
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Lucas Pansani Ramos

Draft genomes comparison with succinct

de Bruijn graphs

Comparação de genomas incompletos usando grafos de

de Bruijn sucintos

CAMPINAS

2022

Lucas Pansani Ramos

Draft genomes comparison with succinct de Bruijn graphs

Comparação de genomas incompletos usando grafos de de Bruijn

sucintos

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Guilherme Pimentel Telles
Co-supervisor/Coorientador: Prof. Dr. Felipe Alves da Louza

Este exemplar corresponde à versão final da
Dissertação defendida por Lucas Pansani
Ramos e orientada pelo Prof. Dr.
Guilherme Pimentel Telles.

CAMPINAS

2022

Ficha catalográfica

Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica

Ana Regina Machado - CRB 8/5467

 Ramos, Lucas Pansani, 1998-

 R147d RamDraft genomes comparison with succinct de Bruijn graphs / Lucas Pansani

Ramos. – Campinas, SP : [s.n.], 2022.

 RamOrientador: Guilherme Pimentel Telles.

 RamCoorientador: Felipe Alves da Louza.

 RamDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Ram1. Comparação de genomas. 2. Grafos de De Bruijn. 3. Filogenia. 4.

Biologia computacional. I. Telles, Guilherme Pimentel, 1972-. II. Louza, Felipe

Alves da, 1988-. III. Universidade Estadual de Campinas. Instituto de

Computação. IV. Título.

Informações para Biblioteca Digital

Título em outro idioma: Comparação de genomas incompletos usando grafos de de Bruijn

sucintos

Palavras-chave em inglês:
Genome comparison

De Bruijn graphs

Phylogeny

Computational biology

Área de concentração: Ciência da Computação

Titulação: Mestre em Ciência da Computação

Banca examinadora:
Guilherme Pimentel Telles [Orientador]

João Meidanis

Marinella Sciortino

Data de defesa: 05-07-2022

Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-3699-2991

- Currículo Lattes do autor: http://lattes.cnpq.br/9921311673646745

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Lucas Pansani Ramos

Draft genomes comparison with succinct de Bruijn graphs

Comparação de genomas incompletos usando grafos de de Bruijn

sucintos

Banca Examinadora:

• Profa. Dra. Marinella Sciortino
Dipartimento di Matematica e Informatica - UNIPA

• Prof. Dr. João Meidanis
Instituto de Computação - Unicamp

• Prof. Dr. Guilherme Pimentel Telles
Instituto de Computação - Unicamp

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 05 de julho de 2022

Acknowledgements

First of all, I would like to thank my advisors Guilherme Telles and Felipe Louza for the
support, many teachings and friendship in the past two years. I really hope to work with
you again in the future.

Second, thanks to my family and friends who never doubted my potential and were
always very supportive when I needed.

Finally, I thank Prof. Nalvo Almeida for granting access to the machine used for the
experiments and also, the internet, which made this graduation possible in these difficult
times. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior - Brasil (CAPES) - Finance Code 001.

Resumo

As melhorias contínuas em tecnologias de sequenciamento de DNA aumentaram a dis-
ponibilidade de genomas sequenciados. No entanto, devido às dificuldades para montar
completamente um genoma, obtendo uma única cadeia para cada cromossomo, muitos
genomas têm montagens incompletas (draft), em que cada cromossomo é representado
por um conjunto de cadeias com informação parcial sobre a ordem relativa entre elas.
Abordagens livres de alinhamento foram propostas recentemente para construir filogenias
a partir da comparação de montagens draft de genomas, extraindo caminhos em grafos de
de Bruijn. Neste trabalho investigamos métodos eficientes para comparar genomas incom-
pletos por meio da comparação direta de grafos de de Bruijn coloridos representados de
maneira sucinta usando a representação BOSS utilizando medidas baseadas na distribui-
ção de similaridade de Burrows-Wheeler (BWSD). Nós propomos o algoritmo gcBB, este
recebe um conjunto de genomas (em que cada genoma é representado por um conjunto
de fragmentos) e sua saída são duas matrizes de distância derivadas da BWSD. Nós re-
alizamos experimentos com conjuntos de genomas de Drosophilas e Vibrios, comparando
as filogenias obtidas pelo gcBB com filogenias de referência.

Abstract

The continuous improvements in DNA sequencing technologies have increased the volume
of available genomic data. Nevertheless, due to the difficulties in assembling a complete
genome, obtaining a single sequence for each chromosome, many genomes are still incom-
plete (draft), in which each chromosome is represented as a set of sequences with partial
information on their relative order. Recent alignment-free approaches have been proposed
to construct phylogenies from the comparison between draft genomes, extracting paths
from a de Bruijn graph. In this work we investigated efficient methods for directly com-
paring the succinct BOSS representation of colored de Bruijn graphs through measures
based on the Burrows-Wheeler similarity distribution (BWSD). We propose the gcBB
algorithm that takes a set of genomes (where each genome is a set of reads) and outputs
matrices of distances derived from the BWSD. We performed experiments with sets of
Drosophila and Vibrio genomes, comparing phylogenies obtained with gcBB to reference
phylogenies.

List of Figures

2.1 Suffix array and LCP array for S = abracadabra$. Note that the list of
sorted suffixes shown in the last column is not part of the suffix array or
LCP array. 17

2.2 The left matrix shows all rotations of S, with rotated prefixes colored in
red. The right matrix shows the rotations in lexicographic order. Column
F has the symbols of S in lexicographic order, while column L corresponds
to BWT = ard$rcaaaabb. 18

2.3 Suffix array, BWT and LCP array for S = abracadabra$. 19
2.4 Suffix array, the document array and the BWT of S = {abra, cadabra}

which is aarr$2dcaa$1abb. 21

3.1 The de novo genome assembly pipelines. Figure from [2]. 25
3.2 A de Bruijn graph for S = {$$$TACACT, $$$TACTCA, $$$GACTGC} and

k = 3. Starting at node $$$ and walking through the edges labelled with
T,A,C,A,C,T successively, we obtain the first string of the collection. . . . 26

3.3 (a) de Bruijn graph for S1 = {$$$TACACT, $$$TACTCA}. (b) de Bruijn graph
for S2 = {$$$GACTCG}. (c) Colored de Bruijn graph for {S1,S2}, where red
edges are from S1 and blue edges are from S2. We remark that only {S1,S2}
has colored edges, whereas S1 and S2 edges are colored for example purposes. 26

3.4 All possible k-mers obtained from distinct (k + 1)-mers of S =
{$$$TACACT, $$$TACTCA, $$$GACTCG}. 27

3.5 The left matrix shows all possible k-mers of S. The right matrix shows the
same k-mers sorted in co-lexicographic order. 27

3.6 The Node matrix and the string W for collection S =
{$$$TACACT, $$$TACTCA, $$$GACTCG}. Note that repeated k-mers cor-
respond to a k-mer that has more than one outgoing edge in the graph.
For example, vertex TAC is a k-mer obtained from the following k-mers:
TACA and TACT. 28

3.7 (a) BOSS representation for S = {$$$TACACT, $$$TACTCA, $$$GACTCG} aug-
mented with the Node matrix and with edges of the de Bruijn graph; (b)
de Bruijn graph representing S. Edges with the same color have the same
symbol and edges colored black represent edges where W−[i] = 0, that is,
there is already one or more edge W [j], such that j < i, mapped to the
same vertex to which W [i] is mapped. 29

3.8 Outdegree operation for ←−v = TAC. The red arrow indicates the select query. 31
3.9 Outgoing operation for ←−v = TAC and c = A. The red arrow indicates the

mapping between W ′ and the Node. 32
3.10 Outgoing operation for ←−v = TAC and c = T. The red arrows indicate the

search for c from c′ and its mapping between W ′ and the Node. 33

3.11 Indegree operation for←−v = ACT. The red arrows indicate the rank queries
over W ′. 34

3.12 Incoming operation for every edge arriving at the Node with ←−v = ACT.
The red arrows indicate the mappings between W ′ and Node. 35

3.13 Radix co-lexographic sorting of the k-mers of S. 36
3.14 Radix sort on the last symbol of the (k+1)-mers followed by the extraction

of the (k + 1)-mer last column to obtain Node matrix and W string. 36
3.15 BOSS construction using radix for S =

{$$$TACACT, $$$TACTCA, $$$GACTCG} and k = 3. 38
3.16 eGap output for collection S = {$$$TACACT, $$$TACTCA, $$$GACTCG}, hav-

ing BWT, LCP, contexts and truncated contexts respectively. 39
3.17 BOSS construction using the BWT and LCP in (k − 1)-lcp-interval equal

to AC. 42
3.18 BOSS representations for collection S =

{$$$TACACT, $$$TACTCA, $$$GACTCG}. 43
3.19 An example of a bubble in a Colored de Bruijn Graph, from [25]. 43
3.20 Multiple sequence alignment of bubbles and phylogenetic tree reconstruc-

tion example, from [25]. 44

4.1 The BWT, LCP and CL arrays output by eGap for genomes (a) S1, (b) S2. 47
4.2 Merged BWT, LCP, CL arrays, the DA, and contexts for S1,S2. We remark

that the context column is not produced by eGap. 47
4.3 S1S2 merge colored BOSS representation with k = 3. 48
4.4 Colored BOSS representation with k = 3 having only edges with CL[i] ≥

k + 1 for {S1,S2}. 51
4.5 Colored BOSS representation with k = 3 having only edges with CL[i] ≥

k+1 for {Sc

1
,Sc

2
}. Note that the (k+1)-mer ACTC increased in the last two

rows because this (k + 1)-mer was found 3 times in the first genome and 2
times in the second genome. 54

5.1 The phylogeny of 12 Drosophilas. Figure from [16]. 59
5.2 The phylogeny of 12 Drosophilas using k = 17. Figure from [25]. 59
5.3 The phylogeny of 15 Drosophilas. Figure from [29]. 60
5.4 The phylogeny of 15 Drosophilas using k = 15. Figure [31]. 60
5.5 Drosophila phylogeny with groups and subgroups divisions, from [7] 62
5.6 gcBB phylogenies for Drosophilas with k = 15, (a) using entropy, (b) using

expectation. 63
5.7 gcBB phylogenies for Drosophilas with k = 15 and coverage information,

(a) using entropy, (b) using expectation. 64
5.8 gcBB phylogenies for Drosophilas with k = 31, (a) using entropy, (b) using

expectation. 65
5.9 gcBB phylogenies for Drosophilas with k = 64, (a) using entropy, (b) using

expectation. 65
5.10 gcBB phylogenies for Drosophilas with D. grimshawi with k = 15 and

coverage information, (a) using entropy, (b) using expectation. 67
5.11 Phylogenetic tree for supertree and Neighbour-Joining. Figure from [39]. . 68
5.12 gcBB phylogenies for Vibrios with k = 15 and coverage information, (a)

using entropy, (b) using expectation. 70

5.13 gcBB phylogenies for Vibrios with k = 31 and coverage information, (a)
using entropy, (b) using expectation. 70

A.1 gcBB phylogenies for Drosophilas with k = 31 and coverage information,
(a) using entropy, (b) using expectation. 76

A.2 gcBB phylogenies for Drosophilas with k = 63 and coverage information,
(a) using entropy, (b) using expectation. 77

A.3 gcBB phylogenies for Drosophilas with distinct D. grimshawi with k = 15,
(a) using entropy, (b) using expectation. 77

A.4 gcBB phylogenies for Drosophilas with distinct D. grimshawi with k = 31,
(a) using entropy, (b) using expectation. 78

B.1 gcBB phylogenies for Vibrios with k = 15, (a) using entropy, (b) using
expectation. 79

B.2 gcBB phylogenies for Vibrios with k = 31, (a) using entropy, (b) using
expectation. 80

B.3 gcBB phylogenies for Vibrios with k = 63, (a) using entropy, (b) using
expectation. 80

B.4 gcBB phylogenies for Vibrios with k = 63 and coverage information, (a)
using entropy, (b) using expectation. 81

List of Tables

5.1 Information on the genomes of Drosophilas. The bases column specifies the
number of sequenced bases of the genome (in Gbp). The reference column
specifies the size of the complete referenced genome (in Mb). All genomes
can be easily accessed through its Run accession number or BioSample in
https://www.ncbi.nlm.nih.gov/genbank/. 61

5.2 Construction information on data structures for the Drosophilas genomes. . 62
5.3 Robinson-Foulds distance computed between phylogenies constructed by

gcBB and the reference phylogeny. The symbol c represents the phylogenies
constructed using coverage information. 66

5.4 Information on the genome of D. grimshawi. The bases column specifies the
number of sequenced bases of the genome (in Gbp). The reference column
specifies the size of the complete referenced genome (in Mb). All genomes
can be easily accessed through its Run accession number or BioSample in
https://www.ncbi.nlm.nih.gov/genbank/. 66

5.5 Construction information for D. grimshawi. 66
5.6 Robinson-Foulds distance computed between phylogenies with D.

grimshawi from another experiment and the reference phylogeny. The sym-
bol c represents the phylogenies constructed using coverage information. . . 67

5.7 Information on the genomes of Vibrios. The bases column specifies the
number of sequenced bases of the genome (in Mbp). The reference column
specifies the size of the complete referenced genome (in Mb). Reads column
specifies the average length of the reads. All genomes can be easily accessed
through its Run accession number or BioSample in https://www.ncbi.

nlm.nih.gov/genbank/. 68
5.8 Construction information on data structures for the Vibrios genomes. . . . 69
5.9 Robinson-Foulds distance computed between the phylogenies for Vibrios

constructed by gcBB and the reference phylogeny. The symbol c represents
the phylogenies constructed using coverage information. 69

Contents

1 Introduction 14
1.1 Organization . 15

2 Background 16
2.1 Terminology and Definitions . 16
2.2 Data Structures . 17

2.2.1 Suffix Array . 17
2.2.2 LCP Array . 17
2.2.3 Burrows-Wheeler Transform . 17
2.2.4 FM-index . 19
2.2.5 String collections . 20

2.3 Burrows-Wheeler Similarity Distribution 21

3 Genome Comparison 24
3.1 Genome assembly . 24
3.2 de Bruijn graphs . 24

3.2.1 Colored de Bruijn graphs . 25
3.2.2 BOSS representation . 27
3.2.3 BOSS operations . 30
3.2.4 BOSS construction . 35

3.3 Genome comparison with de Bruijn graphs 41
3.3.1 Lyman et al. 41
3.3.2 Polevikov and Kolmogorov . 42

4 gcBB Algorithm 45
4.1 Genome comparison via BWSD . 45
4.2 Algorithm . 45

4.2.1 Phase 1 . 46
4.2.2 Phase 2 . 46
4.2.3 Phase 3 . 49

4.3 Time and space analysis . 55

5 Experiments 58
5.1 Drosophilas . 58

5.1.1 Dataset . 61
5.1.2 Running time . 61
5.1.3 Phylogenetic trees . 62
5.1.4 Effect of data size . 65

5.2 Vibrios . 67

6 Conclusions 71

Bibliography 72

A Drosophilas 76
A.1 Additional phylogenies for 12 Drosophilas 76

B Vibrios 79
B.1 Additional phylogenies for 6 Vibrios . 79

14

Chapter 1

Introduction

String comparison is an important task in Computer Science, being used in everyday text

processing in editors like Emacs and Vim and in more involving tasks, for example, in WEB

search engines, in the consolidation of non-structured databases, in plagiarism detection,

in biological sequence comparisons and in the analysis of software variants.

We are often interested in computing some sort of similarity measure between strings.

There exist many similarity measures for strings, which are computed in different forms,

for example, as distance among vector representation of strings, as statistics calculated on

groups of symbol co-occurrences, as edit distance, as alignment score, as substring tiling

and others [37, 1].

The idea of comparing strings using compression-based measures such as the NCD [6]

originates from the works of Kolmogorov and Chaitin on minimum algorithmic descrip-

tions of strings. Similarity measures based on the Burrows-Wheeler Transform (BWT) [5],

as the eBWT-based distances [28] and the Burrows-Wheeler Similarity Distribution

(BWSD) [41], are particularly attractive because the BWT provides a self-index and

can be computed in linear time on the string length.

In Bioinformatics, the standard form of calculating similarity between biological se-

quences is through alignments. Alignments, when used with amino acids and nucleotides

evolution models, provide a similarity measure that reflects the evolutionary distance be-

tween molecules. The huge amount of currently available data and the quadratic cost

of the algorithms to calculate alignments between strings (O(nm) time for two strings

of lengths n and m) triggered the development of faster alternatives such as heuristics,

parallel algorithms and other distance measures, including alignment-free strategies [26].

In the process of sequencing a genome, a large amount of short strings (reads) from

random fragments of the DNA is obtained and then assembled based on overlaps among

the reads. The coverage information, that is, the number of times each DNA letter was

read, can improve the ability of genome assembling software to handle ambiguities during

the assembly process, either due to sequencing errors or due to repeated genomic regions.

Representing the set of strings as a graph is an early stage of the genome assembly process,

and a series of algorithms then extracts paths and connectivity information from the graph

to obtain a tentative sequence or arrangement of sequences of the whole genome.

Many assemblers are based on the de Bruijn graph (e.g. [22, 21, 38]), that may be

stored succinctly in the BOSS representation [4], which is based on the BWT. Colors may

15

be added to the edges of a de Bruijn graph, enabling them to represent a set of strings

from distinct genomes.

Improvements in DNA sequencing technology have increased the throughput and re-

duced its cost. However, completely assembling a genome is a difficult task and many

sequenced genomes are in a draft state, that is, a set of strings (contigs) that may be

partially ordered (scaffolds) instead of a single string for each chromosome. Recent ap-

proaches have been proposed to compare de Bruijn graphs of draft genomes [25, 31].

The goal of this work was to investigate a space-efficient method for comparing draft

genomes. More specifically, we introduce the gcBB, a space-efficient algorithm to compare

genomes using the BOSS representation and the BWSD. Given a set of genomes, we

represent each pair of genomes as a colored graph using the BOSS representation, where

each edge is associated with a color corresponding to the genome it came from. On the

colored de Bruijn graph, we use the BWSD to measure the similarity and compare the

genomes. We are interested in the similarity based on the BOSS graph representations of

the genomes.

Our measures were assessed comparing the genomes of 12 Drosophila species, obtained

from FlyBase [40]. We also tested our algorithm with the genomes of Vibrio bacteria [39].

With these set of genomes we compared our method with the recent works presented by

Lyman et al. [25] and Polevikov and Kolmogorov [31]. These comparisons had the aim of

reconstructing a phylogenetic tree using the distance matrices produced by our algorithm

and comparing them to referenced trees.

1.1 Organization

This dissertation is organized as follows. In Chapter 2, we define the data structures

needed for completely understanding this work. In Chapter 3 we present the genome as-

sembly process and the de Bruijn graph representation of genomes. Also, we introduce the

BOSS representation and the related works. Chapter 4 presents the problem formulation

and the solution proposed using our Space-Efficient Genome Comparison using the BOSS

representation and the BWSD similarity measure algorithm (gcBB). The experiments are

presented in Chapter 5. Finally, Chapter 6 concludes the work and provides possible

future research problems.

16

Chapter 2

Background

This chapter presents the terminology and definitions that will be used throughout the

text.

2.1 Terminology and Definitions

A string is the juxtaposition of symbols from an alphabet. We denote an ordered and

finite alphabet by Σ, its size by σ and the set of all strings over Σ by Σ∗. The length of

a string is the number of symbols in it. Let S be a string of length n in Σ∗. We index its

symbols from 1 to n. A substring of S is S[i, j] = S[i] . . . S[j], with 1 f i f j f n. The

substring S[1, i] is referred to as a prefix of S and S[i, n] is referred to as a suffix of S.

The i-th circular rotation (or conjugate or simply rotation) of a string S is the string

S[i + 1] . . . S[n]S[1] . . . S[i]. Clearly when i = 0 we have the original string. A string of

length n has n possible rotations. We say that S is repetitive if there exists a string w

and an integer k > 1 such that S = wk = ww . . . w
︸ ︷︷ ︸

k

, otherwise S is primitive. If a string

is primitive, all of its rotations are pairwise distinct.

For clarity of definitions and operations on the data structures it is convenient to use

a special marker symbol $ in the end of S. This symbol does not occur elsewhere in S

and is the smallest symbol in Σ. Therefore, S is always primitive.

Let c represent a symbol of the alphabet and let S be a string of length n. We define

rankc(S, i) as the number of occurrences of symbol c in S[1, i]. We define selectc(S, i) as

the position of the i-th symbol c in S, provided that if such symbol does not exist then

selectc(S, i) is equal to n+ 1.

We refer to string of interest to be found in another given string as a pattern. A text

index is a data structure built over a string that enables efficient searches for patterns in

the string [12].

17

2.2 Data Structures

2.2.1 Suffix Array

The suffix array [27] of a string S of length n is the integer array SA containing a per-

mutation of values in [1, n] that gives the lexicographic order of all suffixes of S, that

is,

S[SA[1], n] < S[SA[2], n] < . . . < S[SA[n], n]

For example, the suffix array of string S = abracadabra$ is shown in Table 2.1.

All the occurrences of a pattern P [1,m] in the string S can be found in O(m log n)

time by performing a binary search on SA[1, n].

The suffix array can be computed in linear time using O(σ log n) bits of working

space [30], which is optimal for alphabets of constant size σ = O(1).

2.2.2 LCP Array

By lcp(S1, S2) we denote the length of the longest common prefix of two strings S1 and S2

in Σ∗. The LCP array of a string S of length n is the array of integers LCP containing

the lcp of consecutive suffixes in the suffix array, that is,

LCP[i] =

{

lcp(S[SA[i], n], S[SA[i− 1], n]) if 1 < i f n

0 if i = 1
(2.1)

For example, the LCP array of string S = abracadabra$ is shown in Figure 2.1.

i SA LCP S[SA[i], n]
1 12 0 $
2 11 0 a$
3 8 1 abra$
4 1 4 abracadabra$
5 4 1 acadabra$
6 6 1 adabra$
7 9 0 bra$
8 2 3 bracadabra$
9 5 0 cadabra$

10 7 0 dabra$
11 10 0 ra$
12 3 2 racadabra$

Figure 2.1: Suffix array and LCP array for S = abracadabra$. Note that the list of sorted
suffixes shown in the last column is not part of the suffix array or LCP array.

2.2.3 Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) [5] of a string S is a reversible transformation of

S that permutes its symbols. The resulting string, denoted by BWT, often allows better

18

compression because equal symbols tend to be clustered in the BWT.

The BWT is defined as the sequence of symbols in S that precede the rotations of S

in lexicographic order. We can obtain BWT by sorting all n rotations of S in a matrix

M, and taking the last column, called L, as BWT. We also call the first column of M

by F . This method is illustrated in Figure 2.2 for S = abracadabra$.

rotations
abracadabra$
bracadabra$a
racadabra$ab
acadabra$abr
cadabra$abra
adabra$abrac
dabra$abraca
abra$abracad
bra$abracada
ra$abracadab
a$abracadabr
$abracadabra

sorting
−−−−−−→

F L

$abracadabra
a$abracadabr
abra$abracad
abracadabra$
acadabra$abr
adabra$abrac
bra$abracada
bracadabra$a
cadabra$abra
dabra$abraca
ra$abracadab
racadabra$ab

M

Figure 2.2: The left matrix shows all rotations of S, with rotated prefixes colored in red.
The right matrix shows the rotations in lexicographic order. Column F has the symbols
of S in lexicographic order, while column L corresponds to BWT = ard$rcaaaabb.

We observe that sorting the rotations is equivalent to sorting the suffixes of S, since

S[n] = $ inhibits comparisons past the end of S. Hence, we can define the BWT in terms

of the suffix array as

BWT[i] =

{

S[SA[i]− 1] if SA[i] ̸= 1

$ otherwise
(2.2)

Figure 2.3 shows the suffix array and the BWT for S = abracadabra$. Note that the

last column of the table in Figure 2.3 contains the suffixes of S. Taking the first symbol

of each one of these suffixes we obtain a column that corresponds to column F ofM.

It is not obvious how to reconstruct the original string from the BWT. The key to

the reversibility is the following function.

Definition 2.2.1 (LF-mapping) Let LF : {1, . . . , n} → {1, . . . , n} be a function de-

fined as: if L[i] = c is the k-th occurrence of symbol c in column L, then LF (i) = j is the

position such that F [j] is the k-th occurrence of c in column F .

We define the counter array C as the integer array of size σ where C[c] stores the

number of symbols smaller than c in a string S, where c represents a symbol of the alpha-

bet. We can compute the LF-mapping of symbol c at position i in L to its corresponding

position in F as

LF (i) = C[c] + rankc(L, i)

19

i SA BWT LCP S[SA[i], n]
1 12 a 0 $
2 11 r 0 a$
3 8 d 1 abra$
4 1 $ 4 abracadabra$
5 4 r 1 acadabra$
6 6 c 1 adabra$
7 9 a 0 bra$
8 2 a 3 bracadabra$
9 5 a 0 cadabra$

10 7 a 0 dabra$
11 10 b 0 ra$
12 3 b 2 racadabra$

Figure 2.3: Suffix array, BWT and LCP array for S = abracadabra$.

Remember that L represents the BWT, therefore this equation can also be written as

LF (i) = C[c] + rankc(BWT, i)

The original string may be reconstructed backwards from the BWT starting with

S[n] = $, j = n − 1, i = 1, and repeatedly setting S[j] = BWT[i], i = LF (i), and

j = j − 1. This procedure is executed n− 1 times.

2.2.4 FM-index

The FM-index [13, 14] is a text index built on top of the BWT and on the backward search

algorithm. It can efficiently count and locate the occurrences of a pattern in the string S.

The main components of the FM-index are:

• the BWT and the backward search algorithm;

• the wavelet tree [15], which solves rankc(BWT, i) queries for any c ∈ Σ in O(log σ)

time; and

• the counter array C[1, σ].

The backward search algorithm, shown in Algorithm 1, finds a range of positions [s, e]

such that the symbols in BWT[s, e] precede the occurrences of a pattern P [1,m] in S[1, n].

In other words, exactly the rows s, s+1, . . . , e ofM start with the occurrences of P in S.

For example, suppose we are searching for P = bra in S = abracadabra$. Intuitively,

we first search for the range inM that contains rows (suffixes) starting with P [m,m] = a,

see Figure 2.2. With i = m and c = a we evaluate

s = C[a] + ranka(BWT, 1) = 1 + 1 = 2

e = C[a] + ranka(BWT, 12) = 1 + 5 = 6

Then, we have that rows in [2, 6] start with P [m] = a.

20

Algorithm 1: backward_search

Input: P [1,m]
Output: [s, e]

1 s = 1;
2 e = n;
3 i = m;
4 while i g 1 and s f e do
5 c = P [i];
6 s = C[c] + rankc(BWT, s);
7 e = C[c] + rankc(BWT, e);
8 i = i− 1;

9 end
10 return [s, e];

Next, we search for the range of rows starting with P [m− 1,m] = ra. We look for the

positions in [2, 6] that are preceded by c = r evaluating

s = C[r] + rankr(BWT, 2) = 10 + 1 = 11

e = C[r] + rankr(BWT, 6) = 10 + 2 = 12

Finally, we find the range of rows with prefix P [m − 2,m] = bra in M. Given the

range [11, 12], we look for the rows preceded by c = b evaluating

s = C[b] + rankb(BWT, 11) = 6 + 1 = 7

e = C[b] + rankb(BWT, 12) = 6 + 2 = 8

At the end, the resulting range [7, 8] indicates that P = bra occurs twice in S at rows

7 and 8 of matrixM. Note that these rows are equivalent to the suffixes starting in SA[7]

and SA[8]. Hence, we can use the suffix array to locate the occurrences of P in S.

Counting queries can be solved in O(m log σ) time, whereas all the occ occurrences of

P can be located in O(m log σ+ occ) time, using extra O(n log n) bits for the suffix array.

The total space required by the FM-index is O(n log σ) bits for the wavelet tree (which

encodes BWT), plus O(σ log n) bits for the counter array.

There exist alternatives to reduce the working space of the FM-index, for example

with the sampled suffix array (SSA) [14] at the cost of additional running time.

2.2.5 String collections

Let S = {S1, S2, . . . , Sd} be a collection of d strings of lengths n1, n2, . . . , nd. We define

Scat as the concatenation of all strings in S as

Scat = S1[1, n1 − 1]$1S2[1, n2 − 1]$2 · · ·Sd[1, nd − 1]$d

that is, each terminal symbol $ is replaced by a (separator) symbol $i, with $i < $j if and

only if i < j. The length of Scat is N =
∑d

i=1
ni.

21

We define the context of a suffix Scat[i, N] as the substring Scat[i, j] such that Scat[j]

is the first occurrence of some symbol $k in Scat[i, N].

The suffix array for a collection S is the suffix array SA[1, N] computed for Scat.

The document array is commonly used when indexing string collections. The doc-

ument array is an array of integers DA that stores which document each suffix in SA

“belongs” to. More formally, DA[i] = j if Scat[SA[i], N] has the context that ends with $j.

The BWT can also be constructed for string collections. The BWT for S can be

obtained in linear time from the SA of the concatenated string using the following gener-

alization of Equation 2.2 for Scat

BWT[i] =

{

Scat[SA[i]− 1] if SA[i] ̸= 1

$d otherwise
(2.3)

For example, given the strings S1 = abra and S2 = cadabra, Figure 2.4 shows the

arrays SA and DA, the BWT and the contexts of Scat.

i SA DA BWT context
1 5 1 a $1
2 13 2 a $2
3 4 1 r a$1
4 12 2 r a$2
5 1 1 $2 abra$1
6 9 2 d abra$2
7 7 2 c adabra$2
8 2 1 a bra$1
9 10 2 a bra$2

10 6 2 $1 cadabra$2
11 8 2 a dabra$2
12 3 1 b ra$1
13 11 2 b ra$2

Figure 2.4: Suffix array, the document array and the BWT of S = {abra, cadabra} which
is aarr$2dcaa$1abb.

In practice, when we have DA, the indexes k ∈ [1, d] of separator symbols BWT[i] = $k
can be recovered (circularly) from DA[i] and we can replace each $k by $ in BWT, which

fits in N log σ bits.

2.3 Burrows-Wheeler Similarity Distribution

The BWT of two strings {S1, S2} can be used to compute similarity measures between S1

and S2 based on the observation that the more the symbols of S1 and S2 are intermixed

in the BWT, the greater the number of substrings shared by them and the more similar

they are.

The Burrows-Wheeler similarity distribution (BWSD) between S1 and S2, denoted by

BWSD(S1, S2), is a probability mass function defined as follows [41].

22

Given BWT, we define a bitvector α of size n1 + n2 such that

α[p] =

{

0 if BWT[p] = $2 or BWT[p] ∈ S1

1 if BWT[p] = $1 or BWT[p] ∈ S2

(2.4)

The array α can be represented as a sequence of runs

r = 0k11k20k31k4 . . . 0km1km+1

where ikj means that i repeats kj times, and only k1 and km+1 may be zero. The largest

possible value for kj is kmax = max(n1, n2).

Let tn be the number of occurrences of value kj = n. Let s = t1+t2+. . .+tkj+. . .+tkmax
.

The BWSD(S1, S2) is the probability mass function

P{kj = k} = tk/s for k = 1, 2, . . . , kmax.

Given BWSD(S1, S2), the following similarity measures were defined between S1 and

S2.

Definition 2.3.1 DM(S1, S2) = E(kj) − 1, where E(kj) is the expectation of

BWSD(S1, S2).

Definition 2.3.2 DE(S1, S2) = −
∑

kg1,tk ̸=0
(tk/s) log2(tk/s) is the Shannon entropy of

BWSD(S1, S2).

Note that if S1 and S2 are equal, we have the α bitvector as

α = {0, 1, 0, 1, . . . , 0, 1}

and P{kj = 1} = n1+n2

n1+n2
= 1, DM(S1, S2) = 0 and DE(S1, S2) = 0.

Also, if the α obtained from BWT(S1, S2) is equal to the α obtained from BWT(S2, S1),

then both have the same BWSD and DE(S1, S2) = DE(S2, S1) and DM(S1, S2) =

DM(S2, S1).

For example, given the strings S1 = abra and S2 = cadabra, we have

BWT = aarr$2dcaa$1abb

α = {0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1}

r = 01110111011201130111

It follows that t1 = 8, t2 = 1, t3 = 1, t4, . . . , tkmax
= 0 and s = 10. The BWSD(S1, S2) is

P{kj = 1} = 8/10

P{kj = 2} = 1/10

P{kj = 3} = 1/10

23

Calculating the distances DM(S1, S2) and DE(S1, S2) we obtain

DM(S1, S2) = (1(8/10) + 2(1/10) + 3(1/10))− 1

= 1.3− 1

= 0.3

and

DE(S1, S2) = −(0.8 log2(0.8) + 0.1 log2(0.1) + 0.1 log2(0.1))

= −(−0.92193)

= 0.92183

The BWSD between all pairs of strings Si and Sj in S = {S1, S2, . . . , Sd} can be computed

in O(dN) time [24] given the BWT of Scat[1, N].

24

Chapter 3

Genome Comparison

3.1 Genome assembly

Genome assembly is the task of reconstructing the sequence of nucleotides that compose

molecules of DNA in the cell of an organism, using as input a set of short DNA sequences,

called reads, obtained from the sequencing process [18]. Most sequencing processes pro-

duce reads that cover each DNA molecule multiple times.

The coverage is the number of reads that include a given nucleotide in the recon-

structed sequence. The average coverage is typically between 30× and 100× in whole

genome sequencing projects. The coverage is used by genome assemblers to solve ambi-

guities during the reconstruction. Moreover, coverage is directly related to the existence

of repeated regions in the genome and to sequencing errors.

The de novo genome assembly process reconstructs a genome based exclusively on the

information in the set of reads. This process is required when there is no reference genome

to which reads may be mapped.

Given a set of reads, a genome assembly software joins the reads through the identifi-

cation of overlapping regions among them producing continuous sequences, called contigs.

These contigs, together with known gaps among them, may be linked into scaffolds, as

illustrated on Figure 3.1. Information regarding the number of reads that overlap may

also be used in the assembly process. Such reconstruction is challenging due to repetitive

sequences, polymorphisms in DNA sequences, lack of coverage and sequencing errors that

introduce ambiguities and limit the length of the contigs that assemblers can build [2].

Several approaches have been proposed to assembly genomes based on different as-

sembly graphs, such as overlap graphs [33], de Bruijn graphs [8], string graphs [38] and

repeat graphs [20]. These assembly graphs can be useful for gene discovery, structural

variation analysis, hybrid assembly and other applications [36].

3.2 de Bruijn graphs

A de Bruijn graph, is a directed graph that represents all possible strings of length k

(also known as k-mers) [8]. We remark that, given an alphabet with σ symbols, there are

σk distinct k-mers. The complete de Bruijn graph of order k of σ symbols is a directed

25

Figure 3.1: The de novo genome assembly pipelines. Figure from [2].

graph having a vertex for each k-mer. We denote the label associated to a vertex u by
−→u . There is an edge from u to v labelled −→v [k] if −→u [2][k] = −→v [1][k − 1]. The de Bruijn

graphs considered in this work are subgraphs of complete de Bruijn graphs.

Let S = {S1, S2, . . . , Sd} be a string collection. We concatenate k symbols $ at the

beginning of each string in S. We define a de Bruijn graph of order k of S as the de

Bruijn graph with one vertex for each k-mer of a string in S and an edge for each pair of

consecutive k-mers with an overlap of size k − 1 in the strings in S [4]. Since there are k

symbols $ at the start of each string in S, there will always be at least one directed path

of length k to each original vertex (vertices representing k-mers without the symbols $),

where the concatenation of edges in this path corresponds to the k-mer associated to the

final vertex of the path.

For example, given S = {$$$TACACT, $$$TACTCA, $$$GACTGC} and k = 3, Figure 3.2

illustrates a de Bruijn graph of order k for S. Starting at vertex $$$ it is possible to spell

all strings of S by traversing the graph concatenating the edge labels. Also, we remark

that it is not necessary to store the vertex labels. Since every vertex represents a unique

k-mer it is possible to recover the label of an original vertex u by walking backwards k

edges starting from u (in any direction).

3.2.1 Colored de Bruijn graphs

The colored de Bruijn graph (CdBG) [17] generalizes the original formulation of the de

Bruijn graph for a set of d string collections such that there exists a set C = {c1, c2, . . . , cd}

26

$$$ $$T

$TA

$$G $GA

ACA CAC TCG

TAC ACT CTC

GAC TCA

· · ·

CTC

A T

C

A

G

T

T

G

A

A C

Figure 3.2: A de Bruijn graph for S = {$$$TACACT, $$$TACTCA, $$$GACTGC} and k = 3.
Starting at node $$$ and walking through the edges labelled with T,A,C,A,C,T succes-
sively, we obtain the first string of the collection.

of d colors and all edges that were added by strings in collection i are colored with ci.

For example, given collections S1 = {$$$TACACT, $$$TACTCA} and S2 = {$$$GACTCG}

and k = 3, Figure 3.3 shows the de Bruijn graphs for these two collections and the colored

de Bruijn graph for {S1,S2}.

ACA CAC TCG

TAC ACT CTC

GAC TCA

$$$ $$T

$TA

T

C

C

A

T

T

A

C

A

(a)

ACT

GAC

TCG

CTC

$GA$$G

$$$

G

T

C
G

A C

(b)

$$$ $$T

$TA

$$G $GA

ACA CAC TCG

TAC ACT CTC

GAC TCA

TA

C

T C

C

T

A

A

G

A C

G
C

T

(c)

Figure 3.3: (a) de Bruijn graph for S1 = {$$$TACACT, $$$TACTCA}. (b) de Bruijn graph
for S2 = {$$$GACTCG}. (c) Colored de Bruijn graph for {S1,S2}, where red edges are from
S1 and blue edges are from S2. We remark that only {S1,S2} has colored edges, whereas
S1 and S2 edges are colored for example purposes.

27

3.2.2 BOSS representation

BOSS [4] is a succinct representation of the de Bruijn graph. Let n and m be respectively

the number of vertices and edges of a de Bruijn graph G. Consider that its set of vertices

v1, v2, . . . , vn is sorted according to the co-lexicographic order of their label, that is, the

vertices are sorted in the lexicographic order of the reverse of their labels

←−vi =
−→vi [k] . . .

−→vi [1] .

For example, given the string collection S = {$$$TACACT, $$$TACTCA, $$$GACTCG} and

k = 3, Figure 3.4 shows all possible k-mers obtainable from distinct (k + 1)-mers of S.

Figure 3.5 shows the co-lexicographic sorting applied to those k-mers.







$$$, $$$, $$T, $TA, TAC, TAC, ACA
CAC, ACT, ACA, CTC, CTC, TCA, $$G
GAC, TCG







Figure 3.4: All possible k-mers obtained from distinct (k + 1)-mers of S =
{$$$TACACT, $$$TACTCA, $$$GACTCG}.

$$$

$$$

$$T

$TA

TAC

TAC

ACA

CAC

ACT

CTC

CTC

TCA

$$G

$GA

GAC

TCG

co-lexicographic
−−−−−−−−−−−−−−−→

sorting

$$$

$$$

ACA

TCA

$GA

$TA

CAC

GAC

TAC

TAC

CTC

CTC

$$G

TCG

$$T

ACT

Figure 3.5: The left matrix shows all possible k-mers of S. The right matrix shows the
same k-mers sorted in co-lexicographic order.

We define Node as a conceptual matrix containing the co-lexicographically sorted k-

mers. For each vertex vi, we define Wi as the lexicographically sorted sequence of symbols

of the edges outgoing vi. If vi has no outgoing edges then Wi = $.

The BOSS representation is composed by the following components:

• The string W [1,m] = W1W2 . . .Wn. Observe that |W | = |Node| and Node[i] is the

vertex from which the edge labeled W [i] leaves.

28

• The bitvector W−[1,m] such that W−[i] = 0 if there exists j < i such that W [j] =

W [i] and the suffixes of length k − 1 of Node[j] and of Node[i] are identical, or

W−[i] = 1 otherwise.

• The bitvector last[1,m] such that last[i] = 1 if i = n or Node[i] is different from

Node[i+ 1], otherwise last[i] = 0.

• The counter array C[1, σ] such that C[c] stores the number of symbols smaller than

the symbol c in the last column of the conceptual matrix Node.

The matrix Node and the string W from the previous example can be observed in

Figure 3.6. Note that the rows in Node that correspond to any Wi have the same label,

for 1 f i f n. For example, for the vertex vi = TAC, we have Wi = AT, and for vj = TCG,

Wj = $.

i Node W

1 $$$ G

2 $$$ T

3 ACA C

4 TCA $

5 $GA C

6 $TA C

7 CAC T

8 GAC T

9 TAC A

10 TAC T

11 CTC A

12 CTC G

13 $$G A

14 TCG $

15 $$T A

16 ACT C

Figure 3.6: The Node matrix and the string W for collection S =
{$$$TACACT, $$$TACTCA, $$$GACTCG}. Note that repeated k-mers correspond to a
k-mer that has more than one outgoing edge in the graph. For example, vertex TAC is a
k-mer obtained from the following k-mers: TACA and TACT.

Since we are working with DNA sequences, we have the alphabet Σ = {A, T, C, G, N, $}

and σ = 6. Storing the string W takes m+log2 σ, = 3m bits. The bitvectors W− and last

take 2m bits and the counter array C takes σ logm = 6 logm bits. Therefore, the overall

space to store the BOSS structure (for DNA sequences) is 5m+ 6 logm bits.

For example, the succinct representation of the de Bruijn graph for S =

{$$$TACACT, $$$TACTCA, $$$GACTCG} is illustrated in Figure 3.7 augmented with the Node

matrix and with edges of the de Bruijn graph to ease the understanding.

There exists an LF-mapping between Node[i] and W [j] such that LF (j) = i when

W−[i] = 1 and last[j] = 1, otherwise LF (j) is undefined. This property enables the

29

$ $ $

$ $ $

ACA

TCA

$ GA

$ TA

CAC

GAC

TAC

TAC

CTC

CTC

$ $ G

TCG

$ $ T

ACT

G

T

C

$

C

C

T

T

A

T

A

G

A

$

A

C

1

1

1

1

1

1

1

0

1

0

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

0

1

1

1

1

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0

2

6

12

14

$

A

C

G

T

last Node W W−i

C

(a)

$$$ $$T

$TA

$$G $GA

ACA CAC TCG

TAC ACT CTC

GAC TCA

· · ·

AA

A

A

C

C

CC

G

G

T

T

T

T

(b)

Figure 3.7: (a) BOSS representation for S = {$$$TACACT, $$$TACTCA, $$$GACTCG} aug-
mented with the Node matrix and with edges of the de Bruijn graph; (b) de Bruijn graph
representing S. Edges with the same color have the same symbol and edges colored black
represent edges where W−[i] = 0, that is, there is already one or more edge W [j], such
that j < i, mapped to the same vertex to which W [i] is mapped.

navigation operations that will be defined in the next section. We can compute LF (j)

through

LF (j) = select1(last, rank1(last, C[c]) + r)

where r = rankc(W, j). For example, let j = 16. We have W [j] = C and we compute

r = rankC(W, 16) = 4

30

then we have

LF (j) = select1(last, rank1(last, C[C]) + r)

= select1(last, rank1(last, 6) + 4)

= select1(last, 5 + 4)

= select1(last, 9)

= 12

Therefore we have that LF (j) = 12 and that v16 is a terminal edge of v12, where←−v12 = CTC.

3.2.3 BOSS operations

In this section we are going to present navigation operations in the BOSS representation.

These operations will not be directly used in our algorithm and were included to illustrate

the usage of the representation. The BOSS supports the following operations:

• outdegree(←−v) returns the number of edges leaving vertex ←−v ;

• outgoing(←−v , c) returns the vertex ←−u if there is an edge (←−v ,←−u) labeled with c in

the graph, if there is any, otherwise outgoing(←−v , c) is undefined;

• indegree(←−v) returns the number of edges arriving at vertex ←−v ;

• incoming(←−v , c) returns the vertices ←−ui for which there is an edge (←−ui ,
←−v) labeled

with c in the graph, if there is any, otherwise incoming(←−v , c) is undefined.

From now on, we will use the position i of a vertex v in Node as the position of the last

edge leaving v, that is, last[i] = 1. To facilitate the understanding of BOSS operations,

we will use a new string W ′ instead of W and W−. We define Σ− as the set of size |Σ|

such that Σ ∩ Σ− = ∅ and for every c ∈ Σ there is an element c− ∈ Σ−. We define W ′[i],

for i = 1, . . . ,m, as W ′[i] = W [i] if W−[i] = 1, or W ′[i] = W [i]− if W−[i] = 0.

outdegree(←−v): The outdegree(←−v) operation can be computed as follows. By definition,

the bitvector last has value 0 for every edge leaving vertex v, except for the last edge. Let

i be referred to as the position of v, that is Node[i] =←−v and last[i] = 1. First we compute

the position of the vertex preceding v, which is the first value 1 in last prior to position i,

using a select query. A preceding vertex always exists due to the k-mer containing only

$ symbols. Then we compute outdegree(←−v) by subtracting the preceding vertex position

from position i as follows

outdegree(←−v) = i− select1(last, rank1(last, i− 1))

For example, to compute outdegree(←−v) where ←−v = TAC, the position i of ←−v with

31

Node[i] = TAC is i = 10 (see Figure 3.8). Therefore,

outdegree(←−v) = 10− select1(last, rank1(last, 9))

= 10− select1(last, 7)

= 10− 8 = 2

$ $ $

$ $ $

ACA

TCA

$ GA

$ TA

CAC

GAC

TAC

TAC

CTC

CTC

$ $ G

TCG

$ $ T

ACT

G

T

C

$

C

C

T

T-

A

T-

A

G

A

$

A

C

0

1

1

1

1

1

1

1

0

1

0

1

1

1

1

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

last Node W
′

i

Figure 3.8: Outdegree operation for ←−v = TAC. The red arrow indicates the select query.

outgoing(←−v , c): The outgoing(←−v , c) operation can be computed as follows. First we

calculate the range of vertices labeled with ←−v , R(←−v). Let i be the position of ←−v , that

is Node[i] = ←−v and last[i] = 1, we have that i is the last position of R(←−v). To find the

starting position of R(←−v) we have to compute the position of the vertex ←−u preceding ←−v

in Node and add 1 to the result. The range of ←−v is

R(←−v) = [i− outdegree(←−v) + 1, i]

Then, we check if there is an edge c leaving ←−v . To do that, we compute

j = selectc(W
′, rankc(W

′, i))

If j ∈ R(←−v), an edge labeled with c leaving ←−v exists and LF (j) returns the position in

Node of the vertex ←−u in which this edge arrives. Otherwise, we check if there is an edge

c− leaving ←−v . We compute

j = selectc−(W
′, rankc−(W

′, i))

In the case that j ∈ R(←−v), there is an edge with c− leaving ←−v , and for computing the

position of vertex ←−u in which this edge enters we have to find the largest position j′ < j

32

where W ′[j′] = c. To do that, we compute

j′ = selectc(W
′, rankc(W

′, j))

At the end, LF (j′) returns the position in Node of the vertex ←−u .

For example, to compute outgoing(←−v , c) where ←−v = TAC and c = A, the position i of
←−v with Node[i] = TAC is i = 10 (see Figure 3.7). The range is

R(←−v) = [10− outdegree(←−v) + 1, 10]

= [10− 2 + 1, 10]

= [9, 10]

Now, we compute j as

j = selectA(W
′, rankA(W

′, 10))

= selectA(W
′, 1)

= 9

Since j ∈ R(←−v) we can compute LF (9) = 3. Therefore, the destination vertex when

leaving vertex labeled with TAC following edge A is Node[3] = ACA (see Figure 3.9).

$ $ $

$ $ $

ACA

TCA

$ GA

$ TA

CAC

GAC

TAC

TAC

CTC

CTC

$ $ G

TCG

$ $ T

ACT

G

T

C

$

C

C

T

T-

A

T-

A

G

A

$

A

C

0

1

1

1

1

1

1

1

0

1

0

1

1

1

1

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

last Node W
′

i

$$$ $$T

$TA

$$G $GA

ACA CAC TCG

TAC ACT CTC

GAC TCA

· · ·

· · ·

A

GA

T

T

C

C

T

T

G

A

C

A C

$

$

Figure 3.9: Outgoing operation for ←−v = TAC and c = A. The red arrow indicates the
mapping between W ′ and the Node.

Another example, now considering the case where j /∈ R(←−v) but there is a c− ∈ Σ−

in R(←−v). Let us compute outgoing(←−v , c) for ←−v = TAC and c = T. Since we know that

R(←−v) = [9, 10] from the previous example, we compute j as follows

j = selectT(W
′, rankT(W

′, 10))

= selectT(W
′, 2)

= 7

33

Note that j /∈ R(←−v), then we search for c− = T− in R(←−v). We compute j as follows

j = selectT−(W
′, rankT−(W

′, 10))

= selectT−(W
′, 2)

= 10

Now j ∈ R(←−v) and the first c ∈ Σ before R(←−v) that corresponds to c− appears in

j′ = 7, then we compute LF (7) = 16. Therefore, the destination vertex when leaving the

vertex labeled with TAC following edge T is Node[16] = ACT (see Figure 3.10).

$ $ $

$ $ $

ACA

TCA

$ GA

$ TA

CAC

GAC

TAC

TAC

CTC

CTC

$ $ G

TCG

$ $ T

ACT

G

T

C

$

C

C

T

T-

A

T-

A

G

A

$

A

C

0

1

1

1

1

1

1

1

0

1

0

1

1

1

1

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

last Node W
′

i

$$$ $$T

$TA

$$G $GA

ACA CAC TCG

TAC ACT CTC

GAC TCA

· · ·

· · ·

A

G

T

T

C

C

A

T

T

G

A

C

A C

$

$

Figure 3.10: Outgoing operation for ←−v = TAC and c = T. The red arrows indicate the
search for c from c′ and its mapping between W ′ and the Node.

indegree(←−v): Assume that i is the position of vertex←−v in Node, that is, last[i] = 1 and

Node[i] = ←−v . The indegree(←−v) operation can be computed as follows. By definition, if

there is at least one incoming edge in←−v , then there is an edge W ′[j] such that LF (j) = i.

First, we have to find the value of j. Given the last symbol c of Node[i], we count the

number of symbols c up to position i in the last column of Node. This value can be

obtained by subtracting i from the position of the first Node with last symbol equal to c,

which is stored in C[c]. Recall that the vertices are sorted co-lexicographically. Then j

can be obtained using the following select query

j = selectc(W
′, i− C[c])

If there are more than one incoming edge in ←−v , their symbols in W ′ should belong to Σ−

and their positions are larger than j in W ′. Let c represent the edge at W ′[j]. Clearly,

we just have to count the number of occurrences of c− between position j and the first c

in W ′ after position j, if there is any.

Then we can compute indegree(←−v) as follow

indegree(←−v) = 1 + rankc−(W
′, selectc(W

′, j + 1))− rankc(W
′, j)

34

For example, to compute indegree(←−v) where ←−v = ACT, the position i of ←−v where

last[i] = 1 and Node[i] =←−v is i = 16 (see Figure 3.11). We have

j = selectT(W
′, i− C[T])

= selectT(W
′, 16− 14)

= selectT(W
′, 2) = 7

Since W ′[7] = T we just have to count the number of occurrences of T− in W ′ between

position 7 and W ′[7] next T, that is

indegree(←−v) = 1 + rankT−(W
′, selectT (W

′, i− C[T] + 1))− rankT−(W
′, 7)

= 1 + rankT−(W
′, selectT(W

′, 3))− 0

= 1 + rankT−(W
′, 17)

= 1 + 2 = 3

$ $ $

$ $ $

ACA

TCA

$ GA

$ TA

CAC

GAC

TAC

TAC

CTC

CTC

$ $ G

TCG

$ $ T

ACT

G

T

C

$

C

C

T

T-

A

T-

A

G

A

$

A

C

0

1

1

1

1

1

1

1

0

1

0

1

1

1

1

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

last Node W
′

i

Figure 3.11: Indegree operation for ←−v = ACT. The red arrows indicate the rank queries
over W ′.

incoming(←−v): The incoming(←−v) operation can be computed as follow. Using the same

idea from indegree(←−v), we have the first incoming edge of←−v in position j, clearly, Node[j]

is one incoming edge of ←−v . Next, we can iterate through the next incoming edges that

belong to Σ−. This will return all incoming edges of ←−v .

For example, to compute incoming(←−v) where ←−v = ACT, we already know that the

first incoming edge is at position j = 7, therefore Node[7] = CAC has an incoming edge

of ←−v = ACT. Now we have to iterate through the the next symbols T−, which are in the

range between j + 1 and the next T after W ′[7]. Again, like in indegree we can compute

35

this range using

rankT−(W
′, selectT(W

′, selectT(W
′, 16− 14) + 1))

Therefore, we have that the next T− symbols are in the range [8,17]. Iterating on this

range using select queries we have

selectT−(W
′, 1) = 8

selectT−(W
′, 2) = 10

selectT−(W
′, 3) = 17

Since 17 exceeds |W ′|, we have that Node[8] = GAC and Node[10] = TAC also are edges

incoming in ←−v = ACT. Then, incoming(v) = {CAC, GAC, TAC} (see Figure 3.12).

$ $ $

$ $ $

ACA

TCA

$ GA

$ TA

CAC

GAC

TAC

TAC

CTC

CTC

$ $ G

TCG

$ $ T

ACT

G

T

C

$

C

C

T

T-

A

T-

A

G

A

$

A

C

0

1

1

1

1

1

1

1

0

1

0

1

1

1

1

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

last Node W
′

i

$$$ $$T

$TA

$$G $GA

ACA CAC TCG

TAC ACT CTC

GAC TCA

· · ·

· · ·

A

G

T

T

T

C

C

A

T

G

A

C

A C

$

$

Figure 3.12: Incoming operation for every edge arriving at the Node with←−v = ACT. The
red arrows indicate the mappings between W ′ and Node.

3.2.4 BOSS construction

Construction with radix sort. For a string collection S, we can co-lexicographically

sort its k-mers obtained from the distinct (k + 1)-mers of S by applying the radix sort

algorithm from right to left to obtain the BOSS representation. For example, Figure 3.13

shows this process for the collection S = {$$$TACACT, $$$TACTCA, $$$GACTCG}.

The resulting co-lexicographic order of the k-mers represents the Node matrix. To

obtain the string W we need one more iteration of radix sort in the last symbol of the

corresponding (k + 1)-mers. By extracting the last symbol of each (k + 1)-mer we have

the Node matrix and the string W . This process is shown in Figure 3.14.

We denote by lcs(S1, S2) the length of the longest common suffix of two strings S1 and

S2 in Σ∗. For example lcs(GAC, TAC) = 2 and lcs(TAC, CTC) = 1. Let [i, j] be an interval in

Node where all k-mers share an lcs g k. We will call this interval a k-lcs-interval.

36

$ $ $

$ $ $

$ G A

$ T A

A C A

T C A

C A C

C T C

C T C

G A C

T A C

T A C

T C G

$ $ G

$ $ T

A C T

h = 1

$ $ $

$ $ $

A C A

T C A

$ G A

$ T A

C A C

G A C

T A C

T A C

C T C

C T C

$ $ G

T C G

$ $ T

A C T

h = 2

$ $ $

$ $ $

A C A

T C A

$ G A

$ T A

C A C

G A C

T A C

T A C

C T C

C T C

$ $ G

T C G

$ $ T

A C T

h = 3

Figure 3.13: Radix co-lexographic sorting of the k-mers of S.

$ $ $ T

$ $ $ G

A C A C

T C A $

$ G A C

$ T A C

C A C T

G A C T

T A C T

T A C A

C T C A

C T C G

$ $ G A

T C G $

$ $ T A

A C T C

last column
−−−−−−−−−→

sorting

$ $ $ G

$ $ $ T

A C A C

T C A $

$ G A C

$ T A C

C A C T

G A C T

T A C A

T A C T

C T C A

C T C G

$ $ G A

T C G $

$ $ T A

A C T C

last column
−−−−−−−−−→
extraction

$ $ $

$ $ $

A C A

T C A

$ G A

$ T A

C A C

G A C

T A C

T A C

C T C

C T C

$ $ G

T C G

$ $ T

A C T

G

T

C

$

C

C

T

T

A

T

A

G

A

$

A

C

Node W

Figure 3.14: Radix sort on the last symbol of the (k+ 1)-mers followed by the extraction
of the (k + 1)-mer last column to obtain Node matrix and W string.

The BOSS construction using radix sort can be observed in Algorithm 2. The bitvec-

tors last and W− can be obtained by comparing the lcs between consecutive k-mers in

Node as follows. For i = 1, 2, . . . ,m − 1, whenever the value of lcs(Node[i], Node[i+ 1])

is equal to k, set last[i] to 0 otherwise set last[i] to 1 (Lines 10-14). When i = m, set

last[i] to 1. For computing W−[i], we have to check if Node[i] shares k − 1 symbols (in

the reverse order) with a previous k-mer, say Node[j] with W [j] = W [i] (j < i), that is,

37

if they are in the same (k− 1)-lcs-interval. If they are, set W−[i] to 0 otherwise set W−[i]

to 1. To compute W−[i] we can keep an auxiliary bitvector f of size σ where f [c] = 1 if

the symbol c already occurred in the current (k− 1)-mer interval, and f [c] = 0 otherwise

(Lines 15-20). Whenever lcs(Node[j], Node[i]) < k − 1 we will find a new lcs-interval in

the next iteration. Therefore we can clean this bitvector, that is, set f [c] = 0 for all c ∈ σ.

To compute the C array, we count the frequency of each character c in W using the

F array (Line 9). Then, we update the values in C (Lines 25-28), such that C[c] stores

the number of symbols smaller than c. An example of a complete BOSS construction for

a collection S can be seen in Figure 3.15.

Algorithm 2: boss_radix

Input: A matrix of kmers and its length m
Output: BOSS components C, last,W,W−

1 int F [1..σ] = 0;
2 char W [1..m] = “\0”;
3 bitvector last[1..m] = 1;
4 bitvector W−[1..m] = 0;
5 bitvector f [1..σ] = 0;
6 radix_sort(kmers);
7 for i = 1 to m do
8 W [i] = kmers[i][k];
9 F [W [i]] = F [W [i]] + 1;

10 if lcs(kmers[i], kmers[i+ 1]) == k then
11 last[i] = 0;
12 else
13 last[i] = 1;
14 end
15 if f [W [i]] == 0 then
16 W−[i] = 1;
17 f [W [i]] = 1;

18 else
19 W−[i] = 0;
20 end
21 if lcs(kmers[i], kmers[i+ 1]) < k − 1 then
22 f.reset();
23 end

24 end
25 int C[1..σ] = 0;
26 for c = 2 to σ do
27 C[c] = C[c− 1] + F [c− 1];
28 end
29 return C, last,W,W−;

Construction with BWT and LCP array. Egidi et al. [10] proposed the eGap

algorithm for computing the multi-string BWT and LCP array in external memory. As

an application, they showed how to compute the BOSS representation by a sequential

38

$ $ $

$ $ $

A C A

T C A

$ G A

$ T A

C A C

G A C

T A C

T A C

C T C

C T C

$ $ G

T C G

$ $ T

A C T

G

T

C

$

C

C

T

T

A

T

A

G

A

$

A

C

1

1

1

1

1

1

1

0

1

0

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

0

1

1

1

1

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0

2

6

10

12

$

A

C

G

T

last Node W W−i

C

Figure 3.15: BOSS construction using radix for S = {$$$TACACT, $$$TACTCA, $$$GACTCG}
and k = 3.

scan over the BWT and the LCP array built for the collection S with all strings reversed,

denoted by SR. For example, if S = {$$$TACACT, $$$TACTCA, $$$GACTCG}, then SR =

TCACAT$$$, ACTCAT$$$, GCTCAG$$$}. We can obtain the order of the (k + 1)-mers of SR

from the sorted suffixes. Note that the contexts truncated to size k will correspond to the

k-mers represented in the Node matrix, as shown in Figure 3.16. The LCP values of the

truncated contexts will correspond to the LCS values, since the strings are in the reversed

form. Also, the lcp-intervals will correspond to the lcs-intervals. We define the truncated

LCP array as the LCP array for the truncated contexts.

Let N be the length of the BWT. We define the auxiliary bitvector f of size σ where

f [c] = 1 if the symbol c already occurred in the current (k − 1)-lcp-interval, and f [c] = 0

otherwise. We also define an auxiliary bitvector b of size σ where b[c] = 1 if the symbol c

already occurred in the current k-lcp-interval, and b[c] = 0 otherwise.

To obtain the string W and the bitvectors W− and last we can scan the BWT and

the LCP as follows.

For i = 1, 2, . . . , N and j starting with 1, if b[BWT[i]] = 0, then W [j] is set to

BWT[i], b[BWT[i]] is set to 1 and j is incremented. Assuming that all values from last

were initialized with 1, note that while LCP[i+ 1] g k we have the same k-mer in Node,

therefore last[j − 1] = 0. To compute W− we can use the bitvector f . We check if

LCP[i + 1] < k − 1, in this case we will have a new (k − 1)-lcp-interval and we reset f

to start keeping track of the next (k− 1)-lcp-interval. To compute the array C, we count

the occurrences of c = W [j] in F [c] for every c ∈ σ. At the end, we update the C values,

such that C[c] stores the number of symbols smaller than c.

This procedure is shown in Algorithm 3. First we add the edge obtained from BWT[1]

to the BOSS representation (Line 10) and we increment j and i. Then we iterate through

the first k-lcp-interval while LCP[i + 1] g k adding the edges to the representation if

39

i BWT LCP context truncated context
1 G 0 $1 $1

2 T 0 $1 $1

3 T 0 $2 $2

4 C 0 ACAT$2 ACA

5 $2 2 ACTCAT$1 ACT

6 C 0 AG$1 AG$1

7 C 1 AT$1 AT$1

8 C 2 AT$2 AT$2

9 T 0 CACAT$2 CAC

10 T 2 CAG$1 CAG

11 A 2 CAT$2 CAT

12 T 3 CAT$1 CAT

13 G 1 CTCAG$1 CTC

14 A 4 CTCAT$1 CTC

15 A 0 G$1 G$1

16 $1 1 GCTCAG$1 GCT

17 A 0 T$1 T$1

18 A 1 T$2 T$2

19 $1 1 TCACAT$2 TCA

20 C 3 TCAG$1 TCA

21 C 3 TCAT$1 TCA

Figure 3.16: eGap output for collection S = {$$$TACACT, $$$TACTCA, $$$GACTCG}, having
BWT, LCP, contexts and truncated contexts respectively.

b[BWT[i]] = 0 (Lines 12-20). We can visualize the add_edge function in Algorithm 4.

When this loop ends, we reset b because we will have a new k-lcp-interval in the next

iteration (Line 19). We increment i and check if LCP[i+1] < k, that is, if we are entering

a new (k − 1)-lcp-interval. If this is true, we reset the f array (Lines 21-23).

For example, consider the (k − 1)-lcp-interval that corresponds to AC in Figure 3.16

(considering the reverse order of the contexts), that is, 9 f i f 12. Starting from i = 9,

we add this edge to the BOSS construction, f [T] = 1 and b[T] = 1 (Figure 3.17a).

Since LCP[i + 1] = LCP[10] = 2 < k we reset b and exit the loop (Line 19-20)

because the next k-lcp-interval is different. Now we check the condition in Line 21, since

LCP[i+ 1] = LCP[10] = 2 = k− 1, then we do not need to reset the f array. In the next

iteration we add the edge BWT[10] = T to the BOSS representation. We have BWT[i] = T

and f [T] = 1 and in this case we have W−[j] = 0 (Figure 3.17b). Also, b[T] = 1.

For i = 10 we have LCP[i + 1] = LCP[11] = 2 < k, again we reset b and, since we

are in the same (k − 1)-lcp-interval we just continue to the next iteration where we add

the edge BWT[11] = A to the BOSS representation and update f [A] = 1 and b[A] = 1

(Figure 3.17c).

For i = 11 we have LCP[i+1] = LCP[12] = 3 = k and there are more edges from this

k-mer, so we enter the loop of lines 12-20. First we add the edge BWT[12] = T, f [T] = 1

and b[T] = 1. Also we are in the same k-lcp-interval and we update the previous last

value (Figure 3.17d).

Finally, for i = 12 we have LCP[i + 1] = LCP[13] = 1 < k and we leave the loop

40

Algorithm 3: boss_construction

Input: LCP and BWT arrays and selected k
Output: BOSS components C, last,W,W−

1 int F [1..σ] = 0;
2 char W [1..m] = “\0”;
3 bitvector last[1..m] = 0;
4 bitvector W−[1..m] = 0;
5 bitvector f [1..σ] = 0;
6 bitvector b[1..σ] = 0;
7 int j = 1; // BOSS size counter

8 int i = 1;
9 while i f N do

10 add_edge(F, last,W,W−, j, f, b, i);
11 j = j + 1;
12 while LCP[i+ 1] g k do
13 if b[BWT[i+ 1]] == 0 then
14 add_edge(F, last,W,W−, j, f, b, i+ 1);
15 last[j − 1] = 0;
16 j = j + 1;

17 end
18 i = i+ 1;
19 b.reset();

20 end
21 if LCP[i+ 1] < k − 1 then
22 f.reset();
23 end
24 i = i+ 1;

25 end
26 int C[1..σ] = 0;
27 for c = 2 to σ do
28 C[c] = C[c− 1] + F [c− 1];
29 end
30 return C, last,W,W−;

(Line 20). Since LCP[13] = 1 < k − 1 we reset f . In the next iteration we will have

a new (k − 1)-lcp-interval. Iterating until i = N the algorithm will produce the BOSS

representation shown in Figure 3.18.

Recall that m is the total number of (k + 1)-mers in a collection S and N is the

sum of all string lengths. The BOSS construction is computed in O(m · (k + 1)) time

using radix sort and O(N) time using the BWT and LCP array. The working space

required for radix sort is m · log σ bits, whereas with the BWT and the LCP array we

have N log σ bits for the BWT and N · +log(k + 1), bits for the truncated LCP array.

Therefore, the overall space required for the construction using the BWT and the LCP

array is N log σ +N · +log(k + 1), bits.

41

Algorithm 4: add_edge

Input: F, last,W,W−, j, f, b and pos, in the context of Algorithm 3
1 W [j] = BWT[pos];
2 last[j] = 1;
3 if f [BWT[pos]] == 1 then
4 W−[j] = 0;
5 else
6 f [BWT[pos]] = 1;
7 end
8 F [BWT[pos]] = F [BWT[pos]] + 1;
9 b[BWT[pos]] = 1;

3.3 Genome comparison with de Bruijn graphs

3.3.1 Lyman et al.

Lyman et al. [25] proposed an assembly-free phylogenetic tree reconstruction method

using Colored de Bruijn Graphs (CdBG) [17]. Their algorithm identifies paths of vertices

having at least c colors and then constructs a multiple sequence alignment of paths’

sequences.

The authors define a Colored de Bruijn Graph as a de Bruijn graph in that each

vertex is associated to a color (or a set of colors). These colors are used to represent

distinct taxon (or species or collection of reads of a genome). Let a CdBG be defined as

G = {G1, G2, . . . , Gi, . . . , Gd} for d collections where Gi = (Vi, Ei) is a de Bruijn Graph

for the i− th taxon. They refer to each G ∈ G as a distinct color or taxon.

Let a path P = (v1, . . . , vw) in Gi be defined as a sequence of vertices in Vi such that

all edges (vj, vj+1) ∈ Ei. They define a bubble as a set of paths B = {P1, . . . , Pz} such

that each Pi ∈ B has the same initial and final vertices. For example, in Figure 3.19 we

have a bubble B = {ACTGTG, ACTAGGTG, ACTAGTG} in a CdBG with 3 colors and

k = 3. The colors of the vertices represent the following sets:

• yellow: vertices exclusively in P1;

• red: vertices exclusively in P2;

• blue: vertices exclusively in P3;

• purple: vertices in P2 ∩ P3;

• grey: vertices in P1 ∩ P2 ∩ P3.

The authors proposed the kleuren algorithm, which works by iterating over a superset

of vertices K, defined as K = {V1 ∪ V2 ∪ . . . ∪ Vi ∪ Vd}, discovering vertices that could

form a bubble in the CdBG. A vertex v could form a bubble if v is present in c or more

colors of G, where c is given by the user. More bubbles may be found using lower values

of c, however more vertices will be considered as a starting vertex of a bubble, which will

make kleuren take a longer time to run.

42

i last Node W W−

1 1 $1 T 1
2 1 $1 G 1
3 1 ACA C 1
4 1 TCA $2 1
5 1 $1GA C 1
6 1 $1TA C 1
7 1 CAC T 1
...

...
...

...
...

(a) i = 9

i last Node W W−

1 1 $1 T 1
2 1 $1 G 1
3 1 ACA C 1
4 1 TCA $2 1
5 1 $1GA C 1
6 1 $1TA C 1
7 1 CAC T 1
8 1 GAC T 0
...

...
...

...
...

(b) i = 10

i last Node W W−

1 1 $1 T 1
2 1 $1 G 1
3 1 ACA C 1
4 1 TCA $2 1
5 1 $1GA C 1
6 1 $1TA C 1
7 1 CAC T 1
8 1 GAC T 0
9 1 TAC A 1
...

...
...

...
...

(c) i = 11

i last Node W W−

1 1 $1 T 1
2 1 $1 G 1
3 1 ACA C 1
4 1 TCA $2 1
5 1 $1GA C 1
6 1 $1TA C 1
7 1 CAC T 1
8 1 GAC T 0
9 0 TAC A 1

10 1 TAC T 0
...

...
...

...
...

(d) i = 12

Figure 3.17: BOSS construction using the BWT and LCP in (k− 1)-lcp-interval equal to
AC.

Within the bubbles in the CdBG identified by kleuren, the authors used MAFFT [19]

to perform a multiple sequence alignment for each sequence in every bubble. Finally,

each multiple sequence alignment was concatenated to form a supermatrix, which was

used to infer the phylogenetic tree using the Maximum Likelihood method. As illustrated

in Figure 3.20. The authors argue that kleuren is computationally cheaper than the

traditional alignment-based phylogenetic methods and that many biological assumptions

made in alignments may be avoided.

The authors used the kleuren algorithm to reconstruct the phylogeny of the 12

Drosophila species and compared it with the reference phylogeny, reporting consistent

results.

3.3.2 Polevikov and Kolmogorov

Polevikov and Kolmogorov [31] assume that each genome has a single circular chromosome,

implying that each node in a de Bruijn graph has at least one incoming and one outgoing

edge. If a node has exactly one incoming and one outgoing edge it is called non-branching,

otherwise it is called branching.

The authors define an annotated de Bruijn graph (ADBG) as a de Bruijn graph with

43

i last Node W W−

1 1 $1 T 1
2 1 $1 G 1
3 1 ACA C 1
4 1 TCA $2 1
5 1 $1GA C 1
6 1 $1TA C 1
7 1 CAC T 1
8 1 GAC T 0
9 0 TAC A 1

10 1 TAC T 0
11 0 CTC A 1
12 1 CTC G 1
13 1 $1T A 1
14 1 $1G A 1
15 1 TCG $1 1
16 0 ACT $1 1
17 1 ACT C 1

Figure 3.18: BOSS representations for collection S =
{$$$TACACT, $$$TACTCA, $$$GACTCG}.

Figure 3.19: An example of a bubble in a Colored de Bruijn Graph, from [25].

each edge labeled as either unique or repetitive, based on whether its (k − 1)-mer occurs

once or more times in the genome.

Given two ADBGs AG1 and AG2 for genomes G1 and G2, the authors say that a

pair of edges e1 unique in AG1 and e2 unique in AG2 are syntenic if they spell the same

subsequence. Two unique edges u and v are compatible in an ADBG AG if either u and

v are adjacent or AG contains a path between u and v where all intermediate edges are

repetitive.

44

Figure 3.20: Multiple sequence alignment of bubbles and phylogenetic tree reconstruction
example, from [25].

Given two ADBGs AG1 and AG2 with two pairs of syntenic edges U = {u1, u2} and

V = {v1, v2}, the authors say that U and V are colinear if u1 and v1 are compatible in

AG1, and u2 and v2 are compatible in AG2. A synteny path is then defined as a sequence

of pairs of syntenic edges P = (E1, E2, . . . , Ek), in which every two consecutive pairs

(Ei−1, Ei) are colinear.

In order to compare two ADBGs AG1 and AG2 with unique edges decomposed into

the set of syntenic edge pairs E = {(u1, u2), (v1, v2), (w1, w2), . . .}, the authors propose

the MSP decomposition problem, that is the problem of finding the minimum number of

synteny paths that cover all edge pairs in E. Finding such synteny paths corresponds to

finding a minimal set of sequences that include unique edges in AG1 and AG2 in the same

order, with repeats occurring arbitrarily inbetween.

The authors show that the MSP decomposition is NP-hard by a reduction from the

Hamiltonian path problem and present a heuristics for the problem. For the heuristics

the authors define a double-stranded de Bruijn graph where for any edge +e that spells

a sequence S there exists a unique edge −e that spells the reverse-complement of S.

A breakpoint graph is then constructed for two double-stranded ADBGs AG1 and

AG2 with unique edges decomposed into 2n syntenic pairs {±1,±2, ...,±n} having two

vertices it and ih for each syntenic pair ±i. There is an undirected edge in the breakpoint

graph between uh and vt for each pair of colinear syntenic edges (u, v) in AG1 and AG2.

The authors find a maximum matching in the breakpoint graph, add edges that con-

nect nodes {ih, it}, i = 1, . . . , n, and finally reconstruct synteny paths by taking the

resulting set of paths in the breakpoint graph as a set of synteny paths between AG1 and

AG2.

The authors used the genome assembler Flye to reconstruct 15 different Drosophila

species. They applied synteny paths to compare each assembly against a high-quality

Drosophila melanogaster reference genome and computed synteny paths between all pairs

of assemblies, reporting consistent results.

45

Chapter 4

gcBB Algorithm

4.1 Genome comparison via BWSD

In this work we propose the gcBB algorithm (Genome Comparison using BOSS and

BWSD). The input of gcBB is a set of genomes and the value of k, the output is a pair of

distance matrices, with the expectation and entropy distances among all pairs of genomes

in the set. Given such distance matrices, one can reconstruct a phylogenetic tree for the

set using the Neighbor-Joining [35] or any other algorithm [11].

The idea of gcBB is to construct a colored de Bruijn graph for a pair of genomes

using the BOSS representation and, given the colored BOSS, compute the BWSD to

measure the similarity between the genomes. The intuition is that the more the edges are

intermixed in the colored BOSS, the greater the number of shared nodes and the more

similar the genomes are.

4.2 Algorithm

Let S be a set of genomes and k be the selected size to construct the BOSS representa-

tion of the de Bruijn graphs. Our algorithm is divided into three phases summarized in

Algorithm 5.

In the first phase we construct the BWT and the LCP array for each genome (Lines

1-3). We also compute an auxiliary array CL, which gives the context lengths. Then

we merge these structures for each pair of genomes, obtaining the merged files and the

document array DA (Lines 4-6). Both steps can be done using eGap [9].

In the second phase we construct the BOSS representation of the colored de Bruijn

graph for each pair of genomes in S. We obtain a bitvector called colors, of length m,

which indicates from which genome each edge came (Line 11). The construction of the

colored BOSS is based on the construction using the BWT and the LCP array, described

in Section 3.2.4.

In the third phase we use the colors bitvector together with the CL array to compute

the BWSD for this pair of genomes, populating the entropy and expectation matrix (Lines

12-16).

46

Algorithm 5: gcBB

Input: Set S and the selected k
Output: Matrices DM and DE of double precision numbers
// Phase 1

1 for each genome Si in S do
2 eGap(Si); // compute LCP, BWT and CL

3 end
4 for each pair of genomes {Si,Sj} in S do
5 eGap(Si,Sj); // merge LCP, BWT and CL and generates DA

6 end
7 double DM [1..d][1..d] = 0.0;
8 double DE[1..d][1..d] = 0.0;
9 for each pair of genomes {Si,Sj} in S do

// Phase 2

10 bitvector colors initialized with 0 for each pair {Si,Sj};
11 colors = colored_boss_construction(LCPi,j,BWTi,j,CLi,j,DAi,j, k);

// Phase 3

12 double expectation = 0.0;
13 double entropy = 0.0;
14 {expectation, entropy} = bwsd_computation(colors,LCPi,j,CLi,j, k);
15 DM [i][j] = expectation;
16 DE[i][j] = entropy;

17 end
18 return DM , DE;

4.2.1 Phase 1

In the rest of the chapter, we will refer to the BWT as an array of characters. Initially,

we construct the BWT, the LCP and the CL arrays for each genome in external memory

using the eGap algorithm. We remark that one could use any other tool to construct

these data structures, for example [3, 23, 32].

Consider the following set of genomes S1 = {TACTCA, TACACT} and S2 = {GACTCG}.

The eGap output for each one of these genomes is shown in Figures 4.1a and 4.1b, re-

spectively. We remark that eGap does not produce the contexts, it is only shown for a

better understanding of the examples.

Given the BWT, the LCP and the CL arrays for a pair of genomes, we merge these

arrays while generating the document array DA, containing the genome of each position

of the arrays. Note that DA can be stored in a bitvector, since we merge only pairs of

genomes. The resulting arrays are stored in external memory. We also use eGap for the

merging, but we could use any other available tool.

In Figure 4.2 we have the output of the merge of genomes S1 and S2 by eGap.

4.2.2 Phase 2

Given the merged BWT, LCP and CL arrays, together with the document array DA,

we construct the BOSS representation of the colored de Bruijn graph with the algorithm

47

i BWT LCP CL context
1 T 0 1 $1
2 T 0 1 $2
3 C 0 5 ACAT$2
4 $2 2 7 ACTCAT$1
5 C 1 3 AT$1
6 C 2 3 AT$2
7 T 0 6 CACAT$2
8 A 2 4 CAT$2
9 T 3 4 CAT$1

10 A 1 6 CTCAT$1
11 A 0 2 T$1
12 A 1 2 T$2
13 $1 1 7 TCACAT$2
14 C 3 5 TCAT$1

(a)

i BWT LCP CL context
1 G 0 1 $1
2 C 0 3 AG$1
3 T 0 4 CAG$1
4 G 1 6 CTCAG$1
5 A 0 2 G$1
6 $1 1 7 GCTCAG$1
7 C 0 5 TCAG$1

(a)

Figure 4.1: The BWT, LCP and CL arrays output by eGap for genomes (a) S1, (b) S2.

i BWT LCP CL DA context
1 T 0 1 0 $1

2 T 0 1 0 $2

3 G 0 1 1 $3

4 C 0 5 0 ACAT$2

5 $3 2 7 0 ACTCAT$1

6 C 1 3 1 AG$3

7 C 1 3 0 AT$1

8 C 2 3 0 AT$2

9 T 0 6 0 CACAT$2

10 T 2 4 1 CAG$3

11 A 2 4 0 CAT$1

12 T 3 4 0 CAT$2

13 G 1 6 1 CTCAG$3

14 A 4 6 0 CTCAT$1

15 A 0 2 1 G$3

16 $2 1 7 1 GCTCAG$3

17 A 0 2 0 T$1

18 A 1 2 0 T$2

19 $1 1 7 0 TCACAT$2

20 C 3 5 1 TCAG$3

21 C 3 5 0 TCAT$1

Figure 4.2: Merged BWT, LCP, CL arrays, the DA, and contexts for S1,S2. We remark
that the context column is not produced by eGap.

presented in Section 3.2.4.

We compute two additional arrays, the colors bitvector and the coverage array. We

also store a summarized LCP and CL arrays, that is, the LCP and CL arrays based on

48

the edges that entered our colored BOSS representation. The colors bitvector gives from

which genome each edge came and can be easily obtained from DA. The coverage array

gives the number of times a (k + 1)-mer represented by an edge occurred in its genome.

Since a de Bruijn graph has one vertex for each k-mer, the first time we have an edge of

value c leaving a k-mer it will be added to our BOSS representation and its coverage will

be set to 1. Every time we have another occurrence of an edge c leaving that same k-mer,

it will not be added to the representation but we increment the coverage of that edge in

our graph representation. The coverage array can be obtained with two auxiliary arrays

di and dj. In the first occurrence at a symbol c from genome i in the k-lcp-interval, we set

its position p in di[c] and set coverage[p] to 1. If there is another occurrence of symbol

c in genome i we simply increment coverage[p]. This idea is analogous for symbols from

genome j. When we leave the k-lcp-interval we reset these arrays setting all values to -1.

These arrays will be used in Phase 3.

The modifications to obtain the colors and coverage arrays can be visualized in Al-

gorithms 6 and 7. For a clearer presentation of the algorithms, consider we have the struc-

ture boss containing C, last,W and W−, and the structure c_boss containing colors,

coverage, and the summarized LCP and CL.

The main difference between Algorithm 6 and the BOSS construction with BWT and

LCP in Algorithm 3 can be visualized in Lines 10-22, where we have to check the d arrays

to decide whether to include the edge or increase the coverage. In Algorithm 7 we just

have new assignments for the new arrays, compared to Algorithm 4.

Consider the merged arrays of genomes S1 and S2 obtained in Phase 1 and consider

k = 3. The colored BOSS representation obtained for the merge of S1 and S2 merge can

be observed in Figure 4.3.

last Node W W− color coverage LCP CL context
1 $1 T 1 0 2 0 1 $1

1 $3 G 1 1 1 0 1 $3

1 ACA C 1 0 1 0 5 ACAT$2

1 TCA $3 1 0 1 2 7 ACTCAT$1

1 $3GA C 1 1 1 1 3 AG$3

1 $1TA C 1 0 2 1 3 AT$1

1 CAC T 1 0 1 0 6 CACAT$2

1 GAC T 0 1 1 2 4 CAG$3

0 TAC A 1 0 1 2 4 CAT$1

1 TAC T 0 0 1 3 4 CAT$2

0 CTC A 1 0 1 1 6 CTCAG$3

1 CTC G 1 1 1 4 6 CTCAT$1

1 $3G A 1 1 1 0 2 G$3

1 TCG $2 1 1 1 1 7 GCTCAG$3

1 $1T A 1 0 1 0 2 T$1

0 ACT $1 1 0 1 1 7 TCACAT$2

0 ACT C 1 0 1 3 5 TCAG$3

1 ACT C 0 1 1 3 5 TCAT$1

Figure 4.3: S1S2 merge colored BOSS representation with k = 3.

49

Algorithm 6: colored_boss_construction

Input: LCP, BWT, DA and CL arrays and the selected k
Output: Boss components in boss and colored boss in c_boss

1 bitvector f [1..σ] = 0;
2 bitvector b[1..σ] = 0;
3 integer array, both initialized with 0;
4 int g = 0; // genome identification

5 int d0[1..σ] = 0;
6 int d1[1..σ] = 0;
7 int d_pos = −1;
8 Let boss be an structure containing the BOSS components (last,W,W−, C);
9 Let c_boss be an structure containing the colors bitvector and coverage;

10 int j = 1; // BOSS size counter

11 int i = 1;
12 while i f N do
13 g = DA[i];
14 add_edge(BWT,LCP,CL, boss, c_boss, f, b, d, g, j, i);
15 j = j + 1;
16 while LCP[i+ 1] g k do
17 g = DA[i+ 1];
18 d_pos = dg[BWT[i+ 1]]; // position of BWT[i+ 1] in dg if exists

19 if b[BWT[i+ 1]] == 0 and d_pos ̸= −1 then
20 add_edge(BWT,LCP,CL, boss, c_boss, f, b, d, g, j, i+ 1);
21 last[j − 1] = 0;
22 j = j + 1;

23 else
24 coverage[d_pos] = coverage[d_pos] + 1;
25 end
26 i = i+ 1;
27 d.reset();
28 b.reset();

29 end
30 if LCP[i+ 1] < k − 1 then
31 f.reset();
32 end
33 i = i+ 1;

34 end
35 boss.C[1] = 0;
36 for c = 2 to σ do
37 boss.C[c] = boss.C[c− 1] + F [c− 1];
38 end
39 return boss, c_boss;

4.2.3 Phase 3

The distance between each pair of genomes can be computed by applying the BWSD to

the colors bitvector, obtaining the expectation and entropy distance matrices.

50

Algorithm 7: add_colored_edge

Input: BWT, LCP, CL, boss, c_boss, f, b, d, g, j and pos, in the context of
Algorithm 6

1 boss.W [j] = BWT[pos];
2 boss.last[j] = 1;
3 if f [BWT[pos]] == 1 then
4 boss.W−[j] = 0;
5 else
6 f [BWT[pos]] = 1;
7 end
8 boss.F [BWT[pos]] = F [BWT[pos]] + 1;
9 b[BWT[pos] = 1;

10 c_boss.colors[j] = g;
11 dg[BWT[pos]] = j;
12 c_boss.LCP = LCP[pos];
13 c_boss.CL = CL[pos];
14 c_boss.coverage[pos] = 1;

Note that the colored BOSS representation contains the edges of every i-mer from the

merged genomes, where 1 f i f k+1. The edges representing i-mers where i < k+1 are

part of the BOSS representation and are needed in BOSS navigation. Nevertheless, we

considered that these i-mers where i < k + 1 can compromise our comparisons, since if

we compare a pair of genomes using a value of (k + 1) and then compare this same pair

using a value (k′ +1) > (k+1), all i-mers where 1 f i f k+1 will be considered in both

representations.

Since we are just interested in the (k + 1)-mers for the comparisons, we filtered out

all the edges of the colored BOSS representation using the CL array during the BWSD

computation. That is, for every edge in the representation, we only considered edges where

CL[i] g k+1 during the BWSD computation. For example, Figure 4.4 shows the colored

BOSS representation of {S1,S2} which will be considered in the BWSD computation,

that is, excluding the edges where CL[i] < k + 1.

With the filtered colored BOSS we can consider the colors bitvector as the α bitvector

from the BWSD, thus we have

α = {0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1}

r = 031103120211

and t1 = 2, t2 = 2, t3 = 2 and s = 6. The BWSD(S1,S2) is

P{kj = 1} = 2/6

P{kj = 2} = 2/6

P{kj = 3} = 2/6

51

last Node W W− color coverage LCP CL context
1 $1 T 1 0 1 0 1 $1

1 $3 G 1 1 1 0 1 $3

1 ACA C 1 0 1 0 5 ACAT$2

1 TCA $3 1 0 1 2 7 ACTCAT$1

1 $3GA C 1 1 1 1 3 AG$3

1 $1TA C 1 0 1 1 3 AT$1

1 CAC T 1 0 1 0 6 CACAT$2

1 GAC T 0 1 1 2 4 CAG$3

0 TAC A 1 0 1 2 4 CAT$1

1 TAC T 0 0 1 3 4 CAT$2

0 CTC A 1 0 1 1 6 CTCAG$3

1 CTC G 1 1 1 4 6 CTCAT$1

1 $3G A 1 1 1 0 2 G$3

1 TCG $2 1 1 1 1 7 GCTCAG$3

1 $1T A 1 0 1 0 2 T$1

0 ACT $1 1 0 1 1 7 TCACAT$2

0 ACT C 1 0 1 3 5 TCAG$3

1 ACT C 0 1 1 3 5 TCAT$1

filtering CL < k + 1


y

last Node W W− colors coverage LCP CL context
1 ACA C 1 0 1 0 5 ACAT$2

1 TCA $3 1 0 1 2 7 ACTCAT$1

1 CAC T 1 0 1 0 6 CACAT$2

1 GAC T 0 1 1 2 4 CAG$3

0 TAC A 1 0 1 2 4 CAT$1

1 TAC T 0 0 1 3 4 CAT$2

0 CTC A 1 0 1 1 6 CTCAG$3

1 CTC G 1 1 1 4 6 CTCAT$1

1 TCG $2 1 1 1 0 7 GCTCAG$3

0 ACT $1 1 0 1 0 7 TCACAT$2

0 ACT C 1 0 1 3 5 TCAG$3

1 ACT C 0 1 1 3 5 TCAT$1

Figure 4.4: Colored BOSS representation with k = 3 having only edges with CL[i] g k+1
for {S1,S2}.

Computing the distances DM(S1,S2) and DE(S1,S2) we have

DM(S1,S2) = (1(2/6) + 2(2/6) + 3(2/6))− 1

= 2− 1

= 1

52

and,

DE(S1,S2) = −(((2/6) log2(2/6)) + ((2/6) log2(2/6)) + ((2/6) log2(2/6)))

= −(−1.58496)

= 1.58496

As shown in the example, to compute the expectation and entropy we need r and

t, and the value of s. The process we used to obtain these values in gcBB is shown

in Algorithm 8. The expectation and entropy computations are shown in Algorithms 9

and 10, respectively.

Algorithm 8: bwsd_computation

Input: Bitvector colors, LCP and CL arrays and the selected k
Output: Computed expectation, entropy values

1 int color = 0; // current color in r
2 int max = 0; // max frequency in r
3 int j = 0; // size of r
4 int r[1..j] = 0; // run-length array

5 int i = 0;
6 for i = 1 to |colors| do
7 if CL[i] g k + 1 then
8 if colors[i] == color then
9 r[j] = r[j] + 1;

10 else
11 if r[j] > max then
12 max = r[j];
13 end
14 color = colors[i];
15 j = j + 1;
16 r[j] = 1;

17 end

18 end

19 end
20 int s = 0;
21 int t[1..j] = 0;
22 for i = 1 to j do
23 s = s+ r[i];
24 t[r[i]] = t[r[i]] + 1;

25 end
26 double expectation = bwsd_expectation(t, s,max);
27 double entropy = bwsd_entropy(t, s,max);
28 return entropy, expectation;

In our example, every value in the coverage array is equal to 1, that is, all (k + 1)-

mers occurred once in each genome. However, in real genomes the (k+1)-mers may occur

53

Algorithm 9: bwsd_expectation

Input: t, s,max
Output: expectation

1 int i = 0;
2 double expectation = 0.0;
3 for i = 1 to max+ 1 do
4 if t[i] ̸= 0 then
5 double frac = t[i]/s;
6 expectation = expectation+ (i · frac);

7 end

8 end
9 return expectation− 1.0;

Algorithm 10: bwsd_entropy

Input: t, s,max
Output: entropy

1 int i;
2 double entropy = 0.0;
3 for i = 1 to max+ 1 do
4 if t[i] ̸= 0 then
5 double frac = t[i]/s;
6 entropy = entropy+ (frac ∗ log(frac));

7 end

8 end
9 if entropy then

10 return entropy · (−1.0);
11 end
12 return 0.0;

multiple times and we can use this information in the BWSD to weight the edges of the

graph, aiming at improving the accuracy of the results.

In order to illustrate how coverage information can change the measured similar-

ity, we added reads to both genomes representing a (k + 1)-mer that occurred in the

last example. For example, let S1
c = {TACTCA, TACACT, ACTC, ACTC, ACTC} and S2

c =

{GACTCG, ACTC, ACTC}. In both genomes we have to increment the coverage information of

the k-mers ACT with the outgoing edge C. The filtered edges for {Sc
1,S

c
2} can be observed

in Figure 4.5.

54

last Node W W− colors coverage LCP CL context

1 ACA C 1 0 1 0 5 ACAT$2

1 TCA $3 1 0 1 2 7 ACTCAT$1

1 CAC T 1 0 1 0 6 CACAT$2

1 GAC T 0 1 1 2 4 CAG$3

0 TAC A 1 0 1 2 4 CAT$1

1 TAC T 0 0 1 3 4 CAT$2

0 CTC A 1 0 1 1 6 CTCAG$3

1 CTC G 1 1 1 4 6 CTCAT$1

1 TCG $2 1 1 1 0 7 GCTCAG$3

0 ACT $1 1 0 1 0 7 TCACAT$2

0 ACT C 1 0 4 3 5 TCAG$3

1 ACT C 0 1 3 3 5 TCAT$1

Figure 4.5: Colored BOSS representation with k = 3 having only edges with CL[i] g k+1
for {Sc

1,S
c
2}. Note that the (k + 1)-mer ACTC increased in the last two rows because this

(k + 1)-mer was found 3 times in the first genome and 2 times in the second genome.

We remark that the BWSD values increase when we have more intermixed values in

the colors bitvector, that is, more subsequent zeros and ones. If there are two equal

(k + 1)-mers from distinct genomes in the colored BOSS, they will always appear in the

α array as

{. . . , 0, 1, . . .}

independently of the number of times these (k + 1)-mers occurred in both genomes.

However, if these values occurred many times in both genomes, this should increase

their similarity. To include this information we can apply the coverage information during

the run length computation.

For example, take the α bitvector from the previous example with coverage as

αc = {0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1}

The last 0 and 1 values from αc represent the (k + 1)-mer ACTC from both genomes. In

the colored BOSS this can be detected using the LCP array and the colors bitvector as

follows.

Whenever LCP[j] g k, LCP[j + 1] g k and colors[j] ̸= colors[j + 1] we have the

same (k+1)-mer from distinct genomes. When this happens we apply the coverage value

to the positions of the rc where these values occurred. That is

αc = {0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1}

rc = 031103120101+311+2

rc = 03110312010413

Finally, we expand rc in the positions of the equal (k+1)-mers while merging them, that

55

is

rc = 03110312010413

rc = 03110312010111011101110110

Continuing the BWSD computation we have that t1 = 9, t2 = 1, t3 = 2 and s = 12. Thus,

the BWSD(Sc
1,S

c
2) is

P{kj = 1} = 9/12

P{kj = 2} = 1/12

P{kj = 3} = 2/12

Computing the distances DM(Sc
1,S

c
2) and DE(S

c
1,S

c
2) we have

DM(Sc
1,S

c
2) = (1(9/12) + 2(1/12) + 3(2/12))− 1

= (17/12)− 1

= 5/12

= 0.41666

and,

DE(S
c
1,S

c
2) = −(((9/12) log2(9/12)) + ((1/12) log2(1/12)) + ((2/12) log2(2/12)))

= −(−1.04085)

= 1.04085

We can see that the use of coverage information can modify the expectation and

entropy computed from the BWSD. This difference will be explored with experiments in

the next section.

The modifications in Algorithm 8 to apply coverage information can be visualized in

Algorithm 11. The function intermix is shown in Algorithm 12. The main difference can be

observed in Lines 7-25, where we check if we have the same k-mer from distinct genomes.

Entering this condition, we expand r as shown in last example. The computations of t,

s, expectation and entropy remain the same.

4.3 Time and space analysis

Let n1 and n2 be the sizes of two genomes.

Phase 1: To construct and merge the BWT, LCP and CL we used the eGap algorithm,

which runs in O((n1 + n2) ·maxlcp) time, where maxlcp is the largest LCP value.

Phase 2: In the BOSS construction we have a sequential scan over LCP, BWT and

DA, which takes O(n1 + n2) time. Let m be the number of edges in the BOSS structure.

The space required for the BOSS representation is 5m + 6 logm bits, as shown in Sec-

tion 3.2.2. The colors bitvector and the coverage array require extra m bits and 4m

56

Algorithm 11: bwsd_coverage_computation

Input: Bitvector colors, LCP and CL arrays and the selected k
Output: Computed expectation, entropy values

1 int color = 0; // current color in r
2 int max = 0; // max frequency in r
3 int j = 0; // size of r
4 int r[1..j] = 0; // run-length array

5 int i = 0;
6 for i = 1 to |colors| do
7 if CL[i] g k + 1 then
8 if LCP[i] g k and LCP[i+ 1] g k and colors[i] != colors[i+ 1] then
9 j = intermix_r(coverage[i], coverage[i+ 1], r, j);

10 if r[j] > max then
11 max = r[j];
12 end

13 else
14 if colors[i] == color then
15 r[j] = r[j] + 1;
16 else
17 if r[j] > max then
18 max = r[j];
19 end
20 color = colors[i];
21 j = j + 1;
22 r[j] = 1;

23 end

24 end

25 end

26 end
27 int s = 0;
28 int t[1..j] = 0;
29 for i = 1 to j do
30 s = s+ r[i];
31 t[r[i]] = t[r[i]] + 1;

32 end
33 double expectation = bwsd_expectation(t, s,max);
34 double entropy = bwsd_entropy(t, s,max);
35 return entropy, expectation;

bytes respectively. For short reads, both LCP and CL can be stored in arrays of short

integers, that is, 2m bytes for each one. Therefore, the overall space required is 6m bytes

plus 6m+ 6 logm bits.

Phase 3: In the BWSD computation we have a sequential scan over colors bitvector

and CL array, this takes O(m) time. The arrays r and t require O(m) bytes.

Conclusion: The running time for a pair of genomes is O((n1 + n2) ·maxlcp) +O(n1 +

n2) +O(m) and the required space is O(m).

57

Algorithm 12: intermix_r

Input: c1, c2, r and pos, in the context of Algorithm 11
1 int repetitions = 0;
2 while repetitions f c2 do
3 pos = pos+ 1;
4 r[pos] = 1;
5 repetitions = repetitions+ 1;

6 end
7 remaining = c1 − repetitions+ 1;
8 pos = pos+ 1;
9 r[pos] = remaining;

10 return pos;

58

Chapter 5

Experiments

The gcBB algorithm was evaluated by reconstructing phylogenies of genomes from their

sets of reads. Our algorithm was implemented in C and compiled with gcc version 4.9.2.

The source code can be accessed at https://github.com/lucaspr98/gcBB. We used the

eGap algorithm [10] to construct the data structures in external memory during Phase 1.

From the output of our algorithm, we used the Neighbor-Joining algorithm to reconstruct

the phylogenetic trees.

The experiments were conducted on a machine with Debian GNU/Linux 4.9.2 64 bits

operating system with an Intel Xeon E5-2630 v3 20M Cache 2.40 GHz processor, 378

GB of RAM and a 13 TB SATA storage. Our experiments were limited to 48 GB of RAM.

We evaluated the performance of our algorithm on a dataset of Drosophila species and

on a dataset of Vibrios. We compared the phylogenies obtained with gcBB with reference

phylogenies.

5.1 Drosophilas

The Drosophila genus is a unique group containing a wide range of species that occupy di-

verse ecosystems. In addition to the most widely studied species, Drosophila melanogaster,

this genus also has many other species that were fully or partially sequenced [29].

A gene family evolution across 12 fully sequenced Drosophila species was studied

in [16]. This study generated the phylogeny that can be observed in Figure 5.1. This

phylogeny will be used as a reference phylogeny for comparisons with the results of gcBB.

The work of Lyman et al. [25] used the same set of Drosophilas of the reference

phylogeny. They generated a phylogeny of the 12 Drosophilas that can be observed in

Figure 5.2. They used the Robinson-Foulds distance [34] between their tree and the

established tree in [16] and the resulting distance was 0 using k = 17, which means that

the phylogenies are consistent.

Polevikov and Kolmogorov et al. [31] used a slightly distinct set of Drosophilas on their

experiments. Miller et al [29] used the single-molecule sequencing technology by Oxford

Nanopore to reconstruct the phylogeny of 15 Drosophila species shown in Figure 5.3.

They used 10 of the 12 originally sequenced Drosophila species (D. ananassae, D. erecta,

D. mojavensis, D. persimilis, D. pseudoobscura, D. sechellia, D. simulans, D. virilis, D.

59

Figure 5.1: The phylogeny of 12 Drosophilas. Figure from [16].

Figure 5.2: The phylogeny of 12 Drosophilas using k = 17. Figure from [25].

60

willistoni, and D. yakuba), four additional species that had previously reported assemblies

(D. biarmipes, D. bipectinata, D. eugracilis, and D. mauritiana), and one novel assembly

(D. triauraria). The work of Polevikov and Kolmogorov generated the phylogeny of such

15 Drosophilas that can be observed in Figure 5.4 using k = 15.

Figure 5.3: The phylogeny of 15 Drosophilas. Figure from [29].

Figure 5.4: The phylogeny of 15 Drosophilas using k = 15. Figure [31].

61

5.1.1 Dataset

In this work we reconstructed the phylogeny of the 12 Drosophila species in Table 5.1

obtained from FlyBase [40], which is the main repository and WEB portal for genetic

data related to Drosophila melanogaster, the fruit fly. The average length of the reads is

302 characters for these genomes, except for D. grimshawi, which has average read length

of 6520 characters. The reads of D. grimshawi were sequenced with MinION1, while the

other genomes were sequenced with NextSeq 5002.

Table 5.1: Information on the genomes of Drosophilas. The bases column specifies the
number of sequenced bases of the genome (in Gbp). The reference column specifies the size
of the complete referenced genome (in Mb). All genomes can be easily accessed through
its Run accession number or BioSample in https://www.ncbi.nlm.nih.gov/genbank/.

Organism Run BioSample Bases Reference
D. melanogaster SRR6702604 SAMN08511563 6.20 138.93
D. ananassae SRR6425991 SAMN08272423 7.13 215.47
D. simulans SRR6425999 SAMN08272428 9.22 131.66
D. virilis SRR6426000 SAMN08272429 11.16 189.44
D. willistoni SRR6426003 SAMN08272432 11.66 246.98
D. pseudoobscura SRR6426001 SAMN08272435 12.28 163.29
D. mojavensis SRR6425997 SAMN08272426 12.45 163.17
D. yakuba SRR6426004 SAMN08272438 12.78 147.90
D. persimilis SRR6425998 SAMN08272433 13.32 195.51
D. erecta SRR6425990 SAMN08272424 14.01 146.54
D. sechellia SRR6426002 SAMN08272427 14.44 154.19
D. grimshawi SRR13070661 SAMN16729613 14.50 191.38

5.1.2 Running time

First, during Phase 1, we constructed the BWT, LCP and CL arrays for each genome

in the dataset using eGap algorithm with the RAM usage limited to 32GB. The running

time for each genome and the sizes of the arrays are shown in Table 5.2. The longest

running time was approximately 57 hours, with the resulting arrays taking about 68GB

of memory.

Then, during Phase 2 we merged the constructed data structures in pairs used to

construct the colored graphs in Phase 3. The average time to merge each pair depends on

their sizes. The fastest merge took approximately 27 hours, between D. ananassae and

D. melanogaster, the slowest merge took approximately 60 hours, between D. grimshawi

and D. sechellia. The size of the merged files was approximately the sum of the sizes of

the input files. The document array file has the same size of the BWT merged file, since

both store each value using one byte.

1https://nanoporetech.com/products/minion
2https://www.illumina.com/systems/sequencing-platforms/nextseq.html

62

Table 5.2: Construction information on data structures for the Drosophilas genomes.

Organism BWT LCP CL Time LCP avg LCP max
D. melanogaster 5.9GB 12GB 12GB 17.30h 61.54 302
D. ananassae 6.7GB 14GB 14GB 18.37h 55.56 302
D. simulans 8.7GB 18GB 18GB 24.18h 58.96 302
D. virilis 11GB 21GB 21GB 28.45h 55.06 302
D. willistoni 11GB 22GB 22GB 37.31h 57.79 302
D. pseudoobscura 12GB 23GB 23GB 40.07h 58.72 302
D. mojavensis 12GB 24GB 24GB 32.65h 58.09 302
D. yakuba 12GB 24GB 24GB 42.42h 59.98 302
D. persimilis 13GB 25GB 25GB 35.30h 58.76 302
D. erecta 14GB 27GB 27GB 42.92h 60.47 302
D. sechellia 14GB 27GB 27GB 37.88h 61.25 302
D. grimshawi 14GB 27GB 27GB 57.4h 43.07 2648

5.1.3 Phylogenetic trees

We expect to reconstruct a phylogeny that agrees with the phylogeny in Figure 5.1, which

we will refer to as reference phylogeny during the analysis of the experiments. In Figure 5.5

we can observe Drosophila groups and subgroups, which may help our analysis.

Figure 5.5: Drosophila phylogeny with groups and subgroups divisions, from [7]

We ran gcBB using different values for k, namely k = 15, 31, 63, each experiment

outputs an entropy and an expectation matrix which were used to produce the phylogenies.

Also, we considered the graphs with and without coverage information in the BWSD

computation.

The phylogenies using k = 15 can be observed in Figure 5.6. In both phylogenies

(based entropy and expectation matrices) we can observe that the pair D. pseudoobscura

63

and D. persimilis from the obscura group agrees with the reference phylogeny. In Fig-

ure 5.6a we can also observe that D. yakuba and D. erecta from melanogaster subgroup are

segregated together, agreeing with the reference. In Figure 5.6b we can observe a subtree

composed by D. willistoni, D. virilis, D. mojavensis and D. grimshawi, which are species

placed outside of the melanogaster and obscura groups. In general, both phylogenies

disagree with the reference phylogeny.

(a) (b)

Figure 5.6: gcBB phylogenies for Drosophilas with k = 15, (a) using entropy, (b) using
expectation.

By including coverage information in the BWSD computation, we obtained the phy-

logenies shown in Figure 5.7. We observe that the genomes that were close and agreed

with the reference phylogeny in the previous experiment are still grouped together. In

both phylogenies (for entropy and expectation matrices) we have a clear separation be-

tween the melanogaster group and the outside groups. With entropy we have the exact

D. melanogaster group, while when using expectation we have some genomes positioned

in different branches. From the Drosophila groups and subgroups shown in Figure 5.5

we can observe that genomes from outside the melanogaster group (D. pseudoobscura, D.

persimilis, D. grimshawi, D. virilis, D. mojavensis, D. willistoni) still disagree with the

reference phylogeny. In this case, there is an indication that the coverage information

helped separating the melanogaster group from the other genomes.

64

(a) (b)

Figure 5.7: gcBB phylogenies for Drosophilas with k = 15 and coverage information, (a)
using entropy, (b) using expectation.

For k = 31 we have the phylogenies shown in Figure 5.8. Again, the Drosophila

groups and subgroups shown in Figure 5.5 we can observe that in both phylogenies (for

entropy and expectation matrices) there is a division between the melanogaster group,

the obscura group and the remaining groups together in a subtree (willistoni group, virilis

group, repleta group, Hawaiian Drosophila). We can observe a few inconsistencies inside

the subgroups, but the high level groups division agrees with the reference phylogeny.

Using coverage with k = 31 we obtained basically the same phylogenies, which are shown

in Figure A.1 (Page 76).

Finally for k = 63 we can observe in Figure 5.9 that the phylogenies are very similar

to those resulting with k = 31. The same happens with applied coverage, which can be

observed in Figure A.2 (Page 77).

For a pair of phylogenetic trees T1 and T2 with n vertices labeled by U = {1, 2, . . . , n},

the distance by Robinson and Foulds [34] is the number of bipartitions of U exclusive to

T1 or to T2 that may be obtained by removing a single edge of both T1 or to T2. The

Robinson-Foulds distance values vary from 0 to 2n− 6.

Computing the Robinson-Foulds [34] distance between our phylogenies and the refer-

ence phylogeny we obtained the values shown in Table 5.3. These results indicate that

our method produces reasonable phylogenies when k is closer to the average LCP of the

reads. Also, the use of coverage information reduced the Robinson-Foulds distance to the

reference in most cases. Finally, the fact that all reads in the dataset were obtained using

the same sequencing strategy and, in average, have a similar number of sequenced bases

may have helped obtaining favorable results.

65

(a) (b)

Figure 5.8: gcBB phylogenies for Drosophilas with k = 31, (a) using entropy, (b) using
expectation.

(a) (b)

Figure 5.9: gcBB phylogenies for Drosophilas with k = 64, (a) using entropy, (b) using
expectation.

5.1.4 Effect of data size

In order to evaluate the effect of the number of sequenced reads in the resulting phy-

logeny, we considered a dataset of Illumina HiSeq 2000 reads dataset of the D. grimshawi,

described in Table 5.4. The running time taken by eGap to construct the data structures

and their sizes are shown in Table 5.5.

66

Table 5.3: Robinson-Foulds distance computed between phylogenies constructed by gcBB
and the reference phylogeny. The symbol c represents the phylogenies constructed using
coverage information.

15 15c 31 31c 63 63c
Entropy 7 2 2 1 2 1
Expectation 6 5 2 3 2 2

Table 5.4: Information on the genome of D. grimshawi. The bases column specifies the
number of sequenced bases of the genome (in Gbp). The reference column specifies the size
of the complete referenced genome (in Mb). All genomes can be easily accessed through
its Run accession number or BioSample in https://www.ncbi.nlm.nih.gov/genbank/.

Organism Run BioSample Bases Reference
D. grimshawi SRR7642855 SAMN09764638 1.80 191.38

Table 5.5: Construction information for D. grimshawi.

Organism BWT LCP CL Time LCP avg LCP max
D. grimshawi 1.80GB 3.5GB 3.5GB 2.22h 28.74 76

We executed gcBB using the same parameters and values of k. The best phylogeny

was obtained with k = 15 and using coverage information, and is shown in Figure 5.10.

We can observe that in both phylogenies the genomes outside the melanogaster group

are correct, but the melanogaster group and subgroup disagree with the reference phy-

logeny. In the phylogenies for k = 31 and k = 64 (with and without coverage information)

we had similar trees with few variations in the melanogaster subgroup with D. simulans,

D. schelia, D. yakuba and D. erecta. Moreover, all phylogenies had a subtree contain-

ing D. ananassae, D. melanogaster and D. grimshawi, which disagree with the reference

phylogeny.

Our feeling is that we have a limitation when there are significantly distinct amounts

of sequenced bases. In this example, we have D. grimshawi with 1.80G sequenced bases,

while we have genomes as D. sechellia and D. simulans exceeding 14G of sequenced bases.

When constructing the BOSS representation for D. grimshawi and D. sechellia there will

be many more edges from D. sechellia than from D. griwshawi, and the similarity between

these two genomes tends to be small. On the other hand, when constructing the BOSS

representation for D. grimshawi and D. melanogaster there will also be many more edges

from D. melanogaster. Moreover, the difference between the amount of sequenced bases

from D. melanogaster to D. grimshawi is around 4GB, while from D. sechellia to D.

grimshawi is around 12GB.

Therefore we conclude that among these phylogenies, D. grimshawi will always be

closer to the smallest genomes, such as D. melanogaster and D. ananassae, which can be

observed in Figure 5.10 and in Figures A.3-A.4 (Pages 77-78).

67

(a) (b)

Figure 5.10: gcBB phylogenies for Drosophilas with D. grimshawi with k = 15 and
coverage information, (a) using entropy, (b) using expectation.

When we compute the Robinson-Foulds distance between these phylogenies and the

reference phylogeny we obtained the values in Table 5.6 notably larger than the previous

ones.

Table 5.6: Robinson-Foulds distance computed between phylogenies with D. grimshawi
from another experiment and the reference phylogeny. The symbol c represents the phy-
logenies constructed using coverage information.

15 15c 31 31c 63 63c
Entropy 7 5 5 5 5 5
Expectation 6 7 6 5 6 6

5.2 Vibrios

Thompson et al. [39] constructed 6 phylogenies of 16 Vibrio genomes combining 16S

rRNA, Multilocus Sequence Analysis (MLSA) and Supertree with Maximum Parsimony

and Neighbor-Joining. For the 16S rRNA trees, the sequences of 16S rRNA genes were

concatenated. For MLSA and Supertree, different sets of house-keeping genes were con-

catenated. The sequences were aligned by the software CLUSTALX and trees were gen-

erated using the softwares MEGA and PAUP.

We have selected 9 genomes out of those 16 to test gcBB. The selected genomes are

described in Table 5.7. The reference phylogeny for our analysis was constructed using

Supertree and Neighbor-Joining and is shown in Figure 5.11. We have selected Supertree

because it covers a larger portion of the genes in Vibrios, and Neighbor-Joining to be

68

consistent with our experiment with Drosophilas. Also, we can observe Vibrio groups in

Figure 5.11, which may help our analysis.

Figure 5.11: Phylogenetic tree for supertree and Neighbour-Joining. Figure from [39].

Table 5.7: Information on the genomes of Vibrios. The bases column specifies the number
of sequenced bases of the genome (in Mbp). The reference column specifies the size of the
complete referenced genome (in Mb). Reads column specifies the average length of the
reads. All genomes can be easily accessed through its Run accession number or BioSample
in https://www.ncbi.nlm.nih.gov/genbank/.

Organism Run BioSample Bases Reference Reads
A. fischeri SRR13978570 SAMN18318596 503.71 4.11 150
P. angustum SRR6219161 SAMN07327723 267.39 4.88 226
P. profundum SRR6219413 SAMN07327759 243.41 6.19 201
V. alginolyticus SRR9163535 SAMN11896020 306.79 5.18 285
V. cholerae SRR8364453 SAMN10610880 441.21 4.02 250
V. harveyi SRR2931635 SAMN04279316 322.22 5.02 251
V. mimicus SRR8535051 SAMN10711948 130.89 4.31 242
V. parahaemolyticus SRR5023255 SAMN05271621 218.79 5.11 240
V. vulnificus SRR7239526 SAMN09270178 994.95 5.00 251

The time taken to construct the BWT, LCP and CL arrays for each genome and the

arrays sizes are shown in Table 5.2. In this experiment we limited the memory to 8GB of

RAM.

We ran gcBB using different values for k, namely k = 15, 31, 63. Computing the

Robinson-Foulds distance between the phylogenies and the reference phylogeny we ob-

tained the values that are shown in Table 5.9.

69

Table 5.8: Construction information on data structures for the Vibrios genomes.

Organism BWT LCP CL Time LCP avg LCP max
A. fischeri 780MB 1.6GB 1.6GB 2.21h 70.62 150
P. angustum 213MB 426MB 426MB 0.96h 92.26 251
P. profundum 181MB 361MB 361MB 0.76h 65.41 251
V. alginolyticus 247MB 493MB 493MB 1.33h 109.89 301
V. cholerae 333MB 665MB 665MB 1.37h 62.00 250
V. harveyi 237MB 474MB 474MB 1.01h 68.35 251
V. mimicus 111MB 222MB 222MB 0.50h 96.05 251
V. parahaemolyticus 176MB 351MB 351MB 0.79h 100.96 251
V. vulnificus 834MB 1.7GB 1.7GB 3.82h 109.63 251

Table 5.9: Robinson-Foulds distance computed between the phylogenies for Vibrios con-
structed by gcBB and the reference phylogeny. The symbol c represents the phylogenies
constructed using coverage information.

15 15c 31 31c 63 63c

Entropy 6 5 6 5 6 6

Expectation 6 6 6 6 6 6

In general, we can observe that all phylogenies disagree with the reference. The best

gcBB phylogenies were reconstructed from the k = 15 and 31 with coverage information

entropy matrices.

For k = 15 with coverage information we have the phylogenies shown in Figure 5.12

(for entropy and expectation matrices). In Figure 5.12a we can observe that the Allivibrio

and Photobacterium groups are in the correct subtree, but segregated incorrectly, since P.

angustum and P. profundum should be closer. In Figure 5.12b we can observe that none

of the groups is correctly segregated. We can also observe a significant difference between

the branch lengths, which are considerably longer in the expectation matrix. Moreover,

both phylogenies disagree with the reference.

For k = 31 with coverage information we have the same phylogeny for k = 15 with

coverage information, as shown in Figure 5.13. The Robinson-Foulds distance among

these phylogenies is 0. The phylogenies generated for the remaining parameters can be

observed in Figures B.1-B.4(Pages 79-81).

These results indicate that our method does not produce consistent phylogenies for

small sets of reads. Again, the use of coverage information reduced the Robinson-Foulds

distance to the reference in a few cases.

70

(a) (b)

Figure 5.12: gcBB phylogenies for Vibrios with k = 15 and coverage information, (a)
using entropy, (b) using expectation.

(a) (b)

Figure 5.13: gcBB phylogenies for Vibrios with k = 31 and coverage information, (a)
using entropy, (b) using expectation.

71

Chapter 6

Conclusions

In this dissertation we introduced a new method to compare draft genomes using space-

efficient data structures implemented as the gcBB algorithm, an algorithm to compare

sets of reads of genomes using the BOSS representation and to compute the similarity

measures based on the BWSD.

We evaluated our algorithm reconstructing the phylogeny of the 12 Drosophila

genomes. We used the Neighbor-Joining method over the matrices output by gcBB for

the creation of the phylogenetic trees. Then we computed the Robinson-Foulds distance

between our phylogenies and the reference. One issue when working with the de Bruijn

graph is to set the value of k. We observed that values over the average LCP from the

genomes produces more consistent results. We also observed better results using the

entropy measure and coverage information.

We observed that gcBB does not output consistent results for genomes that does

not have a large set of reads, as the Vibrio species in our experiments (less than 1GB

of sequenced bases). Also, the phylogeny may become disorganized when there is one

genome with considerably less sequenced bases than the other genomes in the set.

Further experiments may help understanding the limits and the advantages of the

approach introduced in this work. Future research may also investigate different strategies

for dealing with coverage information, as the experiments indicate a positive contribution

of coverage to the resulting phylogenies. The quality of sequenced bases may also be

investigated in future work, as a means to improve the method.

72

Bibliography

[1] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern information retrieval, vol-

ume 463. ACM Press New York, 1999.

[2] Monya Baker. De novo genome assembly: what every biologist should know. Nature

methods, 9(4):333–337, 2012.

[3] Paola Bonizzoni, Gianluca Della Vedova, Yuri Pirola, Marco Previtali, and Raffaella

Rizzi. Multithread multistring Burrows-Wheeler transform and longest common pre-

fix array. J. Comput. Biol., 26(9):948–961, 2019.

[4] Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct

de Bruijn graphs. In WABI, volume 7534 of Lecture Notes in Computer Science,

pages 225–235. Springer, 2012.

[5] Michael Burrows and David Wheeler. A block-sorting lossless data compression

algorithm. Technical report, Digital SRC Research Report, 1994.

[6] Rudi Cilibrasi and Paul M. B. Vitányi. Clustering by compression. IEEE Transac-

tions on Information Theory, 51(4):1523–1545, 2005.

[7] Andrew G Clark and Lior Pachter. Evolution of genes and genomes on the Drosophila

phylogeny. Nature, 450(7167):203–218, 2007.

[8] Nicolaas Govert De Bruijn. A combinatorial problem. In Proc. Koninklijke Neder-

landse Academie van Wetenschappen, volume 49, pages 758–764, 1946.

[9] Lavinia Egidi, Felipe A Louza, and Giovanni Manzini. Space-efficient merging of suc-

cinct de Bruijn graphs. In Proc. SPIRE, volume 11811 of Lecture Notes in Computer

Science, pages 337–351. Springer, 2019.

[10] Lavinia Egidi, Felipe A Louza, Giovanni Manzini, and Guilherme P Telles. Exter-

nal memory BWT and LCP computation for sequence collections with applications.

Algorithms for Molecular Biology, 14(1):1–15, 2019.

[11] Joseph Felsenstein. Inferring phylogenies. Sinauer Associates Sunderland, MA, 2004.

[12] Paolo Ferragina, Rodrigo González, Gonzalo Navarro, and Rossano Venturini. Com-

pressed text indexes: From theory to practice. Journal of Experimental Algorithmics

(JEA), 13:1–12, 2009.

73

[13] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applica-

tions. In Proceedings 41st Annual Symposium on Foundations of Computer Science,

pages 390–398. IEEE, 2000.

[14] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM,

52(4):552–581, July 2005.

[15] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-

compressed text indexes. 2003.

[16] Matthew W Hahn, Mira V Han, and Sang-Gook Han. Gene family evolution across

12 drosophila genomes. PLoS genetics, 3(11):e197, 2007.

[17] Zamin Iqbal, Mario Caccamo, Isaac Turner, Paul Flicek, and Gil McVean. De novo

assembly and genotyping of variants using colored de Bruijn graphs. Nature genetics,

44(2):226–232, 2012.

[18] Ananth Kalyanaraman. Genome Assembly. Springer US, Boston, MA, 2011.

[19] Kazutaka Katoh and Daron M. Standley. MAFFT Multiple Sequence Alignment

Software Version 7: Improvements in Performance and Usability. Molecular Biology

and Evolution, 30(4):772–780, 01 2013.

[20] Mikhail Kolmogorov, Derek M Bickhart, Bahar Behsaz, Alexey Gurevich, Mikhail

Rayko, Sung Bong Shin, Kristen Kuhn, Jeffrey Yuan, Evgeny Polevikov, Timothy PL

Smith, and Pavel A Pevzner. MetaFlye: scalable long-read metagenome assembly

using repeat graphs. Nature Methods, 17(11):1103–1110, 2020.

[21] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie 2.

Nature Methods, 9(4):357, 2012.

[22] Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows–

Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[23] Felipe A Louza, Guilherme P Telles, Simon Gog, Nicola Prezza, and Giovanna

Rosone. gsufsort: constructing suffix arrays, LCP arrays and BWTs for string col-

lections. Algorithms Mol. Biol., 15(1):18, 2020.

[24] Felipe A Louza, Guilherme P Telles, Simon Gog, and Liang Zhao. Algorithms to

compute the Burrows-Wheeler similarity distribution. Theor. Comput. Sci., 782:145–

156, 2019.

[25] Cole A Lyman, M Stanley Fujimoto, Anton Suvorov, Paul M Bodily, Quinn Snell,

Keith A Crandall, Seth M Bybee, and Mark J Clement. Whole genome phylogenetic

tree reconstruction using colored de Bruijn graphs. In 2017 IEEE 17th International

Conference on Bioinformatics and Bioengineering (BIBE), pages 260–265. IEEE,

2017.

74

[26] Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I. Tomescu.

Genome-Scale Algorithm Design. Cambridge University Press, 2015.

[27] Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string searches.

SIAM Journal on Computing, 22(5):935–948, 1993.

[28] S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. An extension of the Bur-

rows–Wheeler transform. Theoretical Computer Science, 387(3):298 – 312, 2007.

The Burrows-Wheeler Transform.

[29] Danny E Miller, Cynthia Staber, Julia Zeitlinger, and R Scott Hawley. Highly con-

tiguous genome assemblies of 15 Drosophila species generated using nanopore se-

quencing. G3: Genes, Genomes, Genetics, 8(10):3131–3141, 2018.

[30] Ge Nong. Practical linear-time O(1)-workspace suffix sorting for constant alphabets.

ACM Transactions on Information Systems, 31(3):1–15, 2013.

[31] Evgeny Polevikov and Mikhail Kolmogorov. Synteny paths for assembly graphs com-

parison. In 19th International Workshop on Algorithms in Bioinformatics (WABI

2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[32] Nicola Prezza and Giovanna Rosone. Space-efficient construction of compressed suffix

trees. Theor. Comput. Sci., 852:138–156, 2021.

[33] Raffaella Rizzi, Stefano Beretta, Murray Patterson, Yuri Pirola, Marco Previtali,

Gianluca Della Vedova, and Paola Bonizzoni. Overlap graphs and de Bruijn graphs:

data structures for de novo genome assembly in the big data era. Quantitative Biology,

7(4):278–292, 2019.

[34] David F Robinson and Leslie R Foulds. Comparison of phylogenetic trees. Mathe-

matical Biosciences, 53(1-2):131–147, 1981.

[35] Naruya Saitou and Masatoshi Nei. The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4):406–425, 07

1987.

[36] Karsten Scheibye-Alsing, Steve Hoffmann, A Frankel, Peter Jensen, Peter F Stadler,

Yuan Mang, Niels Tommerup, Mike J Gilchrist, A-B Nygård, Susanna Cirera,

Claus B Jörgensen, Merete Fredholm, and Jan Gorodkin. Sequence assembly. Com-

putational Biology and Chemistry, 33(2):121–136, 2009.

[37] Joao Carlos Setubal and Joao Meidanis. Introduction to computational molecular

biology. PWS Pub. Boston, 1997.

[38] Jared T Simpson and Richard Durbin. Efficient de novo assembly of large genomes

using compressed data structures. Genome Research, 22(3):549–556, 2012.

75

[39] Cristiane C Thompson, Ana Carolina P Vicente, Rangel C Souza, Ana Tereza R Vas-

concelos, Tammi Vesth, Nelson Alves, David W Ussery, Tetsuya Iida, and Fabiano L

Thompson. Genomic taxonomy of Vibrios. BMC Evolutionary Biology, 9(1):1–16,

2009.

[40] Jim Thurmond, Joshua L Goodman, Victor B Strelets, Helen Attrill, L Sian Gra-

mates, Steven J Marygold, Beverley B Matthews, Gillian Millburn, Giulia Antonazzo,

Vitor Trovisco, Thomas C Kaufman, Brian R Calvi, and the FlyBase Consortium.

FlyBase 2.0: the next generation. Nucleic Acids Research, 47(D1):D759–D765, 10

2018.

[41] Lianping Yang, Xiangde Zhang, and Tianming Wang. The Burrows–Wheeler similar-

ity distribution between biological sequences based on Burrows–Wheeler transform.

Journal of Theoretical Biology, 262(4):742 – 749, 2010.

76

Appendix A

Drosophilas

A.1 Additional phylogenies for 12 Drosophilas

In this appendix we present the additional phylogenies produced by gcBB for the 12

Drosophilas.

(a) (b)

Figure A.1: gcBB phylogenies for Drosophilas with k = 31 and coverage information, (a)
using entropy, (b) using expectation.

77

(a) (b)

Figure A.2: gcBB phylogenies for Drosophilas with k = 63 and coverage information, (a)
using entropy, (b) using expectation.

(a) (b)

Figure A.3: gcBB phylogenies for Drosophilas with distinct D. grimshawi with k = 15,
(a) using entropy, (b) using expectation.

78

(a) (b)

Figure A.4: gcBB phylogenies for Drosophilas with distinct D. grimshawi with k = 31,
(a) using entropy, (b) using expectation.

79

Appendix B

Vibrios

B.1 Additional phylogenies for 6 Vibrios

In this appendix we present the additional phylogenies produced by gcBB for the 6 Vibrios.

(a) (b)

Figure B.1: gcBB phylogenies for Vibrios with k = 15, (a) using entropy, (b) using
expectation.

80

(a) (b)

Figure B.2: gcBB phylogenies for Vibrios with k = 31, (a) using entropy, (b) using
expectation.

(a) (b)

Figure B.3: gcBB phylogenies for Vibrios with k = 63, (a) using entropy, (b) using
expectation.

81

(a) (b)

Figure B.4: gcBB phylogenies for Vibrios with k = 63 and coverage information, (a) using
entropy, (b) using expectation.

	Introduction
	Organization

	Background
	Terminology and Definitions
	Data Structures
	Suffix Array
	LCP Array
	Burrows-Wheeler Transform
	FM-index
	String collections

	Burrows-Wheeler Similarity Distribution

	Genome Comparison
	Genome assembly
	de Bruijn graphs
	Colored de Bruijn graphs
	BOSS representation
	BOSS operations
	BOSS construction

	Genome comparison with de Bruijn graphs
	Lyman et al.
	Polevikov and Kolmogorov

	gcBB Algorithm
	Genome comparison via BWSD
	Algorithm
	Phase 1
	Phase 2
	Phase 3

	Time and space analysis

	Experiments
	Drosophilas
	Dataset
	Running time
	Phylogenetic trees
	Effect of data size

	Vibrios

	Conclusions
	Bibliography
	Drosophilas
	Additional phylogenies for 12 Drosophilas

	Vibrios
	Additional phylogenies for 6 Vibrios

