
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Rodrigo Augusto Cardoso da Silva

The Fog Node Location Problem

O Problema de Localização de Nós Névoa

CAMPINAS

2022

Rodrigo Augusto Cardoso da Silva

The Fog Node Location Problem

O Problema de Localização de Nós Névoa

Tese apresentada ao Instituto de Computação
da Universidade Estadual de Campinas como
parte dos requisitos para a obtenção do título
de Doutor em Ciência da Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Nelson Luis Saldanha da Fonseca

Este exemplar corresponde à versão final da
Tese defendida por Rodrigo Augusto
Cardoso da Silva e orientada pelo Prof. Dr.
Nelson Luis Saldanha da Fonseca.

CAMPINAS

2022

Ficha catalográfica

Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica

Ana Regina Machado - CRB 8/5467

 Silva, Rodrigo Augusto Cardoso da, 1990-

 Si38f SilThe fog node location problem / Rodrigo Augusto Cardoso da Silva. –

Campinas, SP : [s.n.], 2022.

 SilOrientador: Nelson Luis Saldanha da Fonseca.

 SilTese (doutorado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Sil1. Computação em névoa. 2. Computação em nuvem. 3. Localização de

instalações (Pesquisa operacional). 4. Aeronaves não tripuladas. 5. Otimização

multiobjetivo. I. Fonseca, Nelson Luis Saldanha da, 1961-. II. Universidade

Estadual de Campinas. Instituto de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: O problema de localização de nós névoa

Palavras-chave em inglês:
Fog computing

Cloud computing

Facility location (Operational research)

Drone aircraft

Multiobjective optimization

Área de concentração: Ciência da Computação

Titulação: Doutor em Ciência da Computação

Banca examinadora:
Nelson Luis Saldanha da Fonseca [Orientador]

Edmundo Roberto Mauro Madeira

Jó Ueyama

Luiz Fernando Bittencourt

Maycon Leone Maciel Peixoto

Data de defesa: 02-06-2022

Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-9874-2605

- Currículo Lattes do autor: http://lattes.cnpq.br/8593993681646906

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Rodrigo Augusto Cardoso da Silva

The Fog Node Location Problem

O Problema de Localização de Nós Névoa

Banca Examinadora:

• Prof. Dr. Nelson Luis Saldanha da Fonseca
Universidade Estadual de Campinas

• Prof. Dr. Edmundo Roberto Mauro Madeira
Universidade Estadual de Campinas

• Prof. Dr. Jó Ueyama
Universidade de São Paulo

• Prof. Dr. Luiz Fernando Bittencourt
Universidade Estadual de Campinas

• Prof. Dr. Maycon Leone Maciel Peixoto
Universidade Federal da Bahia

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 02 de junho de 2022

Dedication

For my mother Elizabeth.

“I could tell you my adventures

— beginning from this morning,”

said Alice a little timidly:

“but it’s no use going back to yesterday,

because I was a different person then.”

(Lewis Carroll, Alice in Wonderland, 1865)

Acknowledgements

Earning my Ph.D. degree was the most complex challenge I have ever had in my life
(so far!). I am deeply thankful for the many people and institutions that supported me
during these years. First, I would like to thank professor Nelson Fonseca. His academic
guidance made me a better researcher and person. I am grateful for my years working
with him, and the lessons taught me. I also want to thank professor Raouf Boutaba for
his supervision at the University of Waterloo in Canada. I am grateful to the members
of my Ph.D. defense committee, Prof. Dr. Edmundo Roberto Mauro Madeira, Prof. Dr.
Jó Ueyama, Prof. Dr. Luiz Fernando Bittencourt, and Prof. Dr. Maycon Leone Maciel
Peixoto.

I am genuinely grateful to my parents, Elizabeth and Jairo, for supporting me from
childhood until now. I would have never been in a university without them. I am also
very grateful to my sister Priscila who provided different types of support in all these
years. I am truly grateful to my best friend, Jéssyca Nobre; without her wise and funny
words, I would undoubtedly have resigned from this Ph.D. years ago.

I want to thank many friends and colleagues for their friendship, support, and help
during this Ph.D.: Atílio Gomes, Carlos Astudillo, Cyndi Lauper of Kindlys Youngs,
Daniel Lago, Diego Oliveira, Diogo Gonçalves, Fábio Usberti, Fabíola Oliveira, Fernanda
Brito, Filipy Borghi, Guilherme Russi, Helder Oliveira, Joahannes Bruno, John Hofstetter,
José Carrilho, Judy Guevara, Karen Fletcher, Leandro Villas, Luciano Chaves, Marcela
Porto, Marcelo Minetto, Matheus Zago, Mauro Mulati, Milena Andreotti, Pedro Libório,
Rodrigo Vignoli, Ruben Cardoso, Sindo Dias, Takeo Akabane, Thaís Ussami, Tiago Fon-
seca, Vanderlei Busnardo, and Vanessa Maike. You all are part of this journey in some
way. Special thanks to all friends from the Computer Networks Laboratory (LRC) and
the Institute of Computing (IC), and all IC staff.

I would also like to acknowledge the financial support provided for this thesis. This
study was financed in part by The Brazilian National Council for Scientific and Tech-
nological Development (CNPq), grant 140464/20182. This study was financed in part
by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brasil (CAPES) -
Finance Code 001. This study was financed in part by the São Paulo Research Founda-
tion (FAPESP), grant 2015/24494-8. This study was financed in part by Google through
the Latin America Research Awards program in 2019 and 2020, and the Government of
Canada through the Emerging Leaders in the Americas Program.

Resumo

A computação em névoa é um paradigma no qual recursos computacionais estão próximos
dos usuários finais, complementando a computação em nuvem e permitindo a execução de
cargas de trabalho com latência reduzida. A computação em névoa permite o desenvol-
vimento de novas aplicações com requisitos de baixa latência e também pode melhorar a
execução de aplicações típicas da nuvem. A infraestrutura de uma névoa é composta por
nós névoa, que são dispositivos com recursos de processamento, comunicação, e armaze-
namento posicionados no contínuo entre os usuários finais e a nuvem. Um dos primeiros
passos na criação de uma infraestrutura de computação em névoa é a determinação da
localização de nós névoa. Essa decisão é fundamental pois os usuários são móveis e, conse-
quentemente, os nós névoa precisam estar posicionados em diferentes regiões geográficas
a fim de suportar os requisitos de latência das aplicações. Além disso, a localização de nós
névoa, assim como a configuração de hardware dos nós, precisa considerar as demandas
variáveis de usuários no tempo e espaço.

Esta tese propõe soluções para a localização de nós névoa considerando diferentes
aspectos de uma infraestrutura de computação em névoa. Primeiro, uma solução para
reduzir as despesas de capital da infraestrutura é proposta. Segundo, a localização de nós
névoa é decidida de forma a reduzir o consumo de energia dos dispositivos de usuários.
Terceiro, soluções com nós névoa montados em veículos aéreos não tripulados (VANTs)
são estudadas. Finalmente, um mecanismo de alocação de recursos para ambientes de
névoa e nuvem é proposto. Todas soluções visam prover a melhor infraestrutura para
usuários executando cargas de trabalho com requisitos de baixa latência. As diferentes
soluções podem ser aplicadas individualmente ou combinadas. Nesta tese, o problema de
localização de nós névoa é formulado com modelos de programação linear, e diferentes
algoritmos heurísticos são propostos a fim de lidar com cenários representando áreas
metropolitanas. Todas avaliações foram obtidas através de simulações.

A avaliação das soluções desta tese foi feita através de simulações de áreas metropo-
litanas habitadas por milhões de pessoas. Nós névoa são caracterizados de acordo com
sua localização e capacidade de processamento. VANTs com operações limitadas por
baterias também são simulados como nós névoa. Os resultados mostram que, apesar da
dificuldade de lidar com demandas variáveis, diferentes soluções são possíveis para reduzir
a subutilização de recursos, como reduzir ligeiramente a aceitação de usuários a fim de
reduzir os custos de implantação, ou empregar VANTs para processar picos de demandas.
Os algoritmos propostos são escaláveis. Esta tese amplia o conhecimento do problema
de localização de nós névoa e trabalhos futuros podem dar continuidade às soluções aqui
propostas.

Abstract

Fog computing is a paradigm in which resources are close to the end-users, complementing
cloud computing and allowing the execution of workloads with reduced latency. Fog
computing enables the deployment of new applications with low-latency requirements
and can improve the execution of typical cloud applications. Fog computing relies on
fog nodes, facilities with processing, networking, and storage resources placed in the
continuum between end-users and the cloud. An early step in the design of a fog computing
infrastructure is the location of fog nodes. This decision is crucial because end-users are
mobile and, consequently, fog nodes must be deployed in different geographical regions to
meet the latency requirements of applications. Moreover, users’ demands are variable in
time. Therefore, the location of fog nodes as well as their hardware configuration must
take into account the variable demands of end-users in time and space.

This thesis proposes solutions to the location of fog nodes considering different aspects
of a fog computing infrastructure. First, a solution to reduce the capital expenditure of
the infrastructure is proposed. Second, the location of fog nodes is decided so that the
end-user devices can reduce their energy consumption. Third, solutions with mobile
fog nodes mounted on unmanned aerial vehicles (UAVs) are investigated. Finally, a re-
source allocation mechanism for fog-cloud infrastructures is proposed. All solutions aim
at providing the best infrastructure for end-users running workloads with low-latency re-
quirements. Different solutions can be individually applied or combined. In this thesis,
the fog node location problem is formulated as linear programming models, and different
heuristic algorithms are proposed to deal with scenarios representing metropolitan areas.
All evaluations were made using simulations.

The evaluation of solutions in this thesis was made using simulations of metropolitan
areas inhabited by millions of people. Fog nodes are characterized by their location and
processing capacity. UAVs with operations limited by batteries are also simulated as fog
nodes. Results show that, although dealing with variable demands is challenging, different
solutions are possible to reduce underutilization of resources, such as slightly reducing the
acceptance of requests to obtain large savings with the deployment costs, or employing
UAVs to process peaks of demands. The proposed algorithms were shown to be scalable.
The work in this thesis pushes the boundaries of the knowledge of the fog node location
problem and can be adapted for future work.

List of Figures

1.1 Organization of this thesis. 26

4.1 Example of fog location decision making. 56
4.2 Numerical example of fog location decision making. 60
4.3 Results obtained for OPT under P50 scenario. 64
4.4 Results obtained for all solutions under P50 scenario. 66
4.5 Flexible latency workload acceptance ratio in the fog for various planning

intervals, N = 2048 and P50. 67
4.6 Results for strict latency workload acceptance under P25 and P75 scenarios. 68
4.7 Results for flexible latency workload acceptance ratio under P25 and P75

scenarios. 69
4.8 Results for the average number of servers employed under P25 and P75

scenarios. 70

5.1 Example of fog location decision. 75
5.2 Example of EDTA graph. 80
5.3 Acceptance ratio of application classes considered. 85
5.4 Energy consumption for the eq scenario and 100 Kb. 86
5.5 Energy consumption for the eq scenario and 1 Mb. 86
5.6 Energy consumption for the eq scenario and 10 Mb. 87
5.7 Energy consumption for the eq scenario and 100 Mb. 87
5.8 Acceptance ratio of application classes considered. 88
5.9 Energy consumption for the fo and fl scenarios and request input size 100

Mb. 89
5.10 Results for EDTA for L = 895 and eq scenario. 90

6.1 UFL algorithm. 100
6.2 Acceptance ratio for the 34200 mAh/22.8 V battery and UAV P

= 1. 103
6.3 Number of servers and UAVs used for the 34200 mAh/22.8 V battery,

UAV C
= 1, and UAV P

= 1. 104
6.4 Number of servers and UAVs used for the 34200 mAh/22.8 V battery,

UAV P
= 1, and different values of UAV C . 105

6.5 Number of servers and UAVs used for the 34200 mAh/22.8 V battery,
UAV C

= 1, and different values of UAV P . 106
6.6 Number of servers and UAVs used for UAV C

= 1, UAV P
= 1, and different

battery capacities. 107
6.7 Difference in the number of UAVs required by the dispatching scheme

in [99]. Results obtained for UAV C
= 1, and UAV P

= 1. 108

7.1 Visual example of the system model. 112

7.2 Acceptance ratio as a function of the number of UAVs for a lowlatency6

application and the ground deployment. 119
7.3 Acceptance ratio as a function of the number of UAVs for hover50 deploy-

ment and different applications . 120
7.4 Acceptance ratio as a function of the number of UAVs for mix50 deployment

and different applications . 121
7.5 Acceptance ratio as a function of the number of UAVs for the lowlatency6

application. 122
7.6 Acceptance ratio as a function of the number of UAVs for the lowlatency10

application. 123
7.7 Acceptance ratio as a function of the number of UAVs for the lowlatency20

application. 123
7.8 Acceptance ratio as a function of the number of UAVs for the lowlatency50

application. 124
7.9 Average number of UAVs to process all requests. 125
7.10 Average delay as a function of the number of UAVs for the lowlatency6

application. 125
7.11 Average delay as a function of the number of UAVs for the lowlatency10

application. 126
7.12 Average delay as a function of the number of UAVs for the lowlatency20

application. 126
7.13 Average delay as a function of the number of UAVs for the lowlatency50

application. 127
7.14 Average data rate as a function of the number of UAVs for different appli-

cation classes. 128

8.1 Acceptance ratio as a function of number of UAVs resulting from the use of
the STUFog algorithm and the ILP model for fixed-wing UAVs flying with
a 100 m radius. 139

8.2 Acceptance ratio as a function of number of UAVs resulting from the use of
the STUFog algorithm and the ILP model for fixed-wing UAVs flying with
a 200 m radius. 139

8.3 Acceptance ratio as a function of number of UAVs resulting from the use of
the STUFog algorithm and the ILP model for fixed-wing UAVs flying with
a 300 m radius. 140

8.4 Acceptance ratio as a function of number of UAVs resulting from the use
of the STUFog algorithm and the ILP model for rotary-wing UAVs. 140

8.5 Results for the 50 Mpbs data rate requirement and 100 candidate locations. 142
8.6 Acceptance ratio as a function of the number of UAVs for different data

rate requirements and 100 candidate locations. 143
8.7 Acceptance ratio as a function of the number of UAVs for the 75 Mbps data

rate requirement and different number of candidate locations. 145
8.8 Acceptance ratio as a function of the number of UAVs for tethered deploy-

ments, 50 Mpbs data rate requirement, and 100 candidate locations. 146
8.9 Acceptance ratio as a function of the number of UAVs for tethered deploy-

ments, 75 Mpbs data rate requirement, and 100 candidate locations. 146
8.10 Acceptance ratio as a function of the number of UAVs for tethered deploy-

ments, 100 Mpbs data rate requirement, and 100 candidate locations. . . . 147

9.1 Cloud and fog architecture. 152
9.2 Simulated applications. Each circle represents a task: blue represents ex-

clusive fog tasks, while blue and purple tasks can be hosted either in fog
or cloud. Arrows represent communication between tasks. 158

9.3 Total energy for different applications. 160
9.4 Blocking ratio. 161
9.5 Latency for Remote VM application. 162

List of Tables

2.1 Comparison of fog computing related technologies. 32

3.1 Comparison of previous work related to the facility location problem. . . . 45
3.2 Comparison of previous work on UAVs. 47
3.3 Comparison of resource allocation mechanisms. 50

4.1 Notation used in the fog node location problem formulation. 58
4.2 Adopted values of input and scenarios. 62
4.3 Solutions evaluated in this chapter as well as objective function affected

and level of degradation allowed. 62

5.1 Characteristics of application classes. 74
5.2 Notation used in the fog node location problem formulation. 77
5.3 Values adopted for energy model parameters. 83
5.4 Values adopted for the workload parameters. 84
5.5 Scenarios evaluated according to the proportion of application classes and

request input sizes. 84

6.1 Notation used in the fog node location problem formulation. 96
6.2 Parameters adopted in the UAV simulations. H refers to the vertical dis-

tance traveled, either upwards or downwards. 102

7.1 Notation used in the fog node location problem formulation. 114
7.2 UAV deployments. 118

8.1 Notation used in the formulation. 133

9.1 Notation used in this chapter. 153
9.2 Infrastructure configuration and virtual machine instance description. . . . 156
9.3 Simulated scenarios and parameters employed in the generator [81]. The

standard deviation (SD) is half the value of the mean arrival rate. 158
9.4 Power of cloud and fog servers. 159

List of Algorithms

5.1 EDTA. 81

7.1 SUL algorithm. 117

8.1 STUFog algorithm. 136

9.1 Gaussian Process Regression for Fog-Cloud Allocation mechanism. 154

Acronyms

3GPP 3rd Generation Partnership Project

AP Access point

API Application programming interface

BS Base station

CAPEX Capital expenditure

CDR Call detail record

D2D Device-to-device

DAG Directed acyclic graph

DC Data center

DIFS Distributed coordination function

EC Edge computing

EDTA Energy and Demand Trade-off Algorithm

ETSI European Telecommunications Standards Institute

GPR Gaussian process regression

GPRFCA Gaussian Process Regression for Fog-Cloud Allocation

GPS Global positioning system

GS Ground station

HAP High-altitude platform

IaaS Infrastructure as a service

ILP Integer linear programming

IoT Internet of Things

IEEE Institute of Electrical and Electronics Engineers

LAP Low-altitude platform

LoS Line-of-sight

LTE Long term evolution

MACC Mobile ad hoc cloud computing

MC Mobile computing

MCC Mobile cloud computing

MDPI Multidisciplinary Digital Publishing Institute

MEC Multi-access edge computing

MILP Mixed-Integer linear programming

NAS Network-attached storage

NASA National Aeronautics and Space Administration

NFV Network function virtualization

NGA National Geospatial-Intelligence Agency

NIST National Institute of Standards and Technology

OpenFog RA OpenFog reference architecture

PaaS Platform as a service

PUE Power usage effectiveness

QoS Quality of service

QoT Quality of transmission

SaaS Software as a service

SIFS Short inter-frame space

SMS Short message service

STUFog Spatio-Temporal UAV Fog Node Location

SUL Sequential UAV Fog Node Location

UAV Unmanned aerial vehicle

UFL UAV fog node location

VM Virtual machine

VTOL Vertical take-off and landing

Contents

I Introduction and State-of-the-art 20

1 Introduction 21

1.1 Objectives . 22
1.2 Contributions . 24
1.3 Publications . 24
1.4 Thesis outline . 25

2 Background 28

2.1 Cloud computing . 28
2.2 Fog Computing . 29

2.2.1 Definition and Characteristics . 29
2.2.2 Related Concepts . 30
2.2.3 Fog nodes . 32
2.2.4 Applications . 34
2.2.5 Architectures . 35

2.3 Facility Location Problem . 36
2.4 Multi-objective Optimization . 36
2.5 Unmanned Aerial Vehicles . 37

2.5.1 Overview and UAV types . 37
2.5.2 Rotary-wing and Fixed-wing UAV Operation 38
2.5.3 Energy Consumption . 39
2.5.4 Channel Model . 41

3 Related Work 43

3.1 Facility Location Problem in Computer Networks 43
3.2 UAVs as Networking Elements . 44
3.3 Reduction of energy consumption via offloading 48
3.4 Resource Allocation in Fog Computing . 48
3.5 Workload and Data Sets . 51
3.6 Software tools . 52

II Terrestrial Infrastructure 53

4 Location of Fog Nodes for Reduction of Cost 54

4.1 Overview . 54
4.2 System Model . 55
4.3 Formulation . 57

4.3.1 Mathematical Model . 57

4.3.2 Numerical Example . 59
4.4 Performance Evaluation . 61

4.4.1 Workload . 61
4.4.2 Multi-objective solutions allowing degradation 61
4.4.3 Numerical results . 62

4.5 Conclusions . 71

5 Location of Fog Nodes for Reduction of Energy Consumption of User

Devices 72

5.1 Overview . 72
5.2 System Model . 73
5.3 Formulation . 76
5.4 Energy and Demand Trade-off Algorithm 79
5.5 Performance Evaluation . 82

5.5.1 Energy model . 82
5.5.2 Workload . 83
5.5.3 Application model . 84
5.5.4 Numerical results . 84

5.6 Conclusions . 91

III Aerial Infrastructure 92

6 Location of Fixed and UAV-based Fog Nodes 93

6.1 Overview . 93
6.2 System model . 94
6.3 Formulation . 95
6.4 UAV Fog Node Location Algorithm . 99
6.5 Performance Evaluation . 101

6.5.1 Experimental settings . 101
6.5.2 Numerical results . 102

6.6 Conclusions . 108

7 Location of Fog Nodes mounted on Rotary-wing UAVs 110

7.1 Overview . 110
7.2 System Model . 111
7.3 Formulation . 113
7.4 Sequential UAV Fog Node Location . 116
7.5 Performance Evaluation . 117

7.5.1 UAV characterization . 117
7.5.2 Workload . 118
7.5.3 Validation of the SUL Algorithm 119
7.5.4 Qualitative Analysis . 122

7.6 Conclusions . 127

8 Location of Fog Nodes mounted on Fixed-wing UAVs 130

8.1 Overview . 130
8.2 System Model . 131
8.3 Formulation . 132

8.4 STUFog Algorithm . 134
8.5 Performance Evaluation . 136

8.5.1 UAV characterization . 137
8.5.2 Workload . 137
8.5.3 Validation of the STUFog algorithm 138
8.5.4 Numerical discussion . 141

8.6 Conclusions . 148

IV Resource Allocation 149

9 Resource Allocation Mechanism for Fog-Cloud Infrastructures 150

9.1 Overview . 150
9.2 System Model . 151
9.3 GPRFCA mechanism . 152
9.4 Performance Evaluation . 156

9.4.1 Simulation settings . 156
9.4.2 Evaluated mechanisms . 156
9.4.3 Workload . 157
9.4.4 Energy consumption model . 157
9.4.5 Numerical results . 159

9.5 Conclusions . 163

V Final Remarks 164

10 Conclusions 165

10.1 Main findings . 165
10.2 Limitations and challenges . 166
10.3 Future work . 167

Bibliography 168

20

Part I

Introduction and State-of-the-art

21

Chapter 1

Introduction

The number of devices connected to the Internet has already surpassed the global popu-

lation [44], and 1.5 mobile devices per inhabitant are predicted for 2022 [80]. Such growth

also increases the volume of mobile data traffic, expected to be 77.5 exabytes per month

by 2022, a seven-fold increase in the period from 2017 to 2022 [80]. Data generated by the

Internet of Things (IoT) devices have commonly been processed in the cloud [29], which

provides computing and storage capabilities for resource-limited IoT devices. Cloud com-

puting relies on large data centers that host computing, networking, and storage resources

accessed on-demand through the Internet. However, they are typically located in remote

areas [29], which makes a variety of applications with strict latency requirements unfea-

sible. One solution to alleviate this limitation is the employment of fog computing, an

architecture to provide computing, storage, and networking capabilities anywhere along

the continuum between the cloud and the end-users [79].

Fog computing was designed to support delay-sensitive applications as well as mobility

by providing computing, networking, and storage capabilities at the edge of the network

[79]. Fog computing fills the gap in service provisioning for latency-sensitive applications

not considered by cloud computing. The fog allows the reduction of delays to only a few

milliseconds. Moreover, fog is a distributed architecture, not centralized as are clouds.

Fog computing was designed to complement cloud computing, but not to replace it.

Fog nodes are the basic units for fog computing and can be a network device with

processing capabilities, dedicated servers, or computational servers to coordinate under-

lying devices [70]. Previous work [79, 70, 98, 59] has discussed the role of fog nodes in the

architecture and their connection to other network elements, but have not discussed the

impact of the deployment of fog nodes on different geographical locations. The location

of the fog nodes consists in deciding where they should be placed given a set of potential

locations and the devices available for deployment. The solution to the problem is cru-

cial for fog providers. Indeed, the location decision affects both users and the provider.

Wrong decisions can jeopardize user access: if the delay in accessing the fog impacts the

application, user expectations and needs will not be fulfilled. Moreover, the deployment

of servers influences the costs of fog providers: reckless decisions can guarantee users’

satisfaction, but at a high deployment cost.

One challenge in deciding the location of fog nodes is the variability of end-user de-

mands. There are both time and space variabilities due to the mobility of users [43], which

22

tends to concentrate a large number of users on certain areas during short periods. This

can cause overdimensioning of the fog infrastructure, making processing resources idle for

the most time. This thesis aims at dealing with such an issue in different ways. First, it

evaluates how fixed fog nodes should be positioned so that underutilization is minimized.

Then, it evaluates the employment of mobile fog nodes dispatched to different locations

to cover peaks of demands.

The employment of fog nodes mounted on vehicles allows resource mobility, comple-

menting the fixed fog infrastructure. Mobile fog nodes can be dispatched on demand to

augment the resources of fixed fog nodes or go to locations without any terrestrial fog

node. Unmanned aerial vehicles (UAVs) are highly suitable to host fog nodes due to

their small size, flexibility to fly and access remote locations, and remote or autonomous

operation. Moreover, UAVs can be equipped with processing and networking capabilities,

allowing them to process user workload at the edge. However, some issues need to be

addressed when using fog nodes mounted on UAVs. UAVs have limited access to energy

supplies, which considerably limits their operational time. Moreover, obtaining good-

quality wireless links can be challenging due to a lack of physical stability during flights.

A significant part of this thesis is devoted to studying the location of fog nodes mounted

on UAVs.

This thesis proposes solutions for variations of the fog node location problem. All

solutions considered variable demands in time and space, and actual data of cellular

networks were used in the evaluation. All results were obtained by simulations. There are

solutions for infrastructures with only fixed servers, with servers on UAVs, and a solution

with both types of servers. The fog node location is an optimization problem, and this

thesis modeled it using linear programming formulations. Algorithms were also proposed

to deal with large-scale inputs representing metropolitan areas. This thesis also proposes

a solution for the allocation of resources in fog-cloud infrastructures. Results obtained

in this thesis show that the proposed solutions can deal with the variability of demands,

producing results for scenarios with many locations and fog nodes. Moreover, this thesis

shows that the deployment of UAVs as fog nodes is possible with the proper location

decision.

The remainder of this chapter provides further details of this thesis and is organized as

follows. Section 1.1 states the objectives of the thesis. Section 1.2 summarizes the main

contributions of this work. Section 1.3 lists the publications resulting from the Ph.D.

Finally, Section 1.4 presents the outline of the remaining chapters.

1.1 Objectives

This thesis attempts to provide answers to the fog node location problem, given by the

following question: “How should fog nodes be located to process end-user demands that

are variable in time and space?”. In order to answer this question, this thesis studied the

problem of selecting which locations should be used for the deployment of fog nodes from

a set of candidate locations. This problem is known as the fog node location problem,

an optimization problem that is a variation of the facility location problem. The main

23

goal is to process the maximum workload possible, but other criteria were adopted in

multi-criterial formulations. This thesis proposes solutions to variations of the fog node

location problem with different inputs.

Other research questions were elaborated to study this problem from different per-

spectives. The first perspective is that of the reducing the capital expenditure (CAPEX),

aimed at answering the following question “How should fog nodes be located to process

end-user demands variable in time and space to reduce the cost of the fog infrastructure?”.

This is the first question because costs and variable demands are inherent aspects of the

fog node location problem. The first solution serves as basis to investigate the remaining

questions. This study is presented in Chapter 4.

The second perspective of the fog node location problem focuses on the energy con-

sumption of end-user devices, attempting to answer the following question: “How should

fog nodes be located to process end-user demands variable in time and space to reduce the

energy spent by end-user devices?”. The answer to this question addresses an important

need of end-users, which is the battery limitation of mobile devices. An infrastructure

designed to reduce such an energy consumption can extend the time users remain con-

nected to the infrastructure, which is beneficial for both users and providers. This study

is presented in Chapter 5.

After studying these questions, this thesis focuses on the employment of a mobile

infrastructure to further explore the variability of demands in time and space, starting

with an important question: “Are UAVs worth adopting to replace fixed nodes in a fog

infrastructure?”. By answering this question, this thesis evaluates to what extent fixed

fog nodes can be replaced by aerial nodes, considering the advantages and limitations of

each type of node. This study is presented in Chapter 6.

Results from the previous investigation shows that UAVs have a great potential to be

used as fog nodes. Therefore, this topic was further explored considering different types

of UAVs: rotary-wing and fixed-wing. For that, two questions are formulated: “What

should be the location and operation period of fog nodes mounted on rotary-wing UAVs to

maximize the number of end-users served while reducing the delay between ground nodes

and UAVs?” and “How should fixed-wing UAVs be positioned to provide a fog computing

infrastructure to deal efficiently with variable demands in relation to time and space, as

well as maximize the number of processed requests?”. Both questions were studied to

understand the role of different types of UAVs as fog nodes. Different solutions address

the differences between these types of UAV. These studies are presented in Chapters 7

and 8.

Finally, this thesis also includes a proposal of a resource allocation mechanism to

be used in any infrastructure with fog and cloud, whether fixed or aerial nodes were

considered. Applications of end-users can be organized as sets of dependent tasks and, in

this context, an important question should be answered: “Which tasks of an application

should be processed by the fog and which ones should be processed by the cloud?”. The

answer to this question is a resource allocation mechanism that considers the processing

and networking requirement of applications to reduce blockage of user requests. This

study is presented in Chapter 9.

24

1.2 Contributions

This thesis modeled different variations of the fog node location problem using either

mixed-integer linear programming (MILP) or integer linear programming models (ILP),

and it also proposed algorithms to deal with large-scale instances. The following list

summarizes these contributions:

• A multi-objective MILP model for the fog node location problem with fixed fog

nodes aimed at optimizing the acceptance ratio of requests, infrastructure cost, and

fog node usage (Chapter 4);

• A multi-objective MILP model and the Energy and Demand Trade-off algorithm for

the fog node location problem with fixed fog nodes aimed at optimizing the accep-

tance ratio of requests, the energy spent by end-user devices, and the infrastructure

cost (Chapter 5);

• A multi-objective MILP model and the UAV Fog Node Location algorithm for the

fog node location problem with fixed and mobile fog nodes aimed at optimizing the

acceptance ratio of requests, and infrastructure cost (Chapter 6);

• A multi-objective ILP model and the Sequential UAV Fog Node Location algorithm

for the fog node location problem with mobile fog nodes mounted on rotary-wing

UAVs aimed at optimizing the acceptance ratio of requests, infrastructure cost, and

latency (Chapter 7);

• A multi-objective ILP model and the Spatio-Temporal UAV Fog Node Location

algorithm for the fog node location problem with mobile fog nodes mounted on

fixed-wing UAVs aimed at optimizing the acceptance ratio of requests, infrastructure

cost, and latency (Chapter 8);

• The Gaussian Process Regression for Fog-Cloud Allocation mechanism for the allo-

cation of tasks either in the fog or in the cloud, aimed at optimizing the acceptance

ratio of requests and fog node usage (Chapter 9).

1.3 Publications

Results of the research conducted in this thesis were published in international journals

and conferences. Moreover, during the Ph.D., the student collaborated with other re-

searchers, which led to publications that are not a direct result of this thesis. The list of

publications is presented below:

• R. A. C. da Silva and N. L. S. da Fonseca, “Resource Allocation Mechanism for

a Fog-Cloud Infrastructure,”, 2018 IEEE International Conference on Communica-

tions (ICC), 2018, pp. 1-6, doi: 10.1109/ICC.2018.8422237. Status: published.

• R. A. C. da Silva and N. L. S. da Fonseca, “On the Location of Fog Nodes in

Fog-Cloud Infrastructures”, Sensors 2019, 19, 2445, doi: 10.3390/s19112445. Status:

published.

25

• R. A. C. da Silva and N. L. S. da Fonseca, “Location of Fog Nodes for Reduc-

tion of Energy Consumption of End-User Devices,”, IEEE Transactions on Green

Communications and Networking, vol. 4, no. 2, pp. 593-605, June 2020, doi:

10.1109/TGCN.2020.2986753. Status: published.

• R. A. C. da Silva, N. L. S. da Fonseca and R. Boutaba, “Evaluation of the

Employment of UAVs as Fog Nodes,” in IEEE Wireless Communications, vol. 28,

no. 5, pp. 20-27, October 2021, doi: 10.1109/MWC.101.2100018. Status: published.

• R. A. C. da Silva and N. L. S. da Fonseca, “Design of fog computing infras-

tructures with rotary-wing UAVs”, 2022 IEEE Global Communications Conference

(GLOBECOM), 2022. Status: under review.

• R. A. C. da Silva and N. L. S. da Fonseca, “Design of aerial fog computing with

fixed-wing UAVs”, IEEE Wireless Communications, 2022. Status: under review.

Other publications during the Ph.D. course:

• Daniel G. Lago, Rodrigo A.C. da Silva, Edmundo R.M. Madeira, Nelson L.S.

da Fonseca, and Deep Medhi, “SinergyCloud: A simulator for evaluation of energy

consumption in data centers and hybrid clouds”, Simulation Modelling Practice and

Theory, Volume 110, 2021, 10.1016/j.simpat.2021.102329. Status: published.

• Ana Isabel Montoya-Munoz, Rodrigo A.C. da Silva, Oscar M. Caicedo Rendon,

and Nelson L. S. da Fonseca, “Reliability Provisioning for Fog Nodes in Smart Farm-

ing IoT-Fog-Cloud Continuum”, Computers and Electronics in Agriculture, 2022.

Status: under review.

This thesis includes materials from the first-authored papers listed above. Most papers

were published by or submitted to the Institute of Electrical and Electronics Engineers

(IEEE), and one paper was published by the Multidisciplinary Digital Publishing Institute

(MDPI). The IEEE has a policy on the reuse of published papers on a thesis stating that

“The IEEE does not require individuals working on a thesis to obtain a formal reuse

license”. For the MDPI, the copyright is retained by the authors while the paper is

published under a Creative Commons CC BY 4.0 license. Images and portions of the text

of the first-authored papers listed above were used in Chapters 1–10.

1.4 Thesis outline

This thesis is organized into five parts containing a total of ten chapters; such organization

is illustrated in Figure 1.1. Part I is introductory and reviews the main concepts to

understand this thesis. Part II presents solutions to the fog node location problem with

only terrestrial infrastructure. Part III introduces solutions to the fog node location

problem with UAVs used as fog nodes. Part IV presents a resource allocation mechanism

made for fog-cloud infrastructures. Finally, Part V concludes this thesis.

26

F
ig

u
re

1.
1:

O
rg

an
iz

at
io

n
of

th
is

th
es

is
.

27

Part I contains Chapters 1–3. The current chapter (Chapter 1) introduces this thesis.

Chapter 2 explains the concepts needed to understand the work developed in this thesis,

while Chapter 3 reviews different papers from the literature related to the proposals in

Chapters 4–9.

Part II comprises two chapters. First, Chapter 4 describes a solution to the fog node

location problem in which reducing the infrastructure cost is the main goal. Second,

Chapter 5 models a fog node location solution to reduce the energy spent by end-user

devices.

Results obtained in Part II identified a high resource underutilization with only fixed

fog nodes. Part III attempts to explore this gap by using mobile fog nodes mounted on

UAVs, and it has three chapters. Chapter 6 presents a solution to the fog node location

problem with both fixed and aerial nodes. The work in Chapters 7 and 8 solves the

location problem assuming the ground infrastructure already exists and only UAVs need

to be located. Chapter 7 employs only rotary-wing UAVs and Chapter 8 only fixed-wing

UAVs.

Part IV has only one chapter (Chapter 9) that presents a resource allocation mecha-

nism for fog-cloud infrastructures. Finally, Part V has one chapter dedicated to concluding

this thesis. Chapter 10 presents the main conclusions and limitations of this thesis and

suggests future directions.

28

Chapter 2

Background

This chapter reviews the main concepts used in this thesis and is organized as follows. Sec-

tion 2.1 presents the definition of cloud computing and its main characteristics. Section 2.2

introduces the concept of fog computing, presents its differences to other concepts, de-

fines fog node, and discusses typical applications and architectures. Section 2.3 presents

an overview of the facility location problem. Section 2.4 discusses the optimization of

multi-objective problems. Finally, Section 2.5 reviews the main concepts of UAVs, such

as their classification, operation, energy consumption, and wireless channel modeling.

2.1 Cloud computing

The most accepted definition of cloud computing is the one given by the National Institute

of Standards and Technology (NIST): “Cloud computing is a model for enabling ubiqui-

tous, convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider interaction.”

[72]. The role of the cloud provider is to offer access to computing, network, and storage

services in a transparent way to the users. Cloud users neither need to know where the

resources are located nor underlying details (such as hardware, operating system manage-

ment, and cooling infrastructure): they just need to be able to obtain access to resources

or release them in an on-demand manner, paying for what they use.

According to NIST, cloud computing provides three main service models: Software as

a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) [72].

Under SaaS, users rent applications hosted in the cloud, without the need of managing

physical resources or operating systems. Under PaaS, users deploy their applications

using programming languages, libraries, and services hosted on the cloud. Under IaaS,

users rent an operating system with a set of built-in software, and they are free to deploy

arbitrary software and applications.

Cloud computing has four deployment models: private cloud, community cloud, public

cloud, and hybrid cloud. A private cloud is used by a single organization and is typically

maintained by the same organization. Community clouds are used by multiple consumers

that share common needs and can be owned and managed by organizations in the com-

29

munity or by a third party. Public clouds offer services for the general public and are

maintained by a cloud provider. A hybrid cloud is an infrastructure composed of two or

more clouds with different deployment models, and an inter-operation between different

clouds.

The physical resources of a cloud are kept in data centers (DCs), which are large facil-

ities that host computing, networking, and storage devices. The access to services hosted

in public data centers is remote, via the Internet. Typical devices in data centers include

servers for processing various workloads, switches, and routers to provide intra-DC and

inter-DC connectivity, network-attached storage (NAS) for keeping operating system im-

ages and users’ data, and cooling infrastructure to maintain the adequate temperature.

Servers inside data centers are typically connected by wired networks and their arrange-

ment follows a particular network topology, such as the one suggested by Cisco [1] or the

Fat-tree topology [5].

A cloud consists of one or multiple data centers that can be distributed in different

regions of the globe [30]. By placing data centers in different cities or countries, cloud

providers take advantage of low energy prices, renewable energy sources, reduced oper-

ational costs (e.g. staff), local regulations, and appropriate climate to improve cooling.

Furthermore, placing a data center near the end-users reduces the delay to access services,

which improves users’ response time. However, there are applications with strict latency

requirements that cannot be processed in the cloud.

2.2 Fog Computing

This section introduces fog computing and is organized as follows. Subsection 2.2.1 defines

fog computing. Subsection 2.2.2 discusses similar paradigms and their differences to

fog computing. Subsection 2.2.3 reviews the concept of fog nodes. Subsection 2.2.4

discusses the main characteristics of fog applications, and Subsection 2.2.5 presents fog

architectures.

2.2.1 Definition and Characteristics

The term “fog computing” was coined by Cisco [16], which defined fog computing as

a “highly virtualized platform that provides compute, storage, and networking services

between end devices and traditional Cloud Computing Data Centers”. In 2015, the Open-

Fog Consortium, a consortium of technology companies and academic institutions, was

founded to define an interoperable architecture for fog computing known as the OpenFog

Reference Architecture (OpenFog RA) [79]. The OpenFog RA defined fog computing as

“a horizontal, system-level architecture that distributes computing, storage, control and

networking functions closer to the users along a cloud-to-thing continuum.”. The OpenFog

Consortium merged with the Industrial Internet Consortium in 2019.

Fog computing was designed to address the weaknesses of cloud computing, such as

the high latency to access cloud data centers and the support for mobile users. Fog and

cloud computing are not opposing concepts, but cooperative technologies to support a

broad range of applications. Bonomi et al. [16] summarised the necessary characteristics

30

a fog computing infrastructure must have, detailed in the next paragraphs: low latency,

geographical distribution, a large number of nodes, mobility, predominant wireless access,

strong use of streaming and real-time applications, and heterogeneity.

The main reason for using fog computing is low latency. Fog computing was proposed

envisaging a plethora of applications that have strict latency requirements and cannot

rely on centralized data centers. To reduce the latency, compute, storage, and networking

resources should be close to end-users, avoiding transmission of data to the core network.

Different from the centralized cloud, fog computing is usually deployed in a geographically

distributed manner to minimize the response time to end-users. The response time re-

quired can vary from a few milliseconds to some seconds depending on the application [4].

There should be fog resources in various locations to support users in different regions.

Fog computing was conceived to support mobile users. Mobility is a challenge in

the design of fog computing infrastructures, given that fog resources are typically fixed.

Therefore, a large number of distributed nodes is essential to cope with end-users visiting

different regions over time. Moreover, the communication between end-users and the fog is

predominantly wireless, usually with WiFi or cellular networks, facilitating the connection

to multiple fog nodes.

Bonomi et al. [16] assumed a strong use of streaming and real time applications in the

fog, typical applications with low-latency requirements. Nonetheless, other applications

can benefit from the fog, such as health monitoring, surveillance, content caching, and

vehicle navigation [4].

Fog nodes can be heterogeneous, i.e, they can have different resource configurations.

Fog nodes should also be interoperable, able to seamlessly connect to users and the cloud.

To make it feasible, it is recommended that fog computing should operate using open hard-

ware and software standards to allow the coexistence of different vendors’ solutions [79].

Finally, fog computing deployments are typically hierarchical, with different levels of fog

and cloud nodes. In complex scenarios, for example, there can be a layer of fog nodes

directly connecting to end-users, another layer for interconnection of fog nodes, and cloud

layers with public and private clouds. Layers can have different roles, with, for example,

a fog node in charge of only one application, and more generalist fog nodes supporting a

variety of applications.

2.2.2 Related Concepts

Although “fog computing” was coined in the last decade, the processing of workloads at

the network edge was investigated before. This subsection discusses concepts related to

fog computing and their main differences to fog. These concepts are cloud computing,

mobile computing (MC), mobile cloud computing (MCC), mobile ad hoc cloud computing

(MACC), edge computing (EC), multi-access edge computing (MEC), cloudlet computing,

and mist computing. A complete review of these concepts is given in [104].

The first technology related to fog computing is cloud computing, already discussed

in Section 2.1. The hardware used in the fog can be different from that used in the cloud

since fog computing may favor smaller devices to facilitate deployment. Security and

privacy mechanisms for fog computing can be quite different from those for clouds due

31

to the different geo-distribution, opportunities of attacks, and technologies involved. The

cloud is usually connected to the Internet and constantly available, whereas fog nodes

are not necessarily connected to the Internet or operational all the time. Low latency is

the main advantage of fog computing compared to the cloud, but not the only one. For

example, fog nodes can be deployed in remote areas or directly used to gather data from

sensors due to the physical proximity, which cannot be achieved using only the cloud.

MC refers to the computation performed in mobile devices such as laptops, tablets,

or smartphones. MC is usually accomplished using wireless protocols for transmitting

data, such as Bluetooth, WiFi, and ZigBee. Fog and cloud computing usually assume

dedicated devices for processing, different from those used in MC. Nonetheless, some

authors [91, 92] considered MC resources part of the fog infrastructures. This thesis

assumes that fog computing is made available using dedicated hardware, and MC is

evaluated as an alternative to the fog in Chapter 5.

MCC is defined as an infrastructure in which data storage and processing are not

performed by the mobile device. According to NIST, MCC exploits the synergy between

mobile devices, Internet of Things (IoT) devices, and cloud computing [76]. Fog and

cloud computing enable MCC by offering possibilities of offloading workload from end-

user devices. This thesis considers MCC enabled by fog computing.

MACC is a solution to interconnect mobile devices when no external infrastructure is

available. In MACC, devices form a temporary network with dynamic topology and can

use their capabilities to offer networking, storage, and computing services [104]. MACC

is different from fog computing since the former is more decentralized and not organized

into layers.

Edge computing is the most similar concept compared to fog computing, and, con-

sequently, some authors use these terms interchangeably. Edge computing is a way to

implement MCC in which devices do not belong to end-users, but they are dedicated de-

vices at a few hops away from them. The authors of [89] defined “edge” as “any computing

and network resources along the path between data sources and cloud data center”, and

edge computing consists of enabling computation at such edge instead of the end devices

or the cloud. Edge computing is a key enabler of fog computing, with fog being a broad

concept that also defines the infrastructure, the layers, and the interplay with the cloud.

Multi-access edge computing, formerly known as mobile edge computing, employs edge

computing for cellular networks. The European Telecommunications Standards Institute

(ETSI) is in charge of defining the MEC architecture [42], which brings computing re-

sources close to the access network using virtualization. Some authors [98] assumed that

MEC employs small virtualized data centers deployed at base stations, accessed via vari-

ous network interfaces such as WiFi and 5G. MEC deployments are expected to employ

devices with network function virtualization (NFV) capabilities [56].

Cloudlets were introduced in 2009 [87] and are defined as small data centers typically

at a one-hop distance from end-users, virtualized, and continuously connected to the

Internet. Cloudlets are not necessarily integrated into a cellular network and focus on

reducing the latency and supporting mobile users. Cloudlets are a direct implementation

of cloud data centers at the edge. Fog computing is different from cloudlet in various

manners. For example, virtualization is not mandatory for fog nodes. Moreover, fog

32

Table 2.1: Comparison of fog computing related technologies.

Technology Users Devices Architecture Latency Geographical

distribution

Standardized

Fog computing General Different
devices

Distributed and
hierarchical

Low Yes Yes

Cloud computing General Data centers Centralized and
hierarchical

High Possible Yes

MC Mobile Mobile devices Distributed Medium No Yes
MCC Mobile Edge devices

or data centers
Centralized or
distributed

High No No

MACC Mobile Mobile Distributed Medium No No
EC General Edge devices Distributed Low Yes Yes
MEC Mobile Small data

centers
Distributed and
hierarchical

Low Yes Yes

Cloudlet Mobile Small data
centers

Distributed Low Yes No

Mist computing General IoT devices Distributed Medium Yes No

computing does not require the employment of small data centers; in some deployments,

network devices with processing capabilities can be fog nodes.

The final paradigm discussed in this subsection is mist computing. This paradigm as-

sumes that IoT devices provide computing, networking, and storage capabilities. Different

from MACC, devices in mist computing may not employ ad-hoc links and do not need

to be mobile. Mist computing can be part of fog computing, but fog is a more complex

architecture.

Table 2.1 summarizes the characteristics of the technologies reviewed in this subsec-

tion, classifying them according to the type of user, the devices used, architecture, latency,

whether computing nodes are geographically distributed, and if the technology is stan-

dardized. Several concepts were proposed to allow processing at or near the edge to

complement the cloud. Most of these concepts aim at reducing the latency to users by

performing processing, networking, and storage somewhere close to the end-user devices.

The presented concepts share similarities and, in some cases, it is hard to distinguish

between them. For example, some authors do not distinguish between fog and edge com-

puting, or between fog nodes and cloudlets. To standardize the text of this thesis, the

term fog computing is used. One of the reasons for this decision is the organization in

layers, a characteristic of fog computing. For example, Parts II and IV of the thesis con-

sidered fog and cloud layers, and Part III assumed two fog layers (one fixed and terrestrial,

and another mobile and aerial). Moreover, we did not assume processing made only by

edge data centers or virtualized cloudlets, but also by UAVs. Solutions for the fog node

location in this thesis can be directly used or easily adapted for cloudlets, MEC, and EC.

Moreover, the proposal in this thesis can serve as a basis for solutions that integrate MC,

MACC, or mist computing with fog computing.

2.2.3 Fog nodes

In cloud computing, data centers host processing, networking, and storage devices; fog

nodes are the equivalent entities for data centers in fog computing. Cloud data centers

follow a standardization [1]. On the other hand, fog nodes have very different definitions,

ranging from user devices to micro data centers. This subsection discusses existent defini-

33

tions of fog nodes and states the one adopted in this thesis. A comprehensive discussion

on the fog nodes definition is given in the paper [70].

Cisco stated that fog nodes are heterogeneous and deployed in various environments [16].

The OpenFog architecture proposed a wide definition that all computing, networking,

storage, and acceleration devices are fog nodes [79]. Marín-Tordera et al. [70] reviewed

various papers on fog computing and proposed a broad yet concise definition of fog nodes:

“Fog nodes are distributed fog computing entities enabling the deployment of fog services,

and formed by at least one or more physical devices with processing and sensing capa-

bilities (e.g., computer, mobile phone, smart edge device, car, temperature sensors, etc.)

All physical devices of a fog node are connected by different network technologies (wired

and wireless) and aggregated and abstracted to be viewed as one single logical entity,

that is the fog node, able to seamlessly execute distributed services, as it were on a single

device.” [70].

Fog nodes are typically assumed to be small clouds, with devices acting as either

producers/consumers of data or computational-rich devices for processing. In [103], the

fog node is a single server installed on a bus to augment the capacity of roadside units

in its trajectory, while the work in [102] considered the opposite, i.e., the fog nodes are

structures at the roadside units. In 5G deployments, fog nodes are typically facilities

empowered with processing devices connected to the base stations [98]. Several authors

considered fog nodes as small data centers [7, 51, 14, 84]. Some approaches also considered

fog nodes as other devices, such as IoT devices [68], and UAVs [35, 74]. Thus, fog nodes

can be single devices or facilities to host processing devices, they can be fixed or mobile,

powerful or resource-constrained.

The work in this thesis adopts the fog node definition given by the authors of [70] and

employs two types of fog nodes, fixed and mobile. Fixed fog nodes are facilities equipped

with dedicated servers distributed over a geographical region. They have continuous

access to energy supplies and can run 24 hours a day. In terms of connectivity, fog nodes

connect to users using either WiFi or cellular interfaces, and they are connected to the

cloud via the Internet using wired interfaces, such as Ethernet and optical networks. This

thesis considered fixed fog nodes directly connected to base stations in a cellular network;

nonetheless, the solutions can be applied to other scenarios such as fog nodes installed on

access points. Fixed fog nodes in this work are heterogeneous since they host a variable

number of processing servers. Solutions in this thesis do not consider particular aspects

of virtualization; they can be applied to both virtualized and non-virtualized fog nodes.

Part III of this thesis introduces the mobile fog nodes mounted on UAVs. In this

case, the UAV hosts an onboard computer in charge of processing users’ workload. These

fog nodes are mobile and can fly to different regions to meet the needs of mobile users.

Different from the fixed nodes, the operation time of mobile fog nodes is limited to the

UAV battery. UAV fog nodes employ only wireless interfaces and process data in the

same manner a fixed node does. In this thesis, UAVs communicate with base stations on

the ground to receive the data to be processed. Section 2.5 provides more details about

UAVs.

34

2.2.4 Applications

Many applications can benefit from fog computing. Ahmed et al. [4] studied 30 of these

applications and the requirements that should be guaranteed by a fog platform. This sub-

section discusses applications that are typically processed by the fog, their characteristics,

and the assumptions made in this thesis.

The work in [4] lists seven reasons for using fog computing, discussed in the follow-

ing: latency reduction, bandwidth optimization, computational offloading, privacy and

security, service management, monitoring edge devices, energy efficiency, cost reduction,

and caching. The main reason to use fog computing is to reduce latency in comparison

to the cloud. Applications can be partially deployed on the fog to reduce latency, leav-

ing components with non-critical delays hosted in the cloud. Fog computing can also

be employed for pre-processing of data, reducing the traffic sent to the cloud, especially

in monitoring applications that generate heavy streams of data, such as video surveil-

lance [79]. Computational offloading is another use case for fog, especially for supporting

resource-constrained devices that cannot perform heavy computation. For users who do

not want to send sensitive data to public clouds, private fogs can guarantee privacy and

security, for example in healthcare applications.

Fog computing can be used to coordinate underlying devices, such as IoT sensors

and actuators. Monitoring is an important application of fog computing since the short

distance between fog nodes and devices allows direct communication between them. Fog

nodes that do not have continuous access to the Internet can process information gathered

from sensors to further upload data to the cloud. Quick decisions can be made by fog

nodes such as triggering an alarm in case of fire detection or calling emergency services if

critical information is sent by health monitoring devices. Fog nodes can process workload

sent by battery-constrained devices, allowing a long operation of IoT devices. In terms of

costs, paying for deploying a fog node can reduce the cost of renting resources in the cloud

and; in some cases, the owners can rent their fog node when resources are idle. Finally,

using fog nodes for caching commonly accessed content is a way to reduce the traffic to

the Internet as well as reduce delay to the users. By using fog nodes for caching, cached

content can be tailored to the specific content consumed by users in the geographical

region where they are located [100].

The access network varies according to the application, and is dominated by wire-

less technologies. A wide range of protocols can be used, ranging from short-distance

protocols, like Bluetooth and Zigbee, to 5G and LoRaWAN for long-distance communi-

cations. Most fog applications in the literature used WiFi and cellular interfaces [35, 74,

14, 51, 68, 92, 91, 36, 71, 98, 103]. The decision of the network interface depends on

the end-user devices as well as the available bandwidth and amount of data to be trans-

mitted. Tolerable delay values vary as a function of the application: a few milliseconds

for real-time applications, video broadcasting, and surveillance; dozens of milliseconds

for some games and caching; some seconds for image processing, patient monitoring, and

telemedicine. Applications can offload from a few kilobytes to some terabytes. The choice

of the access network, frequency of data transmission, and network interface, depends on

the requirements of each fog scenario.

35

In this thesis, applications in the fog are characterized by their processing and latency

requirements. In all formulations of the fog node location problem, fixed fog nodes have a

variable number of servers to deal with the variable processing requirements. In the work

in Chapters 4–6, fog applications have strict latency requirements and cloud applications

have flexible latency requirements; specific values of delays are not considered. In Chapters

5–8, the number of bytes to be transmitted to the fog or the minimum data rate was

part of the formulation. The work in this thesis considered Wifi and cellular network

interfaces. Caching was not considered, but the solutions can be adapted to deal with

such an application. This thesis does not consider the privacy and security aspects of fog

computing applications.

2.2.5 Architectures

A fog computing architecture comprises the definition of fog nodes, protocols, location

of fog nodes, hardware, layers, among other aspects. The main effort in this direction

has been the one by the Industrial Internet Consortium, which is in charge of defining

an open and interoperable architecture for fog computing, known as OpenFog Reference

Architecture (OpenFog RA) [79], that organizes fog nodes in hierarchical layers. The

OpenFog RA aims at defining a platform driven by eight principles: security; scalability;

openness; autonomy; programmability; reliability, availability, and serviceability; agility;

and hierarchy. Fog deployments based on the OpenFog RA should be based on hierarchical

layers of interoperable fog and cloud nodes with well-defined interfaces for hardware and

software.

Most published work in the literature assumes a common three-tier architecture with

devices, fog, and cloud layers [35, 74, 51, 68, 92, 91, 36, 71, 98, 103]. Some papers proposed

novel fog architectures [71, 98, 59]. The paper [71] proposed the Fog-to-cloud architec-

ture, with fog and cloud nodes organized in layers, and an administrative component in

charge of finding the best nodes for end-users to meet the quality of service (QoS) re-

quirements. The authors presented a medical emergency use case to illustrate how that

coordinated management of resources can speed up the processing of applications. The

TelcoFog architecture [98] also considers fog layers, but is tailored to the scenario of cel-

lular networks and recommends that fog nodes powered with computational and storage

resources should always be deployed next to cellular base stations. The proposal in [59] is

a user-participatory architecture in which fog nodes are installed and owned by end-users

and typically located at their homes. If the provider infrastructure is not sufficient to deal

with current demands, user can lease their fog nodes to make the infrastructure scalable.

Proposals of fog architectures [71, 79, 98, 59] recommend how different components

interconnect, but they do not specify the physical location of the fog nodes. In this thesis,

we consider a typical architecture with user devices, fog, and cloud layers. Solutions

proposed can be applied in different fog architectures since the fog node location problem

is a common problem independent of the architecture. Although we consider parameters

that are specific to one architecture, such as energy consumption in WiFi or channel model

in cellular networks, the work in this thesis can be adapted to different fog architectures

by changing the input to the formulation.

36

2.3 Facility Location Problem

The facility location is a traditional problem in operational research whose studies trace

back to Evangelista Torricelli and Bonaventura Francesco Cavalieri in the seventeenth

century [18]. Its input is a set of candidate locations to deploy a facility, and the output

is the subset of locations chosen for deployment. This problem is an optimization problem

aiming at minimizing cost while satisfying some demands given by a set of constraints.

The facility location problem has many variations [36]. The simplest approach to

this problem is the single facility location problem, in which a single facility must be

deployed in one of the candidate locations. Many real-world problems can be formulated

as a single facility model, such as deciding on the location of a new hospital, fire station,

or library in a metropolitan area [36]. Conversely, the multi-facility location problem

consists of locating at least two facilities over a set of candidate locations. In some cases,

this problem can be optimally solved for N facilities by N executions of a single facility

solution, but this is not true in some cases. For example, when part of the customers can

be served by multiple facilities. Facility location problems can be single or multi-objective,

and optimizing an objective can degrade the value of another objective.

Facility location problems can usually be written as linear programming formulations.

Location problems are typically NP-hard, and inputs representing real-world instances

are usually large-scale, which requires approximate solutions and polynomial heuristic

algorithms. The algorithms implemented by solvers can help obtain solutions for small

to medium-scale instances of the problem.

In this thesis, facility location formulations are modeled as multi-facility formulations.

Fog nodes are the facilities, and application requests are the customers. The number of

fog nodes is variable, and application requests vary in time and space. Mathematical

formulations are multi-criteria, and the objectives are typically the maximization of users

served and cost reduction. Results in this thesis were obtained using the solver Gurobi, but

its employment was not possible for some large inputs, motivating the proposal of heuristic

solutions in many chapters. Related work to facility location in computer networks is

presented in Chapter 3.

2.4 Multi-objective Optimization

Solutions to formulations with multiple criteria lead to a set of possible solutions known

as a Pareto Front. However, a single solution must be selected as the final solution to a

problem, which is made utilizing a technique such as scalarization or goal programming

[21]. The choice of the technique depends on the problem, especially when the objectives

have different priorities. Under scalarization, for example, multiple objectives are com-

bined into a single expression by the assignment of weights to each objective function; thus

favoring the evaluation of different trade-offs. In the ε-constraints method, one objective

is selected as the main objective function, and the remaining ones become constraints

limited to given target values. Goal programming receives as input goal values for each

objective and attempts to jointly optimize them. Multi-level programming is used when

objectives can be hierarchically ordered. In this case, a sequential optimization of the

37

objectives is established: the main objective function is optimized first, and the second

one only considers elements of the Pareto front that optimize the first objective. The

same procedure is used for each subsequent objective until a final solution is obtained

after the evaluation of all the objectives.

In this thesis, multi-level programming is adopted in the proposed solutions due to the

hierarchy of the objectives. In the fog node location problem, serving end-users is crucial:

it is no use saving in the deployment cost if users are not served by the infrastructure.

After optimizing the service of end-users, other criteria can be considered. Multi-level

programming can be adapted to allow degradation in one of the objective functions. In

this case, a specified level of degradation of the value of the objective function is tolerated

if it can lead to a improvement of the values of the other objective functions. Each

chapter explains how the multi-level programming was applied (the number of objectives,

the hierarchy between objectives, and if degradation was allowed).

2.5 Unmanned Aerial Vehicles

Part III of this thesis proposes solutions to the location of fog nodes mounted on Unmanned

Aerial Vehicles (UAVs). This section first introduces UAVs and how they work in Subsec-

tion 2.5.1, then it reviews the operation of rotary-wing and fixed-wing UAVs in Subsections

2.5.2. Finally, Subsections 2.5.3 and 2.5.4 present the energy consumption and wireless

channel models for UAVs, respectively.

2.5.1 Overview and UAV types

UAVs are aircraft or robots that can fly without an onboard pilot, controlled remotely

or autonomously, in any direction [85]. Most literature defined the acronym UAV as Un-

manned Aerial Vehicle, but some authors prefer the term “Unoccupied Aerial Vehicles” or

“Uncrewed Aerial Vehicles” [55]. In general, the words UAV and drone are interchange-

able; this thesis will mostly use the acronym UAV. For a long time, UAVs were only used

in military applications; for example, the possible origin of UAVs was in the nineteenth

century, when Venice, Italy, was attacked by unmanned hot-air balloons with bombs [32].

It was only in the mid-2000s that technological advances allowed a broader deployment of

UAVs in other domains, such as disaster relief, search and rescue, and inspection [85]. A

major interest in UAVs took place after Amazon announced its intentions to use drones

for delivery in 2013. Since then, technology has allowed equipping UAVs with a variety of

sensors, and networking and processing capabilities, which have enabled the use of UAVs

in many other domains, such as recreation, aerial photography, base stations, and fog

computing.

UAVs can be classified according to the altitude they fly or the type of drone wing [85].

In terms of altitude, UAVs can be either HAPs or LAPs. HAPs fly at high altitudes,

typically above 17 km from the ground, while LAPs fly a few meters to hundreds of

meters to the ground. HAPs typically have long endurance, being used for long-term

missions, such as providing connectivity to large areas. They are heavier than LAPs and

can carry more payloads. On the other hand, LAPs are light aircraft that provide quick

38

mobility, but their operation typically lasts from some minutes to a few hours. Therefore,

they are more suitable for short operations. LAPs are cheaper than HAPs and can be used

by both big companies and end-users, subject to local regulations. In this thesis, UAVs

are employed to deal with the demands of end-users for short periods, complementing the

terrestrial infrastructure. Therefore, this thesis considered only LAPs.

Concerning the type of wing, a UAV can be classified as fixed-wing, rotary-wing,

airship, or balloon. Fixed-wing UAVs resemble modern airplanes, and their main charac-

teristics are continuous motion and the inability to hover. Fixed-wing UAVs can be small

LAPs or even big HAPs that require airport runways to take off and land. Rotary-wing

UAVs are LAPs that have one or multiple rotor-based wings, similar to helicopters. Their

main advantage is the ability to hover and move in any direction, making them able to ac-

cess limited areas. Airships are mostly HAPs, and they are large quasi-stationary aircraft

used for long-term operations. Finally, balloons can be either LAPs or HAPs; they are

mostly stationary aircraft, but lighter than airships. The solutions in this thesis employed

both rotary-wing and fixed-wing UAVs; a more detailed discussion on the characteristics

of these UAVs is made in the next subsection.

All UAVs can be equipped with network capabilities, which enables them to connect

to different devices [85]. UAVs can be users of the ground infrastructure, requesting

services from base stations (BSs), but they can also play roles of the BS itself, a relay,

or a processing node. Flying at high altitudes, UAVs have line-of-sight (LoS) with more

users on the ground. However, these long links may not be appropriate to guarantee

low latency. A review of papers that employed UAVs as edge elements of the network is

given in Section 3.2, and more discussion on the channel model for UAVs is introduced in

Subsection 2.5.4.

2.5.2 Rotary-wing and Fixed-wing UAV Operation

Aerial network infrastructures can combine different types of aircraft. Previous work

mainly considered fixed-wing and rotary-wing UAVs. This subsection reviews the main

advantages and limitations of these types of UAVs, the ones studied in this thesis.

The aerodynamics of fixed-wing and rotary-wing UAVs differ in how they take off,

land, and fly. Fixed-wing UAVs are similar to commercial airplanes: the engine generates

thrust to move the aircraft forward, and the wings are shaped to generate lift. Fixed-wing

UAVs are efficient for longer trajectories since, once in the air, they do not need high power

to keep flying. However, they usually require a runway to take off and land, which is a

complex ground infrastructure. On the other hand, rotary-wing UAVs are vertical take-

off and landing (VTOL) vehicles that generate thrust and lift by rotating rotor blades.

Both single-rotor and multi-rotor versions are available. Single-rotor UAVs have a design

similar to that of a helicopter; they can endure long trips but have less stability to hover.

Multi-rotor UAVs are more suitable for hovering and have better maneuverability, thus

facilitating access to limited spaces. However, the greater the number of blades required,

the greater is the energy consumption which reduces the operational time. Most of the

existing research on UAVs in wireless networks has considered multi-rotor UAVs.

Fixed-wing and rotary-wing UAVs flying at low altitudes are typically powered by bat-

39

teries and have limited autonomy [39]. The operation with the lowest energy consumption

for fixed-wing UAVs [106] is a straight flight maintaining the same height at a constant

speed (straight-and-level flight). Lower speeds lead to lower energy consumption, but

fixed-wing UAV flights require a certain minimum speed to generate lift. If the UAV

needs to cover a small area, a circular trajectory can be adopted. The larger the radius,

the lower is the energy consumption. Rotary-wing UAVs also consume more energy at

high speeds [105], but they can hover, reducing energy consumption. However, the energy

consumed to keep a rotary-wing UAV hovering is usually greater than that to maintain a

fixed-wing one flying in a circular trajectory with a large radius.

Both types of UAVs can carry onboard networking, processing, and storage devices.

The network between UAVs and devices on the ground is largely composed of line-of-sight

links due to the altitude at which the UAVs fly [35, 106, 105]. The length of these links

affects the channel quality with longer links leading to greater path loss [65]. If a UAV

needs to provide a limited area with wireless coverage or processing, a rotary-wing UAV

can be more efficient, since it can hover and maintain a stable wireless channel. Fixed-

wing UAVs, however, will have a variable wireless channel. If a user on the ground sends

a request to the UAV, they may need to wait for the fixed-wing UAV to come closer,

even though the request may be blocked if the networking requirements are not met.

Fixed-wing UAVs can also be affected by the Doppler shift, although this phenomenon

can usually be compensated in flights at low altitudes and speeds [106].

Fog nodes can be mounted on both fixed-wing and rotary-wing UAVs. Fixed-wing

UAVs are usually more energy-efficient than rotary-wing ones, but the latter can provide

wireless links with a higher quality of transmission. Rotary-wing UAVs have been broadly

considered as part of the infrastructure in previous work [111, 99, 105]. Nonetheless, with

adequate planning, fixed-wing UAVs can efficiently serve as fog nodes. Fog providers can

benefit from their low energy consumption to keep them operational longer, serving more

users. This thesis presents solutions that consider both rotary-wing and fixed-wing UAVs,

attempting to take advantage of their best characteristics.

2.5.3 Energy Consumption

The limited energy of UAVs is an important issue since the battery has a very limited

capacity and flying is an energy-consuming operation, particularly for LAPs [107]. Real-

istically modeling the energy consumption is crucial in the evaluation of a solution since

it determines the maximum time a UAV remains operational. If an evaluation consid-

ers a UAV could stay powered on for longer than it should, an implementation with

real hardware can make wrong decisions, preventing UAV from serving end-users or even

causing disruption of service in the middle of flights. This section discusses known energy

consumption models from the literature and also discusses the employment of tethered

UAVs.

LAPs are usually powered by onboard batteries that, once depleted, need to be

recharged to allow further operation. The main source of energy consumption in UAVs

is the propulsion to make them fly; other sources of consumption are onboard process-

ing, wireless communications, and the use of various sensors (photography, temperature,

40

among others). The component related to propulsion depends on various factors, such as

UAV type, altitude, air density, payload, and wind. Although it is almost impossible to

model all possible sources of energy consumption, there are good models of energy con-

sumption for UAVs, either based on real measurements [3] or derived from an analysis of

aerodynamics [106, 105]. This thesis employed three different energy consumption mod-

els, two for rotary-wing UAVs, and one for fixed-wing UAVs. These models are detailed

in the following.

Abeywickrama et. al [3] measured the energy consumption of an Intel AeroReady

to Fly Drone, a rotary-wing UAV, and derived energy consumption models for various

operations. The energy consumption in hovering P (h) (watts) depended on the height h

(in meters) and was calculated as P (h) = 13.0397h+196.8490. The power for flying hor-

izontally was calculated as 245.2815 W. The energy spent in flying vertically up (EU(h))

and down (ED(h)) are given in Joules and depend on the vertical distance traveled h;

such consumption values were calculated as EU(h) = −16.9396H2+216.6944H−157.9473

and ED(h) = 4.6817H2 − 11.9708H + 135.3118. When the drone was on the ground, the

average power was 8.2637 W. The main advantages of this model [3] are the simple use

and ability to model different altitudes. However, it has some disadvantages: it modeled

a specific UAV, and it represents the conditions (climate, geography, air density, among

others) of the place and the date when the measurements were taken. Despite the dis-

advantages, this model can be really useful to evaluate rotary-wing UAVs, and it was

employed in the evaluation of Chapters 6 and 7.

Zeng, Xu, and Zhang [105] proposed another model for rotary-wing UAVs. Different

from [3], they evaluated the aerodynamics of the aircraft, analyzing which forces are

applied to the UAV, and calculating the power required to maintain the flight. The

power P (V) in a straight-and-level flight is given by Equation (2.1) as a function of V ,

the UAV speed, and is divided into three parts. The first one is the blade profile, P0 is a

constant representing the blade profile power, and Utip is the tip speed of the rotor blade.

The second one is the induced power, where Pind is a constant representing induced power

in hovering status, and v0 is the mean rotor induced velocity. The third part is the parasite

power, where d0 is the fuselage drag ratio, ρ is the air density, s is the rotor solidity, and

A is the rotor disc area. Constants P0 and Pind are calculated using A, ρ, and the UAV

weight. If the UAV is hovering (V = 0), the power can be simplified to P0 + Pind . The

main advantage of this model is the ability to model any UAV under arbitrary conditions.

However, obtaining the values of all constants is not straightforward. This model was

employed in the evaluation of Chapter 8.

P (V) = P0

(

1 +
3V 2

U2

tip

)

+ Pind

(
√

1 +
V 4

4v4
0

−
V 2

2v2
0

)1/2

+
1

2
d0ρsAV

3 (2.1)

Zeng and Zhang [106] also derived an energy consumption model for fixed-wing UAVs

in a similar manner they obtained the one for rotary-wing UAVs [105]. The energy for a

straight-and-level flight is given by Equation (2.2), where V is the UAV speed, and con-

stants c1 and c2 are related to the parasite and induced power, respectively. c1 and c2 are

calculated using many parameters, such as the zero-lift drag coefficient, wing area, aspect

41

ratio of the wing, air density, and UAV weight. If the fixed-wing UAV is performing a

circular trajectory with radius r, the power can be calculated with Equation (2.3), where

g is the gravitational acceleration. This model shares the same advantages and disadvan-

tages as the previous one: it models arbitrary UAVs and conditions, but calculating c1

and c2 is not simple. This model was employed in the evaluation of Chapter 8.

P (V) = c1V
3 +

c2

V
(2.2)

P (V, r) =

(

c1 +
c2

g2r2

)

V 3 +
c2

V
(2.3)

One solution to overcome the autonomy limitations of battery-powered UAVs is the

employment of tethered UAVs [60]. In such deployments, the UAVs are connected to

ground stations (GSs) by a tether that provides both energy supply and connectivity.

GSs can be installed either on the ground or rooftops; in urban scenarios, rooftops are

preferred to avoid the obstructions imposed by tall buildings. Both fixed-wing and rotary-

wing UAVs can be tethered. However, the tether imposes significant limitations. For

example, it limits the distance between the UAV and the GS to the length of the tether,

considerably reducing mobility, and more human intervention is required. Nonetheless,

tethered UAVs can be quite advantageous if UAVs are to stay in the same spot for long

periods. This thesis presents evaluations of both tethered and battery-powered UAVs.

2.5.4 Channel Model

UAV communications are predominantly wireless due to aircraft mobility. Even tethered

UAVs [60] connect to distant users using their wireless interface instead of the tether. A

variety of technologies can be employed, such as Bluetooth, Wifi, and Long Term Evo-

lution (LTE); the choice of protocol depends on the application. For example, in a farm

aerial photograph mission with a nearby operator, WiFi is a good alternative. If a drone

flies autonomously and needs to report its position periodically, cellular technology can be

the most efficient protocol. This thesis considered LTE for the communication between

UAVs and BSs. This subsection discusses some of the challenges of wireless communica-

tions for UAVs, followed by an overview of channel models, specifically presenting the one

adopted in the evaluation in Chapters 7 and 8.

UAVs have some advantages over ground devices related to wireless communications.

The high altitude helps to provide LoS links, which guarantees a higher signal strength

than, for example, refracted or reflected signals. UAVs can quickly change their position to

improve the links with terrestrial nodes. Moreover, UAVs can optimize their 3D position,

while ground nodes are limited to a two-dimensional space. On the other hand, UAVs

face problems that ground users do not have. Cellular antennas are prepared to serve

terrestrial devices and, therefore, they are usually down-tilted [85]. Therefore, UAVs are

usually served by the side lobes of antennas and, consequently, they may have a better

connection to a distant BS than the one directly under it. The flying altitude can be

another issue, since long wireless links suffer more from path loss, which incurs low data

rates, preventing using a UAV as a fog node.

42

The design of a fog infrastructure must address the characteristics of wireless chan-

nels and, for that purpose, a channel model is adopted. The channel model estimates

the strength of wireless signals, modeling diverse phenomena with equations. Channel

models can be theoretical, based on the analysis of physics, or empirical, based on real

measurements. The main phenomenon that affects the quality of wireless links is the

free-space path loss, which models the signal attenuation as a function of the distance be-

tween transmitter and receiver. Other phenomena are fading, in which there is a variation

of the attenuation of a signal, and the Doppler effect [58]. The work developed in this

thesis with UAVs does not aim at proposing new channel models nor deeply evaluating

the physical layer, but it simulates the aerial channel to evaluate the effectiveness of the

proposed solutions. Therefore, this thesis adopts the channel model proposed by the 3rd

Generation Partnership Project (3GPP), described in the following. The channel model

was modeled by the path loss, as in previous approaches [52, 109, 106, 105].

The 3GPP conducted a study on the LTE support for aerial vehicles using real UAVs

and measured the wireless channel under different conditions. This study is described in

the Technical Report 36.777 [2]. LoS probability, path loss, and fast fading models were

derived for LTE communications between UAVs and antennas for both urban and rural

scenarios. This thesis models the wireless channel using the path loss model proposed by

3GPP. The path loss depends on three factors: line-of-sight (LoS), the height of the UAV,

and type of BS (urban micro, urban macro, or rural macro). This thesis considered users

communicating with the nearest cellular BS, and UAVs communicating with a terrestrial

BS to receive the workload for processing. Urban macro base stations are considered to

have 25 m high antennas, as in the 3GPP study. The LoS probability (PLOS) is given by

Equation (2.6) and depends on the values of d1 and p1, calculated by Equations (2.4) and

(2.5), respectively, where h is the height of the UAV in meters in relation to the ground,

and d2D is the horizontal distance in meters between the UAV and the BS. The path loss

PL in dB is calculated using Equation 2.7, where d3D is the distance in meters between

the UAV and the antenna, and fc is the channel bandwidth in Gigahertz.

d1 = max (460 log
10
(h)− 700, 18) (2.4)

p1 = 4300 log
10
(h)− 3800 (2.5)

PLOS =







1, d2D ≤ d1
d1
d2D

+ exp
(

−d2D
p1

)(

1− d1
d2D

)

, d2D > d1
(2.6)

PL =















28.0 + 22 log
10
(d3D) + 20 log

10
(fc) , if LoS

−17.5 + (46− 7 log
10
(h)) log

10
(d3D)

+20 log
10

(

40πfc
3

)

, otherwise

(2.7)

43

Chapter 3

Related Work

This chapter reviews previous work related to this thesis and is organized as follows.

Section 3.1 reviews solutions for the facility location problem in computer networks, Sec-

tion 3.2 reviews papers that employed UAVs at the network edge, Section 3.3 reviews

previous work on energy efficiency and offloading of workload by end-user devices, and

Section 3.4 reviews papers on resource allocation in fog computing. This chapter also

reviews data sets (Section 3.5) and software tools (Section 3.6) used in this thesis.

3.1 Facility Location Problem in Computer Networks

The facility location is a common problem in computer networks in which facilities can

be single devices or even large data centers. This subsection reviews previous work on

the location of cloud data centers [62, 63, 27], cloudlets [54, 34], WiFi hotspots [77], and

edge servers [112, 67]. At the end, this subsection compares the reviewed work to the

proposals in this thesis.

Some papers have addressed the cloud data center location [62, 63, 27]. Larumbe and

Sansò presented solutions [62, 63] to select the location of a data center in a backbone

network. The work in [62] and [63] employed a MILP formulation and a scalable tabu

search algorithm, respectively, to decide on the location of data centers to minimize delay,

energy consumption, costs, and the emission of greenhouse gases. On the other hand, the

solution proposed by Covas, Silva and Dias [27] considered a multiple criteria decision

that quantified the social, economic, and environmental impact of the candidate location

for the data center. Their proposal employed the method ELECTRIC TRI to classify all

criteria; the solution was validated with a local provider. Solutions for cloud data center

location cannot be directly applied for the fog node location since cloud data centers are

centralized, while fog nodes are distributed; thus, the decision must consider other aspects

and criteria.

The placement of cloudlets has been explored in previous papers [54, 34]. Jia et

al. [54] determined the location of cloudlets to reduce the delay of user tasks. Fan and

Ansari [34] included the cloudlet cost in the decision. Using an optimization model,

they showed that their solution can reduce deployment cost as long as additional delays

are acceptable. These papers [54, 34] ignored the diversity of latency requirements of

44

applications. Oliveira and Viana [77] presented a solution for the WiFi hotspot location

that attempts to maximize the offloaded traffic by mobile users limited by the number

of devices available for this deployment. The solution first identifies points of interest,

i.e., locations commonly visited by users, to serve as candidate locations. It employed a

graph that connects mobile users and points of interest. Results showed that the number

of hotspots could be reduced by the use of the solution.

Zhao et al. [112] proposed a solution for selecting the position of edge servers to provide

real-time data processing for IoT. They proposed a metric that quantifies the performance

gain of candidate locations in terms of data collection and message dissemination. Their

solution assigns edge servers to locations according to the proposed metric until all users

have been covered by an edge server. Results showed that the algorithm reduced the

number of servers deployed and allowed high data rates between servers and end devices.

Lähderanta et al. [67] surveyed various edge server location solutions to propose an algo-

rithm customizable for different networks. Their solution considered different hierarchical

fog layers, and the evaluation showed that the number of layers depends on the time and

space variation of workload.

Table 3.1 compares the papers reviewed in this subsection and compares them to the

work developed in this thesis. The table classifies proposals according to the type of facil-

ity, the type of solution, criteria adopted, whether time variable workload was considered,

and whether a mobile facility was considered. Chapters 4–8 present different solutions to

the fog node location problem. These solutions differ from previous work in different ways.

Firstly, they were designed specifically for fog computing and, consequently, different as-

pects were modeled. Secondly, solutions in this thesis decide on the location of fog nodes

considering variable demands in time and space. Third, not only the location of nodes was

decided, but also their capacity. Moreover, each solution to the fog node location presents

different features compared to previous work. The work in Chapters 4–5 consider differ-

ent classes of services in terms of latency. Chapter 5 considers the energy consumption of

end-user devices in the location decision. The work in Chapters 6–8 introduces the use of

mobile fog nodes mounted on UAVs in the location problem; in Chapter 6 the location of

both fixed nodes and UAVs is studied, and Chapters 7–8 consider only UAVs. Therefore,

this thesis expands the state-of-the-art of the facility location in computer networks in

different manners.

3.2 UAVs as Networking Elements

As networking elements, UAVs can play different roles, such as base stations (BSs), pro-

cessing nodes, or even users of the infrastructure. As BSs, UAVs provide connectivity to

places without terrestrial infrastructure, such as remote areas or those affected by disas-

ters. As processing nodes, UAVs offer computing capabilities with very low latency. As

users, they access the terrestrial infrastructure while performing various tasks.

In the work in [20, 48, 66, 106, 105], UAVs are users of the infrastructure. The authors

of [20] optimized the trajectory of UAVs to take advantage of ground BS positions and

minimize the completion time of offloaded tasks, constrained by the UAV departure and

45

Table 3.1: Comparison of previous work related to the facility location problem.

Proposal Type of

facility

Solution Criteria Time-

variable

workload

Mobile

facility

[62] Data center MILP Delay, deployment costs, and en-
ergy consumption

No No

[63] Data center Tabu search Delay, CO2 emissions, and deploy-
ment costs

No No

[27] Data center ELECTRE TRI Social, economic, and environmen-
tal aspects

No No

[54] Cloudlet Heuristic Response time No No
[34] Cloudlet MILP Deployment cost and delay No No
[77] Wi-Fi

hotspot
Greedy algorithm Offload ratio No No

[112] Edge server Heuristic Deployment cost No No
[67] Edge server Coordinate descent Distance to APs Yes No

Chapter 4 Fog node MILP Workload acceptance, cost, and fog
use

Yes No

Chapter 5 Fog node MILP and heuristic Workload acceptance, energy con-
sumption, and fog use

Yes No

Chapter 6 Fog node MILP and heuristic Workload acceptance and cost Yes Yes
Chapter 7 Fog node MILP and heuristic Workload acceptance, cost, and

delay
Yes Yes

Chapter 8 Fog node MILP and heuristic Workload acceptance, cost, and
delay

Yes Yes

arrival positions. In [48], the authors considered UAVs gathering data from IoT sensors,

which were then totally or partially processed by the UAV and sent to a terrestrial fog

node. The authors proposed an energy-efficient scheduler of processing resources and data

transmission that considered the UAV trajectory. In [66], UAVs were in charge of collecting

data from sensors, and a distant cloud provided UAVs with processing. A theoretical

model of the system was introduced, and an evaluation demonstrated its stability and

reliability under different traffic patterns. The authors of [106] optimized the trajectory

of a fixed-wing UAV to improve the data transmission to the ground. An algorithm based

on sequential optimizations of the position and speed of the UAV provided reasonable

data rates and energy efficiency to end-users. The same authors considered rotary-wing

UAVs in [105], optimizing the trajectory to reduce energy consumption and the completion

time. These proposals [66, 106, 105] did not consider processing capabilities at the UAV.

In the context of cellular networks, previous authors have envisioned the employment of

UAVs as aerial base stations [23, 75, 9]. The SkyRAN architecture [23] aimed at providing

cellular access to ground users by equipping UAVs with LTE antennas. SkyRAN controls

the 3D position of UAVs so that connectivity to end-users is improved. The SkyCore

architecture [75] brought routing functions to aerial BSs while reducing latency to end-

users. Both of these architectures [23, 75] tested real prototypes, demonstrating the

feasibility of using UAV-based BSs. UAVs can also serve as relay nodes between small

satellites and mobile users to provide 5G coverage [9].

UAVs equipped with onboard computers can serve as mobile fog nodes, processing

tasks of end-users at very low latency [74, 52, 53, 109, 64, 99, 114, 111]. The UAVFog

architecture [74] introduced the use of fog nodes mounted on UAVs to support diverse IoT

applications, allowing on-demand deployment of fog nodes. Other authors explored the

optimization of diverse operations performed by UAV processing workload at the edge [52,

53, 109, 64, 99, 114]. Li et al. [64] focused on reducing the energy spent by the UAV. An

46

approximate solution optimizes the trajectory and resource allocation, estimating ground

user positions to decide on the trajectory. On the other hand, other approaches used a

UAV to provide opportunities for offloading, thus reducing the energy spent by end-user

devices [52, 53, 109]. The authors of [52] attempted to reduce the energy consumed by

end-user devices that offload tasks to UAVs while optimizing the UAV trajectory. Their

offload scheme significantly reduced the energy consumed by mobile devices in comparison

with scenarios with processing only in the device. The authors of [53] optimized the

UAV trajectory and resource allocation in an attempt to reduce the energy spent by

end-user devices and UAVs. Zhang et al. [109] considered a scenario with workload

offloaded to either an aerial or a terrestrial fog node and proposed a game theory-based

solution to achieve a trade-off between latency and energy consumption. The authors

of [111] proposed algorithms to optimize the UAV trajectory, task schedule, and resource

allocation to reduce the energy consumed by the UAVs while ensuring fairness among

end-users.

In [113], UAVs provided both processing and energy supply for end devices. The

authors proposed an algorithm to optimize the UAV trajectory, CPU frequencies, user

offloading time, and transmission power. Results have shown that UAVs are efficient for

extending the operational time of end-user devices. The authors of [35] attempted to

reduce the energy consumed by the onboard computer of a fog node UAV, proposing a

solution based on reinforcement learning to reduce the number of active CPUs. Results

showed that reducing active CPUs caused a slight increase in the latency but allowed a

significant reduction in the energy spent in computation.

The scheme proposed in [99] dispatched UAVs to hover at specific areas to process

user tasks within a given deadline. The authors demonstrated that the employment of

UAVs increased the number of processed tasks when compared with deployments using

only ground nodes. Furthermore, the solution led to latency fairness and avoided the

underutilization of resources. Zhou et al. [114] considered network supporting virtual

reality applications by employing UAVs with processing and caching capabilities and

proposed an algorithm to minimize latency by optimizing the 3D location of aerial nodes.

Table 3.2 compares the papers reviewed in this subsection and compares them to the

work developed in this thesis. The table classifies proposals according to the research

problem studied, the type of solution, criteria adopted, the role performed by the UAV,

the type of UAV, and whether the battery was considered. Most papers considered rotary-

wing UAVs and, although some of them modeled the energy spent by the UAV, only the

work in [109] considered the battery limitation of the UAV. Nonetheless, no previous work

considered UAVs as fog nodes and proposed solutions to the fog node location problem.

The work in Chapters 6–8 proposes different solutions for the fog node location problem

with aerial fog nodes, either considering aerial and ground nodes (Chapter 6) or only UAVs

(Chapters 7–8). The battery is considered, limiting the time a UAV remains operational.

Moreover, variable requests in time and space are considered so that the infrastructure is

adapted to deal with peak demands.

47

T
ab

le
3.

2:
C

om
p
ar

is
on

of
p
re

v
io

u
s

w
or

k
on

U
A
V

s.

P
r
o
p
o
s
a
l

R
e
s
e
a
r
c
h

p
r
o
b
le

m
S
o
lu

t
io

n
C

r
it
e
r
ia

U
A
V

r
o
le

T
y
p
e

o
f
U

A
V

U
A
V

B
a
t
t
e
r
y

[2
0
]

T
ra

je
ct

o
ry

o
p
ti
m

iz
a
ti
o
n

H
eu

ri
st

ic
a
lg

o
ri

th
m

C
o
m

p
le

ti
o
n

ti
m

e
U

se
r

R
o
ta

ry
-w

in
g

N
o

[4
8
]

R
es

o
u
rc

e
a
n
d

T
ra

n
sm

is
si

o
n

S
ch

ed
u
li
n
g

L
in

ea
r

p
ro

g
ra

m
m

in
g

E
n
er

g
y

co
n
su

m
p
ti
o
n

U
se

r
F
ix

ed
-w

in
g

N
o

[6
6
]

T
ra

n
sm

is
si

o
n

co
n
tr

o
l

O
p
en

J
a
ck

so
n

n
et

w
o
rk

S
ta

b
il
it
y

a
n
d

re
li
a
b
il
it
y

U
se

r
R

o
ta

ry
-w

in
g

N
o

[1
0
6
]

T
ra

je
ct

o
ry

o
p
ti
m

iz
a
ti
o
n

S
eq

u
en

ti
a
l
O

p
ti
m

iz
a
ti
o
n

E
n
er

g
y

effi
ci

en
cy

U
se

r
F
ix

ed
-w

in
g

N
o

[1
0
5
]

T
ra

je
ct

o
ry

o
p
ti
m

iz
a
ti
o
n

S
u
cc

es
si

v
e

C
o
n
v
ex

A
p
p
ro

x
im

a
ti
o
n

E
n
er

g
y

effi
ci

en
cy

U
se

r
R

o
ta

ry
-w

in
g

N
o

[2
3
]

A
rc

h
it
ec

tu
re

A
rc

h
it
ec

tu
re

a
n
d

te
st

b
ed

T
h
ro

p
u
g
h
p
u
t

B
a
se

st
a
ti
o
n

R
o
ta

ry
-w

in
g

N
o

[7
5
]

A
rc

h
it
ec

tu
re

A
rc

h
it
ec

tu
re

a
n
d

te
st

b
ed

L
a
te

n
cy

B
a
se

st
a
ti
o
n

R
o
ta

ry
-w

in
g

N
o

[9
]

A
rc

h
it
ec

tu
re

A
rc

h
it
ec

tu
re

T
ra

n
sm

is
si

o
n

B
a
se

st
a
ti
o
n

L
A

P
s

a
n
d

H
A

P
s

N
o

[7
4
]

A
rc

h
it
ec

tu
re

A
rc

h
it
ec

tu
re

D
el

a
y

E
d
g
e

S
er

v
er

—
N

o
[5

2
]

T
ra

je
ct

o
ry

o
p
ti
m

iz
a
ti
o
n

S
u
cc

es
si

v
e

co
n
v
ex

a
p
p
ro

x
im

a
ti
o
n

E
n
er

g
y

co
n
su

m
p
ti
o
n

E
d
g
e

S
er

v
er

R
o
ta

ry
-w

in
g

a
n
d

fi
x
ed

-w
in

g
N

o
[5

3
]

T
ra

je
ct

o
ry

o
p
ti
m

iz
a
ti
o
n

H
eu

ri
st

ic
a
lg

o
ri

th
m

E
n
er

g
y

co
n
su

m
p
ti
o
n

E
d
g
e

S
er

v
er

R
o
ta

ry
-w

in
g

N
o

[1
0
9
]

T
a
sk

o
ffl

o
a
d
in

g
G

a
m

e
th

eo
ry

a
lg

o
ri
th

m
E

n
er

g
y

co
n
su

m
p
ti
o
n

a
n
d

la
te

n
cy

E
d
g
e

S
er

v
er

R
o
ta

ry
-w

in
g

Y
es

[6
4
]

T
ra

je
ct

o
ry

O
p
ti
m

iz
a
ti
o
n

a
n
d

R
es

o
u
rc

e
A

ll
o
ca

ti
o
n

D
in

k
el

b
a
ch

a
n
d

su
cc

es
si

v
e

co
n
v
ex

a
p
p
ro

x
im

a
ti
o
n

E
n
er

g
y

co
n
su

m
p
ti
o
n

E
d
g
e

S
er

v
er

R
o
ta

ry
-w

in
g

N
o

[1
1
1
]

T
ra

je
ct

o
ry

o
p
ti
m

iz
a
ti
o
n

S
u
cc

es
si

v
e

C
o
n
v
ex

A
p
p
ro

x
im

a
ti
o
n

a
n
d

C
o
o
rd

in
a
te

D
es

ce
n
t

E
n
er

g
y

co
n
su

m
p
ti
o
n

E
d
g
e

S
er

v
er

R
o
ta

ry
-w

in
g

N
o

[1
1
3
]

T
ra

je
ct

o
ry

O
p
ti
m

iz
a
ti
o
n

a
n
d

R
es

o
u
rc

e
A

ll
o
ca

ti
o
n

S
u
cc

es
si

v
e

C
o
n
v
ex

A
p
p
ro

x
im

a
ti
o
n

E
n
er

g
y

co
n
su

m
p
ti
o
n

E
d
g
e

S
er

v
er

R
o
ta

ry
-w

in
g

N
o

[3
5
]

T
ra

je
ct

o
ry

O
p
ti
m

iz
a
ti
o
n

a
n
d

R
es

o
u
rc

e
A

ll
o
ca

ti
o
n

D
in

k
el

b
a
ch

a
n
d

su
cc

es
si

v
e

co
n
v
ex

a
p
p
ro

x
im

a
ti
o
n

E
n
er

g
y

co
n
su

m
p
ti
o
n

E
d
g
e

S
er

v
er

R
o
ta

ry
-w

in
g

N
o

[9
9
]

U
A
V

D
is

p
a
tc

h
H

eu
ri

st
ic

a
lg

o
ri

th
m

W
o
rk

lo
a
d

a
cc

ep
ta

n
ce

E
d
g
e

S
er

v
er

R
o
ta

ry
-w

in
g

N
o

[1
1
4
]

U
A
V

3
D

L
o
ca

ti
o
n

It
er

a
ti
v
e

o
p
ti
m

iz
a
ti
o
n

L
a
te

n
cy

E
d
g
e

S
er

v
er

R
o
ta

ry
-w

in
g

N
o

C
h
a
p
te

r
6

F
o
g

n
o
d
e

lo
ca

ti
o
n

M
IL

P
a
n
d

h
eu

ri
st

ic
W

o
rk

lo
a
d

a
cc

ep
ta

n
ce

a
n
d

co
st

E
d
g
e

S
er

v
er

R
o
ta

ry
-w

in
g

Y
es

C
h
a
p
te

r
7

F
o
g

n
o
d
e

lo
ca

ti
o
n

M
IL

P
a
n
d

h
eu

ri
st

ic
W

o
rk

lo
a
d

a
cc

ep
ta

n
ce

,
co

st
,
a
n
d

d
el

a
y

E
d
g
e

S
er

v
er

R
o
ta

ry
-w

in
g

Y
es

C
h
a
p
te

r
8

F
o
g

n
o
d
e

lo
ca

ti
o
n

M
IL

P
a
n
d

h
eu

ri
st

ic
W

o
rk

lo
a
d

a
cc

ep
ta

n
ce

,
co

st
,
a
n
d

d
el

a
y

E
d
g
e

S
er

v
er

F
ix

ed
-w

in
g

Y
es

48

3.3 Reduction of energy consumption via offloading

This section reviews previous solutions that considered the energy efficiency of end-user

devices and the offloading of tasks to other devices [96, 38, 101, 108, 51]. Moreover, it

compares such solutions to the work developed in Chapter 5.

The work in [96] analyzed the task completion time and the energy consumed by the

end-user device involved in the offloading of tasks to neighboring devices using wifi and

the offloading of tasks to the cloud using cellular networks. The authors concluded that

small tasks should not be offloaded to other mobile devices nor to the cloud because of the

energy consumed in transmission, whereas those that require the transmission of a large

number of bytes should be offloaded. Fiandrino et. al. [38] analyzed task completion time

and energy consumption for an Android application executed on a wearable device. They

measured the energy consumption in mobile device processing and offloading involving the

transmission of data using Bluetooth and wifi. The results indicated that processing at the

end-user device was beneficial when data transmission implied a large energy consumption.

These studies [96, 38] highlighted the importance of analyzing the energy consumed by

end-user devices with different network interfaces.

Previous work [101, 108] defined the fog as a set of end devices cooperating by using

device-to-device (D2D) communications, proposing solutions to achieve energy efficiency

when offloading tasks. Yang et al. [101] introduced an algorithm for scheduling tasks

among neighboring devices by employing the unused spectrum in D2D communications.

Zhang et al. [108] proposed a task scheduling mechanism based on a fairness metric that

accounts for the history of energy consumption and device priority. These two papers

showed how to improve the energy efficiency of end-user devices; however, they only

considered the devices layer. Jalali et al. [51] analyzed the energy consumption spent

by network devices when the workload is processed in the cloud and compared it to the

consumption required when nearby fog nodes are used. They concluded that processing

traffic-intensive applications in the fog instead of in the cloud can reduce the energy spent

in large data centers.

The work in Chapter 5 differs from previous work in different ways. It investigates the

employment of fog computing to reduce the energy consumption of battery-constrained

devices carried by end-users, analyzing the energy spent spent in processing and trans-

mission. It also examines an architecture with three layers, with offloading to either the

fog or the cloud. Finally, the work in Chapter 5 aims at achieving energy efficiency with

the proper location of fog nodes, which has not been considered in previous work.

3.4 Resource Allocation in Fog Computing

The allocation of resources needs to be defined to make a fog computing infrastructure

operational. Such a decision consists on selecting the resources to be used for processing

end-user requests. This subsection reviews previous papers [15, 83, 102, 51, 91, 92, 90, 86,

33, 94, 69, 57] on resource allocation in fog computing and compares them to the proposal

in Chapter 9.

Resource allocation in fog and cloud computing shares similarities with that of hybrid

49

clouds. In hybrid clouds, a workload can be either processed in a private local cloud

or in a public cloud data center. A private cloud typically offers limited resources but

provides low latency and low operational cost whereas a public cloud offers virtually

unlimited resources priced on demand with a high latency. Resource allocation in such

a scenario aims at achieving a trade-off between cloud monetary costs and processing

time [13]. For instance, the authors of [15] studied resource allocation in hybrid clouds

considering requests modeled as directed acyclic graph (DAG) workflows in which there

is one or more tasks with dependencies established between them. The authors proposed

the Hybrid Cloud Optimized Cost scheduling algorithm for allocating resources aiming at

minimizing monetary costs and makespan while respecting deadlines. The employment

of their solution allowed adjusting some parameters to either favor reduction of costs or

execution time. Similar to [15], Pham et al. [83] considered requests modeled by DAGs,

but in a scenario with multiple fog and cloud nodes. Assuming that fog nodes can be

used free of charge, the authors proposed a scheduling algorithm to balance makespan

and the costs of execution in clouds. They showed that an availability of multiple cloud

nodes speeds up the execution of tasks, yet increasing costs.

Assuming the feasibility of virtual machine (VM) migration between fog nodes, Yao

et al. [102] proposed a heuristic algorithm to decide on the path used for a VM migration

between distinct cloudlets to reduce the network cost. They evaluated a scenario of

vehicular networks in which fog nodes are located at roadside units to which vehicles

connect. They showed the employment of their algorithm optimized the use of links

connecting cloudlets, reducing costs for the provider. In [51], the authors analyzed the

energy consumption of a blogging application in a system composed of cloud data center

and a raspberry mini computer as a fog node. They analyzed the impact of using resources

either in the cloud or in the fog on the energy consumption of end-user devices, fog, and

cloud nodes. The authors concluded that moving applications from the cloud to the fog

is beneficial when they produce large amount of data at the end-user device.

Some papers [91, 92, 90] proposed resource allocation mechanisms for the F2C archi-

tecture reviewed in Subsection 2.2.5. In [91], a solution to support the quality of service

(QoS) requirements of applications in fog-cloud scenarios was proposed. The solution

attempted to reduce latency by favoring the allocation of resources in the fog instead of

the cloud, considering an architecture composed of two fog layers and the cloud. The

authors showed that employing multiple fog layers reduces the overall latency. The work

in [92] employed a resource allocation mechanism based on the knapsack problem to min-

imize latency and reduce the energy consumption. The work in [90] studied protection in

fog computing by analyzing two recovery strategies in case of resource failure: proactive

and reactive protection. In the former, resources used for protection are pre-allocated,

which tends to produce high delays due to the unavailability of resources. In the latter,

protection resources are only allocated in case of failure, which does not guarantee that

recovery will always be possible. Results showed that deciding between these strategies

depends on the overall load, and both solutions helped to balance the workload in the

fog, reducing the need for the cloud.

Sarkar et al. [86] analyzed the suitability of fog computing for IoT, evaluating the per-

formance in scenarios with different amounts of data forwarded from fog to cloud nodes.

50

Table 3.3: Comparison of resource allocation mechanisms.

Proposal Scenario Criteria Request Prediction

[15] Hybrid cloud Cost and makespan Workflow No
[83] Fog-cloud Cost and makespan Workflow No
[102] Fog Network cost Single task No
[51] Fog Energy Single task No
[91] Fog-cloud Delay Single task No
[92] Fog-cloud Delay, resource utilization, and energy Distributed Dataflow No
[90] Fog-cloud Delay and protection Single task No
[86] Fog-cloud Energy Single task No
[33] Fog-cloud Delay and energy Single task No
[94] Fog-cloud Resource utilization Distributed dataflow No
[69] Fog-cloud Delay Distributed dataflow No
[57] Fog-cloud Delay, resource utilization, and energy Distributed dataflow No

Chapter 9 Fog-cloud Energy, delay, and resource utilization Distributed dataflow Yes

The authors considered different aspects such as CO2 emission, energy consumption, la-

tency, and costs of fog nodes and cloud data centers. Results showed that moving work-

load to the fog reduced transmission and processing latency, helping to improve energy

efficiency and greenhouse gas emissions. The authors of [33] proposed an optimization

problem and an approximate solution to achieve a trade-off between energy consumption

and delay. The authors showed that the interplay of cloud and fog can help to improve

the overall delay and energy consumption.

Taneja and Davy [94] proposed an allocation algorithm to decide which tasks should

be processed by fog and cloud nodes, considering the resource occupancy in the deci-

sion. Their solution matches tasks and resources by using a best-fit approach between

the requested and available resources. The algorithm produced better latency compared

to a cloud-only solution. The allocation policy in [69] focused on assuring the latency

between dependent tasks, favoring the placement of tasks in distant nodes as long as the

required latency is respected. Furthermore, the authors introduced a forwarding strategy

to relocate tasks in an attempt to reduce the number of active nodes. Results showed an

improvement in latency.

Finally, the authors of [57] proposed a fog computing architecture that employs a

publish–subscribe protocol for the discovery of resources: physical devices announce their

availability and users fetch a database to decide where to host their workload. The authors

proposed a workload allocation mechanism that employs a score-based function to choose

the most suitable resource for each task, considering utilization, latency, and battery

state of devices. Results for mixed scenarios with cloud and fog showed that using fog

computing is beneficial for latency and completion time.

Table 3.3 compares the papers reviewed in this subsection and compares them to

the work developed in Chapter 9. The table classifies proposals according to the scenario

adopted (hybrid cloud, fog, or fog-cloud), criteria adopted, type of request considered, and

whether prediction of future requests was considered. The resource allocation mechanism

in Chapter 9 considers a fog-cloud scenario and, different from previous work, it employs

prediction of future tasks to avoid an overload of fog resources. Moreover, a complex

application model (distributed dataflow [41]) is considered, and the proposed mechanism

aims to improve the energy consumption as well as the delay.

51

3.5 Workload and Data Sets

Previous work evaluated scenarios in which all requests are submitted at the same time [11,

12, 61]. Differently, this thesis evaluated two variable characteristics of requests: space

and time. Space is important in fog computing because fog nodes are geographically

distributed and requests are sensitive to latency; therefore, serving distant requests is

typically not possible and space constraints should be taken into account. Time is also

important because a fog node can serve a limited amount of requests simultaneously,

and requests are typically submitted at different times to the fog node. Therefore, fog

nodes need to be provisioned considering such variability. In order to perform a realistic

evaluation of the proposed solutions, this thesis employed data sets that model time

and space variability. The remaining of this subsection presents such data sets, used in

Chapters 4–8.

The main data set used in the evaluation is the one presented in [8]. The data set was

collected by Telecom Italia and consists of Call Detail Records (CDRs) of mobile users in

the metropolitan region of Milan, Italy. Although records were collected in 2013, this data

set is largely used and represents demand patterns in metropolitan areas [67]. CDRs are

records of transactions made by mobile users, representing calls, Short Message Service

(SMS), and Internet accesses. The geographical area where CDRs were recorded was

represented as a 100x100 grid, with each cell containing information about the SMSs and

phone calls received and sent, as well as Internet accesses. CDRs were collected between

November 1, 2013 and December 31, 2013, but they are not individually represented in

the data set; instead they have been aggregated into 10-minute intervals. Discrete time

was assumed in the formulations of this thesis due to this aggregation. The assumption

does not represent a limitation: 10-minute length allows capturing users’ mobility in a

metropolitan area since users typically take more than 10 minutes to commute from one

location to another.

The data set in [8] has CDR information about 10000 cells, but end-user requests

are actually submitted to a base station (BS). In the work developed in this thesis, the

coordinates of BSs are important. For instance, the work in Chapters 4–5 used the BSs

as candidate locations for the deployment of fog nodes, and the distance between UAVs

and BSs is used to calculate the wireless link capacity in Chapters 7–8. However, the

data set in [8] had no information about the BSs, which required a second data set, the

OpenCellId project [78]. The OpenCellId is a public database with location information

of base stations worldwide collected by mobile users. The location of the base stations

was obtained by filtering the existing base stations for the same period available in the

Milan data set [8]. To estimate the workload received by each BS, the workload of each

cell was mapped to the closest base station, as in [24]. In case of multiple base stations

in a cell, the workload is equally balanced among the BSs. This operation resulted on a

total of 1150 BSs. Each chapter explains how information from these data sets are used

in the evaluation.

In Chapters 4 and 6, the input to the problem is the workload at each location, which

can be represented by real or integer numbers. On the other hand, in Chapters 5, 7, and

8, the integer number of requests made at each location is needed. In the first case, the

52

value obtained from the Milan data set [8] was directly used in the evaluation. However,

the second case required a different solution since the owners of the Milan data set [8]

anonymized the total number of accesses by multiplying the real number by an unknown

constant. To cope with this in Chapters 5, 7, and 8, the number of requests was normalized

using a constant Z, which was multiplied by the value representing Internet access data

in the data set to simulate the number of requests in each cell.

A third data set was required in Part III of this thesis. The OpenCellId project [78]

provides information on the geographic coordinates (latitude and longitude), but it has no

information on the altitude of these geographical locations; such information is important

to calculate the 3D distance between UAVs and BSs. Thus, the altitude of BSs was

obtained from the Shuttle Radar Topography Mission [37], a project conducted by the

National Aeronautics and Space Administration (NASA) and the National Geospatial-

Intelligence Agency (NGA) to map the elevation of most parts of the globe.

3.6 Software tools

The work developed in this thesis was evaluated using computational simulations. Code

for evaluating solutions in Chapters 6–8 was developed in Python and in the Gurobi solver.

Moreover, the solution in Chapter 9 employed simulations using Java and the iFogSim

simulator [46]. This subsection presents a brief review of these tools.

Python is a popular interpreted programming language that can be used for many

purposes. A significant advantage is its external libraries that introduce many new func-

tionalities. Python was chosen to implement the fog node location algorithms and mathe-

matical formulations due its ease of use and easy integration with the Gurobi solver. The

Gurobi Optimizer is a commercial optimization solver developed by Gurobi Optimization,

LLC. It can solve different types of models, such as integer linear programming (ILP),

mixed-integer linear programming (MILP), quadratic programming, and mixed-integer

quadratic programming [47]. Gurobi has application programming interfaces (APIs) for

different languages, such as Python, C++, Java, .NET, C, and R. Gurobi employs dif-

ferent algorithms, such as simplex, parallel barrier with crossover, concurrent and sifting.

Gurobi was chosen to obtain solutions for linear programming models due its easy use,

good performance, and the availability of licenses for academic use.

Java is a multi-purpose object-oriented programming language that can run on mul-

tiple platforms. It is very popular and one of the most used programming language

in the world. The evaluation of Chapter 9 employed Java because it is the language

of the iFogSim simulator [46]. iFogSim was built using the core of the CloudSim simula-

tor [19] and allows the simulation of scheduling algorithms and multiple layers of fog nodes.

iFogSim comes with support to the simulation of sense-process-actuate applications, in

which sensors produce data and actuators execute actions. Sensors and actuators are

connected by intermediary processing tasks; such tasks are hosted by fog or cloud nodes,

and algorithms to map tasks to these nodes can be implemented and evaluated in the

simulator. iFogSim was used in Chapter 9 because it provided built-in functions that

facilitated the implementation of a resource allocation mechanism.

53

Part II

Terrestrial Infrastructure

54

Chapter 4

Location of Fog Nodes for Reduction of

Cost

4.1 Overview

A fog-cloud infrastructure is useful in the execution of applications consisting of multiple

tasks with different latency requirements [45]. For example, the augmented reality appli-

cation described in [97] is divided into four tasks; two of them should be processed in the

fog due to their strict latency requirements, and the other two tasks can be processed in

the cloud. These two tasks with flexible latency requirements can also be processed in

the fog, reducing the delay experienced by end-users.

Previous papers [79, 70, 98, 59] have discussed the role of fog nodes in the architecture

and their connection to other network elements, but have not discussed the impact of the

creation of fog nodes on different physical locations. The problem of locating fog nodes

consists in deciding where these nodes should be placed given a set of potential locations

and the devices available for deployment. The solution to the problem is crucial for fog

providers since it affects both users and the provider. If the delay in accessing the fog

is too high, the execution of some applications will be infeasible, jeopardizing end-users.

Moreover, reckless decisions can guarantee user satisfaction, but at a high deployment

cost for fog providers.

This chapter presents a solution for the fog node location problem aimed at reducing

the capital expenditure (CAPEX), and it considers only terrestrial fog nodes. The problem

is formulated as a mixed-integer linear programming (MILP) model that considers various

inherent aspects of a fog-cloud system. To evaluate different classes of service, the model

considers two types of demands in terms of latency: strict (which can only be processed

in a fog node) and flexible (which can be hosted either in the fog or in the cloud). By

considering these two types of workload, the solution attempts to serve requests which are

dependent on the fog while improving the latency experienced by flexible applications.

The solution was designed as a multicriterial optimization problem, aiming at providing

service of all demands at a reduced cost. The demand of workload to be processed

varies with time and such variability is taken into account in the formulation. A multi-

level programming approach was employed to select a solution from the Pareto front,

55

ordering the multiple objectives in a hierarchical manner. Solutions were obtained using

the hierarchical order of the objectives, and alternative solutions allowing degradation in

the objective functions were evaluated; this showed that reducing the quality of service in

the service provisioning at a certain extent can lead to big savings in infrastructure costs.

The remainder of this chapter is organized as follows. Section 4.2 introduces the system

model adopted. Section 4.3 presents the linear programming formulation of the problem

and exemplifies the multicriterial solution. Section 4.4 presents the experimental setting

and numerical evaluation of the proposed formulation. Lastly, Section 4.5 concludes this

chapter.

4.2 System Model

This section details the model for the system considered in this chapter as well as the

fog node location problem. The system is composed of a cloud and various fog nodes,

hierarchically organized in three layers: cloud, fog, and end-user devices. The cloud can be

accessed by any device. The fog layer is formed by fog nodes, with each fog node having

a limited area of coverage. A fog node is a small facility that hosts dedicated servers

capable of processing end-user workload. Compared to the cloud, fog node resources are

limited. End-user devices are in the lowest layer and can move between different areas.

These devices run several types of applications with different latency requirements. A

user can access either the closest fog node (as long as this fog node covers the user) or

the cloud. The decision of where to process user workloads depends on the application

requirements. In this chapter, the workloads are classified into two classes: fog (strict

latency) and cloud (flexible latency) workloads. The former represents workloads which

can only be hosted in a nearby fog node due to the latency requirements, while the latter

can be processed in either the fog or the cloud.

Supporting client applications (workload) requires making the decision about the lo-

cation of the fog nodes. To make such a decision, the selection of potential locations

for receiving dedicated servers is necessary. Moreover, the selection of fog node locations

and capacity of each node should take into consideration the history of demands in these

locations.

Each fog node is characterized by its location and the number of servers. The greater

is the number of servers, the larger is the capacity of the fog node. To increase the total

workload processed, strict latency workload should be first assigned for execution on fog

servers. The remaining capacity of the fog nodes can then be used to process flexible

latency workload. Executing flexible latency workload in the fog can reduce the latency

for this type of load, thus enhancing user experience.

The system considered in this chapter assumes that both strict and flexible workloads

vary over time. Without loss of generality, a discrete-time model has been adopted. Figure

4.1a illustrates the node location problem. This figure presents a segment of a city, divided

into seven areas, identified by letters A–G, with end users served by five base stations

(BSs). Regions A and D are served by the same BS,another BS processes the requests

made in Regions E and G, and the remaining regions are each served by an individual

56

(a) Possible locations and available number of servers.

(b) Fog nodes decided and requests served by them.

Figure 4.1: Example of fog location decision making.

BS. A cellphone represents a request and the color associated with it identifies the type

of request (strict or flexible). BSs are considered to be possible locations for hosting a fog

node. Suppose that the provider can employ up to four servers, and each server can host

two requests at the same time. One possible solution for this scenario is the one in Figure

4.1b. Three fog nodes have been created, one with two servers in the BS in Region D,

and two nodes with a single server in Regions C and G. The fog node in D can serve both

strict and flexible requests in its coverage area. The fog node in C serves strict requests

in its area, as well as a flexible request. In Region B, strict requests are blocked, since no

fog node is available.

This example provides a snapshot of user positions. However, end users can change

their position dynamically, thus leading to different occupation of devices over time in

each region. Consequently, the deployed infrastructure must be efficient for the service

57

over time, not only during a specific time interval.

4.3 Formulation

The fog node location problem is modeled as a multicriteria mixed-integer linear program-

ming formulation. The goal is to process most of the strict workload in the fog nodes

using the minimum number of servers possible to reduce the overall cost. Moreover, the

unused capacity of fog nodes should be used for the processing of flexible latency workload

to further reduce the latency of users with this type of workload. This section is divided

into two parts: Subsection 4.3.1 presents the formulation of the optimization problem,

and Subsection 4.3.2 illustrates the optimization with a numerical example.

4.3.1 Mathematical Model

The notation used in the model is presented in Table 4.1. The provider budget constraint

is given by N , the maximum number of dedicated servers to be employed in the fog

nodes, each of them with capacity R. L and T are the location and time interval sets,

respectively. flt and clt are also part of the input and represent, respectively, the strict

latency and flexible latency workload demands at location l and time t. The solution

consists of αl, the number of dedicated servers deployed at each location. Additionally,

variables fflt, cflt, and cclt indicate where each demand is processed (fog or cloud) for all

locations and time periods.

The multi-objective formulation is given by Equations (4.1)–(4.10):

maximize
∑

l∈L

∑

t∈T

(fflt) (4.1)

minimize
∑

l∈L

αl (4.2)

maximize
∑

l∈L

∑

t∈T

(cflt) (4.3)

∑

l∈L

αl ≤ N (4.4)

fflt + cflt ≤ αl ·R, l ∈ L, t ∈ T (4.5)

fflt ≤ flt, l ∈ L, t ∈ T (4.6)

cflt + cclt = clt, l ∈ L, t ∈ T (4.7)

cflt ≥ 0, l ∈ L, t ∈ T (4.8)

fflt ≥ 0, l ∈ L, t ∈ T (4.9)

αl ≥ 0, l ∈ L (4.10)

Equations (4.1)–(4.3) are the objective functions. Equation (4.1) maximizes the pro-

58

Table 4.1: Notation used in the fog node location problem formulation.

Input

Notation Description

N Maximum number of servers to be deployed

R Capacity of a single server

L Number of locations where a fog node can be deployed, L ∈ N
+

L Set of all locations where a fog node can be deployed: L = {1, 2, . . . , L}
T Total number of discrete time intervals, T ∈ N

+

T Set of all discrete time intervals: T = {1, 2, . . . , T}
flt Strict workload at location l ∈ L at time t ∈ T

clt Flexible workload at location l ∈ L at time t ∈ T

Decision variables

Notation Description

αl The number of servers deployed at location l ∈ L. If αl = 0, no fog node is

created at location l

fflt Strict workload originating at location l ∈ L at time t ∈ T and hosted by the

local fog node

cflt Flexible workload originating at location l ∈ L at time t ∈ T and hosted by

the local fog node

cclt Flexible workload originating at location l ∈ L at time t ∈ T and hosted by

the cloud

cessing of strict workload on the fog nodes, i.e., it guarantees the maximum number of

users for each time slot. To achieve this goal, the number of fog nodes at each location

is determined using the minimum possible number of servers with Equation (4.2). More-

over, Equation (4.3) ensures that servers are deployed to locations where the remaining

capacity can be used to boost the processing of flexible latency workload in the fog.

The constraints of the model are explained by the following. The constraint in Equa-

tion (4.4) limits the number of deployed servers to the total number of available devices N .

The constraint in Equation (4.5) guarantees that the workload processed by each fog node

(sum of strict and flexible workload) is never greater than its capacity (number of servers

multiplied by the capacity of a single server). The constraint in Equation (4.6) limits

the strict latency workload processed at a fog node to the demand at that location. The

constraint in Equation (4.7) guarantees that all flexible latency demand is met, whether

at a local fog node or in the cloud. Finally, the constraints in Equations (4.8)–(4.10) set

the minimum values for the decision variables.

In the fog node location problem, the service of end users is essential. Once this is

achieved, the provider costs should be reduced and the usage of the remaining servers

optimized. As a consequence of this order of priorities, the problem is appropriate to

be solved using multi-level programming explained in Subsection 2.4. Equation (4.1)

is the main objective, followed by the objectives given by Equations (4.2) and (4.3).

Other multicriterial methods could have been employed for the solution, but they do

not take into consideration the hierarchy between the objectives, either favoring a single

objective or a trade-off, which does not make them adequate for the problem in this

59

chapter. Nonetheless, to evaluate multiple solutions, degradation in some of the objectives

is evaluated.

4.3.2 Numerical Example

To numerically illustrate the proposed MILP model, consider the example displayed in

Figures 4.2a and 4.2b, which shows a snapshot of end-users’ position at time slot 1 and

2, respectively, for a small region of a city. There are three locations (1, 2, and 3) served

by base stations; such BSs are candidates for the deployment of fog nodes. Eleven users,

identified by letters A–K, execute four different applications in their smartphone. Users

A, D, H, and J play a real-time game, while Users C, F, and G execute an augmented

reality application, both applications require a fog node due to the low latency constraints.

The remaining users execute applications which can be either processed in the fog or in

the cloud due to their flexible latency requirements: Users B, I, and K share files in a

P2P network while User E takes photos and then processes and stores them externally.

Users that share files can take advantage of the fog by sharing files between them without

the delay imposed by the cloud. For User E, the presence of a fog node allows the image

processing in the fog, which reduces the transmission of large raw files to the cloud.

Although the execution of flexible latency applications can be boosted with a fog node,

their processing can be realized by the cloud. Additionally, this example presents mobility:

from time slot 1 to 2, User A goes from Location 1 to 2; User E from 2 to 3; Users D, G,

and I leave the displayed area; and the User K arrives in Location 3 only at the second

time slot.

The presented scenario can be mapped into the input of the fog node location problem.

There are three base stations in Figure 4.2, thus L = 3 and L = {1, 2, 3}, and only two

time slots are considered, so that T = 2 and T = {1, 2}. Suppose that each fog server can

host up to three requests at the same time (R = 2). Considering the requests displayed

in Figures 4.2a and 4.2b, the strict and flexible workloads assume the following values:

f11 = 2, f21 = 3, f31 = 2, f12 = 1, f22 = 2, f32 = 1, c11 = 1, c21 = 1, c31 = 1, c12 = 1,

c22 = 0, and c32 = 2. All these values are used as input to the problem. The values of

N are varied to exemplify the priority of each objective in the multi-level programming

approach.

The main goal of the formulation is to serve all strict workload (the objective func-

tion in Equation (4.1)). To illustrate that, consider N = 1, i.e., only one fog node with a

single server can be deployed. In this case, a fog node is created at Location 2 (α1 = α3 = 0

and α2 = 1) since it produces 5 for Equation (4.1). If α1 = 1 or α3 = 1, the produced

values (3 in both cases) would not be optimal. The solution for N = 1 is displayed in

Figures 4.2c–4.2d.

The effect of the objective function in Equation (4.2) is noticed for N = 4. In this

case, all locations can be covered by fog nodes with a single server (α1 = α2 = α3 = 1),

case in which no strict application is blocked and the value obtained for Equation (4.1)

is 11. The addition of the fourth server in any fog node does not increase the value of

Equation (4.1), thus the objective function in Equation (4.2) limits the employed servers

to 3 to avoid extra costs with the infrastructure deployment. The scenario described in

60

(a) Input at the first time slot. (b) Input at the second time slot.

(c) Solution for N = 1 at the first time slot. (d) Solution for N = 1 at the second time slot.

(e) Solution for N = 4 at the first time slot. (f) Solution for N = 4 at the second time slot.

(g) Solution for N = 2 at the first time slot. (h) Solution for N = 2 at the second time slot.

Figure 4.2: Numerical example of fog location decision making.

61

this paragraph is illustrated in Figures 4.2e–4.2f.

Finally, a practical example of the effect of the objective function in Equation (4.3)

happens for N = 2 (Figures 4.2g–4.2h). As discussed earlier, the most demanded fog node

is the one in Location 2 (α2 = 1), thus, when there is an extra server available, the decision

is which of the other locations should host a fog node, α1 = 1 or α3 = 1. Either option

produces the same value for Equations (4.1) and (4.2): 8 and 2, respectively. Therefore,

the objective function in Equation (4.3) is evaluated. If α1 = 1, then Equation (4.3)

assumes the value 2, while α3 = 1 leads to the value 3. Thus, the fog node is deployed in

Location 3, allowing Users E, I, and K to use the fog instead of the cloud, improving the

latency of the delivered service.

4.4 Performance Evaluation

In order to evaluate the location of fog nodes in a fog-cloud infrastructure, this section

presents an evaluation of the MILP model using actual data of workloads. The MILP

model was coded using the Gurobi Optimizer solver and two datasets were used to model

the workload. This section is structured as follows. Subsection 4.4.1 explains how the

workload was modeled, Subsection 4.4.2 describes how alternative trade-offs were obtained

using objective function degradation, and Subsection 4.4.3 discusses the numerical results.

4.4.1 Workload

The set of locations L represents the 1150 BSs from the database in [78], and the values

of variables flt and clt (fog/strict and cloud/flexible workload demands) were taken from

the dataset in [8]. The process to obtain such values is explained in Section 3.5. The

input to the problem consisted of N , R, L, T, flt, and clt. The capacity R of a server was

fixed, and N was varied to evaluate solutions obtained under different budget constraints.

The number of locations in L was determined using the OpenCellId dataset. T was also

varied to evaluate the solution under different lengths of planning intervals, from 1 h to

24 h. The proportion of fog and cloud requests was varied using three scenarios, namely

P25, P50, and P75. In P25, 25 % of the workload for an antenna was strict and 75 %

flexible. In the P50 scenario, the proportion was 50 % for each type of request, and, in

P75, the workload is 75 % strict and 25 % flexible. Table 4.2 summarizes the input values

and the adopted scenarios.

4.4.2 Multi-objective solutions allowing degradation

The MILP model presented in Section 4.3 was coded using the multi-level programming

approach; this solution was identified by OPT . Employing only OPT leads to a single so-

lution for the problem. However, a fog provider can accept decreasing performance for one

of the objectives if there is an advantageous trade-off for the multiple objectives. Various

solutions were evaluated that allowed degradation in some of the objective functions.

Other solutions differ from OPT by allowing degradation of either the objective func-

tion in Equation (4.1) or the objective function in Equation (4.2). Solutions that allow

62

Table 4.2: Adopted values of input and scenarios.

Parameter Values

N 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048

R 1000

L L = {1, 2, ..., L}, L = 1150

T
T = {1, 2, ..., T}, each t ∈ T represents a ten minute interval.
T varies to represent 1 h, 3 h, 6 h, 12 h, and 24 h intervals

flt and clt, l ∈ L, t ∈ T Aggregated workload of cells for each base station

Proportion between
strict and flexible
workloads

P25: 25 % of strict and 75 % of flexible latency workload
P50: 50 % of strict and 50 % of flexible latency workload
P75: 75 % of strict and 25 % of flexible latency workload

Table 4.3: Solutions evaluated in this chapter as well as objective function affected and
level of degradation allowed.

Objective degraded Level of degradation

OPT — —
STR5 Equation (4.1) 5 %
STR10 Equation (4.1) 10 %
STR15 Equation (4.1) 15 %
STR20 Equation (4.1) 20 %
SER5 Equation (4.2) 5 %
SER10 Equation (4.2) 10 %
SER15 Equation (4.2) 15 %
SER20 Equation (4.2) 20 %
SER25 Equation (4.2) 25 %
SER30 Equation (4.2) 30 %

degradation of the first objective function (Equation (4.1)) are identified by STRX, where

X is the percentage value that can be degraded from the total served strict workload. By

allowing degradation of the first objective function, these solutions can employ fewer

servers, thus reducing deployment costs. Degradation of the second objective function

(Equation (4.2)) was also evaluated. SERX identifies the solutions that degrade the

number of employed servers, i.e. they allow an increase in the number of servers in X %

in relation to OPT to increase the amount of flexible workload processed in the fog.

Since strict workloads are blocked if not served in the fog, applying STRX has a great

impact on end users, thus only up to 20 % of degradation was evaluated. Employing more

servers, differently, does not prevent the execution of strict workloads, thus, up to 30 % of

degradation was evaluated for SERX. Table 4.3 summarizes all the solutions evaluated.

4.4.3 Numerical results

In this subsection, the performance of the proposed solution is assessed. This evaluation

showed how the solution improves fog service, reducing costs and dealing with the two

63

types of workload. Furthermore, several scenarios with different traffic patterns and

budget constraints were used to evaluate the efficiency of the solution. First, the results

produced by OPT using different planning intervals are discussed. Then, the results

obtained under degradation are presented. Finally, different scenarios of traffic patterns

(P25, P50, and P75) were evaluated. Three metrics were considered: acceptance ratio of

strict latency workload, acceptance ratio of flexible latency workload in the fog, and the

number of deployed servers. The X-axis of all graphs represents the number of available

servers for deployment. A 95 % confidence interval is used in the graphs. Graphs of the

strict latency acceptance ratio are in a logarithmic scale.

Figure 4.3 displays the resuls for OPT and the P50 scenario. The larger was the

number of available servers, the larger was the number of servers utilized (Figure 4.3b).

This is a result of the main goal of the solution to serve the maximum number of strict

workloads possible, which led to more servers being used in the solution. For 1 ≤ N ≤

1024, the available servers could not cope with the entire strict latency workload since

most of the available servers (N servers) were used. This caused the overlap of the curves

for all planning intervals. For N ≥ 2048, the available capacity was greater than the total

demand, so that the entire demand was met (Figure 4.3a), requiring between 1480 and

1710 servers. The number of required servers varied according to the planning interval:

short planning intervals may not contain periods during which a location is crowded.

Consequently, for longer intervals, a large number of periods of peak demand was present

for several locations, which required the deployment of a large number of servers. Results

for N > 2048 were the same as those for N = 2048 since the multi-level programming

approach optimized the entire served demand in Equation (4.1); hence a larger number

of servers did not lead to any improvement in the strict latency workload service.

Figure 4.3c shows the ratio between flexible requests served in the fog and the to-

tal flexible workload. The extra capacity of fog nodes can be used to host the flexible

workload, thus, when nearby 80 % of the strict workload is served (N = 512), more than

30 % of the flexible workload can be executed in the fog, which improved the latency of

end users as well as allowed more flexibility in the energy management of the cloud data

center. OPT maximizes flexible requests utilization of fog nodes (Equation (4.3)) only

after satisfying the objective functions in Equations (4.1) and (4.2). As a result, no new

fog servers were deployed to host only flexible workloads. Thus, for N = 2048, between

60 % and 80 % of the flexible workload was hosted in the fog and the remainder in the

cloud. If the order of objective functions in Equations (4.2) and (4.3) were reversed in

the multi-level optimization, flexible workload allocation would be prioritized in the fog,

but at a higher server deployment cost than that was in the original order.

The order of the curves changes in the interval 1024 ≤ N ≤ 2048 in Figure 4.3c

due to the availability of a larger number of servers for N = 2048 and longer planning

intervals. For N ≤ 1024, the available resources did not meet the full demands of the strict

workload. Conversely, when N = 2048, all strict workloads were processed, and powerful

fog nodes tailored to the peak demands were deployed. Consequently, during periods with

low strict demands, fog servers were used to host the flexible workload. Thus, solutions

for larger planning intervals were capable of hosting more flexible workloads, explaining

the difference in the order of the curves in Figure 4.3c for N between 1024 and 2048.

64

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of servers (N)

100

101

102

W
or

ko
ad

 h
os

te
d

(%
)

OPT 1h
OPT 3h
OPT 6h
OPT 12h
OPT 24h

(a) Strict latency workload acceptance ratio.

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of servers (N)

0

200

400

600

800

1000

1200

1400

Se
rv

er
s u

se
d

OPT 1h
OPT 3h
OPT 6h
OPT 12h
OPT 24h

(b) Average number of servers employed.

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of servers (N)

0

10

20

30

40

50

60

70

80

90

100

W
or

kl
oa

d
ho

st
ed

 (%
)

OPT 1h
OPT 3h
OPT 6h
OPT 12h
OPT 24h

(c) Flexible latency workload acceptance ratio in the fog.

Figure 4.3: Results obtained for OPT under P50 scenario.

65

In the remainder of this subsection, results for 24 h planning intervals are shown.

Using a large interval resulted in more variation of demands in the considered locations,

which is useful when planning long-term infrastructures. A comparison between OPT

and the solutions which allowed degradation in one of the objective functions is presented

in Figure 4.4 for the P50 scenario. The acceptance ratio of strict latency workloads is

shown in Figure 4.4a. The curves for OPT and all solutions that allowed degradation

in the objective function in Equation (4.2) overlap since they were optimized after the

objective function in Equation (4.1). Curves corresponding to STRX are parallel to OPT

in the log scale according to the allowed degradation, from 5 % to 20 %.

Figure 4.4b shows the number of employed servers as a function of N . SERX deployed

a larger number of servers than OPT and STRX. Since all servers were used for 1 ≤ N ≤

1024, differences in the values obtained by OPT and SERX appear only for N = 2048,

when there is more capacity than that required for the strict workloads. For SERX,

extra servers are employed to host more flexible latency workloads in the fog, as shown

in Figure 4.4c. Notice, however, that an increase in the number of servers less than 15 %

resulted in a minimal increase in the flexible latency service in the fog. This is due to

the distribution of demand across different locations. To explain this trend better, Figure

4.5 presents results for flexible latency workload in the fog for all values of the planning

intervals considered (1 h, 3 h, 6 h, 12 h, and 24 h) and N = 2048. For 1 h planning, an

increase in the number of servers led to an increased acceptance ratio of flexible workloads

in the fog. However, results for longer intervals show that small gains were obtained for

degradation smaller than 15 %. For small intervals, users are less mobile, which makes

demands more uniform over all locations. Longer intervals, however, presented peak

demand periods on a larger number of locations. Thus, given that servers cannot be

moved from one fog node to another, serving the total flexible demand in the fog requires

a large number of servers in many fog nodes, making the employment of SERX effective

only when high degradation is allowed.

One important effect of STR5 is noticed for N = 2048, where it reduced more than

400 servers in the solution in relation to OPT , which accounts to about 30 % of savings

in server costs (Figure 4.4b). This is due to the fact that the removal of one or two servers

from each fog node does not lead to great blockage. Serving strict workloads is the main

goal of optimization, hence most servers process mainly this type of workload. However,

to fully process the demand, a fog node may have servers that remain idle or process only

a small number of strict workloads. For example, during an interval facing peak demand,

a fog node may need five servers to process all the strict demand, while most of the time

only three or four servers would be sufficient. Thus, even if degradation in the objective

function in Equation (4.1) is small, high infrastructure costs can be avoided if the fog

node capacity is not tailored to the peak demands in the fog area. If the blocking of a

small number of requests is acceptable, STRX becomes a viable solution.

Results for the acceptance of strict latency workload in the P25 and P75 scenarios,

yet for OPT , STRX, and SERX solutions and 24 h planning intervals, are displayed in

Figure 4.6. Results followed the same pattern of those in the P50 scenario. All solutions

resulted in greater acceptance of strict latency workload under P25 than for those of

P50, and less than those of P75. The former is explained by the reduction of the strict

66

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of servers (N)

100

101

102

W
or

kl
oa

d
ho

st
ed

(%
)

OPT
STR5
STR10
STR15
STR20
SER5
SER10
SER15
SER20
SER25
SER30

(a) Strict latency workload acceptance ratio.

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of servers (N)

0

250

500

750

1000

1250

1500

1750

Se
rv

er
s u

se
d

OPT
STR5
STR10
STR15
STR20
SER5
SER10
SER15
SER20
SER25
SER30

(b) Average number of servers employed.

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of servers (N)

0

10

20

30

40

50

60

70

80

90

100

W
or

kl
oa

d
ho

st
ed

 (%
)

OPT
STR5
STR10
STR15
STR20
SER5
SER10
SER15
SER20
SER25
SER30

(c) Flexible latency workload acceptance ratio in the fog.

Figure 4.4: Results obtained for all solutions under P50 scenario.

67

1h 3h 6h 12h 24h
Number of servers (N)

0

10

20

30

40

50

60

70

80

90

100

W
or

kl
oa

d
ho

st
ed

 (%
)

OPT
SER5
SER10
SER15
SER20
SER25
SER30

Figure 4.5: Flexible latency workload acceptance ratio in the fog for various planning
intervals, N = 2048 and P50.

workload, making the available servers sufficient for dealing with a larger part of the strict

demand. The opposite situation happens when there are more strict workloads, when the

strict demands are harder to serve.

The acceptance of flexible latency workloads in the fog and the number of employed

servers are shown in Figures 4.7 and 4.8, respectively, for both P25 and P75 scenarios. In

the P25, there are less strict workloads. Accordingly, the total number of employed servers

was reduced (Figure 4.8a), which also reduced the capacity available for hosting flexible

workloads (Figure 4.7a). For P75, there was much more strict workload, which required

about 1700 servers (Figure 4.8b). The reduced demand for flexible latency workloads

(Figure 4.7b) allowed almost 100 % processing of this demand in the fog nodes for OPT ,

and the employment of SERX under these circumstances led to few gains. Finally,

applying STR5 instead of OPT led to savings about 30 % for both the P25 and P75, as

shown for P50. When the strict workload demand is high (P75), the absolute number of

servers is higher, thus STR5 could reduce costs considerably with the infrastructure.

All results in this subsection were obtained using the Gurobi Optimizer solver. The

execution time depends on the input size, mainly affected by N and the planning interval

length. Scenarios with the largest inputs, high N and 24 h intervals, took less than 350 s,

which is less than 1 % of the planning interval length. Therefore, the proposed solution is

feasible and, in the case of changes of demands, the location of fog nodes can be quickly

recalculated.

This subsection has presented an evaluation of the results produced by the multicri-

terial optimization formulation employing multi-level programming proposed. Solutions

considered hierarchical objectives with and without the allowance of degradation in one

of the objective functions. The deployment of a fog infrastructure requires an analysis of

all locations. Moreover, variability of end-user demands caused different regions to have

demand peaks at different times, which is an important aspect to be accounted for in

the location decision. Given the priority of the multiple objectives, OPT represents the

68

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of servers (N)

100

101

102

W
or

kl
oa

d
ho

st
ed

(%
)

OPT
STR5
STR10
STR15
STR20
SER5
SER10
SER15
SER20
SER25
SER30

(a) P25.

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of servers (N)

10 1

100

101

102

W
or

kl
oa

d
ho

st
ed

(%
)

OPT
STR5
STR10
STR15
STR20
SER5
SER10
SER15
SER20
SER25
SER30

(b) P75.

Figure 4.6: Results for strict latency workload acceptance under P25 and P75 scenarios.

69

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of servers (N)

0

10

20

30

40

50

60

70

80

90

100

W
or

kl
oa

d
ho

st
ed

 (%
)

OPT
STR5
STR10
STR15
STR20
SER5
SER10
SER15
SER20
SER25
SER30

(a) P25.

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of servers (N)

0

10

20

30

40

50

60

70

80

90

100

W
or

kl
oa

d
ho

st
ed

 (%
)

OPT
STR5
STR10
STR15
STR20
SER5
SER10
SER15
SER20
SER25
SER30

(b) P75.

Figure 4.7: Results for flexible latency workload acceptance ratio under P25 and P75
scenarios.

70

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of servers (N)

0

200

400

600

800

1000

1200

1400

1600

Se
rv

er
s u

se
d

OPT
STR5
STR10
STR15
STR20
SER5
SER10
SER15
SER20
SER25
SER30

(a) P25.

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of servers (N)

0

500

1000

1500

2000

Se
rv

er
s u

se
d

OPT
STR5
STR10
STR15
STR20
SER5
SER10
SER15
SER20
SER25
SER30

(b) P75.

Figure 4.8: Results for the average number of servers employed under P25 and P75
scenarios.

71

ideal solution. However, results for the other solutions produced interesting results: if the

provider accepts the blockage of some users, the employment of STR5 leads to large sav-

ings with physical servers in the infrastructure, which led to a potentially useful trade-off

between service and deployment costs for the provider. The employment of SERX, on

the other hand, is seldom useful due to the variability of demands. All results could be

obtained in a reasonable time using the proposed formulation.

4.5 Conclusions

This chapter has studied the problem of locating fog node facilities in a fog-cloud scenario.

The purpose is to decide on the locations where fog nodes should be deployed and the

computing capacity of each node. This decision should improve the services delivered to

end-users, guaranteeing that most users who depend on the fog are served, and improving

the network deployed to mitigate provider costs.

The problem was solved using a multicriterial MILP model. Two types of workload

were defined to simulate different applications in a fog-cloud system with the evaluation

using real data of user mobility. A multi-level programming approach was employed to

obtain the final solution, in which the objectives were sequentially optimized.

The proposed MILP model was also evaluated when degradation of some of the ob-

jective functions is allowed. The results show that, due to the distribution of demands in

relation to time and space, infrastructure costs can be reduced if the provider is willing to

accept the blockage of a limited number of users: allowing a 5 % degradation in the strict

latency workload service leads to about 30 % savings in the number of servers for the in-

frastructure deployed. Furthermore, a substantial number of servers is needed to increase

the processing of flexible demands in the fog, which significantly raises the deployment

costs: allowing an increase of less than 15 % in the number of servers has little effect on

the service of flexible workload demands in the fog. Results obtained with the proposed

MILP model can be quickly obtained, thus the solution can be recalculated when there

are changes in the network.

72

Chapter 5

Location of Fog Nodes for Reduction of

Energy Consumption of User Devices

5.1 Overview

Deploying a fog infrastructure calls for adequate dimensioning to cope with the quality

of service requirements of diverse applications. Besides supporting latency-sensitive and

mobile applications, the fog should also promote energy savings for mobile devices, offering

opportunities for workload offloading so that the duration of mobile devices operations

can increase. Moreover, by allowing users to stay connected longer, service providers can

potentially increase their profit.

Previous work focused on solutions to manage the energy consumption of processing

and networking devices [31, 6]. The work in [96, 95] has also shown that mobile devices

hosting heavy computational tasks involving several megabytes can reduce their energy

consumption by offloading tasks to other devices. One possible approach for achieving

such savings is offloading user workload to a fog node, and the proper determination of

the location of fog nodes is essential to achieve such a goal. However, previous approaches

to the location of computing facilities close to the end-users [112, 54, 34, 77] have not

addressed the variable demands resulting from the mobility of users in conjunction with

energy savings for mobile devices.

This chapter investigates the problem of how to locate fog nodes while taking into

consideration the energy assumed by mobile end-user devices, i.e., having decisions on

the location of fog nodes in a way which can reduce the energy consumption of mobile

devices. The proposed fog node location problem is formulated as a multicriteria mixed-

integer linear programming (MILP) that aims at maximizing the user acceptance ratio

as well as minimizing the energy consumed by their devices. Time varying demands

resulting from mobility patterns collected in a metropolitan area were used as input to

model workload demands. A heuristic algorithm, designated the Energy and Demand

Trade-off Algorithm (EDTA) has been introduced to solve large-scale formulations. The

energy savings obtained by the EDTA, as well as the acceptance ratio of requests are

very close to optimal values, as shown by extensive evaluations in scenarios with different

applications and different provider budgets. Furthermore, the EDTA executes much faster

73

and can be executed for large metropolitan areas inhabited by millions of mobile users,

while the solution of large areas cannot be obtained by the MILP model in a reasonable

time.

The contribution of this chapter is two-fold. First, it models the fog node location

problem using a MILP formulation that considers the energy consumed by mobile users

and requests with different computing and latency requirements, representing various real

applications. Second, it proposes a heuristic algorithm that produces results very close

to optimum for all evaluated scenarios, yet requiring only a short execution time. The

proposed solutions have been extensively evaluated and discussed. The use of fog nodes

equipped with physical servers and wifi communication is a promising solution to create

a device energy-aware infrastructure for the support of mobile users who do not have

continuous access to energy supplies.

The remainder of this chapter is organized as follows. Section 5.2 introduces the system

model adopted. Section 5.3 presents the linear programming formulation of the problem.

Section 5.4 introduces the Energy and Demand Trade-off Algorithm. Section 5.5 presents

the experimental setting and numerical evaluation of the proposed formulation and the

EDTA. Lastly, Section 5.6 concludes this chapter.

5.2 System Model

This section details the classes of applications and the hierarchical architecture of the

cloud, fog, and end-user devices layers considered in this chapter. Moreover, it presents

the fog node location problem. The cloud data center hosts physical servers to process

user workloads, and it can be accessed by any end-user on the Internet. Fog computing

is provided by fog nodes which host physical servers and have wifi access. Nodes are

located close to end-users at the network edge and provide processing for end-users in

their coverage area. The lowest layers comprise mobile devices at the network edge.

Such devices can access both the cloud and the fog. Access to the fog always uses wifi;

the access to the cloud can be made using either cellular or wifi interfaces. If the user

is in the coverage area of a fog node, the cloud is accessed using wifi, otherwise the

cellular network is used. End-users use their mobile devices to request services from the

infrastructure. Each request corresponds to an application class, and different classes

have different processing and latency requirements.

Servers on the fog nodes and in the cloud provide end-users with processing capacity,

storage, and networking for a variety of applications. Different applications have different

latency and processing requirements, and these requirements determine where an appli-

cation should be processed: on the mobile device hosting the application, in the fog, or in

the cloud. In this chapter, four classes of application based on their latency and process-

ing requirements were considered: fog-device, fog-only, fog-cloud, and flexible. Each class

incorporates various applications with diverse requirements. Since fog-device application

requires low latency and processing demands, it is processed either on the end-user device

or in the fog nodes. This class includes services such as a program reading information

from a sensor, processing it, and generating actions to be performed by an actuator. Fog-

74

Table 5.1: Characteristics of application classes.

Class Low latency Processing in the device
Possible layers

Device Fog Cloud

fog-device Yes Yes Yes Yes No
fog-only Yes No No Yes No
fog-cloud No No No Yes Yes
flexible No Yes Yes Yes Yes

only applications are also sensitive to latency, but their heavy processing demands prevent

execution on end-user devices and require more processing capacity. An example of this

class is an application executing on a resource-limited smartphone that needs continuous

processing of information gathered from sensors. Fog-cloud applications can be processed

either in the cloud or in the fog but they cannot be executed on the end-user device. They

include uses such as an online game that requires heavy computation without real-time

constraints. Finally, flexible applications have no strict latency requirements and can be

processed on the end-user device, in the fog, or in the cloud. Table 5.1 summarizes the

requirements of different classes of application.

Fog-only applications have high priority for processing in the fog, and are blocked

when there are not enough resources to process them on fog nodes. This results from

the fact that these applications cannot be processed on the mobile device or in the cloud.

Fog-device applications benefit from fog nodes since the offloading of workload leads to

energy savings for end-user devices. Fog-cloud applications are always offloaded, but their

execution on the fog node reduces the latency experienced by end-users, as well as the

energy consumed by the device. Flexible requests are the easiest to handle since they

can be executed on any layer. Execution in the fog reduces the energy consumption of

end-user devices, making it advantageous for all classes of applications.

Each layer of the architecture has a different computational capacity. End-user devices

process only requests made by their users. The capacity of the cloud is virtually unlimited,

so that it can process all requests sent to it. Fog nodes, on the other hand, are resource-

limited; their capacity is defined by the number of servers they have. One early step

in the deployment of a fog-cloud infrastructure is a decision on the location of the fog

nodes and their capacity. The decision made will determine whether or not end-user needs

will be fulfilled. This chapter proposes a formulation for locating fog nodes so that the

energy consumed by mobile devices can be reduced. While fog and cloud servers have

continuous availability of energy, mobile users are constrained by their battery capacity.

Thus, selecting an adequate location will result in an infrastructure that can help users

stay connected to the network longer, allowing them to use more services offered by the

application providers.

Energy is consumed during the data transmission, processing, as well as the idle state.

The energy of data transmission depends on the number of bytes transmitted and on the

network radio interface (wifi or cellular). The energy consumed in processing will depend

on the power of the device and the number of cycles required to process the workload.

The energy in the idle state is that consumed by the mobile device while waiting for the

processing of a workload that was offloaded to either the fog or the cloud. The energy

75

(a) Example input.

(b) Example output.

Figure 5.1: Example of fog location decision.

consumed during idle state is constant and its value is less than that of the busy state

(during processing). Before using a fog node, the mobile device checks for the fog node

availability, i.e., if that node can process new workloads. If it can, data are sent to the fog

for processing; otherwise, the device either sends the requested processing to the cloud or

the application is blocked. The message sent to check the fog availability involves only a

few bytes, and the energy consumed in this process is not accounted in this chapter.

The fog node location problem consists in deciding where fog nodes should be deployed

as well as the number of physical servers at each location. The fog node location problem is

exemplified in Figure 5.1. Figure 5.1a shows several devices hosting different applications.

Nine regions, identified from A to I, are presented as possible locations for deploying fog

nodes. If a fog node is placed in a given region, only devices in that region will be able

to access it. A distant data center is represented on the right, and it can be reached

via the Internet. A cellular base station can be accessed by all devices. Suppose the

service provider has four servers available for deployment with each server capable of

concurrently processing two requests, Figure 5.1b presents one possible decision, with fog

nodes in regions C, D and H. Fog node D has two dedicated servers and is able to host up

to four requests, while the other nodes can host two requests each. In such a deployment,

all requests in region D will be offloaded to the fog, with only local wireless transmissions

being made by the mobile devices. In regions C and H, however, only two of the three

76

requests will be served by the fog. Requests not served by the fog still can access the

wifi access point provided by the local fog nodes. In the remaining regions, fog-device

requests are processed on the end-user device, while fog-only requests are blocked, and

fog-cloud requests will be executed in the cloud via the cellular network. In region B, a

flexible request will use the cloud, while in region A the demand will be processed locally.

This example illustrates one possible solution to the problem, but it does not consider

mobility. An end-user device can change its location over time. Therefore, the decision

about the location of fog nodes must also consider demands varying over time.

5.3 Formulation

The fog node location problem is modeled by using multicriterial mixed-integer linear

programming. The model optimizes the number of fog-only requests served, the global

energy consumed by end-user devices, and the processing of all application classes in the

fog. The notation used in this section is presented in Table 5.2. Discrete time is considered

with the set T containing all time intervals and L being the set of all locations.

Different from the previous chapter, this model considers individual requests instead

of the total workload. This is necessary to account the energy consumption of all end-user

devices. Each request r ∈ R is generated at a specific location l ∈ L and in a specific time

interval t ∈ T. Xrlt indicates the location and time of each request. Dr and Cr indicate

whether a request can be processed on the end-user device or in the cloud, respectively,

depending on the class of application, as described in Table 5.1. EDEV r, EIDLEr, EWIFIr, and

ECELr specify the energy consumed by the end-user device hosting the request r. If request

r is processed on the end-user device, EDEV r is the energy required for that processing.

Otherwise, EWIFIr and ECELr quantify the energy required by the mobile device for the

transmission of all bytes of the request r using wifi and cellular interfaces, respectively.

The energy consumed in the idle state while the device awaits for the processing of the

request r offloaded workload is indicated by EIDLEr. The solution is given by variables

γl, αl, dr, fr, cr, and wr. γl indicates a fog deployment at location l, and αl defines the

number of dedicated servers at l. Each request is mapped onto a single layer, identified by

the specific binary variables: dr (device), fr (fog), cr (cloud accessed by cellular network),

and wr (cloud accessed by wifi). If the request r is processed in the cloud, cr = 1 indicates

that the end-user device uses the cellular interface to reach the cloud, whereas wr = 1

indicates it accesses a wifi available at a fog node access point.

The formulation for the fog location problem is given by Equations (5.1)–(5.13):

maximize
∑

r∈R

(1−Dr)(1− Cr)fr (5.1)

minimize
∑

r∈R

[

EDEV rdr + EIDLEr(fr + cr + wr) + ECELrcr + EWIFIr(fr + wr)
]

(5.2)

maximize
∑

r∈R

fr (5.3)

77

Table 5.2: Notation used in the fog node location problem formulation.

Input parameters

Notation Description

Common parameters

N Maximum number of servers to be deployed
K Capacity of a single server
L Set of locations where a fog node can be placed: L = {1, 2, . . . , L}
T Set of discrete time intervals: T = {1, 2, . . . , T}

Requests

R Set of requests: R = {1, 2, . . . , R}
Dr, r ∈ R Binary variable, indicates whether request r can be processed on

the mobile device
Cr, r ∈ R Binary variable, indicates whether request r can be processed in

the cloud
Xrlt, r ∈ R, l ∈ L, t ∈ T Binary variable, Xrlt = 1 if the request r is made in time slot t

when the device hosting r is at location l, otherwise, Xrlt = 0

Energy consumption

EDEV r, r ∈ R Energy consumed in the processing of request r on the mobile
device

EIDLEr, r ∈ R Energy consumed by the device while it is in the idle state await-
ing processing of request r either in the fog or in the cloud

EWIFIr, r ∈ R Energy consumed by the device hosting r for data transmission
using a wifi interface

ECELr, r ∈ R Energy consumed by the device hosting r for data transmission
using a cellular interface

Decision variables

Notation Description

γl, l ∈ L Binary variable, γl = 1 if a fog node is created at location l,
otherwise γl = 0.

αl, l ∈ L The number of fog servers at location l ∈ L if γl = 1. If γl = 0,
then αl = 0.

dr, r ∈ R Binary variable indicating whether request r is processed on the
mobile device (dr = 1) or not (dr = 0).

fr, r ∈ R Binary variable indicating whether request r is processed in the
fog (fr = 1) or not (fr = 0).

cr, r ∈ R Binary variable indicating whether request r accesses the cloud
using a cellular network interface (cr = 1) or not (cr = 0).

wr, r ∈ R Binary variable indicating whether request r accesses the cloud
using a wireless network interface (wr = 1) or not (wr = 0).

78

∑

l∈L

αl ≤ N (5.4)

γl ≤ αl, ∀l ∈ L (5.5)

γl ≥
αl

N
, ∀l ∈ L (5.6)

dr + fr + cr + wr

{

≤ 1 ∀r ∈ R | Dr + Cr = 0

= 1 ∀r ∈ R | Dr + Cr ≥ 1
(5.7)

cr + wr ≤ Cr, ∀r ∈ R (5.8)

dr ≤ Dr, ∀r ∈ R (5.9)

cr + γl ≤ 1, ∀(r, l, t) ∈ R× L× T | Xrlt = 1 (5.10)

wr − γl ≤ 0, ∀(r, l, t) ∈ R× L× T | Xrlt = 1 (5.11)

∑

r∈R|Xrlt=1

fr ≤ αl ·K, ∀l ∈ L, ∀t ∈ T (5.12)

dr, fr, cr, wr, γl ∈ {0, 1}, αl ≥ 0, ∀r ∈ R, ∀l ∈ L (5.13)

The multi-objective optimization model has three objective functions. Equation (5.1)

defines the first objective function, which seeks to maximize the number of fog-only ap-

plications processed.

The second objective function (Equation (5.2)) minimizes the total energy consump-

tion of the mobile end-user devices. Equation (5.2) represents the sum of the energy

consumed by all requests in R, and it is divided into four components. The first compo-

nent is the energy consumed in the mobile device processing. The second component is

that consumed in the idle state while the end-user device awaits a response. The third

component is the energy consumption due to the use of the cellular network interface by

requests processed in the cloud, and the final component is the energy consumption due

to the use of the wifi interface by requests processed in the fog (fr) or in the cloud (wr).

Equation (5.3) defines the third objective, which is the maximization of the number

of requests processed in the fog, regardless of their application class. By optimizing this

objective, latency is improved for the end-users, since this workload can be processed in

the fog rather than in the cloud.

The first constraint (Equation (5.4)) limits the total number of servers employed on all

fog nodes to N . Constraints given by Equations (5.5) and (5.6) guarantee that if αl ≥ 1,

then γl = 1, otherwise γl = 0. Equation (5.7) guarantees that all requests are processed.

For fog-only applications, the sum is less than or equal to 1 since such requests can be

79

blocked. For the other requests, the sum is equal to one, guaranteeing that they will be

executed. Constraints given by Equations (5.8) and (5.9) guarantee that requests executed

in the cloud or on the mobile device are applications which can be processed on these

layers. Since any request can be processed in the fog, a similar constraint for the fog is not

necessary. Equation (5.10) assures that a request processed in the cloud uses a cellular

network interface if there is no fog node in the area from which the request originates. In a

similar fashion, Equation (5.11) assures the use of wifi for requests processed in the cloud

from a location hosting a fog node. To avoid overloading the fog nodes, expression (5.12)

limits the number of hosted requests processed on each fog node to the node capacity.

Finally, Equation (5.13) establishes the domain of the decision variables.

The multi-level programming approach, reviewed in Subsection 2.4, was employed to

solve the formulation. In the fog location problem, the service of fog-only applications

is crucial, since they are blocked if no resources are available. After guaranteeing the

execution of fog-only requests, energy consumption is analyzed, and finally the occupation

of fog nodes can be improved. Thus, the multi-level programming approach employed

Equation (5.1) as the main objective, Equation (5.2) as secondary one, and Equation

(5.3) as the final one. The order of the objective functions in the multi-level programming

approach is crucial for the solution: if the energy consumption were optimized first, fog-

only applications might not necessarily be processed, since they involve greater energy

consumption. In other words, although this chapter focuses on energy consumption,

Equation (5.2), which optimizes that consumption, is not the main objective, since the

blocking of users must always be avoided. Saving energy is useless if fog-only applications

are blocked, thus Equation (5.1) must be considered to be the main objective. Equation

(5.3) is the last objective.

5.4 Energy and Demand Trade-off Algorithm

The fog node location problem is a network design problem, typically solved off-line. In

the real scenario considered in this thesis, hundreds to thousands of locations exist to serve

millions of users. In an attempt to solve the formulation proposed for large scenarios, the

formulation in the previous section was coded in the Gurobi Optimizer. However, the

solver did not finish the execution of the model, even after long execution times, and it

eventually crashed due to the high demand for main memory. Consequently, a heuristic

algorithm has been proposed, denominated Energy and Demand Trade-off Algorithm

(EDTA).

EDTA attempts to achieve a trade-off between the processing of fog-only requests

and the energy consumed by end-user devices. These are the objectives represented by

Equations (5.1) and (5.2), respectively. EDTA also favors the fog for the execution of all

requests to achieve the third objective (Expression (5.3)). To achieve these goals, EDTA

calculates the gain obtained by the inclusion of a new dedicated server at a candidate

location (metric M). This gain is a function of the proportion of fog-only applications

accepted and of the proportion of energy saved as a result of the inclusion of a physical

server in a fog node. Thus, based on this metric, servers are assigned to fog nodes in a

80

v11 v21 v31 v41

v12 v22 v32 v42

v13 v23 v33 v43

v0

e11

e12 e22 e32 e42

e13

e21 e31
e41

e23 e33 e43

Location

#1

Location

#2

Location

#3

Location

#4

(a) Initial graph.

v11 v21 v31 v41

v12 v22 v32 v42

v13 v23 v33 v43

v0

e11

e12 e22 e32 e42

e13

e21 e31
e41

e23 e33 e43

Location

#1

Location

#2

Location

#3

Location

#4

(b) Selection of the first
server.

v11 v21 v31 v41

v12 v22 v32 v42

v13 v23 v33 v43

v0

e11

e12 e22 e32 e42

e13

e21 e31
e41

e23 e33 e43

Location

#1

Location

#2

Location

#3

Location

#4

(c) Selection of the sec-
ond server.

v11 v21 v31 v41

v12 v22 v32 v42

v13 v23 v33 v43

v0

e11

e12 e22 e32 e42

e13

e21 e31
e41

e23 e33 e43

Location

#1

Location

#2

Location

#3

Location

#4

(d) Selection of the third
server.

Figure 5.2: Example of EDTA graph.

greedy manner. The EDTA operation employs an acyclic directed graph, with vertices

representing the assignment of a new server to a fog node, and the weight of the edges is

calculated by M. The original graph represents all possible decisions, and a subgraph is

obtained representing a single solution.

EDTA is described in Algorithm 5.1, and its operation is illustrated in Figure 5.2. The

first step of the algorithm is the creation of the directed graph G = {V,E}. G is a tree

with root v0; the remaining L ·N vertices are vij, i ∈ L, j ∈ {1, . . . N}. There is an edge

ei1 from v0 to each of the vertices vi1, i ∈ L. Additionally, for all vij, i ∈ L, j ∈ {2, . . . N},

there is an edge eij connecting vi(j−1) to vij. The graph resulting from L = 4 and N = 3

is illustrated in Figure 5.2a.

Each edge eij represents the decision to employ the jth server at location i, and the

gain associated with this decision is calculated by the metric M. M is defined as M =

κF + λN , with κ and λ being parameters that define the importance of the fog-only

service and energy consumption, respectively, 0 ≥ κ ≥ 1, 0 ≥ λ ≥ 1 and κ + λ = 1.

Furthermore, F and N are the gains from deploying a new server in terms of fog-only

service and energy consumption, respectively. Such gains are calculated as follows. The

number of fog-only requests T f at all locations over all time is calculated. The sum T e

of the energy consumption of the remaining requests (fog-device, fog-cloud, and flexible)

is calculated for all requests considering the absence of fog nodes. Then, for each edge

eij, the algorithm calculates T f
ij, the number of fog-only requests served as a result of the

employment of the jth server at the fog node at location i. Similarly, T e
ij is calculated

as the energy saved by the employment of the jth server at the fog node at location i.

Finally, F and N are calculated for each edge as F = T f
ij/T

f and N = T e
ij/T

e, allowing

the calculation ofM for all edges e ∈ E.

The rationale behind the computation of the M value is the trade-off between the

two main objectives. Once all vertices and edges are added to the graph, the algorithm

uses the edge weights to greedily add servers to the locations. The generation of the

graph G = (V,E) is the first step of Algorithm 5.1 (Line 1). Then the algorithm builds a

subgraph G′ to represent the solution, initialized in Lines 2 to 5. During this initialization,

M is calculated for all edges in Line 4. This computation requires the calculation of

81

maximum energy consumption at the end-user device for all requests. Then the energy

savings and the number of fog-only requests processed due to the inclusion of the new

server are calculated. To realize this calculation, requests are assigned to each server,

considering that a new server will first process fog-only and fog-device applications, and

then fog-cloud and flexible requests. In this way, the third objective (Expression (5.3)) is

considered in the EDTA.

Input: N ,R,L,T,flt
Output: Array with the number of servers in each location

1 builds G = {V,E};
2 V ′ ← {v0};
3 E′ ← ∅;
4 calculates M for all e ∈ E;
5 G′ = {V ′, E′};
6 n← N ;
7 while n > 0 do

8 possibleEdges← {(vx, vy) ∈ E|vx ∈ V ′ ∧ vy /∈ V ′};
9 (vw, vz)← edge with minimum weight from possibleEdges ;

10 if weight of (vw, vz) > 0 then

11 E′ ← E′ ∪ (vw, vz);
12 V ′ ← V ′ ∪ (vz);
13 n← n− 1;

14 else

15 break ;

16 return List with the number of servers obtained from the leaves of G′;

Algorithm 5.1: EDTA.

The algorithm greedily assigns servers to fog nodes while resources are available and

edges with a higher M value (Lines 7 to 15). In each iteration, all edges that connect

vertices in G′ to vertices in G \ G′ are obtained (Line 8). For example, in Figure 5.2a,

these edges are v11, v21, v31, and v41. In each iteration, G′ represents the current solution

while the obtained edges represent the possible servers to be deployed. Then, the edge

that has the highest M value is chosen (Lines 11 to 13). In Figures 5.2a and 5.2b, a

server is assigned to the first fog node, decreasing the number of available servers N . If

there is no edge leading to a vertex with a non-negative M value, the iteration stops

(Line 15). By using vo as the root of G′, at the end of the execution, the leaves of G′

represent the solution. Let {vx1y1 , vx2y2 , . . . , vxUyU} be the set of U leaves. The solution

is to use yi servers for the location xi, 1 ≤ i ≤ U . In Figure 5.2d, the leaves are v11 and

v32, resulting in two fog nodes, one in the first location with one server, and the other in

the third location hosting 2 servers. A location not represented by a leaf indicates the

absence of fog nodes at that location. The time complexity of EDTA is O(N ·L+N ·R).

The creation of the graph (Line 1) analyzes the deployment of up to N servers over L

locations, thus requiring O(L ·N). In Line 4, all L ·N edges are visited. The inclusion of

a server evaluates all requests it can serve, up to R requests, resulting in a complexity of

O(N · L +N · R) in Line 4. The initialization of G′ and n (Lines 2 to 6) is O(1). Then,

the while loop is executed N times, with the most demanding operations performed in

Lines 8 and 9, which is the selection of L edges with minimum cost. If the leaves of G′

are kept in an array with L positions, the selection costs O(L) per iteration, or O(L ·N)

82

for all iterations. By using such an array, the return value (Line 16) is easily obtained

with O(L). Therefore, the most complex operations in EDTA are O(N · L+N ·R).

5.5 Performance Evaluation

The MILP formulation presented in Section 5.3 was coded using the Gurobi Optimizer

solver, and EDTA was coded in Python. The results obtained by these implementations

are presented in this section. Subsection 5.5.1 presents the energy model employed for

end-user devices. Subsection 5.5.2 describes the workload model, and Subsection 5.5.3

the application model. Finally, Subsection 5.5.4 discusses numerical results.

5.5.1 Energy model

The evaluation considers end-user devices as smartphones, and two operations accounted

for their energy consumption: data transmission and processing. There are, however,

other components involved in the energy consumption of a smartphone, such as the phone

screen, use of Global Positioning System (GPS) sensors, and the operating system, but

these components are not affected by the location of a fog node, and, consequently, their

energy consumption is ignored in this evaluation.

The energy consumed in the transmission depends on the technology employed. In

this work, two technologies are considered, IEEE 802.11g for Wi-Fi and Universal Mobile

Telecommunication System (UMTS) for cellular networks. End-user devices are modeled

as Samsung Galaxy S3 smartphone with an Exynos 4412 processor [96], and are able to

process 14000 million instructions per second.

The energy consumed by using the wifi interface depends on the number of pack-

ets transmitted [40]. The wifi energy consumption in transmissions, EW , is modeled as

EW = PWTW , where PW is the power during transmission and TW the data transfer

time. The value of PW used is a measured value described in [22]. TW is calculated

as TW = N(TP + TACK + SIFS) + B + DIFS, where N is the number of packets to

be transmitted, TP the individual packet transmission time, and TACK the transmission

time for acknowledgments. Short Inter-frame Space (SIFS) and Distributed Coordination

Function (DIFS) are intervals defined by the IEEE 802.11 standard. B is the backoff time

to avoid contention.

The energy consumed for cellular communications is modeled as in [50]. The time

TC spent in communications is divided into two phases, the promotional phase, when the

device listens to the channel before sending or receiving data, and the transmission phase,

when bytes are sent or received. TC is calculated as TC = TPR + (D× 8)/S, where TPR is

the promotional time, D the number of bytes to be transmitted, and S the data rate. The

energy consumed by a transmission is calculated as EC = PPRTPR + PCTC , where PPR

is the power during the promotional phase. The value of PC is based on measurement

values reported in [22].

Finally, the energy consumed by processing and during the idle state is calculated as

ED = P ∗ × Trequest, where P ∗ is the power of the device and Trequest the time required

83

Table 5.3: Values adopted for energy model parameters.

Parameter Value

SIFS 10 µs

B 1023 µs

DIFS 50 µs

TPR 661.6 ms

S 2 Mbps

PPR 659.4 mW

PW 1264 mW

PC 1543 mW

Pbusy 2845 mW

Pidle 666 mW

to process the request. If the end-user device is processing the workload, P ∗ = Pbusy,

otherwise, if the device remains idle waiting for a fog or cloud response, P ∗ = Pidle.

The values employed for all parameters are shown in Table 5.3, and they are based

on the measurement values in [40, 22, 50]. EW and EC are used as the input values of

variables EWIFIr and ECELr in the formulation, and ED is used for the input values EDEV r

and EIDLEr. The number of bytes to be transmitted and the processing time of tasks

depend on the applications considered, as described in Subsection 5.5.3. Finally, fog and

cloud servers are modeled as having Intel Core i7-7500U processors which can process

53840 million instructions per second.

5.5.2 Workload

Locations and request sets are taken from a data set [8] described in Section 3.5. In this

chapter, the available locations (L) are the cells where there is at least one BS, and users

on the remaining cells were not considered due to the long distances that prevent the

employment of wifi. This resulted in 895 locations. The work in this chapter considers

individual request and, therefore a constant Z is used to obtain the number of requests

in each cell, as explained in Section 3.5.

The evaluation considered different number of locations (L), L = 100 and L = 895.

For L = 895, the whole metropolitan area, some scenarios accounted more than one

million requests, which made it impossible for the MILP model to produce solutions in a

reasonable time. On the other hand, for L = 100, about three hundred thousand requests

are made during a 24-hour interval. Thus, results for L = 100 are presented for both MILP

model and heuristic, but only results produced by the EDTA heuristic are presented for

L = 895.

Other variables in the model had to be set: the capacity K of a server was fixed, and

N was varied to simulate different budgets. The proportion of fog and cloud requests was

varied with the scenarios adopted are described in Subsection 5.5.3. Table 5.4 presents

the values used for input variables.

84

Table 5.4: Values adopted for the workload parameters.

Parameter Values

N 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048

K 25

Z 0.05

L L = {1, 2, ..., L}, L = 100 and L = 895
T T = {1, 2, ..., T}, each t ∈ T represents a ten minute time slot. T = 144 for a

24h planning interval

Table 5.5: Scenarios evaluated according to the proportion of application classes and
request input sizes.

Scenario
Proportion of requests (%)

Request input sizes
fog-device fog-only fog-cloud flexible

eq 25 25 25 25

100 Kb, 1 Mb, 10 Mb, 100 Mb

fd 70 10 10 10

fo 10 70 10 10

fc 10 10 70 10

fl 10 10 10 70

5.5.3 Application model

Four classes of application are considered, characterized by their latency and processing

requirements, as introduced in Section 5.2. To simulate these applications, the required

number of cycles and the number of bytes to be transmitted were modeled according to

known applications [73].

Requests which cannot be executed on end-user devices have high processing demands.

Consequently, it is considered that fog-only and fog-cloud applications require 44500 cy-

cles per byte, whereas fog-device and flexible applications, though intensive in terms of

processing, can be processed on the end-user device, so that they require only 8900 cycles

per byte. As noted in previous studies [96, 73, 28], offloading of workloads requiring only

a small number of cycles per byte is not energy-efficient. This happens because this of-

floading does not account for a significant amount of energy for processing on the device,

therefore, low intensive applications are not considered in this chapter.

The amount of data transferred by each request to the fog or to the cloud is varied to

evaluate different request input sizes. The values employed were 100 Kb, 1 Mb, 10 Mb

and 100 Mb, a large range in order of magnitude to evaluate different traffic patterns. The

proportion of each application class was also varied to assess the solutions under different

scenarios. All traffic scenarios (eq, fo, fd, fc, and fl) and request input sizes (100 Kb, 1

Mb, 10 Mb, and 100 Mb) were evaluated. Table 5.5 summarizes the traffic scenarios.

5.5.4 Numerical results

In this subsection, the performance of the EDTA is assessed and the results compared to

those produced by the MILP model, herein identified as the OPT . The EDTA was tested

for various combinations of values of κ and λ, and the combination κ = 0.5 and λ = 0.5

85

Figure 5.3: Acceptance ratio of application classes considered.

produced results close to those obtained by OPT ; this combination was employed in the

evaluation. This subsection is divided into three parts. First, results concerning different

request input sizes are discussed, showing trends and highlighting possible energy savings.

Second, results produced under different traffic scenarios are evaluated. Finally, the fea-

sibility of the EDTA for large-scale inputs is shown. Two metrics are evaluated: energy

consumption and the acceptance ratio for processing in the fog. Energy consumption is

the energy consumed by all mobile devices. The acceptance ratio is the proportion of

each application class served at fog nodes. 95 % confidence intervals of the mean values

obtained by replicated simulations are displayed in the graphics.

The first analysis discusses general trends produced by OPT and EDTA in the sce-

nario in which the requests are equally distributed among all application classes (eq).

The energy consumption is analyzed for all request input sizes. The acceptance ratio is

presented only for an input of 100 Mb since the number of bytes to be transmitted does

not affect significantly the acceptance ratio. This happens because the fog capacity puts

a hard limit on the number of concurrent tasks, and the available bandwidth is large

enough for this limited number of tasks, regardless of the largest possible input size per

task.

The acceptance ratio is displayed in Figure 5.3. The number of applications processed

in the fog increases as a function of the number of servers (N) up to N = 128. The

proportion of the fog-only class processed in the fog is greater than that of the other

classes due to the main objective chosen (Equation (5.1)). Similarly, the proportion of

the fog-device applications processed in the fog is greater than that of fog-cloud and

flexible classes because the execution of the fog-device workload in the fog leads to energy

savings when compared to the execution of this workload on the mobile device (the second

objective chosen, Equation (5.2)). For all values of N , the EDTA produces results very

close to those given by the OPT , which shows that the EDTA manages to deploy servers

in the locations from which the demand comes, thus reducing the energy consumption of

end-user devices.

Figures 5.4–5.7 display the energy consumption under the eq scenario for various

86

Figure 5.4: Energy consumption for the eq scenario and 100 Kb.

Figure 5.5: Energy consumption for the eq scenario and 1 Mb.

different values of request input size. The availability of wifi at all locations (for N ≥ 128)

reduces the energy consumption since users do not need to use the cellular interface. For

input of 1 Mb, 10 Mb, and 100 Mb, the deployment of fog nodes at all locations reduced

the energy consumption by about 40 % in comparison with a scenario with a single fog

node (N = 1). For input of 100 Kb, however, reduction was nearly 80 % due to the fact

that when using the cellular interface, the energy consumed in the promotional phase

is greater than that in the transmission phase for 100 Kb. For N ≥ 128, no energy is

consumed in the promotional phase, so that about 80 % of the consumption is eliminated

by the use of wifi. The curves of the energy consumption produced by the EDTA overlap

those of the OPT for all sizes of input and values of N , which shows that the use of the

EDTA algorithm promotes excellent energy savings, preventing battery drain and allowing

mobile users to take advantage of more services from the application service provider.

To assess the efficiency of the EDTA, the following part of this subsection discusses

results obtained for different scenarios. The acceptance ratio and energy consumption

values produced in the fd, fc, and fl scenarios reveal a trend similar to that obtained for

eq. However, in the fo scenario, the energy consumption tends to differ from that in the

fd, fc, and fl scenarios because, in the former scenario, 70 % of the workload is fog-only,

whereas, in the other scenarios, this accounts for at most 25 %. Since fog-only requests are

the only ones that can be blocked, the service provided for these requests impacts more

significantly on the metrics evaluated. From now on, the analysis of the effectiveness of

87

Figure 5.6: Energy consumption for the eq scenario and 10 Mb.

Figure 5.7: Energy consumption for the eq scenario and 100 Mb.

88

(a) fl.

(b) fo.

Figure 5.8: Acceptance ratio of application classes considered.

the EDTA will be presented for the fl and fo scenarios since they represent these two

trends.

The acceptance ratio of workloads in the fl and fo scenarios is shown in Figure 5.8,

and the energy consumption is displayed in Figure 5.9. Similar to what happens in the

eq scenario, the energy consumption decreases as a function of the number of servers

(N) in the fl scenario; however, it increases in the fo scenario. This apparent lack of

correlation is justified by the greater proportion of fog-only requests in the fo scenario.

In the fl scenario, larger values of N allow the processing of most requests (fog-device,

fog-cloud, and flexible) in the fog instead of in the cloud or on the device, thus reducing

the energy consumption. This reduction also takes place in the fo scenario, but the

energy consumption increases with the number of fog-only requests processed. Since most

requests are fog-only in the fo scenario, this increase in the energy consumption is greater

than the reduction promoted by the fog for the other requests, thus the consumption

increases as a function of N .

The results discussed so far are related to a limited number of locations (L = 100).

However, the whole metropolitan area from the data set [8] requires the analysis of a much

larger number of locations, L = 895. Solutions for this entire area obtained by the OPT

89

(a) fl.

(b) fo.

Figure 5.9: Energy consumption for the fo and fl scenarios and request input size 100
Mb.

90

(a) Acceptance of workloads.

(b) Energy consumption.

Figure 5.10: Results for EDTA for L = 895 and eq scenario.

require several days of computation for each point in the graphics and, in most cases, are

not achieved due to the large amount of memory required by the solver. On the other

hand, the EDTA obtains results much faster, as displayed in Figure 5.10. More servers

were required (N ≥ 1024) to satisfy the demands of a larger number of mobile users when

compared to L = 100. The ratio between the energy consumption for N = 1024 and

N = 1 is approximately the same as that obtained by the OPT for L = 100. For the

same scenario and different number of locations, this ratio will not vary significantly, i.e.,

the employment of fog nodes cannot decrease the energy consumption beyond a certain

limit. Consequently, there is evidence to suggest that the EDTA leads to energy savings

close to the maximum achievable ones when executed for the whole metropolitan area

(L = 895).

In summary, this subsection presented the results obtained by both the OPT and the

EDTA for several scenarios with different proportions of application classes and different

provider budgets (N). For all evaluated scenarios, the EDTA produces results close to the

optimum. EDTA also produces solutions quickly and is able to evaluate input with a large

91

number of locations and mobile users. EDTA also manages to increase the fog utilization

for all application classes as does OPT , which improves the latency delivered to end-users.

By employing the EDTA, fog nodes are properly deployed in a fog-cloud infrastructure,

thus allowing the processing of fog-only applications as well as a reduction in the energy

consumption for the other classes of applications, which reduces the battery drain of

mobile devices, encouraging end-users to stay connected longer to the infrastructure and

leading to more profit for service providers.

5.6 Conclusions

This chapter has addressed the problem of locating fog nodes in fog-cloud infrastructures

in order to minimize the energy consumed by mobile devices. By planning the infrastruc-

ture in this manner, battery drain is reduced, thus allowing end-users to stay connected

to the network longer. By allowing that, providers obtain higher profits. Therefore, the

employment of energy-aware fog nodes can be an advantage for both users and providers.

The problem in this chapter was modeled using a multicriterial MILP model, with the

solution obtained by a solver using the multi-level programming approach to deal with

the multiple criteria. For a large number of input variables, however, the solver requires

an unreasonable time to reach a solution. Thus, a heuristic called Energy and Demand

Trade-off Algorithm has been proposed to produce solutions more rapidly.

The solutions were evaluated by using real traces of mobile users in a metropolitan

area as input, and different classes of applications in terms of processing and latency. The

results obtained for various traffic scenarios show that the heuristic solution produced

results very similar to those obtained by the MILP model, selecting locations for the

deployment of fog nodes so that requests which depend on the fog are processed and fog

nodes benefit the other requests by reducing the energy consumed by the mobile devices

as well as the delay to end-users. The EDTA was shown to be feasible for large inputs

with millions of variables. The results obtained in this chapter can serve as the basis

for future deployments of fog-cloud infrastructures for smart cities, so that an adequate

infrastructure can be created for mobile devices with limited energy access.

92

Part III

Aerial Infrastructure

93

Chapter 6

Location of Fixed and UAV-based Fog

Nodes

6.1 Overview

Fog nodes are usually deployed as fixed nodes in different locations to support the compu-

tational needs of local users and support the strict latency requirements of applications.

However, nodes in a fixed infrastructure may need to be over-dimensioned to cope with

variable processing demands. One possible solution to alleviate such a problem is the

employment of mobile fog nodes that can process end-user demands in different locations.

Unmanned aerial vehicles (UAVs) have been considered for integration into cellular net-

works to serve as base stations [75, 9], allowing providers to expand their coverage area

in case of occasional demands or failure of the terrestrial infrastructure. However, the

employment of UAVs as fog nodes is still its infancy.

This chapter aims at assessing the advantages of employing UAVs as fog nodes for

dealing with variable workload demands generated by mobile users. In this perspective,

this chapter studies the problem of where to locate UAVs as fog nodes (the fog node

location problem) in a metropolitan area with the aim of offering cloud services at the

edge. In contrast to work in Part II, this chapter considers both fixed nodes and mobile

UAV nodes. Fixed nodes are always available due to continuous energy supply, but, once

deployed, they cannot be easily migrated to another location. On the other hand, UAV

nodes can fly between different locations to augment the processing capacity of fixed fog

nodes, especially to process workload in excess of the capacity of fixed nodes. However,

UAV nodes are mobile and operate on batteries which limit the length of time they can

process user workload. The consideration of both fixed and mobile nodes enables the

deployment of an infrastructure capable of handling the variabilities in workload demand;

this helps reduce the underutilization of over-dimensioned fixed nodes for processing even-

tual peak demands.

An algorithm, called UAV Fog Node Location (UFL), is introduced to determine the

best combination of fixed nodes and UAVs in an infrastructure. The UFL algorithm

initially finds an exact solution to the fog node location problem considering only fixed

nodes, and then attempts to replace underutilized servers in fixed nodes by UAVs which

94

can change their location to cope with processing demand at different locations. Sim-

ulations considering diverse demand patterns across a metropolitan area as well as real

UAV characteristics such as cost, battery capacity and processing capabilities [3] are em-

ployed to address the question: are UAVs worth adopting to replace fixed nodes in a fog

infrastructure? The wireless communication channel is considered ideal, so that results

are actually a bound on the value of UAVs used as processing nodes. Results show that

the current cost of UAVs is a limiting factor to their usage as fog nodes. In the future,

however, and assuming that costs continue to decrease, UAVs could provide interesting

solutions for optimally infrastructure dimensioning. Results show that when UAV costs

are the same as those of fixed nodes, UAV deployment is indeed advantageous. In this

case, the coverage of several locations using UAVs reduces CAPEX and provides more

flexibility in coping with unexpected and timely increases in processing demands.

The remainder of this chapter is organized as follows. Section 6.2 introduces the system

model adopted. Section 6.3 presents the linear programming formulation of the problem.

Section 6.4 introduces the UAV Fog Node Location Algorithm. Section 6.5 presents the

experimental setting and numerical evaluation of the UFL algorithm. Lastly, Section 6.6

concludes this chapter.

6.2 System model

We consider a system in which mobile users in a metropolitan area request services at

different locations, and the processing demand at these locations is a function of user

mobility. Applications such as augmented reality and traffic navigation have strict latency

requirements and cannot be processed in the cloud; and users need to connect to a nearby

fog node to offload the processing of these applications. If there is no fog node available,

requests are rejected (blocked) since they cannot be migrated to more distant nodes due

to latency requirements.

A fog node is a small facility that has processing, storage, and networking capabilities.

It can process workload offloaded by end users without the need to send it to the cloud

through the Internet, thus considerably reducing the response time of applications. Fog

nodes serve users in their coverage area, and nodes can have more than one compute

server. However, not all servers of a node are continuously needed since the processing

demand varies over time.

UAVs can travel from one node to the other to increase the processing capacity of

a destination node. UAVs can land to process the workload instead of just hovering.

When on ground, UAVs have greater autonomy, since the energy consumption of a UAV

is much lower than when hovering [3], with energy consumed only by communication and

processing.

UAVs can be in one of four different states: turned-off, stand-by, processing, and

flying. UAVs are initially turned off, with their battery fully charged. When a UAV is

turned off, it does not consume energy. When its service is needed, a UAV starts its

operation and remains on until service is no longer required. In the stand-by state, a

UAV is on ground but not processing and its energy consumption is fixed; moreover, it

95

can be quickly switched to the processing or flying state. In the processing state, the UAV

is also on ground, but it consumes energy for processing and data transmission. Finally,

in the flying state, the UAV is moving between different locations; flights are allowed

only to complement the capacity of a fog node at the destination. The flying state is the

one that consumes the largest amount of energy, with a consumption depending on the

distance traveled and the speed of traveling, both horizontally and vertically. The sum

of the energy consumed by all operations must be lower than the UAV battery energy

capacity, which demands a precise location plan to extend the drone operational time.

Other sources of consumption such as environmental factors are not considered in this

thesis.

The fog node location problem consists of deciding on the locations where fog nodes

should be deployed. The main input to this problem is the set of potential locations for

hosting fog nodes, the workload demand, and the available budget for acquiring fixed and

UAV fog nodes. The output is the set of locations selected for the deployment of nodes as

well as the number of servers at each node. Additionally, the number of UAVs and their

flight plan should be determined. The primary goal is to process the maximum possible

amount of workload, and the secondary goal is to reduce the infrastructure cost.

6.3 Formulation

The fog node location problem is formulated as an optimization problem and is modeled as

a mixed-integer linear programming formulation. The model is bi-criteria and optimizes

the served workload as well as the deployment cost. The notation in Table 6.1 is used in

the formulation.

The model considers discrete time and T is the set of discretized intervals. The set of

all candidate locations for fog nodes is given by L. The workload demand is variable in

each location over time, indicated by Wlt. All fixed servers have the same capacity, their

cost and capacity are CS and KS, respectively, and UAVs cost and capacity are CU and

KU , respectively.

The output of the formulation is the workload served, the fixed servers used, number

of UAVs employed, their trajectories as well as their states during the evaluation. The

served workload is given by wlt for each location l and time t. The number of fixed servers

in each location l is indicated by nl, and the number of used UAVs is nu. U is set of all

possible UAVs. The total battery capacity of any UAV is denoted by E, and energy cost

for a trip between locations k and l is indicated by Ekl. The number of intervals required

by a UAV to travel between a location k to a location l is given by Dkl.

The states of UAVs are indicated by the variables ault, sult, fuklt, pf , and pl; ault
indicates that the UAV u is in processing state at location l during time t. Similarly, sult
indicates that the UAV u is inactive at location l and time t. Being inactive means that

the UAV is either in stand-by or in power-off state. A UAV plan starts in the turned-off

state; then, after being turned on, it can be in the other three states. If turned off or

the battery capacity has exhausted, it goes to the power-off state. The power-off state

is denoted by pfut and plut. If a UAV u remains in power-off state in the first T f time

96

Table 6.1: Notation used in the fog node location problem formulation.

Input parameters

Notation Description

General parameters

T Set of discrete time intervals: T = {1, 2, . . . , T}
L Set of candidate locations for fog nodes: L = {1, 2, . . . , L}
Wlt, l ∈ L, t ∈ T Workload at location l during time slot t

Cost

CS Cost of a single fixed server

CU Cost of a UAV carring a mobile server

C Available budget

Capacity

KS Capacity of a single fixed server

KU Capacity of a UAV mobile server

UAV parameters

U Set of available UAVs, U = {1, . . . , U}
E Total battery capacity of a UAV

EP Energy required by a UAV in processing state during one time

interval

ES Energy required by a UAV in stand-by state during one time in-

terval

Ekl, k, l ∈ L Energy consumption per time window required by a UAV to travel

between locations l and k
Dkl, k, l ∈ L Number of discrete time intervals required by a UAV to travel

between locations l and k

Decision variables

Notation Description

wlt, l ∈ L, t ∈ T Workload originating at location l ∈ L at time t ∈ T and processed

by the fog node

nl, l ∈ L The number of fixed servers deployed at the fixed fog node located

at l.
nu Number of required UAVs

iu, u ∈ U, l ∈ L, t ∈ T 1 if UAV u was in inactive, i.e. it was in stand-by state over all

time intervals; 0 otherwise

ault, u ∈ U, l ∈ L, t ∈ T 1 if UAV u is at location l at time t in processing state; 0 otherwise

sult, u ∈ U, l ∈ L, t ∈ T 1 if UAV u is at location l at time t in stand-by or power-off state;

0 otherwise

fuklt, u ∈ U, k ∈ L, l ∈
L, t ∈ {2, . . . , T}

1 if UAV u is traveling between locations k and l at time t; 0

otherwise

pfut, u ∈ U, t ∈ T 1 if UAV u is in power-off state at all time intervals t∗ such that

t∗ ≤ t ; 0 otherwise

plut, u ∈ U, t ∈ T 1 if UAV u is in power-off state at all time intervals t∗ such that

t∗ ≥ t ; 0 otherwise

97

intervals, pfut = 1 for all 1 ≤ t ≤ T f . Similarly, if a UAV u goes to power-off state at time

T l, then plut = 1 for all T l ≤ t ≤ T . The flying state is represented by the variable fuklt
that indicates whether the UAV u is traveling between locations k and l during time t.

Finally, if a UAV u is not required, i.e., if it remains inactive during all time intervals in

T, then iu = 1.

The formulation of the fog node location problem is given by Equations (6.1)–(6.18):

maximize
∑

l∈L

∑

t∈T

wlt (6.1)

minimize CS
∑

l∈L

nl + CUnu (6.2)

C
S
∑

l∈L

nl + C
Unu ≤ C (6.3)

wlt ≤ K
Snl +K

U
∑

u∈U

ault, l ∈ L, t ∈ T (6.4)

wlt ≤Wlt, l ∈ L, t ∈ T (6.5)

∑

k∈L

(

aukt + sukt +
∑

l∈L\{k}

fuklt

)

= 1, u ∈ U, t ∈ T (6.6)

ault + sult ≤ aul(t−1) + sul(t−1) +
∑

k∈L\{l}

fukl(t−1),

u ∈ U, l ∈ L, t ∈ {2, . . . , T}

(6.7)

fuklt ≤ auk(t−1) + suk(t−1) + fukl(t−1),

u ∈ U, k ∈ L, l ∈ L \ {k}, t ∈ {2, . . . , T}
(6.8)

aukv + sukv ≤ 1− ault − sult,

u ∈ U, k ∈ L, l ∈ L \ {k}, t ∈ T,

v ∈ {t+ 1, . . . , t+Dlk}

(6.9)

iu ≤
1

T

∑

l∈L

∑

t∈T

sult, u ∈ U (6.10)

iu >
(

∑

l∈L

∑

t∈T

sult

)

− T, u ∈ U (6.11)

pfut ≤
∑

l∈L

sult, u ∈ U, t ∈ T (6.12)

98

plut ≤
∑

l∈L

sult, u ∈ U, t ∈ T (6.13)

pfut ≤ pf
u(t−1), u ∈ U, t ∈ {2, . . . , T} (6.14)

plut ≤ plu(t+1), u ∈ U, t ∈ {1, . . . , T − 1} (6.15)

pfut + plut ≤ 1, u ∈ U, t ∈ T (6.16)

nu = U −
∑

u∈U

iu (6.17)

∑

t∈T

∑

l∈L

EA · ault+

∑

t∈T

(
∑

l∈L

ES · sult − pfut − plut)+

∑

t∈{2,...,T}

∑

k∈L

∑

l∈L\{k}

Ekl ·muklt ≤ E,

u ∈ U

(6.18)

The objective function in Equation (6.1) is the maximization of the served workload.

Equation (6.2) minimizes of the cost to build the infrastructure, considering the cost of

both fixed servers and UAVs. These goals are subject to the constraints given by Equations

(6.3)–(6.18). Equation (6.3) limits the cost of the infrastructure to the available budget.

Equation (6.4) guarantees that the workload served is smaller than the capacity of the

fog node, considering both fixed and UAV servers. Equation (6.5) limits the workload

served to the demand at each location in each time interval. Equation (6.6) guarantees

that every UAV is at exactly one single state at any moment. Equations (6.7)–(6.8) check

whether the transitions between states are valid considering time and location limitations.

In sequential time intervals, UAVs cannot change their location without going to travel

state (Equation (6.7)), and the travel state can only be reached if the UAV was in travel

state or in the source location in the previous time interval (Equation (6.8)). Equation

(6.9) guarantees that the minimum trip time is respected when a UAV flies between

different locations. Equations (6.10)–(6.11) check whether each UAV was inactive, i.e., in

stand-by over all intervals. Equations (6.12)–(6.16) guarantee the right value of pfut and

plut, identifying the intervals of power-off state. Equation (6.17) accounts nu, the number

of required UAVs. Finally, (6.18) guarantees that the autonomy of each UAV is respected

by summing the energy spent in each state and limiting it to the battery capacity.

The deployment planning given by this formulation is a network design problem, and,

as such, is typically solved off-line. However, solving this problem optimally using existing

solvers does not scale to large problem instances. The modeling of potential flight routes,

the location of UAVs at every time interval, and the UAVs activity/inactivity periods lead

99

to an exponential growth in the number of constraints. To circumvent these limitations,

a heuristic algorithm is proposed next.

6.4 UAV Fog Node Location Algorithm

This chapter proposes a heuristic algorithm called the UAV Fog Node Location (UFL)

algorithm. Figure 6.1a shows its flowchart. The algorithm starts by solving the formu-

lation with only fixed nodes, and the pre-defined budget limiting the number of servers

and nodes that can be deployed. Based on the solution obtained, the algorithm identifies

servers that can potentially be replaced by UAVs; these servers are typically underutilized

and deployed only to deal with peak demands. The UFL algorithm then attempts to use

UAVs to cover several locations at different times to reduce the deployment cost. The

algorithm considers the ratio between the cost of UAVs and the cost of fixed servers.

The first step of the algorithm considers only fixed nodes with the result obtained

using an optimization solver (Step 1). The next step is the identification of servers to be

replaced (Step 2). For each fog node, the algorithm identifies if a server can be replaced by

a UAV, a situation which arises if a server is not processing requests for all time intervals,

the UAV processing capacity is greater than the offered workload, and the energy that will

be consumed by the UAV is less than its available battery capacity. The energy needed

is the sum of the energy spent in processing and that in stand-by in periods associated

with the potential replacement. The identified servers are then replaced by UAVs (Step

3).

To reduce the infrastructure cost (secondary objective), all pairs of UAVs are consid-

ered to be replaced by a single UAV (Step 4). Two UAVs can be replaced by a single

one if three conditions are fulfilled. First, the two UAVs must be in processing state in

different time periods. Second, the time for traveling between the two locations is less

than the time elapsed between the end of the processing at the node for which the UAV

departs and the beginning of processing at the destination node. Third, the UAV battery

should be sufficient to support full operation, including the flight between the fixed fog

nodes. If all conditions are met and after serving the workload at a location, a UAV can

fly to another location to serve the workload at the new location.

The algorithm evaluates a potential reduction in the number of UAVs (Step 5). Such

an evaluation is carried out by considering a graph in which each UAV is a vertex and each

potential pair of locations for replacement is an edge of the graph. Then, the algorithm

finds maximal cliques, which determines the minimum number of UAVs to be deployed.

If the solution still leaves a backlog of unprocessed workload and the number of UAVs has

been reduced in the last step, the unused budget can be employed to further reduce the

unserved workload (Step 6).

Figure 6.1b exemplifies the steps involved in planning fog nodes in five locations. The

budget comprises six servers, and the solution obtained in Step 1 indicates fog nodes in

locations A and B with two servers each due to their larger processing demand; other

locations have a low processing demand, with only one server in locations C and E. Four

fixed servers are identified as being underused in Step 2, and are then replaced by UAVs

100

(a) Algorithm flowchart.

(b) Example of execution.

Figure 6.1: UFL algorithm.

101

(Step 3). In Step 4, the algorithm detects the pairs of servers that have complementary

processing demands in time, and that the battery of a single UAV being adequate to

support the operation in both locations; the dashed lines indicate these pairs. Step 5

shows the graph of UAVs, which contains two maximal cliques. Locations A, B, and

C can be served by a single UAV, i.e., during a discretized time interval, a UAV can

either process the workload in one location or fly to another location to provide service

at the destination. Since one UAV has replaced three fixed servers, an extra server can

be deployed in location D, thus increasing the overall workload served (Step 6). The final

solution has three fixed servers and two UAVs, thus employing fewer devices than the

initial solution.

The UFL algorithm, as presented here, considers that any fixed server can be replaced

by a UAV server. If the price of a UAV is greater than that of a fixed server, the solution

obtained may not always be worth adopting. As a consequence, alternative solutions

should be obtained which consider different ratios between the cost of a UAV node and

that of a fixed node. Such an analysis facilitates long term planning for the evaluation

of the infrastructure, thus helping avoid unnecessary expenses in the deployment of the

original infrastructure.

The complexity of the UFL algorithm depends on Step 1, which has an exponential

time complexity due to the exact solution of fixed node location problem. Nonetheless,

similar to the work in Chapter 4, this operation can be quickly performed by a solver.

Therefore, although the time complexity of the UFL algorithm is exponential, it can

obtain scalable solutions to the fog node location problem.

6.5 Performance Evaluation

To answer the question of whether UAVs are worth adopting for replacing fixed fog nodes,

extensive simulations of the UFL algorithm involving realistic scenarios were carried out.

Subsection 6.5.1 describes the experimental settings adopted, and Subsection 6.5.2 dis-

cusses numerical results.

6.5.1 Experimental settings

The parameter values defining the scenarios in the simulations are summarized in Ta-

ble 6.2. The UAVs considered are rotary-wing drones which have the capacity to land

in limited spaces. The characteristics of the simulated UAVs are based on real drones

described in previous work [3, 75]. The consumption model is the one derived in [3], de-

scribed in Subsection 2.5.3. Since the UAV used in [3] does not have a powerful battery,

the present evaluation also considers different battery models [75]. Moreover, two other

parameters were varied as a function of the fixed servers: the UAV processing capacity

and UAV price. The locations and the workload demands were based on the data set [8]

reviewed in Section 3.5. Similar to the evaluation in Chapter 4, the BSs are used as the

candidate locations for fog nodes, with 1150 locations. The workload is the one taken

from the data set [8], without considering individual requests. 144 time intervals with

10-minute length are considered, evaluating 24 hours of demands.

102

Table 6.2: Parameters adopted in the UAV simulations. H refers to the vertical distance
traveled, either upwards or downwards.

Operation Energy consumption

Fly horizontally 245.2815 W
Fly vertically up (−16.9396H2 + 216.6944H − 157.9473) J
Fly vertically down (4.6817H2 − 11.9708H + 135.3118) J
Stand-by state 8.2637 W
Processing state 15.7637 W

Operation Speed

Horizontal 10 m/s
Vertical up/down 1 m/s

Variable parameters Values

Battery capacity 4500 mAh/14.8 V, 27000 mAh/22.2 V, and 34200 mAh/22.8 V
Processing capacity 50 % and 100 % of a fixed server
UAV price 1, 2, 3, and 4 times the price of a fixed server

6.5.2 Numerical results

The UFL algorithm was coded in Python, and its first step (bi-criteria formulation for

the deployment of fixed nodes only) was solved using the Gurobi Optimizer solver. The

results produced by the UFL algorithm were compared to those obtained by the solver.

Two metrics were evaluated, related to the two objectives of the problem: the acceptance

ratio of workload and the number of devices deployed (servers and UAVs). The first

metric is the ratio between the workload served and the total workload requested by the

end users. The second metric is the number of servers used for the solution using only fixed

nodes, and the number of servers and UAVs employed computed by the UFL algorithm.

Sixty executions were carried out to derive each value with a 95 % confidence interval.

The number of available servers for deployment (N) was varied from 1 to 2048. UAV C

denotes the ratio between the cost of a UAV and the cost of a fixed server. Similarly,

UAV P is the ratio between the processing capacity of a UAV server and that of a fixed

server.

The acceptance ratio using UAVs with the most powerful battery and the same capac-

ity as a fixed server is shown in Figure 6.2. The acceptance ratio increases until N = 1280,

when servers are sufficient to deal with all the demand. The demand served depends pre-

dominantly on the fixed infrastructure capacity due to the limited autonomy of UAVs to

stay powered for long periods. Nevertheless, improvements were noticed when UAVs and

fixed servers have the same cost and N ≥ 128 since UAVs could be widely deployed. In

these cases, UAVs improved the acceptance of workload and, in some cases (N ≥ 1536),

provided 100 % acceptance of workload. Higher costs of UAVs limited their number con-

siderably and, as a consequence, the workload acceptance did not change in relation to

deployment with only fixed nodes.

The results described below show the impact of the cost of UAVs, UAV processing

capacity, and their autonomy on the deployment. Variations in these parameters do

not make significant changes in the workload acceptance when compared to those already

103

1
2

4
8

16
32

64
12

8
25

6
51

2
10

24
12

80
15

36
17

92
20

48
Av

ai
la

bl
e

se
rv

er
s (

N)

10
0

10
1

10
2

Served demand (%)

0.31

0.62

1.25

2.49

4.94

9.59

18.09

32.23

52.58

77.53

97.04

99.80

99.99

99.99

99.99

0.31

0.62

1.25

2.49

4.94

9.59

18.09

32.28

52.94

78.14

97.44

99.90

100.00

100.00

100.00

0.31

0.62

1.25

2.49

4.94

9.59

18.09

32.23

52.58

77.53

97.04

99.81

99.99

99.99

99.99

0.31

0.62

1.25

2.49

4.94

9.59

18.09

32.23

52.58

77.53

97.04

99.80

99.99

99.99

99.99

0.31

0.62

1.25

2.49

4.94

9.59

18.09

32.23

52.58

77.53

97.04

99.80

99.99

99.99

99.99

No
 U

AV
U
AV

C
=

1
U
AV

C
=

2
U
AV

C
=

3
U
AV

C
=

4

F
ig

u
re

6.
2:

A
cc

ep
ta

n
ce

ra
ti

o
fo

r
th

e
34

20
0

m
A

h
/2

2.
8

V
b
at

te
ry

an
d
U
A
V

P
=

1.

104

1 2 4 8 16 32 64 128 256 512 10241280153617922048
Available fixed nodes (N)

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f p
ro

ce
ss

in
g

no
de

s Fixed nodes only deployment
Fixed nodes in hybrid deployments
UAVs nodes in hybrid deployments

Figure 6.3: Number of servers and UAVs used for the 34200 mAh/22.8 V battery, UAV C =
1, and UAV P = 1.

shown (Figure 6.2). This is due to the fact that the workload acceptance is predominantly

optimized by the fixed servers, with only slight improvements by the effect of using UAVs.

In line with these results, only number of UAVs and servers are considered in the following

experiments.

Figures 6.3–6.6 show the number of employed devices for an optimal deployment with

only fixed nodes as well as for hybrid deployments (fixed servers and UAVs) obtained

by the use of the UFL algorithm. Figure 6.3 shows the results for the greatest battery

capacity, with UAV cost and processing capacity equal to those of fixed servers. For

N < 128, almost all fixed servers in fog nodes were heavily used for long periods of time

so that replacing servers with UAVs is not possible. When a larger number of devices is

available for deployment, a large number of fixed servers is replaced by UAVs, which shows

that, despite the large number of locations (1150), only about 200 fixed servers could not

be replaced by aerial servers, i.e. an infrastructure with only 20 % of the locations being

fixed nodes and UAVs serving the remaining 80 % of the locations.

Nowadays, UAVs cost is three to four times the cost of a traditional fixed server, and,

under these circumstances, the employment of several UAVs is not advantageous. Figure

6.4 shows the results for UAVs two to four times more expensive than a fixed server. Even

for a low cost (Figure 6.4a) and N ≤ 1280, the average number of employed UAVs is very

close to zero. This low number of flying servers is due to the fact that using the same

UAV to serve two different locations is not always possible because of the required flight

time between the locations, which led to quickly drain of the UAV battery. UAVs with

costs between three and four times the price of a fixed were seldom used, showing that

the UAV price is decisive to be considered in large deployments.

The results considering UAV servers having limited processing capacity compared to

a fixed server are shown in Figure 6.5. The greater the capacity, the larger the number of

servers replaced by UAVs, since UAVs with a limited processing capacity cannot always

deal with the peak demands supported by a fixed server. The increase in the processing

capacity and the increase in the number of UAVs is not linear: a four-fold increase in

the UAV processing capacity (25 % to 100 %, Figure 6.5a) leads to an increase in less

105

1 2 4 8 16 32 64 128 256 512 10241280153617922048
Available fixed nodes (N)

0

200

400

600

800

1000

1200

1400
Nu

m
be

r o
f p

ro
ce

ss
in

g
no

de
s Fixed nodes only deployment

Fixed nodes in hybrid deployments
UAVs nodes in hybrid deployments

(a) 34200 mAh/22.8 V battery, UAV C = 2 and UAV P = 1.

1 2 4 8 16 32 64 128 256 512 10241280153617922048
Available fixed nodes (N)

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f p
ro

ce
ss

in
g

no
de

s Fixed nodes only deployment
Fixed nodes in hybrid deployments
UAVs nodes in hybrid deployments

(b) 34200 mAh/22.8 V battery, UAV C = 3 and UAV P = 1.

1 2 4 8 16 32 64 128 256 512 10241280153617922048
Available fixed nodes (N)

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f p
ro

ce
ss

in
g

no
de

s Fixed nodes only deployment
Fixed nodes in hybrid deployments
UAVs nodes in hybrid deployments

(c) 34200 mAh/22.8 V battery, UAV C = 4 and UAV P = 1.

Figure 6.4: Number of servers and UAVs used for the 34200 mAh/22.8 V battery, UAV P =
1, and different values of UAV C .

106

1 2 4 8 16 32 64 128 256 512 10241280153617922048
Available fixed nodes (N)

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f p
ro

ce
ss

in
g

no
de

s Fixed nodes only deployment
Fixed nodes in hybrid deployments
UAVs nodes in hybrid deployments

(a) 34200 mAh/22.8 V battery, UAV C = 1 and UAV P = 0.25.

1 2 4 8 16 32 64 128 256 512 10241280153617922048
Available fixed nodes (N)

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f p
ro

ce
ss

in
g

no
de

s Fixed nodes only deployment
Fixed nodes in hybrid deployments
UAVs nodes in hybrid deployments

(b) 34200 mAh/22.8 V battery, UAV C = 1 and UAV P = 0.50.

Figure 6.5: Number of servers and UAVs used for the 34200 mAh/22.8 V battery, UAV C =
1, and different values of UAV P .

than 5 % in the number of UAVs for N > 1280, while the two-fold increase from 50 %

to 100 % (Figure 6.5b) leads to an increase in less than 10 %. This is explained by the

pattern of the frequency of peak demands. Servers replaced by UAVs are seldom used,

and, therefore, they deal with rather sporadic demands. Given these low demands, UAVs

with powerful computers are not required, making UAVs with 50 % of the fixed server

capacity significantly useful.

The final analysis concerns the battery capacity, with results for different battery

capacities presented in Figure 6.6. Results for an intermediate battery (Figure 6.6b) did

not lead to great differences in the results, but the smallest battery capacity (Figure 6.6a)

has a very limited autonomy, thus it has little use in such an infrastructure. Only when

all the demand was met (N ≥ 1536) can approximately 25 UAVs replace fixed servers.

The problem is the autonomy of the batteries, which prevents the replacement of a single

underloaded server with a UAV. To further increase the number of UAVs, the battery

life would have to be sufficient to maintain the UAVs turned on for several hours, which

is not a realistic assumption for battery-constrained UAVs. Technologies for charging

batteries without interrupting the operation can help to extend UAVs operation in fog

107

1 2 4 8 16 32 64 128 256 512 10241280153617922048
Available fixed nodes (N)

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f p
ro

ce
ss

in
g

no
de

s Fixed nodes only deployment
Fixed nodes in hybrid deployments
UAVs nodes in hybrid deployments

(a) 4500 mAh/14.8 V battery, UAV C = 1 and UAV P = 1.

1 2 4 8 16 32 64 128 256 512 10241280153617922048
Available fixed nodes (N)

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f p
ro

ce
ss

in
g

no
de

s Fixed nodes only deployment
Fixed nodes in hybrid deployments
UAVs nodes in hybrid deployments

(b) 27000 mAh/22.2 V battery, UAV C = 1 and UAV P = 1.

Figure 6.6: Number of servers and UAVs used for UAV C = 1, UAV P = 1, and different
battery capacities.

infrastructures.

A comparison between the UFL algorithm and the dispatching scheme in [99] was

carried out. Figure 6.7 depicts the mean percentage difference in the number of UAVs

demanded by the two schemes, number of UAVs required by [99]−number of UAVs required by UFL
number of UAVs required by UFL

× 100.

The scheme in [99] differs from UFL in three ways: first, it assumes unlimited energy;

second, it can dispatch UAVs to process the workload at every time interval without evalu-

ating future demands; and third, UAVs do not fly between different locations. We imposed

battery limitation in the scheme in [99] for the sake of fair comparison. We denoted the

original solution with battery limitation “single location”. We also implemented a version

that allows a UAV to serve multiple locations, denoted “multiple locations”. UAVs are

used in multiple locations if the battery can support the flight and the processing of the

workload at the destination.

The results indicate that most fixed servers process heavy loads in small infrastruc-

108

1 2 4 8 16 32 64 128 256 512 1024 1280 1536 1792 2048
Available servers (N)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
M

ea
n

pe
rc

en
tu

al
 d

iff
er

en
ce

 in
 th

e
nu

m
be

r o
f U

AV
s (

%
) Multiple locations; 4500 mAh/14.8 V battery

Single location; 4500 mAh/14.8 V battery
Multiple locations; 34200 mAh/22.8 V battery
Single location; 34200 mAh/22.8 V battery

Figure 6.7: Difference in the number of UAVs required by the dispatching scheme in [99].
Results obtained for UAV C = 1, and UAV P = 1.

tures (N ≤ 32), which does not create opportunities for replacing fixed nodes with UAVs.

For large infrastructures (N ≥ 1536), the scheme in [99] requires a greater number of

UAVs when compared to UFL. When UAVs have batteries with large capacity, the dis-

patching scheme employs up to 2 % more UAVs to process the same workload. Moreover,

for batteries with small capacity, the scheme in [99] requires, on average, 7 % more UAVs

when they can serve only a single location and almost 11 % when they can serve mul-

tiple locations. The battery capacity has an impact on the number of required UAVs,

since flights consume large amounts of energy. Such consumption reduces the UAV oper-

ational time, especially with a small battery capacity, preventing the processing of future

workload, and, consequently, calls for more UAVs. The UFL algorithm produces more ef-

ficient deployments due to its consideration of energy consumption and planning of UAVs

trajectories.

The present findings have revealed advantages and disadvantages in relation to the

adoption of such hybrid infrastructures with both fixed and UAV nodes. One advantage

is that hybrid infrastructures can simplify the deployment of fixed nodes where processing

demands are low, thus reducing costs for deploying and maintaining nodes with underused

servers continuously turned on. However, as long as UAV prices are higher than those of

traditional servers, their use will remain limited. In case of price reduction, UAVs in fog

infrastructures may become much more wide-spread.

6.6 Conclusions

This chapter has investigated the employment of unmanned aerial vehicles as fog nodes by

solving a fog node location problem. By considering UAVs in this early stage, it is possible

to plan the best deployment and avoid placing fixed servers in locations with low demand.

109

This chapter has described the UFL algorithm which first solves the problem optimally

by considering only fixed servers, and then tries to replace underutilized servers by UAVs,

which can potentially serve more than one location. Results were obtained by varying

different UAV characteristics and using a publicly available dataset. The UFL algorithm

can be used for long-term planning of large fog infrastructures. Results show that a

significant portion of the infrastructure could be replaced by UAVs depending on their

price evolution. An additional benefit of using UAVs is the energy saved compared to an

infrastructure with only fixed servers constantly powered all the time. This investigation

has revealed that such a deployment depends on the prices of UAVs being close to that

of traditional servers. Currently, UAVs cost three to four times more than traditional

servers, but prices are expected to decrease in the future as a function of mass production

and wide use of unmanned aircraft.

110

Chapter 7

Location of Fog Nodes mounted on

Rotary-wing UAVs

7.1 Overview

UAVs vary in size, aerodynamics, and autonomy. One type of UAV is the rotary-wing

UAV [105, 99, 23, 75, 88, 82, 25, 110], a versatile aircraft that operates either in the air or

on the ground since it can both hover and fly vertically. Despite the advantages, rotary-

wing UAVs typically have a very limited autonomy due to the high energy consumption

for propulsion, and their operation must be carefully planned to maximize operational

time.

In order to plan an efficient fog infrastructure with UAVs, this chapter attempts to

answer the following question: what should be the location and operation period of fog nodes

mounted on rotary-wing UAVs to maximize the number of end-users served while reducing

the delay between ground nodes and UAVs? To answer this question, this chapter solves

the fog node location problem by considering rotary-wing UAVs. Several papers [74, 52, 64,

99, 114] dealt with fog nodes without taking the autonomy of UAVs in large deployments

into consideration nor fully exploring the potential of rotary-wing UAVs. To fill these gaps,

this chapter proposes a solution to the location problem and evaluates different modes

of operation for rotary-wing UAVs as well as different latency constraints. In a more

realistic evaluation, characteristics of real drones are considered and energy consumption

is accounted for. Ways of extending operational time to enhance user service are also

discussed. A fog computing environment with latency requirements of a few milliseconds

was considered, supporting a broad range of applications. Such an environment calls for

high data transmission rates between aerial fog nodes and ground users.

The fog node location is an optimization problem and this chapter formulates it as an

integer linear programming (ILP) model. The model has a large number of constraints and

decision variables, limiting the scalability to obtain optimal solutions, which has motivated

the proposal of a heuristic called Sequential UAV Fog Node Location (SUL). Peaks of user

requests tend to be concentrated in a few regions and last for limited times. This suggests

that deploying UAVs into these locations can cope with the varying demands for resources.

The SUL algorithm builds a solution to the location problem by greedily deploying one

111

UAV at a time into locations with high demands. It is scalable and can be used to

plan large fog infrastructures. We performed simulations using real data, representing

time and space variable demands of users collected in a cellular network, to assess the

effectiveness the SUL algorithm. Numerical results show that UAVs can support strict

delays, but their operational time is highly impacted by hovering, which indicates that

the employment of landing spaces can significantly reduce deployment costs. Moreover,

the UAV hovering altitude is assessed, and results showed that higher altitudes required

more UAVs to serve the same number of users due to the different energy. However, UAVs

at lower altitudes can be quite useful to provide nearby users with fast communications.

Results also validated the performance of the SUL algorithm by comparing it with the

optimal solution for small instances of the problem.

The remainder of this chapter is organized as follows. Section 7.2 introduces the system

model adopted. Section 7.3 presents the linear programming formulation of the problem.

Section 7.4 introduces the UAV Fog Node Location Algorithm. Section 7.5 presents the

experimental setting and numerical evaluation of the SUL algorithm. Lastly, Section 7.6

concludes this chapter.

7.2 System Model

Fog computing complements the traditional cloud infrastructure by supporting low-latency

requirements of end-user applications; fog nodes are usually deployed in different geo-

graphical locations to cope with variable demands. Users run various applications on

mobile devices and typically visit various locations during the day. A device can send a

request using the wireless interface to a fog node, transferring the workload to the fog

node for processing, and the results are sent back to the user. Most fog nodes are small

fixed facilities that host processing devices geographically close to users. However, when

there is no infrastructure or when it is overloaded, a UAV equipped with an onboard

computer can be used to process the requests solicited by end-users.

The aim of this chapter is to provide tools for the planning of an aerial infrastructure

that will complement the resources of terrestrial fog nodes. The aerial nodes to be con-

sidered are rotary-wing drones that can land on limited spaces or hover maintaining the

same position. The UAVs are equipped with onboard computers, in charge of processing

end-user requests, as well as battery. Connections to ground nodes are wireless and the

channel conditions depend on the distance and line-of-sight (LoS) between the UAVs and

the ground nodes. The infrastructure provider needs to decide what areas the UAVs will

cover. A UAV will be dispatched to the given location at the specified time and will oper-

ate until there are no more requests in the area, or the battery can no longer support the

processing of requests. UAVs do not fly between locations because, as seen in the previous

chapter, flying considerably reduces their potential time of operation, which would lead

to the requirement of a larger number of UAVs.

UAVs can be in three different states: turned-off, stand-by, and processing. In the

turned-off state, a UAV does not consume energy and cannot be used, while in the stand-

by state it is turned on but does not process any workload. In the processing state,

112

Figure 7.1: Visual example of the system model.

the onboard computer processes users’ requests. Rotary-wing UAVs can operate either

on the ground or hovering. When on the ground, UAVs save the energy required for

propulsion, thus extending operational time. When hovering, energy consumption is

high, but connectivity with more distant users on the ground is improved by increasing

LoS links. In case a UAV switches to stand-by state, it can benefit from landing to save

energy until it will again be required to process data, which will only be possible if on

a rooftop or a drone landing pad. This chapter considers different deployment scenarios

that define if the UAV remains on the ground constantly, only during stand-by, or the

UAV is constantly hovering.

While in processing state, a UAV can receive requests submitted by end-user devices.

Mobile devices submit requests first to a nearby BS. The UAV connects to this BS, receives

the workload to be processed, process it, and sends the results back to the BS. All requests

have delay constraints that limit the time available for transferring the workload; if a UAV

is too far from the BS, the wireless channel may also prevent a UAV from processing the

request.

Figure 7.1 illustrates the system model, with four BSs, three UAVs, and various mobile

users. The UAV at the top of the figure is hovering and providing its computational

resources to two ground BSs, processing the requests of two users. Since it is flying, the

line-of-sight with the ground nodes is improved and it can communicate with more distant

BSs. However, the delay in communication with distant BSs can be long due to the path

loss, thus preventing the UAV from processing distant requests. The UAV at the bottom

of the figure is also in the processing state, but it has landed to reduce the energy required

for propulsion. The UAV in the left part of the figure is in the stand-by state, although

it will eventually be switched to the processing state.

This chapter introduces a solution for a specific fog node location problem that de-

termines where fog nodes mounted on UAVs should be deployed from a set of candidate

locations. The location problem is multi-criterial; the main goal is to process the highest

113

number of requests; a second objective is to reduce the costs, i.e., to minimize the number

of UAVs required; a third goal is to reduce overall delay, favoring locations where UAVs

will remain closer to the demands, favoring good wireless channel conditions for aerial

fog nodes and BSs. The input for the problem is the set of potential locations where

UAVs can hover or land, the requests to be met, their origin and time, and the number of

available UAVs for deployments. The output is the number of UAVs used, their locations,

and their states throughout all time intervals. If the fog node location problem is solved,

UAVs can be deployed to the best positions, thus improving the service for applications

that require low latency.

7.3 Formulation

This section formulates the fog node problem as an ILP model. The solution for the

problem includes the locations where UAVs will be deployed for the fulfillment the three

objectives of the problem. The mathematical notation in Table 7.1 will be used in the

formulation of the problem. Pre-processing of data is required: the altitude and coordi-

nates of UAV candidate positions and BSs are used to calculate physical distance and,

consequently, the wireless channel state. The constant Drl is the transmission delay for

processing the request r by a UAV located at location l; the value is calculated using

the channel model and the number of bytes to be transmitted. Another pre-processing

requirement is the energy consumed by the UAV either in processing or in the stand-by

state. The formulation assumes discretized time, and the energy model is used to calcu-

late the power of a UAV, with the energy consumption calculated for the interval when

in processing (EPROC) and in stand-by (ESTAND) states.

The ILP model is given by Equations (7.1)–(7.14):

maximize
∑

r∈R

∑

l∈L

µrl (7.1)

minimize
∑

u∈U

∑

l∈L

γul (7.2)

minimize
∑

r∈R

∑

l∈L

Drl µrl (7.3)

∑

l∈L

µrl ≤ 1, ∀r ∈ R (7.4)

µrlDrl ≤ DMAX

r
, ∀r ∈ R, ∀l ∈ L (7.5)

∑

r∈R|Xrt=1

µrlPr ≤ K

∑

u∈U

p′
ult
, ∀l ∈ L, ∀t ∈ T, (7.6)

put + sut + istart
ut

+ iend
ut

= 1, u ∈ U, t ∈ T (7.7)

114

Table 7.1: Notation used in the fog node location problem formulation.

Notation Description

Input

T Set of discrete time intervals: T = {1, 2, . . . , T}
L Set of candidate locations for UAVs: L = {1, 2, . . . , L}
R Set of requests: R = {1, 2, . . . , R}
U Set of UAVs for deployment: U = {1, 2, . . . , U}
Xrt, r ∈ R, t ∈ T 1 if request r is made at time t, 0 otherwise

Drl, r ∈ R, l ∈ L delay if request r is processed at the location l

DMAX
r Maximum delay tolerated by request r

Pr Processing requirement of request r in processing units

K Capacity of a UAV server in processing units per time interval

EBAT Total battery capacity of a UAV

EPROC Energy required by a UAV in processing state during one time

interval

ESTAND Energy required by a UAV in stand-by state during one time

interval

Decision variables

γul, u ∈ U, l ∈ L 1 if UAV u is assigned to location l, 0 otherwise

µrl, l ∈ L, l ∈ L 1 if request r is processed by a UAV at l, 0 otherwise

put, u ∈ U, t ∈ T 1 if UAV u is in processing state at time t, 0 otherwise

sut, u ∈ U, t ∈ T 1 if UAV u is in stand-by or at time t, 0 otherwise

istartut , u ∈ U, t ∈ T 1 if UAV u is in a turned-off state at all time intervals t∗ such

that t∗ ≤ t, 0 otherwise

iendut , u ∈ U, t ∈ T 1 if UAV u is in a turned-off state at all time intervals t∗ such

that t∗ ≥ t, 0 otherwise

p′
ult

, u ∈ U, l ∈ L, t ∈ T 1 if UAV u is at location l at time t in processing state, 0

otherwise

115

put + sut ≤ pu(t−1) + su(t−1) + istart
u(t−1), u ∈ U, t ∈ T, t 6= 1 (7.8)

istart
ut
≤ istart

u(t−1), u ∈ U, t ∈ {2, . . . , T} (7.9)

iend
ut
≤ pu(t−1) + su(t−1) + iend

u(t−1), u ∈ U, t ∈ {2, . . . , T} (7.10)

γul + put − 1 ≤ p′
ult
, u ∈ U, l ∈ L, t ∈ T (7.11)

2p′
ult
≤ γul + put, u ∈ U, l ∈ L, t ∈ T (7.12)

∑

l∈L

γul ≤ 1, ∀u ∈ U (7.13)

EPROC
∑

t∈T

put + ESTAND
∑

t∈T

sut ≤ EBAT , u ∈ U (7.14)

The formulation has three objective functions (Equations (7.1)–(7.3)). Equation (7.1)

maximizes the number of processed requests. Equation (7.2) minimizes the number of

employed UAVs (budget). Equation (7.3) minimizes the delay. Prioritization of these ob-

jectives is possible, so a multi-level programming approach has been adopted (Section 2.4),

with the highest priority objective being the first addressed, and the others are optimized

only considering the solutions in the Pareto front.

Equations (7.4)–(7.14) model the constraints of the problem. Equation (7.4) ensures

that requests are processed only once. Equation (7.5) guarantees the maximum delay of

a request is not surpassed, while Equation (7.6) guarantees that the requests processed

at a location will be limited to the capacity of the UAVs in the processing state at the

location and the time interval. The states of the UAVs and their transitions are given by

Equations (7.7)–(7.12). Equation (7.7) guarantees that any UAV is in a single state at any

given time, while Equations (7.8)–(7.10) model the state transitions. Equations (7.11)–

(7.12) define the correct value of variable p′
ult

. Finally, Equation (7.13) guarantees that

a UAV will be assigned to only one location, while Equation (7.14) guarantees that the

energy consumed by any UAV is not greater than the battery capacity.

This formulation was coded in a solver, which was able to handle simulations for a

few UAVs. This scalability issue is the result of the exponential growth of the number of

constraints in the model. If there is a single UAV to be deployed, there are L possible

locations for this deployment. However, deploying two UAVs at the L possible locations

leads to L2 possibilities. In general, for U UAVs and L locations, LU pairs of UAVs

and locations must be analyzed. Inputs with several requests and UAVs impose heavy

processing load to the solver, and solutions for large networks cannot be obtained, even

with days of computation.

116

7.4 Sequential UAV Fog Node Location

This section presents the Sequential UAV Fog Node Location (SUL) algorithm which can

obtain an efficient solution for the fog node location problem. The algorithm optimizes the

same objectives of the ILP model while providing a scalable heuristic. The SUL algorithm

has a greedy approach to achieve these goals. To maximize the number of processed

requests, the algorithm takes advantage of the patterns of demands. The number of

requests vary with time and location in a non uniform way, with peaks in demands

common and tending to take place in small areas and last for short periods. Therefore,

locations and time intervals in which peaks of demands take place should receive fog nodes

first. The SUL algorithm addresses these peaks using a greedy approach.

Instead of considering all possible combinations of UAVs and locations, the SUL al-

gorithm builds the solution by sequentially placing UAVs. The first deployed UAVs will

process the largest possible number of requests. Such an operation is more scalable than

the ILP formulation in various ways. First, the second objective (reduction of costs) is

not optimized for each iteration, but rather addressed by stopping the SUL algorithm

when all requests have been processed to avoid the employment of unnecessary UAVs.

Second, the number of Constraints (7.7)–(7.14) is reduced by a factor of U . Third, the

number of pairs of UAV and locations analyzed is greatly reduced, from LU in the ILP

model to L · U . The SUL algorithm has at most U iterations, and a single UAV can be

matched to L locations, thus, at the end of the SUL algorithm, a maximum of L ·U pairs

will have been analyzed, whereas the ILP solver will have analyzed LU pairs. Finally, the

SUL algorithm starts with R requests, but this number decreases for each iteration, thus

reducing the number of Constraints (7.4)–(7.5). A direct consequence of this reduction in

complexity makes the SUL algorithm scalable, yet producing good results when compared

to the ILP model.

The SUL algorithm has the same objectives of the ILP model. The first objective

(number of requests processed, Equation (7.1)) as well as the third one (minimization of

delay, Equation (7.3)) are optimized during each iteration. When solving the location

problem with a single UAV, the fog node is allocated to a location that maximizes the

number of requests processed (first objective). If two or more locations could maximize

this objective, the algorithm chooses the one where the UAV minimizes the delay of

the processed requests (third objective). The second objective (minimization of costs,

Equation (7.2)) is implemented by avoiding unnecessary UAVs in the solution: once all

requests have been processed, the SUL algorithm terminates.

Algorithm 7.1 details the SUL algorithm, which consists of an initialization phase

(Line 1), followed by a main loop (Line 2). For each iteration, a single UAV is positioned

using the proposed formulation. Requests served by this UAV are not considered during

further iterations, this reduces the number of locations to be served by UAVs in future

iterations. The variable availableUAV s stores the number of available UAVs, initialized

with the value U in Line 1, and updated for each iteration (Line 5). The main loop

(Line 2) performs two operations. The first obtains an exact solution to the problem

using a single UAV (Line 3) using the same formulation from the Section 7.3. The second

objective (Equation (7.2)) is not considered at this stage, since only a single UAV is

117

considered (U = 1). The second operation is to update the set of requests left unserved,

removing the ones processed by the UAV that has been just deployed. The algorithm

continues until the entire budget has been consumed (availableUAV s = 0) or all requests

have been processed.

1 availableUAV s← U ;

2 while availableUAV s > 0 and R 6=Ø do

3 Solves single-UAV formulation;

4 Removes requests r from R if µrl = 1 for any l ∈ L;

5 availableUAV s← availableUAV s− 1;

Algorithm 7.1: SUL algorithm.

In the SUL algorithm, an exact solution of the single-UAV formulation is obtained

up to U times. These exact solutions require an exponential time complexity. Therefore,

the SUL algorithm has an exponential complexity, but its design allows it to be scalable,

different from solving the complete formulation presented in Section 7.3.

7.5 Performance Evaluation

Evaluating a fog node location solution for real deployments is a hard and costly task due

to the large number of UAVs and requests. To evaluate the potential gains from using

rotary-wing UAVs as fog nodes, the formulation in Section 7.3 and the SUL algorithm

were coded using Python and the Gurobi Optimizer solver. This section discusses the

results obtained from several simulations and is organized as follows. First, this section

presents the simulation settings: UAV deployment scenarios, energy and channel models

(Subsection 7.5.1), and workload (Subsection 7.5.2). Last, Subsection 7.5.3 validates

the SUL algorithm by comparing its results with those obtained by the ILP model, and

Subsection 7.5.4 discusses the results of the employment of rotary-wing UAVs as fog nodes.

7.5.1 UAV characterization

Rotary-wing UAVs can operate in a variety of setups by changing their hovering height

or operating on the ground. On the ground, UAVs save a considerable amount of en-

ergy. However, landing is not always possible and, when it is possible, it tends to reduce

connectivity with distant nodes. Therefore, we evaluated five different UAV deployment

scenarios.

Table 7.2 summarizes the deployment scenarios, indicating if a UAV is on the ground

or hovering during the stand-by and processing states. In the ground deployment, UAVs

are on the ground during both stand-by and processing states, using a landing drone

pad close to the BS at 25 meters in height. In the scenarios identified by hoverH, UAVs

hover during stand-by and processing states, with the height H in meters during hovering.

Finally, in the scenarios identified by mixH, the UAVs remain on the ground during stand-

by state, but hover at height H during the processing state .

The energy consumption of the UAV was calculated using the power models derived

in [3], detailed in Subsection 2.5.3. The estimated power P (h) in watts for hovering

118

Table 7.2: UAV deployments.

stand-by state processing state

ground on the ground on the ground

hover30 hovering at 30 m hovering at 30 m

hover50 hovering at 50 m hovering at 50 m

mix30 on the ground hovering at 30 m

mix50 on the ground hovering at 50 m

depends on the height h (in meters) and is calculated as P (h) = 13.0397h + 196.8490.

The energy for the processing state is calculated as the energy for stand-by, added to

the energy consumed by a Jetson TX2, a typical onboard computer for drones, with an

average of 7.5 W power. A 34200 mAh/22.8 V battery was considered [75].

The propagation delay is calculated using the number of bits to be transmitted and

the data rate of the channel model. The wireless channel state is modeled by the path

loss model proposed by 3GPP [2], described in Subsection 2.5.4. The path loss is used to

calculate the channel capacity (in bits per second) using the Shannon-Hartley theorem.

In this chapter, the transmission power is 23 dBm, the noise -60 dBm, and the bandwidth

10 mHz [2, 99, 20]. The path loss and the channel capacity are calculated for each pair

request-location to obtain the delay Drl. UAVs cover a maximum 4 km radius [2]: if

d2D > 4000 m, Drl is considered infinite.

7.5.2 Workload

The locations and the workload demands were taken from the data sets [8, 78] reviewed

in Section 3.5. The BSs are used as the candidate locations for fog nodes, considering

100 possible locations for deployment of UAVs. In this chapter, individual requests are

considered, and the constant Z (Section 3.5) was used to obtain such a value. The altitude

of BSs was obtained from the Shuttle Radar Topography Mission [37] data set, and it is

used to calculate the vertical distance between UAVs and BSs. The BS positions are the

candidate locations for the deployment of UAV fog nodes. A 24-hour interval is considered,

producing T = {1, 2, . . . , 144} due to the aggregation into 10-minute intervals.

In 5G and 6G networks, end-to-end latencies range from a few microseconds to a few

milliseconds [108] and the transmission of a few kilobytes should not last more than a

few milliseconds. To model low-latency applications, this chapter characterizes them by

the processing requirements, the number of bytes to be transmitted to the fog node, and

the maximum tolerated delay. We have considered applications with low latency require-

ments, identified as lowlatency6, lowlatency10, lowlatency20, and lowlatency50,

with delay requirements of 6 ms, 10 ms, 20 ms, and 50 ms, respectively. The requirement

is the propagation delay to transmit 100 Kb, a common amount of data for various fog

applications [4], over the wireless link. The processing requirement is given in processing

units (PUs), and the UAVs have an onboard computer with a capacity of 100 PUs per

time slot.

119

0 1 2 3 4
Number of UAVs

70

75

80

85

90

95

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

optimal
heuristic

Figure 7.2: Acceptance ratio as a function of the number of UAVs for a lowlatency6

application and the ground deployment.

7.5.3 Validation of the SUL Algorithm

The SUL algorithm was validated by comparing its performance to that of the ILP model.

The optimal solution had very limited scalability and, for large instances, after a long

execution time, crashes occurred due to the high demand of main memory. Therefore, we

carried out this validation with a limited number of locations and requests. Sequential

executions were started with a single UAV, increasing this number by one until all requests

had been processed. In this subsection, the average acceptance ratio is discussed as a

function of the number of UAVs available for deployment, and differences between the

optimal solution and the SUL algorithm are discussed. Only 5 locations were considered,

and the parameter Z was set to 0.0002, reducing the number of requests to less than one

hundred. 95 % confidence intervals are displayed in the graphics.

Figure 7.2 shows the acceptance ratio for the ground deployment. Only a lowlatency6

application is presented, since other applications produced similar results. This deploy-

ment scenario requires the fewest number of UAVs because the operational time is longer.

When constantly on the ground, a UAV does not consume any energy in propulsion.

Therefore, the battery operational time is greatly extended, allowing the UAV to remain

active for long periods and process requests of more users. Consequently, only 2 UAVs

were sufficient to deal with all the requests. The SUL algorithm and the optimal solution

produced the same results under the ground deployment.

Figure 7.3 presents the acceptance ratio for the hover50 deployment and two different

applications. In this deployment scenario, UAVs are constantly flying, which considerably

increases their energy consumption. Therefore, to process all requests, more UAVs were

required compared to the ground deployment. The delay requirement also impacts on

the number of UAVs: the lower the latency required, the greater is the number of UAVs.

This is due to the fact that strict delay requires higher data rates, which is realized

when UAVs are deployed in close proximity to end-users. This close proximity increases

the number of UAVs needed. The maximum number of UAVs to process 100 % of the

120

0 5 10 15 20 25 30 35 40
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R
at
io
 (%

)

optimal
heuristic

(a) lowlatency6.

0 5 10 15 20 25 30
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R
at
io
 (%

)

optimal
heuristic

(b) lowlatency50.

Figure 7.3: Acceptance ratio as a function of the number of UAVs for hover50 deployment
and different applications .

requests was greater with the SUL algorithm than it was for the optimal solution. This

happens because the SUL algorithm evaluated a single UAV at time, while the optimal

solution considered all of them simultaneously. This meant that the SUL algorithm could

leave specific requests unserved that, in a later iteration, would require the deployment

of UAVs to process only a few requests to guarantee 100 % acceptance of requests. As

a consequence, up to seven extra UAVs were needed for hover50 conditions. Since the

budget of a fog provider typically does not cover 100 % of users, such discrepancies can

potentially be neglected.

The last analysis concerns the acceptance for the mix50 deployment scenario, shown

in Figure 7.4. In this deployment, UAVs take advantage of the idle time in stand-by to

remain on the ground until they are needed. The savings in stand-by allow a significant

reduction in the number of UAVs needed, especially when a more strict delay is required

(Figure 7.4a). If shared landing pads are installed to receive idle UAVs in a city, the

121

0 5 10 15 20 25 30 35
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R
at
io
 (%

)

optimal
heuristic

(a) lowlatency6.

0 5 10 15 20 25
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R
at
io
 (%

)

optimal
heuristic

(b) lowlatency50.

Figure 7.4: Acceptance ratio as a function of the number of UAVs for mix50 deployment
and different applications .

unnecessary energy consumption can be avoided. In the mix50 deployment scenario,

the differences between the SUL algorithm and the optimal solution are minor, which

demonstrates the efficiency of the proposed solution.

The results show that the energy consumption play a crucial role in the development

of a fog computing infrastructure since it limits the operational time and increases the

number of required UAVs. The results also showed that the SUL algorithm produced

results similar to those obtained by the optimal solution. Certain drawbacks do exist in a

few cases, suggesting that the proposed solution may require the employment of additional

UAVs to cope with all requests in specific deployment scenarios. In these cases, the SUL

algorithm can be executed for a much larger number of requests. Moreover, if a 100 %

acceptance ratio is not required, the SUL algorithm produces results very close to the

optimal ones.

122

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

ground
hover30
hover50
mix30
mix50

Figure 7.5: Acceptance ratio as a function of the number of UAVs for the lowlatency6

application.

7.5.4 Qualitative Analysis

The analysis in this subsection considered 100 locations and Z equals to 0.0005, which

produced thousands of requests. The metrics are the average acceptance ratio, the average

number of UAVs to process all requests, the average delay, and the average data rate. The

results are reported as a function of the number of available UAVs. As in the previous

subsection, the SUL algorithm was started with a single UAV, in subsequent iterations

increasing the number of available UAVs by one until all requests had been processed.

95 % confidence intervals are displayed in the graphics.

Figures 7.5–7.8 shows the acceptance ratio as a function of the number of UAVs. As

expected, the ground deployment requires the smallest number of UAVs for the service of

all users. The results of the remaining deployment scenarios show the effect of the UAV

height in the decision about location. As seen in Subsection 7.5.1, the energy consumption

increases with the height of the UAV. Thus, UAVs with deployment of hover30 and mix30

consume less energy and remain operational longer, therefore processing more requests,

and leading to fewer employed UAVs than do the deployments of hover50 and mix50.

This trend is observed for all applications.

Figures 7.5–7.8 also shows the impact of different delay requirements in the solution.

For lowlatency6, an application with very strict delay requirements, more than 700 UAVs

were needed with hover30 deployment, and more than 900 for the hover50. However,

when delays are more flexible (Figure 7.8), these values are less than 300 and 400 UAVs,

respectively. As seen in Figures 7.2–7.4, this is explained by the possibility of serving

distant users with different delay requirements. When a UAV communicates with two

different LoS ground nodes, the connection to the furthest one will function at a lower

data rate because the path loss increases with distance. When limited delays are required,

UAVs cannot process requests from distant users, which leads to solutions with UAVs at

more locations. Another aspect to be noted is the similarity of the results produced by

the lowlatency20 and lowlatency50 applications (Figures 7.7–7.8): the number of UAVs

123

0 50 100 150 200 250 300 350 400 450 500 550 600
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

ground
hover30
hover50
mix30
mix50

Figure 7.6: Acceptance ratio as a function of the number of UAVs for the lowlatency10

application.

0 50 100 150 200 250 300 350 400
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

ground
hover30
hover50
mix30
mix50

Figure 7.7: Acceptance ratio as a function of the number of UAVs for the lowlatency20

application.

124

0 50 100 150 200 250 300 350 400
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

ground
hover30
hover50
mix30
mix50

Figure 7.8: Acceptance ratio as a function of the number of UAVs for the lowlatency50

application.

could not be reduced when the delay was relaxed from 20 ms to 50 ms. This was due

to the fact that wireless communication is limited when serving very distant users and,

even with a relaxation of the delay requirement, UAVs are not be able to process requests

made by distant users.

Figure 7.9 shows the average number of UAVs needed for processing 100 % of the

requests. A comparison between hover30 and mix30, or between hover50 and mix50,

reveals that the budget can be considerably reduced if landing is possible during stand-by.

The reduction reaches nearly 20 % for all deployments and altitudes. Although building

landing pads or using rooftops in all locations can be expensive or even impossible, UAVs

at nearby locations should be able to share landing pads in strategic places in a city, thus

reducing overall deployment costs.

The average delay is shown in Figures 7.10–7.13. In the first iterations, the SUL

algorithm prioritizes locations where UAVs process as many requests as possible, as long

as the delay is respected, this produces an initial trend to increase. After several iterations,

however, UAVs deal with fewer requests and can be deployed where the delay is reduced

(objective function in Equation (7.3)), this reduces the delay as a function of the number

of UAVs. The delay values produced by deployment scenarios with UAVs at the same

height (hover30 and mix30, hover50 and mix50) are very similar. This is due to the

same distance between UAV and BSs that produces the same wireless channel conditions

during processing state. Furthermore, UAVs closer to the ground reduce the length of the

wireless link, thus allowing higher data rates, and reducing the delays. Every iteration of

the SUL algorithm places UAVs where the delay is reduced, optimizing the average delay

to at most about 75 % of the tolerated delay. When more flexible delays are tolerated, such

as 20 and 50 ms, the average delay remains at about 10 ms, which provides a reasonable

quality wireless channel for end-users.

To further explore the impact of the deployment scenario, Figure 7.14 presents the

data rates for the lowlatency6 and lowlatency50 applications. The ground scenario

produces the highest data rates, which is explained by the proximity with ground nodes

125

6 ms 10 ms 20 ms 50 ms
Delay requirement

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

N
um

be
r

of
 U

AV
s

ground
hover30
hover50
mix30
mix50

Figure 7.9: Average number of UAVs to process all requests.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
Number of UAVs

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

0.0055

0.0060

De
la
y
(s
)

ground
hover30
hover50
mix30
mix50

Figure 7.10: Average delay as a function of the number of UAVs for the lowlatency6

application.

126

0 50 100 150 200 250 300 350 400 450 500 550 600
Number of UAVs

0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035
0.0040
0.0045
0.0050
0.0055
0.0060
0.0065
0.0070
0.0075
0.0080
0.0085
0.0090
0.0095
0.0100

De
la
y
(s
)

ground
hover30
hover50
mix30
mix50

Figure 7.11: Average delay as a function of the number of UAVs for the lowlatency10

application.

0 50 100 150 200 250 300 350 400
Number of UAVs

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015
0.016
0.017
0.018
0.019
0.020

De
la
y
(s
)

ground
hover30
hover50
mix30
mix50

Figure 7.12: Average delay as a function of the number of UAVs for the lowlatency20

application.

127

0 50 100 150 200 250 300 350 400
Number of UAVs

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015
0.016
0.017
0.018
0.019
0.020

De
la
y
(s
)

ground
hover30
hover50
mix30
mix50

Figure 7.13: Average delay as a function of the number of UAVs for the lowlatency50

application.

that reduces the path loss. Nonetheless, even the smaller data rates are sufficient to

provide fast communications between aerial and terrestrial nodes. The data rate is also

affected by stricter delay requirements. For lowlatency6, in which 100 Kb should be

transmitted in under 6 ms, data rates above 200 Mbps are needed, which requires that

the UAVs should be deployed very close to the BSs serving the users. On the other hand,

data rate less than 100 Mbps are needed under lowlatency50. These results show that

the more restricted delays, the closer to the users the aerial fog nodes should be.

The main findings in this subsection are summarized as follows. First, as seen in the

previous chapters, the energy consumption of UAVs is a crucial aspect to be considered

when deploying UAVs as fog nodes. Second, a trade-off between physical distance and

data rate must be addressed by fog providers. UAVs at higher altitudes have more LoS

links with terrestrial users, but the higher altitude also implies a greater path loss, thus

reducing the data rate. Therefore, when deploying a fog node on a UAV, several factors

must be jointly considered: UAV energy efficiency, delay or data rate requirements, and

distribution of users in time and space. There is no one-fits-all solution for any fog

infrastructure. Third, UAVs can potentially share landing places for stand-by under mix

deployments, reducing about 20 % in relation to hover deployments. Finally, the stricter

the delay requirements are, the greater the number of UAVs will be needed to bring the

computing resources close to users.

7.6 Conclusions

UAVs are potential candidates for the building of future fog computing infrastructures.

This chapter has studied the fog node location problem, a network design problem that

aims at choosing the best locations for fog nodes to improve the service provided for

end-users. We formulated the problem as a multi-objective ILP model and proposed the

Sequential UAV Fog Node Location algorithm. To discuss the importance of the decision

about locations and to validate the proposed algorithm, we performed simulations using

128

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
Number of UAVs

150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

Da
ta

 R
at

e
(M

bp
s)

ground
hover30
hover50
mix30
mix50

(a) lowlatency6.

0 50 100 150 200 250 300 350 400
Number of UAVs

70

75

80

85

90

95

100

105

110

115

120

Da
ta
 R
at
e
(M

bp
s)

ground
hover30
hover50
mix30
mix50

(b) lowlatency50.

Figure 7.14: Average data rate as a function of the number of UAVs for different applica-
tion classes.

129

realistic data, and the results showed the feasibility of UAVs for supporting applications

with very restricted latencies. Results showed that UAVs can process requests and com-

municate with end-users with very low latencies. Results suggest that a key limitation

in the deployment of UAVs is energy consumption which limits the operational time so

that fewer requests can be processed by a single UAV. The provisioning of landing pads

for rotary-wing UAVs by fog providers, even if used only when UAVs are idle awaiting

requests, could significantly extend operational time. Moreover, we showed that high

data rates can be achieved by rotary-wing UAVs, which can make them effective in fog

computing.

130

Chapter 8

Location of Fog Nodes mounted on

Fixed-wing UAVs

8.1 Overview

Different types of unmanned aerial vehicles (UAVs) have different characteristics; the

choice of a specific UAV type directly affects the operation as fog nodes. Previous authors

considered mostly the employment of rotary-wing UAVs [105, 113, 52, 53, 64, 111]. One

issue in the use of such rotary-wing UAVs is their high energy consumption, limiting the

time they remain operational, but fixed-wing UAVs provide an alternative with greater

autonomy and longer operational periods since the broad fixed wings that generate lift

reduce the power required from the engine. This extended operational time is essential

for the fog nodes to deal with variable loads. However, fixed-wing UAVs cannot hover; so

their trajectory must be carefully planned.

One essential decision for the deployment of fog nodes is where to locate them, as this

will determine which users can be served by this fog infrastructure. For fog nodes mounted

on UAVs, this decision is especially important, since the UAVs will remain active for only

a short period at the destination location. The fog node location problem for rotary-wing

UAVs was explored in the previous chapter, and this chapter investigates the employment

of fixed-wing UAVs. The longer endurance of fixed-wing UAVs can greatly improve the

delivery of fog services, extending the time the UAVs remain in the air and, consequently,

serving more users on the ground. In order to evaluate the use of fixed-wing UAVs as fog

nodes, this chapter aims at answering the question how should fixed-wing UAVs should

be positioned to provide a fog computing infrastructure to deal efficiently with variable

demands in relation to time and space, as well as maximize the number of processed

requests? In an attempt to answer this question, this chapter introduces a solution for

the fog node location problem which can determine the location of fog nodes mounted on

fixed-wing UAVs and the period they should be active. With this in mind, this chapter

introduces the Spatio-Temporal UAV Fog Node Location (STUFog) algorithm, which

analyzes the variability of requests and attempts to locate UAVs at those locations facing

high demands, thus maximizing the number of requests processed, minimizing costs, and

reducing latency.

131

This chapter models the problem of locating fog nodes mounted on fixed-wing UAVs

with an integer linear programming (ILP) formulation. The mathematical formulation

models all characteristics of these aircraft as well as the variability of end-user requests in

relation to time and space. Circular trajectories for fixed-wing UAVs and variable wireless

channels are considered. This chapter also introduces the STUFog algorithm to solve the

fog node location problem for instances with several locations, requests, and UAVs. This

chapter employed data from real users in a cellular network to evaluate the proposed

algorithm, considering circular trajectories with different radii for the fixed-wing UAVs.

The results are compared to those for rotary-wing UAVs. Results showed that fixed-wing

UAVs can balance the quality of the wireless links with energy consumption, thus reducing

the number of UAVs required.

The remainder of this chapter is organized as follows. Section 8.2 introduces the system

model adopted. Section 8.3 presents the linear programming formulation of the problem.

Section 8.4 introduces the STUFog algorithm. Section 8.5 presents the experimental

setting and numerical evaluation of the proposed algorithm. Lastly, Section 8.6 concludes

this chapter.

8.2 System Model

A fog computing infrastructure relies on fog nodes, which are small facilities that host

processing, storage, and networking equipment. Such nodes can reduce latency of end-

user requests by the avoidance of the propagation delays to access data centers in the

cloud. UAVs can help by supporting services at locations with fog nodes overloaded, or

where the deployment of fixed nodes is not feasible. However, UAVs typically have limited

processing and battery capacity. Therefore, the deployment of fog nodes on UAVs requires

proper planning; otherwise the UAVs will quickly consume large amounts of energy and

become inoperative.

To overcome autonomy restrictions of battery-powered UAVs, the use of tethered UAVs

has been considered [60]. These UAVs are connected to ground stations (GSs) by a tether

which furnishes energy and connectivity. However, these tethers reduce mobility and

limit the distance between UAVs and GSs. This chapter evaluates the employment of

both tethered and untethered UAVs.

End-users are mobile and visit several locations; they can submit requests to the fog

infrastructure at any time. Their demands vary in time and space: this requires the

positioning of fog nodes at different locations and their activation for different periods.

This chapter investigates the use of fixed-wing UAVs for the deployment of resources to

various different locations. They cannot hover nor land in limited spaces; the solution

proposed here assumes that UAVs perform circular trajectories with a predefined radius

centered at a specific location. Once the UAV starts flying, it stays powered until there

is no pending request, or the battery has been depleted. The UAV flies continuously,

without pauses. The available trajectories cannot overlap, and different UAVs should not

share a given trajectory to prevent collisions.

Requests made by end-users are characterized by the minimum data rate of transmis-

132

sion of a workload to the UAV (data rate requirement), and the number of instructions to

be processed (processing requirement). These requests are initially sent to a base station

(BS), which then forwards this workload to a nearby UAV. The guarantee of a rapid

transfer of content requires the maintenance of a minimum data rate for communication

between the BS and the UAV. A failure to maintain this data rate results in the failure of

the UAV to process the requests. If no nearby UAV can meet the data rate requirement,

a request will be rejected. The quality of transmission (QoT) of a wireless channel is also

variable as a result of UAV mobility. UAV is only suitable for processing a request if it

can support the required data rate even when located at the point most distant from the

BS.

The location of fog nodes is crucial since the number of UAVs for the creation of

an infrastructure is limited. The location of the UAVs should be determined so that

the processing of end-user requests is independent of the moment these were submitted

or their geographical location. The location of fog nodes is thus a special case of the

classical facility location problem. The input is a set of locations, and the output the

locations where UAVs will be placed. In the fog node location problem, the facilities

are fog nodes, and the main objective is to maximize the number of processed requests.

In this chapter, facilities only remain operational for short periods since they are UAVs.

The formulation of the problem is multi-criterial. First, the number of requests processed

should be optimized, guaranteeing that requests will not be rejected. Second, the number

of UAVs should be reduced as much as possible, decreasing the deployment costs with

the infrastructure. Finally, the average data rate of all processed requests should be

maximized to improve the fog service, that can be achieved by locating UAVs close to the

end-users.

8.3 Formulation

The location of fog nodes mounted on fixed-wing UAVs is an optimization problem for-

mulated in this chapter as an integer linear programming formulation. The objectives of

the formulation are to maximize the number of requests processed, reduce the costs for

the infrastructure, and maximize the data rate between UAVs and ground nodes. The

decision variables indicate the locations where UAVs fly, the period they will be active,

and the UAVs to be used to process each request to optimize the goals of the problem.

The formulation employs the notation presented in Table 8.1. Time is discretized,

and each time interval t ∈ T has the same duration. The budget is indicated by U ,

the maximum number of UAVs to be deployed over the L possible locations. Individual

requests are established (set R), each one associated with a single location and time

interval. Solving the model with accurate results depends on the choice of adequate

values of the constants in the formulation. For example, EBAT is the battery capacity

and must represent an actual UAV battery, while ET is the energy consumed by a UAV

when flying during the length of a single time interval, which must represent the actual

consumption of a real aircraft during a typical flight. Moreover, the data rate of the

link between UAVs and BSs is pre-calculated using the channel model, and the distance

133

Table 8.1: Notation used in the formulation.

Input

Notation Description

R Set of requests: R = {1, 2, . . . , R}
L Set of candidate locations for UAVs: L = {1, 2, . . . , L}
U Set of candidate UAVs: U = {1, 2, . . . , U}
T Set of discrete time intervals: T = {1, 2, . . . , T}
Drl, r ∈ R, l ∈ L Data rate to be delivered to request r if it is processed by a UAV at location

l

DMIN
r , r ∈ R Minimum data rate required by request r

Xrt, r ∈ R, t ∈ T Binary. 1 if request r is made at time t; 0 otherwise
Pr, r ∈ R Processing requirement of request r in processing units
C Capacity of a UAV in processing units per time interval
EBAT Total battery capacity of a UAV
ET Energy required by an active UAV during one time interval

Decision variables

Notation Description

µrl, r ∈ R, l ∈ L Binary. 1 if request r is processed by a UAV at l; 0 otherwise
γul, u ∈ U, l ∈ L Binary. 1 if UAV u is assigned to location l; 0 otherwise
αut, u ∈ U, t ∈ T Binary. 1 if UAV u is active during time t; 0 otherwise
βult, u ∈ U, l ∈ L t ∈ T Binary. 1 if UAV u is assigned to location l and active during time t; 0

otherwise

between the BS and the candidate UAV location.

The ILP model is given by Equations (8.1)–(8.12):

maximize
∑

r∈R

∑

l∈L

µrl (8.1)

minimize
∑

u∈U

∑

l∈L

γul (8.2)

maximize
∑

r∈R

∑

l∈L

Drl µrl (8.3)

∑

l∈L

µrl ≤ 1, ∀r ∈ R (8.4)

µrlDrl ≥ DMIN
r , ∀r ∈ R, ∀l ∈ L (8.5)

∑

r∈R|Xrt=1

µrlPr ≤ C

∑

u∈U

βult, ∀l ∈ L, ∀t ∈ T, (8.6)

ET
∑

t∈T

αut ≤ EBAT , u ∈ U (8.7)

134

∑

l∈L

γul ≤ 1, ∀u ∈ U (8.8)

∑

l∈L

βult ≤ 1, ∀u ∈ U, ∀u ∈ T (8.9)

γul + αut − 1 ≤ βult, u ∈ U, l ∈ L, t ∈ T (8.10)

2βult ≤ γul + αut, u ∈ U, l ∈ L, t ∈ T (8.11)

1

t

∑

t′∈{1,...,t−1}

αut′ − αu(t+1) + αu(t+2) ≤ 1,

u ∈ U, t ∈ {1, . . . , T − 2}

(8.12)

The fog node location problem aims at optimizing three objectives. The first objective

function (Equation (8.1)) maximizes the number of requests processed by all UAVs. The

second objective (Equation (8.2)) minimizes the infrastructure cost by reducing the num-

ber of employed UAVs. Lastly, the objective function given by Equation (8.3) maximizes

the data rate delivered to end-users. These objectives are hierarchical. Optimizing an

objective only makes sense if all previous ones have already been optimized. Therefore,

a multi-level programming approach (Section 2.4) is adopted, optimizing higher priority

objectives first and then considering only solutions in the Pareto front to optimize the

remaining goals.

The constraints of the ILP model are given by Equations (8.4)–(8.12). Equation (8.4)

guarantees that requests are processed by a single UAV. Equation (8.5) assures the min-

imum data rate for all processed requests. Equation (8.6) guarantees that the processing

capacity of the UAVs is greater than the processing demand of all requests processed

during a single time interval. Equation (8.7) guarantees that the sum of the energy spent

by each UAV over all time intervals of activity is not greater than the UAV battery ca-

pacity. Equations (8.8) and (8.9) are related to the location of UAVs; the former ensures

UAVs are deployed at only one location, and the latter ensures that only a single UAV

is assigned to the same location, i.e. performing the same trajectory, simultaneously to

avoid collisions. The decision variable βult can be calculated as βult = αut · γul; linear

Equations (8.10) and (8.11) avoid such a non-linear constraint. Finally, fixed-wing UAVs

cannot land in the middle of their operation; thus, sequential time intervals are allocated.

Equation (8.12) guarantees that the active time intervals of for each UAV be sequential.

8.4 STUFog Algorithm

This section presents the Spatio-Temporal UAV Fog Node Location (STUFog) algorithm

designed to the main issues of the fog node location problem: the requirement of UAVs

to be active to process requests when they are close to fixed overloaded nodes, and the

135

consideration of limitations of fixed-wing UAVs.

The STUFog algorithm attempts to maximize the requests served. STUFog considers

the number of requests that a UAV can handle at every location during each time interval.

Such information identifies when and where requests are generated so that UAVs can be

positioned to process most of the requests. Furthermore, STUFog accounts for the physical

limitations of fixed-wing UAVs, such as battery autonomy, to schedule them to potential

locations in sequential time intervals. The STUFog algorithm assumes circular trajectories

for fixed-wing UAVs and the QoT of the wireless links. The STUFog algorithm does not

overdimension the number of UAVs needed since it does not deploy a new UAV if not

necessary. If a UAV cannot process all requests made in a given period, the STUFog

algorithm prioritizes UAVs close to the users to maximize the data rate, and leaves any

remaining request to other UAVs.

A matrix M with spatio-temporal data related to requests is used by STUFog. Time is

discretized, and each column of M represents a single time interval t; each row represents

a candidate location l. Entries in M store the requests that a UAV at l during time t

can handle. The STUFog algorithm associates sequential columns to each UAV. The

maximum number of columns gives the maximum time a UAV can remain operational

without recharging. Moreover, requests are included in an entry of M if and only if a

fixed-wing UAV flying at that location can guarantee the minimum required data rate for

the request. Matrix M is used in the identification of locations with large demands that

helps obtaining solutions to large infrastructures in an acceptable time frame.

Algorithm 8.1 presents the STUFog algorithm. It employs the matrix M that repre-

sents the spatio-temporal data of the requests. The columns represent the available time

intervals, rows indicate the locations. Each entry stores the requests that a UAV can

process when positioned in the corresponding location during a given time. The STUFog

algorithm assigns UAVs to locations in consecutive time intervals, represented by a group

of sequential columns which is limited to the maximum time a UAV can fly without

recharging. The elements of matrix M are used to identify peaks of demands and its use

is crucial to make the algorithm scalable.

The STUFog algorithm first initializes M (Line 1), by filling all entries with an empty

list. Then, requests are added to each entry if it is possible to process them by a UAV

at that location, i.e., if the data rate and processing requirements can be assured for

processing the request. The variable availableUAV s is initialized with the maximum

number of UAVs available for deployment (Line 2), and this value is decreased by one

when the algorithm decides on the positioning of a UAV (Line 12). Then, the algorithm

moves to the main loop, which is divided into two parts. In the first one (Lines 5–8),

it evaluates all entries. If no UAV has been deployed to a location l and its starting

operation time is t, the algorithm obtains the list requests[l, t] of the requests that a

UAV deployed at t and l could process. This list is calculated using the data in M , but

limiting the total number of requests in each time interval to the processing capacity of

the UAV. If a UAV cannot process all the requests made during that time t, the STUFog

algorithm favors those requests with higher data rates, thus maximizing the third objective

(Equation (8.3)). After this step, the algorithm sets the variables mL and mT with that

location and time, respectively, so that the number of requests processed by the new UAV

136

1 Initialize M ;

2 availableUAV s← U ;

3 continueDeployment← True;

4 while continueDeployment do

5 foreach [l, t] ∈ L× T do

6 if There is no UAV at location l and time t then

7 Calculate requests[l, t];

8 [mL,mT]← [l, t] such that requests[l, t] is maximum;

9 if requests[mL,mT] 6= ∅ then

10 Deploy UAV at location mL and time mT ;

11 Update M ;

12 availableUAV s← availableUAV s− 1;

13 else

14 continueDeployment← False;

15 if availableUAV s = 0 then

16 continueDeployment← False;

Algorithm 8.1: STUFog algorithm.

will be maximized.

Lines 9 to 16 constitute the second part of the main loop. If a viable solution was

found, a UAV is deployed at location mL starting its operation at time mT (Line 10). In

this case, the algorithm updates two variables: the requests assigned to the deployed UAV

are removed from M , and availableUAV s is decreased by one. The STUFog algorithm

continues until new UAVs can no longer process the remaining requests (Line 14), or all

available UAVs have been deployed (Line 16).

The STUFog is a viable alternative to the exact formulation in Section 8.3 that has

a large number of constraints. For example, in the ILP model, all LU pairs of UAVs and

locations are considered, which generates an exponential number of Constraints (8.10)

and (8.11). Differently, the STUFog algorithm has an execution with polynomial time

complexity. This complexity can be derived by analyzing the most time-consuming op-

eration of the STUFog algorithm, the one in Line 7. This operation is inside two loops:

the immediate loop (Line 5), and the main loop (Line 4). The main loop can be exe-

cuted up to U times, one for each available UAV, and, consequently, the immediate loop

is executed up to U · L · T times. Each time the operation in Line 7 runs, there is an

evaluation of all requests that were not assigned to a UAV, at most R, and the sequential

time intervals of the UAV operation, at most T . Therefore, the time complexity of the

STUFog algorithm is polynomial and given by O(ULT (T + R)). In practical scenarios,

the number of requests has a higher order of magnitude than that of the number of time

intervals; in such cases, the complexity of STUFog can be simplified to O(ULTR).

8.5 Performance Evaluation

This section presents the results of simulations of the proposed algorithm and the ILP

model. Real workload and data to simulate fixed-wing UAVs were used. This section

137

is organized as follows. Subsection 8.5.1 describes the characteristics of UAVs, such as

speed, altitude, energy consumption, and wireless channel. Subsection 8.5.2 describes

how requests were modeled and the data sets employed. Finally, Subsections 8.5.3 and

8.5.4 discuss numerical results; with the former comparing the results obtained by the

STUFog algorithm and the ILP model, and the latter discussing the results obtained by

the proposed algorithm in large scenarios.

8.5.1 UAV characterization

The energy consumption of the UAV was calculated using the power models derived

in [106], detailed in Subsection 2.5.3. UAVs perform circular trajectories with a radius r

at a constant speed V ; the energy consumed in such trajectory is given by Equation (2.3).

The values for the parameters employed were based on [106]: c1 = 9.26 · 10−4, c2 = 2250,

g = 9.8m/s2, and V = 30m/s. The value of r was varied to evaluate the impact of

different radius on the energy consumption and on the wireless channel; the adopted

values were 100, 200, and 300 m. UAVs are considered to fly 100 m above the ground.

The configuration of the battery considered is 34200 mAh/22.8 V [75].

In order to assess the advantages of fixed-wing UAVs, a comparison between fixed-wing

and rotary-wing UAVs is made. Rotary-wing UAVs hover continuously at the position

to which they are assigned. The energy consumed during hovering is calculated using

Equation (2.1), which can be simplified to P0 + Pind for V = 0, where the constants P0

and Pind represent the blade profile power and induced power, with values of 79.85628W

and 88.62793W , respectively. The same altitude and battery configuration were adopted

for both types of UAV.

The data rate is calculated using the path loss model described in Subsection 2.5.4.

The Doppler effect due to the motion of the UAV was assumed to have been perfectly

compensated for [106]. The path loss is used to calculate the channel capacity (in bits

per second) using the Shannon-Hartley theorem. In this chapter, the transmission power

is 23 dBm, the noise -60 dBm, and the bandwidth 10 mHz [2, 99, 20]. The path loss and

the channel capacity are calculated for each pair request-location to obtain the network

requirements. The maximum UAV coverage is assumed 4 km [2].

8.5.2 Workload

The locations and the workload demands were taken from the data sets [8, 78] reviewed

in Section 3.5. The BSs are used as the candidate locations for fog nodes, considering

100 possible locations for deployment of UAVs. In this chapter, individual requests are

considered, and the constant Z (Section 3.5) was used to obtain such a value. The altitude

of BSs was obtained from the Shuttle Radar Topography Mission [37] data set, and it is

used to calculate the vertical distance between UAVs and BSs. The BS positions are the

candidate locations for the deployment of UAV fog nodes. A 24-hour interval is considered,

producing T = {1, 2, . . . , 144} due to the aggregation into 10-minute intervals.

The coordinates around which the UAVs perform circular trajectories were defined

as equally distant points on the map, and the distance between them is greater than

138

the radius, avoiding intersections. In the case of rotary-wing UAVs, these coordinates

were the position where the UAVs hovered. The UAV server capacity was 100 processing

units (PUs) per time interval. Each request was characterized in terms of processing

and networking requirements. The processing requirement was fixed to 10 PUs and the

requirement was the required data rate, which can be 50, 75, or 100 Mbps. Such a

variation of data rate values helped to analyze the performance of fixed-wing UAVs under

different conditions.

8.5.3 Validation of the STUFog algorithm

In this subsection, the STUFog algorithm is validated by comparing its performance

to that of the ILP model. Obtaining exact solutions for several locations and requests

was impossible due to the execution time and main memory constraints. Therefore, the

comparison in this subsection was carried out with a limited number of locations and

requests. The metric evaluated is the acceptance ratio, given by the ratio between the

number of requests processed by UAVs and the total number of requests. Results are

presented as a function of the number of available UAVs. The experiments started with

a single UAV available for deployment, and sequential executions increased this number

by one until the inclusion of another UAV no longer improved the acceptance of requests.

For this validation, requests were obtained from 10 BSs, 25 locations were available for

UAV deployment, and Z was set to 0.0002, thus reducing the number of requests to less

than one hundred. 95 % confidence intervals are displayed in the graphics.

Figures 8.1–8.4 present the results obtained by the STUFog algorithm and the exact

model for different UAV deployments. For the fixed-wing UAV, deployment with a 100 m

radius trajectory required more UAVs to process all the requests than did the others,

which is explained by the energy efficiency of fixed-wing UAVs. Trajectories with a shorter

radius increased the energy consumption of the UAV, thus reducing its operation time

and requiring the deployment of more UAVs to cope with the same demands. The energy

consumption also explains why the use of rotary-wing UAV requires more UAVs than do

the other deployments: a hovering rotary-wing UAV consumes about the same amount of

energy as a fixed-wing flying with a trajectory having 100 m radius. Figures 8.1–8.4 also

show that the increase in the number of UAVs did not necessarily lead to a proportional

increase in the acceptance ratio. If only few UAVs are available, they will be located where

most of the demands are. Then, the remaining UAVs will not be dispatched to fulfill peak

demands but rather to process the remaining requests sparse in time and space.

The performance of the STUFog algorithm was very close to that of the exact model.

For most points in the graphics, the difference in the acceptance ratios for the two schemes

was less than 3 %. The significant difference is that, for 100 % acceptance, the proposed

algorithm employed up to two extra UAVs. This increase in the number of UAVs was

due the fact that, for the exact model, all UAVs were positioned simultaneously, whereas

with the STUFog algorithm, this takes place sequentially, leaving punctual unprocessed

requests and requiring extra UAVs to cope with all the demands. Although a such per-

formance was not ideal, the results obtained by the STUFog algorithm were very close

to 100 %, where an exact solution achieved 100 %, demonstrating that the impact of the

139

2 4 6 8 10
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R
at
io
 (%

)

optimal
heuristic

Figure 8.1: Acceptance ratio as a function of number of UAVs resulting from the use of
the STUFog algorithm and the ILP model for fixed-wing UAVs flying with a 100 m radius.

1 2 3 4 5 6 7 8
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R
at
io
 (%

)

optimal
heuristic

Figure 8.2: Acceptance ratio as a function of number of UAVs resulting from the use of
the STUFog algorithm and the ILP model for fixed-wing UAVs flying with a 200 m radius.

140

1 2 3 4 5 6 7 8
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R
at
io
 (%

)

optimal
heuristic

Figure 8.3: Acceptance ratio as a function of number of UAVs resulting from the use of
the STUFog algorithm and the ILP model for fixed-wing UAVs flying with a 300 m radius.

2 4 6 8 10
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R
at
io
 (%

)

optimal
heuristic

Figure 8.4: Acceptance ratio as a function of number of UAVs resulting from the use of
the STUFog algorithm and the ILP model for rotary-wing UAVs.

141

additional UAVs is minimal.

8.5.4 Numerical discussion

This subsection evaluates the employment of fixed-wing UAVs in large scenarios. The

evaluation considered requests from 100 BSs, a variable number of candidate locations,

and Z equals 0.0005, which led to thousands of requests. The metrics evaluated are the

acceptance ratio and the average data rate delivered to end-users, both presented as a

function of the number of available UAVs. As in the previous subsection, the experiments

started with a single UAV available for deployment, with sequential executions increasing

this value by one until the inclusion of a new UAV no longer increased the acceptance

of requests. For the sake of readability, deployments of rotary-wing UAVs are identified

as rw, and deployments of fixed-wing UAVs are identified as fw-RRRm, where RRR is the

radius of the circular trajectory in meters. 95 % confidence intervals are displayed in

the graphics. This subsection is organized into four discussions. First, general trends of

different deployments are discussed; then, the impact of different data rate requirements

on the infrastructure is investigated, and the effect of the number of available locations is

assessed. Finally, the use of tethered deployments is discussed.

Figure 8.5 displays the results for deployments with a 50 Mpbs data rate requirement

and 100 candidate locations available for UAV deployment. As discussed in the previous

subsection, the shorter the radius, the greater is the UAV energy consumption. Conse-

quently, UAVs with trajectories with a large radius usually process more requests, thus

reducing the total number of UAVs to achieve the same acceptance ratio. This trend can

be seen in Figure 8.5a, with deployments of fw-200m and fw-300m resulting in greater

acceptance than the one of fw-100m. These deployments with a large radius obtained the

best results, serving many users in different time intervals. The fw-100m and rw deploy-

ments could also have achieved 100 % acceptance of requests, but with a higher number

of UAVs than the other deployments due to the energy efficiency.

The average data rate (Figure 8.5b) was in the range 65–75 Mbps, higher than the mini-

mum requirement (50 Mbps). The highest data rate was that produced by the rotary-wing

UAV deployment since such UAVs maintain the same position in the air, guaranteeing

better wireless links. Differently, the data rate for the fixed-wing UAVs was calculated

considering the coordinates of the circular trajectory that maximized their distance from

the BS. When the UAV communicates with the ground, for example, it can be closer

to the BS, which improve the data rate delivered; therefore, the results for fixed-wing

deployments represent the minimum data rate that can be guaranteed. Trajectories with

greater radii lead to only small reductions in data rate.

In these experiments, fixed-wing UAVs with 300 m radii represented the most advan-

tageous deployment, with small energy consumption and good wireless links. However,

if rotary-wing UAVs are cheaper than fixed-wing ones, rotary-wing employment can be

quite advantageous. Currently, a variety of models of both types of UAVs is available, and

prices vary significantly. Deployments with rotary-wing UAVs can be more advantageous

if their price is lower than that of rotary-wing UAVs. To obtain an acceptance ratio of

90 %, rotary-wing UAVs provide the best results if their price is at least 25 % lower than

142

0 10 20 30 40 50 60 70 80 90
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

rw
fw-100m
fw-200m
fw-300m

(a) Acceptance ratio

0 10 20 30 40 50 60 70 80 90
Number of UAVs

60

65

70

75

80

Da
ta
 R
at
e
(M
bp
s)

rw
fw-100m
fw-200m
fw-300m

(b) Data rate

Figure 8.5: Results for the 50 Mpbs data rate requirement and 100 candidate locations.

that of fixed-wing ones since, in this case, they can obtain a higher acceptance ratio with

the same budget and data rate will be slightly higher.

Figure 8.6 shows the acceptance ratio for different data rate requirements with 100

candidate locations for UAV deployment. Because of the path loss, wireless links need to

be short to support high data rates; so UAVs must be physically close to the BSs, which

may not always be possible. Therefore, when the requirement is 75 Mbps (Figure 8.6a),

achieving 100 % acceptance was not possible; a nearby UAV could not cover a small

portion of the users. The 75 Mbps requirement also presented a different trend in relation

to the 50 Mbps requirement (Figure 8.5): the performance of the fw-100 deployment was

inferior, making that of the fw-200 solution the most interesting one. The wireless link

lengths explain those results for a 50 Mbps rate, in which both UAV deployments could

provide sufficient data rates to support the ground users. However, a with 75 Mbps rate,

UAVs needed to be closer to the ground to provide higher data rates. Therefore, although

143

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

rw
fw-100m
fw-200m
fw-300m

(a) 75 Mpbs

0 10 20 30 40 50 60 70 80 90
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

rw
fw-100m
fw-200m
fw-300m

(b) 100 Mpbs

Figure 8.6: Acceptance ratio as a function of the number of UAVs for different data rate
requirements and 100 candidate locations.

the fw-200 consumes more energy than does the fw-300, it manages to provide the best

trade-off between energy consumption and network quality.

For the most strict requirement (100 Mbps, Figure 8.6b), there is a massive impact

on the acceptance, allowing at most 45 % acceptance. The results are similar to those for

the 50 Mbps requirement (Figure 8.5) for a low number of available UAVs. However, as

the number of available UAVs increases, deployments of fixed-wing UAVs with large radii

trajectories (fw-200m and fw-300m) achieve an upper limit of the acceptance earlier, while

those with fw-100m and rw deployments continue to increase the acceptance. Specifically,

if there are no budget constraints, rotary-wing UAVs can achieve the best results due to

their stability in the air that improves the wireless channel, which shows that the decision

onto type of UAV depends on both required QoS requirements and budget constraints.

Fog providers can exert limitations on the available locations for deployment of UAVs

144

as this may be prevented by local regulations from usage of airspace near airports, tall

buildings, private industries, or areas where certain animals live. Therefore, the effects of a

few specific candidate locations for the processing of the same requests were investigated.

In this case, the distance between these locations increases, since these few locations

are positioned equally distant on the same map. Although results for different data

rate requirements lead to different values in the acceptance ratio of requests, the same

tendencies were observed. Therefore, only the 75 Mbps data rate requirement is presented

in Figure 8.7. The small number of locations increases the average distance between UAVs

and the BSs, reducing the data rate for the wireless links. Consequently, at most 95 %

of requests are processed when 49 locations are considered (Figure 8.7a), and only up

to 50 % for 25 locations (Figure 8.7b). For 49 locations, the best UAV type and radius

depend on the available budget. When few UAVs are available, deployments with fixed-

wing UAVs performing a 200–300m radius (fw-200 and fw-300) are better due to their

energy efficiency. However, for more than 70 available UAVs, the rw deployment is much

better because it maintains a smaller distance to ground BSs, thus resulting in better

wireless links, and obtaining a higher acceptance ratio than do fixed-wing UAVs. When

only 25 locations are involved, a similar tendency is found, but the small number of

candidate locations has a more significant impact on the acceptance, even for the rotary-

wing UAVs (rw). Reducing the candidate locations or increasing the data rate requirement

have a similar effect on the results: the acceptance of requests is reduced because the

requirements cannot be met. Nonetheless, intermediate values for these parameters still

allow satisfactory deployments, especially in scenarios with a limited budget.

Figures 8.8–8.10 presents the acceptance ratio obtained for tethered deployments and

100 locations available for these deployments. The energy capacity is assumed to have

no limit, and, consequently, a UAV can be deployed to any of the locations and remain

powered at all the time. Without the energy limitation, the number of required UAVs to

achieve 100 % acceptance of request is reduced remarkably to less than 30 UAVs. With

no energy limitation, the rw deployment led to the best results, followed by the fixed-

wing UAV deployments in order of radius, i.e., the best deployments were the ones closer

to the ground nodes. For tethered deployment, rotary-wing UAVs are the best option

unless fixed-wing UAVs are cheaper. Moreover, the deployments of fixed-wing UAVs with

radii of 200 m or more are not a good choice since the tether tend to be in the range of

80–150m [60].

Deployments with tethered UAVs can be quite valuable for reducing costs, but they

impose significant limitations. The ground infrastructure for tethered UAVs involves

deployment and maintenance costs, such as connecting the tether to other networks,

installing the energy supply infrastructure, and renting the rooftops of tall buildings.

Moreover, tethering UAVs requires a larger support staff over the served region, while

flying UAVs can be operated remotely most of the time. Therefore, the decision to tether

UAVs depends on factors other than the UAVs.

The main findings of this evaluation can be summarized as follows. Fog nodes mounted

on fixed-wing UAVs can be quite efficient for dealing with the end-user demand variable in

time and space as long as their location is properly selected. The decision between fixed-

wing and rotary-wing UAVs depends on the traffic demands, UAV costs, and budget

145

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

rw
fw-100m
fw-200m
fw-300m

(a) 49 locations

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

rw
fw-100m
fw-200m
fw-300m

(b) 25 locations

Figure 8.7: Acceptance ratio as a function of the number of UAVs for the 75 Mbps data
rate requirement and different number of candidate locations.

146

0 5 10 15
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

rw
fw-100m
fw-200m
fw-300m

Figure 8.8: Acceptance ratio as a function of the number of UAVs for tethered deploy-
ments, 50 Mpbs data rate requirement, and 100 candidate locations.

0 5 10 15 20 25 30
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

rw
fw-100m
fw-200m
fw-300m

Figure 8.9: Acceptance ratio as a function of the number of UAVs for tethered deploy-
ments, 75 Mpbs data rate requirement, and 100 candidate locations.

147

0 5 10 15 20 25 30
Number of UAVs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

rw
fw-100m
fw-200m
fw-300m

Figure 8.10: Acceptance ratio as a function of the number of UAVs for tethered deploy-
ments, 100 Mpbs data rate requirement, and 100 candidate locations.

constraints. In all scenarios evaluated, rotary-wing UAVs could offer the best networking

conditions, especially in strict demand scenarios or tethered deployments. However, their

energy consumption is relatively high, requiring more UAVs than deployments with fixed-

wing ones. Therefore, fixed-wing UAVs are generally the better option, with the radius of

their circular trajectory the maximum possible to extend their battery operation, but not

large enough to prevent efficient wireless links. In this evaluation, radii between 200 m and

300 m were quite efficient for dealing with the workload, unless the number of location is

severely limited. The cost of different UAV models must also be taken into consideration,

since for many conditions, rotary-wing UAVs have to be much cheaper than fixed-wing

ones to provide the same acceptance of requests at the same cost.

148

8.6 Conclusions

UAVs can complement the traditional fixed fog computing infrastructure by covering peaks

of user requests on demand. Different types of UAVs can be employed, and this chapter

has shown that fixed-wing UAVs can be quite valuable as fog nodes. The reduced energy

consumption leads to extended operational time, serving more end-users. This chapter has

highlighted the benefits of fixed-wing UAVs by an investigation of the fog node location

problem with the aim of selecting the locations and time intervals for which UAVs will be

active to deal with the demands of end-users in relation to time and space. We formulated

the problem as an ILP model and presented the STUFog algorithm for obtaining solutions

for large deployments. We have also evaluated the STUFog algorithm with actual data of

mobile users, and results showed that fixed-wing UAVs can be quite efficient as fog nodes

as long as their trajectory is adjusted to reduce the energy consumption and meet the

networking requirements. Using intermediate values for the radius of circular trajectories

provides an excellent trade-off between energy consumption and wireless link quality:

compared to the most energy-efficient deployment (300 m radius), a 200 m radius provides

basically the same acceptance, yet with better data rates. The evaluation has also shown

that if fixed-wing and rotary-wing UAVs have a similar price, the former tend to be more

advantageous.

149

Part IV

Resource Allocation

150

Chapter 9

Resource Allocation Mechanism for

Fog-Cloud Infrastructures

9.1 Overview

A typical management issue in a fog-cloud infrastructure is in which (fog or cloud) node

a workload should be processed. Such a decision must consider resource availability on

fog nodes and the latency for processing the workload in the fog as well as the latency for

processing in the cloud. This chapter proposes a mechanism to solve this management

issue that avoids overutilization of resources in limited fog nodes while improving overall

latency for end-users. To achieve this goal, this chapter proposes the Gaussian Process

Regression for Fog-Cloud Allocation (GPRFCA) mechanism which decides where to run

the tasks of an application. The infrastructure considered is composed of a fog layer and

the cloud. Users submit requests to the fog nodes and the workload can be executed

in the fog, in the cloud, or partially executed in the fog and the cloud. The GPRFCA

mechanism decides where to schedule a workload to be processed taking into account the

resource availability and the latency overhead.

The GPRFCA mechanism favors the utilization of the fog node rather than the cloud.

The motivation for that is two-fold. First, fog nodes present smaller delays, which im-

proves the end-user experience. Second, fog nodes presents advantages in relation to

energy efficiency compared to clouds [51, 86, 7]. Specifically, small fog nodes may not

require cooling infrastructures similar to those of clouds, whose consumption can be al-

most 50 % of the total energy delivered to the data center [17]. The ratio between the

total energy used in a data center and the energy delivered to its computational resources

is known as Power Usage Effectiveness (PUE); data centers can present high values for

PUE. By forwarding workload to the fog node, potential gains in energy consumption

may be obtained.

To optimize the utilization of limited fog resources, a Gaussian Process Regression

(GPR) is employed to predict the arrival of future requests based on the history of arrivals.

Such prediction helps the provisioning of resources to future requests, especially the real-

time ones which can only be processed in the fog, reducing blocking and improving overall

utilization. GPR was chosen due to the versatility of the covariance function, whose

151

selection favors characteristics from the input data. Previous analysis of cloud traces

[49] showed that virtual machine arrival and departure processes present self-similarity.

Therefore, in this chapter, GPR was employed with a rational quadratic (RQ) covariance

function suitable for prediction of self-similar series [10].

This chapter presents the GPRFCA mechanism and its evaluation. None of the exist-

ing work considered the history of previous requests for the resource allocation in fog-cloud

architectures. Results derived by simulation show that the employment of the proposed

solution balances the workload between the available nodes, providing a good trade-off

between energy consumption, latency, and blocking. The GPRFCA mechanism manages

to maintain the utilization of the fog node at a high level but it prevents blocking, which

leads to efficient use of the infrastructure.

The remainder of this chapter is organized as follows. Section 9.2 introduces the system

model adopted. Section 9.3 introduces the GPRFCA mechanism. Section 6.5 presents

the experimental setting and numerical evaluation of the GPRFCA mechanism. Lastly,

Section 6.6 concludes this chapter.

9.2 System Model

A fog-cloud layered architecture is considered with a cloud layer is at the top, followed

by the fog layer, and end-user devices are at the bottommost layer. Access to the fog or

cloud nodes implies different delays. The cloud is represented as a data center with plenty

of physical servers, while the fog node is modeled as a mini data center capable of hosting

virtual machines (VMs) to host end-user workload. The third layer is composed of user

devices that connect to the fog node using wireless interfaces. Figure 9.1 illustrates the

considered architecture.

Requests are modeled using the distributed dataflow approach [41]. In this model, an

application is represented by a directed graph in which nodes represent tasks, actuators,

or sensors, and edges represent the data flow. Sensors gather data either from the en-

vironment or from the users while actuators interact with users or perform actions. An

application has at least one task. Tasks are in charge of processing data of an application,

such processing is triggered by a sensor signal or a message from a different task. After

processing, tasks send messages to other tasks or actuators. To make the distributed

dataflow approach feasible, all tasks need to be assigned to VMs, and VMs can be created

either in a fog node or in the cloud data center.

The authors of [45] identified that different classes of applications in fog computing

have different requirements in terms of security, availability, location, mobility, and scal-

ability. To deal with such requirements, a task must be properly instantiated on a layer

with a certain maximum delay and minimum resources. In the considered system, users

submit requests to the nearest fog node. Once it is received, the fog node analyzes the

requirements of the request, deciding the servers in the fog and cloud layers that will host

the VMs associated with each task, and this information is further used in the instantia-

tion of VMs.

This work considers two classes of tasks: tasks that require VMs instantiated in the

152

Figure 9.1: Cloud and fog architecture.

fog and those which can be instantiated either in the cloud or in the fog. The former are

delay-sensitive tasks that demand a quick response to the users, while the latter are tasks

with flexible response time. Applications can have multiple tasks with different classes;

in this case, a request can have part of its processing in the cloud and another part in the

fog. There are agents in the cloud and in the fog which decide on which physical server

a VM should be instantiated. If the resource cannot be allocated for a task, the entire

request is blocked.

This chapter proposes a mechanism that must decide on where VMs of a request

should be instantiated (fog or cloud). Each request is submitted at a different time, and

the mechanism must avoid overloading the fog node, which would prevent future service

for other users. The time each request remains active is limited, which constantly changes

the occupation of the fog and the cloud.

9.3 GPRFCA mechanism

The Gaussian Process Regression for Fog-Cloud Allocation (GPRFCA) mechanism ana-

lyzes the history of previously submitted requests for predicting future arrivals of tasks

with strict latency requirements. Using this prediction, the GPRFCA mechanism can

reserve resources in the fog node for future delay-sensitive tasks, reducing blocking of

requests and increasing the utilization of the fog node. This section details the GPRFCA

mechanism.

The notation used to describe the GPRFCA mechanism is presented in Table 9.1. This

153

Table 9.1: Notation used in this chapter.

Notation Description

Input

C Cloud data center
F Fog node
H = h1, h2, . . . , hn Historical sequence with the number of strict-latency

tasks arrived in the previous n time intervals.
R Set of requests

Functions

X.allocate(), X ∈ {F,C} Instantiates a virtual machine to host the task t either
in the fog F or in the cloud C.

F.getAvailableV Ms() Obtains the number of available slots for new virtual
machines.

r.numberOfF lexibleTasks(), r ∈ R Obtains the number of flexible tasks of the request r

r.numberOfStrictTasks(), r ∈ R Obtains the number of strict tasks of the request r

r.getTasks(), r ∈ R Obtains the tasks associated with the request r

t.getType(), t ∈ r.getTasks(), r ∈ R Obtains the type of the task t, which can be
STRICT for a task with high latency requirements
or FLEXIBLE for tasks which can be instantiated
in the cloud.

emptyList() Creates a new empty list.
l.add(r) Appends a new item to a list l.
gaussianRegression(H) Returns the next predicted value based on the histor-

ical set H.
min(a, b) Returns the minimum value between a and b.
max(a, b) Returns the maximum value between a and b.

chapter considers that requests arrive at the fog node every minute, thus two sequential

executions of the GPRFCA mechanism are equally spaced over time. The number of

strict-delay tasks arriving in each minute is recorded in the data set H = h1, h2, . . . , hn,

i.e., h1 is the number of strict VMs that were submitted in the first minute, h2 in the

second minute, and so forth. All tasks require the same processing and memory resources.

The mechanism, however, is not limited by this assumption and it can also handle het-

erogeneous demands.

The GPRFCA mechanism is described in Algorithm 9.1. It is divided into five parts:

initialization (Lines 1 to 3), instantiation of strict tasks (Lines 4 to 11), prediction (Lines

12 to 14), instantiation of flexible tasks (Lines 15 to 24), and update of arrivals history

(Line 25).

The initialization phase (Lines 1 to 3) consists of initializing the variables used.

totalStrictTasks is the variable records the total number of strict tasks that arrived

in this time interval, used to update the historical data. listInstantiatedRequests is the

list of requests which could be instantiated in VMs in the fog without overloading the fog

node. availableV Ms represents the number of VMs available to be created in the fog.

The command in Line 3 initializes this variable with the maximum number of available

VMs before any allocation, and this value is updated later.

154

Input: R,H, F,C
1 totalStrictTasks← 0
2 listInstantiatedRequests← emptyList()
3 availableV Ms← F.getAvailableV Ms()

4 ∀r ∈ R

5 totalStrictTasks← totalStrictTasks+ r.numberOfStrictTasks()
6 if r.numberOfStrictTasks() ≤ availableV Ms then

7 ∀task ∈ r.getTasks()
8 if task.getType() = STRICT then

9 F.allocate(task)
10 availableV Ms← availableV Ms− 1

11 listInstantiatedRequests.add(r)

12 if availableV Ms > 0 then

13 G← gaussianRegression(H)
14 availableV Ms← max(0, availableV Ms−G)

15 ∀r ∈ listInstantiatedRequests

16 flexibleTasksOnFog ← min(r.numberOfF lexibleTasks(), availableV Ms)
17 availableV Ms← availableV Ms− flexibleTasksOnFog

18 ∀task ∈ r.getTasks()
19 if task.getType() = FLEXIBLE then

20 if flexibleTasksOnFog > 0 then

21 F.allocate(task)
22 flexibleTasksOnFog ← flexibleTasksOnFog − 1

23 else

24 C.allocate(task)

25 H.add(totalStrictTasks)
Algorithm 9.1: Gaussian Process Regression for Fog-Cloud Allocation mechanism.

155

Subsequently, the mechanism performs the instantiation of strict tasks (Lines 4 to 11).

This phase has two goals: deciding which requests will be accepted and instantiating the

strict tasks of these requests. This phase is important to guarantee that current requests

have priority over future requests, reducing the chances of blocking in future iteractions

due to flexible tasks allocated in the fog. This phase iterates over all requests, updates

the variable totalStrictTasks (Line 5), and then, if the fog can accommodate all tasks of

the current request (Line 6), the mechanism allocates the strict tasks of the request (Line

9), updating the number of available slots (Line 10). If the request can be successfully

created, it is appended to list listInstantiatedRequests (Line 11).

Before instantiating the flexible tasks, the prediction phase (Lines 12 to 14) updates

the number of available VM slots. If there are still available slots after the instantiation of

strict requests (Line 12), the prediction is made based on a Gaussian Process Regression

(Line 13). The number of predicted requests is subtracted from availableV Ms, and, in

case this operations leads to a negative value, availableV Ms is set to zero, indicating that

no current flexible VMs will be created in the fog (Line 14).

The details of Gaussian Process Regression (Line 13) are explained as follows. The

gaussianProcess function receives as input a time series to make prediction based on the

Gaussian Process Regression (GPR), explained next. Considering the observed values

X(ti), i = 0, 1, . . . , n − 1 at n time instants ti, then X(ti) = f(ti) + εi, where f(ti)

is a mapping function and εi is an independent Gaussian noise with zero mean and

variance σ2. To make prediction, it is assumed that f(ti) ∼ GP (m(t), k(ti, tj; θ)), where

GP is a stochastic Gaussian process with mean m(t) and covariance function k(ti, tj; θ)

with hyperparameters θ. The decision of the covariance function depends on the actual

covariance of the data. Previous analysis of cloud data centers [49] identified that the

virtual machine arrival process can be modeled as a self-similar process. Furthermore,

the work in [10], which employed GPR to predict traffic in real networks, identified that

the rational quadratic covariance function kRQ is suitable for modeling self-similar series.

This chapter employs the covariance function kRQ, given by Equation (9.1).

kRQ(r; l, α) = s2 ·

(

1 +
r2

2αl2

)

−α

(9.1)

Three hyperparameters are used, namely the variance s, length-scale parameter l and

magnitude parameter α. For self-similar series, α = 1 − H [10], where H is the Hurst

parameter of the series. These hyperparameters are optimized by a local search algorithm

that searches their values in an interval between 0 and 100 for s, 0 and four times the

maximum value in X(ti) for l, and 0 and 0.5 for α.

The instantiation of the flexible tasks is conducted in Lines 15–24. All requests which

had their strict tasks instantiated are visited (Line 15), and the number of flexible tasks

to be instantiated is decided, limited by the value of availableV Ms (Line 16). Then, the

tasks of each request are iterated (Line 18), and only flexible ones are considered, since

strict tasks were already created. If there are available slots, the current task is created in

the fog (Line 21), otherwise the cloud is used (Line 24). By using the fog node for some

flexible requests, the GPRFCA mechanism improves fog occupation, reducing latency for

more clients, yet reducing blocking due to the prediction.

156

Table 9.2: Infrastructure configuration and virtual machine instance description.

PUE Specification Delay to users

Fog 1.0
2 servers Hp Proliant Dl380 G7
3.06 GHz Xeon X5675 processor
1 core, 4 Gb RAM

10ms

Cloud 1.4
100 servers Hp Proliant Dl380 G7
3.06 GHz Xeon X5675 processor
2 cores, 8 Gb RAM

100ms

Virtual Machine 1000 MIPS, 256 Mb RAM

The final step is the update of arrivals history H (Line 25), so that future predictions

of the GPRFCA mechanism consider updated time series.

9.4 Performance Evaluation

The GPRFCA was coded in Java and compared to other mechanisms from the literature;

results of this evaluation are reported in this section. Subsection 9.4.1 describes the

simulation settings. Subsection 9.4.2 presents the other mechanisms evaluated in this

chapter. Subsection 9.4.3 describes the workload model, and Subsection 9.4.4 the energy

consumption model. Finally, Subsection 9.4.5 discusses numerical results.

9.4.1 Simulation settings

The iFogSim simulator [46], presented in Section 3.6 was employed, and Gaussian Pro-

cess Regression prediction was implemented with gptools Python package [26]. Results

were obtained by 30 different executions for each point in the graphs and using a 95 %

confidence interval derived by the independent replication method.

The cloud data center is modeled as a set of physical servers. As suggested in [93], mini

data centers employed as fog nodes have similar hardware to that of cloud data centers.

Table 9.2 displays the hardware configuration of servers and the VM requirements.

Each task runs in a VM hosted either in the fog or in the cloud. The mapping of a

VM onto a physical server in the fog node or in the cloud data center is performed by

a VM placement algorithm which chooses the first available server in sequential order to

host a task, therefore consolidating the workload on a few machines to save energy. If all

servers are fully utilized and cannot host a VM, the task is blocked as well as its entire

request.

9.4.2 Evaluated mechanisms

The performance of the proposed mechanism was compared to that of four other mech-

anisms, namely cloudwards and fogwards. These are simple strategies that favor the

utilization of either the fog or the cloud [46]. Whenever a task can be hosted either in the

data center or in a fog node, cloudwards always places it on the cloud, but it always sends

157

to the fog tasks with strict latency requirements. Fogwards tries to send all the tasks to

the fog, independent of their latency requirements, however, if a task can be sent to the

cloud and no resources are available in the fog to host it, fogwards places the task in the

cloud. Since plenty of resources is available in the cloud, allocation in the data center is

virtually always possible, and cloudwards does not send tasks to the fog unless they have

strict latency requirements.

9.4.3 Workload

Two applications are considered: remote VM and augmented reality. Remote VM (Figure

9.2a) is a simple application in which a user accesses a terminal (thin client) and interacts

with a remote operational system. User’s actions are processed in a VM and results are

sent back to be displayed on the terminal screen. Simulated scenarios have two classes of

requests: requests with one task which can only be placed in the fog, and requests with

one task that can be deployed either in the fog or in the cloud.

For the augmented reality application (Figure 9.2b), virtual objects are overlaid on an

image acquired from a camera and then rendered on a display. The simulated application

model was presented in [97] and is composed of six tasks: video source (a sensor fetching

images from a camera), renderer (screen acting as an actuator), tracker (analysis of video

frames), mapper (map generation and refinement), relocalizer (relocation of camera posi-

tion) and object recognizer (localization of known objects). Video source and renderer are

built on devices and do not require processing on a VM. Tracker and relocalizer virtual

machines must be instantiated in a fog node, and the mapper and object recognizer can

be hosted either in the fog or in the cloud. The flow of exchanged data is shown in Figure

9.2b.

Virtual machine arrival and departure process in cloud data centers exhibit self-

similarity [49]. Consequently, the system request arrival was modeled as a self-similar

series. The algorithm in [81] is used to generate such series, i.e., the number of requests

received per minute. The input for this generator is the values of the mean and standard

deviation of the series, and the Hurst parameter H. The output is a sequence of numbers

representing the number of requests arrived each minute. Different series were created

using different parameters for simulating various loads; these load scenarios and their

parameters are shown in Table 9.3, all employing H = 0.7.

All VMs of the same request are started and released at the same time; a 5-minute

lifetime is adopted. Scenarios with several requests of a single type of application were

simulated. In the simulation of remote VM application, which requires a single VM per

request, half of the requests needed be hosted in the fog and the other half can be hosted

either in the fog or in the cloud. For the augmented reality application such a distinction

is not necessary since it is already formed by tasks with different latency requirements.

9.4.4 Energy consumption model

The energy consumed in the fog node and the cloud data center is calculated as the

sum of the energy consumed by the physical servers; such consumption depends on the

158

(a) Remote VM

(b) Augmented reality

Figure 9.2: Simulated applications. Each circle represents a task: blue represents exclusive
fog tasks, while blue and purple tasks can be hosted either in fog or cloud. Arrows
represent communication between tasks.

Table 9.3: Simulated scenarios and parameters employed in the generator [81]. The
standard deviation (SD) is half the value of the mean arrival rate.

Scenario Mean SD

m2 2 1
m4 4 2
m6 6 3
m8 8 4
m10 10 5
m12 12 6
m14 14 7
m16 16 8
m18 18 9
m20 20 10

159

Table 9.4: Power of cloud and fog servers.

CPU Load (%) 0 10 20 30 40 50 60 70 80 90 100

Consumption (W) 52.3 93.6 106 116 126 136 147 163 180 199 222

CPU usage. CPUs fully utilized lead to the highest server energy consumption, but

idle servers consume about 70 % of this value. A linear model is employed to model

intermediary values of consumption, as in [12]. The energy consumption model is based

on a real benchmark of SPEC power, which measured power for different CPU usage

levels 1. These values are interpolated to calculate the energy consumption, considering

the current load imposed by the hosted VMs. Table 9.4 presents reference values for the

employed server.

As suggested in [93], fog nodes present similar hardware to those of cloud data centers;

thus, only a single energy consumption model was adopted. However, the fog does not

employ the same cooling and network equipment. Data in the report [17] identifies that

state-of-the-art data centers in 2008 had a PUE metric equals 1.4, which means that

for each watt spent in computation, 0.4 watt is pent in cooling for these data centers.

Therefore, different PUE values are employed in the simulations: 1.4 for the cloud and

1.0 for the fog.

9.4.5 Numerical results

The metrics evaluated are energy consumption, blocking ratio, and latency. The energy

consumption was accounted for the fog and cloud infrastructures, considering the PUE.

Figure 9.3 shows the results for the energy consumption. For the remote VM application,

fogwards produced the lowest energy consumption. Remote VM application requires only

one virtual machine per request; thus, it hardly causes an overload of resources in the fog,

allowing the GPRFCA mechanism to obtain energy efficiency similar to that of fogwards.

Augmented reality application had a different tendency since each request contains four

virtual machines. Under low arrival rates, the fog manages to host several VMs; thus,

fogwards policy produced the lowest energy consumption. However, starting from the

m8 scenario, the system becomes overloaded, forcing VMs to be hosted on the cloud. In

these cases, the fogwards policy overloads the fog, increasing blocking. The GPRFCA

mechanism, however, produced similar results to those of cloudwards.

Figure 9.4 shows the blocking ratio, which is the ratio between the number of applica-

tions that were not instantiated and the number of submitted requests. Blocking happens

whenever a VM does not have its requirements satisfied due to the lack of physical re-

sources in the fog. Remote VM produced no blocking due to the low demand of VMs. In

contrast, augmented reality application, which submits four VMs per request, produced

great blocking. Cloudwards produced lower blocking than does fogwards since it forwards

all possible VMs to the cloud, where resources are abundant. Blocking under cloudwards

occurs due to VMs which must be placed in the fog and there are no physical resources

available for that. In fogwards, on the other hand, blocking happens because the fog node

1https://www.spec.org/power_ssj2008/

160

(a) Remote VM

(b) Augmented reality

Figure 9.3: Total energy for different applications.

161

(a) Remote VM

(b) Augmented reality

Figure 9.4: Blocking ratio.

is overloaded with tasks that are not sensitive to delays. The GPRFCA mechanism tends

to forward virtual machines to the edge, saving resources for future requests, which de-

creased the load on the fog node. As a consequence, it produced a blocking ratio similar to

that produced by cloudwards, while maintaining the energy consumption at a reasonable

level.

Figure 9.5 presents the values for latency in the Remote VM application for tasks with

strict latency requirements and also flexible tasks. The latency is the average time elapsed

between an action of a user at the remote terminal (a pressed key or mouse movement)

and rendering its results on the user’s screen. Fogwards produces the smallest latency

values since VMs are closer to end-users. The GPRFCA mechanism produces latency

values between those produced by the two other policies, but values are closer to those

given by fogwards. Under load conditions equal or heavier than that of scenario m14, the

latency is higher than 1 second, which can jeopardize the application performance. High

162

(a) Strict latency virtual machines which can be placed only on the fog

(b) Flexible virtual machines which can be placed either on the fog or on the
cloud

Figure 9.5: Latency for Remote VM application.

latency values indicate that more resources in the fog should be deployed.

The advantage of employing the GPRFCA mechanism can be summarized as follows.

The energy consumption is always between those produced by cloudwards and fogwards

and it is always close to the lowest produced value by these two mechanisms. GPRFCA

tries to produce high utilization in fog nodes and consequently reduces the energy con-

sumption and blocking ratio. The GPRFCA mechanism does not increase the latency

of requests which have VMs that can be placed in the cloud. Moreover, it produces low

latency for tasks that must be hosted in the fog.

163

9.5 Conclusions

This chapter proposed a novel mechanism for the provisioning of resources in a fog and

cloud environment named the Gaussian Process Regression for Fog-Cloud Allocation

mechanism, which aims at reducing the overall energy consumption while supporting

latency requirements. Gaussian process regression was employed to estimate the demand

of future arrivals so that fog nodes can host future requests, preventing the blocking of

new requests. Results obtained show that the GPRFCA mechanism maintains the energy

consumption at acceptable levels and avoids overloading the fog reducing the blocking of

requests. Latency was also kept at reasonable levels and decreased for applications with

flexible latency requirements. The GPRFCA mechanism manages to take advantage of

the good features of both cloudwards and fogwards mechanisms.

164

Part V

Final Remarks

165

Chapter 10

Conclusions

This chapter concludes this thesis and is divided into four sections: Section 10.1 presents

the main findings, Section 10.2 lists the main limitations and challenges, and Section 10.3

suggests future research directions.

10.1 Main findings

The fog node location is a crucial decision in the deployment of a fog computing infras-

tructure since fog nodes are distributed and need to be spatially close to end-users to

meet their latency constraints. If inadequate decisions are made, users’ requests will not

be processed and the computational infrastructure will remain underloaded. Solutions

presented in this thesis alleviate such problems by a proper design of the infrastructure,

assuming different goals and types of fog nodes. Results obtained showed that our solu-

tions can be quite efficient to design a fog computing infrastructure. The remainder of

this section draws the overall conclusions of all chapters.

Dealing with variable demands in time and space is a challenge to solve the fog node

location problem. The work about the terrestrial infrastructure (Part II) showed that

reducing the number of fog servers does not have a proportional impact on the acceptance

ratio due to the low demands. In line with that, Chapter 6 showed that a large part of

the terrestrial infrastructure could be replaced by UAVs. Future solutions to the fog

node location problem should address the demand variability so that deployment costs

are optimized.

Obtaining exact solutions to the fog node location problem is not always possible, es-

pecially for a large number of locations, for formulations considering individual requests,

or when mobile fog nodes are adopted. The number of locations increases the possible

arrangements of fog nodes, increasing the number of constraints in an exact model. A

small number of locations is useful to make comparisons between heuristics and exact

models, but it seldom represents realistic deployments, such as large cities or metropoli-

tan areas. Considering individual requests (e.g. as in Chapters 5, 7, and 8) requires a long

computation time compared to approaches in which the workload and fog node capacity

are given by real numbers (Chapters 4 and 6). However, individual requests in the formu-

lation are needed to quantify the energy consumption or the delay. Future formulations

166

may combine both models to speed up the execution time. Finally, considering mobile fog

nodes (UAVs) leads to formulations with a very large number of constraints. This is due

to all possible locations and states UAVs can be at different time intervals. Nonetheless,

heuristics can benefit from locating one UAV at a time to avoid an exponential increase

in time complexity.

UAVs can be pretty efficient as fog nodes to complement the terrestrial network. UAVs

present better flexibility than do other vehicles, but their energy consumption must be

accounted for to guarantee an efficient operation. Both rotary-wing and fixed-wing UAVs

can be used as fog nodes; the former is useful to provide stable and low latency processing,

while the latter can endure a longer operation due to reduced energy consumption. If

UAVs can operate tethered or on rooftops, operation time can be largely improved.

This thesis presented different solutions to the fog node location problem, with exact

models and heuristics, and their evaluation under several conditions. There is no ready-

to-use formulation: the characteristics of the problem must be taken into account to solve

the fog node location. The work in this thesis pushes the boundaries of this problem and

can serve as a basis for future work.

10.2 Limitations and challenges

This section lists some limitations and challenges in the development of this thesis. The

limitations do not diminish the quality of this work but rather suggest new directions for

research. This section also guides future researchers on the possible challenges they will

face while conducting research in the areas of fog node location and UAV communications.

In all approaches to the location of fog nodes, the deployment cost was taken into

consideration by limiting the number of fog nodes. However, there are other sources of

costs that were not accounted for in this thesis, such as the cost of the facility to host

fixed servers (physical infrastructure, power and network connections, cooling, security),

the infrastructure to support UAV operations, and human resources. One limitation to

evaluating these aspects is the estimation of such costs since this information is not easily

found in the literature and these costs usually vary for different countries, providers, and

technologies. Nonetheless, the cost components considered in this thesis are a signifi-

cant part of the deployment costs, and solutions can be easily adapted to consider other

components.

An important decision in this thesis was the data set used in the evaluation, mainly the

one from [8], described in Section 3.5. Evaluating the solutions in this thesis with other

data sets could have led to a broader discussion; however, there are only a few open data

sets representing variable demands in time and space. For example, some cellular data sets

used in previous papers are not publicly available. Moreover, pre-processing data sets is a

time-consuming task. The data sets used in this thesis led to notable results, comparable

to those obtained by other authors that employed different data, which suggests this work

is not biased towards a single data set. Nonetheless, future work can employ other data

sets without the need to develop new formulations.

The solutions in this thesis can be improved to consider more characteristics of applica-

167

tions and fog nodes. Applications can be characterized by specific processing, networking,

and storage requirements. Formulations can also be adapted to specific hardware, such

as different processor architectures or UAV models. Different UAVs trajectories can be

evaluated. Considering these aspects require some modifications in the solutions pro-

posed in this thesis. However, such modifications lead to formulations tailored to specific

situations; this thesis introduces broad solutions that can be adapted to different needs.

There was an effort in this thesis to make realistic assumptions in the simulations.

However, a testbed with real hardware would be useful to evaluate situations not easily

simulated, such as weather conditions’ effect on UAVs, software response time, and actual

wireless channels. Such testbeds are quite expensive and require several hours of work to

make them operational. These testbeds would have required more researchers involved in

the project and a less limited budget, which was not possible during the Ph.D. Nonethe-

less, results in this thesis can serve as a basis for physical deployments. Moreover, the

employment of simulations allowed a broad evaluation and replication of tests that might

not have been possible with only a physical testbed.

Finally, the work about UAVs in this thesis did not consider solutions for recharg-

ing UAVs during their operation. However, in real deployments, UAVs are periodically

recharged to avoid the need for many aircraft. Aspects to be further explored are the

employment of recharge stations for UAVs, especially for UAVs employed as fog nodes.

Despite the importance of recharging, studying such an aspect leads to completely new

research problems out of the scope of the location of fog nodes.

10.3 Future work

In addition to studies to fill the gaps listed in Section 10.2, this section suggests oppor-

tunities for future investigation. The work is in this thesis can be extended in different

manners and we intend to explore some of these gaps in the future.

This thesis considered only the employment of LAPs. However, HAPs can also be

used as fog nodes. Future solutions for the fog node location problem can consider only

HAPs as well as the integration between the two types of UAVs. HAPs fly at much higher

altitudes and can move at different speeds compared to LAPs. These aspects should be

taken into consideration in the design of fog computing infrastructures based on HAPs.

Another research direction is the employment of other energy and wireless channel

conditions. For example, UAV and environment parameters (such as weight, wing size,

and air density) could be used to estimate the energy consumption of specific UAV models,

allowing the use of solutions of this thesis for a variety of aircraft. Moreover, channel

models based on measurements of real cities could be used to evaluate the impact of

different city densities. Other possissibilities of future work include studying handover

when a user connects to multiple UAVs, and predicting future demands to dispatch UAVs

in advance.

168

Bibliography

[1] Cisco Data Center Infrastructure 2.5 Design Guide. December 2007.

[2] 3GPP. Technical Specification Group Radio Access Network; Study on Enhanced

LTE Support for Aerial Vehicles. Technical Report (TR) 36.777, 3rd Generation

Partnership Project (3GPP), 12 2017. Version 15.0.0.

[3] Hasini Viranga Abeywickrama, Beeshanga Abewardana Jayawickrama, Ying He,

and Eryk Dutkiewicz. Empirical power consumption model for uavs. In 2018 IEEE

88th Vehicular Technology Conference (VTC-Fall), pages 1–5, 2018.

[4] Arif Ahmed, HamidReza Arkian, Davaadorj Battulga, Ali J. Fahs, Mozhdeh

Farhadi, Dimitrios Giouroukis, Adrien Gougeon, Felipe Oliveira Gutierrez, Guil-

laume Pierre, Paulo R. Souza Jr au2, Mulugeta Ayalew Tamiru, and Li Wu. Fog

computing applications: Taxonomy and requirements, 2019.

[5] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, com-

modity data center network architecture. SIGCOMM Comput. Commun. Rev.,

38(4):63–74, August 2008.

[6] S. Alanazi, M. Dabbagh, B. Hamdaoui, M. Guizani, and N. Zorba. Reducing data

center energy consumption through peak shaving and locked-in energy avoidance.

IEEE Transactions on Green Communications and Networking, 1(4):551–562, Dec

2017.

[7] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and J. H. Abawajy.

Fog of everything: Energy-efficient networked computing architectures, research

challenges, and a case study. IEEE Access, 5:9882–9910, 2017.

[8] Gianni Barlacchi, Marco De Nadai, Roberto Larcher, Antonio Casella, Cristiana

Chitic, Giovanni Torrisi, Fabrizio Antonelli, Alessandro Vespignani, Alex Pentland,

and Bruno Lepri. A multi-source dataset of urban life in the city of milan and the

province of trentino. Scientific Data, 2, Oct 2015.

[9] Riccardo Bassoli, Fabrizio Granelli, Claudio Sacchi, Stefano Bonafini, and

Frank H.P. Fitzek. Cubesat-based 5g cloud radio access networks: A novel paradigm

for on-demand anytime/anywhere connectivity. IEEE Veh. Technol. Mag., 15(2):39–

47, 2020.

169

[10] A. Bayati, V. Asghari, K. Nguyen, and M. Cheriet. Gaussian process regression

based traffic modeling and prediction in high-speed networks. In 2016 IEEE Global

Communications Conference (GLOBECOM), pages 1–7, Dec 2016.

[11] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware resource

allocation heuristics for efficient management of data centers for cloud computing.

Future Generation Computer Systems, 28(5):755–768, 2012. Special Section: Energy

efficiency in large-scale distributed systems.

[12] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic algorithms

and adaptive heuristics for energy and performance efficient dynamic consolidation

of virtual machines in cloud data centers. Concurrency and Computation: Practice

and Experience, 24(13):1397–1420, 2012.

[13] L. F. Bittencourt, E. R. M. Madeira, and N. L. S. Da Fonseca. Scheduling in hybrid

clouds. IEEE Communications Magazine, 50(9):42–47, September 2012.

[14] Luiz F. Bittencourt, Javier Diaz-Montes, Rajkumar Buyya, Omer F. Rana, and

Manish Parashar. Mobility-aware application scheduling in fog computing. IEEE

Cloud Computing, 4(2):26–35, 2017.

[15] Luiz Fernando Bittencourt and Edmundo Roberto Mauro Madeira. Hcoc: a cost

optimization algorithm for workflow scheduling in hybrid clouds. Journal of Internet

Services and Applications, 2(3):207–227, Dec 2011.

[16] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing

and its role in the internet of things. In Proceedings of the First Edition of the MCC

Workshop on Mobile Cloud Computing, MCC ’12, page 13–16, New York, NY, USA,

2012. Association for Computing Machinery.

[17] Richard Brown, Eric Masanet, Bruce Nordman, Bill Tschudi, Arman Shehabi, John

Stanley, Jonathan Koomey, Dale Sartor, and Peter Chan. Report to congress on

server and data center energy efficiency: Public law 109-431. Lawrence Berkeley

National Laboratory, 2008.

[18] Giuseppe Bruno, Andrea Genovese, and Gennaro Improta. A historical perspective

on location problems. BSHM Bulletin: Journal of the British Society for the History

of Mathematics, 29(2):83–97, 2014.

[19] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose, and

Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation of cloud com-

puting environments and evaluation of resource provisioning algorithms. Software:

Practice and Experience, 41(1):23–50, 2011.

[20] X. Cao, J. Xu, and R. Zhang. Mobile edge computing for cellular-connected uav:

Computation offloading and trajectory optimization. In 2018 IEEE 19th Inter-

national Workshop on Signal Processing Advances in Wireless Communications

(SPAWC), pages 1–5, 2018.

170

[21] Massimiliano Caramia and Paolo Dell´Olmo. Multi-objective Management in Freight

Logistics. Springer London, 2008.

[22] Aaron Carroll and Gernot Heiser. The systems hacker’s guide to the galaxy energy

usage in a modern smartphone. In Proceedings of the 4th Asia-Pacific Workshop on

Systems, APSys ’13, pages 5:1–5:7, New York, NY, USA, 2013. ACM.

[23] Ayon Chakraborty, Eugene Chai, Karthikeyan Sundaresan, Amir Khojastepour,

and Sampath Rangarajan. Skyran: A self-organizing lte ran in the sky. In Proceed-

ings of the 14th International Conference on Emerging Networking EXperiments

and Technologies (CoNEXT), page 280–292. Association for Computing Machinery,

2018.

[24] Longbiao Chen, Linjin Liu, Xiaoliang Fan, Johnthan Li, Cheng Wang, Gang Pan,

Jérémie Jakubowicz, and Thi-Mai-Trang Nguyen. Complementary base station clus-

tering for cost-effective and energy-efficient cloud-ran. In 2017 IEEE SmartWorld,

Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable Comput-

ing Communications, Cloud Big Data Computing, Internet of People and Smart

City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages

1–7, 2017.

[25] Yunfei Chen, Xiaonan Liu, Nan Zhao, and Zhiguo Ding. Using multiple uavs as

relays for reliable communications. In 2018 IEEE 87th Vehicular Technology Con-

ference (VTC Spring), pages 1–5, 2018.

[26] M.A. Chilenski, M. Greenwald, Y. Marzouk, N.T. Howard, A.E. White, J.E. Rice,

and J.R. Walk. Improved profile fitting and quantification of uncertainty in ex-

perimental measurements of impurity transport coefficients using gaussian process

regression. Nuclear Fusion, 55(2):023012, 2015.

[27] Miguel T. Covas, Carlos A. Silva, and Luis C. Dias. Multicriteria decision analysis

for sustainable data centers location. International Transactions in Operational

Research, 20(3):269–299, 2012.

[28] Yong Cui, Jian Song, Kui Ren, Minming Li, Zongpeng Li, Qingmei Ren, and

Yangjun Zhang. Software defined cooperative offloading for mobile cloudlets.

IEEE/ACM Trans. Netw., 25(3):1746–1760, June 2017.

[29] Nelson L. S. da Fonseca and Raouf Boutaba. Cloud Services, Networking, and

Management. John Wiley & Sons, Ltd, 2015.

[30] R. A. C. da Silva and N. L. S. da Fonseca. Energy-aware migration of groups of

virtual machines in distributed data centers. In 2016 IEEE Global Communications

Conference (GLOBECOM), pages 1–6, 2016.

[31] Rodrigo A. C. da Silva and Nelson L. S. da Fonseca. Topology-aware virtual machine

placement in data centers. Journal of Grid Computing, pages 1–16, 2015.

171

[32] David Daly. A Not-So-Short History of Unmanned Aerial Ve-

hicles (UAV). Online. Available at https://consortiq.com/

short-history-unmanned-aerial-vehicles-uavs/ [Accessed: 24/11/2021].

[33] R. Deng, R. Lu, C. Lai, and T. H. Luan. Towards power consumption-delay trade-

off by workload allocation in cloud-fog computing. In 2015 IEEE International

Conference on Communications (ICC), pages 3909–3914, June 2015.

[34] Q. Fan and N. Ansari. Cost aware cloudlet placement for big data processing at

the edge. In 2017 IEEE International Conference on Communications (ICC), pages

1–6, May 2017.

[35] Giuseppe Faraci, Christian Grasso, and Giovanni Schembra. Fog in the clouds:

Uavs to provide edge computing to iot devices. ACM Trans. Internet Technol.,

20(3):1–26, August 2020.

[36] Reza Zanjirani Farahani and Masoud Hekmatfar, editors. Facility Location. Physica-

Verlag HD, 2009.

[37] Tom G. Farr, Paul A. Rosen, Edward Caro, Robert Crippen, Riley Duren, Scott

Hensley, Michael Kobrick, Mimi Paller, Ernesto Rodriguez, Ladislav Roth, David

Seal, Scott Shaffer, Joanne Shimada, Jeffrey Umland, Marian Werner, Michael Os-

kin, Douglas Burbank, and Douglas Alsdorf. The shuttle radar topography mission.

Reviews of Geophysics, 45(2), 2007.

[38] C. Fiandrino, N. Allio, D. Kliazovich, P. Giaccone, and P. Bouvry. Profiling per-

formance of application partitioning for wearable devices in mobile cloud and fog

computing. IEEE Access, 7:12156–12166, 2019.

[39] Boris Galkin, Jacek Kibilda, and Luiz A. DaSilva. Uavs as mobile infrastructure:

Addressing battery lifetime. IEEE Commun. Mag., 57(6):132–137, 2019.

[40] Andres Garcia-Saavedra, Pablo Serrano, Albert Banchs, and Giuseppe Bianchi.

Energy consumption anatomy of 802.11 devices and its implication on modeling and

design. In Proceedings of the 8th International Conference on Emerging Networking

Experiments and Technologies, CoNEXT ’12, pages 169–180, New York, NY, USA,

2012. ACM.

[41] N. K. Giang, M. Blackstock, R. Lea, and V. C. M. Leung. Developing iot ap-

plications in the fog: A distributed dataflow approach. In 2015 5th International

Conference on the Internet of Things (IOT), pages 155–162, Oct 2015.

[42] Fabio Giust, Xavier Costa-Perez, and Alex Reznik. Multi-access edge computing:

An overview of etsi mec isg. IEEE 5G Tech Focus, 1(4):4, 2017.

[43] Marta C. Gonzalez, Cesar A. Hidalgo, and Albert-Laszlo Barabasi. Understanding

individual human mobility patterns. Nature, 453(7196):779–782, June 2008.

172

[44] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu

Palaniswami. Internet of things (iot): A vision, architectural elements, and future

directions. Future Generation Computer Systems, 29(7):1645 – 1660, 2013.

[45] J. C. Guevara, L. F. Bittencourt, and N. L. S. da Fonseca. Class of service in

fog computing. In 2017 IEEE 9th Latin-American Conference on Communications

(LATINCOM), pages 1–6, Nov 2017.

[46] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar Buyya.

ifogsim: A toolkit for modeling and simulation of resource management techniques

in the internet of things, edge and fog computing environments. Software: Practice

and Experience, 47(9):1275–1296, 2017.

[47] LLC. Gurobi Optimization. Gurobi Optimizer. Online. Available at https://www.

gurobi.com/ [Accessed: 03/12/2021].

[48] D. Han, W. Chen, and J. Liu. Energy-efficient uav communications under stochastic

trajectory: A markov decision process approach. IEEE Trans. Green Commun.

Netw., 5(1):106–118, 2021.

[49] Yi Han, J. Chan, and C. Leckie. Analysing virtual machine usage in cloud comput-

ing. In Services (SERVICES), 2013 IEEE Ninth World Congress on, pages 370–377,

June 2013.

[50] Junxian Huang, Feng Qian, Alexandre Gerber, Z. Morley Mao, Subhabrata Sen, and

Oliver Spatscheck. A close examination of performance and power characteristics

of 4g lte networks. In Proceedings of the 10th International Conference on Mobile

Systems, Applications, and Services, MobiSys ’12, pages 225–238, New York, NY,

USA, 2012. ACM.

[51] Fatemeh Jalali, Kerry Hinton, Robert Ayre, Tansu Alpcan, and Rodney S. Tucker.

Fog computing may help to save energy in cloud computing. IEEE Journal on

Selected Areas in Communications, 34(5):1728–1739, 2016.

[52] S. Jeong, O. Simeone, and J. Kang. Mobile edge computing via a uav-mounted

cloudlet: Optimization of bit allocation and path planning. IEEE Trans. Veh.

Technol., 67(3):2049–2063, 2018.

[53] Jiequ Ji, Kun Zhu, Changyan Yi, and Dusit Niyato. Energy consumption minimiza-

tion in uav-assisted mobile-edge computing systems: Joint resource allocation and

trajectory design. IEEE Internet Things J., 8(10):8570–8584, 2021.

[54] M. Jia, J. Cao, and W. Liang. Optimal cloudlet placement and user to cloudlet

allocation in wireless metropolitan area networks. IEEE Transactions on Cloud

Computing, 5(4):725–737, Oct 2017.

[55] Karen E. Joyce, Karen Anderson, and Renee E. Bartolo. Of course we fly un-

manned—we’re women! Drones, 5(1), 2021.

173

[56] Krishna P. Kadiyala and Jorge A. Cobb. Inter-as traffic engineering with sdn. In

2017 IEEE Conference on Network Function Virtualization and Software Defined

Networks (NFV-SDN), pages 1–7, 2017.

[57] A. Kapsalis, P. Kasnesis, I. S. Venieris, D. I. Kaklamani, and C. Z. Patrikakis. A

cooperative fog approach for effective workload balancing. IEEE Cloud Computing,

4(2):36–45, March 2017.

[58] Wahab Khawaja, Ismail Guvenc, David W. Matolak, Uwe-Carsten Fiebig, and Nico-

las Schneckenberger. A Survey of Air-to-Ground Propagation Channel Modeling for

Unmanned Aerial Vehicles, chapter 2, pages 17–70. John Wiley & Sons, Ltd, 2020.

[59] W. Kim and S. Chung. User-participatory fog computing architecture and its man-

agement schemes for improving feasibility. IEEE Access, 6:20262–20278, 2018.

[60] Mustafa Kishk, Ahmed Bader, and Mohamed-Slim Alouini. Aerial base station de-

ployment in 6g cellular networks using tethered drones: The mobility and endurance

tradeoff. IEEE Veh. Technol. Mag., 15(4):103–111, 2020.

[61] Daniel Guimaraes do Lago, Edmundo R. M. Madeira, and Luiz Fernando Bitten-

court. Power-aware virtual machine scheduling on clouds using active cooling con-

trol and dvfs. MGC ’11, New York, NY, USA, 2011. Association for Computing

Machinery.

[62] F. Larumbe and B. Sansò. Cloptimus: A multi-objective cloud data center and

software component location framework. In 2012 IEEE 1st International Conference

on Cloud Networking (CLOUDNET), pages 23–28, Nov 2012.

[63] F. Larumbe and B. Sansò. A tabu search algorithm for the location of data centers

and software components in green cloud computing networks. IEEE Transactions

on Cloud Computing, 1(1):22–35, Jan 2013.

[64] Mushu Li, Nan Cheng, Jie Gao, Yinlu Wang, Lian Zhao, and Xuemin Shen. Energy-

efficient uav-assisted mobile edge computing: Resource allocation and trajectory

optimization. IEEE Trans. Veh. Technol., 69(3):3424–3438, 2020.

[65] Xingqin Lin, Vijaya Yajnanarayana, Siva D. Muruganathan, Shiwei Gao, Henrik As-

plund, Helka-Liina Maattanen, Mattias Bergstrom, Sebastian Euler, and Y.-P. Eric

Wang. The sky is not the limit: Lte for unmanned aerial vehicles. IEEE Commun.

Mag., 56(4):204–210, 2018.

[66] Feng Luo, Chunxiao Jiang, Shui Yu, Jingjing Wang, Yipeng Li, and Yong Ren.

Stability of cloud-based uav systems supporting big data acquisition and processing.

IEEE Trans. Cloud Comput., 7(3):866–877, 2019.

[67] Tero Lähderanta, Teemu Leppänen, Leena Ruha, Lauri Lovén, Erkki Harjula, Mika

Ylianttila, Jukka Riekki, and Mikko J. Sillanpää. Edge computing server placement

with capacitated location allocation. Journal of Parallel and Distributed Computing,

153:130–149, 2021.

174

[68] Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya. Latency-

aware application module management for fog computing environments. ACM

Trans. Internet Technol., 19(1), nov 2018.

[69] Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya. Latency-

aware application module management for fog computing environments. ACM

Trans. Internet Technol., 19(1):1–21, nov 2018.

[70] Eva Marín-Tordera, Xavi Masip-Bruin, Jordi García-Almiñana, Admela Jukan,

Guang-Jie Ren, and Jiafeng Zhu. Do we all really know what a fog node is? current

trends towards an open definition. Computer Communications, 109:117 – 130, 2017.

[71] X. Masip-Bruin, E. Marín-Tordera, G. Tashakor, A. Jukan, and G. Ren. Foggy

clouds and cloudy fogs: a real need for coordinated management of fog-to-cloud

computing systems. IEEE Wireless Communications, 23(5):120–128, 2016.

[72] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing. Technical

report, July 2009.

[73] Antti P. Miettinen and Jukka K. Nurminen. Energy efficiency of mobile clients in

cloud computing. In Proceedings of the 2Nd USENIX Conference on Hot Topics

in Cloud Computing, HotCloud’10, pages 4–4, Berkeley, CA, USA, 2010. USENIX

Association.

[74] Nader Mohamed, Jameela Al-Jaroodi, Imad Jawhar, Hassan Noura, and

Sara Mahmoud. Uavfog: A uav-based fog computing for internet of

things. In 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Ad-

vanced Trusted Computed, Scalable Computing Communications, Cloud Big

Data Computing, Internet of People and Smart City Innovation (Smart-

World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1–8, 2017.

[75] Mehrdad Moradi, Karthikeyan Sundaresan, Eugene Chai, Sampath Rangarajan,

and Z. Morley Mao. Skycore: Moving core to the edge for untethered and reliable

UAV-based LTE networks. In MobiCom ’18, page 35–49, New York, NY, USA,

2018.

[76] Mobile Cloud Computing. Online, 8 2016. Available at https://www.nist.gov/

programs-projects/mobile-cloud-computing [Accessed: 22/11/2021].

[77] E. M. R. Oliveira and A. C. Viana. From routine to network deployment for data

offloading in metropolitan areas. In 2014 Eleventh Annual IEEE International Con-

ference on Sensing, Communication, and Networking (SECON), pages 126–134,

June 2014.

[78] OpenCellID. Online. Available at http://www.opencellid.org (accessed on 1

January 2019).

[79] OpenFog Reference Architecture. Online, 2017. Available at https://www.

openfogconsortium.org/ra/ [Accessed: 24/05/2017].

175

[80] Cisco White Paper. Cisco visual networking index: Global mobile data traffic

forecast update, 2017–2022. February 2019.

[81] Vern Paxson. Fast, approximate synthesis of fractional gaussian noise for gener-

ating self-similar network traffic. SIGCOMM Comput. Commun. Rev., 27(5):5–18,

October 1997.

[82] Quoc-Viet Pham, Ming Zeng, Rukhsana Ruby, Thien Huynh-The, and Won-Joo

Hwang. Uav communications for sustainable federated learning. IEEE Trans. Veh.

Technol., 70(4):3944–3948, 2021.

[83] Xuan-Qui Pham, Nguyen Doan Man, Nguyen Dao Tan Tri, Ngo Quang Thai, and

Eui-Nam Huh. A cost- and performance-effective approach for task scheduling based

on collaboration between cloud and fog computing. International Journal of Dis-

tributed Sensor Networks, 13(11):1550147717742073, 2017.

[84] Carlo Puliafito, Diogo M. Gonçalves, Márcio M. Lopes, Leonardo L. Martins, Ed-

mundo Madeira, Enzo Mingozzi, Omer Rana, and Luiz F. Bittencourt. Mobfogsim:

Simulation of mobility and migration for fog computing. Simulation Modelling Prac-

tice and Theory, 101:102062, 2020. Modeling and Simulation of Fog Computing.

[85] Walid Saad, Mehdi Bennis, Mohammad Mozaffari, and Xingqin Lin. Wireless Com-

munications and Networking for Unmanned Aerial Vehicles. Cambridge University

Press, 2020.

[86] Subhadeep Sarkar, Subarna Chatterjee, and Sudip Misra. Assessment of the suit-

ability of fog computing in the context of internet of things. IEEE Transactions on

Cloud Computing, 6(1):46–59, 2015.

[87] Mahadev Satyanarayanan, Paramvir Bahl, Ramon Caceres, and Nigel Davies. The

case for vm-based cloudlets in mobile computing. IEEE Pervasive Computing,

8(4):14–23, 2009.

[88] Shanza Shakoor, Zeeshan Kaleem, Dinh-Thuan Do, Octavia A. Dobre, and Abbas

Jamalipour. Joint optimization of uav 3-d placement and path-loss factor for energy-

efficient maximal coverage. IEEE Internet Things J., 8(12):9776–9786, 2021.

[89] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:

Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[90] V. B. Souza, X. Masip-Bruin, E. Marín-Tordera, W. Ramírez, and S. Sánchez-

López. Proactive vs reactive failure recovery assessment in combined fog-to-cloud

(f2c) systems. In 2017 IEEE 22nd International Workshop on Computer Aided

Modeling and Design of Communication Links and Networks (CAMAD), pages 1–

5, June 2017.

[91] V. B. C. Souza, W. Ramírez, X. Masip-Bruin, E. Marín-Tordera, G. Ren, and

G. Tashakor. Handling service allocation in combined fog-cloud scenarios. In 2016

IEEE International Conference on Communications (ICC), pages 1–5, 2016.

176

[92] Vitor Barbosa Souza, Xavi Masip-Bruin, Eva Marin-Tordera, Wilson Ramirez, and

Sergio Sanchez. Towards distributed service allocation in fog-to-cloud (f2c) scenar-

ios. In 2016 IEEE Global Communications Conference (GLOBECOM), pages 1–6,

2016.

[93] X. Sun, N. Ansari, and Q. Fan. Green energy aware avatar migration strategy

in green cloudlet networks. In 2015 IEEE 7th International Conference on Cloud

Computing Technology and Science (CloudCom), pages 139–146, Nov 2015.

[94] M. Taneja and A. Davy. Resource aware placement of iot application modules in fog-

cloud computing paradigm. In 2017 IFIP/IEEE Symposium on Integrated Network

and Service Management (IM), pages 1222–1228, May 2017.

[95] M. Usman, A. Akhtar, M. Qaraqe, and F. Granelli. Remote cloud vs local mobile

cloud: A quantitative analysis. In 2018 IEEE Global Communications Conference

(GLOBECOM), pages 1–6, Dec 2018.

[96] Muhammad Usman. Energy Efficiency and Privacy in Device-to-Device

Communication. PhD thesis, University of Trento, 12 2017. avail-

able at https://www.semanticscholar.org/paper/Energy-Efficiency-and-Privacy-in-

Device-to-Device-Usman/c47aeb7ff44142b3166d363cbeec8d366671a828.

[97] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt. Cloudlets: Bring-

ing the cloud to the mobile user. In Proceedings of the Third ACM Workshop on

Mobile Cloud Computing and Services, MCS ’12, pages 29–36, New York, NY, USA,

2012. ACM.

[98] R. Vilalta, V. Lopez, A. Giorgetti, S. Peng, V. Orsini, L. Velasco, R. Serral-Gracia,

D. Morris, S. De Fina, F. Cugini, P. Castoldi, A. Mayoral, R. Casellas, R. Martinez,

C. Verikoukis, and R. Munoz. Telcofog: A unified flexible fog and cloud computing

architecture for 5g networks. IEEE Communications Magazine, 55(8):36–43, 2017.

[99] J. Wang, K. Liu, and J. Pan. Online uav-mounted edge server dispatching for

mobile-to-mobile edge computing. IEEE Internet Things J., 7(2):1375–1386, Feb

2020.

[100] X. Wang, S. Leng, and K. Yang. Social-aware edge caching in fog radio access

networks. IEEE Access, 5:8492–8501, 2017.

[101] Y. Yang, K. Wang, G. Zhang, X. Chen, X. Luo, and M. Zhou. Meets: Maximal

energy efficient task scheduling in homogeneous fog networks. IEEE Internet of

Things Journal, 5(5):4076–4087, Oct 2018.

[102] Hong Yao, Changmin Bai, Deze Zeng, Qingzhong Liang, and Yuanyuan Fan. Mi-

grate or not? exploring virtual machine migration in roadside cloudlet-based vehic-

ular cloud. Concurrency and Computation: Practice and Experience, 27(18):5780–

5792, 2015.

177

[103] D. Ye, M. Wu, S. Tang, and R. Yu. Scalable fog computing with service offloading

in bus networks. In 2016 IEEE 3rd International Conference on Cyber Security and

Cloud Computing (CSCloud), pages 247–251, 2016.

[104] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali,

Amirreza Niakanlahiji, Jian Kong, and Jason P. Jue. All one needs to know about

fog computing and related edge computing paradigms: A complete survey. Journal

of Systems Architecture, 98:289 – 330, 2019.

[105] Yong Zeng, Jie Xu, and Rui Zhang. Energy minimization for wireless communication

with rotary-wing uav. IEEE Trans. Wireless Commun, 18(4):2329–2345, 2019.

[106] Yong Zeng and Rui Zhang. Energy-efficient uav communication with trajectory

optimization. IEEE Trans. Wireless Commun, 16(6):3747–3760, 2017.

[107] Yongs Zeng, Qingqing Wu, and Rui Zhang. Accessing from the sky: A tutorial on

uav communications for 5g and beyond. Proceedings of the IEEE, 107(12):2327–

2375, 2019.

[108] G. Zhang, F. Shen, Z. Liu, Y. Yang, K. Wang, and M. Zhou. Femto: Fair and

energy-minimized task offloading for fog-enabled iot networks. IEEE Internet of

Things Journal, 6(3):4388–4400, June 2019.

[109] Kaiyuan Zhang, Xiaolin Gui, Dewang Ren, and Defu Li. Energy–latency tradeoff for

computation offloading in uav-assisted multiaccess edge computing system. IEEE

Internet Things J., 8(8):6709–6719, 2021.

[110] Shuhang Zhang, Hongliang Zhang, Qichen He, Kaigui Bian, and Lingyang Song.

Joint trajectory and power optimization for uav relay networks. IEEE Commun.

Lett., 22(1):161–164, 2018.

[111] Mingxiong Zhao, Wentao Li, Lingyan Bao, Jia Luo, Zhenli He, and Di Liu. Fairness-

aware task scheduling and resource allocation in uav-enabled mobile edge computing

networks. IEEE Trans. Green Commun. Netw., pages 1–14, 2021.

[112] Z. Zhao, G. Min, W. Gao, Y. Wu, H. Duan, and Q. Ni. Deploying edge computing

nodes for large-scale iot: A diversity aware approach. IEEE Internet of Things

Journal, 5(5):3606–3614, Oct 2018.

[113] Fuhui Zhou, Yongpeng Wu, Rose Qingyang Hu, and Yi Qian. Computation

rate maximization in uav-enabled wireless-powered mobile-edge computing systems.

IEEE J. Sel. Areas Commun., 36(9):1927–1941, 2018.

[114] Yi Zhou, Cunhua Pan, Phee Lep Yeoh, Kezhi Wang, Maged Elkashlan, Branka

Vucetic, and Yonghui Li. Communication-and-computing latency minimization for

uav-enabled virtual reality delivery systems. IEEE Transactions on Communica-

tions, 69(3):1723–1735, 2021.

	I Introduction and State-of-the-art
	Introduction
	Objectives
	Contributions
	Publications
	Thesis outline

	Background
	Cloud computing
	Fog Computing
	Definition and Characteristics
	Related Concepts
	Fog nodes
	Applications
	Architectures

	Facility Location Problem
	Multi-objective Optimization
	Unmanned Aerial Vehicles
	Overview and UAV types
	Rotary-wing and Fixed-wing UAV Operation
	Energy Consumption
	Channel Model

	Related Work
	Facility Location Problem in Computer Networks
	UAVs as Networking Elements
	Reduction of energy consumption via offloading
	Resource Allocation in Fog Computing
	Workload and Data Sets
	Software tools

	II Terrestrial Infrastructure
	Location of Fog Nodes for Reduction of Cost
	Overview
	System Model
	Formulation
	Mathematical Model
	Numerical Example

	Performance Evaluation
	Workload
	Multi-objective solutions allowing degradation
	Numerical results

	Conclusions

	Location of Fog Nodes for Reduction of Energy Consumption of User Devices
	Overview
	System Model
	Formulation
	Energy and Demand Trade-off Algorithm
	Performance Evaluation
	Energy model
	Workload
	Application model
	Numerical results

	Conclusions

	III Aerial Infrastructure
	Location of Fixed and UAV-based Fog Nodes
	Overview
	System model
	Formulation
	UAV Fog Node Location Algorithm
	Performance Evaluation
	Experimental settings
	Numerical results

	Conclusions

	Location of Fog Nodes mounted on Rotary-wing UAVs
	Overview
	System Model
	Formulation
	Sequential UAV Fog Node Location
	Performance Evaluation
	UAV characterization
	Workload
	Validation of the SUL Algorithm
	Qualitative Analysis

	Conclusions

	Location of Fog Nodes mounted on Fixed-wing UAVs
	Overview
	System Model
	Formulation
	STUFog Algorithm
	Performance Evaluation
	UAV characterization
	Workload
	Validation of the STUFog algorithm
	Numerical discussion

	Conclusions

	IV Resource Allocation
	Resource Allocation Mechanism for Fog-Cloud Infrastructures
	Overview
	System Model
	GPRFCA mechanism
	Performance Evaluation
	Simulation settings
	Evaluated mechanisms
	Workload
	Energy consumption model
	Numerical results

	Conclusions

	V Final Remarks
	Conclusions
	Main findings
	Limitations and challenges
	Future work

	Bibliography

