicronNet . 63
5.8 Federated MNIST MicronNet . 63
5.9 FMNIST Validation Data Results . 65
5.10 CIFAR10 Validation Data Results . 65
5.11 Federated MNIST and GTSRB Validation Data Results 67
5.12 Average Messages Per Round, Total Messages and Collisions 69
5.13 Methods Efficiency . 69
5.14 SGD Optimizer Tests . 70
5.15 RSU Coverage Tests . 71
5.16 Acceptance Threshold Tests . 72
5.17 Similarity Metrics Tests . 73
5.18 FMNIST Test Data Results . 74
5.19 CIFAR10 Test Data Results . 74
5.20 Federated MNIST and GTSRB Test Data Results 75
5.21 Short Vehicle Trips Tests . 75

Contents

1 Introduction 12
1.1 Problem Definition . 12
1.2 Research Questions . 15
1.3 Objectives . 15
1.4 Contributions . 16
1.5 Text Organization . 16

2 Theoretical Concepts 17
2.1 Vehicle Networks (VANETs) . 17

2.1.1 Fundamentals . 17
2.1.2 Challenges . 18
2.1.3 Mobility Models . 19

2.2 Neural Networks . 19
2.2.1 Fundamentals . 19
2.2.2 Performance Metrics . 20
2.2.3 Challenges . 21
2.2.4 Data Augmentation . 21

2.3 Centralized Federated Learning . 22
2.3.1 Fundamentals . 22
2.3.2 Challenges . 24

2.4 Decentralized Federated Learning . 25
2.4.1 Fundamentals . 25
2.4.2 Challenges . 25

2.5 Non-Independent and Identically Distributed Data (non-IID) 26
2.5.1 Clustering . 28
2.5.2 Similarity Metrics . 30

2.6 Weight-Similarity Client Clustering (WSCC) 31
2.6.1 Summary . 33

3 Related Work 34
3.1 Centralized Federated Learning . 34
3.2 Decentralized Federated Learning . 35
3.3 Hybrid Federated Learning . 38

4 Proposed Methods 41
4.1 Message Broadcasting . 41
4.2 Decentralized WSCC . 42
4.3 Weight-Similarity Vehicle Clustering . 43
4.4 Hybrid Vehicle Clustered Federated Learning 46

5 Experiments 52
5.1 Methodology . 52

5.1.1 Tools . 52
5.1.2 Scenarios . 54
5.1.3 Simulation Parameters . 54
5.1.4 Datasets . 57
5.1.5 Neural Networks . 60

5.2 Validation Set Results . 61
5.2.1 Initial Validation . 65
5.2.2 Optimizers . 70
5.2.3 RSU Coverage . 70
5.2.4 Acceptance Threshold . 71
5.2.5 Similarity Metrics . 71

5.3 Test Set Results of Centralized, Decentralized and Hybrid Methods 74
5.4 Long and Short Vehicle Trips . 75
5.5 Experiments Remarks . 76

6 Conclusions 77
6.1 Final Remarks . 77
6.2 Future Work . 78

Bibliography 80

12

Chapter 1

Introduction

This chapter describes the problem addressed during this work, the research questions that
guide the study, the objectives that are within the scope of the research, the contributions
achieved at the end, and the organization of the rest of the dissertation.

1.1 Problem Definition

Intelligent vehicles have gained a lot of attention in recent years, especially after the
deployment of 5G mobile networks and 6G in the future. Some kinds of applications that
were difficult to implement due to technology and infrastructure limitations are becoming
a new focus for the industry and the scientific community. For example, vehicles are now
capable of making route predictions to help with traffic control tasks [15, 16], or they
can use sensors and cameras to control the steering wheel or speed, autonomously driving
without human intervention [53, 81].

Consequently, technological advances are redefining the way people live in cities, es-
pecially with the introduction of the concept of Smart Cities [10]. Inside them, a lot
of actors are connected with one another and with a infrastructure to provide services
for users, and VANETs (Vehicle Ad Hoc Networks) are an important part of this envi-
ronment [52]. VANETs allow communication Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I), with elements called Roadside Units (RSUs). A general VANET
architecture can be seen in Figure 1.1.

VANETs bring a series of challenges, such as short-range communication protocols, an
unreliable communication channel, city elements that obstruct the wireless signal between
transmitters and receivers (Shadowing) [70], units with less computing power inside ve-
hicles, and mobility. Data privacy is another issue that arises when artificial intelligence
algorithms are brought from the servers to the edge nodes. As a result, Google intro-
duced the concept of Federated Learning [48] to handle the challenge of private data in
the context of machine learning. In this paradigm, there is a centralized server with a
global model and distributed nodes with private data. Only the nodes perform the task
of training the machine learning models, and the server receives in each round the models
from the clients to perform an aggregation. In this way, all data remain in each node,
and only the models or the gradients are shared to create a global intelligent model.

13

Figure 1.1: General VANET Architecture [17].

There are challenges associated with Federated Learning, such as the server as a single
point of failure and scalability when more nodes join the training process. Another issue
that arises is when the data distributions between the nodes are different, a concept
called non-IID data (Non-Independent and Identically Distributed) [45]. Non-IID data
are encountered in many real-world scenarios, like different users with different interests
in recommendation systems, or vehicles that collect different quantities of images or under
different lighting conditions, so they might not have a local dataset that is representative
enough to contain the many different types of images needed to train a model. When
these scenarios happen, it means that a single global model might not be enough to
accommodate all the clients with a good performance, because their data is not the same
nor follows the same statistical distribution, and additional strategies need to be deployed
to the system to achieve better results.

To address these problems, some solutions have been proposed in the literature. Meth-
ods have been proposed to train models with better performance in non-IID environments.
For example, some of them adapt the optimization problem to stabilize the training con-
vergence of the different clients [58, 80], while others train multiple models at the same
time based on the assumption that the clients could be separated into clusters [21], and
there are many more strategies [45].

The strategy adopted in this work tries to separate clients into different dynamic
clusters during the server aggregation process [68]. The method is called WSCC (Weight-
Similarity Client Clustering), and it uses the Cosine Similarity of the weights of the model
as a similarity metric, and the Affinity Propagation [19] clustering algorithm to separate
the clients in a way that different models are generated during the aggregation process,
only with similar ones. This strategy was originally developed for static networks, so in
this work, we adapt the static nature of the WSCC strategy to the dynamic scenarios
resulting from vehicle mobility in VANETs.

While traditional Federated Learning relies on a centralized aggregation entity, Decen-

14

Figure 1.2: Architectures for: (a) Centralized Federated Learning with central coordina-
tor; (b) Fully Decentralized Federated Learning [24].

tralized Federated Learning was proposed as a fully decentralized architecture without a
central server. One strategy that implements this new architecture is called Gossip Learn-
ing [28, 29]. In this paradigm, nodes exchange and aggregate models directly between each
other opportunistically, without a centralized coordinator but also maintaining data pri-
vacy. A comparison between centralized and decentralized Federated Learning can be
seen in Figure 1.2. Furthermore, since vehicles can exchange messages directly with their
neighbors and sometimes cannot reach the infrastructure, a decentralized approach could
benefit the learning procedure in VANETs.

Some challenges also arise with a decentralized architecture, such as the slower speed
with which the information propagates through the network, since each client only com-
municates with its neighbors. This communication is performed one hop at a time, so
nodes far from a given node will need some communication rounds until the information
reaches them. When non-IID data are taken into account, the Gossip Learning infor-
mation dissemination issue and the network topology also hinder the training process,
because each node is only able to exchange models with its close neighbors, and all might
have different data distributions [22].

Considering the case of VANETs, both centralized and decentralized federated learning
are affected by the way the network environment works. Centralized solutions are affected
because some vehicles might not be able to communicate with the central server all the
time, because an RSU might not be in range of the vehicle, or because the messages
were lost in the unreliable communication channel (shadowing). This means that the
positioning of the RSU can affect the number of vehicle messages that arrive at the
server, so in scenarios with less coverage, some vehicles may not receive any model at
all (more details in Chapter 5). Decentralized solutions are also hindered by the highly
dynamic mobile network that changes constantly, increasing the effects of the information
dissemination issue. Different types of vehicle trips might also affect model convergence,
because short trips mean that the vehicle spends less time inside the network, whereas
longer trips, such as buses, taxis, and app drivers, are the opposite.

With all these topics presented, developing a way to handle the issues of centralized and

15

decentralized learning architectures for VANETs is a good approach to improve machine
learning tasks using the vehicle networks architecture. Merging the strengths of both
centralized and decentralized approaches in a hybrid way could help to train better models
with higher performance in these highly dynamic environments.

1.2 Research Questions

Some questions have been formulated to guide the research. They serve as a way of better
understanding the motivation and goals of the work. The questions are the following:

Q1. How does Federated Learning perform in a dynamic environment such as vehicle
networks (VANETs)?

Q2. How does Centralized Federated Learning perform compared to Decentralized ap-
proaches in VANETs?

Q3. Is it possible to improve the performance of a trained model with a hybrid approach?

Q4. Do different non-IID data distributions perform differently in different approaches?

Q5. How does environment configuration (especially RSU positioning) affect the conver-
gence of machine learning models for different methods?

Q6. How do long vehicle trips compare to short ones in model convergence?

During this dissertation, the methods and experiments developed to address these
questions are presented, with a thorough discussion of the results in Chapter 5

1.3 Objectives

The main objectives of this work are: (1) to adapt methods developed to work in static
networks, such as WSCC (Weight-Similarity Client Clustering) [68], to work with dynamic
vehicle networks; (2) to develop a Hybrid Centralized/Decentralized Federated Learning
method for Vehicle Networks for non-IID scenarios that achieves better performance when
training machine learning models, and using metrics like balanced accuracy, compared to
other strategies of the literature. Comparison methods include centralized strategies such
as FedAvg [48] and FedProx [58], and decentralized strategies like Gossip Learning [28, 29]
and FedPC [80].

To achieve the main objectives, other secondary objectives have been defined, such
as: prepare simulated environments for the VANETs that approximate as best as possible
real-world scenarios of highly dynamic and wireless short-range networks (OMNeT++,
Veins, and SUMO [71, 63, 42]), prepare the datasets and simulate experiments using
different non-IID data distributions, compare existing literature methods and solutions in
these specific scenarios, and validate that the proposed methods achieve higher balanced
accuracy in most of the scenarios tested.

16

1.4 Contributions

The main contributions of this work are the following:

• Proposal of the WSVC (Weight-Similarity Vehicle Clustering) method in dynamic
vehicle networks, which adapts the WSCC (Weight-Similarity Client Clustering)
[68] method from the literature, developed for static networks.

• Design of a new method for distributed learning in vehicle networks, called HVCFL
(Hybrid Vehicle Clustered Federated Learning).

• Studies and extensive experiments comparing solutions from the area of VANETs
and general Federated Learning in different mobility scenarios.

• Comparison of different non-IID data distributions and observations of positive and
negative sides of each method.

• Open source code available in https://github.com/Luizfrf3/veins-5.2

1.5 Text Organization

The rest of this dissertation is organized from chapters 2 to 6. In Chapter 2 all the concepts
needed to understand this work are introduced, such as VANETs, Mobility Scenarios,
Neural Networks, Federated Learning and its variations, and non-IID data. Chapter 3
introduces all the methods from the literature that were studied in this dissertation, either
being used for comparison or as inspiration for the proposed solution.

Chapter 4 provides a detailed description of the proposed solution of this work, while
Chapter 5 describes the simulation scenarios, the experimental methods, and a detailed
discussion of the results obtained. In the end, Chapter 6 provides the final comments and
future work.

17

Chapter 2

Theoretical Concepts

This chapter introduces and explains the theoretical foundations that underlie the remain-
der of this dissertation. There is an introduction of Vehicle Networks with its challenges
and a brief description of mobility models. Next, neural networks are explained, especially
the Convolutional Neural Networks, with some performance metrics and the Data Aug-
mentation concept. After that, there is an introduction to Centralized and Decentralized
Federated Learning, also with its main challenges. In addition, there is a section related
to Non-Independent and Identically Distributed data, together with some concepts of
clustering and similarity metrics. To conclude, the Weight-Similarity Client Clustering
method (WSCC) [68] is introduced because it is a basis for the development of the rest
of this dissertation proposals, followed by a summary of the concepts presented and how
they are utilized in the proposals.

2.1 Vehicle Networks (VANETs)

2.1.1 Fundamentals

Vehicle Ad Hoc Networks (VANETs) are composed of vehicles that exchange messages
with each other, through Vehicle-to-Vehicle (V2V) communication, and with the infras-
tructure, through Vehicle-to-Infrastructure (V2I, I2V) communication [52]. Usually, the
infrastructure of the network is composed of Roadside Units (RSUs), which are fixed sig-
nal sender/receiver equipment positioned on the side of roads and highways. Although
vehicles have less computational power, less storage, and are inherently wireless, RSUs
are higher-power edge servers that are connected to the wired network, being a gateway
to the network core [62].

In the VANETs, all the communication is made through dedicated DSRC protocols
(Dedicated Short Range Communication). For this reason, the Institute of Electrical
Electronics and Engineering (IEEE) developed the IEEE 802.11p standard together with
IEEE 1609.4 DSRC/WAVE [37, 33]. The communication bandwidth is usually around
3-27 Mbps and the range is 200-500m.

The standards together provide reliability for the operation of security and safety
applications. For these reasons, there are different channels available for different types
of applications: Control Channels and Service Channels (some of them are exclusive for

18

safety messages). In this work, the service messages have been used because Federated
Learning includes different kinds of applications, and most of them do not need to be
used for safety reasons.

Furthermore, by default, since it is implemented in a wireless medium, when someone
sends a message, all other clients on the network can hear the message, which is known
as Broadcasting [56]. It is also possible to implement multiple hop messaging protocols,
but in this work message broadcasting was used, as in other works [15, 16, 40].

2.1.2 Challenges

There are some challenges associated with VANETs and its protocols that may impact
Federated Learning in this environment:

• Short-Range Communication Protocols: VANETs operate with short range
messages and not super fast network speeds. This hinders the data transfer process
between vehicles and decreases the number of neighbors available in the network.

• Mobility: Vehicles are moving agents that quickly go from one place to another,
and they also change direction following the streets and highways. These facts can
cause some effects:

– Variable Vehicle Density: The number of vehicles in each region of the city
varies over time depending on traffic. There are moments with peak congestion
and moments with not as many vehicles, so this affects the number of neighbors
each client has in a given time [37].

– Dynamic Topologies: High mobility causes the network topology to change
constantly, which can also shorten the contact time between the elements.

• Data Dissemination: Due to the challenges listed above, it is much more difficult
to disseminate information in VANETs, i.e., to get information from a vehicle to
every other interested in those data. The following challenges are associated with
this topic [47]:

– Broadcast Storming: It is possible to use broadcasting to disseminate the
messages without knowing the final destination. However, if many vehicles
try to transmit simultaneously, there will be network congestion due to more
packet collisions, increasing the delay of the network.

– Shadowing [70]: Shadowing is the effect that the signal power fluctuates
between sender and receiver due to obstacles in the signal path, like buildings
and even other vehicles.

– Temporal Fragmentation: Shadowing, packet loss, and short-range commu-
nication can cause the partition of the network. In this way, during a period of
time or while there are few vehicles connected, the network may be fragmented,
causing some vehicles to be disconnected from the rest.

19

2.1.3 Mobility Models

Mobility Models are used to simulate how mobile agents traverse an environment, defining
the speed and directions a user takes over time [8]. They are ways to approximate real-
world scenarios when implementing VANET simulations. The models used in this work
are the following:

• Manhattan Mobility Model [4]: This model is based on the city of Manhattan,
where the streets form a quadrangular grid. When the vehicle reaches each intersec-
tion, there is a probability that 50% will go straight, 25% will turn left, and 25% will
turn right. This model has been used by some works [66, 40], and it approximates
vehicle behavior especially for big cities.

• Mobility Traces: Traces are generated by collecting real data or using routing al-
gorithms, such as some vehicle scenarios [13]. For example, it is possible to generate
routes from point A to point B in the grid for multiple vehicles, representing traffic
through regions of the city.

2.2 Neural Networks

This section presents a brief introduction about the concepts of Neural Networks that
are used throughout this dissertation. The focus is especially on Convolutional Neural
Networks (CNNs), performance metrics, challenges, and data augmentation.

2.2.1 Fundamentals

Neural Networks are defined as mathematical functions that map an input to an output
and are inspired by brain neurons. They can be composed of simple computations or
even have many layers of operations in a deep configuration. Convolutional Neural Net-
works (CNNs) [61] are a specialized class that focuses on computer vision problems, such
as image classification (such as traffic sign classification in the vehicle domain), object
detection (for example, for autonomous vehicles) or even steering wheel angle prediction
[23]. All these problems have an image (or video) as an input, perform mathematical
computations, and generate an output (or multiple outputs).

CNNs use spatial convolutions as the base operation with learned parameter filters
(weights), along with other operations such as activation functions, for example the Rec-
tified Linear Unit (ReLU), subsampling, and others. An example CNN can be seen in
Figure 2.1. Given X an input, C the activation function, and w the weights, a neural
network is represented by the following Equation 2.1.

ŷ = C(X,w) (2.1)

After the function is defined, the neural network needs to be trained for some epochs
with example data so that the weights w fit as best as possible the given examples. For
this process, backpropagation is used to adjust w little by little passing pairs of X, y

that are already known, and an epoch is reached when all the local training data passes

20

Figure 2.1: Simple Convolutional Neural Network (CNN) example [26].

through the network once. This concept uses cost function minimization, so an error is
calculated between the ŷ generated by C and a known example of y.

This work uses the image classification problem in its experiments, so given an input
image X, the output y will be an array of size n. Each position of the array defines the
probability that the image X belongs to class (or label) L, such as a turn right sign, a 20
Km/h sign, etc. In these problems, the Categorical Cross-Entropy error function 2.2 is
commonly used during the training process to measure how good the model is and adjust
its weights.

CCE = −
L
∑

i=1

yi · log(ŷi) (2.2)

2.2.2 Performance Metrics

Performance metrics measure how the neural network model performs with example data.
There are also protocols to separate a dataset into different training, validation, and
testing sets, but this will be explained in detail in Chapter 5.

Given some data examples that were not used in the training procedure, it is possible
to calculate these metrics. For classification problems, Accuracy, that is, the number
of correct classified examples over the total is a simple metric to use. There are some
disadvantages of using accuracy, especially when the dataset is non-IID. For example, if
the distribution of the number of labels is very unequal and one class constitutes 90% of
the validation examples, if your accuracy gives 90%, it is possible that the model always
outputs the same class.

Therefore, some alternatives have been proposed to mitigate these issues, such as
BalancedAccuracy 2.3. The balanced accuracy is the average of the Recall of each
individual class 2.4. The recall of each class is the number of True Positives for class
l, divided by the sum of True Positives and False Negatives for class l. True Positives are
the examples that the model correctly classifies and False Negatives are the incorrectly

21

classified examples. Taking into account the same example as before, the recall of the
first class that constitutes 90% of the data would be 100% if the model always outputs
the same class, but the second class would be 0%. The balanced accuracy would result in
50%, which better reflects the quality of the model compared to an accuracy of 90%.

BalancedAccuracy =
1

L

∑

l

Recalll (2.3)

Recalll =
TPl

TPl + FNl

(2.4)

2.2.3 Challenges

Neural networks present some challenges in different aspects [20]. Here are some of them:

• Underfitting: This happens when the model cannot have a good performance with
the training data, and even with more training, the error does not decrease. It might
happen due to: few data examples or a very simple model for the data patterns.

• Overfitting: This is the most common issue, and it happens when the training
performance is good but the validation metrics get worse. This means that the
model fits the patterns of the training data, but it adjusts so well that it cannot
generalize to new examples. It might happen due to: few data for complex models,
and model is very complex.

2.2.4 Data Augmentation

Some strategies exist to better generalize a model such as Dropout [64] and Data Aug-
mentation [60]. Dropout is an operation introduced inside the neural network during the
training process that randomly drops weights (such as removing the connections between
neurons). This helps in training all the weights of a layer and in not getting some of them
biased, improving the model generalization.

Data Augmentation is the process of generating new training examples based on ex-
isting data. It not only generates more examples, but also different kinds of examples
that did not exist in the training data but that could happen in the real world. This is
especially useful for distributed scenarios where each client has few data examples as a
way to decrease the effects of underfitting, but especially overfitting.

Taking images as the main input used in this work, it is possible to perform different
operations to enhance the training data. The main strategies that have been used in this
work are:

• Zooming: Applies zooming on the image and cropping the borders.

• Rotation: Rotates the images by some degrees.

• Translation: Dislocate the image by some pixels horizontally and vertically, crop-
ping the rest.

22

Figure 2.2: Solution architecture with a central server that performs centralized Federated
Learning procedures, the RSUs that are the bridge between the vehicles and the server,
and the vehicles.

Just an additional note on this topic; It is important to understand the data before
applying data augmentation. For example, it might not make sense to apply a 180 degree
rotation of the image on a traffic signs dataset, because the model will not be able to
know which sign is the turn right and which is the turn left.

2.3 Centralized Federated Learning

2.3.1 Fundamentals

Federated Learning is a framework for training machine learning models in a distributed
way, keeping the privacy of client data [48]. In this strategy, there is a centralized server
that holds a global model, which is sent to the client devices (or vehicles). Clients receive
the global model, train with their local data, and send only the weights or gradients
back to the centralized server. The server finishes the round aggregating all the received
models to generate a new global one, and sends them again back to the clients to start
a new round. This procedure is repeated until the model convergence, or after a fixed
number of rounds. This strategy improves data privacy because only the models (weights
or gradients) are shared between the client and the server, so all data is kept private in
the local edge devices. Figure 2.2 highlights only the centralized process in the system
architecture.

The default Federated Learning method, which defines a model aggregation strategy, is
called FedAvg [48], and the server side logic can be seen in Algorithm 1. In the beginning,
the server initializes the global model weights wg and sends them to the clients. Then, the
round loop starts, waiting for a period of time ∆a, usually called the round time. During
this period, the server can receive a trained model from a client and store it, calling the
onReceiveModel procedure.

23

Algorithm 1 FedAvg Server Side
1: wg ← 0

2: Send initial wg to clients
3: loop

4: wait(∆a)

5: Call the AGGREGATION procedure
6: end loop

7: procedure onReceiveModel(wr, |D
t
r|)

8: Store wr and |Dt
r| on the server

9: end procedure

10: procedure aggregation

11: With received models weights from clients w1, w2, ..., wN

12: Merge the weights received to generate a new wg using Equation 2.5
13: Send the new wg to the clients
14: end procedure

At the end of every round, the AGGREGATION procedure is called. During ag-
gregation, the server uses the received models from the clients and aggregates (merges)
them to generate a new global model wg, using Equation 2.5. This equation is the basic
aggregation strategy for FedAvg, which basically calculates the new global weights using
an average weighted by the size of each client’s dataset, increasing the importance of
clients with more data [48]. After that, it sends the new global model to the clients. If a
defined stop criterion has been reached, the main-server loop can end, so here and in the
following server-side algorithms, this logic has been removed for easier visualization.

w =

∑N

i=1
|Di|wi

|D|
(2.5)

The client side of FedAvg can be visualized in Algorithm 2. It starts by initializing
the local model wi for the client i and having a local dataset for training called Dt

i . When
receiving a model from the server, it calls the procedure onReceiveModel and overwrites
the local model with the one wr from the server. After that, it trains the local model for
E epochs calling the UPDATE procedure, and sends the new model trained with local
data back to the server.

Algorithm 2 FedAvg Client Side
1: wi ← 0

2: procedure onReceiveModel(wr)
3: wi ← wr

4: wi ← update(wi, D
t
i , E)

5: Send wi and |Dt
i | to the server

6: end procedure

The UPDATE procedure in Algorithm 3, trains the model wi with the training data
Dt

i for E epochs. In this step, it is possible to use Data Augmentation [60] to increase the

24

size and improve the diversity of local data, to help the issues described in the last sections,
such as overfitting. The training also uses the backpropagation strategy described in the
previous sections, through Equation 2.6. Here, wi is the model being trained, η is the
learning rate that controls the speed at which the model is trained, and ∇Fi(wi) is the
gradient of a loss function, described in the section above during the function minimization
procedure. The ProxTerm mentioned in line 3 will be explained in the next sections.

Algorithm 3 Update

1: procedure update(wi, D
t
i , E)

2: Train the model for E epochs, using Data Augmentation if necessary
3: Use backpropagation to update the weights, Equation 2.6 (if using the ProxTerm,

add it to the minimization process)
4: end procedure

wi = wi − η∇Fi(wi) (2.6)

2.3.2 Challenges

Since Federated Learning is about training machine learning models in a distributed
way, underfitting and overfitting described in the last section also have an impact here.
However, some new challenges arise with the framework:

• Single Point of Failure: The server (or group of centralized servers) is a single
point of failure for the system. If a node cannot reach the server, for example if it
is a vehicle outside the coverage area of an RSU, it will not be able to continue the
training process.

• Scalability: Executing the process for a few clients should be totally fine, but when
escalating to millions of users, a single centralized strategy might not be able to use
the models from every node, which hinders the training process.

• Messages in Network Core: Similarly to the scalability problem, if every node
is included in the training process, a huge number of messages will flow through the
network core, causing network congestion.

• Non-IID Data [45]: Non-IID data are probably the biggest challenge for Federated
Learning, because it makes the training process of a single global model a much more
difficult process. Non-IID data occur when the distribution of data among clients
is different, and due to its complexity, it will be presented in section 2.5.

25

Figure 2.3: Solution architecture considering only the vehicles that perform decentralized
Federated Learning procedures.

2.4 Decentralized Federated Learning

2.4.1 Fundamentals

The method that popularized decentralized approaches for Federated Learning is called
Gossip Learning [28]. In this framework, there is no centralized server that aggregates
the client models and synchronizes the training rounds, but the nodes opportunistically
exchange and merge models with their neighbors. Figure 2.3 highlights only the decen-
tralized process in the system architecture.

The basic logic of Gossip Learning can be seen in Algorithm 4. Each client also starts
initializing the local model weights, but in this case there is a loop which handles the
gossip round. During this loop, each node waits a period of time ∆g, called gossip round
time, and at the end they select a peer neighbor p and send the model wi to the neighbor.
In line 7, there is also a onReceiveModel procedure that receives a model wr from a
neighbor, merges the local model with the received one using Equation 2.5, and trains
the local model with the same strategy as in the FedAvg Algorithm 3.

2.4.2 Challenges

Gossip Learning handles some of the problems of the Centralized Federated Learning
approach, such as the single point of failure, scalability, and core network traffic, but it
introduces new challenges [22]:

• Synchronization: Although the centralized approach has a server to sync the
clients and training rounds, Gossip Learning by default does not impose any syn-
chronization requirements. The nodes are free to join the training group at any time
and start training, so this may impact slower devices that train less times compared
to faster ones, generating data bias.

26

• Information Dissemination: Without a single global model being trained with
data from the nodes, Gossip Learning nodes only communicate with their nearest
neighbors, and the messages pass one hop at a time. As a consequence, nodes far
away from a given one will need more communication rounds until the information
reaches them, which increases the training time and time to convergence.

• Overfitting: Due to the problem above, overfitting also tends to happen more often
in decentralized scenarios, especially because more data (information) is important
to train neural networks.

• Non-IID: Also, another aspect that is more difficult because of the information
dissemination problem is non-IID data. Since the data distribution among clients
may vary, some nodes might only have very different neighbors at a given point in
time, while others may have very similar neighbors. This hinders the training of
some of them, while it may also make the model of a group of users biased.

Algorithm 4 Gossip Learning
1: wi ← 0

2: loop

3: wait(∆g)

4: p← selectPeer()
5: Send wi and |Dt

i | to p

6: end loop

7: procedure onReceiveModel(wr, |D
t
r|)

8: wi ← merge(wi, |D
t
i |, wr, |D

t
r|)

9: wi ← update(wi, D
t
i , E)

10: end procedure

11: procedure merge(wi, |D
t
i |, wr, |D

t
r|)

12: Use Equation 2.5 with wi, wr and N = 2

13: end procedure

2.5 Non-Independent and Identically Distributed Data

(non-IID)

Non-Independent and Identically Distributed data (non-IID) means that the distribution
of data between different clients may vary, i.e., the assumption that each data point is
drawn from the same distribution does not hold. For example, a dataset to detect spam
contains the e-mails information and an indication if they are spam or not. Usually,
there are many more examples of non-spam e-mails than spam ones, so this fact causes an
unbalanced label distribution between the classes (spam or not). Moving to the distributed
world, while some clients may contain both spam and not-spam e-mails, some of them
might only have not-spam ones, which makes the training process biased in some clients.

27

Figure 2.4: Image displaying the divergence of gradients during a Federated Learning
global model training with 3 clients having different optimal models [38].

Another example of this occurs when there are groups of similar users. For example,
if the original data follow 2 different distributions, there would be 2 different optimal
points for the weights of the model, one for each group [38]. This is called the gradient
divergence problem and can be visualized in Figure 2.4. In this figure, w∗

a, w
∗
b and w∗

c

represent the optimal model for clients a, b and c, and w0 is the initial model being trained
(the model contains only two features for visual simplicity). While clients a and b pull
the model gradients to the top left, client c pull them to the lower right of the dimensions
space. The result is that the trained global model stays in the middle of these 2 groups,
indicating that a single model is not enough to train optimally for the 2 client groups.

Formally, some of the different non-IID data distributions can be of the following
[45, 83], but usually they are a mixture of more than one of them:

• Feature Distribution Skew: This happens when the features of the data have
different distributions, but the distributions of the labels are the same. For exam-
ple, different writers can write the number 5 using different styles, changing the
characteristics of the handwritten digit.

• Label Distribution Skew: This happens when the label distribution between
the clients is different, but the features of the labels follow the same distribution.
For example, when clients have a maximum number of labels assigned to them, or
when this value varies, like some works that use the Dirichlet Distribution to create
non-IID scenarios [77, 51].

• Label Preference Skew: This happens when the distribution of the features is
the same, but the label is different. For example, some users might have different

28

movie tastes, so while some of them like movie A, some of them dislike the same
movie.

• Quantity Skew: This happens when the data quantities between different clients
vary a lot. For example, client i has 50 data entries and client j has 5000.

Some strategies have been proposed to handle non-IID data for Federated Learn-
ing. One of the first proposals is a strategy to be applied during the function mini-
mization procedure, called the FedProx method [58]. This strategy is similar to FedAvg,
but it includes a regularization term inside the function minimization procedure, called
ProxTerm, which can be seen in Equations 2.7 and 2.8. This regularization term mini-
mizes not only the error but also the difference between the trained and the global model
received, making the model updates closer to this last one, and this can be adjusted by
setting the hyperparameter µ. FedProx was proposed for devices with different speeds
and data quantities, so every update is guided to be closer to the global model to alleviate
device heterogeneity.

ProxTerm =
µ

2
∥w − wi∥

2 (2.7)

min{Fi(wi)} ⇒ Fi(wi) + ProxTerm = Fi(wi) +
µ

2
∥w − wi∥

2 (2.8)

2.5.1 Clustering

There are other types of strategies for other types of non-IID data. Some strategies that
are studied in this work are in the area of client selection, especially by using clustering
algorithms to calculate similar user groups. This is especially useful when the original user
data can be separated into different clusters [21, 68], which happen in different real-world
scenarios, such as users in different regions, users with different tastes, or vehicles with
different mobility profiles, such as taxis/buses and family vehicles.

Clustering algorithms are also in the area of machine learning, and their main focus
is to split the data examples (clients in this case) into different groups in a way that
only similar data are assigned to the same group. Although there are some methods that
require you to know the number of clusters in the data distribution beforehand, such as
K-Means [46], some newer solutions do not need to know the number of clusters, such as
Affinity Propagation [19]. Both strategies have advantages and disadvantages, but since
in the real world the data used for Federated Learning usually do not have a well-known
number of clusters, in this work Affinity Propagation will be used for clustering of clients,
as in [68].

Affinity Propagation works to create clusters for N data points. It starts by calculating
the distance matrix using Equation 2.9. The diagonal d(i, i) controls how likely each
instance is to become an exemplar, that is, the main representative data point of a cluster,
and it is usually initialized as the median distance.

d(i, k) = −∥xi − xk∥
2 (2.9)

29

Figure 2.5: Image displaying the iterations of Affinity Propagation clustering until exem-
plars convergence [69].

After initialization, the algorithm starts an iterative process between 2 stages, repre-
sented by Equations 2.10 and 2.11. The first calculates another matrix called responsibility
that calculates r(i, k), i.e., how good k can be an exemplar of i, taking into account other
possible exemplars. Second, the availability matrix, a(i, k) represents how good it would
be for i to pick k as its exemplar, considering the other points preferences to pick k as an
exemplar.

r(i, k) = d(i, k)−max
k′ ̸=k
{a(i, k′) + d(i, k′)} (2.10)

a(i, k) = min(0, r(k, k) +
∑

i′ ̸∈{i,k}

max(0, r(i′, k))) for i ̸= k

a(k, k) =
∑

i′ ̸=k

max(0, r(i′, k))
(2.11)

The exemplars are chosen at the end using Equation 2.12, that is, every point where the
sum of responsibility and availability is greater than zero is chosen as an exemplar. The
clusters are calculated with the matrices, for example, for point i the k with maximum
r(i, k) + a(i, k) gives the exemplar of i. The algorithm loop stops when the clusters
have not changed for a number of iterations. Figure 2.5 displays the iterations of the
algorithm, representing the exchange of both responsibilities and availabilities until the
final convergence and the exemplars are found.

r(i, i) + a(i, i) > 0 (2.12)

30

2.5.2 Similarity Metrics

To use clustering to select similar clients, it is common for works to use similarity metrics.
A similarity metric (or measure) is a function such that s(i, j) > s(i, k) if and only if the
data point i is more similar to j than to k. Therefore, if a given neighbor is more similar
than another, it probably has a more similar non-IID data distribution and is better for
merging.

The cosine distance is commonly used as a similarity metric in the context of Federated
Learning [68, 38], to measure how two models are similar to each other, and it is described
in Equation 2.13. Given models wi and wj, the dot product of the flattened vectors are
divided by the norm of both of them. This metric always gives a value in the range
[−1,+1], −1 meaning the data points are different and +1 similar.

CosSim(wi, wj) =
wi · wj

∥wi∥ ∥wj∥
(2.13)

Other possible functions that could be considered similarity measures are the inverse
of the error 2.14 or the balanced accuracy 2.15. The inverse of the error is calculated in
node i with local data Di using the model from client j, and when the error is smaller,
the similarity measure is bigger and they are more similar. Balanced accuracy has the
same idea, being a metric inside the range [0, 1].

si,j = 1/Fi(Di, wj) (2.14)

si,j = BalancedAccuracy(Di, wj) (2.15)

Since this is the context of neural networks, a metric used to calculate the similarity
between two models is called Centered Kernel Alignment (CKA) [35]. The linear version
of the CKA that is used in this dissertation can be seen in Equation 2.16.

X ∈ R
n×p1, Y ∈ R

n×p2, CKA =

∥

∥Y TX
∥

∥

∥XTX∥ ∥Y TY ∥
(2.16)

X and Y are activation matrices for two different neural networks, considering only one
layer of the first model and one layer of the second model (these matrices are preprocessed
to center the columns). The activation of a layer is defined after passing some data
examples through the network, calculating the intermediate steps, and not only the final
values. In this way, the generated matrices have n data points and p1 or p2 neurons. If
we compare the same layer between models, p1 = p2. This measure outputs a value in
the range [0, 1] for every pair of layers, so getting the average of these values outputs a
similarity metric for the whole network. It is also possible to use just some layers, and
some experiments have been performed with only the last layers of the models in this
calculation.

31

2.6 Weight-Similarity Client Clustering (WSCC)

The Weight-Similarity Client Clustering method (WSCC) [68] uses some of the concepts
described in the last sections to propose a solution for Centralized Federated Learning
under non-IID data. This method leverages the cosine distance as a similarity metric,
using a pair of models weights from different clients. It also uses the Affinity Propagation
clustering to group similar nodes together and performs the FedAvg [48] aggregation only
between the nodes of each cluster. The detailed description of the algorithm is given
below.

Algorithm 5 WSCC Server Side
1: wg ← 0

2: Send initial wg to clients
3: loop

4: wait(∆a)

5: Call the AGGREGATION procedure
6: end loop

7: procedure onReceiveModel(wr, |D
t
r|)

8: Store wr and |Dt
r| on the server

9: end procedure

10: procedure aggregation

11: With received models weights from clients w1, w2, ..., wN

12: Select a random benchmark j ∈ [1, N]

13: Empty distance list θ ← []

14: for i ∈ 1, 2, ..., N do

15: θi ← CosSim(wi, wj)

16: θ.append(θi)

17: end for

18: Clusters← AffinityPropagation(θ)

19: for c ∈ Clusters do

20: Merge the weights of models from cluster c to generate wc, using Equation 2.5
21: Send wc to the clients belonging to cluster c

22: end for

23: Merge all the weights received to generate a new wg using Equation 2.5
24: end procedure

Algorithm 5 presents the logic implemented on the server side. It starts the same as
the original FedAvg Algorithm 1, initializing the global model wg, sending it to clients,
and starting the main loop that waits for the aggregation round time ∆a and calls the
AGGREGATION procedure. The onReceiveModel procedure is also present to store
the information from the received model.

During the aggregation process, WSCC implements additional steps compared to the
original FedAvg server solution, to better handle non-IID datasets. It starts selecting a
random benchmark j from the received models, and between lines 13-17 it calculates the

32

cosine distance between the benchmark and all the other received models. Next, Affinity
Propagation clustering is used, passing the cosine distance list as data points, to generate
the client clusters. After that, on lines 19-22, for each cluster c the server creates an
aggregated model wc using the models from the clients of that cluster and sends the
model to the cluster’s clients. In the end, the regular FedAvg aggregation algorithm is
used to calculate a new global model wg, in case new nodes enter the training process.

On the client side, described by Algorithm 6, it begins initializing the local model wi,
and a threshold hyperparameter δ that will be used. The onReceiveModel procedure
starts with an acceptanceChecking procedure, described in Algorithm 7. In this context,
the terms acceptance checking are used to define a process to check whether or not a
model that has been received will be accepted by the local vehicle. This step calculates
the performance metric, in this case the balanced accuracy, both using the local model
and the received model, with a local acceptance dataset Da, which will be explained in
Chapter 5. After that, the client accepts the model only if the performance metrics of
the received model are better than the local model, or if the difference between them is
within the threshold δ. This strategy guarantees better stability during the first steps of
the training process and prevents potentially malicious nodes from attacking the whole
system [68]. After this step, the rest of the algorithm follows the regular FedAvg Algorithm
2, training the model locally and sending it back to the server.

Algorithm 6 WSCC Client Side
1: wi ← 0

2: Initialize threshold δ for global weight evaluation
3: procedure onReceiveModel(wr)
4: // The acceptance checking below is a step that is removed during some tests
5: wi ← acceptanceChecking(wi, wr, D

a
i , δ)

6: wi ← update(wi, D
t
i , E)

7: Send wi and |Dt
i | to the server

8: end procedure

Algorithm 7 Acceptance Checking

1: procedure acceptanceChecking(wi, wj, D
a, δ)

2: yi ← BalancedAccuracy(wi, D
a)

3: yj ← BalancedAccuracy(wj, D
a)

4: if yj g yi or diff(yj, yi) f δ then

5: wi ← wj

6: end if

7: Return wi

8: end procedure

33

2.6.1 Summary

The concepts introduced in this chapter were used as a base to develop a hybrid solution
for Federated Learning in VANETs, under different non-IID data distributions. Neural
networks, especially convolutional neural networks, are the state of the art solution to
general problems involving images, such as autonomous driving. The different mobility
models allow the simulations to replicate real scenarios of VANETs, which improves the
reliability of the experiments.

Decentralized Federated Learning, such as Gossip Learning, allows the vehicles to
communicate even if they cannot communicate with the centralized server in a given
moment in time. Clustering and similarity metrics are used as a solution to handle client
selection under non-IID data distributions, that is, which clients are similar or should
belong in the same group. With all these concepts and the WSCC method presented,
a hybrid solution was proposed to dynamically select similar received models in each
aggregation round both in the server and in the vehicle, which is capable of keeping
the training process running even when vehicles cannot communicate with the network
infrastructure.

34

Chapter 3

Related Work

With the theoretical concepts introduced in the last chapter, this next part summarizes
the related literature works that have been used or influenced the development of this
work. To better present the information, the works have been separated in Centralized,
Decentralized and Hybrid Federated Learning. Each section presents a table with some
main characteristics of each method, if they include vehicles or strategies to handle non-
IID data, and a final note about how this dissertation is different and expands other
works.

3.1 Centralized Federated Learning

This section describes some relevant works for Centralized Federated Learning that have
inspired and influenced the development of this dissertation, and they are listed in Ta-
ble 3.1. It started in 2016 with the original FedAvg paper [48] from Google, which was
described in the last chapter. Although FedAvg was mainly targeted at IID data, Fed-
Prox [58] followed to tackle non-IID data, creating the ProxTerm that was added as
regularization to the function minimization during the training process and that was also
described in the last chapter.

Some more strategies have been proposed to handle non-IID data, especially using
clustering. The CFL (Clustered Federated Learning) [59] method first uses Federated
Learning to find a global model, and at the end it iteratively splits the clients into 2 clusters
using a bipartitioning algorithm with the cosine distance, until a convergence criterion
is matched. Another proposed solution was the IFCA (Iterative Federated Clustering
Algorithm) [21] method, in which the server keeps in parallel K models, one for each
cluster, and the clients are responsible for picking one of them, using the local error to
choose the best one. The downside of this method is that the number of clusters needs
to be known in advance.

FeSEM (Federated Stochastic Expectation Maximization) [41] also has the disadvan-
tage of needing the number of clusters, but it uses FedProx regularization and Expectation
Maximization to dynamically calculate the clusters in each step. FedCC [79] uses the per-
formance of the local model to accept the global model or not, similar to WSCC [68]
described in the last chapter, and it also performs the clustering of clients after using the

35

SVD (Singular Value Decomposition) algorithm in part of the model weights and merging
pairs of clusters using the Euclidean distance until the N clusters are found.

Another very similar method to the last one is FedSim [55], which uses PCA (Prin-
cipal Component Analysis) on the gradients to reduce the dimensionality of the weights
before applying K-Means++ for clustering. FLIS (Federated Learning by Inference Simi-
larity) [51] is another similar approach, which uses the cosine distance on neural network
activations from the last layer and applies hierarchical clustering. To conclude non-IID
works, FedSNGP (Federated Spectral-normalized Neural Gaussian Process) [43] applies
SNGP strategies within the neural network architecture, which calculates similarities for
the clustering process.

Now, in the area of FL with vehicles, Elbir et al. [18] performed some initial compar-
ison studies between a centralized learning solution and a distributed vehicle federated
solution. FedCPF (Customized, Partial, and Flexible) [39] selects and aggregates vehi-
cle models with a probability defined by the number of data samples, accelerating the
training process.

Flexe [40] was an implementation of Federated Learning inside the OMNeT++/Veins
simulation tools, which also performed practical studies of the environment under an FL
system. FedSNN-NRFE (Spike Neural Networks, Neuronal Receptive Field Encoding)
[77] used Spike Neural Networks for fast model training in traffic sign recognition. To
conclude vehicle studies, PDP-PFL (Personalized Federated Learning with Personalized
Differential Privacy) [57], which uses differential privacy for security, the model is split
into shared layers and local layers only for personalization, and dynamic convolutions are
used for the classification of traffic signs.

The last centralized works to be mentioned are the Meta-FL [2], which uses a 2 level
hierarchical aggregation and applies security mechanisms in the intermediary layer to
handle attackers, like Krum algorithm and Trimmed Mean. To conclude, Lu et al. [44]
merges vehicles and non-IID data, where each vehicle uses a Bayesian Gaussian Mixture
model on local data and sends the result to the server, who is responsible for running
weighted K-Means to create clusters. After that, FL is applied to every cluster separately.

This dissertation contributes to the area of Centralized Federated Learning expanding
the ideas implemented in WSCC [68] and FLIS [51]. These methods handle Non-IID data
on the server using clustering and similarities, so this work proposes WSVC (Weight-
Similarity Vehicle Clustering) that adapts these ideas to be used in VANETs.

3.2 Decentralized Federated Learning

This next section focuses on Decentralized Federated Learning works, and they are listed
in Table 3.2. The original Gossip Learning (GL) [28] paper was introduced in 2019 and
explained in the last chapter, and immediately afterward, Giaretta et al. [22] prepared
a study to pinpoint the main disadvantages of this strategy, presenting some solutions.
They showed that network connectivity, non-IID data, and devices with different speeds
can affect the GL training process, leading to slow convergence. They propose to store the
received models and use one of them only at the end of the gossip round, to get the most

36

Table 3.1: Related work methods for Centralized Federated Learning, indicating if they
include vehicles or non-IID strategies, and their main characteristics.

Method Year Vehicles Non-IID Characteristics
FedAvg [48] 2016 Original work
FedProx [58] 2018 ✓ Proximal term regularization
CFL [59] 2019 ✓ Clustering after FL, iteratively splits

the clients in 2 clusters until conver-
gence

IFCA [21] 2020 ✓ Server trains K models, 1 for each clus-
ter, clients pick the best one

FeSEM [41] 2020 ✓ FedProx and clustering made with Ex-
pectation Maximization

Elbir et al. [18] 2020 ✓ Comparison with server centralized
learning

FedCPF [39] 2021 ✓ Select clients and aggregate with a
probability defined by the number of
data samples

Meta-FL [2] 2021 2 level aggregation using security mech-
anisms in the intermediary layer

FedCC [79] 2021 ✓ Client selection based on global model
performance, clustering after using
SVD in part of the model weights

WSCC [68] 2022 ✓ Clustering with Affinity Propagation
using cosine similarity of a benchmark
node and the rest

Flexe [40] 2022 ✓ Framework and tests for FL in OM-
NeT++/Veins

FedSNN-NRFE
[77]

2022 ✓ Spike Neural Networks for fast model
training

FedSim [55] 2022 ✓ Uses PCA on the gradients and K-
Means++ for clustering

FLIS [51] 2022 ✓ Clustering after calculating the simi-
larities using cosine distance on neural
network last layer

Lu et al. [44] 2023 ✓ ✓ Bayesian Gaussian Mixture on local
data, server performs weighted K-
Means from BGM

PDP-PFL [57] 2023 ✓ Personalized differential privacy, dy-
namic convolution, last layers are local
only

FedSNGP [43] 2023 ✓ Spectral-normalized Neural Gaussian
Process to calculate the similarities for
clustering

37

recent one. This is also similar to what Bagoly et al. [3] proposed, where the neighbors’
models are stored locally, and all of them are used when the round ends, meaning that
each vehicle behaves as a FedAvg client and server at the same time.

The next step after the initial proposals was to diversify the studies and start to
think about other important aspects in a decentralized environment, like IoT (Internet of
Things). A method called BACombo (Bandwidth-Aware Combo) [31], was proposed to
use network resources efficiently in a decentralized environment. They introduce model
split in segments, and also worker selection based on bandwidth prediction, to better use
the network resources. After that, the original authors of Gossip Learning extended their
study [29], also using the idea of model partitioning and adding token accounts to each
device, to control the number of messages through the network. They also applied the
concepts of proactive messages, that is, the ones sent at the end of the gossip round, and
reactive messages that are sent after a model is received, to speed up the convergence
process.

The last method that does not tackle vehicles or non-IID data is the following. CGL
(Centrality-Aware Gossiping for Distributed Learning) [49] uses the network topology of
nodes to calculate some metrics, such as centrality. The metric is used to give importance
to the nodes, and the more important nodes have the gossip round time decreased, so
they send their models more times to neighbors.

To start non-IID decentralized papers, PENS (Performance-Based Neighbor Selection)
[54] is a GL method that only trains the local model after receiving N models from neigh-
bors. During the merging process, they select the M top neighbors with lowest error to
create the new local model. PANM (Personalized Adaptive Neighbor Matching) [38] fol-
lows similar strategies as PENS, but with additional steps. Every node here keeps a bag
of potential clients, and they leverage first a Monte Carlo random expansion approach to
include more neighbors inside this list, and a second phase using Expectation Maximiza-
tion with similarity metrics as input (cosine distance), to also keep nodes with similar
distributions for merging.

The PEPPER [6] method is focused on recommendation algorithms, and each time a
client receives a gossiped model, it uses a local weighting data set to calculate the accuracy
of both local and received models, to perform a performance-weighted merge. They also
implemented a personalized neighbor selection on each node, storing the performance of
the peers to choose the best ones, but also with an expansion phase to include potential
new peers. To conclude non-IID without vehicles, MGM-4-FL (Model Gossiping Method
for FL) [50] applies many strategies already listed, but each node also executes the local
training choosing more times neighbors with lower error.

Going to papers with vehicles, Barbieri et al. [5] tested a strategy that uses all neigh-
bors’ models for aggregation, and only the last layers of the models are exchanged, the
rest is local only. Dinani et al. [15] went for a similar approach, that each vehicle acts
as a client and a server at the same time, but they also implemented OMNeT++/Veins
realistic scenarios for the simulations, using a dataset of vehicle trajectory predictions.
They also continued their work [16] testing a decentralized powerloss function for model
aggregation.

The last 2 decentralized works use both vehicles and non-IID data. DFL-DDS (De-

38

centralized Federated Learning with Diversified Data Sources) [66] keeps and exchanges
a state vector that quantifies how much each neighbor contributes to the local model of
the current vehicle, updated using the learning rate. The idea is then to minimize the
Kullback-Leibler divergence to get the aggregation weights of the received models and re-
calculate the state vector. The last method is FedPC [80], which uses a dataset of driving
action recognition. They use FedProx [58] ProxTerm, leverage transfer learning with the
first layers of the model frozen, and there is no aggregation when receiving a model (the
local model is replaced).

The main contribution of this dissertation to pure Decentralized Federated Learning is
the adaptation of the centralized method WSCC [68] to execute such as an implementation
of Gossip Learning. The experiments performed in Chapter 5 show the advantages and
disadvantages of this approach, comparing it with centralized and hybrid approaches.

3.3 Hybrid Federated Learning

This last section introduces the hybrid methods studied, and they are listed in Table 3.3.
For regular use cases, Gossip-PGA (Periodic Global Averaging) [11] implements a regular
Gossip Learning algorithm, but in every couple of gossip rounds, it performs a centralized
global average round, to speed up information dissemination. HL-SGD (Hybrid Local
Stochastic Gradient Descent) [25] expands the last idea treating each node as a server.
First, there is a step to average the neighbors’ models, followed by a global averaging
round.

To conclude the works without vehicles and non-IID data, there is FedPareto [32].
This work focuses on efficient device communication, so there is a hierarchy with local
leaders and the global server. Each leader aggregates the models of their neighbors before
sending only one model to the server for global aggregation. The leaders are selected
using location and distance as criteria for K-Means clustering, and in each round, the
leader uses the loss to pick the worst models to train.

In the vehicle area, IoV-SFDL (Swarm-Federated Deep Learning in IoV) [73] uses a
new proprietary framework implemented by Hewlett Packard called Swarm Learning [74].
In their case, each swarm group sends the models to the RSU, which predicts an aggregated
weight using a credibility-aware algorithm, which takes into account the number of times
the model group was better or worse than the new global model. The last step is for the
RSUs to send their models for global aggregation.

The TFL-CNN (Two-Layer FL) [82] method also considers a 2 level hierarchy with the
RSUs and the global server, with aggregations in both levels. However, in the RSUs the
aggregation is weighted by a parameter that is calculated based on the velocity, location,
and computational power of the vehicle. These values try to map the quality of the data
captured by each vehicle.

Another hybrid method is EAGLE (Edge-Assisted Gossiping Learning) [14], which
uses GL between vehicles and the RSU is the FL server. When a vehicle receives a model
from the server (RSU), they can use gossip for N rounds, or until no neighbor is available,
before returning the model to the server for global aggregation.

39

Table 3.2: Related work methods for Decentralized Federated Learning, indicating if they
include vehicles or non-IID strategies, and their main characteristics.

Method Year Vehicles Non-IID Characteristics
Gossip Learning
[28]

2019 Original work

Giaretta et al.
[22]

2019 Experiments and extension for devices
with different speeds

Bagoly et al. [3] 2020 Merge all the received models at the
end of the gossip round

BACombo [31] 2020 Considerations about bandwidth and
model split in segments

Hegedus et al.
[29]

2021 Model partitioning and token accounts
to control the number of models sent

Barbieri et al.
[5]

2021 ✓ Only the last layers of the models are
exchanged, aggregation with all the
neighbors

PENS [54] 2021 ✓ Train after receiving N models, select
M neighbors with top performance on
local dataset

Dinani et al. [15] 2021 ✓ Vehicle acts as server and client at the
same time

DFL-DDS [66] 2022 ✓ ✓ Vehicles keep a state vector, Kullback-
Leibler divergence to measure diversity

PANM [38] 2022 ✓ Cosine distance to measure similarity,
Monte Carlo method and Expectation
Maximization to create the clusters

PEPPER [6] 2022 ✓ Aggregation weighted by performance
on local data, top neighbors selected
with expansion phase

Dinani et al. [16] 2022 ✓ Powerloss function for aggregation
MGM-4-FL [50] 2022 ✓ Nodes share their error to neighbors,

training executed more times in nodes
with lower error

CGL [49] 2022 Gossip round is smaller for nodes with
more importance

FedPC [80] 2023 ✓ ✓ FedProx regularization, first layers of
the model are frozen, no aggregation
when receiving a model

40

Table 3.3: Related work methods for Hybrid Federated Learning, indicating if they include
vehicles or non-IID strategies, and their main characteristics.

Method Year Vehicles Non-IID Characteristics
Gossip-PGA [11] 2021 Periodic global average after some gos-

sip rounds
IoV-SFDL [73] 2021 ✓ Swarm learning, groups of vehicles gen-

erate a model for the RSU, global ag-
gregation

TFL-CNN [82] 2021 ✓ Hierarchy, RSU and global aggrega-
tions, parameters like velocity and
power for weighted aggregation

HL-SGD [25] 2022 Gossip averaging of neighbors and
global aggregation

EAGLE [14] 2022 ✓ RSU is the FL server, gossip for N
rounds before returning the model to
the RSU

FedPareto [32] 2022 Hierarchy with local leaders and global
server, leaders selection using the dis-
tance

Taïk et al. [67] 2022 ✓ ✓ Cluster heads and server, leader se-
lected using vehicles information

The last method merges vehicles with non-IID data and was proposed by Taïk et al.
[67]. The environment is composed of servers and vehicle cluster heads and both perform
aggregation following the hierarchy. The differential aspect here is the process to schedule
the cluster heads, the vehicles of each cluster, and the global aggregation. The cluster
formation is performed by the server considering different parameters such as velocity,
data diversity, or model age, and the server creates a different aggregated model for each
cluster.

The main objective and contribution of this dissertation is in the area of Hybrid Fed-
erated Learning, proposing the new method HVCFL (Hybrid Vehicle Clustered Federated
Learning). This strategy works with vehicles and Non-IID data, without relying on build-
ing a hierarchy of vehicles, as in Taïk et al. [67].

41

Chapter 4

Proposed Methods

This chapter presents the proposed methods of this dissertation. It is organized in a way
that builds the solution step by step, leveraging existing solutions, and integrating new
ideas. It starts talking about the message broadcasting in vehicular networks and the
adaptations to Gossip Learning to benefit from this environmental behavior of VANETs.

Next, two ideas are introduced which are based on the Weight-Similarity Client Clus-
tering (WSCC) [68] method, and these ideas are the basis and will be combined to build
the final hybrid solution. One proposal is Decentralized WSCC, applying the ideas of
similarity metrics and clustering without a central server. The other proposal is a prac-
tical implementation of WSCC in vehicle networks. Some structural changes needed to
be made to the original framework so that it was able to execute in VANETs, and this
method was named Weight-Similarity Vehicle Clustering (WSVC).

To conclude, the complete solution which includes both decentralized and central-
ized WSCC/WSVC implementations is fully explained, which was called Hybrid Vehicle
Clustered Federated Learning (HVCFL). The results of experiments, advantages, and
disadvantages of the methods presented are explained and discussed in Chapter 5.

4.1 Message Broadcasting

As explained in Chapter 2, VANETs are implemented in a wireless medium, so when a
vehicle sends a message, every other client close to the sender vehicle will be able to hear
it. It is also possible to implement routing and multiple-hop protocols, but in this work
the message broadcasting [56] is used, as in [15, 16, 40].

The disadvantage of using message broadcasting is when many nodes try to transmit
a message at the same time, originating the already explained phenomenon of Broadcast
Storming. In this work, to prevent many messages from colliding at the same time, a
similar strategy to [15, 16] was implemented, that is, to use a larger federated learning
round time. In this work, the gossip round time and the centralized approaches both use
30 seconds for each round. It makes sense to not use very small round times, since the
vehicles do not have a powerful CPU or GPU to train the local models so quickly, and the
network would be overwhelmed with messages of lower priority compared to other kinds
of services, like safety.

42

As an example of broadcasting, the original Gossip Learning algorithm was slightly
modified, which can be seen in Algorithm 8. The only change made is inside the main
gossip loop, and instead of selecting a neighbor p and sending the model to it, the modified
algorithm broadcasts the message to every other node that can hear it, being vehicles and
RSUs. For communication between vehicle and central server, the RSU is the responsible
agent to receive and send messages, also using broadcast to send data to vehicles, as in
[82, 39, 73].

Algorithm 8 Gossip Learning with Message Broadcasting
1: wi ← 0

2: loop

3: wait(∆g)

4: Broadcast wi and |Dt
i | to neighbors

5: end loop

6: procedure onReceiveModel(wr, |D
t
r|)

7: wi ← merge(wi, |D
t
i |, wr, |D

t
r|)

8: wi ← update(wi, D
t
i , E)

9: end procedure

4.2 Decentralized WSCC

This and the next section leverage the Weight-Similarity Client Clustering (WSCC) [68]
method and expand it for the context of decentralized federated learning and VANETs.
The first strategy that was implemented and assessed was to use the WSCC logic and
implement it in a decentralized way, as shown in Algorithm 9. This method is fully
decentralized, so there are no central servers or RSUs acting, but communication among
vehicles only. An analysis and discussion about this method, with experiments and results,
will be given in Chapter 5.

Each vehicle starts by initializing the local model wi, an empty list of received models
wir, and the threshold hyperparameter δ, used for receiving model evaluation like in the
original WSCC. The onReceiveModel procedure is called when the vehicle receives a
model from a neighbor, and only the information received is added to the wir list.

The main gossip loop of the algorithm has been modified to perform steps similar to
WSCC. It starts waiting for the gossip round time ∆g, then it checks if the vehicle has
received models in the last round, R being the size of the received models list. In lines
8-12, the cosine distance similarities θ are calculated between the local model wi and the
ones received from wir. Between lines 13-15, Affinity Propagation clustering [19] is used
to group the received models and find the cluster c for the current vehicle. Note that the
clustering procedure excluded the current vehicle i.

Having found the cluster c with the current vehicle, representing the models with
similar distributions, the merging process inside the cluster calculates the model wc. After
that, acceptanceChecking with Algorithm 7 using local acceptance dataset Da

i is executed,
and then the model is trained locally for E epochs. In the end, the model information is

43

broadcast to neighbors, and the wir list is emptied.

Algorithm 9 Decentralized WSCC
1: wi ← 0

2: wir ← []

3: Initialize threshold δ for merged weight evaluation
4: loop

5: wait(∆g)

6: R← wir.size

7: if R > 0 then

8: Empty distance list θ ← []

9: for j ∈ {1, 2, ..., R} do

10: θj ← CosSim(wi, wir[j])

11: θ.append(θj)

12: end for

13: Clusters← AffinityPropagation(θ)

14: c← Clusters.predict(CosSim(wi, wi))

15: c.add(i)

16: Merge the weights of models from cluster c to generate wc, using Equation 2.5
17: // The acceptance checking below is a step that is removed during some tests
18: wi ← acceptanceChecking(wi, wc, D

a
i , δ)

19: wi ← update(wi, D
t
i , E)

20: end if

21: Broadcast wi and |Dt
i | to neighbors

22: wir ← []

23: end loop

24: procedure onReceiveModel(wr, |D
t
r|)

25: wir.append(wr, |D
t
r|)

26: end procedure

This algorithm executes the same steps as WSCC but in a decentralized way and with
some adaptations, to check if models have been received or not. It is also important to
broadcast the local model wi at the end of the gossip loop even if no model was received,
to prevent cases where every node cannot communicate with another and the training
process would stop. Note that it uses the modified version of Gossip Learning that trains
the local model at the end [22, 3].

4.3 Weight-Similarity Vehicle Clustering

The original WSCC work [68] was designed without considering that some nodes of the
network might not be reachable at all times, as often occurs in VANETs. For example, in
every round the server sends the models to all the nodes, separating them by cluster, but
if the node did not participate in the last round, the node does not have a current cluster.
Also, this is a broadcasting medium, so a strategy is needed to differentiate which vehicles

44

belong to each cluster, since each should be able to get the correct model assigned to their
current cluster.

With these issues listed, some modifications have been made to WSCC to adapt it
to vehicle networks, and this method was called Weight-Similarity Vehicle Clustering
(WSVC). This new method is a centralized federated learning solution, not including
communication between the vehicles.

The Algorithm 10 represents the server (it is also used for the hybrid method presented
in the next section). Here, the basic algorithm steps follow the WSCC server-side logic,
with some additional steps to identify the vehicles of each cluster and to disseminate the
global model to vehicles that did not participate in the last round.

It starts the same as the WSCC server, initializing the global model wg, sending it
to clients, and waiting for the round time of aggregation ∆a, before calling the function
AGGREGATION . In line 7, the onReceiveModel procedure is called, and in this case
it stores the V ehicleId in addition to the vehicle model information, for further use.

The AGGREGATION function was modified from the WSCC method to create a list
of ParticipatingV ehicles with the V ehicleIds received by the server in the last round. If
the server received models, between lines 14-20, it uses the same logic as WSCC to select
a benchmark vehicle j, calculate the cosine similarities and use Affinity Propagation [19]
to create the clusters.

At lines 21-25, for each cluster, a list ClusterV ehicles is created with the V ehicleIds

of each cluster c. Next, the models of the cluster c are merged to generate the cluster
model wc. At the end of this loop, the server sends wc, the ParticipatingV ehicles list, and
the ClusterV ehicles list to the clients belonging to the cluster c. With this information,
each vehicle receiving a server model will be able to identify if they have participated in
the last round and which cluster they belong to.

To conclude the server-side algorithm, all participating models are merged to generate
a new global model wg. Then in line 28, there is an important additional step to send the
wg and ParticipatingV ehicles list to vehicles, indicating that this message is the global
model. This is important because some vehicles might not have participated in the last
round of aggregation, so they can use the global model or check the models in the clusters
to choose the best.

Algorithm 11 presents the vehicle logic. It starts by initializing the local model wi,
the local V ehicleId, and the threshold δ for acceptance check. Then the onReceiveModel

procedure receives a model wr, the ParticipatingV ehicles list of the last round of aggre-
gation, and the ClusterV ehicles for model wr.

Next in line 5, the vehicle performs some checks to accept or not the model. It
first checks if the data are from the server and if the local V ehicleId belongs to the
ClusterV ehicles list, indicating that the vehicle is from the cluster represented by the
received model. It also checks if V ehicleId is not in ParticipatingV ehicles, which means
that the current vehicle did not participate in the last round of aggregation. If either of
the conditions above is true, it means that the cluster is correct or the vehicle did not
participate in the last aggregation round, so it should pick the best model for its training.
If both of them are false, either the vehicle belongs to another cluster, or the message is
from another vehicle and not from an RSU.

45

If the vehicle did not participate in the last round, it will wait for the server to send all
the models generated in the last centralized round wc1, wc2, . . . , wg, for all clusters and the
global model. It waits a time ∆c, because some models might not arrive to the vehicle in
the event of network failures. Then, it defines wr as the best received model considering
BalancedAccuracy in the local acceptance dataset Da

i . Doing this strategy, the vehicle is
able to choose which cluster model best fits its current data, or pick the global model if
none of them are good.

Algorithm 10 WSVC/HVCFL Server Side
1: wg ← 0

2: Send initial wg to clients
3: loop

4: wait(∆a)

5: Call the AGGREGATION procedure
6: end loop

7: procedure onReceiveModel(wr, |D
t
r|, V ehicleId)

8: Store wr, |Dt
r| and V ehicleId on the server

9: end procedure

10: procedure aggregation

11: With received models weights wr and V ehicleIds from clients w1, w2, ..., wN

12: ParticipatingV ehicles← V ehicleIds

13: if wr.size > 0 then

14: Select a random benchmark j ∈ [1, N]

15: Empty distance list θ ← []

16: for i ∈ 1, 2, ..., N do

17: θi ← CosSim(wi, wj)

18: θ.append(θi)

19: end for

20: Clusters← AffinityPropagation(θ)

21: for c ∈ Clusters do

22: ClusterV ehicles← V ehicleIds in c

23: Merge the weights of models from cluster c to generate wc, using Equation
2.5

24: Send wc to the clients belonging to cluster c, including
ParticipatingV ehicles and ClusterV ehicles

25: end for

26: Merge all the weights received to generate a new wg using Equation 2.5
27: end if

28: Send wg and ParticipatingV ehicles to the vehicles, indicating this is the global
model

29: end procedure

If the vehicle accepts the received models, the steps are the same as the WSCC logic.
First, it performs the local acceptance check using the local acceptance dataset Da

i and

46

the threshold δ. After that, it trains the model for E epochs on the local training dataset
Dt

i , before sending the new local model information and the V ehicleId back to the server.

Algorithm 11 WSVC Client Side
1: wi ← 0

2: Initialize V ehicleId

3: Initialize threshold δ for global weight evaluation
4: procedure onReceiveModel(wr, ParticipatingV ehicles, ClusterV ehicles)
5: if Is from server and (V ehicleId ∈ ClusterV ehicles or V ehicleId ̸∈

ParticipatingV ehicles) then

6: if V ehicleId ̸∈ ParticipatingV ehicles then

7: Wait ∆c time for server to send all the centralized models wc1, wc2, . . . , wg

8: Overwrites wr using the model with the best BalancedAccuracy on the
local acceptance dataset Da

i

9: end if

10: // The acceptance checking below is a step that is removed during some tests
11: wi ← acceptanceChecking(wi, wr, D

a
i , δ)

12: wi ← update(wi, D
t
i , E)

13: Send wi, |Dt
i | and V ehicleId to the server

14: end if

15: end procedure

4.4 Hybrid Vehicle Clustered Federated Learning

The centralized methods are good for aggregating all the information from multiple parts
of the network, but the centralized server entity might be a problem if nodes in the
network cannot reach it. Decentralized methods are capable of training models even with
partially disconnected networks, allowing communication between vehicles, but have the
information dissemination issue [22] that also hinders the training process.

Therefore, to obtain the strengths of both centralized and decentralized methods, a
hybrid strategy is proposed in this work, called Hybrid Vehicle Clustered Federated Learn-
ing (HVCFL). It merges the implementations from the last two sections, Decentralized
WSCC and WSVC (Weight-Similarity Vehicle Clustering).

Taking a look at Figure 4.1, there is a central server that executes the WSVC logic,
performing synchronized rounds of centralized federated learning aggregation for vehicles
based on the WSCC [68] method. The server communicates with the RSUs to receive
the models from the vehicles and send the server models to them. Vehicles can leverage
Vehicle-to-Infrastructure (V2I) communication with the RSUs to receive the clustered or
global models from the server, or send the trained models for centralized aggregation.

On the vehicle side, they also leverage Vehicle-to-Vehicle (V2V) communication to
gossip the models between them. In doing this, they are able to merge models from
neighbors in case they are not in range of an RSU, so that they can continue the training
process even with the network partially disconnected. Note that it is also important to

47

Figure 4.1: Solution architecture with a central server that performs centralized Federated
Learning procedures, the RSUs that are the bridge between the vehicles and the server,
and the vehicles that perform both centralized and decentralized Federated Learning
procedures.

correctly synchronize the gossip or centralized rounds, so that the vehicles can decide if
they are going for the decentralized approach or the centralized one at a given point in
time. The details of this logic will be described in the client-side algorithm.

For the server side, it also uses the algorithm for WSVC presented in the last section
10. An important note here is that the messages sent by the server need to have some
kind of identification, so that the vehicles can distinguish which ones are from vehicle
neighbors and which ones come from RSUs.

On the client side, the Algorithm 12 describes the steps for HVCFL, including the
logic to handle both centralized and decentralized approaches at the same time. The
initialization starts with the local model, the received models list wir, the V ehicleId, and
the hyperparameter δ for the acceptance check of the new merged model.

The main loop of the application handles the decentralized gossip logic, similar to
Algorithm 9 of the Decentralized WSCC. It waits for the gossip round time ∆g, then
checks if models have been received. From lines 9-16, it creates the cosine similarity list
θ between the local model and the received ones, and uses Affinity Propagation [19] to
find the clusters. Finally, it gets the cluster c of the current vehicle. After merging the
models of c to generate the new model wc, there is the acceptanceChecking procedure
and local model training. In the end, the model information and V ehicleId are broadcast
to neighbors, including the server through the RSUs, and wir is reset.

This first part covers the logic of the vehicle executed when there is no contact with
the server, using a purely decentralized gossip approach. It is also possible that during

48

the training procedure the vehicle entered the coverage area of an RSU, so it also sends its
model to the server for aggregation, even if it had not participated in the last centralized
round. However, to include the centralized logic, it is necessary to implement some
synchronization mechanisms.

The onReceiveModel procedure is responsible for deciding whether the vehicle will
use the decentralized or centralized approach. If the message received is not from the
server (through an RSU), it only stores the model locally in wir, at line 38. However,
if it is a model from the central server, there are some possibilities. If V ehicleId is on
the list ClusterV ehicles, it means that the vehicle participated in the last aggregation
round, and the model received wr is of the correct cluster. If V ehicleId is not on the
ParticipatingV ehicles list, it means that the vehicle did not participate in the last cen-
tralized aggregation round. If that is the case, the vehicle will use the same strategy
as the WSVC client Algorithm 11 to pick the best model from the server, between lines
28− 31 of the HVCFL client Algorithm 12.

If the vehicle accepts the model from the server, it stops the gossip loop and the ongoing
training if it is executing it, to synchronize with the server. It restarts the loop from the
beginning of ∆g for synchronization, because the vehicle can exit the RSU coverage area,
so it is important to continue the training process with the decentralized approach in
the next round if the server is not reachable. After that, the process is the same as the
other algorithms presented, to perform the acceptanceChecking procedure, local training,
broadcasting of model information to server and neighbors, and reset wir.

With all the server and client logics explained, there are some execution possibilities
for message communication between the agents. Figure 4.2 displays a sequence diagram
with an example of the message exchange procedure between the server (S), an RSU, and
two vehicles (V1 and V2).

This sequence diagram starts with server S performing the centralized aggregation
procedure, and vehicle V2 is participating in this aggregation round, i.e., it has sent its
model to the server. In this example, for the sake of simplicity, the server sends only one
cluster model, named C1, and one global model, and the vehicles will accept them, V1
with the global model and V2 with C1. In a real scenario, the vehicles could drop the
received models after the acceptance checking step; however, it will be considered that
the models received in this diagram are accepted.

After the server aggregation, it sends both cluster C1 and global models to the RSU,
to be sent over IEEE 802.11p to the vehicles. The vehicle V2, in this case, was used to
train the model for the cluster C1, and since V2 is in the range of the RSU, it will start
V2’s local training procedure after picking C1.

At the same time, vehicle V1 is not in the coverage area of an RSU, so it will not
receive the global model from the server. Considering that V1 received some models from
other vehicles, it will start the decentralized V1 local training, triggered at the end of
the gossip round time, which in this case is not synchronized with the server aggregation
rounds because V1 has not communicated with the server yet.

49

Algorithm 12 HVCFL Client Side
1: wi ← 0

2: wir ← []

3: Initialize V ehicleId

4: Initialize threshold δ for merged weight evaluation
5: loop

6: wait(∆g)

7: R← wir.size

8: if R > 0 then

9: Empty distance list θ ← []

10: for j ∈ {1, 2, ..., R} do

11: θj ← CosSim(wi, wir[j])

12: θ.append(θj)

13: end for

14: Clusters← AffinityPropagation(θ)

15: c← Clusters.predict(CosSim(wi, wi))

16: c.add(i)

17: Merge the weights of models from cluster c to generate wc, using Equation 2.5
18: // The acceptance checking below is a step that is removed during some tests
19: wi ← acceptanceChecking(wi, wc, D

a
i , δ)

20: wi ← update(wi, D
t
i , E)

21: end if

22: Broadcast wi, |Dt
i | and V ehicleId to the server and neighbors

23: wir ← []

24: end loop

25: procedure onReceiveModel(wr, |D
t
r|, ParticipatingV ehicles, ClusterV ehicles)

26: if Is from server and (V ehicleId ∈ ClusterV ehicles or V ehicleId ̸∈

ParticipatingV ehicles) then

27: Stop gossip Loop (and ongoing training) and restart from the beginning of ∆g

28: if V ehicleId ̸∈ ParticipatingV ehicles then

29: Wait ∆c time for server to send all the centralized models wc1, wc2, . . . , wg

30: Overwrites wr using the model with the best BalancedAccuracy on the
local acceptance dataset Da

i

31: end if

32: // The acceptance checking below is a step that is removed during some tests
33: wi ← acceptanceChecking(wi, wr, D

a
i , δ)

34: wi ← update(wi, D
t
i , E)

35: Broadcast wi, |Dt
i | and V ehicleId to the server and neighbors

36: wir ← []

37: else if Not from server then

38: wir.append(wr)

39: end if

40: end procedure

50

Figure 4.2: Sequence diagram of Hybrid Vehicle Clustered Federated Learning (HVCFL),
displaying some examples of interactions between vehicles, RSUs and the central server,
and the synchronization solutions adopted.

While V1 is training, V2 finishes the local training and broadcasts the V2 model to
its neighbors. The RSU is in coverage of V2, so it receives the model and sends it to the
server to store it, but it does not reach V1, because V1 and V2 in this case are not in
the coverage space of one another. After that, V1 finishes the local decentralized training
and broadcasts its model, but neither V2 nor the RSU receive the message.

After the above steps, the server triggers another round of aggregation. The server
generates another cluster model C1 and the global model, and sends them to the RSU
to broadcast to the vehicles. For simplicity, the C1 cluster model is considered to also
contain the vehicle V2, but in practice it could be a different cluster assigned to vehicle
V2.

The process for V2 starts in a similar way, receiving model C1 from the server and
starting the local training. However, now V1 has entered the RSU coverage area, so it is
capable of correctly receiving the centralized models. After that, V1 stops and restarts
the local gossip round, to synchronize with the server. It also triggers the procedure to
pick which model is the best one using the local acceptance dataset, and chooses the
global model over C1 in this case.

In this diagram example, V2 finishes the local model training before V1, so it broad-

51

casts the model to its neighbors. While the RSU receives the V2 model and the server
stores it, the message does not reach the V1 vehicle. This is an example that could occur
even if both vehicles are in the RSU coverage area. Since the wireless protocol has a short
transmission range, the vehicles could be in range of the RSU but not in range of each
other, or there is an obstacle between them.

Another interesting aspect that could occur is depicted after V1 finishes the local
training. In this case, it is able to send the model to the RSU, so the server stores it,
and also to vehicle V2 that stores the V1 model locally. Between the time V2 finished
training and V1 finished training, the vehicles could have been in contact, so V2 was not
seeing V1 at first, but V1 was able to reach V2.

Another possibility that could happen with any vehicle is the following. At first, they
were able to receive a server model from the RSU, but during the local training procedure,
they moved outside of the coverage area. If this happens, they will not be able to send
the new trained model to the server again, but neighboring vehicles could receive the
model. This is important because the training procedure of the nodes does not stop, even
if the network is partially disconnected, and when the vehicles cannot participate in the
centralized aggregation round.

52

Chapter 5

Experiments

This chapter presents the experiments that were carried out with existing methods from
the literature and the proposals of this dissertation. It starts with the methodology,
presenting the tools used, mobility scenarios, the simulation parameters like round times
or message range, the datasets preparation, neural networks and metrics. Then a variety
of experiment results are displayed, with a thorough analysis and discussion of them,
including the advantages and disadvantages of each method tested.

5.1 Methodology

5.1.1 Tools

To try as best as possible to simulate a real-world scenario and environment of highly
dynamic and wireless short-range networks, the tools OMNeT++, Veins and SUMO
[71, 63, 42] have been used in the experiments. OMNeT++ (Objective Modular Net-
work Testbed in C++) [71] is a discrete event-based network simulation tool, while Veins
(Vehicles in Network Simulation) [63] is an OMNeT++ module that implements a frame-
work for VANET simulation, and SUMO (Simulation of Urban Mobility) [42] simulates
road vehicle traffic and mobility in a map scenario.

In Figure 5.1, it is possible to see how the integration of OMNeT++, Veins, and SUMO
works. Veins is a module of OMNeT++, so it runs inside it, and SUMO is a separated
application. Thus, Veins bridges OMNeT++ and SUMO implement a protocol called
TraCI (Traffic Control Interface), so that the pair OMNeT++/Veins handles wireless
channel simulation and Veins/SUMO the position, velocity, and route of the vehicles.

Another important feature embedded is the simulation of wireless message collisions
and object shadowing, such as buildings, which helps the simulation to be realistic. For
the experiments, a part of the Luxembourg SUMO Traffic Scenario (LuST) [13] was
used because it represents a real city with different roads with different max speeds, and
buildings. Figure 5.2 displays the complete map.

53

Figure 5.1: Architecture of the integration between OMNeT++, SUMO and Veins [63].

Figure 5.2: Luxembourg SUMO Traffic Scenario (LuST) [13].

54

5.1.2 Scenarios

In terms of scenarios used for testing, Figures 5.3, 5.4 and 5.5 show the same squared
region of the original LuST scenario that was used in the experiments. The region’s size
is approximately 3000m×2200m, and the 3 different images represent the same map with
12, 8 and 6 RSUs. During sections of the experimental results, it will be possible to see
how the RSU coverage improves or hinders the training process, especially of centralized
federated learning methods. There is also a centralized server in all scenarios that is
connected to all the RSUs.

To generate different experiments, two mobility models have been used, the Manhattan
Mobility Model and the vehicle traces that come with LuST. The Manhattan model is
good for representing vehicles that have long trips around the city, such as buses, taxis,
and app drivers, while the traces usually represent short trips from one point to another.
The main focus of the experiments is on the Manhattan model, with initial tests using
traces.

The vehicles generated in both scenarios always try to use the maximum speed of their
current road if possible, and 100 vehicles were used in all experiments. In the Manhattan
model, vehicles are added one by one to the map, starting at time 0.0 and with a gap of
0.2 seconds to add the next vehicle. In this way, all vehicles are added until 20 seconds
have passed, and since 30 seconds is the base round time for all the methods, the vehicles
are spread through the round period. This is important to simulate real examples for
which the vehicles can join the training process at any time, and 0.2 seconds of separation
is small enough for some vehicles to transmit models at the same time and test message
conflicts. The total execution time of the experiments varied from 900 to 3600 seconds
(15 minutes to 1 hour).

For the vehicles traces, they also were added one by one, but passing 6 seconds between
each vehicle. In doing this, it was possible to generate a scenario with a variable number of
vehicles on the road at each time, while the Manhattan scenario always had 100 vehicles.
The total time for the short trips experiments was 900 seconds (15 minutes).

5.1.3 Simulation Parameters

To approximate the simulations as best as possible to a real-world scenario, some pa-
rameters for the simulation and timing were established. As already stated, a rectangle
of 3000m × 2200m of the LuST [13] scenario was used, and a maximum number of 100
vehicles was chosen for all experiments. Their speeds are always adjusted according to
the traffic on the road, but by default they try to drive using the maximum allowed speed,
which is 13.89 m/s in most cases.

In terms of communication parameters, the idea was to establish a maximum trans-
mission range of 500 meters for both vehicles and RSUs, as in [78]. An experiment was
carried out to test the transmission range using two static elements within the scenario,
without objects blocking the message path. The parameters set were 20 mW of transmis-
sion power, -92 dBm of minimum power level, and 6 Mbit/s to achieve the desired range.
Note that during the experiments, this range usually decreases a lot due to objects that
hinder signal transmission on the wireless medium.

55

Figure 5.3: LuST Scenario with 12 RSUs.

Figure 5.4: LuST Scenario with 8 RSUs.

56

Figure 5.5: LuST Scenario with 6 RSUs.

Table 5.1: Simulation parameters common to all experiments.

Parameter Value
Simulation area 3000m x 2200m
Scenario LuST
Number of vehicles 100
Vehicle speeds Maximum of road (mostly 13.89 m/s)
Transmission power 20 mW
Min power level -92 dBm
Bitrate 6 Mbit/s
Transmission range 500m

57

Table 5.2: Parameters related to the simulated timing of the operations executed by the
vehicles and the server inside OMNeT++/Veins experiments.

Parameter Value
Centralized round time 30 seconds
Server aggregation time 5 seconds
Gossip round time 30 seconds
Local training time 12 seconds + uniform(0.0, 5.0)
Local time with clustering/acceptance 15 seconds + uniform(0.0, 5.0)

However, it is also important to simulate the timing of activities within the simulation.
For example, the time it takes for a message to be sent by vehicle V1 and completely
received by vehicle V2 is already simulated by OMNeT++/Veins.

To avoid broadcast storming of messages, a small round time is usually not used for
centralized/decentralized federated learning. In this work, 30 seconds are used for each
round, as in [7, 27].

The processing time is also important, so the 30 seconds were divided, starting with
5 seconds for server aggregation. In addition, the time each vehicle takes to perform
local processing also affects when a message will be sent through the network. For local
training, 12 seconds with an additional value from 0 to 5 derived from a random uniform
distribution were used, to make each vehicle behave differently each time. For experiments
with methods that perform local clustering or acceptance checking, 15 seconds were used
with the same random value added as well.

5.1.4 Datasets

For the experiments, 4 datasets have been used to capture different types of images and
try to reproduce different data distributions, as can be seen in Figure 5.6:

• Fashion MNIST (FMNIST) [76]: Collection of clothes images used for image
classification tasks, which contains 10 different types of clothes.

• CIFAR10 [36]: Collection of images of 10 different types, including animals like
frogs and horses, and vehicles like trucks and ships.

• GTSRB (German Traffic Sign Recognition Benchmark) [65]: Dataset con-
taining 43 different traffic signs from Germany.

• Federated MNIST (FEMNIST) [9]: Images of handwritten characters from
different writers, containing 62 types of images.

Some preparations needed to be done on each dataset before submitting them to
the neural networks. For all datasets, except Federated MNIST, the images pixels were
divided by 255 to normalize the values between 0 and 1, but no color change was applied
to any dataset (no RGB to grayscale). For Fashion MNIST and CIFAR10, the original

58

image sizes were used, while in Federated MNIST the images were resized to 28 x 28
pixels. In GTSRB, the same preparation as in [75] was used, cropping the rectangular
images in the center to create a square and resizing them to 48 x 48 pixels. For Federated
MNIST, the data were generated using the scripts provided by [9], using the following
parameters:

• -s niid: to retrieve the data in a non-IID manner.

• –sf 0.25: fraction of the total dataset used.

• -k 200: minimum number of samples per user.

• -t sample: partition each user’s samples into train-test groups.

• –tf 0.8: fraction of data in the training set.

• –smplseed 123: seed to be used before random sampling of data.

• –spltseed 456: seed to be used before random split of data.

For the experiments, all datasets were separated following the strategy in Figure 5.7.
All datasets have training and testing examples, so each of these sets was divided among
the 100 vehicles of the experiments. The testing dataset was used only at the end to
validate the experiments with new unseen data. An important note here is that the data
inside the vehicles is static, so each vehicle maintains the same data points throughout
the experiment.

The training dataset was also divided into 6 parts to create special subsets. 4 parts
(66.6%) were used effectively as training samples, while 1 part (16.7%) was used as accep-
tance data and 1 part (16.7%) as validation data. The validation data are important to
tune the hyperparameters of the model and check the solutions and methods implemented,
while the acceptance dataset is used locally in each vehicle to test whether a received or
merged model should be accepted. The acceptance dataset needs to be separated from
the other data so that it uses new data not seen during training and to prevent a biased
model that always improves based on the validation dataset.

Also, the experiments were run 3 times using K-fold cross-validation (except in some
experiments that were pointed out), shifting the acceptance and validation sets to provide
a better validation of the performance of each solution, with the same seed to reproduce
the exact events that would be random. To calculate the metrics displayed in the next
sections, the average value was used for each vehicle and each fold of the cross-validation.

To generate data in a non-IID manner some techniques were used, except in Federated
MNIST that already provided a standard way to generate such distribution:

• Image Rotations: Create different clusters of users by rotating the images in either
0 and 180 degrees or 0, 90, 180 and 270 [54, 21, 38].

• Dirichlet Distribution: Separate the data according to the Dirichlet distribution,
assigning a very different number of samples per vehicle [77, 51]. There is a param-
eter α that was set to 0.9 in GTSRB and 0.5 in other datasets. Also, note that here
the users are not separated into clusters.

59

(a) Fashion MNIST image example. (b) CIFAR10 image example.

(c) GTSRB image example. (d) Federated MNIST image example.

Figure 5.6: Example images of the datasets used in the experiments.

60

Figure 5.7: Datasets separation between testing, training, validation and acceptance sets.

Table 5.3: Data distribution for Fashion MNIST dataset similar to the one used in WSCC
paper [68].

Group Label Set Training Samples Vehicles
1 {0,1,2,3,4} 800 30
2 {5,6,7,8,9} 800 30
3 {2,3,4,5,6,7} 960 30
4 {3,4} 320 10

• WSCC [68]: Similar distributions for the Fashion MNIST and CIFAR10 datasets
used in the WSCC paper. For simplification of the explanation, we will number the
labels of the datasets from 0 to 9, and the distributions can be seen in Tables 5.3
and 5.4. Note that the training samples number refers to the quantity of data only
in the training set, excluding the acceptance, validation, and testing sets.

5.1.5 Neural Networks

For the experiments, 2 neural network architectures have been used depending on the
dataset. For Fashion MNIST and CIFAR10, the Lenet-5 architecture was used, as in
[51], and for GTSRB and Federated MNIST, MicronNet [75]. Figures 5.8 and 5.9 display
a diagram of Lenet-5 and MicronNet, both based on convolutional layers. A detailed
description of each network, with the number of parameters in each layer and the total
size, can be seen in Tables 5.5, 5.6, 5.7, and 5.8.

In the training process, all experiments used a batch size of 50. For Fashion MNIST,

61

Table 5.4: Data distribution for CIFAR10 dataset similar to the one used in WSCC paper
[68].

Group Label Set Training Samples Vehicles
1 {1,2,3,4,5} 300 40
2 {1,2,3,4,5} 370 15
3 {0,6,7,8,9} 300 30
4 {0,6,7,8,9} 370 15

the number of local training epochs was set to E = 3, while in the other datasets E =

5. Some experiments with different optimizers were used, so for the Adam optimizer,
the learning rate was η = 0.001, and for SGD and FedProx η = 0.0625. In addition,
for FedProx, a value of µ = 0.001 was chosen after some values were tested. In some
experiments, different values of local training epochs were used, which will be outlined in
the following sections.

For the metrics, the Categorical Cross-Entropy error function 2.2 was used to train and
validate the trained model. Balanced accuracy 2.3 was used as the default performance
metric of the experiments, but also some other parameters related to the environment,
such as the number of message collisions and the number of vehicles training in each
round.

Data Augmentation was used in all experiments with the same parameters for all
datasets and data distributions. For zooming, horizontal translation, and vertical trans-
lation, a maximum value of 10% was allowed, that is, the maximum number of pixels in
a translation is 10% of the total size of the image. For rotation, a maximum value of 15
degrees was used.

For comparison methods, FedAvg [48], FedProx [58], Gossip Learning [28, 29], and
FedPC [80] were used. For FedAvg and FedProx, the global server model was not used
at the end of the experiments for the metrics calculation, but the local vehicle models
that were trained and personalized with the local datasets. This allows for a more fair
comparison with the methods that consider clusters of users, because it allows the global
model to be tuned locally, and it is the model that the vehicle would have locally after
exiting the training process.

5.2 Validation Set Results

First, the validation dataset was used to calculate performance metrics and analyze the
results of the experiments. It is possible to compare the different methods under different
scenarios, validate the hyperparameters chosen, and guarantee that neither overfitting nor
underfitting were impacting the methods’ performances.

62

Table 5.5: Fashion MNIST Lenet-5 neural network architecture, with ReLU activation in
every convolutional and dense layer, and a total of 107786 parameters (∼ 0.4 MB).

Type / Stride / Pad Shape
Input 28× 28× 1

Conv / 1 / same 5× 5× 6
Max-Pool / 1 / no 2× 2
Conv / 1 / same 5× 5× 16

Max-Pool / 1 / no 2× 2
Flatten -
Dropout 25%
Dense 120

Dropout 50%
Dense 84

Dropout 50%
Softmax Dense 10

Table 5.6: CIFAR10 Lenet-5 neural network architecture, with ReLU activation in every
convolutional and dense layer, and a total of 136886 parameters (∼ 0.5 MB).

Type / Stride / Pad Shape
Input 32× 32× 1

Conv / 1 / same 5× 5× 6
Max-Pool / 1 / no 2× 2
Conv / 1 / same 5× 5× 16

Max-Pool / 1 / no 2× 2
Flatten -
Dropout 25%
Dense 120

Dropout 50%
Dense 84

Dropout 50%
Softmax Dense 10

63

Table 5.7: GTSRB MicronNet neural network architecture, with ReLU activation in every
convolutional and dense layer, and a total of 625273 parameters (∼ 2.4 MB).

Type / Stride / Pad Shape
Input 48× 48× 3

Conv / 1 / same 5× 5× 29
Max-Pool / 2 / no 3× 3
Conv / 1 / same 3× 3× 59

Max-Pool / 2 / no 3× 3
Conv / 1 / same 3× 3× 74

Max-Pool / 2 / no 3× 3
Flatten -
Dropout 50%
Dense 300

Dropout 50%
Softmax Dense 43

Table 5.8: Federated MNIST MicronNet neural network architecture, with ReLU acti-
vation in every convolutional and dense layer, and a total of 163342 parameters (∼ 0.6
MB).

Type / Stride / Pad Shape
Input 28× 28× 1

Conv / 1 / same 5× 5× 29
Max-Pool / 2 / no 3× 3
Conv / 1 / same 3× 3× 59

Max-Pool / 2 / no 3× 3
Conv / 1 / same 3× 3× 74

Max-Pool / 2 / no 3× 3
Flatten -
Dropout 50%
Dense 300

Dropout 50%
Softmax Dense 62

64

Figure 5.8: Lenet-5 architecture diagram for Fashion MNIST, but also used for CIFAR10
with a different input size.

Figure 5.9: MicronNet architecture diagram for GTSRB, but also used for Federated
MNIST with a different input and output sizes.

65

Table 5.9: Results of the experiments of FMNIST dataset using validation data, 8 RSUs
scenario, Manhattan Mobility, and 0.1 acceptance threshold.

Methods
Balanced Accuracy / Loss

FMNIST 4 Rotations FMNIST Dirichlet FMNIST WSCC

Personalized FedAvg 75.21% / 0.5153 72.63% / 0.3124 84.18% / 0.2996

WSVC 77.49% / 0.4543 72.03% / 0.3282 84.29% / 0.2718

Gossip Learning 78.62% / 0.5347 70.79% / 0.3813 85.90% / 0.3595

Decentralized WSCC 84.09% / 0.4528 71.34% / 0.3672 87.78% / 0.3244

HVCFL 84.31% / 0.4201 74.83% / 0.3238 87.83% / 0.3159

Table 5.10: Results of the experiments of CIFAR10 dataset using validation data, 8 RSUs
scenario, Manhattan Mobility, and 0.1 acceptance threshold.

Methods
Balanced Accuracy / Loss

CIFAR10 2 Rotations CIFAR10 Dirichlet CIFAR10 WSCC

Personalized FedAvg 51.98% / 1.2554 44.67% / 0.8712 56.41% / 0.9658

WSVC 55.23% / 1.1715 45.38% / 0.8913 65.74% / 0.7834

Gossip Learning 56.34% / 1.2342 50.11% / 0.8698 59.20% / 0.9650

Decentralized WSCC 55.12% / 1.2767 39.92% / 1.0166 60.68% / 0.9608

HVCFL 59.63% / 1.1480 48.34% / 0.8694 67.69% / 0.8104

5.2.1 Initial Validation

The first experiments were performed with Personalized FedAvg [48], WSVC, Gossip
Learning [28, 29], Decentralized WSCC, and HVCFL. All datasets were used with different
data distributions, in the 8 RSUs scenario, Manhattan Mobility, Adam optimizer, and the
acceptance threshold δ = 0.1.

Table 5.9 presents the results of the balanced accuracy and Cross-Entropy loss for
the Fashion MNIST dataset under the following data distributions: 4 rotations, Dirichlet
and the WSCC paper [68]. Fashion MNIST showed faster convergence compared to other
datasets, so the total simulated time was 2700 seconds.

From the results, it can be seen that HVCFL outperformed the other methods for
all distributions. Looking at the 4 rotations and WSCC distributions that indeed create
groups of users, we can see that both Decentralized WSCC and HVCFL have a good
balanced accuracy, with HVCFL achieving lower loss values. We also see that Gossip
Learning achieved better results compared to centralized solutions in this case. How-
ever, by checking the Dirichlet distribution, it is possible to see that centralized methods
outperformed purely decentralized ones.

If the analysis is expanded to the accuracy through the time charts in Figure 5.10, it
is possible to see that the methods that have decentralized agents converge faster, but
display a little more overfitting compared to the pure centralized ones. Decentralized
WSCC clearly has a larger gap between the training and validation curves, and this could
impact the performance in other datasets as will be shown next.

66

(a) FedAvg (b) WSVC (c) Gossip Learning

(d) Decentralized WSCC (e) HVCFL (f) Validation curves

Figure 5.10: Experiment results of balanced accuracy for different methods using the
Fashion MNIST dataset with the 4 Rotations data distribution, 8 RSUs scenario and
Manhattan Mobility.

Table 5.10 displays the results for similar experiments carried out on CIFAR10, with
2 rotations instead of 4, and 3600 seconds simulation time. Again, it is possible to see
that HVCFL had the best overall performance, but this time on the Dirichlet distribution,
Gossip Learning is able to outperform HVCFL. Gossip Learning is capable of carrying
out more training rounds in each vehicle, because the vehicle starts training as soon as it
receives a model from a neighbor, instead of waiting until the end of the gossip/aggregation
round, like all the other methods. However, it is also possible to see that this does not
happen with Fashion MNIST, which presents a much faster convergence compared to
CIFAR10, so each method has advantages and disadvantages depending either on the
dataset and data distribution.

Upon checking the charts for the CIFAR10 WSCC distribution in Figure 5.11, it is
possible to see in this case that even the centralized solutions present little overfitting,
while the decentralized/hybrid methods are more affected by this behavior. It is also
important to note that HVCFL is able to combine the strengths of both centralized and
decentralized approaches, having a better and consistent end result in general for this
dataset. Here, it is possible to see that HVCFL and WSVC have a faster convergence
rate compared to the other methods.

For the last 2 datasets, the results are shown in Table 5.11, using 3600 seconds for
Federated MNIST and 2700 seconds for GTSRB. It is possible to see that the meth-
ods that have a decentralized component performed better for Federated MNIST, while
the methods that have a centralized component were able to achieve lower loss values.
For GTSRB, the result is almost the same. However, the Decentralized WSCC method
presented a much higher loss value.

67

(a) FedAvg (b) WSVC (c) Gossip Learning

(d) Decentralized WSCC (e) HVCFL (f) Validation curves

Figure 5.11: Experiment results of balanced accuracy for different methods using the
CIFAR10 dataset with the WSCC data distribution, 8 RSUs scenario and Manhattan
Mobility.

Table 5.11: Results of the experiments of Federated MNIST and GTSRB datasets using
validation data, 8 RSUs scenario, Manhattan Mobility, and 0.1 acceptance threshold.

Methods
Balanced Accuracy / Loss

Federated MNIST GTSRB Dirichlet

Personalized FedAvg 75.66% / 0.3835 92.70% / 0.0379

WSVC 76.10% / 0.3916 93.85% / 0.0403

Gossip Learning 80.73% / 0.4021 94.16% / 0.1369

Decentralized WSCC 80.14% / 0.4252 90.33% / 0.2312

HVCFL 80.44% / 0.3829 96.97% / 0.0667

68

(a) FedAvg (b) WSVC (c) Gossip Learning

(d) Decentralized WSCC (e) HVCFL (f) Validation curves

Figure 5.12: Experiment results of balanced accuracy for different methods using the
GTSRB dataset with the Dirichlet data distribution, 8 RSUs scenario and Manhattan
Mobility.

Looking at the charts in Figure 5.12, it is possible to check that Decentralized WSCC
and Gossip Learning had much higher overfitting, while FedAvg and WSVC were able
to keep it very controlled. Upon checking the HVCFL curves, the separation between
training and validation is larger than that of the centralized methods, but it is controlled
not to have the same issue as the decentralized solutions. During the analysis of the
test results, it will be possible to see how the overfitting affects the model generalization.
Here, it is possible to note that HVCFL has a slightly slower convergence rate compared
to FedAvg and WSVC.

Lastly, for this initial validation, there are some metrics related to the environment that
are important to analyze. Table 5.12 displays the total messages sent by each experiment,
and the percentage of collisions that occur for the different methods and datasets. The
other Table 5.13 displays the number of messages and the time to achieve a given accuracy
for some data distributions. These tables are organized with increasing model size, as can
be seen in the last section, and each message/model sent is considered one transmission.

The first consequence that can be analyzed from the tables is the fact that the larger
the model, the larger the percentage of collisions. It is also possible to see that the
decentralized methods have a much lower collision rate than the centralized ones. For the
first models that are not large, this behavior does not affect much the messages; however,
for the GTSRB model the collisions are very constant. Personalized FedAvg also had an
issue with this dataset, because since the global model is sent to the clients at the same
instant, even with different training times, most of the clients tried to send the trained
models back to the server almost at the same time. There is an area for improvement
here, especially for centralized methods, but that could be applied to all of them, like

69

Table 5.12: Results of average messages per round, total messages and collisions percent-
age in the experiments using 8 RSUs scenario and Manhattan Mobility.

Methods
Messages Per Round / Total Messages / Percentage of Collisions
FMNIST CIFAR10 Federated MNIST GTSRB

Per. FedAvg 35/3174/17% 35/4244/18% 35/4233/21% 34/3094/76%

WSVC 55/5132/13% 54/6818/16% 66/7976/19% 67/5986/41%

Gossip Learning 99/8900/2% 99/11900/3% 99/11900/4% 99/8900/21%

Dec. WSCC 99/8948/2% 100/11949/4% 100/11951/4% 99/8946/19%

HVCFL 138/12404/9% 145/15831/12% 148/17744/14% 141/12646/38%

Table 5.13: Results of number of messages and the time to achieve a given accuracy in
the experiments using 8 RSUs scenario and Manhattan Mobility (one execution only).

Methods
Number Of Messages / Time

FMNIST WSCC CIFAR10 2 Rot. Fed. MNIST GTSRB Dir.
(84%) (51%) (75%) (90%)

Per. FedAvg 2989 / 2520s 4099 / 3465s 3909 / 3315s 2080 / 1790s

WSVC 4322 / 2255s 3617 / 1970s 6480 / 2935s 3763 / 1675s

Gossip Learning 5791 / 1765s 7074 / 2150s 5991 / 1825s 7400 / 2250s

Dec. WSCC 2342 / 720s 8669 / 2615s 6609 / 2000s - / -

HVCFL 2990 / 625s 6738 / 1435s 7115 / 1470s 5314 / 1135s

using a message-exchange protocol or breaking the model into smaller parts [29].
Additionally, from Table 5.13 it is possible to see that in general centralized methods

use fewer messages to converge to some accuracies, but they take much more time than
HVCFL and even decentralized methods in some cases. HVCFL has the fastest conver-
gences, but for Fashion MNIST WSCC, Decentralized WSCC uses fewer messages, while
in CIFAR10 2 Rotations, WSVC uses fewer messages. For Federated MNIST and GT-
SRB Dirichlet, Personalized FedAvg uses less messages, but it usually takes more time to
achieve the given accuracy. Therefore, it is possible to see that some methods have advan-
tages and disadvantages considering the number of messages used to achieve a goal, but
not always more messages mean faster convergence, as can be seen in the decentralized
methods for CIFAR10 and GTSRB.

The final metrics are related to the number of rounds each vehicle trained on each
method and the number of models received on Decentralized WSCC and HVCFL. For
the Fashion MNIST experiments, vehicles trained 10∼60 rounds in FedAvg and WSVC,
90∼140 in Gossip Learning, and 60∼90 in Decentralized WSCC and HVCFL. This ex-
plains why in some experiments Gossip Learning is able to have a good performance even
without specific non-IID special treatment. Some vehicles trained more than twice the
number of rounds, but it also led to increased overfitting, so there are advantages and
disadvantages.

In Decentralized WSCC and HVCFL, it could be seen that the vehicles received be-
tween 1∼20 models in each round. For some crowded areas, the information could be

70

Table 5.14: Results of the experiments using validation data, SGD optimizer, 8 RSUs
scenario, Manhattan Mobility, and 0.1 acceptance threshold.

Methods
Balanced Accuracy / Loss

FMNIST 4 Rotations CIFAR10 WSCC GTSRB Dirichlet

Personalized FedAvg 74.86% / 0.5164 54.66% / 1.0419 90.73% / 0.0983

Personalized FedProx 75.24% / 0.5144 55.13% / 1.0370 89.64% / 0.1299

WSVC 76.84% / 0.4575 59.98% / 0.9067 92.08% / 0.1089

Gossip Learning 80.54% / 0.4916 61.00% / 1.0025 85.35% / 0.3763

FedPC 77.09% / 0.5624 - / - 88.21% / 0.3546

Decentralized WSCC 83.33% / 0.4548 58.77% / 1.0597 62.34% / 0.9247

HVCFL 83.96% / 0.4211 64.40% / 0.9206 85.45% / 0.3542

distributed with high quality, while other vehicles received just a few models, turning the
aggregation almost into a Gossip Learning scheme.

5.2.2 Optimizers

Some experiments have also been performed using the SGD optimizer, so it was possible
to validate the FedProx [58] and FedPC [80] methods. In these experiments, some of the
datasets and data distributions were chosen, 5 epochs were used for Fashion MNIST, and
8 epochs for the other datasets. Table 5.14 shows the results for these experiments.

From the table, it can be seen that HVCFL has a good overall performance for Fashion
MNIST and CIFAR10, but it performed worse in GTSRB. Looking at Decentralized
WSCC, it presented a poor model performance, so in this case HVCFL might have been
impacted by the vehicle local client selection strategy. However, this behavior is much
less present using the Adam optimizer, leading to better results for the experiments in
general, so Adam was used in the rest of the study.

Also, analyzing the other methods, WSVC had a good performance for GTSRB, while
FedPC is inconstant. In CIFAR10 the model is overfitting with the same scenario and
parameters as the other methods. A possible cause for this issue is that FedPC does
not perform local aggregation, it just uses the received model, and also does not have a
mechanism of acceptance checking. In this dynamic environment, this implementation
led to a more difficult convergence for the specific CIFAR10 dataset.

5.2.3 RSU Coverage

The next set of experiments focused on the different RSU scenarios and how they impact
the performance of the models. Table 5.15 displays the results for the validation set of
the centralized/hybrid methods, because they are the only ones that use RSUs. Figure
5.13 displays the learning curves for the 6 and 12 RSUs scenarios.

HVCFL presented the best results despite the scenario. However, it is possible to
see that it is much less impacted by RSU changes than the other centralized methods.
For the 12 RSUs scenario, it is possible to see that the centralized solutions performed

71

Table 5.15: Results of balanced accuracy of the experiments using validation data, differ-
ent RSU scenarios, Manhattan Mobility, and 0.1 acceptance threshold.

Methods
6/8/12 RSUs Balanced Accuracy

FMNIST WSCC GTSRB Dirichlet

Personalized FedAvg 71.43% / 84.18% / 86.54% 76.57% / 92.70% / 96.77%

WSVC 70.97% / 84.29% / 88.33% 78.75% / 93.85% / 96.84%

HVCFL 88.73% / 87.83% / 89.28% 97.94% / 96.97% / 97.98%

the same as HVCFL, and since they exchange much less messages and have the message
collisions problem described in the last sections, they have room here to surpass HVCFL
when there is better coverage.

Other metrics that were collected for these experiments on Fashion MNIST are the
number of vehicles that did not participate in the centralized training for FedAvg and
WSCC, and also the number of vehicles that participated in the centralized training. 2
vehicles did not participate in the 12 RSUs scenario, 5 in the 8 RSUs, and 19 in the 6
RSUs. This explains the performance drop for the 6 RSUs scenario, since less vehicles
shared their data/knowledge with the system.

For the participating vehicles by round, the number was between 16-38 for the 12
RSUs scenario, 11-27 in the 8 RSUs, and 9-23 in the 6 RSUs. This also corroborates with
the results analyzed, but shows that for the 12 RSUs scenario, sometimes a significant
part of the system was able to reach the centralized server, almost 40% of the vehicles.

5.2.4 Acceptance Threshold

Next, different experiments with the acceptance thresholds for HVCFL were performed,
and the results are summarized in Table 5.16. The tested values were 10%, 5%, 0%, and
without a threshold, that is, always accepting the received model.

For Fashion MNIST, since it is a dataset that is less prone to overfitting and converges
faster, smaller thresholds led to higher balanced accuracy and lower loss values, but all
the experiments led to similar end results. For GTSRB, the smaller the threshold or
without it, the worse the results. The threshold 10% had the best metrics for this specific
dataset, so it was used in the rest of the studies. However, it is important to note that
this hyperparameter depends on the dataset being used, so more experiments could be
performed to analyze its full impact.

5.2.5 Similarity Metrics

The last set of experiments explored the different similarity metrics and some client se-
lection techniques. The similarity metrics tested are the Cosine Similarity (the default
implementation of HVCFL that was used in all the latest experiments), balanced accu-
racy, and Centered Kernel Alignment, which was applied only in the last layer of the
network, all the dense layers, or the full model. A client selection strategy that does

72

(a) FedAvg 6 RSUs (b) WSVC 6 RSUs (c) HVCFL 6 RSUs

(d) FedAvg 12 RSUs (e) WSVC 12 RSUs (f) HVCFL 12 RSUs

(g) 6 RSUs validation curves (h) 12 RSUs validation curves

Figure 5.13: Experiment results of balanced accuracy for different methods using the
GTSRB dataset with the Dirichlet data distribution, 6/12 RSUs scenarios and Manhattan
Mobility.

Table 5.16: Results of the experiments using validation data, 8 RSUs scenario, Manhattan
Mobility, and different acceptance thresholds.

Methods
Balanced Accuracy / Loss

FMNIST WSCC GTSRB Dirichlet

HVCFL 0.1 Threshold 87.83% / 0.3159 96.97% / 0.0667

HVCFL 0.05 Threshold 88.39% / 0.2769 96.33% / 0.0714

HVCFL 0.0 Threshold 88.82% / 0.2850 96.04% / 0.0944

HVCFL No Threshold 88.19% / 0.3031 93.09% / 0.1463

73

Table 5.17: Results of the experiments using validation data, different similarity metrics,
8 RSUs scenario, Manhattan Mobility, and 0.1 acceptance threshold.

Methods
Balanced Accuracy / Loss

FMNIST WSCC GTSRB Dirichlet

HVCFL Cossim 87.83% / 0.3159 96.97% / 0.0667

HVCFL Balanced Accuracy 88.28% / 0.3019 91.75% / 0.1824

HVCFL CKA Last 88.07% / 0.3098 88.44% / 0.2435

HVCFL CKA Dense 88.83% / 0.2931 93.13% / 0.1527

HVCFL CKA Full 88.63% / 0.2946 94.48% / 0.1263

HVCFL 25 Percent 88.22% / 0.3046 95.96% / 0.0882

not use Affinity Propagation to create the local clusters was also used, it uses Cosine
Similarity and gets the 25% more similar models in each round, just for testing purposes.

From the results in Table 5.17, it can be seen that HVCFL Cossim presents the
best results in the GTSRB dataset while it has the lowest balanced accuracy in Fashion
MNIST. CKA has the best results in Fashion MNIST using either all the dense layers or
the full model, but is not as good as Cossim in GTSRB. Cossim was also able to achieve
good results in Fashion MNIST, so it was chosen for the rest of the experiments, but it
is important to note that the use of 25% also led to great results and should be further
explored. In this case, it can also be concluded that the dataset/model may impact the
model training, and with the variability of the results obtained, more tests need to be
performed with more experiments and more similarity metrics to see the advantages and
disadvantages of each one.

An important analysis that can also be done here and with WSVC is how well the
vehicles and the server are creating the groups of users. By checking the clusters in the
Fashion MNIST distribution WSCC in the final period of the experiments, WSVC is able
to create better clusters than HVCFL in general. By comparing only server with server,
the decentralized factor makes HVCFL create incorrect clusters more frequently, but even
WSVC in this dynamic environment has incorrectly assigned vehicles frequently and there
is an area for improvement here.

By analyzing only the participating nodes in each vehicle, HVCFL has a good perfor-
mance with client selection in general, better than inside the server: it is able to correctly
filter out models that belong to different clusters. However, sometimes there are some
models that belong to the same clusters that are also filtered out, which represents an
area for improvement in the methods.

By comparing HVCFL Cossim and CKA, it can be seen that CKA usually includes the
correct models that Cossim usually filters out. However, it also includes some undesired
models much more frequently than the Cossim implementation, which may explain why
in GTSRB it performed worse than Cossim.

74

Table 5.18: Results of the experiments of FMNIST dataset using test data, 8 RSUs
scenario, Manhattan Mobility, and 0.1 acceptance threshold.

Methods
Balanced Accuracy

FMNIST 4 Rotations FMNIST Dirichlet FMNIST WSCC

Personalized FedAvg 75.39% 73.09% 84.24%

WSVC 77.75% 72.40% 84.78%

Gossip Learning 77.81% 70.31% 85.05%

Decentralized WSCC 82.77% 70.53% 86.91%

HVCFL 83.47% 74.83% 87.06%

Table 5.19: Results of the experiments of CIFAR10 dataset using test data, 8 RSUs
scenario, Manhattan Mobility, and 0.1 acceptance threshold.

Methods
Balanced Accuracy

CIFAR10 2 Rotations CIFAR10 Dirichlet CIFAR10 WSCC

Personalized FedAvg 50.63% 42.86% 56.48%

WSVC 53.49% 43.04% 64.21%

Gossip Learning 51.94% 43.63% 57.86%

Decentralized WSCC 50.47% 36.47% 59.10%

HVCFL 56.13% 43.88% 65.94%

5.3 Test Set Results of Centralized, Decentralized and

Hybrid Methods

To conclude this first set of experiments and fully validate the methods, the balanced
accuracy was also calculated in the test set. The experiments were carried out 3 times to
ensure the quality of the results.

Table 5.18 displays the results for Fashion MNIST. Since this dataset had a fast con-
vergence and did not present significant overfitting, the results for the test set followed the
behavior of the validation set. HVCFL achieved the best results in all data distributions.

Table 5.19 displays the results for CIFAR10. Here, the overfitting is much more
present and the result impacts could be seen. HVCFL had the best performance in all
distributions, but in Dirichlet, it is Gossip Learning which has the best results in the
validation set. This distribution presented a really slow convergence in general, but the
bigger overfitting in Gossip Learning due to the lack of non-IID special treatment led to
poorer results on the test set. It is also important to note that WSVC is the second-best
method here for the other distributions, performing great on this dataset.

Finally, Table 5.20 shows the results for Federated MNIST and GTSRB. For Federated
MNIST it is possible to see the same behavior as in CIFAR10 Dirichlet for Gossip Learning.
It had the best validation results, but HVCFL surpassed it in the test set.

For the GTSRB, HVCFL showed the best performance, but is closely followed by
WSVC. In the validation set, the gap between the results of these 2 methods was larger,

75

Table 5.20: Results of the experiments of Federated MNIST and GTSRB datasets using
test data, 8 RSUs scenario, Manhattan Mobility, and 0.1 acceptance threshold.

Methods
Balanced Accuracy

Federated MNIST GTSRB Dirichlet

Personalized FedAvg 69.56% 90.17%

WSVC 69.52% 91.24%

Gossip Learning 70.37% 84.38%

Decentralized WSCC 68.32% 77.52%

HVCFL 72.12% 91.51%

Table 5.21: Results of the experiments using validation data, 8 RSUs scenario, vehicle
traces, and 0.1 acceptance threshold.

Methods
Balanced Accuracy / Loss

FMNIST WSCC GTSRB Dirichlet

Personalized FedAvg 81.99% / 0.4571 57.92% / 0.9296

WSVC 82.12% / 0.4216 57.29% / 0.9255

HVCFL 82.40% / 0.4357 49.39% / 1.1603

so it can be seen that despite being small, the little overfitting here also had a little impact
on HVCFL.

In conclusion, after the analysis of all results from the test set, the HVCFL performed
very well in most scenarios. However, when the RSU coverage is better, centralized
methods tend to generate better models in terms of overfitting and using fewer messages
exchanged. The message collision issue of the last sections could also boost the perfor-
mance of the centralized methods a little, if messaging exchanging is handled in a better
way, but HVCFL-like strategies could still be applied to compensate for the lack of RSU
coverage.

5.4 Long and Short Vehicle Trips

This section displays some initial experiments using vehicle traces instead of the Man-
hattan Mobility model. Table 5.21 has the results of the validation set and Figure 5.14
displays the learning curves for GTSRB. The experiments carried out here were performed
only once, and for 900 seconds.

For Fashion MNIST, HVCFL is able to surpass the other methods but all the balanced
accuracies are similar, while in GTSRB it did not perform well. Since these experiments
are carried out in a shorter period of time, it can be seen that the convergence speeds of
centralized methods are faster than those of HVCFL, as can also be seen on the charts.

Another important aspect of the scenario used is that the RSUs were positioned in
a way that high-traffic streets have good coverage, so the vehicle traces passed through
these roads. The consequence was that only 1 vehicle did not participate in the cen-

76

(a) FedAvg (b) WSVC (c) HVCFL

(d) HVCFL

Figure 5.14: Experiment results of balanced accuracy for different methods using the
GTSRB dataset with the Dirichlet data distribution, 8 RSUs scenario and vehicle traces.

tralized aggregation round of the centralized methods, while the other experiments with
the Manhattan model had more missing vehicles. This opens another path for studies
with long and short trips, mixing them, and trying to include the best of centralized and
decentralized solutions for these scenarios, such as using transfer learning [84].

5.5 Experiments Remarks

From the experiments performed, it was possible to see how WSVC and HVCFL per-
formed compared to other methods, including their advantages and disadvantages. Using
datasets and data distributions that did not present overfitting, such as Fashion MNIST,
decentralized methods presented faster convergence. When data led to more overfitting,
such as in CIFAR10 and GTSRB, centralized methods were able to achieve faster con-
vergence with fewer messages exchanged in the environment. Another disadvantage of
centralized approaches occurs when the environment does not have good RSU coverage,
leading to slower convergence.

The hybrid HVCFL approach was able to combine the strengths of both strategies,
while being less impacted by the disadvantages of them, and outperformed other methods
in almost all of the scenarios. In addition, the tests performed with the acceptance hy-
perparameter and different similarity metrics for aggregation revealed that different data
distributions behave differently, with Cosine Similarity a good overall metric. The main
disadvantages of HVCFL occur when the RSU coverage is good, because the centralized
methods achieve similar results with fewer messages exchanged, and when the vehicles
have short trips, leading to slower convergence in the scenarios tested.

77

Chapter 6

Conclusions

The final chapter concludes the dissertation and is divided into the final remarks and
future work.

6.1 Final Remarks

This dissertation aimed to study and develop federated learning methods for Vehicle Ad
Hoc Networks (VANETs). Two methods were proposed: Weight-Similarity Vehicle Clus-
tering (WSVC), based on the Weight-Similarity Client Clustering (WSCC) centralized
method [68], and Hybrid Vehicle Federated Learning (HVCFL), which applies WSVC but
also includes a decentralized component in the system architecture.

Through extensive experiments that simulated as best as possible real-world scenarios,
it was possible to validate the new proposals against other solutions such as FedAvg [48],
FedProx [58], Gossip Learning [28, 29], and FedPC [80]. HVCFL was able to surpass the
other solutions in most of the scenarios tested, achieving a better balanced accuracy in
the test set. However, in some specific data distributions and with short vehicle trips,
there is still room for improvement.

In the beginning of the dissertation, some research questions were raised to guide the
study. In conclusion, it is possible to answer each of them after analyzing the results.

Q1. How does Federated Learning perform in a dynamic environment such as vehicle
networks (VANETs)?

Through the different experiments performed, it was possible to see that Federated
Learning can be implemented in VANETs, but different non-IID data distributions
impact the convergence of the models and cause more overfitting in local training
for some methods, especially decentralized ones.

Q2. How does Centralized Federated Learning perform compared to Decentralized ap-
proaches in VANETs?

Centralized Federated Learning usually has less overfitting than decentralized ap-
proaches, but in some scenarios with less RSU coverage, it is not able to reach all
the vehicles of the network, which is a disadvantage.

78

Q3. Is it possible to improve the performance of a trained model with a hybrid approach?

Hybrid solutions were able to combine the strengths of both approaches in most
of the datasets and data distributions tested. However, they still have room for
improvement in some scenarios, such as with short vehicle trips.

Q4. Do different non-IID data distributions perform differently in different approaches?

It was possible to check that while centralized solutions performed better in some
distributions, such as GTSRB Dirichlet, decentralized solutions achieved better re-
sults in others, such as Fashion MNIST. Datasets that converge faster tend to have
less overfitting and help decentralized methods, while slow convergence tends to
help centralized solution.

Q5. How does environment configuration (especially RSU positioning) affect the conver-
gence of machine learning models for different methods?

HVCFL was able to have a similar performance with 6, 8 or 12 RSUs in the environ-
ment, which surpassed centralized solutions when coverage is not good. Centralized
methods were affected by the lack of coverage and in the worst case, almost 20% of
the vehicles did not participate in the training process. However, when coverage is
good, centralized methods have performance similar to that of HVCFL.

Q6. How do long vehicle trips compare to short ones in model convergence?

HVCFL presented a slower convergence compared to WSVC and FedAvg, especially
due to the positioning of the RSUs in high-traffic streets. Therefore, for vehicles
with short trips, centralized methods are achieving better results.

6.2 Future Work

In this final section, some future research avenues are introduced to further explore the
different scenarios and methods that were tested. Throughout the dissertation, some
alternatives have been proposed, such as:

• Implement a message-exchange protocol to decrease the negative effect of message
collisions in centralized methods. In the experiments, it was possible to check that
more collisions occur in these solutions, because all the models are sent back to the
server after training almost at the same time.

• Another option for message collisions is to break the model into smaller parts and
exchange only parts of it [29]. Since the models are becoming larger, especially with
the new Large Language Models [72], smaller messages exchanged are important for
the feasibility of a VANET implementation.

• During the experiments, it was possible to see that Gossip Learning sometimes
achieved good results in some datasets, even without a non-IID data strategy. This

79

happened because more training rounds were performed despite having the overfit-
ting issue, but a way to decrease the round time in HVCFL could be investigated,
such as [49].

• Centralized solutions tend to have better convergence when there is good RSU cov-
erage, but hybrid methods reach vehicles that would not have received the server’s
global model. Some strategies could be studied to apply a less aggressive decentral-
ized approach in the hybrid solution, such as forwarding global models or exploring
local client selection for a smoother training convergence.

• Explore further the effects of acceptance local checking and similarity metrics in
hybrid environments. These parameters and metrics have different impacts depend-
ing on the dataset and data distributions being used, so there is room for a more
thorough investigation here.

• Expand experiments and strategies with short and long vehicle trips. Since HVCFL
had a slow convergence, it did not perform well with short vehicle trips, so strategies
like transfer learning [84] could be tested.

80

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] Omid Aramoon, Pin-Yu Chen, Gang Qu, and Yuan Tian. Meta federated learning.
ArXiv, abs/2102.05561, 2021.

[3] Szabolcs-Márton Bagoly and Radu Gabriel Dănescu. Round based extension algo-
rithm for gossip learning. In 2020 IEEE 16th International Conference on Intelligent

Computer Communication and Processing (ICCP), pages 251–257, 2020.

[4] F. Bai, Narayanan Sadagopan, and A. Helmy. Important: a framework to systemat-
ically analyze the impact of mobility on performance of routing protocols for adhoc
networks. In IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the

IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428), vol-
ume 2, pages 825–835 vol.2, 2003.

[5] Luca Barbieri, Stefano Savazzi, and Monica Nicoli. Decentralized federated learning
for road user classification in enhanced v2x networks. In 2021 IEEE International

Conference on Communications Workshops (ICC Workshops), pages 1–6, 2021.

[6] Yacine Belal, Aurélien Bellet, Sonia Ben Mokhtar, and Vlad Nitu. Pepper: Empow-
ering user-centric recommender systems over gossip learning. Proceedings of the ACM

on Interactive, Mobile, Wearable and Ubiquitous Technologies, 6(3):1–27, September
2022.

[7] Abdelwahab Boualouache and Thomas Engel. Federated learning-based scheme for
detecting passive mobile attackers in 5g vehicular edge computing. Ann. des Télé-

communications, 77(3-4):201–220, 2022.

81

[8] Shafinaz Buruhanudeen, Mohamed Othman, Mazliza Othman, and Borhanud-
din Mohd Ali. Mobility models, broadcasting methods and factors contributing
towards the efficiency of the manet routing protocols: Overview. In 2007 IEEE

International Conference on Telecommunications and Malaysia International Con-

ference on Communications, pages 226–230, 2007.

[9] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný,
H. Brendan McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark
for federated settings, 2019.

[10] Andrea Caragliu, Chiara Del Bo, and Peter Nijkamp. Smart cities in europe. VU

University Amsterdam, Faculty of Economics, Business Administration and Econo-

metrics, Serie Research Memoranda, 18, 01 2009.

[11] Yiming Chen, Kun Yuan, Yingya Zhang, Pan Pan, Yinghui Xu, and Wotao Yin.
Accelerating gossip SGD with periodic global averaging. CoRR, abs/2105.09080,
2021.

[12] François Chollet et al. Keras. https://keras.io, 2015.

[13] Lara Codecá, Raphaël Frank, Sébastien Faye, and Thomas Engel. Luxembourg
SUMO Traffic (LuST) Scenario: Traffic Demand Evaluation. IEEE Intelligent Trans-

portation Systems Magazine, 9(2):52–63, 2017.

[14] Giuseppe Di Giacomo, Jérôme Härri, and Carla Fabiana Chiasserini. Edge-assisted
gossiping learning: Leveraging v2v communications between connected vehicles.
In 2022 IEEE 25th International Conference on Intelligent Transportation Systems

(ITSC), pages 3920–3927, 2022.

[15] Mina Aghaei Dinani, Adrian Holzer, Hung Nguyen, Marco Ajmone Marsan, and
Gianluca Rizzo. Gossip learning of personalized models for vehicle trajectory predic-
tion. In 2021 IEEE Wireless Communications and Networking Conference Workshops

(WCNCW), pages 1–7, 2021.

[16] Mina Aghaei Dinani, Adrian Holzer, Hung Nguyen, Marco Ajmone Marsan, and Gi-
anluca Rizzo. Vehicle position nowcasting with gossip learning. In 2022 IEEE Wire-

less Communications and Networking Conference (WCNC), pages 728–733, 2022.

[17] Muhammad Ehtisham, Mahmood ul Hassan, Amin A. Al-Awady, Abid Ali, Muham-
mad Junaid, Jahangir Khan, Yahya Ali Abdelrahman Ali, and Muhammad Akram.
Internet of vehicles (iov)-based task scheduling approach using fuzzy logic technique
in fog computing enables vehicular ad hoc network (vanet). Sensors, 24(3), 2024.

[18] Ahmet M. Elbir, Burak Soner, Sinem Çöleri, Deniz Gündüz, and Mehdi Bennis.
Federated learning in vehicular networks. In 2022 IEEE International Mediterranean

Conference on Communications and Networking (MeditCom), pages 72–77, 2022.

[19] Brendan J. Frey and Delbert Dueck. Clustering by passing messages between data
points. Science, 315(5814):972–976, 2007.

82

[20] Benyamin Ghojogh and Mark Crowley. The theory behind overfitting, cross valida-
tion, regularization, bagging, and boosting: Tutorial. ArXiv, abs/1905.12787, 2019.

[21] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient
framework for clustered federated learning. IEEE Transactions on Information The-

ory, 68(12):8076–8091, 2022.

[22] Lodovico Giaretta and Šarūnas Girdzijauskas. Gossip learning: Off the beaten path.
In 2019 IEEE International Conference on Big Data (Big Data), pages 1117–1124,
2019.

[23] Usman Manzo Gidado, Haruna Chiroma, Nahla Aljojo, Saidu Abubakar, Segun I.
Popoola, and Mohammed Ali Al-Garadi. A survey on deep learning for steering angle
prediction in autonomous vehicles. IEEE Access, 8:163797–163817, 2020.

[24] Alessandro Giuseppi, Sabato Manfredi, and Antonio Pietrabissa. A weighted aver-
age consensus approach for decentralized federated learning. Machine Intelligence

Research, 19(4):319–330, 2022.

[25] Yuanxiong Guo, Ying Sun, Rui Hu, and Yanmin Gong. Hybrid local SGD for fed-
erated learning with heterogeneous communications. In International Conference on

Learning Representations, 2022.

[26] Mastura Hanafiah, Mohd Adnan, Shuzlina Rahman, Sofianita Mutalib, Ariff Malik,
and Mohd Razif Shamsuddin. Flower recognition using deep convolutional neural
networks. IOP Conference Series: Earth and Environmental Science, 1019:012021,
04 2022.

[27] Bastian Havers, Marina Papatriantafilou, Ashok Koppisetty, and Vincenzo Gulisano.
Proposing a framework for evaluating learning strategies in vehicular cpss. In Pro-

ceedings of the 23rd International Middleware Conference Industrial Track, Middle-
ware Industrial Track ’22, page 22–28, New York, NY, USA, 2022. Association for
Computing Machinery.

[28] István Hegedűs, Gábor Danner, and Márk Jelasity. Gossip learning as a decentralized
alternative to federated learning. In José Pereira and Laura Ricci, editors, Distributed

Applications and Interoperable Systems, pages 74–90, Cham, 2019. Springer Interna-
tional Publishing.

[29] István Hegedűs, Gábor Danner, and Márk Jelasity. Decentralized learning works: An
empirical comparison of gossip learning and federated learning. Journal of Parallel

and Distributed Computing, 148:109–124, 2021.

[30] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 – seamless oper-
ability between c++11 and python, 2017. https://github.com/pybind/pybind11.

[31] Jingyan Jiang, Liang Hu, Chenghao Hu, Jiate Liu, and Zhi Wang.
Bacombo—bandwidth-aware decentralized federated learning. Electronics, 9(3),
2020.

83

[32] June-Pyo Jung, Young-Bae Ko, and Sung-Hwa Lim. Resource efficient cluster-based
federated learning for d2d communications. In 2022 IEEE 95th Vehicular Technology

Conference: (VTC2022-Spring), pages 1–5, 2022.

[33] Georgios Karagiannis, Onur Altintas, Eylem Ekici, Geert Heijenk, Boangoat Jaru-
pan, Kenneth Lin, and Timothy Weil. Vehicular networking: A survey and tutorial
on requirements, architectures, challenges, standards and solutions. IEEE Commu-

nications Surveys and Tutorials, 13(4):584–616, 2011.

[34] J.D. Kelleher, B.M. Namee, and A. D’Arcy. Fundamentals of Machine Learning for

Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. The
MIT Press. MIT Press, 2015.

[35] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey E. Hinton. Simi-
larity of neural network representations revisited. ArXiv, abs/1905.00414, 2019.

[36] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for
advanced research). URL http://www. cs. toronto. edu/kriz/cifar. html, 5(4):1, 2010.

[37] Fan Li and Yu Wang. Routing in vehicular ad hoc networks: A survey. IEEE

Vehicular Technology Magazine, 2(2):12–22, 2007.

[38] Zexi Li, Jiaxun Lu, Shuang Luo, Didi Zhu, Yunfeng Shao, Yinchuan Li, Zhimeng
Zhang, Yongheng Wang, and Chao Wu. Towards effective clustered federated learn-
ing: A peer-to-peer framework with adaptive neighbor matching. IEEE Transactions

on Big Data, pages 1–16, 2022.

[39] Su Liu, Jiong Yu, Xiaoheng Deng, and Shaohua Wan. Fedcpf: An efficient-
communication federated learning approach for vehicular edge computing in 6g com-
munication networks. IEEE Transactions on Intelligent Transportation Systems,
23(2):1616–1629, 2022.

[40] Wellington Lobato, Joahannes B. D. Da Costa, Allan M. de Souza, Denis Rosário,
Christoph Sommer, and Leandro A. Villas. Flexe: Investigating federated learning in
connected autonomous vehicle simulations. In 2022 IEEE 96th Vehicular Technology

Conference (VTC2022-Fall), pages 1–5, 2022.

[41] Guodong Long, Ming Xie, Tao Shen, Tianyi Zhou, Xianzhi Wang, and Jing Jiang.
Multi-center federated learning: clients clustering for better personalization. World

Wide Web, 26:1–20, 06 2022.

[42] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-
Pang Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wag-
ner, and Evamarie Wießner. Microscopic traffic simulation using sumo. In The 21st

IEEE International Conference on Intelligent Transportation Systems. IEEE, 2018.

[43] Hao Lu, Adam Thelen, Olga Fink, Chao Hu, and Simon Laflamme. Federated learn-
ing with uncertainty-based client clustering for fleet-wide fault diagnosis. Mechanical

Systems and Signal Processing, 210:111068, 2024.

84

[44] Lin Lu, Yao Lin, Yuan Wen, Jinxiong Zhu, and Shengwu Xiong. Federated clustering
for recognizing driving styles from private trajectories. Engineering Applications of

Artificial Intelligence, 118:105714, 2023.

[45] Xiaodong Ma, Jia Zhu, Zhihao Lin, Shanxuan Chen, and Yangjie Qin. A state-
of-the-art survey on solving non-iid data in federated learning. Future Generation

Computer Systems, 135:244–258, 2022.

[46] J. B. MacQueen. Some methods for classification and analysis of multivariate ob-
servations. In L. M. Le Cam and J. Neyman, editors, Proc. of the fifth Berkeley

Symposium on Mathematical Statistics and Probability, volume 1, pages 281–297.
University of California Press, 1967.

[47] Guilherme Maia, Cristiano Rezende, Leandro A. Villas, Azzedine Boukerche, Aline C.
Viana, Andre L. Aquino, and Antonio A. Loureiro. Traffic aware video dissemina-
tion over vehicular ad hoc networks. In Proceedings of the 16th ACM International

Conference on Modeling, Analysis & Simulation of Wireless and Mobile Systems,
MSWiM ’13, page 419–426, New York, NY, USA, 2013. Association for Computing
Machinery.

[48] H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas.
Federated learning of deep networks using model averaging. CoRR, abs/1602.05629,
2016.

[49] J.S. Mertens, L. Galluccio, and G. Morabito. Centrality-aware gossiping for dis-
tributed learning in wireless sensor networks. In 2022 IFIP Networking Conference

(IFIP Networking), pages 1–6, 2022.

[50] J.S. Mertens, L. Galluccio, and G. Morabito. Mgm-4-fl: Combining federated learning
and model gossiping in wsns. Computer Networks, 214:109144, 2022.

[51] M. Morafah, S. Vahidian, W. Wang, and B. Lin. Flis: Clustered federated learning
via inference similarity for non-iid data distribution. IEEE Open Journal of the

Computer Society, 4(01):109–120, jan 2023.

[52] Valery Naumov, Rainer Baumann, and Thomas Gross. An evaluation of inter-vehicle
ad hoc networks based on realistic vehicular traces. In Proceedings of the 7th ACM

International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc
’06, page 108–119, New York, NY, USA, 2006. Association for Computing Machinery.

[53] Anh Nguyen, Tuong Do, Minh Tran, Binh X. Nguyen, Chien Duong, Tu Phan, Erman
Tjiputra, and Quang D. Tran. Deep federated learning for autonomous driving. In
2022 IEEE Intelligent Vehicles Symposium (IV), pages 1824–1830, 2022.

[54] Noa Onoszko, Gustav Karlsson, Olof Mogren, and Edvin Listo Zec. Decentralized
federated learning of deep neural networks on non-iid data. ArXiv, abs/2107.08517,
2021.

85

[55] Chamath Palihawadana, Nirmalie Wiratunga, Anjana Wijekoon, and Harsha Kalu-
tarage. Fedsim: Similarity guided model aggregation for federated learning. Neuro-

computing, 483:432–445, 2022.

[56] Sooksan Panichpapiboon and Wasan Pattara-atikom. A review of information dis-
semination protocols for vehicular ad hoc networks. IEEE Communications Surveys

and Tutorials, 14(3):784–798, 2012.

[57] Zhiguo Qu, Yang Tang, Ghulam Muhammad, and Prayag Tiwari. Privacy protection
in intelligent vehicle networking: A novel federated learning algorithm based on
information fusion. Information Fusion, 98:101824, 2023.

[58] Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and
Virginia Smith. On the convergence of federated optimization in heterogeneous net-
works. CoRR, abs/1812.06127, 2018.

[59] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learn-
ing: Model-agnostic distributed multitask optimization under privacy constraints.
IEEE Transactions on Neural Networks and Learning Systems, 32(8):3710–3722,
2021.

[60] Connor Shorten and Taghi Khoshgoftaar. A survey on image data augmentation for
deep learning. Journal of Big Data, 6, 07 2019.

[61] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In Yoshua Bengio and Yann LeCun, editors, 3rd Interna-

tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,

May 7-9, 2015, Conference Track Proceedings, 2015.

[62] Christoph Sommer and Falko Dressler. Vehicular Networking. Cambridge University
Press, 2014.

[63] Christoph Sommer, Reinhard German, and Falko Dressler. Bidirectionally Coupled
Network and Road Traffic Simulation for Improved IVC Analysis. IEEE Transactions

on Mobile Computing (TMC), 10(1):3–15, January 2011.

[64] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(56):1929–1958, 2014.

[65] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer: Bench-
marking machine learning algorithms for traffic sign recognition. Neural Networks,
32:323–332, 2012. Selected Papers from IJCNN 2011.

[66] Dongyuan Su, Yipeng Zhou, and Laizhong Cui. Boost decentralized federated learn-
ing in vehicular networks by diversifying data sources. In 2022 IEEE 30th Interna-

tional Conference on Network Protocols (ICNP), pages 1–11, 2022.

86

[67] Afaf Taïk, Zoubeir Mlika, and Soumaya Cherkaoui. Clustered vehicular federated
learning: Process and optimization. IEEE Transactions on Intelligent Transportation

Systems, 23(12):25371–25383, 2022.

[68] Pu Tian, Weixian Liao, Wei Yu, and Erik Blasch. Wscc: A weight-similarity-based
client clustering approach for non-iid federated learning. IEEE Internet of Things

Journal, 9(20):20243–20256, 2022.

[69] Ferran Torrent Fontbona. DECISION SUPPORT METHODS FOR GLOBAL OP-

TIMIZATION. PhD thesis, University of Girona, 09 2012.

[70] David Tse and Pramod Viswanath. Fundamentals of wireless communication. Cam-
bridge University Press, USA, 2005.

[71] Andras Varga. OMNeT++, pages 35–59. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2010.

[72] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceed-

ings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, page 6000–6010, Red Hook, NY, USA, 2017. Curran Associates Inc.

[73] Zhe Wang, Xinhang Li, Tianhao Wu, Chen Xu, and Lin Zhang. A credibility-aware
swarm-federated deep learning framework in internet of vehicles. Digital Communi-

cations and Networks, 10(1):150–157, 2024.

[74] Stefanie Warnat-Herresthal, Hartmut Schultze, Krishnaprasad Lingadahalli Shastry,
Sathyanarayanan Manamohan, Saikat Mukherjee, Vishesh Garg, Ravi Sarveswara,
Kristian Händler, Peter Pickkers, N Ahmad Aziz, et al. Swarm learning for decen-
tralized and confidential clinical machine learning. Nature, 594(7862):265–270, 2021.

[75] Alexander Wong, Mohammad Javad Shafiee, and Michael St. Jules. Micronnet: A
highly compact deep convolutional neural network architecture for real-time embed-
ded traffic sign classification. IEEE Access, 6:59803–59810, 2018.

[76] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms, 2017. cite arxiv:1708.07747 Com-
ment: Dataset is freely available at https://github.com/zalandoresearch/fashion-
mnist Benchmark is available at http://fashion-mnist.s3-website.eu-central-
1.amazonaws.com/.

[77] Kan Xie, Zhe Zhang, Bo Li, Jiawen Kang, Dusit Niyato, Shengli Xie, and Yi Wu.
Efficient federated learning with spike neural networks for traffic sign recognition.
IEEE Transactions on Vehicular Technology, 71(9):9980–9992, 2022.

[78] Lixia Xue, Yuchen Yang, and Decun Dong. Roadside infrastructure planning scheme
for the urban vehicular networks. Transportation Research Procedia, 25:1380–1396,
2017. World Conference on Transport Research - WCTR 2016 Shanghai. 10-15 July
2016.

87

[79] Zeng Yan, Yan Zhong Yi, Zhang JiLin, Zhao NaiLiang, Ren YongJian, Wan Jian, and
Yu Jun. Federated learning model training method based on data features perception
aggregation. In 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall),
pages 1–7, 2021.

[80] Liangqi Yuan, Yunsheng Ma, Lu Su, and Ziran Wang. Peer-to-peer federated con-
tinual learning for naturalistic driving action recognition. In 2023 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages
5250–5259, 2023.

[81] Hongyi Zhang, Jan Bosch, and Helena Holmström Olsson. End-to-end federated
learning for autonomous driving vehicles. In 2021 International Joint Conference on

Neural Networks (IJCNN), pages 1–8, 2021.

[82] Xiaokang Zhou, Wei Liang, Jinhua She, Zheng Yan, and Kevin I-Kai Wang. Two-layer
federated learning with heterogeneous model aggregation for 6g supported internet
of vehicles. IEEE Transactions on Vehicular Technology, 70(6):5308–5317, 2021.

[83] Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. Federated learning on non-iid
data: A survey. Neurocomputing, 465:371–390, 2021.

[84] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu,
Hui Xiong, and Qing He. A comprehensive survey on transfer learning. Proceedings

of the IEEE, 109(1):43–76, 2021.

	Introduction
	Problem Definition
	Research Questions
	Objectives
	Contributions
	Text Organization

	Theoretical Concepts
	Vehicle Networks (VANETs)
	Fundamentals
	Challenges
	Mobility Models

	Neural Networks
	Fundamentals
	Performance Metrics
	Challenges
	Data Augmentation

	Centralized Federated Learning
	Fundamentals
	Challenges

	Decentralized Federated Learning
	Fundamentals
	Challenges

	Non-Independent and Identically Distributed Data (non-IID)
	Clustering
	Similarity Metrics

	Weight-Similarity Client Clustering (WSCC)
	Summary

	Related Work
	Centralized Federated Learning
	Decentralized Federated Learning
	Hybrid Federated Learning

	Proposed Methods
	Message Broadcasting
	Decentralized WSCC
	Weight-Similarity Vehicle Clustering
	Hybrid Vehicle Clustered Federated Learning

	Experiments
	Methodology
	Tools
	Scenarios
	Simulation Parameters
	Datasets
	Neural Networks

	Validation Set Results
	Initial Validation
	Optimizers
	RSU Coverage
	Acceptance Threshold
	Similarity Metrics

	Test Set Results of Centralized, Decentralized and Hybrid Methods
	Long and Short Vehicle Trips
	Experiments Remarks

	Conclusions
	Final Remarks
	Future Work

	Bibliography

