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Resumo

Permitir a avaliação de computação arbitrária sobre dados criptografados elevou a crip-
tografia totalmente homomórfica (FHE, do inglês Fully Homomorphic Encryption) a um
lugar de destaque dentre as tecnologias de preservação da privacidade. A princípio, en-
tretanto, o feito teve um impacto diminuto na prática, já que a maioria das aplicações
não suportava a sobrecarga no desempenho que ela introduzia. A literatura então evo-
luiu em torno das necessidades de casos de uso específicos, muitas vezes abrindo mão
da computação arbitrária em nome do desempenho. Atualmente, o estado da arte em
desempenho para FHE é representado por esquemas que se especializam em aritmética
rápida ao mesmo tempo em que relegam funções arbitrárias a aproximações polinomiais.
Do outro lado dessa questão, o esquema TFHE (do inglês FHE over the Torus) [Chil-
lotti et al., 2016] provê computação arbitrária enquanto luta por um nível de desempenho
competitivo. Este trabalho é dedicado a melhorá-lo.

O TFHE possibilita a avaliação de funções arbitrárias através de uma técnica chamada
functional bootstrap, mas seu custo cresce superlinearmente com a precisão da função, o
que, a princípio, o tornava adequado apenas para funções com pequena precisão. Neste
trabalho, apresentamos alguns dos primeiros métodos para permitir uma avaliação mais
eficiente de funções arbitrárias com alta precisão usando TFHE. Nossos métodos permi-
tiram ganhos de velocidade de até 3,2 vezes em relação à literatura anterior usando o
bootstrap funcional e de até 8,74 vezes em comparação com outros métodos de avaliação.
Também avançamos o TFHE otimizando e propondo novas técnicas para alguns de seus
principais procedimentos e suas implementações. Entre essas melhorias, destacamos uma
otimização em sua aritmética básica que atinge uma aceleração de até 2 vezes em rela-
ção às implementações anteriores e um novo método para avaliar o bootstrap funcional
com várias funções ao mesmo tempo (empacotamento MISD, do inglês Multi-Instruction
Single-Data). Por fim, com foco no lado prático de FHE, testamos nossas contribuições
em um cenário do mundo real implementando a avaliação homomórfica de um algoritmo
de inferência em dados do genoma humano.



Abstract

Enabling the evaluation of arbitrary computation over encrypted data raised fully ho-
momorphic encryption (FHE) to the spotlight among privacy-preserving technologies.
Initially, however, the feat had a deminute impact in practice, as most applications could
not bear the performance overhead it introduced. The literature then evolved around the
needs of specific use cases, often forfeiting arbitrary computation in the name of perfor-
mance. Currently, state-of-the-art performance on FHE is represented by schemes that
specialize in fast arithmetic while relegating arbitrary functions to polynomial approxima-
tions. On the other side of this issue, the TFHE scheme (FHE over the Torus) [Chillotti
et al., 2016] upholds arbitrary computation while fighting for a competitive performance
level. This work is dedicated to improving it.

TFHE enables the evaluation of arbitrary functions through a technique called func-
tional bootstrapping, but its cost grows superlinearly with the function precision, which,
at first, made it only suitable for functions with small precision. In this work, we intro-
duced some of the first methods to allow a more efficient evaluation of arbitrary functions
with high precision using TFHE. Our methods enabled speedups of up to 3.2 times over
previous literature using the functional bootstrapping, and of up to 8.74 times compared
to other evaluation methods. We also advanced TFHE by optimizing and proposing new
techniques for some of its core procedures and their implementations. Among these im-
provements, we highlight an optimization on its basic arithmetic that achieves a speedup
of up to 2 times over previous implementations and a new method for evaluating the func-
tional bootstrapping with several functions at once (MISD, Multi-Instruction Single-Data,
batching). Finally, with a focus on the practical side of FHE, we tested our contributions
in a real-world scenario by implementing the homomorphic evaluation of an inference
algorithm on human genome data.
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Chapter 1

Introduction

Cryptography has always been an important tool when handling sensitive information. It

can provide formal guarantees of privacy and is broadly used to protect data at rest or

in transit. During processing, on the other hand, data might be equally vulnerable while

protecting it presents many additional challenges. At first, one could consider processing

only in trusted environments as a solution for this problem. However, while that may be

a solution for some applications in specific contexts, many could benefit from outsourcing

computation to the public cloud, and others rely on multi-party computation protocols. In

both cases, data needs to be (partially or fully) processed in untrusted environments, thus

requiring some way of protection. In this context, an ideal solution is in the use of fully

homomorphic encryption (FHE), which allows performing computation over encrypted

data.

The idea of performing computation over encrypted data was a long-chased goal in the

cryptography community. The concept was first defined in 1978 by Rivest et al. [61], but

for decades proposed solutions only achieved partial homomorphism. In 2009, Gentry [36]

presented the first Fully Homomorphic Encryption (FHE) scheme, based on ideal lattices,

enabling arbitrary computation through the evaluation of logic gates. Efficiency was a

problem from the start, but Gentry’s work also established a blueprint later used to build

more efficient FHE schemes based on the Learning With Errors (LWE) problem [59] and

its variants [13, 15]. Many of these follow-up works presented significant improvements

efficiency-wise, but the literature generally evolved around the needs of specific use cases,

leaving behind, in terms of performance, capabilities such as the evaluation of arbitrary

(nonlinear) functions.

Current FHE schemes are often divided into two branches. The first is characterized

for providing efficient arithmetic in a SIMD-like1 manner (i.e., they evaluate a single

arithmetic operation over multiple data, at once, in an efficient way). BGV [14] and

BFV [12, 33] were some of the first schemes providing such capabilities and remain the

state-of-the-art when considering exact arithmetic. More recently, the CKKS scheme [20]

introduced a new way of encoding data for performing SIMD-like operations by relying

on approximate arithmetic. It was proposed considering specifically the homomorphic

evaluation of neural network algorithms, a major use case for FHE. These algorithms

1SIMD: Single Instruction, Multiple Data
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Figure 1.1: Chronology of the main HE schemes since 2009.

require a high throughput of arithmetic operations and are capable of correctly operating

even with relatively large imprecisions [9]. In this way, CKKS quickly became one of the

most efficient solutions for homomorphic evaluation. Its efficiency, however, restricts func-

tionality, as the scheme is inherently approximate and needs to rely on further arithmetic

approximations for arbitrary functions. The cost of evaluating these functions might grow

exponentially with the desired precision [52], and trusting the arithmetic robustness of

the overlying application is not always possible. In this way, the scheme requires extensive

modifications for some applications and is unfit for many of them.

On the other branch of modern FHE, we have GSW-based [36] schemes such as

FHEW [30] and TFHE [22]. Instead of focusing on providing fast SIMD arithmetic

(although they still enable some methods for doing so), they represent applications as

combinations of very basic logic components, such as binary logic gates, finite automata,

and lookup tables. Translating an application to such components is a straightforward

process and works broadly, and they achieve performance by minimizing the latency of

evaluating these components. However, large applications require a great number of them,

and further performance improvements are still necessary for making these schemes prac-

tical for many applications. Another major advantage of these schemes is their capability

for evaluating arbitrary functions. Providing larger arithmetic precision for these evalu-

ations is however still a challenge, as existing solutions would often lead to exponential

costs.

1.1 Contributions

In this work, we focus on the TFHE scheme and address some of the main aspects limiting

its applicability.

Improving precision

Evaluating arbitrary (nonlinear) functions is generally a challenge for FHE schemes.

TFHE is not an exception to that, but it provides methods for efficiently evaluating

arbitrary functions with small precision. In our paper titled “Revisiting the Functional

Bootstrap in TFHE” [38], published at the IACR Transactions on Cryptographic Hard-

ware and Embedded Systems (CHES 2021), we present two methods for enabling the
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efficient evaluation of arbitrary functions with high-precision using TFHE. We also intro-

duce a method for minimizing noise at homomorphic multiplications and a few other side

contributions. Compared to previous literature using TFHE, our methods are up to 2.49

times faster than the lookup table evaluation of Carpov et al. [17] and up to 3.19 times

faster than the 32-bit integer comparison of Bourse et al. [11]. We also achieve speedups

of up to 6.98, 8.74, and 3.55 times over 8-bit implementations of the ReLU, Addition, and

Maximum functions, respectively.

Optimizing performance

From the very basic arithmetic procedures up to the high-level functions that compose the

building blocks of the scheme, we present several contributions to accelerate TFHE, con-

cerning both implementation and algorithmic aspects. In our paper titled “MOSFHET:

Optimized Software for FHE over the Torus” [39], currently under consideration for publi-

cation in a journal, we review and implement the main techniques to improve performance

or error behavior in TFHE proposed so far. For many, this is the first practical implemen-

tation. We also introduce novel improvements to several of them and new approaches to

implement some commonly used procedures. Furthermore, we show which proposals can

be suitably combined to achieve better results. We provide a single library containing all

the reviewed techniques as well as our original contributions. Among the techniques we

introduce, we highlight a new method for multi-value bootstrapping based on blind rotate

unfolding and a Faster-than-memory seed expansion, which introduces speedups of up to

2 times to basic arithmetic operations.

Real-world applications

Using our novel techniques as well as the improvements we build over previous literature,

we design solutions for using TFHE in applications that are typical use cases for FHE.

In our paper “Homomorphic evaluation of large look-up tables for inference on human

genome data in the cloud” [40], published at the 2nd Workshop on Cloud Computing, we

propose and analyze a candidate we implemented for the homomorphic encryption track

of iDash 2022, an annual competition for creating new solutions to tackle the challenges

of securing human genome processing in untrusted environments. We focus on different

approaches for optimizing its homomorphic evaluation using some of the techniques and

implementations previously developed in our project. As a result, we not only show the

practicability of our solution in the context of iDash but also provide key insights on the

practical issues of employing popular homomorphic encryption techniques, such as LUT

evaluation, in a real-world scenario.

1.2 Structure

The rest of this document is organized into five chapters. Chapter 2 introduces the basic

notation and the core concepts necessary for understanding LWE-based cryptography,

fully homomorphic encryption, and the TFHE scheme. Chapter 3 presents our first set
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of contributions, in which we focus on improving the performance of TFHE for the eval-

uation of functions with high precision. Chapter 4 introduces MOSFHET, our optimized

library implementing TFHE, and the main proposals that have been presented so far for

improving it in the literature. It also presents the first results we were able to produce

with the library, including novel techniques that we developed for the scheme. Chapter 5

presents the results of using our library for implementing an inference algorithm on human

genome data, which is a typical use case for FHE and a good representative of real-world

applications. Finally, Chapter 6 presents our conclusions and introduces future work.
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Chapter 2

Theoretical basis

In this chapter, we introduce the main concepts necessary for the understanding of this

work. The chapter was designed to be as self-contained as possible, referring to additional

literature only for tangential or very basic concepts. It is important to note that this work

does not address the security aspects of fully homomorphic encryption or LWE-based

cryptography. We define the basic security problems only to help clarify the understanding

of the homomorphisms they provide, but we do not approach the security reductions on

which they rely.

2.1 Notation and basic arithmetic definitions

We denote as Sn
q the set of vectors with n elements, each of them in some set S modulo

q. We use subscript to index elements of a vector, i.e., si ∈ S is the i-th element of

s ∈ Sn. We denote by Z, R, B, and C the sets of integer, real, binary, and complex

numbers. The real torus T = R/Z is the set of real numbers modulo 1. We denote a

set of polynomials over the variable X with coefficients in S by S[X]. For power-of-two

cyclotomic polynomials, we define Rq = Zq[X]/(XN + 1) as the ring of polynomials over

the variable X with modulus Φ2N(X) = XN +1 and coefficients in Zq. In FHE in general,

q is typically but not necessarily a prime. For this work specifically, we often choose q as

a power of 2 for improving performance. For details on the basic arithmetic in these sets,

refer to Sections 1.1 and 1.2 of Reference [63].

Rounding and modular reduction We denote +r,t the rounding of r to the closest

multiple of t and [r]p its reduction modulo p. If omitted, t = 1. If r is a polynomial,

rounding and modular reduction are applied to each of its coefficients. Similarly, if r is a

vector, rounding and modular reduction are applied to each of its elements.

Vector interpretation and operations Given a polynomial p ∈ Rq, its vector inter-

pretation is a vector v ∈ ZN
q given by the list of coefficients of p, i.e., p =

∑N−1
i=0 piX

i 7→
v = [p0, p1, . . . , pN−1]. Angle brackets ïa, bð denote the inner product between vectors a

and b. Arithmetic operations, e.g. additions and multiplications, occur element-wise.
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Functions We present functions by first enunciating their domain and co-domain and,

then, defining their exact map. For example, we denote the square function over the

integers by f : Z 7→ Z = f(x) 7→ x2.

Lookup tables Lookup tables (LUTs) are extensively used in this work as a way of

representing discretized functions. A LUT is a vector L = [l0, l1, . . . , ln−1] with n elements

encoding a function f iff li = f(i) for all i ∈ [[0, n − 1]]. A lookup is a procedure that

receives a LUT L and a selector i and returns the element (or value) in the i-th position

of L. Figure 2.1 shows the evaluation of a square function using a look-up table.

Selector

Output

Legend

2

Output

Example

0

1

9

4

4

Figure 2.1: Lookup table (LUT) example.

2.2 Fully-homomorphic encryption (FHE)

The notion of homomorphic encryption is as old as public key encryption [61], and the

same can be said about its first basic construction, as the RSA cryptosystem [60] itself al-

ready presented homomorphic properties. For decades, however, no solution was capable

of providing a full homomorphism, i.e., of being functionally complete. Still, significant

progress was made throughout these years through the presentation of partially homomor-

phic encryption (PHE) schemes. These proposals achieved group homomorphisms, which

we could informally define as being capable of evaluating just one type of arithmetic oper-

ation. Examples of partially homomorphic encryption (PHE) schemes include the Paillier

cryptosystem [58], which allows only for additions, and the ElGamal cryptosystem [32],

which allows only for multiplications between ciphertexts. It was only in 2009 that Gen-

try [36] presented the first Fully Homomorphic encryption (FHE) scheme. His scheme

was based on ideal lattices and enabled arbitrary computation through the evaluation of

nand gates. Figure 2.2 illustrates the use of FHE for protecting computation in untrusted

environments. Overbar indicates the encrypted version of the input (in) and output (out)

data, and f ′ is the implementation of f using logic gates that can be homomorphically

evaluated.
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in

out

f(a, b) = a+ b

in

out

Encryptk,À

Decryptk,À

Untrusted Environment

f ′ =

Figure 2.2: Illustration of FHE using binary gates.

Gentry [36] also revisited the definition of Homomorphic Encryption, which we repro-

duce in Definition 1.

Definition 1 (Homomorphic Encryption, [36]). Let ci = EncryptÀ,s(mi) be a set of ci-

phertexts encrypting a set of messages mi, for i ∈ [[0, n]], with secret key s and a cryp-

tosystem À. If À is fully homomorphic, it provides a function EvalÀ with which anyone

knowing the ciphertexts (but not necessarily s) should be able to evaluate an arbitrary

computationally solvable function f over the messages and obtain its encrypted result

cf = EvalÀ(f, c0, c1, ..., cn). Furthermore, À should provide the following properties:

• Correctness: f(m0,m1, ...,mn) = DecryptÀ,s(EvalÀ(f, c0, c1, ..., cn))

• Security: Definitions for chosen-ciphertext attacks (CCA) and semantic security

games for HE schemes are the same as for general public-key cryptography and are

detailed by Gentry [36]. Particularly, HE schemes should be semantically secure

and secure against non-adaptive CCA.

• Compactness: The complexity of the decryption algorithm should depend only on

the security parameters, and not on the evaluated function. It also implies that the

size of cf should not depend on the complexity of f .

This first scheme presented by Gentry was generally considered overly complex and

relied on security assumptions that were not well-studied [16], such as the sparse subset-

sum problem. However, it also established a blueprint for building FHE schemes, which

was later used to build schemes based on other problems and assumptions. Most of the

modern fully homomorphic encryption schemes are based on the Learning With Errors

(LWE) problem or some of its variants [53], following the work of Brakerski and Vaikun-

tanathan [16]. The problem was introduced by Regev [59] and has security based on the

worst-case of the Shortest Vector Problem on arbitrary lattices.

Figure 2.3 shows a toy example of one of the main challenges faced by modern HE

schemes: noise management. It also exemplifies how Gentry’s blueprint proposes dealing

with it. All currently known fully homomorphic encryption schemes rely on noisy cipher-

texts for security, i.e., the encryption process adds a small error (noise) to the message. In

Figure 2.3, we can see how message and noise behave during evaluation. In the first step,



21

we are showing the encryption of two 6-bit messages in 16-bit words. The messages are

in the most significant bits while the 3-bit noises are the least significant bits, following

the encoding adopted by cryptosystems such as BFV and TFHE. For now, we are just

taking the addition of noise as a security necessity, Section 2.3 will further discuss the

exact security problem we are relying on. In step 2, the words are added, which also adds

the messages in Z26 and the noise in Z. Notice that the noise has grown from 3 to 4 bits.

It continues to grow as we perform more arithmetic operations. Eventually (step 3), it

reaches a point at which significant bits of the message could be affected if we perform

more arithmetic. At this point, there are three alternative approaches to follow.

0111010000000101

0011000000000110

1010010000001011 1101110101010101

11011101010101011101110000001001

+
Arithmetic

A
rithm

eticB
oo
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p

End

1

2 3

Figure 2.3: Diagram depicting noise behavior in modern HE schemes.

The first is to simply continue to perform arithmetic and treat messages as approximate

results. In the encoding we adopt for this example, we could only do it for so long before

the message is completely lost. Other schemes, such as CKKS, adopt encodings that allow

for both the message and noise to grow, thereby enabling the possibility of a much larger

number of approximate arithmetic operations. The second approach would be to end the

evaluation there, which is often used with schemes such as BFV and BGV. These first two

approaches are known as leveled setting. Its main restriction is in the number of operations

it can evaluate, which needs to be defined when setting up the scheme. Specifically, it is

necessary to estimate parameters that enable evaluating the desired number of operations.

Large applications generally require large parameters, which could introduce a significant

performance overhead on applications. Nonetheless, schemes following these approaches

are the current state-of-the-art for efficiency in homomorphic evaluation. They present a

very high throughput of operations by packing arithmetic (SIMD), but they also present

no efficient ways of directly evaluating arbitrary functions, thus relying on approximations

for them.

The third approach is the bootstrapped setting, where schemes reset the noise by using

a bootstrap procedure. This allows schemes to evaluate an unbounded number of oper-

ations, but the bootstrap is usually very expensive in schemes such as BGV, BFV, and

CKKS. Most schemes following this approach, e.g. TFHE and FHEW, enable fast boot-

straps by using very small parameters that only allow for the evaluation of small logic

components, such as logic gates and lookup tables. They can represent entire applica-

tions as combinations of such components. Therefore, they do not require approximate

computing and enable straightforward implementations of any application with almost

no algorithmic modifications. Scaling performance for larger applications is, however, a
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problem, as larger applications may require a vast number of logic components.

2.3 LWE-based cryptography

First introduced by Regev in 2009 [59], the Learning With Errors problem has been ex-

tensively used in FHE, and several variants have been presented so far. When considering

a specific scheme, definitions and notations generally tend to also be specific to the re-

quirements of such scheme. Therefore, we start with the LWE definition presented by the

TFHE scheme, our main focus in this work. This variant (with adjusted parameters) is

at least as hard as solving the standard LWE problem [55].

Definition 2 (Binary-Secret Scale-invariant LWE (from TFHE [22])). Let an LWE sample

be a pair (a, b) ∈ Zn+1
q , where a is uniformly sampled from Zn

q , b = ïa, sð + e ∈ Zq,

n > 1 ∈ Z, and ï , ð denotes the inner product. The secret key s is uniformly sampled

from Bn and the error e is sampled from a discretized Gaussian distribution over Z with

mean 0 and standard deviation Ã. Given a polynomially bounded number of LWE samples

using the same s, we define two versions of the LWE problem:

• Search problem: Find s.

• Decision problem: Distinguish with non-negligible advantage the LWE samples

from vectors uniformly sampled from Zn+1
q .

Encryption scheme The basic idea behind an LWE-based cryptosystem is to encrypt

messages by adding them to the b component of the LWE sample since it is indistinguish-

able from a vector sampled from the uniform distribution (LWE decision problem).

2.4 Fully Homomorphic Encryption over the Torus

(TFHE)

TFHE [22] is a fully homomorphic encryption scheme based on the Learning With Errors

(LWE) problem [59] and its ring variant [53]. In this section, we describe its algebraic

structures as well as its basic functioning for homomorphically evaluating arithmetic and

arbitrary functions. TFHE was originally proposed using Torus notation, but we start

with a generic definition over Zq, more common in the FHE literature. We introduce the

Torus abstraction and show how it maps to Zq and to Rq later in this section.

2.4.1 Encryption scheme

TFHE works with scalar and polynomial messages and encrypts them in LWE, RLWE,

and RGSW samples.
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LWE sample The sample itself is exactly as in Definition 2, but we reproduce it for

convenience. An LWE sample1 is a pair (a, b) ∈ Zn+1
q , where a is uniformly sampled from

Zn
q , b = ïa, sð+e ∈ Zq, and n g 1 ∈ Z. The binary secret key s is sampled from a uniform

distribution over Bn, and the error e is sampled from a discretized Gaussian distribution

over Zq with mean 0 and standard deviation Ã.

• Encryption: We encrypt a message m ∈ Zq/∆ by adding (0,m∆) to a fresh LWE

sample, where ∆ is a scaling factor meant to separate message from noise. We

denote the set of LWE samples encrypting the message m with key s and parameters

k = (n, Ã,∆) by c ∈ LWEs,k(m). Textually, we refer to c ∈ LWEs,k(m) as a sample

of m. We omit the parameters if they are not relevant to the context and whenever

it is possible to unequivocally infer them from the key or context.

• Decryption: we first use the secret key s to calculate the phase of a sample phase(c) =

b − ïa, sð, which is the message plus the noise. Then, we round it to remove the

noise and get the message m = +phase(c)/∆,.

RLWE sample Let Rq = Zq[X]/(XN + 1) as defined in Section 2.1, an RLWE sample

is a pair (a, b) ∈ R2
q, where a is uniformly sampled from Rq, and b ∈ Rq is given by

b = a · S + e, for a binary secret key S sampled from a uniform distribution over R2,

and an error e sampled from a discretized Gaussian distribution over Rq with mean 0

and standard deviation Ã. Encryption and decryption are similar as described for LWE

samples. We denote the set of RLWE samples encrypting the message m with key S and

parameters k = (N,∆, Ã) by RLWES,k(m). Again, we omit the parameters whenever it is

possible.

RGSW sample An RGSW sample is a vector of 2ℓ RLWE samples. Algorithm 1

shows the encryption process, where ℓ and ´ are gadget decomposition parameters, and

RLWE_Enc(S, x) denotes the RLWE encryption of some message x with key S. We

denote the set of RGSW samples encrypting the message m ∈ Rq with key s ∈ R2 and

parameters k = (n,N, Ã, ℓ) by RGSWs,k(m). Arithmetically, let C be a vector of 2ℓ RLWE

samples of 0 (hence, it is a matrix in R2ℓ×2
q ), an RGSW encryption C ′ of a message m

is given by C ′ ← C + m · G, where G ∈ R2ℓ×2
q is the gadget decomposition matrix in

Equation 2.1.

G =





















´0 0
...

...

´ℓ−1 0

0 ´0

...
...

0 ´ℓ−1





















(2.1)

1Formally, (a, b) ∈ Zn

q
× Zq, but, to ease the notation, we consider a flattened interpretation of (a, b)

given by f : Zn

q
× Zq 7→ Zn+1

q
= f(a, b) 7→ (a0, a1, . . . , an−1, b)
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Algorithm 1: RGSW Encryption (RGSW_Enc)

Input : An encryption key S ∈ Rq

Input : A message m ∈ Rq

Input : Decomposition parameters ℓ and ´ ∈ Z+

Output: An RGSW sample c ∈ RGSWS(m)
1 C ← []
2 for i ∈ [[0, ℓ) do
3 Ci ← RLWE_Enc(S, 0)
4 Cℓ+i ← Cℓ+i + (0,m´i)
5 Ci ← Ci + (m´i, 0); // Equivalent to: Ci ← Ci + (0,−K ·m´i)

6 return C

The torus representation Implementation-wise, TFHE usually works in Z2p and R2p ,

where p is the word size of the implementation. The original 32-bit implementation of

TFHE uses p = 32 whereas its experimental branch as well as most newer implementations

use p = 64. When defined over the Torus, it relies on the map T
∼−→ Z2p given by x 7→ x·2p

to be implemented because floating-point arithmetic modulo 1 is considered to be more

expensive compared to just working with word-sized integers (where modular reductions

for p = 2k are an architecture feature). Implementations of TFHE with prime moduli are

also common in some libraries [4]. In this case, the Torus abstraction is not used.

2.4.1.1 Evaluating arithmetic

(R)LWE samples are in an R-module. Therefore, we have well-defined additions between

samples and multiplications with elements from some ring R. In both cases, operations are

pair-wise: Let ci = (ai, bi) ∈ (R)LWE(mi) for i ∈ {0, 1} be two (R)LWE samples encrypt-

ing messages mi. The sum of them is given by csum = (a0+a1, b0+b1) ∈ (R)LWEs(m1+m2)

while cscale = (a0 · z, b0 · z) ∈ (R)LWEs(m1 · z) encrypts the scaling by z ∈ R, where R is

a ring (typically, Z or R). For RGSW samples, these operations occur element-wise on

their vector of RLWE samples.

(R)LWE samples also support external products by RGSW samples. Algorithm 2

describes the process. The decomposition of an RLWE sample in base ´ and ℓ levels is

defined as a gadget decomposition. TFHE also defines an approximate gadget decompo-

sition [22] that ignores the least significant bits of the RLWE sample. In this way, the

multiplication is able to run with ℓ < log´(q), improving performance in exchange for

some additional noise.

2.4.2 Building blocks for arbitrary computation

As we scale, add, or multiply samples, the Gaussian error in the component b increases.

The bootstrap procedure, as first defined by Gentry [36], is the technique used for resetting

this error to a default value established by the parameter set.

In TFHE, the bootstrap can be used not only for resetting the error but also to

implement arbitrary (nonlinear) functions. For implementation, it defines three main

building blocks, which we describe in this section.
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Algorithm 2: RGSW × RLWE External Product

Input : An RLWE sample c = (a, b) ∈ RLWES(m1) encrypting message m1

Input : An RGSW sample C ∈ RGSWS(m2) encrypting message m2

Input : Decomposition parameters ℓ and ´ ∈ Z+

Output: An RLWE sample c′ ∈ RLWES(m1m2) encrypting the product of the
messages, m1m2

1 Let ã be the decomposion of a, such that, a =
∑ℓ−1

i=0 ãi · ´i

2 Let b̃ be the decomposion of b, such that, b =
∑ℓ−1

i=0 b̃i · ´i

3 return
∑ℓ−1

i=0 Ci · ãi +
∑ℓ−1

i=0 Cℓ+i · b̃i

2.4.2.1 Public and private key switching

The idea behind a key-switching algorithm is the homomorphic evaluation of the phase

of a ciphertext. Let c = (a, b) ∈ (R)LWEs,k(m) be a (R)LWE sample encrypting

m, the keyswitch algorithm uses an encryption of the secret key s, defined as KSi ∈
(R)LWEs′,k′(si), to calculate the phase(c) = b − ïa,KSð. The result of this operation

is c′ ∈ (R)LWEs′,k′(m), allowing us, therefore, to switch keys and parameters. This

process also allows the evaluation of linear morphisms, i.e., any function f for which

phase(f(c)) = f(phase(c)). We should note that, by this definition, f can be a linear

combination of several (R)LWE samples, which allows us, for example, to pack LWE

samples in RLWE samples, a process called Packing Key Switching. Algorithm 3 shows

the Public Key Switching algorithm from TFHE. Notice that ai is decomposed before

being multiplied by the encryption of s (line 4) so that the error variance growth, which

would be quadratic on the value of ai, is now significantly reduced.

Algorithm 3: Public Functional Key Switching (PublicKeySwitch) [22]

Input : p LWE samples c(z) = (a(z), b(z)) ∈ LWEs(µz), z ∈ [[1, p]]
Input : a linear morphism f : Zp

q 7→ Rq

Input : a precision parameter t ∈ Z

Input : a Key Switching key KSi,j ∈ (R)LWE
s′
(si2

j), for i ∈ [[1, n]] and j ∈ [[1, t]]
Output: an (R)LWE sample c′ ∈ (R)LWEs′(f(µ))

1 for i ∈ [[1, n]] do

2 ai ← f(a
(1)
i , a

(2)
i , ..., a

(p)
i )

3 ãi ←
⌈

ai
2t

q

⌋

4 Decompose ãi, such that ãi =
∑t

j=1 âi,j · 2j

5 Return (0, f(b
(1)
i , b

(2)
i , ..., b

(p)
i ))−∑n

i=1

∑t
j=1 âi,j ·KSi,j

The private version of the function bootstrap is quite similar to the public one, dif-

fering by the fact that the function f is embedded in the key switching key, i.e., KS ∈
(R)LWEs′,k′(f(s)). This version is especially useful when f depends on secret information,

such as the key.Algorithm 4 shows the private key switching from TFHE.
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Algorithm 4: Private Functional Key Switching (PrivateKeySwitch) [22]

Input : p LWE samples cz = (az, bz) ∈ LWEs(µz), z ∈ [[1, p]]
Input : a precision parameter t ∈ Z

Input : a Key Switching key KSi,j,z ∈ (R)LWEs′(fz(s)i2
j), for i ∈ [[1, n]], and

KSn+1,j,z ∈ (R)LWEs′(f(−1)2j), for j ∈ [[1, t]] and z ∈ [[1, p]], where fz
are linear morphisms

Output: a (R)LWE sample cout ∈ (R)LWEs′(f(µ))
1 for z ∈ [[1, p]] do
2 for i ∈ [[1, n]] do

3 ãz,i ←
⌈

az,i
2t

q

⌋

4 Decompose ãz,i, such that ãz,i =
∑t

j=1 âz,i,j · 2j
5 Return −∑p

z=1

∑n+1
i=1

∑t
j=1 âz,i,j ·KSz,i,j

2.4.2.2 Blind rotation

Given an LWE sample c = (a, b) ∈ LWEs(m) and an RLWE sample t ∈ RLWEs′(v), the

BlindRotate procedure computes t′ = RLWEs′(v ·X+phase(c)2N/q,). Since this multiplica-

tion occurs modulo the 2N -th cyclotomic polynomial, the operation works as a negacyclic

rotation of the polynomial v ∈ Rq by an amount defined by the phase of c (thus, a blind

rotation).

Algorithm 5: Blind Rotation (BlindRotate) [22]

Input : a sample c = (a1, ..., an, b) ∈ LWEs(m)
Input : a sample tv ∈ RLWES(v)
Input : a list of samples Ci ∈ RGSWS(si), for i ∈ [[1, n]]
Output: an RLWE sample of c′ ∈ RLWES(X

+phase(c)2N/q, · v)

1 ACC← X−+b 2N
q , · tv

2 for i← 1 to n do

3 ãi ←
⌈

ai
2N
q

⌋

4 ACC← CMUX(Ci, X
ãi · ACC,ACC)

5 return ACC

1 Procedure CMUX(C, A, B)
2 return C · (B − A) + B

2.4.2.3 Sample extraction

Given an RLWE sample c ∈ RLWEs(p =
∑N−1

i=0 miX
i), the SampleExtract pro-

cedure extracts an LWE sample encrypting a coefficient from the polynomial p, i.e.,

SampleExtractj(c) ∈ LWEs′(mj), where s′ is the vector interpretation of s.
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2.5 Lookup table (LUT) evaluation

Look-up tables are a convenient way of representing and evaluating functions using ho-

momorphic encryption. There are several ways of doing so. In this section, we detail the

basic procedures introduced by and used in schemes such as FHEW [30] and TFHE [22].

2.5.1 Leveled setting

Let L be a look-up table (LUT) of size l. A LUT evaluation on L with input (selector)

x consists of looking up for the x-th element of L. Homomorphically, the simplest way

of evaluating it is to encrypt L in an RLWE sample, with the value of each element of L

being encrypted in a monomial of m. For example:

[m0,m1,m2,m3]→ RLWE(m3X
3 +m2X

2 +m1X
1 +m0)

Then, the selector x is encrypted in the exponent of an RGSW sample as follows:

x→ RGSW(X2N−x)

To perform the look-up, we multiply the two encryptions. Let x = 1, the result of the

multiplication would be:

RLWE(−m0X
3 +m3X

2 +m2X
1 +m1)

Finally, we use the SampleExtract for extracting an LWE sample encrypting the con-

stant term of the polynomial encrypted in the RLWE sample. In this way, we get the

LUT evaluation result:

SampleExtract0(RLWE(−m0X
3 +m3X

2 +m2X
1 +m1))

→ LWE(m1)

This is a toy example where we consider l = N = 4. Real parameters are typically

much larger with N > 1024. While this solution is very efficient, with one RGSW× RLWE

multiplication taking just a few tens of microseconds, it has some limitations. Firstly,

LUTs are limited by the size of N . Secondly, the selector is encrypted in the exponent of

an RGSW sample, which is often expensive to obtain in real-world scenarios [21]. These

limitations are mitigated by techniques such as the vertical packing [22], which are based

on the evaluation of CMUXes.

2.5.1.1 CMUX-based evaluation

As we defined in Algorithm 5, a CMUX [22] is a small multiplexer that receives two RLWE

samples a and b, and an RGSW sample C encrypting 0 or 1. It returns a if C = 0, and

b otherwise. Algorithm 6 shows the VerticalPacking [22], which essentially evaluates

LUTs using a tree of CMUXes. In this method, the selector is encrypted bit by bit, which

is usually easier or cheaper to obtain in real-world applications. It also enables evaluating
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LUTs larger than N , as one can encrypt it in several RLWE samples and select the desired

ones through a sequence of CMUX gates.

Algorithm 6: Vertical Packing (VerticalPacking) [22]

Input : a lookup table L ∈ Zl
q of size l = Nk

Input : a list of samples Ci ∈ RGSWS(si), for i ∈ [[1, n]] encrypting a k-bit
selector s =

∑k−1
i=0 si2

i, bit by bit, for k = log2(l)
Output: a LWE sample c′ ∈ LWES′(L[s]) encrypting the lookup result, where S ′

is the vector interpretation of S.

1 f : ZN
q 7→ Rq given by f(m) 7→

∑N−1
i=0 miX

i

/* Pack the LUT in RLWE samples */

2 v ← []
3 foreach i ∈ [[0, l/N) do
4 vi ← (0, f([LiN , LiN+1, . . . , L(i+1)N−1]))

/* Select the correct RLWE sample using a tree of CMUXes */

5 for i← 0 to k − log2(N)− 1 do
6 h← l

N2i+1

7 for j ← 0 to h− 1 do
8 vj ← CMUX(Ck−i−1, vj, vj+h)

/* Rotate the selected RLWE sample */

9 for i← 0 to log2(N)− 1 do
10 r ← v0 ·X2N−2i

11 v0 ← CMUX(Ci, v0, r)

/* Extract and return L[s] */

12 return SampleExtract0(v0)

1 Procedure CMUX(C, A, B)
2 return C · (B − A) + B

2.5.2 The functional bootstrap

In its first version, TFHE’s bootstrap was defined for evaluating only binary logic gates

in a procedure called Gate Bootstrapping, which was later generalized for evaluating ar-

bitrary functions discretized in Lookup Tables (LUTs). In 2019, Boura et al. [9] for-

malized the idea of a functional bootstrap, both for TFHE and other cryptosystems. In

2020, Chillotti et al. [23] introduced a discretized version of TFHE and defined the pro-

grammable bootstrapping (PBS), a formalization of the functional bootstrap specific to

TFHE.

Algorithm 7 shows the functional bootstrap of TFHE.

The first step for evaluating the arbitrary function is to discretize its domain, evaluate

it in all discretized points, and store the results in a lookup table (LUT). The LUT, then,

needs to be encoded as a polynomial (line 2). Equation 2.2 details this process. The Base

B is a precision parameter.
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Algorithm 7: Functional Bootstrap (FunctionalBootstrap) [9, 38, 23]

Input : an LWE sample c = (a, b) ∈ LWEs(m), for m ∈ ZB

Input : an integer LUT L = [l0, l1, ..., lB−1] ∈ ZB
B′

Input : a bootstrapping key BKi ∈ RGSWS (si), for i ∈ [[1, n]]
Output: c′ ∈ LWES ′(L[m]), where S

′ ∈ BN is a vector (LWE) interpretation of S
1 b′ ← +b2N/q, and a′ ← +a2N/q,
2 v ←∑N−1

i=0 ∆ · l+ iBN ,X
i

3 C← BlindRotate((0, v), (a′, b′ + 2N
4B

),BK)
4 return SampleExtract0(C)

A single RLWE sample could encode up to N entries of a lookup table. However,

when using the bootstrap to evaluate the LUT, only a small fraction of N will actually

be available if the goal is exact computation. The first step of the bootstrap is to scale

the ciphertext by 2N/q and round it to an integer. This process introduces a significant

error variance, which is additive to the variance of the Gaussian error. To prevent these

lookup errors, it is necessary to map each position of a LUT to a sequence of many

consecutive coefficients of the test vector v and to adjust the selector to lookup positions

in the middle of these sequences. For example, with B = 4 and N = 1024, an integer LUT

L = [l1, l2, l3, l4] ∈ Z4
B is mapped to

∑255
i=0 l1X

i +
∑511

i=256 l2X
i +

∑767
i=512 l3X

i +
∑1023

i=768 l4X
i

and we add a precision offset of 2N
4B

= 2N
16

to b′.

L = [l1 = f(1), ..., lB = f(B)] 7→ ∆
N−1
∑

i=0

l+ iBN ,X
i (2.2)

The negacyclic property The table lookup is performed by using the BlindRotate

to multiply the test vector by X−ϕ(c)2N/q, where ϕ denotes the phase. This multiplication

occurs modulo the 2N -th cyclotomic polynomial and, therefore, presents a negacyclic

property, i.e., let p be a polynomial, p ·XN = −p. This property restricts the use of the

functional bootstrap to anti-symmetric functions, i.e., functions f such that f(x+N) =

−f(x). For arbitrary functions, we avoid the negacyclic property by using only the first

half of the torus to encode messages. In integer notation, this restricts m∆ ∈ Zq such

that 0 < ∆m < q/2.

Evaluating encrypted LUTs and private functions Algorithm 7 receives a LUT

represented as an array of integers in ZB
B, but it could receive directly the test vector (tv)

polynomial (calculated in line 2) or even an RLWE sample encrypting tv. This last case is

especially useful for evaluating private functions, but the error variance of the encrypted

LUT is added to the output error variance of the algorithm. This version can also be used

to evaluate multi-variable functions, as we can use the Packing Key Switch to create LUTs

from function inputs [38]. In this case, the output error variance is always greater than

at least one of the function inputs, limiting the bootstrap’s error-reducing capabilities.
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2.5.3 Multi value bootstrap

The most expensive procedure in the LUT evaluation using the functional bootstrap of

TFHE is the BlindRotate. The multi-value bootstrap is a technique that allows the

evaluation of multiple LUTs with the same selector using just one BlindRotate. Sup-

pose we want to evaluate z LUTs (L0, L1, ..., Lz) with the same selector c ∈ LWEs(m)

and we want to minimize the number of blind rotations. The most straightforward so-

lution for implementing the multi-value bootstrap would be using the BlindRotate to

calculate just c′ ∈ RLWE(X+phase(c)2N/q,) and, then, multiply it by each LUT (encoded

in polynomials). This approach requires just one BlindRotate, but the error variance

grows quadratically with the square norm of each LUT.

Carpov et al. [17] introduced a multi-value bootstrap scheme that allows for a much

smaller error growth. As Algorithm 8 shows, the test vector is set to (0,
∑N−1

i=0 · q
4N
· ÄX i),

where Ä is a scaling factor usually set as the gcd among the coefficients of all LUTs. After

the blind rotation, each LUT (represented as a polynomial in TVFi
∈ Rq) is divided by

v, before being multiplied by the accumulator (ACC). This division greatly reduces the

square norm of the LUTs and, hence, the error growth. Carpov et al. also introduced a

very efficient way of calculating
TVFi

v
that only requires a subtraction between each pair

of consecutive coefficients of each LUT.

Algorithm 8: Multi-Value Functional Bootstrap (MVFB) [17]

Input : an LWE sample c = (a, b) ∈ LWEs(m), m ∈ Z2N

Input : a scale factor Ä
Input : z LUTs encoded in polynomials TVFi

∈ Rq, for i ∈ [[1, z]]
Input : a bootstrapping key BKi ∈ RGSWS (si), for i ∈ [[1, n]]
Output: An array of LWE samples c′i ∈ LWES ′(Fi(m)) for i = 1, ..., z, where

S
′ ∈ BN is a vector interpretation of S

1 b′ ← +b2N/q, and a′ ← +a2N/q,
2 v ←

∑N−1
i=0 · q

4N
· ÄX i

3 ACC← BlindRotate((0, v), (a′, b′ + 2N
4B

),BK)
4 foreach i ∈ [[1, z]] do

5 c′i = SampleExtract0(
TVFi

v
· ACC)

6 return c′
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Chapter 3

Evaluating arbitrary functions with

high precision

The functional bootstrap is a great solution for evaluating low-precision functions, taking

just a few milliseconds to evaluate, for example, the sign1 function, as used by Bourse et

al. [10] and Izabachène et al. [43]. Applications requiring higher precision, on the other

hand, need to increase the parameters of the cryptosystem to keep the evaluation correct,

which leads to deteriorated performance. For example, a 6-bit-to-6-bit LUT takes 1.5

seconds to be evaluated using TFHE’s functional bootstrap, as implemented by Carpov et

al. [17].

Considering this, in this work, we revisited the Functional Bootstrap of TFHE. In this

section, we show how to evaluate functions with high precision using multiple functional

bootstraps, but without increasing (too much) the parameters of the cryptosystem. This

approach results in a much smaller impact on performance. The following contributions

are presented.

• We introduce two new methods to combine multiple functional bootstraps in TFHE:

– A tree-based one that allows the easy implementation of arbitrary functions, as

well as a tree optimization based on particular properties of each function. We

leverage the multi-value bootstrap of Carpov et al. [17] to lower the number of

bootstraps in this method (asymptotically) from exponential to linear in the

size of the input.

– A chaining one that presents a better error rate growth behavior but is more

intricate to implement depending on the target function.

• We perform an error variance analysis, including experimental validation, and a

comparison between the aforementioned methods.

• We present optimizations to the building blocks used in our methods, which are also

contributions of independent interest.

1f : Z 7→ Z = f(x) 7→ 1 if x > 0,−1 otherwise
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– We introduce a multi-value extract procedure that produces multiple LWE

samples encrypting the same value with independent errors. It enables im-

proving the error growth on ciphertext scaling from quadratic to linear with

little performance and memory overhead. It also improves the error variance

growth in the multi-value bootstrap [17] from quadratic to linear in the output

base.

– We introduce a “base-aware” Key Switching to pack B < N LWE samples in

an RLWE sample, where N is the polynomial size. In this work, B is the base

of our integer encoding (thus, “base-aware”), but the technique enables gains

of up to +N
B
, times for any B < N .

• We present implementations2 of several relevant functions and compare their per-

formance with state-of-the-art implementations from the literature.

Our methods speed up their evaluation up to 2.49 times, and, for specific functions,

we also show possibilities of optimizations over the generic LUT evaluation. Compared

to implementations using logic gates, we achieve speedups of up to 8.74 times in simple

and useful functions, such as integer addition.

This chapter is organized as follows: Section 3.1 introduces the new methods we

developed for combining functional bootstraps; Section 3.2 analyzes their error variance

behavior; Section 3.3 presents optimizations to their building blocks; Section 3.4 presents a

performance analysis of our methods, including comparison with the literature; Section 3.5

summarizes the related work; Finally, Section 3.6 discusses our results.

3.1 Combining functional bootstraps

To evaluate large LUTs considering the limitations we describe in Section 2.5.2, we either

need to increase N (which increases the bootstrap time superlinearly [11]) or to lookup

in multiple RLWE samples. In this section, we follow this latter approach and introduce

two methods to combine multiple functional bootstraps to evaluate a single large LUT.

Figure 3.1 illustrates the evaluation of an 8-bit parity function using them. In both

methods, we decompose messages in base B with d digits and encrypt each digit in a

different LWE sample. In this way, we are able to encrypt unbounded integers without

increasing the parameters of the cryptosystem.

3.1.1 Tree-based method

Our first method to evaluate functions using multiple functional bootstraps is structured

as a convergence tree and uses the output of a lookup to construct a new LUT. Algorithm 9

shows its final version. Let ci ∈ LWEs(mi) for i ∈ [[0, d) be the selector, such that
∑d−1

i=0 miB
i = m encodes the integer m in base B with d digits, and L be a Bd-sized

LUT encoded in Bd−1 RLWE samples. Notice that following the encoding we described

in Section 2.5.2, each RLWE sample stores B elements of the LUT. Our first step is to

2The source code is available at https://github.com/antoniocgj/FBT-TFHE.
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Figure 3.1: Evaluation of an 8-bit parity function using the tree-based and the chaining
methods using base B = 4.

perform a functional bootstrap using the same selector c0 on each of the Bd−1 RLWE

samples. This process results in Bd−1 LWE samples. If d = 1, the evaluation is finished.

Otherwise, we use a packing (LWE to RLWE) key switching to pack them in Bd−2 RLWE

samples. With that, we reduced our problem to the evaluation of a Bd−1-sized LUT

encoded in Bd−2 RLWE samples with selector ci ∈ LWEs(mi) for i ∈ [[1, d) and we

can recursively repeat this process until we have a single RLWE sample (as in d = 1).

Figure 3.2a illustrates it for B = 22 = 4 and a LUT encoding the sigmoid function with

8 bits of precision (thus, d = 4 such that Bd = 28, achieving the 8-bit precision). Each

rectangle represents a LUT, the arrows indicate the flow of data and ci for i ∈ [[0, 3]] is

the selector.

Without the multi-value bootstrap, the complexity of this process (measured in the

number of functional bootstraps) would be exponential in the number of digits d. How-

ever, each level of the tree performs Bd−1−i bootstraps using the same selector ci, thus

allowing us to replace them with a single multi-value bootstrap, which reduces the com-

plexity to linear in the number of digits. This complexity improvement results in similar

performance gain asymptotically, but it faces practical problems for not-so-large LUTs. As

we described in Section 2.5.3, the multi-value bootstrap relies on multiplications between

the accumulator (ACC in line 5 of Algorithm 8) and the LUTs encoded as polynomials

in Rq. In the first level of our tree, this is not a problem since the LUTs are cleartext

and can be encoded as polynomials in Rq. Starting from level 1, the LUTs are now en-

crypted as RLWE samples. Arithmetically, this is not an obstacle, but the multiplication

between ACC and the LUT is now a multiplication between two RLWE samples, which is
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Algorithm 9: Tree-based Functional Bootstrap (TreeFB) [38]

Input : a set of LWE samples ci ∈ LWEs(mi), such that
∑d−1

i=0 miB
i = m

encodes the integer m in base B with d digits
Input : a set L of Bd polynomials ∈ Rq encoding the lookup table of an

arbitrary function F
Input : a bootstrapping key BKi ∈ RGSWS (si), for i ∈ [[1, n]]
Input : a packing Key Switching key KSS′ 7→S, where S

′ ∈ BN is a vector (LWE)
interpretation of S

Output: an LWE sample c′ ∈ LWES ′(F (m))
1 TV← L

2 f : ZB
q 7→ Rq, given by f(m0, ...,mB) 7→

∑N−1
i=0 m+ iBN ,X

i

3 for i← 0 to d− 1 do
4 c′ ←MVFB(ci,TV,BK)
5 foreach j ∈ [[0, Bd−i−2) do
6 TVj−1 ← PublicKeySwitch((c′(j−1)B, ..., c

′
jB), f,KS)

7 return c′0

not directly performed in TFHE. We would need to convert ACC from RLWE to RGSW

using techniques such as a Circuit Bootstrap [22], which would only be worth it if the

number of Functional Bootstraps we are replacing is very large. In this chapter, most of

our examples are 8-bit functions, and, therefore, we only use the multi-value bootstrap in

the first level of the tree.

Circuit bootstrap implementation At the time we developed the techniques pre-

sented in this chapter, there was only an experimental implementation of the LWE-to-

RGSW circuit bootstrap, and there was no RLWE-to-RGSW bootstrap. Naively, we

could have adapted TFHE’s algorithm to implement an RLWE-to-RGSW circuit boot-

strap, which would have been N times more expensive. However, we could not consider

such implementation a representative of RLWE-to-RGSW conversion performance. Prac-

tical implementations on this were mostly an open problem, and there were many recent

developments in the literature [10, 19, 56] that could be used to achieve much more ef-

ficient conversions. The original (32-bit) implementation of TFHE does not support the

circuit bootstrap, and, if we worked on another implementation of TFHE, it would be

hard to compare with results from the literature. Considering all of that, we decided to

leave the implementation of an RLWE-to-RGSW conversion as future work.

Optimizing the tree One of the main advantages of our method is its versatility. We

can not only evaluate any function but also optimize the tree by considering the particular

characteristics of each function. The sigmoid function, for example, has three intervals in

its domain that could be linearly evaluated or approximated: [[−∞,−6]] ≈ 0, [[6,∞]] ≈ 1,

and [[−1,+1]] ≈ 0.24x + 0.5. Figure 3.2b illustrates this optimization. ∅(x) is the linear

combination to calculate f(x) = 0.24x + 0.5 using integers (fixed-point representation).

The output error of the optimized tree is not increased by approximations using cleartext

literals (intervals [[−∞,−6]] ≈ 0, [[6,∞]] ≈ 1). The linear combination ∅(x) increases the
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Figure 3.2: Evaluation of an 8-bit sigmoid function using the tree-based with base B = 4.

error if its results are not bootstrapped, which is something to consider when composing

functions to make an application. Considering security, the implications of optimizing the

tree are limited to secondary aspects that are not in our scope. For example, the full-tree

design enables us to easily achieve circuit privacy by simply encrypting the initial LUT,

whereas tree optimizations could give partial information about the function.

3.1.2 Chaining method

This second method is a generalized version of the integer comparison algorithm presented

by Bourse et al. [11]. It is much more functionally restricted than the first method, but

it usually presents a smaller error growth. Its main characteristic is that the output

of a lookup is used to construct the selector of the next lookup, whereas, in the tree-

based approach, the output is used to construct the next LUT. This difference has deep

implications for error propagation and overall functionality. Consider a selector ci ∈
LWEs(mi) for i ∈ [[0, d) with d digits. The first functional bootstrap uses c0 as the selector

and outputs c0. From then on, each evaluation uses the selector º(ci, ci−1) for i ∈ [[1, d),

where º is a linear combination. We can define this method as being functionally capable

of evaluating any function that can be encoded in LUTs such that, for each digit, either

the output of º(ci, ci−1) is smaller than the size of the LUT, B, or the function being

encoded follows a B-anti-cyclic [9] logic. Although it is hard to generically define functions

with such restrictions, this method seems to be especially good for functions that require

carry-like logic, such as additions and multiplications, as we show in Section 3.4.1.3.
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3.2 Error analysis

In this section, we analyze the error variance growth of each algorithm used to perform a

functional bootstrap and we calculate the overall probability of error based on the final

error variance. We start by reproducing two equations from Chillotti et al. [22], which we

adapt from integer notation. Equation 3.1 and 3.2 show the variance resultant of the key

switching and the gate bootstrap procedures, respectively. The underbar indicates input

variables; ϑKS and ϑBK are, respectively, the variance of the bootstrap and key switching

keys, and ϵ = q
2´ℓ and ´ are the gadget decomposition quality and base, also respectively.

All other variables were introduced at the beginning of Section 2.4.

V ar(Err(c)) f R2V ar(Err(c)) + ntNϑKS + qn2−2(t+1) (3.1)

V ar(Err(c)) f n(k + 1)ℓN

(

´

2

)2

ϑBK + n(1 + kN)ϵ2 (3.2)

In the chaining method, functional bootstraps have the same output error variance

as the gate bootstrap (Equation 3.2) since both use noiseless test vectors. In the tree-

based method, the test vector is an RLWE sample that might be encrypting the result of

previous table lookups and, hence, we need to consider its error variance, which is additive

with the one introduced by the bootstrap, giving us Equation 3.3. Considering the multi-

value bootstrap, Carpov et al. presents Equation 3.4. Up to line 3 of Algorithm 8 the

variance is the same as the single value bootstrap, but the multiplication
TVFi

v
· ACC in

line 5 multiplies the variance of the bootstrap by ∥TVf∥22 f s(q − 1)2, where s and q are

the input and output bases, respectively.

V ar(Err(c)) f V ar(Err(TV )) + n(k + 1)ℓN

(

´

2

)2

ϑBK + n(1 + kN)ϵ2 (3.3)

V ar(Err(c)) f ∥TVf∥22(n(k + 1)ℓN

(

´

2

)2

ϑBK + n(1 + kN)ϵ2) (3.4)

As for the key switching algorithm, Chillotti et al. [22] only analyzes it using binary

decomposition and TFHE only implements the LWE-to-LWE key switching. In this work,

we use both the LWE-to-LWE key switching of TFHE and a packing (LWE-to-RLWE)

key switching to pack LWE samples in an RLWE sample. This packing key switching is

a core algorithm of our tree-based approach and, to improve efficiency, we need to use

greater bases for decomposition. Considering that, we reanalyzed the key switching error

variance introduction. Equation 3.1 presents three terms. The first term, R2V ar(Err(c)),

comes from possible scalings performed by the linear function f (we only use 1-Lipschitz

functions, therefore R2 = 1). The second term, ntNϑKS, comes from the addition of

(ntN) (R)LWE samples (the summation in line 5 of Algorithm 3), each of them with

variance ϑKS. The third term, qn2−2(t+1), is the variance introduced by the rounding of

the binary decomposition. Chillotti et al. defines the error variance starting from the

error amplitude: Each of the n elements of the vector a of the LWE input c are rounded
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to the closest multiple of q/2t, which introduces an error of at most q|2−t

2
| = q2−(t+1).

The variance is then calculated by squaring this amplitude and multiplying it by n, i.e.,

|q 2−t

2
|2 · n ≡ qn2−2(t+1). To change the decomposition base, we can replace 2 with an

arbitrary base ´ks, which gives us q
4
n´−2t

ks . Albeit correct, this arithmetic approach is not

as tight as desired.

The vector a of the input LWE sample is generated from a uniform distribution. Hence,

the error inserted by rounding each of its elements to q/2t is also uniform and varies from

− q´−t
ks

2
to +

q´−t
ks

2
. The variance of a uniform distribution varying from a to b is 1

12
(a− b)2

and the sum of n uniformly distributed variables are a (scaled) Irwin-Hall distribution

with variance n · 1
12
(a− b)2. Applying these equations to our case, we have that the error

variance introduced by the decomposition is n · 1
12
(− q´−t

ks

2
− q´−t

ks

2
)2 = 1

12
qn´−2t

ks . Irwin-Hall

distributions are very good approximations for Gaussian distributions and we can just

replace the third term of Equation 3.1, which results in Equation 3.5.

V ar(Err(c)) f R2V ar(Err(c)) + ntNϑKS +
1

12
qn´−2t

ks (3.5)

3.2.1 Error rate

Knowing the error variance is useful for approximate computation, but, for exact execu-

tion, we need to calculate the probability of such error affecting significant bits of the

message. In the decryption, a failure occurs if the rounding procedure rounds to the

wrong integer, which will happen if the absolute value of the error is greater than half of

the least significant bit of the message in the Torus representation. Equation 3.6 gives

us the probability of this error occurring for an LWE sample x, with standard deviation

Ãx and the least significant bit encoded in the torus with value (2 · interval). erf is the

Gaussian error function.

P (|err(x)| > interval) = 1− erf

(

interval

Ãx

√
2

)

(3.6)

The bootstrap may also fail since the error affects the accumulator blind rotation

amount. The failure occurs if the accumulator is rotated to a polynomial in which the

coefficient of the constant term is different from the desired one. In this way, we need the

error to be within the interval of half the scaling factor ∆ = q
2B

we are working with, which

is 1
2
· q
2B

. Besides the LWE error variance, we also need to consider the rounding error

introduced when selecting the log2(2N) most significant bits of each position of a. The

discarded bits of each position are uniformly distributed with values ranging from − q
4N

to

+ q
4N

. The variance of a uniform distribution is 1
12

times the square of its amplitude, thus

Ã2
ai

= 1
12
· q
2N

2, for each ai ∈ a. In the worst case, n positions will be added to calculate

the phase, leading to variance Ã2∑n
i ai

= n · Ã2
ai

. This variance is additive with the one of

the Gaussian noise, and we can obtain the error rate using Equation 3.6.

The bootstrap is much more susceptible to failures than the decryption. Therefore,

the error variance of LWE samples that are input for bootstraps ends up being the main

component to control the error rate. Given a function that can be evaluated by both of

our methods, we can define which one presents the better error rate in function of such
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variance. Let º be the linear operation of the chaining method and s be its error variance

scaling, i.e., how many times the error variance of the output of º is greater than the

one of the inputs. Figure 3.3 shows the error rate in function of the LWE input error

variance for 8-bit functions in base 4 for s ∈ {2, 4, 6, 10}. We found few practical cases

with s > 2, but, in all of them, the tree-based approach required more bootstraps, and s

could be lowered to 2 by increasing the number of bootstraps of the chaining one. In this

way, we conclude that the chaining method is usually the better choice for the functions it

can evaluate. However, as we noted before, its functionality is very restricted. Table 3.1

summarizes the main characteristics of our two methods.

10−6 10−5 10−4 10−3 10−2

Variance

2−170

2−134
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Chaining (s = 6)
Chaining (s = 10)

Figure 3.3: Comparison between the error rates of the tree-based and chaining methods.

3.3 Improving building blocks

3.3.1 Base-aware LWE-to-RLWE key switching

A regular packing (LWE-to-RLWE) key switching packs N LWE samples in one RLWE

sample in Rq. However, as we described in Section 2.5.2, we want to pack B LWE samples

with each one being mapped to a sequence of consecutive coefficients in the RLWE sample.

In Algorithm 10, we exploit the fact that B < N to both accelerate the key switching

and to reduce the error variance growth in N
B

times compared to the regular LWE-to-

RLWE Key Switching. Comparing with Algorithm 3, we obtain speedups by replacing

multiplications between N -sized polynomials (line 5 of Algorithm 3) by inner products

between a B-sized vector of binary digits and a B-sized vector of RLWE samples (line 7

of Algorithm 10). The Key Switching key, however, is B times bigger.

3.3.2 Multi-value extract

The error variance growth of adding two variables x and y is defined as Ã2
x+y = Ã2

x + Ã2
y +

2ÄÃxÃy, where Ã2 is the variance and Ä is the correlation between the normally distributed

variables. When this correlation is polynomial, Ä may be defined as its degree. If the

variables are completely independent, then Ä = 0 and Ã2
x+y = Ã2

x + Ã2
y . If they are the

same variable, then Ä = 1 and Ã2
x+x = Ã2

x+Ã2
x+2ÃxÃx = 4Ã2

x. Defining the multiplication

as a sequence of additions of the same variable, we have that Ã2
n×x = n2 × Ã2

x, for n ∈ Z.
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Table 3.1: Comparison between the chaining and tree-based methods. We use overbars to
indicate output variables, º to represent linear transforms, and “:” to denote digit slicing.
The function prob is given by Equation 3.6, d is the number of digits, s is the scaling
factor of the error variance in a linear transform (i.e., how much the linear transform
increases the error variance), and Ã2 represents error variances (specifically, Ã2

BT and Ã2
KS

are the output error variance of the bootstrap and RLWE Key switching, respectively).

Chaining Tree-Based

Supported
Functions

(recursive definition) Let f be a function
over an operand x with d digits. For each
digit xi for i ∈ [0, d), there shall exist a lin-
ear combination ºi and a LUT Li, s. t.:
if i = 0, x0 = Li(x0) = ºf (f(x0)),
if i g 1, xi = Li(ºi−1(xi − 1, xi))
= ºf (f(xi : x0)).

Any.

Suitable
Functions

Most functions following carry-like (e.g.
addition) or test (e.g. sign) logics.

All other functions.

Error var. Ã2
out sºf

· Ã2
BT (d− 1) · Ã2

KS + d · Ã2
BT

Success Rate
∏d−1

i=0 prob(Ã2
in · sºi

) prob(Ã2
out) · prob(Ã2

in)
d

Possible
improvements
and tradeoffs

The scaling factors, s, can be low-
ered by bootstrapping intermediate
results of the linear combinations.

Optimizations in intervals of
the function domain which
are mapped to constant val-
ues or linear combinations.

Complexity in
number
of bootstraps

Linear in d.
Linear in d
(Assymtoptically).

To avoid the quadratic variance growth at multiplications, we could implement them

as sequences of additions of independent LWE samples encrypting the same number.

We obtain these independent encryptions by extracting multiple coefficients from the

accumulator (ACC) at the end of a bootstrap procedure. We call this process Multi-

Value Extract. Recall that, in our LUT encoding (Section 2.5.2), each LUT position is

mapped to a sequence of N
B

coefficients. Therefore, after the bootstrap, we should have N
B

independent encryptions of each number, which we can use to perform the multiplication

as shown in Algorithm 11. The additional extracts on the ACC reduce the interval used

to calculate the error rate in Equation 3.6 from q
4B

to ( q
4B
− qz

4N
). However, we find this

reduction to have a negligible impact on the error rate for the values we tested. We sustain

the independence between coefficients of the ACC on the Independence Heuristic [22]

(Definition 3).

Definition 3 (Independence Heuristic [22]). The error of the coefficients of RLWE sam-

ples (including RGSW samples) and all linear combinations of them considered in TFHE

are independent and concentrated.

We tried to experimentally validate the error variance of the multiplication using

the multi-value extract, and we obtained the results in Figure 3.4a. We noticed that

the error variance is still growing quadratically, which indicates that the coefficients are

not independent. To obtain formal guarantees of independence (instead of a heuristic),
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Algorithm 10: Base-aware LWE-to-RLWE Public Functional Key Switching

Input : B LWE samples c(z) = (a(z), b(z)) ∈ LWEs(µz), z ∈ [[1, B]]
Input : a precision parameter t ∈ Z

Input : a Key Switching key KSi,j,b ∈ RLWE
S
(si´

j
ks ·

∑(b+1)N/B−1
q=bN/B Xq), for

i ∈ [[1, n]], j ∈ [[1, t]], and b ∈ [[0, B).
Output: a RLWE sample c ∈ RLWES(f(µz)), for z ∈ [[1, B]].

1 f : ZB
q 7→ Rq, given by:

2 f(m0, ...,mB) 7→
∑N−1

i=0 m+ iBN ,X
i

3 foreach i ∈ [[1, n]] do
4 foreach b ∈ [[1, B]] do

5 ãi,b ← +a(b)i 2t/q,.
6 Decompose ãi,b, such that ãi,b =

∑t−1
j=0 âi,j,b · ´

j
ks

7 Return (0, f(b
(1)
i , b

(2)
i , ..., b

(B)
i ))−∑n

i=1

∑t
j=1ïâi,j,KSi,jð

Algorithm 11: Multiplication (Scaling) using the Multi-Value Extract
(MultiValueExtractScaling) [38]

Input : an RLWE sample c ∈ RLWES (p), which is the accumulator (ACC) of a
previous functional bootstrap, and a cleartext scalar z ∈ Z

Output: an LWE sample c′ ∈ LWES ′(z · p0), where p0 is the constant term of p,
and S

′ ∈ BN is a vector interpretation of S
1 c′ ← LWES (0)

2 for i← 0 to
⌈

z
2

⌉

− 1 do
3 c′ ← c′ + SampleExtracti(p)

4 for i← N −
⌊

z
2

⌋

to N − 1 do
5 c′ ← c′ − SampleExtracti(p)
6 Return c′

Chillotti et al. [22] points out that we could perform the gadget decomposition in a

probabilistic way. We implemented the probabilistic gadget decomposition proposed by

Genise et al. [35], but we obtained no improvements over the deterministic algorithm. We

were only able to obtain the linear growth by lowering the error variance introduced by

the gadget decomposition. We increased the size of the decomposition base log2(´) from

4 to 5, which improves its precision ℓlog2(´) from 20 to 25 bits, a reasonably high value

for a 32-bit implementation. Figure 3.4b shows the results.

From this experiment, we conclude that, although the independence heuristic holds

for the Gaussian error, we could not verify the same behavior for the error introduced by

the gadget decomposition. We also measured that the error variance introduced by the

decomposition is bigger than the estimates using the right term of Equation 3.2, n(1 +

kN)ϵ2. We consider it as an indication that this dependency between coefficients might

affect not only our multi-value extract but also the bootstrap itself. These conclusions

are, however, specific to the original implementation of TFHE, and further research would

be necessary to determine whether these claims apply to the scheme itself. The use of a

probabilistic gadget decomposition with higher entropy might be an alternative solution
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Figure 3.4: Comparison between the variance of scaling using the multi-value extract and
direct multiplication.

to the increase of ℓ or ´. However, in our case, it would require us to increase other

parameters, which would impact performance.

Impact on the multi-value bootstrap The multi-value bootstrap of Carpov et al. [17]

increases the bootstrap error variance in ∥TVf∥22 f s(q− 1)2 times, where s and q are the

input and output bases, respectively. Carpov et al. uses q = 2 (the binary base) to lower

the error, but it needs to convert from base q to s to use the output in another function. It

does so by using a key switching at the beginning of each functional bootstrap to perform

a base composition, which is s-Lipschitz, and, therefore, introduces the previously avoided

quadratic error. In summary, composable circuits often need the input and output bases

to be the same, and, in these cases, solely outputting in the binary base would just

transfer the complexity to the base composition. However, with the introduction of the

multi-value extract, we can perform the scaling required by the base composition linearly

and, thus, reduce the complexity of error variance from s(q − 1)2 to s(q − 1).

3.4 Experimental results

Our first step to define practical parameters was to survey the literature on non-linear

functions that are usually implemented using exact computation with TFHE. Then, based

on the required precision, we manually searched for parameters aiming at an error rate

of at most 2−30. Table 3.2 shows two of the most promising sets we found. A more

methodological search could likely yield parameters with a better error rate or efficiency.

The security level is defined by the (R)LWE dimensions (n and N) and the standard

deviations of the errors. The LWE Estimator [3] reports a cost of 2127.1 on the primal

attack via uSVP and 2139.6 on the dual-lattice attack, both using the BKZ.sieve cost

model. Although we could increase the security level by increasing the parameters, we

use these values since they are the same used by TFHE and most of the previous literature.
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Table 3.2: Sets of parameters used to evaluate the performance of our implementations.

Name
Security
Level

B
LWE RLWE Bootstrap Key Switch

n Ã/q N k Ã/q ℓ log2(´) ´ t

5_5_6_2
127 4 630 2−15 1024 1 2−25 5 5

26
2

6_4_6_3 6 4 3

We estimated the error rate for parameters using the equations of Section 3.2, and

we experimented to validate their results. We find this validation to be necessary mainly

because we based our error analysis on equations designed for TFHE to work with binary

digits and logic gates. Once we introduced larger bases with arbitrary LUT evaluation

and tightened some of the variance estimates, we could no longer support our statistics on

the experimental validation provided by Chillotti et al. [22]. Table 3.3 shows the results of

our experiments. We measure the variance of 214 samples and calculated a 95%-confidence

interval using the Chi-square distribution. Due to computational limits, we could only

validate the error rate for higher variances. We performed 15,438,720 bootstraps over

LWE samples with Ã2 = 1.70E-04. The output was wrong in only 39 of them. In both

cases, the experiments showed that our estimates are reasonably close upper bounds for

the actual values. Although we cannot extrapolate the results for different variances,

the experiments provide some evidence of correctness for our equations on the considered

parameters.

Table 3.3: Experimental validation for the variance and error rate for two sets of param-
eters.

Params. Measurement Estimative
Experiment

Measured 95% Conf. Interval

5_5_6_2
Variance

Bootstrap 1.47E-06 4.94E-07 4.84E-07 5.05E-07
RLWE KeySwitch 5.09E-06 2.53E-06 2.47E-06 2.58E-06

Error rate (log2) Ã2 = 1.70E-04 -18.001 -18.595

6_4_6_3 Variance
Bootstrap 4.41E-07 1.70E-07 1.67E-07 1.74E-07

RLWE KeySwitch 1.25E-09 6.38E-10 6.25E-10 6.52E-10

3.4.1 Performance

We benchmarked our methods by using them to implement a set of relevant functions

from the literature. We selected two functions from previous literature on the functional

bootstrap of TFHE and three functions that are building blocks for neural network algo-

rithms. We set the precision of our implementations to match the ones we are comparing

to. We executed our experiments using an Intel i7-7700 processor at 4.20 GHz run-

ning Ubuntu 18.04. We compiled our code using GCC 7.3.0 with flags -O3 -std=c++11

-funroll-all-loops -march=native -ltfhe-spqlios-fma -lm, and we used the “op-

tim” build of TFHE. Each result is an average of 100 executions. We tried to compile

and execute previous implementations on the same environment. When we could not

reproduce them (either because the authors did not provide the source code or because

their source code did not compile in our environment), we report the results presented by
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the authors and add an observation about the differences between machines. Fortunately,

most authors report the execution time for the default gate bootstrap of TFHE, which we

can use as a “TFHE benchmark score” and adjust the speedup values accordingly. In our

machine, the default gate bootstrap of TFHE runs in 9ms and 13ms using the old (80-bit

security) and the new (127-bit security) set of parameters, respectively. We estimated

the error rates based on the equations provided in Section 3.2 using at most 500 bits of

precision. Errors rates that could not be estimated within this precision are labeled as

negligible.

3.4.1.1 Lookup table evaluation

Lookup tables are very commonly used in homomorphic circuits, and the implementation

of Carpov et al. [17] is one of the most recent and efficient of them. It introduces the

multi-value bootstrap of TFHE, which we explore in our tree-based method. Table 3.4

compares their implementation for a 6-bit-to-6-bit LUT with one using our tree-based

method (Algorithm 9). Both implementations are based on the functional bootstrap of

TFHE. The difference is that the implementation of Carpov et al. [17] performs a single

functional bootstrap with base B = 26, whereas our implementations perform several

functional bootstraps with base B = 22 and combine them using the tree-based method.

Table 3.4: Comparison between implementations of a 6-bit-to-6-bit LUT.

Security Key Size Error Rate (log2) Time (ms) Speedup

[17] g128 ≈ 8 GB -26.94 1570a 1.00

5_5_6_2 127 ≈ 4.3 GB -59.59 378.2 2.49

6_4_6_3 127 ≈ 6.5 GB -134.84 457.9 2.06
a Result provided by the authors, who executed experiments on a machine 1.67 times slower than ours.

The speedup was adjusted accordingly.

3.4.1.2 32-bit integer comparison

Integer comparison is an extremely useful function in computing, but it presents some

challenges to be implemented in homomorphic circuits, especially for unbounded integers.

Bourse et al. [11] presented a very efficient implementation using the functional bootstrap

of TFHE. The chaining method we presented in Section 3.1.2 is a generalization of their

technique. To compare with them, we implemented a unary tree to evaluate the integer

comparison. Algorithm 12 describes our implementation. Table 3.5 compares them with

the integer comparison implemented by Zhou et al. [67] using logic gates.

We calculated the speedups using as reference the slowest implementation, which,

in this case, is the second implementation of Bourse et al. [11]. However, adjusting

the speedups to consider the difference in speed between machines, we can see that the

implementation of Zhou et al. [67] using logic gates is up to 1.75 times slower than the

one of Bourse et al. [11] and up to 5.6 times slower than ours. The chaining and tree-

based methods perform the same number of bootstraps and should present a very similar

performance. Nonetheless, we were able to achieve significant speedups thanks to our

tighter variance and error rate estimates, which enabled a better choice of parameters.
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Algorithm 12: Integer comparison algorithm using the tree-based method.

Input : two sets of LWE samples cj,i ∈ LWEs(mj,i), such that
∑d−1

i=0 mj,iB
i = mj

encodes each number mj for j ∈ {0, 1} and base B = 4 with d digits.
Input : a bootstrapping key BK and an RLWE Key Switching key KS
Output: an LWE sample c ∈ LWE

S
(m), where S is a vector (LWE)

interpretation of S and m =











1, if m0 > m1,

0, if m0 = m1,

−1, otherwise.

1 f : ZB
q 7→ Rq, given by f(m0, ...,mB) 7→

∑N−1
i=0 m+ iBN ,X

i

2 TV← [0, 1, 1, 1]∆
3 for i← 0 to d− 1 do
4 ci ← c0,i − c1,i
5 c← FunctionalBoostrap(ci,TV,BK)
6 TV← PublicKeySwitch([c, (0, 1), (0, 1), (0, 1)], f,KS)

7 return c

Table 3.5: Comparison between implementations of a 32-bit integer comparison.

Security Key Size Error Rate (log2) Time (ms) Speedup

[11]
90 ≈ 1.2 GB -50b 2232a 1.75
109 ≈ 3.4 GB -47b 3902a 1.00
211 ≈ 4.6 GB -89b 3840a 1.02

[67]
80 ≈ 0.3 GB Negligible 1143.2 0.93
127 ≈ 0.3 GB Negligible 1867.2 0.57

5_5_6_2 127 ≈ 4.3 GB -26.51 334.1 3.19

6_4_6_3 127 ≈ 6.5 GB -129.58 396.4 2.68
a Execution time provided by the authors, who executed experiments on a machine 3.67 times slower

than ours. The speedup was adjusted accordingly.
b Error Rate provided by the authors. We speculatively estimate it to be much lower, but we do not

have sufficient data to calculate.

3.4.1.3 Neural network functions

We implemented three functions that are building blocks for Neural Network implemen-

tations and that are provided by SHE [52], an implementation of secure neural network

inference based on TFHE that achieves state-of-the-art inference accuracy. SHE presents

very fast arithmetic (thanks to the use of Lognet), but it relies on logic gates to implement

non-linearities. We also compare our results with the implementations of Zhou et al. [67],

which are generally faster than SHE but present worse inference accuracy.

ReLU The Rectified Linear Unit (ReLU) is a neural network activation function broadly

used due to its simple implementation and non-linear properties. Algorithm 13 shows our

implementation using the Functional Bootstrap. The logic is similar to a multiplexer.

Table 3.6 compares it with implementations using logic gates. For the 127-bit security

level, our implementations are up to 6.98 times faster than the one of Lou and Jiang [52]

and 1.19 times faster than the one of Zhou et al. [67]. Although the logic gates of TFHE

generally introduce error rates much smaller than the functional bootstrap, the error rate
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of our implementation is 2−137, which is also negligible compared to the security level.

Algorithm 13: ReLU implementation using the tree-based method.

Input : a set of LWE samples ci ∈ LWEs(mi), such that
∑d−1

i=0 miB
i = m

encodes the integer m in base B = 4 with d digits.
Input : a bootstrapping key BK and an RLWE Key Switching key KS
Output: A set of LWE sample ci ∈ LWE

S
(mi), where S is a vector (LWE)

interpretation of S and
∑d−1

i=0 miB
i = m encodes the integer

m =

{

m, if m > 0,

0, otherwise.

1 f : ZB
q 7→ Rq, given by f(m0, ...,mB) 7→

∑N−1
i=0 m+ iBN ,X

i

2 for i← 0 to d− 1 do
3 TV← PublicKeySwitch((ci, ci, 0, 0), f,KS)
4 ci ← FunctionalBoostrap(cd−1,TV,BK)

5 return c

Table 3.6: Comparison between implementations of an 8-bit ReLU function.

Security Key Size Error Rate (log2) Time (ms) Speedup

[52]
80 ≈ 0.3 GB Negligible 380 1.59
127 ≈ 0.3 GB Negligible 603.1 1.00

[67]
80 ≈ 0.3 GB Negligible 64.8 9.31
127 ≈ 0.3 GB Negligible 103.1 5.85

5_5_6_2 127 ≈ 4.3 GB -137.092 86.4 6.98

6_4_6_3 127 ≈ 6.5 GB -180.973 103.6 5.82

Maximum Our implementation of the maximum function is, at first, similar to the

integer comparison followed by a multiplexer. However, in this context, we have to also

consider signed numbers, which leads us to Algorithm 14. Table 3.7 shows performance

results.

Addition We implemented this function using the chaining method since it presents a

carry-like logic. Our implementations using the tree-based approach were more expensive

since, although we can produce a linear combination for which the carry follows a B-anti-

cyclic logic, we could not do the same for the addition itself. Algorithm 15 describes our

implementation and Table 3.8 compares it with implementations using logic gates. We

used the multi-value extract to perform the scaling in line 6 of Algorithm 15.

3.4.1.4 Additional estimates

Using the results of this section, we can estimate the performance gains our methods

could bring to full applications. Let us take, for example, the binarized convolutional

neural network (CNN) of Zhou et al. [67], which can be implemented using the neu-

ral network functions we have implemented. This CNN classifies images in the MNIST
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Algorithm 14: Maximum algorithm using the tree-based method.

Input : two sets of LWE samples cj,i ∈ LWEs(mj,i), such that
∑d−1

i=0 mj,iB
i = mj

encodes each number mj for j ∈ {0, 1} and base B = 4 with d digits.
Input : a bootstrapping key BK
Input : a packing key switching key KS
Output: A LWE sample c ∈ LWE

S
(m), where S is a vector (LWE)

interpretation of S , and
∑d−1

i=0 miB
i = m encodes the integer

m =

{

m0, if m0 > m1,

m1, otherwise.

1 f : ZB
q 7→ Rq, given by f(m0, ...,mB) 7→

∑N−1
i=0 m+ iBN ,X

i

2 TV← [0, 1, 1, 1]∆
3 for i← 0 to d− 1 do
4 ci ← c0,i − c1,i
5 c̃← FunctionalBoostrap(ci,TV,BK)
6 TV← PublicKeySwitch((c̃, 1, 1, 1), f,KS)

7 TV← PublicKeySwitch((c̃, c̃,−c̃,−c̃), f,KS)
8 c̃← FunctionalBoostrap(c0,d−1,TV,BK)
9 TV← PublicKeySwitch((c̃, c̃,−c̃,−c̃), f,KS)

10 c̃← FunctionalBoostrap(c1,d−1,TV, f,BK)
11 c̃← c̃+ (0, q

2B
)

12 for i← 0 to d− 1 do
13 TV← PublicKeySwitch((c1,i, c1,i, c0,i, 0), f,KS)
14 ci ← FunctionalBoostrap(c̃,TV,BK)

15 return c

dataset and is composed of 3 binarized convolutional layers, 3 max-pooling layers, and

two fully connected layers. We counted the number of operations on each one of them and

estimated their execution time using the results of our previous experiments. Table 3.9

shows the results. Although this is a basic estimation, our execution times are reasonably

close to the ones reported by Zhou et al. [67], especially considering the differences in

execution environments. A real implementation would likely present better performance

for our methods since they allow for further optimizations, such as using the multi-value

bootstrap to batch multiple operations. Nonetheless, the current estimation indicates a

speedup of up to 4.9 times, which is within the expected considering the execution time

of each function, where the speedup over basic operations for this same implementation

ranged from 1.19 (ReLU) to 6.77 (Addition) times.

We can also estimate the performance impact of changing the size of the keys. The

main reason we use large keys (compared to implementations using logic gates) is the

use of decomposition bases greater than 2 in the LWE-to-RLWE key switching. Using

base 64, the Key Switching keys take 4.0 GiB and 6.0 GiB for the parameters 5_5_6_2

and 6_4_6_3, respectively. Decreasing the base would also linearly decrease the size of

these keys, but, to avoid increasing the error, we would need to logarithmically increase

the value of t and, consequently, the key-switching execution time. For example, using

base 16 instead of 64, the parameter 5_5_6_2 would need a 1 GiB key, but t would need
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Table 3.7: Comparison between implementations of an 8-bit max function.

Security Key Size Error Rate (log2) Time (ms) Speedup

[52]
80 ≈ 0.3 GB Negligible 379.3 2.14
127 ≈ 0.3 GB Negligible 593.1 1.37

[67]
80 ≈ 0.3 GB Negligible 483.1 1.68
127 ≈ 0.3 GB Negligible 810.6 1.00

5_5_6_2 127 ≈ 4.3 GB -50.0874 228.3 3.55

6_4_6_3 127 ≈ 6.5 GB -156.744 276.8 2.93

Algorithm 15: Addition algorithm using the chaining method.

Input : two sets of LWE samples cj,i ∈ LWEs(mj,i), such that
∑d−1

i=0 mj,iB
i = mj

encodes each number mj for j ∈ {0, 1} and base B = 4 with d digits.
Input : a bootstrapping key BK and a TRLWE Key Switching key KS
Output: A LWE sample c ∈ LWE

S
(m), where S is a vector (LWE)

interpretation of S and
∑d−1

i=0 miB
i = m encodes the integer

m = m0 +m1 mod Bd

1 TV← [ q
4B

, q
4B

, q
4B

, q
4B

]
2 c0 ← 0
3 for i← 0 to d− 1 do
4 ci ← ci + c0,i + c1,i
5 c̃← FunctionalBoostrap(ci,TV,BK)
6 ci ← ci +B · c̃
7 ci ← ci − (0, q

4
)

8 if i < d− 1 then
9 ci+1 ← (0, q

4B
)

10 ci+1 ← ci+1 − c̃

11 return c

to be increased from 2 to 3, which would increase the execution time of the key switching

from 6 ms to 9 ms. At first, this tradeoff seems promising for many functions, especially

the ones that make little use of the LWE-to-RLWE key switching. However, increasing

the value of t also increases the second term of Equation 3.5 and, hence, might affect the

output error variance negatively. For simplicity, we chose two sets of parameters that fit

all functions we implemented. A more targeted search for parameters would likely yield

better results, and the methods we introduced allow for easily changing parameters even

within a single function evaluation.

3.5 Comparison to related work

The literature on using lookup tables (LUT) in homomorphic circuits dates back to the

first fully homomorphic encryption schemes presented and has been used with most of the

modern FHE schemes [28, 51, 57]. LUTs are a simple and powerful technique to represent

arbitrary functions, but problems with latency and precision had also been reported [51,

57]. The introduction of LUT evaluations within the bootstrap by FHEW [30] started a



48

Table 3.8: Comparison between implementations of an 8-bit addition function.

Security Key Size Error Rate (log2) Time (ms) Speedup

[52]
80 ≈ 0.3 GB Negligible 585 1.21
127 ≈ 0.3 GB Negligible 708.9 1.00

[67]
80 ≈ 0.3 GB Negligible 338 2.10
127 ≈ 0.3 GB Negligible 548.7 1.29

5_5_6_2 127 ≈ 4.3 GB -124.7 81.1 8.74

6_4_6_3 127 ≈ 6.5 GB -176.139 94.8 7.48

Table 3.9: Estimation of an inference on the Binarized CNN of Zhou et al. [67].

Security
Level

Execution time per layer (h) Total
(h)

Speedup
Bin. Conv. Max-Pool. Fully Conn.

[67]
(reported)

80 19.20 0.67 21.35 41.22 1.88

[67]
80 20.18 0.96 26.87 48.01 1.62
127 32.46 1.56 43.62 77.64 1.00

5_5_6_2 127 7.39 0.53 7.91 15.83 4.90

6_4_6_3 127 8.19 0.61 9.20 18.00 4.31

new line of work on this topic. Bonnoron et al. [7] introduced techniques to evaluate gates

with a large number of input bits using a single bootstrap of FHEW and implemented

a 6-bit-to-6-bit LUT that runs in less than 10 seconds. Based on their work, Carpov et

al. [17] presented the multi-value bootstrap of TFHE and lowered the execution time of the

6-bit-to-6-bit LUT to only 1.5 seconds. Our work makes extensive use of the multi-value

bootstrap, but we focus more on accelerating the evaluation of non-linear functions than

improving the multi-value bootstrap itself. Nonetheless, we did present some contributions

towards it, such as the reduction of the complexity of its error growth. Moreover, our

combination methods also introduce two new ideas to this line of work: how to use the

multi-value bootstrap to accelerate single (instead of multiple) LUT evaluations; and how

to improve the LUT evaluation based on particular properties of the encoded function.

Tree-based approach The most similar strategy to our tree-based evaluation is the

vertical packing of Chillotti et al. [22], which suggests the use of a CMUX tree to choose

among multiple RLWE samples and, then, uses a single BlindRotate to perform a

final lookup. Similarly to ours, their method also allows some optimizations based on

the encoded function (although they did not present nor explore this idea itself). On

the other hand, our method constructs LUTs on-the-fly using results of previous lookups,

which allows optimizations even within a single LUT. The main difference between them,

however, is in their use of TFHE’s building blocks. The vertical packing is directly based

on CMUX gates and, hence, requires the selector to be encrypted in the binary base in

RGSW samples. This makes it a very good choice in the leveled setting, but it requires

one circuit bootstrap per bit in the fully homomorphic one. Chillotti et al. [22] reports an

execution time of around 800ms to evaluate a 6-bit-to-6-bit LUT in the fully homomorphic

setting with 80 bits of security. Correcting for the security level and difference between

machines, the implementation of Carpov et al. is already slightly faster. Bouse et al. [11]
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also presents a “tree-based” technique for integer comparison using the functional boot-

strap, but, besides the name, by our definitions, it is equivalent to the chaining method.

More specifically, it rearranges the chaining evaluation in a tree-like fashion (specific to

the integer comparison logic) so that it can be parallelized in multiple threads. The out-

put of each LUT is still used to construct the selector of the next one (which defines the

chaining) and the technique has no further similarities with our “tree-based” approach.

Evaluation of neural network inference using the Functional Bootstrap Us-

ing the functional bootstrap of TFHE in neural network inference seems to be a recent

(and promising) trend. As previously cited, Bourse et al. [10] and Izabachène et al. [43]

implemented the sign activation function using it. Boura et al. [9] simulated the error

propagation of several activation functions and introduced the term Functional bootstrap,

which we adopt in this work. Klemsa et al. [46] presented a Ruby version of TFHE, which

includes the functional bootstrap, targeted at neural network implementations. From all

previous literature, the only one we found to combine multiple functional bootstraps to

evaluate a single function is the integer comparison of Bourse et al. [11].

3.6 Discussion

In this chapter, we presented two methods to combine multiple functional bootstraps in

TFHE; we performed a thorough error variance and error rate analysis on our methods

and on the functional bootstrap itself, including experimental validation; we introduced a

multi-value extract procedure to improve the error behavior on scalings and, especially, on

the multi-value bootstrap; we introduced a “base-aware” LWE-to-RLWE Key Switching to

speedup the LWE packing; and, finally, we selected practical parameters and benchmarked

our methods using relevant functions from the literature. We achieved speedups of up to

3.19 times compared to previous literature on the functional bootstrap of TFHE, and of

up to 8.7 times compared to implementations using logic gates.

Arbitrary LUTs are inherently exponential to evaluate, which gives more importance

to the possibility of optimizing them based on the function particularities, a feature that

our methods introduce. In our practical experiments, we limited ourselves to working

with the original implementation of TFHE and with precision levels that were previously

defined in the literature. Our results demonstrate efficient evaluations with a precision of

up to 6 bits for completely arbitrary functions, and up to 32 bits for functions with enough

opportunities for optimizations. The techniques themselves can be easily extended to work

with higher parameters and are already defined to efficiently exploit the circuit bootstrap.

To test it in practice, however, we would need to move to more optimized versions of

TFHE (with at least 64-bit Torus precision) and implement an efficient version of the

circuit bootstrap, which is mostly a practical open problem. Nonetheless, the speedups

we achieved are certainly a good measurement of improvement over previous literature,

and some of our contributions, such as the multi-value extract, go beyond the context of

functional bootstrap implementations and are useful even for pure arithmetic.
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3.6.1 New developments in the literature

This work was published by the IACR Transactions on Cryptographic Hardware and Em-

bedded Systems (TCHES) journal in February 2021. Since then, several works have been

published in the literature using, improving, or providing alternatives to the contributions

we presented in this work. We summarize some of them in the following.

• Chillotti et al. [24] showed that our methods allow evaluating multivariate functions

and lift several previously concerning limitations of the functional bootstrap. They

also introduced an improved version of the programmable bootstrapping (which we

discuss in Section 4.1.1) that improves our tree-based approach by allowing messages

to be decomposed before using it.

• Clet et al. [26] showed that our chaining method is capable of evaluating any function

by using a digit composition as a linear combination, i.e., (a0, a1) 7→ a0 + a1 · B,

where B is the numeric base. This composition, however, requires quadratically

larger parameters, and it is still unclear whether it would improve the evaluation of

arbitrary high-level functions.

• Bergerat et al. [5] showed that the bootstrapped version of the vertical packing

is generally faster than the tree-based approach for big enough messages. The

performance of this technique is mostly reliant on the circuit bootstrap, which we

discuss in Section 4.1.5.
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Chapter 4

On the efficient implementation of

TFHE

There were several recent proposals for improving TFHE, but most of them are built upon

various different implementations of the scheme, making it hard to address and evaluate

their impact on the cryptosystem. Many also remained purely theoretical contributions,

with no practical implementation until now. Considering this, our first goal in this work

is to unify all these proposals in a single highly-optimized library. In this way, we can

not only measure their impact considering the use of modern implementation techniques

and algorithms but also evaluate how combinations of optimizations affect performance.

Our library, MOSFHET (Optimized Software for FHE over the Torus), is fully portable

and self-contained with optional optimizations for the Intel AVX2, FMA, and AVX-512

Instruction Set Extensions (ISEs). We designed it specifically for enabling the efficient

prototyping of improvements to TFHE. In the first part of this work, we implement the

core functionalities of TFHE and the following techniques.

• The Functional [9] or Programmable [23] Bootstrap and its improved version [24];

• The Circuit Bootstrap [21] and its optimizations [24];

• The multi-value bootstrap [17, 24] and its optimizations [38];

• The Key Switching and its optimizations [19];

• The BlindRotate Unfolding [68] and its optimizations [10];

• The Full RGSW bootstrap [37];

• Three different approaches [47, 64, 24] for evaluating the Full-Domain Functional

Bootstrap (FDFB);

• Public Key compression using randomness seed, or seeded (R)LWE ;

• BFV-like multiplication [24]; and

• Bootstrap using Galois Automorphism [50].
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It is important to note that our focus is to provide optimized implementations of these

techniques, but comparing competing techniques would also require careful consideration

of the choice of cryptosystem parameters. While our library provides all the necessary

implementations for enabling such analyses, conducting them is beyond the scope of

this project, as parameter optimization is generally an intricate and often application-

dependent task [5]. Nonetheless, we benchmark all techniques with 4 different parameter

sets from the literature taking note of which techniques would require larger parameter

sets.

From this baseline implementation, we found several opportunities for improvements

in core procedures as well as for combining existing techniques to yield better performance

or error growth behavior. We also developed new methods to implement some commonly

used techniques. As a result, we present the following contributions:

• We introduce faster-than-memory seed expansion (FTM-SE): ‘Seeded RLWE’ is a

sample and public key compression technique so far used for memory or storage

optimizations. In this work, we show how to use it to accelerate the execution time

of basic arithmetic procedures by up to 2 times.

• We also provide several other contributions to the basic arithmetic procedures (e.g.,

FFTs and complex multiplication):

– We analyze and characterize the impact of memory accesses (intensified by

larger keys) on the performance of individual operations, with and without

FTM-SE.

– We show how the relation between key size and arithmetic performance repre-

sents a major practical challenge for techniques that should, in theory, greatly

improve performance.

– We optimize two FFT implementations using SIMD1 instructions to speed the

execution up to 1.5 times.

• We generalize the BlindRotate Unfolding (as suggested by Bourse et al. [10]) and

show that it does not achieve the expected gains on large parameters. We partially

explain this behavior based on our arithmetic microbenchmarks.

• We introduce a new procedure for multi-value bootstrapping based on the BlindRo-

tate Unfolding. Although significantly more expensive than existing techniques, we

show that our method has unique properties and complements existing techniques

(instead of competing with them).

• We optimize several techniques by combining them with others and with our afore-

mentioned improvements. In some cases, we also add new functionalities through

these combinations.

1Single Instruction Multiple Data
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The remainder of this chapter is organized as follows: Section 4.1 presents the tech-

niques implemented in our library and the improvements upon them; Section 4.2 intro-

duces our novels methods; Section 4.3 presents the experimental results; and, finally,

Section 4.4 concludes the chapter.

4.1 Implementing existing techniques

In this section, we describe the main proposals presented so far for improving core al-

gorithms or functionalities of TFHE. We should note that we do not include proposals

made for other cryptosystems. Although many could be adapted from schemes such as

FHEW [30], GSW [37], or even CKKS [20], we decided to limit our efforts at some point.

We also do not consider optimizations for building applications or high-level functions

with TFHE, as these are usually more specialized use cases.

4.1.1 The Improved Programmable Bootstrap

In 2021, Chillotti et al. [24] presented an improved version of the programmable bootstrap.

This version introduced new parameters that allow for slicing and selecting just part of

the input to evaluate the function over. Let c = (a, b) ∈ LWE(m) be an LWE sample

encrypting m and let m̃ be the binary vector representation of m, i.e. m =
∑+log2 m,

i=0 2im̃i.

The improved version of the Programmable Bootstrap allows to evaluate f(
∑j−i

k=0 2
km̃k+i),

for any i f j ∈ [[0, +log2 m,]]. In this way, it makes it possible to decompose messages

into digits and bootstrap decomposed digits separately. This feature can be leveraged by

methods that work over decomposed messages for enabling the evaluation of large lookup

tables representing functions with high precision. We further discuss them in Section 3.1.

Algorithm 16 describes the improved version of the programmable bootstrap using the

functional bootstrap of TFHE. Notice that our definition of » and ¹ is different from [24]

(but functionally equivalent).

Algorithm 16: Improved Programmable Bootstrap (PBS) [24]

Input : an LWE sample c = (a, b) ∈ LWEs(m), for m ∈ ZB

Input : an integer LUT L = [l0, l1, ..., lB−1] ∈ ZB
B′

Input : message slicing parameters » and ¹
Input : a bootstrapping key BKi ∈ RGSWS (si), for i ∈ [[1, n]]
Output: c′′ ∈ LWES ′(L[m̃]), where m̃ = [+m/¹,]» and S

′ ∈ BN is the vector
interpretation of S

1 b′ ← [+b/¹,]» and a′ ← [+a/¹,]»
2 Let c′ = (a′, b′) ∈ LWEs([+m/¹,]»)
3 return FunctionalBootstrap(c′, L,BK)

4.1.2 The Multi-Value Functional Bootstrap (MVFB)

Evaluating several different functions over the same input is a necessity not only for high-

level applications but even for core procedures of the cryptosystem, such as the Circuit
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Bootstrap (Section 4.1.5) and the Tree-Based Functional Bootstrap (Section 3.1). The

multi-value functional bootstrap technique introduced by Carpov et al. [17] (described

in Section 2.5.3) and our improvements over the original technique (Section 3.3.2) are

efficient solutions for it, which introduce a noise given by Equation 4.1, where ÃFB is the

output error variance of the (single-value) functional bootstrap, and s and q are the input

and output bases, respectively.

V ar(Err(c)) f s(q − 1)ÃFB (4.1)

When performing this estimate, however, both works start from the assumption that

the square norm of the polynomial representing the LUT, ∥TVf∥22, is smaller than s(q−1)2,
where s and q are, respectively, the input and output bases. This equation is not true in

all cases. Let us take, for example, a 4-slot LUT with values [1, 0, 1, 1], input base 4, and

output base 2. The factorized version would be [2,−1, 1, 0], for which the square norm is

22+(−1)2+12 = 6, which should be smaller or equal than s(q−1)2 = 4(2−1)2 = 4. This

is a corner case for their error estimations, which, in this work, we solve by applying the

same scaling algorithm used in the base composition (Algorithm 11) to the multiplication

by the first element of the factorized LUT. In our example, while the square norm is still

22 + (−1)2 + 12 = 6, the variance growth is linear on the first element, thus presenting a

final growth of 21 + (−1)2 + 12 = 4.

Bootstrapping many LUTs In 2021, Chillotti et al. [24] presented a new method

for the multi-value bootstrap. Different from the previous ones, their method does not

incur additional noise nor affect performance. On the other hand, the number of LUTs

evaluated in each bootstrap is limited by the cryptosystem parameters, and increasing

it requires reducing message precision or working with a higher probability of failure.

Algorithm 17 describes the Bootstrap Many LUTs procedure.

Algorithm 17: Bootstrap ManyLUT (BML) [24]

Input : an LWE sample c = (a, b) ∈ LWEs(m), m ∈ Z2N

Input : a set L of z lookup tables, each represented by an array Li ∈ ZB
q

encoding a function Fi, for i ∈ [[0, z)
Input : a bootstrapping key BKi ∈ RGSWS (si), for i ∈ [[1, n]]
Output: An array of LWE samples c′i ∈ LWES ′(Fi(m)) for i ∈ [[0, z), where

S
′ ∈ BN is a vector interpretation of S

1 r ← N
zB

2 b′ ← +b2N/q, and a′ ← +a2N/q,
3 v ←∑B−1

i=0

∑z−1
j=0

∑r−1
k=0 Lj,iX

(iq+j)r+k

4 ACC← BlindRotate((0, v), (a, b+ q
4Bz

),BK)
5 foreach i ∈ [[0, z) do
6 c′i ← SampleExtractir(ACC)
7 return c′
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4.1.3 Tensor product

As first defined, TFHE did not introduce direct multiplications between (R)LWE samples.

However, there are several FHE schemes also based on the RLWE problem presenting

tensorial multiplications [20, 33]. In 2021, Chillotti et al. [24] showed that it is possible to

implement the BFV-like [33] tensor product using TFHE parameters. They also showed

how it can be used to perform a multiplication between LWE samples. Algorithm 18

describes the RLWE product, and Algorithm 19 shows the multiplication between LWE

samples.

Algorithm 18: RLWE Product (RLWEProd) [24]

Input : two RLWE samples ci = (ai, bi) ∈ RLWEs,∆(pi), for pi ∈ Rq and
i ∈ {0, 1}, with scaling factor ∆

Input : a relinearization key RLKi ∈ RLWEs(s
2´j), for j ∈ [[0, t)

Output: c′ ∈ RLWEs(p0 · p1)
1 T ←

[ ⌊

A1·A2

∆

⌉ ]

q

2 A′ ←
[ ⌊

A1·B2+B1·A2

∆

⌉ ]

q

3 B′ ←
[ ⌊

B1·B2

∆

⌉ ]

q

4 T ′ ← +T´t/q,
5 Decompose T ′, s. t. T ′ =

∑t−1
j=0 T

′
j · ´j

6 return (A′, B′) +
∑t−1

i=0 T
′
i · RLKi

Algorithm 19: LWE Multiplication (LWEMult) [24]

Input : two LWE samples ci = (ai, bi) ∈ LWEs(mi), for mi ∈ ZB and i ∈ {0, 1}
Input : a relinearization key RLKi ∈ RLWES(S

2´j), for j ∈ [[0, t)
Input : a Packing Key Switching key KSKs 7→S

Output: c′ ∈ LWES′(m0 ×m1)
1 f : Zq 7→ Rq = m 7→ mX0

2 C0 ← PublicKeySwitch(c0, f,KSK)
3 C1 ← PublicKeySwitch(c1, f,KSK)
4 Cmul ← RLWEProd(C0, C1,RLK)
5 return SampleExtract0(Cmul)

4.1.4 Full-Domain Functional Bootstrap (FDFB)

As detailed in Section 2.5.2, the negacyclic property restricts the functionality of the

functional bootstrap. Specifically, it is capable of evaluating arbitrary functions only if the

input is in the first half of the torus, i.e., in integer notation, when m∆ < q/2. Thus, it is

a half-domain functional bootstrap (HDFB). It also is not able to perform modular (cyclic)

arithmetic. The full-domain functional bootstrap (FDFB) is a variant that overcomes such

restrictions and operates over the entire input domain following modular cyclic arithmetic.

There are several techniques for implementing it [24, 26, 47, 64], and, in general, they

evaluate an arbitrary function f by decomposing it into multiple sub-functions fi and
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evaluating each fi with an HDFB. In this work, we implement all solutions that are

not purely based on high-level function pre-processing. Specifically, we implement all

that require modifications to or introduce new building blocks to the cryptosystem. The

following sections discuss them.

4.1.4.1 The tensor product method

Chillotti et al. [24] were the first to present a full-domain functional bootstrap for TFHE

or, as they defined, a without-padding programmable bootstrap (WoP-PBS). Algorithm 20

shows their technique, proposed in 2021.

Algorithm 20: Full-Domain Functional Bootstrap based on LWEMult (FDFB-
CLOT21) [24]

Input : an LWE sample c = (a, b) ∈ LWEs(m), for m ∈ ZB

Input : an integer LUT L = [l0, l1, ..., lB−1] ∈ ZB
B

Input : a bootstrapping key BKi ∈ RGSWS (si), for i ∈ [[1, n]]
Input : a relinearization key RLKi ∈ RLWES(S

2´j), for j ∈ [[0, t)
Input : a Packing Key Switching key KSKs 7→S

Output: c′ ∈ LWES ′(L[m]), where S
′ ∈ BN is the vector interpretation of S

1 ca ← FunctionalBootstrap(c, L[0 : B
2
],BK)

2 cb ← FunctionalBootstrap(c, L[B
2
: B],BK)

3 csign ← FunctionalBootstrap(c, [ q
2B

, ...., q
2B

],BK)
4 cas ← LWEMult(ca, csign + (0, q

2B
),RLK,KSK)

5 cbs ← LWEMult(cb, csign − (0, q
2B

),RLK,KSK)
6 return cas + cbs

4.1.4.2 The PubMux method

In 2021, Kluczniak and Schild [47] proposed a technique for the FDFB based on the

definition of a public version of TFHE’s C multiplexer (CMUX, Algorithm 5). In this

version, the inputs are polynomials (instead of (R)LWE samples), and the selector is an

LWE sample (instead of an RGSW sample). Algorithm 21 presents their technique. It

first calculates the input sign, then uses it to select, using the PubMux method, between

LUTs encoding the subfunctions f0 = f and f1 = −f . The result is used as a test vector

for a regular functional bootstrap using the same input.

4.1.4.3 The chaining method

The FDFB presented by Chillotti et al. [24] takes just one multi-value bootstrap, but it

still introduces significantly more noise than the original FB, as it selects between the

bootstrap lookup results using the RLWE product. In this section, we introduce another

method for performing the full-domain functional bootstrap that provides the same er-

ror variance output as the basic (half-domain) FB. Algorithm 22 describes it. Despite

requiring two functional bootstraps, the algorithm combines them using the chaining

method [38], which provides the lowest output error variance and does not require larger
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Algorithm 21: Full-Domain Functional Bootstrap based on PubMux (FDFB-
KS21) [47]

Input : an LWE sample c = (a, b) ∈ LWEs(m), for m ∈ ZB

Input : an integer LUT L = [l0, l1, ..., lB−1] ∈ ZB
B

Input : a bootstrapping key BKi ∈ RGSWS (si), for i ∈ [[1, n]]
Input : precision parameters ℓ,B ∈ N

Output: c′ ∈ LWES ′(L[m]), where S
′ is the vector interpretation of S

1 p1 ←
∑N−1

i=0 l+ iB
2N ,X

i

2 p2 ←
∑N−1

i=0 −l+B
2
+ iB

2N ,X
i

3 foreach i ∈ [[0, ℓ) do
4 csign,i ← FunctionalBootstrap(c,

[

−q
2Bi , ....,

−q
2Bi

]

, BK)
5 csign,i ← csign,i +

q
2Bi

6 v ← PubMux(csign, p1, p2)
7 return FunctionalBootstrap(c, v, BK)

1 Procedure PubMux(C, A, B)
2 M ← B − A
3 M ′ ← +MB

ℓ/q,
4 Decompose M ′, s.t. M ′ =

∑ℓ−1
i=0 M

′
i ·Bi

5 return A+
∑ℓ−1

i=0 Ci ·M ′
i

parameters. This method was first presented in the FullFBS algorithm by Yang et al. [64]

for their cryptosystem (TOTA). Their method, however, only removes the negacyclicity,

without addressing full-domain evaluation specifically. One can obtain the original tech-

nique from Yang et al. [64] by replacing line 1 of Algorithm 22 with line 2 of Algorithm 7.

We developed Algorithm 22 independently, but it can also be seen as an extension of

TOTA’s FullFBS. This method has also been independently presented and used several

times in the literature since these first presentations.

Algorithm 22: Full-Domain Functional Bootstrap based on Chaining
(FDFB-C)

Input : an LWE sample c = (a, b) ∈ LWEs(m), for m ∈ ZB

Input : an integer LUT L = [l0, l1, ..., lB−1] ∈ ZB
B

Input : a bootstrapping key BKi ∈ RGSWS (si), for i ∈ [[1, n]]
Output: c′ ∈ LWES ′(L[m]), where S

′ ∈ BN is the vector interpretation of S

1 tv ←∑

B
2
−1

i=0

∑1
j=0

∑

N
B
−1

k=0 ∆l jB
2
+iX

(2i+j)N
B
+k

2 csign ← FunctionalBootstrap(c, [ q(B+1)
4B

, ...., q(B+1)
4B

], BK)

3 c′ ← c+ csign − q(B+1)
4B

4 return FunctionalBootstrap(c′, tv, BK)

4.1.5 The circuit bootstrap

Working with (R)LWE samples is usually the norm in TFHE, as computation is cheaper

both for arithmetic and FB-based arbitrary function evaluation. However, several tech-
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niques [5, 22, 38] require samples to be encrypted as RGSW samples. In this context,

the Circuit Bootstrap [21], is a technique for producing an RGSW sample from an RLWE

one. Since it is based on the functional bootstrap, the content of the fresh sample can

be arbitrarily defined by a function. Algorithm 23 defines the circuit bootstrap based on

the functional bootstrap. We are presenting a functional version of it (i.e., the LUT L

is a parameter), but originally it just evaluates the identity function. Since it requires

the evaluation of several functions over the same input, we can use the BML algorithm,

presented in Section 4.1.2, to accelerate the computation (as suggested by Chillotti et

al. [24]) at the cost of a slightly increased error rate.

Algorithm 23: Circuit Bootstrap algorithm (CircuitBootstrap) [22]

Input : an LWE sample c = (a, b) ∈ LWEs(m)
Input : an integer LUT L = [l0, l1, ..., lB−1] ∈ ZB

B′

Input : a bootstrapping key BKi ∈ RGSWS(si), for i ∈ [[1, n]]
Input : a Private Key Switching key KSKA that evaluates

f : Zq 7→ Rq = f(m) 7→ m · −S
Input : a Packing Key Switching key KSKBs 7→S

Output: c′ ∈ RGSWS,(ℓ,B)(L[m])
1 f : Zq 7→ Rq = m 7→ mX0

2 foreach i ∈ [[0, ℓ) do
3 c̃← FunctionalBootstrap(c, LBi, BK)
4 c′i ← PrivateKeySwitch(c̃,KSKA)
5 c′ℓ+i ← PublicKeySwitch(c̃, f,KSKB)

6 return c′

4.1.6 The full RGSW bootstrap

The TreeFB algorithm (Section 3.1) supposes the use of the multi-value functional boot-

strap for every level of the tree to achieve a linear number of bootstraps. However, after

the first (base) level of the tree, LUTs are encrypted in RLWE samples (instead of encoded

in clear-text polynomials). Carpov et al. [17] MVFB (Algorithm 8) does not operate over

encrypted test vectors and Chillotti et al. [24] BML (Algorithm 17) supports a limited

number of LUTs. In Chapter 3, we suggested using the CircuitBootstrap to em-

ploy the MVFB over encrypted LUTs, but we did not implement the technique as it

would require an implementation supporting 64-bit torus precision. Our library not only

provides this precision level but also all optimizations for the CircuitBootstrap we

discussed [38]. We note, however, that instead of executing the regular FB plus a Cir-

cuitBootstrap, we can just directly perform a full RGSW bootstrap, which uses the

same number of BlindRotate executions as the CircuitBootstrap, but saves time

by avoiding key switchings.

The full RGSW bootstrap (RGSW_Bootstrap) is similar to the functional boot-

strap described in Algorithm 7, but the accumulator vector is an RGSW sample instead of

an RLWE sample. In this way, the external products become internal products between

RGSW samples, which are at least ℓ times more expensive but have the same output
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error variance. The result produced by the algorithm, encrypting X+phase(c)2N/q,, is also

an RGSW sample and can, therefore, be multiplied by the decomposed LUTs in Car-

pov et al. method, even when they are encrypted in RLWE samples. Different from the

original MVFB, the output error variance of such multiplication depends on the square

norm of the RGSW samples, and not on the LUT. In this way, Carpov et al. decompo-

sition presents no advantage anymore, and we can use the straightforward version of the

multi-value bootstrap described at the beginning of Section 4.1.2.

4.1.7 (R)LWE conversion

The Key Switching algorithm is one of the core procedures of TFHE, and its performance

degrades rather fastly for large parameters when inputs are LWE samples. For RLWE

samples, on the other hand, the Key Switching can be sped up by using the FFT to

perform multiplications, which comes at the cost of increased output noise. In 2021,

Chen et al. [19] presented several algorithms that allow performing LWE Key Switching

using RLWE Key Switching methods. For LWE-to-RLWE conversion, however, their

algorithm multiplies the coefficients of the result by N (the modulo polynomial degree)

as a side effect, since it is based on the Galois permutation. In the standard instantiation

of TFHE, coefficients are in the real torus and are mapped to Z2k , therefore N does not

have a modular inverse. In this way, we implement their algorithms for completeness, but

we did not find many cases in which it could be used efficiently. Specifically, it is possible

to use such algorithms in cases in which the message can be divided by N by employing

bootstraps, before encryption, or by switching to a different modulus q′ = q
2N

.

4.1.8 The BlindRotate unfolding

The BlindRotate is the most expensive operation in TFHE’s bootstrap. It calculates

X
∑n

i=1
siai . Its most expensive parts, in turn, are the multiplications by RGSW samples,

which encrypt si. In 2018, Zhou et al. [68] showed how to reduce the number of multi-

plications by unfolding the BlindRotate loop. Equation 4.2 shows their proposal. In

the same year, Bourse et al. [10] improved the unfolding equation by calculating the last

term from the first three. They also suggest the equation could be generalized to large

unfoldings. In this work, we implemented this generalization and tested unfoldings of

sizes 2, 4, and 8.

Xas+a′s′ = ss′Xa+a′ + s(1− s′)Xa

+ (1− s)s′Xa′ + (1− s)(1− s′). (4.2)

Notice that the unfolding increases the key size exponentially. In Equation 4, for

example, we need to store values for ss′, s(1− s′), (1− s)s′, and (1− s)(1− s′) instead of

just s and s′. Specifically, the key expansion is given by 2u

u
, where u is the unfolding size.

Algorithm 24 shows the unfolded blind rotation, where r is the key expansion.



60

Algorithm 24: Unfolded Blind Rotation (UBR)

Input : a sample c = (a1, ..., an, b) ∈ LWEs(m)
Input : an unfolding level u ∈ N
Input : a sample tv ∈ RLWES(v)
Input : a list of samples Ci ∈ RGSWS(si), for i ∈ [[0, n2

u

u
)

Output: an RLWE sample of c′ ∈ RLWES(X
+−phase(c)2N/q, · v)

1 ACC← X−+b 2N
q , · tv

2 r ← n2u

u

3 for i← 0 to n− 1 by u do
4 C ′ ← Cir

5 for j ∈ [[1, r) do
6 a′ ← 0
7 for k ← 0 to u− 1 do
8 if j ' 1 then // Bitwise AND

9 a′ ← a′ + ai+u

10 j ← +j/2,
11 ã←

⌈

a′ 2N
q

⌋

12 C ′ ← C ′ + Cir+j ·X ã

13 ACC← ACC · C ′

14 return ACC

4.1.9 State-of-the-art summary

Table 4.1 summarizes the techniques presented in this section as well as the improvements

we presented for them. Besides the improvements listed in the table, we note that one

of our main contributions is to implement all the techniques in a single highly optimized

software library, which is publicly available in our GitHub repository2.

4.2 Novel techniques

Besides the several improvements to existing techniques, we also developed entirely new

procedures to accelerate core functionalities of TFHE as well as specific evaluation meth-

ods.

4.2.1 UBR multi-value bootstrap

Although a theoretically promising technique, several factors limit the impact of the Blin-

dRotate unfolding in practical performance, with the main one being the exponential

blow-up in the number of polynomial additions and multiplications. Nonetheless, in this

Section, we introduce another use for the Unfolded BlindRotate (UBR): a new method

for multi-value bootstrapping.

We start from the observation that lines 5 to 12 in Algorithm 24, which contain the

2https://github.com/antoniocgj/MOSFHET
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Table 4.1: Summary of the techniques described in this chapter and our contributions to
each.

Procedures Section Literature Improvements in this work

PBS 4.1.1 [24] -

MVFB
4.1.2

[17, 38] We modify the composition
algorithm to treat a corner
case on error growth.

[24] -

4.2.1 This work New technique

BFV-like multiplication 4.1.3 [24] -

FDFB

4.1.4.1 [24] Accelerated using the BLM
(as suggested in [24])

4.1.4.2 [47] Accelerated using the BLM

4.1.4.3 [64] and
this work

New technique, extending the
method of [64]

TreeFB
3.1 [38]

We use the RGSW bootstrap
or the MVFB-UBR to provide
MVFB for all levels of the tree.

ChainingFB -

CircuitBootstrap 4.1.5 [22] Accelerated using the BLM
(as suggested in [24])

RGSW_Bootstrap 4.1.6 [37] -

KeySwitching 2.4.2.1, 4.1.7 [22, 19] Accelerated using FTM-SE

UBR 4.1.8 [68, 10] Method generalized for large
unfoldings (as suggested in [10])

FTM-SE 4.2.2 [22] We show how to exploit fast
PRNGs to improve performance

exponential blow-up, are not dependent on the lookup table, which is stored in ACC.

Therefore, we can use the UBR to perform a multi-value bootstrap as follows:

1. Run Algorithm 24 and store the values produced for C ′ in a n/u-sized array of

RGSW samples C̃.

2. Run Algorithm 25 using C̃.

Compared to other existing techniques for multi-value bootstrap, namely the ones

we described in Section 4.1.2, our new method is significantly more expensive, but it

introduces unique properties, and, instead of an alternative, it works as a complement to

the other methods.

• Compared to the method introduced Carpov et al. [17], described in Algorithm 8,
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Algorithm 25: Multi-Value Functional Bootstrap based on the UBR algorithm
(MVFB-UBR)

Input : an LWE sample c = (a, b) ∈ LWEs(m), m ∈ Z2N

Input : z LUTs encoded in polynomials LFi
∈ Rq, for i ∈ [[1, z]]

Input : a n/u-sized array of RGSW samples C̃ produced by the UBR
Output: An array of LWE samples c′i ∈ LWES ′(Fi(m)) for i = 1, ..., z, where

S
′ ∈ BN is a vector interpretation of S

1 b′ ← +b2N/q,+ N
2B

2 foreach i ∈ [[1, z]] do
3 ACC← Li

4 for j ← 0 to n
u
− 1 do

5 ACC← ACC · C̃j

6 c′i ← SampleExtract0(ACC)

7 return c′

our method allows for the evaluation of encrypted LUTs, generally introduces less

noise, and has no requirements for the format of the LUT.

• Compared to the BML method from Chillotti et al. [24], described in Algorithm 17,

our method does not have limits on the number of LUTs it can evaluate, nor it affects

the probability of failure. Notice that it essentially removes the main limitations

from the BML and, hence, could work to complement the technique when needed.

4.2.2 Faster-Than-Memory Seed Expansion (FTM-SE)

The bootstrap operation and, to a lesser degree, the key switching algorithm are the most

time-consuming procedures in TFHE. Both of them, however, can be sped up at the cost

of larger keys. Specifically, one can increase the decomposition base of the key switching

and the BlindRotate unfolding in the bootstrap. In both cases, it is possible to achieve

linear gains in performance with exponential growth in the key size. Techniques for

compressing evaluation keys are broadly available in the literature. For TFHE, Chillotti et

al. [22] suggest storing just the pseudo-random number generator (PRNG) seed used to

generate the a component of RLWE samples and only generating a when necessary. This

technique gives up to n times storage and memory usage improvements for LWE samples

and up to 2 for RLWE samples. In this work, we not only implement this idea but also

show how we can use it to improve execution time in the key-switching algorithm (and in

basic arithmetic).

Algorithm 26 shows the core RLWE subtraction algorithm used in the key switching.

We could use any PRNG to implement it, but SHAKE256 [31] was a convenient choice as

we were already using it for the rest of the implementation, and it is a cryptographically

secure PRNG. This version provides almost two times storage and memory usage reduction

for RLWE key switching keys and bootstrap keys. However, it slows down the execution

by more than 10 times. We could minimize the impact of this slowdown by expanding

the entire keys at loading time, but we would lose the memory usage gains, which are one

of the most important benefits of this technique.
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Algorithm 26: RLWE subtraction using SHAKE256

Input : a compressed RLWE sample c0 = (seeda0 , b0) ∈ RLWEs(p0)
Input : an RLWE sample c1 = (a1, b1) ∈ RLWEs(p1)
Output: c′ = (a′, b′) ∈ RLWEs(p0 − p1)

1 a0 ← SHAKE256(seeda0 , N)
2 for i← 0 to N − 1 do
3 a′i ← a0,i − a1,i
4 b′i ← b0,i − b1,i
5 return c′

To solve this problem, we implement the key switching as shown in Algorithm 27.

There are two main changes to note in this version:

1. We replace SHAKE256 with Xoroshiro [6], a much faster PRNG, but that is not

considered cryptographically secure. There are several examples of using such gen-

erators for generating public information, as is the case of the a component of

(R)LWE samples. For the security aspects of using Xoroshiro for generating a, we

refer to previous literature [8, 6, 41]. We chose Xoshiro for its performance, but if a

secure PRNG is required even for public data, viable alternatives may be found in

Lightweight Cryptography(LWC) [62].

2. We interleave the memory load of the b component with the expansion computation

of the PRNG. In this way, we take advantage of instruction-level parallelism since

CPU (a calculation) and memory (b loading) intensive code portions are executed

simultaneously by the processor.

Algorithm 27: RLWE subtraction using Xoshiro

Input : a compressed RLWE sample c0 = (seeda0 , b0) ∈ RLWEs(p0)
Input : an RLWE sample c1 = (a1, b1) ∈ RLWEs(p1)
Output: c′ = (a′, b′) ∈ RLWEs(p0 − p1)

1 state← seedai
2 for i← 0 to N − 1 do
3 a′i ← Xoroshiro128pp_next(state)− a1,i
4 b′i ← b0,i − b1,i
5 return c′

At the implementation level, it was also necessary to vectorize Xoroshiro’s code using

AVX2 instructions. Ultimately, it was necessary to use a highly optimized version of an

already very fast generator to have speedups over the non-compressed version, but we

were able to achieve speedups of up to 1.44 times. The vectorized version of Xoroshiro is

a side contribution of this work.

4.2.2.1 VAES version

On newer computer architectures, we can also use AVX512-VAES instructions [29] to

provide fast and cryptographically-secure PRNG. This is an interesting alternative to
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Xoroshiro and LWC-based PRNGs, as the VAES hardware support is able to introduce

similar speed-ups while requiring little implementation effort and providing great security

guarantees.

4.3 Experimental results

We implement all algorithms presented in Sections 4.1 and 4.2 in a single C library. The

code is fully portable and self-contained and includes optional optimizations for the Intel

AVX2 and AVX512 Instruction Set Extensions.

We executed all experiments on a bare metal instance on AWS public cloud (m6i.metal),

using an Intel Xeon Platinum 8375C (Ice Lake) CPU at 3.5GHz with 512GB of RAM run-

ning Ubuntu 22.04.4 LTS. Each measurement presented in this section is the average of

at least 100 executions.

4.3.1 Parameters

We use the parameter sets reproduced in Table 4.2. All of them are extracted from previ-

ous literature. We select parameter sets 1 to 3 from Bergerat et al. [5] as representatives

of some of the most commonly used parameter sizes in TFHE. Meanwhile, we adapted

parameter set 4 from TFHEpp [54] since it allows evaluating all techniques described in

this work.

Table 4.2: Parameter sets. Noise is chosen based on the dimension for obtaining a 128-bit
security level. bs and ks stand for bootstrapping and key switching, respectively.

Name n N ℓbs ´bs ℓks ´ks

Set 1 585 1024 2 28 5 22

Set 2 744 2048 1 223 5 23

Set 3 807 4096 1 222 5 23

Set 4 632 2048 4 29 8 24

4.3.2 Basic arithmetic

Most of the optimized implementations of TFHE rely on the Fast Fourier Transform (FFT)

for providing fast polynomial arithmetics [25]. Our library presents two options for FFT

implementations: the SPQLIOS [34] library3, and the FFNT library [45] for providing

software portability. As an additional contribution, we optimize both libraries using AVX-

512 instructions for SPQLIOS and AVX2/FMA instructions for FFNT. Table 4.3 shows

the execution time of FFT and inverse FFT (IFFT) transforms. We note that our biggest

speedups concern the inverse FFT not because of optimizations in the inner algorithm,

but because AVX512 instructions enable us to perform significantly more efficient modular

3SPQLIOS was presented by Nicolas Gama et al. [34] with TFHE [22]. It was adapted by TFHEpp [54]
for their C++ code, which we adapted to pure C.
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reductions on floating-point registers. Listing 4.1 shows the modular reduction originally

used by SPQLIOS, which relies on a sequence of bitwise operations. Listing 4.2 shows

our vectorized version implemented as a sequence of scalings and reductions over floating-

point registers. We also optimized the product and the addition between polynomials,

which took 516 and 314 ns, respectively. Their optimization is independent of the FFT

implementation.

Table 4.3: FFT implementation performance for polynomials of size N = 2048. Time in
microseconds.

Implementation Source FFT IFFT

FFNT [45] 8.43 11.12
FFNT (AVX2/FMA) This work 3.58 7.49

SPQLIOS (FMA) [34] 2.68 4.73
SPQLIOS (AVX512) This Work 2.58 2.65

Listing 4.1: Floating-point modular reduction from SPQLIOS [34].

uint64_t* vals = (uint64_t *) input;

uint64_t valmask0 = 0x000FFFFFFFFFFFFFul;

uint64_t valmask1 = 0x0010000000000000ul;

uint16_t expmask0 = 0x07FFu;

for (int i=0; i<N; i++) {

uint64_t val = (vals[i]& valmask0)|valmask1; // mantissa

uint16_t expo = (vals[i]>>52)&expmask0; // exponent

int16_t trans = expo -1075;

uint64_t val2 = trans >0?(val <<trans):(val >>-trans);

output[i]=( vals[i]>>63)?-val2:val2;

}

Listing 4.2: Floating-point modular reduction using AVX512 instructions.

__m512d * in512 = (__m512d *) input;

__m512i * out512 = (__m512i *) output;

__m512d modc = {64, 64, 64, 64, 64, 64, 64, 64};

for (size_t i = 0; i < N/8; i++) {

__m512d tmp = _mm512_scalef_pd (in512[i], -modc); //

tmp← in · 2−64

tmp = _mm512_reduce_pd (tmp , 0); // tmp← tmp− round(tmp)

tmp = _mm512_scalef_pd (tmp , modc); // tmp← tmp · 264
out512[i] = _mm512_cvtpd_epi64 (tmp);

}

4.3.3 Memory accesses impact

At first, basic arithmetic operations such as polynomial addition are quite inexpensive

compared to an FFT. In our AVX512 version of SPQLIOS, the forward FFT takes 2.6µs
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while a polynomial addition takes just 312ns. However, this comparison only holds while

all data is available in the processors’ cache. Once we consider the evaluation of large

summations, which is the typical use-case for additions (e.g. at the key switching), costs

increase quickly. Figure 4.1 shows the relation between the cost of a single RLWE sam-

ple addition and the number of RLWE samples in a summation loop. It also shows

the impact of our FTM-SE techniques. Each sample contains 2 polynomials and takes

32KB of memory. Our machine has 48KB, 1.25MB, and 54MB of L1, L2, and L3 cache,

respectively.
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Figure 4.1: Execution time of a single RLWE addition in a summation of RLWE samples.
Vertical lines represent the number of samples required to fill the data cache. VAES and
Xoshiro curves are the results of using the FTM-SE with the respective PRNG algorithm.

The performance behavior observed in this experiment partially explains the diffi-

culties of obtaining practical gains in techniques such as the blind rotate unfolding. A

bootstrapping key using parameter Set 2 contains 1488 RLWE samples. With unfolding 2

and 4, this number increases to 2976 and 5952, respectively, which introduces a slowdown

to the basic arithmetic of more than 1.25 times.

This experiment also allows us to compare the two algorithms we use for the FTM-SE.

Xoroshiro would be certainly the best option if the issue is just performance, but VAES

also provides significant gains while being a more conservative option for which security

is guaranteed.

4.3.4 FTM-SE

Table 4.4 shows the high-level functions that benefit from the FTM-SE. We use the

parameter set 4, as it is the only one that evaluates all techniques with a reasonably low

probability of failure. We note that this table could also be used to show the improvements

we are able to achieve by combining existing techniques in the implementation. Our fastest

version of the circuit bootstrap, for example, is 2.76 times faster than the most basic

implementation. This number goes up to 4.3 times when we consider the FDFB methods.

Notwithstanding, we must note that these results only showcase possible improvements

enabled by this work, but they are not a comparison between the techniques, which would

require further work on parameter optimization.
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Table 4.4: High-level procedures using the FTM-SE. Execution time in microseconds
using parameter set 4. Speedup over memory.

Technique
Execution Time (µs) Speedup

Memory Xoshiro VAES Xoshiro VAES

PrivateKeySwitching 41,263 32,506 34,089 1.27 1.21
CircuitBootstrap 465,627 397,109 406,852 1.17 1.14
CircuitBootstrap + BML 364,231 294,620 303,325 1.24 1.20
CircuitBootstrap + BML
+ RLWE KS

198,911 163,244 168,722 1.22 1.18

FDFB-KS21 333,196 294,201 303,219 1.13 1.10
FDFB-KS21 + BML 233,375 194,629 199,968 1.20 1.17
FDFB-CLOT21 266,408 227,775 233,548 1.17 1.14
FDFB-CLOT21 + BML 199,055 160,928 166,489 1.24 1.20
FDFB-C 76,702 76,530 76,790 1.00 1.00

4.3.5 Bootstrap

Table 4.5 presents the execution times of the functional bootstrap and all techniques that

could be used to implement the multi-value bootstrap. Dashes indicate that the technique

cannot be run with the respective parameter set. Zeroes indicate that the phase (setup

or LUT evaluation) is not required for the method.

Table 4.5: Performance of multi-value bootstrapping methods. Execution time in mi-
croseconds.

Technique
Set 1 Set 2 Set 3 Set 4

Setup LUT Setup LUT Setup LUT Setup LUT

Functional Bootstrap 0 7,552 0 12,756 0 31,531 0 33,066
BML 7,552 0 12,756 0 31,531 0 33,066 0

MVFB 7,483 3 12,692 6 31,382 13 33,022 6
RGSW_Bootstrap - - - - - - 212,798 40
UBR MVFB (u=2) 10,987 3,528 16,184 5,683 39,036 13,476 54,766 14,612
UBR MVFB (u=4) 15,246 1,703 20,816 2,742 46,991 6,567 68,463 6,926
UBR MVFB (u=8) 106,576 838 133,139 1,413 279,332 3,308 431,239 3,284

4.3.5.1 Comparison against other libraries

TFHEpp [54] is the only library to cover many of the techniques we consider in this work

and, it would, at first, be a natural source for comparing the performance of our library.

However, the most recent versions of TFHEpp are built using the arithmetic backend we

developed in this project (specifically, the AVX512 version of SPQLIOS and the optimiza-

tions we introduce) and, hence, performance should be essentially the same. Compared

to previous versions of TFHEpp, our implementation was 20% faster on average.

There are also several commercial libraries implementing optimized versions of TFHE,

such as OpenFHE [4] and TFHE-rs [66]. Their purpose and scope are, however, very differ-
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ent from ours, making it difficult to provide a fair comparison. For instance, applications

and non-functional features such as maintainability and user-friendliness are completely

outside of our scope. Conversely, they also do not implement the many experimental

techniques and optimizations we implement in this work. Ultimately, one could obtain a

superficial comparison by looking at core procedures, such as the functional bootstrap, or

core arithmetic functions, such as the NTT. For this work, we consider it would be mis-

leading to present any claims over this comparison without further analysis. Nonetheless,

we executed all our experiments in the same AWS instance (m6i.metal) that TFHE-rs

uses for providing their benchmark results [65], which also include data for several other

libraries and should, hence, facilitate such analysis as future work.

4.4 Discussion

As we tried to extend the results of Chapter 3 and develop new techniques for TFHE, the

limitations of the original TFHE implementation became apparent to us. It did not sup-

port most of the techniques being proposed at the time, and authors would need to rely

on their own implementations to test their contributions. This led us to two significant

issues. Firstly, the new techniques were now scattered across many different libraries, as

each group of authors would choose a different base implementation and produce their

own variation of it. Secondly, most authors choose to work with implementations that

provide high-level interfaces for basic arithmetic procedures, such as PALISADE [2]. This

choice is natural, as they facilitate the implementation, but it comes with a significant per-

formance penalty, as these implementations are generally far from providing competitive

performance levels.

To continue our research, it was necessary to have a unified software platform over

which contributions and improvements to TFHE could be easily developed and tested

in efficient ways. In this context, we decided to introduce our library. MOSFHET is

fully portable and self-contained, with optional optimizations using AVX2 and AVX512

instructions. In this chapter, we presented both the library itself and the initial results

we obtained from it. By combining existing techniques, we were able, for example, to

accelerate the CircuitBoostrap up to 2.76 times. The suggestions of combining these

techniques were not new, but, as far as we know, we were the first to do so to this extent

for TFHE (considering the number of techniques) in a highly-optimized library.

The novel contributions we introduced in Section 4.2 also have a direct impact on

our previously developed techniques. Our UBR-MVFB, for example, enables accelerating

the TreeFB significantly (up to 8 times considering the results of Table 4.5). The

improvements to basic procedures, such as our optimized version of FFT libraries and the

novel FTM-SE, are more general, impacting a much broader range of techniques that are

used not only in TFHE but also in most FHE implementations regardless of scheme.
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Chapter 5

Securing human genome inference

The implications of human genome data sharing are a growing concern for the scientific

community, which is working towards the development of collaboration standards and

frameworks [48]. Privacy is one of the utmost issues, as the consequences of unrestricted

sharing can be disastrous considering the sensitive nature of the source data as well as

the inferences that can be made by combining it with other databases [49]. Furthermore,

any data disclosures affect not only individual data owners but also their blood relatives.

This problem is further aggravated by the increasing use of cloud computing for provid-

ing scalable genomic data processing, as pointed out by the USA National Institutes of

Health [42].

On the other hand, several research fields could leverage large genomic databases to

advance human health technologies. In Personalized Medicine [18], it is possible to corre-

late genotypic and phenotypic data for providing targeted diagnoses and treatments for

diseases. This process, however, requires not only the patients to share their genomic

sequencing information but also the establishment of large databases to carry out statis-

tical analyses. Data inference models trained from these databases are also sensitive and

may reveal information about the training dataset. In this context, Fully Homomorphic

Encryption (FHE) [36] comes as an ideal solution, allowing the evaluation of these models

without revealing any information about the user input or the model parameters.

In 2014, the iDash competition [1] was created among the efforts of the scientific

community towards seeking new solutions for securing genome data processing in cloud

environments. In 2022, its homomorphic encryption track proposes an instantiation of

genotype-to-phenotype inference over encrypted data as a challenge. In particular, the

inference must be performed from high throughput genomic data without any cleartext

preprocessing. In this way, the challenge goes beyond the training of an inference model

and its homomorphic evaluation. It is also necessary to handle a relatively large amount

of encrypted data, which, as we show in this chapter, presents issues on its own.

Contributions

In this work, we present our submission for the homomorphic encryption track of iDash

2022 and analyze it considering different aspects and execution environments. Our focus is

mainly on the homomorphic evaluation and handling of encrypted data. We first trained
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a simple inference model based on decision trees of up to depth 5. Then, we investigated

efficient ways of homomorphically evaluating it. While our model itself might not be on

par with other more elaborate solutions, we evaluate it in a generic way using look-up

tables (LUT), which allow us to test, in a real-world application, some of the solutions

we developed in Chapters 3 and 4. Moreover, since we are using only generic techniques,

the results we obtain and the conclusions we draw from them are not limited to our

model. Instead, they can be applied to many other models in the same context, including

those that are not based on decision trees. We analyze three different methods for data

encryption and their trade-off in terms of storage and execution time in our inference

model, and we evaluate the impact of the cloud environment on the methods. All of

our experiments are in the context of the iDash competition and consider the restrictions

imposed by the challenge.

The rest of this chapter is organized as follows: Section 5.1 introduces the iDash

competition, its current challenge, and an overview of our solution; Section 5.2 details our

solution; Section 5.3 presents the experimental results; and Section 5.4 summarizes the

chapter.

5.1 The iDash competition

The iDASH Healthcare Privacy Protection Challenge [1] is an annual competition pro-

moted by healthcare-related government agencies, the industry, and the scientific commu-

nity in an effort to, as they define, “evaluate the performance of state-of-the-art methods

that ensure rigorous data confidentiality during data analyses in a cloud environment” [1].

Recent editions are split into three tracks: blockchain, homomorphic encryption, and

confidential computing.

5.1.1 The 2022 Homomorphic Encryption Track

The task for the Homomorphic Encryption Track of iDash 2022 [44] is to perform phe-

notype prediction from high throughput genomic data. Essentially, we are provided with

genotypes for 200 individuals, each of them containing 20390 features, and we need to pre-

dict values for 5 different phenotypes in 30 minutes. We are free to choose any inference

model, which we can train on a dataset with 3000 individuals. Each feature is a value in

{0, 1, 2}, the first three phenotypes are floating-point values, and the last two are binary

values. The challenge requires schemes to provide 128-bit security and the entire solution

to run in less than 30 minutes while taking at most 500 GB of storage. The evaluation

system is also limited to 4 CPUs and 32 GB of RAM. No pre or post-computation is

allowed. All input data and all parameters of the trained model must be encrypted. Each

solution should present the following workflow:

1. Client : Setups the cryptosystem, generates and saves the keys, and encrypts the

input data.

2. Modeler : Using the client’s private key, it generates and encrypts the model param-

eters.
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3. Evaluator : Receives the client’s encrypted input, and the modeler’s encrypted pa-

rameters, and evaluates the model inference, producing the encrypted output. It

only has access to encrypted data and public information (e.g., public evaluation

keys). Feature selection (i.e., selecting just a subset of the input features to work

over) is allowed to be performed using public information.

4. Client : Finally decrypts the results.

Furthermore, the Client, Modeler, and Evaluator are required to be separate processes

communicating through files.

5.1.2 Our model

Challenges in iDash always come in two parts: “How to get the best inference model”

and “How to evaluate this model homomorphically”. The scope of our work is limited to

the second. Therefore, we considered a basic inference model based on relatively shallow

(depth 5) decision trees. Figure 5.1 illustrates a small decision tree. Our model achieves

accuracy (measured in 1-NRMSE, 1 minus the normalized root mean squared error, and

AUC, Area under the ROC Curve, as defined by the challenge [44]) from 81% up to 96%,

which might not beat more elaborate models designed for the problem. However, when

homomorphically evaluating the model, we preserve bit precision throughout the entire

execution, so that it represents any model of similar size. Our homomorphic evaluation

approach treats the tree decisions as just 32 bits of data, without any assumptions on the

type of model data.

Input data

Feature 

Selection

Decision Tree

X1

X1

X0

X0

X2
X2

X3
X3

> 0 0

> 1 1

> 0 0> 2 2

Class 4Class 3Class 1 Class 2

Class 2

Figure 5.1: Classification using a decision tree.

5.2 Homomorphic evaluating our solution

As each of the input features is represented in 2 bits, and our 5-depth decision trees

look at most 11 features, we encoded the entire tree evaluation as a LUT with 222 slots,

each one storing a 32-bit floating-point number. Notice that there are two very obvious

optimizations that we could have done at this point:

• At the output: A 5-depth tree has at most 32 possible decisions. So we did not

need to keep 32-bit floats as the output of the tree. This is also true (and even more

drastic) for the binary phenotypes, which can only be 0 or 1.
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• At the input: Each input feature can only assume values in {0, 1, 2}, and the tree

does not necessarily check for all of them. In this way, a big part of the LUT is

taken by positions that are never looked up.

We could have implemented such optimizations, but they would make our solution

specific to the chosen inference model, which is something we are trying to avoid as

we want our solution to be as generic as possible within the context of iDash. Notice

that, in the way we designed it, the results we present in this chapter represent not only

other decision-tree-based models of the same size but all inference models that could be

represented as a large LUT evaluation for the competition.

5.2.1 LUT evaluation

We evaluate the LUT using the vertical packing method [22], which we briefly described

in Section 2.5.1. This method is typically the most efficient way of evaluating LUTs in a

leveled setting, as the RGSW × RLWE multiplications take just tens of microseconds and

even relatively large LUTs require a small amount of them. In a bootstrapped setting,

we could consider using the Tree-Based Functional Bootstrap approach (Section 3.1.1)

for smaller LUTs, but, for the sizes required by our model, the bootstrapped version of

the vertical packing would also be the best choice [5]. As we mentioned in Section 5.2,

we want our results to cover any model in iDash that could be represented as a LUT

of similar size. Therefore, we also did not consider methods that target specifically the

evaluation of decision trees, such as the SortingHat [27], which could present much better

results.

For each of the 200 individuals, our evaluator works as follows:

1. It receives the encrypted input data and selects which features are relevant for the

decision tree. From the 20390 features, only around 10 of them are considered for

inference.

2. It generates an array of RGSW samples, a process that we further discuss in the

next section. Each sample encrypts a bit of the selected features.

3. It receives the encrypted model. The model is already represented as a LUT en-

crypted in an array of RLWE samples.

4. Using the results of steps 2 and 3, it performs the evaluation itself, using vertical

packing.

5. It returns the result.

Encryption Approaches

The only undefined part of this workflow is also the most challenging part of our approach:

How to generate an array of RGSW samples, each encrypting a bit of the selected features.

We implemented three approaches for that. In all of them, the client encrypts the features

bit by bit:
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1. RGSW-single. Each bit is encrypted alone in an RGSW sample. This seems to

be the ideal solution for optimizing execution time at the tree evaluation, but it

requires the client to generate more than 8 million RGSW samples, which might

require hundreds of gigabytes to be stored.

2. RLWE-packed. Each bit is encrypted in a monomial of an RLWE sample. Since

each RLWE sample has N monomials and N is usually around 210 to 214, the client

would need just around 4 to 10 thousand RLWE samples to encrypt everything. De-

pending on the parameters, this method would require just a few hundred megabytes

of storage. On the other hand, the evaluator would need to extract the bits from

the RLWE samples (which can be done using the inexpensive SampleExtract

procedure) and transform them into RGSW samples. This transformation requires

a Circuit Bootstrap [21], which, as we discuss in Section 4.1.5, is a very expensive

procedure.

3. RGSW-packed. Each bit is encrypted in a monomial of an RGSW sample. This

is a middle-ground solution between the two other approaches. Since the features

are already in RGSW samples, it is not necessary to perform a Circuit Bootstrap.

However, it is still necessary to isolate a monomial from the others (a single RGSW

sample is encrypting N bits of the features, and we want just one of them). This

is accomplished by a sequence of key switching procedures [22] that zeroes the

unselected monomials and reconstructs the RGSW sample. These key switchings

are faster than a Circuit Bootstrap, but this method also requires 2ℓ times more

storage.

5.3 Experimental Results

Table 5.1 shows the two execution environments we experimented with and the reference

specifications provided by the iDash competition. We chose d3.xlarge and i4i.xlarge

instances as they are the closest to the reference machine we could find on AWS. Ta-

ble 5.2 shows the cryptosystem parameters for each approach. In all cases, we built our

implementations using our MOSFHET library [39].

Table 5.1: Execution environments. The storage type (HDD/SSD) was not specified for
the reference machine.

iDash Reference d3.xlarge i4i.xlarge

Processor Intel 8180 Intel 8259CL Intel 8375C
Frequency 2.5 GHz 2.5 GHz 2.9 GHz

CPUs 4 4 4
RAM 32 GB 32 GB 32GB

Storage 500 GB 5940 GB - HDD 937 GB - SSD
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Table 5.2: Parameters for TFHE.

LWE RLWE RGSW
n Ã/q N Ã/q log2 (´) ℓ

RGSW-single - - 1024 2−25 8 2
Others 632 2−15 2048 2−44 9 4

5.3.1 Storage

Table 5.3 shows the storage requirements of each approach. We did not include the

encrypted model, since it does not vary according to the approach we choose to encrypt the

input. Notice that the RGSW-single approach almost reaches the 500GB limit specified

by the challenge, whereas the packed approaches take just around 1% of the available

storage.

Table 5.3: Storage requirements of each approach.

RGSW-single RLWE-packed RGSW-packed
Private Key 8 KB 16 KB 16 KB
Eval. Key 0 5.1 GB 3.8 GB
Genotype 497.8 GB 124.4 MB 497.8 MB

5.3.2 Performance

Tables 5.4 and 5.5 present the execution time, in seconds, for each of our test machines.

Each result is the average of 5 executions, for which we calculated a 95%-confidence

interval. We compiled our code using the default compiling options from MOSFHET [39]

and measured time using Linux wall-clock timestamps (date +%s). Client and Modeler

are single-thread processes while the evaluator is parallelized in 5 processes, one for each

phenotype inference. Although the slightly higher clock frequency of the i4i.xlarge may

have been an advantage, the differences in storage technologies are certainly a dominant

factor in the comparison between machines.

Table 5.4: Execution time, in seconds, in a d3.xlarge.

RGSW-single RLWE-packed RGSW-packed
Client 3664.4 ± 13.2 69.2 ± 11.4 63.6 ± 1.6

Modeler 14.6 ± 1.0 12.0 ± 3.0 10.2 ± 1.3
Evaluator 102.4 ± 0.5 1804.0 ± 13.8 1300.0 ± 0.9

RGSW-single approach

While disk IO was the bottleneck for the client on the d3.xlarge, the same did not happen

on the i4i.xlarge. The average storage writing speed was 281 MBps, significantly below

the NVME writing capacity of more than 1 GBps. Considering this result, we could have

parallelized client encryption and reduced the client execution time by up to 3 times. This
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Table 5.5: Execution time, in seconds, in a i4i.xlarge.

RGSW-single RLWE-packed RGSW-packed
Client 1812.4 ± 37.4 36.2 ± 0.7 32.4 ± 2.5

Modeler 4.6 ± 0.5 4.4 ± 0.5 4.2 ± 0.4
Evaluator 113.8 ± 5.8 1841.8 ± 57.5 1332.0 ± 50.7

would certainly make the RGSW-single approach significantly faster than the alternatives.

However, as the storage technology of the iDash reference machine was not specified, we

could not follow this optimization. In the d3.xlarge, for example, parallelization would

not help as the client was already writing at 139 MBps, near the limit of the HDD writing

bandwidth.

RLWE-packed approach

As expected, client encryption became much faster, as each RLWE sample is now en-

crypting N = 2048 bits of the features. The evaluator execution time, however, grew

considerably, with a slowdown of 17.6 times on the i4i.xlarge and of 16.2 times on the

d3.xlarge.

RGSW-packed approach

The ℓ = 4 times increment in the encrypted genotype size (compared to RLWE-packed)

was compensated by a 1.38 times speedup in the evaluator, without observable slowdowns

on client encryption. At first, the 4 times increment in storage could be seen as a significant

drawback. However, in practice, it requires just an additional 373.4 MB of storage, which

even the HDD of the d3.xlarge can load in a bit less than 3 seconds. The 1.38 times

speedup in execution time, on the other hand, represents at least 504 seconds, which is

more than a hundred times the possible slowdown caused by the additional use of storage.

5.4 Summary

In this chapter, we introduced a proposal for the homomorphic encryption track of iDash

2022 and addressed the challenges of homomorphically evaluating it in a cloud environ-

ment. We chose homomorphic evaluation methods that are generic enough for our results

to apply to other models and applications in a similar context. In our final submission to

the competition, we used the RGSW-packed approach for encrypting data, as its entire

execution takes around 23 minutes to run, well within the 30-minute limit of the compe-

tition. Nonetheless, we note that the performance enabled by RGSW-single encryption

could be leveraged by other applications, as each LUT takes less than 0.1s to be evaluated

on average, even considering all the overhead introduced by IO operations.
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Chapter 6

Conclusion

As FHE evolves, different programming paradigms are adopted for improving perfor-

mance in specific use cases. The evaluation of look-up tables and, more specifically, the

programmable bootstrap gained traction recently as one of the most promising ways of

evaluating arbitrary functions. Our first contributions to it, as detailed in Chapter 3,

came at a time when few applications were using it, and most of them were limited to

low-precision functions. In fact, not even the term itself had been coined yet (thus why we

refer to it by the generic naming of functional bootstrap). Our work was one of the first

to address the problem of evaluating functions with high precision using it. It presented

some of the first methods for doing so efficiently and paved the way for several other

methods that have been developed since then, helping it become the established approach

it is today.

Our follow-up contributions to the method (Chapter 4) came in the form of a compre-

hensive library implementing almost all the techniques available for TFHE at the time in a

single highly-optimized implementation. Our primary goal with this was to provide a uni-

fied source for comparing the many new techniques that were been proposed for TFHE.

Notwithstanding, we also introduced several new contributions and provided insightful

analyses of the performance of core FHE procedures. Some of them targeted specifically

at improving our previous contributions, such as our new method for Multi-value boot-

strap (Section 4.2.1), which enables accelerating the tree-based approach. Others are

more generic and have a broader application to several procedures, as is the case of the

FTM-SE. It is also worth noting that some of our contributions, such as the improvements

to SPQLIOS, are already being used by other projects [54].

As a final contribution to close this work, we experimented with our contributions

in a real-world application in the context of the 2022 iDash competition. Instead of

engaging in the typical machine learning optimizations that are common to solutions

submitted iDash, we chose a basic inference model and evaluated it homomorphically as

it was. In this way, we see this work as a real-world benchmark for our techniques and

implementations, which allowed us not only to address performance issues but also other

aspects such as the storage and loading of large encrypted machine learning models.
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6.1 Future work

Our library, MOSFHET, brings many opportunities for improvements to state-of-the-art

techniques for TFHE. By providing a broad range of efficiently implemented procedures,

it allows one to conduct their own analyses and propose new improvements for the scheme.

As a practical example of future work, we do not perform a parameter optimization for

the techniques we present in this work since, as we mentioned in Chapter 4, parameter

optimization is generally an intricate and often application-dependent task. However, it is

also a fundamental step towards improving the performance of FHE evaluation, especially

for specific use cases. Another example of future work on MOSFHET could be addressing

the practical challenges of implementing public-key encryption, such as protection against

side-channel attacks.

On the algorithmic side, many of our contributions already have an impact on the

literature, and much of the future work we suggested throughout this document is already

being done by other authors. Nonetheless, there is still a long way to improve FHE

performance to a point in which it is practical for any application. When we consider the

evaluation of functions with high precision, which was one of the main topics of this work,

there are many applications that require much larger precision than what is currently

practical with FHE. The use of lookup tables for evaluating functions, as efficient as it

may be, has its limitations in the asymptotic complexity of a LUT evaluation, which

is inherently exponential in the input size. While there is still room for improving the

homomorphic evaluations of LUTs, as many recent works have shown, the development

of new paradigms for homomorphic evaluation seems to be necessary for making FHE

practical beyond the typical use cases currently considered by the community. There

are also many aspects that affect FHE performance and require special considerations in

terms of security. For instance, multi-key and threshold FHE are currently hot topics

of research, but current solutions still incur a non-negligible performance overhead to be

secure, often impairing its widespread adoption.
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