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Resumo

A interseção entre visão e linguagem desperta um interesse significativo, uma vez que há
um foco crescente na integração perfeita entre o reconhecimento visual e a capacidade de
raciocínio. Os grafos de cena surgiram como uma ferramenta útil para tarefas multimo-
dais de imagem e linguagem, demonstrando um alto desempenho em tarefas tais como
Respostas a Perguntas Visuais (do inglês, Visual Question Answering). No entanto, os
métodos atuais que utilizam grafos de cena idealizados e anotados costumam enfrentar
dificuldades para generalizar quando utilizam grafos de cena extraídos diretamente das
imagens.

Neste estudo, abordamos esse desafio ao introduzir a abordagem SelfGraphVQA. Nosso
método envolve a extração de um grafo de cena de uma imagem de entrada usando um
gerador de grafo de cena pré-treinado e, em seguida, aprimora as informações visuais por
meio de técnicas de autossupervisão. Ao utilizar a autossupervisão, nosso método refina
a utilização das representações de grafo nas tarefas de VQA, eliminando a necessidade de
dados de anotação dispendiosos e potencialmente tendenciosos. Além disso, utilizamos
técnicas de aumento de imagem para criar visões alternativas dos grafos de cena extraídos,
permitindo a aprendizagem de representações conjuntas por meio de uma abordagem
contrastiva que otimiza o conteúdo informativo em suas representações.

Em nossas experimentações, exploramos três estratégias contrastivas distintas: focadas
nos nós, focadas nos grafos e regularização de equivariância de permutação, todas adapta-
das ao processamento de grafos de cena. Por meio de avaliações empíricas, demonstramos
a eficácia dos grafos de cena extraídos em tarefas de VQA, superando as limitações de
depender apenas de grafos de cena anotados. Além disso, ilustramos que nossa aborda-
gem de autossupervisão aprimora significativamente o desempenho geral dos modelos de
VQA, enfatizando a importância das informações visuais. Como resultado, nosso método
oferece uma solução mais prática e eficiente para tarefas de VQA que dependem de grafos
de cena para abordar perguntas complexas de raciocínio.

Em suma, nosso estudo demonstra a eficácia do uso de técnicas de autossupervisão para
aprimorar a utilização de grafos de cena em tarefas de VQA. Ao contornar as limitações
dos grafos de cena idealizados e anotados, promovemos uma abordagem robusta para
incorporar informações visuais na compreensão multimodal. O método SelfGraphVQA
contribui para o avanço da integração perfeita entre visão e linguagem, alavancando novas
possibilidades para melhorar o reconhecimento e o raciocínio no campo das tarefas de
imagem e linguagem.



Abstract

The intersection of vision and language has garnered significant interest as researchers
aim for seamless integration between visual recognition and reasoning capabilities. Scene
graphs have emerged as a valuable tool in multimodal image-language tasks, exhibiting
high performance in tasks such as Visual Question Answering (VQA). However, current
methods that rely on idealized annotated scene graphs often struggle to generalize when
utilizing predicted scene graphs extracted directly from images.

In this study, we address this challenge by introducing the SelfGraphVQA framework.
Our approach involves extracting a scene graph from an input image using a pre-trained
scene graph generator and subsequently enhancing the visual information through self-
supervised techniques. By leveraging self-supervision, our method enhances the utilization
of graph representations in VQA tasks, eliminating the need for expensive and potentially
biased annotation data. Additionally, we employ image augmentations to create alter-
native views of the extracted scene graphs, enabling the learning of joint embeddings
through a contrastive approach that optimizes the informational content within their
representations.

In our experimentation, we explore three distinct contrastive strategies: node-wise,
graph-wise, and permutation equivariance regularization, all tailored to scene graph pro-
cessing. Through empirical evaluations, we demonstrate the effectiveness of the extracted
scene graphs in VQA tasks, surpassing the limitations of relying solely on annotated
scene graphs. Furthermore, we illustrate that our self-supervised approach significantly
enhances the overall performance of VQA models by emphasizing the significance of visual
information. As a result, our framework provides a more practical and efficient solution
for VQA tasks that rely on scene graphs to address complex reasoning questions.

Overall, our study showcases the efficacy of leveraging self-supervised techniques to
enhance scene graph utilization in VQA tasks. By circumventing the limitations of ide-
alized annotated scene graphs, we promote a robust approach to incorporating visual
information for multimodal understanding. The SelfGraphVQA framework contributes
to the advancement of seamless integration between vision and language, unlocking new
possibilities for improved recognition and reasoning in the field of image-language tasks.
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Chapter 1

Introduction

This chapter describes the problem addressed in this dissertation, defines the scope of our

work, presents its main motivations and research questions, as well as an outline of the

remaining text.

1.1 Problem Description

In the last decade, machine learning algorithms have become one of the hottest topics in

Computer Science. Machine Learning (ML), a subfield of Artificial Intelligence, focuses

on mapping representations of features (or data representation) from a given input to

a target. ML algorithms have achieved remarkable results in tackling challenges that

were previously deemed impossible with rule-based methods. However, despite the great

progress, the performance of machine learning methods is heavily hinged on the choice of

data representation applied.

For that reason, much of the actual effort in deploying machine learning algorithms

goes into the design of pre-processing pipelines and data transformations that result in

a representation of the data capable of supporting effective learning [11]. Such feature

engineering and pre-processing pipeline designs are not only labor-intensive but are also

prone to errors and biases of human ingenuity and biased knowledge. Therefore, the ques-

tion raised is: “Is it possible to jointly learn data representation and parameter mapping

in an end-to-end design?”

This is where Deep Neural Networks (DNNs) come into play. Specifically modeled after

the human brain, DNN tries to compensate for the weakness of the machine learning ap-

proach by automatically learning the feature representation of the data. Empowered with

the representation learning perspective that automatically discovers the feature patterns

in the data, deep learning models allow even simple architectures to perform relatively

well in complex tasks such as text classification and image classification. In a nutshell,

DNNs are representation learning models.

This growing interest in representation learning models has been accompanied and

nourished by a remarkable string of empirical successes in several advanced tasks such as

Computer Vision (CV) and Natural Language Processing (NLP). In general, representa-

tion learning, also known as feature learning or deep learning, focuses on automatically
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discovering and learning compact and meaningful representations of high-dimensional

data. The goal of representation learning is to transform the original raw data into a

higher-level representation, making it easier for algorithms to learn and make predictions.

The resulting representations often feed a dedicated layer of some specific task (e.g., dis-

criminative head or generative head).

When talking about computer vision tasks, Convolutional Neural Networks (CNNs)

and the recent Vision-Transform (ViT) [27] architecture are widely recognized as two of

the most prominent architectures [80]. CNN is a type of deep neural network architecture

that is specifically designed to process data with grid-like topology, such as an image,

learning directly from it. CNN eliminates the need of manual feature extraction. In the

field of computer vision, CNNs have drawn huge interest particularly when used for image

classification, object detection, and image segmentation tasks.

In a CNN, the network learns hierarchical feature representations of the input data

through a series of convolutional, pooling, and activation layers. The convolutional layers

identify local features from the input image, while the pooling layers reduce the spatial

dimensions of the feature maps, making the network more computationally efficient. The

activation layers add non-linearities, allowing for more intricate relationships between

the input and output to be learned. For example, in image classification tasks, a CNN

maps a high-dimensional input signal (such as an image) to a low-dimensional embedding

vector that captures the spatial features through the use of relevant filters. The resulting

representations are then fed into a classification layer to classify the image.

On the other hand, ViT is a self-attention-based architecture highly inspired by the

Transformer [93] scaling successes in NLP. ViT is a type of convolutional neural network,

but instead of processing each image as a matrix of pixels, it divides the image into smaller

patches and processes each patch as a vector of features.

The idea behind ViT is to leverage the power of the Transformer architecture. ViT

uses a self-attention mechanism to weigh the importance of each patch, allowing the

network to capture long-range dependencies and relationships in the input image. In

terms of scalability and information, ViTs manage to process much larger images without a

decrease in performance, whereas preserve global context information in a single pass. ViT

has shown promising results on a variety of computer vision benchmarks and is considered

to be a promising alternative to traditional CNNs for large-scale image recognition tasks.

It is pertinent to acknowledge that ViTs and CNNs possess distinctive attributes, each

accompanied by its own set of advantages and limitations. These architectural variances

contribute to the diverse capabilities and performance characteristics exhibited by ViTs

and CNNs in the domain of visual processing.

In the realm of transfer learning, both architectures have been used successfully in

computer vision tasks. Transfer learning is a technique in visual computing that allows

pre-trained models to be adapted for new tasks, with the goal of improving the perfor-

mance on these tasks, by leveraging the knowledge gained from solving related problems

For example, CNNs for transfer learning often perform well on a wide range of tasks

due to their ability to learn local features and representations. The earlier and middle

layers of a CNN consist of general features learning which allows the model to be reused to

solve a different but related problem. Normally, pre-trained CNN models on huge dataset
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such as ImageNET performs substantially satisfactorily when fine-tuned on other related

datasets. They can be easier to fine-tune due to their smaller size and lower computational

complexity compared to ViTs.

On the other hand, ViTs can be fine-tuned on smaller datasets, preserving their ability

to capture global context and generalize to unseen data. However, fine-tuning a large ViT

model can be computationally expensive, due to its size and complexity.

In parallel, deep representation learning has also gained much attention in natural

language processing tasks. NLP deals with tasks that make use of data in a natural

language format. Its goal is to enable computers to understand, interpret, generate human

language, and predict the semantic meaning of texts in a meaningful way.

Recurrent Neural Network (RNN) [39] is a type of neural network architecture that is

used in NLP for tasks such as text classification, machine translation, and sentiment anal-

ysis. RNNs have a recurrent connection, allowing them to process sequences of inputs

by sharing information across all time steps in the sequence. This makes RNNs well-

suited to processing sequential data such as text, where context and order are important.

Additionally, many NLP researchers have adopted the Transformer-based architecture,

following its success, such as Bidirectional Encoder Representations from Transformers

(BERT) [25]. BERT is a pre-trained language representation model designed to under-

stand the context of a given word by looking at the surrounding words in both directions.

BERT leverages the Self-Supervised Learning (SSL) approach in order to pre-train deep

representations from the unlabeled text. As a result, the pre-trained BERT model can be

fine-tuned with just one additional output layer to create state-of-the-art models for a wide

range of tasks, such as question answering and language inference, without substantial

task-specific architecture modifications.

It is important to mention that the success of pre-trained BERT has inspired com-

munities of research to pay more attention to self-supervised learning as an approach to

learning better representations of the data. Analogous to the CNN or ViT model in CV,

after training BERT, we can fine-tune the model parameters on downstream tasks that

do not have a lot of annotated training data.

With this substantial achievement, representation learning allowed not only improve-

ments in individual tasks but also paved the way for satisfactory results in multi-modality

or cross-modality tasks such as Visual Question Answering (VQA) and Image Captioning.

Cross-modal learning refers to any kind of learning process that involves learning from

information obtained in multiple modalities, or forms of data representation (i.e., visual,

audio, textual).

Recent advancements in multi-modal learning have been inspired by the effectiveness of

the human learning process (i.e., inherently involves the integration of multiple senses, as

combining different modalities helps us better understand and analyze new information),

leading to the development of models capable of processing and connecting information

across various modalities, including images, videos, text, audio, body gestures, facial

expressions, and physiological signals.

In recent years, there has been a growing interest in joint vision-language models, such

as OpenAI’s CLIP [76], which combine vision and language modalities. These models have

demonstrated remarkable capabilities in tackling challenging tasks such as image caption-
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ing, text-guided image generation and manipulation, and visual question-answering. This

field continues to evolve, continually improving zero-shot generalization and finding ap-

plications in various practical use cases.

More specifically to our dissertation, VQA is an attractive research direction aiming

to jointly analyze multi-modal content from images and natural language data. The main

goal of a VQA model is to answer a natural language question based on an image. This

multi-modality task involves a semantic comprehension of questions related to the detec-

tion of the visual content. Therefore, the VQA task addresses the challenge of formulating

a model capable of achieving a comprehensive and semantically aligned understanding of

the image and the query data, in order to correctly predict the answer. The accuracy of

the algorithm can be evaluated by the number of questions it answers correctly.

A model that succeeds at VQA typically needs a more detailed understanding of the

image and complex reasoning than a model producing generic image comprehensions,

such as image classification or image detection. Due to its complexity challenges, and

significance in real-world problems, VQA has gained in the past few years several open-

domain datasets [6,9,41] as well as different analytic algorithms that model the semantic

understanding for visual question-answer purpose [57,59,60,67,69].

The majority of early ‘vanilla’ VQA systems are modeled based on the CNN and RNN

architectures that extract and encode features from images and questions, respectively,

and a module designed to fuse information from the encoders. Although the high per-

formance of these cross-modal representation learning strategies, they have difficulties in

capturing interactive dynamics in the visual scene and usually ignore the relationship

among objects or regions. In other words, these VQA approaches normally are agnostic

toward the explicit relational structure of the objects in the scene, therefore, presenting

a lack of explicit compositional reasoning abilities which results in weaker performance.

Indeed, previous ’vanilla’ VQA models that present the question-only architecture per-

formed reasonably well by exploiting the biases in the questions-answers [7].

In addition, recent works [2] have demonstrated that the robust performance of models

pre-trained on large-scale multimodal data heavily relies on their effectiveness within the

same data distribution as the training data and when evaluated under out-of-distribution

conditions for VQA, it becomes evident that these models face challenges in generalization.

Furthermore, it is observed that these models often prioritize solving specific benchmarks

rather than acquiring a comprehensive understanding of the spatial and relational inter-

action of the objects in the images, which is essential for the VQA task.

That is where non-Euclidean data may be an alternative. The non-Euclidean for-

mat can be represented in computer science by a graph-structured format. Graphs are

a natural representation for many real-world problems, such as social networks, protein

interaction networks, and knowledge graphs. The objects that make up a graph are called

nodes (i.e., their entities) and edges (i.e., their relationships). Graph-structured data may

contain in their connections far more sophisticated information than what we can uncover

with basic statistical methods. It can also handle non-linear relationships which allow it

to capture complex and non-linear relationships between data points, which is often not

possible with traditional machine learning methods. For example, in a social network

graph, a graph-based model might recognize that the influence a person has on their
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friends is not linearly proportional to the number of friends or that friend has a different

type of relationship, represented by different features or weights. It may capture non-

linear patterns, such as the impact of influential individuals having a disproportionately

higher influence on their connected peers. Additionally, graphs can improve interpretabil-

ity and high-level interpretation, by helping to uncover how very small interactions and

dynamics may lead to global changes. Due to these benefits, many researchers in the

machine learning domain have recently delved into understanding models that deal with

unstructured graph-like data for various tasks.

Graph Neural Networks (GNNs) are a class of neural networks designed to operate on

and address several types of non-structured data [14,101], such as graph-structured data.

GNN was developed based on the theory of graph signal processing, as a generalization of

Euclidean convolutions to the non-Euclidean graph domain [16]. GNNs are suitably de-

signed to learn graph topology information to discover useful graph structures from data

for better graph representation. When learning graph representation, GNN’s powerful

ability in learning expressive graph representations relies on the quality and availability

of graph-structured data. In a nutshell, GNNs consist of a series of neural network layers

that iteratively aggregate information from a node’s neighbors and update its representa-

tion. GNNs have shown great promise in various domains, such as computational biology,

chemistry, and CV, and NLP, due to their ability to capture complex relationships be-

tween nodes in a graph. Currently, most graph neural network models have evolved to

more advanced architectures such as Graph Convolutional Networks (GCNs) [49], where

filter parameters are typically shared over all locations in the graph, Graph Attention

Networks (GAT) [96] with leverage attention technique when performing message passing

throughout the edges, and Graph Isomorphism Network (GIN) [103] which focuses on

determining the isomorphism of two graphs, that is, if they have the same structure, for

example.

As aforementioned, the requirement to design systems that can not only recognize

objects but understand and reason about the relationships between them is essential for

tasks such as VQA. In that way, it would be useful to have some graph representation

data that can be relatively easily generated by the low-level module and, at the same time,

can be effectively used by the high-level reasoning module. The primary motivation is to

develop a relational representation that semantically describes the visual scene in terms

of objects, their relationships, and interactions, which leads us to a complex reasoning

image representation, the scene graph (SG).

The intuition is that scene graph representation may be particularly well-designed for

VQA, where questions are normally dependent on the relationship of the objects in the

image [59, 75, 98]. The SG may carry simultaneously semantic and spatial information

[109]. Hence, they could allow the models to ‘reason’ about the answer to the question in a

better holistic way [67] and allow for greater interpretability. Additionally, we might take

advantage of GNNs, by treating the question and image’s features as the graph properties

input and the answer as the output global properties. GNNs can be directly applied to

incorporate scene graphs and be learned to optimize the performance of Visual QA.

Although the potential benefits of SG for VQA, Scene Graphs for Visual Question

Answering (SG-VQA) research remain relatively under-explored. Sporadic attempts in
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scene graph-based VQA [40, 58, 59, 60, 99] mostly propose various attention mechanisms

designed primarily for fully-connected graphs, thereby failing to model and capture the

important structural information of the scene graphs.

For instance, Damoradan et al.’s work explored the use of scene graphs for improving

the VQA challenge [24]. They proposed pre-trained image-question architectures for use

with scene graphs and evaluated various scene graph generation techniques for unseen

images. The authors argue that despite the effectiveness of scene graph for VQA task, the

performance of the models decline when there is an increased dependence on automatically

generated scene graphs, generating a statistical dependence. It has been demonstrated

that a training curriculum incorporating both generated and ground truth scene graphs

is more effective than relying solely on one type of scene graph, however, making it

an expensive process due to the annotation labor requirement. In addition, their work

is limited to pre-trained Visual-Language models such as UNITER or attention-based

models to process the graph-based data. These models learn through large-scale pre-

training over jointly image-text datasets and they are normally used to extract a cross-

modal contextualized embedding for a given image and question. In other words, the

work [24] does not leverage in their analysis deep learning models that are designed to be

directly applied to graphs such as GNNs.

Inspired by the great performance of related works on graph-based VQA [32, 67] and

the recent works developed so far [59, 60, 98], we explore the use of scene graphs for the

VQA task by models that handle graph-based representation through message passing

techniques such as GNN and its derived (e.g., GAT, GINE, GCN). The intuition is that

the scene graphs carry complex and sufficient information needed to answer the questions

in a more reasoning way. In addition, in order to extract the representation of scene

graphs for VQA while preserving its graph-based structure, we apply a GNN-based model

to encode a scene graph guided by the language question.

Some datasets are well-designed for the Scene Graph for the VQA task. For example,

GQA is a new graph-based dataset for visual reasoning and compositional question an-

swering. GQA has been developed and carefully refined with a robust question engine,

leveraging content and necessary information about objects, attributes, and relations.

Each question is associated with a structured representation of its semantics, a functional

program that specifies the reasoning steps that have to be taken to answer it.

Despite the good performance and improved explainability of models that utilize the

scene graph of the GQA dataset, their effectiveness still relies on the availability of in-

distribution datasets and manually annotated scene graphs, which can be labor-intensive

to create. Many projects assume that the provided graph topology of visual information

is perfect and adequate [59, 60], but this assumption may not hold true in real-world

scenarios. Graph topology can often be noisy, semantically corresponding, but lacking

fundamental information or, in labeling scenarios, incomplete due to the inevitable errors

in data annotation. Additionally, the scene graph representation might bring implicit

biases to the dataset, because the annotated scene graph is often related to the task

in advance. This problem raises two questions: (i) How would the model behave if it

used semantically correspondent but different scene graphs for the same image? (ii) Do

different scene graphs for the same image still present fundamental spatial and relational
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information needed to answer the question (iii) How can scene graph representation be

enhanced in an unsupervised manner without the need for annotation labor?

An alternative to answer these questions is to create another set of annotated scene

graphs and see how the models perform on them. However, this approach still remains the

main bottlenecks for the deep learning community: data annotations which are expensive

to obtain, and statistical dependence if grounded on the same scene graph representation.

We emphasize that data annotation for scene graphs is even more labor-intensive and

time-consuming than the common-type image annotation because one needs the additional

dimension of the objects in the scene and their relationships to be manually analyzed.

Our work tries to fulfill this lack by generating scene graphs using pre-trained scene

graph generator [51] from semantically preserving augmented image, which is more gen-

eral and practical. However, this choice creates noise and also serves as a kind of self-

augmentation approach for the input data. As the proposed framework uses a different

view of the image while preserving its semantically meaning, it shares similarities with

previous works that employ a self-supervised learning approach [19, 30, 87]. Hence, one

potential approach is to utilize the self-supervised training strategy to improve the visual

representation of these scene graph views.

In a nutshell, Self-Supervised Learning (SSL) is an unsupervised learning approach

that obtains supervisory signals from the data itself, often leveraging the underlying struc-

ture of the data. The general technique of self-supervised learning is to learn semantically

meaningful representations from any observed or unhidden part of the input.

In general, SSL creates pretext tasks that consist of some subtasks created out of

unlabeled data that the models try to solve in order to learn useful representations. For

instance, a self-supervised pretext task consists of masking some parts of the data and

challenging the network to predict the missing part. For example, BERT is trained by

predicting the most likely word of a masked sentence from the corrupted input signal of

the available sentence. In this way, BERT uses only unlabeled masked data and tries to

solve a given pretext task, thus aiming to learn the context of the words. However, the

results of SSL are massively dependent on the chosen pretext task and it is not clear in

the literature which pretext fits better for each type of task.

Nevertheless, a general representation learning has been proposed to learn the repre-

sentation of data in a self-supervised manner. The most known is the contrastive learning

and more recently non-contrastive learning or un-normalized contrastive approaches [55].

As the discussion about the term for the un-normalized contrastive learning or non-

contrastive learning is still open [28], we use them interchangeably. Contrastive learning

is a technique that learns an embedding space in which similar sample pairs stay close to

each other while dissimilar ones are far apart. In other words, contrastive methods pull

together embeddings of distorted views of a single image while pushing away embeddings

coming from different images. Meanwhile, non-contrastive learning or un-normalized con-

trastive learning is a technique where models learn without the use of contrasting positive

and negative samples by maximizing the semantically corresponding data.

Recently, methods that deviate from contrastive learning have been widely applied as

it eliminates the use of negative samples in different ways. Methods such as SimSiam [19],

BYOL [30] or Dinov2 [72], apply information maximization methods to maximize the in-
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formational content of the semantically similar representations. In a nutshell, these meth-

ods can be seen as contrastive learning applied between the dimensions of the embeddings

instead of contrastive between the samples themselves [28].

In the multi-modality sphere, contrastive and non-contrastive learning have demon-

strated remarkable effectiveness when applied to vision-language models. Notably, recent

works, including CLIP [23] and Flamingo [3] have successfully bridged the gap between

the vision and language modalities. These models jointly learn a text encoder and an

image encoder using a contrastive loss function, leveraging large datasets that contain

pairs of image and language examples.

With that in mind, this work aims to align visual and textual information in scene

graph representation by leveraging self-supervised learning, more specially non-contrastive

learning techniques. Inspired by the advantages of non-negative samples, simplicity, and

good performance, we aim to enhance the visual information of semantically similar scene

graph representations extracted from the same image by applying non-contrastive tech-

niques during training. By doing so, it ensures that the learned representation of scene

graphs effectively captures the correspondence between visual and textual information.

Briefly, this dissertation aims to improve VQA results in a more practical and reason-

ing way by using graph-structures data that represent the information of the contents of

the images. In contrast to other graph-based VQA, our framework generates a scene graph

using a pre-trained scene graph generator and encodes the SG representation through a

GNN-based encoder and the questions through a Transformer-based encoder. Moreover,

we apply non-contrastive learning techniques with the objective of maximizing the visual

information from the semantically corresponding generated scene graph features along

with the related questions. In conclusion, our aim is to use the acquired aligned represen-

tations of cross-modal data to tackle complex questions and accurately predict answers

for the VQA task, which serves as our downstream objective.

1.2 Motivation

The primary objective of a VQA model is to provide accurate answers to questions based

on the visual content of an image. It is designed to address a wide range of relevant

questions grounded in the image, such as “What is the animal in the image?”, “What

object is next to the plane in this image?”, and “Which animal in the image is able to climb

trees?”. To effectively answer these questions, a VQA model must attain a comprehensive

and holistic understanding of the scene and establish a semantically-aligned interpretation

of the multi-modal input. By achieving this level of comprehension, the model can provide

accurate and meaningful responses to diverse visual questions.

Although models leveraging scene graph representations have demonstrated good per-

formance and enhanced explainability in complex tasks such as VQA, previous works have

highlighted the strong dependence of these representations on the specific scene graph used

for training. Mitigating this dependency requires a training curriculum that incorporates

both generated and ground truth scene graphs, which has shown to be more effective than

relying solely on one type of scene graph. However, this approach is expensive due to the
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labor-intensive nature of annotation, making it impractical in many scenarios.

Data annotation for scene graphs is even more labor-intensive and time-consuming

than traditional image annotation, as it requires manual analysis of objects in the scene

and their relationships. Additionally, the assumption of perfect graph topology in most

projects does not always hold true, as graph topology can be noisy or incomplete due

to inevitable annotation errors. Furthermore, although the wide range of possible scene

graph representation for VQA, this kind of data may introduce implicit biases to the

dataset, as the annotated scene graph is often related to the task in advance.

Driven by the intricate information conveyed through the scene graph representa-

tion, encompassing spatial and relational data, and inspired by the effective use of self-

supervised learning for data representation maximization, this research endeavors to tackle

the aforementioned challenges. We propose to generate scene graphs using a pre-trained

scene graph generator from semantically augmented images, providing a more general

and practical approach. Put in another way, the wide range of possible scene graphs

represented by the same image brings further complexity to real-world approaches. In

essence, we leverage non-contrastive learning strategies to enhance the visual representa-

tion of these scene graph views in a lightweight and unsupervised manner. Non-contrastive

learning has shown promising results by maximizing the semantic correspondences in data,

eliminating the need for contrasting positive and negative samples.

The primary objective of this dissertation is to leverage the scene graph in a prac-

tical and effective manner for the VQA task. To enhance the handling of potentially

noisy data, we align the visual representation of noisy scene graphs using non-contrastive

learning techniques. Inspired by the advantages of non-negative samples, simplicity, and

performance, we believe that maximizing the similarity between scene graph representa-

tions extracted from the same image can significantly enhance the visual’s informativeness

for the VQA task. In other words, we aim to capture the necessary visual information

in the learned representations of dynamically generated noisy scene graphs for textual

queries.

In summary, this dissertation strives to improve VQA results in a practical and rea-

soned manner by utilizing graph-structured data that represents the contents of images.

Our framework differs from other graph-based VQA approaches as it generates scene

graphs using a pre-trained scene graph generator, encodes the scene graph representa-

tion using a GNN-based encoder, and encodes the questions using a Transformer-based

encoder. Additionally, we apply non-contrastive learning techniques to maximize the in-

formation contained in the features of the generated scene graph and the encoded question.

The learned aligned representations of this cross-modal data are then used to predict the

best answer for the VQA task, which serves as our downstream task.

1.3 Research Questions

We have formulated a series of questions to encapsulate our research motivation and

outline the intended approach to achieve our goal in this dissertation. These questions

have served as a guide to refine, articulate, and establish the specific objectives we aim
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to accomplish. The formulated questions are as follows:

Q1. How scene graph for visual question-answering models behave when using a non-

idealized generated scene graph grounded on the image?

Q2. Do different yet semantically corresponding scene graphs still contain fundamental

information that can contribute to the effectiveness of VQA tasks?

Q3. Can simple yet effective non-contrastive learning techniques effectively enhance the

visual information in scene graphs for VQA models?

Q4. Does the visual enhancement achieved through non-contrastive learning techniques

remain intact even when applied with more expressive language encoder models?

To address these inquiries, we conducted comprehensive experiments throughout this

dissertation and presented answers to these questions in Chapter 6.

1.4 Outline

The remaining chapters of this dissertation are organized as follows. In Chapter 2 we

highlight the main objectives and contributions of this research work. Chapter 3 provides

an overview of the theoretical concepts relevant to our work. We begin with Section 3.1,

which explains the VQA task and covers various models employed in tackling this task,

ranging from early vanilla models to more advanced approaches. We also address the

limitations and challenges associated with VQA. Section 3.2 delves into graph theory and

graph neural networks. We discuss the fundamental aspects of graphs and their compo-

nents, followed by an exploration of graph algorithms and the initial approaches for graph

embedding that paved the way for the development of graph neural networks. This sec-

tion highlights the success of graph neural networks in various domains within the field of

deep learning. Section 3.3 explores the concept of scene graph structures, encompassing

projects related to scene graph generation, and how the utilization of scene graphs has

contributed to advancements in visual question-answering tasks. Subsequently, in the sub-

sequent section, we provide a brief overview of the utilization of graph neural networks in

previous projects, demonstrating their effectiveness in leveraging the graph-based nature

of data to enhance reasoning capabilities and improve performance in VQA tasks. Lastly,

Section 3.5, the final section of the theoretical chapter, focuses on self-supervised learning,

including both contrastive and non-contrastive learning strategies. We highlight notable

works that have applied these strategies successfully. Chapter 4 delves into VQA datasets

and their unique characteristics. Our proposed approach is presented in Chapter 5. We

start this chapter with an introduction, providing an overview of our work. We then delve

into the methodology of our approach, including the baseline architecture employed for

generating and handling graph-based data. Each part of our model is detailed, outlining

the maximization techniques applied and how the target losses are calculated. The chap-

ter concludes by presenting a comprehensive overview of the architectures utilized and the

training strategies employed. Chapter 6 encompasses the Results and Ablation analysis.
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This chapter includes a comprehensive set of questions designed to evaluate our model

and examine how the non-contrastive learning approach has contributed to performance

enhancements. Additionally, figures are provided to illustrate the results obtained. Lastly,

in Chapter 7, we conclude this dissertation by discussing how the methods presented in

this work can be applied to enhance the practicality of SG-VQA models through improved

visual representations. We also highlight potential future directions for further research

in this field.
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Chapter 2

Objectives and Contributions

This chapter presents the main objectives and contributions of this research work. We

expose our scientific contributions, objectives, and performance indicators.

2.1 Scientific Contributions

Our study has made scientific contributions to the academic community in the field of

Visual Question Answering (VQA). The key contributions of our work can be summarized

as follows:

C1. Identified Limitations of Manually Created Scene Graphs: Through our investiga-

tion, we observed that models relying on manually created and expensive annotated

scene graphs struggle to effectively handle real-world data for the VQA task. This

finding highlights the need for alternative approaches that can overcome the limi-

tations associated with these idealized scene graphs.

C2. Proposed SelfGraphVQA Framework: To address the limitations mentioned above,

we introduced the SelfGraphVQA framework. Our approach aims to mitigate the

spurious correlation between annotated scene graphs and question-answering per-

formance by leveraging a pre-trained scene graph generator module. This allows us

to answer questions using extracted scene graphs rather than relying solely on man-

ually created annotations. In addition, our approach utilizes the Self-Supervised

Non-Contrastive Learning to enhance the performance of the model, by making

the visual information more expressive. This approach focuses on maximizing the

similarity between graph representations obtained from different views, leading to

improved results compared to baseline methods.

C3. Demonstrated Effectiveness of Extracted Scene Graphs: Our study showcases the

effectiveness of extracted scene graphs in the VQA task, underscoring the impor-

tance of further exploring the potential of scene graphs for complex tasks. This

finding contributes to advancing the understanding of the role of scene graphs in

improving VQA performance.
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C4. Highlighted Practicality and Simplicity: We demonstrate that a simple yet effective

Siamese framework incorporating un-normalized contrastive learning techniques can

significantly enhance overall results for complex multi-modal VQA tasks. The pro-

posed approach presents practical advantages by utilizing a simple self-supervised

framework and leveraging a scene graph generator to produce scene graphs from

images without the need for manual labeling. This makes the approach more appli-

cable to real-world scenarios.

C5. Enhanced Importance of Visual Information: As the key contribution, our work

demonstrates that the non-contrastive learning approach over the scene graph rep-

resentation effectively enhances the overall results in complex tasks such as VQA.

This finding suggests that the importance of visual information is accentuated by

our approach.

C6. Robustness to More Expressive Language Encoder Models: We also establish that

the enhancement achieved through our approach remains effective even when the

multi-modal model is paired with a more expressive language encoder model. This

demonstrates the robustness of our approach across different model architectures

and reveals that the effectiveness of visual enhancement information persists even

when utilizing a more expressive question encoder module.

C7. Awareness and Future Directions: While our work has some limitations, such as

limited exploration of non-contrastive learning strategies, we hope that our research

raises awareness of the potential of scene graphs for VQA and highlights the ef-

fectiveness of self-supervised learning in addressing the challenges associated with

emphasizing the role of the scene in answering questions.

C8. Publications: This project constitutes the base for a paper accepted at the IEEE

Vision-and-Language Algorithm Reasoning Workshop in the ICCV 2023, granting

the Best Paper Award.

2.2 Performance Indicators

We present a set of key performance indicators, in order to measure the success of our

project. Here, we highlight that the performance indicators proposed during the project

have been successfully met.

These indicators are as follows:

P1. Opening working code for models and frameworks.

P2. Make available the source code of our resulting models.

P3. Develop this research in agreement with an international university in a Master’s

program, to be able to learn new techniques on graph neural networks applied or

not in visual question answering.

P4. Submission/publication of scientific papers in conferences/journals.
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Chapter 3

Fundamentals

This chapter briefly presents some relevant concepts related to the topic investigated in

this dissertation.

3.1 Visual Question Answering

Visual Question Answering (VQA) refers to a computational task that seeks to answer

a question by leveraging the visual content of a provided image [7]. In the typical setup

of VQA, the model is presented with a raw image along with a question in a natural

language format. Subsequently, the model’s objective is to accurately provide the correct

answer grounded on the image.

The field of VQA encompasses a wide range of complex challenges, many of which are

considered the ultimate goal of automatic image comprehension and artificial intelligence

as a whole. In other words, tackling VQA involves multiple skills, such as language and

visual understanding, integrating information between the vision and language modalities,

and commonsense-based reasoning [2]. Due to its interdisciplinary nature, VQA has drawn

significant attention from communities specializing in deep learning, computer vision, and

natural language processing. Figure 3.1 illustrates some examples of the VQA task.

Figure 3.1: Examples from the balanced VQAv2 dataset [29].
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3.1.1 The VQA Task

In solely CV, many traditional problems involve extracting information from the images.

The most known computer vision tasks such as object recognition, action recognition,

object detection, and object segmentation have achieved state-of-the-art performance by

using convolutional neural network models [53] and more recently the Vision Transformer

(ViT) based models [26] such as Swin Transformer [63]. The recognition tasks require

classifying the object in an image without knowledge of any other specific attributes (i.e.,

without detecting its position in the image). On the other hand, object detection involves

the spatial position of each object and its classification. Normally on object detection

tasks, a bounding box is used around each instance of an object in the image. The

task of localization at the pixel level is performed by semantic segmentation. Semantic

segmentation makes every pixel in the image be labeled with the class of its enclosing

object.

Despite significant advancements in computer vision for classifying, extracting fea-

tures, and detecting objects within a scene [72, 97], relying solely on computer vision

methods falls short when it comes to achieving a holistic scene understanding for some

multi-modality requirement such as image captioning, image retrieval or visual question

answering. In other words, these tasks typically lack a shared representation of common

knowledge that bridges the gap between vision and language. In comparison to VQA,

computer vision approaches often encounter limitations in inferring abstract scenes and

comprehending the semantic and spatial context of objects prompted by a natural lan-

guage query. Consequently, these approaches struggle to comprehend an object’s role

within a broader context and lack the ability to leverage multi-modal knowledge beyond

a specific sub-domain.

The VQA task involves predicting a high-level semantic output, such as an answer,

based on a low-level visual input, such as an image. In essence, VQA necessitates acquir-

ing a more comprehensive and holistic understanding of the scene to effectively respond

to diverse queries about objects within the image or even global image information. For

instance, open-ended questions in VQA require a wide range of computer vision capabil-

ities, including fine-grained recognition (e.g., “What kind of animal do you see?”), object

detection (e.g., “How many humans are there?”), activity recognition (e.g., “What is this

man doing?”), and commonsense reasoning (e.g., “What is this person waiting for?”). In

essence, a significant challenge for VQA systems is to engage in sophisticated reason-

ing regarding objects and their relationships throughout the entire scene, in addition to

comprehending the natural language of the question.

3.1.2 The ’Vanilla’ VQA Models

Since 2014, there has been an increasing number of VQA datasets in general [6, 41, 42]

and specialized domain [9], as well as a significant progress in deep networks algorithm for

VQA proposes. The VQA dataset needs to be sufficiently large to capture the diversities

and variability of the question, images, and concepts that occur in the real world. Another

fundamental aspect is its fair evaluation scheme which indicates that an algorithm can

answer a question about the concept of an image.
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’Vanilla’ models, in the context of Visual Question Answering (VQA), denote the ini-

tial or fundamental models developed for this task. These early VQA systems typically

comprised three main modules: an image and question featurization module, a feature

fusion module, and a final answer generator or classifier module. As illustrated in Fig-

ure 3.2, the models typically take both a visual input (such as an image) and a textual

input (such as a question) as their inputs. These architectures are usually based on the

combination of an RNN-based encoder, aiming to embed the natural question into a vec-

tor space, and CNN-based architecture to encode the image representation [31]. A joint

module that learns the multi-modal representation of the data is employed for fusing the

extracted visual and textual features. This fusion can occur at different levels, such as

early fusion (combining features before further processing) or late fusion (merging features

at a later stage of the model) [5,10]. This learned multi-modal embedding fed a classifier

layer in order to predict the correct answer.

Figure 3.2: ‘Vanilla’ VQA architecture presented by Agrawal et al. [6]. This approach
utilizes an RNN module to encode the questions and a CNN-based encoder to encode
the images. The question and image features are then converted into a shared space and
combined using element-wise multiplication. The resulting fusion is passed through a
fully connected layer and followed by a softmax layer, enabling the model to generate a
probability distribution over possible answers.

While these commonalities exist among vanilla VQA models, it’s important to note

that there is also considerable diversity and innovation in the specific architectural choices,

attention mechanisms, and fusion strategies used across different models. For instance,

Stacked Attention Networks (SAN) [105] employs stacked attention mechanisms to attend

to different regions of the image and words in the question iteratively. Bottom-Up and

Top-Down Attention (BUTD) [4] model uses a combination of bottom-up and top-down

attention mechanisms to focus on relevant image regions and words in the question, cap-

turing fine-grained details and contextual information. Finally, Dual Attention Networks

(DAN) [45] utilizes both visual attention and question attention to capture important

visual and textual information and perform reasoning between the two modalities.

Another crucial point to note is that some researchers go towards generative VQA

models, which means that instead of classifying the correct answer from a predetermined

set, these models are able to generate answers in an open-ended manner [56].

Even performing relatively well, normally the ‘standard’ VQA framework is not able to

represent all the relations between the image’s content and the question. Indeed, predict-
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ing a high-level semantic output from a low-level cross-modal signal is more challenging

than performing individually each task due to a vast gap between the modalities.

3.1.3 The Advanced VQA Models

Recent research has focused on attention-based approaches, particularly on transformer-

based models that utilize attention techniques [21, 56]. The underlying intuition is that

attention mechanisms can effectively establish connections and capture relevant informa-

tion across different modalities in the VQA task.

For instance, LXMERT: Learning Cross-Modality Encoder Representations from

Transformers is a transformer-based cross-modal model that has achieved SoTA perfor-

mance on various VQA benchmarks and has been widely adopted in the visual question

answering research community [85]. As an example, on the VQAv2 dataset, the LXMERT

model attains a 69.9% accuracy on the test set. Similarly, on the GQA dataset [41], which

involves multiple spatial reasoning skills to answer questions based on both images and

textual queries, the LXMERT model achieves an accuracy of 59% on the validation set.

Strongly influenced by BERT, Hao Tao & Mohit Bansal proposed LXMERT is a multi-

modal model that learns the connection between languages and vision data by apply-

ing a combination of self-supervised such as masked language modeling, visual-language

text alignment, ROI-feature regression, masked visual-attribute modeling, masked visual-

object modeling, and supervised tasks such as visual-question answering objectives. This

pre-trained transformer-based model contains three encoders: an object-relational en-

coder, a language encoder, and a cross-modal encoder. The authors claim that the model

shows generability when pre-trained in cross-modality data by adapting it to a challenging

visual-language reasoning task.

Another example is ViLBERT [65] (Vision-and-Language BERT), one of the first, yet

strong models in the recent pretrain–fine-tune paradigm in Visual-Language. ViLBERT

is a multimodal model designed to learn task-agnostic joint representations of image con-

tent and natural language. By processing visual and textual inputs separately in distinct

streams, which interact through co-attentional transformer layers, ViLBERT extends the

renowned BERT architecture with a multi-modal two-stream model. It undergoes pre-

training on the Conceptual Captions dataset using two proxy tasks and subsequently

applies transfer learning to a range of vision-and-language tasks. These tasks encom-

pass visual question answering, visual commonsense reasoning, referring expressions, and

caption-based image retrieval.

And, finally, we mention the ALBEF [56] (ALign the image and text representations

BEfore Fusing) model which is a state-of-the-art Vision and Language encoder that utilizes

a vision Transformer to encode image patches. After pretraining with a self-training

method, Li et al. enhanced the ALBEF by fine-tuning it on the specific dataset depending

on the task. In some settings, ALBEF is fine-tuning as a generative model.

In a nutshell, attention-based approaches and more specifically transformer-based ap-

proaches have improved sharply the VQA results, due to their excellent capability for

modeling high-level representation among multimodal input features.

Despite the great performance, Transformer-based VQA models are usually computa-
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tionally expensive and data hunger (i.e., of a large number of parameters and data) [106],

which limits its application in a real-world scenario. Indeed, the limited availability of

high-quality multimodal datasets can restrict their performance [72]. Transformers are

computationally complex, requiring substantial resources for training and inference. The

large number of parameters and self-attention mechanisms can lead to increased com-

putational requirements and longer inference times. These limitations may hinder the

widespread adoption and application of transformer-based pre-trained multimodal mod-

els in certain scenarios.

We highlight that we do not cover graph-based models in this section as they will

be discussed separately after introducing graph theory and graph neural networks, in

Section 3.2. We also would like to emphasize that in Section 3.4, we will provide a detailed

explanation of methods that utilize graph structure for visual question answering.

3.1.4 The VQA Limitation and Challenges

Recent study reveals [2] that while transformer-based models demonstrate impressive

performance on test data from the same distribution as their training data for VQA, they

struggle in out-of-distribution (OOD) scenarios. The researchers argue that these models

tend to excel at specific benchmark tasks rather than true visual question-answering tasks.

Interestingly, their findings underscore the significance of human evaluation in pro-

viding a more comprehensive assessment of model performance. In other words, previous

researches [2,46] provide evidence that the strict nature of the standard VQA evaluation

metrics, which measures overall in-domain accuracy with a limited set of ground-truth

answers, consistently penalizes models even when predicting semantically correct answer

or correct responses that do not exist in the set of ground-truth answers for generative

models. Indeed, they note that existing automatic metrics for VQA such as accuracy or

BLUE [73] often fail to capture a considerable number of accurate model responses.

Although several datasets have introduced alternative methods to evaluate the per-

formance of VQA models, such as the inclusion of complementary metrics in the GQA

dataset to assess not only accuracy but also the consistency, validity, and plausibility of

model responses, as well as the VQAv2 dataset’s attempts to address inter-human vari-

ability in answer phrasing and align with human accuracies, further improvements are

still required. Chapter 4 provides a comprehensive overview of the dataset and metrics

employed for evaluating VQA datasets. Actually, this emphasizes the need for human

judgment and advanced evaluation to obtain a more accurate understanding of a model’s

capabilities and limitations in VQA tasks.

The issue of overfitting to answer priors, as discussed in the work by Agrawal et al. [1],

presents another significant challenge in VQA. It refers to the bias exhibited by models

towards the answer distribution in the training set, particularly for specific question types.

Even in more recent pre-trained transformer-based models, this bias persists and becomes

particularly problematic in OOD settings [2]. In OOD settings, the priors distribution of

answers may differ between the training and test sets, unlike in IID settings, leading to a

decrease in performance and accuracy when the model encounters novel or ODD data.

Another area of research focuses on addressing the challenges related to language
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biases, which can undermine the robustness of models and have a detrimental impact on

their practical applications [107]. Kervadec et al. argued [46] that models for VQA are

prone to relying on dataset biases due to the vast and imbalanced diversity of questions

and concepts involved. This hinders the models’ ability to reason effectively, leading them

to resort to educated guesses instead. They argue that distribution shifts between train

and test splits do not accurately reflect real-world tendencies, resulting in models that

are not suitable for generalization.

Despite efforts have been made to address language biases in VQA, including strength-

ening visual information [61], balancing datasets to make it more unbiased [29], weakening

language priors using regularization schemes on models [77], employing data augmenta-

tion and training strategies [86], or even leverage the biased samples to improve genera-

bility [83], further researches and innovations are needed to effectively tackle the language

biases and achieve more unbiased and contextually accurate answers in VQA

Actually, the aforementioned projects in Section 3.1.3 are normally agnostic toward

the explicit relationships of the objects in the scene, that is, the holistic information in

a complex representation, therefore, struggling in generalize to compositions of objects,

predicates, and commonsense reasoning in low-frequency contexts [46,107]. Usually, they

present a lack of explicit compositional reasoning abilities results in weaker performance,

or are often dependent on the used dataset. Consistently, this issue is attributed to or

reinforces language bias in the models, leading them to heavily depend on the question of

the dataset distribution and resort to “smart guessing”, rather than effectively leveraging

visual information [107]. As a result, the model’s predictions may be influenced primarily

by the question’s wording rather than accurately incorporating and leveraging the visual

content.

A promising alternative approach for addressing the holistic comprehension of ob-

jects and their interaction is the utilization of a Scene Graph (SG) in Visual Question

Answering. SG-VQA is a recent field of research that aims to leverage the scene graph

information of an image [38] for the VQA task. By leveraging the visual content and

playing a crucial role in capturing the relationships between objects, SG enhances the

complexity of the question, enabling responses that involve multiple reasoning skills, spa-

tial understanding, and multi-step inference. The Scene Graph for VQA is detailed and

discussed in Section 3.3.2.

3.2 Graph Theory and Graph Neural Network

Before delving into scene graph representation for complex multi-modal tasks such as

VQA it is essential to provide a formal definition of graph data representation. Graphs

are a versatile data structure and a universal means of representing complex systems [34].

3.2.1 The Graph Structure

In its most fundamental form, a graph consists of a collection of objects, known as nodes,

and a set of connections, known as edges, between pairs of these objects. For instance,
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when encoding a social network as a graph, individuals can be represented as nodes, and

the friendships between them can be represented as edges, as illustrated in Figure 3.3.

Figure 3.3: Graph structure example of marriages between various different prominent
families in 15th-century Florence. Image source: [34].

A graph can be mathematically defined as a pair G = (V,E), where V represents the

set of nodes and E represents the set of edges connecting these nodes. The edge (u, v) ∈ E

denotes a connection between node u and node v. In the case of a simple graph, there

is at most one edge between any pair of nodes, no edges exist between a node and itself,

and the edges are undirected, i.e., (u, v) ∈ E if and only if (v, u) ∈ E.

A convenient way to represent graphs is through an adjacency matrix A ∈ R
|V |×|V |,

where |V | is the number of nodes in the graph. Each entry A[u, v] of the matrix indicates

the presence or absence of an edge between nodes u and v. Specifically, A[u, v] = 1 if

(u, v) ∈ E, and A[u, v] = 0 otherwise. If the graph is undirected, the adjacency matrix

will be symmetric. I n some cases, graphs may also have weighted edges, where the entries

in the adjacency matrix can be arbitrary real values, indicating the strength or weight of

the association between nodes.

Beyond the distinction between undirected, directed, and weighted edges, it is possible

also to consider graphs that have different types of edges (i.e., classes of edges). The

interaction between nodes can represent the type of graph we are working with. We will

consider graphs that have different types of edges (i.e., different relationships between

nodes) as a multi-relation graph or heterogeneous graph [34]. Similarly, the heterogeneous

graph can contain undirected or directed edges with different types of nodes indicating

the relation-type of the association.

Transformer-based deep learning models, which are state-of-the-art in various tasks

and commonly applied to structured data based on Euclidean geometry, often struggle

to effectively encode essential information present in non-structured data, particularly in

graph-structured data that involve interconnections between entities. Given its benefit of

conveying relational information, it becomes important to focus on how to address the

challenges posed by graph structure data.
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3.2.2 The Graph Algorithms

A first attempt with graph algorithms tried to set a collection of instructions designed to

navigate through a graph by traversing its nodes through the connections or links between

them. These algorithms can be utilized for problems related to graphs, such as finding

paths between nodes, determining the shortest path, identifying connected components,

detecting cycles, and many more.

Three known examples of commonly used graph algorithms are (i) Breadth-First

Search (BFS): which explores a graph by traversing its nodes in a breadth-ward man-

ner. BFS is often used to find the shortest path between two nodes or to explore all nodes

reachable from a given node, (ii) Depth-First Search (DFS): explores a graph by diving

as deep as possible into a branch before backtracking. It is used to explore all nodes in a

graph or to search for specific nodes or paths (iii) Dijkstra’s Algorithm: used to find the

shortest path between a source node and all other nodes in a weighted graph. It considers

the edge weights and gradually builds the shortest paths from the source node to all other

nodes.

By leveraging graph-based algorithms, it becomes possible to extract more profound

insights and achieve a higher-level semantic understanding of relationships within graph-

structured data. This approach proves to be more suitable and effective compared to

traditional non-Euclidean algorithms.

However, graph algorithms can face limitations in terms of scalability and computa-

tional complexity when dealing with large-scale graphs. Additionally, the algorithms may

struggle with high-dimension graph features and dynamic or evolving graph structures

efficiently.

3.2.3 The Graph Embeddings

The primary challenge in effectively processing graph data is to discover an efficient repre-

sentation method, that is, learning dense, low-dimensional vector representations for nodes

and edges to minimize noise, eliminate redundancy, and preserve the intrinsic structural

information [100].

This method known as graph representation learning, traditionally embedded the

graph by focusing on dimension reduction techniques, Figure 3.4. These methods typically

construct a graph from a feature-represented dataset, and aim to achieve two goals: re-

constructing the original graph structures and supporting graph inference. The objective

functions of traditional graph embedding methods primarily emphasize graph reconstruc-

tion.

Following Hamilton et al. [34], we focus our discussion of node embeddings around the

framework of encoding and decoding graphs.

In the encoder-decoder framework for graph representation learning, the task is usually

approached by performing two main operations.

First, the encoder model takes each node in the graph and maps it into a low-

dimensional vector or embedding. This embedding captures the essential characteristics

of the node, summarizing its features in a compact representation. The encoder’s role is

to encode the structural and contextual information of each node in the graph.
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Figure 3.4: Illustration of the Node Embedding Problem. The objective is to train an
encoder (ENC) that maps nodes to a low-dimensional embedding space. These embed-
dings are optimized to ensure that distances in the embedding space accurately reflect
the relative positions of the nodes in the original graph. Image source: [34].

Next, the decoder model takes these low-dimensional node embeddings and utilizes

them to reconstruct information about each node’s neighborhood in the original graph.

By analyzing the embeddings and their relationships, the decoder aims to reconstruct the

connectivity and interactions between nodes. This reconstruction process helps to capture

the local graph structure and enhance our understanding of the node’s context within the

graph.

Mathematically, the encoder and decoder models can be represented by functions.

The encoder function maps a node u in the graph to its corresponding low-dimensional

embedding E(u), where E denotes the encoding operation. The decoder function, denoted

as D, takes the embeddings as input and reconstructs the neighborhood information, such

as the edges or attributes of neighboring nodes.

In addition, it is important to point out that to facilitate graph inference effec-

tively, modern graph embedding methods take into account richer information within

a graph [100]. Based on the types of information preserved during graph representation

learning, we may categorize modern graph embedding methods into three categories: (1)

graph structures and properties preserving graph embedding, (2) graph representation

learning with side information, and (3) advanced information preserving graph represen-

tation learning. In terms of techniques, different models are employed to incorporate

various types of information or address different objectives. Commonly used models en-

compass (i) matrix factorization, which is used to decompose an adjacency matrix into

two lower-rank matrices, aiming to capture latent features or relationships, (ii) node2vec,

which generates node embeddings by performing random walks on the graph, exploring

both local and global neighborhood information. It uses a biased random walk strategy

that balances between breadth-first and depth-first sampling, capturing both structural

and community information, and (iii) DeepWalk, which also utilizes random walks on

the graph, and by considering the context of nodes encountered during the random walks,

DeepWalk captures the structural similarities between nodes to produce their embeddings.

Despite achieving many successes in the past decade, graph embedding approaches

present some limitations. Firstly, it is the lack of parameter sharing in shallow embed-

ding methods. Each node’s encoder optimizes a unique embedding vector, resulting in
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statistical and computational inefficiency. Furthermore, shallow embedding approaches

do not utilize node features in the encoder, despite the rich feature information available

in many graph datasets. Additionally, shallow embedding methods are inherently trans-

ductive, restricting embeddings to nodes present during training and limiting their ability

to handle unseen nodes. These limitations highlight the need for improved techniques that

incorporate parameter sharing, leverage node features, and support inductive learning for

broader applicability.

3.2.4 The Graph Neural Network

Conventional deep learning techniques have achieved significant advancements in pro-

cessing Euclidean data, such as images, and sequential data, such as natural language

text. However, certain applications inherently possess or are better represented with a

graph structure. Consequently, research efforts have focused on deep learning methods for

graph data, with Graph Neural Networks (GNNs) emerging as one of the most successful

approaches across various domains. In this chapter, we aim to explore more complex

graph embedding models by introducing graph neural network formalism, a comprehen-

sive framework for defining deep neural networks on graph data.

The key objective of GNN is to generate node representations that explicitly capture

the underlying graph structure while incorporating available feature information, keeping

permutation invariance and equivariance property, and being able to handle both trans-

ductive and inductive learning scenarios. GNNs exhibit both permutation invariance and

equivariance, enabling them to effectively handle graph-structured data. They are capa-

ble of capturing relationships and patterns regardless of the ordering of graph elements,

making them permutation invariant. Moreover, GNNs maintain consistency in their out-

puts when the input graph structure is permuted, displaying permutation equivariance.

These traits make GNNs applicable to both inductive and transductive learning tasks.

Additionally, GNNs facilitate the incorporation of feature information, allowing them to

leverage rich attribute data for enhanced performance in graph-based learning tasks.

Recent neural network architectures specifically designed for graph-structured data,

such as those proposed by Kipf and Welling [48], and Hamilton et al. [35] have demon-

strated remarkable performance in domains including social networks, bioinformatics, rec-

ommendation systems, computer vision, natural language processing, program analysis,

software mining, drug discovery, anomaly detection, and urban intelligence.

Overview of the Message Passing Framework

The key characteristic of GNNs is their utilization of neural message passing, where vec-

tor messages are exchanged between nodes and updated using neural networks. The

underlying concept of GNNs is intuitive: during each iteration, nodes gather information

from their neighboring nodes, and as the iterations continue, the node embeddings grad-

ually incorporate information from increasingly distant parts of the graph. This iterative

message-passing framework enables GNNs to capture and propagate information across

the graph, allowing for comprehensive representations that incorporate both local and

global information.
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Consequently, the node embeddings of GNN models encode information in two dis-

tinct forms. Firstly, they capture structural information about the graph, which proves

valuable for various tasks, such as structural molecular graph analysis. Secondly, GNN

node embeddings incorporate feature-based information. This local feature-aggregation

behavior of GNNs resembles the behavior of convolutional kernels in CNNs.

In a mathematical context, during each message-passing iteration in a GNN, a hidden

embedding h
(k)
u corresponding to each node u ∈ V is updated according to information ag-

gregated from u’s graph neighborhood N(u). This message-passing aggregate and update

can be expressed as follows:

h(k)
u = AGGREGATE

(

{h(k−1)
v | v ∈ N(u)}

)

(3.1)

h(k)
u = UPDATE

(

h(k)
u , h(k−1)

u

)

(3.2)

where AGGREGATE represents a function (i.e., neural networks) that aggregates the

embeddings of neighboring nodes, and UPDATE represents a learnable function (i.e.,

neural networks) that updates the node embedding based on the aggregated information

and its previous embedding. This iterative process allows GNNs to capture and propagate

information through the graph structure.

In words, at each iteration k of the GNN, the AGGREGATE function takes as input

the set of embedding of the node u’s graph neighborhood N(u) and generates a message

based on this aggregated information. The UPDATE function then combines the message

information with the previous embedding h
(k−1)
u f node u to generate the updated embed-

ding h
(k)
u The initial embeddings at k = 0 are set to the input features for all the nodes,

i.e., h
(0)
u = xu, ∀u ∈ V [34]. Figure 3.5 illustrates a message-passing framework within a

single node’s local neighborhood.

Figure 3.5: Illustration of message aggregation within a single node’s local neighborhood.
The figure demonstrates how the model aggregates messages from the neighboring nodes
(such as B, C, and D) within node A’s local graph. These messages, in turn, incorpo-
rate information aggregated from their own respective neighborhoods. The visualization
represents a two-layer message-passing model, highlighting the tree-like structure formed
by the GNN’s computation graph as it unfolds the neighborhood surrounding the target
node. Image source: [34].



38

Variants of Graph Neural Network

In the preceding sections, we have presented the GNN framework in an abstract manner,

delineating the process as a sequence of message-passing iterations employing UPDATE

and AGGREGATE functions. Before delving into variants of GNN, we initiate the dis-

cussion with the fundamental GNN framework providing specific instantiations for the

UPDATE and AGGREGATE functions, which serves as a simplification of the original

GNN models proposed.

The basic GNN message passing is defined as follows:

h(k)
u = σ



W
(k)
selfh

(k−1)
u +

∑

v∈N(u)

W
(k)
neighX

(k−1)
v + b(k)



 (3.3)

In this equation, h
(k)
u represents the hidden embedding of node u at iteration k, σ

denotes an activation function, W
(k)
self and W

(k)
neigh are learnable weight matrices for the self

and neighborhood components, X
(k−1)
v denotes the feature representation of node v at

iteration k − 1, N(u) represents the neighborhood of node u, and b(k) is a bias term.

This equation captures the aggregation of information from the node’s self-embedding,

neighboring node embeddings, and the application of an activation function to compute

the updated embedding h
(k)
u .

Now that we have established the general message-passing framework as a deep learn-

ing function for GNN, let us discuss some important variants of GNN commonly employed

in graph-based applications. Specifically, we will focus on two models: Graph Convolu-

tional Network (GCN) [49] and Graph Attention Network (GAT) [94]. While there have

been several expressive and scalable models developed for graph representation learning,

such as Graph Isomorphism Networks (GIN) [103] and GraphSAGE [33], it is important to

note that the models we will discuss have garnered significant attention and demonstrated

remarkable performance across diverse tasks. For a more comprehensive understanding

of other variant models, we recommend referring to the book “Graph Representation

Learning” by Hamilton et al. [34].

One of the widely used graph neural network models due to its simplicity and effective-

ness in a variety of tasks and applications is known as the graph convolutional network.

GCN adopts the symmetric-normalized aggregation and self-loop update strategy. In this

model, the message-passing function is defined as:

h(k)
u = σ



W (k)
∑

v∈N(u)

h
(k−1)
v

√

|N(u)||N(v)|



 (3.4)

where h
(k)
u represents the hidden embedding of node u at iteration k, σ denotes an ac-

tivation function, N(u) represents the neighborhood of node u, and |N(u)| and |N(v)|

represent the sizes of the neighborhoods of nodes u and v respectively.

GCNs allow for end-to-end training and can handle graphs of varying sizes. However,

GCNs have some limitations, such as struggling with large-scale graphs and constraining
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when dealing with graphs containing different types of nodes or edges. In GCN, the

importance of neighboring nodes is determined by the edge weights in the input graph.

However, in real-world scenarios, the edge weights may not accurately reflect the true

relationships between nodes, leading to noisy representations.

To address this limitation, the Graph Attention Networks (GATs) employ the Atten-

tion mechanism to automatically learn the importance of each neighbor. The Attention

mechanism, widely used in natural language understanding and computer vision tasks,

enables GATs to assign adaptive weights to neighbors based on their relevance. This

approach enhances the expressiveness and flexibility of GNNs in capturing important

information from the graph structure.

We can define the attention weights as a weighted sum of the neighbors:

mN(u) =
∑

j∈N(i)

αijh
(l−1)
j (3.5)

where, mN(u) is the “message” that is aggregated from u’s graph neighborhood N(u) with

attention weights. N(i) represents the set of neighbors of node i, alphaij denotes the

attention weight between nodes i and j, and h
(l−1)
j represents the embedding of node j at

the previous layer l − 1.

In the original Graph Attention Network paper, the attention weights are defined as

follows:

αu,v =
∑

v0∈N(u)

exp(a¦[Whu ·Whv0 ])
∑

v′
0
∈N(u) exp(a

¦[Whu ·Whv′
0
])

(3.6)

where αuv represents the attention weight between nodes u and v, a denotes a learnable

attention vector, W represents the weight matrix, hi and hj represent the embeddings

of nodes i and j, and · denotes concatenation. The softmax function is applied to

ensure that the attention weights sum up to 1. This formulation allows the GAT model

to dynamically assign importance to different neighbor nodes based on their features

and learnable attention weights, which makes it one of the most graph-based models

used [57,98].

GAT’s attention mechanism allows for the adaptive aggregation of neighbor infor-

mation, enhancing the model’s ability to capture important relational dependencies in

graph-structured data.

3.3 Understanding Scene Graphs Structure

After providing an overview of fundamental graph concepts, graph representation, and

state-of-the-art graph encoding models, such as GNN, the focus will now shift to a specific

type of graph known as the scene graph.

Images transcend mere collections of objects or attributes, embodying a complex web

of interconnected relationships. In an effort to formalize the representation of images,

researchers have introduced scene graphs [52], which adopt a structured graphical format

similar to widely used knowledge base representations. It adopts a structured format,

resembling knowledge base representations, where objects (e.g., dog, frisbee) are repre-
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sented as nodes connected by pairwise relationships (e.g., playing with) represented as

edges.

Figure 3.6 illustrates a scene graph structure along with its various application, among

them visual question-answering tasks.

Figure 3.6: The figure showcases a scene graph structure along with its various applica-
tions. Scene graph generation models analyze an image and produce a scene graph that
captures the visual relationships between objects. This scene graph can then be used for
different purposes. For instance, image captioning, image generation, or visual question
answering. The Referring Expression (REF) indicates a specific region in the input image
corresponding to a given expression, with both the region and expression mapping to the
same subgraph of the scene graph. In the context of Visual Question Answering (VQA),
the answer to a question can sometimes be directly obtained from the scene graph. Even
for more complex visual reasoning tasks, the scene graph proves to be a valuable resource.
Image source: [110].

3.3.1 The Scene Graph Generation

The success of scene graphs in advancing state-of-the-art models for image caption-

ing [104], visual question answering [41], and relationship modeling [50] has motivated

research towards the task of scene graph generation (SGG).

SGG is a task that involves predicting a scene graph based on an input image. The

resulting scene graph can be directly utilized for various downstream tasks in an end-to-

end way. A competent SGG model should exhibit the ability to associate visual concepts
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with images and generalize to novel compositions of objects and predicates in different

contexts.

More formally, the goal of scene graph generation is to parse an image or a sequence

of images in order to generate a structured representation, bridging the gap between

visual and semantic perception and achieving a comprehensive understanding of visual

scenes. The benefit of this visual information can be identified in several VQA models that

attempt to apply the scene graph data to enhance the performance of their approaches [59,

60,66,98], The process typically follows a bottom-up approach, where entities are grouped

into triplets representing subject, relation, and object, i.e., < subject, relation, objecti >

triplets, abbreviated as < s, r, oi >.

Visual Relationship Detection has garnered significant attention in the research com-

munity since the introduction of the Visual Genome (VG) dataset by Krishna et al. [52].

Following [110], given a visual scene (i.e image) S and its corresponding scene graph

TS [18], the following components are defined:

• BS = bS,1, . . . , bS,n represents the region candidate set, where bS,i denotes the bound-

ing box of the i-th candidate object.

• OS = oS,1, . . . , oS,n represents the object set, where oS,i denotes the class label of

the object bS,i.

• AS = aS,o1,1, . . . , aS,o1,k1, . . . , aS,o2,1, . . . , aS,o2,k2, . . . , aS,on,1, . . . , aS,on,kn represents

the attribute set, where aS,oi,j denotes the j-th attribute of the i-th object. Here,

ki g 0 and j ∈ 1, . . . , ki.

• RS = rS,1→2, rS,1→3, . . . , rS,n→n−1 represents the relation set, where rS,i→j corre-

sponds to the visual triple tS,i→j = (sS,i, rS,i→j, oS,j), with sS,i and oS,j denoting the

subject and object, respectively.

When considering attributes detection and relationship prediction as independent pro-

cesses, the probability distribution of the scene graph p(TS|S) can be decomposed into

four components, similar to [18]:

p(TS | S) = p(BS | S) · p(OS | BS, S) · (p(AS | OS, BS, S) · p(RS | OS, BS, S)) (3.7)

Here, p(BS|S) represents the probability of the region candidate set, p(OS|BS, S) rep-

resents the probability of the object set given the region candidate set and the input image

S, p(AS|OS, BS, S) represents the probability of the attribute set given the object set, re-

gion candidate set, and the input image, and p(RS|OS, BS, S) represents the probability

of the relation set given the object set, region candidate set, and the input image.

In a nutshell, scene graphs can be generated using two different approaches. The

mainstream approach follows a two-step pipeline, where object detection is performed

first, followed by a classification task to determine the relationships between pairs of

objects. In contrast, the other approach involves simultaneous inference of objects and

their relationships based on object region proposals. In both approaches, the initial step

involves detecting all existing or proposed objects in the image, followed by grouping them
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into pairs. The features extracted from the union area of these object pairs, known as

relation features, are then used as the fundamental representation for inferring predicates

in the scene graph.

Despite SG demonstrating the ability to ground visual concepts into images and gener-

alize to compositions of objects and predicates in new contexts, real-world images exhibit

a strong frequency bias, with certain compositions occurring more frequently than others.

This poses a challenge for models to effectively generalize to rare and unseen compositions,

despite having observed individual subjects, objects, and predicates during training, which

is crucial for generalization. For instance, a < cup, on, table > is more easily predicted

than < cup, on, beach >.

In addition, Knyazev et al. [50] highlighted that the standard loss function used in

SGG unintentionally favors scene graph density, leading to the neglect of individual edges

in large sparse graphs during training. In other words, standard loss encourages the

models to predict any relationship between entities strongly influenced by the bias of

the link distribution rather than allowing the existence of sparse graphs. The authors

also argue that the frequency of relationships in the data and the standard loss functions

create a strong bias, where models that predict the most frequent relationship achieve

good performance, and therefore, state-of-the-art models often exploit this bias, which

hampers their ability to generalize to rare compositions.

Moreover, existing evaluation metrics and test sets fail to penalize models that overly

rely on this frequency bias. Consequently, models that solely rely on frequency-based

predictions, where, for instance (e.g., a cup is most likely to be on a table) can achieve

comparable performance to state-of-the-art models using standard evaluation metrics.

To address these issues, Knyazev et al. [50] proposed two improvements for the SGG

task. Firstly, they introduce a density-normalized edge loss that accounts for the spar-

sity of the scene graph, resulting in more balanced training and improved generalization

metrics. Secondly, they introduce a novel weighted metric to address the shortcomings of

traditional evaluation methods, giving the difficulty of accurately evaluating SGG models

using existing metrics, particularly for zero/few-shot scenarios.

3.3.2 The Scene Graphs for Visual Question Answering

As aforementioned, scene graphs represent visual scenes as structured graphs, capturing

objects, their attributes, and relationships. As VQA is concerned with answering free-

form questions about an image, it requires a deep linguistic understanding of the question

and the ability to associate it with various objects that are present in the image. In other

words, it is an ambitious task and requires techniques from both computer vision and

natural language processing. Hence, the inferred SG is a data structure information that

may be used directly for downstream tasks such as VQA, image captioning, and image

retrieval to cite a few.

It has been contended that within the VQA dataset, several seemingly complex rea-

soning tasks can be resolved by an algorithm through the exploitation of trivial prior

knowledge, thereby relying on shortcuts rather than proper reasoning (e.g., associating

clouds with being white or doors with being made of wood). Furthermore, numerous mod-
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ern approaches in VQA exhibit a lack of consideration for the explicit relational structure

among objects within the presented scene. Instead, they rely on monolithic transformed-

based network architectures that are heavily pre-trained on Visual Language datasets and

subsequently fine-tuned.

The recent research conducted by Agrawal et al. [2] demonstrated that the performance

evaluation of these transformer models commonly relies on unseen data that typically fol-

lows the same distribution as the training data. When assessed under out-of-distribution

(out-of-dataset) settings for VQA, these models exhibit poor generalization. Additionally,

they argue that the findings on Transformed-based pre-trained VQA models lack sufficient

logical, spatial, and compositional reasoning skills and that the models are more likely to

rely on answer priors rather than visual grounding

The Scene Graph for VQA has recently found interest in different research commu-

nities and various real-world datasets, such as the GQA dataset [41] (see Section 4.1).

The utilization of visual information in a graph structure has the potential to convey

intrinsic spatial and relational information, thereby enhancing the outcomes of intricate

downstream tasks, including Visual Question Answering (VQA). To elaborate, a multi-

tude of questions in VQA often entails the integration of multiple reasoning skills, spatial

comprehension, and multi-step inference, thus presenting inherent challenges. By incor-

porating a scene graph structure, the model may be equipped with the capacity for robust

reasoning, addressing the complexities inherent in such tasks.

Furthermore, scene graphs provide a simple way to couple the information from the

area of the knowledge graphs (KGs) [66, 81], thus increasing even further the common

sense knowledge so presented in natural questions (e.g., ’What is the person in the train

station waiting for?’) That way, KGs provide human readable, structured representations

of knowledge about the real world via collections of factual statements.

3.4 GNN-based Models for Visual Question Answering

In this section, we describe how the utilization of GNNs in previous projects has effectively

exploited the graph-based nature of the data to enhance their reasoning capabilities and

improve performance in VQA tasks. As aforementioned, the objective is to leverage induc-

tive biased in GNN for the structured nature of scene graphs, recognizing the structural

data significance in capturing and representing relational and spatial visual information.

With the increasing prominence of scene graphs in visual question-answering tasks,

numerous projects have emerged that employ graph neural networks to handle this type of

data and harness its potential. In other words, GNN-based models have gained significant

attention in the field of visual question answering due to their ability to effectively reason

about structured data, such as scene graphs. These models leverage the graph struc-

ture of the scene to capture rich spatial and semantic relationships between objects and

their attributes. Several notable GNN-based models and projects have been developed,

employing innovative designs to tackle VQA tasks.

One such model is the Relation-aware Graph Attention Network (ReGAT) proposed

by Li et al [57]. As illustrated in Figure 3.7, ReGAT incorporates relation-aware graph at-
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tention mechanisms to reason about object-object and object-attribute interactions within

a scene graph. It leverages self-attention mechanisms to capture the importance of dif-

ferent graph nodes and relations. By attending to relevant graph nodes and aggregating

their features, ReGAT effectively encodes contextual information for answering questions

related to visual scenes.

Figure 3.7: The ReGAT model provides an overview that encompasses both explicit
relations (semantic and spatial) and implicit relations. This model introduces a relation
encoder that effectively captures question-adaptive object interactions through the use of
Graph Attention. Image source [57].

Another influential GNN-based model in this domain is the VQA-GNN proposed by

Wang et al. [98]. The authors introduce a novel approach called VQA-GNN, which com-

bines image-level information with conceptual knowledge to enable joint reasoning of

the scene. They argue that the existing methods primarily focus solely on image-level

recognition, such as object detection, without effectively grounding and reasoning with

background concepts found in knowledge graphs (KGs). By integration of recognition

and reasoning in order to achieve more comprehensive visual understanding, Wang et

al. construct a scene graph from the input image and extract a relevant linguistic sub-

graph from ConceptNet [62] and a visual subgraph from VisualGenome [52]. These three

graphs, along with the question, are integrated into a unified multimodal semantic graph.

VQA-GNN model then learns to aggregate messages and reason across different modali-

ties present in the multimodal semantic graph. In the evaluation conducted on the Visual

Commonsense Reasoning (VCR) task, the VQA-GNN framework outperforms previous

models by more than 4% in terms of accuracy, achieving performance of 62.8%. Ad-

ditionally, our model VQA-GNN-Large, which incorporates a Trans-VL model, further

improves the state of the art by an additional 2%, securing the top position on the VCR

leaderboard. These results underscore the effectiveness of graph structural data and the

GNN-based model in performing conceptual reasoning beyond image-level recognition,

thus contributing to a deeper level of visual understanding.

Another recent project conducted by Liang et al [59] introduces a model called

GraphVQA. This framework operates by translating and executing a natural language

question through multiple iterations of message passing among graph nodes. GraphVQA

leverages scene graphs, which capture spatial and semantic relationships between ob-
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jects, to reason about complex visual scenes. Additionally, it utilizes a language-guided

approach, where natural language instructions guide the construction of the scene graph

and the reasoning process. This allows the model to effectively integrate visual and textual

information. The model employs GNNs to capture and propagate information across the

scene graph. along with graph attention mechanisms to focus on relevant nodes and edges

during reasoning. Therefore, GraphVQA introduces a graph-to-graph attention mecha-

nism that aligns language instructions with the constructed scene graph, facilitating more

accurate reasoning. Figure 3.8 illustrates an overview of the modules in GraphVQA. Ex-

perimental results demonstrate the effectiveness of GraphVQA on the GQA dataset [41].

It outperforms existing methods, achieving state-of-the-art performance in scene graph

question-answering tasks.

Figure 3.8: The GraphVQA Framework comprises the following semantic components:
The Question Parsing Module translates the question into M instruction vectors. The
Scene Graph Encoding Module initializes node features and edge features. The Graph
Reasoning Module performs message passing with graph neural networks for each instruc-
tion vector. The Answering Module summarizes the final state achieved after the message
passing and predicts the answer. Image source [59].

Overall, GNN-based models have demonstrated their potential in enhancing the rea-

soning capabilities for visual question-answering tasks. As the field continues to advance,

we can expect further exploration and development of innovative GNN-based architectures

to tackle increasingly challenging VQA problems.

3.5 Self-Supervised Learning

Self-supervised learning (SSL) is a form of unsupervised learning where a model learns

to extract meaningful representations from unlabeled data without explicit human an-

notations. SSL approach has shown significant progress in the last few years in image

representation [72, 111], natural language generation [15, 91] or multi-modal visual lan-

guage representation [3,22] frequently surpassing the performance of supervised baselines

on many downstream tasks.
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In a nutshell, self-supervised learning can be broadly categorized into two phases:

the early methods that rely on pretext tasks for SSL and the more recent approaches

that leverage energy-based techniques for SSL, split into contrastive and non-contrastive

approaches.

Firstly, the pretext task for SSL is the learning process that involves creating a pretext

task, also known as a self-prediction task (SPT), from the unlabeled data. The pretext

task is designed to provide supervision signals for the model during training, allowing it to

learn useful features or representations that can subsequently be applied to downstream

tasks [84, 108]. The pretext task is essentially a surrogate task that is constructed by

creating a subtask from the unlabeled data. This subtask requires the model to predict or

reconstruct certain parts of the input data based on other parts. By training the model

to solve this pretext task, it learns to capture relevant patterns and features in the data,

thereby acquiring meaningful representations.

On the other hand, the more recent Energy-based self-supervised learning (E-SSL)

technique is a specific framework within the broader domain of SSL [55]. E-SSL involves

formulating the pretext task as an energy minimization problem. In this approach, the

model is trained to assign low energy scores to similar or related instances and high energy

scores to dissimilar or unrelated instances. Figure 3.9 illustrates the general framework

of the E-SSL technique. By minimizing or maximizing the energy function, the model

learns to distinguish or approximate between different data instances or different views of

the same instance in order to capture the underlying structure in the data.

Figure 3.9: The joint embedding architecture consists of a function, denoted as C, that
generates a scalar energy value quantifying the dissimilarity between the representation
vectors, or embeddings, produced by two identical twin networks that share the same
parameters (w). In this setup, when x and y represent slightly different variations of the
same image, the model is trained to produce a low energy value. This training objective
compels the model to generate similar embedding vectors for the two images, promoting
the learning of meaningful representations that capture the shared characteristics between
the image versions. Image source: [55].
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The energy-based method is a very intuitive tool to comprehend the often utilized

contrastive or even more recently the non-contrastive loss functions to encourage sim-

ilar instances to have low energy values and dissimilar or maximize instances to have

high energy values. Contrastive methods bring together embeddings of different views of

the same image while pushing away embeddings from different images. Non-contrastive

or un-contrastive methods attract embeddings of views from the same image without

explicit negative pairs, achieved through architectural design [19, 30] or regularization

techniques [8]. Briefly, these approaches enable the learning of meaningful representa-

tions that capture shared characteristics within images and discriminate them from other

images.

Furthermore, certain studies [28] have revealed that non-contrastive methods can be

interpreted as a form of contrastive learning, but rather than comparing embeddings across

samples, they compare embeddings across dimensions. In other words, these methods

establish a contrastive relationship between different dimensions of the embeddings instead

of directly contrasting the samples themselves.

This dissertation exclusively focuses on the utilization of energy-based techniques for

self-supervised learning (e.g., contrastive and non-contrastive learning). Specifically, in

this project, the non-contrastive learning approach is applied to enhance the visual rep-

resentation in our graph-based model for Visual Question Answering to predict answers

to questions based on the information embedded in the image.

The subsequent sections of this dissertation are organized into three parts: Con-

trastive approaches, Non-Contrastive approaches, and the application of energy-based

self-supervised learning to graph-based models.

3.5.1 The Contrastive Learning

As previously discussed, the understanding of contrastive and non-contrastive learning

methods can be enhanced by viewing them through the framework of Energy-Based

Models. Both contrastive and non-contrastive self-supervised methods have significantly

advanced unsupervised representation learning, driving performance to unprecedented

levels. These methods form the cornerstone of the recent foundational models [3, 72, 91]

These techniques can be applied in both supervised and unsupervised learning sce-

narios. In the realm of unsupervised learning, contrastive learning stands out as one of

the most effective approaches within the domain of self-supervised learning. It enables

the model to learn meaningful representations from unlabeled data by leveraging the

discrimination between similar and dissimilar samples in the embedding space.

In this section, we delve into contrastive learning, which combines the instance dis-

crimination pretext task with joint-embedding architectures, often referred to as Siamese

architectures, to acquire contrastively unsupervised representations. At its core, con-

trastive representation learning aims to develop an embedding space where similar pairs

of samples are positioned close to each other, while dissimilar pairs are separated by a

significant distance.

The loss function employed in such methods typically yields a scalar value that can be

understood as an energy value. The objective is to design the energy function in a way
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that encourages representations of semantically related observations (such as images from

the same class) to be close to each other, while representations of images with unrelated

objects should be positioned far apart. The contrastive loss is typically represented in a

general form as follows:

L = −
1

N

N
∑

i=1






y · log





exp(si,i+/τ)
∑N

j=1 exp(si,j/τ)



+ (1− y) · log





exp(si,i−/τ)
∑N

j=1 exp(si,j/τ)










(3.8)

.

Here, L represents the contrastive loss. The index i denotes the current sample, N

represents the batch size, and y is a binary variable that indicates similarity (1 if similar,

0 if dissimilar). The si,j term compares the similarity score between the current sample i

and a dissimilar sample j (i.e i− or i+). The y is a binary variable indicating similarity

(1 if similar, 0 if dissimilar). The parameter τ represents the temperature for scaling the

similarity scores.

An important concept of contrastive learning is hard negative mining. Hard negative

mining is crucial in contrastive learning, but it poses further challenges. Hard negatives

are dissimilar samples that exhibit embedding similarity with anchor samples, compli-

cating the differentiation from positive samples. In VQA, the challenge of hard negative

mining can be further compounded by the diverse range of possible answers and questions

associated with a given image. Additionally, variations in the visual information provided

by different images can significantly impact the performance of the VQA system when

attempting to answer a specific question.

Current SSL methods implicitly mine hard negatives with large batch sizes, requiring

extensive memory and additional structures like memory banks. However, this approach

faces scalability issues. Overcoming the limitations of hard negative mining in contrastive

SSL involves addressing selection and representation challenges by exploring alternative

strategies such as adaptive sampling or memory-efficient architectures [37]. These ap-

proaches aim to improve performance and scalability by reducing computational and

memory complexities, enabling the effective utilization of contrastive learning in SSL.

Within the realm of self-supervised learning, the Contrastive Predictive Coding (CPC)

technique, introduced by van den Oord et al. [71] in 2018, offers a method for unsuper-

vised learning from high-dimensional data. It addresses this challenge by transforming a

generative modeling problem into a classification problem.

In CPC, the contrastive loss, termed as InfoNCE loss, draws inspiration from Noise

Contrastive Estimation (NCE) and employs cross-entropy loss to evaluate the model’s

ability to distinguish the “future” representation from a set of unrelated “negative” sam-

ples. Maximizing the InfoNCE loss is equivalent to maximizing a lower bound on the

Mutual Information (MI) between the representations comprising the positive pair.

Momentum Contrast (MoCo) model [37] is an approach for unsupervised visual rep-

resentation learning that draws inspiration from the InfoNCE loss. Proposed as a self-

supervised learning method, MoCo aims to leverage large-scale unlabeled datasets for

representation learning. MoCo uses instance discrimination as the pretext task in which

the data augmentation technique is used to synthesize positive image views. It addresses
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the limitations of previous approaches by introducing a momentum-based memory bank

and a contrastive loss function.

In MoCo, a dynamic dictionary, referred to as a memory bank, is utilized to store

representations of previously encountered samples. This memory bank facilitates the

construction of negative samples for contrastive loss computation. By incorporating a

momentum update, MoCo maintains a moving average of the model’s parameters, ensur-

ing consistency between the query and key networks during training.

The InfoNCE loss provides the foundation for the contrastive objective in MoCo. By

maximizing the InfoNCE loss, MoCo effectively maximizes the mutual information be-

tween positive pairs of representations, enhancing the discriminative power of the learned

features.

Through its innovative use of a momentum-based memory bank and the adoption

of the InfoNCE loss, MoCo has demonstrated impressive results in unsupervised visual

representation learning, surpassing previous state-of-the-art methods.

Further, Chen et al. [17] introduced the work “A Simple Framework for Contrastive

Learning of Visual Representations” (SimCLR), which is another groundbreaking ap-

proach that significantly narrowed the gap between supervised and unsupervised pre-

trained representations for visual representation. Also inspired by the InfoNCE loss,

SimCLR’s contrastive learning framework incorporates three key contributions: (1) the

use of large batch sizes, (2) a combination of data augmentations, and (3) a non-linear

projection head between the representation and the contrastive objective.

SimCLR learns representations by maximizing agreement between augmented views of

the same image. Unlike previous methods such as MoCo, SimCLR employs two Siamese

encoders to generate low-level representations from the two views. In contrast to MoCo’s

reliance on an additional momentum encoder and queue structure for creating negative

samples, SimCLR extracts negatives directly from the training batches. Consequently,

SimCLR leverages large batch sizes to ensure a sufficient number of negatives for effective

mining.

By embracing simplicity and a well-designed framework, SimCLR achieved remark-

able advancements in unsupervised pre-trained representations. Its success stems from

the incorporation of large batch sizes, a diverse set of data augmentations, and a dis-

tinct projection head, ultimately leading to highly effective contrastive learning of visual

representations.

Figure 3.10 illustrates the overview representations of the MoCo and SimCLR frame-

work.

However, the limitation of SimCLR and MoCo is its reliance on large batch sizes

to ensure efficiency and the need for effective mining of negative samples. This can pose

challenges, particularly in the Visual Question Answering task, where obtaining sufficient,

representative, and diverse negative image samples can be difficult and harm the question

grounded on the augmented image.
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Figure 3.10: Two comparative methods, namely MoCo V2 and SimCLR, employ con-
trastive loss functions. These methods leverage a substantial number of negative samples
to ensure stability and prevent model collapse. SimCLR specifically utilizes a large batch
size as a form of negative sampling. Image source: [64].

3.5.2 The Non-Contrastive Learning

In recent times, novel approaches have emerged in the field of representation learning that

diverge from traditional contrastive learning by eliminating the use of negative samples.

Non-contrastive self-supervised learning is an alternative approach to contrastive self-

supervised learning that eliminates the use of negative sample pairs. While contrastive

learning seeks to minimize the distance between positive sample pairs and maximize

the distance between negative sample pairs, non-contrastive learning solely focuses on

minimizing the distance between positive sample pairs.

The benefits of non-contrastive learning lie in its simplicity and efficiency compared

to contrastive approaches [88]. By eliminating the need for negative sample pairs, it

simplifies the training process and reduces computational complexity. These character-

istics appear to be highly advantageous when exploring complex multi-modal tasks such

as VQA. Furthermore, non-contrastive methods can learn representations that capture

meaningful features and exhibit strong generalization capabilities, thereby enabling effec-

tive transfer learning and improving performance on downstream tasks.

At first glance, non-contrastive learning might appear counter-intuitive, as training

with only positive sample pairs could lead to the collapse of representations into a constant

solution, where all inputs map to the same output. However, empirical evidence suggests

that non-contrastive self-supervised learning can still yield meaningful representations. It

converges to a useful local minimum rather than a global trivial one, ensuring that the

learned representations retain meaningful information.

Practically, distillation-based non-contrastive methods, including BYOL [30], Sim-

Siam [19], and DINOv2 [72], employ architectural techniques inspired by distillation to

address the problem of model collapse. These methods aim to mitigate the collapse issue

by leveraging knowledge transfer principles. Another class of methods, referred to as in-

formation maximization methods, have also achieved notable success [8]. These methods

focus on maximizing the informational content of the learned representations by intro-

ducing regularization techniques that optimize the empirical covariance matrix of the

embeddings.
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Grill et al. [30] proposed the BYOL (Bootstrap Your Own Latent), a self-supervised

learning model designed for learning representations in the vision domain. The key idea

behind BYOL is to encourage consistency between two sets of latent representations: an

online network and a target network. The online network is updated through gradient

descent, while the target network’s parameters are updated through exponential moving

averages of the online network’s parameters. The goal is to make the online network’s

representations approach those of the target network, thereby fostering representation

learning.

Mathematically, let f¹1 and f¹2 represent the online network and target network,

respectively. Given an input image x, the network produces latent representations

z1 = f¹1(x) and z2 = f¹2(x). The objective of BYOL is to minimize the distance be-

tween z1 and the predicted target representations ẑ2 = f¹2(x
′), where x′ is an augmented

version of the input image x. This is achieved by minimizing the mean squared error

(MSE) between z1 and ẑ2:

LBYOL =
1

2
∥z1 − ẑ2∥

2 (3.9)

BYOL further incorporates additional mechanisms such as data augmentation, predic-

tor networks, and a learning rate schedule to enhance the learning process. Through the

iterative optimization of the BYOL loss, the model learns to extract useful visual features

that generalize well to downstream tasks.

Overall, BYOL stands out as an SSL model in the vision domain due to its non-

contrastive cost function and the ability to bootstrap representations through the online

and target network interplay. This approach has demonstrated promising results in rep-

resentation learning and paves the way for further advancements in SSL research.

Another popular non-contrastive framework is proposed by Chen and He as Simple

Siamese Networks (SimSiam) [19]. SimSiam approach has gained attention for its ability

to learn representations without the need for additional components or large batch sizes. It

simplifies the SSL framework while achieving performance comparable to SOTA methods.

In SimSiam, a Siamese architecture is employed, where two identical network branches

share the same parameters. Given an input image, the network produces two latent

representations, z1 and z2, using separate transformations. The goal of SimSiam is to make

the two representations similar to each other, even without explicit negative samples.

To achieve this, SimSiam introduces a contrastive loss based on the cosine similarity

between the representations. The loss aims to maximize the similarity between the two

representations while also minimizing the similarity between augmented versions of the

same image. Mathematically, the SimSiam loss can be defined as:

LSimSiam = −
1

N

N
∑

i=1

(

z
(i)
1 · z

(i)
2

∥z
(i)
1 ∥∥z

(i)
2 ∥

−
z
(i)
1 · z

(i)
1

∥z
(i)
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1 ∥

)

(3.10)

One notable benefit of SimSiam is its simplicity. Unlike complex SSL models with

additional components, SimSiam focuses on the Siamese architecture and the contrastive

loss, which simplifies the learning process. SimSiam achieves competitive performance

by leveraging data augmentation and optimization techniques without the need for large
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batch sizes.

When compared to BYOL, SimSiam offers a more straightforward and streamlined

approach. While both methods learn representations through self-supervision, SimSiam

eliminates the reliance on a target network and avoids the complexity of maintaining two

networks. Additionally, SimSiam does not require the extensive use of memory banks or

specific distillation-based techniques, which further simplifies the training process. Fig-

ure 3.11 illustrates the overview representations of the SimSiam and BYOL framework.

Figure 3.11: Two comparative methods, namely MoCo V2 and SimCLR, employ non-
contrastive loss functions. SimSiam and BYOL employ the technique of closing the gap
between pairs of positive samples to learn similarities while utilizing asymmetric structures
to avoid model collapse. Image source: [64].

As SimSiam stands out as a promising SSL method due to its simplicity, competitive

performance, and ability to learn representations effectively without the need for addi-

tional components or large batch sizes, in this thesis, we investigate and shed light on

how the siamese non-contrastive self-supervised learning frameworks can achieve success-

fully in enhance the visual representation for VQA task. Its streamlined approach and

comparable performance make it an attractive alternative to more complex methods like

BYOL or SimCRL.

3.5.3 The Self-Supervised Learning on Graphs

In this section, we shift our focus to self-supervised learning on graphs, which has gained

considerable attention due to its numerous benefits in graph neural network models. Par-

ticularly, we will focus on the recent advancement on contrastive and non-contrastive

learning on GNN.

As aforementioned in Section 3.5.2, contrastive learning methods aim to generate

meaningful data representations in an unsupervised manner by minimizing a contrastive

loss between negative and positive samples.

On the other hand, non-contrastive learning methods provide several advantages, in-

cluding not requiring negative samples, being computationally less expensive, and exhibit-

ing good or even superior performance.

Velickovic et al. [95] proposed Deep Graph Infomax (DGI). DGI is a general graph

representation approach that aims to capture informative and discriminative features from
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graph-structured data in an unsupervised manner. It leverages the power of contrastive

learning to enhance the quality of learned representations.

The main contribution of DGI lies in its ability to address the challenges of captur-

ing useful representations from graph data, utilizing well-established graph convolutional

network architectures. As graph information is characterized by its relational structure,

where the interactions between nodes and edges play a crucial role in understanding the

underlying data, DGI focuses on exploiting the local and global structural information

to learn representations that encode important graph-level properties along with spatial

and relational information. These representations hold valuable information that can be

reused for downstream node-wise learning tasks.

In other words, the strength of DGI lies in its ability to effectively capture both

local and global structural information. By maximizing the mutual information between

local and global representations, DGI encourages the encoder to learn representations that

preserve the crucial structural properties of the graph. This leads to improved performance

on downstream tasks, as the learned representations contain meaningful information about

the graph’s topology and relational dependencies.

The objective of DGI is to maximize the agreement between positive node embed-

dings and summary embeddings while minimizing the agreement between negative node

embeddings and summary embeddings. By maximizing mutual information between local

and global representations, DGI encourages the learned embeddings to capture important

graph-level properties.

Mathematically, the DGI objective can be represented as follows:

L =
1

N +M





N
∑

i=1

E(X,A) logD(h̃i, s̃i) +
M
∑

j=1

E(Xe, Ae) log
(

1−D(ẽhj, s̃j)
)



 (3.11)

In this equation, L represents the overall loss. N represents the number of nodes

in the graph, and M represents the number of negative samples. E(X,A) is a function

that computes an embedding for the graph based on the node features X and adjacency

matrix A. h̃i and s̃i represent the positive node embedding and summary embedding,

respectively, for the ith node. Similarly, ẽhj and s̃j represent the negative node embedding

and summary embedding, respectively, for the jth negative sample.

D is the discriminator function that aims to distinguish between positive and negative

embeddings. It takes the positive node embedding h̃i and summary embedding s̃i as

inputs and outputs a probability score indicating their similarity. The second term in the

equation represents the log loss when the discriminator distinguishes between the negative

node embedding ẽhj and summary embedding s̃j.

However, from a graph perspective, achieving state-of-the-art performance by apply-

ing contrastive methods often relies on complex data augmentations, which can be pro-

hibitively expensive, mainly when dealing with large graphs.

Therefore, Thakoor et al. [87] proposed the Bootstrapped Graph Latents (BGRL), a

graph-based representation learning technique that learns by predicting alternative aug-

mentations of the input. BGRL is a scalable and efficient approach to achieving state-

of-the-art performance in graph representation learning. Unlike traditional methods that
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rely on contrasting with negative examples and complex augmentations, BGRL employs

simple augmentations while alleviating the need for negative examples, making it inher-

ently scalable.

Notably, BGRL surpasses or achieves comparable results to previous methods on well-

established benchmarks, all while reducing memory costs by a significant margin (2-10x

reduction). Moreover, BGRL demonstrates exceptional scalability by effectively operating

on extremely large graphs with hundreds of millions of nodes in the semi-supervised

regime.

One additional remarkable aspect of BGRL’s success lies in its ability to improve over

supervised baselines where representations are solely shaped by label information. This

highlights the efficacy of the non-contrastive learning approach even in graph-based data,

emphasizing the significance of learning representations beyond label information.

BGRL builds representations through the use of two graph encoders, an online encoder

E¹ and a target encoder Eϕ, where θ and φ denote two distinct sets of parameters. A graph

G = (X,A), with node features X ∈ R
N×F and adjacency matrix A ∈ R

N×N . BGRL

first produces two alternate views of G: G1 = (X1, A1) and G2 = (X2, A2), by applying

stochastic graph augmentation functions T1 and T2 respectively. The online encoder

produces an online representation from the first augmented graph, H1 = E¹(X1, A1);

similarly, the target encoder produces a target representation of the second augmented

graph, H2 = Eϕ(X2, A2). The online representation is fed into a node-level predictor p¹
that outputs a prediction of the target representation, Z1 = p¹(H1). Figure 3.12 illustrates

the BGRL’s architecture and its components, highlighting the distilling approach and the

non-contrastive learning strategy.

Figure 3.12: Overview of the proposed BGRL method. The input graph is used to generate
two correlated views through augmentations T1,2. The encoders E¹,ϕ produce online and
target node embeddings respectively. The predictor p¹ leverages the online embedding
He1 to predict the target embedding He2. The final objective is computed as the cosine
similarity between Ze1, the prediction, and He2, with gradients flowing solely through Ze1.
The target parameters φ are updated as an exponentially moving average of θ. Image
source: [87].

By exploring these notable works, we gain a deeper understanding of the applica-

tion of contrastive and non-contrastive learning in the context of graph-based models.

The mathematical foundations presented in each work provide valuable insights into the

mechanisms behind the successful integration of non-contrastive learning principles into

GNN architectures, further enriching our understanding of this emerging research area.
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Our projects draw strong inspiration from these works as we aim to enhance the visual

information in the context of graph-based visual question-answering tasks. While there

are similarities with previous approaches, our work specifically tackles the complexities

of handling multi-modal data and incorporates noisy visual representations. These addi-

tional challenges add further complexity to our project.
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Chapter 4

VQA Dataset and Metrics

This chapter provides an overview of significant VQA datasets, along with an explanation

of the evaluation metrics employed to assess model performance on these datasets. We

start by introducing the GQA dataset that focuses on more provides a more accurate

indication of visual understanding capacity by scene understanding. Then, We explain

the most used VQA dataset named VQA-v2 dataset, follow by the VizWiz dataset, the

pioneering dataset and artificial intelligence challenge initiated by individuals who are

blind, aiming to foster collaboration within a wider community for the advancement of

assistive technology algorithms.

Lastly, since visual question answering is a complex reasoning task, its implementation

may possess its unique peculiarities. With that in mind, we conclude this section by

explaining how we implemented each dataset to achieve our objectives.

4.1 The VQA Datasets and their Peculiarity

This section presents some VQA datasets explored in our experiments.

4.1.1 The GQA Dataset

The Question Answering on Image Scene Graphs (GQA) dataset is a large-scale dataset

specifically designed for the task of visual question answering [41]. It focuses on testing

high-level reasoning abilities by requiring models to understand and reason about both

visual and textual information.

The GQA dataset consists of approximately 22 million questions related to everyday

images. Each image is accompanied by a manually annotated scene graph that represents

the objects, attributes, and relationships within the image. The scene graph is a refined

version derived from Visual Genome [52]. Additionally, each question in the dataset is

associated with a structured representation of its semantics, which is a functional program

specifying the logical steps required to answer the question.

In contrast to the prevailing VQA benchmarks that have faced substantial criticism due

to their biases, lack of semantic compositionality, and inadequate tools for assessing model

performance and behavior, the GQA dataset has been meticulously designed to overcome

these limitations. GQA sets itself apart by presenting compositional questions grounded
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in real-world images. A notable differentiating factor between GQA and other VQA

datasets such as VQA-v2 or VizWiz is the incorporation of semantic representations for

both the scenes and questions, which need multiple reasoning skills to comprehend them.

This deliberate choice aims to mitigate the influence of language priors and conditional

biases that can potentially impact model performance. Additionally, GQA facilitates fine-

grained diagnosis by catering to different question types, thereby offering valuable insights

into the strengths and limitations of VQA models.

Compared to other VQA datasets like VQA-v2, GQA offers a larger and more diverse

set of questions that require sophisticated reasoning, as illustrated in Figure 4.1. The

inclusion of scene graphs provides additional structural information, enabling models to

reason about the relationships between objects and attributes.

Q: What is the woman to Q: Is the tray on top of Q: Which side of the image Q: Is there a bag right
the right of the boat holding? the table black or light brown? is the plate on? of the bear?
Answer: Umbrella Answer: Light brown Answer: Right Answer: No

Figure 4.1: Examples of contents of the GQA dataset [41] and their spatial and relational
questions, composed of images, questions, and ground truth answers.

By encouraging models to move beyond mere recognition and emphasizing the signif-

icance of comprehending relationships and contextual information within scenes, GQA

pushes the boundaries of VQA and fosters the development of models that exhibit en-

hanced reasoning capabilities. This makes GQA a valuable resource for evaluating and

advancing the state of the art in complex visual question-answering tasks and reasoning

abilities.

In addition to the standard accuracy metric and type-based diagnosis supported by

our dataset, the GQA dataset introduces five new metrics aimed at gaining deeper insights

into visual reasoning methods and identifying missing capabilities that we believe coherent

reasoning models should possess.

In Chapter 6, we will explore and illustrate how these metrics have a significant impact

in achieving a fairer evaluation. The first metric, Consistency, assesses the consistency of

responses across different questions. A reliable learner should avoid contradicting their

previous answers when presented with a new question. For example, if an apple has been

identified as red, the learner should not respond with “green” to a new question about the

same apple. The second metric, Validity, examines whether a given answer falls within

the scope of the question. For instance, responding with color when asked about colors

would be considered valid. The Plausibility metric score goes a step further by evaluating

whether the answer is reasonable or sensible in relation to the question. For example,

it is implausible for an elephant to eat pizza. To gain deeper insights into the ability of

methods to model the conditional answer distribution, GQA also presents the Distribution

metric. This metric measures the overall match between the true answer distribution and

the predicted distribution of a model, utilizing the Chi-Square statistic. By incorporating
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these additional metrics, they aim to provide a more comprehensive evaluation framework

that goes beyond simple accuracy and enables a finer-grained analysis of the reasoning

capabilities of models in the context of visual question answering.

In essence, the GQA dataset serves as a comprehensive benchmark for evaluating

visual information and complex question understanding in the realm of visual question

answering, meticulously crafted to evaluate high-level reasoning capabilities. This dataset

offers an extensive array of questions accompanied by corresponding images and scene

graphs, with a particular emphasis on assessing compositional and intricate reasoning

skills. This distinctive combination makes GQA a pivotal resource in advancing the field

of visual question answering, enabling researchers to tackle more complex challenges.

For our specific project, the GQA dataset aligns ideally with our objectives. By

harnessing automatically constructed scene graphs and leveraging their potential with a

non-contrastive approach, we can enhance the significance and efficacy of our question-

answering approach. The rich data and emphasis on advanced reasoning in GQA provide

a robust foundation for achieving our project’s goals.

4.1.2 The VQAv2 Dataset

The Visual Question Answering v2 (VQAv2) dataset [29] is a significant resource in the

field of visual question-answering that serves as a benchmark for evaluating the perfor-

mance of VQA models. VQA contains open-ended questions about images, as illustrated

by Figure 4.2. In general, it is an extended version of the original VQAv1 dataset, designed

to address some of the limitations and language biases present in the earlier version.

In VQAv1, the presence of inherent structure in our world and biases in language can

create a simplified learning signal that favors language-based cues over visual modalities.

Consequently, models may overlook crucial visual information, leading to an inflated

perception of their capabilities [29]. To address these language priors in the context of

VQA, VQAv2 proposes an approach that emphasizes the significance of vision in VQA

tasks. Specifically, the authors introduce a balanced VQA dataset wherein each question

is associated not with a single image but with a pair of similar images that yield different

answers to the same question. By collecting complementary images, they create a dataset

that is more balanced than the original VQA dataset, effectively countering the biases

that may arise from language priors. This helps prevent models from relying on statistical

biases and encourages them to understand the visual content and reasoning behind the

questions. The dataset comprises approximately twice the number of image-question

pairs, enabling more comprehensive evaluation and training of VQA models.

By providing a dataset that encourages models to consider and leverage visual in-

formation, VQAv2 aims to foster advancements in VQA research and promote a more

accurate assessment of models’ visual understanding capabilities. This approach allows

researchers to move beyond language biases and ensure that vision truly matters in the

field of Visual Question Answering.

Is important to point out that the relevance of the VQAv2 dataset lies in its increased

size and improved quality, making it more challenging for models to achieve high accu-

racy. With approximately 1.1 million questions and over 200,000 unique images, VQAv2
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Q: Where is the baby sitting? Q: Who is wearing the glasses? Q: How many children are? Q: Is the umbrella
upside down?

Answer: Fridge Answer: Man Answer: 2 Answer: Yes

Figure 4.2: Examples of contents of the VQAv2 dataset [29] and their particularity, com-
posed of images, questions, and ground truth answers.

offers a larger and more diverse range of questions, covering various aspects of visual

understanding.

They use the publicly released VQA evaluation script in their experiments. Similarly,

the evaluation metric they employ calculates VQA accuracies by considering 10 ground-

truth answers for each question. To maintain consistency with the VQA dataset [7],

they collect 10 answers for every complementary image and its corresponding question. It

should be noted that although unlikely, there is a possibility that the majority consensus of

the 10 new answers may not align with the intended answer chosen by the person selecting

the image. This discrepancy can arise due to inter-human disagreement or errors made

by the worker responsible for choosing the complementary image. Their analysis reveals

that approximately 9% of their questions exhibit this similarity.

Therefore, in order to be consistent with ‘human accuracies’, machine accuracies are

averaged over all 10 choose 9 sets of human annotators, the evaluation metric for VQAv2

is proposed as follows:

Acc(ans) = min

{

(#humans that said ans)

3
, 1

}

(4.1)

Additionally, to provide more detailed insights into model capabilities, VQAv2 in-

troduces complementary evaluation metrics such as “answer type” and “question type”

classifications. These metrics enable deeper analysis of the model’s understanding of

different answer types (e.g., yes/no, number, color) and question types (e.g., object pres-

ence, counting, spatial relationships). The dataset also includes a “human performance”

score, which represents the upper bound of model performance. This score is obtained by

aggregating the answers provided by multiple human annotators.

In essence, the VQAv2 dataset holds significant importance as a crucial tool for as-

sessing the effectiveness of VQA models. It effectively addresses limitations and biases

found in its predecessors by offering a substantially larger and more diverse collection of

questions. Moreover, the ability to compare model performance against human bench-

marks enhances the dataset’s value as a standardized evaluation platform. Although the

question types in VQAv2 may not involve complex reasoning skills, spatial understanding,

or multi-step inference as the GQA benchmark, it remains a pivotal asset in propelling

the field of visual question answering forward. Fundamentally, the evaluation of a model
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that constructs scene graphs for each image in this dataset is essential to understand the

robustness, complex reasoning, and comprehensive development of more advanced and

resilient VQA models.

4.1.3 The VizWiz Dataset

The VizWiz dataset [12] represents a significant milestone in the field of computer vision

research, as it addresses a crucial objective of replicating the human vision system and

assisting individuals with visual impairments. The primary purpose of this dataset is to

encourage the development of technology that can aid people who are blind in overcoming

the challenges they face in their daily lives. Figure 4.3 showcases examples from the

VizWiz dataset, emphasizing its unique characteristics.

The dataset is novel and distinctive because it is the first of its kind, originating from

the contributions of users of a mobile phone application designed for people who are

visually impaired. In other words, the dataset has its roots in a natural visual question-

answering scenario, wherein individuals with visual impairments captured images and

supplemented them with spoken questions. These users captured images using the appli-

cation and, optionally, provided accompanying spoken questions related to the content of

those images. Additionally, for each visual question, the dataset includes 10 answers that

were sourced from a crowd of contributors, including the ’unanswerable’ label. The eval-

uation metric follows the same equation as the VQAv2 dataset, expressed in Equation 4.1

OCR Unsanswerable Common Sense Global Sense

Q: Please can you tell me Q: What is this? Q: What is this? Q: Is it sunny outside?
what this item is?
Answer: Butternut Squash Answer: Unanswerable Answer: 10 euros Answer: Yes
Red Pepper

Figure 4.3: Examples of contents of the VizWiz dataset [12] and their particularity, com-
posed of images, questions, and ground truth answers.

By utilizing data collected directly from individuals who are blind, the authors have

ensured that the dataset reflects the real-life experiences and needs of this specific user

group. This unique approach facilitates the development of algorithms for assistive tech-

nologies that can better cater to the requirements of people with visual impairments.

The dataset creation process highlights the commitment to inclusivity and collabora-

tion within the computer vision community. By actively involving people who are blind

in contributing data, the authors have fostered a sense of co-creation and mutual un-

derstanding between researchers and end-users. This collaboration not only promotes
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technological advancements but also raises awareness about the technological needs of

people with visual impairments among a broader audience.

In summary, the VizWiz dataset represents a groundbreaking initiative aimed at tack-

ling accessibility barriers encountered by individuals with visual impairments. Through

its direct integration of data from visually impaired users, the dataset offers researchers

a unique opportunity to create assistive technologies that significantly enhance the lives

of the blind, fostering a society that is more inclusive and empathetic. Furthermore,

given the nature of our approach, the VizWiz dataset presents a particularly demanding

challenge. Evaluating how our model performs on this dataset is of utmost importance

for research, as it provides valuable insights and allows us to assess the effectiveness and

relevance of our approach in real-world scenarios.

4.1.4 Our Dataset Implementation

We evaluate our SelfGraphVQA frameworks on the GQA dataset [41] and VQAv2 [29]

dataset. For the VizWiz dataset, our experiments were conducted exclusively with the

baseline model. This implies that we omitted the Siamese self-supervised learning aspect

while retaining the scene graph generator in our approach.

As explained, VQAV2 is the most commonly used VQA dataset to date, containing

open-ended questions that consist of 265K images and 1.1M question-image pairs, each

with 10 ground-truth answers. Meanwhile, GQA is another large-scale effort (22M ques-

tions, each with one answer) that focuses on the compositionality of template-generated

questions for real-world images. In contrast, the VizWiz dataset comprises examples

contributed by users of a mobile phone application specifically designed for individuals

with visual impairments. We use the official train/validation split of GQA, VQAv2 and

VizWiz.

In contrast to previous projects on VQAv2 dataset [2, 68] and for VizWiz dataset, we

approach naively considering all provided answers as a potential answer in the training

dataset as a candidate for the ground truth answer distribution, while for GQA dataset we

follow the original benchmark. We opted for this approach because our primary concern

was generalization and reasoning ability with scene graphs rather than solely aiming

for high accuracy. By not filtering the potential answers and thus avoiding narrowing

down the distribution, we included all answers deemed correct by any human during the

dataset creation as candidates within the ground truth answer distribution. This approach

facilitates a more comprehensive evaluation and centers on the overall performance of the

model, prioritization a holistic assessment instead of biased accuracy influenced by any

answers distribution [2]. Table 4.1 provides detailed statistics for each dataset examined

in our investigation.

Despite the substantial variations in the answering classes, we emphasize that our

method proves to be effective and comparable to other existing approaches. In addition

to the aforementioned points, this further highlights the fact that VQA is a complex and

expansive challenge that lends itself to various approaches and needs continued exploration

and refinement.
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Table 4.1: Detailed statistics for each dataset examined in our study compared to other
possible statistics and the original paper dataset.

Benchmark Answer Candidates

Ours

GQA 1,878
VQAv2 29,332
VizWiz 48,727
VizWiz (filtered) 6285

Alternative [2, 65]
GQA 1,533
VQAv2 3,129

Original [29,41]
GQA 1,878
VQAv2 +13 millions
VizWiz 48,727
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Chapter 5

The SelfGraphVQA

Having introduced the core concepts of Visual Question Answering (VQA), Graph The-

ory, specifically Scene Graphs, and Self-Supervised Learning (SSL) methods, this chapter

presents our innovative framework called SelfGraphVQA1 - a Self-Supervised Graph-based

model for VQA. SelfGraphVQA extracts the scene graph from the images using a scene

graph generator and leverages self-supervised non-contrastive learning techniques to en-

hance the visual information for the VQA task. Through empirical analysis, we demon-

strate the effectiveness of utilizing extracted scene graphs for VQA, showcasing that the

self-supervised approach significantly enhances overall performance by emphasizing the

importance of visual information. This advancement provides a practical and efficient so-

lution for VQA tasks involving complex reasoning questions that depend on scene graphs.

5.1 Introduction

Visual Question Answering (VQA) [7] is a research direction and multi-modal learning

task that aims to generate answers to natural language questions based on images. Achiev-

ing high performance in VQA tasks requires a comprehensive representation of the scene

and semantic alignment with the given question or query [1]. The nature of VQA allows

for a wide range of acceptable correct answers, making it a challenging task to evaluate

accurately.

To tackle VQA, various approaches have been explored. One classical approach in-

volves encoding the image and question using a neural encoder, with each image repre-

sented as a vector of object features that capture the local appearance within detected

bounding boxes. This approach provides a comprehensive description of visual scenes,

including object pairs and their relationships expressed in natural language.

Scene graph (SG) representations have also been successfully applied in VQA

tasks [40, 50] (referred to as SG-VQA). SGs offer a graph-based representation of the

image, incorporating high-level semantic and relational information between visual con-

cepts and natural language queries [43]. Previous studies on SG-VQA models have relied

on manually annotated scene graphs, yielding remarkably high accuracy on the GQA

1A paper has been submitted with results from SelfGraphVQA: B.C.O Souza, M. Aasan, H. Pedrini,
G.A.R. Rivera. “SelfGraphVQA: A Self-Supervised Graph Neural Network for Scene-based Question An-
swering”. Vision-and-Language Algorithmic Reasoning (VLAR) - ICCV Workshop 2023 (under review).
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dataset [41], surpassing human performance by a significant margin (see Table 5.1). These

findings suggest the strong applicability of SG representations in VQA tasks.

Despite promising properties and results, the actual dependency of SG representations

in VQA tasks has not been thoroughly explored. Additionally, when models are trained

on pre-annotated scene graphs, the reasoning implicit in the annotations may introduce

bias, raising concerns about the generalizability of results in this idealized setting, as

illustrated in Figure 5.1.
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Figure 5.1: The statistical dependence of the task and the ideal graph, G.

This raises the question of how well such a model would perform on real-world data

with an extractor model. When evaluating this approach on automatically extracted

graphs, we show that previous state-of-the-art models have a significant drop in accuracy

of about 64%, according to Table 5.1. Hence, given the cost of manual annotation of

scene graphs and presumably high intra-observer variability in annotation, we believe

that a more practical framework utilizing automatically extracted scene graphs while

leveraging self-supervision to enhance visual representation would be of interest to the

research community as a whole.

Table 5.1: Our experiments show a significant drop in accuracy for state-of-the-art meth-
ods on the GQA dataset when the domain shifts from ideal annotated to extracted scene
graphs.

Method Eval. Data Acc (%)

Human [41] – 89.3
GraphVQA [59] Annotated/SGG 94.8
LRTA [60] Annotated/SGG 93.1
Lightweight [70] Annotated/SGG 77.9
CRF [68] Annotated 72.1
LXMERT [85] Extracted 59.8
BottomUp [4] Extracted 49.7

GraphVQA (original pre-trained on ideal) Test Extracted/SGG 29.7

GraphVQA (trained on extracted graphs) Extracted/SGG 50.1
SelfGraphVQA-SelfSim (ours) Extracted/SGG 54.0
SelfGraphVQA-SelfSim+BERT (ours) Extracted/SGG 54.5

Additionally, broadly speaking, despite the power and flexibility of neural networks

trained on existing VQA datasets, their limitations have been repeatedly exposed [2, 54],
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showing how networks struggle to generalize, instead relying on superficial and potentially

misleading low-level correlations rather than inferring true causal relations in the data. In

other words, these models depend on large amounts of annotated data and supervision and

lack robustness, which consequently hinders their interpretability and modularity [102].

Given these limitations, it is of paramount importance to derive a more practical frame-

work that applies necessary and sufficient information for solving the task at hand, rather

than relying on spurious correlations.

5.2 Proposal

We outlines the high-level features of our SelfGraphVQA architecture and demonstrated

how we structured our Siamese architecture that leverages the un-normalized contrastive

approach with non-idealized SG for visual question-answering improvements. Then, we

expose the particularities of handling a non-contrastive approach for graph-based data,

and how we employ three distinct maximization strategies.

In Section 5.2.2, we explain the augmentation process applied over the image to gener-

ate variations of the scene graph generated whereas it preserves the semantic information

of the images. Then, we explain the similarity losses.

Firstly, in Section 5.2.4, we explain how we apply the similarity loss over the graph

representation, while in Section 5.2.3 we elaborate the details of how we applied un-

normalized contrastive loss over the node-wise representation. Finally, Section 5.2.5 is

detailed how we use the scene graph generated from the image without augmentation

as the anchor graph to guide the encoded representation of the augmented scene graph

before calculating the maximization information between them.

5.2.1 SelfGraphVQA

The SelfGraphVQA architecture (Figure 5.2) is a multicomponent siamese network. De-

spite similar encoder architecture with previous SG-VQA models [59,60], we incorporate

a self-supervised approach by generating a stochastically augmented view x2 from a given

input image x1. By “encoder architecture,” we refer to the query encoder, graph encoder,

and classification layer. For further details, we direct the reader to the appendix. The

views are processed by a pre-trained frozen SG generator g. The graph representation is

a set of object-relationship-object triplets describing the scene.

We process the question with two distinct and independent natural language encoders

fq, a transformer-based with GloVe word embedding [74] following Liang et al. [60], and

with BERT [47]. Alongside the graph representations of the image, both representations

are fed to our graph attention encoder module fg. Finally, the query-embedded graph is

fed to a classifier fc. For the contrastive approach, a prediction head h is applied during

training, as applied in the SimSiam framework [20] and illustrated in Figure 5.2.

Given we are dealing with SG representation, we experiment with the maximization

strategy with three independent and distinct similarity losses over either a localized node

representation (i.e., object-wise), or a global pooled graph representation (i.e., scene-wise),
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Figure 5.2: Our proposed framework removes data leakage by using an SG extractor G′.
Our architecture comprises a question encoder fq, a graph encoder fg, and a classifier fc.
Two distinct views of one image are processed by the same pipeline. We use a frozen
pre-trained SG generator g, and a prediction head h is applied through the top view with
gradient backpropagation, while gradients are not propagated back from the lower view.
We maximize the view representation using the similarity loss L′.

or a regularization node representation term to induce permutation equivariance. Addi-

tionally, we introduce a score link prediction regularization term as another self-supervised

approach, which tries to enforce alignment between the anchored and augmented score

link distribution. We denote the graph representations zi = fg
(

g(xi), fq(q)
)

, and the

predictor’s output vectors pi = h(zi). Generally, the representations are maximized by

minimizing the generic cosine distance D loss, generally, given by

D(v, u) = −
vu

∥v∥2∥u∥2
. (5.1)

5.2.2 Augmentation

Although image augmentations are central to modern self-supervised learning techniques,

and generally improve performance in visual learning tasks [82], the choice of augmen-

tations requires careful selection to be applicable in cross-modal processing inherent in

VQA [44]. This is mainly because a simple modification in image data can yield a dif-

ferent result in the task classification. For example, when performing a flip or rotation

augmentation, the positional answer about the object in the scene must also be changed.

As such, we focus on simple, efficient augmentations over the images aiming at not dis-

rupting the validity of the questions and labels. We randomly select one of the following

augmentations; (i) resizing: by adjusting the dimensions of an image, (ii) color jitter: by

introducing random variations in image colors to enhance robustness. (iii) gaussian blur:

by applying a smoothing effect to reduce image noise and details using a Gaussian filter.

(iv) gaussian noise: by adding random noise to an image, often following a Gaussian

distribution, to simulate real-world variability.
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5.2.3 Local Similarity

As illustrated in Figure 5.2(b) The scene graph contains information about each object

in the scene and how they are semantically and spatially interconnected. For this reason,

the first strategy was to minimize the cosine distance of the local node representations.

To account for permutation invariance in the node representations, we compute the cosine

distances over all object pairs from the two views and use the maximally similar node

embedding pairs to compute the local loss by

L∗
ℓ(p1, z2) =

1

O

O
∑

i

argmin
z2,j

D(p1,i, z2,j), (5.2)

where O is the number of object in the scene. Symmetrically, we compute L∗
ℓ(p2, z1), to

obtain the overall local loss

Lℓ(z1, z2) =
1

2

(

L∗
ℓ(p1, z2) + L∗

ℓ(p2, z1)
)

. (5.3)

As treating with node representation, the order for calculating the cosine similarity of

the nodes embedding must be taken into account. Inspired by Mixer MLP [90], we apply

a Permutation MLP predictor as the predictor head which permutes the nodes’ features

ordering in every forward step. The intuition is that the Permutation MLP is capable

of learning not only the predictor of the local embedding but also a possible positional

variation.

After acquiring the local representation and the local prediction, we calculate the

minimize the information between the embeddings through negative cosine similarity.

5.2.4 Global Similarity

Alternatively, by passing the local representation through a pooling layer we obtain the

global representation of the scene graph, we can instead construct an approach similar to

cosine similarity maximization for image classification [20, 30]. Along with the intuition

that contrasting the global representations may enhance the visual cues, we assume that

the global representation contains the full information about the scene in question. Similar

to the local representation, we minimize the cosine distance, yielding a loss on the form

Lg(z1, z2) =
1

2

(

D(p1, z2) +D(p2, z1)
)

. (5.4)

5.2.5 Regularization for Permutation Equivariance

We also employed an anchor where the scene graph of an unmodified image guides the

scene graph of the augmented image, allowing us to obtain a more accurate representa-

tion of the original scene, and stabilizes the flow of gradients across the loss landscape.

Similarly to the previous approach, we are creating a pretext task that maximizes the

ordering agreement of the embedded node representation by some weak labeling strat-

egy. Our assumption is that local similarity loss might decrease performance as it does
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not consider the permutation invariance of node representations, despite any corrective

measures. However, the global similarity approach might provide a more comprehensive

representation of both the question and the scene but could lose important local details

needed for answering specific questions.

We apply regularization that enforces alignment between the augmented and the an-

chored representation. This will encourage the representations of the similar nodes be-

tween the two scenes to align and to enforce the regularization to guide the representation

from augmented scenes to be as close as possible to the original representations, thereby

further mitigating permutation invariance in graph representations.

Denote the anchored representation by z1, and the augmented representation by z2.

We determine intra-similarities of the anchors s1,i = argminz1,j
D(z1,i, z1,j) and similarities

of augmented views s2,ij = D(z2,i, z2,j). Then, we compute cross entropy (CE) between

anchors and augmentations

J(z1, z2) = CE(s1, s2), (5.5)

which acts as a regularizer to constrain permutation equivariance for the augmentations

in addition to the local loss, yielding

Ls(z1, z2) = Lℓ(z1, z2) + J(z1, z2), (5.6)

which we refer to as a local self-similarity loss (SelfSim).

5.2.6 Distribution Link Representation Regularization

Similarly to the regularization for permutation equivariance on the node perspective,

we utilize link representation regularization in conjunction with one of the other three

similarity strategies. The edges of the anchor SG guide the edges of the augmented

SG. Denote the anchored edges score representation by r1, and the augmented edges

score representation by r2, we aim at making the link prediction more robust to the

augmentations. The edges score representation is computed by the SG generator. In this

case, the scene graph generator is trainable. We compute the cross entropy (CE) between

anchors edge scores and augmentations edge scores Je(r1, r2) = CE(r1, r2), which acts as

a regularizer to constrain link prediction distribution, yielding the loss

Le(z1, z2) = Lℓ(z1, z2) + Je(r1, r2). (5.7)

All models utilizing this added link distribution regularizer are characterized by the

inclusion of the term “link.”

5.2.7 Overall Optimization Objective

Lastly, we briefly outline the overall loss for optimizing the VQA objective. To identify

the correct answer a ∈ A given an example (x, q, A), we extract a point estimate of

probabilities

p(a | x, q) = σ
(

logit(x)
)

, (5.8)
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where σ is the softmax, and logit(x) = f(x, q) is the logits for all possible answers produced

by our graph-based encoder. Given this, we calculate the cross-entropy loss for each

instance,

La(x) = CE
(

p(a | x, q), a
)

. (5.9)

Our final training loss is a combination of the cross-entropy loss and the similarity loss

as

L(x) = αLa(x) + βL′(z1, z2), (5.10)

where L′ can be any of the aforementioned similarity loss strategies: Lℓ, Lg, or Ls, with

or without Le. Values α and β are controlled hyperparameters. In all experiments, α and

β are set to 1.

5.3 Baseline Architecture

Figure 5.3 depicts the overall components of our baseline architecture. We use the similar

architecture of the state-of-the-art graph-based GraphVQA model [59] and LRTA [60]

over the GQA dataset as a baseline for our experiments, with some modifications in order

to reduce the dependence on the annotated available data, as we aim to mitigate the

limitations imposed by data availability and enhance the model’s practicality.

Scene
Graph Gen.

g

Where was this
photo taken?

Question
Encoder

fq

GNN-based
fg

Answer
Classifier

fc

Classroom

Instructions
decoded

Question vector
representation

Figure 5.3: The baseline architecture.

For practical purposes, the functional program instructions accompanying each ques-

tion in the GQA dataset [41] are not necessarily available for inference on real-world data,

so we train our decoder to decode the instructions from the question itself. These addi-

tional labels are processed by the reasoning module in the GraphVQA model which we

explicitly omit in our baseline, as we are more interested in generalizability and real-world

performance rather than expressively solving the GQA dataset.
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In addition, we omit the pre-processing using the scene graph encoding module of the

original GraphVQA framework, as the scene graph generation model g was selected to

extract high-quality SG representations. Here, our fg module is a graph attention network

(e.g., GAT) [94].

In the GloVE embedding design, both the query encoder fq and the graph encoder

fg designs are shared between the original baseline and our proposed modified model. In

the BERT design, we only take the similarity of the graph encoder module fg design, as

our query encoder fq and the language embedding is a BERT model. By adapting the

similar SoTA architecture strategy to the specific design choices of each model, we aim to

evaluate the performance and effectiveness of our proposed approach.

5.4 Architecture Details

Within this section, we aim to provide additional details regarding our implementation

approaches. To ensure clarity and facilitate better comprehension, we have divided this

section into two subsections: one discussing the utilization of GloVE word embedding

along with a transformer-based model for the question encoder, and the other focusing on

the application of BERT for word embedding and the question encoder. In addition, when

trained and evaluate on VQAv2 and VizWiz dataset, we use YOLO [78] object detector

instead of the classical Faster RCNN [79] within our original scene graph generator [50].

We believe that this approach could offer valuable insights into how automatically gen-

erated scene graphs can benefit VQA models, while also implementing a state-of-the-art

object detector model in practice. Table 5.2 provides a comprehensive overview of the

two approaches employed in this study.

It is worth mentioning that the scene graph generator module has its weights frozen

in all training approaches, except when we employ the Distribution Link Representation

Regularization technique.

5.4.1 GloVE Word Embedding and Transformer-based Question

Encoder

The images are fed through a pre-trained scene graph generator g from [50] work that

generates scene graphs from images on the fly. Except for the pooled graph-level repre-

sentation (i.e., the module that feeds the classifier), which has a dimension size of 512, all

node and edge features have dimension size 300.

The word embedding for the transformed-based query encoder module fq has its initial

weights initialized by using embeddings from GloVe [74]. Both hidden states and word

embedding vectors have a dimension size of 300. The question representation is produced

by the transformed-based question encoder.

Following works [59, 60], we adopt a hierarchical sequence generation design, that is,

a Transformer decoder model first parses the question into a sequence of M instruction

vectors, [i1, i2, . . . , iM ]. The i-th instruction vector will correspond exactly to the i-th

execution step processed by the GNN encoder fg module. In our experiments, we force
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M equals five. We note that SelfGraphVQA does not require any explicit supervision

on how to solve the instruction step from the question, and we only supervise the final

answer prediction.

For the contrastive approach, the MLP prediction head h plays a crucial role in our

model architecture. It comprises three fully connected layers, each followed by batch

normalization and ReLU activation, except for the final layer. This setup ensures non-

linearity and facilitates effective feature extraction. It is important to note that the

MLP prediction head is exclusively utilized during the training phase and is subsequently

discarded during inference, which aligns with prevailing practices in contemporary self-

supervised training methods [20,30].

The classification module fc is another integral component of our model. It is designed

as a two-layer MLP with a dropout rate of 0.2 and ELU activation.

As explained in Section 3, we independently apply the three self-supervised losses

(i.e., local similarity, global similarity, and regularization for permutation equivariance)

and we compared performances. Our experimental choices were designed to minimize

possible biases in the evaluation of our proposed framework.

Both anchored and augmented scene graphs along with the question ground on the

scene feed our encoder model to infer a predicted answer. For a fair comparison, we train

most of our model from scratch, except for the pre-trained scene graph generator g, whose

weights are frozen.

5.4.2 BERT Word Embedding and Question Encoder

In this case, we employ the BERT model as our word embedding approach and question

encoder.

Once again, the images are fed through a pre-trained scene graph generator g from [50]

work that generates scene graphs from images on the fly. In this particular case, all

graph-level and node-level representations possess a dimension size of 512, encompassing

both node and edge features. This configuration is deliberately chosen to ensure that

the dimensions of the representations closely align with the dimension yielded by BERT

word embedding, which is 756. By maintaining consistency in the dimensionality across

different components, we aim to facilitate seamless integration and compatibility with

BERT-based models.

The word embedding for the BERT query encoder fq has its initial weights initialized

by using embedding from BERT [47]. Both hidden states and word embedding vectors

have a dimension size of 512. The final question representation is derived by taking the

average of all word embedding representations generated by BERT.

Following the same approach of [59, 60], we adopt a hierarchical sequence generation

design, that is, a Transformer decoder module first parses the encoded question into a

sequence of M instruction vectors, [i1, i2, . . . , iM ]. The i-th instruction vector will corre-

spond exactly to the i-th execution step processed by the GNN encoder fg module. In our

experiments. we force M equals five. We observe that SelfGraphVQA does not require

any explicit supervision on how to solve the instruction step from the question, and we

only supervise the final answer prediction.
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In this scenario, we employ two self-supervised loss techniques: global similarity and

regularization for permutation equivariance. Additionally, we incorporate the Distribution

Link Representation Regularization method over all approaches performed in this case. It

is important to note that the Distribution Link Representation Regularization is jointly

executed with one of the self-supervised loss techniques.

As mentioned earlier, in this case, except for the object detector within the module,

we have unfrozen the scene graph generator g weights, allowing it to be trainable and to

learn the representation and classification during the training process, merely according

to the prediction answers. We have made deliberate experimental choices to mitigate

potential biases and ensure an unbiased evaluation of our proposed framework.

For the non-contrastive training step, we employ the MLP prediction head h. It

comprises three fully connected layers, each followed by batch normalization and ReLU

activation, except for the final layer. This setup ensures non-linearity and facilitates effec-

tive feature extraction. It is important to note that the MLP prediction head is exclusively

utilized during the training phase and is subsequently discarded during inference, which

aligns with prevailing practices in contemporary self-supervised training methods [20,30].

The classification module fc is another integral component of our model. It is designed

as a two-layer MLP with a dropout rate of 0.2 and ELU activation.

5.4.3 VQAv2 and VizWiz—YOLO Scene Graph Generator

During the process of training and evaluating on the VQAv2 and VizWiz dataset, our

chosen approach involves utilizing the YOLO model as the backbone object detector, that

is, instead of the Faster RCNN as employed on the majority of work and on our project

for GQA, as detailed in Table 5.2. We decided to validate the effectiveness of utilizing

other object detector models, that solely predict the positional and class information for

the scene graph generator, which subsequently handles all representations. This approach

could provide deeper insights into the benefits of different representations of scene graphs

for VQA. Additionally, using YOLO, we made sure to employ the advanced state-of-

the-art model for object detection. The detected objects are fed into our scene graph

generator, which performs a series of operations to produce multiple components: node

representations, link classification, and link representations.

Table 5.2: Detailed dimensions used in our study when employing the GloVE and BERT
approaches.

Dataset Methods Scene Graph Word dim. Question dim Node Dim Link Dim Graph dim

GQA
GloVE+Transf SGG 300 300 300 300 512
BERT SGG 756 512 512 512 512

VQAv2
GloVE+Transf YOLO+Link 300 300 300 300 512
BERT YOLO+Link 756 512 512 512 512

VizWiz
GloVE+Transf YOLO+Link 300 300 300 300 512
BERT YOLO+Link 756 512 512 512 512

The first step involves extracting the detected objects as nodes from the image. Each

object detected by the YOLO model is assigned a corresponding node among the 1000
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classes [78], which encapsulates essential information about the object such as its category,

location, and size. These node classifications and locations act as fundamental building

blocks for constructing the scene graph.

Following the extraction of nodes of the objects in the image, the scene graph gener-

ator proceeds to predict and establish link classification and link representation between

different nodes. Link classification involves determining the relationships or connections

between the detected objects in the scene. These links provide contextual information

and semantic relationships between the objects, enriching the understanding of the over-

all scene. Link representations serve as a compact representation of the established links

between the nodes.

5.5 Training Details

In this section, we provide further elaboration on our training approaches. Likewise the

previous section, we have divided this section into two subsections: one with the utilization

of GloVE word embedding along with a transformer-based model for the question encoder,

and the other focusing on the application of BERT for word embedding and the question

encoder.

We recall that regarding the GQA dataset and VQA dataset, we conducted exper-

iments using SelfGraphVQA in comparison with the baseline models. However, it is

important to highlight that for the VizWiz dataset, our experiments solely focused on

the baseline model without incorporating SelfGraphVQA Specifically, we excluded the

Siamese self-supervised learning aspect while retaining the scene graph generator.

Table 5.3: Training details for the GloVE and BERT approaches employed in our study.

Methods Batch Optimizer lr Epochs

GloVE+Transf 64 Adam 10−4 50
BERT 32 Adam Belief 10−4 50

5.5.1 GloVe Word Embedding and Transformer-based Question

Encoder

We train the models using the Adam optimizer with a learning rate of 10−4 and weight

decay 10−4. We apply a batch size of 64, and a linear learning rate schedule using a factor

of 10−1 for every 20 epochs. All models are trained for 50 epochs. We emphasize that

during training the weights of the scene graph generator g are frozen, and do not receive

weight updates.

5.5.2 BERT for Word Embedding and Question Encoder

We train the models using the Belief Adam optimizer with a learning rate of 10−4 and

weight decay 10−4. We apply a batch size of 32, and a linear learning rate schedule using
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a factor of 10−1 for every 10 epochs. All models are trained for 50 epochs. It is worth

noting that in these cases, the weights of the scene graph generator g are not frozen

during training. This deliberate choice allows for continual updates and improvements,

particularly in the edge representation, through the utilization of the Distribution Link

Representation Regularization strategy.

5.5.3 Self-Supervised Implementation Details

Throughout our project, we carried out various distinct self-supervised implementations

that depended on the dataset utilized, the language encoder module employed, and

whether we enabled the link contrastive learning technique.

Table 5.4 provides a comprehensive overview of the approach adopted in our study.

It is worth mentioning that our training process was conducted sequentially and itera-

tively, allowing us to evaluate the performance of each approach before deciding on the

subsequent implementation choice.

Table 5.4: Detailed self-supervised implementation in our study by approaches and
datasets.

SGG Methods Baseline Local Global SelfSim

GQA

GloVE+Transf
Frozen SGG ✓ ✓ ✓ ✓

Link Regularizer

BERT
Frozen SGG ✓ ✓

Link Regularizer ✓ ✓

VQAv2

GloVE+Transf
Frozen SGG ✓ ✓ ✓

Link Regularizer

BERT
Frozen SGG ✓

Link Regularizer ✓ ✓

For instance, upon observing that the Local Similarity approach exhibited compar-

atively lower performance, albeit surpassing the baseline, we made the decision to dis-

continue its implementation on further research (i.e., with the BERT module and link

distribution regularization approach). This strategy narrowed down the training possibil-

ities, enabling us to focus solely on the most promising experiments. Another noteworthy

example pertains to the utilization of BERT as our word embedding and query encoder

module. Upon observing its positive impact on results, we exclusively applied the link

distribution regularization technique with this architecture. Subsequently, based on the

gathered evidence regarding the superior and inferior performing approaches, we further

narrowed down the range of experimental possibilities for the VQAv2 dataset.
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Chapter 6

Results and Ablations

In this chapter, we present the results of our experiments. We show the results when

evaluated with the standard GQA, VQAv2, and VizWiz dataset metrics and the accu-

racy breakdown on different semantic categories of queries. Additionally, we carry out

ablation studies where we highlight the challenges in SG-VQA tasks, including sensitivity,

generalization, and ambiguity.

The evaluation of our SelfGraphVQA framework encompasses two datasets: (i) the

GQA dataset [41], and (ii) the VQA v2 dataset [29]. For the VizWiz dataset, we employ

only the baseline structure to evaluate the behavior of the scene graph on this more

realistic dataset.

The details of the implementation can be found in the previous section of this disser-

tation. For SelfGraphVQA, our experiments involve the utilization of similarity losses,

specifically local, global, and local regularized functions, as discussed in Section 5. The

link representation is consistently employed in conjunction with another similarity strat-

egy. During training, all models are trained on scene graphs extracted from the pre-trained

generator g using frozen weights, except when the Distribution Link Representation Regu-

larization technique is employed. The remaining modules of the SelfGraphVQA framework

are trained from scratch.

All experiments were conducted in order to answer our research questions, as described

in Section 1.3

6.1 Standardized Metrics

Previous works [59, 60] achieve surprisingly high accuracy when tested on the standard

GQA dataset. When we evaluate the pre-trained GraphVQA model on extracted SG,

the accuracy drops significantly, more than 60%, as shown in Table 5.1. This suggests

that previous state-of-the-art approaches are engineered towards inference on the VQA

dataset, as opposed to extracted scene graphs from real-world image data. These findings

provide insight into the behavior of scene graphs for visual question-answering models

when utilizing non-idealized, generated scene graphs grounded on the image.

Despite the extracted SG being less idealized in practice, we argue that SG-VQA is

still effective for VQA tasks, as demonstrated in Figure 6.1, emphasizing the importance
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of continued exploration into the potential of SG for complex tasks. Moreover, all non-

idealized SG-VQA methods paired with the self-supervised optimization objective exhibit

improvement in all metrics on both datasets, as shown in Tables 6.1 and 6.2.

Table 6.1: Results (%) on GQA by standard metrics.

Method Binary (↑) Open (↑) Consist. (↑) Validity (↑) Plausab. (↑) Distr. (³) Acc (↑)

Baseline 65.8 29.7 58.2 94.9 90.5 11.7 50.1
Baseline+BERT 68.0 32.2 62.6 95.0 90.9 7.7 53.8

Local 66.8 30.2 59.4 94.9 90.6 8.8 51.5
Global 67.7 30.8 62.5 94.9 90.6 6.7 52.3
SelfSim 68.4 31.3 65.9 94.9 90.7 2.1 54.0

Global+BERT+link 68.0 33.0 63.9 95.0 91.2 8.9 54.5

SelfSim+BERT+link 68.2 32.8 64.3 95.0 91.0 8.0 54.5

Table 6.2: Results on VQAv2 val.

Model Acc. (%)

N
on

-g
ra

p
h

b
as

ed

PNP-VQA [89] 63.3
MetaLM [36] 41.1
VLKD (ViT-B/16) [23] 38.6
Frozen [92] 29.5

G
ra

p
h

b
as

ed

ReGAT [58] 40.4
Baseline BERT 33.8
Global 40.8
SelfSim 39.8
Global+BERT+link 40.7
SelfSim+BERT+link 41.0

It is worth mentioning that for the Distribution and Consistency metrics, our approach

presents considerable improvements for generalizable SG-VQA. The Distribution metric

gives us a good sense of the general level of world knowledge the model has acquired,

and allows us to see if the model predicts not only the most common answers but also

the less frequent ones. The Consistency metric is designed to evaluate faithfulness across

different questions whether or not the model gives contradictory answers to equivalent

and entailing questions. These metrics are important for fairly VQA evaluation.

Moreover, we notice the added benefit of faster convergence during our training regime

when using our framework. Based on the experiments, our models converge about 20%

faster in epochs compared to baselines without self-supervision, but more investigation

is necessary to confirm these results. Based on our results, all SelfGraphVQA models

reach convergence about 20% faster in epochs compared to the same baseline architecture

without the self-supervised approach.
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6.1.1 Standardized Metrics - VizWiz

We conducted experiments on the VizWiz dataset, which originates from contributions

made by users of a mobile phone application designed for people who are visually impaired.

This dataset holds greater real-world application potential due to its direct connection

to the needs of individuals with visual impairments. However, since the questions in

this dataset are more related to real-life necessities rather than complex reasoning involv-

ing multiple skills such as spatial understanding and multi-step inference, utilizing scene

graphs collected from individuals who are blind might not offer significant benefits of its

kind.

As a reminder, for the VizWiz dataset, we performed experiments exclusively with

the baseline model, which entailed excluding the Siamese self-supervised learning aspect

while retaining the scene graph generator.

As demonstrated in Table 6.3 and Table 6.4, the scene graph approach for VQA on

VizWiz struggles to yield satisfactory results. Even with a BERT language encoder, the

overall performance falls short of any significant investigation-worthy efforts.

Table 6.3: Accuracy in VizWiz dataset when considering all answers in the dataset as a
potential candidate.

Method Unanswerable Open Overall

Baseline+BERT 60.2 13.6 33.8
Baseline 14.7 8.9 11.9

Additionally, the visual analysis ablation, as demonstrated in Figure 6.1, provides

additional support for the notion that choosing scene graphs for this type of data may

not be the most suitable option. Despite some plausible answers, the models struggle to

predict it correctly. For example, a considerable number of questions are typically focused

on character recognition, aiming to read text on packages or documents. Additionally,

it is not unusual to find images that do not contain open scenes with wide landscapes

or easily identifiable activity, which hinders the scene graph from providing significant

benefits.

Table 6.4: Enhancing accuracy in VizWiz dataset when refining answer distribution.

Method Epochs Unanswerable Open Overall

A
ll

A
n
sw

er
s Baseline+BERT 50 67.2 10.4 35.0

SelfSim+BERT 50 65.63 11.60 35.1
SelfSim+BERT 100 73.81 11.60 38.5

T
ra

in
A

n
sw

er
s

SelfSim+BERT 100 73.81 18.70 48.5
SelfSim+BERT 150 76.11 17.00 48.97
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Relative Feature

Q: Hi can you tell me how far Q: What color is this t-shirt?
along the scan disk is now?
Answer: Unanswerable Answer: Blue
Prediction: No Prediction: Black, White and Green

Ambiguous OCR Problem

Q: What does it say on my screen Q: What dinner is this?
Answer: Unanswerable Answer: Meatball sausage
Prediction: Nothing Prediction: Roasted turkey breast

Figure 6.1: The prediction results when using scene graphs in the VizWiz dataset are
depicted here. Despite yielding some plausible answers, the scene graph information
appears to be less suitable for this specific task.

6.2 Metrics on the Breakdown of Questions

Figure 6.2 shows the accuracy breakdown on question semantic types for the GQA dataset.

Generally speaking, our approaches see slightly improved performance in all metrics eval-

uated. A closer examination of the results shows that our method performs differently

depending on the type of question.

It is interesting to note that when using global similarity, the model presents better

results for object-related questions. In contrast, when using regularized objectives, better

results are found for attribute, relational, global, and categorical questions. This suggests

that the type of similarity used strengthens the model’s capacity depending on the type

of query.

Even with the use of scene graphs, the models struggle to answer relational questions.
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Further research on extracted scene graphs may improve on this and reveal underlying rea-

sons for this behavior. Our approach improves the overall performance in most instances,

as shown in Figure 6.2. However, the type of un-normalized contrastive approach used

can enhance the model’s ability depending on the query type. Global similarity yields

better results for object-related questions, while regularized objectives produce better re-

sults for attribute, relational, global, and categorical questions. Nevertheless, answering

relational questions remains a challenge, and further research is needed to address this is-

sue. Possible avenues for exploration include analyzing the distribution of answers related

to these relational questions and assessing the coherence of the relational question itself.

This entails evaluating whether the multiple reasoning skill is genuinely necessary or if

the question is unnecessarily complex, potentially hindering the performance of models.
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Figure 6.2: Breakdown of accuracy on different question types on GQA dataset.

In summary, although architecture differences affect performance, the self-supervised

technique improved the results in all question categories, as shown in Figure 6.2. However,

the type of contrastive approach used can enhance the model’s ability depending on the

query type. Answering relational questions still remains a challenge and further research

is needed to address this issue.

6.3 Ablations and Discussion

Our study aims to establish a practical foundation for demonstrating the potential of

an SG along with an un-normalized contrasting maximization approach to improving

visual cues with scene graphs in VQA tasks. In particular, our objective is to determine

whether simple yet effective non-contrastive learning techniques successfully enhance the

visual information in scene graphs for VQA models. Additionally, we seek to explore if

the visual enhancement achieved through these techniques remains intact when applied

in conjunction with more expressive language encoder models.

Additionally, we claim that relying solely on metric evaluation for VQA is insufficient

since that task allows for a wide range of acceptable results. Hence, another objective of

the ablation is to demonstrate the functionality of our approach and conduct in-depth ob-

servations that go beyond merely achieving state-of-the-art performance on VQA datasets.

We will delve into specific observations we made during our experiments, which could

serve as a starting point for further research. We have organized our discussion into
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different sub-sections based on the questions we believe are most relevant to our findings.

6.3.1 Does the Scene Graph Really Matter?

To investigate the model’s ability to utilize and evaluate visual information for predic-

tions, we conducted a perturbation study that systematically augmented images based

on question type (relation, attribute, global) and evaluated their impact on model per-

formance. In order to probe whether a model effectively leverages visual cues to make

predictions, we designed a more unfavorable perturbation study by systematically aug-

menting the image according to the type of question (i.e., relation, attribute, and global)

and evaluated the impact on the model’s performance. In other words, we introduced

noise that would make it difficult to answer a question, for example flipping the image

for spatial relational questions. The underlying assumption is that the better a model

understands the visual components in the scene graph, the more of a drop we expect in

the performance of our model on a specific type of question under particularly disruptive

perturbations.

Table 6.5 shows that our model has more variation in these types of augmentations

in comparison to the baseline. These results indicate that our proposal gives more atten-

tion to the visual information to answer the questions while the baseline relies on other

information.

Table 6.5: Change in accuracy under potentially disruptive augmentations and perturba-
tions.

Question Type Augmentation Baseline Global Local SelfSim

Relation Flip −1.6 −3.4 −3.2 −3.9
Attribute Strong Color Jitter +1.14 −3.7 −0.8 −1.2
Global Gaussian Noise + Crop −5.6 −7.7 −5.5 −8.1

6.3.2 Are Performance Gains Mainly Due to Augmentations?

This ablation could answer the research question ’Do different yet semantically corre-

sponding scene graphs still contain fundamental information that can contribute to the

effectiveness of VQA tasks?’.

To evaluate the effectiveness of our proposed approach, we also trained a baseline

model using solely the data augmentation techniques. This allows us to determine the

impact of the data augmentation on the overall performance. In other words, we compare

whether our approach differs from the baseline with additional data augmentation.

The results present in Table 6.6 evidence that the data augmentation technique actu-

ally impairs the performance of the architecture. This evidence indicates that while the

scene graph has an impact on how models utilize visual information, it still retains to some

extent the spurious correlation present in the training set. Our findings demonstrate the

importance of the self-supervised training regime compared to the augmented technique.
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Table 6.6: Results (%) of the augmented baseline and SelfSim.

Method Binary Open Validity Plausibility Acc

Baseline Aug 65.1 28.7 94.6 90.1 50.1
SelfSim 68.4 31.3 94.9 90.7 54.0

6.3.3 Generalization Perspective?

The assumption is that when trained with only the necessary data representation, the

model would exhibit the ability to comprehend sufficient concepts to learn a variety

of new examples. In order to analyze this generalization approach, we freeze the Self-

Sim+BERT+link model trained on GQA and fine-tuned only a classifier layer on VQAv2

for one epoch, and vice versa. The results are shown in Table 6.7. We interpret the

findings as though the model is trained with only the necessary information for the task,

even if noisy, and do not rely on spurious dataset bias, it exhibits the ability to learn

sufficient concepts to learn a variety of related examples.

Table 6.7: Generalization evaluation.

Trained on (row) VQA GQA

VQA 41.0 39.9
GQA 32.9 54.5

Are our models less biased? One of the initial hypotheses we had was that the current

top-performing models on the GQA dataset heavily rely on the meaning in the available

question prompts and functional instructions when making inferences. We suspected

that the current models may be incorporating the bias present in the questions into their

weights, resulting in them making “clever guesses” based on the question itself rather than

analyzing the visual features encoded in the scene graph for the correct answer. This would

imply that there is some linguistic bias and that the scene graph representation in turn

would be underutilized.

To test this hypothesis, we designed experiments to analyze the linguistic biases by

replacing features with random noise in the scene graph while preserving its topology.

Likewise, we applied a similar procedure to the questions, where we randomly perturb at

most 50% of the words in the question.

The results in Table 6.8 show our self-supervised models seem to be less dependent on

the linguistic features of the query thus improving the dependency on the visual features

in the scene graph compared to the baseline. From this infer that the baseline presents

more expressive linguistic bias than our proposed framework. This improves the results

and pushes the model to pay more attention to the scene graph for answering the question.

We believe this demonstrates our approach manages to somewhat mitigate the linguistic

bias, thus paying more attention to the scene graph when predicting the response.

In addition, we conducted more experiments to assess the robustness of the model

when training with the BERT module. In this case, the additional experiments aim to



82

Table 6.8: Sensitivity of accuracy (%) for bias question analysis of SelfSim.

Setup Methods

Question + Scene Graph Baseline Local Global SelfSim

Noise + SG 16.2 16.6 28.6 26.6
Question + Noise 39.9 38.3 37.4 39.8
Noise + Noise 12.7 14.6 18.9 21.0

investigate the impact of using a more expressive language model, such as BERT, on

language biases in the VQA task and whether it harms the enhancement of visual infor-

mation. We evaluate both how the biases flow within not ideal information when using a

more expressive language model such as BERT, and how the self-supervised approaches

perform for robustness.

Equally, we augmented the images using various techniques including Gaussian blur,

Gaussian noise, color jitter with adjustments to brightness, contrast, and hue, as well

as random rotation of up to 45 degrees. As for the questions, a similar approach was

employed by randomly replacing up to 50% of the words with other words.

Table 6.9 demonstrates that even when employing a more expressive language model

in the GQA dataset. The results show that self-supervised learning still enhances the

visual information for the predicted answer. Precisely, the results presented indicate that

our approaches exhibit greater resilience to noise while maintaining the importance of

visual information for the task.

Table 6.9: Sensitivity of accuracy (%) for bias analysis of BERT module.

Setup Methods

Question + Scene Graph BERT Baseline BERTGlobal+link BERTSelfSim+link

Noise + SG 21.0 23.2 24.5
Question + Noise 42.4 41.8 42.8
Noise + Noise 19.8 21.7 21.3

Table 6.10 shows the results on the VQAv2 dataset. As our study is to investigate

robustness and language biases between the approaches, only a tiny subset of 8k of the

validation split was exclusively utilized in this dataset, necessitating the reporting of

accuracy not only on perturbed data but also on unperturbed data.

Table 6.10: Sensitivity of accuracy (%) for bias analysis of BERT module.

Setup Methods

Question + Scene Graph BERT Baseline BERTSelfSim+link Baseline Global

VQAv2

Question + SG 34.2 43.2 39.4 41.2
Noise + SG 20.8 22.6 21.1 21.7
Question + Noise 33.3 40.9 34.4 35.6
Noise + Noise 21.2 21.9 19.5 24.5
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We highlight that the accuracy results obtained are not directly comparable to those

reported in the paper, but only comparable within the context of this specific experiment.

The outcomes of the study reveal that even with the incorporation of a more expressive

language model (i.e., BERT), the self-supervised learning approach continues to enhance

the utilization of visual information for generating predicted answers. However, it is

important to underscore that, in this specific case, the results suggest a potential influence

of language biases inherent in the dataset when employing a more expressive language

model. It is possible to observe the results when the perturbation is employed solely on

the scene graph compared to the non-perturbed one. Additionally, when analyzing the

results with full perturbation, the findings indicate an enhanced level of robustness when

the self-supervision technique is combined with the model.

Notably, our frameworks performed better when submitted to noise in all approaches

except when exposed solely to image noise, which they perform at least comparably, or

worse, to the baseline, suggesting that the absence of self-supervised techniques may keep

a degree of language bias in the model.

6.3.4 Does SelfGraphVQA Have Few-Shot Learning Capability?

We trained SelfGraphVQA with varying percentages of labeled data and found compara-

ble performance to the GQA dataset, suggesting that adding self-supervised contrastive

loss improves model generalization. We intended to evaluate the different models on sub-

sets of the full dataset. We tested reducing the ground truth labeling requirements and

compared the performance when using SelfGraphVQA as opposed to directly training a

fully supervised classification network.

In this case, we trained our SelfGraphVQA varying the percentage of labeled data,

(i.e., 20%, 50%, and 100% of data) and evaluated it on the validation dataset. As demon-

strated in Figure 6.3, our proposal performs comparably with half of the GQA dataset

evaluated on standard metrics. This insinuates that adding self-supervised un-normalized

contrastive loss improves the generalization of the model.

Table 6.11 shows how our proposal performs with the standard metrics when trained

with 50% of training data, and we see that the three approaches perform on par with the

baseline trained on the full dataset. In particular, the validity and plausibility metrics

are consistent when compared to models trained on the full dataset.

Table 6.11: Results (in %) evaluating by the standard metrics when training with 50% of
GQA dataset.

Method Binary Open Consistency Validity Plausibility Accuracy

Global 63.5 27.6 54.1 94.8 90.1 48.2
Local 63.5 25.6 51.6 94.6 89.3 47.1
SelfSim 64.3 27.3 54.7 94.8 90.1 48.1

Our intuition is that these metrics relate to linguistic bias and do not necessarily

require large amounts of samples to converge, indicating that the model learns with little

data what type of answer it should guess based on the type of question.
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Figure 6.3: Evaluation curve by a percentage of data used in training on GQA dataset.
The models obtain comparable results to baseline with 50% of the data. Note that we only
illustrate the accuracy of the baseline trained on the full dataset for reference purposes.

6.4 Examples and Answer Spectrum Discussion

Visual question answering involves the task of providing an answer to a question related

to an image. However, a notable challenge in this domain is that different individuals

often offer varying answers to the same visual question.

Bhattacharya et al.’s study [13] contributes to the existing body of literature focused on

understanding the factors that can render a visual question challenging or even unanswer-

able. They build upon prior works that have explored the aspects of difficulty, relevance,

and answerability in the task. A set of works delves into the issue of relevance, specifically

identifying instances when questions are unrelated to the contents of the images, while

others demonstrated that a slight shift in rare and frequent question-answer pairs is suf-

ficient to harm the most prominent models [46]. Additionally, some real-world datasets,

such as VizWiz expose the answerability problem, with a focus on cases where questions

cannot be answered due to extreme image quality issues like blur, saturation, obstructed

views caused by fingers or unrelated question [12]. As illustrated in Figure 1, examples

of visual questions categorized as “Difficult”, “Answer Not Present”, and “Low-Quality

Image” continue to be prevalent challenges in the field even to this day.

Back to our work, given the wide range of acceptable answers, we contend that solely

relying on standard evaluation metrics may not provide a fair comparison of VQA mod-

els, thereby presenting additional challenges to the field. Figure 6.5 features examples to

emphasize that certain instances of the data may pose challenges for answering or eval-

uating questions. These examples illustrate the importance and the high performance

of our approach in terms of plausibility, consistence, and validity metrics, where correct

answers were produced to some extent, as shown in Table 6.1. Additionally, we support
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Figure 6.4: Instances of visual questions posed by both people who are blind and sighted,
along with responses from 10 different individuals. As depicted, the answers exhibit
variations for diverse reasons, stemming from the nature of the VQ itself or the individual
responses (third column). In this study, we introduce a novel problem of predicting the
reasons behind differing answers for a given VQ and propose an innovative solution. Image
source: [13].

our hypothesis that models trained solely on idealized data may struggle when applied to

real-world scenarios.

Relative Synonym Ambiguous Multi-Correct

Q: Is there an airplane in the Q: Where are the weeds? Q: Is the man to the right Q: Who is wearing the sweater?
picture that is not small? or to the left of the cup?
Answer: Yes Answer: Plain Answer: Right Answer: Woman
Prediction: No Prediction: Field Prediction: Left Prediction: Woman

Figure 6.5: Examples of contents of the GQA dataset, composed of images, questions,
and the corresponding generated scene graphs. These examples serve to highlight the
intricate nature of Visual Question Answering and emphasize that a correct or reasonably
accurate answer can exhibit a diverse array of acceptable outcomes, demonstrating the
complexity of VQA.

We present additional examples to illustrate how scene graphs can contribute to the
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explainability of AI in the context of VQA, as illustrated in Figure 6.6. These examples

highlight that VQA remains an open area of research and that the performance of a model

should be evaluated beyond standard metrics. These examples serve as a reminder that

there is room for further exploration and improvement in the field of VQA, extending

beyond conventional evaluation metrics.

(1) Correct (2) Correct (3) SG explainable (4) SG explainable (5) Objectively Correct

Q: What is the aircraft Q: Are there any parachutes Q: What is the white pot holding? Q: Which kind of furniture Q: What is in the red glass?
on the ground? or bags? is right of the curtains?
Answer: Airplane Answer: No Answer: Flower Answer: Chair Answer: Beverage
Prediction: Airplane Prediction: No Prediction: Flowers Prediction: Chair Prediction: Liquid

Figure 6.6: Examples to demonstrate the complexity of VQA and the explainability of
the scene graph. All example is predicted by the SelfSim framework.

All examples were predicted by the SelfSim framework. In the following discussion,

the additional examples demonstrate both the problem of low agreement of VQA question

answers due to ambiguity and the usefulness of scene graphs in providing more explainable

AI for this task.

For instance in example 1, the model accurately predicts the answer, and the detection

of the airplane in the scene graph is easily visualized. Conversely, in example 2, the model

correctly does not detect the object mentioned in the question, leading to a correct answer

of ’No’.

The benefits of using scene graphs for visual question answering become more evident

in examples 3 and 4. In example 3, the model provides an objectively correct answer

despite a different ground truth answer in the dataset. This discrepancy is explained

by the scene graph, which highlights that the extracted object related to the question is

’flowers’ rather than ’flower’. In example 4, the model correctly classifies the link that

relates the chair located to the right of the curtains in the scene graph, enabling the model

to predict the correct answer.

In example 5, the acceptance of the model’s answer ’liquid’ as opposed to the ground

truth ’beverage’ is subjective and depends on the evaluator’s opinion. This demonstrates

that the model’s response may fail to precisely evaluate the question, emphasizing the

inherent challenges in VQA.

Overall, these examples highlight the potential benefits of incorporating scene graphs

in visual question answering, offering insights into the model’s reasoning and contributing

to more interpretable AI systems.
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Chapter 7

Conclusions

This chapter presents some concluding remarks and directions for future work.

7.1 Final Remarks

This dissertation presented a comprehensive overview of relevant existing scene graph rep-

resentations for the Visual Question Answering task along with Self-Supervised methods.

We showed that the mostly prominent existing scene graph visual question-answering

models rely on expensive and handcrafted annotated ideal scene graphs. We highlighted

that these models often struggle with generalization when faced with real-world noisy

data. In other words, despite promising results in the VQA task with SG, our study has

revealed that models relying on manually idealized created and expensive annotated SG

struggle to handle real-world data for this task.

As a solution, we presented the SelfGraphVQA framework that eliminates the need

of annotated scene graphs by learning to answer questions in conjunction with scene

graphs extracted from images using a pre-trained scene graph generator module in a more

practical end-to-end approach. In a nutshell, SelfGraphVQA aims to break the spurious

correlation of annotated SG and learn to answer questions with extracted SG using a

pre-trained SG generator module. Additionally, we leveraged the use of self-supervised

un-normalized contrastive learning, aiming at maximizing the similar representation of the

same graph in two distinct views. In exploring the model space of our framework, we found

that Siamese architectures with cosine distance over the graph representation provide

reasonably good performance. All approaches utilizing the self-supervised optimization

objective showed improvement over their corresponding baseline methods.

Overall, our study made some contributions to the academic community. Aligned to

the research question, we demonstrated:

Q1. How scene graph for visual question-answering models behave when using a non-

idealized generated scene graph grounded on the image?

Answer: The idealized scene graph used in VQA models demonstrated remarkably

high accuracy when answering questions in the GQA dataset. This highlights the

significant potential and expressiveness of employing structural data. However, we

observed a decline in performance when dealing with semantically-preserved but
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non-idealized scene graphs for the same task. This phenomenon negatively im-

pacts the practicality and generalization capability of real-world SG-VQA models.

Furthermore, our analysis indicates that the performance of models utilizing scene

graphs is closely related to the type of question and image they encounter. For

instance, in the GQA dataset, where questions involve multiple reasoning skills and

spatial understanding, this type of data tends to provide more significant bene-

fits compared to the VizWiz dataset, where questions reflect real-life experiences.

The differences in question complexity and image context play a crucial role in the

effectiveness of scene graph integration for question-answering tasks.

Q2. Do different yet semantically corresponding scene graphs still contain fundamental

information that can contribute to the effectiveness of VQA tasks?

Answer: From a practical perspective, a model that creates a scene graph di-

rectly from an image should ideally preserve its semantic meaning, regardless of

any topological or classification distinctions (e.g., different relationships or objects).

However, in this dissertation, we have not explicitly verified this phenomenon. The

first evidence supporting this idea arises from our observation of a performance drop

in the model when dealing with non-idealized scene graphs. This suggests that even

when preserving semantic meaning the models present some spurious correlation

between the scene graph, question and answer distribution for high performance in

the task. Furthermore, the second piece of evidence comes from experiments where

we analyzed the models’ behavior when the images were augmented. In this abla-

tion study, we noticed a slight drop in the models’ performance compared to the

baseline experiment. This indicates that the semantically preserving phenomenon

is not sufficient for the model’s generalization ability.

Q3. Can simple yet effective non-contrastive learning techniques effectively enhance the

visual information in scene graphs for VQA models?

Answer: Recently, Siamese architecture with non-contrastive maximization loss

has gained widespread popularity for enhancing image feature representation in

computer vision tasks. We have successfully shown that this enhancement can be

extended to multi-modal tasks, even when incorporating scene graph format infor-

mation. Through our experiments, we have compelling evidence that the significant

performance boost is primarily attributed to the model’s improved ability to extract

crucial visual information, which in turn enhances answer prediction. Our findings

underscore the importance of the self-supervised training regime compared to solely

relying on augmented techniques, especially when dealing with non-idealized scene

graphs for Visual Question Answering. This highlights the potential of leverag-

ing self-supervised learning to capitalize on the power of visual representations in

complex multi-modal tasks involving scene graphs.

Q4. Does the visual enhancement achieved through non-contrastive learning techniques

remain intact even when applied with more expressive language encoder models?

Answer: Language bias poses a significant challenge in multi-modal tasks like
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Visual Question Answering. Despite the visual enhancement achieved through non-

contrastive learning, it is crucial to investigate if this phenomenon holds true when

using more expressive language models. In our experiments, we integrated the

BERT model as our language encoder, alongside the non-idealized scene graph,

graph neural network encoder, and maximization non-contrastive learning. Our

findings provide strong evidence that the visual enhancement remains consistent

even when employing a more expressive BERT model. This result demonstrates

that the simple yet effective Siamese network with non-contrastive learning meth-

ods can effectively enhance visual importance in multi-modal tasks. By successfully

overcoming language bias, this approach opens up new possibilities for leveraging

sophisticated language models while still benefiting from enhanced visual represen-

tations.

Although our work acknowledges limitations from both an internal model perspective,

such as the dependency on an expressive scene graph generator and the need to evaluate

a more diverse range of encoder modules or expand the scope of non-contrastive learning

strategies, as well as from a task challenge perspective, such as the problem of a broad

spectrum of reasoning abilities required to train and evaluate the model in order to predict

acceptable answers for complex questions, we remain committed to making a valuable

contribution to the community. We argue that by proposing a framework that addresses

the limitations of existing methods, targeting to foster advancements and challenges in the

field, our study aims to emphasize the significance of adopting a more practical real-world

approach when incorporating scene graphs in VQA.

Additionally, we believe our project raises awareness of the potential of SG for VQA

and highlights how self-supervised learning addresses the challenges of accentuating the

role of the scene in answering the question. We hope that our work will attract attention to

the potential of graph machine learning along with self-supervised learning in addressing

the challenges of Vision and Language tasks. Additionally, we expect that our study will

encourage further exploration in this area and inspire new approaches that leverage SG

and self-supervision to enhance the performance of VQA models.

7.2 Future Work

In this section, we discuss several potential avenues for future research in the field of

Visual Question Answering (VQA) based on the findings and limitations of our current

study. These directions aim to further enhance the performance and capabilities of VQA

models and explore novel approaches to address existing challenges.

• Investigation of Alternative Scene Graph Generator Models: Our study has demon-

strated the importance and promising results of incorporating scene graphs into

VQA models. However, the choice of scene graph generator can significantly impact

model performance as it relies on visual information. Therefore, future work should

explore alternative scene graph generator models to improve the quality and effec-

tiveness of scene graph representations. By leveraging more advanced and accurate

scene graph generators, we anticipate improved performance in VQA tasks.
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• Enhancement of Encoder Architecture: Our experiments have shown that utiliz-

ing pre-trained models such as BERT can lead to improved results in VQA tasks.

To further enhance performance, it would be worthwhile to explore and develop

more sophisticated encoder architectures. One potential avenue is the utilization

of pre-trained large Vision-Language (VL) models such as LXMERT, ALBEF, or

VILBERT, which can refine the representation of both questions and images, even

without prior training on scene graph data. By incorporating such pre-trained VL

models into the encoder architecture, we can potentially improve the understanding

and alignment between visual and textual modalities.

• Advancement of Self-Supervised Energy-based Approaches: In our study, we have

focused on maximizing cosine similarity as the objective for contrastive learning. To

further enhance the complexity and effectiveness of the contrastive approach, future

research could explore alternative loss functions such as the Variance-Invariance-

Covariance Regularization of VicREG or BarlowTwins. These loss functions have

shown promise in other domains and may offer new insights and improvements in

VQA tasks.

• Application of Pretrained Contrastive and Non-Contrastive Learning for Question-

Image Matching: One particularly promising direction for future research is the

application of pre-trained contrastive learning or non-contrastive between questions

and images. Strongly inspired by multi-modal foundation models, such as CLIP [23]

or Flamingo [3], this approach aims to maximize the matching representation be-

tween specific types of questions and the corresponding images. By leveraging pre-

trained self-supervised models, it would be possible to combine multiple datasets

in a non-supervised manner and subsequently fine-tune the pre-trained model in a

supervised way for a specific dataset. This approach, inspired by foundation models,

has the potential to greatly influence the performance and generalization capabilities

of VQA models.

In conclusion, future research in VQA should focus on exploring alternative scene graph

generator models, enhancing encoder architectures, advancing contrastive approaches, and

leveraging pre-trained contrastive learning for question-image matching. These directions

hold promise for improving the performance, robustness, and understanding of VQA

models, ultimately advancing the field of vision and language integration.
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