
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Vanderson Martins do Rosario

Accelerating capsule networks with lanes

Acelerando redes neurais de cápsulas com Lanes

CAMPINAS

2021



Vanderson Martins do Rosario

Accelerating capsule networks with lanes

Acelerando redes neurais de cápsulas com Lanes

Tese apresentada ao Instituto de Computação
da Universidade Estadual de Campinas como
parte dos requisitos para a obtenção do título
de Doutor em Ciência da Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Edson Borin
Co-supervisor/Coorientador: Prof. Dr. Mauricio Breternitz Junior

Este exemplar corresponde à versão final da
Tese defendida por Vanderson Martins do
Rosario e orientada pelo Prof. Dr. Edson
Borin.

CAMPINAS

2021



Ficha catalográfica

Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica

Ana Regina Machado - CRB 8/5467

    

  Rosario, Vanderson Martins do, 1993-  

 R712a RosAccelerating capsule networks with lanes / Vanderson Martins do Rosario.

– Campinas, SP : [s.n.], 2021.

 

   

  RosOrientador: Edson Borin.

  RosCoorientador: Mauricio Breternitz Junior.

  RosTese (doutorado) – Universidade Estadual de Campinas, Instituto de

Computação.

 

    

  Ros1. Visão por computador. 2. Aprendizado de máquina. 3. Redes neurais

(Computação). I. Borin, Edson, 1979-. II. Breternitz Junior, Mauricio. III.

Universidade Estadual de Campinas. Instituto de Computação. IV. Título.

 

Informações para Biblioteca Digital

Título em outro idioma: Acelerando redes neurais de cápsulas com Lanes

Palavras-chave em inglês:
Computer vision

Machine learning

Neural networks (Computer science)

Área de concentração: Ciência da Computação

Titulação: Doutor em Ciência da Computação

Banca examinadora:
Edson Borin [Orientador]

Felipe Maia Galvão França

Jefersson Alex dos Santos

André Carlos Ponce de Leon Ferreira de Carvalho

Rodolfo Jardim de Azevedo

Data de defesa: 17-12-2021

Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-8737-0252

- Currículo Lattes do autor: http://lattes.cnpq.br/4833643221474007  

Powered by TCPDF (www.tcpdf.org)



Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Vanderson Martins do Rosario

Accelerating capsule networks with lanes

Acelerando redes neurais de cápsulas com Lanes

Banca Examinadora:

• Prof. Dr. Edson Borin
IC/UNICAMP

• Prof. Dr. Felipe Maia Galvão França
COPPE/UFRJ

• Prof. Dr. Jefersson Alex dos Santos
DCC/UFMG

• Prof. Dr. André Carlos Ponce de Leon Ferreira de Carvalho
ICMC/USP

• Prof. Dr. Rodolfo Jardim de Azevedo
IC/UNICAMP

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 17 de dezembro de 2021



Somewhere,

something incredible

is waiting to be known

(Carl Sagan)
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Resumo

Redes de Capsulas, do inglês, Capsule Networks, ou apenas CapesNet, surgem como uma
alternativa às redes convolucionais típicas, evitando camadas de pooling e melhorando a
representação da orientação dos objetos na imagem. No entanto, sem as camadas tradicio-
nais de pooling, essas redes não reduzem seu número de parâmetros em sua profundidade;
além disso, o algoritmo de roteamento proposto para as CapesNet ainda não possui im-
plementação eficiente, tudo levando a um alto tempo de execução no treinamento quando
comparado a redes convolucionais tradicionais. Abordando esse problema, propomos a
Multi-lane Capsule Network (MLC) que utiliza de diferentes caminhos sem dependência
de dados entre si, ou lanes, para calcular as dimensões da cápsula final da rede. A MLCN
alcança resultados similares à CapsNet, enquanto mantém sua capacidade de representa-
ção da orientação dos objetos, mas com execução até 130% mais rápida em uma única
GPU. Além disso, nós mostramos que ao organizar a CapsNet em Lanes, abrimos opor-
tunidade para um fácil paralelismo, o qual exploramos neste trabalho trazendo soluções
para a paralelização, alocação de recurso e geração automática de redes em cenários com
lanes e hardwares heterogêneos. Nós atingimos melhorias de desempenho que chegam a
7.18x em cenários com 8 GPUs, melhorias de 2x quando utilizando do nosso mecanismo
de alocação de recursos, e redes 18.6% melhores com nosso sistema de geração automática
de redes.



Abstract

Capsule Networks (CapsNet) surges as an alternative to typical convolution networks,
avoiding pooling and improving pose representation to face challenges such as the Picasso
problem. However, without pooling, the network does not reduce its number of parameters
as it goes deep, and the routing algorithm does not have efficient implementations, thus
leading to poor training performance. To face that, we propose the Multi-lane Capsule
Network (MLCN), a reorganization of the original CapsNet, that has data-independent
lanes to calculate the final capsule dimensions. MLCN achieves similar results as CapsNet,
still maintaining its pose representation property but achieving up to 130% faster-training
speed in single GPUs. Moreover, we show that the lane‘s organization opens the oppor-
tunity to easily model parallelism, which we explore and bring solutions to heterogeneous
lane and hardware scenario scheduling, parallelization, and automatic network construc-
tion with computational resources aware Neural Architecture Search (NAS). We achieve
speedups as high as 7.18× in 8 GPUs scenarios, 2× training with our scheduling solution
for heterogeneous lanes, and find 18.6% better networks with our NAS approach.
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Chapter 1

Introduction

Deep Learning has become a widely used machine learning technique to solve many dif-

ferent problems, from image processing to language translation to audio transcription,

amongst many others. In 2014 after the publication of the AlexNet architecture (stacking

multiple layers of convolutions and max-pooling) [2], deep learning became the state-of-

art in image classification with the use of Convolutional Neural Networks (CNNs). One of

the main mechanisms in these traditional CNNs is the Pooling operations that, although

achieving outstanding results, add transitional invariance and loss of information. That is

why Sabour et al. [1] proposed a novel approach to routing data in the network (dynamic

routing algorithm) without using the traditional pooling mechanisms and demonstrated

it with a Neural Network called CapsNet. To this, it uses vectors to encode features of

the image instead of scalars as in a usual CNN, and a dynamic routing algorithm is used

to guarantee the global relationship between all vectors. The traditional CNNs can easily

miss global relationships and, for instance, miss-classify an image as a face for having a

mouth, eyes, and nose, independently of the order or relative position of these features.

Despite promising preliminary results, CapsNets are still a young and not much-

explored models. For example, one of the challenges that have been described using

and testing CapsNet is that they have far larger training times than CNNs. Therefore, in

this work, we explore the CapsNet architecture, proposing a new organization for it. We

split the original CapsNet into multiple lanes that are data-independent and responsible

for learning different dimensions of the final vectors of the CapsNet. This organization

outperforms the original CapsNet in training and inference time by adding more data

parallelism and reducing trainable parameters. We also show that this organization helps

with the explainability of the network. All this, without losing learnability and genera-

bility performance. We show that we can easily construct a faster CapsNet divided into

lanes that outperform the accuracy of the original one for the Fashion-MNIST [3] and Ci-

far10 [4] datasets. We call this new CapsNet architecture a Multi-Lane Capsule Network

(MLCN).

These data-independent lanes also open opportunities for more straightforward mul-

tiple hardware parallelism. Several approaches to the distributed model parallelization

of Deep Neural Networks (DNN) have concentrated in their depth dimension [5, 6, 7],

but DNNs can also be organized in a way to be parallelized along their width dimension

[8]. The MLCN creates separable and resource-efficient data-independent paths in the
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network that can learn different features or add resilience to the network. As these lanes

are data-independent, they can be (1) processed in parallel and (2) specialized for distinct

computational targets (CPUs, GPUs, FPGAs, and cloud), as well as resource-constrained

mobile and IoT targets, leading to opportunities and challenges. In this work, we also

present a comprehensive study of the scalability and efficiency of MLCN for multi-GPU

systems.

This dissertation also explores how MLCN with heterogeneous lanes (differences in

size, type, width, and other characteristics) can lead to better performance accuracy and

how these MLCNs are harder to schedule when using a multi-GPU system. To face that,

we show that the hardware’s lane schedule can be seen as an optimization problem and

we present and experiment with a greedy approach to the problem. We also show that

a simple greedy heuristic can generate a schedule that runs almost 50% faster than a

random naïve approach.

Finally, we explore a Neural Architecture Search strategy to automatically generate

custom MLCN models with good lanes configurations that best fit a given hardware setup.

Generating such models for 64 iterations allowed us to find models with more than 18%

better accuracy for CIFAR-10. All this while maintaining faster performance without

extra effort as the generated models are already loaded balanced.

Thus, the main contributions of this work can be summarized as:

• We present a new organization to Capsule Networks, the MLCN, that increases its

execution speed and opens opportunities for parallelism;

• We present a first comprehensive analysis of the efficiency and scalability of MLCN,

showing its advantages over the data-parallelism-limited approach of the original

CapsNet;

• We define the load balancing problem of distributing heterogeneous MLCN lanes in

heterogeneous hardware;

• We present a greedy heuristic to solve the lane-hardware match problem showing

that it is superior to a naïve approach; and

• We show how to use NAS to create MLCN models that achieve balanced execution

in a set of devices with better accuracies.

Outcomes from this dissertation were published in the IEEE Signal processing letters

(2019) presenting for the first time the Multi-lane Capsule Network architecture [9]. Later,

an analysis of the MLCN efficiency and scalability was presented on the 31st International

Symposium on Computer Architecture and High Performance Computing (2020) [10].

Finally, an extension of the symposium paper was published on the Journal of Parallel and

Distributed Computing (2021) bringing new insights on the paralellization and automatic

exploration of MLCN configurations [11].

This dissertation is organized as follows: Chapter 2 describes the basics concepts

related to Neural Networks, Neural Networks execution performance, and Capsule Net-

works; Chapter 3 presents the relevant works done with Capsule Networks after its original
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publication and the works that studied and used MLCN; Section 4 shows the Multi-Lane

Capsule Network and its performance analysis when compared to the original Capsule

Network. Chapter 5 presents the problem and analyzes a greedy solution to the paral-

lelization of MLCN into heterogeneous hardware and when the MLCN has a heterogeneous

set of lanes; finally, Chapter 6 shows a NAS approach to create MLCN architectures that

fit a given set of hardware substrates with the best accuracy possible and Chapter 7

presents our conclusions, and future work.
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Chapter 2

Fundamental Concepts

This chapter introduces basic concepts related to Deep Neural Networks (DNNs), DNNs

Code Generation, and parallelization.

A set of connected artificial neurons forms a Neural Network. This network can be seen

as a direct graph where nodes are neurons, and edges are neuron connections. Each node,

or neuron, has inputs, represented by entering edges, and produces an output propagated

by leaving edges. Every edge has a weight that is updated during the learning process of

the Neural Network.

Input edges of an artificial neuron can be both the output of others neurons or the

network’s input. A neuron sums the values of all its inputs values (xi) weighted by their

edges weights (wi). It then adds to the sum a bias value (b) and, finally, uses this scalar

value as the argument of a non-linear activation function (Ã). See equation 2.1.

y = Ã(

#inputs∑

i

wixi + b) (2.1)

The weights and biases are learned and can change during the training process. The

value resulting from the activation function is called activation (y), and it is the neuron’s

output. The activation will be used as the input of other neurons or be used as the Neural

Network’s final output. Visually a neuron can be seen as represented in Figure 2.1.
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Figure 2.1: Illustration of a single neuron that compose Neural Networks.

[12]

A Neural Network then is the composition of a set of non-linear functions creating a

complex function that can fit complex data patterns. Neurons can be organized in layers

(a set of neurons that has input neurons from the layer before, and their outputs are

inputted in the layers after). Neurons in a layer are not connected with themselves. We

can see this layer organization illustrated in the diagram in Figure 2.2.

Figure 2.2: A Deep Neural Network illustration with multiple layers of neurons.

In the figure, we have one layer connected to the input, two layers in the middle (input

and output are other layers), called hidden layers, and finally, the output layer. In a fully

connected network, each neuron in one layer is connected to every other neuron in the

layer after. If a layer with N neurons is fully connected to another layer with M neurons,

we need N ×M weights, one for each connection.
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We can describe the weights, inputs, activations, and outputs of each layer as multi-

dimensional vectors. In the field, these vectors are referred to as tensors. It allows us to

write all layers neuron calculations as single vector operations such as in Equation 2.2,

where W is a tensor with all weights in the layer, X is a tensor with the input of the

layer (can be the input of the network or the output of the previous layer), B is a tensor

with the bias for the layer and Y is the result of the tensorial operation applied to the

activation function Ã.

Y = Ã(W ×X +B) (2.2)

In the matter of describing complex non-linear functions, it is known that deeper

networks (with more layers) are exponentially more efficient than wider layers. In other

words, to describe the same function with fewer layers, we would need layers exponentially

lagers. That is why Deeper Neural Networks have become popular, surging with the Deep

Neural Networks (DNNs).

However, increasing the deepness of a network does also have its limitations and chal-

lenges. In the backpropagation algorithm, deeper networks suffer from the Vanishing

gradient problem [13]. The gradient update tends to zero with deep compositions of the

chain rule.

With time, more specific layers were introduced in DNNs. For example, convolution

layers and pooling layers as commonly used for image data. The first applies a traditional

kernel convolution operation in the activation tensor of the layer before [13]. However, the

weights of the kernels being applied are not predefined as in traditional image processing,

but learned. The outputs of the convolutions are also tensors, so that they can be naturally

connected to the next layer. The second, pooling [13], is a layer that subsamples its

input tensor, reducing its size. Different approaches can be used to pool, such as just

selecting parts of the input tensor‘s values or taking the average of a group of tensor

values to represent the whole group as just one number. This technique can sound counter-

productive as we are losing information, but it helps reduceing the redundant information

and, more importantly, adding some position invariance to the network.

If you present a cat picture to a network to teach it to detect cats, the cat will be in a

specific position in the image and a specific orientation. It would be useless if the network

could not, after training, recognize the same cat but in a different position or orientation.

For that, the pooling layer is helpful to normalize minor variances. Rotating this part or

moving it a little bit, causes negligible impact on the average as, although the positions

of the pixels have changed, its values are the same.

Notice that any layer that input a tensor and output a tensor can be coupled to a

network. Of course, as we describe in the next section, the layers must be derivable so

that gradient descent algorithms can be used to adjust their weights, a process called

model training.

Networks that use convolutional layers are called Convolution Neural Networks (CNNs)

and are state of the art in many image-related tasks. The diagram of Figure 2.3 shows a

typical CNN architecture (organization) for the task of image classification.
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Figure 2.3: Illustration of a typical Convolutional Neural Network architecture. From
Wikimedia Commons.

2.1 Inference

Equation 2.2 shows that we can calculate all activations Y from a layer by using tensor

operations. For a network with K layers (considering the input and output values as

layers too for simplification), the inference process calculates the output value (layer K)

from the input values (layer 0). We can denote the weight, bias and activation function

of the ith layer as W i, Bi, Ai. The inference process is described by Algorithm 1. This,

for a fully connected network, for other kinds of layers, the expression Ai(W i
×X + Bi)

will vary following the layer specification. However, the logic will be the same: the layer’s

input is the activation of the layer before.

Algorithm 1 Neural Network Inference Algorithm.

1 # Given the we i gh t s W, b i a s B and a c t i v a t i o n f unc t i on s A of a l l l a y e r s

2 Y = [ ]
3 X = Inputs
4 for i in range (0 , K) :
5 Y = Ai(W i

×X +Bi)
6 X = Y
7 return Y

We can see from Algorithm 1 that the data flow from one layer to another linearly.

However, that is not always the case. Some networks can have layers with multiple

layers as input and with multiple layers using their outputs. One such example is the

skip connections, used to reduce the vanishing problem in deep networks, such as in the

ResNet [14]. All these cases are creating more complex data flow structures.

Independently of its complexity, NNs are naturally represented as dataflow graphs.

In these graphs, nodes represent tensor operations (layers), and edges represent data

flow between these operations. These dataflow graphs are not only used to illustrate the

networks, but they are also the way that frameworks, interpreters, and compilers represent

these NNs in memory. Three examples of data flows that can be found in the inference

calculation of Neural Networks are illustrated in Figure 2.4. Figure (a) with a simple

forward flow, (b) with skip connections, and (c) with multiple layer input/output blocks.
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Figure 2.4: Examples of data flow diagrams of Neural Networks inference.

Notice that for less straightforward networks, running the inference requires scheduling

to decide which layer to execute first. There is optimal execution scheduling for any

network and hardware, and that is usually a compiler optimization task.

The scheduling of a Deep Lerning Model (DL Model) affects not only its performance

but also its memory usage. Notice that we can release the activations from a layer for a

data flow such as in (A) just after the next layer has been calculated. Thus, never having

more than two layers in memory at any time. However, in (B), the output of a layer can

be used not only by the next layer but by other layers located further down on the model.

Thus, layer activations may need to be stored in memory until the last layer that uses it

is executed. The order that the layers are executed then affects how long activations will

be stored in memory.

The execution of such dataflows can be done by an interpreter that walks through the

graph executing layer per layer, by a JIT compiler that compiles a group of layers and

then jumps to the compiled code, or by a compiler that generates the binary code for the

whole network that can then be executed.

Neural Networks use a small set of common layers; it is common to have the optimized

implementation of these layers that are just called either by the interpreter, JIT, or com-

piler. These optimized implementations are called kernels. Sometimes multiple kernels

can be used to execute the logic of one or a set of layers, thus being an optimization

problem to the interpreter or compiler to find the best kernel.

Another critical aspect of the inference execution is that the multidimensional tensors

flowing through the graph can be represented in memory in different ways. The memory

is linear, so one needs to map the multiple tensor dimensions into one memory dimension.
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Because of memory locality aspects, the way that this mapping is done can affect the

execution performance. Moreover, as the dimensionality of the data changes over the

network flow, one optimal performance representation for one stage may not be optimal

for another stage.

Notice that to transform from one data representation to another have a cost, so

the interpreter/compiler must decide if the gain of changing the representation is more

significant than the cost of transforming the data in memory. This can be represented as

a graph where we have a copy of the dataflow graph for each data representation, and

we add edges from all nodes from one graph to the same node to another graph with

a transformation node in between. With the cost of executing each layer, including the

transformation from one graph to another, we can use a shortest-path finder algorithm

to solve it. This optimization is called layout search [15].

With the data flow scheduled, the data layout used for each layer, and the best kernel

to execute each layer, the inference becomes a sequence of calls to these kernels.

2.2 Training

The goal of a machine learning algorithm is to learn from data and generalize this learned

knowledge. In practice, the algorithms learn complex non-linear functions that fit the

training data but do not overfit it to be used for new data.

In a DL model, we saw in the last section that this complex function comes from the

composition of multiple non-linear functions. Each of these functions has a set of weights

and biases that needs to be set to define the shape of that function. The goal of the

training process thus is to find the weight and bias that creates a function that fits the

data. These values that are changed during training are called training parameters.

One important aspect of the training process is that we need a way to measure our

function, or how well it fits our data. For that, we define a loss function that represents

in a real number how far the results the network is getting are from the ones that are

expected. Examples of a loss function the Mean Squared Error (MSE) and the Binary

Cross Entropy.

As mentioned, the training goal is to minimize a give loss function by changing the

training parameters. The weights and bias may be started with random values (the way

that they are randomized matter [16]), and their values are updated in other to try to

minimize the loss function.

One possible approach is to randomize the training parameters a few times and pick

the ones that achieve the best value in the loss function. However, that can take a long

time as there is no guarantee of convergence. So, a more common approach uses the

derivate of the layers functions to update its weights and bias. If all layers are derivable,

we can use the chain rule to calculate the training parameters’ change that minimizes the

loss function for all layers. This training algorithm is called Gradient Descent.

Gradient Descent is an optimization method used to find a value in the domain of a

function f such that the image value of that function is minimized. In the context of deep

learning, the domain can be represented as the training parameters of the DL Model and
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f by the loss function. The parameter values that minimize the function are denoted as

x∗, like in the Equation 2.3.

x∗ = argminf(x) (2.3)

To find x∗, the algorithm uses the gradient of f: a vector containing every partial

direvate of the function ( δ

δxi

f(x)), as following,

∇
x
f(x) = (

¶

¶x1

f(x),
¶

¶x2

f(x)...
¶

¶xn

f(x)) (2.4)

Based on the derivate concept, ∇xf(x) can be used to update the parameters of a

function in the direction in which f(x) is minimized. This update process can be written

as follow,

x′ = x − ϵ∇
x
f(x) (2.5)

in which ϵ is an update factor commonly called a learning rate ranging from 0 to 1, x′

is the updated set of parameters, and x is the original set of parameters. If such update

is done for enough amount of iterations and f is a convex function, then x∗ should be

found or at least close approximated.

In the specific case of deep learning, we need to calculate the gradient for all training

inputs (x(i)). We can represent the mean loss of all training inputs as J(θ):

J(θ) =
1

m

m∑

i=1

L(x(i),y(i),θ) (2.6)

where theta represents the network parameters, L is the loss function, x(i) e y(i) are

the input and the expected output for the ith training sample. For that, we can obtain

the gradient of J as:

∇θJ(θ) =
1

m

m∑

i=1

∇θL(x(i),y(i),θ) (2.7)

So, for each input sample i we need to calculate the value of ∇θL(x(i),y(i),θ).

We need the gradient for each layer so we can update their weights and bias. We can

use the chain rule to calculate the gradient per layer. So, to calculate the gradient for the

ith layer, we need the activations of that layer and the gradient of the (i+ 1)th layer.

Therefore, for each input in the training set, we have to execute the inference (forward

pass), compare the inferred value with the expected output, calculate the loss, and, finally,

calculate the gradient layer by layer from the output to the input layer using the chain

rule (backward). Finally, use all input gradients average to update the weights and bias.

Notice that such an algorithm can become too expensive as the number of input

examples increases [13]. To work around this, typically, Stochastic Gradient Descent

(SGD) is used, instead. It proposes the calculation of ∇θJ by using random input samples

of the training set. These random samples are named mini-batch. For each step of the

algorithm, a new random mini-batch is generated, and the estimated gradient is calculated
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from it [13]. If a mini-batch has size m′ and the whole training set has size m, after m/m′

steps, we say that one epoch was executed.

The number of epochs necessary for the SGD algorithm to converge can vary. Com-

monly, a stop criteria is used, such as a fixed number of epochs or a minimal loss or

accuracy improvement threshold.

With mini-batches, we can store all inputs that are going to be used in Equation 2.7

in memory. This means that we do not need the summation iteration. We can use the

mini-batch as one of the tensor’s dimensions. This also means that we can calculate the

gradient using this tensor and just after update its weights.

The training algorithm can also be expressed as a data flow graph, as illustrated in

Figure 2.5. In training, a new path need to be account for the gradient calculation.

Input Layer 1 Layer 2 Layer 3 Ouput

Dx Layer 1 Dx Layer 2 Dx Layer 3 Loss Function

Forward

Backward

Figure 2.5: Example of a data flow diagram for DL models’ training.

Notice that we now have two paths in the data flow, one forward to calculate the

inference output and one backward to calculate the gradients and update the weights.

Furthermore, we have a data dependence between the forward layer and its backward

gradient calculating, implying more complex data dependence graphs.

All the matters mentioned in the inference section about interpreting or compiling the

network are still valid and applicable to the training data flow. However, now we have a

more considerable amount of calculation and data updates which means a more extensive

execution time. This brings attention to the parallelization of the training to increase its

performance.

There are three main ways to parallelize DL models’ training. However, nothing

prevents the use of the three parallelization techniques together.

The first is by parallelizing the kernel’s layout executions. The layers are mainly tensor

multiplication algorithms, and parallel algorithms can be used to perform that task.

The second is by cutting the mini-batch into smaller batches, each being executed

in a different machine or accelerator. That technique, commonly referred to as data

parallelization, has a pretty straightforward implementation, but it replicates the model

in every execution engine being used. This leads to non-optimal usage of the devices’

memory (although the memory will be reduced as the batch dimension size of the tensors
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is reduced). Further, splitting the batch and using partial batch gradients affects the

network loss performance [17].

The third way is by partitioning the dataflow graph and executing different model

parts on different devices, which has the drawback of potentially having to communicate

information from the edges that cross the partitions.

Finding the best way to parallelize a network is also an optimization problem. For

example, finding the partitioning in the network dataflow graph minimizes device com-

munication but still leads to a good load balance is challenging.

Another essential training execution aspect is memory consumption. Activations from

intermediate layers in the forward pass need to be stored until their respective gradient

calculation layer be executed. They are leading to a peak in memory just after the end of

the forward pass and beginning of the backward pass, where all activations are in memory

as seen in Figure 2.6.
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Figure 2.6: Memory usage stacked during a DL model training.

The interpreter or the compiler can throw away activations stored and recompute them

when needed to reduce the memory peak. A technique that exchanges memory usage with

computational overhead is called rematerialization1. Finding a set of nodes in the data

flow that reduces the memory usage with the least overhead is an optimization problem.

Mixed-integer programming approaches were proposed to such problems and also heuris-

tics. Usually, the approaches need to consider both the scheduling and rematerialization

problems because one affects the other.

The rematerialization (recomputation) of a node in the data flow can be seen as a copy

of such node. In Figure 2.7, we can see the recomputation of layer two by the creation of

a new node. Notice that to recalculate the value of layer 2, we still need the activations

of the previous node layer 1. Since it is already in memory at that point, it does not

1During my internship at Microsoft Research, I implemented a rematerialization heuristic
on the Tensorflow XLA compiler. The implementation is open source at Microsoft GitHub:
https://github.com/microsoft/tensorflow-rematerialization
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affect memory usage. However, in layer three and Dx Layer 3 nodes, the value of layer

two activations is not needed, thus reducing the memory peak.

Input Layer 1 Layer 2 Layer 3 Ouput

Dx Layer 1 Dx Layer 2 Dx Layer 3 Loss Function

Forward

Backward

Layer 2
 Recomputation

Figure 2.7: Neural Networks Training Data Flow with the rematerilization of Layer 2.

Another technique used to reduce memory pressure, mainly in accelerations, is to

offload the activations to the main memory and just maintain a subset of the ones that are

going to be used next on the GPU memory. That means transferring activations toward

and backward the main memory, which also implies computation overhead. Finding the

set of activations that should be in the accelerator memory at any given time is also an

optimization problem.

Finally, we can also reduce the memory usage by reducing the number representation

precision of the weights, bias, or/and activations (quantization), or by compressing sparse

tensors, summing up with the following techniques to address memory usage limits: rema-

terialization, memory offload, model parallelism, model compression, and quantization.

Nothing prevents using more than one of these techniques together. However, notice

that quantization can impact the network loss/accuracy performance [18], and techniques

such as rematerialization and memory offload affect the execution performance.

In the context of deep learning, the training algorithms are called optimizers. SGD, for

instance, is an optimizer, but there are others for the same purpose. Different optimizers

can be more or less efficient for different applications. It is a hyper-parameter of the

network.

Hyper-parameters are configurable parameters of the network or the network execution

that changes the training behavior. The training algorithm does not update or search their

values, like the training parameters (weights and bias). Examples of hyper-parameters

are the learning rate, network regularization L1 and L2, number of layers, type of layers,

optimizer algorithm, among many others.

Yu and Zhu [19] divide hyper-parameters into two groups: those used in training and

those used in the modeling of the Neural Network. The task of automatically figuring

out the best hyper-parameters from the first group is generally referred to as Hyper-
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Parameter Optimization (HPO). When the second group of hyper-parameters (network

modeling, such as the number of layers) is also an optimization object, the task is called

Neural Architectural Search (NAS).

2.3 Ensemble Learning

Ensemble learning is a technique in machine learning that combines predictions from two

or more models [20]. Many ensemble-based classifiers have been proposed over the last

decades, but most of them are just variations of a few established algorithms whose capa-

bilities have been extensively tested and reported [21]. There are three classes of ensem-

ble techniques that encompass the majority of all ensembles used in practice: Bagging,

Stacking, and Boosting. Their success comes from their easy implementation together

with success on a wide number of problems.

There is an algorithm for each one of these three techniques, but given their success,

many extensions and related techniques were proposed and appeared. However, for the

sake of understanding Ensemble learning, understanding the base of each technique is en

ought and also more useful. It is useful to summarize and contrast each approach. We do

this in the next subsections. It is also important to remember that these three methods

alone do not define the extent of ensemble learning.

2.3.1 Bagging

Bagging names come from Bootstrap AGGregatING. The two key parts of the Bagging

techniques are bootstrap and aggregation. Typically, it involves using a single machine

learning algorithm, almost always a decision tree, and training the model on a different

sample of the training dataset. The predictions made for each model are combined using

vote or averaging.

The bootstrap step guarantees that each model will be trained with different sample

data creating a diversity of trained models, this is also achieved by using simple classifiers

whose decisions vary with respect to relatively small changes in the training data [22]. A

key point for this method is the way that each sample of the dataset is prepared, so each

model gets its own unique dataset sample.

One possibility is to randomly draw from the dataset with replacement. Replacement

means that if an element is selected, it is returned to the training dataset for potential re-

selection in the same training dataset. Meaning that an element may be selected multiple

times. This is called a bootstrap sample. It is a technique often used in statistics with

small datasets to estimate the statistical value of a data sample. By preparing multiple

different bootstrap samples and estimating a statistical quantity and calculating the mean

of the estimates, a better overall estimate of the desired quantity can be achieved than

simply estimating from the dataset directly.

In the same manner, multiple different training datasets can be prepared, used to

estimate a predictive model, and make predictions. Averaging the predictions across the

models typically results in better predictions than a single model fit on the training dataset

directly.
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It is a general approach and easily extended. For example, more changes to the training

dataset can be introduced, the algorithm fit on the training data can be replaced, and the

mechanism used to combine predictions can be modified. A visual representation of such

a bagging mechanism can be seen in Figure 2.8.
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Figure 2.8: Diagram with an example of the Bagging Mechanism.

2.3.2 Stacking

Stacking is a generic technique in ensemble learning where a learner is trained to combine

the result of individual learners. So, there are a first-level of learners whose output is the

input of a second-level learner also called meta-learner.

A two-level stacking is the most common case, but one may find models with more

layers. For instance, we could have three levels organized such as a neural network but

with the neurons being machine models themselves.

Stacking is the most used ensemble technique used giving its simplicity and power.

The meta-learner is trying to learn which classifiers are reliable and which are not for

each class of data. Any machine learning model can be used to implement the meta-

learner, but it is common to use a linear model, such as linear regression for regression

and logistic regression for binary classification. This encourages the complexity of the

model to reside at the lower-level learners and simple models to learn how to harness the

variety of predictions made.

Different than bagging that the diversity is focusing on the different samples of data, in

stacking the diversity comes from the different machine learning models used as ensemble

members. As such, it is desirable to use a suite of models that are learned or constructed

in very different ways, ensuring that they make different assumptions and, in turn, have

less correlated prediction errors. A visual representation of such a stacking mechanism

can be seen in Figure 2.9.
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Figure 2.9: Diagram with an example of the Stacking Mechanism.

2.3.3 Boosting

Another generic ensemble technique vastly used is boosting. Its focus is changing the

training data to focus attention on examples from the training dataset that previous

fit models got wrong. In boosting, the training dataset for each subsequent classifier

increasingly focuses on misclassified instances from previously classifiers.

The models added to the ensemble sequentially such that the second model attempts

to correct the predictions of the first model, the third corrects the second model, and so

on. The key property of boosting ensembles is the idea of correcting prediction errors.

Typically, the training dataset is left unchanged, and instead, the learning models are

modified to pay more or less attention to specific examples based on whether they have

been predicted correctly or incorrectly by previously added ensemble members. For ex-

ample, the data can be weighed to indicate the amount of focus a learning algorithm must

give while training the model.

The idea of combining weaker models to create a strong one using boost was first

proposed theoretically and it was difficult to make it work in practice. It was not until the

Adaptive Boosting (AdaBoost) algorithm was developed that boosting was demonstrated

as an effective ensemble method [23]. After it, stochastic gradient boosting [24] was

presented and it is among the most effective techniques for classification and regression

on structured data.

A visual representation of such a boosting mechanism can be seen in Figure 2.10.
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Figure 2.10: Diagram with an example of the Boosting Mechanism.

2.4 Capsule Network

Convolutional Neural Networks (CNNs) are one of the most popular deep learning ar-

chitectures widely used for computer vision, and they are state-of-art in many computer

vision problems. From image classification and object detection to image segmentation,

CNNs define the current state of the art. However, these networks still have their draw-

backs and open challenges.

Yann LeCun first proposed the CNN in the year 1998. He was then able to detect

handwritten digits with a simple five-layer CNN trained on the MNIST dataset. The idea

was simple: train the network, identify the features in the images, and classify them. In

2019, EfficientNet-B7 achieved the state of the art performance in classifying images on

the ImageNet Dataset. The network can identify the label of a particular picture from

over 1.2 million images with 84.4% of accuracy. Looking at these results and progress,

we can infer that convolutional approaches make learning many sophisticated features

with simple computations. However, they are not infallible. CNNs are challenged when

presented with images of different sizes and orientations.

If we rotate a face upside down (see Figure 2.11) and then feed it to a CNN trained

with humans face, it could not be able to identify features like the eyes, nose, or mouth.

Similarly, if you reconstruct specific regions of the face (i.e., switch the nose and eyes),

the network will still recognize the face—even though it is not exactly a face anymore. In

short, CNNs can learn the patterns of the images statistically, but not what the actual

image looks like in different orientations nor the relative position between these objects.
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Figure 2.11: Two images showing a face, but with the second one, transformed by a 180
degree rotation and zoomed. CNNs trained to recognize the first image can have difficult
to recognize the second one as a face.

One standard operation standard in CNNs that helps it to detect images with position

transformation is the pooling layers.

The building block of CNNs is the convolutional layer. These layers are responsible for

identifying the features in a given image, like the curves, edges, sharpness, and color. In

the end, the fully connected layers of the network will combine very high-level features and

produce classification predictions. Max/average pooling operations are used together with

successive convolutional layers throughout the network. The pooling operation reduces

unnecessary information. Using this design, we can reduce the spatial size of the data

flowing through the network and thus increase the field of view of the neurons in higher

layers, allowing them to detect higher-order features in a broader region of the input image.

With a broader field of view, pooling also helps the network to become less sensitive to

positional changes. This is how max-pooling operations in CNNs help achieve state-of-

the-art performance. CNNs work better than any model before them, but max-pooling

is nevertheless losing valuable information. It averages or gets the maximum of regions

of the image or feature vector, losing information during this process. Geoffrey Hinton

stated that:

"The pooling operation used in Convolutional Neural Networks is a big mis-

take, and the fact that it works so well is a disaster!"

Figure 2.12 shows how a tensor can be pooled into a much smaller tensor using max

pooling.
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Figure 2.12: Example of a 3-dimension tensor with 32-values being pooled to a 2-values
tensor using max pool.

Keeping in mind the problem with poolings, Hinton looked to a new approach that

would not depend on lost information. To overcome the problem involving the rotational

relationships in images, Sabour and Hinton drew inspiration from neuroscience. They

explain that the brain is organized into modules, which can be considered capsules. With

this in mind, they proposed capsule networks that incorporate dynamic routing algorithms

to estimate features of objects like pose (position, size, orientation, deformation, velocity,

albedo, hue, texture, and so on). This research was published in 2017 in their paper titled

Dynamic Routing Between Capsules [1].

Unlike normal neurons, capsules perform their computations on their inputs and then

"encapsulate" the results into a small vector of highly informative outputs. A capsule

could be considered a replacement or substitute for your average artificial neuron; whereas

artificial neuron deals with scalars, a capsule deals with vectors. This difference is illus-

trated in the table at Figure 2.13, where the equations of the capsule and traditional

neuron are compared. For instance, we could summarize the steps taken by an artificial

neuron as follows:

1. Multiply the input scalars with the weighted connections between the neurons.

2. Compute the weighted sum of the input scalars.

3. Apply an activation function (scalar nonlinearity) to get produce output.

On the other hand, a capsule goes through several steps in addition to those listed

above to achieve the affine transformation (preserving co-linearity and ratio of distances)

of the input. Here, the process is as follows:

1. Multiply the input vectors by the weight matrices (which encode spatial relationships

between low-level and high-level features) (matrix multiplication).

2. Multiply the result by the weights.
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3. Compute the weighted sum of the input vectors.

4. Apply an activation function (vector nonlinearity) to get produce output.

Figure 2.13: Capsule vs Artificial Neuron mathematical equations. From the original
Capsule Network paper [1].

1. Multiply the input vectors by the weight matrices

The input vectors represent either the initial input or input provided by a previous layer

in the network. These vectors are first multiplied by the weight matrices. The weight

matrix, as described previously, captures the spatial relationships. Say that one object is

centered around another, and they are equally proportioned in size. The product of the

input vector and the weight matrix will signify the high-level feature. For example, if the

low-level features are nose, mouth, left eye, and right eye, then if the predictions of the

four low-level features point to the same orientation and state of a face, a face will be

what is predicted (as shown in Figure 2.14). This is what the "high-level" feature is.
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Predicted by nose
Predicted by face
Predicted by mouth
Predicted by eyes

Figure 2.14: Example of vectors agreeing on face features positions.

2. Multiply the result by the weights

In this step, the outputs obtained from the previous step are multiplied by the network’s

weights. What can the weights be? In a usual Artificial Neural Network (ANN), the

weights are adjusted based on the error rate, followed by backpropagation. However, this

mechanism is not applied in a Capsule Network. Dynamic routing is what determines the

modification of weights in a network. This defines the strategy for assigning weights to

the neurons’ connections.

A capsule network adjusts the weights such that a low-level capsule is strongly asso-

ciated with high-level capsules in its proximity. The proximity measure is determined by

the affine transformation step we discussed previously (Step 1). The distance between

the outputs obtained from the affine transformation step and the dense clusters of the

predictions of low-level capsules is computed (the dense clusters could be formed if the

predictions made by the low-level capsules are similar, thus lying near each other). The

high-level capsule that has the minimum distance between the cluster of already made

predictions and the newly predicted one will have a higher weight, and the remaining

capsules would be assigned lower weights, based on the distance metric. Figure 2.15 il-
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lustrates this concept, where three examples of capsules are used to form a higher level

capsule and they are weight based on as more cauterized with nearby capsule they are.

Higher Level
Capsules

Lower Level Capsules

Top

Middle

Bottom

Figure 2.15: Visual representation of the dynamic routing agreement algorithm in a Cap-
sule Network. The red highlighted capsule would be weighted by their distance to the
clusters, so the order of weights would be: Middle, Top and Bottom.

In a nutshell, the essence of the dynamic routing algorithm could be seen as this: the

lower level capsule will send its input to the higher level capsule that "agrees" with its

input.

3. Compute the weighted sum of the input vectors

This sums up all the outputs obtained from the previous step.

4. Apply an activation function (vector nonlinearity) to produce the output

In a capsule network, the vector nonlinearity is obtained by “squashing” (i.e., via an

activation function) the output vector for it to have a length of 1 and a constant direction.

The non-linearity function is given by Equation 2.8.
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vj =
||sj||

2

1 + ||sj||2
sj

||sj||
(2.8)

Where sj is the output obtained from the previous step, and vj is the output ob-

tained after applying the nonlinearity. The left side of the equation performs additional

squashing, while the right side performs unit scaling of the output vector.

On the whole, the dynamic routing algorithm is summarized in Algorithm 2.:

Algorithm 2 Dynamic Routing Algorithm.

1 def Routing (uj|i , r , l ) :

2 for a l l capsu l e i in l a y e r l and capsu l e j in l a y e r ( l +1): bij ←− 0 .
3 for i t in range (0 , r ) :
4 for a l l capsu l e i in l a y e r l : ci ←− softmax(bi)
5 for a l l capsu l e j in l a y e r ( l +1): sj ←−

∑
i cijuj|i

6 for a l l capsu l e j in l a y e r ( l +1): vj ←− squash(sj)
7 for a l l cap su l e s i , j in l a y e r s l , ( l +1): bij ←− bij + uj|i × vj

8 return vj

• Line 1: This line defines the procedure of ROUTING, which takes affine transformed

input (u), the number of routing iterations (r), and the layer number (l) as inputs.

• Line 2: bij is a temporary value that is used to initialize ci in the end.

• Line 3: The for loop iterates r times.

• Line 4: The softmax function applied to bi makes sure to output a non-negative ci,

where all the outputs sum to 1.

• Line 5: For every capsule in the next layer, the weighted sum is computed.

• Line 6: For every capsule in the next layer, the weighted sum is squashed.

• Line 7: The weights bij are updated here. uji denotes the input to the capsule from

low-level capsule i, and vj denotes the output of high-level capsule j.

The CapsNet architecture consists of an encoder and a decoder, where each has a set of

three layers. An encoder has a convolutional layer, a PrimaryCaps layer, and a DigitCaps

layer; the decoder has three fully connected layers. In the context of the MNIST dataset,

for example, the architecture looks like the diagram in Figure 2.16.
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Figure 2.16: CapsNet Encoder Architecture. From the original Capsule Network paper
[1].

An encoder has two convolutional layers and one fully connected layer. The first

convolutional layer, Conv1, has 256 9×9 convolutional kernels with a stride of 1 and a

ReLU activation function. This layer is responsible for converting the pixel intensities

to the activities of local feature detectors, which are then fed to the PrimaryCaps layer.

The PrimaryCaps layer is a convolutional layer that has 32 channels of convolutional 8-D

capsules (each capsule has eight convolutional units with a 9×9 kernel and a stride of

2). Primary capsules perform inverse graphics, meaning they reverse-engineer the process

of the actual image generation. The capsule applies eight 9×9×256 kernels onto the

20×20×256 input volume, which gives a 6×6×8 output tensor. As there are 32 8-D

capsules, the output would thus be of size 6×6×8×32. The DigitCaps layer has 16-D

capsules per class, where each capsule receives input from the low-level capsule.

The 8×16 Wij is the weight matrix used for affine transformation against each 8-D

capsule. The routing mechanism discussed previously always exists between two capsule

layers (PrimaryCaps and DigitCaps).

In the end, a reconstruction loss is used to encode the instantiation parameters. The

loss is calculated for each training example against all output classes. The total loss is

the sum of losses of all the digit capsules. The loss equation is given by Equation 2.9.

Lk = Tkmax(0,m+ − ||vk||) + λ(1− Tk)max(0, ||vk −m−||)2 (2.9)

Where:

• Tk = 1 if a digit of class k is present

• m+ = 0.9

• m− = 0.9

• vk = vector obtained from DigitCaps layer

The first term of the equation represents the loss for a correct DigitCaps, and the

second term represents the loss for an incorrect DigitCaps.
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Figure 2.17: CapsNet Decoder Architecture. From the original Capsule Network paper
[1].

A decoder takes the correct 16-D digit capsule and decodes it into an image. None of

the incorrect digit capsules are taken into consideration. The loss is calculated by finding

the Euclidean distance between the input image and the reconstructed image.

A decoder has three fully connected layers. The first layer has 512 neurons, the second

has 1024 neurons, and the third has 784 neurons (giving 28×28 reconstructed images for

MNIST).

A Capsule Network could be considered a “real-imitation” of the human brain. Unlike

Convolutional Neural Networks, which do not evaluate the spatial relationships in the

given data, capsule networks consider the orientation of parts in an image as a critical

part of data analysis. They examine these hierarchical relationships to identify images

better. The inverse graphics in biological face processing (that allows us to recognize faces

independent of their rotation) that our brains use is imitated here to build a hierarchical

representation of an image and match it with what the network has learned. Though it

is not yet computationally efficient, there does seem to be an accuracy boost beneficial

in tackling real-world scenarios. The Dynamic Routing of Capsules is what makes all of

this possible. It employs an unusual strategy of updating the weights in a network, thus

avoiding the pooling operation.
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Chapter 3

Related Work

Convolutional Neural Network (CNN) is a DNN [12] commonly used when working with

images. CNNs have already achieved state-of-art results in image and video recognition,

image classification, and medical image analysis. However, these networks have difficulties

with location invariance and loss of location information, e.g., one CNN which can recog-

nize faces could also mistakenly recognize an image with eyes, mouth, and nose at random

positions as a face, not understanding that there is an essential spatial relationship be-

tween the composing elements. To address this, many different new DNN approaches were

proposed, including the notion of capsules proposed by Hinton, Krizhevsky, and Wang in

2011 [25].

Capsule Networks, also known as CapsNets, do not work by representing neurons as

simple scalars (as in regular CNNs) but as vectors to encode spatial relationships. Later

in 2017, an efficient and realistic training algorithm for such networks was proposed [1].

The algorithm, named Dynamic Routing, dynamically chooses activation paths between

capsules from one layer to another, calculating the vectors from the next layer based on a

mean from dynamically selected vectors from all previous layers. CapsNet [1] produces a

set of Primary Capsules (PCs) by applying two convolutional steps to the original image

and splitting it into vectors. Each of these PCs (vectors), identified as ui, is multiplied by

a weight matrix Wi and finally, a final set of capsules, the digit capsules, is created using

the dynamic routing algorithm. Each of these digit capsule vectors represents one of the

classes in the classification problem, and the vector’s length encodes the probability of the

class. The digit capsule can also be used to reconstruct the image like an auto-encoder.

Since its proposal, in 2017, CapsNets has been tested in several datasets, different

applications, and scenarios. This chapter presets a compilation of papers which uses

CapsNets in for different applications (Section 3.1), which explored enhancements to the

original CapsNet architecture (Section 3.2), and which explored improving the CapsNet

execution time (Section 3.2.1).

3.1 Applications

Already in the first year, many applications appeared such as natural language process-

ing [26, 27], breast cancer histology classification [28], detection of aggression and toxic
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comments in social networks [29], classification of hyperspectral imaging [30], among many

others. Some of the first papers in the field were categorized by Patrick et al. [31] survey.

Shahroudnejad, Mohammadi, and Plataniotis [32] presented an analysis of the ex-

plainability of CapsNet, showing that it has properties to help understand and explain

its behavior. Jaiswal et al. [33] used the CapsNet in a Generative Adversarial Network

(GAN) and showed that it could achieve lower error rates than the simple CNN. Ren and

Lu [27] showed that CapsNet could be used for text classification and showed how to adapt

the compositional coding mechanism to the CapsNet architecture. Jimenez-Sanchez, Al-

barqouni, and Mateus [34] tested CapsNet for Medical Imaging Data Challenges showing

that it can achieve good performance even when having less trainable parameters than the

tested counterpart CNNs. Mobiny and Nguyen [35] tested the performance of CapsNet for

lung cancer screening and showed that it could outperform CNNs mainly when the training

set was small. A similar result was achieved by Kim et al. in traffic speed prediction [36]

with CapsNet outperforming traditional CNNs approaches. Mukhometzianov and Car-

rillo [37] also tested CapsNet with multiple image datasets comparing with CNNs. All of

them argue that CapsNet still requires higher training times than other CNNs, showing

why it is important to investigate ways to improve its parallelization and scalability.

Nguyen, Yamagishi, and Echizen [38] evaluated the use of CapsNet in the detection

of fake images and videos, showing that it can achieve similar results as state-of-art

CNNs with the same amount of parameters. The authors also showed how capsules

could be used to understand the decisions. Li et al. [39] used CapsNet to recognize

rice images by crewless aerial vehicles and described that it was a convenient choice in

terms of understatement of the network decisions. Singh et al. [40] proposed the use

of CapsNet in Very Low Resolution (VLR) image datasets showing that it can achieve

stat-of-art results. To overcome the challenges of limited information content in VLR

images, the authors used an HR-anchor loss and a proposed targeted reconstruction loss.

The proposed losses use high-resolution images as auxiliary data during training to direct

feature learning. Zhu et al. [41] applied CapsNet to the bearing fault diagnosis problem

by using capsules in features extracted from convolution layers, a network they named

convolutional capsule network. Chen and Qian [42] showed that CapsNet could be used

to extract aspect-level sentiment classification of sentences from document-level labeled

data, transferring knowledge from one level to another. Li et al. [43] applied a CapsNet

architecture to seven real-word datasets of users’ preferences and achieved state-of-art

results with a higher level of explainability of what the user likes or dislikes. Zhang et

al. [44] describes that capsules are better than usual CNNs in the extraction of highly

overlapped features in NLP relation extraction.

Xiang et al. [45] presented a matrix capsule that outperformed their previous vector

capsules and baselines in image classification. Kwabena, Weyori, and Mighy [46] modified

hyperparameters of the original CapsNet architecture to obtain better results in plant

disease datasets where a set of complex and varied backgrounds are present. The authors

proposed the use of local binary pattern in oppose to CNN layers, the use of sigmoid in

oppose to SoftMax, and the use of k-means in oppose to the original dynamic routing. Af-

shar et al. [47] used CapsNet with x-ray image dataset of COVID-19 patients to diagnosis

the disease. CapsNet showed useful as it can learn with smaller datasets than traditional
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CNNs, thus fitting the emergency scenario of the COVID outbreak. Afshar, Mohammadi,

and Plataniotis [48] proposed the use of a Bayesian approach to improve accuracy and

give better interpretable results for brain tumor classification using CapsNet. Shamsol-

moali et al. [49] showed that CapsNet could be used as generative adversarial networks

to augment imbalanced image datasets.

These CapsNet applications are listed and summarized in Table 3.1.

Table 3.1: Summary of applications of CapsNet in the literature discussed in this section.

Paper Title Pub.

Year

Used Dataset Result

Hyperspectral image classification with capsule net-

work using limited training samples [30]

2018 PaviaU (PU) and Sali-

nasA

Higher accuracy than

CNN

Capsule networks against medical imaging data chal-

lenges [34]

2018 MNIST, Fashion-MNIST

and medical (histological

and retina images)

Same accuracy as CNN

but needing less data

Capsulegan: Generative adversarial capsule net-

work [33]

2018 MNIST and CIFAR-10 Better than CNN in Gen-

erative Metric

Compositional coding capsule network with k-means

routing for text classification [27]

2018 Eight challenging text

classification datasets

Same accuracy as state of

art but with less parame-

ters

Convolutional capsule network for classification of

breast cancer histology images [28]

2018 Images of breast tissue

biopsy

Same accuracy as CNN

Identifying aggression and toxicity in comments using

capsule network [29]

2018 Kaggle-toxic Higher accurcy than CNN

A Capsule Network for Traffic Speed Prediction in

Complex Road Networks [36]

2018 Real traffic speed data

measured in the San-

tander city of Spain

Higher accuracy than

CNN

Fast capsnet for lung cancer screening [35] 2018 lung nodules from com-

puted tomography (CT)

scans

Higher accuracy than

CNN

CapsNet comparative performance evaluation for im-

age classification [37]

2018 Images of faces, traffic

signs, and everyday ob-

jects

Worst accuracy than CNN

and much Slower

Use of a capsule network to detect fake images and

videos [38]

2019 FaceForensics++ Higher accuracy than

CNN

The recognition of rice images by UAV based on cap-

sule network [39]

2019 Rice images captured by

UAV

Better explainability

A capsule network for recommendation and explaining

what you like and dislike [43]

2019 Yelp16-17, Beer, and

other 5

Higher accuracy than

CNN

Multi-labeled relation extraction with attentive cap-

sule network [44]

2019 NYT-10 and SemEval-

2010

Better extraction of over-

lapping features

Transfer capsule network for aspect level sentiment

classification [42]

2019 SemEval Better accuracy

BayesCap: A Bayesian Approach to Brain Tumor

Classification Using Capsule Networks [48]

2020 Brain cancer dataset Same accuracy

Covid-caps: A capsule network-based framework for

identification of covid-19 cases from x-ray images [47]

2020 COVID-19 X-ray dataset Better accuracy

Exploring the performance of LBP-capsule networks

with K-Means routing on complex images [46]

2020 MNIST, fashion-MNIST,

CIFAR-10, tomato, maize,

and citrus datasets

Same accuracy as CNN

with less parameters

Matrix Capsule Convolutional Projection for Deep

Feature Learning [45]

2020 Cifar10, Cifar100 and

SVHN

Higher accuracy than

CNN

Imbalanced data learning by minority class augmen-

tation using capsule adversarial networks [49]

2021 Cifar10, CelebA, Fashion-

MNIST, GTSRB and

MNIST

Same accuracy as CNN
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3.2 Architectural Enhancement

Capsule network with the dynamic routing algorithm was shown to have advantages such

as needing smaller training sets and location invariance. However, it also has drawbacks

compared to traditional CNNs, such as slower execution and lower accuracy for complex

datasets. Since its initial publication, multiple improvements and studies have been pro-

posed to mitigate or solve these drawbacks, and the CapsNet architectural concept has

been evolving.

Xiang et al. [50] proposed the use of a multi-scale feature extraction that is used

to encode the hierarchy of features on the multi-dimensional primary capsule. Moreover,

they showed that dropout regularization could be used in capsules to improve the network

robustness.

As the original CapsNet architecture is not deep, some authors proposed solutions to

increase its deepness, maintaining its properties [51, 52, 53]. All of them show that increas-

ing the deepness of a CapsNet while increasing or maintaining its equivariance property

is necessary to change and improve the original network and the routing algorithm.

Jeong, Lee, and Kim [54] introduced a new pruning layer to remove irrelevant capsules

before the dynamic routing algorithm. Moreover, to maintain the part-whole spatial re-

lationships, they also introduced a new layer named ladder. Unlike the capsule network

adopting the routing-by-agreement, the ladder capsule network uses backpropagation from

a loss function to reconstruct the lower-level capsule outputs from higher-level capsules.

The ladder capsule network learns an equivariant representation and improves the capa-

bility to extrapolate or generalize to pose variations.

Punjabi, Schmid, and Katsaggelos [55] did an evaluation showing the features and dif-

ferences between CapsNets and regular CNNs, showing that for many features, including

invariance, CapsNet has advantages over CNNs. However, these advantages only appear

when the network is trained using the image reconstruction mechanism (auto-encoder).

Chen and Liu [53] reduced the number of training parameters considerably when deepen-

ing the network. Regarding architectural improvements, Jia and Huang [56] proposed the

use of a hierarchical architecture that uses residual convolutional layers and the position-

wise dot product to improve CapsNet over complex data with complex background. Also,

Yang et al. [57] proposed the RS-CapsNet, which improves the overall properties of the

original CapsNet while reducing to 65% the number of parameters in the model. Edraiki,

Rahnavard, and Shah [58] presented a Subspace Capsule Network. Instead of simply

grouping neurons to create capsules. A capsule is created by projecting an input feature

vector from a lower layer onto the capsule subspace using a learnable transformation. This

transformation finds the degree of alignment of the input with the properties modeled by

the capsule subspace. Chen and Liu [53] combined the U-Net architecture features to

the CapsNet network and proposed a mask to the dynamic routing algorithm to allow

such combination. They showed that their new approach reduced trainable parameters

while preserving advantages of image reconstruction and equivariance mechanism. Jia

and Huang [56] proposed a hierarchical architecture that uses residual convolutional lay-

ers and the position-wise dot product to build diverse enhanced primary capsules with

various scales of images for complex data. They combined the Diverse Capsule Network
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structure with the Spatial Group-wise Enhance (SGE) mechanism achieving better results

with fewer parameters.

Jampour, Abbaasi, and Javidi [59] proposed a new regularization term for CapsNet

and also showed that it can be used together with ResNet [14] to achieve better results.

Sun et al. [60] improved the original CapsNet by using multistage separable convolutions

and a dense capsule architecture. They were able to drastically reduce the number of

parameters while improving the network accuracy.

Concerning the Dynamic Routing algorithm, many improvements were also proposed.

Ren [61] shows that the initialization of the algorithm is essential to its final perfor-

mance and describes how to select better initial values, and Ding et al. [61] proposed a

new supervised algorithm to be used instead of the dynamic algorithm showing improve-

ments over real-complex data. Li et al. [43] describes a bi-Agreement routing algorithm

mechanism where an intra and an inter-capsule agreement coefficient is calculated. The

geometric mean of both is then used as the capsule agreement in the dynamic routing.

Mandal et al. [62] introduced a routing algorithm with two phases that computes agree-

ments between neurons at various layers for micro and macro-level features, following a

hierarchical learning paradigm—in this way, improving the representation capability of

the network.

These CapsNet enhancements are listed and summarized in Table 3.2.
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Table 3.2: Summary of enhancements proposed to CapsNet found in the literature and
discussed in this section.

Title Pub.

Year

Enhancement Result

MS-CapsNet: A Novel Multi-Scale Capsule Net-

work [50]

2018 Multi-scale Feature Ex-

traction

Improves accuracy

Deep Tensor Capsule Network [51] 2018 New routing algorithm Allows deeper networks

Building Deep, Equivariant Capsule Networks [52] 2019 Equivariant routing mech-

anism based on degree-

centrality

Increases transformation-

robustness

Grouping Capsules Based Different Types [61] 2019 Improves ’c’ constants

initialization in dynamic

routing

Improves accuracy

A capsule network for recommendation and explaining

what you like and dislike [43]

2019 New routing algorithm

with Bi-Agreement mech-

anism

Improves accuracy

Ladder capsule network [54] 2019 Adds a new layer between

capsules: the ladder layer

Improves the capability to

extrapolate or generalize

to pose variations

DE-CapsNet: A Diverse Enhanced Capsule Network

with Disperse Dynamic Routing [56]

2020 Adds diverse enhanced

primary capsules

Reduces the number of pa-

rameters needed

RS-CapsNet: An Advanced Capsule Network [57] 2020 Adds Res2Net block and

linear combination be-

tween capsules

Improves accuracy and

pose representation

Subspace capsule network [58] 2020 Projects the input vector

from a lower layer onto the

capsule subspace using a

learnable transformation

Improves accuracy

CapsNet Regularization and its Conjugation with

ResNet for Signature Identification [59]

2021 Adds regularization mech-

anisms

Reduces needed training

set

Two-phase Dynamic Routing for Micro and Macro-

level Equivariance in Multi-Column Capsule Net-

works [62]

2021 Uses a two-phase routing

agreement, one from mi-

cro and other from macro-

level feature layers

Improves accuracy

3.2.1 Execution Time Improvement on CapsNet

One of the CapsNet main drawbacks is its higher execution time compared to CNNs. Ap-

proaches such as the ones from Shiri, Sharifi, and Baniasadi try to reduce these bottlenecks

by reducing the number of training parameters of the network [63].

Another approach that was followed by our research is to remove data dependence

in CapsNet data flow, improving its parallelism. That culminated in the proposal of the

Multi-Lane CapsNet, which is presented and explored in this dissertation.

Several approaches to the distributed model parallelization of Deep Neural Networks

(DNN) have concentrated in their depth dimension [5, 6, 7], but DNNs can also be orga-

nized in a way to be parallelized along their width dimension [8]. The DNN architecture

may be organized into distinct Neural Network lanes [9]. This creates separable and

resource-efficient data-independent paths in the network that can learn different features

or add resilience to the network. Examples of Neural Networks with lanes are the Google

Inception [64, 65] and the Multi-Lane Capsule Network (MLCN) [9], proposed in this

work. As these lanes are data-independent, they can be (1) processed in parallel and (2)
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specialized for distinct computational targets (CPUs, GPUs, FPGAs, and cloud), as well

as resource-constrained mobile and IoT targets, leading to opportunities and challenges.

Our recent research focused on Multi-Lane Capsule Networks (MLCN), a separable and

resource-efficient organization of Capsule Networks (CapsNet) that allows parallel pro-

cessing while achieving high accuracy at a reduced cost. Table 3.3 shows results from

MLCN in comparison with the original CapsNet. MLCN achieves similar accuracy but

with a significant speedup provided by the lane organization with a similar number of

parameters. Initial experiments were performed in single GPU environments but with

highly parallel lanes exploring how MLCN scales with more GPUs is interesting. Here

we present a first comprehensive study of the scalability and efficiency of MLCN for

multi-GPU systems.

Table 3.3: Comparison between original CapsNet and MLCN performance on CIFAR-10
and Fashion-MNIST datasets.

Network/set
# of
lanes

lane’s
Width

Params.
Train Time
(sec./epoch)

Accuracy

CIFAR-10:

CapsNet - - 11k 240 66.36%

Mlcn2 4 4 5k 53 69.05%

Mlcn2 32 2 14k 204 75.18%

Fashion-MNIST:

CapsNet - - 8k 220 91.30%

Mlcn2 2 4 3.6k 20 91.01%

Mlcn2 8 4 10.6k 92 92.63%

Moreover, the lanes do not necessarily need to have the exact sizes or shapes and may

even learn different features of the given task. This implies that each distinct lane may be

better suitable for a distinct hardware substrate. Further, each lane may tolerate different

impacts from various optimizations (such as quantization). Thus, given a set of lanes, L,

and a set of hardware, H, there is an optimal pair (l, h) for l ∈ L and h ∈ H and an

optimal sequence of lane optimizations for each pair (l, d) of lane and hardware.

There are two key advantages of this organization over the original CapsNet architec-

ture. First, it allows parallelism of the execution, as each set of Primary Capsules (PCs) is

constructed independently, improving performance and allowing training and deployment

on distributed environments. Second, it improves the explainability of the network by

associating different features of the image to each lane.

Later, Chang and Liu proposed an improvement over MLCN, named MLSCN [66].

This new model improves accuracy while maintaining the parallelism and scalability char-

acteristics of MLCN. As MLSCN work was published concurrently with the development
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of this work, we did not use MLSCN in your experiments, although given its characteris-

tics, we believe the performance results would be similar or possibly the same. Similarly,

Canqun et al. [50] proposed the Multi-Scale CapsNet (MS-CapsNet). They introduced

a fixed division of the CapsNet network limited to three “lanes " (they did not name or

explore the division concept), each with a different number of convolutions. The Path

Capsule Networks by Amer and Maul [67] (Path-Capsnet) explore the parallelism of Cap-

sNets by splitting the network such that each path or lane is responsible for computing

each digitcaps or a primary capsule entirely, unlike the computation of different dimen-

sions/features in MLCN.

Since the proposal of the MLCN, it has been used by others for different applications,

such as complex image classification [68] and in X-ray images collected from patients tested

for COVID-19 [69]. Finally, Table 3.4 shows the three main performance improvement

researches found in the literature.

Table 3.4: Summary of execution time improvements to CapsNet found in the literature
and discussed in this section.

Title Pub.

Year

Architectural

enhance-

ment?

Improves

Parallelism?

Improves

Exec. Time?

High performance training of deep neural networks us-

ing pipelined hardware acceleration and distributed

memory [6]

2018 No No Yes - by using

pipeline paral-

lelism

MS-CapsNet: A Novel Multi-Scale Capsule Net-

work [50]

2018 Yes Possibly - but

it is not ex-

plored

Yes

The Multi-Lane Capsule Network [9] 2019 Yes Yes Yes
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Chapter 4

Accelerating Capsule Networks with

Lanes

The original version of CapsNet [1] produces a set of N Primary Capsules (PCs) by

applying two convolutional steps to the original image. Each of these PCs, identified

as ui, is multiplied by a weight matrix Wi and finally, a final set of capsules, the digit

capsules, is created using the dynamic routing algorithm. Each of these digit capsule

vectors represents one of the classes in the classification problem, and the vector’s length

encodes the probability of the class being the one in the input image. However, beyond just

encoding the probability of a class, each vector also contains information to reconstruct

the original image, with distinct dimensions of the vector representing different features

of the image. With this in mind, we propose to split the original CapsNet architecture1

(Figure 4.1), dividing the PCs into independent sets that we call lanes. Each of these sets

of PCs, a lane, is responsible for one of the dimensions in the final digit capsules.

The number of PCs per lane may vary, as well as the way they are computed. In the

original CapsNet, two 2D convolutions are applied to the input image and then reshaped

to produce the PCs. More convolutions may be applied, what we call the depth of a lane,

or more filters can be used per convolution generating more capsules, what we call the

width of a lane. Further, distinct dimensions of a final digit capsule can be generated by

lanes with different configurations (and thus distinct computational requirements).

There are two key advantages of this organization over the original CapsNet architec-

ture. First, it allows parallelism of the execution, as each set of PCs is constructed inde-

pendently, improving performance and allowing training and deployment on distributed

environments. Second, it improves the explainability of the network by associating differ-

ent features of the image to each lane.

1source code in https://github.com/vandersonmr/lanes-capsnet
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Figure 4.1: Diagram of the Multi-Lane Capsule Network architecture.

Such organization of the capsules also resembles the stacking ensemble learning mech-

anism (see Section 2.3.2). Each lane here acts as an independent learner that is put

together with the routing algorithm to construct the final output, the digit capsule.

4.1 CapsNet Parallelization

A DNN can be parallelized in different ways, and normally finding the best way for a

given network is a complex and hard task [70]. Three of the most common techniques

used are data parallelism, model parallelism, and pipelining.

The first, data parallelism, splits the data which is going to be computed. It divides

the input batch into smaller batches for each compute unit, synchronizing at the end of

the batch. Although simple and straightforward, it can only scale by increasing the batch

size because dividing too much can result in small computation for each compute unit and

too frequent synchronization. Nonetheless, varying the batch size impacts the accuracy,

causing a trade-off between accuracy and speedup.

Another possibility is partitioning the computational network graph itself. However,

it is not always trivial to find partitions that offer good performance. Normally, if two

data-dependent operations are scheduled into two distinct computation units, it results in

increased communication overhead. Moreover, the implementation details of this kind of

model partitioning and communication in currently available frameworks are not trivial.

This approach is known as model parallelism.

Lastly, but not less important, pipelining splits the network into levels that can com-

pute different data at the same time in a pipeline approach. It is normally the approach

used in high-performance scenarios.

These are not the only techniques to distribute the training and inference of DNNs,

and they are not mutually exclusive and can be used together [8]. Related to MLCN, we
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tested its capability of allowing easy model parallelism and compared it to the common

approach that is data parallelism. Of course, for huge MLCN networks, the pipeline

could also be used, but we focus on showing how being able to facilitate the use of model

parallelism can bring many advantages over the use of data parallelism alone. This same

advantage can be easily extended by adding pipelining per lane, which remains to be

explored in future work.

4.2 Experimental Setup

We tested our approach with the Fashion-MNIST and CIFAR-10 datasets. These are

the dataset also used in the original CapsNet paper. Each experiment is performed ten

times, and we present the average of the results. There was no significant variance in

the results; therefore, we only present the means. Our experimental baseline refers to

the original CaspNet configuration tested with the MNIST dataset [1]. The baseline with

MNIST creates 1152 PCs with dimension 8 and 10 digit capsules with dimension 16. We

also use PCs with eight dimensions and vary the number of PCs. We call a 1-size lane a

lane that creates 72 PCs (same proportion of PCs per dimension as in the baseline) and

a k-size lane a lane with k × 72 PCs. The experiment also varies the number of lanes

(dimensions of the digit capsule), testing networks with 2, 4, 8, 16, and 32 lanes. All

reported experiments in this section were performed on a P100 NVIDIA GPU with 16GB

of RAM, and the training was performed with 20 epochs.

We tested two variations of lane configurations: the first, Mlcn1, has the same config-

urations as the baseline CapsNet, and the second, Mlcn2, includes differences that were

found to increase the performance of our architecture significantly. Details of both are

described below. In both, width is a parameter that can vary (explored in Section V),

and it is the width described in Figure 1.

• Mlcn1: the image is first processed by one convolutional layer with 16 × width

kernels, each one with kernel size 9 × 9 and stride 1. The output from the first

convolution is used as input to another convolutional layer with 16×width kernels,

each kernel with size 9x9 and stride 2. The output of the second convolution layer

is then reshaped into 72×width PCs with eight dimensions. Finally, using all PCs,

Dynamic Routing produces one vector with a dimension equal to the number of

classification classes in the problem.

• Mlcn2: the image is first processed by one 1× 1 separable convolutional layer with

4 × width kernels, followed by one convolutional layer with kernel size 9 × 9 and

stride one and 8 × width kernels. The output of the last convolution is used as

input to one last convolution with 8 × width kernels, each kernel with kernel size

equal to 9× 9 and strides of 2. The output of the last convolution is then reshaped

as in Mlcn1, outputting 72 × width PCs with eight dimensions. Finally, using all

PCs, Dynamic Routing produces one vector with a dimension equal to the number

of classification classes in the problem.
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4.2.1 Dropout and Regularization in MLCN

In both configurations, we notice that, usually, a subset of lanes would actually be enough

for the reconstruction and for the classification. At a certain point, additional lanes

stopped providing useful information, and new lanes just would produce similar results,

adding no new information to the solution or even over-fitting. To mitigate this effect,

we investigated a dropout approach. During the training process, we would discard 10%

of the lanes randomly and only use the result of the other 90% to calculate the final

classification (for reconstruction, all lanes were always used). This forces all lanes to

contribute useful information to the solution of the problem. However, as we show and

discuss in Section 4.3.3, this made the training process more laborious and caused all

lanes to learn similar features.

4.3 Experimental Results

Digit capsule vectors, which are constructed by concatenating the output of all lanes,

should have encoded information to entirely reconstruct the input image. During the

training process, the longest digit capsule (its length encodes one class probability) is

used as input to a fully connected Neural Network with two layers of 512 and 1024

neurons, which learns to reconstruct the original image. As seen in Figure 4.2, the output

of 16 lanes (Mlcn1) can be used to reconstruct with high-fidelity the input image from

the Fashion-MNIST dataset. Therefore, it shows that dividing CapsNet into lanes does

not prevent it from converging and learning image characteristics.

Figure 4.2: Reconstruction of the original Fashion-MNIST inputs using the capsule
output by the MLCN network after trained. The reconstruction is done using a fully-
connected network.

Figure 4.3 shows the effect on the reconstruction when we vary the output of each lane

by adding -0.25, -0.2, -0.15, -0.1, -0.05, 0, 0.05, 0.1, 0.15, 0.2, and 0.25 to each dimension of

the vector, one dimension at a time. We can observe the effect of this change on different

features of the original image. Two key points from this: first, as each lane is entirely

independent, we may know that, for instance, lane5 and its associated convolutions are

used to extract the size of the jacket. Further, we noticed that similar properties were
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being extracted from different classes. So, for example, lane5 also extracts the size of

the shoes. Second, we notice that adding more than five lanes for the MNIST dataset

would result in lanes with no impact on the reconstruction and produce essentially similar

outputs. Therefore, these lanes would not help to solve the classification problem for that

dataset. Larger and more complex datasets would benefit from larger networks.

Lane1

Lane2

Lane3

Lane4

Lane5

Figure 4.3: Impact on the reconstruction of the input when synthetically varying each of
the lanes output. It shows that different lanes are learning different features of the image,
such as the color in Lane3.

Although the second configuration, Mlcn2, improved the classification problem and

increased the number of useful lanes to solve a specific problem (as we show in the next

subsection), it did not have any visible impact on the reconstructed images; thus, we only

present images from Mlcn1.

4.3.1 Number of Lanes vs. Model Accuracy

As we noticed from the reconstructed images, adding more lanes does not always improve

the model. After a certain limit, new lanes stop learning new features. For example, in

Fashion-MNIST (Figures 4.4a and 4.4b), adding more lanes was not always beneficial. We

observed that when using the first type of lanes (4.4a), 2 or 4 lanes were better than 8 or

16. When exploring why, we noticed that in the Fashion-MNIST case, even when using

more, only four lanes were learning-rich features. So, adding more lanes would not result

in better features being extracted, but it would make it more difficult to train. That is

because increasing the final vector dimension size (what is defined by the number of lanes)

increases the training difficulty level, making it slower. Thus, after a limit, it is not only

useless to add new lanes, but it actually makes the training slower. We also tested using

Mlcn2 (4.4b), and the scenario improved (now with eight lanes limit for Fashion-MNIST),

but it is still the case that using more lanes, such as 16 or 32 lanes, was not beneficial.
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Figure 4.4: Accuracy on the Fashion-MNIST and the CIFAR-10 datasets by MLCN (1
and 2) networks with different number of lanes.

One thing to notice is that the number of lanes which will maximize the network

performance is not only related to the lanes configurations but also to the dataset. While

Fashion-MNIST appears to only need four lanes to represent its data with Mlcn1, CIFAR-

10, a more complex dataset, requires 8 (4.4c) and with Mlcn2, it actually benefits from

using 32 lanes (4.4d). Another important point from Figures 4.4a, 4.4b, 4.4c, and 4.4d is

that MLCN achieved better accuracy levels when using lanes of the second type. When we

compare the accuracy achieved by the two lane types for both datasets with the original
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CapsNet (Table 4.1), we see that Mlcn1 achieves similar accuracy rates as the CapsNet,

but Mlcn2 is better.

4.3.2 Lane’s Width vs. Model Accuracy

We also experiment with varying the lanes width. In other words, increasing the number

of convolution kernels, and in this way, adding more PCs. See results in Figure 4.5.

For all the results presented above, we used lanes of width four because it demonstrated

for both datasets to be the better choice. We observed that increasing the lane’s width

increases the performance of the network, but for lanes deeper than 4, it shows that this

improvement starts to cease and the training rapidly overfits given the large number of

PCs.
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Figure 4.5: Accuracy on the Fashion-MNIST and CIFAR-10 dataset by MLCN networks
with 8 lanes but different lanes width.

4.3.3 Lane Dropout Trade-off

To improve the number of lanes that learn useful features, we added a lane dropout

mechanism (only for classification loss). Then, to test how individual lanes impact the

classification, we removed one of the lanes from a trained Fashion-MNIST MLCN with

16 Mlcn1 lanes and width 4. We then measure that lane’s impact on the accuracy by

calculating the new accuracy and computing the difference. Repeating this for all lanes

results in a list of all lanes by individual accuracy impact.

Figure 4.6a shows the impact of removing lane by lane sorted by the accuracy im-

pact with and without lane dropout. Applying dropout generally reduced the maximum
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obtained accuracy. One of the reasons for this is that all lanes are thus forced to in-

dependently learn to classify the input, thus learning redundant information. This can

be observed by the fact that when using the lane dropout, we only have a significant

reduction of accuracy after removing 15 lanes. In other words, many lanes are redundant

for classification, so one can remove subsets and continue having a good result. However,

without using dropout, we have better maximum accuracy, and, as seen in Figure 4.6a,

there is less redundancy and more lanes contribute information for the classification, so

their removal will severely impact accuracy.

Independently of using dropout, it is seen that, after the training process, one can

reduce the size of the network by removing the least significant lanes without drastically

impacting the performance of the network. This affects not only the size of the stored

network but also its inference time and speed. Figure 4.6b shows how the inference speed

(normalized with respect to the version with all lanes) increases as some lanes are removed.
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Figure 4.6: Impact of lane pruning on the accuracy and execution speedup of the network.
Starting from the lane with least impact to the one with the largest impact.

4.3.4 MLCN Training and Inference Time

To facilitate the comparison between Mlcn1 and Mlcn2, we chose their configurations

to have the same amount of trainable parameters. Thus, both configurations had similar

performance both in training and inference. Furthermore, when compared to the CapsNet,

MLCN needs a smaller or similar number of parameters to achieve the same accuracy.

Added to the fact that the lanes are data-independent and have a higher amount of

parallelism, we could train the MLCN much faster than the CapsNet. On average, for the

same or better accuracy, one achieves a 2.4x speedup. Some of these results are shown in

Table 4.1.
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Table 4.1: Comparison between the performance on the CIFAR-10 and Fashion-MNIST
dataset of the original CapsNet and the two MLCN architecture organization proposed
(Mlcn1 and Mlcn2).

Dataset DL

model

# of

Lanes

Lane’s

Width

# of params Train Time

(seconds/e-

poch)

Accuracy

CapsNet - - 11,769,600 240 66.36%

Mlcn1 4 4 5,250,816 54 63.88%

CIFAR-10 Mlcn1 32 2 14,259,712 205 66.56%

Mlcn2 4 4 5,250,816 53 69.05%

Mlcn2 32 2 14,259,712 204 75.18%

CapsNet - - 8,227,088 220 91.30%

Mlcn1 2 4 3,655,376 21 91.14%

Fashion-MNIST Mlcn1 8 4 10,633,232 90 90.87%

Mlcn2 2 4 3,655,376 20 91.01%

Mlcn2 8 4 10,633,232 92 92.63%

4.3.5 MLCN Scalability and Performance Study

To understand how each approach to the parallelization of CapsNet scales, we studied

their performance with 1, 2, 4, and 8 NVIDIA Tesla K80 GPUs.

The graph in Figure 4.7 shows the performance comparison between the base (CapsNet

baseline), mlcn-data, and mlcn-model configurations. MLCN is faster than the baseline

even in a single GPU, as reported earlier. However, it is interesting to notice that the

advantage does not increase when scaling to more GPUs with data parallelization, as

the speedup difference between mlcn-data and baseline remained constant. This indicates

that the reorganization proposed by MLCN does not improve scaling via data parallelism,

as expected, but provides benefits for model parallelism. In this latter case, the Mlcn-

model has a visible advantage, scaling with higher efficiency and achieving a near 7.2

speedup with 8 GPUs over the single GPU baseline. Thus, MLCN is not only faster than

the original CapsNet (baseline) but, because it allows model-parallelism, scales more

efficiently.
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Figure 4.7: Speedup of the three parallelization approaches: original CapsNet with data
parallelism (base), MLCN with data parallelism (mlcn-data), and MLCN with model
parallelism (mlcn-model). All speedups are relative to the original CapsNet on one Tesla
K80 GPU.

Impact of Batch Size

The size of the minibatch, or batch size, has a significant impact on the performance

of a DNN as a better ratio of computation and communication is available, enabling a

more efficient hardware use. Also, batch size has a significant impact on data parallelism

performance as more data per computation is available to be divided among the GPUs.

To study the advantage of MLCN model parallelism over the data parallelism method,

we tested both approaches with batch sizes equal to 100, 150, 300, and 600. The graphs

in Figures 4.8a and 4.8b show the speedup versus a single GPU with a 100-sized batch

size. For both methods, we observe similar efficiency gain as the batch size grows. So,

for different batch sizes, the relative advantage of MLCN with model parallelism stays

the same, as increasing the batch size equally increases the efficiency of data and model

parallelism approaches.
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Figure 4.8: MLCN and original CapsNet speedup scalability for 1, 2, 4, and 8 NVIDIA
K80 GPUs using a Google Cloud VM with 24 vCPUs and 90GB of RAM.

We also studied the impact of batch size on both baseline and MLCN accuracy, shown

in Figure 4.9. Increasing batch sizes has the same impact on the accuracy for both cases.

The magnitude of this impact is sensitive to the dataset as shown by the differences

between Fashion-MNIST and CIFAR-10 results and not to the parallelism model. Thus,

as model parallelism has better performance over data parallelism, it has the advantage

of scaling better with smaller batch sizes, reducing the pressure to trade accuracy for

efficiency.



60

l

l

l

l

l l

l

l

l

l

l

l

l
l

l

l

0.25

0.50

0.75

200 400 600

Batch Size

A
c
c
u
ra

c
y

Dataset

Cifar10
MNIST

Model

l

l

base
MLCN

Figure 4.9: Accuracy impact with the increase of training batch size for the original
CapsNet and MLCN in the CIFAR-10 and Fashion-MNIST datasets. Both are equally
sensible with the increase of it.

Impact of Lane Characteristics

The previous results explored the suitability of MLCN and its model parallelization.

We also explore how the characteristics of the MLCN lanes can affect performance and

scalability by varying the three main hyperparameters associated with MLCN lanes: their

width, depth, and their quantity. The results are shown, respectively, in Figures 4.10a,

4.10b and 4.10c.

The width and depth of lanes have a direct impact on the number of parameters per

lane and, consequently, the amount of computation per lane. With more computation per

lane, the efficient use of multiple GPUs becomes advantageous. This is shown in Figures

4.10a and 4.10b as larger lanes increase efficiency. However, increasing the width had a

much more significant increase in efficiency, at a similar increase in the number of pa-

rameters. This indicates that besides the number of parameters, the type of computation

affects performance. In the case of MLCN lanes wider lanes result in better performance

than deeper lanes with the same number of parameters.

Another interesting point was the fact that increasing the number of lanes did not

significantly increase performance, as shown in Figure 4.10c. Even though increasing the

number of lanes also increases the amount of computation available between batches,

there is an overhead of having these computations separable. So, having several lanes in

one GPU is less efficient than having a single extremely large lane.
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(b) MLCN using model-parallelism with mini batch

width of 150 and varying the depth of the lanes.
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(c) MLCN using model-parallelism with batch size

of 150 and varying the number of lanes.

Figure 4.10: Impact of different MLCN’s lanes characteristics in the speedup scalability
of the network model.

4.4 Summary and Considerations

The Caspsule Network was proposed with the goal to present a new mechanism to en-

code and learn positional information of inputs. It uses not scalar values in its atomic

representations but vectors or matrices. We showed in this chapter that the dimensions

of these vectors can learn different features of the images, and they can be data-separated

without affecting their performance or properties.
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We call these, now data-separated, paths in the Capsule Network as lanes. These lanes

are a kind of independent Neural Network that can be constructed in many ways, varying

their deepness, width, type of convolutions, among other things. In the computational

efficiency usage point-of-view, more computation with less data dependence is better.

However, we saw that increasing the number of dimensions of the capsule; thus, the lanes

have a limit related to the size and complexity of the dataset. So, the parallelism and

computational gains can be limited by the dataset.

Moreover, even for small and simple datasets, such as CIFAR-10 and Fashion-MNIST,

we can achieve better execution times when using our Multi-Lane Capsule Network ap-

proach. The hardware and compilers automatically explored the lane parallelism even in a

single-hardware environment and achieved better performance than the original CapsNet.

However, going further, we manage to show that we can use model parallelism with the

lanes to achieve better performances and scale to the use of multiple hardware substrates

during training. In the end, MLCN was able to achieve more than 7x faster training times

when using 8 NVIDIA K80. In a homogeneous set of hardware substrates, scheduling the

lanes is as simple as equally distributing them. However, when we explore model paral-

lelism in heterogeneous hardware, we would have to consider the limits and performance

of each hardware substrate in order to schedule the lanes in an equally balanced manner.

We explore that problem in the next section proposing a lane schedule mechanism.
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Chapter 5

Optimizing MLCNs on Heterogenerous

Scenarios

One of the main advantages of having data-independent lanes is that these lanes can be

deployed separately into multiple hardware substrates. If we have multiple equal lanes

and multiple, identical, hardware substrates, deployment is as simple as dividing the

lanes equally over the hardware resources, only being concerned with the communication

cost involved. If, in other cases, we have lanes with different shapes, characteristics, and

computational intensity or/and we have multiple hardware substrates with different char-

acteristics or computational power, efficient deployment becomes more involved. First,

because it now involves load balancing the computational intensity of the lanes and the

computational power of the computing devices and, second, because now there is also

the chance to apply different optimizations to different pairs of hardware and lanes. This

scenario is illustrated in Figure 5.1, which shows how multiple lanes can be deployed on

different hardware substrates with different compilation stacks.
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Lane Optimization
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Figure 5.1: Diagram showing how multiple MLCN’s lanes can be trained in parallel using
multiple computing devices even in heterogeneous scenarios.

Deciding where to execute each lane or what optimizations to apply to each lane/-

computing device pair is not trivial. In this section, we present an approach to address

the first problem using a scheduling heuristic.
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5.1 Execution Cost Model for MLCN Lanes

Finding, statically, the optimal solution to deploy a lane given a set of hardware resources

is a complex task. For example, aspects such as the version of the compiler being used or

what other lanes (and their characteristics) are being executed concurrently on the same

hardware can have a significant impact on the final performance. These are only two of the

many aspects that can affect performance. However, we observed in our experiments that,

at least for MLCN, we do not need to know exactly the accurate final performance to make

a good scheduling decision. Our experiments have shown that reasonably approximate

predictors can provide acceptable results.

We experiment running and taking the average execution time of 10 executions of

MLCN lanes with different widths and depths using three different NVIDIA GPUs (K80,

P100, and V100). For the same number of parameters, independently of the GPU used,

the performance displays a well-behaved pattern. It varies linearly when increasing the

depth, quadratically when varying the width, and it was multiplied by a factor when

changing the GPU.

Thus, for MLCN lanes with NVIDIA GPUs and compilers, predicting the performance

on a given hardware substrate can be approximated by Equation 5.1, which achieves a

0.901 Pearson correlation with our experimental data.

lanecost = (lanewidth)
2
× lanedepth ×GPUspeed (5.1)

The GPUSpeed in Equation 5.1 is the speed factor of the GPU being used. It only

has any significance when deploying to a heterogeneous set of GPUs, and the GPUSpeed

constant for each GPU can be inferred by simply measuring the execution time of a tiny

lane in each GPU and normalizing it. This can be done before the execution, and it has

an insignificant cost in the final execution time. In the case of our experiments, we collect

the GPUSpeed by executing a 512x512 fully connected network with a small set of data.

Normalized by K80, we found the following GPUSpeed values for M40, P100, and V100:

3.1, 4.2, and 6.

5.2 Scheduling Heuristic

We can make good execution cost predictions for NVIDIA GPUs and MLCN lanes as

described in 5.1. However, there is still the problem of how to schedule a set of lanes

with different depths and widths on a set of GPUs with different speeds. We can model

this problem as a numerical set partition with N bins, each bin corresponding to a target

GPU. The cost of each lane being deployed (inserted into the bin) is equal to the lane

cost (Equation 5.1) multiplied by previous execution speed prediction on host hardware

via execution of a tiny lane (GPUSpeed).

The numerical set partition problem is NP-Hard, but very good results can be achieved

using heuristic/approximative algorithms, and it can even be solved in pseudo-polynomial

time using dynamic programming, making it one of “The Easiest Hard Problem" [71, 72].
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One of such heuristics that achieved good results and is very simple to implement is

greedy scheduling which always inserts the remaining lane with the highest cost in the

least loaded bin. Algorithm 3 shows this greedy algorithm, including the pre-execution

used to calculate the GPUSpeed.

Algorithm 3 Greedy Scheduling Algorithm.

i f us ing heterogeneous hardware :

for each hardware :

execute a t iny lane

GPUSpeed [ i ] = runtime o f the t iny lane on hardware

// normal ize a l l GPUSSpeed

GPUSpeed [ ∗ ] = GPUSSpeed [ ∗ ] / MIN(GPUSpeed [ ∗ ] )

def GreedyPart i t ion ( lanes , NumGPUs,GPUSpeed ) :

GPUBins = [ [ ] for i in range (NumGPUs) ]

for l ane in r e v e r s e sorted l an e s :

s o r t GPUBins by GPUBins [ i ] [ j ]∗GPUSpeed [ i ]

GPUBins [ 0 ] . append ( lane )

return GPUBins

5.3 Experimental Setup

In our experiments, we used virtual machines from Google Cloud. All virtual machines

instantiated had 24 vCPUs with 50GB of RAM and a default network interface. We used

different GPU setups, including NVIDIA M40, K80, P100, and V100, all with CUDA

10.0, Intel MKL-DNN, and Tensorflow 1.13.1.

The experimental results did not show sensitivity to the input data set (tested with

Fashion-MNIST and CIFAR-10); thus, we chose to use the Fashion-MNIST data set.

Execution time was measured by executing ten Fashion-MNIST epochs, excluding the

first, and using the average time for the others. All results had a very small variation.

The execution time between epochs consistently had a very similar value. Thus, for

simplicity, we present averages.

In this work, we tested three configurations for the CapsNet parallelization, as follows:

• Original with Data Parallelism (CapsNet or baseline): we simply applied the

original concept of CapsNet for the Fashion-MNIST dataset parallelized using Keras

data parallelism support.

• MLCN with Data Parallelism (mlcn-data): we used the same approach as in the

baseline (Keras data parallelism), but with the MLCN organization.

• MLCN with Model Parallelism (mlcn-model): we parallelize the execution by

executing each lane on different GPUs. When using multiple machines, we used the

Horovod MPI framework to do handle communication.
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For the NAS experiments, we used K80 NVIDIA GPUs and executed the training only

until the 10th epoch with batch size equal to 100. The accuracy reported is the geometric

mean of each generated model trained four times. We generated 64 models per tested

configuration. The best value is the best average of all iterations, and the average is the

average of all iterations.

5.4 Experimental Results

One interesting observation about MLCN is that having lanes with different character-

istics, such as lanes with different widths and depths, increases the generality of the

network. Here, resembling ensemble learning increase of diversity by having first-level

stacking models with different characteristics and strengths. A similar result was reported

by Canqun et al. [50] with the MS-CapsNet organization. However, deploying lanes in

multiple GPUs when the lanes have different computational footprints can be challenging.

To study a proposed heuristic to deploy lanes with different widths and depths, we tested

4 MLCN networks with 6, 9, 12, and 24 lanes. Each lane may have pairs of depth and

width values ranging from 1 to 5. As shown in Figure 5.2, we obtain a shorter execution

time with our proposed heuristic than when randomly distributing the lanes between the

GPUs. The advantage increases with the number of lanes, showing that the larger the

number of lanes the harder it is to randomly find a good distribution. Notice that the

time accounted for the greedy heuristic includes the (almost negligible) time to run the

heuristic.
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Figure 5.2: Average execution time of heterogeneous lanes running on four NVIDIA K80
GPUs with random and the greedy lanes’ scheduling approaches. All lanes varying on
width and depth.
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5.4.1 Heterogeneous Lanes with Heterogeneous GPU

Besides having heterogeneous lanes we also tested a scenario with heterogeneous hard-

ware. Rather than 4 NVIDIA K80, we deployed four systems, each with a different GPU:

one M40, one K80, one P100, and one V100. The results are in Figure 5.3. For total

execution time, there was a significant increase because of network communication be-

tween the systems. Moreover, the difference between random deployment and our greedy

heuristic becomes larger, showing that for more complex scenarios with many lanes or

heterogeneous hardware, carefully computational deployment is key to performance.
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Figure 5.3: Average execution time of heterogeneous lanes running on one K80, one P100,
one V100, and one M40 NVIDIA GPU in multiple machines communicating using MPI
with a random and a greedy scheduling of lanes execution distribution. All lanes varying
on width and depth.

5.5 Summary and Considerations

We showed that MLCN allows an easy way to achieve good results with model parallelism

because of its data-independent lanes. However, that is not so straightforward when

neither the lanes nor the hardware are homogeneous.

In that scenario, we need to decide which lane is going to be executed in which hard-

ware such as to achieve a load balance. One way of modeling that problem is as a

numerical set partition problem. We showed in this section how to model such a problem

and one possible solution using a greedy approach.
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So, lanes can be different in an MLCN model, and the hardware in each of the lanes

that are going to be executed can also be diverse. Thus, one next problem that we explore

is if we can create a model (such as in a Neural Architectural Search) that fits a given set

of hardware available, so we use it at its maximum power and efficiency. That is described

in the next chapter.
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Chapter 6

Optimizing MLCN to Computing

Devices with NAS

Previously, we presented the problem of deciding on which device to execute each lane

in an MLCN model. In the previous chapter, we showed that we could create a simple

equation that describes the performance behavior of MLCN models to guide a load balance

scheduling algorithm. It is known that when one can balance the lanes onto the devices,

we may achieve better overall performance. Moreover, larger models with heterogeneous

lanes were shown to have better accuracy, especially in more complex datasets such as

CIFAR-10. Thus, in this chapter, we explore a slightly more general problem: we still

want to balance the load of an MLCN model in a set of devices, but now we do not

have the model defined but we want to build it. The goal is to build MLCN models with

heterogeneous lanes that when schedule into a a given set of hardware substrates, fully

uses their resources; to that, we perform a random Neural Architectural Search (NAS) to

find good models in accuracy while fitting the devices resources. So, in the end, we can

select the best model that both improves the accuracy while uses the devices’ resources

smartly.

To achieve that, we first introduce a new equation to compute the memory cost of an

MLCN given its lane configurations. With this new equation, along with the execution

cost equation introduced in Section 5.1, we can predict both memory and FLOPS/time

necessary to execute a lane or an MLCN model in a given device. So now the notion

of a device is a lane’s bucket that has both a memory and FLOPS/time limit. Next,

we introduce the idea of how to generate random lanes that can respect the memory or

computational load limit, in FLOPS. This mechanism is used to randomly generate lanes

to build a MLCN model that fully uses the available set of devices resources. In the end,

we have heterogeneous lanes (that we showed are able to achieve better accuracy), and,

as the lanes are filled, having in mind the device resources, those lanes can be executed

on those devices in a balanced way. Finally, we can generate numerous MLCN models

and then select the model that gives the best accuracy for a fixed number of epochs.

All these concepts and ideas are illustrated in the diagram from Figure 6.1. Note that

the buckets are illustrated in equal size, but nothing prevents them from being different in

terms of FLOPS and memory limits, for instance, in a heterogeneous hardware scenario.
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Also, notice that we solve the problem from the previous section in such a way that the

randomly generated MLCN is kept balanced as we fill the buckets.

Figure 6.1: Diagram of NAS engine mechanism used to generated random MLCN models
with heterogeneous lanes that naturally fit a given set of devices.

The remainder of this chapter is organized as follows: Section 6.1 presents the memory

heuristic and Section 6.2 discusses the algorithm to perform this architectural search.

Finally, the results section explores how limiting the memory or the FLOPS for an MLCN

configuration search or having heterogeneous limits impacts the final accuracy.

6.1 Memory Cost Model for MLCN Lanes

To implement the bucket approach previously described, we need not only to estimate the

computational time/resources/FLOPS as described in Section 5.1, but also to estimate the

amount of memory necessary to execute the lane. For that, we use the NVIDIA nvidia-smi

tool to capture different lane configurations and create a model of memory consumption

based on the lane characteristics. It became clear from our experiment that the memory

consumption is deterministic and can be approximate by the following equation:

lanememory = ((lanewidth)
lanedepth/2 × 256 + 1832)MiB (6.1)
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For the lanes that we tested, this equation gave a memory consumption that was

always an upper ceiling for the real value and with an average error of less than 256 MiB.

We know that this value could have been analytically calculated from the network model

layers and configurations, but we want to show that with some experiments, we can come

up with an equation that is good enough and does not require knowledge of the layers’

actual functionality. Moreover, this equation provides a fast way to calculate the memory

consumption, allowing us to quickly test each laneswidth and lanedepth that can be used

to fit a given memory requirement.

Memory consumption and the execution time have clearly different behaviors because

the number of trainable parameters grows differently from the layers output and acti-

vation’s size. While the first is more related to the execution time, the second is more

related to memory consumption.

6.2 Lane Configuration Search

Given the performance and memory consumption results of the MLCN model, its relation

with the lane characteristics, and the fact that in our experiments we had evidence that

MLCN models with heterogeneous lanes have higher accuracy than homogeneous ones,

we proposed an approach to make a Neural Architectural Search (NAS) of such MLCN

models that fit a given set of memory and performance constraints.

Our NAS tries to find an MLCN model with the best possible accuracy or at least

a good one that, at the same time, fully uses all resources available in a balanced way.

Ensuring that we are testing and generating the largest possible models (as larger models

tend to have better accuracy performance) and that can be executed using the full capacity

of the devices (load balanced execution with higher performance). In other words, we want

to find a model M that maximizes the accuracy in a given dataset. Moreover, the lanes L

from this model M when schedule to an hardware A uses their a memory mem(Aj) to the

limit and uses the maximum load load(Aj). A, mem(Aj) and load(Aj) are parameters

of the search algorithm, they describe the capabilities of the hardware available. So, let

lanes(Aj) be the set of all lanes assigned to be executed in Aj, the model M needs to

maximize the accuracy while its lanes still fit the devices, i.e.:

∀j,

#(lanes(Aj))∑

i=0

mem(Li) < mem(Aj) ∧

#(lanes(Aj))∑

i=0

load(Li) < load(Aj)

The memory restriction ensures that we are only generating models that can fit the

devices and the load limit guarantees that we are using the same load for all devices in a

balanced way.

To perform such a search respecting the given constraints, we developed a random

search approach to implement the NAS engine. First, we develop a generator of random

lanes that can fit in a given memory limit and have a limit of FLOPS usage. This is done

using the memory and performance equations. Using the lane generator, we then build
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a random model that fits a set of devices in a balanced way. For this, we select a device

that is not yet full and randomly generate a lane that can fit such a device, then assign

this new lane to the device and the MLCN model being built. This is repeated until all

devices are full. Finally, we test the accuracy of this generated model and update the best

model found so far, if necessary. This repeated process of generation and test of random

generated MLCN networks is used to explore the space of possible MLCNs that fits the

given devices to find the best one.

This random search algorithm is described in the pseudo-code from algorithms 4, 5,

and 6.

The first, Algorithm 4, describes the structure used to maintain how much of a device

has already been used. memorylimit and flopslimit are the mem(Aj) and load(Aj) from

last Equation. The structure maintain the available load and memory in the device in

freememory and freef lops. The function addlane can be used to update the structure

and isfull to check if the device is full or still have available resources.

Then, Algorithm 5, describes the process of generating an MLCN model that fits all

devices. It construct an random MLCN by generating lanes that can fit devices that are

not yet full. Every time a new lane is generated, the device usage is updated and if it has

became full, it is remove from the list of devices. This repeats until there is no device to

be fill.

Finally, Algorithm 6 describes the random NAS, in which n models are generated, and

the most accurate one is returned.

Algorithm 4 Device Memory Bucket and FLOPS Bucket Representation.

1 class Device (memory_limit , f l o p s_ l im i t ) :

2 free_memory = memory_limit

3 f r e e_ f l op s = f l op s_ l im i t

4 def i s_ f u l l ( ) :

5 i f f r e e_ f l op s =< 0 or

6 free_memory =< 0 :

7 return t rue

8 return f a l s e

9 def add_lane ( lane ) :

10 free_memory −= lane .mem

11 f r e e_ f l op s −= lane . f l o p s
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Algorithm 5 Generator of random MLCNs that fit devices.

1 def gen_random_mlcn_that_fits :

2 MLCN = empty MLCN model

3 # I n i t i a l i z e l i s t o f d e v i c e s wi th t h e i r

4 # re s p e c t i v e memory and FLOPS l im i t

5 dev i c e s = in i t_ l i s t_o f_dev i c e s ( )

6 while len ( d ev i c e s ) != 0 :

7 dev = get a dev i c e from dev i c e s

8 # gen a random lane t ha t uses memory and FLOPS

9 # l e s s or equa l than dev . free_memory and

10 # dev . f r e e_ f l o p s

11 lane = rand_lane ( dev . free_memory , dev . f r e e_ f l op s )

12 dev . add_lane ( lane )

13 MLCN. add_lane ( lane )

14 i f dev . i s _ f u l l ( ) :

15 remove dev from dev i c e s

16 return MLCN

Algorithm 6 MLCN Random Network Architecture Search.

1 def MLCN_RANDOM_NAS(N) :

2 best_accuracy = 0

3 best_MLCN = none

4 for 1 to N:

5 random_MLCN = gen_random_mlcn_that_fits ( )

6 t r a i n (random_MLCN)

7 accuracy = t e s t (random_MLCN)

8 i f accuracy > best_accuracy :

9 best_accuracy = accuracy

10 best_MLCN = random_MLCN

11 return best_MLCN

6.3 Experimental Setup

In our experiments, we used virtual machines from Google Cloud. All virtual machines

instantiated had 24 vCPUs with 50GB of RAM and a default network interface. We

used different GPU setups, including NVIDIA Tesla M40, K80, P100, and V100, all with

CUDA 10.0, Intel MKL-DNN, and Tensorflow 1.13.1.

For the NAS experiments, we used K80 NVIDIA GPUs and executed the training

only until the 10th epoch with batch size 100. The accuracy reported is the geometric

mean of each generated model trained four times. We generated 64 models per tested

configuration. The best value is the best average of all iterations, and the average is the

average of all iterations.
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6.4 Experimental Results

Next, we tested how the strategy presented can use information about the scalability

and performance of the MLCN models to build new ones that fit the hardware. With

the ability to generate random models, we can search for good models that achieve good

accuracy for CIFAR-10 while fitting systems with multiples NVIDIA K80. The algorithm

behaved well by creating models that never exceed the GPU memory limits and have a

very well-fitted load balance. Given this search with the ability to generate models with

the presented characteristics, we explored how increasing the memory limit, computational

power limit, and the number of hardware substrates would affect the average and best

model found by executing the random search for 64 iterations, ten epochs per model and

batch size equal to 100. Our experiments indicate that these parameter values obtain

the best accuracy performance for most of the models. The hyperparameter search could

be done for each model generated, but it would require much more execution time to

the search. From the plot from Figure 6.2, we can observe how accuracy increases when

we allow the use of more computational power. We started by using the amount of

computation from a baseline model with four lanes, width two, and depth 4. When we

generate other models with a similar number of FLOPS, we end up with the average, and

the best result is presented as “1x”. Following, we allowed the creation of models 2-fold

more computationally intensive, then 4- and 8-fold. We can see that the model’s average

and best accuracy found by the random search increases for larger networks but with a

tendency to slow after some point. Similar to what we mentioned earlier: for a given

dataset and number of epochs, there seems to be an ideal network size that achieves the

best performance.
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Figure 6.2: Average and best model’s accuracy for 30 random generated models for each
max FLOPS limit: 1x, 2x, 4x, and 8x. 1x starts with a previously given baseline size.
All experiments were executed allowing the use of up to 12GB of memory and 8 buckets
(GPUs).
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We then repeated the experiment with a fixed maximum FLOPS in 8x the baseline

but varying the memory limit. As both FLOPS and memory consumption are tightly

connected, we see a similar behavior: an increase, until a point, of the accuracy as we

increase the amount of memory allowed to the networks. This result is presented in Figure

6.3.
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Figure 6.3: Average and best model’s accuracy for 30 random generated models for each
memory limit: 2GB, 4GB, 8GB, and 12GB. All experiments were executed allowing the
use of up to 8x FLOPS baseline and 8 buckets (GPUs).

The same behavior appears, Figure 6.4 when we fix the amount of memory and max-

imum FLOPS but increase the number of available buckets (the hardware devices capa-

bilities representation).
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Figure 6.4: Average and best model’s accuracy for 30 random generated models using 4,
8, 16, and 32 K80 GPUs. All experiments were executed allowing the use of up to 8x
FLOPS baseline and 12GB of memory.
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One interesting fact is that by using our random search, we were able to generate

models that used the hardware’s resources efficiently and that the best found model had an

18.6% better accuracy than we had previously achieved. So, the results provide evidence

that this NAS approach is useful to search for better MLCN models while creating load-

balanced well-fitted models. In Figure 6.5, we show an example of the best-so-far accuracy

result per iteration in the execution of the random search. In this execution, the average

model accuracy was 62.0%. It took only eight iterations to find a significantly better than

the average model.
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Figure 6.5: Best model’s accuracy found by Random Search throughout its iterations for
4x FLOPS experiment.

6.5 Summary and Considerations

We presented in this chapter the idea of personalizing the MLCN hyperparameters, such

as the number of lanes with a Neural Architecture Search that is aware of the hardware in

each network that is going to be executed. For that, more than knowing the performance

of the network, we have to understand the memory usage of the network in such a way

that we can create a network that fits the hardware and that easily balances the load on

them.

In our experiments with CIFAR-10, the NAS approach led to networks with 18.6%

better accuracy for a set of hardware. It took eight iterations to find a better accuracy

than the original. The network created was naturally balanced to the hardware, thus

having good execution efficiency.
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Chapter 7

Conclusions

In 2017, Hilton and his team proposed the Capsule Network [1]. The goal was to mimic the

human brain’s biology and capabilities, using vectors instead of scalars, avoiding pooling

operations and still addressing the Picasso problem. The capsules in the network agree

(routing algorithm) to form the capsule of the next layer.

In this work, we proposed an improvement to the original Capsule Network facing

one of its main challenges: low execution speed. We made the last capsule to have each

of its dimensions (that should be learning different features) in data-independent Neural

Networks that can be easily parallelizable—creating what we call Lanes in a Multi-Lane

Capsule Network (MLCN).

Lanes are a kind of independent Neural Network that can be constructed in many

ways, varying their deepness, width, type of convolutions, among other things. We tested

varying its convolution types, width, height, among other characteristics. For instance,

we showed that when showing different convolutions types (mlcn1 and mlcn2), we could

achieve very different accuracy performances. Mlcn2, the best configuration found for

Fashion-MNIST and CIFAR-10, achieved 75.18% accuracy on CIFAR-10 vs. 66.36% for

the original CapsNet and 92.63% accuracy on Fashion-MNIST vs. 91.30% for the original

CapsNet. Furthermore, given that the lanes are data-independent, single GPUs could

execute it faster—17% training speedup for CIFAR-10 and 130% for Fashion-MNIST.

In the computational efficiency usage point-of-view, more computation with less data

dependence is better. However, we saw that increasing the number of dimensions of the

lanes has a limit that seems to be related to the size and complexity of the dataset. So,

the parallelism and computational gains can be limited by the dataset.

For CIFAR-10 and Fashion-MNIST, we manage to show that we can use model par-

allelism with the lanes to achieve better performances and scale to the use of multiple

hardware substrates during training. In the end, MLCN was able to achieve almost 7.2×

faster training times when using 8 NVIDIA K80 than the original Capsule Network in a

single GPU.

The parallelism of the lanes can be easily explored when the lanes are equal or when the

hardware substrates are equal. However, in our experiments, we noticed that using lanes

with different configurations could lead to better accuracy performance. To schedule now,

this different lanes with different computational requirements into the hardware becomes

a different problem. To face that, we model the scheduling problem as a numerical set
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partition problem; we showed that a greedy approach could surpass a random or naïve

approach by 2× when training with 24 lanes in 4× GPUs.

Moreover, lanes can be different in an MLCN model, and the hardware in each of the

lanes that are going to be executed can also be diverse. Thus, one next problem that we

explore is if we can we create a model (such as in a Neural Architectural Search) that

fits a given set of hardware available so we use it at its maximum power and efficiently

while maximizing its accuracy. For that, we presented the idea of personalizing the

MLCN hyperparameters using a Neural Architecture Search aware of the hardware in

each network that is going to be executed. For that, more than knowing the performance

of the network, we have to understand the memory usage of the network in such a way

that we can create a network that fits the hardware and that easily balances the load on

them.

The NAS approach led to networks with 18.6% better accuracy for a set of hardware.

It took eight iterations to find a better accuracy than the original. The network created

was naturally balanced to the hardware, thus having good execution efficiency.

Our improvements to the CapsNet work and the exploration of its parallelization

opened the opportunity to explore Capsule Networks to larger datasets. Since its first

publication, different improvements to the MLCN were proposed in the literature, and

MLCN was already used in many different contexts and problems.

More than improving the Capsule Network, this dissertation brings to attention the

fact that Neural Network design could benefit from the awareness of its execution perfor-

mance and parallelism. In a world with huge networks becoming natural, it is necessary

that not only high-performance computing or compiler specialists improve the perfor-

mance of the networks but also the AI specialists that are first creating them.

7.1 Challenges

In the year that this work had started to be developed (2019), CapsNet had almost no

open-source good implementation. Frameworks such as Tensorflow were changing rapidly,

making the configuration and reproduction of scripts and experiments hard to follow. A

huge amount of tensor compilers and frameworks were surging, such as TVM, XLA,

Glow, among others. Many with a low amount of documentation, mainly when related

to parallelism.

Doing experiments with multiple GPUs as expensive as V100 and others used in

this dissertation was also a huge challenge. More than 5 thousand Euros were used to

run experiments on the Google Cloud. These were covered by a Google Cloud Grant.

However, if we wanted to repeat or do the experiments proposed here for larger datasets

with larger size images, the cost would become unfeasible for academic proposes. The

need for cheaper and faster implementation is need not only to save money and time but

also to help democratize these huge network access.
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7.2 Future Work

Explore transforming others DL models in a more data-independent organi-

zation: we showed in this work that CapsNet can be reorganized in such a way that it

allows a better exploration of execution parallelism. However, this could be extended to

other Neural Networks types and architectures. For example, even NAS could be used

to explore different data-flow graphs or different Neural Network models, having as an

optimization metric the data independence of the network.

Explore CapsNet with larger datasets using multiple hardware substrates:

giving that we present ways to accelerate CapsNet and execute it with larger datasets, it

becomes now feasible to explore CapsNet with more complex and large datasets.

Explore others parallelization manners: we explore using data and model paral-

lelism independently. But many others techniques could be applied, and even it could be

treated as an optimization problem where we try to find the best parallelism scheme for

an MLCN set of lanes.

Optimize MLCN for cloud computing: with the increasing popularity of cloud

computing, it would be interesting to explore it with MLCN. One example would be to

search for the best cloud machine configuration to train an MLCN model. Having in mind

that different machines could be used at the same time, splitting the lanes through those

machines.
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This appendix presents a list of journal and conference articles published during this

Ph.D. research.

Publications which resulted from this project:

1. The Multi-Lane Capsule Network (MLCN). Rosario VM, Borin E, Breternitz M.

IEEE Signal processing letters. 2019 May 8;26(7):1006-10.

2. Efficiency and scalability of multi-lane capsule networks (MLCN). Rosario VM,

Breternitz Jr M, Borin E. 31st International Symposium on Computer Architecture

and High Performance Computing (SBAC-PAD’19), 2019.

3. Efficiency and scalability of multi-lane capsule networks (MLCN). Rosario VM,

Breternitz Jr M, Borin E. Journal of Parallel and Distributed Computing. 2021 Sep

1;155:63-73. This paper was an extension from a paper publish and presented at

SBAC-PAD 2019 with new contributions.

Publications which resulted from previous studies and from the collaboration with

other students and researchers as a part of their work:

1. Beyond the fog: Bringing cross-platform code execution to constrained iot devices.

Pisani F, Brunetta JR, Rosario VM, Borin E. In 2017 29th International Sympo-

sium on Computer Architecture and High Performance Computing (SBAC-PAD)

2017 Oct 17 (pp. 17-24). IEEE.

2. Uma Análise da Facilidade de Emulação de Binários RISC-V. Lupori L, Rosario

VM, Borin E. In Anais da IX Escola Regional de Alto Desempenho de São Paulo

2018 Apr 13 (pp. 77-80). SBC.

3. Fog-assisted translation: towards efficient software emulation on heterogeneous IoT

devices. Rosario VM, Pisani F, Gomes AR, Borin E. In2018 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW) 2018 May

21 (pp. 1268-1277). IEEE.

4. A Methodology for Optimization of Interpreters. Rosario VM, Hato MM, Azevedo

R, Borin E. In2018 Symposium on High Performance Computing Systems (WSCAD)

2018 Oct 1 (pp. 205-212). IEEE.

5. Evaluation and Mitigation of Timing Side-Channel Leakages on Multiple-Target

Dynamic Binary Translators. Napoli OO, Rosario VM, Aranha DF, Borin E.

InHigh Performance Computing Systems: 19th Symposium, WSCAD 2018, São

Paulo, Brazil, October 1–3, 2018, Revised Selected Papers 2020 Feb 13 (Vol. 1171,

p. 152). Springer Nature

6. Towards a high-performance RISC-V emulator. Lupori L, Rosario VM, Borin E.

In2018 Symposium on High Performance Computing Systems (WSCAD) 2018 Oct

1 (pp. 213-220). IEEE.
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7. Fog vs. cloud computing: should i stay or should i go?. Pisani F, Rosario VM,

Borin E. Future Internet. 2019 Feb;11(2):34.

8. Smart selection of optimizations in dynamic compilers. Rosario VM, Faustino da

Silva A, Aparecida Silva Camacho T, Napoli OO, Breternitz M, Borin E. Concur-

rency and Computation: Practice and Experience. 2020:e6089.

9. Fast and Low-cost Search for Efficient Cloud Configurations for HPC Workloads.

Rosario VM, Camacho TA, Napoli OO, Borin E. arXiv preprint arXiv:2006.15481.

2021. Under Review.

10. Accelerating Multi-attribute Unsupervised Seismic Facies Analysis With RAPIDS.

Napoli OO, Rosario VM, Navarro JP, Borin E. European Association of Geosci-

entists and Engineers, 2021.

11. Employing Simulation to Facilitate the Design of Dynamic Code Generators. Rosario

VM, Zinsly R, Rigo S, Borin E. 33rd International Symposium on Computer Ar-

chitecture and High Performance Computing (SBAC-PAD’21), 2021.

12. Predição de Desempenho com Graph Neural Networks. Rosario VM, Zanella AF,

da Silva A, Borin E. InAnais do XXI Simpósio em Sistemas Computacionais de Alto

Desempenho 2020 Oct 21 (pp. 1-12). SBC.

13. New Optimization Sequences for Code-Size Reduction for the LLVM Compilation

Infrastructure. da Silva, A.F., Borin, E., Pereira, F.M.Q., Nápoli, O. O., and

Rosario, VM. 25th Brazilian Symposium on Programming Languages (SBLP),

2021.

List of projects and other relevant aspects of the Ph.D.:

1. (2017-2018) I had a scholarship from Samsung where I worked in the development

of static analysis in the Android JIT compiler to detect energy bugs.

2. (2018-2019) I earn a grant to study abroad from CAPES and stayed at INESC-

ID/IST in Lisbon under the supervision of Prof. Mauricio Breternitz.

3. (2019-2019) I did a Google Summer of Code internship working on the QEMU

virtual machine/emulator.

4. (2019-2019) I did an internship at Microsoft Research working with the Tensorflow

JIT compiler: XLA.

5. (2020-2020) I had a scholarship from Petrobras working with virtual machines re-

source exploration for high-performance application.

6. (2021-2021) I did and finish the 6 month DeepLearning.AI Deep Learning Special-

ization course.

7. (2020-current) I have been working at Cadence Design System as an AI Compiler

Engineer developing a deep learn compiler for the Tensilica deep learn accelerators.
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You can access the Multi-Lane CapsNetwork source coda at https://github.com/lmcad-

unicamp/lanes-capsnet

This MLCN implementation used the @XifengGuo CapsNet Keras implementation

(https://github.com/XifengGuo/CapsNet-Keras) as its base. All source code is available

with the MIT license.

Some of the details of how to install and use it can be found in the CapsNet-Keras

project README. To support multi-lanes we introduced some new command line argu-

ments:

• –lane_size size of the lanes (an integer that should be greater or equal to one)

• –lane_type type of the lanes (1 to mlcn1 and 2 for mlcn2)

• –num_lanes number of lanes (an integer that should be greater or equal to 2)

• –dataset mnist or cifar10 dataset

• –dropout percentage of lanes being dropped out per batch
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