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Resumo

A ampla categoria de Problemas de Roteamento de Veículos (VRPs) originou-se do VRP
Capacitado (CVRP) proposto no fim dos anos 1950, que consiste em encontrar a maneira
mais econômica de servir a um conjunto de clientes com uma frota de veículos de uma dada
capacidade. Nesta tese, são abordados problemas de otimização combinatória em dois
grupos de VRPs: um considerando consumo de energia e outro que considera backhauls.
Além de sua relação com custos de transporte, o interesse no consumo de energia em
roteamento de veículos está crescendo nas últimas décadas devido ao seu potencial de
mitigar impactos ambientais.

Enquanto custos no CVRP são mensurados em termos de distância, o VRP Cumu-
lativo (CmVRP) é uma variante que objetiva minimizar uma medida simplificada de
consumo de energia dependente de carga. Combinando os conceitos de duas formulações
pré-existentes, este trabalho propõe uma nova formulação de programação linear inteira
para o CmVRP, cuja relaxação de programação linear (LP) é mais forte que ambas as
relaxações de LP das originais. Além disso, visando resolver a versão inteira do problema,
é empregado um algoritmo branch-cut-and-price (BCP) baseado em uma formulação da
literatura a fim de apresentar resultados em estado-da-arte para o CmVRP. Adicional-
mente, um pequeno resultado de aproximação sobre o problema é apresentado.

Também lidando com um outro aspecto do consumo de energia, este trabalho propõe
variantes do CVRP e CmVRP que consideram limites de energia dependente de carga
por veículo, o que pode restringir o alcance de cada veículo sem reabastecer ou recar-
regar energia. Para estes problemas, este trabalho propõe formulações mestre baseadas
em partição de conjunto e subproblemas de pricing correspondentes, onde uma das for-
mulações e os subproblemas fazem uso de cargas discretizadas por arco. Deste modo,
esta tese apresenta abordagens BCP baseadas nestes componentes. No melhor do nosso
conhecimento, esta é a primeira vez que um consumo de energia dependente de carga dos
veículos é limitado por meio do subproblema de pricing. São mostrados vastos resultados
computacionais comparando o CVRP, CmVRP e suas variantes com energia limitada.

Por fim, este trabalho aborda a variante do CVRP denominada VRP com Backhauls
Seletivos, no qual, depois de visitar clientes, cada veículo pode visitar um único backhaul
para coletar um valor de receita. Nesta abordagem, considera-se que as receitas são
incertas. Para lidar com esta incerteza, um modelo de otimização robusta, para este
problema, é elaborado e analisado. São resolvidos os modelos determinístico e robusto por
um algoritmo branch-and-cut e são apresentados resultados computacionais comparando-
os com uma abordagem heurística.



Abstract

The large category of Vehicle Routing Problems (VRPs) was originated from the
Capacitated VRP (CVRP) proposed in the end of 1950s, which consists in finding the
cheapest way to serve a set of customers with a fleet of vehicles of a given capacity. In
this thesis, we approach combinatorial optimization problems in two groups of VRPs: one
considering energy consumption and other that considers backhauls. Besides its relation
to transportation costs, the interest in the energy consumption of vehicle routing is rising
in the last decades due to its potential of mitigating environmental impacts.

While costs in the CVRP are measured in terms of distance, the Cumulative VRP
(CmVRP) is a variant that aims to minimize a simplified measure of a load-dependent
energy consumption. Combining the concepts of two previous formulations, we propose a
new integer linear programming formulation for the CmVRP, whose linear programming
(LP) relaxation is stronger than both LP relaxations of the original ones. Furthermore,
aiming at solving the integer version of the problem, we employ a branch-cut-and-price
(BCP) algorithm based on a formulation from the literature to present state-of-the-art
results for the CmVRP. Additionally, a small approximation result on the problem is
presented.

Also dealing with another aspect of energy consumption, we propose CVRP and
CmVRP variants that consider load-dependent energy limits per vehicle, which might
restricts each vehicle range without replenishing. To these problems, we propose master
formulations based on set-partitioning and correspondent pricing subproblems, where one
of the formulations and the subproblems rely on discretized loads per arc. Thereby we
devise BCP approaches based on these components. To the best of our knowledge, this
is the first time a load-dependent energy consumption of the vehicles is limited by the
means of the pricing subproblem. We show extensive computational results comparing
the CVRP, CmVRP, and their variants with limited energy.

Finally, we tackle the CVRP variant called VRP with Selective Backhauls, in which,
after visiting customers, each vehicle may visit a single backhaul to collect an amount
of revenue. In this approach, we consider that the revenues are uncertain. To deal with
this uncertainty, a robust optimization model for this problem was devised and analyzed.
We solve the deterministic and robust models by a branch-and-cut algorithm and present
computational results comparing them with a heuristic approach.
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Chapter 1

Introduction

A combinatorial optimization problem consists in finding an optimal solution among a
discrete set of feasible solutions, i.e., it searches such a set for a solution that minimizes or
maximizes an objective function while respects the problem’s constraints [136, 178, 8]. A
problem of this type is often described as a mathematical programming formulation, which
involves decision variables representing components of the solutions, an objective function,
constraints given by inequalities, and constraints over the domains of the variables. When
the objective function and the constraints are linear and the domains of (at least some of)
the variables are integer, we have a mixed-integer linear programming (MILP) formulation
[136, 178, 8]. In the general case, a MILP problem is NP-hard, which means that its exact
resolution requires an algorithm of superpolynomial computing time when considering
P 6= NP, i.e., it is unlikely to exist a polynomial-time algorithm for such a problem [47].
Many applied NP-hard problems can be modeled as MILP formulations, as numerous
problems in the large category of Vehicle Routing Problems (VRPs) [170]. This category,
by turn, originated from the CVRP proposed by Dantzig and Ramser [50], which consists
in finding the cheapest way to serve a set of customers with a fleet of vehicles of a given
capacity. This thesis employs exact approaches to tackle some VRPs, including CVRP
variations that directly consider energy consumption. In the remainder of this chapter,
we mention some techniques we rely on to propose resolution approaches that mitigate
the hardness of the problems, and give an overview of the contents of this thesis.

1.1 Preliminaries

There are several approaches to tackle NP-hard MILP problems, each one with its own
trade-offs involving quality of solution and computing time. When the priority is to obtain
guaranteed optimal or near-optimal solutions, one might employ an exact method [8,
44]. Given that the problems have a potentially huge number of feasible solutions, exact
approaches that perform implicit enumeration are often applied [44, 131, 178]. A typical
example is the branch-and-bound (BB) method, that successively divides the solution
space while being careful to avoid – by the usage of bounds on solution values – the
exploration of sets of feasible solutions with no potential of optimality. Besides, the
divisions in the solution space can be seen as branches in a BB tree. As it may be



12

impractical to wait for an exact answer, the search may be set to finish within a time limit.
When the computing time is the major concern, approximation and heuristic methods
may be suitable [131]. An approximation algorithm runs in polynomial time and has a
formal proof of the quality of the values of the computed feasible solutions compared to
the optimal value [173, 35, 177]. Heuristic algorithms, in turn, do not assure a quality
of solution and may even not run in polynomial time, however, they often present fast
running times [83]. In the following, we give a brief overview of exact approaches for NP-
hard MILP problems and cite several works and textbooks that discuss these techniques.

When a problem’s MILP formulation is relaxed by dropping the integrality constraints,
we are let with a linear programming (LP) formulation, that can be solved in polynomial
time [136]. Considering its geometric ties, it is known that the constraints of an LP model
defines a polyhedron, whose points correspond to feasible solutions of the problem [39,
21, 8]. One way to solve an LP formulation is by searching only among the vertices of its
polyhedron, which is the idea of the Simplex method, that was proposed by Dantzig in
1951 [51, 44] and has been widely used in practice [39, 21, 8]. Besides, some important
known facts relate a MILP formulation to its LP relaxation, as follows. Given a MILP
formulation, its associated polyhedron contains a (polyhedron given by the) convex hull
of its feasible solutions, called mixed-integer hull. It is known that it suffices to search
for an optimal solution of the MILP formulation among the vertices of its mixed-integer
hull, however, obtaining such a hull is as hard as solving the MILP model itself [8]. Here
is where the MILP’s LP relaxation comes in: when a solution that fulfill the integrality
requirements (of the MILP) is found on a vertex of the LP relaxation’s polyhedron, it is
guaranteed that such a solution is also on a vertex of the respective mixed-integer hull.

The combination of BB, LP, and upper bounds (that may be obtained heuristically)
is a common method to exactly solve MILP problems [178, 8]; where we are considering
minimization problems. Also supported by the relation between a MILP formulation
and its mixed-integer hull, important aspects of this combined approach are: the feasible
solutions of a MILP formulation are also feasible solutions for its LP relaxation; the value
of an optimal solution for a relaxed MILP formulation is a lower bound for the values of
the feasible solutions of the mixed-integral model, and particularly, for the mixed-integral
optimal solutions; and the solution space represented by a MILP formulation of a BB tree
node might be divided with the insertion of constraints over a relaxation of it, that, in
each child node, typically impose integrality over the domain of a variable. A key point is
that the search prunes BB tree nodes by bound, i.e., those whose lower bounds reveal to
be higher than the best upper bound computed so far, as the feasible solutions represented
by these nodes cannot offer any improvement. When the lower bound of a BB tree node
matches the upper bound, that node is fathomed by optimality (of node). The search
finishes with a guaranteed optimal solution for the problem once all the created BB tree
nodes are fathomed.

In several useful situations, an LP formulation may be defined by an exponential
number of variables, constraints, or both [178, 18, 8, 44]. In these cases, we may rely
on LP methods that repeatedly solve versions of the model: they start from a small
version of the model and add variables (with their columns) and/or constraints on de-
mand, until it becomes sufficient to compute a guaranteed optimal solution. When adding
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variables/columns, we have the column generation method, where a so-called pricing sub-
problem is used to identify columns that, if included in the formulation, may help to
reach an optimal solution. On the other hand, when adding constraints, we have the
cutting plane method, in which a so-called separation subproblem checks if there is a
constraint that is violated by the current solution, and, thereby, should be included in
the formulation. It is worth noting that different classes of formulations request specific
pricing and/or separation subproblems. Under certain assumptions, this methods run in
polynomial or pseudo-polynomial time. For MILP problems, in general, a branch-and-
price (BP) method combines the BB with the column generation method to the resolution
of the underlying LP formulations [17, 59, 178, 8], while a branch-and-cut (BC) method
is similar, but uses the cutting plane method to solve the LP formulations [178, 8]. A
branch-cut-and-price (BCP) method, in turn, is a combination of both, that also may have
to deal with the extra complexity introduced by the interaction between the new columns
and constraints [147, 60, 178]. BCP methods are, for instance, the foundation of the
state-of-the-art exact approaches for the classical CVRP and several of its variants [143].

When solving the models of some real-world problems, it might be hard or impos-
sible to have access to the instance data in an exact manner, which may be modeled
as uncertainty in the parameters of the formulations [91]. Several approaches of opti-
mization under uncertainty are available in the literature [165, 91], as stochastic pro-
gramming [27], chance-constrained optimization [91, 119], and robust optimization (RO)
[165, 89, 25, 24, 20]. We focus on the RO approach, that aims at finding a solution that
is feasible for all possible realizations of the uncertainty data [165, 89, 25, 24, 20]. To
avoid a perhaps overly pessimistic approach, the uncertain parameters can be modeled
as an uncertainty set for which is possible to adjust the budget of uncertainty [23]. This
may allow one to regulate, for instance, a compromise between the conservativeness of
the solution and the eventual extra cost that should be paid for that. It is worth adding
that, intuitively, the more conservative a solution is, the lower is the probability that it
may violate constraints that dependent on uncertain data when the solution is actually
applied. A way to tackle a problem in this line is given in the following: first, formulate
a deterministic model; then, directly embed the robust aspects; and, after that, using RO
techniques, reformulate the model (that typically has an infinity number of constraints)
into a linear (or MILP) model with a finite number of constraints, obtaining a robust
counterpart of the model [165, 89, 25, 23]. Such a reformulation normally involves the
dualization of a subproblem involved with uncertain parameters and the budget of un-
certainty [165, 89, 25, 23]. A strong aspect of this approach is that, normally, the robust
counterpart formulation is a reasonable MILP model, and thus, may be tackled by the
MILP methods presented above [165].

1.2 Thesis Synopsis

In this thesis, we approach problems in two groups of VRPs: one considering energy
consumption and other that considers backhauls (and uncertainty). Let us first focus
on the former group. Besides its relation to transportation costs (e.g., fuel, electric-
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ity), the interest in the energy consumption of vehicle routing has risen in the last
decades, due to its potential of mitigating environmental impacts (as the amount of
greenhouse gas emissions [19, 54]), and is now an established concern [108, 19, 9]. A
particular class of problems that consider environment-related aspects is given by the
Green VRPs (GVRPs) [55, 9, 111].

One way to take energy consumption into account is by considering it in the objective
function. While costs in the CVRP are measured in terms of distance, the Cumulative
VRP (CmVRP) is a variant that aims to minimize a simplified measure of a load-
dependent energy consumption [108]. In this approach, each arc’s energy consumption is
defined as the product of the arc distance by the accumulated weight of the vehicle’s curb
weight and all the items picked since the beginning of the route. We explore integer linear
programming (ILP) formulations for the CmVRP, where we use the concepts of two pre-
vious formulations to propose a new one, whose LP relaxation is stronger than both LP
relaxations of the original ones. Furthermore, we solve the integer version of the CmVRP

with a BCP algorithm based on a formulation from the literature, for which we use the
generic BCP framework proposed by Pessoa et al. [143], the so-called VRPSolver [156].
The results of our approach improve upon the state-of-art results of Fukasawa et al. [74].
Additionally, we present a small approximation result on the problem (version in which
the number of vehicles is not fixed) that represents an improvement over Gaur et al. [80].

Another way to deal with energy consumption is by limiting the energy consumption
of each vehicle/route. This is particularly relevant when vehicles need to be restricted by
a certain range since recharging or refueling may not be easily done, which is the case
of electrical vehicles [45]. In this subject, we propose the CVRP with Limited Energy
(CVRP-LE) and CmVRP with Limited Energy (CmVRP-LE), which are, respectively,
similar to the CVRP and CmVRP with the difference that the new ones have limited
energy per vehicle. We observe that the CmVRP-LE can be seen as a special case of
other problem in the literature [86, 185].

Other works consider BP or BCP methods to approach GVRPs and take into ac-
count energy consumption, energy limits, and load capacity [58, 99, 30, 36, 179], how-
ever, the energy consumption in these works do not depend on the accumulated load.
We devise, with the VRPSolver, BCP approaches to the CmVRP-LE and CVRP-LE,
that are modeled by a set-partitioning-based master problem formulation and a pric-
ing subproblem [48], where the latter is solved as a Resource Constrained Shortest Path
Problem (RCSPP) [151]. Our master problems are formulated with either arc-load or
arc variables, while the subproblems rely on arc-loads. An arc-load, by its turn, denotes
how much load is carried through an arc [74], and its concept is pivotal to track and
limit the load-dependent energy consumption in our modeling of the pricing subprob-
lems. BCP methods with arc-load based master and pricing problems were used before
for the CVRP [141] and CmVRP [74], however, to the best of our knowledge, this is
the first time a load-dependent energy consumption is limited by the pricing subproblem.
This thesis presents extensive computational results for the CmVRP-LE and CVRP-LE
with the models we proposed, comparing them with the variants without energy limit.

For the second group of problems that this thesis approaches, consider the VRP with
Backhauls (VRPB), that has two different types of customer: the linehaul customers,
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which receive goods from a depot (outbound logistics), and the backhaul customers, which
send goods back to the depot (inbound logistics) [170]. In the line of the VRPB, we study
the VRP with Selective Backhauls (VRPSB) [12], which aims to minimize the routing
costs minus the revenues collected at backhaul customers optionally selected. In the
VRPSB, selecting one backhaul rather than another depends highly on the revenue it
provides, whereas these backhaul revenues may be related to the quality attributes of the
products to be collected. However, it might be hard to exactly know the quality attributes
beforehand, as is the case of moisture of raw-materials in the wood-base supply chain, that
can only be roughly estimated [184, 5, 6]. Notwithstanding the practical application of the
VRPSB (e.g., parcel services), few works on it have been described in the literature [92],
and, in addition, a recent literature review on the VRPB research shows that no work has
yet investigated this problem under uncertainty [109].

In this thesis, we explore the VRPSB under uncertain revenues, where the solutions
are required to achieve a minimum revenue from the raw-materials collected at the back-
hauls. A deterministic version of the problem is given by a MILP formulation and a
RO counterpart model is derived. In this robust approach, the revenue uncertainty is
modeled as an uncertainty set, where it is possible to adjust the budget of uncertainty
to be considered [23]. We devise a BC algorithm to solve the deterministic and robust
formulations for the problem, and we also compare them with a heuristic approach. The
RO approach shows high potential to tackle the problem, requiring similar computing
effort and maintaining the same tractability as the deterministic modeling.

1.3 Thesis Organization

Chapters 2, 3, 4, and 5 of this thesis are based on papers we produced for scientific
international indexed journals or conferences. Two of these papers are published in inter-
national journals, one is being prepared for journal submission, and the other is a short
paper published in a conference. General concluding remarks are presented afterwards, in
Chapter 6. In the following, we provide descriptions of the papers related to the chapters.

We produced the paper entitled “The Arc-Item-Load and Related Formulations for the

Cumulative Vehicle Routing Problem”, which was published in the Discrete Optimization

journal [133]. This paper – with very minor editions – is presented as Chapter 2, and
its purpose is to propose several different formulations for the CmVRP and to study
their LP relaxations. In particular, the goal is to study formulations based on combining
an arc-item concept (that keeps track of whether a given customer has already been
visited when traversing a specific arc) with another formulation from the recent literature,
the Arc-Load formulation (that determines how much load goes through an arc). Both
formulations have been studied independently before – the Arc-Item is very similar to a
multi-commodity-flow formulation in Letchford and Salazar-González [116] and the Arc-
Load formulation has been studied in Fukasawa et al. [74] – and their LP relaxations are
incomparable. Nonetheless, we show that a formulation combining the two (called Arc-
Item-Load) may lead to a significantly stronger LP relaxation, thereby indicating that
the two formulations capture complementary aspects of the problem. In addition, we
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study how set-partitioning-based formulations can be combined with these formulations.
We present computational experiments on several well-known benchmark instances that
highlight the advantages and drawbacks of the LP relaxation of each formulation and
point to potential avenues of future research.

Chapter 3 comprises an extended version of the paper – which is currently in prepa-
ration – entitled “Branch-Cut-and-Price Approaches for Vehicle Routing Problems with

Load-Dependent Energy Consumption”. In this paper, we employ a BCP approach to
tackle the CmVRP, CmVRP-LE, and CVRP-LE, where, with the exception of the first
one, a load-dependent energy consumption is limited by the pricing subproblem. Par-
ticularly, we propose the variants of the CVRP and CmVRP with limited energy and
devise set-partitioning-based master formulations and correspondent pricing subproblems
to solve these problems and the CmVRP, where some formulations and the subproblems
rely on discretized loads per arc. We present experiments for all the problems, while we
also compare solutions of the CmVRP, CVRP, and their versions with limited energy.
The proposed approach can solve instances with up to 101 vertices for the CmVRP,
CmVRP-LE, and CVRP-LE.

Incorporated in Chapter 4, we include – with very minor editions – the short paper
entitled “Tighter Analysis of an Approximation for the Cumulative VRP”, which was pub-
lished in the proceedings of the II Encontro de Teoria da Computação [132]. In this short
paper, we deal with an approximation algorithm for the version of the CmVRP that does
not fix the number of vehicles/routes in advance. Gaur et al. [80] gave a 4-approximation
based on a well-known partition heuristic to the Traveling Salesman Problem (TSP).

For this algorithm, we present a tighter analysis, obtaining a
(

4− 4
3s3Q2

)

-approximation,

where Q is the capacity of the vehicle and s is a scaling factor.
A paper entitled “A Robust Optimization Approach for the Vehicle Routing Problem

with Selective Backhauls” was published in the journal Transportation Research Part E:

Logistics and Transportation Review [159] as a result of a joint work with Maria João
Santos, Eduardo Curcio, and Pedro Amorim from the Faculty of Engineering of the Uni-
versity of Porto, Portugal. Our main contribution to this paper regards the formulation
and the exact solving method applied to the problem. In this way, Chapter 5 presents
an edited version of this paper that focuses on this topics. In this paper, we explore the
VRPSB under uncertain revenues, where a deterministic version of the problem is given
by a MILP formulation and a RO counterpart model is derived. We devise a BC algo-
rithm to solve the formulations and compare them with a heuristic approach. Besides, we
estimate probabilistic bounds of constraint violation for this formulation.

Finally, we point out aspects related to this thesis organization, i.e., where chapters
are based on papers. First, the abstracts of the papers are present in the beginning of
chapters. Despite that the contents of these abstracts are mainly presented in this thesis’
Abstract and in the current chapter, we believe that they may be of help when reading
a chapter in a standalone manner. Secondly, the notation might not be consistent from
one chapter to another (although there are not many inconsistencies). For instance, the
decision variables that represent the arcs of a route are denoted by different identifiers in
chapters 2 and 3. Besides, the definitions of the acronyms are restarted before each of the
chapters 2, 3, 4, and 5. Moreover, observe that the word “robust” is related to a property
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of cuts in a BCP context, as in Chapter 3, while it refers to an optimization technique in
Chapter 5 (and in the current chapter).
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Chapter 2

The Arc-Item-Load and Related

Formulations for the Cumulative

Vehicle Routing Problem

Abstract. The Capacitated Vehicle Routing Problem (CVRP) consists of
finding the cheapest way to serve a set of customers with a fleet of vehicles of
a given capacity. While serving a particular customer, each vehicle picks up
its demand and carries its weight throughout the rest of its route. While costs
in the classical CVRP are measured in terms of a given arc distance, the Cu-
mulative Vehicle Routing Problem (CmVRP) is a variant of the problem that
aims to minimize total energy consumption. Each arc’s energy consumption
is defined as the product of the arc distance by the weight accumulated since
the beginning of the route.

The purpose of this work is to propose several different formulations for the
CmVRP and to study their Linear Programming (LP) relaxations. In partic-
ular, the goal is to study formulations based on combining an arc-item concept
(that keeps track of whether a given customer has already been visited when
traversing a specific arc) with another formulation from the recent literature,
the Arc-Load formulation (that determines how much load goes through an
arc).

Both formulations have been studied independently before – the Arc-
Item is very similar to a multi-commodity-flow formulation in Letchford
and Salazar-González [116] and the Arc-Load formulation has been studied
in Fukasawa et al. [74] – and their LP relaxations are incomparable. Nonethe-
less, we show that a formulation combining the two (called Arc-Item-Load)
may lead to a significantly stronger LP relaxation, thereby indicating that
the two formulations capture complementary aspects of the problem. In addi-
tion, we study how set partitioning based formulations can be combined with
these formulations. We present computational experiments on several well-
known benchmark instances that highlight the advantages and drawbacks of
the LP relaxation of each formulation and point to potential avenues of future
research.
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2.1 Introduction

One of the most studied versions of the class of Vehicle Routing Problems (VRPs) [88, 170]
is the classical Capacitated Vehicle Routing Problem (CVRP) [50]. The CVRP can be
described as finding a minimum distance set of K routes that start and end at the depot,
picking up the customers’ demands while respecting the capacities of the vehicles. The
Cumulative Vehicle Routing Problem (CmVRP), also known as Energy Minimization
Vehicle Routing Problem [107, 108], differs from the former by considering an energy
consumption measure as its cost to be minimized. In particular, the cost of traversing an
arc now becomes the product of the arc’s distance and the load carried while traversing
it.

The consideration of the load carried on an arc, in addition to its distance, becomes
important as increasing concerns about the environment (and thus the desire to minimize
fuel consumption, pollution or related quantities) become more prevalent (see, for exam-
ple, the surveys Demir et al. [55] and Eglese and Bektaş [66] on Green VRPs). Indeed,
Kara et al. [108] mention the use of CmVRP in such a context as a simplified way to
minimize the energy consumed. In addition, the energy consumption function of electric
unmanned aerial vehicles, also known as drones, [135, 97] and several other types of ve-
hicles are well modeled by the CmVRP [63, 180, 108]. The CmVRP captures critical
aspects of multi-package pickup electric drones, as their total weight will increase along
the route, affecting the usually restricted autonomy provided by the battery. Thus, the
CmVRP is an increasingly important problem to solve in multiple applications.

Several related combinatorial optimization problems have also been studied in the
literature. For instance, the CmVRP generalizes the K-Traveling Repairman Problem
(K-TRP) [70, 71, 104], where there are no customer demands and the total cost is given by
the sum of the waiting times of the customers. When there is only one repairman, the K-

TRP is also known as Traveling Repairman Problem (TRP) [2, 7], Traveling Deliveryman
Problem [124, 130], Cumulative Traveling Salesman Problem [26], and Minimum Latency
Problem [28, 7, 32]. The TRP is also related to the Time Dependent Traveling Salesman
Problem (TDTSP) [144, 1, 32]. The version of the CmVRP with a single vehicle was
studied by Wang et al. [174], who presented a mathematical model based on Fukasawa
et al. [74].

The CmVRP is not only a strongly NP-hard problem, but it has also shown to be
quite challenging computationally. The work of Kara et al. [107, 108] initially proposed
an exact algorithm for the CmVRP. The best exact results for the problem are from
Fukasawa et al. [74], who present both a branch-and-cut (BC) and a branch-and-cut-and-
price (BCP) algorithm, where the latter yields the state-of-the-art results. As a matter
of fact, the best results for the CVRP also come from a BCP approach [143]. There have
also been heuristic approaches for the CmVRP, for instance by Kramer et al. [110] using
a matheuristic and by Zachariadis et al. [182] using a local search approach, as well as by
Xiao et al. [180]. A variant of the problem with limited duration was addressed by Cinar
et al. [40, 41] using constructive algorithms and metaheuristics, whereas the work of Cinar
et al. [41] also surveys some methods applied to solve the CmVRP. Heuristic approaches
based on linear programming and column generation for the problem were presented by
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Gaur and Singh [79] and Singh and Gaur [164]. Without constraining the number of
vehicles that can be used, the works of Gaur et al. [80] and Mulati and Miyazawa [132]
presented an approximation algorithm for the problem with a factor of less than 4, while
Gaur et al. [81, 82] proposed a 6-approximation for the problem with stochastic demands.

While the work of Fukasawa et al. [74] uses arc-load based formulations, whose vari-
ables represent if a given weight is carried over a specific arc, the central idea of this
work is to combine such a formulation with an arc-item based formulation which keeps
track of the individual items that are carried over each arc. We say an arc carries an
item i if vertex i has been visited prior to traversing the arc. It is worth noting that
the arc-item formulation is very similar to multi-commodity-flow formulations with one
commodity per vertex, that have been studied for the CVRP (see for instance Letchford
and Salazar-González [116, 117]). Our main contribution in this paper is to combine an
Arc-Item formulation for the CmVRP with arc-load ones and to study their theoretical
and experimental properties. In particular, we show that one such formulation – the
Arc-Item coupled to the Arc-Load, i.e., the Arc-Item-Load (AIL) – strictly dominates
other previous formulations of the problem. Following standard notation, we say that a
formulation F dominates a formulation G if, for any solution of F’s Linear Programming
(LP) relaxation, there exists a solution of G’s LP relaxation with the same objective
function value. Throughout this paper, we also use “relaxation” or “relaxed” to denote
the LP relaxation of a formulation. Moreover, in this paper, we adopt the convention
that a formulation is said to be “compact” if its number of variables is a polynomial or a
pseudo-polynomial function of the size of the problem input data, i.e., the instance.

Since set partitioning based formulations tend to be the most successful in several
VRPs, and due to an equivalence between arc-load formulations for the CmVRP and a
natural set partitioning formulation, we also consider how the Arc-Item formulation can
be combined with such set partitioning formulations. We show one such formulation that
achieves the same bound as our compact formulation. While this may indicate that the
compact formulation is more useful since no column generation needs to be performed,
the set partitioning based formulation can be easily strengthened by using more advanced
techniques such as ng-routes [14], leading to better bounds. We also propose one natural
way to extend the arc-item formulation with a set partitioning one, but show that it may
become too hard to solve, since its pricing subproblem is strongly NP-hard. Thus, we
propose a final formulation attempting to address this drawback.

We conducted extensive computational experiments comparing the LP relaxations of
the formulations of interest over well-known benchmark instances. One particular goal of
the research is to gain insight into which formulations are most likely to lead to efficient
exact algorithms for the problem.

The other sections of this paper are organized as follows. Section 2.2 presents a
literature review of problems and formulations related to our topic. Section 2.3 contains
the precise CmVRP definition and other fundamental concepts. Section 2.4 presents our
proposed formulations and some of their properties. Experimental results are presented
in Section 2.5 and concluding remarks are written in Section 2.6.
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2.2 Literature Review

Several formulations have been proposed for the CVRP, for instance: two-index and three-
index vehicle-flow, one-commodity-flow and multi-commodity-flow, and set partitioning
based formulations [103, 162]. Except for the set partitioning based ones, the others are
classified as compact formulations. The current best exact algorithms for the CVRP are
based on set partitioning formulations combined with families of cutting planes inside a
BCP framework [73, 13, 14, 46, 146, 137, 143].

The CmVRP bears many similarities with the CVRP, and most formulations for one
of them can be adapted to the other. Indeed, several CVRP formulations have been
used in the cumulative problem, for instance one-commodity-flow, arc-load, and set par-
titioning formulations [108, 74]. Similar to what happens in the CVRP, the best exact
approaches to the CmVRP rely on a BCP framework over a set partitioning formulation
with additional cutting planes [74]. It is not too surprising that formulations for the
CVRP have been adapted to the CmVRP, as the feasible set is the same for both prob-
lems, with the only difference arising in how the cost of a solution is calculated. Thus,
we devote the rest of this section to reviewing other formulations for the CVRP.

In the series of papers by Letchford and Salazar-González [115, 116, 117], several
mixed integer linear programming formulations for the CVRP are presented and/or pro-
posed. We highlight two particular ones which are related to our work, namely MCF1a

and MCF2b, based on a multi-commodity-flow idea. Beyond the binary variables [xa]

indicating whether arc a is used, their MCF2b formulation, whose main concept can be
traced back to Garvin et al. [78], contains binary variables to indicate whether an arc
a is traversed by a vehicle before ([f i

a] variables) or after ([gia] variables) visiting cus-
tomer i. This kind of formulation also has precedents in modeling the Traveling Salesman
Problem (TSP) and some variations [113, 98]. The MCF1a formulation is conceptually
similar to the MCF2b, with the difference that only the variables [xa] and [f i

a] are present.
Moreover, the MCF2b model was strengthened by coupling it to a knapsack based for-
mulation with exponentially many columns, each one corresponding to a packing pattern
of the items. The pricing of the variables can be done in pseudo-polynomial time and the
resulting formulation is called MCF2K.

Also based on the MCF2b, the Arc-Packing (AP) formulation couples the existing
variables with a new set of arc-packing binary variables [ψST

a ], which take the value of
one if and only if a vehicle traverses arc a after having visited the customers (packed) in
S, and no more, and about to visit the ones (packed) in T , and no more. As S, T ⊆ N

(where N is the set of all customers), the number of all possible columns is exponential,
however its pricing subproblem can be solved in pseudo-polynomial time. In their work,
Letchford and Salazar-González [117] were also able to couple the AP to a set partitioning
formulation aware of the number of times an arc appears in a non-elementary route, and
by this, creating the APnSP. The dominance order is given by APnSP, AP, MCF2K,
MCF2b, and MCF1a; where the first dominates the second and so on. With a time limit
of two hours (for the first four models), they carried out experiments including relaxations
of these formulations over new CVRP instances with 16 vertices, divided into 12 families
of 20 instances each, which helped to establish the dominance relationships. It is worth
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mentioning that their work deals with the CVRP version that does not fix the number
of vehicles in advance.

2.3 Fundamentals

We now proceed to formally define the CmVRP, and then move on to describe some
basic formulations that will be useful in our later discussions. We also note that we will
be working with the pickup version of the CmVRP, that is, we are assuming the vehicles
are empty to start with and then pick up the customers’ demands as they visit them.

CmVRP. The input is given by a complete digraph D = (V,A) and a fleet of K > 0

identical vehicles. The vertices of D are given by V = {0} ∪N , where vertex 0 represents

the depot, with customers in N = {1, . . . , n − 1}. Each customer t ∈ N has a demand

of weight given by a positive integer qt that must be picked up and carried by a vehicle.

Every arc a ∈ A has a corresponding distance d̃a ≥ 0. Each vehicle has a positive integer

capacity Q representing the maximum total weight that it can carry and curb weight q0 ≥ 0

– note that the curb weight does not count towards the capacity. The energy consumed by

a vehicle while traversing arc a carrying a load ` is d̃a(q
0 + `), and a route performed by

a vehicle is defined as a sequence 〈0, v1, v2, . . . , vl, 0〉 such that {v1, v2, . . . , vl} ⊆ N and

vi 6= vj, ∀i 6= j. We define the total demand of such a route to be
∑l

i=1 q
vi. The objective

is to find a set of exactly K routes minimizing total energy consumption such that (i) they

pick up all the customers’ demands, (ii) each route starts and ends at the depot, (iii) each

customer is visited exactly once, and (iv) the total demand of a route is at most Q.

The CmVRP One-Commodity-Flow formulation (CF) was introduced alongside the
problem itself by Kara et al. [107, 108]. It has two sets of decision variables over the arcs
a ∈ A: binary variables [x′a] that indicate whether the arcs are traversed by a vehicle,
and the continuous [y′a] ≥ 0 variables representing the amount of flow passing through the
arcs. Conceptually, the flow passing through an arc is equivalent to the load carried on
it. The LP relaxation of this formulation is normally solved in a short amount of time.
However, the lower bound it provides is weak when compared to the relaxation of the
Arc-Load formulation used in Fukasawa et al. [74], and, thus, a branch-and-bound (BB)
type algorithm based on the CF formulation tends to explore a larger number of nodes.
Thus, we refrain from presenting the CF formulation and present the Arc-Load one next.

2.3.1 The Arc-Load Formulation

The CmVRP Arc-Load formulation (AL) was proposed by Fukasawa et al. [74]. It uses
decision variables that determine if an arc is being used while carrying a specific weight `
that is in a discrete set given by L = {0, 1, . . . , Q}. The decision variables for the so-called
arc-loads are

y`a =

{

1 if the load ` is carried over the arc a

0 otherwise
, ∀a ∈ A, ` ∈ L.
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We note that such a formulation has been used in other similar problems. Indeed it can be
seen as a generalization of a formulation of Picard and Queyranne [144] for the TDTSP.

The formulation is presented below.

(AL) min
∑

a∈A

∑

`∈L

d̃a
(

q0 + `
)

y`a (2.1a)

s.t.
∑

a∈δ−(0)

∑

`∈L

y`a = K, (2.1b)

∑

a∈δ+(0)

∑

`∈L

y`a = K, (2.1c)

∑

a∈δ+(u)

∑

`∈L

y`a = 1, ∀u ∈ N, (2.1d)

∑

a∈δ−(w)

y`a =
∑

a∈δ+(w)

y`+qw

a , ∀w ∈ N, ` ∈ {0, . . . , Q− qw}, (2.1e)

y`u0 = 0, ∀u0 ∈ δ−(0), ` ∈ {0, . . . , qu − 1}, (2.1f)

y`a = 0, ∀a ∈ δ+(0), ` ∈ L\0, (2.1g)

y`uv = 0, ∀uv ∈ A\δ(0),

` ∈ {0, . . . , qu − 1, Q− qv + 1, . . . , Q}, (2.1h)

0 ≤ y`a ≤ 1, ∀a ∈ A, ` ∈ L, (2.1i)

y`a ∈ Z, ∀a ∈ A, ` ∈ L. (2.1j)

Note that in this model and throughout this work we may omit parenthesis when referring
to arcs, that is, an arc (u, v) might be simply referred to as uv. We write S \e as an
abbreviation to denote the set difference operation between a set S and a set with only
the element e, i.e., S\{e}. The set of arcs that leave a vertex w is denoted by δ+(w) and
analogously δ−(w) is the set of arcs that enter in w. The set of all incident arcs of vertex
w is denoted by δ(w).

Constraints (2.1b) and (2.1c) enforce the in-degree and out-degree of the depot to
be equal to the number of vehicles. The out-degree of a customer is restricted to one
by (2.1d). The load balance of the customers is managed by (2.1e). Constraints (2.1f)
enforce that arcs entering the depot must have at least the load weight of the last visited
customer. Constraints (2.1g) enforce that arcs leaving the depot must carry no load. For
the arcs that are not incident to the depot, constraints (2.1h) block some low and high
loads.

In Theorem 2.1, we retrieve a relation between AL and CF formulations. First,
we need to define some notation. The feasible region of the LP relaxation of a given
formulation is given by P subscribed by the name of the formulation, for instance PAL

denotes the LP relaxation of AL. Similarly, we define ẑ∗ subscribed by the name of the
formulation to be the value of an optimal solution for the respective relaxed model.

Theorem 2.1 (Fukasawa et al. [74]). The formulation AL dominates CF, that is, for

any point y ∈ PAL, there exists a point (x′, y′) ∈ PCF with the same objective value;

particularly, ẑ∗
AL

≥ ẑ∗
CF

. Moreover, there are instances where this dominance is strict.



24

2.3.2 The Set Partitioning q-Route Formulation

We now turn our attention to a formulation based on q-routes [38]. A q-route is similar
to a route, presented in the CmVRP definition, with the difference that it allows the
existence of cycles, that is, replacing the condition vi 6= vj, ∀i 6= j with the condition
vi 6= vi+1, ∀i = 1, . . . , l− 1. We still enforce that the total demand of a route is at most Q
and, in the case of a q-route, the demand of each customer is accumulated as many times
as it is visited. The set of all q-routes is denoted as Ω.

In this way, an integer solution for the CmVRP needs to visit each customer w ∈ N

only once by traversing some routes among all in Ω. This can be modeled as a Set
Partitioning Problem constrained to choose exactly K routes. Given the decision variables

λr =

{

1 if the q-route r is traversed

0 otherwise
, ∀r ∈ Ω,

the CmVRP Set Partitioning q-Route formulation (qR) is as follows:

(qR) min
∑

r∈Ω

crλr (2.2a)

s.t.
∑

r∈Ω

λr = K, (2.2b)

∑

r∈Ω

hwrλr = 1, ∀w ∈ N, (2.2c)

0 ≤ λr ≤ 1, ∀r ∈ Ω, (2.2d)

λr ∈ Z, ∀r ∈ Ω. (2.2e)

The hwr coefficients represent the number of times a customer w ∈ N is visited by a
q-route r ∈ Ω. The cost of a q-route r is given by cr and the number of q-routes that
can be traversed is constrained by (2.2b). Constraints (2.2c) impose that all customers
must be visited exactly once. This model was introduced for the CVRP in Balinski and
Quandt [16] and is used in the CmVRP by Fukasawa et al. [74].

As the number of possible q-routes is exponential in the size of the graph, the solution
of the LP relaxation of qR is done using column generation [59, 17], where variables are
added to a master LP as needed by solving a pricing subproblem. The use of q-routes
instead of routes in the qR is precisely justified by this method: the pricing subproblem
of q-routes is weakly NP-hard, while pricing routes is strongly NP-hard. We also note
that much stronger set partitioning formulations exist where additional constraints are
imposed in q-routes. However, for the sake of simplicity, we restrict ourselves to only set
partitioning formulations using q-routes, but our results can be easily adapted to these
other stronger formulations.

Next, we present Theorem 2.2, that tightly links the AL and the qR formulations.
Note that if a formulation F dominates a formulation G and vice-versa, we say that F

and G are equivalent.
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Theorem 2.2 (Fukasawa et al. [74]). The formulations AL and qR are equivalent, that

is, for any point y ∈ PAL, there exists a point λ ∈ PqR with the same objective value and

vice-versa; particularly, ẑ∗
AL

= ẑ∗
qR

.

2.3.3 The Arc-Item Formulation

We now present the CmVRP Arc-Item formulation (AI) that is based on the concept of
arc-item, which keeps track of whether a given item is carried over a specific arc. For
every i ∈ V , and every a ∈ A we say item i is carried over arc a if vertex i was visited in
the route containing a prior to traversing it. In this way, the decision variables over the
arc-items are denoted by

xia =

{

1 if item i is carried over arc a

0 otherwise
, ∀a ∈ A, i ∈ V.

The formulation is:

(AI) min
∑

a∈A

∑

i∈V

d̃aq
ixia (2.3a)

s.t.
∑

a∈δ+(0)

x0a = K, (2.3b)

∑

a∈δ−(w)

x0a = 1, ∀w ∈ N, (2.3c)

∑

a∈δ+(w)

x0a = 1, ∀w ∈ N, (2.3d)

∑

a∈δ−(t)

xta = 0, ∀t ∈ N, (2.3e)

∑

a∈δ+(t)

xta = 1, ∀t ∈ N, (2.3f)

∑

a∈δ−(w)

xia =
∑

a∈δ+(w)

xia, ∀w ∈ N, i ∈ N \w, (2.3g)

xia ≤ x0a, ∀a ∈ A, i ∈ N, (2.3h)
∑

i∈N

qixia ≤ Q, ∀a ∈ δ−(0), (2.3i)

0 ≤ xia ≤ 1, ∀a ∈ A, i ∈ V, (2.3j)

xia ∈ Z, ∀a ∈ A, i ∈ V. (2.3k)

We note that item 0 is always visited before any arcs in all routes and, therefore, vari-
ables x0a just merely indicate if an arc a is present in some route or not. The objective
function (2.3a) minimizes the total cost of all the selected arc-items and, by considering
q0 as the curb weight, the objective function correctly considers the total weight (load
plus curb weight) picked up prior to traversing a.
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The selected arc-items whose items are indexed by 0 represent a full route in the
classical sense, which also plays the role of a guide route: if an arc-item with item other
than 0 is selected in an arc, then the arc-item with item 0 must also be selected in the same
arc. With this in mind, we have that Constraint (2.3b) makes the depot out-degree equal
the number of vehicles, while constraints (2.3c)–(2.3d) enforce that each customer has,
with respect to item 0, an in-degree and out-degree of one. Note that these constraints
play the same role that constraints (2.1b)–(2.1d) do for the AL model.

Constraints (2.3e) prevent each item of entering its customer of origin, and con-
straints (2.3f) enforce that, in fact, each customer’s item leaves its origin. Con-
straints (2.3g) state that all the items entering a given customer w, which are not the
item from w, must also leave it. The aim of constraints (2.3h) is to tie up the arc-items
under the guide arc-item 0, i.e., items can pass in an arc only if a vehicle is passing there.
Constraints (2.3i) enforce that the total cumulative demand in each route does not exceed
the vehicle capacity.

From our experimental results, we state Theorem 2.3 that shows how AI theoretically
compares to other formulations.

Theorem 2.3. The formulation AI does not dominate AL, qR nor CF; conversely, nei-

ther of these dominate AI.

As a final note, we remark that the CmVRP AI formulation is very similar to other
formulations to the CVRP found in the literature using variables that have the same pur-
pose, e.g., the MCF1a (Letchford and Salazar-González [116]) and the MCF2b (Letch-
ford and Salazar-González [116, 117]). Beyond the objective function, the key difference
is how capacity constraints are enforced, which is done in AI via constraints (2.3i), and
the fact that some of the other formulations cited above are strengthened by adding more
variables and/or constraints. The reason we chose to use formulation AI in this work,
even though it is likely weaker than other similar formulations in the literature, is due to
its simplicity and the fact that it suffices to capture aspects that are complementary to
the AL formulation, as will be shown in the next section. Indeed, Letchford and Salazar-
González [117] already mention that MCF2b is somewhat expensive, so we decided that
attempting to use these stronger formulations would not be beneficial.

2.4 Combining Arc-Item with Arc-Load and Related

Formulations

2.4.1 Why combine?

We start by providing an example that illustrates what has been said before, that AI and
AL capture complementary aspects of the problem. Intuitively, while the AI formulation
captures the precedence relationship (having visited a vertex before going through an arc),
the AL captures the load relationship (how much load is carried through an arc). The
complementary aspect of these two relationships can be seen by analyzing the literature.
For instance, the improvements in some of the multi-commodity-flow formulations that
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are similar to AI are made via inequalities that better represent the load carried by a
vehicle in an arc or vertex [116]. On the other hand, some of the improvements in the AL
formulation [74] come from coupling the arc-load variables with q-routes to better capture
the precedence relationship.

The main idea of formulation AIL (presented in Subsection 2.4.2) is to make sure
the load carried in an arc is consistent according to both formulations. Since the load
carried in an arc a ∈ A in the AL formulation is

∑

`∈L `y
`
a and in the AI formulation

is
∑

i∈N q
ixia, the formulation makes sure these quantities are the same. In Figure 2.1

we present optimal solutions for a small instance S-n05-k1 (n = 5, K = 1, and Q = 15

with q0 = 2.25) modeled with the AL, AI, and AIL relaxed formulations. We start by
looking at the AL solution in Figure 2.1a. Note that as the AL and the qR formulations
are equivalent (see Theorem 2.2), the solution to AL can be written as a combination of
(fractional) q-routes. The fractional solution presented in Figure 2.1a can be written as
the sum of three fractional q-routes, where the decision variables related to the q-routes
all have value 1/3. Also note that these q-routes contain subtours. This allows us to see
how combining the AL formulation with the AI formulation may be beneficial, since the
AI formulation does not permit visiting a vertex i having already visited it before, which
would happen if one follows the q-routes.
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(a) Formulation AL. The
cost is 229.08. All vari-
ables have value 1/3. Distinct
q-routes are drawn in distinct
styles.

0

d c

b

a

0

4

d

3.5

d
c

dc

3.5

d
c
b

a
5

1

b

5
d

c
b

a

0.5

a

(b) Formulation AI. The cost
is 233.25. The solid arcs are
valued 1 and the dashed ones
have value 1/2. The letter on
the arc represents the item
being carried on it.

0

d c

b

a

0

4

7

9

10

d

d
c

dcb

d

c

b

a

(c) Formulation AIL. The
cost is 235.75 and the solu-
tion is integral.

Figure 2.1. Optimal solutions of the LP relaxations of several formulations for instance
S-n05-k1. The demands of customers a, b, c, d are, respectively, 1, 2, 3, 4. The numbers on
the arcs represent the load being carried on it.

In Figure 2.1b, we have a half-integral solution for the AI formulation. The solid
arc-items have a value of 1 and the dashed ones a value of 1/2. Moreover, the letters over
the arc-items represent the item which is being carried along each arc-item. If no letter
is shown, item 0 is being carried. For instance, the rightmost depicted arc-item from
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customer c to a corresponds to carrying item 0, that is, it corresponds to x0ca = 1/2. The
numbers in italic font shape next to the arc-items represent the total load carried from
one customer to the other, that is,

∑

i∈N q
ixia. We will now illustrate why the solution

in Figure 2.1b cannot be represented using AL variables. To do this, we will try to
write this solution as the sum of q-routes, that is, as a solution to qR. Note that, by
Theorem 2.2, if we show that this solution cannot be written as a solution to qR, then it
cannot be represented as a solution to AL. One possible way to do so is to use q-route
r′ = 〈0, d, c, b, 0〉 with value λr′ = 1/2. Note that this would cover all arcs going from c

to b, since r′ carries items 0, d and c along the arc (c, b). However, note that q-route r′

does not cover xab0 = 1/2, since it does not go through vertex a, while the solution on AI

covers it. We can see that the only possible other q-route that could be used to cover xab0
combined with r′ is q-route r′′ = 〈0, d, c, a, b, 0〉 with value λr′′ = 1/2. However, that also
still leaves xbba = 1/2 uncovered and there is no other q-route that can be used to cover it,
when combined with r′ and r′′.

It is not hard to extend the above analysis of Figure 2.1b to show that this solution
cannot be represented using AL variables, thus also showing the value of hybridizing the
two formulations. Indeed, Figure 2.1c presents an optimal solution of the LP relaxation
for the instance S-n05-k1 using the hybridized AIL formulation (presented next, in Sub-
section 2.4.2), and, as the solution is integer, it is also an optimal solution to the integer
version of the formulation. An optimal solution to the hybridized formulation is to use
q-route 〈0, d, c, b, a, 0〉, which is consistent with both AI and AL formulations.

2.4.2 The Arc-Item Coupled to the Arc-Load Formulation

As was previously discussed, the AI formulation is aware of the items carried over each arc
via arc-items, and the AL has control over the accumulated load weight in each arc via arc-
loads. The idea behind the Arc-Item coupled to the Arc-Load formulation, also referred
to as the Arc-Item-Load formulation (or AIL), is to combine those two features. The AIL

formulation consists of the entire AI formulation (2.3a)–(2.3k), all the constraints of the
AL (2.1b)–(2.1j), and the following additional constraints:

x0a =
∑

`∈L

y`a, ∀a ∈ A, (2.4a)

∑

i∈N

qixia =
∑

`∈L

`y`a, ∀a ∈ A. (2.4b)

The coupling constraints (2.4a) correspond to the classical CVRP constraints that
state that an arc is used (and therefore used carrying item 0) if and only if it is used
carrying a load in L. As previously mentioned, constraints (2.4b) ensure that the load
carried along arc a is consistent between the two formulations.

It is easy to see that constraints (2.1b)–(2.1d) are redundant, and thus can be removed.
Thus, the AIL formulation has the variables [xia] and [y`a], the objective function (2.3a),
and the constraints (2.3b)–(2.3k), (2.1e)–(2.1j), and (2.4a)–(2.4b). Furthermore, we have
the following theorem about the AIL formulation and its building blocks.
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Theorem 2.4. The formulation AIL dominates AI and AL, that is, for any point

(x, y) ∈ PAIL, there exist points x ∈ PAI and y ∈ PAL with the same objective value;

particularly, ẑ∗
AIL

≥ ẑ∗
AI

and ẑ∗
AIL

≥ ẑ∗
AL

. Moreover, there are instances where these

dominance relations are strict.

Proof. By construction, AIL dominates AI.
Let (x, y) be any solution to the relaxation of the AIL formulation. By construction,

we have that y satisfies all the constraints of AL. We now use the coupling constraints
(2.4a)–(2.4b) to substitute the variables [xia] by [y`a] in AIL’s objective function (2.3a),
obtaining

∑

a∈A

∑

i∈V

d̃aq
ixia =

∑

a∈A

d̃a

(

q0x0a +
∑

i∈N

qixia

)

=
∑

a∈A

d̃a

(

q0
∑

`∈L

y`a +
∑

`∈L

`y`a

)

=
∑

a∈A

∑

`∈L

d̃a
(

q0 + `
)

y`a,

which matches the AL’s objective function (2.1a), guaranteeing that z∗
AIL

≥ z∗
AL

. Thus,
we have that AIL dominates AL.

By Theorem 2.3, AI does not dominate AL and neither does AL dominate AI, com-
pleting the proof.

2.4.3 The Arc-Item Coupled to the Set Partitioning q-Route For-

mulation

There is a different alternative to combine the AI formulation with the AL formulation.
As mentioned before, Theorem 2.2 says that the qR formulation is equivalent to the AL.
Therefore, we attempted to combine the qR and AI formulations, and this is what this
subsection is devoted to.

The new model comprises the entire AI model (2.3a)–(2.3k), all the constraints of the
qR model (2.2b)–(2.2e), and the coupling constraints

xia =
∑

r∈Ω

ḣiarλr, ∀a ∈ A, i ∈ V, (2.5)

where each one of the coefficients given by ḣiar represents the number of times an item
i ∈ V , picked up at vertex i, is carried over an arc a ∈ A in a q-route r ∈ Ω. In
these constraints, we can see that the [ḣiar] coefficients, summed through the selected
q-routes/columns among all the r ∈ Ω, were precisely tailored to match the [xia] variables.

Using the coupling constraints (2.5), we can simplify the new coupled model. It is
not hard to see that Constraint (2.3b) implies Constraint (2.2b) and also that constraints
(2.3f) imply constraints (2.2c). Therefore, we can remove the constraints (2.2b)–(2.2c)
from the AIqR model. The resulting formulation is in the Dantzig-Wolfe explicit master
form [147]. The following two results are easy to see.
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Theorem 2.5. The formulation AIqR dominates qR, that is, for any point x ∈ PAIqR,

there exists a point λ ∈ PqR with the same objective value; particularly, ẑ∗
AIqR ≥ ẑ∗qR.

Moreover, there are instances where this dominance is strict.

Proof. Let (x, λ) be any solution to the relaxation of the AIqR formulation. By the
simplifications we mentioned above, we know that λ immediately satisfies the constraints
of the qR model. Now we use the coupling constraints (2.5) to substitute the [xia] variables
in the objective function (2.3a) of AIqR, resulting in

∑

a∈A

∑

i∈V

d̃aq
i

(

∑

r∈Ω

ḣiarλr

)

=
∑

r∈Ω

(

∑

a∈A

∑

i∈V

d̃aq
iḣiar

)

λr =
∑

r∈Ω

crλr,

matching the objective function (2.2a) of the qR. Thus, we have that z∗
AIqR ≥ z∗qR. Our

computational experiments show that there are instances where ẑ∗
AIqR > ẑ∗qR, therefore,

the main result follows.

Theorem 2.6. The formulation AIqR dominates AI, that is, for any point x ∈ PAIqR,

there exists a point x ∈ PAI with the same objective value; particularly, ẑ∗
AIqR ≥ ẑ∗

AI
.

Moreover, there are instances where this dominance is strict.

Proof. The dominance of the AIqR over the AI is guaranteed by the former construction.
By Theorem 2.3, the AI does not dominate qR, which finishes the proof.

Despite the above results, there is a major drawback to the AIqR formulation: the
pricing problem required to solve its LP relaxation via column generation is strongly
NP-hard. This is what we focus on next.

Let ϕi
a, for all a ∈ A, i ∈ V , be the dual variables associated with the coupling

constraints (2.5). The reduced cost c̄r, of a q-route/column r ∈ Ω, can be calculated as

c̄r = cr −
∑

a∈A

∑

i∈V

(

−ḣiar

)

ϕi
a = cr +

∑

a∈A

∑

i∈V

ϕi
aḣ

i
ar =

∑

a∈A

∑

i∈V

ϕi
aḣ

i
ar.

The last equation follows since the objective function of the model is based on the x

variables, and thus cr = 0.
Thus, the pricing subproblem for the AIqR formulation consists of finding q-routes

r ∈ Ω minimizing c̄r in a way that the total cumulative load of each q-route does not
exceed the vehicle capacity Q. This subproblem is denoted as Prc-AIqR. Formally, the
Prc-AIqR is defined as follows.

Prc-AIqR. The input is given by a simple digraph D = (V,A), where V = {0}∪N and

vertex 0 represents the depot, with customers in N = {1, . . . , n−1}. Each customer t ∈ N

has a demand of weight given by a positive integer qt. For every a ∈ A and every i ∈ V ,

there is a cost αi
a associated with traversing arc a after visiting vertex i. The Prc-AIqR

problem consists then of finding a least cost closed walk r = 〈0 = v0, v1, . . . , vl, vl+1 = 0〉

such that vj ∈ N for all j = 1, . . . , l; vjvj+1 ∈ A for all j = 0, . . . , l; and
∑l

j=1 q
vj ≤ Q.

We note that the cost of such a closed walk must be calculated as follows. For i ∈ V and

j ∈ {0, . . . , l + 1}, let pij = 1 if i ∈ {v0, . . . , vj−1} and 0 otherwise. Then, the cost of r is
∑l

j=0

∑

i∈V α
i
vjvj+1

pij.
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We prove in Theorem 2.7 that Prc-AIqR is strongly NP-hard by using the directed
Hamiltonian cycle problem.

Theorem 2.7. The Prc-AIqR is strongly NP-hard.

Proof. We prove the result by showing that Prc-AIqR can be used to solve the directed
Hamiltonian cycle problem.

Let D = (V,A) be a directed graph. The directed Hamiltonian cycle problem aims to
answer the question if D contains or not a directed Hamiltonian cycle. Without loss of
generality, we may assume that V = {0} ∪N where N = {1, . . . , n− 1}.

The input data for Prc-AIqR would, therefore, be the complete digraph D′ = (V,A′),
capacity Q = n− 1, and qt = 1 for all t ∈ N . The costs αi

a would be as follows:

αi
a :=















−1 if i = 0 and a ∈ A

n+ 1 if i 6= 0 and v = i or if a /∈ A

0 otherwise

, ∀a ∈ A′, i ∈ V.

Consider any solution to Prc-AIqR r = 〈0 = v0, v1, . . . vl, vl+1 = 0〉. Let A(r) be the
set of arcs used in r and k be the number of times the term αi

vjvj+1
pij is equal to n+1 in the

expression
∑l

j=0

∑

i∈V α
i
vjvj+1

pij. The cost of r can be rewritten as k(n+ 1)− |A′ ∩A(r)|.
Note that due to the capacity constraint, |A(r)| ≤ n and so, if k > 0, the cost of r is
positive. Moreover, note that k > 0 if and only if r either uses an arc not in A, or visits
a customer in N at least two times.

Therefore, the minimum cost solution r∗ to Prc-AIqR has negative value if and only if
r∗ is a cycle using only arcs of A. Thus, it is easy to see that D has a directed Hamiltonian
cycle if and only if r∗ has value −n.

We note that the hardness proof relies on the fact that each arc-item combination has a
different cost, which in turn comes from the fact that we have one coupling constraint (2.5)
for each arc-item combination. Thus, to define a more tractable pricing problem, a more
“loosely coupled” formulation becomes necessary. We refrain from defining precisely what
loosely coupled means, and proceed to actually presenting the formulation in question.

2.4.4 The Arc-Item-Load Coupled to the Set Partitioning

q-Route Formulation

To construct this new formulation, referred to as AILqR, we start from the entire simpli-
fied AIL formulation – given by (2.3a)–(2.3k), (2.1e)–(2.1j), and (2.4a)–(2.4b) – and the
qR constraints (2.2b)–(2.2e). We couple these together by making use of the following
relationship between the arc-loads ([y`a]) and the q-routes:

y`a =
∑

r∈Ω

h̃`arλr, ∀a ∈ A, ` ∈ L, (2.6)

where the h̃`ar coefficient represents the number of times a load ` ∈ L is carried over an
arc a ∈ A in a q-route r ∈ Ω. Theorem 2.2 states that the AL and the qR formulations
are equivalent, and thus we remove the AL constraints (2.1e)–(2.1h).
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We now prove that constraints (2.2b)–(2.2c) from qR are implied by other constraints
that are left in the model, and therefore can also be eliminated. Starting from (2.3b),
applying (2.4a), and finally using (2.6), (2.2b) can be derived as follows:

∑

a∈δ+(0)

x0a =
∑

a∈δ+(0)

∑

`∈L

y`a =
∑

a∈δ+(0)

∑

`∈L

∑

r∈Ω

h̃`arλr =
∑

r∈Ω

∑

a∈δ+(0)

∑

`∈L

h̃`arλr =
∑

r∈Ω

λr = K.

In the above derivation, we are using the fact that, given a q-route r expressed in terms
of h̃ coefficients, then,

∑

a∈δ+(0)

∑

`∈L h̃
`
ar = 1.

Similarly, using (2.3d), (2.4a), and (2.6), constraint (2.2c) can be derived, for all
w ∈ N , as:

∑

a∈δ+(w)

x0a =
∑

a∈δ+(w)

∑

`∈L

y`a =
∑

a∈δ+(w)

∑

`∈L

∑

r∈Ω

h̃`arλr =
∑

r∈Ω

∑

a∈δ+(w)

∑

`∈L

h̃`arλr =
∑

r∈Ω

hwrλr = 1.

This holds since
∑

a∈δ+(w)

∑

`∈L h̃
`
ar indicates how many times a q-route r has visited the

vertex w, i.e., hwr.
In addition, using (2.6), we replace (2.4a)–(2.4b) with the following:

x0a =
∑

`∈L

∑

r∈Ω

h̃`arλr, ∀a ∈ A, (2.7a)

∑

i∈N

qixia =
∑

`∈L

`
∑

r∈Ω

h̃`arλr, ∀a ∈ A. (2.7b)

Finally, we remove the [y`a] variables, as well as any other constraints (e.g. nonnega-
tivity) involving them. Note that the model still implicitly uses the concept of arc-load to
make the connection between the arc-items and the q-routes. Summing up, the AILqR

variables are the [xia] and [λr] and the formulation consists of the objective function (2.3a)
and the constraints (2.3b)–(2.3k), (2.2d)–(2.2e), and (2.7a)–(2.7b).

The construction of the AILqR formulation implies the following theorem.

Theorem 2.8. The formulations AIL and AILqR are equivalent, that is, for any point

(x, y) ∈ PAIL, there exists a point (x, y, λ) ∈ PAILqR with the same objective value and

vice-versa; particularly, ẑ∗
AIL

= ẑ∗
AILqR.

We now show that this new way of coupling the formulations has a more tractable
pricing problem. Let πa and µa, for all a ∈ A, be the dual variables of the constraints
in (2.7a) and (2.7b), respectively. Therefore, the reduced cost c̄r, of a column r ∈ Ω, can
be calculated as given below.

c̄r = cr −

(

∑

a∈A

(

−
∑

`∈L

h̃`ar

)

πa +
∑

a∈A

(

−
∑

`∈L

`h̃rar

)

µa

)

= cr +
∑

a∈A

∑

`∈L

(πa + µa`) h̃
`
ar

=
∑

a∈A

∑

`∈L

(πa + µa`) h̃
`
ar.
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The last equation holds since the objective function of the model is based on the x

variables, i.e. cr = 0.
Finding the minimum reduced cost q-route can be solved as a Shortest Path Problem

with Resource Constraints (SPPRC) [102, 151] that minimizes c̄r while restricting the
accumulated load to respect the vehicle capacity Q. This version of the problem, referred
to as Prc-AILqR, is weakly NP-hard.

2.4.5 The Arc-Item Coupled to the Set Partitioning t-Route For-

mulation

We now present a last attempt at combining the AI formulation with a set partition-
ing based formulation. For this purpose, we introduce the idea of t-route, which is a
route/path that carries only item t. This route/path starts at vertex t and ends at the
depot vertex 0, it respects the capacity Q, and is allowed to have subtours/subcycles.
The main idea is to use t-routes to capture the path that an item t will take to reach the
depot, once it is picked up. We mimic the guide arc-item concept of AI into the t-route
of item 0. Formally, let Ψt be a set of t-routes starting at the vertex t. Moreover, let the
set of all possible t-routes be given by

Ω =
⋃

t∈V

Ψt.

We define ḧar as the number of times that an arc a appears in a t-route r ∈ Ψt for all
t ∈ V . The Set Partitioning t-Route formulation (tR) we propose is the following.

(tR) min
∑

t∈V

∑

r∈Ψt

crλr (2.8a)

s.t.
∑

r∈Ψ0

λr = K, (2.8b)

∑

r∈Ψt

λr = 1, ∀t ∈ N, (2.8c)

∑

r∈Ψt

ḧarλr ≤
∑

s∈Ψ0

ḧasλs, ∀a ∈ A, t ∈ N, (2.8d)

0 ≤ λr ≤ 1, ∀r ∈ Ω, (2.8e)

λr ∈ Z, ∀r ∈ Ω. (2.8f)

Comparing to the qR formulation, the objective function (2.8a) explicitly shows that
the number and the role of the t-routes differs from those of the q-routes. The depot
out-degree is now modeled only by the number of t-routes that start at it, as stated by
the Constraint (2.8b). Constraints (2.8c) ensure exactly one t-route is selected for each
customer. Constraints (2.8d) ensure that t-routes must follow the ones of the depot.

We then propose the AI coupled to the tR formulation (AItR). It comprises the
entire AI model (2.3a)–(2.3k), all the constraints of the tR (2.8b)–(2.8f), and the coupling
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constraints

xta =
∑

r∈Ψt

ḧarλr, ∀a ∈ A, t ∈ V. (2.9)

It is not hard to show that the coupling constraints (2.9) can be used to obtain a simplified
version of the model. From constraint (2.3b), the depot out-degree constraint (2.8b) can
be obtained. Constraints (2.3f) imply the constraints (2.8c) whereas constraints (2.3h)
imply the ones in (2.8d). Furthermore, we present the following theorems.

Theorem 2.9. The formulation AItR dominates AI, that is, for any point (x, λ) ∈ PAItR,

there exists a point x ∈ PAI with the same objective value; particularly, ẑ∗
AItR ≥ ẑ∗

AI
.

Moreover, there are instances where this dominance is strict.

Proof. The result follows by the construction of the formulation AItR and experimental
results.

We can draw the following theorems from our experimental results.

Theorem 2.10. The formulation AItR does not dominate nor is dominated by AL.

Theorem 2.11. The formulation AItR does not dominate AIL.

We now focus on the pricing problem of AItR. Note that in each column generation
round, n pricing subproblems will be run (one for each item). Let ηta, for all a ∈ A, t ∈ V ,
be the dual variables associated to the coupling constraints (2.9).

Thus, the reduced cost c̄r of a column r ∈ Ψt can be calculated as

c̄r = cr −
∑

a∈A

(

−ḧar

)

ηta = cr +
∑

a∈A

ηtaḧar =
∑

a∈A

ηtaḧar.

Once more, we use the fact that the objective function is based on the x variables, that
is, cr = 0.

A pricing subproblem for a specific item t can be treated as a SPPRC that minimizes
c̄r subject to the total accumulated load not exceeding the vehicle capacity Q. In each
round of column generation, we have to solve this pricing subproblem n times, i.e., one
for each item t ∈ V . This version of the problem is called Prc-AItR, and it is weakly
NP-hard, as it can be solved by n calls to SPPRC.

2.4.6 Overview of the Formulations

We finish this section summarizing the relationship between the formulations of interest
in Figure 2.2. We highlight that AL and qR are equivalent, and, among the proposed
formulations, AIL and AILqR are also equivalent. In this situation, the relations of one
automatically apply to the other. We believe that AIqR is the strongest formulation in
this paper. However, there is no formal proof that it dominates AIL/AILqR and AItR,
and moreover its pricing subproblem is strongly NP-hard. The relaxations of the other
formulations presented are either compact or have a weakly NP-hard pricing problem.
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AIqR AIL / AILqR AItR

AI

AL / qR

CF

Figure 2.2. Some dominance relations among CmVRP formulations

The pair AIL/AILqR provides a feasible compromise between theoretical quality and
computational hardness, as they probably dominate every formulation in Figure 2.2, ex-
cept possibly AIqR. The LP relaxations of either AI and AItR are incomparable with
the LP relaxations of the pair AL/qR. The AI is incomparable even with the CF. By
incomparable, we mean that neither one dominates the other.

2.5 Computational Experiments

In this section, we present a set of computational experiments that were made with the
intention of gaining a better understanding of the tradeoffs of each model studied in this
work.

2.5.1 Instances

Some of our experiments were run using a set of benchmark instances that were proposed
in previous works. These instances are referred to hereinafter as regular instances. The
instances of classes A, B, E, and P are obtained from the CVRPLIB1, while the ones of
class V are from the VRDS-COIN-OR2.

We also propose a new set of small instances, which we used to gain some insight
into the behavior of the proposed models and also to have a set of instances that could
be easily used in the debugging and development phase of our code. This new class of
instances for the CmVRP (and CVRP) was named instance class S3 and it contains eight
small instances, namely S-n04-k1, S-n05-k1, S-n08-k2, S-n09-k3, S-n09-k3-d, S-n10-k3, S-
n13-k4, and S-n25-k5 where the values of Q are, respectively, 10, 15, 10, 15, 15, 50, 50,
and 80.

One final parameter of the CmVRP that does not exist in the CVRP is the curb
weight. For our purposes, we defined the vehicle curb weight q0 as the value ρQ, consid-
ering ρ = 0.15. Note that q0 might not be integer.

1CVRPLIB: http://vrp.atd-lab.inf.puc-rio.br
2Vehicle Routing Data Sets–COIN-OR:https://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/index.htm
3Instances available online at https://www.loco.ic.unicamp.br/instances
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2.5.2 Computational Environment

Our code was implemented using the C++ programming language, CPLEX4 12.7.1, and
C++ Boost graph library5 (BGL) 1.71. More specifically, we used the SPPRC imple-
mentation of the BGL6. When dealing with compact formulations, we use CPLEX in the
deterministic mode and with just one thread. On the other hand, the column genera-
tion formulations are solved with CPLEX in opportunistic mode with four threads. The
experiments were run on a computer with four Intel Xeon Gold 6142 @ 2.60 GHz CPU
chips and 252 GiB of RAM. The machine has 64 physical cores that can run at most one
thread each and the operating system is the GNU/Linux Ubuntu 18.04. The number of
test threads we run in parallel is at most the number of cores minus one.

2.5.3 Experiments on Small Instances

Table 2.1 presents the results of experiments made on small instances to compare the AL,
AI and AIL formulations. Columns “Inst” and “Q” show, respectively, the name of the
instance and the vehicle capacity Q. Column “#” presents the total number of instances.
For each of the above formulations, the LP relaxation was solved and the results are
presented in columns “ ẑ”, “T(s)” and “G(%)”, which show, respectively, the optimal value,
the time to solve it, and the gap. Note that the gap is calculated as follows: given the
best known integer solution value (z) and a lower bound value ẑ, the gap G(%) is given
by ((z − ẑ)/z)100. In fact, we make use of optimal integer solutions for the entire set of
small instances, that were computed using the BCP program of Fukasawa et al. [74]. T(s)
has a value of 0 when computations took less than 0.05 s. Finally, column “#I” presents
a mark ∗ whenever the solution to the corresponding LP relaxation is integral, and the
total number of those in the last row.

Table 2.1. Results of LP relaxations of AI, AL, and AIL on small instances

Arc-Item Arc-Load Arc-Item-Load

Inst Q # T(s) ẑ #I G(%) T(s) ẑ #I G(%) T(s) ẑ #I G(%)

S-n04-k1 10 0.0 112.50 ∗ 0 0.0 112.50 ∗ 0 0.0 112.50 ∗ 0

S-n05-k1 15 0.0 233.25 1.1 0.0 229.08 2.8 0.0 235.75 ∗ 0

S-n08-k2 10 0.0 2,599.00 9.1 0.0 2,859.00 ∗ 0 0.0 2,859.00 ∗ 0

S-n09-k3 15 0.0 1,078.25 0.2 0.0 1,074.08 0.6 0.0 1,080.75 ∗ 0

S-n09-k3-d 15 0.0 339.52 8.2 0.0 360.95 2.4 0.0 369.75 ∗ 0

S-n10-k3 50 0.0 13,034.45 4.2 0.0 13,483.67 0.9 0.1 13,576.25 0.2

S-n13-k4 50 0.0 908.25 1.7 0.0 923.50 ∗ 0 0.3 923.50 ∗ 0

S-n25-k5 80 0.3 36,476.00 2 0.7 37,053.88 0.5 84.7 37,059.15 0.5

S 8 0.0 1 3.3 0.1 3 0.9 10.6 6 0.1

The results for the instances S-n05-k1 and S-n08-k2 are enough to imply that AI does
not dominate nor is dominated by AL, thus proving part of Theorem 2.3. Moreover, from
the numbers in Table 2.1, we see that, in instance class S, AIL has an average gap of

4https://www.ibm.com/products/ilog-cplex-optimization-studio
5https://www.boost.org/doc/libs/1_71_0/libs/graph/doc/index.html
6https://www.boost.org/doc/libs/1_71_0/libs/graph/doc/r_c_shortest_paths.html
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0.1%, while AL and AI have average gaps of 0.9% and 3.3%, respectively. Therefore,
while AL and AI do not dominate each other, AL performed better than AI. In addition,
we point out that, in this instance class, the different structures of AI and AL combined
into AIL are able to produce better bounds than each of them individually. However, the
major concern is the time spent to solve the LP relaxation of the larger instance S-n25-k5
with AIL.

We also performed experiments using instance class S and the LP relaxation of AILqR.
Table 2.2 shows the corresponding results. As this model relies on column generation,
the table presents some of that relevant data under the group “CG Stats”. The number
of column generation rounds is reported in column “# Rnds” and the total number of
generated columns is given by “# Gen Cols”. The next two columns present the total
time spent generating columns (“CG T(s)”) and solving the LP master problem (“LP
T(s)”). The remaining columns are the same as in Table 2.1. The last row once more
presents the total number of instances and average values.

Table 2.2. Results of LP relaxation of AILqR on small instances

CG Stats

Inst Q # # Rnds # Gen Cols CG T(s) LP T(s) T(s) ẑ #I G(%)

S-n04-k1 10 6 30 0.0 0.0 0.0 112.50 ∗ 0

S-n05-k1 15 16 128 0.0 0.0 0.0 235.75 ∗ 0

S-n08-k2 10 79 169 0.0 0.5 0.5 2,859.00 ∗ 0

S-n09-k3 15 35 283 0.0 0.5 0.6 1,080.75 ∗ 0

S-n09-k3-d 15 45 321 0.0 0.5 0.5 369.75 ∗ 0

S-n10-k3 50 32 467 0.1 0.9 1.0 13,576.25 0.2

S-n13-k4 50 48 924 0.2 2.7 2.9 923.50 ∗ 0

S-n25-k5 80 1,473 40,614 201.2 4,223.0 4,428.5 37,059.15 0.5

S 8 216.8 5,367 25.2 528.5 554.2 6 0.1

We highlight, from tables 2.1 and 2.2, the expected equivalence of ẑ and gap values
between AILqR and AIL, as expected due to Theorem 2.8. We highlight the extremely
high time to solve the LP relaxation of AILqR for instance S-n25-k5. It takes a total of
4428.5 s, 201.2 s due to the CG steps and 4223 s due to solving the LP master, which
means that only 4.5% of the time is used to generate the 40,614 columns through the
rounds, and 95.4% of the time is spent solving the 1473 linear programs. In this instance,
each linear program takes an average of 2.9 s to be solved. While not much time was
spent generating the columns, the high number of rounds implies that a large number
of linear programs need to be solved. We note that the total time of solving just the
LP relaxation of AILqR for S-n25-k5 (4428.5 s) is extremely high whether compared to
solving the LP relaxation of AIL (84.7 s) or even compared to running the exact integer
BCP itself (2.9 s).

It is worth pointing out that the LP relaxation of AILqR is solved without enhance-
ments such as cutting planes or column generation improvements such as dual stabilization
[65, 142]. Our main goal is to show that the new formulations, AIL and AILqR, pro-
vide both in theory and in practice better lower bounds than the previous ones existing
in the literature, regardless of the processing time taken. Knowing that and the fact
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that their LP relaxations are pseudo-polynomial time solvable, one can implement such
improvements to attempt to tighten the bound and decrease the computational cost.

We also performed a computational experiment with the other proposed column gen-
eration based formulation, namely AItR. Table 2.3 presents those results on the small
instances. When comparing to the average number of rounds of AILqR (216.8), the same
statistic in AItR (185.2) is similar, albeit somewhat smaller. However, the number of
generated columns is about seven times larger than in the former model, the CG time is
about 40 times larger, and the LP time and the total time are about 60 times larger. The
main justification of AItR is that it has a pseudo-polynomial time pricing subproblem,
such as AILqR. However, even though the number of column generation rounds is almost
always smaller, the consistently higher number of generated columns led to larger linear
programs. Each linear program took an average of 214.8 s for the S-n25-k5 instance,
against the mean of 2.9 s for the AILqR. This gives us some evidence that decreasing
the number of rounds may not be good if accompanied by a big increase in the number
of generated columns.

Table 2.3. Results of LP relaxation of AItR on small instances

CG/LP Rounds Specifics

Inst Q # # Rnds # Gen Cols CG T(s) LP T(s) T(s) ẑ #I G(%)

S-n04-k1 10 5 94 0.0 0.0 0.0 112.50 0

S-n05-k1 15 8 265 0.0 0.0 0.0 233.25 1.1

S-n08-k2 10 74 788 0.1 0.1 0.2 2,657.89 7

S-n09-k3 15 24 1,260 0.1 0.2 0.3 1,078.25 0.2

S-n09-k3-d 15 36 1,194 0.1 0.2 0.3 353.40 4.4

S-n10-k3 50 24 2,591 0.3 0.9 1.3 13,282.60 2.3

S-n13-k4 50 63 5,612 1.9 5.4 7.3 910.50 1.4

S-n25-k5 80 1,248 304,946 7,728.1 268,072.0 275,863.0 36,749.63 1.3

S 8 185.2 39,593.8 966.3 33,509.8 34,484.0 0 2.2

These average numbers are mainly influenced by the test over the instance S-n25-k5.
For the sake of completeness, we report some statistics about a test of S-n25-k5 limited
to 86,400 s, a more reasonable time limit: it performed 424 rounds generating 296,411
columns, the CG procedure steps took 2174.6 s while the LP solver steps consumed
84,192 s. Note that this suggests that 97.2% of the columns in this test are generated by
the first third of column generation iterations.

Another interesting note is that the LP relaxation of AItR for instance S-n04-k1
reaches the same value of ẑ = 112.5 as the other relaxed models tested, however the
solution is fractional. From the results in Table 2.3, one can state that AItR does not
dominate the pair AILqR and AIL (implying Theorem 2.11). These results also imply
that AItR does not dominate nor is dominated by AL (implying Theorem 2.10), as well
as implying that AI does not dominate AItR (proving part of Theorem 2.9).

This paper did not present experimental results over the CF model, as by Theorem
2.1, it is dominated by AL. Moreover, there are also no experiments using AIqR due to
the fact that solving its relaxation is strongly NP-hard, as stated by Theorem 2.7. In
fact, if one is willing to deal with this type of pricing subproblem, a reasonable way is to
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directly use a specialized method for the strongly NP-hard Elementary SPPRC [64], and
practical experience indicates that several implementation improvements must be made,
however that is not the focus of our paper.

2.5.4 Experiments on Regular Instances

Experimental results with regular benchmark instances from the literature have their gaps
presented in Table 2.4 and their computational times in Table 2.5. These experiments
were made over the 100 regular instances, where we set the time limit to 86,400 s (24 h).
The reported gaps of the models’ LP relaxations were calculated against the objective
value of the best available integer solutions.

The integer solutions were obtained as follows. For the majority of the instances, we
used the BCP program of Fukasawa et al. [74] with a time limit of 604,800 s (7 days).
Besides that, to deal with some instances where some technical issues happened with this
BCP program, we relied on our program with the (integer version of the) AIL model and
a time limit of 2,592,000 s (30 days). The two instances that ended up with no available
integer solution, namely E-n101-k8 and P-n101-k4, are among the largest instances of
each class, which leaves us with 98 (out of 100) instances with integer solutions.

To report the main results, first, we kept just the tests carried out over instances that
have integer optimal or integer best known solutions available. In addition, we present
only those tests where optimal solutions were found for the LP relaxations of all three
models, leaving us with 71 instances. We comment that all the LP relaxations of AI and
AL were solved within the time limit on all instances. These 71 instances have up to 67
vertices, as can be seen in column n′ in Table 2.4, where n′ represents the largest instance
size in each class that remains after the above mentioned filters were applied. For the
non-condensed results correspondent to the results in tables 2.4 and 2.5, see Appendix A.

Table 2.4. Results on gaps of the LP relaxations of AI, AL, and AIL

Arc-Item Arc-Load Arc-Item-Load

G(%) G(%) G(%)

Inst # n′ Min Avg Max #I Min Avg Max #I Min Avg Max #I

A 19 60 2.7 7 12.4 1.1 3.6 10.1 0.2 1.9 5.7

B 15 67 3.9 9.1 22.2 1.3 6.7 18.9 1.1 4.3 17.2

E 4 31 5.4 10.2 19.6 0.7 4.3 14.1 0 3 11.4 1
P 20 65 0.5 9.5 17.9 0 3.2 8.5 1 0 1.8 5 1
V 13 48 0 9.5 22.9 1 0 4.4 12.8 2 0 2.5 9 2

71 67 8.8 1 4.3 3 2.6 4

The average gaps of the relaxations of AI, AL, and AIL, are, respectively, 8.8%,
4.3%, and 2.6%. We can see that the behavior presented in the small instances also
happens here, i.e., this sequence of gaps is in decreasing order. Considering we have that
AIL dominates AI and AL (see Theorem 2.4), the last value being smaller is expected.
However, the consistent ratio between the AIL gap and the others may be attributed
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to the fact that each formulation captures different and complementary aspects of the
CmVRP, and putting them together tends to produce a stronger formulation that has
been worth exploring.

It is worth noting that each instance was preprocessed by having its capacity and
demands divided by the greatest common divisor of these values, which we refer to as
the scaling factor γ. The only instances with γ > 1, are E-n13-k4, E-n22-k4, E-n30-k3,
E-n33-k4, and P-n22-k8, whose values of γ are, respectively, 100, 100, 25, 10, and 100.
The results already take these scaling factors into account, as we multiply the resulting
objective function value by γ. After preprocessing, E-n23-k3, with Q = 4500, and E-
n33-k4, with Q = 800, are the two most significant outlier instances with respect to Q;
the others have Q ≤ 400. We mention this as the value of Q is particularly relevant for
formulations involving arc-load variables. For instance, for the AL formulation, E-n23-k3
and E-n33-k4 were, respectively, the instances with the first and third highest CPU times
(the second highest time was for instance P-n101-k4). For the AIL relaxation, instances
E-n23-k3 and E-n33-k4 are the only ones with up to 50 vertices that were not solved under
the time limit.

In Figure 2.3, we also present a plot of the cumulative frequency of gaps in the in-
stances. A point (x, y) in this figure represents that y instances have a gap at most x%.
One can see that the AIL relaxed formulation reaches a gap of at most 5% in 64 instances.
For the other two formulations, AL and AI, only 50 and 11 instances have a gap of at most
5%, respectively. Indeed, this chart shows that the average data contained in Table 2.4
are not biased by only a few instances.
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Figure 2.3. Gap cumulative frequency

Despite having presented a promising experimental gap, the main drawback of AIL is
the computational time it requires to have its relaxation solved, as shown by Table 2.5.
While AI and AL took an average of 16.8 s and 19.6 s in those 71 instances, the AIL

computational time average is 17,409.7 s (almost five hours), with some peaks of more
than 77,400 s (21.5 h). In addition, we conducted experiments with our current simple
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implementation of the AILqR, and, the optimal relaxed solution was reached in only 15
instances within the same time limit of 86,400 s.

Table 2.5. Computational times of the LP relaxations of AI, AL, and AIL

T(s)

Arc-Item Arc-Load Arc-Item-Load

Inst Min Avg Max Min Avg Max Min Avg Max

A 1.0 14.8 83.1 3.9 17.5 39.4 709.9 16,120.9 81,763.9

B 1.1 16.4 121.8 3.4 18.7 51.9 885.9 30,802.6 77,429.0

E 0.0 1.3 4.1 0.0 5.4 15.5 0.4 2,544.0 9,316.0

P 0.0 11.6 68.9 0.0 37.9 143.0 0.1 22,189.2 85,160.6

V 0.0 33.3 224.5 0.0 0.1 0.6 0.4 1,060.9 5,043.2

16.8 19.6 17,409.7

2.6 Concluding Remarks

In this paper, among other advances, we worked on several compact formulations for the
CmVRP: we described the AI and the AL formulations from the literature; and proposed
a combination of both, the AIL formulation. We then stated that AIL dominates AI and
AL and presented dominance relations between all these formulations and the classical
CF. Our experiments show a significant gain in the LP relaxation gap of AIL, when
compared to AI and AL. The advantage of the AIL may be attributed to the fact that
each base formulation alone captures different and complementary aspects of the CmVRP,
and putting them together tends to produce a stronger formulation that is worth exploring.
The downside is the large amount of time spent in solving the tighter formulation.

We have also proposed the set partitioning AItR and AILqR formulations, that have
pricing subproblems solvable in pseudo-polynomial time. While the former did not pro-
vide a computational advantage, important results were derived about the latter. We
proved that AIL and AILqR are equivalent, and besides, this relation was also important
to provide an intuition about the good gap results of AIL when compared to the AI and
the AL formulations individually. We also contributed by proposing a somewhat natural
way to try and combine AI with a set partitioning formulation, namely the AIqR for-
mulation, which dominates the qR formulation, and thus, by transitivity, also dominates
AL. However, such a natural formulation is not likely to be useful in practice since its
pricing subproblem is strongly NP-hard.

The results of this paper point to multiple possibilities of research. The strength of the
AIL can be further studied in order to discover its relation with the several families of cuts
for the CVRP available in the literature, e.g., proving whether the cuts are useful over the
model, including cuts which eliminate cycles of length two, which already exist for the AL.
The experimental results concerning the gaps suggests one may benefit from using AIL in
BB and BC methods, but further research is needed to speed up its high computational
cost. Considering the AIL and AILqR equivalence, speeding up the column generation
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process and also strengthening it by using other structures such as ng-routes [14] may
make the latter viable to be used in a BP or BCP method. It is also worth searching
for a formulation whose LP relaxation (i) can be solved in pseudo-polynomial time, and
(ii) gives bounds that are better than the ones from AILqR.
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Chapter 3

Branch-Cut-and-Price Approaches for

Vehicle Routing Problems with

Load-Dependent Energy Consumption

Abstract. Vehicle Routing Problems (VRPs), in general, aim at finding
a least cost set of routes to serve customers with a fleet of vehicles under
given constraints. While costs in the classical Capacitated VRP (CVRP) are
measured in terms of distance, the energy consumption of vehicle routing is
currently an established topic due to its potential of mitigating environmental
impacts. The energy consumption might be taken into account in the objective
function, as is the case in the variant called Cumulative VRP (CmVRP),
or used to limit the energy that a vehicle can consume over a route, thus
restricting its range without replenishing. It is important to note that the
energy consumption of a vehicle may be significantly affected by the weight
it carries, which, in turn, can be significantly affected by the loads picked up
when visiting customers.

In this paper, we employ a branch-cut-and-price (BCP) method to tackle
CVRP variants that consider a simplified load-dependent energy consumption
measure. Branch-and-price and BCP approaches with energy considerations
were done before, however, to the best of our knowledge, this is the first time
a load-dependent energy consumption is limited by the pricing subproblem.
Particularly, we propose variants of the CVRP and CmVRP with limited en-
ergy and devise set-partitioning-based master formulations and correspondent
pricing subproblems to solve these problems and the CmVRP, where some
formulations and the subproblems rely on discretized loads per arc.

Our BCP approaches to the CmVRP reports computational results that
improve upon the state-of-the-art ones of Fukasawa et al. [74]. We present
experiments comparing solutions of the CmVRP, CVRP, and their versions
with limited energy. The proposed approaches can solve instances with up
to 101 vertices for the CmVRP and the versions with limited energy of the
CmVRP and CVRP.
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3.1 Introduction

The numerous and still very actively studied category of Vehicle Routing Problems (VRPs)
[170] was originated from the Capacitated VRP (CVRP) [50]. A description of the CVRP
is that it aims to find a set of vehicle routes, starting and ending at the depot, that picks up
the customers’ demands and minimizes the traveled distance, where each route respects
vehicle load capacity. The problem is defined on top of a digraph D = (V,A), where
the depot and customers comprise the vertex set V and each arc in A has an associated
distance.

A significant amount of research has been devoted to studying other measures of
quality of a route (besides distance). A particular one that has received significant recent
attention is energy consumption, given its relationship to transportation costs (e.g., fuel,
electricity) and amount of greenhouse gas emissions [19, 54], which is an established
environmental concern [108, 19, 9]. One way to take energy consumption into account is
by considering it in the objective function. Another one is by imposing a constraint that
limits the energy consumption of each route. This latter choice is particularly relevant
when vehicles need to be restricted by a certain range since recharging or refuel may not
be easily done, which is the case of electrical vehicles [45]. One simplified measure of
energy consumption is proposed in Kara et al. [108], who study the so-called Cumulative
VRP (CmVRP) in which energy is measured by multiplying the distance traveled when
traversing an arc by the accumulated load weight carried over it. We note that, even
though it is a simplified measure of energy consumption, it takes already an important
consideration into account, namely the load carried. Indeed, Goeke and Schneider [86]
pointed out the importance of considering the load in the energy consumption, as it
impacts, for instance, the range of the vehicles.

There have been several other works that consider energy in the context of routing.
We will now review a few of these works in order to better contextualize the problem we
chose to tackle. A particular class of problems, that has considered variants that take
into account environment-related issues is the class of Green VRP (GVRP), as surveyed,
for instance, in Demir et al. [55], Eglese and Bektaş [66], Pelletier et al. [139], Erdelić
and Carić [67], Asghari and Mirzapour Al-e-hashem [9, 10], Kucukoglu et al. [111]. There
are different subclasses of GVRPs that differ in how energy is accounted for and/or lim-
ited. For instance, the Pollution-Routing Problem (PRP) has a comprehensive objective
function that aims at minimizing the cost of fuel, cost of greenhouse gas emissions, and
drivers’ wage [19]; thereby, the amount of energy consumed over each arc depends on sev-
eral factors such as distance, vehicle curb weight, current load and speed, and vehicle and
road specifications. The Alternative Fuel Green VRP (AFGVRP) assumes the usage of
alternative fuel, as, for example, biodiesel, electricity, ethanol, and hydrogen [68], where
the fuel is consumed proportionally to the distance traveled and each vehicle has fuel
tank capacity. In AFGVRPs, refueling stations are commonly used but, unlike several
other types of VRP, no limit is imposed on the total load carried by each vehicle. In a
basic Electric VRP (EVRP) (see the survey Kucukoglu et al. [111]), the vehicles consume
some amount of the total energy available in their battery proportionally to the distance
traveled [45, 161, 58]. The works of Goeke and Schneider [86], Zhang et al. [185] have
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considered EVRP variants where the energy consumption takes into account the effect of
the distance, curb weight, current load, speed per arc, and vehicle and road specifications,
besides also considering drivers’ wage. One final comment is that several other factors
have been taken into account in the literature. For instance, the presence of recharging
stations are common in EVRPs and time windows are common in GVRPs.

One important consideration in the abovementioned works is the methodology used
to solve the resulting models. The number of works that consider branch-and-price (BP),
branch-cut-and-price (BCP), and tailored branch-and-cut (BC) approaches to GVRPs is
rather small, whilst the majority of studies used mixed integer linear programming (MILP)
formulations that are simply fed directly to a standard solver, other exact methods, and
heuristic methods, as reported in the surveys Asghari and Mirzapour Al-e-hashem [9],
Kucukoglu et al. [111]. Given the success of BCP in solving several types of VRPs
[170, 143] this is a significant gap in the literature of GVRPs. The only works that consider
BP or BCP methods to approach GVRPs and take into account energy consumption,
energy limits, and load capacity are Desaulniers et al. [58], Hiermann et al. [99], Breunig
et al. [30], Ceselli et al. [36], Wu and Zhang [179]. However, the energy consumption in
these works do not depend on the accumulated load, and Desaulniers et al. [58] indeed
mention that the usage of the accumulated load in the energy consumption would lead to
a more complex pricing subproblem.

To deal with the limited energy capacity of the vehicles, we propose the CVRP with
Limited Energy (CVRP-LE) and CmVRP with Limited Energy (CmVRP-LE), which
are, respectively, similar to the CVRP and CmVRP with the difference that the new ones
have limited energy per vehicle, where we employ the same energy consumption function of
the CmVRP. As the CVRP and CmVRP [108], the new problems are strongly NP-hard.
In relation to other problems in the literature, Kramer et al. [110] noted that the CmVRP

can be seen as a simplified version of the PRP and we observed that the CmVRP-LE

can be seen as simplified versions of the EVRPs approached by Goeke and Schneider [86],
Zhang et al. [185], whereas, surprisingly, we did not find in the GVRP literature a problem
that can accommodate the CVRP-LE as a special case. We chose to use this energy
consumption as it captures the main aspect of making energy consumption dependent
on the load, while already incorporating a significant challenge in terms of pricing, as
mentioned in Desaulniers et al. [58]. We also highlight that the CmVRP and CmVRP-LE

may be good choices to model critical aspects of multi-package pickup electric drones
[135, 97, 63, 133], as their carried load weight will increase along the route, affecting the
usually restricted range provided by the battery. If the drones’ traveled distance or time
duration is the main concern, the CVRP itself and, especially, the CVRP-LE may be
good choices of modeling.

In this paper we devise BCP approaches for the CmVRP, CmVRP-LE, and
CVRP-LE, which are based on the generic framework proposed by Pessoa et al. [143],
the so-called VRPSolver [156]. Fitting in this BCP framework, each of our problems
of interest are given by means of a MILP master problem formulation and a pricing
subproblem [48], where the latter is modeled as a Resource Constrained Shortest Path
Problem (RCSPP) [151]. Our master problems are formulated with either arc-load or
arc (vehicle-flow) variables, which are coupled to resource constrained path variables; we
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point out that the master formulations are set-partitioning based. An arc-load, by its
turn, denotes how much load is carried through an arc [74], and its concept is pivotal
in our modeling of the pricing subproblems: the arc-loads usage allow the pricing proce-
dure to track and limit the load-dependent energy consumption that varies throughout
the vehicles’ routes. To accomplish this, we define multi-digraphs whose arcs are given
by arc-loads to be used as inputs to the subproblems modeled as RCSPPs. BCP meth-
ods with arc-load based master and pricing problems were used before for the CVRP
[141] and CmVRP [74], however, to the best of our knowledge, this is the first time a
load-dependent energy consumption is limited by the pricing subproblem.

In summary, the main contributions of this work are: (i) proposing CVRP variants
that consider load-dependent energy limits – i.e., the CmVRP-LE and CVRP-LE – and
devising BCP approaches to solve them; (ii) reporting state-of-the-art exact results for
the CmVRP that improve upon the BCP approach of Fukasawa et al. [74]; (iii) presenting
extensive computational results for the CmVRP-LE and CVRP-LE with the models we
proposed, where we compare them with the variants without energy limit; and (iv) the
usage of a pre-processing algorithm to avoid the creation of arc-loads that represent un-
packageable amounts of loads.

This paper is organized as follows. Section 3.2 presents fundamental concepts, models,
and the pre-processing algorithm of arc-loads we are using. Section 3.3 revises the aspects
of the generic BCP framework used in our work. In Section 3.4 we propose new problems,
formulations, and approaches to deal with them. Our experimental computational results
are given in Section 3.5. In Section 3.6 we present our concluding remarks and point to
future work.

3.2 Main Definitions and the Arc-Load Formulation

In this section, we provide formal definitions of the several VRP variants of interest and
revisit the arc-load (AL) formulation. We also provide a pre-processing algorithm with
the aim to decrease the number of variables needed in the building of this model.

We emphasize that we are dealing with the pickup version of the VRP. We start by
introducing some basic notation. Consider a digraph D = (V,A), where V is the set of
vertices and A is the set of arcs. An arc (u, v) ∈ A may also be referred to as uv. For a
vertex w ∈ V , the set of arcs that leave it is denoted by δ+(w) and, analogously, the set
of arcs that enter it is written as δ−(w). In addition, the set of all arcs that leave from or
enter in w is given by δ(w) = δ−(w) ∪ δ+(w).

3.2.1 Problems Considered

Let us formally define the problems CVRP, Symmetric Capacitated VRP (SymCVRP),
CmVRP, CVRP-LE, and CmVRP-LE. The following definitions are common for all of
these problems. The input is given by a complete digraph D = (V,A) and a fleet of K > 0

identical vehicles. The vertices of D are given by V = {0}∪N , where vertex 0 represents
the depot and the customers are given in N = {1, . . . , n− 1}. Each customer w ∈ N has
a demand of weight given by a positive integer qw that must be picked up and carried
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to the depot by a vehicle. Every arc a ∈ A has a corresponding distance da ≥ 0. Each
vehicle has a positive integer capacity Q representing the maximum load weight that it
can carry. A route performed by a vehicle is defined as a sequence 〈w0, w1, . . . , wl−1, wl〉

such that w0 = wl = 0, {w1, w2, . . . , wl−1} ⊆ N , and wi 6= wj for all i 6= j such that
1 ≤ i, j ≤ l − 1. We define the total demand of such a route to be

∑l−1
i=1 q

wi . A feasible
solution is defined by a set of exactly K routes such that (i) they pickup all the customers’
demands, (ii) each customer is visited exactly once, and (iii) the total demand of a route
is at most Q.

In the CVRP, the objective is to find a feasible solution that minimizes total distance.
The SymCVRP can be described as a CVRP where every pair of arcs uv and vu have
same distance, which is equivalent to defining the problem on an undirected graph. The
other problems also have a vehicle curb weight given by a non-negative integer q0 – note
that the curb weight does not count towards the capacity. The energy consumed by a
vehicle while traversing an arc a carrying a load `a is da(q0 + `a). In the CmVRP, the
objective is to find a feasible solution that minimizes total energy consumption.

For the two problems with limited energy, consider that each vehicle has a pos-
itive integer energy limit E. We define the energy consumption of a route to be
∑l−1

i=0 dwiwi+1

(

q0 + `wiwi+1

)

. For these two problems, in addition to requiring (i)–(iii),
it must also be true that (iv) the energy consumption of each route is at most E. Like
their counterparts that have no energy limit, the objective in the CVRP-LE is to find a
feasible solution that minimizes total distance, while the objective in the CmVRP-LE

is to find a feasible solution that minimizes total energy consumption.

3.2.2 Revisiting the Arc-Load Formulation

In VRPs studied in this paper, an amount of load is carried over an arc when it is traversed
by a vehicle in its route. We consider that these loads are always integral. We use the
term arc-load to represent an arc being used to carry a specific load. Formally, we define
arc-load (a, l) to represent arc a being used to carry load l. We use, interchangeably, the
following alternative notations for arc-load (a, l): a`, (uv)`, or (u, v)`.

Thus, given the domain set of discrete loads of an arc, there will be one arc-load for
each load in that arc. Formulations based on arc-load were used for the CVRP [141, 137]
and the CmVRP [74, 133], as well as for similar problems, namely, the CVRP with unitary
demands [85] and the Time Dependent Traveling Salesman Problem [144].

Let L(uv) denote the domain set of the discrete loads that can be associated with each
arc uv ∈ A, which is defined by

L(uv) =















{0}, if uv ∈ δ+(0),

L′ (uv, [qu, Q− qv]) , if uv 6∈ δ(0),

L′ (uv, [qu, Q]) , if uv ∈ δ−(0),

where we can see that only loads valued 0 can go out the depot. The other cases are defined
by L′ (uv, [`−, `+]), that denotes the set of all loads corresponding to the combinations of
all customers’ demands (always including u and excluding v) that are packageable as loads
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in the interval [`−, `+]. To compute each arc’s discrete load domain as packageable de-

mands of the customers, we applied a simple algorithm based on sets, that is presented in
Algorithm 3.1. The main idea of this algorithm resembles the idea of discretization points
using dynamic programming commonly encountered in the literature of packing/cutting
problems as, for instance, in Cintra et al. [42], de Queiroz et al. [53], Hokama et al. [101].
Note that the number of loads/combinations on an arc is upper bounded by the vehicle
capacity Q. Similarly, the algorithm’s time and space complexities are upper bounded by
a function that is pseudo-polynomial in Q. Moreover, given a suitable data structure to
represent sets, it is convenient to deal with the elements of set L sorted by non-decreasing
load order, as denoted by line 8.

Algorithm 3.1. Computing each arc’s discrete load domain as packageable demands

Compute-L′
(

uv, [`−, `+]
)

1 L = {`−}
2 for w ∈ N \ {u, v} do

3 L′ = ∅
4 for ` ∈ L do

5 if `+ qw ≤ `+ then

6 L′ = L′ ∪ {`+ qw}

7 L = L ∪ L′

8 Sort(L)
9 return L

With this in hand, we state the decision variables to be used to represent the arc-loads,
that are:

y`a =

{

1 if the load ` is carried over the arc a,

0 otherwise,
∀a ∈ A, ` ∈ L(a). (3.1)

The AL formulation is given in the following.

(AL) min f(y) (3.2a)

s.t.
∑

a∈δ+(0)

∑

`∈L(a)

y`a = K, (3.2b)

∑

a∈δ+(w)

∑

`∈L(a)

y`a = 1, ∀w ∈ N, (3.2c)

∑

a∈δ−(w):
`∈L(a)

y`a −
∑

a∈δ+(w):
`+qw∈L(a)

y`+qw

a = 0, ∀w ∈ N, ` ∈ L(δ−(w)), (3.2d)

y`a ≥ 0, ∀a ∈ A, ` ∈ L(a), (3.2e)

y`a ∈ Z, ∀a ∈ A, ` ∈ L(a). (3.2f)

The function f(y) to be minimized in (3.2a) is chosen according to the problem type.
The CVRP aims at minimizing the travel distance. On the other hand, in the CmVRP
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case, we use an objective function that minimizes a simplified measure of energy con-
sumption, which is given by the sum of the energy consumed in each selected arc-load.
The expressions are given in the following:

f(y) =



















∑

a∈A

∑

`∈L(a)

day
`
a, if minimizing distance, (3.3a)

∑

a∈A

∑

`∈L(a)

da
(

q0 + `
)

y`a, if minimizing energy consumption. (3.3b)

Constraint (3.2b) makes the out-degree of the depot be equal to the number of vehi-
cles. Note that, for each arc a ∈ δ+(0), only the arc-load with load 0 exists, i.e., a0.
Constraints (3.2c) ensure that each customer has an out-degree of 1. Constraints (3.2d)
ensure that the load leaving node w is equal to the load entering it plus qw.

We end this subsection by remarking that the main difference between the AL for-
mulation for the CVRP, denoted by (3.3a) and (3.2b)–(3.2f), and the AL formulations
for this problem in Pecin et al. [137] and Pessoa et al. [141] is that, on those works, the
employed definition of L(uv), for each uv ∈ A, is denoted by

L(uv) =















{0}, if uv ∈ δ+(0),

{qu, . . . , Q− qv}, if uv 6∈ δ(0),

{qu, . . . , Q}, if uv ∈ δ−(0).

Likewise, if we consider L(a) = {0, 1, . . . , Q}, for all a ∈ A, and build the AL formulation
for the CmVRP given by (3.3b) and (3.2b)–(3.2f) including extra constraints to set trivial
low and high loads to zero, we would obtain a formulation very similar to the ones in
Fukasawa et al. [74], Mulati et al. [133].

Comparing these formulations to ours, one can note that the preprocessing step in
Algorithm 3.1 allows for a possible reduction in the number of variables and constraints.
Moreover, the relaxations of our formulations have the potential of providing higher lower
bound values, due to removing some arc-load possibilities.

Eventually, we add that it is indeed possible to model the energy limit of the CVRP-LE
and CmVRP-LE by adding variables and compact constraints to the AL formulation,
similar to which is done, for instance, by Zhang et al. [185]. However, as we are interested
in BCP approaches, in Section 3.4 we will focus on models that consider the energy limited
by the means of the pricing subproblem.

3.3 Review of a Generic BCP Method for VRPs

The BCP approaches that we used in this work is based on the generic BCP method
proposed in the work of Pessoa et al. [143]. Therefore, in this section, we focus on
outlining the basic components of that method that will be relevant to our work. While
the BCP approach in Pessoa et al. [143] was designed to solve VRPs, it has also been
applied to other kinds of NP-hard combinatorial optimization problems. An associated
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software package, called VRPSolver, has been released, and implements the method’s
functionalities [156]. We may henceforth refer to this entire framework as VRPSolver.

The approach of VRPSolver is to decompose the problem into an integer master
problem (IMP) formulation and a pricing subproblem, where both are coupled to each
other in a generic predefined manner. An explicit integer master problem (EIMP) for-
mulation must be provided accordingly to a predefined generic VRP formulation. The
definition of the components of the pricing subproblem must be provided in order to be
solved as a Resource Constrained Shortest Path Problem (RCSPP). Then the IMP is
solved in a BCP fashion, which means that, at each node of the branch-and-bound (BB)
tree, a linear programming (LP) restricted master problem (RMP) is iteratively solved
via column generation, which relies on the pricing subproblem. Specific cut separation
routines may also be called in each resolution of the RMP.

We will start by characterizing the resource constrained paths that are used in the
RCSPP for the pricing subproblem. After that, we present the EIMP formulation and
the mapping of its variables to arcs of resource constrained paths. Finally, we present
advanced features built over these basic components.

3.3.1 Resource Constrained Paths

Let D̃ = (Ṽ , Ã) be a multi-digraph that will be used to describe the resource constrained
paths. The set of vertices Ṽ = {s, t}∪Ñ is composed by a source s, a sink t, and the other
vertices in Ñ ; note that s and t may refer to the same vertex. The set of arcs is given
by Ã. Considering R a resource set, we have that for each resource r ∈ R, a consumption

q̃ar and an accumulated consumption interval [lar, uar] are defined for each arc a ∈ Ã.
We may denote [lar, uar] as [l, u]ar. Consider a non-necessarily elementary path p =

〈w0, a1, w1, . . . , wl−1, al, wl〉 of digraph D̃ where w0 = s, wl = t, {w1, . . . , wl−1} ⊆ Ñ , and
l ≥ 1. The resource constrained path p is feasible if it respects the resources consumption,
as follows.

Given a resource r ∈ R and a path p on the digraph D̃, let ρ̃ir be its amount of
accumulated resource consumed at vertex wi, for 0 ≤ i ≤ l. It is assumed that ρ̃0r = 0. A
resource can be defined as disposable or non-disposable, depending on how ρ̃ir is calculated.
In the disposable case, the accumulated resource consumption is allowed to be arbitrarily
raised, e.g., to fit in the lower bound of an arc’s interval. In this case we say that an amount
of resource was disposed or dropped. Thus, the accumulated consumption at a vertex wi,
where 1 ≤ i ≤ l, is given by ρ̃ir = max {lair, ρ̃i−1,r + q̃air}, where lair ≤ ρ̃ir ≤ uair. The
non-disposable case is similar, with the difference that ρ̃ir = ρ̃i−1,r + q̃air. We anticipate
that the definition of a resource as disposable or non-disposable may have a significant
influence on the amount of labels that can be discarded during the algorithm, which
directly impacts the performance.

A resource that does not have any negative consumption is said to be monotone,
otherwise it is non-monotone. The set of resources R is divided into the main resources
RM and the secondary resources Rs, where a main resource must be disposable and
monotone. The distinct implications of main and secondary resources will be addressed
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in Subsection 3.3.4. Let P be the set of all feasible resource constrained paths. Note that
the size of P may be exponential on the size of the digraph D̃.

3.3.2 Master Problem

The EIMP formulation has the integer variables [xj] and [λp]. As a modeling product, the
[xj] variables are intended to be directly associated with the arcs of a VRP, where these
variables are given by xj for all j ∈ J = {1, 2, . . .}. The Objective Function (3.4a) must
be defined over [xj] variables. On the other hand, the [λp] variables are automatically
associated with the resource constrained paths p ∈ P . The formulation is presented in
the following.

(EIMP) min
∑

j∈J

cjxj (3.4a)

s.t.
∑

j∈J

αijxj ≥ θi, ∀i ∈ I, (3.4b)

xj =
∑

p∈P





∑

a∈M(xj)

hpa



λp, ∀j ∈ J, (3.4c)

L ≤
∑

p∈P

λp ≤ U, (3.4d)

xj ∈ Z, ∀j ∈ J, (3.4e)

λp ≥ 0, ∀p ∈ P, (3.4f)

λp ∈ Z, ∀p ∈ P. (3.4g)

The [xj] and [λp] variables are coupled by the constraints (3.4c), which are implicitly
defined by the concept of mapping, as follows. For each j ∈ J , consider that M(xj) ⊆

Ã maps a variable xj to a non-empty subset of arcs of the digraph D̃. Also consider
M−1(a) = {j | a ∈ M(xj)}. Let hpa denote the number of times an arc a is visited by a
resource constrained path p ∈ P . Thus, given a set of resource constrained paths, if an
arc a ∈ M(xj) is traversed by these paths then this information will be related to the xj
variables, for each j ∈ M−1(a). Constraints (3.4d) are defined with the usage of L and
U , intended to be, respectively, the lower and upper bound on the number of paths. We
also have the constraints over [xj] variables in the format of (3.4b), whose indexes are
given by I = {1, 2, . . .}. As highlighted by Pessoa et al. [143], resource constrained paths
can be designed to model intrapath relations while the constraints (3.4b) are suitable to
enforce interpath relations.

Once the EIMP formulation is defined, the generic BCP converts that formulation
into a version where occurrences of [xj] variables are substituted by its definition in terms
of [λp] variables, as given by the mapping constraints (3.4c). The formulation is then
relaxed generating the LP master problem (MP), stated in (3.5a)–(3.5d). For the sake
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of convenience, we present the correspondent dual variables identifiers on the left of the
constraints.

(MP) min
∑

p∈P





∑

j∈J

cj
∑

a∈M(xj)

hpa



λp (3.5a)

(π) s.t.
∑

p∈P





∑

j∈J

αij

∑

a∈M(xj)

hpa



λp ≥ θi, ∀i ∈ I, (3.5b)

(ν) L ≤
∑

p∈P

λp ≤ U, (3.5c)

λp ≥ 0, ∀p ∈ P. (3.5d)

At each node of the BB tree, the LP MP formulation is solved via column generation
[17, 59, 72, 123, 48].

Note that the values of the dual variables of the current RMP solution are used to
compute the reduced costs. Consider the dual variables of the constraints (3.5b), that are
given by πi for all i ∈ I. The reduced cost that corresponds to an arc a ∈ Ã is given by:

c̄a =
∑

j∈M−1(a)

cj −
∑

i∈I

∑

j∈M−1(a)

αijπi. (3.6)

Let ν− and ν+ be the dual variables of the constraints (3.5c). In the RMP of an iteration of
the column generation, the reduced cost of a resource constrained path p = 〈a1, . . . , al〉 ∈

P is denoted by:

c̄p =
∑

a∈{a1,...,al}

c̄a − ν− − ν+. (3.7)

Observe that if an arc a is traversed more than once in a path p then it will appear repeated
with distinct indexes, which plays a role similar to coefficient hpa in this operation.

As the interest is on a path with the smallest reduced cost over the current RMP
solution, the use of RCSPP from the source s to the sink t is suitable. The RCSPP is
solved by a dynamic programming labeling algorithm [143, 158].

Additional cutting planes can be included as extra constraints in the format of (3.5b)
after a resolution of the MP. If cuts are separated and added, the MP is re-optimized,
otherwise, the MP is considered solved. Note that cuts in this format are robust [147],
i.e., they do not change the structure of the pricing subproblem, as the dual variables
from them are suitable computed in the reduced costs of the arcs via Equation (3.6).

The generic BCP allows for branching over the [xj] variables and over constraints
given by aggregations of [xj] variables. As both are added as constraints in the format of
(3.5b), they are also robust.
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3.3.3 Packing Sets and Elementarity Sets

The concepts of packing sets and elementarity sets are pivotal in the context of the
generic BCP of Pessoa et al. [143], as the usage of several components rely on definitions
of them provided on the problem modeling. One of the benefits is that their definitions
are compact and relatively simple. Consider a digraph D̃ = ({s, t}∪Ñ , Ã) and let P ⊂ 2Ñ

be a collection of packing sets on vertices, where P is a collection of mutually disjoint
subsets of Ñ . Note that they cannot contain the source s nor the sink t. Each packing
set S ∈ P indicates that, among the vertices in S, at most one of them can be used in the

set of paths of some optimal solution. In this way, there must exist an optimal solution
(x∗, λ∗) for the EIMP formulation that satisfies the following constraints:

∑

p∈P

(

∑

w∈S

hpw

)

λp ≤ 1, ∀S ∈ P , (3.8)

where hpw denotes how many times the vertex w is used in a path p ∈ P .
Consider that E ⊂ 2Ñ is a collection of elementarity sets on vertices, where E is

a collection of mutually disjoint subsets of Ñ . Each elementarity set S ∈ E indicates
that, among the vertices in S, at most one of them can be used in each path of some

optimal solution. Therefore, there must exist an optimal solution (x∗, λ∗) for the EIMP
formulation that satisfies the constraints given by:

∑

w∈S

hpwλp ≤ 1, ∀p ∈ P, S ∈ E . (3.9)

Throughout this paper we use packing and elementarity sets to refer to their versions
on vertices. Note that a collection of packing sets is also a collection of elementarity sets,
therefore P ⊆ E . It is not uncommon to have P = E composed by singleton sets of the
elements in Ñ , as done, for instance, for the SymCVRP in Pessoa et al. [143].

Compared to its original packing set form, the usage of packing sets as elementarity
sets impose less constraints over the entire solution. At a high level, elementarity sets
are useful to impose intrapath relations, while packing sets are useful to impose interpath
relations. Elementarity sets are used in ng-paths relaxation and path enumeration, which
are intended to improve the performance of the RCSPP algorithm used in the pricing
subproblem. Packing sets are used, for instance, in the definitions of rounded capacity
cuts (RCCs) and limited memory rank-1 cuts (lm-R1Cs), which are applied to the MP.

3.3.4 On Pricing Subproblem, Column Generation, and Path

Enumeration

In this subsection we focus on advanced features that rely on the values of the dual
variables and the employment of elementarity sets.

As previously mentioned, the exact pricing subproblem as a RCSPP is solved by
a dynamic programming labeling algorithm [143, 158]. In this approach, a label L =

(uL, cL, ρ̃L, . . .) represents a partial resource constrained path pL beginning at the source
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s, ending at the vertex uL, with its current total reduced cost given by cL, and with its
current accumulated resources consumption denoted by the components of the vector ρ̃L,
which are given by ρ̃Lr , for all r ∈ R. Additionally, the usage of the last three dots in a
label indicates that other fields may be present. Beginning with a label representing a null
path from the source s, in this search, labels are extended to other labels that represent
possible extensions of that partial path. Some labels may be discarded, as follows. Given
two labels L′ and L′′ ending at the same vertex, we say that a label L′ dominates a label
L′′ if any feasible path completion from pL

′′

is also feasible for completing the path pL
′

and the complete path from pL
′

has at most the reduced cost of the one from pL
′′

. By the
resource definitions (see Subsection 3.3.1), note that a precondition for this dominance
to occur is that ρ̃L

′

r ≤ ρ̃L
′′

r , for all r ∈ R+, and ρ̃L
′

r = ρ̃L
′′

r , for all r ∈ R−, where R+ and
R− contain the disposable and non-disposable resources of R, respectively [143]. Labels
identified as dominated are discarded.

We add that this labeling procedure is done bidirectionally, i.e., the search starts
also with a label representing a backward partial path that begins in the sink t. In this
case there is also the concatenation step between forward and backward paths. While
this bidirectional search is often faster, it imposes a restriction to the digraph when using
non-disposable resources as follows. For each non-disposable resource, its lower and upper
bounds on all arcs that enter the sink t must have the exactly same value. Formally, given
a value q′, the bounds must be defined by [q′, q′]ar for all a ∈ δ−(t), r ∈ R [155].

In the generic BCP, labels are grouped into buckets. Labels that end at the same vertex
and whose accumulated consumption of main resources are within a same predefined
interval are stored in the same bucket. Dominance checkings are set to be frequently done
only over labels in the same bucket, which is done to speed up computations. Moreover,
to avoid a sparse filling of the buckets, the generic BCP supports at most two main
resources. A bucket digraph is also used to aid efficient dominance checkings between
labels in distinct buckets. Such digraph has a vertex per bucket and each arc denotes the
possibility of labels extensions between buckets. Bucket arc elimination by reduced cost
is also performed [158].

If the RCSPP computes only elementary resource constrained paths, we would have
a potentially intractable problem; as it is a strongly NP-hard problem [64]. One option
would be the usage of E-elementary paths, where a path is E-elementary if it contains
at most one vertex from each elementarity set. Instead, these paths are relaxed into
the so-called ng-paths [14, 143], described as follows. Let each vertex w ∈ Ñ have a
neighborhood set, dubbed ng-set, denoted by NG(w) ⊆ E . Consider an elementarity set
S and a ng-path that has already visited a vertex in S. After this, the path might (re)visit
a vertex in S only after visiting a vertex w that does not have S among its neighbors,
i.e., S /∈ NG(w). Beyond the ng-sets initially defined, the generic BCP can dynamically
extend them to consider some cycles encountered during the search [32, 153, 143]. We
use 8 as the size of the ng-sets.

At certain points of the method, the path enumeration procedure tries to enumerate
into a pool all E-elementary paths that could participate in an improving solution [13, 46,
137, 143]. Paths can be removed from the pool by standard fixing by reduced costs. An
important feature for performance is the discarding of dominated E-elementary partial
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paths during the enumeration. As mentioned in Pessoa et al. [143], one way to assure the
correctness of this procedure is by satisfying the sufficient condition for enumeration. An
equivalent form of it is given in the following.

Sufficient Condition for Enumeration. Every two feasible partial E-elementary paths
p and p′ that start in source s, end in the same vertex, and visit the same elementarity
sets, must have identical coefficients in each essential constraint in (3.5b).

Now we are able to give a glimpse of the column generation algorithm of the generic
BCP [143]. Heuristic labeling approaches are tried first, which consist of simplified ver-
sions of the exact one. After that, the exact labeling algorithm is executed. The column
generation convergence is favored by the usage of the automatic dual price smoothing
[140]. If the number of columns exceeds a threshold, a given amount of them with the
largest reduced costs are removed. In the sequence, the bucket arc elimination is called
after the first column generation converges or when the primal-dual gap decrease since the
last call of this elimination procedure surpasses a certain threshold. After this, the path
enumeration is called. This enumeration is aborted if the number of partial E-elementary
paths or the number of generated paths exceed their respective thresholds. Otherwise,
the enumerated paths are stored in a pool, the non-E-elementary paths are removed from
the RMP formulation, and future runs of the pricing subproblem are solved by inspecting
this pool. Moreover, if the number of enumerated paths becomes smaller than a given
threshold, the current RMP formulation, appended with all columns in the pool and in-
tegrality constraints, is directly solved by a MILP solver. Depending on time thresholds
on each run of the pricing subproblem procedure, after a column generation convergence
either cuts are separated or the algorithm perform branching if needed.

3.3.5 On Cut Separation

In this subsection we mention advanced components that have direct influence on the LP
MP formulation and make use of packing sets. Relying on packing sets, the generic BCP
provides the functionalities to separate the classic RCCs [114] and the lm-R1Cs [137].

The generic BCP uses the concept of RCC separator to define RCCs [143]. The RCC
separator is defined by the specification of a function that associates demands to packing
sets, given by ϕ : P ∪ {∅} → R+, that must provide ϕ({∅}) = 0, and a total capacity
Q̄ > 0. Then, the RCCs are generally given by

∑

p∈P

hpSλp ≥

⌈
∑

S∈S ϕ(S)

Q̄

⌉

, ∀S ⊆ P ,

where hpS denotes how many times arcs of a path p ∈ P exits from the collection of
packing sets S ⊆ P . The generic BCP relies on heuristic separation procedures from
the CVRPSEP library [125]. A limited number of RCCs, e.g., 100, is separated in each
round. Each RCC is robust, therefore, they do not need a special treatment on the pricing
subproblem.

Now consider the rank-1 cuts (R1Cs) [143]. Given a collection of packing sets S ⊆ P ,
a R1C is given by the application of the Chvàtal-Gomory rounding over the sum of the
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inequalities in Equation (3.8) corresponding to the packing sets in S multiplied by ρ ∈ R
|S|
+

[138]. This results in:
∑

p∈P

⌊

∑

S∈S

ρS
∑

w∈S

hpw

⌋

λp ≤

⌊

∑

S∈S

ρS

⌋

.

Cuts of this type are potentially strong [143], however, as they are non-robust, they
have to be especially treated in the pricing subproblem, making it harder. The generic
BCP employs the limited memory technique in order to mitigate this issue, leading to
the lm-R1Cs [137]. A limited number of lm-R1Cs is separated in each round, e.g., 250,
and various sizes of S (up to 7) may be used in the same round. Exact and heuristic
separations are performed.

3.3.6 On Primal Heuristic, Strong Branching, and Tree Search

Strategy

When finalizing the BB tree root node, our usage of the generic BCP may apply the
restricted master heuristic (RMH), that consists of solving the current RMP, added with
integrality constraints, directly by a standard MILP solver [157, 143].

The generic BCP uses strong branching, which means that a number of branching
candidates are evaluated in order to select the more promising one to be actually branched
over [137, 143]. More time is dedicated to strong branching at nodes of lower depth on
the BB tree, since these branching decisions tend to have more impact on the overall
runtime. Nodes of higher depth rely on the history of previous evaluations to perform the
branching The candidates’ evaluation involves, for instance, several limited resolutions of
the current LP RMP formulation to simulate branching possibilities.

Finally, we point out that the depth-first search (DFS) is the main strategy of exploring
the BB tree [156].

3.4 Modeling CVRP Variants with Energy Consump-

tion

In this section we describe the modeling, into the generic BCP framework, of basic CVRP
variants that take energy consumption into account, namely: CmVRP, CmVRP-LE, and
CVRP-LE. First we present some components individually. Next we make use of these
building blocks to design consolidated methods for the problems.

3.4.1 Resource Constrained Paths Based on Arc-Loads

In this subsection, we propose load and energy resource configurations and the associated
descriptor digraphs to be used in the problems of interest. Recall that these components
are used to compute resource constrained paths in the RCSPPs of the pricing subprob-
lems. In particular, we define two versions of the load resource: a disposable and a non-
disposable. While the standard conduct is the usage of the disposable one [143], there are
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problem variants where we can likely profit from the usage of the non-disposable load, as
in, for instance, the CVRP-LE. This observation will be more appropriated discussed in
Subsection 3.4.5. Besides, to limit the energy consumption of a path, we define an energy
resource.

From a problem definition, consider a digraph D = (V,A) and a vehicle capacity Q.
Also consider a resource constrained paths descriptor digraph given by D̃ = (Ṽ , Ã). The
set of vertices of D̃ is given by Ṽ = {0, 0∗} ∪ Ñ , where: vertex 0 corresponds to the
problem’s depot and is assigned, at the same time, to the source s and sink t; vertex 0∗

is a placeholder to be defined conveniently; and the vertices in Ñ = N correspond to the
problem’s customers. Thereby we are dealing with closed resource constrained paths. Let
the set of arc-loads be given by AAL =

{

a` ∈ A× L | ` ∈ L(a)
}

, in which the exhaustive
set of loads is defined by L = {0, 1, . . . , Q}. When we simply substitute the vertex 0∗

with the depot vertex 0 – which yields Ṽ = {0} ∪ Ñ – and make Ã = AAL, we obtain
which is called the regular case, which is used in the subsequent discussion. Moreover, we
anticipate that this scheme with a placeholder vertex will be suitable to the presentation
of the pre-sink case at the end of this subsection.

Several resources can be associated to a resource constrained paths descriptor digraph
D̃. We define a monotone and disposable load resource Q̃+, which models the load being
carried – or equivalently the load capacity being used – across the arc-loads and paths.
As a non-disposable counterpart of the previous resource, we also define the monotone
and non-disposable load resource Q̃−. The consumption of each of the resources Q̃+ and
Q̃−, jointly given by Q̃, at each arc-load is defined by:

q̃(uv)`Q̃ =

{

0 if uv ∈ δ+(0),

qu otherwise,
∀(uv)` ∈ Ã. (3.10)

Recover that, while traversing a path, a vehicle is accumulating resource consumption.
The accumulated consumption intervals of each of the resources Q̃+ and Q̃−, jointly given
by Q̃, at each arc-load is denoted by:

[l, u]a`Q̃ = [`, `], ∀a` ∈ Ã.

In order to illustrate this configuration, Figure 3.1 contains a resource constrained paths
descriptor digraph D̃ of the small instance S-n04-k11, where arc-loads with a load resource
is depicted. The regular case is denoted by Figure 3.1a.

For situations that require to limit the energy consumed over a path, as is the case of
CmVRP-LE and CVRP-LE, we employ an energy resource, and, for this, consider the
energy limit E from the definition of the problems. Thus, we define the energy resource
Ẽ, which is monotone and disposable. This resource models the energy behavior at the
arc-loads and paths. The consumption of the resource Ẽ at each arc-load is given by:

q̃a`Ẽ = da
(

q0 + `
)

, ∀a` ∈ Ã. (3.11)

1
Instance available online at https://www.loco.ic.unicamp.br/instances
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(a) Digraph D̃ with the placeholder vertex 0
∗. The regular case

is given whether 0
∗ is replaced with 0, leading the depot 0 to be

represented twice in this figure. The pre-sink case happens when
0
∗ is substituted by 0

′ and special arc-loads are added accordingly.

0
′ 0

s/t

9 [10, 10]
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6 [10, 10]

5 [10, 10]
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(b) The pre-sink vertex 0
′,

the depot 0, and special
arc-loads.

Figure 3.1. Resource constrained paths descriptor digraph D̃ of instance S-n04-k1 denot-
ing a load resource. In this case, the demand of each customer matches its number. Each
arc-load is labeled in the format q̃ [l, u], where q̃ is its load consumption and the interval
indicates the bounds on the accumulated load. A feasible path is shadowed.

Observe that the computation of the energy consumption depends on the specific arc-load
that it is over, thus the correct visitation of arc-loads must be enforced by other means,
e.g., the previously presented load resources. This denotes the pivotal role played by the
arc-loads in providing the load information to be used in the computation of the energy
consumption. The accumulated consumption intervals of the resource Ẽ at each arc-load
is denoted by:

[l, u]a`Ẽ = [0, E], ∀a` ∈ Ã.

There are several applicable configurations of the resources. The resource Q̃+ can be
used as main or secondary resource, denoted by Q̃+

M and Q̃+
s , respectively. As it is non-

disposable, the resource Q̃− can be used only as secondary one, denoted as Q̃−
s . When the

paths are only resource-constrained by load, we can either enable just the resource Q̃+
M or

we can activate both, what is denoted by Q̃+
M + Q̃−

s . The resource Ẽ can be used as main
or secondary, written respectively as ẼM and Ẽs. When the paths are resource-constrained
by both load and energy, we have several possibilities to configure the resources, as showed
in Table 3.1. As suggested by Sadykov et al. [158], we defined this multitude of versions
to be experimented in order to find suitable resource configurations.

It is worth emphasizing the combined effect of the resources Q̃+
M and Q̃−

s . When the
RCSPP procedure – with our definition of load resources – is choosing the next arc-load
of a feasible partial path, the non-disposable load resource guarantees that at most one
extension is valid over the arc-loads to each possible vertex. Note that this is natural
even in the presence of the disposable load resource, as it is less restricted. In the label
dominance aspect, consider two labels in the RCSPP procedure. The non-disposable
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Table 3.1. Load and energy resource configurations

Only disposable With non-disposable

Q̃+
M+ Ẽs Q̃+

M+ Q̃−
s + Ẽs

Q̃+
M+ ẼM Q̃+

M+ Q̃−
s + ẼM

Q̃+
s + ẼM Q̃−

s + ẼM

load resource forces that a precondition for one label to dominate the other is that the
accumulated load consumption of both have the same value (as stated in Subsection 3.3.4).
Observe that this occurs even in the presence of the disposable load resource (again).
Conversely, the disposable main resource in scenarios like this potentially improves the
performance, as: a main resource might positively influence the dominance checks in the
RCSPP procedure (see Subsection 3.3.4); and a non-disposable resource is not allowed to
be a main one (see Subsection 3.3.1). The usage of this resources combined are further
discussed in subsections 3.4.4 and 3.4.5.

At this point, we deal with the restriction in the usage of a non-disposable resource
when the bidirectional search is enabled in RCSPP algorithm, as described in Subsec-
tion 3.3.4. For each non-disposable resource, and for Q̃− in particular, this caveat imposes
that every arc-load entering the sink t must have its lower and upper bounds with the
exact same value. To deal with this restriction, we include a special vertex 0′, called the
pre-sink. The customers will have arcs connecting them to the pre-sink vertex instead of
the actual sink, while the arcs from the pre-sink to the sink will be tailored to satisfy the
mentioned restriction. We say that this digraph is in the pre-sink case. We employ the
pre-sink case if and only if the non-disposable resource Q̃−

s is being used. In the following,
we precisely describe the pre-sink version of the digraph.

In the pre-sink case, we start with a resource constrained paths descriptor digraph
D̃ = (Ṽ , Ã), where the set of vertices is given by Ṽ = {0, 0∗} ∪ Ñ and its meaning is
the same as described for the regular case. Thereby, we substitute the vertex 0∗ with
the new special pre-sink vertex 0′, obtaining Ṽ = {0, 0′} ∪ Ñ . Now consider the set
A′

AL, that corresponds to the set AAL where each arc-load (u, 0)` ∈ δ−(0) is substituted
with (u, 0′)`. The set of arcs (that are arc-loads) of the digraph D̃ is then given by
Ã = A′

AL ∪ {(0′, 0)Q | ` ∈ L(δ−(0′))}, where the resource consumption of the special arc-
loads from 0′ to 0 is given by Q− `, for all ` ∈ L(δ−(0′)), i.e., the consumption values are
the remaining load capacity accordingly to each possibility of accumulated load resource
consumption. Therefore, when using the pre-sink case, the load resource consumption
previously given in Equation (3.10) must be changed to:

q̃(uv)`Q̃ =















Q− ` if uv = (0′, 0),

0 if uv ∈ δ+(0),

qu otherwise,

∀(uv)` ∈ Ã.

A depiction of this case is presented in Figure 3.1, where the pre-sink case includes the
Figure 3.1b.
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The energy resource consumption, previously given in Equation (3.11), must be
adapted for the pre-sink case in order to consider that no energy is consumed over the
special arc-loads from 0′ to 0, as follows:

q̃a`Ẽ =

{

0 if a = (0′, 0),

da (q
0 + `) otherwise,

∀a` ∈ Ã. (3.12)

Moreover, the correspondence of the arcs from a digraph D = (V,A) to arcs that
consider whether one is using the regular or pre-sink case can be given by:

∂(uv) =

{

(u, 0′) if uv ∈ δ−(0) and using the pre-sink case,

uv otherwise,
∀uv ∈ A.

We anticipate that this notation will be useful to obtain simple expressions in the remain-
ing of this paper.

3.4.2 Master Problems Based on Arc-Loads or Arcs

We use two main specifications of the EIMP formulation: one that contains only decision
variables for arc-loads and another one that contains only decision variables for arcs. Both
are mapped to closed resource constrained paths based on arc-loads, where the paths are
characterized by a corresponding digraph D̃. Moreover, the lower and upper bounds on
the sum of the [λp] variables are equal to the number of vehicles of the problem, thus, we
have L = U = K, where K is the number of vehicles in the problems definitions. Note
that L and U appear in the Constraint (3.4d) of the EIMP formulation.

The EIMP formulation based on arc-loads is mapped to closed resource constrained
paths also based on arc-loads. The formulation is denoted as AL-R. We use the [y`a]

decision variables representing arc-loads given in Equation (3.1). The Objective Function
f(y) is chosen according to Equation (3.3), as this model supports minimizing energy
consumption or travel distance. The arc-load variables’ domain is taken from constraints
(3.2e) and (3.2f) of the AL formulation. Note that the [y`a] variables are instanciations of
the [xj] variables that appear, for example, in the generic Objective Function (3.4a). The
customers’ out-degree constraints are taken from (3.2c). The latter constraints ensure
that each customer will be selected exactly once (via arc-loads) through all the paths,
which can be seen as global interpath rule. A constraint on the number K of paths is also
given, which play the role of the depot out-degree Constraint (3.2b). The formulation is
given in the following.

(AL-R) min f(y) (3.13a)

s.t.
∑

a∈δ+(w)

∑

`∈L(a)

y`a = 1, ∀w ∈ N, (3.13b)

y`a =
∑

p∈P

hp
∂(a)`

λp, ∀a ∈ A, ` ∈ L(a), (3.13c)

∑

p∈P

λp = K, (3.13d)
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y`a ≥ 0, ∀a ∈ A, ` ∈ L(a), (3.13e)

y`a ∈ Z, ∀a ∈ A, ` ∈ L(a), (3.13f)

λp ≥ 0, ∀p ∈ P, (3.13g)

λp ∈ Z, ∀p ∈ P. (3.13h)

Each of the [y`a] arc-load variables are mapped to the correspondent arc-load in the closed
resource constrained paths descriptor digraph D̃, as follows:

M(y`a) = {∂(a)`}, ∀a ∈ A, ` ∈ L(a).

By this mapping, the generic coupling constraints (3.4c) are specialized into the coupling
constraints (3.13c) of the current formulation.

The branching is performed over expressions given by
∑

`∈L(a) y
`
a, for all a ∈ A, which

are aggregations that represent decisions over arcs a ∈ A of the problem definition. Then,
for an arc a selected for branching, it is imposed on one child node that

∑

`∈L(a) y
`
a ≤ 0

and on the order that
∑

`∈L(a) y
`
a ≥ 1. Recall that these branching constraints are in the

format of the generic constraints (3.4b), and therefore, are robust.
The EIMP formulation based on vehicle-flow over the arcs is mapped to closed resource

constrained paths based on arc-loads. The formulation is denoted as VF-R. The decision
variables denote whether a vehicle pass through an arc, and they are given by

za =

{

1 if arc a is used,

0 otherwise,
∀a ∈ A.

The Objective Function (3.14a) minimizes the travel distance, while the arc variables’
domain is enforced by constraints (3.14e)–(3.14f). The customers’ out-degree is ensured
by constraints (3.14b), which can be seen as interpath constraints guaranteeing that each
customer will be selected exactly once in the whole solution. The number of paths that
participate in a integer solution is given by the implicitly defined constraint (3.14d). The
formulation is presented in the following.

(VF-R) min
∑

a∈A

daza (3.14a)

s.t.
∑

a∈δ+(w)

za = 1, ∀w ∈ N, (3.14b)

za =
∑

p∈P





∑

`∈L(a)

hp
∂(a)`



λp, ∀a ∈ A, (3.14c)

∑

p∈P

λp = K, (3.14d)

za ≥ 0, ∀a ∈ A, (3.14e)

za ∈ Z, ∀a ∈ A, (3.14f)

λp ≥ 0, ∀p ∈ P, (3.14g)

λp ∈ Z, ∀p ∈ P. (3.14h)
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For each arc a ∈ A, the za arc variable is mapped to all the arc-loads related to this arc
in the digraph D̃, which are given by ∂(a)` for all ` ∈ L(a). The mapping is given by

M(za) = {∂(a)` | ` ∈ L(a)}, ∀a ∈ A,

which implicitly defines the coupling constraints (3.14c).
The branching is performed over the [za] arc variables. When and arc a ∈ A is selected

for branching, the robust constraint za ≤ 0 is imposed on one child node and za ≥ 1 is
imposed on the other.

Moreover, it is worth noting that in both formulations, when using the pre-sink case,
no variables are mapped to the arc-loads that goes from 0′ to 0.

3.4.3 Packing Sets, Elementarity Sets, and Advanced Features

In this subsection we present some advanced aspects of the usage of the generic BCP. In
all of our approaches, the packing sets and elementarity sets are defined as singleton sets
over individual customers, as follows:

P = E =
⋃

w∈Ñ

{

{w}
}

=
{

{1}, {2}, . . . , {n− 1}
}

.

Note that the implications of these definitions, via inequalities (3.8) and (3.9), are in
conformance with the problems we are dealing with. Recall that the packing sets and
elementarity sets are used in the definitions of several advanced components of the generic
BCP method.

In our approaches, the ng-set NG(w) ⊆ E of each customer w ∈ Ñ is initialized
containing the elementarity sets corresponding to the closest few (e.g., 8) customers to w.
As we use path enumeration, we point out that our models satisfy the sufficient condition
for enumeration (described in Subsection 3.3.4), as: (i) because of the constitution of E ,
the visitation of the customers is equivalent to the visitation of their elementarity sets;
(ii) in each formulation, the visitation of each customer w ∈ N implies in the same
coefficient, in any E-elementary path, to be used in the customer w’s constraints (3.13b)
and (3.14b) converted to the format of the respective specialized MP formulation; and
(iii) these converted constraints are the only essential ones of their models that fit in the
format of constraints (3.5b) of the generic MP formulation.

Besides, we define a RCC separator by the function ϕ({w}) = qw for all w ∈ Ñ and
ϕ({∅}) = 0, and the total capacity of the separator is defined by Q̄ = Q. It is worth
noting that the domain set of ϕ corresponds to P ∪{∅} and the RCC separator definition
leads to the classic RCCs.

Finally, the RMH may be enabled in our approaches, which will be detailed per ex-
periment.
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3.4.4 Consolidated Methods for the CmVRP

In the method to solve the CmVRP we use the EIMP formulation given by AL-R with
the objective function of minimizing energy consumption. Note that the arc-load decision
variables are necessary to compute the energy consumed on each arc of the EIMP. Two
options of resource configuration are used: the load Q̃+

M as the main disposable resource,
and Q̃+

M + Q̃−
s , that includes a load non-disposable secondary resource. Besides that, we

have the option to use the RMH.
Given a constraint i and an arc a ∈ A of the AL-R formulation, we say that the pair

of constraint and arc (i, a) is arc-load uniform if either every arc-load variable y`a, for all
` ∈ L(a), participate in the constraint i with the same coefficient or either none of them
participate. We also say that a constraint i is arc-load uniform if, for all arcs a ∈ A,
the pair (i, a) is arc-load uniform. Note that the constraints (3.13b) on each arc a ∈ A

are applied uniformly over every of its arc-loads variables y`a, for all ` ∈ L(a), thus, these
constraints are arc-load uniform. Moreover, observe that all the dynamic added robust
constraints imposed by the branching rule and the RCCs are arc-load uniform as well.
In this way, for this formulation, the value of the second term of the right-hand side of
Equation (3.6) would be the same for all the arc-load variables related to an arc a ∈ A.

Let c̄a` be the reduced cost to be associated to a mapped arc-load a` ∈ Ã of the
resource constrained paths descriptor digraph D̃ = (Ṽ , Ã); the value 0 will be associated
to the unmapped ones. Given an arc a ∈ A of the CmVRP input digraph D = (V,A),
the relative differences among the reduced costs c̄∂(a)` associated to the mapped arc-loads
∂(a)` ∈ Ã will be given by the first term of the Equation (3.6), which, in the case of the
current formulation, is denoted by da (q

0 + `). This holds as the robust constraints are
arc-load uniform. As all the arc-loads of an arc a ∈ A have the same distance da, the
relative differences will be actually driven by the loads ` ∈ L(a).

The version with only the load resource Q̃+
M works correctly, even for non-proven

optimal integer solutions. From a label L = (uL, cL, ρ̃L, . . .), suppose an extension to a
vertex v is being evaluated. In this case, extending label L along the arc-load with the
lowest feasible bounds of accumulated load interval – i.e., [ρ̃Lr + q

uL

, ρ̃Lr + q
uL

], for r = Q̃+
M

– is always the best choice, as it will yield the lowest possible reduced cost for this arc;
leading labels extended over arc-loads with greater load bounds to be dominated. This
reasoning resembles what is done for the Cumulative Capacitated VRP by Damião et al.
[49], however, related to an arc a ∈ A, they have one arc for each possible number of
customers in a route, while we have one arc-load for each possible customers’ packageable
load demands for this arc. Note that the number of possibilities for arc-loads tends to be
much larger than of the number of customers.

The other option of resource configuration for this model is Q̃+
M+ Q̃−

s , that uses load
as non-disposable secondary resource, in addition to a mandatory load disposable main
resource. We also consider the configuration with both resources aiming at comparing
their performances on the method.

The latter approach, with Q̃+
M+ Q̃−

s , is more similar to the BCP algorithm devised for
the CmVRP in Fukasawa et al. [74], as both pricing/RCSPP algorithms are only allowed
to build paths that strictly respect the load balance constraints (i.e., there is no possibility
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of load excess, a concept that will be further discussed in Subsection 3.4.5). In the follow-
ing we better compare both CmVRP approaches, as we will present experimental results
for the two in Section 3.5. Both are BCP algorithms that rely on a master formulation
based on arc-loads and a pricing subproblem solved via RCSPP also based on arc-loads.
However, the pricing/RCSPP algorithm of Fukasawa et al. [74] uses an undirected multi-
graph (while we use a directed one), wherein they compute closed resource constrained
shortest paths that are 2-cycle free (we use ng-paths). Both approaches separe and dy-
namically add the robust RCCs. Furthermore, the BCP of Fukasawa et al. [74] also makes
use of the following robust cuts (described in Lysgaard et al. [125], Fukasawa et al. [73]):
framed capacity, strengthened comb, multistar, partial multistar, generalized multistar,
and hypotour. Whereas our approach with the generic BCP can enable the RMH, theirs
cannot. In addition, the generic BCP does not allow the use of the cutset branching rule
of the BCP of Fukasawa et al. [74]. The BB tree search strategy of both approaches are
equal, i.e., by DFS.

3.4.5 Consolidated Methods for the CmVRP-LE and CVRP-LE

To devise a method to solve the CmVRP-LE we use the EIMP given by the AL-R
formulation with the objective function that minimizes energy consumption. Unlike the
method for the CmVRP, we have to assure that the total energy spend by each vehicle
to perform its route respects its limit, which is enforced via energy resources on the
paths. Thus, there are plenty of correct resource configuration options, as showed in
Table 3.1. This model for the CmVRP-LE can be seen as an extension of the one for
the CmVRP, thus, we can conclude, via arc-load uniformness of its robust constraints,
that the CmVRP-LE model deals correctly with the load balance of the arc-loads in the
resource configurations even without the non-disposable load resource Q̃−

s .
Similar to which is done for the cumulative version, we can present a resolution method

for the CVRP-LE. Following this line, the EIMP is defined as the AL-R formulation with
its objective function minimizing distance. We use load and energy resources, enabling
us to use the resource configuration options given in Table 3.1.

However, there is a drawback in the usage of only disposable load resources for the
CVRP-LE, as follows. First, it is not hard to see that the robust constraints are arc-
load uniform when minimizing distance. Secondly, the reduced costs associated to the
mapped arc-loads ∂(a)` ∈ Ã are all exactly the same for an arc a ∈ A of the CVRP-LE
input digraph D = (V,A), as the first term of Equation (3.6) is denoted by the distance
da for the arc-loads related to arc a. In this sense, suppose an extension from a label
L = (uL, cL, ρ̃L, . . .) to a vertex v is in evaluation. As all the arc-loads from uL to v have
the same associated reduced cost, then the dominance rule does not straightforwardly
discard arc-loads with accumulated load consumption interval with bounds greater than
[ρ̃Lr + qu

L

, ρ̃Lr + qu
L

], for r ∈ {Q̃+
M , Q̃

+
s }.

One consequence of this drawback is that, given a valid resource constrained
path and a load disposable resource r ∈ {Q̃+

M , Q̃
+
s }, an arc-load a`i of it may have

load ` > ρ̃i−1,r + qwi−1 . Despite arc-loads permission to violate load balance by an ex-
cess like this, these resource constrained paths are still valid for the problem, as the
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distance coefficient in the objective function is not affected and the maximum energy
limit is respected. Note that even an integer optimal solution can present load excesses.
Fortunately, this drawback is saned when we include the non-disposable load resource Q̃−

s ,
as denoted in the appropriate column of Table 3.1.

As the CVRP-LE does not need detailed load information of the arc-load variables
on the MP formulation, we also designed a method for this problem with the EIMP
defined by VF-R, that already minimizes distance. This model has only arc variables
at the EIMP, that are mapped to arc-loads of the resource constrained paths descriptor
digraph. There are load and energy resources, as stated by configuration possibilities in
Table 3.1. Observe that, theoretically, this formulation is not immune to the excess effect
with only disposable resources, therefore it can benefit from usage of the non-disposable
load resource.

Finally, we make some remarks on presented models with limited energy. A mechanism
to ensure the load balance (with excess or not) on the resource constrained paths described
by arc-loads is indeed worth using, as the computation of the amount of consumed energy
depends on them. It would not be enough, for instance, to remove the load resources and
rely only on the RCCs for this, as they do not enforce loads on arcs, despite enforcing
minimum numbers of paths over subsets of customers (based on their demands). On the
other hand, for the problems with EIMP given by AL-R, it would be enough to use the
compact load balance constraints (3.2d) instead of load resources; however, this would
very likely result in poor computational performance on a BCP approach.

3.5 Computational Experiments

In this section, we present computational results on the approaches discussed, and com-
pare them with the literature or among each other.

3.5.1 Implementation, Computational Environment, and Param-

eters

Our code was implemented with the Julia programming language using
VRPSolver2 0.4.1 [143] and the standard solver CPLEX3 12.10. The experi-
ments were run in a computer with four Intel Xeon Gold 6142 @ 2.60 GHz CPU chips
and 252 GiB of RAM. The machine has 64 physical cores that can run at most one
thread each and the operating system is the GNU/Linux Ubuntu 18.04. Each test of the
experiments were run with only one thread.

The parameters of the VRPSolver in each of our tests are based on the default
parameters described in Pessoa et al. [143] (see also Sadykov et al. [158]4) with few mod-
ifications indicated in the following. We set the time limit to 2 h (7200 s). We use the
absolute optimality gap tolerance as 10−5 and artificial variables penalty update factor

2https://vrpsolver.math.u-bordeaux.fr
3https://www.ibm.com/products/ilog-cplex-optimization-studio
4Also considering the VRPSolver default parameters in https://vrpsolver.math.u-bordeaux.fr/doc/

parameters.html
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of 10 (default is 2). The hard time threshold for the RCSPP labeling algorithm is given
by τhard = 25 s (default is 20 s). The cut separation tailing-off threshold is given by
δgap = 1.5% (default is 2%). Determining the lm-R1C memory type, we have θmem = 0

(default is 2). The maximum number of labels and paths in the path enumeration algo-
rithm are given by, respectively, ωlabels = 5 · 105 and ωroutes = 5 · 106 (the default values
of both are 106). When the RMH is enabled (the default behavior is disabled), we set its
maximum time to χrm = 10 s. Related to strong branching, we use the tree size estimation
ratio of phase 1 given by ζestim

1 = 0.2 (default is 0.3), candidates number of phase 2 given
by ζnum

2 = 3 (already the default value), and tree size estimation ratio of phase 2 given
by ζestim

2 = 0.02 (default is 0.1). The presented parameter values of τhard, δgap, θmem,
ωroutes, ζestim

1 , and ζestim
2 match their equivalents described for the SymCVRP in Pessoa

et al. [143] and the ones in the SymCVRP example distributed with the VRPSolver.
Additionally, the parameter values of ωlabels and ζnum

2 coincide with the referred example.
Besides, we also changed parameters related to the level of detail of log messages.

3.5.2 Instances

The complete set of instances used in our experiments were proposed in previous works;
see for instance Uchoa et al. [172]. This set is given by the CVRP/SymCVRP instances of
the classes A, B, E, and P, which were obtained from the CVRPLIB5, and the ones of the
class V, which are from the Vehicle Routing Data Sets – COIN-OR6. The graphs in these
instances are complete digraphs/graphs. Some characteristics of these instances are given
in Table 3.2. Columns “Inst” and “#” shows, respectively, the class/instance identifier and
the number of instances. Columns “n”, “K”, and “Q” contains the elements of the sets of,
respectively, the number of vertices, the number of vehicles, and the vehicles’ capacities.
We use a total of 100 instances.

Table 3.2. Characteristics of the instances

Inst Type # n K Q

A rand 27 32, 33, 34, 36, 37, 38, 39, 44,
45, 46, 48, 53, 54, 55, 60, 61,
62, 63, 64, 65, 69, 80

5, 6, 7, 8, 9, 10 100

B rand-regions 23 31, 34, 35, 38, 39, 41, 43, 44,
45, 50, 51, 52, 56, 57, 63, 64,
66, 67, 68, 78

5, 6, 7, 8, 9, 10 100

E cities, rand,
rand-mod-e,
unkn

13 13, 22, 23, 30, 31, 33, 51, 76,
101

3, 4, 5, 7, 8, 10, 14 100, 112, 140, 160, 180, 200,
220, 4500, 6000, 8000

P mod-abe 24 16, 19, 20, 21, 22, 23, 40, 45,
50, 51, 55, 60, 65, 70, 76, 101

2, 4, 5, 7, 8, 10, 15 35, 40, 70, 80, 100, 115, 120,
130, 135, 140, 150, 160, 170,
280, 350, 400, 3000

V cities,
ody-uly

13 16, 17, 21, 22, 24, 26, 29, 42,
48

3, 4, 5 5, 6, 7, 8, 9, 10, 11, 15, 16

100

5http://vrp.atd-lab.inf.puc-rio.br
6https://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/index.htm
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The column “Type” of Table 3.2 gives a description of how the instances were con-
structed, in particular: vertices positioned randomly on the plane (“rand”); vertices po-
sitioned randomly around points in several regions (“rand-regions”); a map of real world
cities (“cities”); randomized modification of instances of class E (“rand-mod-e”); unknown
(“unkn”); modifications of instances of the classes A, B, or E (“mod-abe”); and taken from
the odyssey of Ulysses (“ody-uly”). All the instances of class V have unitary demands
and were converted from Traveling Salesman Problem (TSP) instances of the TSPLIB7.
It is worth noting that, in this section, column headings in multiple tables may be re-
peated and, every time a column heading is repeated, it will have the exact same meaning.
Therefore, we only explain the meaning of it once.

We use the instances for experiments with the CmVRP, CVRP-LE, and CmVRP-LE

and also for a basic experiment with the SymCVRP. For problems considering energy
consumption, we define the vehicle curb weight as q0 = b0.15Qc. Comparing with other
works on CmVRP, this definition matches what is used in Fukasawa et al. [74] and slightly
differs from the usage without rounding of Mulati et al. [133].

We propose a default energy limit definition to be used with the CVRP-LE and
CmVRP-LE problems, as follows. Consider an optimal solution for the SymCVRP

of an instance. Using the appropriate q0, we calculated the average energy of the routes
of this solution, given by E ′, being careful to always pick the direction of the route that
spend less energy. The energy limit for this instance is then given by E = d1.1E ′e.

To decrease load-related values, in our implementation, each instance was first prepro-
cessed by having its capacity and customers’ demands divided by the greatest common
divisor of these values, which is the scaling factor γ. To keep the models coherent, we
substitute (q0 + `) with (q0 + γ`) in equations (3.3b), (3.11), and (3.12) and other suit-
able mentions of this. The only instances with γ > 1, are E-n13-k4, E-n22-k4, E-n30-k3,
E-n33-k4, and P-n22-k8, whose values of γ are, respectively, 100, 100, 25, 10, and 100.
After preprocessing, E-n23-k3, with Q′ = 4500, and E-n33-k4, with Q′ = 800, are the
only two instances with Q′ > 400. It is worth noting that the values of q0 and E are never
affected by this scaling procedure. As the data is integral for all instances, the optimal
value must be integer.

In order to reduce the number of tests to be done when testing options of methods, we
selected a base sample set of 19 instances from the complete set, which were selected as
follows. For each instance class, we sort the instances in non-decreasing order by number
of vertices and then by number of vehicles. The list of each class is then subdivided in
groups of five, according to that order, and we select the third instance out of every group;
if the last group does not have five instances, we take none. We made small changes to
this rule on classes E and V, to make sure that the selection of instances would contain
the different types of instances described in Table 3.2. In the end of Subsection 3.5.4
we present experimental evidence that the base sample set can provide results that are
similar to the ones of the complete set.

7http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95
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3.5.3 Reducing the Number of Arc-Loads and Providing Cutoffs

To aid the performance of the methods, we reduce the number of arc-loads in suitable
master formulations and/or resource constrained paths descriptor digraphs by using the
procedure showed in Subsection 3.2.2, that computes each arc’s discrete load domain as
packageable demands of the customers. This provides a reduction on the number of arc-
loads of 4.16% on average, compared to only using the elimination of trivial infeasible
low and high load values. This latter approached was used in Fukasawa et al. [74] and
in our rerun of their code (see Subsection 3.5.4). Despite this percentage being low on
average, there are seven instances in which this value is over 10%, namely: E-n13-k4
(48.46% smaller), E-n23-k3 (73.86%), E-n33-k4 (27.37%), P-n16-k8 (51.18%), P-n23-k8
(28.89%), P-n55-k15 (18.68%), and P-n60-k15 (12.05%). The largest relative reduction,
in E-n23-k3, went from 2,277,506 to 455,635 arc-loads. After this procedure, the instances
with more than 500,000 arc-loads are (in descending order on the number of arc-loads):

1. P-n101-k4 (with 3,719,956 arc-loads),

2. P-n76-k4 (1,764,844),

3. E-n101-k8 (1,719,956),

4. P-n76-k5 (1,371,094),

5. E-n76-k7 (1,033,594),

6. E-n101-k14 (839,956),

7. E-n76-k8 (808,594), and

8. E-n76-k10 (583,594).

Our experiments employ cutoffs to make use of reduced cost fixing possible from
the beginning of each method’s run and to avoid searching for solutions with too large
objective values, favouring smaller BB trees. We recall that the cutoff can improve the
usage of other features as, for instance, path enumeration (see the end of Section 3.3 for
more details on this). Since the same cutoffs are employed for all methods tested for each
problem, we believe that the comparison of the methods is fair. The reasoning for using
such cutoffs as an initial input parameter is that we are mainly interested in studying the
dual aspect of the methods. If one is also interested in better exploiting/understanding
the initial primal bounds computation and the overall computing times considering them,
a suitable alternative would be obtaining the upper bounds via fast heuristic approaches.

For each test, the cutoff used is the value of the best known solution (or an upper bound
for it) plus one. This is done for the SymCVRP in Fukasawa et al. [73], Uchoa et al.
[172]. As feasible solutions for our models and instances always have integer objective
values (see Subsection 3.5.2), the extra unit in the cutoff guarantees that the methods
have to actually compute at least one feasible solution to prove optimality. As stated by
Uchoa et al. [172], this leads to fairer computational comparisons.
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In order to obtain upper bounds for the CmVRP instances, we run an experiment
with the CPLEX MILP solver using the CmVRP’s AL formulation, which is given by
the Equations (3.3b) and (3.2b)–(3.2f). This preliminary experiment reported 46 optimal
solutions, 51 feasible ones (non-proven optimal), and 3 failures. It yielded the average op-
timality gap of 4.68% and average time of 4268.9 s, while the average number of processed
nodes is above 5400. For the CmVRP-LE, we use a trivial upper bound of EK. Since
each solution to a CmVRP-LE instance is also feasible for CVRP-LE, we pick the best
feasible solution we obtained in a experiment with the CmVRP-LE to compute its dis-
tance, denoted by zd

CmVRP-LE
. We then use each zd

CmVRP-LE
as upper bound for its respective

CVRP-LE instance.

3.5.4 Results for the CmVRP

In this subsection, we first present experimental results on BCP algorithms for the
CmVRP using the AL-R formulation, where we compare the results of the Q̃+

M and
Q̃+

M + Q̃−
s resource configurations over the base set of instances. After that, we com-

pare our best approach with a similar one from the literature, using the complete set of
instances. Eventually, we analyze results over the base sample and the complete sets of
instances, aiming at showing evidence that the options compare similarly in both instance
sets.

Evaluating the Resource Configurations

We rely on performance profiles to compare distinct approaches for the same problem.
Figure 3.2 presents a performance profile, which shows a plot of the time ratio cumulative
frequency, given by τ , by the solved instance ratio, i.e., the proportion of instances solved
to optimality. The time ratio of an instance yielded by an approach is given by its
computing time divided by the time taken by the fastest approach for the same instance.
For more details on performance profiles, see Dolan and Moré [61].

The performance profile in Figure 3.2 compares, over the base sample set of instances,
the Q̃+

M and Q̃+
M + Q̃−

s resource configurations of the BCP algorithm for the CmVRP

using the AL-R formulation with the RMH enabled. The line of Q̃+
M starts with a solved

instance ratio of 0.73, while the one of Q̃+
M+ Q̃−

s starts with 0.26. When convenient in this
paper, this kind of statement refer to values rounded to a number of decimal places. The
former configuration solved to optimality all the 19 instances on this set with a final time
ratio of 1.71, i.e., in each of its instance tests, this method is at worst 1.71 times slower
than the other. The latter configuration, with a final time ratio of 2.15, solved a total of 18
instances without reporting any feasible solution for the remaining one, B-n51-k7. Note
that the line of Q̃+

M is always above the one of Q̃+
M+ Q̃−

s . Consequently, the performance
profile points out that the Q̃+

M option outperforms the other approach in this experiment.
We use Table 3.3 to try to better understand how the resource configurations differ,

by looking into their average behavior and time composition. This table compares the
experimental results of the configurations in the subset of the base set of instances where
both have found feasible solutions.
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Figure 3.2. Performance profile of the resource configurations Q̃+
M and Q̃+

M+ Q̃−
s of the

BCP algorithm for the CmVRP with the AL-R formulation over the base sample set of
instances

Besides the first two columns already described for Table 3.2, Table 3.3 has column
sequences for each resource configuration. The column “#O” presents the number of
proven optimal solutions found and “#S” presents the number of the remaining feasible
solutions. The optimality gap is denoted by “G(%)”, that is a percentage gap between the
value of the best feasible solution found (z) and the best lower bound value given by the
LP relaxation (ẑ). The gap’s calculation is given by ((z− ẑ)/z)100. The root gap denoted
by “R(%)” is similar to the previous column, with the only difference being that the lower
bound ẑ is represented by the value of the LP relaxation at the end of the processing of
the root node of the BB tree. The time to solve is given by “T(s)”, the time spent in
the root node is given by “R T(s)”, the time spent in column generation is given in “CG
T(s)”, and the time taken by reduced cost fixing and path/column enumeration is denoted
by “RCF & CE T(s)”, all measured in seconds. Note that, throughout this paper, every
presented measure of time is rounded to one decimal place. The field “# Nds” denotes the
number of nodes processed in the BB tree. The results are row-wise grouped by instance
class and the last line presents an overall summary. In these rows, the fields “#”, “#O”,
and “#S” present sums, while the others present averages.

Table 3.3. Comparison of results of the resource configurations Q̃+
M and Q̃+

M+ Q̃−
s of the

BCP algorithm for the CmVRP with the AL-R formulation over the base sample set of
instances

Q̃+
M Q̃+

M+ Q̃−
s

Inst # #O #S G(%) R(%) T(s) R T(s) # Nds
CG
T(s)

RCF &
CE T(s)

#O #S G(%) R(%) T(s) R T(s) # Nds
CG
T(s)

RCF &
CE T(s)

A 5 5 0 0 0.01 90.5 71.0 1.4 63.6 8.3 5 0 0 0.01 121.0 103.5 1.4 99.2 5.1

B 3 3 0 0 0 159.2 159.2 1.0 50.2 85.9 3 0 0 0 164.9 164.9 1.0 83.8 59.1

E 3 3 0 0 0 262.0 262.0 1.0 190.7 17.7 3 0 0 0 298.8 298.8 1.0 238.9 7.4

P 4 4 0 0 0 21.8 21.8 1.0 11.6 1.3 4 0 0 0 39.3 39.3 1.0 30.1 0.7

V 3 3 0 0 0 1.9 1.9 1.0 0.3 0.1 3 0 0 0 2.0 2.0 1.0 0.7 0.0

18 18 0 0 0 100.5 95.1 1.1 60.4 19.9 18 0 0 0 120.0 115.1 1.1 88.1 12.7
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There are some similarities between the resource configurations in the filtered tests of
Table 3.3. For instance, both configurations solved all these 18 instances to optimality.
Also, they explored only one node each in all the tests except for the one of A-n63-k10,
where both explored 3 nodes each and presented the same root gap of 0.04%. Besides,
the average time to solve the LPs (not in the table) were rather stable among both, with
0.5 and 0.6 s. On the other hand, some significant differences occur in time-related data.
All the average times in T(s), R T(s), and CG T(s) presented for the Q̃+

M are lower than
their counterparts of Q̃+

M+ Q̃−
s , while all the ones in RCF & CE T(s) are higher in the

former. From the configuration Q̃+
M+ Q̃−

s to the configuration Q̃+
M , the average column

generation time over all instances decreased by a significant amount of 27.7 s, while the
RCF & CE T(s) increased by 7.2 s: this difference of 20.5 s comprises almost the entire
decrease of 19.5 s in the overall time.

Given the nature of the configurations Q̃+
M and Q̃+

M+ Q̃−
s (see Subsection 3.4.4), it is

actually not a surprise that the absence of Q̃−
s performs better in these experiments on

CmVRP. Supporting this, we observe that the usage of the Q̃+
M approach tends to keep

extended labels in a similar way of Q̃+
M+ Q̃−

s , however, the former has a more aggressive
label dominance rule, discarding labels that the latter does not. Moreover, the presence
of Q̃−

s led to a smaller average number of generated columns (3348.8 vs. 4423.1), but it
was accompanied by a larger number of solved LPs (318.6 vs. 108.3), suggesting a column
generation convergence in more rounds.

Finally, we also point out that, in both resource configurations, the class B has, by
far, the higher ratio of RCF & CE T(s) in relation to its T(s). One possible explanation
is given by the way these instances were constructed, leading to clusters of customers (see
Subsection 3.5.2). In instances like this, the algorithm may employ a heavy usage of the
reduced cost fixing procedure to remove connections between distinct regions.

Comparing with the Literature

Now we compare two BCP approaches for the CmVRP using formulations in the line of
AL-R: the one proposed in this paper and a rerun of the one of Fukasawa et al. [74], which
is, to the best of our knowledge, the state-of-the-art exact method for the problem on the
literature. As we are comparing approaches from different origins and implementations,
and aiming at having per instance data, we choose to use the complete set of instances
in the experiments of both. When convenient, we use FHY16 to refer to the work of
Fukasawa et al. [74]. As noted in Subsection 3.4.4, the pricing of FHY16 is roughly
similar to our usage of pricing resources given by Q̃+

M+ Q̃−
s , however, as we are aiming at

comparing the best approaches, we employed to this end our Q̃+
M resource configuration,

which is our best one. Moreover, in this comparison we are mainly interested in evaluating
the effect of the dual bound quality of both methods, thus our approach is used without
(w/o) the primal RMH provided by the VRPSolver, being similar, in this matter, to
the BCP algorithm of FHY16. Recall that both use the same cutoffs.

Containing sequences of columns for each approach, Table 3.4 has columns already
described for the Table 3.3 and also the column “SB T(s)”, which refers to the time spent
in strong branching, in seconds. Table 3.4 shows data comparing the experimental results
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of the approaches in instance tests where both have found feasible solutions. As stated
before, this filtering allows one to focus only on the tests that are directly comparable
between the approaches. From the 78 instances considered in the table, all of them were
solved to optimality by our Q̃+

M w/o RMH approach. The approach of FHY16, on the
other hand, reported optimality for 63 of them and feasible solutions for the remaining
15 ones. These measures are naturally reflected on the gap values.

Table 3.4. Comparison of results of BCP algorithms for the CmVRP with formulations
like AL-R over the complete set of instances: a FHY16 rerun and the one with Q̃+

M

resource w/o RMH

FHY16 rerun Q̃+
M w/o RMH

Inst # #O #S G(%) R(%) T(s) R T(s) # Nds
SB
T(s)

#O #S G(%) R(%) T(s) R T(s) # Nds
SB
T(s)

A 26 23 3 0.22 0.68 1,173.5 9.0 159.7 1131.4 26 0 0 0.03 158.8 106.3 1.5 23.5
B 20 12 8 1.17 1.54 3,340.6 11.1 628.2 3184.8 20 0 0 0.03 326.9 217.4 1.4 19.4
E 11 7 4 1.27 1.51 3,309.9 27.1 152.7 3246.4 11 0 0 0.03 613.8 412.9 1.5 84.9
P 20 20 0 0 0.74 364.4 7.8 102.4 328.9 20 0 0 0 36.2 36.2 1.0 0.0
V 1 1 0 0 1.22 35.1 9.9 13.0 31.6 1 0 0 0 9.6 9.6 1.0 0.0

78 63 15 0.55 1.04 1,808.4 11.8 262.3 1736.3 78 0 0 0.02 232.7 158.8 1.4 24.8

Our approach presents significantly better times in T(s) and SB T(s) in all rows of
Table 3.4. More specifically, in relation to the results of the FHY16 rerun, our approach:
has an average time of at least 7 times lower; spent at least 13 times more time in the
root node; and the average strong branching time takes about an outstanding mark of 70
times lower. These ratios suggest conformance with the VRPSolver efforts of spending
more time in the root node and in strong branching [143].

Other measures of interest are the significantly better root gaps that can be seen in
Table 3.4. Also, it is worth observing that, while the absolute numbers show that the new
approach spends less time doing strong branching, it presents an average strong branching
time of 62 s per non-root node, while this average is only 6.6 s in FHY16 (note the massive
number of nodes processed by the latter). Therefore, when suitable, the strong branching
would favor the selection of more promising nodes to be processed first. Note that, in
our approach, the beneficial effect of only using arc-loads that correspond to packageable
demands would be spread across several measures, and perhaps, focused on instances
where it has more impact. By the results of these experiments, it is clear that the BCP
approach with Q̃+

M w/o RMH outperforms the one of FHY16.

State-of-the-Art Results

Considering that the resource configuration Q̃+
M was claimed to be the better one over

the base sample set of instances and its version without the RMH presented better results
than the FHY16 over the complete set of instances, now we present results on the Q̃+

M

configuration with the RMH enabled over the complete set of instances. We present the
results in Table 3.5 and carry on a discussion on these data.

Table 3.5 contains some additional columns/fields beyond ones already presented for
previous tables. The column “#N” presents the number of instance tests that finished
without reporting any feasible solution, while the column “#X” shows the number of the
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remaining tests that were aborted or failed. The tests counted in #N are used in the
averages, except for the averages of the gaps. A test counted in #X is not used in any
average. Given the proven optimal solutions found for a class of instances, the field “n′

O”
gives the maximum number of vertices among them. Measured in seconds, the column “LP
T(s)” refer to the time spent in solving linear programs. In the grouped or summarized
rows, the fields #N and #X contain sums, the field n′

O contain maximums, and the others
contain averages. Besides, due to their nature, some detailed time slices may be accounted
for more than once, e.g., strong branching time contains part of column generation time
and part of the time for solving the LPs.

Table 3.5. Results of the BCP algorithm for the CmVRP using the AL-R formulation
with the Q̃+

M resource over the complete set of instances

Inst #O #S #N #X n′
O G(%) R(%) T(s) R T(s) # Nds

CG
T(s)

RCF &
CE T(s)

LP
T(s)

SB
T(s)

A 27 0 0 0 80 0 0.03 147.8 120.7 1.3 113.0 8.8 3.0 16.0
B 22 1 0 0 68 0.05 0.16 840.5 263.2 3.1 487.0 251.3 46.9 110.4
E 11 0 1 1 101 0 0.03 1,149.6 524.7 2.3 971.9 33.5 18.8 98.7
P 22 0 0 2 76 0 0.01 198.8 108.5 1.2 143.3 21.0 1.0 41.3
V 13 0 0 0 48 0 0 3.3 3.3 1.0 1.3 0.2 0.1 0.0

95 1 1 3 101 0.01 0.05 428.2 186.0 1.8 299.9 71.0 14.5 52.2

In a first moment, we highlight the efficacy of this configuration: it solved to optimality
95 (out of 100) instances. Hereafter, we will focus on the size of the solved models of each
instance in regard to the number of vertices and the number of arc-loads. The instance
with the large number of vertices that the configuration was able to optimally-solve is the
E-n101-k14 (see column n′

O of Table 3.5), that has 839,956 arc-loads (the 6th highest in
arc-load counting, as presented in Subsection 3.5.3). The instance with the larger number
of arc-loads that is optimally-solved is the P-n76-k5, with 1,371,094 (4th). Besides these
ones, the others with highest arc-load counting ranked as 5th, 7th, and 8th were also
optimally-solved.

The large number of arc-loads may have a great influence on four out of the five
instances that were not solved nor optimally-solved. In this line, the tests of the instances
P-n101-k4 (3,719,956, 1st) and P-n76-k4 (1,764,844, 2nd) failed due to an external cause,
e.g., the system went out of memory (we emphasize that each memory critical test was
run alone). A different situation occurred with the E-n101-k8 (1,719,956, 3rd), whose test
ran without issues, but no feasible solution was found. We also uncover that the instance
counted in #S is the B-n78-k10, with a gap of 1.08%; which is the one with more vertices
and arc-loads (455,392) in class B.

Thereby, with very few exceptions, we stress out the success of the arc-load based
approach for moderately-large models for the CmVRP, i.e., with up to 1,371,094 arc-
loads. As presented before, the Q̃+

M w/o RMH shows a better performance than the
FHY16 approach. As the performance of the Q̃+

M approach (with RMH) is better than
the former ones, our approach improves upon the state-of-the-art results for the CmVRP.

Moreover, time measures of features with low values, and thus with low influence on
the overall time, are described in the following. The times for cut separation, RMH, and
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resolution of column enumerated nodes by the CPLEX MILP solver took general averages
of 4.6, 1.4, and 1.6 s, respectively. These times were not reported in Table 3.5. We add
that some detailed data values in this table are referred further in this paper, e.g., to
make comparisons with other problems. Additionally, detailed experimental results over
the base sample set of instances are presented in Appendix B.

On the Selection of Instances

Beyond the comparisons already made between the resource configurations Q̃+
M and

Q̃+
M+ Q̃−

s over the base sample set of instances, we also compare them over the com-
plete set of instances, where the goal is to provide reasonable evidences that our base
sample selection is good enough for comparisons. For this, we present the performance
profile in Figure 3.3.
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Figure 3.3. Performance profile of the resource configurations Q̃+
M and Q̃+

M+ Q̃−
s of the

BCP algorithm for the CmVRP with the AL-R formulation over the complete set of
instances

The start of the lines in this performance profile is very similar to the ones for the base
sample set of instances, in Figure 3.2. In Figure 3.3, the line of Q̃+

M begins with solved
instance ratio of 0.74, and the one of Q̃+

M+ Q̃−
s begins with 0.23. In the end, both ones

reached a maximum solved instance ratio of 0.95, with the first with a time ratio of 2.14,
while the other reached 3.17. The final of these lines increased (in relation to Figure 3.2)
in both configurations, where the Q̃+

M for the complete set represents 125% of the one
with base sample, while the same measure for Q̃+

M+ Q̃−
s is 148%. Despite the variations

in results between the base and the complete set of instances, both performance profiles
(figures 3.2 and 3.3) seem to be in line with each other.

Looking into the overall statistics with the focus on the resource configuration
Q̃+

M+ Q̃−
s with the complete set of instances, we observe that it presented an average

time of 569.5 s against 428.2 s of Q̃+
M (the latter is also presented in Table 3.5). Unlike

the Q̃+
M counterpart, no solution was reported on the test of the instance B-n51-k7. On

the other hand, an optimal solution was found for the E-n30-k3, which was aborted in
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the other attempt. The status of other instances were similar among both. These results
also corroborate the conclusions taken over the base sample set of instances.

3.5.5 Results for the CmVRP-LE

This subsection delves into the results of the BCP algorithm for the CmVRP-LE using the
AL-R formulation with the six resource configurations given by load and energy resources
presented in Table 3.1. Compared to the CmVRP, the presence of an energy limit per
vehicle/route might enforce a different optimal solution to some instances, as well as it
may make instances infeasible (the energy limit is defined in Subsection 3.5.2). As it is
a definitive conclusion, a report of infeasibility is considered a success outcome in the
performance profiles, in the same way that a solved instance is. Besides, we trace some
parallels between the results of the problems with and without limited energy.

Evaluating the Resource Configurations

A performance profile comparing the six referred resource configurations over the base
sample set of instances is presented in Figure 3.4. All configurations were able to report
that the instance E-n31-k7 is indeed infeasible, while none of them reported a feasible
solution for B-n51-k7. Note that the latter was the harder one (among the base sample)
for our both resource configurations of the BCP algorithm for the CmVRP, whose results
we presented in Subsection 3.5.4.
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Figure 3.4. Performance profile of the six resource configurations of the BCP algorithm
for the CmVRP-LE using the AL-R formulation over the base sample set of instances.
The x-axis is in log scale.

We elected two main groups of resource configurations according to the behavior of
their lines in the performance profile depicted in Figure 3.4. The best group contains
those we evaluated as the four best configurations, that are the ones with a load resource
as a main one (Q̃+

M), while the worst group contains the ones without the load resource
as a main one, namely Q̃+

s + ẼM and Q̃−
s + ẼM . The best group items are identifiable as

the ones who reached a mark of 0.95 (18 instances) in the solved instance ratio. Yet on
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the solved instance ratio, we have that the three best starting points of the lines are 0.32,
0.26, and 0.26 for, respectively, Q̃+

M+ Q̃−
s + Ẽs, Q̃

+
M+ Ẽs, and Q̃+

M+ ẼM . The time ratio
of these points moderately vary, being eventually led by Q̃+

M+ Q̃−
s + Ẽs.

The configurations Q̃+
M+Ẽs and Q̃+

M+ẼM presented very similar lines, suggesting that
the main (or secondary) status of the energy resource did not have a big impact when
only accompanied by the Q̃+

M . However, their situation changes in opposite ways with the
usage of the Q̃−

s resource, as follows. The addition of the resource Q̃−
s had an improving

effect on the Q̃+
M+ Ẽs configuration, yielding the best overall approach for the problem.

Conversely, adding Q̃−
s to the Q̃+

M+ ẼM led to a deterioration in its performance, with a
very poor start (until the time ratio of about 2).

Due to the fixed number of vehicles of our problems, discovering whether an instance
is feasible or not is an important question in the problems with limited energy. Consider
the case of B-n51-k7, for which the current CmVRP-LE results don’t allow us to know if
it is feasible. The question remains open even in the light of some data from an optimal
solution on this instance as a CmVRP: the energy consumption of its routes lies in the
interval [6677; 12,044] with an average of 8626.57, while the energy limit for this instance
is set to 9888. As CmVRP, the total energy of an optimal solution is 60,386, while the
best dual bound as CmVRP-LE has value 61,069, obtained by Q̃+

M+ Q̃−
s + Ẽs. Therefore,

if B-n51-k7 is indeed feasible as a CmVRP-LE instance, it will certainly have an optimal
solution distinct from the one as CmVRP.

On an attempt to better understand the average behavior and time composition of the
most relevant configurations, we present average statistics for the four best configurations
(the ones in the best group) in Table 3.6. In this table, the tests are restricted to the
ones in which, for those configurations, either a feasible solution was found or infeasibility
was proven; as before in this paper, this restriction aims at focusing on tests that are
unequivocally comparable between the contestants. As a matter of fact, from the 18
resulting instances, 17 of them presented optimal solutions while one was proven infeasible.

Table 3.6. Comparison of results of the resource configurations Q̃+
M+ Ẽs, Q̃

+
M+ Q̃−

s + Ẽs,
Q̃+

M+ ẼM , and Q̃+
M+ Q̃−

s + ẼM of the BCP algorithm for the CmVRP-LE with the AL-R
formulation over the base sample set of instances

Resource configuration # G(%) R(%) T(s) R T(s) # Nds
CG
T(s)

# CG
RCF &
CE T(s)

LP
T(s)

# LP

Q̃+
M+ Ẽs 18 0 0.31 762.3 451.4 3.0 323.7 9,902.1 389.6 15.0 445.2

Q̃+
M+ Q̃−

s + Ẽs 18 0 0.12 358.3 305.7 2.0 280.0 4,287.1 42.3 7.9 552.3

Q̃+
M+ ẼM 18 0 0.31 778.9 455.2 3.1 394.7 8,693.1 335.4 13.5 428.5

Q̃+
M+ Q̃−

s + ẼM 18 0 0.11 637.0 530.0 2.6 484.0 4,010.0 107.0 16.6 615.0

Once more we note the effect of using the resource Q̃−
s , but now from another point

of view. The usage of Q̃−
s led to the smaller values of root gap and number of explored

nodes than the ones without it, as visible in Table 3.6. The Q̃+
M + Q̃−

s + Ẽs resource
configuration presents the best computing time average, that corresponds to almost half
of the other times. It has the smaller average of explored nodes, however, the instance
A-n63-k10 took 7 nodes on it versus 3 in the others. The CG T(s), RCF & CE T(s),
and LP T(s) of Q̃+

M+ Q̃−
s + Ẽs are the smaller ones among the four. With respect to the



77

total time of this configuration, the CG T(s) represents 78.1% and the RCF & CE T(s)
slice is 11.8%, which are, respectively, the largest and the smallest proportions among the
four configurations. The second best time average goes to Q̃+

M+ Q̃−
s + ẼM , however, note

this configuration did not have a good performance in Figure 3.4, as previously stated.
Despite not being the best, the Q̃+

M + ẼM has a good line on the performance profile,
however, it presented the worst time average in Table 3.6.

Some statistics do not hold significant high values or do not vary much across these
four configurations (not reported in Table 3.6). For instance, the average times for cut
separation, RMH, and resolution of column enumerated nodes by the CPLEX MILP
solver varies under 6.0 s. Moreover, we have that the average strong branching times per
non-root node is 31.0 s and its standard deviation is 6.1 s, thus, not varying much across
these configurations.

Considering the performance profile in Figure 3.4 and the data in Table 3.6, here we
focus on the two best resource configurations, i.e., Q̃+

M + Ẽs and Q̃+
M + Q̃−

s + Ẽs, to be
compared with similar experiments and configurations on the problem without energy
limit. Like the method for its counterpart on the CmVRP, the addition of Q̃−

s for the
CmVRP-LE led to a smaller number of average columns generated (4287.1 vs. 9902.1),
a smaller time average for solving the LPs, a larger average number of solved LPs (552.3
vs. 445.2), and a smaller average of RCF & CE T(s). By adding this resource, as a matter
of fact, the number of columns decreased 57% in the CmVRP-LE and only 24% in the
CmVRP, while the number of LPs increased 24% in the former and (an outstanding mark
of) 194.2% in the latter. On the other hand, unlike the CmVRP counterpart, the average
time and the column generation time were significantly improved for the CmVRP-LE

with the usage of Q̃−
s .

Note that the CmVRP-LE only difference upon the CmVRP is the usage of a re-
source to guarantee that the energy limit is respected in the computation of the routes,
and particularly, the best CmVRP-LE resource configuration uses the disposable energy
resource Ẽs as a secondary one. Even though the CmVRP-LE’s AL-R formulation has
arc-load uniform constraints and distinct arc-load objective function coefficients for the
same arc (like CmVRP), the usage of Q̃−

s (unlike CmVRP), via Q̃+
M+ Q̃−

s + Ẽs, provided
the best results. Therefore, considering the trade-off between creation and discarding of
labels, the approach that forbids the creation of labels in which the load resource would be
disposed had the best performance, even with the dominance being theoretically weaker
in this case. Given the structural similarity of the problems and the difficulties introduced
by the Q̃−

s resource, we expected that the best results of the CmVRP-LE would be given
by the Q̃+

M + Ẽs. It was even more surprising to note the time difference between the
approaches for the CmVRP-LE: the average time with Q̃+

M+ Q̃−
s + Ẽs is about the half

of the average time of the other three configurations in Table 3.6.
Besides that, observe that the energy resource upper bound in the arc-loads might

turn some (partial) paths that would be feasible in the CmVRP into infeasible ones in
the CmVRP-LE; whereas this mechanism would also avoid the creation of labels with
high energy consumption. Moreover, in the best configurations of both (over the base
sample set), the average time to solve the CmVRP-LE is three times higher than the
CmVRP one, and the average number of nodes of the former is twice the latter’s.
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Complete Results and the Effect of the Energy Limit

We report, in Table 3.7, experimental results of the resource configuration Q̃+
M+ Q̃−

s + Ẽs

for the CmVRP-LE over the complete set of instances, that is our best configuration for
this problem. The CmVRP-LE can be seen as simplified versions of the EVRPs studied
in Goeke and Schneider [86], Zhang et al. [185], that employ heuristic approaches and
rely on instances/models considering several practical technical specifications. We do
not compare our results with theirs as we concentrate on using the load-dependent energy
consumption on instances derived from the classical CVRP. We point out that this energy
consumption is already challenging for BCP approaches, as noted in Section 3.1, and, in
addition, some practical technical specifications, e.g., from roads and vehicles, can be
incorporated into our approaches in a direct manner.

In Table 3.7, the field “#IF” reports the number of instances reported as infeasible,
while the field “n′

O/IF” gives the maximum number of vertices of instances with a proven
optimal solution found or reported as infeasible. In order to check if a test instance had
its optimal solution value changed from the CmVRP to the CmVRP-LE, we rely on
our best results for the CmVRP given by Table 3.5. In a determined test, let zCmVRP-LE

be the best solution value of an instance as a CmVRP-LE problem, and let ẑCmVRP-LE

be its best lower bound; we also consider that the value z′
CmVRP-LE

equals the former if a
feasible solution was found and the latter if only valid lower bound was reported, but not
a feasible solution.

Column “De(%)” of Table 3.7 reports the percentage difference of a feasible solution
or a lower bound value of instances as CmVRP-LE in relation to solution values of
instances as CmVRP (zCmVRP). More precisely, given the solution values of an instance as
both problems, their percentage difference is given by ((z′

CmVRP-LE
− zCmVRP)/zCmVRP)100.

Column “#De” presents the least number of instances where each optimal solution value
was inferred to increase from CmVRP to CmVRP-LE or the instance was concluded
to be infeasible. Column “#NDe” indicates the number of instances reported with no
difference in the solution values, while column“#Ue” counts the ones with unknown status
in this regard. We highlight that no pair of feasible but not proven optimal solutions were
obtained/compared.

Table 3.7. Results of the BCP algorithm for the CmVRP-LE using the AL-R formulation
with the Q̃+

M+ Q̃−
s + Ẽs resource over the complete set of instances

Inst #O #IF #S #N #X n′
O/IF De(%) #De #NDe #Ue G(%) R(%) T(s) R T(s) # Nds

CG
T(s)

RCF &
CE T(s)

LP
T(s)

SB
T(s)

A 27 0 0 0 0 80 1.45 21 6 0 0 0.12 517.7 310.3 3.0 426.4 27.8 21.5 104.0
B 16 4 0 3 0 78 4.34 23 0 0 0 0.38 1,773.4 646.4 5.3 1,115.0 527.1 72.0 244.3
E 10 1 1 1 0 101 2 8 3 2 0.36 0.39 2,257.4 2127.2 1.6 1,824.0 357.2 4.5 45.4
P 18 3 0 2 1 70 0.2 9 12 3 0 0.01 768.5 763.1 1.1 722.3 9.1 0.8 4.5
V 13 0 0 0 0 48 0.04 2 11 0 0 0 10.1 10.1 1.0 6.6 1.5 0.2 0.0

84 8 1 6 1 101 1.67 63 32 5 0.05 0.16 1,029.5 692.7 2.6 783.5 179.3 23.4 92.1

As previously mentioned, discovering the feasibility status of the instances is a major
concern in the problems with limited energy. In this way, from the complete set of 100
instances, this experiment managed to discover the feasibility status for 93 of them, i.e.,
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#O+#IF+#S. We add that none of the instances reported as infeasible are among the
8 ones with more than 500,000 arc-loads.

The larger instances solved are discussed in the following. The instance with the larger
number of vertices solved to optimality or reported as infeasible is the E-n101-k14, with
839,956 arc-loads (the 6th highest in arc-load counting, according to Subsection 3.5.3).
This instance is also the one with more vertices solved by the CmVRP, as can be seen in
Table 3.5. The E-n76-k7 (1,033,594, 5th) is the one with the largest number of arc-loads
optimally-solved or infeasible-reported. Also having this outcome, there are the instances
ranked as 7th and 8th in the number of arc-loads. On the other hand, the CmVRP

approach has also solved the instance with the 4th highest arc-load counting.
The approach had difficulties in some instance models, especially the ones with a very

large number of arc-loads. The test of the instance with the 1st higher number of arc-loads
failed to solve even the first linear program within the time limit, and the ones ranked
as 2nd, 3rd, and 4th in the arc-load counting ended with no feasible solution nor a valid
lower bound. Besides that, the only instance reported in #S is the E-n30-k3, with a gap
of 3.96% and 119,668 arc-loads; which is distinct from the also unique one reported in #S
for the problem version without energy limit.

We compare some measures on the problems with and without energy limit. First,
with up to 6.6 s, we mention measures (not in Table 3.7) with no significant impact on
the overall average time, namely: average times for cut separation, RMH, and resolution
of column enumerated nodes by the CPLEX MILP. These values are similar to ones in
the results on CmVRP. Next, we focus on other measures. The summarized data on the
last line of the columns G(%), R(%), T(s), R T(s), # Nds, CG T(s), RCF & CE T(s), LP
T(s), and SB T(s) for the CmVRP-LE in Table 3.7 are all larger than their counterparts
for the CmVRP in Table 3.5. In particular, with limited energy, the averages of total
time, column generation time, and RCF & CE time are each more than twice the other
one’s. Additionally, detailed experimental results over the base sample set of instances
are presented in Appendix B.

Another point that might have had an influence in the results is the quality of the
cutoffs used. Considering the complete set of instances, after the resolutions, we were
able to conclude that the cutoff gap average for the CmVRP is 3.11%, while the cutoff
gap average for the CmVRP-LE is 16.76% (note that the identified infeasible instances
do not count on the second average).

Besides comparing the performances, we highlight how the energy consumption results
changes among the CmVRP and CmVRP-LE problems. The column De(%) of Table 3.7
shows that the energy consumption average increased 1.67% in relation to the CmVRP,
observing that this average is over instances whose tests yielded leastwise a lower bound for
the CmVRP-LE. In addition, we have a De that is at least 5% in eight instances, wherein
B-n56-k7 (with 19.99%), E-n13-k4 (11%), and B-n41-k6 (8.97%) are the three larger ones
in this regard. The field #De, in turn, shows at least 63 instances with a difference
in energy consumption, noting that #De accounts for the infeasible instances, opposite
to the field De(%). Even with a relatively small average percentage difference between
the problems with energy limit and without it, these results’ comparisons emphasize the
hardness of the CmVRP-LE over the CmVRP with the approaches used. The addition
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of the resource Ẽs is what enforce the energy limit to be respected in each route: it is not
a surprise that it imposed a degradation on the performance.

3.5.6 Results for the CVRP-LE

The present subsection goes through the experimental results of the BCP algorithm for the
CVRP-LE with two distinct EIMP formulations: AL-R and VF-R. Unlike the versions
of CmVRP, the usage of VF-R is possible since the objective function of CVRP-LE
does not take the consumed energy into account. Each formulation is used with the six
resource configurations of load and energy resources given by Table 3.1; hence, there are
twelve options to be tested. For each instance, the energy limit per vehicle/route may
impose a different optimal solution in relation to the instance as a CVRP problem. Like
in the CmVRP-LE results, an instance reported as infeasible is considered as solved in
the performance profiles. Throughout this subsection, some comparisons with previous
presented problems’ approaches are done.

Evaluating the Resource Configurations

The performance profile in Figure 3.5 shows twelve lines of experiments over the base
sample set of instances. Like in the CmVRP-LE experiments, all options were able to
report the instance E-n31-k7 as infeasible and no option was capable of reporting a feasible
solution for B-n51-k7. For the latter one, the best dual bound of 1069 was obtained by
the options given by AL-R with (w/) Q̃+

M + Q̃−
s + Ẽs, AL-R w/ Q̃+

M + Q̃−
s + ẼM , VF-R

w/ Q̃+
M+ Q̃−

s + Ẽs, and VF-R w/ Q̃+
M+ Q̃−

s + ẼM , while its optimal solution value as a
SymCVRP is 1032. Thus, if this instance is indeed feasible, it will have optimal solutions
distinct from the ones as the problem without energy limit.
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AL-R Q̃+
s + ẼM
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VF-R Q̃+

M
+ Ẽs
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Figure 3.5. Performance profile of the twelve options of the BCP algorithm for the
CVRP-LE over the base sample set of instances. The x-axis is in log scale.

Let us identify the options with the best performances. In Figure 3.5 we can see that
four options stand out from the rest and reached 0.95 in the solved instance ratio, i.e.,
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they optimally-solved or infeasible-reported 18 out of 19 instances. These options are
given by AL-R w/ Q̃+

M+ Q̃−
s + Ẽs, AL-R w/ Q̃+

M+ Q̃−
s + ẼM , VF-R w/ Q̃+

M+ Q̃−
s + Ẽs,

and VF-R w/ Q̃+
M+ Q̃−

s + ẼM . These four are the only ones with the resources Q̃+
M and

Q̃−
s simultaneously. In the pair with AL-R and in the pair with VF-R, the usage of Ẽs

yielded an undeniably better performance than with ẼM . Furthermore, in the pair with
Q̃+

M+ Q̃−
s + Ẽs and in the pair with Q̃+

M+ Q̃−
s + ẼM , the one with the VF-R formulation

performed seamlessly better than the one with AL-R.
Note that the VF-R lines have the two best starts in the performance profile, with

a solved instance ratio of 0.58 for the Q̃+
M+ Q̃−

s + Ẽs resource configuration and 0.21 for
Q̃+

M+ Q̃−
s + ẼM . As the VF-R w/ Q̃+

M+ Q̃−
s + Ẽs also has the best final point among the

lines, with a time ratio of 1.26, it is easy to conclude it is the best approach in this context.
Its resource configuration matches the one of the best option for the CmVRP-LE, while
the CVRP-LE results favour the VF-R formulation, that is exclusive to it.

Now we focus on the impact of the resources. In the current problem, the AL-R
formulation has arc-load uniform constraints and non-distinct arc-load objective function
coefficients for the same arc, and besides, due to having only one variable per arc, VF-R
mimetizes this aspect. Therefore, the usage of the non-disposable resource Q̃−

s has two
potential benefits: present an improvement like a similar scenario in CmVRP-LE, and
avoid the occurrence of the load excess effect. Recover that the CmVRP-LE’s AL-R
formulation have distinct arc-load objective function coefficients for the same arc. In the
face of this remark, observe that the usage of Q̃+

M+ Q̃−
s in the CVRP-LE induces a more

prominent division in the performance profile plots than in the CmVRP-LE. Besides,
the next two better ones in the CVRP-LE are the reminiscent ones including Q̃−

s .
The six worst options are the ones subject to the load excess effect, due to the absence

of Q̃−
s . Besides, we can see that the performance plots of these options are roughly

grouped by pairs with the same resource configuration, namely Q̃+
M+ Ẽs, Q̃

+
M+ ẼM , and

Q̃+
s + ẼM . In these duos, the VF-R have the best starting points, but not necessarily

the best finishing ones, while the intra pair performances along the plots are similar and
mixed.

To explore the average behavior and time composition of the best options, Table 3.8
presents average statistics on the four best over the base sample set of instances for all the
options considered, in which, for comparison reasons, the tests are confined to the ones
who at least a feasible solution was found or infeasibility was proven. Likewise analogous
results for the CmVRP-LE, this resulted in 18 instance tests, where 17 of them were
optimally-solved and one was infeasible-reported.

Some measures did not occupy a large slice of time, as the average times for RMH
and resolution of column enumerated nodes by the CPLEX MILP solver, that are upper
bounded by 4.5 s. Other ones did not vary much across the options reported in Table 3.8.
Next we give average and standard deviation for several of these measures (not presented
in the table). The RCF & CE time took, in average, 69.6 ± 2.8 s. The average time to
solve linear programs and the average number of them are, respectively, 13.8± 1.1 s, and
484.9± 8.3 s. Strong branching average time per non-root node is given by 10.9± 1.7 s.

Let us try to identify a good option by the data in Table 3.8. From the AL-R w/
Q̃+

M+ Q̃−
s + Ẽs to the VF-R w/ Q̃+

M+ Q̃−
s + Ẽs, note the decreasing in the average time
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Table 3.8. Comparison of results of the options AL-R w/ Q̃+
M + Q̃−

s + Ẽs, AL-R w/
Q̃+

M + Q̃−
s + ẼM , VF-R w/ Q̃+

M + Q̃−
s + Ẽs, and VF-R w/ Q̃+

M + Q̃−
s + ẼM of the BCP

algorithm for the CVRP-LE over the base sample set of instances

Option # G(%) R(%) T(s) R T(s) # Nds
CG
T(s)

CS
T(s)

# CG # CS

AL-R w/ Q̃+
M+ Q̃−

s + Ẽs 18 0 0.14 570.8 534.6 2.6 446.7 15.6 3,103.1 1,154.2

AL-R w/ Q̃+
M+ Q̃−

s + ẼM 18 0 0.15 710.4 668.7 2.8 573.7 15.9 4,245.9 1,097.9

VF-R w/ Q̃+
M+ Q̃−

s + Ẽs 18 0 0.14 406.8 379.0 2.6 298.6 7.6 3,717.1 1,224.6

VF-R w/ Q̃+
M+ Q̃−

s + ẼM 18 0 0.14 517.7 487.1 2.7 407.2 7.3 4,008.6 1,128.1

of column generation (446.7 to 298.6 s), even with the latter presenting almost 20% more
columns. Note as well the decreasing in the average time for cut separation (15.6 to 7.6 s).
These differences correspond to almost the total difference in the overall average times of
these options. Similar (but larger) times are presented with the usage Q̃+

M+ Q̃−
s + ẼM .

Despite the average times differences, the average numbers of generated columns and
separated cuts did not vary very much.

Therefore, considering Figure 3.5 and Table 3.8, the best option for CVRP-LE com-
bines the smaller number of variables of the VF-R formulation with the benefits of the
resource configuration given by Q̃+

M+ Q̃−
s + Ẽs, that, for instance, avoids the load excess

effect.
Over the base sample set of instances, the average times of the best options to solve

the problems CmVRP, CmVRP-LE, and CVRP-LE are, respectively, 100.5 s (AL-R w/
Q̃+

M), 358.5 s (AL-R w/ Q̃+
M+ Q̃−

s + Ẽs), and 406.8 s (VF-R w/ Q̃+
M+ Q̃−

s + Ẽs). Using the
AL-R for the last one, we obtained 570.8 s, thus, evidencing the value of the VF-R.

Complete Results and the Effect of the Energy Limit

For the CVRP-LE, the results of the option VF-R w/ Q̃+
M+ Q̃−

s + Ẽs (the best one) over
the complete set of instances is given in Table 3.9. In this table, the values of Dd(%),
#Dd, #NDd, and #Ud are defined, changing the superscript, analogous to the ones for
the CmVRP-LE in Table 3.7, where one must consider the SymCVRP and CVRP-LE in
the place of CmVRP and CmVRP-LE, respectively. Observe that the newly described
fields refer to distances instead of energy amounts. In addition, recover that, as noted
in Section 3.1, we did not find in the GVRP literature a problem that can accommodate
the CVRP-LE as a special case, therefore, we do not compare our results on this problem
with the literature.

Table 3.9. Results of BCP algorithm for the CVRP-LE using the VF-R formulation with
the Q̃+

M+ Q̃−
s + Ẽs resource over the complete set of instances

Inst #O #IF #S #N #X n′
O/IF Dd(%) #Dd #NDd #Ud G(%) R(%) T(s) R T(s) # Nds

CG
T(s)

RCF &
CE T(s)

LP
T(s)

SB
T(s)

A 27 0 0 0 0 80 8.42 27 0 0 0 0.22 583.1 357.0 3.4 403.1 128.3 22.2 74.3
B 12 4 0 7 0 67 13.06 23 0 0 0 0.53 2,619.0 815.5 9.5 1,608.7 721.4 210.5 377.6
E 10 1 0 2 0 101 6.06 12 1 0 0 0.43 2,346.5 1699.6 3.2 2,034.5 202.7 20.0 197.1
P 18 3 0 3 0 70 2.26 17 4 3 0 0.03 1,023.4 849.1 1.3 938.5 11.7 2.7 9.4
V 13 0 0 0 0 48 5.36 13 0 0 0 0.18 194.1 59.9 2.2 108.0 66.9 11.7 9.9

80 8 0 12 0 101 7.4 92 5 3 0 0.24 1,335.7 716.5 4.1 982.6 238.4 59.2 136.1
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In order to evaluate the performance of the method, we report the number of feasibility
statuses discovered of and the size of the larger solved instances. This BCP option for the
problem was able to optimally-solve 80 instances and declare 8 ones infeasible, while the
remaining 12 ones (completing the 100 test instances) fell into the status of no solution
found. As expected, the infeasible instances are the same ones reported by experiments
on CmVRP-LE, however, note that the ones with no solution reported there summed
only 7 ones. The solved instance with most vertices is the E-n101-k14, that is also the
one with more arc-loads among the solved ones; where we recall that this instance has
839,956 arc-loads, which is the 6th highest in this matter. The next solved ones with
more arc-loads are those ranked as 7th and 8th in this regard. In comparison, the best
CmVRP-LE approach solved the 5th while the CmVRP’s solved the 4th with highest
arc-load counting.

In Table 3.9, the field Dd(%) denotes that the average solution distance increased
7.4% comparing with the SymCVRP; wherein the field #Dd denotes that at least 92
instances presented a distance difference. We also note that there are eight instances
with Dd ≥ 15%, where the ones with larger values are B-n56-k7 (with 48.51%), E-n13-
k4 (26.72%), and B-n78-k10 (26.04%). On the other hand, the CmVRP-LE presented
solution energy differences in at least 63 instances, in spite of the instances of both using
the same energy limit.

The times with a small slice of the average overall time are given by the average times
for cut separation, RMH, and resolution of column/path enumerated nodes by the CPLEX
MILP solver, that are, respectively, 7.4, 2.5, and 1.5 s; wherein the first and last ones
are similar to results on CmVRP-LE, while the RMH took more time in the CVRP-LE.
Now we move onto the measures with large slices of time. From the CmVRP-LE to the
CVRP-LE, the summarized time averages increased. The overall average time increased
30% (+306.2 s), the column generation time increased 25% (+199.1 s), the RCF & CE time
is 33% (+59.1 s) larger, and the time to solve linear programs is about 153% (+35.8 s)
larger. The average strong branching time is 48% larger, however, due to the higher
number of nodes, the average strong branching time per non-root note went from 57.6 to
43.9 s. We add that this happened even with the CVRP-LE using cutoffs with an average
gap of 4.67% in relation to the results obtained, which is more than three times smaller
than the same measure for the CmVRP-LE. Additionally, detailed experimental results
over the base sample set of instances are presented in Appendix B.

The average time of the method for the CVRP-LE being higher than the one for
the CmVRP-LE raises two points. First, the values of Dd(%) and #Dd of both might
indicate that the chosen energy limits have constrained more the optimal solutions of the
CVRP-LE than the ones of the CmVRP-LE, resulting in harder to compute solutions on
the CVRP-LE. Secondly, it may be associated to the intrinsic hardness of the CVRP-LE,
as its objective function minimizes distance and the new resource constrained the energy,
while in the other, the objective function and the new resource both deal with energy.
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3.6 Concluding Remarks

In this paper we devised BCP approaches for three CVRP variants that minimize the
amount of load-dependent energy consumption and/or impose energy limit per route. For
each RCSPP (corresponding to a pricing subproblem) related to these problems, we used
resource constrained paths descriptor digraphs based on arc-loads. In these digraphs, the
usage of the arc-load concept is pivotal in tracking and limiting the energy consumption
throughout each route. In an attempt to improve performance, we employed a preprocess-
ing procedure to only keep the arc-loads corresponding to packageable demands, which
led to, in average, 4.16% less arc-loads than a previous approach in the literature.

For the CmVRP, we formulated the EIMP by the AL-R formulation, where the best
results are yielded with the resource configuration given by Q̃+

M , i.e., solely using the
load disposable resource. The central components of the method are, in a sense, similar
to the ones of the BCP of Fukasawa et al. [74], however, the dominance rule among
the labels is more aggressive in the former approach. Comparing the approaches under
similar conditions, in the average, we were able to improve the optimality gap from 0.55%
to 0% in a time at least 7 times lower (over 78 instances for which both reported at least
a feasible solution). Thus, we improved upon the state-of-the-art exact results for this
problem.

The CmVRP-LE, proposed in this paper, differs from the CmVRP precisely in the
energy limitation per vehicle. The EIMP formulations used for both are very similar, while
the resource configuration of choice for the CmVRP-LE is given by Q̃+

M+ Q̃−
s + Ẽs, where

non-disposable load (Q̃−
s ) and energy (Ẽs) resources are present. The presence of Q̃−

s

means that, in this case, the best performance was achieved by the approach that forbids
the creation of labels in which the load resource would be disposed to the detriment of
discarding these labels by the dominance rule.

The last problem solved in this paper, also proposed by us, is the CVRP-LE. Due to
the fact that its objective function does not consider energy consumption, we were able
to use an EIMP formulation given by VF-R, that has variables per arc instead of, the
more numerous, variables per arc-load (as used in AL-R). The best resource configuration
is given by Q̃+

M+ Q̃−
s + Ẽs, where the presence of Q̃−

s , in this case, avoids an important
performance issue intrinsic to this problem: the load excess effect.

Over a set of 100 instances, the best average times to process the CmVRP,
CmVRP-LE, and CVRP-LE are, respectively, 428.2 s, 1029.5 s, and 1335.7 s; which
probably indicates a reverse order of hardness among these problems. Besides, we can
solve instances with up to 101 vertices in each of these problems. It is also worth noting
that, for the majority of the instances tested, the variants with limited energy resulted
in optimal solutions different from their counterparts without energy limit. Amid the
VRPs that consider load-dependent energy consumption, we recall that the enforcing of a
limit on the energy consumption on the routes of the vehicles by the means of the pricing
subproblem constitutes a novelty in the BCP/BP literature.

Hereafter we point out some possibilities of future research. Directly related to the
results obtained, it is worth investigating a more fundamental reason that led the BCP
with the Q̃+

M+Q̃
−
s+Ẽs resource configuration to yield the best results on the CmVRP-LE,
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as this resource option was not expected to be the best for this problem. Another point
regards the number of arc-loads: the instance with the highest number of arc-loads that
we are able to solve in this paper contains 1,371,094 of them. In this sense, our results
suggest that the approaches should be improved to be applied to instances that gener-
ate higher number of arc-loads. One option of research in this line is to improve the
removing arc-loads, by relying, for instance, in the energy limit and branching decisions.
Another possibility is to investigate the usage of cuts specifically devised for arc-load-base
formulations, as the ones of Pessoa et al. [141].

Some extended versions of the problems dealt with in this paper might be suitable to
be solved by BCP approaches similar to the ones we used. These extensions may consider:
the effect of speed variations on the energy consumption, the usage of time windows, and
the usage of recharging or refueling stations. In particular, it is worth noting that, even
with the energy consumption being generally nonlinear on the speed [19, 75], arc-load
approaches offer the potential to consider speed in a linear fashion for the CmVRP,
CmVRP-LE, and CVRP-LE (when the distance is not interpreted as time), as, in these
cases, the optimal speed per arc and load can be pre-computed and incorporated in the
costs of arc-loads. On the other hand, the inclusion of time windows in this scenario leads
to a more complex situation, as the speed values impact on the time taken to traverse
each arc, and thus in the ability to reach vertices within theirs windows [19].

We deal with distance-based and energy-based objective functions. One way to directly
consider both criteria is to add them together, where we can adjust the trade-off between
them by weighting each criterion. However, the precise weight of each criterion might
not be available beforehand and it may be hard to measure distinct criteria in the same
unit. In this sense, a more flexible approach would be to solve bi-objective variants of the
problems minimizing both previous criteria, thus the decision-maker – using the Pareto
front [33] – would be able to make an informed decision on the trade-off between the
criteria after the optimization. Once practical technical specifications are incorporated
into the models (e.g., from vehicles and roads [19]), the first criterion could represent
time while the second one could denote energy consumption or greenhouse gas emissions.
Previous works in this line for GVRPs encompasses the exact approach of Kabadurmuş
et al. [105] and the heuristic approaches of Demir et al. [56], Erdoğdu and Karabulut [69].

In addition, the consideration of BCP approaches for these problems with a heteroge-
neous fleet might be of interest in environmental-concerned applications that have a mix
of vehicles with distinct types of energy sources, e.g., with electric, alternative fuel, fossil
fuel, and/or hybrid vehicles engines. Allowing a variable number of vehicles is also a rele-
vant practical aspect, that may as well arise in a VRP with heterogeneous fleet. Besides,
it may be worth employing BCP approaches and energy considerations to the VRP with
Drones, that is a related problem where each truck carries several drones which, by turn,
are dispatched from the truck to perform deliveries [175, 148, 160, 176, 126, 29].
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Chapter 4

Tighter Analysis of an Approximation

for the Cumulative Vehicle Routing

Problem

Abstract. We deal with the Cumulative Vehicle Routing Problem (CmVRP),
a generalization of the Capacitated Vehicle Routing Problem, which objective
is to minimize the fuel consumption. Gaur et al. [80] gave a 4-approximation
based on a well-known partition heuristic to the Traveling Salesman Prob-

lem. We present a tighter analysis obtaining a
(

4− 4
3s3Q2

)

-approximation,

where Q is the capacity of the vehicle and s is a scaling factor. To the best of
our knowledge, this is the best proved approximation for the CmVRP so far.

4.1 Introduction and Previous Work

The Cumulative Vehicle Routing Problem (CmVRP) was proposed by Kara et al. [108].
The objective is to minimize the fuel consumption, given that the fuel consumed by
distance unit is linearly proportional to the total weight being carried (vehicle + load).

An instance of the CmVRP is defined in the following. A complete undirected graph
G = (V,E) with vertices V = {0, 1, . . . , n}, where 0 is the depot and the other vertices are
customers. There is an object of weight wi ∈ Q>0 for each customer i, and we consider
that w0 = 0. Each edge uv ∈ E has a length duv ∈ Q>0 satisfying the triangular inequality.
An empty vehicle with capacity Q ∈ Q>0 and weight W0 ∈ Q>0 is initially located at the
depot, and also, the weight of an object does not exceed Q. In a feasible solution S, we
have that the only vehicle is repeatedly used in k directed cycles, each one including the
depot, to form a schedule that picks up the objects at the customers and drops them in
the depot, visiting every customer exactly once. The objective is to obtain such a schedule
that minimizes the fuel consumed.

Let µ > 0 be a constant that relates how much fuel is consumed by weight per distance
unit. We define a = µW0 and b = µ. The fuel consumed by the vehicle to traverse the
cycle Cj is f(Cj) = a|Cj| + b

∑

i∈Cj
wid

S
i , where |Cj| is the length of the cycle Cj, and

dSi is the distance traveled by the vehicle carrying the object from being picked in the
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customer i until being dropped at the depot in the schedule S. The fuel consumed by
a vehicle to perform a schedule S is f(S) = a

∑k

j=1 |Cj| + b
∑n

i=1wid
S
i . Let di be the

shortest distance between vertex i and the depot.
In this paper, we roughly follow the structure of Gaur et al. [80]. For our contribution,

we use the theorems 1–4 from Gaur et al. [80] and the definitions presented below.

Theorem 4.1 (Haimovich and Rinnooy Kan [96], Gaur et al. [80]). Let C∗ denote an opti-

mal Traveling Salesman Problem (TSP) tour of the graph G = (V,E). Then, the total dis-

tance traveled by a vehicle to bring all objects to the depot is at least max
(

|C∗|, 2
∑n

i=1
widi

Q

)

.

A subtour is a TSP tour that visits a subset of V (G), and, when it is clear, we will
use tour to denote it. W.l.o.g., consider that the vertices of a tour C are numbered as
0, 1, . . . , n in the order that they appear in the sequence, and 0 is the depot. |C| is the
length of the tour C. By a cluster [i, j] we mean a set of a sequence of vertices in the
tour C from i to j, with the extremes included. Considering k ≥ 2, and 1 < x1 <

x2 < · · · < xk−1 ≤ n, a cluster partition denoted by P = [1, x1, x2, . . . , xk−1, n] of tour C
is a decomposition of C into the k clusters [1, x1], [x1, x2], . . . , [xk−1, n]. From a cluster
partition P of C, we are able to construct k subtours C1, . . . , Ck such that: to traverse the
subtour Cj, the vehicle begins at the depot, visits the vertices of Cj in increasing order,
and ends in the depot. The length of P is given by l(P ) = |C1|+ · · ·+ |Ck|.

Theorem 4.2 (Altinkemer and Gavish [4], Gaur et al. [80]). Let an integer s > 0 be

a scaling factor in a way that swi, for every i ∈ V , sW0, and sQ are positive integers,

such that swi ≤ sQ for every i ∈ V . Let C be a TSP tour of G and let Q be the

vehicle capacity. Then, there exists a cluster partition P of C with total length at most

4
∑n

i=1
widi

Q
+
(

1− 2
sQ

)

|C|.

Theorem 4.3 (Gaur et al. [80]). Let C∗ be an optimal TSP tour, and let Q be the capacity

of the vehicle. Then, the minimum fuel consumed by the vehicle to bring all objects to the

depot is at least amax
(

|C∗|, 2
∑n

i=1
widi

Q

)

+ b (
∑n

i=1widi).

Theorem 4.4 (Gaur et al. [80]). Let β > 0 be a positive rational number, C be a TSP tour,

and assume that the vehicle has infinite capacity. Then, there exists a cluster partition P =

[1, x1, x2, . . . , xk−1, n] of C with total fuel consumption at most
(

1 + 2
β

)

b (
∑n

i=1widi) +
(

1 + β

2

)

a|C|.

4.2 Our Contribution

We provide, in theorems 4.5 and 4.7, a refined analysis of the algorithm of Gaur et al.
[80], showing a tighter approximation ratio than the one presented by them.

Theorem 4.5 (From Gaur et al. [80] with a tighter bound). Let β > 0 be a positive

rational number, C be a TSP tour, and Q be the vehicle capacity. Then, there exists

a cluster partition P = [1, x1, x2, . . . , xk−1, n] of C with total fuel consumption at most
(

1 + 2
β

)

b (
∑n

i=1widi) +
(

1 + β

2

)

a|C|+ 4a
∑n

i=1
widi

Q
− 2a

∑k
j=1

|Cj |

sQ
.
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Proof. Considering infinite capacity, there exists a cluster partition P of tour C with fuel
consumption f(P ) with an upper bound given by Theorem 4.4. Let C1, C2, . . . , Ck be
the subtours corresponding to the cluster partition P . Let Wj be the total weight of
the objects picked by the vehicle in the subtour Cj. If Wj ≤ Q, then Cj satisfies the
capacity restriction and, consequently, we keep the cluster corresponding to the subtour
Cj with fuel consumption f(Cj) unchanged. On the other hand, assume that Wj > Q:
by Theorem 4.2 there exists a refined cluster partition Pj of Cj such that the total weight
of the objects in each cluster of Pj is at most Q, and there exists an upper bound on its
length.

Now, given a subtour Cj, we will give an upper bound on the fuel consumption f(Pj).
W.l.o.g., we assume that the fuel consumption f(Cj) of the subtour Cj is obtained by a
traversal in clockwise order (the reversed case is symmetric). Consider that the vehicle
traverses each subtour Cjl, 1 ≤ l ≤ kj in the partition Pj. We have that Vj is the set of
vertices of the tour Cj. Consider that, for each vertex i ∈ Vj, we have dCj

i that represents
the distance traveled by the vehicle from picking object i to dropping it at the depot in
tour Cj, and analogously, dPj

i represents the respective distance for the cluster partition
Pj. We have that dPj

i ≤ d
Cj

i , because the cluster partition Pj is a refinement of the

tour Cj. Thus we can write f(Pj) =
∑kj

l=1 f(Cjl) =
∑kj

l=1

(

a|Cjl|+ b
∑

i∈Cjl
wid

Pj

i

)

=

a
∑kj

l=1 |Cjl| + b
∑

i∈Cj
wid

Pj

i ≤ al(Pj) + b
∑

i∈Cj
wid

Cj

i ≤ 4a

∑
i∈Cj

widi

Q
+ a|Cj| − a|Cj|

2
sQ

+

b
∑

i∈Cj
wid

Cj

i = f(Cj) + 4a

∑
i∈Cj

widi

Q
− a|Cj|

2
sQ

, where we used the upper bound on l(Pj)

given by Theorem 4.2.
We consider that P ′ is the final cluster partition that includes all the clusters, the ones

unchanged as well as the ones refined. Thus, the total fuel consumption is given by f(P ′) =
∑k

j=1 f(Pj) ≤
∑k

j=1

(

f(Cj) + 4a

∑
i∈Cj

widi

Q
− a|Cj|

2
sQ

)

=
∑k

j=1 f(Cj)+4a

∑k
j=1

∑
i∈Cj

widi

Q
−

2a
∑k

j=1
|Cj |

sQ
= f(P )+4a

∑n
j=1

widi

Q
−2a

∑k
j=1

|Cj |

sQ
. By the upper bound of Theorem 4.4 on f(P ),

we have that P ′ is a cluster partition satisfying the theorem.

Lemma 4.6. Let C∗ be an optimal TSP tour in a complete graph G = (V,E) with weight

function d that are part of an instance of the Capacitated Vehicle Routing Problem. Then,

|C∗| ≤ 2
∑n

i=1 di.

Proof. Recall that |V | = n + 1, with the vertices numbered from 0 (depot) to n. By
definition |C∗| =

∑

uv∈E(C∗) duv ≤
∑

uv∈E(C∗)(du + dv) =
∑

i∈V (C∗) 2di = 2
∑n

i=0 di =

2
∑n

i=1 di, where we used: that duv ≤ du0+d0v for uv ∈ E(C∗) by the triangular inequality,
the definition that di0 = d0i = di for every i ∈ V , the fact that each vertex i is an extreme
of exactly two edges of C∗, and the definition d0 = 0.

Theorem 4.7. There exists a factor 4− 4
3s3Q2 polynomial-time approximation algorithm

for the CmVRP.

Proof. Given as input an instance of CmVRP as previously described, consider the algo-
rithm with the steps: (i) compute a tour C of G by the well-known Christofides’ algo-
rithm [80], which guarantees that |C| ≤ 3

2
|C∗|; (ii) compute a cluster partition P ∗ of tour
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C with optimal fuel consumption by a dynamic programming algorithm in time O(n2) as
done in Gaur et al. [80]; and (iii) return the subtours C∗

1 , C
∗
2 , . . . , C

∗
k of P ∗.

In this algorithm, we optimally calculate P ∗ of C in polynomial time. The analysis is
being made over a heuristic algorithm that also calculates a cluster partition P of a tour,
thus we can state that f(P ∗) ≤ f(P ). Let S∗ be an optimal routing scheduling in fuel
consumption. By theorems 4.5 and 4.3, we have the ratio

f(P ∗)

f(S∗)
≤

(

1 + 2
β

)

b (
∑n

i=1widi) +
(

1 + β

2

)

a|C|+ 4a
∑n

i=1
widi

Q
− 2a

∑k
j=1

|Cj |

sQ

amax
(

|C∗|, 2
∑n

i=1
widi

Q

)

+ b
∑n

i=1widi

≤
4
(

a
(

|C∗|
2

+ 2
2

∑n
i=1

widi
Q

)

+ b
∑n

i=1widi

)

− 2a
∑k

j=1
|Cj |

sQ

amax
(

|C∗|, 2
∑n

i=1
widi

Q

)

+ b
∑n

i=1widi
(4.1)

≤ 4−
2a
∑k

j=1 |Cj|

sQ
(

amax
(

|C∗|, 2
∑n

i=1
widi

Q

)

+ b
∑n

i=1widi

)

≤ 4−
2amax

(

|C∗|, 2
∑n

i=1
widi

Q

)

sQ
(

amax
(

|C∗|, 2
∑n

i=1
widi

Q

)

+ b
∑n

i=1widi

) (4.2)

= 4−
2µW0 max

(

|C∗|, 2
∑n

i=1
widi

Q

)

sQ
(

µW0 max
(

|C∗|, 2
∑n

i=1
widi

Q

)

+ µ
∑n

i=1widi

) (4.3)

≤ 4−
2W0 max

(

|C∗|, 2
∑n

i=1
widi

Q

)

sQ
(

sW0 max
(

|C∗|, 2
∑n

i=1
widi

Q

)

+ sW0

∑n

i=1 swidi

) (4.4)

= 4−
2max

(

|C∗|, 2
∑n

i=1
widi

Q

)

s2Q
(

max
(

|C∗|, 2
∑n

i=1
widi

Q

)

+
∑n

i=1 swidi

)

≤ 4−
4
∑n

i=1
widi

Q

3s3Q
∑n

i=1widi
(4.5)

= 4−
4

3s3Q2
.

To obtain (4.1), we chose β = 2
3

and used that |C| ≤ 3
2
|C∗|. We used Theorem 4.1 to

get (4.2). To obtain (4.3), recall that a = µW0 and b = µ. In (4.4), we made use of the
fact that s and sW0 are integers. To obtain (4.5), we deal with the absolute value of the
fraction: we kept or lower the numerator; and we majored the denominator applying the
fact that |C∗| ≤ 2

∑n

i=1 di ≤ 2
∑n

i=1 swidi as Lemma 4.6 states and as swi are integers for
every i ∈ V , and the fact 2

∑n
i=1

widi
Q

= 2
∑n

i=1
swidi

sQ
≤ 2

∑n

i=1 swidi, as sQ is integer.
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Chapter 5

A Robust Optimization Approach for

the Vehicle Routing Problem with

Selective Backhauls

Abstract. The Vehicle Routing Problem with Selective Backhauls (VRPSB)
aims to minimize the routing costs minus the revenues collected at backhaul
customers optionally selected. In this paper, we explore a VRPSB under uncer-
tain revenues, where a deterministic VRPSB is formulated as a mixed-integer
linear programming problem and a robust counterpart is derived. We devised
a branch-and-cut algorithm to solve the robust optimization (RO) formulation
and compared it with a heuristic approach. Besides, we estimate probabilistic
bounds of constraint violation for this formulation. The RO approach stud-
ied showed high potential to tackle the problem, requiring similar computing
effort and maintaining the same tractability as the deterministic modeling.

5.1 Introduction

The Vehicle Routing Problem with Backhauls (VRPB) is an extension of the classic
Vehicle Routing Problem (VRP), where two different types of customer are considered
in the network: linehaul customers, those who receive goods from a depot (outbound
logistics), and backhaul customers, those who send goods back to the depot (inbound lo-
gistics). Integrated inbound-outbound logistics planning can reduce the distance of empty
trips, which are responsible for significant transportation costs [122], thus increasing the
efficiency of both vehicles and routes, and reducing fuel consumption and emissions of air
pollutants [149].

One approach whereby the VRPB includes an optional selection of backhauls is the
VRP with Selective Backhauls (VRPSB) [12]. In this type of problems, the backhauls
are selected according to the revenues they provide. The first application of the VRPSB
is described in Yano et al. [181] to solve a real transportation problem of a company
operating in a retail chain. The company owned a fleet of vehicles and had to plan delivery
routes from the distribution center to some stores and pickup routes from vendors to the
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distribution center. Since the private fleet could not cover all the vendors, due to capacity
limitations, the company outsourced carriers to pickup the material from the remaining
ones. Therefore, one of the decisions of the problem was to select which backhauls to
visit. By optimizing the VRPSB, the company was able to save a considerable amount of
money.

Several successfully exact approaches applied to solve VRPs rely on cut and column
generation algorithms [146, 15, 143]. These exact methods were also employed to solve
both VRPB [90, 152] and VRPSB. Gutiérrez-Jarpa et al. [92] formulate a VRPSB as a
mixed-integer linear programming (MILP) model and use a branch-and-cut (BC) algo-
rithm to solve it. Granada-Echeverri et al. [90] modeled a VRPB with a MILP formulation
based on characteristics of an Open VRP, allowing to obtain several new best known so-
lutions for instances of Goetschalckx and Jacobs-Blecha [87] and Toth and Vigo [169].

Due to efficient computational performance, heuristics are the most used algorithms
to solve the majority of VRPB and its variants [167]. For the VRPSB, García-Nájera
et al. [77] proposes a Similarity-Based Selection Multi-Objective Evolutionary Algo-
rithm (SSMOEA) to solve a multi-objective problem considering minimization of number
of vehicles, travel distance and uncollected revenue. The metaheuristic was tested for
adapted instances of Goetschalckx and Jacobs-Blecha [87], providing solutions for in-
stances with up to 150 customers in the range of 1000 to 8000 s.

Notwithstanding the practical application of the VRPSB to real-world problems (e.g.,
parcel services), few works have been described in the literature that use this variant of
the VRP [92]. This statement is also valid for other similar problems such as the VRP
with Deliveries and Selective Pickups (VRPDSP). The VRPDSP often arises in reverse
logistics, where a vehicle delivers a request to a customer and may collect an amount
of material in the same location, resulting in a profit [168, 150, 31, 43]. Thus, in the
VRPDSP, customers requiring deliveries are also those requiring pickups.

In the VRPSB, selecting one backhaul rather than another depends highly on the
revenue it provides and its impact in mitigating routing costs. For instance, the revenue
may be related to the quality of products to pick up or the suppliers may have several
products available with different quality attributes [184, 5, 6]. However, to the best of
our knowledge, only Allahviranloo et al. [3] reported the development of a selective VRP
model with uncertainty in revenues, showing evidence of the advantages of addressing
uncertainty in humanitarian logistics. More surprisingly, a recent literature review on the
VRPB research shows that no work has yet investigated this problem under uncertainty,
which is usually present in practice [109].

To deal with uncertainty in VRPs, two main approaches stand out in the literature:
stochastic programming and robust optimization (RO) [11, 22]. Stochastic programming
is a well-known technique used when the probability distribution of the uncertain pa-
rameters are known, and the goal is to optimize the expected value of a solution while
maintaining its feasibility for the scenarios considered [27]. When no knowledge on the
probability distribution of the uncertainty is available, robust optimization emerges as a
suitable alternative [37, 91]. In this case, the goal is to obtain a solution that is robust
(i.e., feasible) against all possible uncertainty realizations. Robust optimization is, in fact,
the most recent trend to deal with uncertainty in optimization problems [91].
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The present paper analyses the robustness of routing plans obtained under revenue
uncertainty for a robust VRPSB, where it is required to achieve a minimum revenue from
collected raw-materials. The interest on studying the uncertain revenues derive from two
main aspects: (i) a deviation in the quality of raw-materials can impact the efficiency
of the productive processes (at the depot) and, consequently, the production costs of a
company, and (ii) for large distances, and particularly for daily routes, the deviation in the
expected revenue may turn the predefined routes very costly for consecutive days, which
may cause significant financial damage to the company. Particularly for the wood-based
supply chain, the quality of raw-materials is becoming more and more important, since,
in one hand, it allows to differentiate suppliers [6] and, on the other hand, it impacts the
efficiency of subsequent manufacturing processes [184, 5]. In addition, although several
characteristics of raw-materials can be easily obtained, such as diameter and length, others
can only be roughly estimated, such as moisture.

Over the VRPSB, we explore the aspects of RO and its respective budget of uncer-
tainty [23], devised an exact solution method, in the form of a BC algorithm, and compared
it with a heuristic approach based on the Adaptive Large Neighborhood Search (ALNS).
The ALNS was adapted to the robust VRPSB by Santos et al. [159], the complete version
of this paper. In addition, we study different methods to derive bounds for the probabil-
ity of constraint violation of the RO model. The main contributions of this paper are as
follows.

1. A formulation for the VRPSB under revenue uncertainty, contributing simultane-
ously for two gaps in literature, given by the lack of works dealing with uncertainty
in VRPBs and uncertain revenues in VRPs; and

2. A BC algorithm embedded with RO to solve the problem under uncertainty, that
is able to effective solve medium-sized instances.

The remainder of this paper is organized as follows. The deterministic formulation,
as well as the RO model for the VRPSB are detailed in Section 5.2, where the methods
to derive probabilistic bounds are also defined. In Section 5.3, both solution methods
used in this work are presented, which are respectively a BC algorithm and an ALNS
metaheuristic. The results are presented and discussed in Section 5.4, particularly re-
garding the robustness of the model under uncertainty, the structure of the solutions, and
computational performance of both solution methods. Finally, conclusions and insights
of this work are stated in Section 5.5.

5.2 Problem Description and Formulations

In this section, a MILP formulation for the deterministic VRPSB is presented first. The
deterministic model is then reformulated with the proper robust counterpart in order to
incorporate uncertainty in revenues. Afterwards, several different methods of estimating
probabilistic bounds are presented to estimate the probability of constraint violation.
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5.2.1 Deterministic VRPSB

The problem can be defined by an undirected graph G = (V , E) and a fleet of K vehicles.
Set L = {1, . . . , n} comprises the linehaul customers with demands qi > 0 for all i ∈ L.
Set B = {n + 1, . . . , n +m} comprises the backhaul customers with revenues pi > 0 for
all i ∈ B. The depot is partitioned into two vertices: an origin depot 0 and a destination
depot n + m + 1. We anticipate that a split depot allows a better adaptation of the
problem to be solved in the BC algorithm, as discussed in Subsection 5.3.1. Finally, the
set of all vertices in the network is V = {0, n + m + 1} ∪ L ∪ B. The edges in E are
given by {(0, j) : j ∈ L} ∪ {(i, j) : i ∈ L ∪ {n + m + 1}, j ∈ L ∪ {n + m + 1}, i <

j} ∪ {(i, j) : i ∈ L, j ∈ B} ∪ {(i, n +m + 1): i ∈ B} with costs cij ≥ 0 for all edges
(i, j) ∈ E . Note that, for the sake of a clean notation we are using the notation (i, j), i, j,
and ij to represent an (undirected) edge given by {i, j}. Set K = {1, . . . , K} represents
the fleet of identical vehicles, each one with a capacity C > 0, all of them initially located
at the (origin) depot. A route is a sequence of vertices given by r = 〈i0, i1, i2, . . . , is, is+1〉

with i0 = 0 and is+1 = n +m + 1 and with {i1, i2, . . . , is} ⊆ L ∪ B. The total cost of a
route is given by the sum of its costs minus its revenue.

The objective in the VRPSB is to find a set of at most |K| routes (tours) minimizing
the total cost in such a way that: (i) all linehaul customers are visited, each one in
exactly one route; (ii) all the linehaul customers of a route must be visited before the
backhaul customer (if any); (iii) there is no route with just one customer if it is a backhaul;
(iv) the sum of the demands of the linehaul customers in a route is at most C; and (v) a
minimum revenue obtained from the raw-materials picked up at backhaul customers is
attained. Four additional features of real world transportation problems are assumed
for the problem: (vi) the revenue associated to each backhaul customer is a function of
external factors not related to route planning; (vii) each route visits at most one backhaul
customer; (viii) backhaul customers have enough raw-material available to supply the
depot with multiple vehicles; and (ix) backhaul customers can only be visited after all
deliveries are performed (precedence constraint). These assumptions derive from the fact
that many inbound routes are supported by full truckload vehicles that, in a single visit to
a backhaul customer, collect an amount of load that equal their capacity. Example of such
cases are found in the manufacturing industry (e.g., forests with large supply for mills)
and in retail (e.g., supplier inbound operations to the retailers’ distribution centers).
In particular, for wood-based supply chains the inbound transport is often carried in
full truckloads (e.g., Carlsson and Rönnqvist [34], Hirsch [100], Derigs et al. [57]). It is
also worth mentioning that: woods parks do not usually present capacity problems to
accommodate several types of raw-materials; and the depot is able to receive the raw-
material collected by all vehicles. Finally, the precedence constraint is an important aspect
in practice because: (a) vehicles are often rear-loaded and this precedence constraint
avoids the rearrangement of the loads at linehaul customers [62, 112], and (b) linehaul
customers have higher service priority than backhaul customers [154, 171] because they
have time-windows necessary to inspect the received loads.

To better illustrate the network of the VRPSB, an example of a feasible solution is
given in Figure 5.1. In this example, the network is composed of seven linehaul customers
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(white circles), five backhaul customers (gray circles) and a depot (partitioned into two
squares). Four different routes are created. Two vehicles visit backhaul customers af-
ter visiting the linehaul customers and two other vehicles only visit linehaul customers,
returning then back empty to the depot.

Figure 5.1. Example of a feasible solution for a VRPSB instance with V = {0, 13}∪L∪B,
where L = {1, 2, 3, 4, 5, 6, 7} and B = {8, 9, 10, 11, 12}. Omitting costs, demands, and
revenues. The divided depot is given by the squares and K = {1, 2, 3, 4}.

The deterministic VRPSB is presented as a two-index vehicle-flow formulation using
the following decision variables: xij, for all (i, j) ∈ E , that represents the number of times
the edge (i, j) is used in a tour, and κ, that denotes the number of distinct paths that
begin at the origin depot 0 and end at the destination depot n +m + 1. The following
notations are also used to formulate the problem: δ(X, Y ) = {(i, j) ∈ E : i ∈ X, j ∈ Y },
δ(S) = {(i, j) ∈ E : i ∈ S, j /∈ S}, δ(X, i) corresponds to δ(X, {i}), and δ(i) is equivalent
to δ({i}). The deterministic VRPSB reads as follows:

min
∑

(i,j)∈E

cijxij −
∑

j∈B

pjxj,n+m+1 (5.1a)

s.t.
∑

(i,j)∈δ(0)

xij = κ, (5.1b)

∑

(i,j)∈δ(n+m+1)

xij = κ, (5.1c)

∑

(i,j)∈δ(i)

xij = 2 ∀i ∈ L, (5.1d)

∑

(i,j)∈δ(i)

xij = 2xi,n+m+1 ∀i ∈ B, (5.1e)
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∑

(i,j)∈δ(S)

xij ≥ κ ∀S ⊆ V , 0 ∈ S, n+m+ 1 6∈ S, (5.1f)

∑

j∈B

pjxj,n+m+1 ≥ β, (5.1g)

∑

(i,j)∈δ(S)

xij ≥ 2r(S) ∀S ⊆ L, |S| ≥ 2, (5.1h)

xij ∈ {0, 1, 2, . . . , K} ∀(i, j) ∈ δ(B, n+m+ 1), (5.1i)

xij ∈ {0, 1} ∀(i, j) ∈ E \ δ(B, n+m+ 1), (5.1j)

κ ∈ {1, . . . , K}. (5.1k)

Equation (5.1a) is the objective function, which aims at minimizing the total costs,
i.e., total travel costs minus total revenues obtained from visiting backhaul customers.
Equations (5.1b) and (5.1c) impose that exactly κ paths are connected to the origin
depot 0 and to the destination depot n + m + 1. Equation (5.1d) ensures that each
linehaul customer is visited exactly once by a vehicle by forcing the connection of exactly
two edges – one input edge and one output edge. By the definition of the problem any
route is allowed to visit a backhaul customer at most once, and a backhaul can be visited
by several distinct routes. In this way, Equation (5.1e) makes the number of routes
that enters in each backhaul equals the number of routes that connects that backhaul
to the destination depot n + m + 1, taking advantage that there are no edges among
the backhauls neither between them and the origin depot. Equation (5.1f) ensures the
existence of κ routes that begin at the origin depot 0 and end at the destination depot
n +m + 1, accomplishing this by delimiting the number of selected edges to the routes
in each possible cut S separating 0 and n+m+ 1. We anticipate that constraints (5.1f)
will be dynamically added with the usage of the so-called κ-cuts. The equations (5.1e)
and (5.1f) together guarantee that whether a backhaul is chosen, there is only one in a
route and it is connected to the destination depot, i.e., both equations are necessary to
assure the precedence constraints among the linehauls and backhauls. Furthermore, these
equations assure that there are no routes with two extreme points in 0 nor two extreme
points in n+m+ 1.

Equation (5.1g) ensures that a minimum amount of revenue β is achieved with a given
routing plan. We emphasize that, in practice, the wood industry is concerned with the
different characteristics of raw-materials, which have great impact on the manufacturing
processes. The work of Andersson et al. [6] distinguishes between “hard” constraints that
reflect the logs requirements in the wood industry, and the “soft” constraints that reflect
desirable logs properties. The authors also note that both type of constraints are often
uncertain.

Equation (5.1h) denotes, simultaneously, the well-known capacity inequalities and the
subtour elimination constraints for the part of the routes made only by linehaul customers.
The value of r(S) represents the minimum number of routes (vehicles) necessary to attend
the demand of the linehaul customers in S ⊆ L. The optimal value of r(S) can be
calculated by the Bin Packing Problem [128], which is NP-hard. A widely used lower
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bound to r(S) is given by k(S) = dq(S)/Ce, where q(S) =
∑

i∈S qi. These constraints
work as follows: (i) if S has demand q(S) > C, at least r(S) routes must connect S with
V \ S, and, since there is a factor of 2 on the right hand side, this ensures that a vehicle
must enter and exit the cut S; and (ii) given a route of vertices in S that is a subtour,
it is known that connections between S and V \ S are such that

∑

(i,j)∈δ(S) xij < 2r(S),
thus eliminating this route. In this paper, we substitute r(S) by k(S) in Equation (5.1h),
giving rise to the well known rounded capacity inequalities (RCIs). We emphasize that this
substitution maintains the correctness of the formulation [103]. Equations (5.1i)–(5.1k)
define the domain of the decision variables.

Remark. If β = 0 then the deterministic VRPSB can be converted to the Asymmetric
Capacitated VRP. To do that, it is necessary to execute the steps described in Algo-
rithm 5.1.

Algorithm 5.1. Elimination of backhauls from the deterministic VRPSB (β = 0)

1 for j ∈ L do
2 calculate the new traveling costs:

c′j,n+m+1 = min

{

min
i∈B

{cji + ci,n+m+1 − pi}, cj,n+m+1

}

3 formulate the model (5.1a)–(5.1k) with B = ∅ and new traveling costs
c′j,n+m+1 ∀j ∈ L

Algorithm 5.1 calculates new minimal costs for the arcs from the linehaul customers to
the depot and then removes the selective backhaul customers from the problem. The algo-
rithm can be performed in O(|L||B|) and its output results in an Asymmetric Capacitated
VRP.

5.2.2 Robust VRPSB

Robust optimization is a reasonably recent research field [89] that opened a plethora of
possibilities to deal with uncertainty in many optimization problems. It is a suitable
approach to address uncertainty when its probability distribution is not known, or when
infeasibility cannot be tolerated [121, 89]. RO assumes that uncertain parameters belong
to a bounded uncertainty set, and the main aim is to provide an optimal solution that is
feasible for this entirely uncertainty set [134]. Defining the uncertainty set is, therefore, a
major decision that will greatly influence the design of the model and the formulation of
the problem. One of the main advantages of RO is precisely its computational tractability
for many types of uncertainty sets [89].

In this work, we consider that revenue in backhauls is uncertain. As mentioned in
Section 5.1, this is a very common issue in wood-based supply chains, where a minimum
amount of revenue related to quantity and quality of raw materials has to be collected
everyday and it is not possible to know the quality of wood beforehand. In our approach,
revenue uncertainty will only be considered over the Constraint (5.1g), meaning that a
minimum revenue requirement of β must be satisfied considering the deviations controlled
by the uncertainty set. This allows for a trade-off between the nominal profit obtained
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in the objective function and the feasibility of the correspondent of Constraint (5.1g) in
the robust version of the model. In addition, it will be possible to assign probabilistic
bounds of violating the constraint corresponding to the Constraint (5.1g), as it will be
detailed in Subsection 5.2.3. Finally, it is noteworthy that this approach is intuitive,
meaning that the decision maker aims to optimize the nominal objective function, but at
the same time must meet a minimum revenue requirement for all the cases considered in
the uncertainty set.

The RO approach used in this work follows the budgeted uncertainty approach of
Bertsimas and Sim [23] to develop the robust version of the VRPSB under study. The
uncertain revenues are assumed to belong to a space represented by a polyhedral set U(Γ),
where Γ represents the budget of uncertainty. The choice of the polyhedral set comes with
two explanations. First, the resulting model is more computationally tractable than others
with non-linear sets, which is desirable for a problem that is already NP-hard. Secondly,
by considering a polyhedral set, it is possible to derive tight probabilistic bounds, as shall
be further presented in this paper. For more details on the approach, see Bertsimas and
Sim [23], Smith and Ahmed [165], Gorissen et al. [89].

The uncertain revenue p̃j of each backhaul j ∈ B is modeled as a symmetric and
independent random variable, bounded by the interval [p̄j − ṗj, p̄j + ṗj], where p̄j ≥ 0 is
the nominal revenue of backhaul j and ṗj ≥ 0 is the deviation in the revenue. It is thus
possible to define a scale deviation εj varying between [−1, 1], such that the revenue of
each backhaul is given by

p̃j = p̄j + ṗjεj.

Therefore, the scale deviation of each backhauls can be seen as εj = (p̃j − p̄j)/ṗj.
The uncertainty set U(Γ) is represented as follows:

U(Γ) =

{

ε ∈ R
|B| : −1 ≤ εj ≤ 1 ∀j ∈ B,

∑

j∈B

|εj| ≤ Γ

}

, (5.2)

where ε is the vector containing the scale deviation εj for each j ∈ B. As observed from
Equation (5.2), the budget of uncertainty Γ is introduced in order to control the number
of times the worst (most deviated) realizations of revenues are allowed to occur. In the
VRPSB, the budget of uncertainty falls in the range [0, |B|], but Γ = min{|B|, |K|} is
already the worst scenario for the problem, since the maximum number of deviations is
limited by either the number of backhauls or the number of vehicles/routes. Therefore,
we have that: when Γ = 0, the model becomes the deterministic version of the problem,
i.e., no deviations are considered for any revenue; and when Γ = min {|B|, |K|}, the model
becomes its worst case deterministic version, i.e., all revenues suffer deviation, which is
equivalent to the approach of Soyster [166]. Thus, Γ is used to adjust the robustness of
the method against the level of conservatism of the solution [23], or in other words, Γ is
used to control the size of the uncertainty set.

Based on the uncertainty set U(Γ) and on the deterministic version of the model given
by (5.1a)–(5.1k), we now consider that the revenues in Constraint (5.1g) are replaced by
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uncertain revenues, giving rise to the following semi-infinite set of constraints:

∑

j∈B

p̄jxj,n+m+1 +
∑

j∈B

ṗjxj,n+m+1εj ≥ β ∀ε ∈ U(Γ). (5.3)

To carry on the budgeted uncertainty approach [23] to our problem, let us consider a
subproblem that searches for a worst case realization of ε while respecting the budget of
uncertainty Γ. Such a case leads the left hand side of its corresponding inequality in (5.3)
to be as small as possible, making valid all the inequalities in (5.3), i.e., for all ε ∈ U(Γ).
Thus, this subproblem can be denoted by min

{
∑

j∈B ṗjxj,n+m+1εj : ε ∈ U(Γ)
}

, in which
the variables are given by εj, for all j ∈ B, and the current values of xj,n+m+1, for all
j ∈ B, are considered constant. Regarding an optimal solution to this subproblem, one
can observe – taking into account the definition of the uncertainty set U(Γ) – that each
variable will have a non-positive value. Therefore, by also considering the structure of
U(Γ), we are able to obtain an equivalent subproblem, which appears embedded in the
constraint (5.4), that is, by turn, equivalent to the constraints (5.3).

∑

j∈B

p̄jxj,n+m+1 − max
ε∈U(Γ)

∑

j∈B

ṗjxj,n+m+1εj ≥ β. (5.4)

Now we focus on this maximization version of the subproblem. Once more taking into
account the structure of U(Γ), the terms |εj|, for all j ∈ B, can be linearized by relying
on the fact that each variable will be non-negative in an optimal solution (it is worth
noting that a similar reasoning shows us that all variables, except, perhaps, one, will
have integer values in such a solution). Therefore, the subproblem can be equivalently
formulated as given by equations (5.5a)–(5.5d). For the sake of convenience, we present
the correspondent dual variables identifiers on the left of the constraints.

max
∑

j∈B

ṗjxj,n+m+1εj (5.5a)

(λ) s.t.
∑

j∈B

εj ≤ Γ, (5.5b)

(µ) εj ≤ 1 ∀j ∈ B, (5.5c)

εj ≥ 0 ∀j ∈ B. (5.5d)

At this point, despite that we were able to move away from a formulation with an
infinity number of constraints, we still have the difficulty situation where we have a linear
program that contains another linear program embedded in one of its constraints. Let us
continue the application of the budgeted uncertainty robust approach, by dealing with the
incorporation of the dual of the subproblem into the general problem formulation. Note
that the dual variable related to Constraint (5.5b) is given by λ and the dual variables
related to constraints (5.5c) are given by µj, for all j ∈ B. In the equations (5.6a)–(5.6d)
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we present the dual formulation of the subproblem:

min λΓ +
∑

j∈B

µi (5.6a)

s.t. λ+ µj ≥ ṗjxj,n+m+1 ∀j ∈ B, (5.6b)

λ ≥ 0, (5.6c)

µj ≥ 0 ∀j ∈ B. (5.6d)

Observe that the subproblem’s primal formulation in (5.5a)–(5.5d) is feasible and
bounded, and therefore, the strong duality holds. As their optimal objective values coin-
cide, we may substitute the primal subproblem by its dual in the general problem model.
In order to obtain a tractable formulation, it is pivotal that we can omit the minimization
term of the subproblem’s dual formulation when embedding it into the model, as the
value of any solution of the dual yields an upper bound to the optimal value of the primal
subproblem. Moreover, note that it would not be enough to use a lower bound, which is
given by any solution of the primal subproblem.

Finally, following the first theorem of Bertsimas and Sim [23], the dual of the sub-
problem formulation is incorporated into the model. By this reformulation, we obtain a
tractable robust counterpart, as follows:

min
∑

(i,j)∈E

cijxij −
∑

j∈B

p̄jxj,n+m+1 (5.7a)

s.t. (5.1b)–(5.1f),

(5.1h)–(5.1k),

∑

j∈B

p̄jxj,n+m+1 −

(

λΓ +
∑

j∈B

µj

)

≥ β, (5.7b)

λ+ µj ≥ ṗjxj,n+m+1 ∀j ∈ B, (5.7c)

λ ≥ 0, (5.7d)

µj ≥ 0 ∀j ∈ B. (5.7e)

It is worth noting that, in relation to Equation (5.1a), the objective function in (5.7a)
was slightly adjusted to only consider the nominal revenues in the robust counterpart.
Considering the above reformulation, the robust VRPSB model presents 1 + |B| more
variables than the deterministic version, as a result from including the dual variables λ
and µj, for all i ∈ B. In addition, the robust model also includes 2|B|+1 more constraints,
as a result of including constraints (5.7c)–(5.7e), with the ones in (5.7d)–(5.7e) being of
non-negativity.

Note that the uncertainty only appears in the constraints but not in the objective
function. This is aligned with basic assumptions in RO, namely that the objective is
certain and the uncertain constraints are hard, in the sense that cannot be violated [89].
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As such, the decision-maker is optimizing the expected revenue but concerned that, in
the worst case, the minimum revenue required is met. In this work, optimizing over the
expected value instead of the worst case value is valid because this operational routing
problem is performed every day and worst cases are not usually catastrophic and can
be compensated by better scenarios in the next day. Still, we include the constraint of
minimum required revenue, because a minimum quality/revenue of raw-material in the
worst case scenario may be desirable for the sustainability of the production process.

5.2.3 Estimates of Probabilistic Bounds

In RO, it is not necessary to acknowledge the probability distribution of the uncertainty
sources. Nevertheless, it is necessary to consider how many revenues will deviate from
their nominal value, which is represented by Γ. The budget of uncertainty determines the
size of the uncertainty set and can be defined using historical values and the opinion of
experts. Γ can also be defined based on probabilistic bounds of constraint violation, as
shown in Bertsimas and Sim [23].

In this subsection, we describe how Γ can be defined using different probabilistic
bounds. We start with an a priori probabilistic bound case where no probability distri-
bution is assumed for the uncertainty sources. Then we describe a priori and a posteriori

probabilistic bounds that can be obtained assuming that the uncertainty sources follow an
uniform distribution. The last a priori one is a method that provides tighter probabilistic
bounds for U(Γ) when random parameters are independent, identically and uniformly
distributed.

The choice for an uniform distribution comes from the fact that, since the random
parameters are not known from historical data, one could assume that all of them can
occur with the same probability. It is important to note that it is still a conservative
assumption, given that the extreme values have the same probability to occur than the
mean value. However, this assumption allows to derive much tighter probabilistic bounds
for the problem. Obviously, if it is not possible to assume any distribution, standard
probabilistic bounds [23, 93] can still be assumed, as the one described next.

A Priori Probabilistic Bound Based on Bertsimas and Sim [23]

Based on Bertsimas and Sim [23], the budget of uncertainty can be calculated according
to probabilistic bounds of constraint violation without assuming any distribution for the
uncertain parameters. Assuming that εj, for all j ∈ B, are independent, symmetrically
distributed, and have the expected value of 0, the bound of violating the Constraint (5.7b)
can be calculated as follows:

Pr

(

∑

j∈B

p̃jxj,n+m+1 < β

)

≈ 1− φ

(

Γ− 1
√

|B|

)

, (5.8)

where φ(·) is a standard Gaussian cumulative distribution function. According to Equa-
tion (5.8), the probability of constraint violation is expected to decrease as the budget
of uncertainty increases. Therefore, this bound can be used to estimate the budget of



103

uncertainty based on confidence levels and avoid solving the problem several times to
obtain an adequate budget of uncertainty.

A Priori Probabilistic Bound Based on Guzman et al. [94] and Kang et al.

[106]

If the probability distribution function of the uncertainty parameters is assumed to be
known, it is possible to derive tighter probabilistic bounds, as presented by Guzman et al.
[94] and Kang et al. [106]. Assuming that each uncertain parameter εj, for all j ∈ B, is
independent, has the expected value equal to 0, and has a known cumulant generating
function given by Λj(θ), the following bound holds:

Pr

(

∑

j∈B

p̃jxj,n+m+1 < β

)

≤ exp

(

min
θ>0

{

−θΓ +
∑

j∈B

Λj(θ)

})

. (5.9)

Here, we assume that each parameter εj follows an uniform distribution supported in
[−1, 1], which gives Λj(θ) = ln

(

sinh θ
θ

)

. Finally, Γ in Equation (5.9) is obtained by means
of Algorithm 1 from Guzman et al. [94], given a desired probability of constraint violation.

A Priori Probabilistic Bound Based on the Irwin-Hall Distribution of Santos

et al. [159]

Now we describe a probabilistic bound assuming that each uncertain parameter εj, for all
j ∈ B, is independent and uniformly distributed in [−1, 1]. Proposed for this prob-
lem by Santos et al. [159], the complete version of this paper, it is inspired by the
geometrical interpretation of the uncertainty set U(Γ) through the Irwin-Hall distribu-
tion. For further details on the Irwin-Hall distribution, see Marengo et al. [127]. De-
noted by Pr+(Γ), the percentage of realizations considered by U(Γ) can be interpreted as

Pr
(

∑|B|
k=1 U [−1, 1] ≤ Γ

)

, where U [−1, 1] is an uniform distribution in the interval. Note

that when Γ assumes 0 and |B|, the value of Pr+(Γ) is 50% and 100%, respectively. In
this way, Constraint (5.7b) is satisfied at least with probability Pr+(Γ) and therefore:

Pr

(

∑

j∈B

p̃jxj,n+m+1 < β

)

≤ 1− Pr+(Γ), (5.10)

when each p̃j is uniformly distributed in [p̄j − ṗj, p̄j + ṗj].
The computation of Pr+(Γ) is resorted to the Irwin-Hall distribution, which is the

distribution of the sum of n independent and identically distributed uniform random
variables in [0, 1]. The cumulative distribution of the Irwin-Hall is defined as:

FIH(t, n) =
1

n!

btc
∑

j=0

(−1)j
(

n

j

)

(t− j)n,
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where t ∈ [0, n]. The definition of Pr+(Γ) is given by FIH(t, n) parameterized to acknowl-
edge the sum of uniform distributions supported in [−1, 1] instead of [0, 1], which is done
by t = (Γ + |B|)/2 and n = |B|.

Moreover, considering that the maximum number of visited backhauls is limited by
min{|B|, |K|}, a tighter probabilistic bound can be achieved. Hence, Pr+(Γ) can be tight-
ened with the usage of t = (Γ + min{|B|, |K|})/2 and n = min{|B|, |K|} in FIH(t, n),
which is denoted by Pr∗+(Γ). Therefore, analogous to Equation (5.10), a tighter proba-
bilistic bound can be obtained as follows:

Pr∗

(

∑

j∈B

p̃jxj,n+m+1 < β

)

≤ 1− Pr∗+(Γ). (5.11)

A Posteriori Probabilistic Bound Based on Guzman et al. [95]

All the above methods to obtain probabilistic bounds are referred to as a priori bounds,
which means that the probabilistic bound of violating a constraint is determined before
considering the solution of the optimization model. The probabilistic bound GMF12 in
Guzman et al. [95] estimates an a posteriori probability of constraint violation. Although
this method is more challenging than the previous ones, it provides a tighter bound
because it allows to characterize one single solution to the problem [95], rather than
every feasible solution of the uncertainty set. Considering that each εj, for all j ∈ B,
is independent and follows a continuous uniform distribution supported in [−1, 1], the a

posteriori (i.e., exact) probability of constraint violation of a solution x∗ can be defined
by the following equation:

Pr

(

∑

j∈B

p̄jx
∗
j,n+m+1 +

∑

j∈B∗

ṗjx
∗
j,n+m+1εj < β

)

= FΘ (h(x∗)) , (5.12)

where FΘ(·) is the cumulative distribution function of
∑

j∈B ṗjx
∗
j,n+m+1εj, the deter-

ministic part of the constraint is given by h(x∗) = β −
∑

j∈B p̄jx
∗
j,n+m+1, and B∗ =

{j : ṗjx
∗
j,n+m+1 > 0}. Because calculating FΘ(·) is quite challenging, the brute-force enu-

meration algorithm proposed by Guzman et al. [95] is used to calculate it.

5.3 Solution Methods

This section presents an exact method, that is a BC algorithm, and an ALNS meta-
heuristic to solve the robust VRPSB. We devised our BC algorithm following the work
of Lysgaard et al. [125], that is combined with the standard MILP solver CPLEX1. The
ALNS algorithm was proposed to this problem by Santos et al. [159], the complete version
of this paper, and it is based on the work of Ropke and Pisinger [154] with the inclusion
of procedures to incorporate the robust nature of the problem. We anticipate that both
of the solution methods presented are further used to solve small, medium and large in-
stances adapted from literature, including their computational performance comparison.

1https://www.ibm.com/products/ilog-cplex-optimization-studio
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5.3.1 Branch-and-Cut

The BC algorithm developed is partially based on the BC for the Symmetric Capaci-
tated VRP (SymCVRP) presented in Lysgaard et al. [125], which is well known for its
efficiency. Since that work, the methods for the SymCVRP itself evolved and the state-of-
the-art algorithms heavy rely on the branch-cut-and-price (BCP) framework [146], which
involves separation algorithms to identify promising cuts and pricing algorithms to gen-
erate suitable columns for the problem, as these models are based on set partitioning-like
formulations [170]. Our exact approach is based on BC, which can be viewed as a com-
ponent to an eventual BCP based method.

The authors of Lysgaard et al. [125] have made the source code of a software library
called CVRPSEP publicly available, which implements several cut separation routines
for the SymCVRP. In this paper, some of these separation routines are used in our
implementation of the BC to solve the robust VRPSB. More precisely, our BC algorithm
makes use of the RCI separation routine from the CVRPSEP, as well as it utilizes the
max-flow routine, from the same library, to separate the κ-cuts we used in our approach.
For a comprehensive material about the separation algorithms we refer to Toth and Vigo
[170]. The BC is applied to the resolution of the robust VRPSB formulation, which
is presented in Subsection 5.2.2, given by the following equations: (5.7a), (5.1b)–(5.1f),
(5.1h)–(5.1k), and (5.7b)–(5.7e).

The formulation presents suitable features for the BC method we developed, namely:
(i) the undirected graph, (ii) the split depot, and (iii) the κ-cuts. Using an undirected
graph to represent the network in the VRPSB avoids symmetric solutions and keeps the
number of variables in the formulation smaller than a hypothetically directed graph. In
the VRPSB, it is mandatory to constrain a backhaul vertex to be, at most, on one extreme
point of a route, and therefore, the identification of the depot-connected edges of a given
route is essential. To accomplish that we splitted up the depot into the origin depot 0 and
the destination depot n+m+ 1, as already mentioned. Considering this transformation,
the problem can be seen as seeking paths that connects 0 to n+m+1, and, if a backhaul
customer is present in a path, it must be connected to the n+m+1. A linehaul customer
can also be connected to n +m + 1, meaning that its route has no backhaul at all. On
the other hand, we must ensure that there are no routes where there are two extreme
points in 0 nor two extreme points in n + m + 1. The κ-cuts in Equations (5.1f) solve
this problem, as those cuts restrict the solution to have at least κ paths between 0 and
n+m+ 1 in a solution.

As there is an exponential number of κ-cuts, we rely on the BC capabilities for seeking
and adding violated cuts to the model. To separate these constraints, we use the imple-
mentation of the max-flow algorithm, presented in the CVRPSEP. If the max-flow value
is smaller than κ that cut is violated and added to the model. Note that Equations (5.1b)
and (5.1c) are specialized and stronger κ-cuts.

The RCIs, at Equation (5.1h), ensures that the capacity limit of each vehicle is re-
spected. Each time the BC has to call the RCI separation routine from the Lysgaard’s
CVRPSEP, it is necessary to make a conversion on the graph. This transformation occurs
as follows: given a candidate solution, the vertices 0, n + m + 1, and the vertices of B
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are all shrunk into a single supervertex that plays the role of the depot on the separation
algorithm. If violated cuts are found, and considering that the edges are not incident to
the depot, the cuts are added to the model and it is re-optimized.

The BC algorithm adds the valid inequalities described above via the BC framework
of CPLEX by using its callback functions. The separation step is composed by four
heuristics for the RCIs, accordingly Lysgaard et al. [125], and the above-mentioned max-
flow algorithm for the κ-cuts. The branching strategy is kept as the default branching
of CPLEX, which typically branches on variables. An RCI is considered violated if the
difference between its left and right hand sides is greater than an RCI tolerance limit. In
this work, this limit is 0.2. A κ-cut is considered violated if the max-flow value is smaller
than κ.

Finally, the model initially given to the BC algorithm is composed by the objective
function in Equation (5.7a), the constraints in equations (5.1b)–(5.1e) and (5.7b)–(5.7c),
the bounds in equations (5.1i)–(5.1k) and (5.7d)–(5.7e), and two additional cuts in a
similar form of Equation (5.1h): one for the origin depot with S = {0}, and the other
for the destination depot with S = {n +m + 1}, both with the right-hand side as r(L)
(which is substituted by k(L) in the resolution). As the model defines an exponential
number of κ-cuts in Equation (5.1f) and also an exponential number of RCI constraints
in Equation (5.1h), they are added on demand in a branch-and-cut fashion.

5.3.2 Adaptive Large Neighborhood Search

In this subsection we describe the ALNS applied to the resolution of the robust VRPSB
proposed by Santos et al. [159] (the complete version of this paper), which, by its turn,
is based in the general method of Ropke and Pisinger [154]. The ALNS was proposed by
Ropke and Pisinger [154] and since then, it has shown to be effective for many VRPBs
[129, 120, 84], as well as for other VRPs [118, 52, 183]. For an overview on the ALNS
metaheuristic we refer to Pisinger and Ropke [145].

Large neighborhoods can be explored by consecutively applying two heuristics: first,
a destroy operator, which partially destroys the current solution, and then a repair oper-
ator, which make the solution feasible again, thus generating a new solution. The main
features of ALNS are the usage of diverse destroy and repair operators to explore different
neighborhoods [145] and the adaptive search behavior as a consequence of the performance
of each pair of destroy-repair operators during the iterative process.

In the robust ALNS for the robust VRPSB, the destroy operators used are the Shaw

removal, the random removal, and the worst removal heuristics. The Shaw removal selects
the vertices to remove according to similarity criteria, namely distance and quantity [163];
the random removal selects at random the vertices to remove; and the worst removal selects
to remove the nodes that would highly decrease the objective value. The repair operators
used are the greedy insertion and the k-regret insertion. The former heuristic is very
simple, inserting the removed nodes into positions in the routes such that the objective
function increases the minimum possible. The latter applies the concept of regret to insert
first the customers for which the insertion in a later stage would be more costly (with
higher regret).
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In this approach, robustness was embedded into the algorithm during the creation of
new neighbors. Thus, instead of creating a new solution with the destroy-repair operators
and afterwards evaluating its robustness, the robustness aspects are already evaluated
alongside the application of the selected repair operator, as described in the following.

Over a solution after the application of the destroy operator, which may contain some
linehauls and backhauls, the repair operator starts by inserting all the missing linehaul
customers, obtaining a solution x′. After that, the total of nominal (expected) revenues,
the total of revenues with deviations, and the robustness of the solution are assessed. For
the computation of the total of revenues with deviations, the backhauls in x′ are sorted
in decreasing order of the values of revenue deviation multiplied by the number of times
that the backhaul is present in the solution. Afterwards, the revenues with deviations are
iteratively summed through this sequence of backhauls, and simultaneously, each backhaul
consumes one unit in the budget of uncertainty Γ, except, perhaps, the last one before the
budget is fully consumed. The last one’s deviation is considered proportionally to what
remains in Γ, while the ones after that have only the nominal revenue summed up. At
this point, the feasibility of the solution is accessed by checking if the total of revenues
with deviations is sufficient to achieve the minimum revenue required β. If the solution
is not feasible, its nominal revenue takes −∞.

Subsequently, the repair operator in use proceeds by inserting potential backhauls
in available routes and creates a new solution x′′, that has its attributes evaluated as
described before. Finally, the solution with the lowest total cost (total distance minus
total nominal revenue) between x′ and x′′ is selected as the next neighbor solution in the
ALNS algorithm.

5.4 Computational Tests

The aim of the computational tests is twofold: (i) evaluate the performance of models
and robustness of solutions, namely in terms of probabilistic bounds, feasibility, and
robustness; and (ii) evaluate the performance of the BC to solve the robust VRPSB and
compare it to the ALNS.

The first aim is addressed with experiments over a few selected small/medium in-
stances with a single-commodity-flow formulation of the problem. Instead of the two-
index vehicle-flow formulation presented in Section 5.2, the commodity-flow model was
used for this, as it is a simpler formulation, avoids the exponential constraints in equations
(5.1f) and (5.1h), and has low resolution times to exactly solve the selected instances. In
fact, the resolution time is not a concern at this point, since the main goal is to analyze
the structure of the solutions and their feasibility for different robustness parameters. In
this aim’s context, this formulation is implemented in the OPL modeling language and
solved using the MILP solver CPLEX 12.6.

The second aim is accomplished by a series of experiments on a set of instances in-
cluding medium and large ones. The BC algorithm, over the vehicle-flow formulation
presented in Section 5.2, is implemented in C++, using the C callable API of CPLEX
12.7.1. The experiments with the BC were run on a computer with the processor Intel



108

Xeon Gold 6142 of 2.60 GHz with 64 physical cores, 256 GB of RAM, and the GNU/Linux
Ubuntu 18.04.2 operating system. Each BC test was performed sequentially, although at
most 32 of them were in parallel at any time in the machine. The ALNS algorithm is
implemented in C++. The experiments with the ALNS were performed on a computer
equipped with the processor Intel Core i7 of 2.20 GHz, 16 GB of RAM, and the Windows
10 operating system.

5.4.1 Problem Instances

The instances used in the experiments are adapted from the standard VRPB instances
in Goetschalckx and Jacobs-Blecha [87]. The new parameters added to these instances
are the revenues and deviations, which are randomly generated for each backhaul of each
instance as follows. From the original class of instances B of Goetschalckx and Jacobs-
Blecha [87], we have used their quantities as proxies for the minimum and maximum
revenues. Then, 50 values are randomly simulated within this range, for each backhaul.
The average value from this simulation corresponds to the revenue, p̄, and the standard
deviation corresponds to the deviation, ṗ. Furthermore, these values are simulated for
the 10 backhaul customers from class B instances and then replicated for instances with
higher values, such that the revenue and corresponding deviation for backhaul customer
1 are the same for backhaul customers 11, 21, and so on. These values are reported in
Table 5.1.

Table 5.1. Values of revenue p̄ and deviation ṗ for each backhaul customer used for
instances in the computational tests

Backhaul number p̄ ṗ

1, 11, 21, 31, 41, 51, 61, 71 438 242
2, 12, 22, 32, 42, 52, 62, 72 404 194
3, 13, 23, 33, 43, 53, 63, 73 454 239
4, 14, 24, 34, 44, 54, 64, 74 392 231
5, 15, 25, 35, 45, 55, 65, 75 464 229
6, 16, 26, 36, 46, 56, 66 380 201
7, 17, 27, 37, 47, 57, 67 384 235
8, 18, 28, 38, 48, 58, 68 355 222
9, 19, 29, 39, 49, 59, 69 459 229
10, 20, 30, 40, 50, 60, 70 415 253

5.4.2 Evaluation of the VRPSB Under Uncertainty

Throughout this subsection, several tests are conducted in order to analyze and evaluate
the RO model for the VRPSB presented in Subsection 5.2.2. First, the different prob-
ability bounds obtained by the different methods that estimate a priori the probability
of constraint violation are characterized. Next, the a posteriori probability of constraint
violation of solutions are presented and compared with probabilistic bounds calculated
by an a priori method. Then, the nominal and robust solutions obtained for different



109

values of β and Γ are analyzed. The structure of nominal and robust solutions are finally
analyzed and discussed.

The tests presented in this subsection were performed with four instances and four
different values of minimum revenue required to cover a wide range of instance character-
istics. As noted before, they were solved by a commodity-flow formulation. The instances
tested are: A4 (20 linehaul customers, 5 backhauls, and 3 vehicles), B3 (20 linehaul cus-
tomers, 10 backhauls, and 3 vehicles), C4 (20 linehaul customers, 20 backhauls, and 4
vehicles) and F4 (30 linehaul customers, 30 backhauls, and 4 vehicles). The values of
minimum revenue required, given by β, are 0, 500, 750, and 1000.

A Priori Probabilistic Bounds

Here, the methods that estimate the probability of violating Constraint (5.7b), based on
the values of the budget of uncertainty Γ, are analyzed and compared. The calculations
for the instances with |B| = 5 and |K| = 3 (A4), |B| = 10 and |K| = 3 (B3), |B| = 20 and
|K| = 4 (C4), and |B| = 30 and |K| = 4 (F4) are presented in Figure 5.2. In the figure
(and text), the methods of probabilistic bounds denoted by “Bertsimas” and “Guzman &
Kang”, refer to the ones based on, respectively, Bertsimas and Sim [23] given in Equation
(5.8), and Guzman et al. [94] and Kang et al. [106] in Equation (5.9). The other methods
are the ones based on the Irwin-Hall distribution devised by Santos et al. [159], where
“Irwin-Hall” refers to the one in Equation (5.10) and “Irwin-Hall∗” refers to the more
restricted one in Equation (5.11). It is important to note that the a posteriori method
based on Guzman et al. [95] is not analyzed here, since it is not influenced by the robust
parameter.

From the calculated results in Figure 5.2, as expected, the probability of constraint
violation decreases as the budget of uncertainty increases, for all the methods investigated.
Also, as more backhauls exist in an instance, the sooner the probabilistic bound reaches
its minimum, i.e., the sharper is the curve provided by the bound.

The method based on Bertsimas and Sim [23] is the most conservative among the
four a priori probabilistic bounds (except for small values of Γ of another method). In
fact, when the instance only has 5 backhauls (Figure 5.2a), the probability of constraint
violation never reaches zero. When the number of backhauls increases to 10 (Figure 5.2b),
a probability of zero only occurs when Γ is maximum, i.e., when Γ = |B|. In the other
cases (figures 5.2c and 5.2d), a probability of zero is achieved but only latter than any of
the other methods. The method based on Guzman et al. [94] and Kang et al. [106], by its
turn, is very conservative for the lowest values of Γ in each instance, but the probability of
constraint violation decreases drastically with the increase of the degree of conservatism.

Finally, the methods based on the Irwin-Hall distribution [159] are indisputably the
ones that provide the tighter bounds, showing always the lowest values for the probability
of constraint violation for any value of Γ. In fact, by considering that the worst case
occurs when Γmax = min{|B|, |K|} (i.e., using Irwin-Hall∗), it is possible to obtain an
even tighter bound than when Γmax = |B| (i.e., using Irwin-Hall). It is important to note
that when the Irwin-Hall∗ method is used, the same probabilistic bounds are achieved for
the cases illustrated in figures 5.2a and 5.2b, since on both cases the number of vehicles
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(a) Instance with |B| = 5 and |K| = 3 (A4) (b) Instance with |B| = 10 and |K| = 3 (B3)

(c) Instance |B| = 20 and |K| = 4 (C4) (d) Instance |B| = 30 and |K| = 4 (F4)

Figure 5.2. Probability of constraint violation obtained with a priori methods over se-
lected instances

is three, which is lower than the number of backhauls. Similarly, the same bounds are
achieved for the cases illustrated in figures 5.2c and 5.2d, where the number of vehicles is
four.

Comparison of a Priori and a Posteriori Probabilistic Bounds

Now we focus on the method that estimates a posteriori the probability of constraint
violation, i.e., the one based on Guzman et al. [95], which is compared with the best a

priori method, as concluded above, i.e., the Irwin-Hall∗ method. The former method may
be denoted as “Guzman post”.

Tables 5.2 and 5.3 report the different values of probability of constraint violation for
several values of the budget of uncertainty Γ over instances with three and four vehicles,
respectively. The first columns of the tables indicate “instance”, “β”, and “method” (of
probabilistic bound). For the results on Guzman post, all the solutions considered for
a reported probability are optimal, while a symbol “–” indicates that the instance was
concluded to be infeasible with the related value of Γ. Since the method denoted by
Irwin-Hall∗ only take into account the value of budget of uncertainty Γ and the value
given by min{|B|, |K|}, the corresponding probability values are only presented once for
each instance without a corresponding value of β. On the other hand, the method based
on Guzman et al. [95] depends on the value of β (as well as on the specific backhaul
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customers visited and their respective number of visits), thus the tables report the data
for several values of β for each instance.

Table 5.2. Probability of constraint violation obtained with a priori and a posteriori
methods for two instances with three vehicles

Budget of uncertainty (Γ)

Instance β Method 0 0.5 1 1.5 2 2.5 3

A4 Irwin-Hall∗ 50.00% 31.77% 16.67% 7.03% 2.08% 0.26% 0.00%

0 Guzman post 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
500 Guzman post 0.85% 0.85% 0.85% 0.85% 0.00% 0.00% 0.00%
750 Guzman post 26.17% 26.17% 0.69% 0.69% 0.25% 0.14% –

1000 Guzman post 14.41% 14.41% 8.97% – – – –

B3 Irwin-Hall∗ 50.00% 31.77% 16.67% 7.03% 2.08% 0.26% 0.00%

0 Guzman post 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
500 Guzman post 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
750 Guzman post 2.21% 2.21% 2.21% 1.42% 1.42% 0.20% –

1000 Guzman post 16.69% 16.69% 15.38% 6.40% – – –

Table 5.3. Probability of constraint violation obtained with a priori and a posteriori
methods for two instances with four vehicles

Budget of uncertainty (Γ)

Instance β Method 0 0.5 1 1.5 2 2.5 3 3.5 4

C4 Irwin-Hall∗ 50.00% 33.81% 20.05% 10.11% 4.17% 1.32% 0.26% 0.02% 0.00%

0 Guzman post 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
500 Guzman post 1.07% 1.07% 1.07% 1.07% 0.00% 0.00% 0.00% 0.00% 0.00%
750 Guzman post 22.95% 22.95% 0.29% 0.29% 0.29% 0.12% 0.00% 0.00% 0.00%

1000 Guzman post 8.15% 8.15% 8.15% 6.40% 0.23% 0.34% 0.17% 0.01% –

F4 Irwin-Hall∗ 50.00% 33.81% 20.05% 10.11% 4.17% 1.32% 0.26% 0.02% 0.00%

0 Guzman post 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
500 Guzman post 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
750 Guzman post 0.38% 0.38% 0.38% 0.38% 0.38% 0.12% 0.00% 0.00% 0.00%

1000 Guzman post 10.07% 10.07% 10.07% 6.26% 0.18% 0.18% 0.18% 0.02% –

The results from both tables 5.2 and 5.3 allow to conclude that much tighter bounds
can be derived for any instance, for any β and for any Γ using the method that estimates
probabilistic bounds a posteriori. An interesting observation is that it seems that the
method based on Guzman et al. [95] estimates a lower probabilistic bound for solutions
that visit the same backhaul more than once. Taking for example instance C4 with
β = 1000, where it is shown that the probability of constraint violation when Γ = 2 is
lower than when Γ = 2.5: in the former case, the backhaul customer n + 15 is visited
twice while in the later case, it is only visited once.
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The Price of Robustness

Here we analyze the RO model under uncertainty. The performance metric used is the
Price of Robustness (PoR) [23, 89], which measures the trade-off between the probabil-
ity of constraint violation and the effect on the nominal objective value. The PoR is
determined as the difference between robust and nominal solutions’ values.

The results are reported for instances with three and four vehicles respectively in
tables 5.4 and 5.5. The first columns of the tables inform “instance”, “β”, and “nominal
solution” (that contains the objective value of it). In the sequence, there are the columns
containing the PoR for several levels of probability of constraint violation. Besides, all
the solutions considered for a reported value are optimal, while a symbol “–” indicates that
the instance was concluded to be infeasible with the related value of Γ. The probability
bounds used are the ones given in tables 5.2 and 5.3 for the Irwin-Hall∗ method on the
corresponding instances. Thus, a probability of 50% corresponds to Γ = 0, a probability
of 0% corresponds to the maximum Γ applied, and so forth.

Table 5.4. PoR obtained for RO solutions of instances with three vehicles

Nominal
solution

Probability of constraint violation (and budget of uncertainty)

50% 31.77% 16.67% 7.03% 2.08% 0.26% 0%
Instance β (Γ = 0) (Γ = 0.5) (Γ = 1) (Γ = 1.5) (Γ = 2) (Γ = 2.5) (Γ = 3)

A4 0 136,068 0 0 0 0 0 0 0
500 136,581 0 0 0 0 3,193 3,193 3,193
750 136,581 0 0 3,193 3,193 4,284 6,719 –

1000 139,774 0 0 1,091 – – – –

B3 0 132,731 0 0 0 0 0 0 0
500 132,731 0 0 0 0 0 0 0
750 132,731 0 0 0 770 770 1,623 –

1000 132,731 0 0 770 9,635 – – –

Table 5.5. PoR obtained for RO solutions of instances with four vehicles

Nominal
solution

Probability of constraint violation (and budget of uncertainty)

50% 33.81% 20.05% 10.11% 4.17% 1.32% 0.26% 0.02% 0%
Instance β (Γ = 0) (Γ = 0.5) (Γ = 1) (Γ = 1.5) (Γ = 2) (Γ = 2.5) (Γ = 3) (Γ = 3.5) (Γ = 4)

C4 0 128,792 0 0 0 0 0 0 0 0 0
500 131,464 0 0 0 0 2,117 2,117 2,117 2,117 2,117
750 131,464 0 0 2,117 2,117 2,117 5,371 11,245 11,245 11,245

1000 133,580 0 0 0 3,254 9,341 9,932 10,035 15,317 –

F4 0 145,456 0 0 0 0 0 0 0 0 0
500 145,456 0 0 0 0 0 0 0 0 0
750 145,456 0 0 0 0 0 1,861 9,254 9,254 9,254

1000 145,456 0 0 0 1,861 9,253 9,254 9,254 15,061 –

First, the analysis of both tables indicate that, as expected, the PoR increases while
decreasing the probability of constraint violation (or increasing the budget of uncertainty
Γ), for a given level of β. When the PoR remains the same, it means that the solution
structure also remains the same, and so it does not impact the total expected revenue.
These values provide the minimum value of budget of uncertainty that defines the worst
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case for a given β, for each instance. Secondly, increasing the value of β tends to force
the creation of a new routing plan, probably due to the need of augmenting the visits to
backhaul customers. Taking for example, the results obtained with instance B3: when
β = 500, the PoR = 0 and remains the same for all levels of probability; when β = 750,
the PoR changes when the probability is 7.03%; and when β = 1000, the PoR changes
sooner, when the probability is 16.67%. Nevertheless, these results are not always in
accordance, as the tests with instance C4 reveals that when β = 750, the PoR changes
sooner than when β = 1000, although the PoR value is higher for the highest β.

Solution Structure

For each value of β and Γ, the solution structure (routing plan) obtained with each
instance tested with the RO model is presented in Figure 5.3, specifying which backhaul
customers are visited in each routing plan. All solutions depicted in figures 5.3a and 5.3b
comprise a plan with three routes, while all the solutions in figures 5.3c and 5.3d comprise
a plan with four routes.

As expected, increasing the minimum revenue required leads to increase the number
of backhaul customers visited, except in the case of instance B3 (Figure 5.3b). Although,
in this case, the first routing plan obtained includes two visits to the same backhaul
customer n + 1, whereas all the other plans include distinct backhaul customers. It also
seems that, at least, one specific backhaul is always included in any route. For example,
backhaul n+5 is included in any routing plan of instance A4, backhaul n+1 in instance
B3, backhaul n+ 15 in instance C4 and backhaul n+ 9 in instance F4.

With the exception of the instance C4, at least one backhaul customer is visited when
there is no requirement of minimum revenue, i.e., when β = 0. This means that in these
cases, it is profitable to visit a backhaul customer, even if there is no need to. Also,
in instances A4 and C4, all routing plans obtained when there is a minimum revenue
required are, indeed, different than the cases when such requirement does not exist. In
fact, it seems that both instances are very sensitive to changes in any parameter, β or Γ.
On the other hand, for instances B3 and F4, the same routing plan is obtained whenever
β = 0 or β = 500 or even for any value of β with, at least, a Γ ≤ 0.5.

5.4.3 Evaluation of Solution Methods

To evaluate the computational performance of the BC and compare it to the ALNS, both
methods were tested for instances with different vehicle capacities C, numbers of vehicles
|K|, linehaul customers |L| and backhaul customers |B|. These instances are randomly
selected from the universe of Goetschalckx and Jacobs-Blecha [87], such that, at least,
two instances from each class (from A to N) are obtained (see Table 5.6). The instances
are divided into 14 classes, labeled by the letters A–N. The classes G and L have, each
one, 3 instances, and the remaining classes have 2 instances each. The instances of a class
are almost equal: they are different only in respect to the vehicle capacity C and the
number of vehicles |K| while their graphs, costs, revenues, and deviations are identical.
The number of backhaul customers |B|, in relation to |L|, corresponds to: 25% in class
A; 50% in B; 100% in C; about 25% in D; 50% in E; 100% in F; about 25% in G; about
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(a) Backhauls on solutions for the instance A4 (three routes)

(b) Backhauls on solutions for the instance B3 (three routes)

(c) Backhauls on solutions for the instance C4 (four routes)

(d) Backhauls on solutions for the instance F4 (four routes)

Figure 5.3. Solution structures of the RO model obtained by changing β and Γ (backhaul
numbers with n subtracted)

50% in H; 100% in I; about 25% in J; about 50% in K; 100% in L; 25% in N; and 50% in
M.

Each instance is tested for two different values of budget of uncertainty, Γ = 0 and
Γ = 2, and for two different values of minimum revenue required, β = 0 and β = 750. For
the BC, the running time is limited to one hour for each test and is worth recovering that
the RCI tolerance is 0.2. For the ALNS [159], 30 replications of each test were performed,
each one with the stopping criterion of 10,000 iterations.

The results obtained from these tests are presented in three groups of columns in
Table 5.7. The first group presents the instance name (“Inst”), the budget of uncertainty
Γ, and the minimum revenue required β. The next group refers to the results obtained
from the BC, given by the lower bound (LB), the solution objective value (z), the gap
of the BC (GBC), and the time of the test in seconds (T(s)). The GBC of a solution
corresponds to the percentage difference between the solution objective value of the BC
and its respective LB. This gap is calculated by GBC = ((z − LB)/LB)100. We point
out that the values of LB and z presented and used to calculate the gaps were rounded
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Table 5.6. Instance characteristics

Inst C |K| Inst C |K| Inst C |K| |L| |B|

A2 2550 5 A4 4050 3 20 5
B1 1600 7 B2 2600 5 20 10
C1 1800 7 C4 4150 4 20 20
D2 1700 11 D3 2750 7 30 8
E1 2650 7 E3 5225 4 30 15
F1 3000 6 F4 5500 4 30 30
G2 4300 6 G4 5300 5 G6 8000 4 45 12
H2 5100 5 H3 6100 4 45 23
I1 3000 10 I4 5700 6 45 45
J1 4400 10 J3 8200 6 75 19
K2 6000 8 K4 6200 7 75 38
L1 4400 10 L3 5000 9 L5 6000 8 75 75
M2 5200 10 M4 8000 7 100 25
N2 5700 10 N6 8500 8 100 50

to the nearest integer. When the solution time of the BC reaches 3600 s, it means the
computing time has stopped at its limit.

The last group of columns in Table 5.7 shows the results from the ALNS. From the
30 runs of each test, we have the best solution objective value found (zbest), the standard
deviation of the solutions’ objective values (SD), the total number of runs that ended
with no feasible solution (# NF), and also the average solution time in seconds (AT(s)).
The column GALNS presents the percentage gap of the best ALNS solution objective value
in relation to its LB obtained by the BC. This gap calculation is defined as the one of
BC with z substituted with zbest. Like before, the objective values presented and used
to calculate the gaps were rounded to the nearest integer. Moreover, the last line of the
table presents some averages.

Table 5.7. Computational results from BC and ALNS

BC ALNS

Inst Γ β LB z T(s) GBC zbest SD # NF AT(s) GALNS

A2 0 0 164,457 164,457 0.5 0.00% 164,457 0.0% – 0.7 0.00%

0 750 164,457 164,457 0.8 0.00% 164,457 0.4% – 0.9 0.00%

2 750 164,457 164,457 0.3 0.00% 164,457 0.5% – 1.0 0.00%

A4 0 0 136,068 136,068 0.2 0.00% 136,068 1.1% – 0.5 0.00%

0 750 136,581 136,581 0.2 0.00% 136,581 0.1% – 0.7 0.00%

2 750 140,865 140,865 0.2 0.00% 140,865 2.2% 17 0.5 0.00%

B1 0 0 209,034 209,034 1.5 0.00% 209,034 0.0% – 1.0 0.00%

0 750 209,034 209,034 1.0 0.00% 209,034 0.1% – 1.5 0.00%

2 750 209,034 209,034 2.3 0.00% 209,089 0.2% – 1.9 0.03%

B2 0 0 162,983 162,983 3.5 0.00% 162,983 0.3% – 0.7 0.00%

0 750 162,983 162,983 1.5 0.00% 162,983 0.6% – 1.1 0.00%

2 750 163,431 163,431 5.9 0.00% 163,473 2.0% 2 1.0 0.03%

continued on next page
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Table 5.7 continued from previous page

BC ALNS

Inst Γ β LB z T(s) GBC zbest SD # NF AT(s) GALNS

C1 0 0 186,636 186,636 2.4 0.00% 186,636 0.9% – 2.2 0.00%

0 750 187,655 187,655 6.7 0.00% 187,655 1.2% – 3.7 0.00%

2 750 188,842 188,842 24.3 0.00% 188,842 1.9% – 4.2 0.00%

C4 0 0 128,792 128,792 0.2 0.00% 128,792 0.7% – 1.6 0.00%

0 750 131,464 131,464 0.5 0.00% 131,464 1.9% – 1.7 0.00%

2 750 133,580 133,580 0.2 0.00% 135,682 2.6% 23 1.5 1.57%

D2 0 0 296,077 297,853 3600.0 0.60% 297,853 1.8% – 2.3 0.60%

0 750 297,853 297,853 2724.5 0.00% 297,853 1.5% – 4.6 0.00%

2 750 295,983 297,853 3600.0 0.63% 297,853 1.8% – 5.5 0.63%

D3 0 0 214,017 214,017 292.8 0.00% 214,017 0.2% – 1.7 0.00%

0 750 214,017 214,017 98.8 0.00% 214,017 1.3% – 2.5 0.00%

2 750 214,598 214,598 294.0 0.00% 214,598 1.5% – 2.8 0.00%

E1 0 0 198,239 198,239 45.5 0.00% 199,005 0.9% – 1.4 0.39%

0 750 198,239 198,239 75.0 0.00% 203,036 2.2% – 2.3 2.42%

2 750 198,649 198,649 41.7 0.00% 217,390 2.0% – 3.4 9.43%

E3 0 0 149,576 149,576 2.3 0.00% 149,576 3.1% – 2.3 0.00%

0 750 151,519 151,519 0.8 0.00% 151,519 2.5% – 5.8 0.00%

2 750 154,399 154,399 2.8 0.00% 154,399 3.7% – 2.8 0.00%

F1 0 0 183,723 183,723 18.5 0.00% 183,723 1.7% – 4.2 0.00%

0 750 183,723 183,723 20.5 0.00% 183,723 3.4% – 4.4 0.00%

2 750 183,723 183,723 23.8 0.00% 183,723 3.8% – 4.6 0.00%

F4 0 0 145,456 145,456 0.1 0.00% 145,456 0.9% – 2.3 0.00%

0 750 145,456 145,456 0.1 0.00% 145,638 1.9% – 5.8 0.13%

2 750 145,456 145,456 0.1 0.00% 147,027 1.8% 16 3.9 1.08%

G2 0 0 225,110 225,110 80.8 0.00% 225,110 1.0% – 5.7 0.00%

0 750 225,110 225,110 114.8 0.00% 225,663 0.9% – 5.6 0.25%

2 750 225,444 225,444 459.2 0.00% 226,568 1.6% – 6.2 0.50%

G4 0 0 202,551 202,551 1.6 0.00% 202,551 0.1% – 3.3 0.00%

0 750 202,551 202,551 4.3 0.00% 202,551 1.4% – 3.7 0.00%

2 750 203,320 203,320 22.8 0.00% 204,237 2.0% 2 4.1 0.45%

G6 0 0 180,176 180,176 64.6 0.00% 181,322 1.0% – 2.6 0.64%

0 750 180,630 180,630 60.5 0.00% 180,947 2.4% – 3.9 0.18%

2 750 182,081 182,081 71.4 0.00% 191,603 2.7% 13 3.7 5.23%

H2 0 0 192,446 192,446 149.9 0.00% 192,904 1.1% – 4.8 0.24%

0 750 193,092 193,092 103.2 0.00% 195,225 1.8% – 6.9 1.10%

2 750 197,064 197,545 3600.1 0.24% 202,268 2.0% – 10.7 2.64%

H3 0 0 182,499 182,499 11.5 0.00% 182,499 2.1% – 9.6 0.00%

0 750 186,316 186,316 26.7 0.00% 187,053 1.9% – 10.9 0.40%

2 750 188,727 188,727 74.9 0.00% 190,855 1.7% – 16.6 1.13%

I1 0 0 244,435 261,403 3600.1 6.94% 256,536 1.2% – 10.4 4.95%

0 750 244,074 260,212 3600.0 6.61% 256,474 0.7% – 12.1 5.08%

2 750 244,741 262,372 3600.0 7.20% 256,717 0.9% – 24.5 4.89%

I4 0 0 191,397 191,397 49.2 0.00% 191,397 1.3% – 7.8 0.00%

continued on next page
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Table 5.7 continued from previous page

BC ALNS

Inst Γ β LB z T(s) GBC zbest SD # NF AT(s) GALNS

0 750 191,397 191,397 60.0 0.00% 191,462 1.8% – 7.4 0.03%

2 750 191,397 191,397 46.3 0.00% 191,619 2.2% 1 8.8 0.12%

J1 0 0 274,601 – 3600.3 – 304,320 1.2% – 22.6 10.82%

0 750 273,684 – 3600.1 – 303,092 1.4% – 28.1 10.75%

2 750 275,849 – 3600.1 – 309,652 1.3% – 35.5 12.25%

J3 0 0 216,813 245,947 3600.2 13.44% 225,100 3.9% – 14.7 3.82%

0 750 218,177 232,069 3600.3 6.37% 226,555 3.7% – 17.5 3.84%

2 750 215,679 238,870 3600.1 10.75% 228,175 2.3% – 16.1 5.79%

K2 0 0 264,088 327,849 3600.4 24.14% 275,513 0.9% – 24.7 4.33%

0 750 267,466 281,093 3600.1 5.09% 275,745 1.1% – 37.7 3.10%

2 750 264,448 314,323 3600.1 18.86% 276,723 1.5% – 40.3 4.64%

K4 0 0 245,828 269,840 3600.1 9.77% 257,710 0.8% – 17.8 4.83%

0 750 246,304 266,482 3600.2 8.19% 258,558 1.4% – 24.6 4.98%

2 750 247,350 269,572 3600.1 8.98% 260,791 1.1% – 29.6 5.43%

L1 0 0 266,306 – 3600.2 – 291,604 1.1% – 37.6 9.50%

0 750 268,661 – 3600.1 – 291,850 0.9% – 42.4 8.63%

2 750 268,488 – 3600.2 – 291,505 0.8% – 53.4 8.57%

L3 0 0 254,446 – 3600.8 – 274,465 1.1% – 39.6 7.87%

0 750 253,382 – 3600.4 – 273,860 0.8% – 39.0 8.08%

2 750 251,903 – 3600.3 – 274,561 0.9% – 96.3 8.99%

L5 0 0 236,821 287,121 3600.3 21.24% 249,581 1.7% – 34.4 5.39%

0 750 235,730 268,902 3600.2 14.07% 249,666 2.4% – 40.9 5.91%

2 750 243,111 249,420 3600.1 2.60% 250,822 2.3% 2 37.5 3.17%

M2 0 0 311,663 – 3600.1 – 342,540 1.0% – 52.3 9.91%

0 750 305,740 – 3600.1 – 341,859 1.8% – 61.9 11.81%

2 750 306,403 – 3600.1 – 342,164 2.6% – 69.9 11.67%

M4 0 0 267,153 316,326 3600.1 18.41% 282,514 1.3% – 30.8 5.75%

0 750 268,303 312,923 3600.2 16.63% 282,018 1.0% – 68.7 5.11%

2 750 266,505 – 3600.5 – 284,497 1.7% – 81.5 6.75%

N2 0 0 300,459 – 3600.3 – 328,669 1.3% – 57.5 9.39%

0 750 298,437 – 3600.1 – 329,922 1.4% – 63.3 10.55%

2 750 302,526 – 3600.4 – 328,484 1.4% – 78.8 8.58%

N6 0 0 251,446 332,761 3601.0 32.34% 275,535 1.1% – 29.1 9.58%

0 750 252,833 – 3600.1 – 275,533 1.2% – 36.9 8.98%

2 750 247,635 – 3600.1 – 276,690 1.9% – 45.6 11.73%

1616.7 3.24% 1.5% 18.5 3.27%

The BC is able to provide optimal solutions for almost all tests in the classes of
instances A to H (up to 45 linehaul customers), as denoted by the values of GBC. On
the other hand, the exact method is unable to find a feasible solution in 18 out of the 90
tests. An interesting observation from the BC results is related to the tests on the class
of instances I. These have the same number of linehaul customers as the class of instances
H, but almost the double number of backhauls. The difference between instances I1 and
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I4 are the number of vehicles, respectively 10 and 6, and vehicle capacities, respectively
3000 and 5700. Yet, the tests with instance I1 do not provide an optimal solution in one
hour, while with instance I4, the optimal solution is found in no more than one minute.

The class of instances J have almost the same total number of customers (94) of class
I (90), however, the number of linehauls of the J instances represents 167% of the number
of linehauls of the I instances. From this point forward (classes J, K, L, M, and N), no
optimal guaranteed solutions are found and 18 of the 33 tests failed in returning a feasible
solution. It is also noteworthy that among L5 instances, the better GBC gap (2.60%) is
presented by the robust version with Γ = 2 and β = 750.

Observe that the solutions obtained with ALNS can be considered reasonably stable,
as indicated by the the percentage SDs being upper-bounded by 3.9% and with average
of 1.5%. On the other hand, there were runs of eight instances that ended without finding
a feasible solution, but only for the worst cases, i.e., when Γ = 2.

The BC found proven optimal solutions in 51 tests, while the ALNS, by its turn,
reached solutions with the same objective value in 31 of these tests. On the other hand,
calculated when both methods found a feasible solution (which might be optimal), the
average gaps of 3.24% for the BC (the GBC average in Table 5.7) and 1.66% for the ALNS
(not explicit in the table) denotes that the BC does not favor a general small gap as the
ALNS. Among the tests of each instance, the highest GALNS values are obtained for the
worst cases, i.e., the ones with the most revenue deviation allowed (budget of uncertainty
Γ = 2). Furthermore, considering the tests which the BC found a feasible solution without
proving its optimality, we have that: in two of these cases occur GBC < GALNS, in other
two occur GBC = GALNS, and in the remaining 17 hold that GBC > GALNS.

With respect to the solution time, the ALNS can obtain solutions very fast, where
the average of AT(s) is 18.5 s. In fact, even for the larger instances (L, M and N),
a solution is found in less than two minutes, on average. On the other hand, the BC
average of T(s) is 1616.7 s, being heavily influenced by the 39 tests that ended by time
limit. Notwithstanding, the BC finished in less than two minutes in 46 of the tests.

The results on Table 5.7 are evidences that the robust modeling has no more significant
intractability than the deterministic modeling. Based on these results, it can be concluded
that the exact approach to robust optimization used in this work is efficient to solve the
VRPSB under revenue uncertainty.

5.5 Conclusions and Future Work

This work presents the first study of a VRPB under uncertainty. More precisely, we con-
sider the problem where the visits to backhauls are optional, each visit has an associated
revenue, which is uncertain, and a minimum revenue is required by the solutions. Fol-
lowing a RO approach, the revenues are considered to be bounded by a polyhedron set
of uncertainty and a parameter, called budget of uncertainty, is applied to control the
size of the uncertainty set. Several different methods to estimate probabilistic bounds for
the minimum revenue requirement constraint violation are defined, tested, and compared.
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To solve both the deterministic and robust versions of the problem, a BC method was
devised and its performance was compared with a heuristic approach.

Several insights could be retrieved from this study. First, solutions are very sensitive
to uncertainty, since the structure of the solution changes quickly even for low values of
budget of uncertainty. Second, and as expected, the cost of robust solutions is higher than
the cost of nominal solutions. In terms of probabilistic bounds, the method that estimates
a posteriori the probability of constraint violation of a solution is the most rigorous one
(since it produces the exact value for that probability), however, it requires the knowledge
of the solution structure. A method based on the Irwin-Hall distribution provided tighter
bounds than the other a priori probabilistic methods, which allows to better characterize
the bounds of robust solutions based only on values of budget of uncertainty.

The BC developed in this work finds solutions in a reasonable time for small and
medium instances, while the ALNS obtained optimal or good solutions for all instances
in a short time. It is also evidenced that the robust approach used in this work created
a tractable robust model, where solutions may be obtained with similar computing effort
as with the deterministic model.

Different directions for future work on this subject arise. The solution times and gaps
obtained suggest an improved BC that uses a cutoff based on the solution provided by
the ALNS, what would narrow the solution space to be explored by the exact approach.
Besides, considering that few exact methods have been successfully applied to VRPBs,
it may be interesting to evaluate more promising solution methods, such as branch-and-
price (BP) and BCP algorithms. A consequence of better exact methods is the obtaining
of better lower bounds, which would improve the precision of the solution evaluation of
heuristic approaches, as done for the ALNS.

Another future direction for research concerns the modeling aspects of the uncertainty.
For instance, the uncertainty set may be built using a known distribution or some statistics
obtained from historical information, such as the distributionally RO [76]. As such, it
could yield tighter uncertainty sets, which may produce better probabilistic bounds for
the robust problem and decrease the conservatism of robust solutions. It is worth noting
that the complete version of this paper [159] also proposed a chance-constrained model for
the VRPSB under uncertainty, including evaluations for a few selected instances. Finally,
it would be interesting to apply the robust VRPSB in practice and gather insights from
the perspective of integrated logistics.
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Chapter 6

Final Concluding Remarks

This thesis investigated approaches to three variants of the CVRP that minimize the
amount of load-dependent energy consumption and/or impose energy limit per route,
namely: CmVRP, CmVRP-LE, and CVRP-LE. We highlight that the energy consump-
tion of vehicle routing is now an established environmental concern [108, 19, 9]. This thesis
also explored the resolution of the VRPSB with uncertain revenues, where the rules of
backhauls visitation and the uncertainty in the revenues model, for instance, aspects of
a real-world application in the wood-base supply chain [184, 5, 6]. In the remaining of
this chapter, we recover our main contributions on these problems and point out some
possibilities of future research.

6.1 Contributions

Several LP relaxations of MILP formulations for the CmVRP were proposed and stud-
ied. We proposed the AIL formulation, that is combination of the AI and the AL from
the literature, and stated that AIL dominates the formulations it is based on. We also
proposed the set partitioning AILqR formulation, that have a pricing subproblem solv-
able in pseudo-polynomial time, and proved that AIL and AILqR are equivalent. Our
experiments show a significant gain in the LP relaxation gap of AIL, when compared
to AI and AL. The gap advantage of the AIL may be attributed to the fact that each
base formulation alone captures different and complementary aspects of the CmVRP, and
putting them together tends to produce a stronger formulation that is worth exploring.
The downside is the large amount of time spent in solving the tighter formulation. We
also contributed by proposing a somewhat natural way to combine AI with a set parti-
tioning formulation, namely the AIqR formulation, which dominates AL. However, such
a natural formulation is not likely to be useful in practice since we concluded that its
pricing subproblem is strongly NP-hard.

We devised BCP approaches for the CmVRP, CmVRP-LE, and CVRP-LE problems.
In these approaches, we modeled the pricing subproblems by RCSPPs with digraphs based
on arc-loads, where the usage of the arc-load concept is pivotal in tracking and limiting
the energy consumption throughout each route. It was also employed a preprocessing
procedure to only keep the arc-loads corresponding to packageable demands, which led
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to, in average, 4.16% less arc-loads than a previous approach in the literature. For the
CmVRP, we modeled the EIMP by the AL-R formulation, where the best results are
yielded with the resource configuration that solely uses the disposable load resource.
Comparing this approach to the BCP of Fukasawa et al. [74], in the average, we were
able to improve the optimality gap from 0.55% to 0% in a time at least 7 times lower
(over 78 instances). Therefore, we improved upon the state-of-the-art exact results for
this problem.

Focusing on the problem variants CmVRP-LE and CVRP-LE, it is worth emphasiz-
ing that they were proposed in this thesis and that we did not find, in the GVRP liter-
ature, a problem that generalizes the CVRP-LE. The EIMP formulations used for the
CmVRP-LE is similar to the one of the version without energy limit, while the resource
configuration of choice contains, in addition to the disposable load, the non-disposable
load and the energy resources. The presence of the non-disposable load resource means
that the best performance was achieved by the approach that forbids the creation of la-
bels in which the load resource would be disposed to the detriment of discarding these
labels by the dominance rule. Due to the fact that the CVRP-LE’s objective function
does not consider energy consumption, we were able to use an EIMP formulation given
by VF-R, that only has variables per arcs (and not per arc-loads). The best resource
configuration for this problem consists of the resources: disposable load, non-disposable
load, and energy. In this case, the presence of a non-disposable load avoids an important
performance issue intrinsic to this problem: the load excess effect.

The best average times to process the CmVRP, CmVRP-LE, and CVRP-LE are,
respectively, 428.2 s, 1029.5 s, and 1335.7 s over a set of 100 instances; which probably
indicates a reverse order of hardness among these problems. It is also worth noting
that the instances solved in each of these problems has up to 101 vertices, and, for the
majority of the instances tested, the variants with limited energy resulted in optimal
solutions different from their counterparts without energy limit. We recall that, amid the
VRPs that consider load-dependent energy consumption, the enforcing of a limit on the
energy consumption of the vehicles by the pricing subproblem constitutes a novelty in the
BCP/BP literature.

Considering the approximation algorithms approach, we recall that we slightly im-
proved the analysis of an approximation algorithm for the version of the CmVRP that
does not fix the number of vehicles/routes in advance, going from a factor 4 to a factor
4− 4

3s3Q2 , where Q is the capacity of the vehicle and s is a scaling factor.
Finally, we also investigated an approach to solve, using RO, the VRPSB with un-

certain revenues. In this modeling, the revenues are considered to be bounded by a
polyhedron set of uncertainty and a robust parameter – called budget of uncertainty –
is applied to control the size of the uncertainty set. To solve both the deterministic and
robust versions of the problem, we devised a BC algorithm, whose performance was com-
pared with an heuristic approach. It was possible to observe that, as expected, the cost of
robust solutions may be higher than the cost of nominal solutions. In terms of probabilis-
tic bounds of constraint violation, the method that estimates the probability a posteriori

is the most rigorous one, but it requires a computed solution. On the other hand, a
method based on the Irwin-Hall distribution provided tighter probabilistic bounds than
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the other a priori methods, noting that this method has the advantage of only depend
on some instance data and the budget of uncertainty. Our BC algorithm finds solutions
in a reasonable time for small and medium instances, while the ALNS obtained optimal
or good solutions for all instances in a short time. It is also evidenced that the RO ap-
proach created a tractable robust model, where solutions may be obtained with similar
computing effort as with the deterministic model.

6.2 Future Work

The results on the LP relaxations for the CmVRP point to multiple possibilities of re-
search. The strength of the AIL can be further studied in order to discover its relation
with the several families of cuts for the CVRP available in the literature. The exper-
imental results concerning the gaps suggests one may benefit from using AIL in a BC
method and AILqR in a BCP method, but further research is needed to speed up their
high computational cost. It is also worth searching for a formulation whose LP relaxation
(i) can be solved in pseudo-polynomial time, and (ii) gives bounds that are better than
the ones from AILqR.

It might be worth investigating a more fundamental reason that led the BCP approach
for the CmVRP-LE to yield the best results with the resource configuration given by the
disposable load, non-disposable load, and energy, as this resource option was not expected
to be the best for this problem. The instances that we were able to solve for the CmVRP,
CmVRP-LE, and CVRP-LE contain at most 1,371,094 arc-loads. Our results suggest that
the BCP approaches used should be improved to be applied to instances that imply in
higher numbers of arc-loads. One option of research in this line is to improve the removing
of arc-loads, by relying, for instance, in the energy limit and branching decisions. Another
research possibility is to investigate the usage of cuts specifically devised for arc-load-base
formulations, as the ones of Pessoa et al. [141].

Some extended versions of the problems/models with energy considerations, i.e., the
CmVRP, CmVRP-LE, and CVRP-LE, might be suitable to be solved by BCP approaches
similar to the ones we used. These extensions may consider: the effect of speed variation
on the energy consumption, the usage of time windows, and the usage of recharging or
refueling stations. In particular, it is worth noting that, even with the energy consumption
being generally nonlinear on the speed [19, 75], arc-load approaches offer the potential
to consider speed in a linear fashion for these problems, as the optimal speed per arc
and load can be pre-computed and incorporated in the costs of arc-loads. On the other
hand, the inclusion of time windows in this scenario leads to a more complex situation,
as the speed values impact on the time taken to traverse each arc, and thus in the ability
to reach vertices within theirs windows [19]. Practical technical specifications could be
incorporated into the models, e.g., from vehicles and roads. Bi-objective variants of the
problems are also worth investigating, in which one objective may be minimizing distance
or time and the other might consists of minimizing energy consumption or greenhouse gas
emissions. In addition, exploring heterogeneous fleet and a variable number of vehicles
might be of importance, for instance, in environmental-concerned applications. Besides,
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it may be worth employing BCP approaches and energy considerations to the VRP with
Drones, where each truck carries several drones which, by turn, are dispatched from
the truck to perform deliveries [148, 126]. Considering the high potential of practical
applications, it is worth exploring variants of the problems with energy considerations that
take uncertain parameters into account. The uncertainty may reside in several parameters
of the model, among which we highlight two related to energy consumption: (i) the energy
capacity of the vehicles, and (ii) the energy consumption in each arc, which already
depends on distance and accumulated load. We point out that the latter item may be
suitable to model urban traffic uncertainties. This variants with uncertainty may be
treated with RO or other suitable approaches, depending on the stipulated goals.

In the VRPSB with uncertain revenues, one possibility is to use the results with the
ALNS algorithm to provide cutoffs to the BC approach. As BCP algorithms have been
successfully applied to several VRPs, it is worth approaching this problem with BCP
methods with the usage of the VRPSolver framework [143, 158]. Observe that we may
maintain the uncertain revenues and the RO treatment with the VRPSolver. In such
a research, one may find interesting ways to model the rules of backhaul visiting with
the usage of elementarity and packing sets. Another future direction of research concerns
the modeling aspects of the uncertainty: for instance, the uncertainty set may be built
using a known distribution or some statistics obtained from historical information, such
as the distributionally RO [76], which could produce tighter uncertainty sets. Finally, it
would be interesting to apply the robust VRPSB in practice and gather insights from the
perspective of integrated logistics.
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Appendix A

Full Experimental Results of the

Relaxed Arc-Item, Arc-Load, and

Arc-Item-Load Formulations for the

CmVRP

We start by noting that this appendix is related to Chapter 2. In Table A.1 we present
the full experimental results that are condensed in Tables 2.4 and 2.5 in Subsection 2.5.4.
The definitions of the columns are presented in Subsection 2.5.3. It is worth emphasizing
that the original values (reported on Table A.1) of vehicle capacity Q of some instances
were preprocessed by being divided by a scaling factor, resulting in Q′, as in the following.

• E-n13-k4: Q′ = 6000/100 = 60;

• E-n22-k4: Q′ = 6000/100 = 60;

• E-n30-k3: Q′ = 4500/25 = 180; and

• P-n22-k8: Q′ = 3000/100 = 30.

Table A.1. AI, AL, and AIL relaxed models full results with regular instances

Arc-Item Arc-Load Arc-Item-Load

Inst Q# T(s) ẑ #I G(%) T(s) ẑ #I G(%) T(s) ẑ #I G(%)

A-n32-k5 100 1.1 39,989.20 2.7 4.4 39,696.83 3.4 709.9 40,706.20 0.9

A-n33-k5 100 1.0 31,501.52 5.6 4.1 32,539.13 2.5 1,459.8 32,851.38 1.5

A-n33-k6 100 1.2 34,983.37 5.5 3.9 35,797.29 3.3 3,486.5 36,739.79 0.8

A-n34-k5 100 2.1 37,227.31 9.5 8.1 38,553.10 6.3 4,229.3 39,967.98 2.8

A-n36-k5 100 2.9 37,098.70 5.6 19.5 38,517.66 2 2,146.2 38,804.80 1.2

A-n37-k5 100 2.1 29,641.05 4.4 21.6 29,820.92 3.8 3,032.1 30,716.29 0.9

A-n37-k6 100 4.1 45,749.12 8.7 11.9 48,001.58 4.2 1,427.9 48,559.70 3.1

A-n38-k5 100 2.3 33,965.74 11.9 13.2 34,656.54 10.1 12,753.8 36,363.12 5.7

A-n39-k5 100 8.5 39,528.51 7.5 27.4 41,663.94 2.5 4,124.5 42,058.45 1.6

A-n39-k6 100 1.9 38,660.46 6.5 5.7 40,253.84 2.7 2,420.7 41,069.33 0.7

A-n44-k6 100 10.2 45,311.43 5.4 15.8 47,329.91 1.1 7,345.8 47,755.22 0.3

A-n45-k6 100 7.5 45,499.19 12.4 15.7 48,706.45 6.3 9,757.0 49,802.76 4.1

A-n45-k7 100 15.2 58,971.15 5.3 11.9 60,871.63 2.2 11,519.9 61,363.06 1.4

A-n46-k7 100 11.6 45,784.79 4.7 18.6 47,458.33 1.2 9,597.5 47,927.25 0.2

A-n48-k7 100 23.6 54,841.82 6.2 21.8 57,077.72 2.4 17,725.9 57,315.46 2

A-n53-k7 100 33.6 50,902.54 8.8 38.0 53,035.17 4.9 34,624.5 54,194.67 2.9

A-n54-k7 100 56.1 59,115.59 7.2 31.8 62,061.14 2.6 65,921.4 62,936.50 1.2

A-n55-k9 100 13.0 54,660.22 6.2 19.1 55,825.30 4.2 32,250.2 56,877.71 2.4

A-n60-k9 100 83.1 68,282.56 8.1 39.4 72,488.48 2.5 81,763.9 72,838.46 2

continued on next page
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Table A.1 continued from previous page

Arc-Item Arc-Load Arc-Item-Load

Inst Q# T(s) ẑ #I G(%) T(s) ẑ #I G(%) T(s) ẑ #I G(%)

A 19 14.8 7 17.5 3.6 16,120.9 1.9

B-n31-k5 100 1.3 33,827.11 3.9 3.4 33,331.46 5.3 2,519.7 34,590.88 1.8

B-n34-k5 100 1.5 40,083.49 9.2 6.5 41,236.60 6.6 7,022.0 42,959.26 2.7

B-n35-k5 100 1.1 47,969.38 9.3 8.9 48,167.65 8.9 885.9 48,947.42 7.5

B-n38-k6 100 2.6 39,353.87 4.4 5.0 39,854.33 3.2 3,765.7 40,216.89 2.3

B-n39-k5 100 1.6 27,112.00 7.4 5.4 27,085.61 7.5 11,870.4 28,178.21 3.7

B-n41-k6 100 2.4 41,653.42 10.1 7.0 44,088.08 4.8 4,617.0 45,211.06 2.4

B-n43-k6 100 11.4 36,572.45 8.6 12.3 38,261.48 4.4 11,224.6 39,022.54 2.5

B-n44-k7 100 3.7 47,587.28 8.4 7.9 49,995.45 3.8 21,155.5 50,535.65 2.7

B-n45-k5 100 5.2 33,457.47 10.2 12.5 34,316.92 7.9 23,516.7 35,164.71 5.6

B-n45-k6 100 9.8 34,623.87 11.2 28.0 35,143.17 9.9 35,988.5 37,661.95 3.4

B-n50-k7 100 3.1 36,603.71 7.7 25.8 37,440.41 5.6 68,479.1 38,008.92 4.2

B-n50-k8 100 58.2 65,631.61 8.6 35.2 70,858.26 1.3 67,816.9 70,980.11 1.1

B-n51-k7 100 8.4 52,660.93 22.2 34.3 54,949.21 18.9 66,034.3 56,097.61 17.2

B-n52-k7 100 13.2 36,592.44 8.7 51.9 37,140.49 7.3 59,713.7 38,575.42 3.7

B-n67-k10 100 121.8 53,073.96 6.7 36.8 54,429.07 4.4 77,429.0 54,943.50 3.5

B 15 16.4 9.1 18.7 6.7 30,802.6 4.3

E-n13-k4 6000 0.0 728,517.91 6.5 0.0 774,300.00 0.7 0.4 778,066.67 0.2

E-n22-k4 6000 0.2 1,131,170.00 5.4 0.2 1,178,581.54 1.4 59.6 1,195,200.00 ∗ 0

E-n30-k3 4500 1.0 1,003,393.75 19.6 15.5 1,071,232.83 14.1 9,316.0 1,105,568.11 11.4

E-n31-k7 140 4.1 23,255.65 9.1 5.7 25,327.38 1 800.0 25,516.77 0.3

E 4 1.3 10.2 5.4 4.3 2,544.0 1 3

P-n16-k8 35 0.0 8,389.56 0.5 0.0 8,434.50 ∗ 0 0.1 8,434.50 ∗ 0

P-n19-k2 160 0.1 15,644.75 17.5 2.0 17,352.67 8.5 325.1 18,022.95 5

P-n20-k2 160 0.2 16,052.25 17.9 3.3 18,137.00 7.3 604.3 18,847.06 3.7

P-n21-k2 160 0.3 15,757.56 17.5 3.3 17,803.14 6.8 673.0 18,523.52 3.1

P-n22-k2 160 0.4 16,116.74 17.9 4.3 18,541.17 5.6 1,132.2 19,214.07 2.1

P-n22-k8 3000 0.1 914,620.43 7.9 0.0 978,408.33 1.5 2.1 985,706.28 0.7

P-n23-k8 40 0.1 11,016.91 8.7 0.0 11,818.40 2.1 3.0 11,818.40 2.1

P-n40-k5 140 8.8 28,967.73 11.9 18.0 31,872.52 3.1 12,347.6 32,321.42 1.7

P-n45-k5 150 15.4 34,035.61 13.7 52.9 38,121.14 3.4 28,895.4 38,874.85 1.5

P-n50-k7 150 15.6 39,058.48 7.3 81.4 41,640.86 1.1 40,342.6 42,070.63 0.1

P-n50-k8 120 12.9 36,205.92 10.4 70.1 38,815.08 4 15,501.5 38,965.98 3.6

P-n50-k10 100 4.3 34,219.82 5.9 16.4 35,506.50 2.4 7,054.7 35,682.50 1.9

P-n51-k10 80 8.6 29,397.99 6.6 17.8 30,581.66 2.9 6,844.1 30,663.97 2.6

P-n55-k7 170 25.1 43,962.25 9.6 133.0 47,344.28 2.6 81,615.1 48,199.70 0.9

P-n55-k8 160 15.2 43,072.41 7.1 143.0 45,304.51 2.3 75,211.6 45,756.31 1.4

P-n55-k10 115 14.6 38,583.67 4.7 29.7 39,913.55 1.5 11,349.7 40,164.92 0.8

P-n55-k15 70 8.1 33,966.00 9 3.0 36,382.37 2.5 8,582.2 36,512.91 2.1

P-n60-k10 120 21.8 43,579.44 6 83.5 45,265.45 2.4 56,595.7 45,814.96 1.2

P-n60-k15 80 10.6 39,354.71 3.9 8.8 40,412.26 1.3 11,544.0 40,519.06 1

P-n65-k10 130 68.9 49,740.25 6.1 88.4 51,819.86 2.2 85,160.6 52,353.50 1.2

P 20 11.6 9.5 37.9 1 3.2 22,189.2 1 1.8

ulysses-n16-k3 5 0.0 18,566.48 8.1 0.0 19,482.88 3.6 0.6 19,994.65 1.1

gr-n17-k3 6 0.0 7,265.66 0.9 0.0 7,331.20 ∗ 0 0.4 7,331.20 ∗ 0

gr-n21-k3 7 0.1 11,756.40 ∗ 0 0.0 11,756.40 ∗ 0 0.5 11,756.40 ∗ 0

ulysses-n22-k4 6 0.2 22,919.50 5.8 0.0 23,202.42 4.6 1.6 23,682.88 2.6

gr-n24-k4 7 0.7 6,899.19 3.4 0.0 7,081.20 0.8 7.0 7,093.50 0.7

fri-n26-k3 10 0.8 6,377.11 7.5 0.0 6,704.69 2.8 15.6 6,887.02 0.1

bayg-n29-k4 8 0.7 7,598.30 12.1 0.0 8,334.38 3.6 30.6 8,422.20 2.6

bays-n29-k5 6 0.9 8,560.17 8 0.0 8,975.16 3.5 12.1 9,011.33 3.2

dantzig-n42-k4 11 46.1 5,780.02 9.2 0.1 6,165.44 3.1 818.2 6,279.93 1.3

swiss-n42-k5 9 7.2 6,935.52 11.5 0.1 7,392.63 5.6 526.4 7,622.63 2.7

gr-n48-k3 16 117.7 40,772.70 22.9 0.6 46,124.96 12.8 3,899.9 48,122.04 9

att-n48-k4 15 34.3 256,206.82 17.1 0.3 281,740.34 8.8 5,043.2 294,974.97 4.6

hk-n48-k4 15 224.5 97,256.11 16.4 0.4 107,752.58 7.4 3,435.1 110,324.01 5.1

V 13 33.3 1 9.5 0.1 2 4.4 1,060.9 2 2.5

71 16.8 1 8.8 19.6 3 4.3 17,409.7 4 2.6
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Appendix B

Detailed Experimental Results of the

Best BCP Approaches for the CmVRP,

CmVRP-LE, and CVRP-LE

We start by noting that this appendix is related to Chapter 3. Detailed experimental
results of the best BCP approaches for the CmVRP, CmVRP-LE, and CVRP-LE prob-
lems, over the base sample set of instances, are present in tables B.1, B.2, and B.3. Besides
fields previously presented in Section 3.5, these tables also contains the column “Stat”,
whose content possibilities and their meaning are given as follows: “OPT” – an optimal
solution was found; “TLN” – the time limit was reached with no feasible solution found;
and “IF” – the instance model is reported as infeasible.



144

Table B.1. Detailed results of the BCP algorithm for the CmVRP using the AL-R for-
mulation with the Q̃+

M
resource over the base sample set of instances

Inst Q# Stat #O #S #N #X G(%) R(%) T(s) R T(s) # Nds
CG
T(s)

RCF &
CE T(s)

LP
T(s)

SB
T(s)

A-n33-k6 100 OPT 0 0 9.2 9.2 1.0 5.1 0.4 0.0 0.0
A-n38-k5 100 OPT 0 0 27.0 27.0 1.0 13.6 4.4 0.1 0.0
A-n45-k7 100 OPT 0 0 23.7 23.7 1.0 13.0 1.3 0.1 0.0
A-n55-k9 100 OPT 0 0 46.3 46.2 1.0 24.9 3.5 0.1 0.0
A-n63-k10 100 OPT 0 0.04 346.3 248.7 3.0 261.3 31.8 3.8 64.2

A 5 5 0 0 0 0 0.01 90.5 71.0 1.4 63.6 8.3 0.8 12.8

B-n35-k5 100 OPT 0 0 284.4 284.4 1.0 69.5 199.5 5.7 0.0
B-n44-k7 100 OPT 0 0 32.0 31.9 1.0 14.6 9.2 0.1 0.0
B-n51-k7 100 OPT 0 1.74 6,701.9 359.0 29.0 2,515.8 3,590.9 251.3 640.6
B-n63-k10 100 OPT 0 0 161.2 161.2 1.0 66.6 49.2 0.3 0.0

B 4 4 0 0 0 0 0.43 1,794.9 209.1 8.0 666.6 962.2 64.4 160.2

E-n23-k3 4500 OPT 0 0 401.4 401.4 1.0 323.8 0.0 0.0 0.0
E-n31-k7 140 OPT 0 0 8.0 8.0 1.0 3.7 0.0 0.0 0.0
E-n76-k8 180 OPT 0 0 376.6 376.6 1.0 244.6 53.0 0.8 0.0

E 3 3 0 0 0 0 0 262.0 262.0 1.0 190.7 17.7 0.3 0.0

P-n20-k2 160 OPT 0 0 8.0 8.0 1.0 4.4 0.6 0.0 0.0
P-n40-k5 140 OPT 0 0 23.2 23.1 1.0 12.8 1.5 0.1 0.0
P-n51-k10 80 OPT 0 0 19.5 19.5 1.0 9.6 1.2 0.1 0.0
P-n60-k10 120 OPT 0 0 36.7 36.7 1.0 19.5 1.9 0.1 0.0

P 4 4 0 0 0 0 0 21.8 21.8 1.0 11.6 1.3 0.1 0.0

ulysses-n16-k3 5 OPT 0 0 1.3 1.3 1.0 0.0 0.0 0.0 0.0
gr-n24-k4 7 OPT 0 0 1.5 1.5 1.0 0.1 0.0 0.0 0.0
swiss-n42-k5 9 OPT 0 0 2.7 2.7 1.0 0.9 0.1 0.1 0.0

V 3 3 0 0 0 0 0 1.9 1.9 1.0 0.3 0.1 0.0 0.0

19 19 0 0 0 0 0.09 447.9 109.0 2.6 189.7 207.8 13.8 37.1

Table B.2. Detailed results of the BCP algorithm for the CmVRP-LE using the AL-R
formulation with the Q̃+

M
+ Q̃−

s
+ Ẽs resource over the base sample set of instances

Inst Q# Stat #O #IF #S #N #X G(%) R(%) T(s) R T(s) # Nds
CG
T(s)

RCF &
CE T(s)

LP
T(s)

SB
T(s)

A-n33-k6 100 OPT 0 0 30.0 30.0 1.0 15.7 8.8 0.1 0.0
A-n38-k5 100 OPT 0 0 105.9 105.9 1.0 80.6 15.8 0.8 0.0
A-n45-k7 100 OPT 0 0.37 285.3 231.6 3.0 187.1 76.5 3.5 41.2
A-n55-k9 100 OPT 0 0 250.7 250.7 1.0 223.0 9.4 1.0 0.0
A-n63-k10 100 OPT 0 0.59 870.7 547.1 7.0 646.1 58.5 79.3 200.2

A 5 5 0 0 0 0 0 0.19 308.5 233.1 2.6 230.5 33.8 16.9 48.3

B-n35-k5 100 OPT 0 0 458.3 458.3 1.0 260.2 179.6 10.6 0.0
B-n44-k7 100 OPT 0 0.56 368.1 139.1 5.0 291.6 35.5 14.2 96.2
B-n51-k7 100 TLN 7,225.3 577.3 19.0 3,386.5 3,462.9 191.6 744.4
B-n63-k10 100 OPT 0 0.44 1,022.6 682.8 7.0 787.3 82.0 30.8 152.5

B 4 3 0 0 1 0 0 0.33 2,268.6 464.4 8.0 1,181.4 940.0 61.8 248.3

E-n23-k3 4500 OPT 0 0 883.7 883.7 1.0 720.9 87.6 0.1 0.0
E-n31-k7 140 IF 22.5 22.5 1.0 18.2 0.0 0.0 0.0
E-n76-k8 180 OPT 0 0 1,741.4 1741.4 1.0 1,506.2 159.0 1.0 0.0

E 3 2 1 0 0 0 0 0 882.5 882.5 1.0 748.4 82.2 0.4 0.0

P-n20-k2 160 OPT 0 0 24.1 24.1 1.0 11.1 9.9 0.0 0.0
P-n40-k5 140 OPT 0 0 117.5 117.5 1.0 91.8 15.2 0.2 0.0
P-n51-k10 80 OPT 0 0 65.4 65.4 1.0 38.4 13.2 0.2 0.0
P-n60-k10 120 OPT 0 0 191.8 191.7 1.0 156.2 9.3 0.4 0.0

P 4 4 0 0 0 0 0 0 99.7 99.7 1.0 74.4 11.9 0.2 0.0

ulysses-n16-k3 5 OPT 0 0 1.2 1.2 1.0 0.0 0.0 0.0 0.0
gr-n24-k4 7 OPT 0 0 2.1 2.1 1.0 0.4 0.4 0.0 0.0
swiss-n42-k5 9 OPT 0 0 7.0 7.0 1.0 4.6 0.5 0.1 0.0

V 3 3 0 0 0 0 0 0 3.5 3.5 1.0 1.7 0.3 0.1 0.0

19 17 1 0 1 0 0 0.12 719.7 320.0 2.9 443.5 222.3 17.6 65.0
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Table B.3. Detailed results of BCP algorithm for the CVRP-LE using the VF-R formu-
lation with the Q̃+

M
+ Q̃−

s
+ Ẽs resource over the base sample set of instances

Inst Q# Stat #O #IF #S #N #X G(%) R(%) T(s) R T(s) # Nds
CG
T(s)

RCF &
CE T(s)

LP
T(s)

SB
T(s)

A-n33-k6 100 OPT 0 0 19.2 19.2 1.0 11.5 2.2 0.1 0.0
A-n38-k5 100 OPT 0 0 76.7 76.7 1.0 55.8 16.0 0.4 0.0
A-n45-k7 100 OPT 0 0.31 154.8 116.7 5.0 80.0 31.3 11.4 15.8
A-n55-k9 100 OPT 0 0 114.7 114.7 1.0 92.5 12.5 0.6 0.0
A-n63-k10 100 OPT 0 0 808.1 775.8 3.0 654.8 120.1 12.1 32.1

A 5 5 0 0 0 0 0 0.06 234.7 220.6 2.2 178.9 36.4 4.9 9.6

B-n35-k5 100 OPT 0 0.93 731.2 621.0 5.0 254.1 344.9 66.4 57.4
B-n44-k7 100 OPT 0 0 71.3 71.3 1.0 60.6 5.3 0.1 0.0
B-n51-k7 100 TLN 7,214.1 656.1 33.0 5,511.8 0.0 1572.0 1539.5
B-n63-k10 100 OPT 0 0.82 880.0 564.4 17.0 506.0 81.7 132.0 153.6

B 4 3 0 0 1 0 0 0.59 2,224.2 478.2 14.0 1,583.1 108.0 442.6 437.6

E-n23-k3 4500 OPT 0 0 1,617.9 1617.9 1.0 1,425.0 126.1 0.0 0.0
E-n31-k7 140 IF 17.3 17.3 1.0 14.1 0.0 0.0 0.0
E-n76-k8 180 OPT 0 0 2,514.6 2514.6 1.0 1,998.4 447.1 3.6 0.0

E 3 2 1 0 0 0 0 0 1,383.3 1383.3 1.0 1,145.8 191.1 1.2 0.0

P-n20-k2 160 OPT 0 0 28.9 28.9 1.0 18.8 7.8 0.0 0.0
P-n40-k5 140 OPT 0 0 75.8 75.8 1.0 68.9 0.0 0.1 0.0
P-n51-k10 80 OPT 0 0 40.7 40.7 1.0 25.2 7.1 0.2 0.0
P-n60-k10 120 OPT 0 0 146.8 146.5 1.0 102.9 26.7 0.3 0.0

P 4 4 0 0 0 0 0 0 73.1 73.0 1.0 53.9 10.4 0.2 0.0

ulysses-n16-k3 5 OPT 0 0 1.1 1.1 1.0 0.0 0.0 0.0 0.0
gr-n24-k4 7 OPT 0 0 1.9 1.9 1.0 0.3 0.2 0.0 0.0
swiss-n42-k5 9 OPT 0 0.33 20.7 17.3 3.0 6.5 6.7 1.6 1.9

V 3 3 0 0 0 0 0 0.11 7.9 6.8 1.7 2.3 2.3 0.5 0.6

19 17 1 0 1 0 0 0.14 765.0 393.6 4.2 573.0 65.0 94.8 94.8
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