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Resumo

Nesta tese, abordamos o problema de estimação de um mapa de profundidade denso a
partir de uma única imagem de entrada. Focamos em abordagens autossupervisionadas
que usam a reconstrução de vistas como uma tarefa auxiliar e usam vídeos monoculares
para treinamento. Como a reconstrução das vistas depende de encontrar correspondên-
cias de pixels precisas entre as vistas em uma cena, um desafio importante é evitar que
estimações de correspondências incorretas reduzam a eficácia da reconstrução de vistas
baseada em perda para convergir em uma solução que tenha um desempenho adequado
na estimação de profundidade. Estimações incorretas de correspondência de pixels podem
ocorrer devido a vários motivos. Por exemplo, alguns pixels não têm correspondências de
pixel verdadeiras, como pixels localizados em regiões com oclusão/desoclusão devido ao
movimento da câmera ou do objeto. Outros pixels parecem ter várias correspondências,
como pixels localizados em regiões homogêneas ou de pouca textura. Além disso, alguns
pixels têm correspondência verdadeira em visualizações adjacentes com representações
de características inconsistentes devido à reflexão e à refração que dificultam a corres-
pondência. Para contornar esse desafio, desenvolvemos vários mecanismos para reduzir a
influência de pixels com estimações de correspondência incorretas. Primeiramente, propu-
semos uma heurística baseada na consistência de profundidade para diminuir a influência
dos pixels na função de perda. Além disso, desenvolvemos um mecanismo de atenuação de
perda adaptativa para reduzir a influência de pixels com estimações de correspondências
incorretas com base na incerteza aleatória. Por fim, formulamos uma função de perda de
consistência adaptativa que penaliza a diferença de várias representações de características
considerando apenas as correspondências com erro mínimo de reprojeção. Nossos resul-
tados demonstram que as melhorias propostas para a função de perda podem aumentar a
precisão do nosso modelo autossupervisionado de estimação de profundidade de imagem
única. Outro desafio está relacionado à observação de que otimizar um modelo com re-
construção de vistas como tarefa auxiliar não implica que o modelo seja otimizado para a
estimação de profundidade. Em resposta a esse desafio, desenvolvemos mecanismos para
alavancar as representações de características aprendidas pelo modelo. Inicialmente, pro-
pusemos um mecanismo de compartilhamento de características que permite que o modelo
de movimento da câmera aproveite as características profundas aprendidas pelo modelo
por meio de conexões laterais. Além disso, a função de perda de consistência adaptativa
leva em conta o mapa de coordenadas 3D, as características profundas e as representa-
ções de cores com reprojeção mínima. Por fim, desenvolvemos um método para realizar
a autodestilação para fornecer um sinal de aprendizado adicional para treinamento. Esse
método é o resultado da adaptação e avaliação de estratégias de aplicação de consistência
para realizar a autodestilação por meio da consistência de predição. Nossos resultados
mostram que as melhorias na forma como aproveitamos as representações de característi-
cas e a autodestilação podem aumentar o desempenho da estimação autossupervisionada
de profundidade de uma única imagem.



Abstract

In this thesis, we address the problem of estimating a dense depth map from a single input
image. We focus on self-supervised approaches that use view reconstruction as an aux-
iliary task and use monocular videos for training. Since view reconstruction depends on
finding accurate pixel correspondences among views of a scene, an important challenge is
to prevent incorrect correspondence estimates from reducing the effectiveness of the view
reconstruction-based loss to converge on a solution that performs well in depth estimation.
Incorrect pixel correspondence estimates can occur due to a variety of reasons. For exam-
ple, some pixels have no true pixel correspondences, such as pixels located in regions with
occlusion/disocclusion due to camera or object motion. Other pixels appear to have mul-
tiple correspondences, such as the pixels located in homogeneous or low-textured regions.
Moreover, some pixels have true corresponding ones in adjacent views with inconsistent
feature representations due to reflection and refraction that make matching difficult. To
address this challenge, we develop several mechanisms to diminish the influence of pixels
with incorrect correspondence estimates. First, we propose a heuristic based on depth
consistency to reduce the influence of pixels on the loss function. In addition, we formulate
an adaptive loss attenuation mechanism to decrease the influence of pixels with incorrect
correspondence estimates based on aleatoric uncertainty. Finally, we develop an adaptive
consistency loss function that penalizes the difference of several feature representations
considering only the correspondences with the minimum re-projection error. Our results
demonstrate that the proposed improvements to the loss function can increase the ac-
curacy of our self-supervised single image depth estimation model. Another challenge is
related to the observation that optimizing a model with view reconstruction as auxiliary
task does not imply that the model is optimized for depth estimation. In response to
this challenge, we proposed mechanisms to leverage the feature representations learned
by the model. First, we propose a feature sharing mechanism that allows the camera
motion model to take advantage of the deep features learned by the depth model via
lateral connections. In addition, the adaptive consistency loss leverages 3D coordinate
map, deep features, and color representations on minimum re-projection. Finally, we de-
velop a method to perform self-distillation to provide an additional learning signal for
training. This method is the result of adapting and evaluating consistency enforcement
strategies to perform self-distillation through prediction consistency. Our results show
that improvements in how we leverage feature representations and self-distillation can
increase performance in self-supervised single image depth estimation.
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Chapter 1

Introduction

Humans have a remarkable capability to perceive the structure of the world. Given a
single image, we can infer the several properties of the objects in the scene, such as their
3D shape, if they are rigid or deformable, if they are moving or static. Moreover, we can
also infer relationships between the objects in the image, for example, if they are closer or
distant among themselves or to the camera. Studies [36, 72, 79] suggest that we develop
a structural understanding very early through visual experiences that consist mainly of
observing and moving around our environment with very weak or no supervision.

Approaches to incorporate visual perception into computer systems have been widely
studied in the literature. In recent years, deep learning methods have been successfully
applied in many computer vision tasks, including tasks related to perception of 3D struc-
ture such as depth estimation. One of the key elements that enabled deep learning success
is the availability of large labeled data sets. However, collecting large labeled data is ex-
pensive because it requires a huge amount of human effort. Moreover, the intuition that
increasing the size of labeled data sets used for training is enough to enhance a model
significantly does not always hold. Even in very large weakly labeled data sets of hundred
of millions of examples performance increases at a log-linear rate than the size of data
sets [24]. Thus, the size, quality and availability of labeled data sets are becoming a
bottleneck for supervised methods.

In this thesis, we focus on single-image depth estimation (SIDE). The context of this
problem is more adverse than other fundamental computer vision problems. Depth ground
truth is mostly obtained with complex procedures that involve interpolating 3D Light
Detection and Ranging (LIDAR) point clouds, using 3D fitted CAD models, data cleaning,
and/or post-processing methods [41]. Moreover, data sets in this area [35, 74, 42, 53]
are by far smaller when compared to the data sets available in other computer vision
problems [6, 1, 65].

In self-supervised deep learning, the methods are trained on auxiliary or pretext tasks
for which labels are obtained from the data itself, for free. Moreover, self-supervised
methods are improving every year and becoming competitive with supervised learning
methods. Several works aim to close the gap between supervised and self-supervised
learning in various scenarios. For instance, in visual representation learning, Goyal et al.
[24] showed that self-supervised pre-training can outperform or be competitive with su-
pervised pre-training in several tasks. Moreover, when self-supervised methods cannot
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surpass their supervised counter-pats, they can be complementary and improve aspects
of model robustness such as robustness to adversarial examples and label corruption [27].

SIDE can be learned with a self-supervised approach. This approach consist of learn-
ing depth using view reconstruction as a pretext task. SIDE methods based on this
approach rely on appearance and geometric consistency among nearby frames on videos,
to reconstruct a reference frame with the intensities of another frame, and to use the
reconstruction error as a supervisory signal. Thus, these methods can learn depth esti-
mation without labeled data sets, and can take advantage of the vast amount and rich
variability of video data available.

Advances on SIDE methods can impact a wide range of fields. Depth information is
valuable for image and video manipulation applications such as image composition [37]
and background replacement in videos [16]. The underlying relationships of blur and 3D
geometry make depth information helpful for image deblurring [31]. In addition, depth
can be used as a complementary source of information to enhance the performance of
downstream tasks, for instance, dense depth maps can improve object detection meth-
ods [8], depth cues can help semantic segmentation [56], depth information is useful for
video stabilization [44]. Moreover, several augmented reality (AR) applications require
accurate depth estimation methods to obtain a representation of the 3D geometry. Ef-
ficient depth estimation methods are crucial in applications such as real-time navigation
and shopping using mobile devices [80], AR assisted surgical procedures [5], AR assisted
manufacturing processes [66], and potentially many other applications [50]. Furthermore,
depth, as a representation of the 3D structure of the scene, is important for navigation in
autonomous systems in real environments, for example, on autonomous driving [19].

1.1 Problem and Approach

The problem of estimating depth from a single image has been widely studied in computer
vision [75]. It consists of predicting a dense depth map given a single input image.
Figure 1.1 illustrates the input and output of SIDE methods.

Figure 1.1: Input RGB image and its dense depth map prediction obtained with the
method described in Chapter 6.

Self-supervised deep learning methods for SIDE rely on view reconstruction as pretext
task. At training time, view reconstruction requires multiple views of an scene. These
views can be obtained from monocular or stereo sequences. Assuming that we only
consider a pair of view of a scene, we reconstruct one of the views, i.e., the target view,
from the information contained in another view, that is, a source view. Reconstruction
is possible because we can find pixel correspondences with consistent appearance on the
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source and target views. In this thesis, we focus on methods that learn SIDE from
monocular sequences. Although these method use monocular sequence for training, they
only require a single image for inference.

View reconstruction is done by warping the source view into the target view using the
pixel coordinate correspondences. We can obtain these correspondences using multi-view
geometry relationships that require depth information of the target view and the relative
camera motion between the source and target view. The depth maps as well as the relative
camera motion can be learned with models, for instance, Convolutional Neural Networks
(CNNs), using reconstruction error as a supervisory signal.

1.2 Challenges

In the previous section, we introduced the problem and the approach for self-supervised
depth estimation. In this section, we will describe several challenges that emerge from
characteristics of the problem and the approach.

1.2.1 Incorrect Pixel Correspondence Estimates

Incorrect correspondence estimates reduce the effectiveness of models trained with view
reconstruction-based loss to converge on a solution that performs well on depth estima-
tion. In this section, we describe key characteristics that are causes of incorrect pixel
correspondence estimates.

Occlusion

View reconstruction performed either with depth maps or camera motion allows to warp
the content of one view to another. The warping process consists of creating a mapping
between all the pixels coordinates from the target view, the view to be reconstructed, to
coordinates on a source view, the view where the pixel intensities come from. However,
due to camera motion or moving objects, some pixels in the target view are occluded on
the source view. Thus, depth estimates have high error rates on disoccluded regions in
the target view because consistency cannot be enforced on these regions.

Moving Objects

Self-supervised methods that rely on view reconstruction as a supervisory signal and
depend on a multi-view geometry relation that requires that the 3D structure of the scene
be rigid among frames [97, 49, 2]. Thus, if this rigid assumption is violated, for instance,
whether there are moving objects on the scene, the performance of models decreases.
Recently, various works [7, 23, 62] have addressed this problem, showing promising results.
Methods that depend on directly predicting the optical flow among frames do not have
this limitation because they learn pixel displacements independently of the rigidity of the
scene.
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High-Frequency Structure Regions

Recent self-supervised dense depth estimation methods predict depth maps that capture
the scene structure and motion reasonably. Most of these methods use pixel-wise or
structure-aware loss functions that are able to learn low-frequency structures on the image,
on the other hand, they perform poorly in regions with high-frequency structures.

Large Low-Textured or Texture-Less Regions

On the self-supervised context, depth estimation are ill-posed problems because there
are various depth maps or flow fields that can satisfy geometric consistency. A common
solution is to enforce continuity or smoothness on predictions penalizing large variations
on regions with small intensity gradients [18]. However, even with this constraint, methods
tend to fail in these regions [61]. Low-textured or texture-less regions do not occur only
because of the material or the texture of the surface, but also because the regions can be
overexposed.

Surface Reflection and Refraction

As self-supervised SIDE methods form structure and motion estimation rely on view
reconstruction, appearance consistency among frames should be maintained. However,
surfaces with highly specular reflection break this assumption. Moreover, transparent
materials, which can also be specular depending on the illumination of the scene, could
also be ignored because they can refract light.

1.2.2 Divergence of View Reconstruction and Depth Estimation

Performance

Since self-supervised SIDE methods are not trained directly on depth estimation, but use
view reconstruction as an auxiliary task, there is no guarantee that the convergence of a
model to a good local optimum on view reconstruction implies that the model has con-
verged to a proper solution for depth estimation. This observation is reinforced by a recent
empirical evaluation [43] that suggests that networks trained using view reconstruction
loss, after improving depth estimation to some extent, diverge from depth estimation er-
ror. Thus, the key challenge is to find approaches to improve the optimization objectives
and reduce this divergence in training.

1.3 Objectives

The main goal of this thesis is to investigate approaches to address relevant challenges of
self-supervised SIDE from monocular videos. To accomplish our aim, we dedicated our
efforts to accomplish the following objectives:

• Evaluating and proposing approaches to handle regions without valid pixel corre-
spondences in view reconstruction.
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• Proposing an approach to leverage feature sharing between depth and camera motion
networks.

• Proposing an approach to combine the consistency constraints on structure and
feature representations used by depth models.

• Evaluating and proposing approaches to perform self-distillation via prediction con-
sistency.

• Implementing a framework for the evaluation of self-supervised depth estimation
approaches.

1.4 Research Questions

To achieve the objectives of our research, we formulated a set of research questions with
the aim to bound the scope of the potential solutions and analysis.

How can we reduce the detrimental effect of pixels without correspondences

on training neural networks for self-supervised SIDE?

The view-reconstruction approach to learn SIDE without labels require explicit mecha-
nisms to reduce the detrimental effect of the corrupted gradients due to pixels without
correspondences. In Chapter 4, we explore heuristics to filter out or to diminish the contri-
bution of pixels without correspondences to the loss function. In Chapter 5, we explore an
approach to diminish the error contribution of pixels that might not have correspondences
using aleatoric uncertainty as weighting criterion.

How can we leverage the relationships of depth and camera motion feature

representations?

We believe that similarities of depth and camera motion estimation tasks, such as their
dependence of the geometric features, suggest that there might be complementary re-
lationships between them. In Chapter 4, we propose an approach to share the feature
representation learned by the depth network to the camera motion network.

How can we design a loss to enforce consistency between several feature rep-

resentations learned by the neural networks?

When using frame sequences of three or more frames, we could have more than one valid
correspondence by each pixel on the target view. In these cases, adaptive approaches, such
as minimum re-projection to reconstruct the target view considering color features, are
commonly used [22]. In Chapter 5, we extend minimum re-projection approach to enforce
consistency between geometric representation and learned feature maps in addition to
color information.
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How can we provide additional learning signals to train neural networks for

self-supervised SIDE?

The observation that the main optimization objectives used for training models with self-
supervised SIDE methods are not fully correlated with depth performance suggest the
necessity to investigate additional approaches to improve optimization on self-supervised
SIDE methods. In Chapter 6, we propose an additional loss term that performs self-
distillation via prediction consistency.

1.5 Contributions

The key contributions of this thesis are the following:

• A method that takes advantage of the availability of the feature presentations
learned by the depth and camera motion models in the self-supervised depth es-
timation framework. Our method shares the features learned by depth estimation
model to the camera motion model. Moreover, our method uses a heuristic based on
a depth consistency constraint to diminish the error contribution of pixels without
valid correspondences (see Chapter 4 for details).

• A method that addresses the presence of invalid correspondences by incorporating
two improvements on the loss function: (1) the extension of minimum re-projection
to enforce consistency between 3d-coordinate maps and deep features, and (2) the
usage of aleatoric uncertainty to diminish the error contribution of pixels without
valid correspondences (see Chapter 5 for details).

• A method that performs self-distillation via prediction consistency in self-supervised
depth estimation. Our method incorporates per-pixel filtering strategies. Further-
more, we adapt and evaluate representative consistency enforcement strategies (see
Chapter 6 for details).

• The development and public release of the source codes12 that implement the meth-
ods presented in this thesis.

1.6 Publications

During the development of this thesis we published our results on international conferences
dedicated to the communication of advances on the fields of computer vision, pattern
recognition, and artificial intelligence.

• J. Mendoza, H. Pedrini. Self-Supervised Depth Estimation Based on Feature Sharing

and Consistency Constraints. 15th International Conference on Computer Vision
Theory and Applications (VISAPP). Valletta, Malta, pp. 134-141, February 27-29,
2020.

1https://github.com/jmendozais/SDSSDepth
2https://github.com/jmendozais/DCFSGNet
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• J. Mendoza and H. Pedrini. Adaptive Self-Supervised Depth Estimation in Monocu-

lar Videos. 11th International Conference on Image and Graphics (ICIG). Haikou,
China, pp. 687-699, August 06-08, 2021.

• J. Mendoza and H. Pedrini. Self-Distilled Self-Supervised Depth Estimation in

Monocular Videos. 3rd International Conference on Pattern Recognition and Arti-
ficial Intelligence (ICPRAI). Paris, France, pp. 423-434, June 1-3, 2022.

1.7 Thesis Organization

This thesis is organized as follows. In Chapter 2, we review the main concepts, ap-
proaches, and aspects of several works proposed in the literature for depth and optical
flow estimation. In Chapter 3, we introduce the data sets and metrics. In Chapter 4, we
propose methods to improve self-supervised depth estimation using feature sharing and
consistency based occlusion detection. In Chapter 5, we develop two adaptive strategies
enhance self-supervised depth estimation. In Chapter 6, we propose a self-distillation
method based on prediction consistency. Finally, in Chapter 7, we present our concluding
remarks.
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Chapter 2

Background

Depth estimation is a longstanding task in computer vision. An early depth estima-
tion strategy used edge information and perspective geometry to infer three-dimensional
structure and, therefore, depth from a single image [63]. Learning-based approaches have
also proposed for depth estimation. A method used for single-image depth estimation
employed multi-scale Markov Random Field (MRF) model over relative and absolute fea-
tures from the input image [69]. Furthermore, deep learning-based methods have also
been successfully applied for depth estimation. Thus, a supervised approach proposed for
depth estimation used a convolutional network to estimate a coarse depth map, and a
second network to refine the results [14].

Another view of the brightness constancy assumption is as a source of supervision to
warp or reconstruct one view to another using photometric error. Several methods for
single-image depth estimation based on view reconstruction have been developed through
stereo images for training. An early approach to learning single-image depth estimation
used view reconstruction with the target and source views being the images in the stereo
pair [18]. The view reconstruction process is required to know the relative position between
the stereo pair and the intrinsic parameters of the camera. Thus, view reconstruction can
be enforced between nearby views in the sequence frames of a monocular video [97]. In
contrast with stereo methods, in which the relative position between cameras is already
known, an additional model is used to estimate the relative position between the camera
in different instants of time, expressed as an Euclidean transformation. Moreover, a recent
approach proposed to learn the intrinsic parameters besides depth and the relative camera
motion allowing to train the model with videos with unknown camera parameters [23].

In the following sections, we review relevant approaches and concepts, as well as
describe aspects of several methods proposed in the literature for depth estimation.

2.1 Learning SIDE from Monocular Videos

The usage of view reconstruction as a main supervisory signal for depth estimation models
was extensively explored in the literature. Most of these methods require to determine
a mapping between pixel coordinates of a target and source views. A method for com-
puting this mapping is through perspective projection and relative camera motion [97].
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Perspective projection consists of transforming the coordinates of a point from the camera
coordinates system to image plane coordinates. It requires to know the intrinsic parame-
ters of the camera K. Compactly, we can represent the perspective projection as follows:

h(x) = Ã(KX) (2.1)

where X is a target point in the camera coordinate system, K is a matrix that contains
the camera intrinsic parameters, and Ã is a function that normalizes a homogeneous
coordinate representation dividing their coordinate values by their z-coordinate, and h(x)

is the homogeneous coordinate of x, which is the target point in the pixel in the image
plane. Similarly, the inverse perspective projection can be defined as follows:

X = D(x)K−1h(x) (2.2)

where D(x) is the depth value for the pixel x. This approach requires to back-project all
pixels of the target image to the camera coordinate system. Thus, we need to estimate
a dense depth map for the target image. Dense depth maps can be computed using a
convolutional encoder-decoder network.

Relative camera motion is defined as the rotation and translation transforms that
relate the coordinate systems that the camera had when the target It and the source
views Is were captured. Rotation and translation are Euclidean transformations, and can
be expressed them as a single transformation matrix Tt→s ∈ SE(3). Given a point of
interest, we can use Tt→s to map its coordinates from the target to the source camera
coordinate systems as follows:

Xs = Tt→sXt (2.3)

where Xs and Xt are the coordinates of the point of interest on the source and target
camera coordinate systems, respectively.

Given a pair of target and source views (It, Is), we can estimate the Euclidean trans-
formation Tt→s between their camera coordinate system transformation using a convolu-
tional network.

Using neural networks to estimate the depth map and the camera motion, and putting
the explained geometric relationships together, we can estimate correspondences between
the pixels in the target view It to the pixels in source view Is. Given a pixel xt in the
It, its coordinate is back-projected to the camera coordinate system of the It using its
depth value Dt(xt), and the inverse of its intrinsic matrix K

−1. Then, the relative motion
transformation Tt→s is applied to project the back-projected coordinate from the camera
coordinate system of the It to the camera coordinate system of Is. Finally, transformed
coordinates are projected into the source image xs. We represent this mapping in the
following equation:

h(xs) = Ã(KTt→sDt(xt)K
−1h(xt)) (2.4)

where h(x) is a function that maps a pixel x to its homogeneous representation and Ã

is a function that normalizes homogeneous coordinates dividing their values by the last
coordinate.

Figure 2.1 depicts the frame-to-frame pixel coordinate mapping graphically. The re-
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Figure 2.1: Pixel coordinate mapping. We show the pixel coordinate mapping between
a source and a target frame using perspective projection and the relative camera motion
Tt→s.

sulting coordinates can be floating points. Thus, bilinear interpolation is used to compute
the pixel intensity values [97].

Once we know the projected coordinates and, therefore, the pixel intensities in the
source image plane for each pixel in the target image, we can reconstruct the target
frame. This process is also known as image warping. Let us define this operation as
follows:

Îs→t = wd(Is,Dt,Tt→s) (2.5)

where Îs→t is the reconstructed image and wd is the warping function.

2.1.1 View Reconstruction Loss

Depth and camera motion models are trained using the view reconstruction as a supervi-
sory signal. View reconstruction is possible because we know that multiple views of the
same scene have consistent properties. For instance, source and target source should be
photometrically consistent, that is, the brightness information of both views should be
consistent. Thus, the brightness difference between the target and the source view warped
to the target view should be minimal. We show the view reconstruction objective in the
following equation:

Lrec =
∑

Is∈Is

Ä(It, Îs→t) (2.6)

where Is is a set of source views to the target view, and Ä is function that measure the
brightness dissimilarity. We can consider the previous and next frames in the sequence of
frames as source views, that is, Is = {It−1, It+1}, as in [97] used for depth estimation, or
we can just consider the previous frame, that is, Is = {It−1}.

The dissimilarity function could be any distance function that can be applied to a
pair of images, such as L1 distance that was used earlier for depth estimation [18] or a
combination of the L1 distance and the structure dissimilarity function (DSSIM) that has
been widely used in recent works. This dissimilarity function [47], which is also known as
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photometric consistency loss, is defined as follows:

Ä(It, Îs→t) = ³r

(

1− SSIM
(

It, Îs→t

)

2

)

+ (1− ³r)
∣

∣It − Îs→t

∣

∣ (2.7)

where ³r is the trade-off parameter to combine the L1 and DSSIM and SSIM is the
structure similarity function [83].

2.1.2 Smoothness Regularization

Moreover, photometric error is not-informative in homogeneous regions since in these
regions multiple depth values can produce equally good reconstructions [18, 34]. Most
methods in the literature address this problem using a smoothness constraint, which en-
forces continuity on predictions. Several smoothness constraints have been explored in
the literature. A common issue about the smoothness constraint is that we cannot enforce
it in edge regions, where depth variations are natural. A heuristic to overcome this issue
is to reduce the loss inversely proportional to the image gradient in order to preserve
edges. Equation 2.8 shows an instance of an edge-preserving depth smoothness loss used
in [21, 92].

Lds =
∑

x∈Ω(It)

|∇Dt(x)|
(

exp
(

|∇It(x)|
))

⊺

(2.8)

where Ω(It) is the set of pixel coordinates of It, and Dt is the corresponding depth map.

2.1.3 Multi-Scale Architecture

In this work, we focus on methods that use convolutional encoder-decoder networks as
depth models. An advantage of these networks is that they allow to implement the
coarse-to-fine strategies used by early works in the literature of depth estimation [14, 30].
Figure 2.2 shows a multi-scale convolutional encoder-decoder for depth estimation.

Thus, we can use view reconstruction and the smoothness constraint at various scales
as a supervisory signal. Then, depth network can be trained with loss functions, shown
in Equation 2.9.

Ltotal =
∑

i∈S

L(i)
rec + ¼dsL(i)

ds (2.9)

where S is the set of desired scales.

2.1.4 Occlusion Handling

Consistency cannot be enforced in occluded regions. Several methods deal with occluded
regions by detecting and excluding them from the error computation. An approach to de-
tecting occlusion is to use thresholding to categorize the pixels with larger inconsistencies
as occluded.

Similarly, another approach to enforcing consistency is to penalize as the difference
between the forward and the inverse of the backward flow fields, while the threshold can
be set proportional to the magnitude of the flows [98]. A similar approach to verifying
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Figure 2.2: Coarse-to-fine strategy using a convolutional encoder-decoder network. The
feature maps at each level of the decoder have two uses. Fist, they are used to predict
a depth map using a convolution and an activation function. The activation limits the
output to valid depth values. Second, they are used to generate part of the features for
the next level of the decoder using a convolution followed by an upscale operation. The
features of the next level of the decoder are the concatenation of the up-scaled feature
maps, the up-scaled depth maps, and the feature maps of the skip connections.

if a pixel in the target view is occluded consists of checking if there are no pixels on
the source view that will land in its neighborhood, using the predicted flow [48]. Another
approach consists of using an additional model to estimate a mask, which excludes regions
in the target image that cannot be explained in the warping process, probably, due to
occlusions [97].

View reconstruction-based depth estimation methods that consider a target with sev-
eral source views can leverage that regions in the target view that are occluded in one
source view may not be occluded in another source view. Thus, when reconstructing a
region that is occluded in one source view, for instance, a frame before the target frame,
another view where this region is not occluded will reconstruct it with less error, for in-
stance, a frame after the target frame, which can be accomplished using a pixel-wise min
operator over the photometric error maps [22, 7]. Equation 2.10 shows this error function,
also known as minimum re-projection loss.

Lrec = min
Is∈Is

(

Ä
(

It, w(Is,Dt,Tt→s)
)

)

(2.10)

Moreover, depth information can be used to detect occluded regions. A strategy for
determining if a pixel in the target view is occluded in a source view is to verify that, when
its translated to the coordinate system of the source view, it is behind another pixel [23].

2.1.5 Multi-View Consistency

Nearby frames should have consistent structure representations since they correspond
to the same scene. An approach to enforcing consistency on predictions is to penalize
the difference between the depth maps of the target and the source views on the same
coordinate system. For example, a method estimated the depth value for each pixel of the
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target view in the image coordinate system of the source view using the camera motion
transformation, in order to penalize their difference with depth values according to the
source view [96].

A similar approach is to enforce consistency not only with the depth values but with
the 3D coordinates of the target and source views [9]. When transforming depth or 3D
coordinates to the source coordinate system, the point may lie in floating-point locations
in the source view. Then, the source view values can be obtained using interpolation.
An alternative strategy when using 3D coordinates is to compute the difference using the
Iterative Closest Point (ICP) algorithm [49].

Consistency can be enforced not only on depth or 3D coordinates but also the feature
maps. One approach is to warp depth feature maps of the source view to the target view,
in a similar way as view reconstruction is done, to penalize its difference with the feature
maps of the target view [58, 59]. Another approach leverages structure, appearance, and
feature consistency to improve depth and camera motion estimates through a differentiable
Levenberg-Marquardt algorithm [71, 76]. Additionally, while most of the methods enforce
consistency between adjacent views, considering consistency between not adjacent views
in the neighborhood can boost the performance [96].

2.2 Knowledge Distillation

Knowledge distillation (KD) is a technique created to transfer information from one model
to another. Early iterations of KD methods focused on transferring information from a
powerful model that has certain limitations for deployment to a model that does not have
these limitations. The powerful model could be a single large neural network or an en-
semble. These models have limitations to be deployed on devices with low computational
resources or applications with strict time constraints. Thus, knowledge distillation can
be used to transfer information from these powerful and cumbersome models to smaller
models that could meet the time and resource constraints with a minimal performance
reduction. Furthermore, later iterations of KD methods have shown that transferring in-
formation from source to target model with similar characteristics also benefits the target
model.

2.2.1 Teacher-Student Structure

The teacher-student structure is a common characteristic of methods that aim transfer
information from a source model or ensemble, which takes the role of the teacher, to a
target model, which takes the role of the student. Teacher-student structure has been
widely used in KD methods.

Moreover, the teacher-student structure has been extensively used in semi-supervised
learning. In semi-supervised learning the teacher network is trained with labeled data and
predicts pseudo-labels for the unlabeled data. Then, the student learns with the labeled
data and the unlabeled (pseudo-labeled) data.



26

2.2.2 Applications

In classification problems, KD is performed by transferring the information about how
likely an input example belongs to the incorrect classes, in addition to the correct class.
This information, also known as dark knowledge, provides insights about how the source
model tends to generalize [29]. Dark knowledge is transferred by minimizing the differ-
ence between the logits or smoothed probabilities obtained from the teacher and student
networks.

In regression problems, the output of the networks have similar characteristics as the
ground-truth. In SIDE, for instance, the output could be a two-dimensional matrix with
continuous values that is similar to the dense depth ground truth. Thus, we do not
have access to any dark knowledge. However, it has been shown that with additional
considerations [68, 94] student network can still benefit from the information provided by
the teacher network.

2.2.3 Self-Distillation

There are challenging scenarios in which the KD can not be applied effectively, for in-
stance, when the computational resources available are not good enough to train a large
model, when training a large teacher model is too challenging, or when the method cannot
efficiently transfer information from the teacher to the student models. One approach to
deal with these scenarios is self-distillation. Self-distillation (SD) is a technique to transfer
information from the target model to itself without using external models. Self-distillation
has other advantages such as it does not require teacher model selection.

There are several methods to perform self-distillation [82]. One approach is the se-
quential SD, which consists of training models in multiple sequential stages, where the
student model trained in a previous stage becomes a teacher to train the current student
model. In SD based on data transformation the student learns consistent representations
for input examples that are exposed to transformations. Another approach, SD via deep
supervision, is applied to student models with multiple output branches at different layers.
Based on the observation that deeper branches can provide useful information to shal-
lower layers, this strategy uses the deeper branches as teacher and the shallower branches
as student.
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Chapter 3

Materials and Metrics

In this chapter, we describe the data sets and the evaluation metrics used in the methods
that will present in Chapters 4, 5 and 6. In addition, we describe the hardware and
software resources used to implement the methods.

3.1 Dataset

KITTI benchmark [20] is one of the most used data sets for the evaluation of depth
estimation methods. It was created with the purpose reduce the bias and complement
available benchmarks with real-world data. It is composed of video sequences with 93
thousand images acquired through high-quality RGB cameras captured by driving on
rural areas and highways of a city. For depth estimation, each image has a sparse depth
ground-truth provided by a Velodyne LIDAR scanner. The LIDAR scanner and RGB
cameras capture information of the scene at 10 frames per second.

As several of depth estimation methods available in the literature, we plan to use the
Eigen split [14] for evaluation. It contains 40K images for training, 4K images for valida-
tion, and 687 images for testing. For optical flow estimation, the benchmark provides 200
training and 200 testing scenes [53]. Figure 3.1 shows samples from the KITTI benchmark
with depth/disparity and optical flow annotations.

3.2 Evaluation Metrics

We used the error metrics defined by Eigen et al. [14], which are extensively used in
the evaluation protocols of other methods in the literature: Absolute Relative Difference,
Squared Relative Difference, Root Mean Squared Error (RMSE), and Log RMSE. These
metrics can be expressed as follows:

EAbs Rel =
1

|D|
∑

d∈D

|d− d∗|
y∗

(3.1)

ESq Rel =
1

|D|
∑

d∈D

||d− d∗||2
y∗

(3.2)
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Figure 3.1: Examples from the KITTI dataset. Each example displays an RGB image
and the sparse LIDAR measurements captured from a scene.

ERMSE =

√

1

|D|
∑

d∈D

||d− d∗||2 (3.3)

ELog RMSE =

√

1

|D|
∑

d∈D

|| log d− log d∗||2 (3.4)

where d is a predicted depth value, d∗ is the ground-truth depth value for d, and D

represents the sets of values on the predicted depth map.
Moreover, we used thresholded accuracy metric, which is the proportion of depth values

with a ratio of the predicted to ground-truth value in the interval < 1
δ
, ¶ >. Similar to

previous works, we computed the proportion for the intervals defined by ¶ values equal
to 1.25, 1.252 and 1.253.

Eδ =
1

|D|
∑

d∈D

[

max

(

d

d∗
,
d∗

d

)

< ¶

]

(3.5)

where [.] is the Iverson bracket operator.

3.3 Hardware and Software Resources

The experiments required to conduct in this thesis demand high computational cost due
to the image processing, computer vision and deep learning algorithms that we need
to execute. Most of this computational burden can be executed effectively using GPU
hardware. We use the equipment available in the Laboratory of Visual Informatics of the
Institute of the Computing at UNICAMP, which have several computers with GeForce
GTX 1080 Ti and a TITAN V GPU cards with 11 and 12 GB of memory, respectively.

Python programming language has been used to implement our framework due to
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its availability of open-source libraries for image processing, computer vision, and imple-
menting deep neural networks. We have used several libraries such as NumPy for linear
algebra operations in CPU; OpenCV, PIL, and Scikit-Image for computer vision and
image processing operations; and TensorFlow and PyTorch for deep learning.
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Chapter 4

Self-Supervised Depth Estimation

Based on Feature Sharing and

Consistency Constraints

In this chapter, we propose a self-supervised method for depth and camera motion es-
timation in monocular videos. Inspired by multi-task learning literature, where various
methods have been proposed that take advantage of the task similarity and share rep-
resentations between tasks, we propose to share the representations of depth network to
camera motion network. Specifically, we use the feature maps of each layer in the en-
coder part of the depth network as input to the camera motion network by projecting
and summing them to their task-specific feature maps.

Moreover, we investigate a constraint that decreases the error contribution of regions
with inconsistent projected depth values. Thus, the model does not lose supervision in
the early stages of training, where depth estimates are more prone to have inconsistencies.

This text is organized as follows. In Section 4.1, we review some relevant methods
related to the topic under investigation. In Section 4.2, we present the proposed self-
supervised depth estimation methodology. In Section 4.3, we describe and evaluate the
experimental results. In Section 4.4, we conclude the chapter with some final remarks.
Our code is available at https://github.com/jmendozais/DCFSGNet.

4.1 Related Work

In this section, we briefly review some relevant approaches available in the literature
related to the topics explored in our work.

4.1.1 Geometric Constraints and Occlusion

The usage of geometric constraints to deal with occlusion have been widely explored in the
literature. An approach proposed by Yin and Shi [92] penalized optical flow inconsistencies
between the flow predictions obtained from depth and camera motion estimates as well
as an optical flow network prediction, in the forward and backward direction.



31

Luo et al. [48] proposed to penalize depth inconsistency by projecting depth maps
between adjacent frames using the respective camera motion transformation, besides op-
tical flow consistency Similarly, Zhou et al. [96] penalized depth inconsistencies not only
between adjacent frames but between each pair of frames in the neighborhood.

Mahjourian et al. [49] and Chen et al. [9] penalized the difference between the predicted
depth maps back-projected to the same reference three-dimensional coordinate system.
Moreover, they also penalized inconsistencies of the optical flow prediction obtained from
the depth and camera motion estimates and the flow predicted with another network. In
addition to prediction error, depth inconsistencies occur in regions that are not explainable
because occlusion.

Other methods use geometric constraints to ignore occluded or disoccluded regions
on the reconstruction loss [23, 48, 98]. However, we observed that geometric inconsistent
regions are common in earlier stages of training, and the model loss the supervisory
signal to those regions if they are completely ignored. In contrast, we decrease the error
contribution on those regions instead of removing them.

4.1.2 Multi-Task Architecture

Representation sharing is an important aspect of multi-task learning because it has advan-
tages such as the reduction of over-fitting and the reduction of processing time. However,
determining a proper degree of representation sharing is not trivial.

Several approaches have been proposed to train various similar tasks simultaneously
with some degree of representation sharing. For instance, in convolutional neural net-
works, this representation sharing can be tuned by the number of layers shared by various
networks trained to learn different tasks. Thus, networks with a few shared layers will
share less information than networks with more shared layers.

Misra et al. [54] shared information by computing the representation at each level of
the network as a linear combination of the representations obtained from the last level.
Similarly, Ruder et al. [64] computed a half representation as a linear combination of the
output of previous layers, keeping the other half as a task specific representation. Liu
et al. [46] used a network to learn global representations and task-specific networks that
use attention modules to learn task-specific representation from global representations.

In this work, we show that sharing depth network representation to the camera motion
network can improve our model performance.

4.2 Proposed Method

We summarize our method in Figure 4.1. In this section, we give an overview of the for-
mulation used for depth and camera motion estimation. Then, we describe our geometric
consistency constraint and feature sharing mechanism. Finally, we present architecture
considerations of our neural network.
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{Dt, Ds→t} 
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Ldc

Lrec
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Figure 4.1: Overview of our method. The depth network is used to predict the depth
maps for the source Is and target It images. The camera motion network predicts the
Euclidean transformation between the target and source camera coordinate systems Tt→s.
A soft-visibility mask is computed based on the target depth map and the projected source
depth map Ds→t. Feature maps of the depth network are shared with the camera motion
network. Depth consistency and reconstruction loss terms are computed considering the
soft visibility mask Vt.

4.2.1 Overview

The core idea of self-supervised depth estimation is that, given two views of the same
scene, we can reconstruct one of the views, that is, the target view It, from the other
view, that is, the source view Is. Thus, reconstruction error is used to guide the learning
of the model.

Reconstruction is done through perspective projection and the relative camera motion
between a pair of views. Perspective projection requires to have the intrinsic parameters
of the camera K, and the depth values for each pixel in the target image. We obtain
depth values using a convolutional encoder-decoder network D that learns to estimate a
dense depth map D for an input image I.

The relative camera motion is represented by an Euclidean transformation Tt→s ∈
SE(3) between the coordinate systems that the camera had when the target view It and
the source view Is were captured. Given a pair of views

(

It, Is
)

, we estimate its motion
transformation Tt→s using a convolutional network M . We reconstruct the target frame
by projecting each pixel coordinate from the target view to the source view. Given a pixel
xt in the target frame, its coordinate is back-projected to the camera coordinate system
of the target view using the inverse of its intrinsic matrix K

−1. Then, the relative motion
transformation Tt→s is applied to project the coordinates form the coordinate system
of the target view to the coordinate system of the source view. Finally, coordinates are
projected to pixel coordinates on the source view. Equation 4.1 shows this mapping as
follows:

h(xs) = Ã
(

KTt→sDt(xt)K
−1h(xt)

)

(4.1)

where h(x) is the homogeneous representation of the pixel x, and Ã is a function that nor-
malizes homogeneous coordinates dividing their values by the last coordinate. The result-
ing coordinates can be floating points. Thus, bilinear interpolation is used to compute the
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pixel intensity values [97]. Using these pixel coordinates and intensity correspondences,
we reconstruct the target frame as Is→t(xt) = Is(xs).

Then, we use the reconstruction error for training. Equation 4.2 expresses the recon-
struction loss term as follows:

Lrec =
∑

Is∈{It−1,It+1}

Mt→sÄ
(

It(xt), Is→t(xt)
)

(4.2)

We consider the two adjacent frames of the target as source frames. Ä is a dissimilarity
function. In addition, we use the principled mask Mt→s proposed by Mahjourian et al. [49]
to ignore pixels that became not visible because of the camera motion. As several works
of the literature, we use a photometric consistency loss (See Section 2.1.1 for details).
However, photometric consistency loss is not-informative in homogeneous regions since in
these regions multiple depth assignments can produce equally good reconstructions [18].
This problem can be addressed by enforcing continuity on depth maps. We use the edge-
preserving local smoothness term described in Section 2.1.2.

In addition, the depth network is designed to predict depth maps at multiple scales to
address the gradient locality problem [97, 18]. Thus, we train the model with following
loss function:

L =
∑

i∈S

L(i)
rec + ¼dsL(i)

ds (4.3)

where S is the set of desired scales.
The described considerations are used for our baseline method. Both the depth net-

work D and the camera motion network M are trained jointly in an end-to-end manner.

4.2.2 Depth Consistency and Occlusion

Depth map and camera motion predictions determine implicitly a flow field that contains
the displacement of each pixel coordinate from the target frame to the source frame. This
flow field allows us to warp not only the source frame appearance It but also its dense
depth map Dt. For instance, we can warp the depth map of the source frame Ds to the
target frame.

Then, the depth maps predicted for the target frame Dt should be consistent with the
warped depth map Ds−>t. Depth consistency can also be enforced in the inverse direction,
that is, in the forward and backward direction.

Ldc =
∑

x∈Ω(It)

∣

∣Dt(x)−Ds→t(x)
∣

∣ (4.4)

Depth consistency does not hold for all pixels in the image because of the occlusions
and disocclusions produced by camera motion or by moving objects in the scene. Some
works use this prior to create a visibility mask that hide or decrease the error contribution
of pixels that have large inconsistencies.

Inconsistency at each pixel in the target image can be measured as absolute value of
normalized difference between the predicted depth value on the target image, and the
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(a) thresholded visibility function (b) thresholded visibility mask

(c) soft visibility function (d) soft visibility mask

Figure 4.2: Thresholded and soft visibility masks. In the first row, we show (a) thresholded
visibility as a function of the normalized depth difference and (b) its thresholded visibility
mask. On the second row, we show (a) soft visibility as a function and (d) its soft visibility
mask.

depth value of the source depth map projected to the target camera coordinate system.
As defined in Equation 4.5, we can compute a visibility mask by thresholding the incon-
sistencies along the target image with a threshold t obtained empirically. Equation 4.5
depicts this relation.

Vt(x) =

[∣

∣

∣

∣

Dt(x)−Ds→t(x)

Dt(x)

∣

∣

∣

∣

< t

]

(4.5)

where [.] is the Iverson bracket operator.
However, the networks do not produce accurate predictions on training, and a binary

visibility mask do not explicitly handle the inconsistency variability. Thus, instead of
ignoring several regions in the reconstruction loss, we propose to reduce the error contri-
bution of inconsistent regions mapping normalized per-pixel depth differences to visibility
values using a Gaussian function. This idea is used to built our soft-visibility mask as
follows:

Vt(x) = e

−αd

(

Dt(x)−Ds→t(x)

Dt(x)

)2

(4.6)

where ³d controls the smoothness degree of the visibility mask. Figure 4.2 shows the
inconsistency-visibility and visibility masks obtained with thresholding or with a Gaussian
on the inconsistencies.

We apply the visibility mask to the depth consistency and reconstruction loss terms
as follows:

Ldc =
∑

x∈Ω(It)

Vt(x)
∣

∣Dt(x)−Ds→t(x)
∣

∣ (4.7)
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Lrec =
∑

Is∈Is

VtMt→sÄ(It, Is→t) (4.8)

where Is is a set of source views to the target view, and Ä is dissimilarity function. We
consider the previous and next frames in the sequence of frames as source views, this is
Is = {It−1, It+1}.

Putting the loss terms together, the final loss function is the following:

L =
∑

i∈S

L(i)
rec + ¼dsL(i)

ds + ¼dcL(i)
dc (4.9)

where S is the set of scales, ¼ds is the weight factor for the depth smoothness term, and
¼dc is the weight factor for the depth consistency term.

4.2.3 Depth Encoder Feature Sharing

It has been shown that using a network with some degree of representation sharing can be
better than using separate networks [54, 13, 46], mainly because individual tasks can be
reinforced with the representation of other tasks and also because feature sharing allows
representations to avoid over-fitting in individual tasks, but to be useful in other tasks.

In our context, where estimation of depth and camera motion operates simultaneously
with the same input data and where tasks are complementary because the geometric for-
mulation provides supervision to both networks with the same loss function, this motivates
us to believe that representation sharing can improve the model performance.

Figure 4.3 illustrates our feature sharing mechanism. We propose to share the feature
maps of the depth encoder with the camera motion network. This allows the camera
motion network to leverage the depth features to improve the pose estimation. Moreover,
better pose estimates can potentially improve the reconstruction and, as a consequence,
depth estimation.

Equation 4.10 summarizes our proposal. Given a target frame It and its source frames
Is = {It−1, It+1}, our depth and camera motion networks produces feature maps from
these frames at each layer of the network. Thus, F(l)

D,t, F
(l)
D,t−1

, and F
(l)
D,t+1

are the features

at the layer l of the depth network on the target and source frames, respectively, F(l)
M are

the features of the camera motion network at the layer l. In addition, we apply a non-
linear transformation f over the concatenated depth representations F

(l)
D . For simplicity,

we set f to be convolution layer with 1×1 filters. We set the output of f to have the same
amount of feature maps of the camera motion network in the same layer level. Finally,
we sum the transformed features to the camera motion features as follows:

F
(l)
MD = F

(l)
M + f

(

[F
(l)
D,t : F

(l)
D,t−1

: F
(l)
D,t+1

]
)

(4.10)

4.2.4 Network Architecture

Finally, we briefly describe the network architecture. Our depth encoder-decoder net-
work is based on the DepthNet [92]. Its encoder network is based on the ResNet50.
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Figure 4.3: Feature sharing mechanism. The feature maps in the depth and camera
motion network are shown with green and red colors, respectively. “C” represents the
concatenation operation. f is a function that transforms the concatenated depth features.
“+” represents the element-wise sum operation.

Its decoder network is composed of deconvolutional layers that up-sample the bottleneck
representation in order to upscale the feature maps to the input resolution.

The encoder network has skip connections with the decoder network. In addition,
we use dropout after the last two layers of the encoder and the first two of the decoder
network to reduce over-fitting. In addition, we use bilinear interpolation for up-sampling
instead of nearest-neighbor interpolation to produce more accurate depth maps.

Our camera motion network predicts the relative motion between two input frames.
The relative camera motion has a 6-DoF representation, that is, the rotation angles and
the translation vectors. We use the architecture proposed by Zhou et al. [97].

4.3 Experiments

In this section, we describe and evaluate the experimental results achieved with the pre-
liminary implementation of our method.

4.3.1 Experimental Setup

We describe here the parameters of our model and the optimization method used in the
learning process, the dataset used to train and evaluate the models and, finally, the metrics
used to assess the model performance.

Parameter Setup

We used a trade-off parameter ³r = 0.85 in the reconstruction loss term. The weights of
the depth smoothness ¼ds and depth consistency terms ¼dc are 0.5 and 0.31, respectively.
We employed a smoothness parameter of the visibility map ³d = 2. We used a threshold
t = 0.3 for the alternative version of our method with the thresholded visibility mask. We
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applied Adam optimization with parameter ´1 = 0.9 and ´2 = 0.999. We chose a batch
size of 4.

The input images are re-scaled to 128×416 pixels. Furthermore, we apply random
scaling, cropping, and various color perturbations to the input images in the data aug-
mentation stage to reduce over-fitting. Depth and camera motion networks are trained
from scratch.

Dataset

We used the KITTI benchmark (Section 3.1), composed of video sequences acquired by
RGB cameras, and with sparse depth ground-truth provided by Velodyne LIDAR scanner.
As several works available in the literature, we used the Eigen split [14] for evaluation. It
contains 40K images for training, 4K images for validation, and 687 images for testing.

4.3.2 Depth Estimation

In this section, we present our experiments. First, we perform ablative experiments to
analyze the impact of each contribution on the performance of our model. Then, we
compare our results with other self-supervised depth estimation methods categorized into
three groups: methods that assume a static scene, methods that explicitly model moving
objects on the scene, and methods that perform parameter or output fine-tuning at test
time.

Ablation Study

Table 4.1 shows the performance of variants of our model. It is possible to observe that
the addition of depth consistency and either a hard or soft visibility masks is the major
source of improvement. Moreover, we can see that the soft visibility map is slightly better
than the thresholded visibility mask. It is also possible to observe that the complete
model obtains better results than just considering depth consistency and visibility mask.

Table 4.1: Ablation analysis. We compare the performance of several variants our method.
First, we present the results of our baseline model. Then, we show that the addition of
the depth consistency term (DC) and the thresholded visibility mask (TV) improved
the performance of the baseline. Furthermore, our results show that the use of a soft
visibility mask (SV) improves almost all the evaluation metrics. Finally, we present the
results achieved with our final model through depth consistency, soft visibility mask and
feature sharing (FS). The best result achieved for each metric is highlighted in bold.

Method
³ Lower is better ↑ Higher is better

Abs Rel Sq Rel RMSE LRMSE δ = 1.25 δ = 1.25
2

δ = 1.25
3

Baseline 0.150 1.266 5.864 0.232 0.803 0.932 0.973

Ours w/ DC & TV, w/o FS 0.141 1.061 5.679 0.222 0.809 0.936 0.976

Ours w/ DC & SV, w/o FS 0.141 1.029 5.536 0.219 0.811 0.939 0.977

Ours 0.138 1.030 5.394 0.216 0.820 0.941 0.977
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State-of-the-Art Comparison

In Table 4.2, we compare our method with the state-of-the-art methods. We split the
competing methods into three groups. In the first group, we consider methods with
similar settings to our method. Our method obtains better results in almost all metrics.
In the second group, our method is compared with methods that explicitly address moving
objects. Our method obtained competitive results. Finally, our method is compared
with methods that explicitly address moving objects and perform test-time fine-tuning.
Competing methods obtained better results than our method. Test-time fine-tuning is
important to obtain better results, but these gains come at the cost of higher inference
times [7, 9].

Table 4.2: Results of depth estimation on the Eigen split of the KITTI dataset. We com-
pare our results against several methods of the literature. Methods are categorized into
three groups: methods that assume rigid scenes, methods that explicitly model moving
objects, and methods that perform fine-tuning on the last layer of the network besides
considering moving objects. (*) indicates newly results obtained from an official reposi-
tory. Column “M” indicates whether the method has address moving objects explicitly.
Column “F” indicates whether the method performs test-time fine-tuning. The best result
achieved for each metric is highlighted in bold.

Method
³ Lower is better ↑ Higher is better

Abs Rel Sq Rel RMSE LRMSE δ = 1.25 δ = 1.25
2
δ = 1.25

3 M. F.

Zhou et al. [97]* 0.183 1.595 6.709 0.270 0.734 0.902 0.959

Mahjourian et al. [49] 0.163 1.240 6.220 0.250 0.762 0.916 0.967

Wang et al. [81] 0.151 1.257 5.583 0.228 0.810 0.936 0.974

Yin and Shi [92]* 0.149 1.060 5.567 0.226 0.796 0.935 0.975

Zou et al. [98] 0.150 1.124 5.507 0.223 0.806 0.933 0.973

Almalioglu et al. [2] 0.150 1.141 5.448 0.216 0.808 0.939 0.975

Zhou et al. [96] "LR" 0.143 1.104 5.370 0.219 0.824 0.937 0.975

Ours 0.138 1.030 5.394 0.216 0.820 0.941 0.977

Luo et al. [48] 0.141 1.029 5.350 0.216 0.816 0.941 0.976 6

Ranjan et al. [62] 0.140 1.070 5.326 0.217 0.826 0.941 0.975 6

Ours 0.138 1.030 5.394 0.216 0.820 0.941 0.977

Casser et al. [7] “M” 0.141 1.026 5.290 0.215 0.816 0.945 0.979 6

Gordon et al. [23] 0.128 0.959 5.230 0.212 0.845 0.947 0.976 6

Ours 0.138 1.030 5.394 0.216 0.820 0.941 0.977

Casser et al. [7] “M+R” 0.109 0.825 4.750 0.187 0.874 0.958 0.983 6 6

Chen et al. [9] 0.099 0.796 4.743 0.186 0.884 0.955 0.979 6 6

Figure 4.4 shows that depth maps predicted through our method can capture the
structure of the scene. In addition, the last two images show that, when the scene is not
rigid, our method is more prone to errors.
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Figure 4.4: Input images and corresponding depth maps generated with our method.
Images were sampled from the KITTI dataset.

4.4 Final Considerations

We proposed a self-supervised method for monocular depth estimation that relies on (i) a
depth consistency constraint, (ii) a soft visibility map that reduces the error contribution
in depth inconsistent regions, and (iii) sharing features from the depth to the camera
motion networks.

We showed that the soft visibility mask and feature sharing mechanism can improve
the performance of our baseline model. Our method achieves competitive results even
with methods that explicitly model moving objects in the scene.
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Chapter 5

Adaptive Self-Supervised Monocular

Depth Estimation

One of the main challenges of self-supervised approaches based on reconstruction is that
some pixels in frame cannot be explained from other frames because of occlusion, specular
reflection, textureless regions among other reasons. Several approaches deal with these
challenges excluding or attenuating the influence of pixels based on priors or adaptive
approaches that leverage the availability of multiple frames neighboring a target frame to
explain their pixels.

We develop and evaluate two adaptive strategies to improve the robustness of self-
supervised depth estimation approaches with pixels that violate the assumptions of view
reconstruction. Initially, we develop an adaptive consistency loss that extends the usage
of minimum re-projection to enforce consistency on 3D structure and feature maps, in
addition to the photometric consistency. Moreover, we evaluate the usage of uncertainty
as loss attenuation mechanism, where the uncertainty is learned by modeling predictions
as Laplacian, smooth-L1 or Cauchy probability distributions. Finally, we improve our
model with a composite visibility mask. Our code is available at https://github.com/

jmendozais/SDSSDepth.

5.1 Related Work

In this section, we briefly review some relevant methods available in the literature related
to the topics addressed in our work.

5.1.1 Consistency Constraints

The availability of a correspondence between the pixels on the source and target views
allows supervision by enforcing consistency on representations, in addition to the pixel
intensities. For example, we can enforce consistency between forward and backward opti-
cal flows [92, 48], predicted and projected depth maps [21, 48], 3D coordinates [49], and
feature maps [71, 93]. However, we cannot enforce consistency in the entire image because
some regions do not have valid correspondences, for example, occluded regions produced
by the motion of the camera or objects, or regions with specular reflection where the color



41

is inconsistent with the structure of the scene, and also due to multiple correspondences
for single pixels at homogeneous regions do not provide supervision.

Techniques that exclude or attenuate the error contribution of these regions have been
proposed in the literature. For example, learning an explainability mask [97], exclud-
ing pixels that are projected out of the field of view [49], excluding pixels with high
inconsistencies on optical flows or depth maps [92], excluding stationary pixels [22], ex-
cluding occluded pixels using to geometric cues [23], attenuating the error using similar
criteria [51].

Another approach leverages the availability of correspondences from multiple source
frames [22] or estimated from different models [9], considering only the correspondences
with minimum photometric error.

Our strategy extends the minimum re-projection error on other consistency constraints
in addition to photometric consistency.

5.1.2 Adaptive Losses based on Uncertainty

The importance of quantifying the uncertainty on predictions has motivated research
endeavors in several problems on computer vision, such as robust regression [4], repre-
sentation learning [84], object detection [26], image de-raining [91], optical flow [32] and
depth estimation [40, 78, 90, 60].

Researchers have explored approaches that leverage uncertainty information for
depth estimation, for instance, a method that leverages existing uncertainty estima-
tion techniques [78] and an approach that predicts the uncertainty using a neural net-
work [40, 60, 90]. A recent work explored approaches to estimate epistemic uncertainty
and aleatoric uncertainty on an unsupervised monocular setting [60].

In this work, we explore several probability functions to predict aleatoric uncertainty
to improve depth estimation.

5.2 Method

Figure 5.1 illustrates the main components of our method. In this section, we provide
an overview of our baseline system. Moreover, we introduce two adaptive strategies to
improve the robustness of our approach. Finally, we explore additional constraints.

5.2.1 Preliminaries

Approaches that use view reconstruction as main supervisory signal require to find corre-
spondences between pixel coordinates on frames that represent views of the same scene.
These correspondences can be computed using multi-view geometry.

Given a pixel coordinate xt in a target frame It, we can obtain its coordinate xs in a
source frame Is by back-projecting xt to the camera coordinate system of the It using its
depth value Dt(xt), and the inverse of its intrinsic matrix K

−1. Then, the relative motion
transformation Tt→s is applied to project the coordinates form the coordinate system of
the It to the coordinate system of Is. Finally, the coordinates are projected onto the
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Figure 5.1: Overview of our method. The depth network is used to predict the depth
maps for the target It and source images Is ∈ {It−1, It+1}. The pose network predicts
the Euclidean transformation between the target and source camera coordinate systems
Tt→s.

image plane in the source frame. We express this correspondence in Equation 5.1. We
refer the reader to [97] for a detailed explanation.

xs ∼ KTt→sDt(xt)K
−1xt (5.1)

Once we know the projected coordinates and, therefore, the pixel intensities in the
source image plane for each pixel xt in the target image, we reconstruct the target frame
Îs→t(xt) = Is(xs). This process is known as image warping. This approach requires the
dense depth map Dt of the target image, which we aim to reconstruct, the Euclidean
transformation Tt→s, and camera intrinsics K.

Our model predicts the depth maps and the Euclidean transformation using convolu-
tional neural networks and assumes that the camera intrinsics are given. The networks
are trained using the reconstruction error as supervisory signal.

5.2.2 Adaptive Consistency Loss

Consistency could be enforced on representations of the scene such as 3D structure and
feature maps. We propose an adaptive consistency loss that, in addition to the photo-
metric consistency, also considers 3D structure and feature consistency constraints. This
idea leverages the robustness of the min-reprojection error to pixels with high reconstruc-
tion error that could potentially be outliers. The adaptive consistency loss is defined as
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follows:

Lac =
∑

xt∈It

min
Is

(

Mo(xt)
(

Äpc
(

It(xt), Îs→t(xs)
)

+ ¼scÄsc
(

Ct→s(xt), Ĉs→t(xs)
)

+

¼fcÄfc
(

Ft(xt), F̂s→t(xs)
)

)

)

(5.2)

where Äpc measures the photometric consistency between pixels on the original It and
reconstructed images Îs→t, Äsc measures the structure consistency between the 3D-
coordinates of the target image projected to the camera coordinate system of the source
image Ct→s, and the 3D-coordinates of the source image warped to the target frame Ĉs→t,
and Äfc measure the feature dissimilarity between the feature vectors for all pixels, and
obtained from the target Ft, and the source feature maps warped to the target frame
F̂s→t. The feature maps are extracted from the decoder part of the depth network. Mo is
a visibility mask that excludes pixels that lie out the field-of-view on the source frame [49].

Our photometric error function Äpc is a combination of an L1 distance and the structure
similarity index metric (SSIM) [83], with a trade-off parameter ³. This function is shown
in Equation 5.3.

Äpc(p, q) = ³
1− SSIM(p, q)

2
+ (1− ³)||p− q||1 (5.3)

where p and q represent the colors of two corresponding pixels.
Our structure error function Äsc is the average of a normalized absolute difference of

3D-coordinates as follows:

Äsc(x, y) =
1

3

3
∑

i=1

|xi − yi|
|xi|+ |yi|

(5.4)

where x and y represent the 3D-coordinates of two corresponding pixels, and i represents
a dimension of a 3D-coordinate.

Our feature dissimilarity function Äsc measures the squared L2 distance of the L2

normalized feature vectors f̂s = fs/||fs||2 and f̂t = ft/||ft||2, with fs = F̂s→t(xt) and
ft = Ft→s(xt).

Äfc(fs, ft) = ||f̂s − f̂t||22 (5.5)

The total loss is the sum of the adaptive consistency loss and depth smoothness loss
term [21] for the defined output scales S.

Ltotal =
∑

i∈S

L(i)
ac + L(i)

ds (5.6)

5.2.3 Error Weighting Using Uncertainty

The adaptive consistency loss can handle cases in which at least one the source images
can provide the information to reconstruct each pixel. However, several cases might break
this condition, for instance, homogeneous regions and regions with specular reflection.



44

Therefore, we aim to find other mechanisms to handle pixels with large error on these
cases.

An approach is to allow the model to learn the uncertainty about the depth estimates,
and leverage this information to attenuate the effect of pixels with large errors on the
overall error. We can do that by placing a probability distribution function over the
outputs of the model. The predicted depth values Dt(xt) are modeled as corrupted with
additive random noise sampled from a PDF with a scale parameter Ãxt

that is predicted
by depth depth network. Ãxt

quantifies the uncertainty of the model on the predictions.
The model is trained to minimize the negative log-likelihood.

First, we assume that noise comes from a Laplacian distribution, then the error func-
tion is the negative log-likelihood of this distribution. Equation 5.7 shows the error
function.

ÄLaplacian(pt, ps) =
|Äpc(pt, ps)|

Ãxt

+ log(2Ãxt
) (5.7)

where pt = It(xt), ps = Îs→t(xs), Äpc is the photometric error function, and Ãxt
is the

predicted uncertainty for the pixel xt.
We can observe that the first term in Equation 5.7 attenuates the error when the un-

certainty is high. Then, the second term discourages the model to predict high uncertainty
values for all pixels. Thus, in order to minimize the function, the model is encouraged to
predict high uncertainty values for pixels with large errors, attenuating the influence of
large error in the overall error.

In order to explore the space of probability functions, we also evaluate our approach on
the smooth-L1 functions and the Cauchy functions [4]. We define the probability distri-
bution associated to the smooth-L1 function using the family of probability distributions
defined in [4]. Equation 5.8 shows the negative log-likelihood associated to the smooth-L1
function.

Äsmooth-L1(pt, ps) =

√

(

Äpc(pt, ps)

Ãxt

)2

+ 1− 1 + log(Z(1)) (5.8)

where Z(1) is a normalization factor for smooth-L1 function. We refer the reader to [4]
for a detailed explanation.

Finally, Equation 5.9 shows the negative log-likelihood associated with the Cauchy
distribution.

ÄCauchy(pt, ps) = log

(

1

2

(

Äpc(pt, ps)

Ãxt

)2

+ 1

)

+ log(
√
2ÃÃxt

) (5.9)

Similarly, we propose to attenuate the error contribution in the scale of the images.
This is a single uncertainty Ãt is predicted by each image. In the training process, the
uncertainty is optimized to match to the distribution of errors for all the pixels of each
image.
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5.2.4 Exploring Visibility Masks

We combine several strategies to filter out pixels that are likely to be outliers. We mask
the pixels on the target image that lie out of the field-of-view on the source image, also
known as principled mask [92], the pixels that belong to homogeneous regions and do
not change their appearance, even when the camera is moving [22], and the target pixels
that are occluded in the source view [23]. The resulting composite mask is applied to our
adaptive consistency loss at each scale.

5.2.5 Implementation Details

The depth network is a convolutional encoder-decoder network with skip connections. We
used a ResNet18 as backbone for the encoder part of the depth network. The decoder net-
work is composed of deconvolutional layers that up-sample the bottleneck representation
in order to upscale the feature maps to the input resolution. For uncertainty estimation,
we add a channel on the output of the depth network. In order to predict uncertainty
pixel values, the extra channel is used as uncertainty map. On the other hand, when we
aim to predict a single uncertainty value for image, we use spatial average pooling over
the uncertainty map.

The motion network predicts the relative motion between two input frames. The
relative camera motion has a 6-DoF representation that corresponds to 3 rotation angles
and the translation vector. The motion network is composed of the first five layers of the
ResNet18 architecture, followed by a spatial average pooling and four 1×1 convolutional
layers.

5.3 Experiments

In this section, we show the experiments conducted to evaluate each component of the
proposed system separately, as well the complete system with the proposed components.

5.3.1 Experimental Setup

Next, we describe the dataset used to train and evaluate the models, as well as the
parameters of our model and the optimization method used to train the proposed method.

Dataset

We use the KITTI benchmark [20], described in Section 3.1. We used the Eigen split [14]
with 45,023 images for training and 687 for testing. Moreover, we partitioned the training
set on 40441 for training, 4,582 for validation. For result evaluation, we used the standard
metrics [14].

Training

Our networks are trained using ADAM optimization algorithm with a learning rate of
2e − 5, ´1 = 0.9, ´2 = 0.999, ϵ = 10−8. We used the batch size of 12 snippets. Each
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snippet is a 3-frame sequence. The frames are resized to a resolution of 416×128 pixels.

5.3.2 Adaptive Consistency Loss

In Table 5.1, we show the performance of the baseline model improved by considering the
spatial and feature consistency loss terms individually, as well as combined using average
and minimum re-projection. In the first row, we present the results of our baseline model
that only considers the photometric consistency and depth smoothness loss terms. In the
following rows, we compare the performance of the model including structure and feature
consistency terms individually and jointly by using average or minimum re-projection.

As other works in the literature [21, 48, 49, 71, 93], we show that including structure
and feature consistency terms is beneficial. The results indicate that our implementations
of structure and feature consistency can improve the performance of the model individ-
ually, in most of the metrics. Furthermore, our results indicate that both terms are
complementary and, together, can improve the performance with average and minimum
re-projection losses. We obtained better results with minimum re-projection error.

Table 5.1: Ablation study on the adaptive consistency loss. We evaluate the performance
of structure and feature consistency terms with average re-projection, and the adaptive
consistency loss, which uses minimum re-projection error.

³ Lower is better ↑ Higher is better

Avg. Min. SC FC Abs Rel Sq Rel RMSE Log RMSE δ < 1.25 δ < 1.252 δ < 1.253

0.1116 0.8905 4.7177 0.1840 0.8717 0.9564 0.9817

✓ ✓ 0.1113 1.0024 4.6312 0.1807 0.8797 0.9595 0.9823

✓ ✓ 0.1104 0.8747 4.6005 0.1800 0.8785 0.9587 0.9825

✓ ✓ ✓ 0.1096 1.0134 4.5476 0.1776 0.8838 0.9611 0.9828

✓ ✓ ✓ 0.1059 0.7520 4.4537 0.1737 0.8834 0.9620 0.9848

5.3.3 Error Weighting Using Uncertainty

We evaluate the usage of uncertainty to weigh the error contribution when the uncertainty
values are predicted by pixel and by image.

Error weighting by pixel

In Table 5.2, we show that predicting uncertainty to weight the error contribution by
pixel improves the performance of the baseline model using smooth-L1 probability func-
tion. However, the variants of the model that use the Laplacian and Cauchy distribution
degrade the results.

We observe that the model predicts incorrect depth values on regions where the pixel
intensities vary. This variation occurs because the predictive uncertainty is formulated on
the photo-metric consistency term (Equation 5.7).
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Table 5.2: Using uncertainty to weigh the error contribution by pixel.

Method
³ Lower is better ↑ Higher is better

Abs Rel Sq Rel RMSE Log RMSE δ < 1.25 δ < 1.252 δ < 1.253

Baseline-L1 0.1894 4.1497 5.9739 0.2433 0.8111 0.9228 0.9599

Laplacian 0.1987 4.4033 6.0675 0.2481 0.8034 0.9216 0.9593

Smooth-L1 0.1810 3.0795 5.6726 0.2386 0.8027 0.9245 0.9634

Cauchy 0.1968 3.2513 5.9439 0.2540 0.7836 0.9147 0.9565

Error weighting by image

In Table 5.3, we show the effect of predictive uncertainty by image to weight the error
contribution of images using the Laplacian, Smooth-L1, and Cauchy probability functions.
The first row shows our baseline, which use an L1 distance between pixel intensities to
measure photometric consistency and depth smoothness.

Our results indicate that the Smooth-L1 function improves the performance of the
baseline and outperforms the approaches that assume other distributions. However, using
uncertainties predicted through Laplacian and Cauchy functions does not improve the
performance. Qualitative results are illustrated in Figure 5.2.

Table 5.3: Using uncertainty to weigh the error contribution by image.

Method
³ Lower is better ↑ Higher is better

Abs Rel Sq Rel RMSE Log RMSE δ < 1.25 δ < 1.252 δ < 1.253

Baseline-L1 0.1894 4.1497 5.9739 0.2433 0.8111 0.9228 0.9599

Laplacian 0.1928 4.4074 5.9921 0.2472 0.8153 0.9234 0.9598

Smooth-L1 0.1561 1.3712 5.3931 0.2239 0.8018 0.9286 0.9683

Cauchy 0.1976 3.3892 6.0628 0.2530 0.7846 0.9160 0.9600

5.3.4 Visibility Masks

We performed ablation studies with visibility masks to filter out inconsistent pixels. We
used model trained with the adaptive consistency loss as baseline. In Table 5.4, we
show that every mask improves the error metrics, as well as the thresholded accuracy
metrics. Moreover, the model trained with all mask formulations achieved better results.
Qualitative results are illustrated in Figure 5.3.

5.3.5 Comparison with the State of the Art

In Table 5.5, we show that our method achieved competitive results when compared to
state-of-the-art methods. Moreover, our approach is compatible and it could be improved
with advanced strategies such as inference-time refinement [9, 7], joint depth and optical
flow estimation [9], and effective architecture designs [25].
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Figure 5.2: Qualitative results of error weighting approach with uncertainty. The first
row shows a target image and its depth maps predicted with the minimal model. The
remaining rows compare the results for the error weighting approaches for the PDF as-
sociated to Laplacian, Smooth-L1 and Cauchy functions. For each row, we present the
result of method considering an uncertainty value by pixel on the left and and the result
considering an uncertainty value by image respectively on the right.

Table 5.4: Ablation study of additional masks. We considered the Field-of-View masks
(FOV), Auto mask (AM), Geometric mask(GM).

³ Lower is better ↑ Higher is better

FOV AM GM Abs Rel Sq Rel RMSE Log RMSE δ < 1.25 δ < 1.252 δ < 1.253

✓ 0.1059 0.7520 4.4537 0.1737 0.8834 0.9620 0.9848

✓ ✓ 0.1063 0.8071 4.5570 0.1779 0.8829 0.9612 0.9831

✓ ✓ 0.1073 0.9355 4.4135 0.1734 0.8877 0.9629 0.9840

✓ ✓ ✓ 0.1015 0.7692 4.4297 0.1719 0.8890 0.9622 0.9839
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Figure 5.3: Qualitative results. Depth prediction using our final model.

Table 5.5: Results of depth estimation on the Eigen split of the KITTI dataset. We
compared our results against several methods of the literature. In order to allow a fair
comparison, we report the results of competitive methods trained with a resolution of
416×128 pixels. (*) indicates newly results obtained from an official repository. (-ref.)
indicates that the online refinement component is disabled.

Method
³ Lower is better ↑ Higher is better

Abs Rel Sq Rel RMSE Log RMSE δ < 1.25 δ < 1.252 δ < 1.253

Zhou et al. [97]* 0.183 1.595 6.709 0.270 0.734 0.902 0.959

Mahjourian et al. [49] 0.163 1.240 6.220 0.250 0.762 0.916 0.967

Ying et al. [92]* 0.149 1.060 5.567 0.226 0.796 0.935 0.975

Casser et al. [7] (-ref.) 0.141 1.026 5.290 0.215 0.816 0.945 0.979

Chen et al. [9] (-ref.) 0.135 1.070 5.230 0.210 0.841 0.948 0.980

Gordon et al. [23] 0.129 0.959 5.230 0.213 0.840 0.945 0.976

Ours 0.131 1.037 5.173 0.204 0.846 0.952 0.980

Godard et al. [22] 0.128 1.087 5.171 0.204 0.855 0.953 0.978

5.4 Final Considerations

In this work, we show that minimum re-projection can be used to jointly enforce consis-
tency on photometric, 3D structure, and feature representations of frames. This approach
reduces the influence of pixels without valid correspondences on other consistency con-
straints, in addition to photometric consistency.

Moreover, our results suggest that the error weighting approaches based on predictive
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uncertainty at pixel and image levels can be beneficial when the model is minimal, when
the model does not implement additional strategies to handle invalid correspondences
and when the outputs are assumed to follow the probability distribution derived from the
smooth-L1 function. Further exploration could be done to leverage uncertainty to improve
the performance of self-supervised depth estimation methods that consider several priors
to handle invalid correspondences.
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Chapter 6

Self-Distilled Self-Supervised

Monocular Depth Estimation

Several works have shown that self-supervised depth estimation can be benefited from
learning additional auxiliary tasks, for example, self-distillation. Self-distillation methods
aim to improve a model performance by distilling knowledge from the model itself. An
interesting approach to perform self-distillation consists of extracting information from
distorted versions of the input data [87]. This is accomplished by enforcing consistency
between predictions from distorted versions of the same input.

In this chapter, we propose a self-distillation approach via prediction consistency to
improve self-supervised depth estimation from monocular videos. Since enforcing consis-
tency between predictions that are unreliable cannot provide useful knowledge, we propose
a strategy to filter out unreliable predictions.

Moreover, the idea of enforcing consistency between predictions has been widely ex-
plored in self-distillation [55, 17, 88, 95, 39] and semi-supervised learning [67, 77, 33, 3,
85, 73]. In order to explore the space of consistency enforcement strategies, we adapt and
evaluate representative approaches on the self-supervised depth estimation task.

In summary, the main contributions of our solution are the following: (i) the propo-
sition of a multi-scale self-distillation method based on prediction consistency, (ii) the
design of an approach to filter unreliable per-pixel predictions on the pseudo-labels used
in self-distillation, and (iii) the exploration and adaptation of several consistency enforce-
ment strategies for self-distillation.

To validate our method, we show a detailed evaluation and a comparison against
state-of-the-art methods on the KITTI benchmark. Our code is available at https:

//github.com/jmendozais/SDSSDepth.

6.1 Related Work

In this section, we briefly review some relevant approaches available in the literature
related to the topics explored in our work.
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6.1.1 Pseudo-Labeling Approaches for Self-Supervised Depth Es-

timation

Many self-supervised methods trained from stereo images [78, 86] or monocular se-
quences [78, 11, 10, 38, 45] rely on pseudo-labels to provide additional supervision for
training their depth networks. These methods can use state-of-the-art classical stereo
matching algorithms [78], external deep learning methods [11, 10], or their own predic-
tions [86] to obtain pseudo-labels.

Since the quality of the pseudo-labels is not always guaranteed, methods filter out
unreliable per-pixel predictions based on external confidence estimates [78, 11, 10] or
uncertainty estimates that are a result of the method itself [86].

Additionally, some methods leverage multi-scale predictions for creating pseudo-labels
by using the predictions at the highest-resolution as pseudo-labels to supervise predic-
tions at lower resolutions [89] or by selecting, per pixel, the prediction with the lowest
reconstruction error among the multi-scale predictions [57].

We focus on methods that use their own prediction as pseudo-labels. For example,
Kaushik et al. [38] augmented a self-supervised method by performing a second forward
pass with strongly perturbed inputs. The predictions from the second pass are supervised
with predictions of the first pass. Liu et al. [45] proposed to leverage the observation depth
maps predicted from day-time images are more accurate than predictions from night-
time images. They used predictions from day-time images as pseudo-labels and train
a specialized network with night-time images synthesized using a conditional generative
model.

6.1.2 Self-Distillation

These methods let the target model leverage information from itself to improve its perfor-
mance. An approach is to transfer knowledge from an instance of the model, previously
trained, via predictions [55, 17, 88, 95, 39] and/or features to a new instance of the model.
This procedure could be repeated iteratively. Self-distillation has a regularization effect
on neural networks. It was shown that, at earlier iterations, self-distillation reduces over-
fitting and increases test accuracy, however, after too many iterations, the test accuracy
declines and the model underfits [55].

Self-distillation has been extensively explored, mainly in image classification problems.
An approach performs distillation by training instances of a model sequentially such that
a model trained on a previous iteration is used as a teacher for the model trained in the
current iteration [17]. Similarly, Yang et al. [88] proposed to train a model in a single
training generation imitating multiple training generations using a cyclic learning rate
scheduler and using the snapshots obtained at the end of the previous learning rate cycle
as a teacher.

Our work explores the idea of leveraging multiple snapshots in a single training gen-
eration on the self-supervised depth estimation problem.
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6.1.3 Consistency Regularization

Enforcing consistency between predictions obtained from perturbed views of input exam-
ples is one of the main principles behind consistency regularization approaches on deep
semi-supervised works.

An early method [67] used this principle doing several forward passes on perturbed
versions of the input data. Furthermore, other methods showed that the usage of advanced
and strong data augmentation perturbations [85] or a combination of a weak and strong
data augmentation perturbation in a teacher-student training scheme [73] can be helpful
to improve the resulting models.

Existing works showed that average models, i.e., models whose weights are the average
of the model being trained at different training steps, can be more accurate [77, 33, 3].
Average models can be used, as teachers, to obtain more accurate pseudo-labels [77, 3].
Moreover, the use of cyclic learning rate schedulers can improve the quality of the models
that are averaged and the resulting model at accuracy and generalization [33], as well as
it can be adapted to the consistency regularization framework [3].

Similarly to the method developed by Athiwaratkun et al. [3], our method uses a cyclic
cosine annealing learning rate schedule to obtain a better teacher model.

6.2 Proposed Method

In this section, we present a method to perform self-distillation via prediction consistency.
First, we describe the core idea of our method. Then, we introduce a mechanism to filter-
out unreliable per-pixel depth prediction. Finally, we detail several prediction consistency
enforcement strategies.

6.2.1 Self-Distillation via Prediction Consistency

The core idea of self-distillation based on prediction consistency is to provide additional
supervision to the model by enforcing consistency between the depth map predictions
obtained from different perturbed views of an input image.

Our self-distillation approach applies two different data augmentation perturbations
to an input snippet. To use less computational resources, we use snippets of two frames
I = {It, It+1}. The model predicts the depth maps for all images in the input snippet.
Since we need to apply two data augmentation perturbations, we have two depth maps
for each frame in the snippet. Then, we enforce consistency between predictions by
minimizing the difference between the predicted depth maps for each frame.

There are several approaches to enforce consistency between prediction. The simplest
variation of our method use the pseudo-label approach. It considers one of depth maps
as pseudo-label D(pl), which implies that gradients are not back-propagated through it,
and the other depth map as prediction D

(pred). In Section 6.2.3, we improve our method
considering other consistency enforcement strategies.

Moreover, we enforce prediction consistency using the mean squared error (MSE) as
difference measure. In addition, we filter the unreliable depth values on the pseudo-label
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using a composite mask. Equation 6.1 shows the self-distillation loss term for a snippet
I.

Lsd =
1

|I|
∑

Ik∈I

1

|M(c)
k |

∑

x∈Ω(Ik)

M
(c)
k (x)

(

D
(pl)
k (x)−D

(pred)
k (x)

)2

(6.1)

where Ik is a frame in the snippet and M
(c)
k is its composite mask, x is a pixel coordinate,

Ω(Ik) is the set of pixel coordinates, and D
(pl)
k and D

(pred)
k represent the pseudo-label and

predicted depth maps, respectively.
Since our model predicts the depth maps at multiple scales, we compute the self-

distillation loss for each scale. We assume that the pseudo-label at the finest scale is
more accurate than the pseudo-labels at coarser scales. Thus, we only use the finest
pseudo-label. We upscale the predictions to the finest scale to match the pseudo-label
scale. Finally, we compute the self-distillation loss for each scale. Figure 6.1 depicts our
self-distillation approach.

Multi-Scale Depths

Perturbed Snippet 1 

Multi-Scale Features

T
Adaptive  

Consistency Loss

Teacher 
DepthNet

Self-Distillation 
Loss

Depth 
Smoothness Loss

Rotation and 
Translation 

Consistency Loss

DepthNet

MotionNet
Multi-Scale Coords

Input Snippet 

{It, It+1}

Perturbed Snippet 2 

UpscaleUpscale

Consistency Enforcement

Self-Distillation

View Reconstruction

U
p
d
at

e 
th

e 
av

er
ag

e 
w
ei

gh
ts

Depths (PL)

Figure 6.1: Overview of our method. The self-distillation component leverages the multi-
scale predictions obtained from the view reconstruction component. The predictions are
upscaled to the finest resolution. More accurate predictions are obtained from the teacher
model. The teacher predictions at the finest resolution are used as pseudo-labels to
improve the predictions obtained from view reconstruction.

6.2.2 Filtering Pseudo-Labels

We noticed empirically that unreliable depth prediction produces very large differences
between pseudo-labels and predictions. These very large differences make training un-
stable and do not allow the model to converge randomly. We address this problem by
excluding pixels with very large differences using a threshold value. In this section, we
present two schemes to determine the threshold.

In the first scheme, we compute the threshold as a percentile P on the pseudo-label
and prediction differences for all pixels in a batch of snippets. Then, we create valid mask
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considering as valid all the pixels with differences smaller than the threshold, as shown in
Equation 6.2.

M
(p)(x) =

[(

D
(pl)(x)−D

(pred)(x)
)2

< P
]

(6.2)

where [.] denotes the Iverson bracket operator. The final mask is obtained combining
the latter mask with the compound mask. The final mask could be expressed as M =

M
(p) »M

(c), where » represents the element-wise product. Finally, we replace M
(c) with

M in Equation 6.1.
We believe that the idea of using a threshold obtained from the distribution of dif-

ferences by batch might be detrimental because we do not take into consideration that
batches with reliable predictions should have thresholds that exclude less pixels than the
threshold used on batches with more unreliable predictions.

In the second scheme, we address this limitation by approximating a global threshold
P (EMA) using the exponential moving average (EMA) of the percentile values for each
batch during training. Another advantage of using a moving average is that we take
into consideration that the distribution of depth differences change during training. This
means that, when the depth differences become smaller during training, the threshold
changes by increasing the weight of the percentiles from latter batches on the average.
Equation 6.3 shows our global threshold approximation.

P
(EMA)
t = P

(EMA)
t−1 · ´ + Pt · (1− ´) (6.3)

where Pt is the threshold computed from the batch at the t training iteration, P (EMA)
t is

threshold obtained using the EMA at the t training iteration, and ´ controls the influence
of the previous moving average percentile and the current percentile into the computa-
tion of the current threshold . Similarly to the first scheme, we compute a valid mask
M

(EMA)using P (EMA), we combine this mask with the compound mask M = M
(EMA)»M

(c)

and, finally, we use M instead of M(c) in Equation 6.1.

6.2.3 Consistency Enforcement Strategies

In previous sections, we described a pseudo-label strategy to enforce consistency between
depth predictions. Here, we describe representative consistency enforcement strategies
adapted to our self-distillation approach.

Figure 6.2 depicts these consistency enforcement strategies. We named each strategy
similarly to the methods that introduced the key idea in the semi-supervised learning
literature [67, 77, 33, 3].

Similarly to the pseudo-label strategy, variants of our method that use the strategies
described in this section also adopt the second scheme described in Section 6.2.2 to filter
out unreliable per-pixel predictions before computing the predictions difference.

Π-Model

Similarly to the pseudo-label approach, this strategy consists of enforcing consistency
between depth predictions from two perturbed views of the same input. In contrast with
the pseudo-label approach, the gradients are back-propagated through both predictions.
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Figure 6.2: Simplified views of the consistency enforcement strategies. S denotes the the
input snippet, Aug 1 and Aug 2 denote two perturbed views of the input snippet, T
denotes the camera motion transformation, D1 and D2 denote depth maps predictions,
Lac denotes the adaptive consistency loss, Lsd denotes the self-distillation loss, and red
lines — mark connections where the gradients are not back-propagated

Mean Teacher

Instead of using the same depth network to generate the pseudo-labels and the predictions,
we can introduce a teacher network that can potentially predict more accurate pseudo-
labels, and provide better supervisory signal to the model currently being trained, the
student network. In this approach, the teacher depth network weights are the EMA of
the depth network weights in equally spaced training iterations.

Stochastic Weight Averaging

Similarly to the mean teacher strategy, we set the teacher depth network weights as
the EMA of the depth network weights. In contrast, the training process is split into
several cycles. At each cycle, the learning rate decreases and the teacher depth network
is updated with the weights of depth network at the end of the last epoch of each training
cycle, where the learning rate reaches its lowest value.

In the first generation of the training process, we use the student network to predict
pseudo-label. Once the model has converged to a proper local optimum, we use its weights
to initialize the teacher network. Then, in the following cycles, the training process mimics
multiple training generations using a cyclic cosine annealing learning rate. At the end of
each cycle, when the learning rate reaches its lowest value, and model likely converged to
a good local optimum, we update the weights the teacher network using EMA with the
student network weights.

6.2.4 Additional Considerations

Final Loss. The overall loss is a weighted sum of our self-distillation loss Lsd, adaptive
consistency loss Lac [52], depth smoothness loss Lds, translation consistency loss Ltc, and
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rotation consistency loss Lrc. The rotation and translation consistency losses are similar
to the cyclic consistency loss defined in [23]. In contrast, our translation consistency loss
just considers camera motion. Equation 6.4 shows our final loss.

L =
∑

i∈S

1

2i

(

L(i)
ac + ¼dsL(i)

ds + ¼sdL(i)
sd

)

+ ¼rcLrc + ¼tcLtc (6.4)

where S is the set of scales and ¼sd, ¼ds ¼rc, ¼tc is the weight of the self-distillation, depth
smoothness, rotation consistency, and translation consistency loss terms, respectively.

Network Architecture. We use similar depth and motion network architectures
to those used in the method described in Chapter 5. For the depth network, we use
a convolutional encoder-decoder network with skip connections. For the encoder, we
use a ResNet18. For the decoder, we stack convolutional layers and up-sampling layers.
Convolutional layers use the ELU activation function [12] for intermediate layers and
sigmoid activation function for output layers.

In contrast to the depth network used in Chapter 5, in which the outputs are used as
disparity prediction, here we use the outputs as depth prediction. We noticed that this
change reduces artifacts with very high depth values on the outputs.

For the motion network, we also use a ResNet18 backbone for feature extraction with
a modification to allow multi-frame inputs, that is, snippets. For the head of the motion
network, we use 4 convolutional layers. In contrast with the motion network used in
Chapter 5, we do not use global average pooling after feature extraction. We let the head
of the motion network leverage the spatial information learned by the feature extractor.
Finally, we use global average pooling in the last layer of the head part of the motion
network.

6.3 Evaluation

The goal of our experimental evaluation is to answer the following questions: (1) Can
a model trained with self-supervised loss based on view reconstruction further improve
when a multi-scale self-distillation via prediction consistency loss term is considered?, (2)
do our mechanisms to exclude the influence of unreliable per-pixel predictions enhance a
model trained with self-supervised and self-distillations loss terms?, and (3) what are the
most effective consistency enforcement strategies to use on our multi-scale self-distillation
via prediction consistency loss term?

To answer the first question, we compare the performance of a competitive baseline
with a variant of this baseline that includes our multi-scale self-distillation based on
the prediction consistency method in Section 6.3.2. We answer the second question by
comparing the performance of the simplest variant of our self-distillation approach with
two variants that implement our per-pixel filtering schemes in Section 6.3.3. We answer
the third question by comparing the performance of the variants considering the different
consistency enforcement strategies in Section 6.3.4. Finally, we show qualitative results
and perform a comparison with state-of-the-art methods evaluated in similar settings.
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6.3.1 Experimental Setup

We describe here the dataset used to train and evaluate the models, as well as the pa-
rameters of our model and the optimization method used to train the main variants of
the proposed method.

Dataset

We use the KITTI benchmark, described in Section 3.1. We used the Eigen split [14] with
45023 images for training and 687 for testing. Moreover, to search for hyper-parameters,
we partitioned the training set on 40441 for training, 4582 for validation. For result
evaluation, we used the standard metrics.

Training

Our networks are trained using ADAM optimization algorithm using ´1 = 0.9, ´2 = 0.999.
We used the batch size of 4 snippets. We use 2-frame snippets unless otherwise specified.
We resize the frames to resolutions of 416×128 pixels unless otherwise specified.

The training process has multiple stages. In the first stage, we train our models with
the self-distillation loss disabled. We use a learning rate of 1e− 4 during 15 epochs, then
it is reduced to 1e− 5 during 10 additional epochs.

We train all models that include a self-distillation term in a second stage. In this
stage, models are trained with a learning rate of 1e − 5 during 10 epochs. Finally, we
train the variants of our model that use teacher networks with average weights in a third
stage.

For the mean teacher model, this stage lasts 10 epochs and the weights are updated
every 1e3 iterations. For the SWA model, training is done using a cyclical cosine learning
rate schedule with an upper bound of 1e− 4, a lower bound of 1e− 5, and using 4 cycles
of 6 epochs each.

6.3.2 Self-Distillation via Prediction Consistency

We compared the performance of the simplest variant of our self-distillation method with
the baseline in Table 6.1. Results show that our baseline has a competitive performance
since it is trained with 2-frame snippets and obtains a performance similar to widely
used baseline [22] that uses 3-frame snippets for training. The results show a consistent
improvement when the self-distillation loss is used. The model trained with the self-
distillation loss outperforms the baseline at all error metrics and almost all accuracy
metrics.

When searching for the optimal weight ¼sd for the self-distillation term, we noticed
that large ¼sd values allow to obtain good results. However, due to large depth differences,
the model diverges on some executions. Due to this instability, we use a smaller ¼sd = 1e2.
This observation motivated us to explore approaches to filter unreliable predictions.
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Table 6.1: Comparison of the baseline model and the variation of our method that uses
the pseudo-labeling strategy.

Method
³ Lower is better ↑ Higher is better

Abs Rel Sq Rel RMSE LRMSE ¶ < 1.25 ¶ < 1.252 ¶ < 1.253

Baseline 0.128 1.005 5.152 0.204 0.848 0.951 0.979
PL 0.126 0.907 5.068 0.202 0.847 0.951 0.980

6.3.3 Filtering Pseudo-Labels

In Table 6.2, we show that our two filtering strategies outperform that variation of our
method does not use any additional filtering approach other than the composite mask in
the majority of error and accuracy metrics. Moreover, the results show that the approach
that uses the EMA of the percentiles to estimate the threshold is better than using only
the percentile of each batch.

Table 6.2: Comparison of variants of our method with and without filtering strategies.
P denotes that we filtered pseudo-labels using a percentile by batch as thresholds, and
P (EMA) denotes that we filtered pseudo-labels using a threshold that is the EMA computed
from percentiles of the batches during training iterations.

Method
³ Lower is better ↑ Higher is better

Abs Rel Sq Rel RMSE LRMSE ¶ < 1.25 ¶ < 1.252 ¶ < 1.253

PL (w/o filtering) 0.126 0.907 5.068 0.202 0.847 0.951 0.980

PL + P 0.126 0.911 5.033 0.203 0.847 0.952 0.980

PL + P (EMA) 0.126 0.904 5.024 0.202 0.847 0.952 0.980

6.3.4 Consistency Enforcement Strategies

In Table 6.3, our results indicate that, regardless the consistency enforcement strategy,
self-distillation via prediction consistency can improve the performance of our baseline
model. Moreover, the results show that the variant that uses SWA strategy outperforms
the other consistency enforcement strategies in most of the error and accuracy metrics.
This variant is used as our final model.

We show qualitative results in Figure 6.3. We can observe that the predicted depth
maps are sharp on salient objects of the image. In addition, the bottom-right image
shows that our final model does not predict a consistent depth map for a thin object with
a variable background.

6.3.5 State-of-the-Art Comparison

In Table 6.4, we show a quantitative comparison with state-of-the-art methods. Our
method outperforms methods that explicitly address moving objects such as [7, 9, 23].
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Table 6.3: Comparison of the representative consistency enforcement strategies. PL de-
notes the pseudo-label, Π M denotes the Π-Model, MT denotes the mean teacher, and
SWA denotes the stochastic weight averaging strategy.

Method
³ Lower is better ↑ Higher is better

Abs Rel Sq Rel RMSE LRMSE ¶ < 1.25 ¶ < 1.252 ¶ < 1.253

Baseline 0.128 1.005 5.152 0.204 0.848 0.951 0.979
PL + P (EMA) 0.126 0.904 5.024 0.202 0.847 0.952 0.980
Π-M + P (EMA) 0.126 0.902 5.041 0.202 0.847 0.952 0.980
MT + P (EMA) 0.126 0.898 5.061 0.201 0.846 0.952 0.981

SWA + P (EMA) 0.125 0.881 5.056 0.202 0.848 0.952 0.980

Figure 6.3: Qualitative results. Depths maps obtained using our final model.

The results show that our method achieves competitive performance when compared to
state-of-the-art methods.

6.4 Final Considerations

We showed that to take full advantage of self-distillation in self-supervised depth estima-
tion from monocular videos, we need to consider additional strategies. One strategy was
filtering unreliable per-pixel predictions with threshold value.

Moreover, we demonstrated that choosing a proper consistency enforcement strategy
in self-distillation is important. Our results suggest that the features of SWA consistency
enforcement strategy, such as (i) enforcing teacher quality and (ii) enforcing difference be-
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Table 6.4: Comparison with the state-of-the-art on the Eigen split of the KITTI dataset.
We compared our results against several methods of the literature. To allow a fair compar-
ison, we report the results of competitive methods trained with a resolution of 416×128
pixels. N.F. denotes the number of frames in the input snippet (*) indicates newly results
obtained from an official repository. (-ref.) indicates that the online refinement compo-
nent is disabled.

Method N.F.
³ Lower is better ↑ Higher is better

Abs Rel Sq Rel RMSE LRMSE δ < 1.25 δ < 1.252 δ < 1.253

Gordon et al. [23] 2 0.129 0.959 5.230 0.213 0.840 0.945 0.976

Our method 2 0.125 0.881 5.056 0.202 0.848 0.952 0.980

Zhou et al. [97]* 3 0.183 1.595 6.709 0.270 0.734 0.902 0.959

Mahjourian et al. [49] 3 0.163 1.240 6.220 0.250 0.762 0.916 0.967

Casser et al. [7] (-ref) 3 0.141 1.026 5.290 0.215 0.816 0.945 0.979

Chen et al. [9] (-ref) 3 0.135 1.070 5.230 0.210 0.841 0.948 0.980

Godard et al. [22] 3 0.128 1.087 5.171 0.204 0.855 0.953 0.978

Our method 3 0.123 0.906 5.083 0.200 0.856 0.953 0.980

Fang [15] 3 0.116 - 4.850 0.192 0.871 0.959 0.982

tween teacher and student network weights, are important to obtain larger improvements.
The improvements obtained with the variations of our method are consistent with

the findings of recent works that also included self-distillation as a term of their loss
function [45, 38]. In addition, the mechanisms implemented in our method are fully
compatible with these works [45, 38], and could be easily combined.

Finally, we believe that our findings could provide useful insights to leverage self-
distillation in methods that use stereo sequences as input, as well as semi-supervised and
supervised methods.
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Chapter 7

Conclusions and Future Work

In this thesis, we addressed the problem of single image depth estimation. We focus
on self-supervised approaches that learn to predict dense depth maps using monocular
sequences for training. First, we introduced the single image depth estimation problem,
its challenges, and the main concepts related to the methods that we presented in this
document.

Then, we proposed a method that shares the representations learned by from the depth
model to provide additional cues to the camera motion model using lateral connections.
Moreover, in this method we introduced a mechanism to deal the invalid correspondences,
an heuristic that showed that diminishing the influence of invalid correspondences found
our model can improve the the performance of our depth estimation model.

Later, we presented two adaptive strategies to deal with invalid correspondences. The
first strategy shows that extending the minimum re-projection loss to 3D coordinates
and deep feature representation can increase the performance on depth estimation. The
second strategy shows an based aleatoric uncertainty can useful to diminish the influence
of invalid correspondences on learning, however, its effect might not be complementary
and its effect is not perceived when other strategies such as minimum re-projection or our
composite visibility mask are used.

Moreover, we showed that self-distillation can provide an additional learning signal
for self-supervised depth estimation. We showed that a per-pixel filtering strategy can
help to deal with unreliable predictions. Finally, we demonstrated that choosing a proper
consistency enforcement strategy in self-distillation is another important dimension to
take the most of self-distillation.

During the development of this thesis, we focused on answering the research questions
shown in the introductory chapter. We highlight reflections about the answers of the
research questions in the next paragraphs.

Handling invalid correspondences. Results reported in Chapters 4 and 5 provided
insights on approaches to mask out or to diminish the influence of pixels that have invalid
correspondences. We observed that modeling explicitly the uncertainty of the model on
the validity of pixel correspondences is critical to design effective methods. We noticed
that mechanisms to diminish or mask out the influence of invalid pixel correspondences
with heuristics based on geometric consistency or minimum re-projection, or with learning
mechanisms such as loss attenuation based on aleatoric uncertainty can enhance self-
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supervised single image depth estimation models.
Leveraging the relationships of features learned by depth and camera mo-

tion networks. Results reported in Chapter 4 demonstrated that strategies to take ad-
vantage of the feature representation obtained from neural networks in the self-supervised
SIDE approach based on view reconstruction are valuable. We showed that deep fea-
ture representation learned by the depth network can be useful for the camera motion
network to improve the view reconstruction and, as a consequence, the depth estimation
performance.

Designing a loss to enforce consistency between feature representations

learned by the neural networks. Results reported in Chapter 5 suggested that mech-
anisms considered in the design of photometric loss can also be helpful to enhance consis-
tency losses based on other features. We showed that enforcing consistency between deep
feature representations and 3D coordinate maps in addition to photometric information
is useful when minimum re-projection is employed in the view reconstruction loss.

Additional learning signals to train networks for self-supervised SIDE. In
Chapter 6, we proposed a self-distillation method to provide an additional learning signal
to the self-supervised approach for SIDE. Similar to the learning signal provided by the
view reconstruction auxiliary task, in which consistency of adjacent views is assumed,
the consistency of prediction of perturbed input images in our self-distillation method
provides the learning signal. Similar mechanisms used in view reconstruction loss, such
as filtering and multi-scale processing, inspired the design of our self-distillation loss.

We believe that the proposition and evaluation of the mechanisms incorporated in the
methods proposed in this thesis are an important contribution to the research community.
Furthermore, we believe that future efforts related to the topics explored in this thesis
might be of interest to the research community.

A future research direction, which is a direct extension of self-distillation via predic-
tions consistency, is feature distillation. In the context of our problem, we could perform
feature distillation by enforcing consistency between deep features obtained from the
depth network.

We found several ideas in the feature distillation literature that we believe might lead
to further improvements. A research direction would be to investigate transformations in
the teacher features in order to leverage beneficial features and suppress adverse features
from the teacher network, such as the approach proposed by Heo et al. [28], which uses a
variation of the ReLU activation as a transformation.

Another future research direction would be to investigate improvements in the dis-
similarity functions used to enforce consistency between teacher and student features. A
comparison of simpler dissimilarity functions, for instance, L1, L2 and cosine similarity
with more complex methods, such as methods that use adversarial learning to enforce
similarity between deep features using discriminators [70], might be of interest to the
research community.
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