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Resumo

Algoritmos de Ray Tracing sao amplamente utilizados como a principal técnica de ren-
derizacao de cenas complexas quando se busca realismo e precisao na simulagao de luz.
As técnicas baseadas em Bidirectional Light Transport sao conhecidas por se destaca-
rem em cenas com caminhos de luz complexos, o que é possivel porque os caminhos que
saem da camera da cena e os caminhos que saem dos emissores de luz sao gerados in-
dependentemente e, em seguida, conectados deterministicamente. Essas abordagens, no
entanto, ainda apresentam questoes centrais inerentes a maioria dos métodos de Monte
Carlo. As amostras geradas por eles podem ser aglutinadas infinitamente, o que nao
oferece uma representacao precisa do dominio. As conexdes deterministicas geralmente
sao geradas aleatoriamente, em contraste com a forma com que os subcaminhos, tanto
da camera quanto dos emissores, sao amostrados de acordo com sua importancia para
a cena. Pesquisas recentes em algoritmos tradicionais de transporte de luz bidirecional
mostraram que outras formulagoes mais complexas de conexoes de caminho sao eficazes
para permitir a estratificacao e amostragem de baixa discrepancia no espaco de cone-
xao onde os caminhos sao gerados, o que permite uma distribuicao uniforme e coerente
de caminhos igualmente contribuintes. Mostramos que amostrar a importancia da taxa
de transferéncia de subcaminhos de luz resulta em melhor redugao de variancia sob cer-
tas condigoes. As alteragoes propostas foram aplicadas ao algoritmo Bidirectional Path
Tracing, em uma variagao que chamamos de Alias Sampled Bidirectional Path Tracing
(ASBDPT). Experimentos realizados em uma série de cenas 3D para avaliar a eficacia da
metodologia mostraram ganhos de reducao de variancia em cenas com exposicao limitada
a luz, ao comparar os resultados com métodos do estado da arte da &rea.



Abstract

Ray tracing algorithms are widely used as the main rendering technique for complex
scenes when aiming for realism and precision in the light simulation. Bidirectional light
transport based techniques are known to excel in scenes with complex light paths, which
is possible because the paths leaving the scene camera and paths that leave the light
emitters are generated independently and then connected deterministically. These ap-
proaches, however, still have core issues inherent to most Monte Carlo methods. The
samples generated by them can be infinitely clumped together, which does not offer an
accurate representation of the domain. The deterministic connections are usually gener-
ated randomly, compared to how the sub-paths, both from the eye and emitters, are well
importance sampled. Recent research in traditional bidirectional light transport algo-
rithms has shown that other more complex formulations of path connections are effective
in enabling stratification and low-discrepancy sampling in the connection space where
the paths are generated, which allows for an even and coherent distribution of equally
contributing paths. We show that importance sampling the throughput of light sub-paths
results in improved variation reduction under certain conditions. The proposed changes
have been applied to the Bidirectional Path Tracing algorithm, in a variation we call Alias
Sampled Bidirectional Path Tracing (ASBDPT). Experiments conducted on a series of
3D scenes to evaluate the effectiveness of the methodology have show variation reduction
gains on scenes with limited light exposure, when comparing the results against current
state-of-the-art methods.
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Chapter 1

Introduction

This chapter presents the sub-path importance sampling problem, its challenges, main
goals, hypothesis contributions of the dissertation, and the text organization.

1.1 Problem Description

Monte Carlo Ray Tracing has become the most widely used type of photo-realistic render-
ing technique. The seminal paper “The Rendering Equation” [16] introduced a technique
that is known today as Path Tracing (PT). Using Monte Carlo integration, the method
had a mathematical formulation that allowed complex light effects, such as motion blur
and indirect illumination, to be rendered easily [28, 29]. It is the basis for most light
transport algorithms that followed. One of its limitations, however, is the handling of
complex light paths, usually from obstructed light sources.

Bidirectional light transport methods attempt to tackle this inefficiency, by sampling
partial paths starting both from the light sources, from here on out called light sub-paths,
and starting from the camera, or eye sub-paths, followed by a deterministic step that
connects all possible pairs. Bidirectional Path Tracing (BDPT) was proposed indepen-
dently by both Lafortune and Willems [21] and Veach and Guibas [50]. In practice, both
proposed a method where paths are traced simultaneously and then connected by shadow
rays in a deterministic way.

Veach and Guibas’ version of the algorithm had some considerable differences, as it
introduced the concept of Multiple Importance Sampling (MIS), allowing the resulting
image variance to be considerable reduced. By using MIS, Veach and Guibas were able to
sample different Probability Density Functions (PDFs), while keeping the render unbiased.
The authors proposed a balance heuristic to weight the PDF values when sampling with
MIS that, while not always optimal in practice, produces satisfactory results in most
cases.

Figure 1.1 shows examples of the same scene rendered for a specific sub-path connec-
tion strategy only. That is, we render the same scene several times, but only connect
sub-paths of a certain eye and light length each time. With ¢ standing for the length of
the camera sub-path, and s standing for the length of the light sub-path, we can consider
connections with ¢ = 1 as the ’light tracing’ algorithm, where we strictly trace rays of
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light from an emitter and attempt to reach the eye or camera. On the other hand, con-
nections with s = 0 can be considered as the standard Path Tracing algorithm without
next event estimation. This visualization is useful to showcase the main strength of the
BDPT algorithm: several details of the rendered image would not be achieved otherwise,
or would require a much longer execution.

Figure 1.1: Examples of connection strategies rendered individually. Adapted from [41].

While the light and eye sub-paths are well importance sampled, importance sam-
pling the sub-path connections is still mostly considered an open problem. Variations of
BDPT, such as the Matrix Bidirectional Path Tracing (MBDPT) [6], Combinatorial Bidi-
rectional Path Tracing (CBDPT) [38] and Probabilistic Connections Bidirectional Path
Tracing (PCBDPT) [42], all three described in detail in Section 2.2, have been introduced
and attempted to connect the sub-paths in different, more specialized ways than what the
standard Veach-styled algorithm does, obtaining better results through a faster variance
reduction. They do, however, come with their own limitations in different aspects.

Both PCBDPT and CBDPT reutilize paths to make their specialized connections.
While the authors propose different ways to mitigate the variance introduced by sub-path
reusal, it is still an undesirable effect. In our proposed technique, however, we attempt to
importance sample the light sub-paths without reusal, making sure there is no variance
increase or correlation issues. Additionally, we also developed the technique in an easily
scalable way, which can be parallelized in CPUs or GPUs, such as the CBDPT.

Several other venues have been explored by Light Transport research in recent years,
with special attention being given to real-time Ray Tracing techniques [4, 31, 32|, Monte
Carlo Path Tracing denoising [9, 24, 58| as well as Differentiable Rendering [18|.

Differentiable Rendering specially has had a lot of attention, due to the growing im-
portance of Machine Learning and its applications in the last decade. Generally speaking,
this family of algorithms works by backpropagating gradients on a neural network with
respect to the rendering output. Notable recent works include Nimier-David et al. [36],

Loubet et al. [26], Li et al. [22], Zhang et al. [59], and Hadadan and Zwicker [11].
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1.2 Hypothesis

In short, as previously mentioned, rendering algorithms such as the PT, the BDPT and
their variations have their own limitations and use cases, as no technique will be optimal
in all situations. One of the main challenges of the field is being able to introduce a
technique that is robust while being flexible enough in different situations.

This work aimed to answer the following research question:

Is it possible to achieve significant variance reduction by importance sampling sub-path
connections with the alias sampling method?

1.3 Objectives and Contributions

The main goal of this work is to investigate state-of-the-art variation reduction techniques
through sub-path connections and propose a competitive methodology to address the
problem. For this, we developed a new variation of the BDPT rendering algorithm. To
achieve this objective, some specific goals were be considered and pursued:

e investigation of state-of-the-art approaches used in variation reduction on sub-path
connections.

e proposal of a new sub-path connection sampling technique.
e validation of the method in extensive 3D scenes and models.

e comparison and evaluation of the proposed method against other available ap-
proaches.

e publication of the results.

We introduce our new rendering technique, the Alias Sampled BDPT, as a variation
of the traditional BDPT algorithm attempting to do that. We employ a new light sub-
path sampling method, based on the adoption of a modified version of the alias sampling
method.

The alias sampling method generates (natural) numbers with a pre-computed proba-
bility by sampling a discrete probability function. That is, given an arbitrary probability
function p,, the algorithm has a probability of p; to return the integer 0 < ¢ < n. The
sampling method is efficient, being able to generate the probabilities in a constant, O(1)
time, per BDPT iteration. The integer returned by the sampling method will be used to
index a list of light sub-paths. The arbitrary probability is based on a metric applied to
the mean of the sub-path throughput at its furthest vertex.

Differently from previous methods, we do not reuse paths, which helps the variation
to stay under control, but it does, however, force us to generate more paths than tradi-
tional techniques under the framework we envisioned. We demonstrate the efficiency and
effectiveness of the resulting algorithm, against the standard BDPT, on a series of 3D
scenes with different levels of complexity and characteristics.
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1.4 Text Organization

Chapter 2 describes the main concepts and works related to importance sampling sub-
path connections. Chapter 3 presents the proposed methodology, 3D scenes and models,
evaluation metrics and computational resources that will be used in the dissertation.
Chapter 4 discuss the results we obtained throughout the proposed method. Chapter 5
provides some concluding remarks, and talks about the strengths and limitations of our
method, as well as discussing how these limitations could be tackled, and other areas
where we could improve our technique or expand the research topic. Last but not least,
Appendix A has additional diagrams that compare the parameters our application can
receive as input.
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Chapter 2

Background

This chapter is divided into two sections. In the first section, theoretical concepts related
to the problem of importance sampling sub-path connections are briefly described. In the
second section, relevant methods available for solving the problem are presented, which
represent baselines and inspiration for the proposed method presented in Chapter 3.

2.1 Concepts

In this section, we briefly present relevant concepts used in importance sampling sub-path
connections to provide a better comprehension of the problem under investigation in this
work. For the remainder of this dissertation, we follow the terminology adopted by Haines
and Shirley [12].

2.1.1 Path Integral

Monte Carlo (MC) integration techniques aim to find approximate values to integrals
where it is hard, or otherwise impossible, to obtain a closed result in practice |5, 14]. This
is done by taking random samples of a function over its domain and weighting them. For
example, we can estimate a general determinate integral as

N
1 o f(X9)
F= / f(x)dr ~ — , 2.1
(@~ 5 2 % 2
where p(X;) is a probability density function (PDF) for the function f(X;) and N is the

number of samples. We can understand a PDF of a random variable as a function that
returns us the probability that the random variable (or, in this case, sample) X; will take

a value comprised in a certain interval.

Bringing the problem to the light transport field, we follow Eric Veach’s path integral
formulation [49] for the remainder of this work. The resulting radiance I; of a pixel j is
defined as the integral of the light throughput, f;, of all possible light transport paths
that connect the pixel j to a light source in the scene, given by the equation

I = / £5(%) du(®), (2.2)
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where €) is the collection of all possible paths of all lengths k& and X represents a path,
which we can understand as a list of 3D positions in the form X = [xg,x1, ..., Xy, where
1 < k < oo. Note that, generally speaking, we can expand a term in respect to a path @
to a product of terms with respect to their vertices. dyu is the differential of area-product
over the path in question. This means that du(X) can also be understood as the product
of the area differentials over the path

k

dp(x) = [ [ dAx)). (2.3)

1=0

The throughput f; of a path X, also called measured contribution function, is defined
by Veach as the weighted product of all bi-directional scattering reflectance distribution
functions (BSDFs) over the path vertices [6], recursively represented as

fj&) = Le(xp — Xp_1)G (x5, <> Xp_1)We(x1 — X0)

kol (2.4)

H fs(Xip1 = % = X1)G(X <> X-1),

i=1
with L. being the emitted radiance, G the geometric term, f; being the BSDF and W,
being the sensor importance. Note that L., which is only different from zero if x; is on
an emitter, only appears at the emitter end of a path — the recursion itself only takes the
BSDF and geometric terms into account.

If we apply this path integral formulation to Kajiya’s Path Tracing [16], we are able

to estimate each I; independently by sampling paths X similar to the PDF p;(X), turning
Equation 2.2 into

1 fi(%)
[-:/f-i du(x) ~ — I 2.5
= [ 000 i~ 52 (2.5

While we offer here a brief introduction where applicable, for more in-depth explana-
tions about Monte Carlo integration and correlate topics in the context of Light Transport,
readers may want to refer to the textbook 'Physically Based Rendering: From Theory to

Implementation’ (PBRT), by Pharr et al..

2.1.2 Importance Sampling

As with any other process that depends on random variables, Monte Carlo integration
has a variance value attached to its observations. Formally being defined as the square of
the standard deviation, it can be understood as a measure of how much a set of numbers
differs from their mean |25, 56].

In the context of Monte Carlo light transport, a higher variance will result in visual
artifacts, such as noise. Thus, we intend to reduce the variance of our algorithm. This
could be done, for example, by making use of blue-noise sampling techniques [1, 39, 43|,
sub-path resampling [33], and, more commonly, Importance Sampling (IS), one of the
most used families of variance reduction techniques.
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Importance Sampling is a variance reduction technique frequently applied to Monte
Carlo integration applications [20, 48], such as Path Tracing and BDPT. It makes use of
the fact that if we concentrate computational resources where the value of the integrand of
Equation 2.5 is higher, we will manage to achieve an accurate estimation faster [41]. Gen-
erally speaking, in relation to light transport problems, this happens when ray directions
are sampled from distributions that are proportional to other factors of the integrand,
such as the BSDF, the illumination distribution and so on, because the PDF will have a
similar shape to it.

We can conclude that PDFs that are proportional to different factors of the integrand
will importance sample specific aspects of the scene. This can be seen in Figure 2.1,
where the same scene is importance sampled in relation to the BSDFs and light sources,
respectively. It is also a known fact that finding a single PDF that is a good fit for the
entire scene is not an easy task [41] — which brings up the question: can we use multiple
different PDFs at the same time? And, if so, how can we optimally mix them together?

Figure 2.1: Recreation of a scene from Veach’s Ph.D. thesis [49], comparing the resulting
rendered image when importance sampling the BSDF and the light sources, by Li [23].

2.1.3 Multiple Importance Sampling

Multiple Importance Sampling (MIS), introduced by Veach and Guibas [51], tackles the
issue that it is hard to obtain one single PDF that performs well for all situations, but we
often know “multiple” different PDFs that locally approximate the integrand value better
than others [10]. Then, we can generalize Equation 2.5 as a weighted sum of estimators,
which Veach and Guibas call the “multi-sample estimator”, given by

i—0 j—0 niP; (Xi,j>

where n; denotes the number of samples taken from p;, where n; > 1, and N = > n;
represents the total number of samples. Finally, X; ; are the samples taken from technique
pi, for 7 = (1,...,n;), and w; is the weight function of the technique.

In practice, for BDPT, we can use a different and more specialized notation for Equa-
tion 2.6, as used by Chaitanya et al. [6], to account for the connection strategies’ sub-path
lengths s and ¢, for the light and eye sub-paths respectively. Thus, we can rewrite Equa-
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tion 2.5 as v
w(Xs ) f5(Xs 1)
=) Tl st (2.7)
i=0 >0 t>0 Np(Xs.)
where N is the total number of (independent) samples, Xs; = [yo, ..., ¥s, Zt; - - -, Zo) IS &

full, connected path through pixel j, [yo,...,¥s] =¥ is the eye sub-path, [z, ...,z =2
is the light sub-path, p(X;:) is the PDF used to generate y and z and w(X;;) is the MIS
weight function.

While there is a number of ways the weights from Equations 2.6 and 2.7 can be
obtained, Veach and Guibas showed that the Balance Heuristic is a good choice to reduce
variance [44, 51]. The weight function is, then, given by

nsps(z)

Note that a naive implementation of Equations 2.7 and 2.8 would result in an O(n?)

wy(7) = (2.8)

algorithm, but, in practice, implementations of the heuristic usually make use of values
gradually calculated and obtained through the construction of the sub-paths to mitigate
the computational cost [41].

More recent developments, such as the non-balance heuristic proposed by Sbert et al.
[45], the new weighting functions introduced by Ivo et al. [15] and the generalized estima-
tors by Karlik et al. [17], attempt to reduce the variance even further by optimizing the
MIS variance estimators in different ways.

2.1.4 Sub-path Connections

The core ideas behind a bidirectional light transport algorithm such as BDPT is how we
locally sample paths by generating two sub-paths of varying length starting, separately,
from the camera and an emitter and how we connect these sub-paths end-points together.
While there are several ways these connections can be made, this is heavily influenced by
how the sub-paths are generated.

In the traditional BDPT framework described by Veach [49], for each pixel in the
image, and for each sample, we generate a sub-path from the camera and a sub-path from
a random emitter in the scene. Then, we iterate throughout their whole lengths, from the
starting vertices, to the intermediate and end-point ones, and attempt to make successful
connections with each eye and light pair of vertices — in practice, each of these successful
connections is called a “connection strategy” and has a specific eye sub-path and light
sub-path length. We take the different sub-path connection strategies into account by
weighting them with Multiple Importance Sampling. For a connection to be considered
successful, we perform a visibility check — we can only connect two vertices if nothing is
blocking the view, otherwise this connection results in zero contribution to the sample.
An example is shown in Figure 2.2.

Note again that, in the standard BDPT, one light sub-path will be generated for
each eye sub-path and then they will be connected together, through the use of several
different connection strategies weighted by MIS. Other formulations of BDPT, described
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Figure 2.2: Example of connection strategy, with eye sub-path length ¢ = 2 and light
sub-path length of s = 2, followed by other hypothetical strategies that need to be taken
into account for an accurate MIS calculation. Adapted from Pharr et al. [41].

in Section 2.2, have investigated different methods to generate these sub-paths and their
connection strategies. Ultimately, our goal is, precisely, to find optimal ways to connect
generated sub-paths and maximize the variation reduction.

While we focus on BDPT derived techniques here, another (advanced) family of bidi-
rectional algorithms, the Metropolis Light Transport (MLT) [52], also proposed by Veach
and Guibas [52]|, makes use of similar concepts — sub-paths are generated from both
emitters and the camera and subsequently connected.

First introduced by Metropolis et al. [30], Metropolis-based methods make use of
Markov Chain Monte Carlo (MCMC) integration, a class of sampling algorithms. Through
MCMC integration, the Equation (2.1) becomes

/g(:c)dx ~ % Zl pzig) (2.9)

Q

MCMC integration is especially useful in integration problems with a high order of
magnitude, which is one of the reasons MLT programs are known to be efficient in scenes
with complex light transport paths. MCMC sampling is able to estimate a series of
correlated integrals up to the scaling factor b, which is then estimated separately by
traditional MC integration, for example.

The samples generated by MCMC sampling are part of a history of states of a Markov
chain, as described by Hastings [13]. Based on a conditional probability ¢(z; — y),
a proposal state y is generated given the current state x;, which is often referred to as
mutation in light transport applications. We, then, consider z;,; = y with the probability
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min(a, 1), with a defined as

(P ()aly = ;)
(p*(@i)a(xi = y)’
or, otherwise, z;,; = x; and no mutation occurs.

Some variations of the MLT algorithm [3, 10, 19|, even make use of BDPT and uni-
directional PT techniques underneath them, by applying mutations and iterating over
the proposed paths. Other recent applications of MCMC integration to Light Transport

a(x; = y) = (2.10)

differ from previous approaches for using Langevin Monte Carlo sampling, rather than
only Metropolis-based integration [27].

2.1.5 The Alias Sampling Method

The alias sampling method [54] is an efficient algorithm to generate random discrete
numbers with arbitrary Probability Mass Functions (PMFs) — while similar in principle
to PDFs, PDFs refer to continuous distributions and PMFs, as the name suggests, to
discrete distributions.

To allow for a fast sampling speed, the algorithm has a pre-processing step that iterates
over all p; probabilities, for ¢ = 1,...,n, multiple times to find one that satisfies a defined
constraint. Once it is done, p; is inserted into a bin. Each bin will have, at most,
two probabilities, and, depending on the constraints chosen, one probability can appear
on more than one bin. To draw a sample from this method, we will roll two random
numbers: one to select a bin b,, with £ = 1,..., K, and another one to select one of
the probabilities of the bin, for instance, p;. Since we have at most two probabilities on
each bin, the comparison is simple and this makes it a O(1) sample generation cost —
the pre-process stage, if implemented naively, has O(n?) cost. Assuming we selected the
probability p; at bin by, the sampled random integer we will return is 7. An example
representing the process can be seen in Figure 2.3.

b1 b2 bj bn

1/4

Figure 2.3: Example diagram representing the alias bins and their respective probabilities.
According to the method proposed by Walker, we will draw a random number to select
one of the b bins, followed by another number to select a probability p; encapsulated in
said bin. Note that the sum of the probabilities within a single bin will always be equal
to 1.

Vose proposed a variation of the alias method with O(n) complexity to build the
probability and alias tables, while keeping the efficient O(1) sample cost [53]. The main
difference is, rather than iterating through the list of elements O(n?) times, we will keep
two lists of elements, and iterate through them one single time through the algorithm
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execution to build the probability tables. We will build up on Vose’s ideas and use a
variation of his algorithm to importance sample sub-path connections, as we describe in
Section 3.1.2.

2.2 Related Work

In this section, we briefly discuss relevant methods that inspired our work and are relevant
for the problem at hand or the field as a whole.

As far as our own method is concerned, some evident common links between it and
all of the works described as follows is that they are path-based and most of them are,
like ours, bidirectional light transport methods. Several of these methods inspire ours
in different areas, such as the specialized sub-path connections of CBDPT, PCBDPT
and MBDPT. Our algorithm, however, innovates by performing such special connections
through the Alias Sampling method, while avoiding reuse of light sub-paths.

2.2.1 Bidirectional Path Tracing

The Bidirectional Path Tracing algorithm, proposed independently by both Lafortune
and Willems, in 1993 [21], and Veach and Guibas, in 1995 [50|, came to be from the
observation that light transport can be formulated, save rare exceptions, as a symmetric
operation: the concepts of light emission and light measurement are mathematically ex-
changeable [41]. This implies that we can render an image through a forward or backward
algorithm and, hypothetically, achieve the same result. Notably, in practice, rendering
from the light sources, rather than from sensors/cameras, is a much harder task if done
independently, but assuming infinite time constraints and computational resources the
result of the algorithm will be the same.

2.2.2 Metropolis Light Transport

Metropolis sampling, based on the Metropolis et al. [30] algorithm for Markov Chain
Monte Carlo (MCMC), can further optimize the efficiency of BDPT by focusing com-
putational resources on more relevant light carrying paths. It was first introduced to
light transport simulation by Veach and Guibas, in 1997, as Metropolis Light Transport
(MLT) [52]. An unconventional application to rendering at the time, the MLT algorithm
generates light paths by permuting, or mutating, previous paths, being able to perform a
local exploration of the path space. The use of mutation strategies in MCMC integration
amortizes the cost of finding a solution to paths that are hard to obtain through tradi-
tional Monte Carlo algorithms. It is known, however, as a difficult method to implement,
and is usually not considered flexible enough to be used in production rendering.

2.2.3 Primary Space Sample Metropolis Light Transport

Kelemen et al. proposed the Primary Space Sample MLT (PSSMLT) in 2002 [19] as
another rendering technique also based on MCMC algorithms. Differently from MLT,
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however, PSSMLT does not explore the path space directly. Relevant light paths are
initially obtained by a different light transport algorithm, such as BDPT — random initial
paths are also valid, but not as effective. The mutation strategies are also applied here,
but, usually, much simpler and easier to implement than the ones found in the original
MLT algorithm.

A variation of PSSMLT was proposed by Hachisuka et al., in 2014, the Multiplexed
Metropolis Light Transport (MMLT) [10]. MMLT shares many similarities to PSSMLT,
but it is based on a new MCMC sampling framework proposed by the authors, which
allows the algorithm to sample directly from a Multiple Importance Sampling distribution,
and introduce other constraints, such as the connection of the sub-paths being limited to a
single strategy specified by its current Markov chain state, being able to focus computation
efforts on paths that contribute more to the image.

2.2.4 Combinatorial Bidirectional Path Tracing

In an attempt to make use of the increasingly powerful GPUs, while still keeping the
flexibility of a CPU-based algorithm, Pajot et al. introduced a novel formulation of a
hybrid implementation of BDPT [38|. The author attempted to harvest the strengths of
both processing unit models, while avoiding their downsides — for example, while CPUs
lack behind in parallelism when compared to GPUs, GPUs, when used alone, are limited
when it comes to material, light or camera model complexity compared to CPUs.

Differently from the traditional BPDT, where a light sub-path and an eye sub-path
are combined individually, Combinatorial BDPT (CBDPT) connects sets of light and eye
sub-paths, using the GPU power to its maximum without increasing the sampling cost.
Considering the light and eye sub-paths are connected in all possible ways, path reusal
will clearly be present. To prevent correlation patterns and the consequent increase in
variance, CBDPT shuffles the image-space coordinates, stored in an array, used by each
eye path, on a stratified scheme over the entire image. The authors also managed to
interleave the GPU and CPU workload, in order to always keep them busy.

2.2.5 Probabilistic Connections Bidirectional Path Tracing

While Bidirectional Path Tracing with Multiple Importance Sample is one of the most
versatile rendering methods available, BDPT still generates many low contributing paths.
Popov et al. observed on Probabilistic Connections Bidirectional Path Tracing [42] that
importance sampling the sub-path connections is still an open issue and could result
in improved variation reduction. The authors proposed a new framework that makes
connections probabilistically, which is done by storing light paths and estimating PMFs
out of them.

They also introduced an efficient caching scheme for the light paths, chosen by low-
discrepancy sequences, which manages to avoid expensive calculations otherwise used by
interpolating the store paths. This approach brings some issues, however, as the reuse
of (light) paths increases the variance. They discuss the effects of such path reuse and
introduce specialized sample weights to reduce the variance increase.
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2.2.6 Resampling-aware Weighting Functions for Bidirectional Path
Tracing using Multiple Light Sub-Paths

When using Multiple Importance Sampling with BDPT, Veach’s balance heuristic is able
to provide a minimal upper bound for the variance, weighting each full path in proportion
to its probability. While when resampling paths their probability can change, the standard
MIS functions don’t account to that.

Expanding on the work of Popov et al., Nabata et al. [33] introduced a new, precise
formulation of the variance, as well as derivations of weighting functions that take the
probability changes into account. The authors show that the functions depend on the size
of the pre-sampled light sub-path set, with the standard balance heuristic becoming less
efficient as more paths are resampled. Their new functions are adaptable to the size of the
path resampling set and are derivable by applying Resampled Importance Sampling (RIS)
to the resampling of a light sub-path from a set of previously sampled light sub-paths.

2.2.7 Two-stage Resampling for Bidirectional Path Tracing with
Multiple Light Sub-paths

While Popov et al. [42] and Nabata et al. [33] showed that the resampling of a small
subset of the generated light sub-paths can lead to a more efficient variance reduction,
the reuse of paths lead to correlation and in turn visual artifacts. On the other hand,
using more pre-sampled light sub-paths would increase the execution time. Nabata et al.
[34] introduced a new two-stage resampling method for BDPT making use of multiple
light sub-paths.

The first stage is composed by an efficient resample of important light sub-paths
from a large number of pre-sampled light sub-paths, followed, during the second stage,
by the resampling of these important paths from the first stage, resulting in a single
sub-path. The authors introduce a specialized function for their two-stage resampling
method, which, coupled with their resampling algorithm, manages to to obtain stronger
variance reduction than previously introduced BDPT methods making use of multiple
light sub-paths.

2.2.8 Matrix Bidirectional Path Tracing

In traditional Monte Carlo ray tracing algorithms, paths sampled can be clumped to-
gether, frequently resulting in redundancy or low contribution to the end result, and this
is even worse for Bidirectional methods, such as BDPT, as the connections might be
clumped as well.

Chaitanya et al. [6] introduced a new matrix formulation for Bidirectional Path Trac-
ing algorithms, through the Matrix Bidirectional Path Tracing, to enable stratification
and allowing efficient use of low-discrepancy sampling, which results in faster variance re-
duction when compared to other BDPT methods in most situations, except in cases that
the authors call “implicit path sampling techniques”, meaning Path Tracing without next-
event estimation, with eye sub-path length s = 0, and Light Tracing, with light sub-path
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length ¢ = 1. In these cases, they recommend making use of traditional algorithms.

2.2.9 Ellipsoidal Path Connections for Time-gated Rendering

Time-of-flight (ToF) image sensors are used in a broad array of applications, such as
robotics, medicine and human-computer interaction. Unlike traditional intensity sensors,
ToF sensors take into account that the speed of light is finite and record data about the
time it takes for photons to travel from a light emitter to itself. Ray-tracing rendering
techniques, such as the standard BDPT, can be used to simulate time-gated applications,
after adaptations are introduced. BDPT is not, however, efficient for this time of problem,
as several paths end up being rejected according to certain conditions set up by the sim-
ulation. Pediredla et al. [40] proposed a novel algorithm based on BDPT with specialized
path connections, the Ellipsoidal Path Connections for Time-gated Rendering.

In short, their algorithm initially selects a target path length 7 through a path length
importance function W.. Then, they used the traditional BDPT to trace sub-paths of
max length equal to 7. The connections are, then, made by a novel technique that will
connect every pair of vertices in the light and eye sub-paths through an additional vertex,
rather than directly, with the new vertex, called the ellipsoidal vertex, selected to make
the total path length equal to 7. The proposed connection strategy, for this application,
results in less rejected paths, managing to increase the performance of the algorithm
against traditional BDPT.

2.2.10 Caustic Connection Strategies for Bidirectional Path Trac-
ing

While BDPT is one of the most robust rendering methods, it is known to have poor per-
formance when sampled paths involve specular light transport, such as refraction through
dielectrics. Speierer et al. [46] introduced the Caustic Connection Strategies for Bidirec-
tional Path Tracing. The method has specialized connection strategies that are adapted
to specular events, based on Manifold Next Event Estimation (MNEE) techniques, to
deterministically connect vertices across refractive surfaces. These new techniques as es-
pecially useful when we consider that, for caustic sub-paths other strategies frequently
fail, resulting in specific areas of the image to be overly noisy. The authors also introduced
a recursive scheme to compute MIS weights during the creation of the paths, keeping it
efficient.

2.2.11 Path Graphs: Iterative Path Space Filtering

One of the main issues of traditional Path Tracing based methods is the usual need for a
high number of samples to get a noise-free image. Bidirectional algorithms, while usually
more efficient in cases where the illumination is indirect and incoming from an external
area to the scene, have trouble solving paths that pass through windows, for example.
These issues can be mitigated by techniques that explore path guiding, as well as image
denoising. They are more effective, however, when more information about the scene (i.e.,
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'features’) are available rather than just the resulting light data. Deng et al. [8] introduced
a novel technique that operates on a Path Graph.

Normally, ray or path based methods operate on a tree, where one vertex is connected
with one edge going towards the light source, while the other heads to the camera view,
recursively. In practice, each pixel in the resulting image is the starting point of one such
tree. The Path Graph approach described by Deng et al. [8] takes the union of these trees
and add extra edges which share information to vertices in the spatial vicinity, effectively
making clusters of vertices and connecting them. With such a graph in hand, the radiance
of each pixel can be estimated by aggregating the radiance at each node, and propagating
it to nearby vertices, which in practice is an iterative way of reusing paths, followed by a
final gather step. The results can, then, be reconstructed and denoised. The authors argue
the extra steps of this method are relatively cheap, but manage to obtain considerable
variance reduction compared to denoised images generated by standard techniques.

2.2.12 Optimised Path Space Regularisation

Despite Path Tracing being by far the most popular approach in simulating light trans-
port, some effects such as caustics are especially hard for it to render. Other rendering
approaches such as the Bidirectional Path Tracing and Photon Mapping can solve many
of these hard-to-render effects, but Path Tracing is still often preferred due to his flexibil-
ity and ease to integrate. Production renderers commonly apply a form of regularisation
called 'roughening’, which, in short, means adding roughness to materials to ease the
sampling of hard paths. This effectively adds a bias, or ’error’; to the method, but allows
it to be more efficient, on a trade-off. Weier et al. [57] introduced a new algorithm, the
Optimised Path Space Regularisation, aiming to introduce only the necessary amount of
roughness to reduce variance while keeping the added error as low as possible.

Weier et al. employed differentiable rendering [22, 35| to “model the problem as a
joint bias-variance minimisation”, allowing them to choose which vertices to normalize
on specific paths during the rendering. While their new estimator is biased, the authors
demonstrate that it is consistent when “mollifiers” are present. Mollifiers are sequences of
smooth, positive distributions that converge to a Dirac delta distribution as the mollifica-
tion bandwidth approaches zero. The proposed regularization scheme works on arbitrary
scenes without having to be re-optimized, allowing for a straight forward implementation.

2.2.13 Reservoir-based Spatio-Temporal Importance Resampling

Monte Carlo-based methods have trouble efficiently sampling dynamic direct light when
the number of emitters is big, on the order of millions of sources, even if we consider offline
methods only. The problem, however, is considerably more complex when attempting
to do it in real time. Bitterli et al. [4] introduced a new algorithm that renders light
sources interactively and without requiring complex data structures to stay efficient, the
Reservoir-based Spatio-Temporal Importance Resampling (ReSTIR).

The algorithm resamples “candidate light sources” repeatedly, as well as resampling rel-
evant samples spatially and temporally. Their method samples one-bounce direct lighting
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from a vast number of light sources and is suited for real-time ray tracing implementa-
tions on dynamic scenes, building on Resampled Importance Sampling (RIS) by selecting
samples from one distribution and then weighting another subset of them, chosen through
another distribution that better matches the function to be integrated which reduces the
variation [47].

Differently from previous applications, however, the authors use a small “reservoir”
data structure that only stores samples that were accepted. In practice, Bitterli et al.
[4] introduce a new, unbiased MC estimator for that, showing that their method can
obtain results up to 60 times faster than state-of-the-art methods. An biased version of
the estimator can reduce variance further, and is even faster, “at the cost of some energy
loss™.

2.2.14 ReSTIR GI: Path Resampling for Real-Time Path Tracing

While recent advancements in GPU architectures allow for hardware-accelerated, real-
time Ray Tracing applications, only a small number of samples can be draw at a time.
That represents a challenge, even with state-of-the-art denoising algorithms. Expanding
on the principles introduced by Bitterli et al. [4] on ReSTIR, which samples direct lighting,
Ouyang et al. [37| proposed a new approach that is effective at sampling indirect lighting
on scenes with millions of light sources, the ReSTIR GI, or ReSTIR Global Illumination.

ReSTIR GI manages to efficiently resample multi-bounce indirect lighting paths re-
sulting from Path Tracing, which allows for information about relevant contributing paths
to be shared over time and space (i.e., pixels). Differently from the original ReSTIR, the
ReSTIR GI algorithm samples directions in the local sphere around shading points, rather
than placing them in a global light space, with the resulting rays intersecting surfaces in
the scene. Their RIS weights are, then, determined by the throughput of light each in-
tersection scatters back toward the ray origin. The authors observed a strong variance
reduction, when comparing the method against the traditional Path Tracing in similar
conditions and scenes.
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Chapter 3

Material and Methods

This chapter describes the methodology proposed in this work, as well as the 3D scenes
and models, evaluation metrics and computational resources that will be used in the
experiments during the development of the method.

3.1 Methodology

In this section, we describe the main steps that constitute the proposed methodology for
importance sampling sub-path connections on a Bidirectional Path Tracer algorithm. A
general architecture is illustrated in Figure 3.1, where each stage is shown as an enumer-
ated module.

Module 1 in the architecture diagram represents the application initialization step,
which includes user input and the construction of auxiliary structures for the alias sam-
pling. The input of the algorithm is a 3D scene and a set of parameters to configure
different aspects of the application. This leads to the sample generation step of the algo-
rithm — note that, here, sample and “iteration” can be used interchangeably, illustrated
by Module 2. From that step of the application, we have two independent steps related
to the camera and the light sources: the eye and light sub-paths generation, respectively
Modules 3 and 4. This will be discussed in more detail in Section 3.1.1.

Following the light sub-path generation step, we apply the alias sampling method to
importance sample sub-path connections, illustrated by Module 5, which will make use
of the structure constructed on Module 1. Our take on this algorithm, along with some
pseudo-code and implementation and performance notes, will be discussed in Section 3.1.2.

From the importance sampling of connections, we will connect the N alias sampled
light sub-paths with the N eye sub-paths, on Module 6. The contribution of these con-
nections will be averaged for each pixel (that is, for each eye sub-path) they correspond
to, resulting in one complete BDPT iteration, given in the diagram by Module 7. This
process is repeated S times, with the image samples being accumulated and averaged to
obtain the final rendered image, illustrated by Modules 8 and 9.
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Figure 3.1: Proposed architecture for importance sampling sub-path connections on a

BDPT algorithm.

3.1.1 Sub-path Generation

The generation of light and eye sub-paths are essential steps to any Bidirectional Path
Tracer algorithm. While in the original BDPT algorithms by Veach and Lafortune the
light sub-path generation was pixel-based, with a light sub-path being generated and con-

nected to the respective eye sub-path generated for a certain pixel, in other formulations,
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such as the MBDPT and the PCBDPT, the sub-path generation is independent.

In our implementation, to generate the eye sub-paths, for each sample of the BDPT
algorithm, we will iterate through all the pixels of the image. For each pixel, we will
use jittering to allow us to apply super sampling anti-aliasing to the image rendering, by
averaging the several samples we take from the scene. Here jittering will refer in practice
to an intentional random deviation applied to the ray origin’s in the camera, starting
from the pixel center. This will allow us to sample parts of the image that would not be
possible otherwise, and help us achieve a smoother and more accurate image at a low cost.
From there, we will follow a “random walk” process, as it is done by any traditional ray
tracer or path tracer algorithm, with the path contribution being affected by the bounces
in the scene surfaces that the ray hits. The random walk stops if the ray hits a light
source or a specified number of bounces is achieved.

On the other hand, to generate light sub-paths, we will first pick a random light
source, or emitter, of the scene. Then, we will sample a random direction parting from
the light surface. Assuming this is a point light, this is simply a random direction with
origin in the light’s center. If the emitter in question is an area light, infinite or not,
the direction is sampled according to its respective geometric form [41]. After the initial
direction is picked from the light source, a random walk process occurs analogously to the
one described for the eye sub-path generation.

3.1.2 Importance Sampling with the Alias Method

To importance sample the sub-path connections with the alias method, we will implement
a variation of Vose’s method [53|, briefly described in Section 2.1.5. First, we have a
pre-processing step to generate structures needed for the sample step, as described in
Algorithm 1. We will generate n - N light sub-paths, where n, a positive integer, is a
parameter we give the application with the other input variables, and keep these paths in
a vector.

Algorithm 1: Constructing Alias Structures
Result: Bin Data Structure for the Alias Method
Generate n - N light sub-paths each and add them to a vector V;
Divide the n - N elements of V into alias bins;

for bin b in bins do
2
assign probabilities to elements in b, e.g.: p, = ﬂﬁeﬁ;
EZO El

end

We will, then, divide the elements into a series of alias bins. Note that each bin will
have exactly two light sub-paths, and that one given light sub-path should only appear in
a single bin, for simplicity. The paths are randomly split into bins. For each of the bins,
we will assign probabilities to their elements as

2
Beo

= —5602 A2 (3.1)

Pey
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where p,., is the probability of the element ¢ of the current bin, with ¢ being either 0 or
1, which means each bin will have a total probability of 1. j,, is the unshadowed path
throughput of the same element. Here, to obtain the probability with a higher degree of
certainty we apply the balance heuristic to weight the path throughputs. Additionally,
note that each element of the bin will be related to a certain sub-path that, when chosen
by the alias method, in practice, will return the sub-path variable itself.

For the sampling step, shown in Algorithm 2, we will first generate N light sub-paths
and keep them in a queue. We will sample a random variable and choose a bin, which
has a complexity O(1). Then, we sample another random variable w in [0, 1), also in
complexity O(1). If u < p,,, we will return the element ey of the bin, otherwise we will
return e;. After we return a sub-path variable, we will replace the path variable in the
bin with a new path, generated as normal in a common BDPT iteration.

Algorithm 2: Importance Sampling Sub-path Connections Based on the Alias

Method
Result: Vector V with N Importance Sampled Paths

Create an empty vector V with length N;
while n < ¥ do
choose a bin b with low-discrepancy sampling: b := g[rnd() * nOfBins;

sample a variable in [0,1): u := rnd();

use u to choose an element in b: e = if u > p., 7 €y : eq;
add e to V;

replace the chosen element e with a newly generated one;
n—+-+;

end

Note that we will not discard these structures — they will be kept throughout the
application. At each new BDPT iteration, we will generate N new light sub-path variables.
The sampling process itself will, then, have an O(1) cost. The core difference here when
compared to the traditional BDPT is that we will generate (n — 1) - IV “extra” light sub-
paths after the execution of the whole algorithm is completed, which is equivalent to
the amount of light sub-paths consumed by (n — 1) iterations. We intend to keep these
“extra” paths at a minimum to reduce the use of computational resources while keeping
the quality of the importance sampling process, so n should be a reasonably small number
compared to the total number of iterations of the application.

To showcase the strengths of the algorithm we are proposing, we compared our con-
nection strategies to the standard BDPT, described in Chapter 2. In our algorithm, we
connect one path to one other path, managing to keep the same ratio of path connections
as BDPT and MBDPT. Also just like MBDPT and BDPT, we manage to avoid sub-path
reuse, which happens in both CBDPT and PCBDPT, avoiding the increased variance that
comes with it. Most of our proposed implementation, especially the sub-path generation,
can be parallelized, which could ultimately result in a hybrid renderer, much like CBDPT.
Figure 3.2 visually compares the number and logic behind the connection strategies of
our method, and others from the field.
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Figure 3.2: Diagram demonstrating connection strategies used, respectively, by the stan-
dard BDPT (a), CBDPT (b), MBDPT (c) and our technique (d). We can also compare
the amount of connections performed by each of the algorithms.

3.2 Evaluation Metrics

When researching Monte Carlo-based light transport algorithms, several metrics, such
as Structural Similarity Index Measure (SSIM) [55] and S-CIELAB [60], are commonly
used to assess the performance of the methods. We opted, however, to make use of Root
Mean Square Error (RMSE). The RMSE metric is commonly used to evaluate a proposed
algorithm’s convergence rate, when compared to other state-of-the-art techniques [7].

We consider that the lowest the RMSE for a set execution time, the better an algorithm
performs at reducing the variance of the rendering. The RMSE value for the resulting
image of the execution of each algorithm, for each amount of samples, on each test scene,
is given by Equation 3.2.

(3.2)

where x; refers to the pixel ¢ of a test image, and y; refers to the pixel ¢ of a reference
image.

Reference images are rendered for multiple days, and are considered “ground truths”,
and thus used for comparisons like this. In our case, we rendered each of our reference
images for 16384 samples of the standard BDPT algorithm implementation of PBRT v3.
Due to their long execution time, we consider these “ground truth” images to have suc-
cessfully converged, having negligible error for the sake of evaluating rendering methods.

We will, also, generate heatmaps based on the RMSE values of each method, on a
pixel-by-pixel basis. After obtaining the RMSE values of each pixel, the resulting numbers
are divided by the maximum number obtained, normalizing them for 8-bit colors. The
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results, in our case, are displayed on a heatmap that goes from blue, for the lowest error
encountered, to green, for the highest error.

In addition to RMSE measurements and its heatmaps, the execution time will also be
evaluated against other techniques, over all our test cases. In short, the RMSE will be our
efficacy and quality measure, while the execution time allows us to gauge the algorithm’s
efficiency against other existing methods.

3.3 3D Models and Scenes

For the experiments and evaluation of our methods, we have used well known 3D models
and scenes to the literature with hard-to-render light paths, such as Veach’s Ajar Room
and variations of the Cornell Box. Additional scenes include the Bathroom scene and the
Living Room scene. The scenes that we used are available freely on Bitterli’s rendering
resources [2] scene database.

While we used different criteria to choose each of the selected scenes, one characteristic
is common to them all: the presence of hard-to-render light paths. Light paths are
considered “hard-to-render” when the path between a surface and a light source is indirect.
That is, when multiple bounces are required for the surface to be illuminated. This could
happen, for example, on a scene with two independent rooms, as shown in Figure 3.3.
The camera is on the left room, the sole light emitter is in the right room and there is a
small hole in the wall between them.

Figure 3.3: Example diagram showing a typical hard-to-render light path. The blue lines
represent eye sub-paths, the red eye represents light sub-paths and the green dotted line
represents the sub-path connection strategy.

This type of light path is especially useful to showcase limitations and strengths of of-
fline rendering techniques, even more so when the techniques in question are bidirectional,
such as BDPT and our ASBDPT.
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3.4 Computational Resources

Our method was implemented in the PBRT Renderer [41], based on the third edition of
the homonymous book, using C+-+ programming language. Using this open source and
easily extendable framework takes away the hurdle of implementing a completely new
renderer from the ground, as several reusable features, such as scene loading, geometry
and material definitions, are already implemented and largely out of the scope of this
work. PBRT supports several techniques that we used as a basis to our work, such as
BDPT. Using this framework also enables us to deploy our new algorithm to the range of
operational systems supported by the framework.

The experiments were performed on a machine equipped with a CORE i5-8250U,
1.6GHz processor, 8GB of RAM and an Nvidia GeForce 930MX video card, with 384
CUDA cores, 2GB DDR3 standard memory and 900MHz clock.
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Chapter 4

Results

In this chapter, we report and analyze the results obtained when testing our ASBDPT
algorithm against BDPT across different test scenes. We also discuss the different pa-
rameters that our application can receive as input, and their impact on the efficiency and
efficacy of the method.

4.1 Parameters

Our algorithm has two parameters that can be adjusted, according to the application: the
number of paths to be distributed in the bins, and a set number of iterations after which
all the bins are discarded and remade from scratch, here called the 'restart limit’. We
discuss these parameters for one of our test scenes, Veach’s Ajar. Additional diagrams
with comparisons for the other scenes can be found in Appendix A. For the comparisons
we make in the current section, we fix one of the parameters while varying the other one.
However, note that generally speaking the behavior we see in these test cases is observable
regardless of the value of the fixed parameter.

Figure 4.1 shows the comparison of convergence rate for different values of paths per
bin, while keeping the path restart limit fixed at 32. We can see that, for a higher number
of samples, the change in the amount of paths per set of bins doesn’t impact the efficacy
of the algorithm, but the execution time increases significantly.

On the other hand, Figure 4.2 shows the comparison of convergence rate for different
values of restart limits, while keeping the amount of paths per bin fixed at 8. We can see
that, for a higher number of samples, a lower number of restart limit tend to result in a
noisier image, when the restart limit equals to 0, for instance, disabled, or with higher
execution time, when the restart limit is equal to 8. Generally speaking, higher restart
limits, in our tests ranging from 16 to 32 samples, achieve better results, more efficient
and less noisy.

4.2 Test Cases

All tests performed in the remainder of this chapter use the following set of parameter
combinations: 8 paths per set of bins, path age of 24 iterations and a general restart age
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Figure 4.1: Convergence plot showing RMSE value versus the rendering time, in seconds,

for a varying number of paths per bin for ASBDPT, for the Veach’s Ajar scene, while
keeping the restart limit fixed to 32.
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Figure 4.2: Convergence plot showing RMSE values versus the rendering time, in seconds,
for a varying restart limit for ASBDPT, for the Veach’s Ajar scene, while keeping the
number of paths per bin fixed to 8.

of 32 iterations. We found out that, in practice, it is a combination of parameters that
manages to obtain results that are either the best, or at least comparable to the best, in
most of the test cases we apply our method to.

4.2.1 Veach’s Ajar

Figure 4.3 shows a comparison of the noise produced by ASBDPT and BDPT for the
Veach’s Ajar scene, through RMSE heat maps. This scene, characteristically, contains
only one light source which is completely out of direct reach from the camera. Figure 4.4
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compares the RMSE values of each technique against their execution times, for the Veach’s
Ajar scene. Table 4.1 also display the RMSE value of each technique, for each number of
samples.

Table 4.1: Comparison of RMSE values for ASBDPT and BDPT for the Veach’s Ajar
scene.

Samples ASBDPT BDPT

32 28.3020  28.7123
64 19.1206  20.1449
128 13.2645  14.2145
256 9.4453  10.1481
512 6.9799 7.2419

4.2.2 Cornell Box

We believe the level of visibility of a light source to the camera directly impacts the quality
results of ASBDPT, in comparison to BDPT. Figure 4.5 shows a comparison of the noise
produced by ASBDPT and BDPT, as well as their convergence rates on Figure 4.6, for
the traditional Cornell Box scene, where the scene has only one light source completely
visible to the camera. We can see, both from the convergence plot and the heatmaps,
that ASBDPT performs noticeably worse than the standard BDPT. This corroborates
our theory that the quality of our light sub-path sampling technique is tied to the level
of visibility of the light sources in relation to the camera.

We also believe this scene showcases an additional, expected, limitation of our tech-
nique as it stands: a light sub-path bin, in a way, act as a cache of light sub-paths. Paths
from the bins are consumed throughout the BDPT iterations, discarded and replaced
without any changes to the other bins, degrading the quality of the algorithm results, and
by default their convergence, over time.

4.2.3 Modified Cornell Box

To further test how ASBDPT performs against the standard BDPT under different light
conditions for a given 3D scene, we modified the Cornell Box scene by partially obstructing
the light source. The results of this experiment can be seen in Figure 4.8. Similarly to the
original scene, there is still only one light source, but a mesh is close to the light source,
making the direct connection of paths from the light source to the camera harder, but
not completely impossible, as seen on the rendered results of Figure 4.7.

We are able to conclude that, while our algorithm still is not able to outperform
BDPT on this new test scene, not only our method performed better in relation to the
original Cornell Box scene, but also BDPT performed worse. In other words, the partial
obstruction of the light source made our algorithm perform better — for instance, it has less
noise when compared to the reference image — while the standard BDPT is noisier. This
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Reference

ASBDPT .

Figure 4.3: Comparison of the heatmap of the RMSE values of Veach’s Ajar scene rendered
with ASBDPT and BDPT for 64 samples, as well as the ground-truth image rendered with
BDPT for 16384 samples. The level of noise produced by each method can be visualized
and compared through the zoom-ins.

indicates that the ASBDPT efficiency increases when light sources are, at least, partially
blocked, when compared to BDPT. We can see a comparison between the RMSE values
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Figure 4.4: Convergence plot showing RMSE value versus the rendering time, in seconds,
for ASBDPT and BDPT. Both axes are on a logarithmic scale. Although close, ASBDPT
manages to consistently converge faster than BDPT, for the Veach’s Ajar scene.

of both techniques for the traditional Cornell Box scene as well as its modified version in
Table 4.2.

Table 4.2: Comparison of RMSE values for ASBDPT and BDPT on the traditional Cornell
Box scene and its modified version, with limited light exposure. We see that ADBPT
achieves lower error against the modified version of the scene, while BDPT had an increase
in its error.

Scene Cornell Modified Cornell
32 Samples ASBDPT 2.8022 3.3398
BDPT 2.7836 3.3369
64 Samples ASBDPT 2.2055 2.4268
BDPT 1.9842 2.3851
198 Samples ASBDPT 1.9630 1.8763
BDPT 1.4369 1.7241
256 Samples ASBDPT 1.8629 1.5464
BDPT 1.0609 1.2604
512 Samples ASBDPT 1.8169 1.3567
BDPT 0.8086 0.9453

4.2.4 Bathroom

Figure 4.10 shows the results of the tests we performed with the Bathroom scene. We can
see, both by looking at the convergence plot and the heatmaps, on Figure 4.9, that the
ASBDPT managed to obtain comparable performance to BDPT throughout the whole
execution process. It is worth noting, as well, that the only light source of the scene is
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Figure 4.5: RMSE heatmaps for ASBDPT and BDPT, for the traditional Cornell Box
scene.
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Figure 4.6: Convergence plot showing RMSE value versus the rendering time, in seconds,
for ASBDPT and BDPT, for the traditional Cornell Box scene.
logarithmic scale. Generally speaking, ASBDPT is considerably worse than the standard
BDPT for the traditional Cornell Box scene.

Both axes are on a

outside the window, and partially blocked by the window blinds. Table 4.3 also shows
the numerical RMSE and time comparison, for the different execution times and samples

rendered for the scene.

Table 4.3: Comparison of RMSE values for ASBDPT and BDPT on the Bathroom scene.

Samples

ASBDPT BDPT

32
64
128
256
512

17.3230
13.8195
11.7632
10.6083
10.0122

17.3743
13.9254
11.8313
10.6455
10.0004

4.2.5 Living Room

In Figure 4.12, we can see the results of tests performed against the Living Room scene.
While relatively close to each other, as also seen in the error heatmap in Figure 4.11
and in Table 4.4, our method got outperformed by BDPT towards later samples of the
execution. We believe this is another case of the quality degradation we experienced in
tests performed with the Cornell Box scene, due to the cache-like nature of our alias bins.
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Figure 4.7: RMSE heatmaps rendered for 64 samples for ASBDPT and BDPT, as well as
the reference image, for the modified Cornell Box scene.
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Figure 4.8: RMSE convergence plot showing RMSE value versus the rendering time, in
seconds, for ASBDPT and BDPT for the modified Cornell Box scene. Both axes are on a
logarithmic scale. The changes made to the traditional scene made BDPT perform worse,
resulting in a noisier image than before. Our algorithm, while still not outperforming
BDPT, managed to obtain a less noisy image when the light source is partially obstructed.

Table 4.4: Comparison of RMSE values for ASBDPT and BDPT for the Living Room

scene.

Samples ASBDPT BDPT
32 8.2173  8.2646
64 5.8870  5.9254
128 4.3207 4.2720
256 3.2946  3.0800
512 2.6155 2.2604




Figure 4.9: RMSE heatmaps rendered for 512 samples for ASBDPT and BDPT, as well
as the reference image, for the Bathroom scene.

47
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Figure 4.10: Convergence plot showing RMSE value versus the rendering time, in seconds,
for ASBDPT and BDPT, for the Bathroom scene. Both axes are on a logarithmic scale.
For this test case, both algorithms performed similarly.
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ASBDPT

Figure 4.11: RMSE heatmaps, for 128 samples, for ASBDPT and BDPT, for the Living
Room scene. We can see that both techniques achieved similar results, with ASBDPT
having a noisier result around a specular highlight area, visible on the error heatmap
zoom-in in green.
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Figure 4.12: Convergence plot showing RMSE value versus the rendering time, in seconds,
for ASBDPT and BDPT, for the Living Room scene. Both axes are on a logarithmic
scale. We can see that both techniques are close throughout the test case, with BDPT
outperforming ASBDPT when more samples are drawn.
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Chapter 5

Conclusions and Future Work

Existing light transport methods attempt to improve on the variation reduction of tra-
ditional rendering methods, such as Path Tracing and Bidirectional Path Tracing, but
they come with their own set of limitations, such as reusing of light paths which increase
variance.

This study investigated the problem of importance sampling light sub-paths on Bidi-
rectional light transport methods and whether it was possible to achieve significant vari-
ation reduction through it, avoiding eventual issues other methods encountered.

We had, as a main research question:

Is it possible to achieve significant variance reduction by importance sampling sub-path
connections with the alias sampling method?

An extensive literature review was performed in order to find promising approaches
to explored. We introduced a light sub-path sampling technique that, to the best of our
knowledge, is the first to make use of the Alias Sampling method is such a way, selecting
sub-paths for connection based on their throughputs. After analyzing the results of our
tests in different scenes and light conditions, we showed that the ASBDPT is efficient
against environments with limited light exposure, especially when compared against the
traditional BDPT method.

While the use of the alias sampling method is efficient for the sake of our application
in specific conditions, it comes with some limitations. The quality of the paths in the
alias bins degrade over time, as expected. Considering the paths that remain in the bins
are, over time, the ones that did not get chosen after each interaction, or the ones that
replaced chosen paths, the throughput of the remaining paths tend to be, in the worst
case, lower, which according to our technique will tend to result in higher variation.

While constantly refreshing the bins and their paths is not feasible due to performance
constraints, resetting the alias paths and rebuilding our bins every certain number of
iterations could generate resulting images with lower variance without increasing the
execution time too much.

Returning to our main research question, we believe we managed to introduce a new
technique that provides a relevant amount of variance reduction with comparable execu-
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tion time when conditions are met, such as restricted but not completely blocked paths
between the camera and the light sources.

There is room to make the ASBDPT more efficient, both algorithmically and tech-
nically. Our method generates more paths than the standard BDPT and other derived
approaches and would therefore benefit greatly from more aggressive parallelization ap-
proaches, especially on GPU. Recent developments on GPU architectures allow fast gener-
ation of paths on hardware level, for example, on Nvidia’s RTX GPUs and their RT Cores.
The RT Cores make it possible for intersections, with triangles or custom geometry, to be
processed at a much faster speed than standard CPU hardware or even non-RTX GPUs.
Note that the efficient introduction of parallelization in our technique would be even more
desirable and relevant if the reset of alias bins discussed previously in this section were
implemented, as the number of generated light sub-paths would increase.

On the algorithm side, we could apply other concepts introduced by Chaitanya et al.
[6] in the MBDPT, such as the low-discrepancy sampling (LDS) made possible by their
matrix formulation. Adapting their technique, it would be viable to reorder our light
path vectors by a metric such as their L2 distance, before splitting up the paths into bins
with the use of LDS. This, in turn, would allow for a more equally distributed sampling
over the generated paths, avoiding issues such as parts of the scene or image not being
sampled enough due to poor sample placement, further improving the variance reduction
of our technique.
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Appendix A

Parameter Comparison Diagrams

Note that, for some of these diagrams, not all samples for all combinations of parameters
have been rendered. Nevertheless, the data here displayed corroborates with the findings
of Section 4.1.

A.1 Cornell Box
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Figure A.1: Convergence plot showing RMSE value versus the rendering time, in seconds,

for a varying number of paths per bin for ASBDPT, for the traditional Cornell Box scene,
while keeping the restart limit fixed to 8.
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Figure A.2: Convergence plot showing RMSE values versus the rendering time, in seconds,
for a varying restart limit for ASBDPT, for traditional Cornell Box scene, while keeping
the number of paths per bin fixed to 8.

A.2 Modified Cornell Box
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Figure A.3: Convergence plot showing RMSE value versus the rendering time, in seconds,
for a varying number of paths per bin for ASBDPT, for the modified Cornell Box scene,
while keeping the restart limit fixed to 8.
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Figure A.4: Convergence plot showing RMSE values versus the rendering time, in seconds,
for a varying restart limit for ASBDPT, for the modified Cornell Box scene, while keeping
the number of paths per bin fixed to 8.

A.3 Bathroom
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Figure A.5: Convergence plot showing RMSE value versus the rendering time, in seconds,
for a varying number of paths per bin for ASBDPT, for the Bathroom scene, while keeping

the restart limit fixed to 32.
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Figure A.6: Convergence plot showing RMSE values versus the rendering time, in seconds,
for a varying restart limit for ASBDPT, for the Bathroom scene, while keeping the number
of paths per bin fixed to 8.

A.4 Living Room
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Figure A.7: Convergence plot showing RMSE value versus the rendering time, in seconds,
for a varying number of paths per bin for ASBDPT, for the Living Room scene, while
keeping the restart limit fixed to 32.
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Figure A.8: Convergence plot showing RMSE values versus the rendering time, in seconds,
for a varying restart limit for ASBDPT, for the Living Room scene, while keeping the
number of paths per bin fixed to 8.
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