
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Judy Carolina Guevara Amaya

Quality of Service Provisioning in Fog Computing

Networks

Provisão de Qualidade de Serviço em Redes de

Computação em Névoa

CAMPINAS

2022

Judy Carolina Guevara Amaya

Quality of Service Provisioning in Fog Computing Networks

Provisão de Qualidade de Serviço em Redes de Computação em

Névoa

Tese apresentada ao Instituto de Computação
da Universidade Estadual de Campinas como
parte dos requisitos para a obtenção do título
de Doutora em Ciência da Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Nelson Luis Saldanha da Fonseca
Co-supervisor/Coorientador: Prof. Dr. Ricardo da Silva Torres

Este exemplar corresponde à versão final da
Tese defendida por Judy Carolina Guevara
Amaya e orientada pelo Prof. Dr. Nelson
Luis Saldanha da Fonseca.

CAMPINAS

2022

Ficha catalográfica

Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica

Silvania Renata de Jesus Ribeiro - CRB 8/6592

 Guevara Amaya, Judy Carolina, 1984-

 G939q GueQuality of service provisioning in fog computing networks / Judy Carolina

Guevara Amaya. – Campinas, SP : [s.n.], 2022.

 GueOrientador: Nelson Luis Saldanha da Fonseca.

 GueCoorientador: Ricardo da Silva Torres.

 GueTese (doutorado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Gue1. Redes de computadores. 2. Computação em névoa. 3. Computação em

nuvem. 4. Escalonamento de tarefas. 5. Inteligência artificial. 6. Qualidade de

serviço (Redes de computadores). I. Fonseca, Nelson Luis Saldanha da, 1961-.

II. Torres, Ricardo da Silva, 1977-. III. Universidade Estadual de Campinas.

Instituto de Computação. IV. Título.

Informações Complementares

Título em outro idioma: Provisão de qualidade de serviço em redes de computação em

névoa

Palavras-chave em inglês:
Computer networks

Fog computing

Cloud computing

Task scheduling

Artificial intelligence

Quality of service (Computer networks)

Área de concentração: Ciência da Computação

Titulação: Doutora em Ciência da Computação

Banca examinadora:
Nelson Luis Saldanha da Fonseca [Orientador]

Daniel Macêdo Batista

Thiago Augusto Lopes Genez

Fábio Luiz Usberti

Islene Calciolari Garcia

Data de defesa: 14-12-2022

Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-1439-3584

- Currículo Lattes do autor: https://lattes.cnpq.br/4762152686250932

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Judy Carolina Guevara Amaya

Quality of Service Provisioning in Fog Computing Networks

Provisão de Qualidade de Serviço em Redes de Computação em

Névoa

Banca Examinadora:

• Prof. Dr. Nelson Luis Saldanha da Fonseca
IC/UNICAMP

• Prof. Dr. Daniel Macêdo Batista
IME/USP

• Dr. Thiago Augusto Lopes Genez
EMBL-EBI

• Prof. Dr. Fábio Luiz Usberti
IC/UNICAMP

• Profa. Dra. Islene Calciolari Garcia
IC/UNICAMP

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 14 de dezembro de 2022

To José, Alberto José, Magdalena, Alberto and Diego.
The reason of my success is your unconditional love.

To all my teachers, for, as Sir Isaac Newton once said,
“If I have seen further, it is by standing on the shoulders of giants.”

To all women and girls around the world who are inventing the future
and making the world a better place through the power of science.

To all people who, because of the war or the lack of opportunities,
leave their country to get an education or a job, to have better-living conditions.

Faith and perseverance are the keys to overcoming any obstacles placed in your way.

“The important thing in science is not so

much to obtain new facts as to discover new

ways of thinking about them.”

— William Lawrence Bragg

“The saddest aspect of life right now is that

science gathers knowledge faster than society

gathers wisdom.”

— Isaac Asimov

“I am among those who think that science has

great beauty. A scientist in his laboratory

is not only a technician, he is also a child

place before natural phenomenon, which im-

press him like a fairy tale.”

— Marie Curie

Acknowledgements

This dissertation represents the culmination of a dream. A dream that comes true thanks
to the help of many people. Therefore I would like to express my deep gratitude to:

My research supervisors, Professors Nelson Fonseca and Ricardo Torres, two extraor-
dinary human beings, admirable teachers, and passionate scientists who have become role
models in both my personal and professional life. Thank you for your assistance and
dedicated involvement in every step throughout my Ph.D. process, for the stimulating
questions and the careful reviews of our papers. Thank you for our interesting regular
face-to-face and virtual meetings, and the fascinating discussions through hundred emails
about a specific topic, literally hundreds!, in short, for imparting skills that have shaped
my career. Thank you for supporting me in looking for financial sources for my research.
Your mentoring has meant so much to me. Thank you very much for your support and
understanding over all these years.

Professors Daniel Batista, Fábio Usberti, Islene Calciolari, and Dr. Thiago Genez, my
Ph.D. committee members, for their valuable suggestions and availability.

Professors of the Computer Networks Laboratory, particularly Professor Luiz Bitten-
court, co-author of some of my papers, for providing insightful comments and suggestions
on my investigation.

Professors Anderson Rocha, Leandro Villas, and Cecilia Rubira for their support dur-
ing the pandemic situation.

Professors Flavio Miyazawa, Sandra Avila, Diego Aranha, and Lehilton Pedrosa for
the conversations we had along the road about optimization, machine learning, security
and computational complexity in Cloud-Fog networks.

Professors Marco Alzate, Henry Diosa, Gustavo Puerto, and Cesar Hernández, for
believing in me since I was working toward my master’s degree. Thank you for supporting
me in the admission process to the doctoral program.

José Huamán, my beloved husband, for the love, tenderness, and patience with which
he encouraged me to handle the most demanding days of this Ph.D. journey. I am so
blessed to have him in my life. I am grateful for his constant dedication to our home
through all the challenges of living far from our families. Thank you for being a wonderful
husband and father. May God bless us so that we continue to achieve all our goals.

Magdalena Amaya and Diego Guevara, my mother and brother. Although time and
distance may separate us physically, their guidance, advice, and endless love have stuck
with me through it all. I would not be who I am today without them. I am sure that dad
feels so proud of us.

My colleagues Luciano Chaves, Carlos Astudillo, Rodrigo Cardoso, Takeo Akabane,
Hernâni Chantre, Andrei Braga, Atílio Gomes, Ray Dueñas, Natanael Ramos, Matheus
Ota, Levy Gurgel, Juan Hernández, and Daniela Casas, for the memorable moments we
spent together and their friendly support along the way.

Faculty members and staff of the Institute of Computing at the University of Campinas

for providing me with a favorable study environment.
Meire Ferreira, Edison Campos, Aloisio Espindola, and Gisele Camargo, for their

friendship, generosity, and continued help.
The Brazilian National Council for Scientific and Technological Development (CNPq)

and The World Academy of Sciences (TWAS) - for the advancement of science in de-
veloping countries, for the grant # 190172/2014-2 under the CNPq-TWAS Postgraduate
Fellowship Program; Program “Formação didático-pedagógica para cursos na modalidade
a distância” – UNIVESP/UNICAMP; and grant # 2021/12582-0, São Paulo Research
Foundation (FAPESP), for the essential financial support to carry out this research.

Last but not least, Alberto José Guevara Huamán, our little prince, for bringing
immense joy to our lives.

Resumo

Os aplicativos móveis estão em constante evolução para melhorar a experiência do usuário
e, como consequência, seus requisitos de qualidade de serviço (QoS) estão cada vez mais
exigentes, principalmente os relacionados ao tempo de resposta. Além disso, geram um
grande volume de dados, que pode ser processado para extrair informações valiosas. No
entanto, o modelo atual de processamento, a computação em nuvem, não é adequado para
várias aplicações, dada a alta latência na conectividade com os dispositivos finais, o que
pode levar à violação de acordos de nível de serviço (SLA) das aplicações com restrições
de tempo real.

A computação em névoa endereça a limitação de provisão de baixa latência da com-
putação em nuvem, estendendo os serviços computacionais da nuvem para mais perto dos
usuários, oferecendo baixas latências, maior segurança, menor custo de largura de banda,
economia de energia e maior velocidade. Esses benefícios tornam a computação em névoa
uma tendência tecnológica atraente para várias aplicações, tais como realidade virtual
3D, indústria 4.0 e cidades inteligentes, incluindo telemedicina, telessaúde e transporte
inteligente. No entanto, o bom funcionamento da próxima geração de aplicativos depende
do desenvolvimento de mecanismos eficientes de provisionamento de QoS, os quais dão
acesso à quantidade adequada de recursos exigidos para prover seus requisitos de QoS.

Esta tese de doutorado propõe mecanismos de provisionamento de QoS para com-
putação em névoa, que combinam diferenciação de serviços com técnicas de otimização
clássicas e baseadas em inteligência artificial. Como primeiro passo, analisamos os requi-
sitos de QoS de aplicações potenciais, agrupadas em sete categorias e introduzimos um
modelo de Classe de Serviço (CoS) para computação em névoa. Depois, estabelecemos
uma metodologia de classificação baseada em aprendizado de máquina para identificar
a classe de serviço à qual os aplicativos que chegam à rede pertencem, a fim de facili-
tar o escalonamento de tarefas. Propomos dois algoritmos de escalonamento de tarefas
baseados em programação linear inteira (PLI) e algoritmos de aproximação para minimi-
zar o “makespan” das aplicações. Por fim, desenvolvemos três algoritmos multiobjetivo
de escalonamento de tarefas para minimizar conjuntamente o “makespan” e o custo das
aplicações, considerando seus requisitos de QoS. Esses experimentos compararam o de-
sempenho obtido dos algoritmos empregando otimização, aproximação e aprendizado por
reforço. Os resultados numéricos mostraram que o algoritmo de aprendizado por reforço
supera os algoritmos de programação linear inteira e de aproximação em termos da otima-
lidade do escalonamento e do makespan, especialmente em cenários extremos com cargas
de rede variando de 60% a 95%, mantendo tempos de execução curtos.

Por meio das soluções desenvolvidas nesta tese, pretendemos viabilizar serviços de
computação em névoa com QoS, reduzindo custos de gerenciamento para os administra-
dores da rede e melhorando a interação entre os usuários e os aplicativos da Internet.

Abstract

Internet applications running on mobile devices are constantly evolving to improve user
experience. Consequently, the applications’ quality of service (QoS) requirements are
becoming increasingly demanding, particularly those related to strict time requirements.
Moreover, mobile applications generate a large amount of data that needs to be processed
to extract valuable information. However, the traditional processing on Clouds is no longer
adequate for real-time applications given the high latency in the connectivity between the
Cloud and end devices, which may violate the Service Level Agreement (SLA) of the
application.

Fog computing addresses the latency limitation of Cloud Computing by bringing Cloud
services closer to the user, supporting low latency, increased security, lower bandwidth
cost, energy saving, and higher speed and data privacy. These benefits make Fog Com-
puting an attractive technological trend for several applications in the near future, such as
3D virtual reality, industry 4.0, and smart cities, including telemedicine, telehealth, and
intelligent transportation. However, the proper operation of the next generation of Fog
applications depends on the development of efficient QoS provisioning mechanisms that
allocate the resources demanded by applications according to their QoS requirements.

This doctoral thesis proposes QoS provisioning mechanisms for Fog Computing that
combine service differentiation with classical and artificial intelligence-based optimization
techniques. As a first step, we analyzed the QoS requirements of potential applications
and grouped them into seven well-defined categories, introducing a model of Class of
Service (CoS) for Fog Computing. Then, we proposed a classifier based on Machine
Learning (ML) to identify the class of service to which an application belongs to. Clas-
sifying and labeling the traffic arriving at the network edge removes the burden on the
scheduler of analyzing the application’s QoS requirements and provides suitable treat-
ment for each type of service. We then proposed two task scheduling algorithms based
on Integer Linear Programming (ILP) and approximation algorithms to minimize the
makespan of Fog applications. Finally, we developed three multi-objective task schedul-
ing algorithms to jointly minimize the makespan and cost of the applications considering
their QoS requirements. These experiments involved applications of all classes of services
and compared the performance obtained by exact and approximated optimization and a
solution based on reinforcement learning. Numerical results showed that the reinforce-
ment learning algorithm overperforms the integer linear programming and approximation
algorithms in terms of the optimality of the scheduling and makespan, especially under ex-
treme scenarios with network loads ranging from 60% to 95%, yet keeping short execution
times.

The solutions developed in this thesis enable robust and flexible Fog computing, reduc-
ing management costs for network administrators while improving the interaction between
users and Internet applications.

Resumen

Las aplicaciones móviles disponibles en Internet evolucionan constantemente para mejorar
la experiencia del usuario y como consecuencia, sus requisitos de calidad de servicio (QoS)
son cada vez más exigentes, principalmente aquellos relacionados con restricciones tempo-
rales. Además, generan un gran volumen de datos que puede ser procesado para extraer
informaciones valiosas. Sin embargo, el modelo actual de procesamiento, la computación
en nube, no es adecuado para varias aplicaciones, dada la alta latencia en la conectividad
con los dispositivos finales, lo que podría llevar a la violación de acuerdos de nivel de
servicio (SLA) de las aplicaciones con restricciones de tiempo real.

La computación en niebla trata la limitación de provisión de baja latencia de la compu-
tación en nube, extendiendo los servicios de la nube más cerca de los usuarios, ofreciendo
bajas latencias, mayor seguridad, menor costo de ancho de banda, ahorro de energía y
mayor velocidad. Estos beneficios hacen de la computación en niebla una tendencia tecno-
lógica atractiva para muchas aplicaciones, tales como la realidad virtual 3D, la industria
4.0 y las ciudades inteligentes, incluyendo la telemedicina, la telesalud y el transporte
inteligente. Sin embargo, el buen funcionamiento de la próxima generación de aplicacio-
nes depende del desarrollo de mecanismos eficientes de provisión de QoS, los cuales dan
acceso a la cantidad adecuada de recursos exigidos para prover sus requisitos de QoS.

Esta tesis doctoral propone mecanismos de provisión de QoS para computación en
niebla, que combinan la diferenciación de servicios con técnicas de optimización clásicas y
basadas en inteligencia artificial. Como primer paso, analizamos los requisitos de QoS de
las aplicaciones de computación en niebla, agrupadas en siete categorías e introdujimos un
modelo de Clase de Servicio (CoS) para la computación en niebla. Después, establecimos
una metodología de clasificación basada en aprendizaje de máquina para identificar la clase
de servicio a la que pertenecen las aplicaciones que llegan a la red, con el fin de facilitar el
escalonamiento de tareas. Luego, propusimos dos algoritmos de escalonamiento de tareas
basados en programación lineal entera (ILP) y algoritmos de aproximación para minimizar
el “makespan” de las aplicaciones. Por último, desarrollamos tres algoritmos multiobjetivo
de escalonamiento de tareas para minimizar conjuntamente el “makespan” y el costo de
las aplicaciones, considerando sus requisitos de QoS. Estos experimentos comparan el
desempeño de los algoritmos empleando optimización, aproximación y aprendizaje por
refuerzo. Los resultados numéricos mostraron que el algoritmo de aprendizaje por refuerzo
supera los algoritmos de programación lineal entera y de aproximación en términos de la
optimización del escalonamiento y del “makespan”, especialmente en escenarios extremos
con cargas de red que van desde 60 % hasta 95 %, manteniendo tiempos de ejecución
cortos.

Por medio de las soluciones desarrolladas en esta tesis, pretendemos viabilizar sevicios
de computación en niebla con QoS, reduciendo los costos de gerenciamiento para los
administradores de la red y mejorando la interacción entre los usuarios y las aplicaciones
de Internet.

List of Figures

1.1 Global device and connection growth metrics 20

2.1 Multi-tier Fog computing architecture . 29
2.2 Task scheduling in Fog computing . 32

3.1 System model involving classes of service 39

4.1 ML-based methodology for the classification of Fog computing networks . . 47
4.2 Types of samples considered in the generation of the labeled dataset 50
4.3 Attribute association estimates . 51
4.4 Percent variability explained by each principal component 51
4.5 Contribution of each attribute to the two principal components 52
4.6 Accuracy ratio and testing time for classifiers trained with both clean and

noisy datasets . 57
4.7 Accuracy ratio and testing time for classifiers tested with both clean and

noisy datasets . 59

5.1 Task scheduling in the cloud-fog system . 65
5.2 Representation of the application workflow 65
5.3 Topology graph of the cloud-fog network 66
5.4 Modules of the EEGTBG application . 67
5.5 Modules of the VSOT application . 68
5.6 Makespan and Execution Time of the EEGTBG application for selected

scenarios . 76
5.7 Makespan and Execution Time of the VSOT application for selected scenarios 77

6.1 RL-based multi-objective task scheduling for the cloud-fog continuum . . . 88
6.2 The convergence of the Q-learning phase of the FLAMSKE-RL scheduler . 90
6.3 Makespan for CoS=5 with selected scenarios 91
6.4 Processing cost for CoS=5 with selected scenarios 92
6.5 Execution time CoS=5 with selected scenarios 92

A.1 Simulation results of multi-objective task scheduling for an application with
CoS=1 using selected scenarios . 105

A.2 Makespan, processing cost and execution time for CoS=2 with selected
scenarios . 106

A.3 Makespan, processing cost and execution time for CoS=3 with selected
scenarios . 106

A.4 Makespan, processing cost and execution time for CoS=4 with selected
scenarios . 107

A.5 Makespan, processing cost and execution time for CoS=5 with 36, 72 and
108 nodes. 107

A.6 Makespan, processing cost and execution time for CoS=6 with selected
scenarios . 108

A.7 Makespan, processing cost and execution time for CoS=7 with selected
scenarios . 108

List of Tables

3.1 Characteristics of works involving service differentiation in Fog computing
networks . 34

3.2 Classes of Service in Fog computing and their requirements 38
3.3 Mapping between classes of service and processing layers of the system model 40
3.4 Mapping between classes of service and network functionalities of a multi-

layer Fog architecture . 41

4.1 Main features of works related to analysis of application requirements in
Cloud and Fog computing . 43

4.2 Intervals of the QoS requirements for Fog computing 49
4.3 Attribute coefficients for each principal component 52
4.4 Accuracy estimation results . 54
4.5 Test accuracy and RLA results of classifiers trained with noisy datasets . . 56
4.6 Statistical test for the accuracy of classifiers trained with noisy datasets . . 58
4.7 Test accuracy and RLA results of classifiers tested with noisy datasets . . . 58
4.8 Statistical test for the accuracy of classifiers tested with noisy datasets . . 60

5.1 Characteristics of solutions for task scheduling in Fog systems 62
5.2 CPU demands estimated for each task of the EEGTBG application 67
5.3 CPU demands estimated for each task of the VSOT application 68
5.4 BRITE configuration parameters used to generate the network topology . . 73
5.5 Characteristics of the processing hosts distributed along the processing

layers of the architectural model . 74
5.6 Percentage of QoS violations for different values of network load 75

6.1 Characteristics of multi-objective scheduling solutions in Cloud, Fog and
Cloud-Fog systems . 79

6.2 Task demands for each class of service . 91
6.3 Characteristics of the processing hosts distributed along the layers of the

architectural model . 91

List of Algorithms

5.1 CASSIA-INT Scheduler . 72
5.2 CASSIA-RR Scheduler . 73

6.1 FLAMSKE-INT scheduler . 85
6.2 FLAMSKE-RR scheduler . 85
6.3 FLAMSKE-RL (Q-learning phase) . 89
6.4 FLAMSKE-RL (Exhaustive search phase) 89

List of Acronyms

5G 5th Generation . 20

AI Artificial Intelligence . 20

AR Augmented reality . 29

CoS Class of Service . 23

CSC Cloud Service Customer . 33

CSP Cloud Service Provider . 33

C2T Cloud To Things . 22

DRL Deep Reinforcement Learning . 97

IEEE Institute of Electrical and Electronics Engineers 29

ILP Integer Linear Programming . 25

IoT Internet of Things . 20

ML Machine Learning . 94

M2M Machine-to-Machine . 20

QoE Quality of Experience . 42

QoS Quality of Service . 22

RL Reinforcement Learning . 95

SaaS Software as a Service . 44

SLA Service Level Agreement . 42

VR Virtual Reality . 29

Contents

1 Introduction 20
1.1 Motivation and problem statement . 21
1.2 Research aim and questions . 23
1.3 Main contributions . 24
1.4 Publications . 26
1.5 Thesis outline . 27

2 Fog computing networks and QoS provisioning mechanisms 28
2.1 Fog computing . 28

2.1.1 Definition, architecture and advantages 28
2.1.2 Comparison among Fog, Cloud, and Edge computing 30

2.2 QoS provisioning mechanisms . 31
2.2.1 Service differentiation . 31
2.2.2 Task scheduling . 32

3 Quality of service differentiation for Fog computing networks 33
3.1 Literature review . 33
3.2 Analysis of QoS requirements for Fog computing applications 35
3.3 Definition of Classes of Services for Fog computing 36
3.4 Class of service and the Fog layered architecture 39

4 Machine learning-based QoS-aware classification of fog applications 42
4.1 Literature review . 42
4.2 Classification methodology based on machine learning 47
4.3 Classification of Fog computing applications: A case study 48

4.3.1 Labeled dataset . 48
4.3.2 Pre-processing . 50
4.3.3 Classification . 53
4.3.4 Performance evaluation . 54
4.3.5 Classification model . 59

5 Single-objective QoS-aware task scheduling for the cloud-fog continuum 61
5.1 Literature review . 61
5.2 System model . 64

5.2.1 Infrastructure and application models 64
5.2.2 Application scenarios . 66

5.3 Proposed scheduling approaches . 68
5.3.1 Task scheduling based on Integer linear programming 72
5.3.2 Task scheduling based on approximation algorithms 72

5.4 Performance Evaluation . 72

6 Multi-objective QoS-aware task scheduling in the cloud-fog continuum 78
6.1 Literature review . 78
6.2 Multi-objective task scheduling approaches based on classical optimization 81

6.2.1 The FLAMSKE-INT scheduler . 84
6.2.2 The FLAMSKE-RR scheduler . 84

6.3 Multi-objective task scheduling approaches based on reinforcement learning 86
6.3.1 Reinforcement Learning Agent . 86
6.3.2 The FLAMSKE-RL scheduler . 87

6.4 Performance evaluation . 88
6.4.1 Simulation settings . 88
6.4.2 Simulation results . 91

7 Conclusion 93
7.1 Summary and contributions . 93
7.2 Future research directions . 96

Bibliography 98

A Simulation results of multi-objective QoS-aware task scheduling in the
cloud-fog continuum 105

20

Chapter 1

Introduction

The growth in popularity of a new generation of internet applications powered by Artificial

Intelligence (AI), the need for analyzing the ever-increasing volume of big data, and the

evolution of Internet of Things (IoT) devices promise to intensify the rapid growth in

computer networks traffic in the years to come. According to Cisco Systems [24], there

will be 5.3 billion total Internet users (66% of the global population) by 2023. Besides, over

70 percent of the global population will have mobile connectivity. Of those connections,

about 10% will be of the 5th generation (5G) type. Moreover, 5G speeds will reach

575 Mbps, 13 times higher than the average mobile connection, offering unprecedented

opportunities for mobile network operators to provide differentiated services to end-users

and enterprises.

Also, globally, devices and connections are growing faster than both the population

and the Internet users. By 2023, the number of devices per person will be 3.6 devices

per-capita, compared with 2.4 networked devices in 2018, outnumbering humans by more

than three to one. Furthermore, as shown in Figure 1.1, the IoT, through machine-to-

machine (M2M) technology, will be half of the global connected devices and connections.

M2M applications such as smart meters, video surveillance, healthcare monitoring, trans-

portation, and package or asset tracking are the M2M applications that contribute most

to this growth.

Figure 1.1: Global device and connection growth between 2018 and 2023 [24].

Furthermore, Wi-Fi will continue to gain momentum. Globally, there will be nearly

21

628 million public Wi-Fi hotspots by 2023, up from 169 million hotspots in 2018, a fourfold

increase. Also, Wi-Fi6 hotspots will grow 13-fold from 2020 to 2023 and will be 11 percent

of all public Wi-Fi hotspots.

Other important trends by 2023 are the number of downloads of mobile applications,

which will reach 300 billion, with the most popular ones being social media, gaming, and

business, and the increasing video definition that will be 66% of connected flat-panel TV

sets.

Thus, the near future of computer networks will be marked by the growth of Internet

users, devices, and connections, as well as network performance and new application

requirements. This is precisely the context that has served as the motivation for this

thesis.

The remainder of this introductory chapter is organized as follows. Section 1.1 de-

scribes the research topic and the related challenges that motivated the investigation in

this thesis. Then, Section 1.2 states the thesis goals and the research questions proposed

to be answered. After, Section 1.3 enumerates the main contributions. Next, Section 1.4

lists our publications. Finally, Section 1.5 details the thesis outline.

1.1 Motivation and problem statement

In the past decades, mobile devices have acquired more capabilities as they have evolved

from 2G to higher-generation network connectivity such as 4G, LTE and now 5G. Com-

bining device capabilities with faster, higher bandwidth and more intelligent networks

have facilitated the development of advanced multimedia applications [24], which have

gained enormous popularity in a wide range of areas, including gaming, e-commerce and

online social network services.

Internet applications running on IoT, mobile, and end-user devices generate massive

amounts of data. However, raw data by itself has very low value. Rather, the value from

data processing, extracts insights and generates knowledge that can be used to enhance

services.

For several years, cloud computing has been the mainstream computing paradigm. In

order to process applications, tasks had to be transmitted from the edge to the cloud

through the Internet’s core. However, this connectivity model presents serious drawbacks

such as unpredictable latency, bandwidth bottlenecks, security issues, lack of mobility

support and location awareness [37].

Fog computing overcomes the inherent limitations of cloud computing, offering a geo-

graphically distributed computing architecture, with a resource pool that consists of con-

nected heterogeneous devices, often, but not entirely located at the edge of the network,

to collaboratively provide elastic computation, storage, communication, and networking

services to a large scale of end users in proximity.

Although the use of fog nodes involves only brief delays in communication, several ap-

plications are still unsuitable for processing by devices located at the edge of the network

like mobile devices due to various constraints, such as low processing capacity, limited

memory, unpredictable network connectivity, and limited battery life [69]. Conversely,

22

the cloud has a large number of resources, but it use involves long communication de-

lays. Consequently, as Chiang states in [23], it is not a binary choice between cloud and

fog either, they form a mutually beneficial, inter-dependent continuum. This system,

hereinafter referred to as the cloud-fog continuum, encompass different types of devices,

allowing to support a wide spectrum of applications, from delay-sensitive to best-effort

applications, but also introducing interesting scheduling challenges.

Scheduling of tasks in fog is much more complex than that of tasks on clouds due to a

number of reasons. First, tasks can be moved between different physical devices such as

client devices, fog nodes, and back-end cloud servers [37]. Therefore, the scheduler have to

consider the diversity of capacities of the available resources along to the cloud to things

(C2T) continuum [59]. Second, a fog supports a broad range of services, from mission-

critical and delay-sensitive, to best-effort applications. Consequently, the scheduler needs

to analyze the QoS requirements of each application before making decisions as to where

tasks and virtualized resources should be run [59].

In addition, some scheduling objectives can be contradictory between them. This

is the case of minimizing both makespan and the processing cost. For execution time

minimization, fast hosts are preferable to slow ones, however, fast hosts are usually more

expensive. Moreover, scheduling multi-task workflow on distributed platform is an NP-

hard problem [31].

Three approaches can facilitate the job of the fog network scheduler: the definition

of classes of service for fog computing, the classification of fog applications according to

their QoS requirements, and the development of multi-objective QoS-aware task schedul-

ing algorithms for the cloud-fog continuum. Mapping applications onto Class of Service is

typical in communications network technologies that support QoS, such as LTE, 5G, and

ATM networks. However, class of service definition for fog computing have not yet been

defined. With regards to the classification of network traffic, numerous techniques have

been proposed for the past few decades, especially for the provisioning of secure network

services, but very little attention has been paid to the classification of the demands and

requirements of applications and services over the Internet. Finally, although there are

heuristic and meta-heuristic multi-objective algorithms with polynomial complexity capa-

ble of producing approximate or near schedules at the cost of acceptable optimality loss,

they require a lot of prior experts’ knowledge from specialists and human intervention,

usually in terms of coding schemes [76].

Although fog computing specifies an architecture for computation, communication and

storage, there is still a demand for quality of service (QoS) provisioning, especially for

agile mobile services. In line with that, both industry and academia have been working

on novel and efficient mechanisms to ensure QoS in fog computing. In this context, we

can state the problem addressed in this thesis as follows:

There is a lack of QoS provisioning mechanisms for fog computing that en-

able providers and network administrators to offer different levels of service

according to the QoS requirements of the applications. Fog computing requires

QoS provisioning mechanisms to facilitate the job of task scheduler, and con-

sequently remove the burden of the analysis of application requirements to sup-

23

port the decision-making process of choosing where tasks should be processed.

QoS provisioning mechanisms provide a set of tools that can be used to manage the

use of resources in a controlled and efficient manner. We are particularly interested

in the integration of service differentiation, multi-objective optimization and artificial

intelligence techniques to offer more robust, agile and flexible fog computing networks,

reducing management costs for network administrators and enhancing users’ experience.

1.2 Research aim and questions

This thesis aims to evaluate QoS provisioning mechanisms, such as service differentiation

and task scheduling, by using mathematical optimization and artificial intelligence tech-

niques so that compliance with the QoS requirements of the applications arriving at the fog

can be ensured. To achieve this goal, we need to answer the following research questions.

Quality of Service differentiation in Fog computing: Fog computing allows the

development of a variety of new and heterogeneous applications that demand a large

spectrum of QoS requirements. Some of these applications are delay-sensitive [50, 66],

which have associated processing deadlines, and the validity of their output depends on the

time at which they become available. If a real-time application fails to meet its deadline,

the consequences can range from having useless results to disastrous events [17]. Other

applications supported by fog computing are non-real-time, which strive for good average-

case performance and tolerate occasional slow response times. For this reason, non-real-

time applications can either be processed on fog nodes or in the cloud [25]. Moreover, fog

computing enables applications demanding mobility, geo-distribution, location awareness,

and real-time analytics [16, 73]. In this context, we asked ourselves the following question:

• Research question 1: How can fog computing provide different levels of service

for selected applications according to their QoS requirements?

Classification of fog computing applications: It is thus crucial for the efficient

provisioning of services that the demands of applications arriving at the edge of the

network be well understood and classified so that resources can be assigned for their

processing. The mapping of applications onto classes of service (CoSs) should facilitate

the matching between task requirements and resources, since labeling these tasks removes

the burden of the analysis of the application requirements by the scheduler. Without a

precise classification, the scheduling of application tasks and the allocation of resources

can be less than optimal due to the complexity in dealing with the diversity of QoS and

resource requirements. Thus, the question we must investigate is:

• Research question 2: How can a fog computing network identify the class of

service to which an arriving application in search of processing belongs?

24

Single-objective task scheduling in the cloud-fog continuum: Fog computing

is a distributed platform composed of heterogeneous networking elements, ranging from

devices with limited computing capabilities, usually located at the edge of the network,

to hosts with powerful processing and storage capacities placed in the cloud. Given the

diversity of QoS requirements demanded by the applications in the C2T continuum, the

interplay between fog and cloud plays a pivotal role in the efficient processing of applica-

tions. The major challenge in such a heterogeneous environment is the implementation

of effective scheduling techniques to guarantee that applications will finish within the

required time interval. In this way, we aim of answering the following question:

• Research question 3: How can a scheduler decide the most suitable location for

processing an application, whether on the fog or in the cloud, to meet the QoS

requirements of the application and minimize the makespan?

Multi-objective task scheduling in the cloud-fog continuum: In task schedul-

ing, the minimization of makespan and processing cost constitute two highly desired

objectives, but they are conflicting. It is also widely known that scheduling multi-task

workflow on a distributed platform is an NP-hard problem [31]. Therefore, generating

optimal schedules through traversal-based algorithms is extremely time-consuming. The

problem becomes even more complicated when the dependencies of tasks have to be taken

into account [82]. Although there are heuristic and meta-heuristic algorithms with poly-

nomial complexity capable of producing approximate or near schedules at the cost of

acceptable optimality loss, they require a lot of prior experts’ knowledge and human in-

tervention, usually in terms of coding schemes [76]. With recent advances in machine

learning (ML), reinforcement learning algorithms have become increasingly versatile and

powerful, facilitating their use in finding near-optimal task scheduling solutions. However,

most existing contributions focus on single-objective task scheduling with service-of-level

(SLA) constraints. The question therefore arises:

• Research question 4:

Compared with integer linear programming and approximative algorithms, can rein-

forcement learning be a promising technique for task scheduling in the cloud-fog con-

tinuum to meet the QoS requirements of the application and minimize both makespan

and processing cost?

1.3 Main contributions

The main contributions of this thesis are the definition of classes of service for fog com-

puting, the establishment of a methodology for the classification of fog applications and,

the development of both single and multi-objective QoS-aware task schedulers for the

cloud-fog continuum. We envision that these solutions will facilitate the decision-making

process for the fog scheduler through identifying the timescale and location of resources,

enabling the scalable deployment of new applications. In summary, we have:

25

1. Definition of classes of service for fog computing

Given the large spectrum of QoS requirements of fog computing applications, it

is necessary to separate applications into classes to enable fog providers to offer

different service levels. This issue, related to our first research question, is solved

in Chapter 3 defining a set of classes of service for fog computing. Before defining

classes of service, we analyze the requirements of applications on fogs. Also, in

Chapter 3, we provide a mapping between the presented classes of service and the

processing layers of the cloud-fog continuum. The proposed classes of service can

be used to prioritize processing demands by the schedulers and resource allocation

mechanisms.

2. Establishment of a methodology for the classification of fog applications

Scheduling of tasks using C2T continuum resources is much more challenging than

that of tasks on clouds due to the considerable heterogeneity of both demands of

applications and the capacity of the devices. One possible approach to facilitate

the job of the fog scheduler is to classify the applications arriving at the fog net-

work. To address this issue, concerning to research question 2, in Chapter 4 we

propose the implementation of a machine learning-based classification methodology

to discriminate fog computing applications considering the QoS requirements. We

also illustrate the application of this methodology in the assessment of classifiers in

terms of efficiency, accuracy, and robustness to noise. The proposed methodology

can be used to design effective classifiers with an output that labels the application

tasks, simplifying the matching between task requirements and resources.

3. Development of single-objective QoS-aware task scheduling algorithms

for the cloud-fog continuum

Fog computing extends cloud services to the edge of the network. In such scenario,

it is necessary to implement an efficient task scheduler to decide where applications

should be executed so that their quality of service requirements can be supported.

In Chapter 5, we introduce two schedulers based on Integer Linear Programming

(ILP) formulation: an optimal one, CASIA-INT, and an approximate one, CASSIA-

RR. The two proposed algorithms, solve our third research question scheduling

tasks either in the cloud or on fog resources, while minimizing the makespan. The

proposed schedulers differ from existing ones by the use of classes of service to

select the processing elements on which the tasks should be executed. Moveover,

the proposed scheduling algorithms also consider resources such as CPU, RAM, and

storage space. Numerical results evince that the proposed schedulers outperform

traditional ones, such as Random and Round Robin in terms of makespan without

causing the violation of QoS requirements. Furthermore, the time required for the

CASSIA-RR to generate a schedule is considerably smaller than those required by

the CASSIA-INT scheduler, which is highly desirable for cloud-fog systems where

fast decisions need to be made.

4. Development of multi-objective QoS-aware task scheduling algorithms

for the cloud-fog continuum

26

In task scheduling, reducing the makespan and processing cost constitutes two de-

sirable but conflicting objectives. This topic, associate to our fourth research ques-

tion, is investigated in Chapter 6 through development of three multi-objective

task scheduling algorithms for the cloud-fog continuum that minimize both the

makespan and processing cost of the workflow, considering the QoS requirements

of the applications. The FLAMSKE-INT algorithm is based on integer linear pro-

gramming, FLAMSKE-RR implements an approximation to the exact solution given

by FLAMSKE-INT, and FLAMSKE-RL is a reinforcement learning-based algo-

rithm. No previous work has ever addressed the diversity of the QoS requirements

of applications running on the cloud-fog continuum in a multi-objective schedul-

ing context. We formulated the task scheduling process in cloud-fog continuum

as a multi-objective optimization problem using integer linear programming (ILP),

approximative algorithms, and Markov Decision Process (MDP) theory. We also

compare schedules derived using classical optimization and Reinforcement Learn-

ing, and we assess the performance of the proposed schedulers using applications

belonging to seven classes of service: mission-critical, real-time, interactive, conver-

sational, streaming, CPU-Bound, and best-effort. Numerical results suggest that the

FLAMSKE-RL overperforms both FLAMSKE-INT and FLAMSKE-RR in terms of

optimality of scheduling and makespan, especially under network loads ranging from

60% to 95%, and yet keeping the execution times short.

1.4 Publications

In this section, we present a list of publications derived from this thesis. The list is divided

into journals and conference papers.

Journals

• Guevara, J. C., and Fonseca, N. L. S. da. (2021). Task scheduling in cloud-fog

computing systems. Peer-to-Peer Networking and Applications, 1–16.

• Guevara, J. C., Torres, R. da S., and da Fonseca, N. L. S. (2020). On the classi-

fication of fog computing applications: A machine learning perspective. Journal of

Network and Computer Applications, 159, 102596.

Conferences

• Guevara, J. C., Torres, R. da S., Bittencourt, L. F., and da Fonseca, N. L. S.

(2022). QoS-aware Task Scheduling based on Reinforcement Learning for the Cloud-

Fog Continuum. 2022 IEEE Global Communications Conference (GLOBECOM).

• Guevara, J. C., Bittencourt, L. F., and da Fonseca, N. L. S. (2017). Class of service

in fog computing. 2017 IEEE 9th Latin-American Conference on Communications

(LATINCOM), 1–6.

27

1.5 Thesis outline

The remaining chapters in this thesis are organized as follows:

• Chapter 2 presents the background concepts involved in this thesis. In this chapter,

we focus on the main characteristics of fog computing, reveal the differences between

fog, cloud and edge computing, and describe the fog reference architecture, which

was used as a basis to define the system model implemented in our experiments.

We also explain the QoS provisioning mechanisms implemented in this thesis, i.e.

service differentiation and task scheduling.

• Chapter 3 presents a set of classes of service for fog computing. First, we analyze

the requirements of potential applications running on fogs, and then we group these

requirements into classes of service. In this chapter, we also provide a mapping

between the proposed classes of service and the layers of the cloud-fog continuum.

• Chapter 4 describes the adoption of a machine learning classification methodology to

discriminate fog computing applications as a function of their QoS requirements. In

this chapter, we also illustrate the application of this methodology in the assessment

of classifiers in terms of efficiency, accuracy, and robustness to noise.

• Chapter 5 introduces two schedulers based on integer linear programming, that

schedule tasks either in the cloud or on fog resources. One scheduler, called CASSIA-

INT, solves an exact ILP formulation, while the other, CASSIA-RR, solves a relaxed

version of the ILP formulation. Both the proposed schedulers use class of services

to select the processing elements on which the tasks should be executed, and also

take into consideration different types of resources in the processing devices.

• Chapter 6 proposes three multi-objective task scheduling algorithms for the cloud-

fog continuum, that minimize both the makespan and processing cost of workflows,

considering the QoS requirements of applications. The FLAMSKE-INT algorithm

is based on integer linear programming, FLAMSKE-RR implements an approxi-

mation to the exact solution given by FLAMSKE-INT, and FLAMSKE-RL is a

reinforcement learning-based algorithm.

• Chapter 7 concludes this thesis with a summary of our contributions, the directions

for future work, and the list of scientific publications arising from this research

process.

As supplementary material, this thesis presents Appendix A, which reports sim-

ulation results of multi-objective QoS-aware task scheduling for all the classes of

service.

28

Chapter 2

Fog computing networks and QoS

provisioning mechanisms

The adoption of Fog-based computational resources and their integration with the Cloud

introduces new challenges in resource management, which requires the implementation of

new strategies to guarantee compliance with the quality of service (QoS) requirements of

applications. This chapter briefly describes the fundamentals of fog computing networks

and two QoS provisioning mechanisms. We first present the definition, architecture and

advantages of Fog computing. We also compare Fog computing with Cloud computing

and Edge computing (Section 2.1). After that, we explain service differentiation and task

scheduling, two mechanisms used by the QoS provisioning mechanisms to guarantee the

fulfillment of the QoS requirements of the applications (Section 2.2).

2.1 Fog computing

2.1.1 Definition, architecture and advantages

The rapid growth in adoption of Internet services is resulting in an unprecedented de-

mand for computing resources. However, the traditional Cloud processing model is no

longer feasible. Cloud has a high number of resources but involves high latency in the

connectivity with end devices, which could violate the Service Level Agreement of the

application if it has real-time constraints. Fog computing solves the latency limitation of

the Cloud by extending Cloud services closer to the data sources.

Fog arises from the evolution of Cyber foraging [27], Mobile Edge Computing (MEC)

[23], and Cloudlets [28], and can be defined as a geographically distributed computing

architecture, with a resource pool that consists of connected heterogeneous devices, often,

but not entirely located at the edge of the network, to collaboratively provide computing,

storage, control, and networking functions closer to the users in proximity. Therefore,

there are several key differences between Fog and their predecessors. First, fog computing

includes devices located at Cloud, core, metro, edge, end users, and things, and not only

those located at the edge of the network. Second, fog provides computing, networking and

storage services along the C2T continuum, rather than considering the network edges as

isolated computing platforms. Third, the fog has a horizontal architecture that supports

29

common computing functions for different application domains. Fourth, fog works over

wireline as well as wireless networks. Consequently, end users benefit from pre-processing,

geo-distribution, low latency, heterogeneity [9], and location/content awareness [13]. Ad-

ditionally, fog supports different vertical domains of applications, such as those that in-

volve complex data, real-time interactions and intensive processing. Some examples of

such applications are 5G, IoT, AI, Tactile Internet, Virtual Reality (VR) and Augmented

reality (AR).

In 2017, the OpenFog Consortium defined the fog reference architecture (OpenFog

RA) to help unify the edge/fog ecosystem under a single, interoperable, testable set of

hardware and software standards. Then, in 2018, the OpenFog RA was adopted by the

Institute of Electrical and Electronics Engineers (IEEE) as the official standard for fog

computing under the IEEE 1934 standard.

The fog reference architecture consist of N-tiers of nodes, as shown in Figure 2.1.

Implementing a multi-tier architecture has a dual purpose: to deal efficiently with the

amount of data that needs to be processed and to extract meaningful data to create

more intelligence at each level. Moreover, the number of tiers varies according to the

requirements of each application, including the amount and type of work required by

each tier, number of sensors, capabilities of the nodes at each tier, latency between nodes

and latency between sensors and actuation, and reliability/availability of nodes.

Figure 2.1: Multi-tier Deployment [61].

In the fog network architecture, the lowest-level of nodes are typically focused on

sensor data acquisition, data normalization, and control of sensors and actuators. Nodes

in the next higher level are focused on data filtering, compression, and transformation.

They may also provide some edge analytics required for critical real time or near real

time processing. Nodes at the higher levels, nearest the Cloud, are typically focused on

aggregating data and turning the data into knowledge. It’s important to note that the

farther from the edge, the greater the insights that can be realized.

30

The basic structural and functional unit of a fog computing system is known as fog

node. A fog node can be a logical or physical entity, which is be able to embed computing,

storage, and networking capabilities, and is aimed at facilitating the execution of IoT

applications. Among devices operating as fog nodes we can cite routers, switches, wireless

access points, video surveillance cameras and servers. In addition, a fog node reusing the

wireless interface can co-exist with network elements, such as a base station or a femtocell

router.

Unique advantages that are potentially offered by fog can be summarized with an

acronym “SCALE”: Security, Cognition, Agility, Latency, Efficiency [61], explained next.

• Security – Fog brings security advantages through reducing the distance that in-

formation needs to traverse, there is less chance of eavesdropping. By leveraging

proximity-based authentication challenges, identity verification can be strengthened.

• Cognition – A fog architecture, aware of customer requirements, can best determine

where to carry out the computing, storage, and control functions along the C2T

continuum. Fog applications being close to the end users, can be built to be aware

of and closely support customer requirements.

• Agility – In order to ensure a rapid innovation and affordable scaling, fog will make it

easier to create an open marketplace for individuals and small teams to use open Ap-

plication Programming Interfaces (APIs), open Software Development Kits (SDKs),

and the proliferation of mobile devices to innovate, develop, deploy, and operate new

services.

• Latency – Real-time processing and cyber-physical system control. Fog enables data

analytics at the network edge and can support time-sensitive control functions for

local cyber-physical systems. This is essential for not only commercial applications

but also for the Tactile Internet vision to enable embedded AI applications with

millisecond reaction times.

• Efficiency – Fog can distribute computing, storage, and control functions anywhere

between the Cloud and the endpoint to take full advantage of the resources available

along this continuum.

2.1.2 Comparison among Fog, Cloud, and Edge computing

Cloud computing refers to the provision of on-demand and scalable computing services

including processing, storage, databases, software, analytics, and intelligence, over the

Internet. The main advantages that made cloud computing popular are the ability to

avoid upfront investments in infrastructure, as well as the abstraction of technical details

for the user. Different from Fog, that provides services locally, Cloud services are furnished

from centralized large-scale data centers composed of thousands of server units. For this

reason, the processing capacity in the cloud is more powerful than in the fog nodes located

near to user. However, these great infrastructures require special cooling systems, and

have a high energy consumption.

31

Today, given the increasing volume and variety of data that need to be processed,

it is almost impossible to send all the data to the cloud for processing, as the network

bandwidth is becoming the bottleneck of cloud computing. Moreover, response times

for transfer data to cloud and back to the user are unacceptable for latency constraint

applications. In contrast, the distributed architecture of Fog processes and storages data

in the user’s proximity, supporting location awareness and mobility, and saving bandwidth

costs. As described, Cloud and Fog computing are complementary computing models, and

their orchestration is necessary to meet the diversity of processing demands available on

the Internet, conforming to the QoS requirements of the applications.

Edge computing is another computing model that brings cloud services to the end

devices. The major objectives of edge and fog computing are similar. Both of them

bring cloud computing-like capabilities to the edge of the network. They enable the

computation and storage capacities within the proximity of end users to reduce service

latency and save network bandwidth for delay-sensitive applications. Because of these

similarities, Fog computing also is often called edge computing, but it is an erroneous

interpretation, as there are key differences.

2.2 QoS provisioning mechanisms

Fog supports a diversity of new internet applications due to low latency and energy-saving.

However, these applications run in a changing environment, where user mobility, among

other factors, may introduce fluctuations in the availability of both bandwidth and con-

nected hosts while processing an end device’s request, which can lead to the development

of misleading schedules. With the convergence of latency-sensitive applications, such as

self-driving cars, control of industrial systems, and telemedicine, QoS becomes essential

to deliver services in a secure, robust, and highly efficient manner. Thus, it is a must for

fog computing to deploy effective QoS policies dynamically. Next, we explain two QoS

provisioning mechanisms called service differentiation and task scheduling.

2.2.1 Service differentiation

Differentiation of services is an aggregate traffic handling mechanism suitable for use

in large routed networks. This mechanism receives the name of “aggregated” because

it aggregate or group many flows with similar QoS requirements into the same type of

service, which allows to carry thousands of different applications. Given the large diversity

of applications supported by fog, differentiation of services is a powerful tool to separate

data flow applications arriving at network devices and to apply specific queuing treatments

based on the results of the classification. This mechanism is flexible, scalable and do not

require signaling, which represents significant benefits in a heterogeneous network as fog

computing. Another advantage of this strategy is that the fog network administrator can

define its own types of services.

The implementation of service differentiation involves two stages. First, understanding

of delivery requirements of each type of application, and second, the labeling process. Both

stages are studied in this thesis in Chapter 3 and Chapter 4, respectively.

32

2.2.2 Task scheduling

Tasks scheduling is a mechanism that determine on which resource the tasks composing

an application (or request) should be processed. In fog computing, the resources may be

available locally, in other fog nodes or even in the Cloud.

A scheduler produces a plan along the timeline on which tasks should be processed

and defines the host where each task will be executed. To this, the schedule should

consider the availability of the network resources. This includes the fluctuation of both

available processing hosts and communication links. Moreover, tasks can be broken down

into smaller tasks to be partially processed in the fog or the Cloud or even partially by

other fog nodes; this can reduce the makespan of an application. Figure 2.2 illustrates

the scheduling of an application. This figure presents a scenario in which fog node 1

receives an application composed of three tasks. Task 1 requires high computational

power, which is not available in the fog layer, so it is sent to the Cloud to be processed.

Task 2 also requires more resources than those available at fog node 1, but these resources

are available at the fog stratum, so task 2 is forwarded to node 2 for processing. Task 3,

however, requires fewer resources and can be processed locally by fog node 1. This little

example illustrates how the diversity of services processed by the Cloud-Fog continuum

claims for new QoS provisioning mechanisms to meet the application requirements.

Figure 2.2: Task scheduling process in Fog computing.

33

Chapter 3

Quality of service differentiation for Fog

computing networks

Fog computing specifies a scalable architecture for computation, communication and stor-

age. However, there is still a demand for Quality of Service (QoS), especially for mobile

services. Both industry and academia have been working on novel and efficient mecha-

nisms for QoS provisioning in Fog computing. This chapter introduces a set of classes

of service for fog computing, that takes into consideration the QoS requirements of the

most relevant fog application, thus allowing the differentiation of the demands of a broad

spectrum of applications. Initially, we overview related work (Section 3.1). Then, we

describe the QoS requirements that best characterize Fog applications (Section 3.2). We

proceed by proposing a set of classes of service for Fog computing (Section 3.3). Finally,

we present a mapping between the recommended classes of service and the layers of the

reference architecture presented by the OpenFog Consortium as well as some use cases

(Section 3.4).

3.1 Literature review

In recent years, the research community has conducted studies that propose QoS strategies

in fog computing based on service differentiation. Table 3.1 summarizes the most relevant

surveys on this topic. Some of these studies were envisaged for the fog context [2, 4, 32, 34],

while [71] was contemplated for the cloud-fog continuum.

Aazam et al. [4] formulate a resource management framework for fog computing based

on the customer type. To build the customer profile, the model considers user charac-

teristics such as relinquish probability of the customer, service price, the variance of the

relinquish probability, and, of course, the service type. The customer profile helps de-

termine the right amount of resources required, avoiding resource underutilization and

profit-cut for the Cloud Service Provider (CSP), as well as the fog itself. The authors

simulate their model by implementing multimedia and health monitoring services. Re-

sults show that more loyal Cloud Service Customers (CSCs) get better services, while for

the contrary case, the provider reserves resources cautiously.

34

Table 3.1: Characteristics of works involving service differentiation in Fog computing
networks.

Reference
Network
Domain

Major contribution
Types of services

implemented

Aazam et al. [4] Fog
Customer type based
resource estimation
model

Video on demand,
health monitoring

Souza et al. [71] Cloud-Fog
QoS-aware service allo-
cation based on ILP

Mice and elephant ser-
vices according to the
required computational
capacity.

Aazam and Huh [2] Fog

Service oriented re-
source management
model for IoT devices,
through fog.

Youtube, CloudStorage

This thesis Fog

Definition of classes of
services based on the
QoS requirements of the
applications

Mission-critical, real-
time, interactive, con-
versational, streaming,
CPU-bound, best-
effort.

Souza et al. [71] formulate the QoS-aware service allocation problem for combined

fog-cloud architectures as an integer optimization problem, to minimize the latency ex-

perienced by the services and guarantee the fulfillment of the capacity requirements. In

this paper, authors use the slot as measurement unit to represent the minimum resource

allocation. Moreover, services are categorized into two distinct types in terms of required

computational capacity. These services are based on the so-called mice and elephants

effect, where the mice represent a big amount of services with low requirements, i.e., a

few number of slots, whilst the elephants represent a small number of services requiring

a large number of slots. Results prove the benefits of service distribution among multiple

low-delay fog nodes avoiding the high delay access on upper layers.

Aazam and Huh [2] present a service oriented resource management model for IoT

devices, through fog. This study extends the model implemented in [4], by categorizing

IoT devices into static, small mobile and large mobile devices providing resource man-

agement accordingly. Moreover, the model incorporates the concept of incentive for a

better customer for those customers who have used more service. Results demonstrated

that when characteristic of a particular customer is known, it is more justified and fair to

determine and allocate resources accordingly.

Works in [2, 4, 71] evidenced the need to establish a relationship between the type of

service to be processed, the QoS requirements of the applications, and the mechanisms

implemented in the fog to schedule and allocate resources to the application tasks. How-

ever, the classification of fog applications and Class of service is somehow limited in these

papers. Therefore, in this chapter, we propose a set of seven classes of service for fog

35

computing based on the QoS requirements of the applications.

3.2 Analysis of QoS requirements for Fog computing

applications

Fog Computing enables new applications, especially those with strict latency constraints

and those involving mobility. These new applications will have heterogeneous QoS re-

quirements and will demand Fog management mechanisms to cope efficiently with that

heterogeneity. Thus, resource management in Fog computing is quite challenging, calling

for integrated mechanisms capable of dynamically adapting the allocation of resources.

A very first step in resource management is to separate incoming flow of requests into

Classes of Service (CoS) according to their QoS requirements.

In communications networks, network flows with similar resource demands and traffic

profiles are gathered in groups that clearly identify these two. These groups, called Class of

Service, are used not only to define the offering of network services, but also to identify the

needs of flows for the traffic control mechanisms such as schedulers and buffer managers.

The tagging of a packet by traffic classifier determines the treatment that the network

flows will receive in the network core. Frameworks for Quality of Service provisioning

such as IntServ and DiffServ define Class of Services as well as traffic control mechanisms

to support diverse quality of service requirements of network flows.

Fog nodes will be interconnected by a Fog network composing a heterogeneous dis-

tributed system, which can federate resource with other Fogs and be integrated with other

Clouds. The complexity of the Fog infrastructure and the diversity of Fog applications

calls for the definition of Class of Service so that the offering of services as well as the

resource demands by Fog components can be clearly identified.

Next, the quality of service requirements of Fog applications as well as other require-

ments will be presented by identifying the applications which will run on Fogs, especially

those enabled by the deployment of Fogs.

Bandwidth – Some applications request a minimally guaranteed throughput, i.e., a

Guaranteed Bit Rate (GBR). Multimedia applications are bandwidth sensitive, although

some of them use adaptive coding techniques to encode digitized voice or video at a rate

that matches the currently available bandwidth.

Delay sensitivity – Some applications involve a specific latency threshold, below

which latency must be assured, especially for real-time applications.

Loss sensitivity – Indicates the proportion of packets which does not reach their

destination.

Reliability – Is concerned with the ability of the Fog components to carry out the

desired operation in the presence of many types of failure. Some applications need to

have failed Fog components quickly reestablished so that tasks can be performed within

some latency bounds.

Availability – Provides a measure of how often the resources of the Fog are accessible

and usable upon demand by authorized entities. High availability is needed by applications

and services that must be running all the time, such as mission-critical applications.

36

Security – Refers to the design and implementation of authentication and authoriza-

tion techniques to protect personal and critical information generated by end users.

Data location – Indicates where the application data should be stored. Data can be

stored locally, at the end device itself; near, or at a Fog node, or in a remote repository,

in the Cloud. Requirements of data location for an application depend on factors such

as response time constraints, the computational capacity of each Fog layer, and available

capacity on network links.

Mobility support – Is an intrinsic characteristic of many edge devices. Continuity

of the offered services should be ensured, even for highly mobile end-users. Continuous

connectivity is essential for the processing needed.

Scalability – Is related to the capability of an application to operate efficiently, even

in the presence of an increasing number of requests from end users. The number of users in

a Fog can fluctuate due to the mobility of the users, as well as the activation of applications

or sensors. Streams of data in big data processing may need to be processed within a

specific time frame. The demand on Fog nodes can fluctuate and resource elasticity needs

to be provided to cope with these demands.

3.3 Definition of Classes of Services for Fog computing

After identifying the requirements of most probable applications running on Fog, they were

grouped in a minimum number of classes with a distinct set of requirements. Keeping

the number of meaningful classes as small as possible is desirable since the complexity of

allocations mechanisms is directly proportional to the number of classes. The mapping

of applications into a set of classes of service is the first step in the creation of a resource

management system capable of coping with the heterogeneity of Fog applications. This

subsection proposes various classes of service for Fog computing: Mission-critical, Real-

time, Interactive, Conversational, Streaming, CPU-bound, and Best-effort. These classes

will be defined and the typical applications using these classes identified.

The first CoS to be discussed is the Mission-critical (MC) class. It comprises

applications with a low event to action time-bound, regulatory compliance, military-grade

security, privacy, and applications in which a component failure would cause a significant

increase in the safety risk for people and the environment. Applications include healthcare

and hospital systems, medical localization, healthcare robotics, criminal justice, drone

operations, industrial control, financial transactions, ATM banking systems, and military

and emergency operations.

The Real-time (RT) class, on the other hand, groups of applications requiring tight

timing constraints in conjunction with effective data delivery. In this case, the speed of

response in real-time applications is critical, since data are processed at the same time

they are generated. In addition to being delay sensitive, real-time applications often

require a minimum transmission rate and can tolerate a certain amount of data loss. This

real-time class includes applications such as online gaming, virtual reality, and augmented

reality.

The third class is denominated Interactive (IN). In this case, responsiveness is crit-

37

ical, the time between when the user requests and actions manifested at the client being

less than a few seconds. Moreover, users of interactive applications can be end devices

or individuals. Examples of applications belonging to this class are interactive televi-

sion, web browsing, database retrieval, server access, automatic database inquiries by

tele-machines, pooling for measurement collection, and some IoT deployments.

The fourth class is the Conversational (CO) class. These applications include some

of the video and Voice-over-IP (VoIP). They are characterized by being delay-sensitive

but loss-tolerant with delays less than 150 milliseconds being perceived by humans, delays

between 150 and 400 milliseconds can be acceptable, and those exceeding 400 milliseconds

resulting in completely unintelligible voice conversations [51]. On the other hand, con-

versational multimedia applications are loss-tolerant with occasional losses causing only

occasional glitches in audio or video playback, and these losses can often be partially or

fully concealed [51].

The fifth class of service is Streaming (ST), which releases the user to download en-

tire files, although in potentially long delays are incurred, before playout begins. Stream-

ing applications are accessed by users on demand and must guarantee interactivity and

continuous playout to the user. For this reason, the most critical performance measure for

streaming video is average throughput [51]. Additionally, streaming can refer to stored or

live content. In both cases, the network must provide each flow with an average through-

put that is larger than the content consumption rate. In live transmissions, the delay can

also be an issue, although the timing constraints are much less stringent than those of

conversational voice. Thus, delays of up to ten seconds or so from when the user chooses

to view a live transmission to when playout begins can be tolerated. Examples of stream-

ing applications are high-definition movies, video (one-way), streaming music, and live

radio and television transmissions.

The sixth class is CPU-Bound (CB) class which is used by applications involv-

ing complex processing models, such as those in decision-making, which may demand

hours, days, or even months of processing. Face recognition, animation rendering, speech

processing, and distributed camera networks, are examples of CPU-Bound applications.

The final class is that of Best-Effort (BE). It is dedicated to traditional best-effort

applications over the Internet. For Best-effort applications, long delays are annoying

but not particularly harmful; the completeness and integrity of the transferred data,

however, are of paramount importance. Some examples of the Best-Effort class are e-mail

downloads, chats, SMS delivery, P2P file sharing, and M2M communication.

Table 3.2 presents the relationship between the applications supported by Fog com-

puting and the requirements of the classes of service explained above. The first column

shows the recommended priority level of each class for potential adoption in scheduling

systems.

38

Table 3.2: Classes of Service in Fog computing and their requirements.

Service Quality Requirements

Reliability Security
Data

storage
Data

location
Mobility Scalability

Applications

A
ll
o
ca

ti
on

P
ri

or
it
y

C
la

ss
of

S
er

v
ic

e

B
an

d
w

id
th

L
ow

Im
p
or

ta
n
t

C
ri

ti
ca

l

L
ow

M
ed

iu
m

H
ig

h

T
ra

n
si

en
t

S
h
or

t
d
u
ra

ti
on

L
on

g
d
u
ra

ti
on

L
o
ca

l

V
ic

in
it
y

R
em

ot
e

L
ow

M
ed

iu
m

H
ig

h

L
ow

M
ed

iu
m

H
ig

h

D
el

ay
se

n
si

ti
v
it
y

L
os

s
se

n
si

ti
v
it
y

1 MC GBR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Yes Yes
Healthcare, criminal justice, financial, bi-
ological traits, residence and geographic,
military, emergency.

2 RT GBR ✓ ✓ ✓ ✓ ✓ ✓ Yes No
Online gaming, IoT deployments, indus-
trial control, virtual and augmented real-
ity, interactive television, telemetry.

3 IN GBR ✓ ✓ ✓ ✓ ✓ ✓ Yes Yes

Interactive television, object hyperlinking,
web browsing, database retrieval, server
access, automatic database inquiries by
tele-machines, pooling for measurements
collection, and some IoT deployments.

4 CO GBR ✓ ✓ ✓ ✓ ✓ ✓ Yes No Voice messaging, VoIP, videoconference.

5 ST GBR ✓ ✓ ✓ ✓ ✓ ✓ ✓ Yes No
Internet radio, video (one-way), high qual-
ity streaming audio.

6 CB GBR ✓ ✓ ✓ ✓ ✓ ✓ ✓ Yes Yes
Face recognition, animation rendering,
speech processing, distributed camera net-
works.

7 BE NGBR ✓ ✓ ✓ ✓ ✓ ✓ No Yes

Network signaling, all non-critical traffic
such as TCP-based data: www, e-mail,
chat, FTP, P2P file sharing, progressive
video and other miscellaneous traffic.

39

3.4 Class of service and the Fog layered architecture

The reference architecture proposed by the OpenFog consortium in [61] provides a struc-

tural model for Fog-based computation on several tiers of nodes. As one moves further

away from the edge, the overall intelligence and capacity of the system increase.

Figure 3.1 presents the system model adopted in this thesis, which consists of a dis-

tributed multi-layer architecture based on the OpenFog RA. This architecture is composed

of four layers: the Cloud, at the top, a layer of end devices at the bottom, and two inter-

mediate Fog layers. Additionally, there is a set of isolated nodes, consisting of equipment

belonging to fog layers 1 and 2, intended to process mission-critical applications. The

end devices send application requests to the classifier, located on the first Fog layer. The

classifier identifies the CoS of the application and forwards it to the scheduler, which

decides where the application should be processed, whether on the first Fog layer, on the

second Fog layer, or in the Cloud.

Figure 3.1: System model involving classes of service.

Table 3.3 provides a mapping between the classes of service proposed in Section 3.3,

and a multi-layer Fog-Cloud architecture. Not all layers are involved in the processing

of all tasks. Since Real-time, Interactive, Conversational, and Streaming applications,

40

such as online sensing, object hyperlinking, video conferencing, and stored streaming are

delay-sensitive, these applications must be processed as close as possible to the end user,

preferably at nodes located on the first and second Fog layer. CPU-bound applications

require many processing resources, and for this reason, can involve all the layers of the

reference architecture for the processing of tasks. Best-effort applications, such as e-mails,

can be processed in the Cloud since there are no delay constraints for this class.

Table 3.3: Mapping between classes of service and processing layers of the system model.

CoS Service Processing layer

1 Mission-Critical Isolated nodes

2 Real-time
Fog layer 1

3 Interactive

4 Conversational
Fog layer 2

5 Streaming

6 CPU-Bound Fog layers 1 and 2, and cloud
7 Best-Effort Cloud

Although Figure 3.1 suggests a processing layer for each CoS, a more general vision

of the functionalities of each processing layer according to the class of service to be pro-

cessed is provided in Table 3.4. The possibility of having a hierarchical layered system

is one of the significant differences between Fog computing and edge computing. Edge

computing is mainly concerned in bringing the computation facilities closer to the user;

however, in a flat non-hierarchical architecture [54]. A layered architecture can introduce

additional communication overhead for processing tasks at different layers. However, it

has been shown that if the scheduling of tasks and resource reservations are properly

carried out, processing in a hierarchical architecture can reduce communication latency

and task waiting time for processing when compared to a flat architecture [22].

41

Table 3.4: Mapping between classes of service and network functionalities of a multi-layer
Fog architecture.

Class of
Service

Fog layer 1 Fog layer 2 Cloud

Mission-
critical

- Support mobility.
- Realize data pre-

processing.

- Provide security and
privacy.

- Resource manage-
ment.

- Cost management.
- Run complex jobs.

NA

Real-time
Interactive

- Collect data from sen-
sors.

- Real-time data pro-
cessing.

- Maintain the on-board
geographic informa-
tion.

- Provide real-time nav-
igation.

- Realize In-depth data
analysis.

- Data caching.
- Computation offload-

ing.
- Resource manage-

ment.

NA

Conversational
Streaming

- Process requests from
users.

- Select and cache
strategic content.

- Provide the most desir-
able services to mobile
users according with
their location.

- Contents caching.
- Resource manage-

ment.
- Cost management.

NA

CPU-Bound

- Perform pre-
processing.

- Receive requests from
users.

- Monitor resource uti-
lization.

- Manage results of data
query returned from
nodes.

- Data processing.
- Workload allocation.
- Resource manage-

ment.
- Cost management.

- Store the inputs used
for processing.

- Save the results of pro-
cessing.

- Massive parallel data
processing.

- Big data management.
- Big data mining.
- Machine learning.

Best-Effort NA NA

- Process information.
- Store information.
- Resource manage-

ment.
- Cost management.

42

Chapter 4

Machine learning-based QoS-aware

classification of fog applications

In fog computing, the scheduling of application tasks and the allocation of resources can be

less than optimal due to the complexity of dealing with the diversity of QoS and resource

requirements. Thus, it is crucial for the efficient provisioning of services that the demands

of applications arriving at the edge of the network be well understood and classified so that

resources can be assigned for their processing. In this chapter, we introduce the use of ML

classification algorithms as a tool for QoS-aware resource management in Fog computing.

We first overview related work (Section 4.1). Next, we introduce the implementation of a

typical machine learning classification methodology with a dual purpose: to discriminate

Fog computing applications as a function of their QoS requirements, and the assessment

of classifiers for fog applications in terms of efficiency, accuracy, and robustness to noise

(Section 4.2). Finally, we illustrate the application of the proposed methodology with a

case study dealing with the classification of a dataset containing Fog application features

(Section 4.3).

4.1 Literature review

Different studies have analyzed application requirements to develop service models for

cloud and fog computing. In cloud computing, these studies have focused on Service

Level Agreement (SLA) [7, 26, 27, 77] and Quality of Experience (QoE) management

[39], while in fog computing, investigations have emphasized processing and analytics for

specific applications [79], scheduling of applications to resources [21], resource estimation

[3] and allocation [38, 75] for the processing of applications, and service placement [55, 70].

Next, we describe each of these proposals, which are also summarized in Table 4.1.

Alhamad et al. [7] present the nonfunctional requirements of cloud consumers. Then,

based on this requirements, authors establish the most important criteria which should be

considered at the stage of designing the SLA in cloud computing. Also, they investigate

the negotiation strategies between cloud provider and cloud consumer and propose a

method to maintain the trust and reliability between each of the parties involved in the

negotiation process.

43

Table 4.1: Main features of works related to analysis of application requirements in Cloud
and Fog computing. In the approach column, H is heuristic, E is experimental, S is
simulative, and C means conceptual, i.e. that no evaluation is conducted.

Network

Domain
Scope Reference Approach Major contribution

Cloud

Service

Level

Agreement

(SLA)

Alhamad

et al. [7]
C

Investigate and analyze the

main requirements to establish

an effective model for SLA in

cloud computing.

Wu et al.

[77]
H

Propose an automated cloud

negotiation framework to fa-

cilitate bilateral bargaining of

SLAs between a SaaS bro-

ker and multiple providers to

achieve different objectives for

different participants.

Emeakaroha

et al. [26]
E

Present a framework for map-

ping of Low-level resource

Metric to High-level SLA pa-

rameters.

Emeakaroha

et al. [27]
E

Propose an application mon-

itoring architecture that de-

tects SLA violations at the ap-

plication layer.

Quality of

Experience (QoE)

management

Hobfeld

et al. [39]
C

Outline the most relevant chal-

lenges of QoE management for

cloud applications.

Fog

Processing

and analytics

for specific

applications

Yang [79] C

Present the general models

and architecture of fog data

streaming, by analyzing the

common properties of typical

applications.

Scheduling of

applications to

resources

Cardellini

et al. [21]
E

Evaluate a distributed schedul-

ing algorithm that is aware of

QoS attributes by using data

stream processing (DSP) ap-

plications.

Continued on next page

44

Table 4.1: (Continued from previous page)

Network

Domain
Scope Reference Approach Major contribution

Resource

estimation

Aazam

et al. [3]
E

Devise a methodology for his-

torical record-based resource

estimation to mitigate resource

underutilization and enhance

QoS for multimedia IoTs.

Fog

Resource

allocation

He et al.

[38]
S

Propose QoE models to evalu-

ate the quality of service con-

cerning both system and users.

Wang et al.

[75]
S

Study how to find the opti-

mal placement of instances to

minimize the average cost over

time, leveraging the ability of

predicting future cost parame-

ters with known accuracy.

Service

placement

Mahmud

et al. [55]
S

Propose a QoE-aware applica-

tion placement policy for dis-

tributed computing environ-

ments, and a linearly opti-

mized mapping of applications

and fog instances that maxi-

mizes QoE.

Skarlat

et al. [70]
S

Implement the Fog Service

Placement Problem (FSPP) as

an ILP problem, and evalu-

ate the placement solutions in

terms of the cost of execution

and QoS adherence.

Classification of

applications
This thesis S

Provide a ML classification

methodology to discriminate

computing applications as a

function of their QoS require-

ments.

Wu et al. [77] develop a Software as a Service (SaaS) broker for SLA negotiation.

The aim was to achieve the required service efficiently when negotiating with multiple

providers. The proposal involved the design of counter offer strategies and decision-

making heuristics which considered time, market constraints and trade-off between QoS

parameters. Results demonstrated that the proposed approach increases by 50% the profit

and by 60% the customer satisfaction level.

45

Emeakaroha et al. [26] present an approach for mapping SLA requirements to resource

availability, called LoM2Hi, which is capable of detecting future SLA violations based on

predefined thresholds to avert these violations.

Emeakaroha et al. [27] propose CASViD, an architecture for monitoring and detec-

tion of SLA violations at the application layer, and develop tools for resource allocation,

scheduling, and deployment. Authors evaluate the architecture on a real cloud testbed

using three types of image rendering application workloads with heterogeneous behaviors

to investigate different application provisioning scenarios and determine the effective mea-

surement intervals to monitor the provisioning processes. Results show that the proposed

architecture is efficient for monitoring and detecting single application SLA violation sit-

uations.

Yang [79] investigated common components of IoT systems such as stream analytics,

event monitoring, networked control, and real-time mobile crowdsourcing, for defining an

architecture for Fog data streaming.

Hobfeld et al. [39] discuss the challenges for QoE provisioning for cloud applications

with emphasis on multimedia applications. This paper also presents two schemes of

classification of cloud applications. The first scheme, corresponds to the traditional clas-

sification, which is guided by the service delivery model used: Infrastructure as a service

(IaaS), Platform as a service (PaaS) or Software as a service (SaaS). The second scheme is

a new classification proposed by the authors, which is aligned to the end-user experience

and usage domain.

Cardellini et al. [21] conduct their research around Storm, an open source, scalable,

and fault-tolerant data stream processing (DSP) system designed for locally distributed

clusters. More specifically, in this paper, the authors evaluate a distributed version of

Storm proposed by themselves. The new components added to Storm, allow to execute

a distributed QoS-aware scheduler and give self-adaptation capabilities to the system.

The experimental evaluation of the distributed version of Storm involves two sets of DSP

applications: the former, characterized by a simple topology with different requirements,

and the latter, comprising applications such as word count and log processing. Results

show that the distributed QoS-aware scheduler outperforms the default centralized one,

enhancing the system with runtime adaptation capabilities. However, the main limitation

of this study is the instability of the scheduling algorithm that occurs when complex

topologies involve many operators, negatively affecting the application availability.

Aazam et al. [3] develop a methodology, called MEdia FOg Resource Estimation

(MeFoRE), to provide resource estimation on the basis of service give-up ratio, the record

of resource usage and the required quality of service. The aim was to avoid resource un-

derutilization and enhance QoS provisioning. MeFoRE methodology uses real IoT traces

and traces of Amazon EC2 service.

Wang et al. [75] present an edge architecture, called mobile micro-Cloud, to provide

situational awareness to processing elements. The authors introduced an approach for

consistent representation of application requirements for deployment in the mobile micro-

Cloud environment.

He et al. [38] investigate novel QoE-driven download joint resource allocation algo-

rithms. First, authors formulate the QoE as a joint resource allocation problem under

46

different transmission rates to acquire best QoE. Then, they propose a dynamic algorithm

based on shortest path tree (SPT), which is suitable for fog computing environment with

content delivery frequently. The proposed models include user oriented metrics such as

the Mean Opinion Score (MOS) and content popularity as well as the cost of cache al-

location and transmission rate. Simulation results reveal that the benefit for using the

dynamic allocation (DA) method to allocate resource can achieve high QoE performance.

Mahmud et al. [55] propose a QoE-aware application placement policy comprising of

separate fuzzy logic based approaches that prioritizes application placement requests and

classifies fog computational instances based on the user expectations and current status

of the instances respectively. The user expectation metric includes parameters regarding

service access rate of the application user, required resources to run the application and ex-

pected data processing time. By on the other hand, fog computing instances are classified

according to their status metric parameters: proximity, resource availability and process-

ing speed. Also, a linear optimization problem maps prioritized application placement

requests to competent computing instances so that user QoE regarding the system ser-

vices gets maximized. Experimental results indicate that the policy significantly improves

data processing time, network congestion, resource affordability and service quality.

Skarlat et al. [70] evaluate the placement of IoT services on fog resources, taking

into account their QoS requirements. The authors proposed an approach for the optimal

sharing of resources among IoT services by employing a formal model for Fog systems. The

authors introduced the Fog Service Placement Problem (FSPP) for placing IoT services

on virtualized Fog resources while taking into account constraints such as execution time

deadlines. Results showed that the proposed optimization model prevents QoS violations

and decreases the execution cost when compared to a purely Cloud-based solution.

The related work in Fog Computing reported above concentrates on resource allocation

and scheduling of applications. Most of the decisions on resource allocation and scheduling

in those papers is limited to information on resource consumption by the applications.

They do not consider several QoS requirements as done in this thesis. Moreover, no

previous work has addressed the classification of applications on the cloud to things (C2T)

continuum. Most of the work dealing with SLAs and QoS/QoE considers only the Cloud.

The fog layers in C2T will increase the capacity of the system to support new applications,

especially those with real-time constraints, which are not possible to be handled by the

Cloud. Therefore, in [34], we introduce a methodology for classifying fog applications,

which differs from the aforementioned proposals by the definition of a set of Class of

Service for fog Computing and the use of machine learning algorithms to map applications

onto these classes. To our knowledge, this is the first study that introduces a machine

learning classification methodology to discriminate Fog Computing applications on the

basis of QoS requirements.

47

4.2 Classification methodology based on machine learn-

ing

This section introduces a methodology for choosing and evaluating classifiers for Fog

computing applications. Our classification methodology is staged in the architectural

model depicted in Figure 3.1. In this scenario, users subscribe directly or indirectly to

Fog infrastructure services. The first packet of a flow contains the QoS requirements of

the application generating the packet flow. The proposed classifier will then map this

application into a CoS using the information provided in the first packet. Alternatively,

the first packet could already carry the CoS of the application. However, such an option

would make rigid the CoS adopted by the Fog provider, preventing the redefinition of this

CoS for the handling of new applications with unique QoS requirements.

Classification techniques based on ML aim at mapping a set of new input data to a

set of discrete or continuous valued output. Fig. 4.1 summarizes the key steps in the

building of a classifier of Fog applications based on ML algorithms. In this thesis, the

classification steps were executed offline. Indeed, the best performing classifier evaluated

in these steps can be executed on-line in an operational Fog.

Figure 4.1: ML-based methodology for the classification of Fog computing networks.

The first step is the creation of a labeled dataset containing QoS attributes of Fog

applications, which can be either real or synthetic. A real dataset is one collected from a

system in operation while a synthetic one involves data collection generated by models.

Real-world datasets usually contain sensitive data [57] and are often unavailable for the

maintenance of the user information. Thus, the use of synthetic data sets is quite common,

especially in the studies of systems yet to be built.

Since the value of QoS attributes differs widely, these values should be pre-processed to

produce compatible ranges of values for classification. Pre-processing includes operations

for data transformation, which standardize and consolidate data into more appropriate

forms for classification, while data reduction includes the selection and extraction of both

features and examples in a database [30, 72]. Data normalization avoids the handling of

an attribute which has large values that dominate the results of the classification, thus im-

proving the predictive power of the model. Feature selection, on the other hand, removes

48

redundant and irrelevant data from the input of the classifier, without compromising

critical attribute information [72].

Noise is an unavoidable problem in collecting data from real-world systems. It can

change the knowledge extracted from the data set and affects the accuracy of the classifi-

cation, building time, size, and interpretability of the classifier [83, 84]. Common sources

of noise are channel capacity fluctuation, fluctuation in the availability of computational

resources, imprecision inherited from measurement tools, and the inability to accurately

estimate the true demands of applications.

In such noisy scenarios, robustness is considered more important than performance

because robustness allows a priori knowledge of the behavior expected from a learning

method despite noise when it is unknown [30]. Robustness [42] is defined as the capability

of an algorithm to be insensitive to data corruption and, consequently, more resilient

against the impact of noise. A copy of the original dataset should be contaminated by the

introduction of noise at different levels to check the robustness of a classifier. In this thesis,

uniform attribute noise levels of 10%, 30%, and 50% are employed. The performance of

the classifiers which learned from the original data set is compared to that of those which

learned from a noisy data set. The most robust classifiers are those which learned from

noisy data sets yet produced results similar to those learned from a noise-free data set

[30].

Classification techniques based on ML can then be applied. The performance of

the classifier should be assessed by a performance evaluation process, which encompasses

both the measurement of performance and the result of statistical tests. The adequacy

of performance is usually assessed by metrics such as accuracy, efficiency, and robustness.

Statistical testing gathers evidence of the extent to which an evaluation metric on the

resampled data sets is representative of the general behavior of the classifier [60].

At this point, the classification model is ready to receive new input for scoring. The

new data, however, must also be subjected to a pre-processing process.

4.3 Classification of Fog computing applications: A case

study

This section illustrates step by step the methodology introduced in the previous section

for the classification of Fog applications using the CoS presented in Chapter 3. Moreover,

an example of a Decision Tree that classifies Fog computing applications from the values

of their QoS requirements is provided at the end of this section.

4.3.1 Labeled dataset

To train and test the classifiers employed in this thesis, we built a dataset1 composed

of 14,000 mutually exclusive applications generated from data in the intervals of values

acceptable for each QoS requirement of the application. 90% of the data were reserved

for training, while the remaining 10% were used for testing. It was assumed that each

1publicly available at http://bit.ly/34x6X1O

49

incoming application had additional fields containing nine QoS requirements, from now on

referred to as “attributes”: Bandwidth, Reliability, Security, Data Storage, Data location,

Mobility, Scalability, Delay sensitivity, and Loss sensitivity.

Table 4.2 shows the range of QoS requirement values for each class of service: Band-

width [39, 51], Reliability [19], Security [47], Data storage [7, 39], Data location [7, 19, 39],

Mobility [19], Scalability [7, 19, 39], Delay sensitivity [18, 39], Loss sensitivity [9]. These

ranges were used to generate the synthetic dataset of Fog applications and were employed

for training and testing samples to evaluate the classifiers in this thesis.

Table 4.2: Intervals of the QoS requirements for Fog computing.

QoS
Requirements

Nominal
Categories

Intervals
Class of Service

MC RT IN CO ST CB BE

Bandwidth
(Mbps)

Low 0 < x ⩽ 1 ✓ ✓ ✓ ✓

Medium 1 < x ⩽ 5 ✓ ✓

High 5 < x ⩽ 1000 ✓

Reliability
Low x = 1 ✓ ✓

Important x = 2 ✓ ✓ ✓ ✓

Critical x = 3 ✓

Security

Low x = 1 ✓

Medium x = 2 ✓ ✓ ✓

High x = 3 ✓ ✓ ✓

Data storage

(h)

Transient 0 < x ⩽ 1 ✓ ✓ ✓ ✓

Short duration 1 < x ⩽ 730 ✓

Long duration 730 < x ⩽ 8760 ✓ ✓ ✓

Data location
(ms)

Local 0 < x ⩽ 10 ✓ ✓

Vicinity 10 < x ⩽ 20 ✓ ✓

Remote 20 < x ⩽ 100 ✓ ✓ ✓

Mobility

(Km/h)

Low 0 < x ⩽ 5 ✓ ✓ ✓ ✓ ✓

Medium 5 < x ⩽ 25 ✓ ✓

High 25 < x ⩽ 100 ✓ ✓ ✓

Scalability
(No. of IoT users/

end users)

Low 0 < x ⩽ 60 ✓

Medium 60 < x ⩽ 120 ✓ ✓

High 120 < x ⩽ 200 ✓ ✓ ✓ ✓

Delay sensitivity

(Interaction
latency in ms)

Low 1000 < x ⩽ 100000 ✓ ✓ ✓

Moderate 10 < x ⩽ 1000 ✓ ✓

High 0 < x ⩽ 10 ✓ ✓

Loss sensitivity

(PELR)

Low 10−3 < x ⩽ 10−2 ✓

Moderate 10−6 < x ⩽ 10−3 ✓ ✓

High 0 < x ⩽ 10−6 ✓ ✓ ✓ ✓

Attribute values were assigned by employing a uniform probability distribution, within

the intervals specified for each CoS in Table 4.2. An independent random number genera-

tor randomly created the values of each attribute. Transient data were removed according

to the Moving Average of Independent Replications procedure [45]. Attribute values were

made up of safe and borderline examples. Safe examples were placed in relatively homo-

geneous areas concerning the class label. Borderline examples, on the other hand, are

located in the area surrounding class boundaries, where different classes overlap. Also, to

estimate the robustness of the classifiers, the third group of attribute values, called noisy

examples, was generated. The term noisy sample will be used in this thesis to refer to

the samples generated to represent the corruption of their attribute values.

Fig. 4.2 illustrates the safe samples, labeled as S, the borderline examples, labeled as

B, and the noisy samples, labeled as N. The continuous line shows the decision boundary

between the two classes.

50

Figure 4.2: The three types of samples considered in the generation of the labeled dataset:
safe (S), borderline (B), and noisy (N).

4.3.2 Pre-processing

Z-score normalization was used to adjust attribute values defined on a different scale.

Mean and standard deviation were computed on the training set, and then, the same

mean and standard deviation were then used to normalize the testing set.

We reduced the number of input attributes to be used by classification algorithms.

This process, known as dimensionality reduction, removes irrelevant, redundant, and noisy

information from the data, often leading to enhanced performance in learning and classifi-

cation tasks [67]. Two techniques can be used for dimensionality reduction: one, by using

feature selection techniques such as Relief-F [52], CFS [36], MCFS [20], and the Student’s

t-test, which rank the given feature set so that the least significant features can be re-

moved from the problem. The second way involves feature extraction techniques, such as

Principal Components Analysis (PCA), which creates new features from the given feature

set. The resulting number of the features is less than that the initial set of features.

In this thesis, the significance level of the impact of each input attribute on the system

is determined utilizing a PCA, guided further by a correlation analysis and the semantics

of the Fog computing environment. The correlation analysis and complementarity with

the PCA are explained below.

The correlation analysis is a statistical evaluation technique used to study the strength

of a dependence between pairs of attributes. Fig. 4.3 provides a graphic representation

of the correlation matrix among dataset attributes for Fog applications.

The correlation matrix shows that there is a statistical association of more than 50%

between the following variables: “Data storage” and “Data location” (0.623), “Data stor-

age” and “Delay sensitivity” (0.596), “Loss sensitivity” and “Mobility” (0.563), “Band-

width” and “Scalability” (-0,605) and, “Data location” and “Delay sensitivity” (0.674).

The symbol “-” in the correlation value between the attributes of “Bandwidth” and “Scal-

ability” indicates an inverse relationship between the two.

Principal components analysis (PCA) [63] is a common approach for dimensionality

reduction that uses techniques from linear algebra to find new attributes, denominated

51

Ba
nd

wid
th

Re
liab

ilit
y

Se
cur

ity

Da
ta

Sto
rag

e

Da
ta

Loc
ati

on

Mob
ilit

y

Sca
lab

ilit
y

De
lay

 Se
nsi

tiv
ity

Los
s S

en
siti

vit
y

Bandwidth

Reliability

Security

Data Storage

Data Location

Mobility

Scalability

Delay Sensitivity

Loss Sensitivity

1 0.079 -0.14 -0.22 -0.31 -0.21 -0.6 -0.24 -0.07

0.079 1 0.41 -0.25 -0.29 0.33 -0.17 -0.21 0.097

-0.14 0.41 1 -0.43 -0.3 -0.074 0.028 -0.28 -0.18

-0.22 -0.25 -0.43 1 0.62 -0.064 -0.049 0.6 -0.22

-0.31 -0.29 -0.3 0.62 1 -0.1 -0.054 0.67 -0.2

-0.21 0.33 -0.074 -0.064 -0.1 1 0.2 -0.12 0.56

-0.6 -0.17 0.028 -0.049 -0.054 0.2 1 -0.11 0.19

-0.24 -0.21 -0.28 0.6 0.67 -0.12 -0.11 1 -0.24

-0.07 0.097 -0.18 -0.22 -0.2 0.56 0.19 -0.24 1
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.3: Attribute association estimates.

principal components, which are linear combinations of the original attributes. They are

orthogonal to each other, and capture the maximum amount of variation in the data. Fig.

4.4 shows the scree plot of the percent variability explained by each principal component.

Figure 4.4: Percent variability explained by each principal component.

As illustrated by Fig. 4.4, the first seven principal components explain 94.314% of the

total variance. The first component by itself explained less than 35% of the variance, so

more components might be needed. Also, Fig. 4.4 reveals that the first three principal

components explain roughly two-thirds of the total variability in the standardized ratings.

52

In addition to the percent variability explained by each principal component, all nine

attributes were represented in a bi-plot by a vector. The direction and length of the vector

indicate the contribution of each attribute to the two principal components in the plot.

For instance, Fig. 4.5 shows the coefficients of each attribute concerning the first two

principal components.

Figure 4.5: Orthonormal principal component coefficients for each variable and principal
component scored for each observation (principal components 1 and 2).

The other five principal components were also plotted in bi-plots. Table 4.3 shows the

contribution of the attributes to each principal component.

Table 4.3: Attribute coefficients for each principal component.

Attribute
Principal Component

1 2 3 4 5 6 7

Bandwidth -0.161 -0.524 -0.449 -0.065 0.079 0.118 0.114

Reliability -0.312 -0.001 0.040 0.702 0.313 0.295 -0.318

Security -0.297 -0.085 0.595 0.283 -0.342 -0.286 -0.021

Data Storage 0.486 0.062 -0.099 0.181 0.490 -0.375 -0.389

Data location 0.497 0.075 0.022 0.213 -0.351 -0.283 0.062

Mobility -0.169 0.491 -0.327 0.350 0.117 -0.207 0.645

Scalability -0.020 0.530 0.337 -0.366 0.309 0.318 -0.014

Delay sensitivity 0.480 0.016 0.016 0.295 -0.273 0.673 0.134

Loss sensitivity -0.213 0.432 -0.460 -0.044 -0.481 0.011 -0.544

Interpretation of the principal components is based on finding which variables are most

strongly correlated with each component, that is, which of these numbers is large, the

farthest from zero in either direction. The decision as to what values should be considered

large is a subjective one and reflects knowledge of the system under evaluation. It was

determined that a correlation value was relevant to our study when it was above 0.48,

since this value is the largest within each principal component, and most of the variables

53

having this high value are highly correlated, as shown by the components of the correlation

matrix. These large correlation values are in boldface in Table 4.3.

The principal component results can be interpreted with respect to the value deemed

to be significant. The first principal component correlated strongly with three of the

original attributes. Thus, the first principal component increases with increasing Data

storage, Data location, and Delay sensitivity, suggesting that these three attributes vary

together.

On the other hand, the coefficients belonging to the second principal component show

that the behavior of the feature bandwidth opposes that of the behavior of the features

Mobility and Scalability. This reflects the fact that greater mobility is associated with

changes in the network topology, which, in turn, increases the fluctuations in communi-

cation links and reduces the bandwidth availability. Moreover, since bandwidth is a finite

resource, if the number of users connected to the Fog increases the rate at which each

user transmits and receives data decreases.

Other features that reveal an inverse relationship are Data Storage and Loss sensitivity,

in the fifth principal component, and mobility and loss sensitivity in the seventh principal

component.

Finally, the third, fourth, and sixth principal components increase with only one of the

values, that is, there is only one variable with a value 0.48 or higher. These variables are

Security, Reliability, and Delay sensitivity, respectively. Accordingly, the third, fourth,

and sixth principal components can be interpreted as measures of how necessary the use

of isolated nodes is to process the application, how quickly failed Fog components should

be reestablished, and how sensitive the Fog application is to the delay.

Based on the analysis described above and considering the semantics of the case study

about which variables deserve more attention into the Fog computing environment, re-

dundant attributes such as Data location, Data storage, and Mobility have been removed.

Thus, six of the original nine attributes were selected and maintained for the stage of clas-

sification. These were Delay sensitivity, Scalability, Loss sensitivity, Security, Reliability,

and Bandwidth.

4.3.3 Classification

Seven classifiers are evaluated for potential adoption: Adaptive neuro-fuzzy inference sys-

tem from data, using subtractive clustering (ANFIS), Decision Tree (DT) Artificial neural

network with 2 hidden layers, trained with the Levenberg-Marquardt backpropagation

algorithm, (ANN(1)); Artificial Neural Network with 1 hidden layer, trained with the al-

gorithm Scaled conjugate gradient backpropagation (ANN(2)); Artificial Neural Network

with 2 hidden layers, trained with the algorithm Scaled conjugate gradient backpropaga-

tion (ANN(3)); K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). These

algorithms have different characteristics with respect to noise sensitivity, the speed of

learning, and the speed of prediction. For instance, SVMs are known to be very accurate

but also sensitive to noise [30]. ANNs predict rapidly, but the speed of learning is low,

while KNN provides rapid learning, but are considered difficult to interpret [56]. These

classifiers are typically employed in the context of complex recognition or prediction ap-

54

plications, especially when there is a lack of labeled samples, a lack of time for training

and testing, or even a lack of appropriate hardware for timely assessment of the qual-

ity of classification models. These same conditions are present in typical Fog computing

scenarios, as shown in Fig. 3.1, in which heterogeneous devices with limited computing

and storage capabilities must interoperate in real time to ensure compliance with the QoS

requirements of time-sensitive applications. The investigation of data-driven approaches

(e.g., based on deep learning models) for constrained processing scenarios [41, 43, 68] as

in our target application is left for future work.

4.3.4 Performance evaluation

This section focuses on two main subtasks of the evaluation process: measurements of

the performance and statistical significance of the performance metrics. The hardware

configuration used for both the dataset generation and the experiments carried out was:

Intel Core i7 processor, 12GB of RAM, 1 TB of storage and Windows 10 operating sys-

tem. First, the performance of each classifier is evaluated under ideal conditions, that is,

without noise. Each classifier is assessed by measuring its accuracy and efficiency. Then,

the performance of each classifier is assessed in the presence of noise. In this case, the

robustness of each classifier in two different scenarios is assessed: when noise is introduced

into the training set, and when noise is introduced in the testing set. In both cases, with

and without noise, Wilcoxon’s signed-rank test is employed to determine whether or not

the difference in accuracy between two classifiers is statistically significant. Inserting noise

in the training data set is designed to evaluate the robustness of the classifier trained by

the specific data set. Inserting noise in the test data set aims at assessing the robustness

of a classifier in the face of data sets with no evident data relationship, for which data

relationships are not so evident.

A stratified 10 -Fold Cross-validation (10 -FCV) [49] protocol was adopted. In this

protocol, there are 10 partitions, each with the same proportion of samples belonging to

each class. Nine of them are used for training, and the remaining fold is used for testing.

This process is repeated 10 times, with each of the 10 folds used exactly once as the testing

data. Finally, the 10 results obtained from each one of the test partitions are combined

to produce a single average value representing accuracy. Table 4.4 summarizes the results

obtained from the accuracy estimation for each classifier assessed without noise.

Table 4.4: Accuracy estimation results.

Classification
Technique

Testing

Average Average
Accuracy (%) Time (s)

ANFIS 99.271 0.048

DT 99.986 0.029

ANN(1) 100 0.032

ANN(2) 100 0.035

ANN(3) 100 0.031

KNN 100 0.073

SVM 100 0.044

55

Table 4.4 shows that the average accuracy results for the testing process were close

to 100%, except for the ANFIS was only 99.2% accurate. The shortest prediction time

was obtained with the DT algorithm, while the KNN took the longest time. One possible

explanation is that the DT algorithm divides the input space, matching the way the

attributes were defined and assigned to each CoS by using intervals. The way the synthetic

dataset was created may have led to application instances with properties which were easy

to model, thus boosting the performance of the evaluated classifiers.

A two-tailed Wilcoxon signed-rank test with a significance level of 0.05 was also ap-

plied to the observations obtained from the different classifiers with no attribution of

noise. The results revealed that the accuracy level of the classification obtained from the

DT, ANN(1), ANN(2), ANN(3), KNN, and SVM were approximately the same. In con-

trast, observations obtained from the ANFIS reveled statistically significant differences in

relation to the observations obtained from the other classifiers.

An attribute noise was introduced into the original dataset to check the effect of

noise on the classifiers. Corrupting the data impacts directly on the significance of the

attributes for the purpose of classification [30]. Moreover, attribute noise includes erro-

neous attribute values, which is one of the most common types of noise in real-world data

[84].

Noise is introduced into each partition in a controlled manner, i.e., a certain percentage

of the values of each attribute in the dataset were altered. To this end, the steps employed

by the authors in [30] were followed. To corrupt each attribute Ai, a certain percentage of

the examples in the dataset were chosen, and the Ai value of each was assigned a random

uniform value from the domain Di of the attribute Ai.

Noise was introduced into the training partitions to create a noisy data set from the

original, as follows:

(i) Noise as a percentage of the original value was introduced into a copy of the full original

dataset.

(ii) The two datasets, the original and the noisy copy, were partitioned into 10 equal folds,

i.e., each with the same number of examples of each class.

(iii) The training partitions are built from the noisy copy, whereas the test partitions were

formed from examples from the noise-free dataset.

Noise was introduced into the testing partitions following the same steps described

above, except that in Step iii the testing partitions are built from the noisy copy, while

the training partitions were formed from examples from the noise-free data set.

The methodology followed in this subsection presents two differences concerning the

methodology described in [30]. First, the one proposed here includes the same number of

examples of each class in the percentage of values of each attribute in the data set to be

corrupted. Second, the introduction of attribute noise was extended to a second simulation

scenario in which accuracy and robustness were estimated for each one of the individual

classifiers using a clean training set and a testing set with attribute noise. Introducing

attribute noise into the training set while maintaining the testing set clean enabled the

56

assessment of the capacity of the classifier to deal with problems in the training stage,

such as overfitting. Overfitting occurs when the model is too tightly adjusted to data

offering high precision in known cases, but behaving poorly with unseen data. Conversely,

introducing attribute noise into the testing set while maintaining the training set clean,

enables us to assess the robustness of the trained model.

After introducing noise, the accuracy of classifiers is determined by means of 5 runs of

a stratified 10-Fold Cross-Validation (FCV). Hence, a total of 50 runs per dataset, noise

type, and level are averaged. Ten partitions make the noise effects more notable, since

each partition has a large number of examples (1,400). The robustness of each algorithm

is then estimated by using the Relative Loss of Accuracy (RLA) given by Equation 4.1 is:

RLAx% =
Acc0% − Accx%

Acc0%
, (4.1)

where RLAx% is the relative loss of accuracy at a noise level of x%. Acc0% is the test

accuracy in the original case, that is, with 0% of induced noise, and Accx% is the test

accuracy with a noise level x%.

Next, the robustness of the classifiers when the noise has been introduced for the two

mentioned scenarios will be evaluated.

Classification using a training set with attribute noise and a clean testing set

Table 4.5 shows the average performance and robustness results for each classification

algorithm at each noise level, from 0% to 50%, on training datasets with uniform attribute

noise.

Table 4.5: Test accuracy and RLA results of classifiers trained with noisy datasets.

Noise

Level (%)
ANFIS DT ANN(1) ANN(2) ANN(3) KNN SVM

T
e
s
t

a
c
c
u
r
a
c
y

r
e
s
u
lt

s 0 99.271 99.986 100.000 100.000 100.000 100.000 100.000

10 94.429 99.986 99.911 99.950 99.921 99.800 99.997

30 84.900 99.950 99.676 99.800 99.691 99.029 99.836

50 78.564 99.979 90.807 91.370 91.419 99.193 99.600

R
L
A

v
a
lu

e
s

r
e
s
u
lt

s 0 - - - - - - -

10 0.04878 0.00000 0.00089 0.00050 0.00079 0.00200 0.00003

30 0.14477 0.00036 0.00324 0.00200 0.00309 0.00971 0.00164

50 0.20859 0.00007 0.09193 0.08630 0.08581 0.00807 0.00400

As can be observed in Table 4.5, the DT is the most robust classifier for all noise levels.

On the other hand, the ANN(1), ANN(2), and ANN(3) present high robustness for noise

levels (10-30%). Conversely, the RLA of classifiers based on neural networks rises linearly

to 9% when the noise level is 50%. The least robust classifier is the ANFIS, for which the

loss of accuracy increases exponentially as the proportion of noise level rises, to the point

that when the noise level is 50%, its RLA is above 21% of that a clean dataset.

Fig. 4.6 shows the accuracy ratio and testing time when training takes place with both

clean datasets, and those disrupted by uniform attribute noise levels of 10%, 30%, and

50%. A marker identifies each classification algorithm, and a different color identifies each

noise level. The light- bands indicate the areas of the greatest accuracy or the slowest

57

testing times, and the light-purple intersection of these bands indicates the area where

the best results for both accuracy and testing time are found.

Figure 4.6: Accuracy rates concerning the testing time for classifiers trained with both
clean and noisy datasets.

The DT algorithm takes only 25 milliseconds for classification with the greatest accu-

racy for up to 1,400 applications simultaneously arriving at the edge, when training has

taken place using datasets with a uniform attribute noise level of 50%.

Table 4.6 presents the results of a two-tailed Wilcoxon signed-rank test (considering

a significance level of 0.05) to verify statistical differences between the accuracy results

of classifiers trained with noisy datasets. Each cell shows the results of the statistical

tests between a single classifier with the others for the four levels of noise (nl). Left ‘ ←’

and up ‘↑’ arrows indicate the most accurate, while an empty cell refers to “no statistical

difference between the pairs of classifiers” in that row and column.

Table 4.6 shows the effect of noise data sets in training. The performance of ANFIS

is the least accurate. ANN(1), ANN(2), and SVM produce a similar performance while

the DT outperform most of the results of the rest of classifiers when it is trained using

datasets with an attribute noise level equal to or greater than 30%.

Classification using a clean training set and a testing set with attribute noise

Table 4.7 shows the results for average performance and robustness for each classification

algorithm at each noise level, from 0% to 50%, from the testing of datasets with uniform

58

Table 4.6: Statistical test for the accuracy of classifiers trained with noisy datasets. nl
denotes the percentage of noise level present in the training dataset.

nl ANFIS DT ANN(1) ANN(2) ANN(3) KNN SVM

ANFIS

0 � ↑ ↑ ↑ ↑ ↑ ↑

10 � ↑ ↑ ↑ ↑ ↑ ↑

30 � ↑ ↑ ↑ ↑ ↑ ↑

50 � ↑ � � � ↑ ↑

DT

0 ← � � � � � �

10 ← � � � � ← �

30 ← � ← ← ← ← ←

50 ← � ← ← ← ← ←

ANN(1)

0 ← � � � � � �

10 ← � � � � � �

30 ← ↑ � � � ← �

50 � ↑ � � � � �

ANN(2)

0 ← � � � � � �

10 ← � � � � ← �

30 ← ↑ � � � ← �

50 � ↑ � � � � �

ANN(3)

0 ← � � � � � �

10 ← � � � � � ↑

30 ← ↑ � � � ← ↑

50 � ↑ � � � � �

KNN

0 ← � � � � � �

10 ← ↑ � ↑ � � ↑

30 ← ↑ ↑ ↑ ↑ � ↑

50 ← ↑ � � � � ↑

SVM

0 ← � � � � � �

10 ← � � � ← ← �

30 ← ↑ � � ← ← �

50 ← ↑ � � � ← �

attribute noise.

Table 4.7: Test accuracy and RLA results of classifiers tested with noisy datasets.

Noise

Level (%)
ANFIS DT ANN(1) ANN(2) ANN(3) KNN SVM

T
e
s
t

a
c
c
u
r
a
c
y

r
e
s
u
lt

s 0 99.271 99.986 100.000 100.000 100.000 100.000 100.000

10 72.214 85.693 83.570 86.131 84.031 84.093 81.79

30 41.343 63.114 59.464 63.860 60.467 59.971 55.403

50 27.414 47.264 45.381 48.564 46.176 44.764 40.799

R
L
A

v
a
lu

e
s

r
e
s
u
lt

s 0 - - - - - - -

10 0.273 0.143 0.164 0.139 0.160 0.159 0.189

30 0.584 0.369 0.405 0.361 0.395 0.400 0.446

50 0.724 0.527 0.546 0.514 0.538 0.552 0.592

As evinced in Table 4.7, for all classifiers, accuracy decreases exponentially with an

increase in the noise level of the testing dataset. In this situation, the most robust

classifiers are ANN(2), DT, ANN(3), ANN(1), and KNN.

Fig. 4.7 illustrates the results of the classification algorithms when both accuracy and

testing time are considered with both clean and noise datasets (levels of 10%, 30%, and

50%). A marker identifies each classification algorithm, and a different color identifies

each noise level. The light-blue bands indicate the areas of the greatest accuracy rates or

the slowest testing times, and the light-purple intersection of these bands indicates the

area where the best results were obtained when considering both accuracy and testing

time.

The DT algorithm takes less than 30 milliseconds for classification for with the greatest

59

Figure 4.7: Accuracy rates concerning the testing time for classifiers tested with both
clean and noisy datasets.

level of accuracy, up to 1,400 applications simultaneously arriving at the edge, when the

input is a noise dataset as long as the noise level does not exceed 10%.

Table 4.8 presents the results of a two-tailed Wilcoxon signed-rank tests (considering

a significance level of 0.05) to verify the statistical differences between the accuracy of

the different classifiers when tested with noisy datasets. Each cell shows the result of the

statistical test between the pairs of classifiers with different percentages of noise (nl). Left

‘ ←’ and up ‘↑’ arrows indicate the greatest accuracy while an empty cell refers to “no

statistical difference between the pair of classifiers” in that row and column.

The effect of noisy data set in testing is shown in Table 4.8. The performance of

ANFIS is the least accurate. Moreover, the DT produces the most accurate classification

results in classifications independent of the presence of noise.

4.3.5 Classification model

The final step of the proposed methodology is the selection of a classifier. The results

indicate that the DT was the most accurate and robust classifier.

The decision tree algorithm does not need to assess all the attributes to classify an

application since various services have exclusive features. For example, mission-critical

applications are the only ones for which reliability takes on a “critical” value. Therefore,

assessing certain features makes classification a more efficient process. This is an attrac-

60

Table 4.8: Statistical test for the accuracy of classifiers tested with noisy datasets. nl
denotes the percentage of noise level present in the testing dataset.

nl ANFIS DT ANN(1) ANN(2) ANN(3) KNN SVM

ANFIS

0 � ↑ ↑ ↑ ↑ ↑ ↑

10 � ↑ ↑ ↑ ↑ ↑ ↑

30 � ↑ ↑ ↑ ↑ ↑ ↑

50 � ↑ ↑ ↑ ↑ ↑ ↑

DT

0 ← � � � � � �

10 ← � ← � ← ← ←

30 ← � ← � ← ← ←

50 ← � � � � ← ←

ANN(1)

0 ← � � � � � �

10 ← ↑ � ↑ � � ←

30 ← ↑ � ↑ � � ←

50 ← � � ↑ � � ←

ANN(2)

0 ← � � � � � �

10 ← � ← � ← ← ←

30 ← � ← � ← ← ←

50 ← � ← � � ← ←

ANN(3)

0 ← � � � � � �

10 ← ↑ � ↑ � � ←

30 ← ↑ � ↑ � � ←

50 ← � � � � � ←

KNN

0 ← � � � � � �

10 ← ↑ � ↑ � � ←

30 ← ↑ � ↑ � � ←

50 ← ↑ � ↑ � � ←

SVM

0 ← � � � � � �

10 ← ↑ ↑ ↑ ↑ ↑ �

30 ← ↑ ↑ ↑ ↑ ↑ �

50 ← ↑ ↑ ↑ ↑ ↑ �

tive characteristic which makes Decision Tree an ideal algorithm for the classification of

applications in Fog computing. Moreover, the Decision Tree algorithm is easy to interpret,

fast for fitting and prediction, and does not use much memory. Given these characteristics,

the Decision Tree algorithm can be run by devices such as routers, switches, and servers,

located on the first Fog layer of the reference architecture introduced by the OpenFog

Consortium in [61]. After classification, the output of the classifier serves as input for the

scheduler, also located at the first Fog layer, which decides where the application should

be processed.

61

Chapter 5

Single-objective QoS-aware task

scheduling for the cloud-fog continuum

Several problems in IoT and cloud-fog networks are optimization problems in essence.

This is the case of task scheduling. When an application reaches the edge of the network,

the tasks that compose this application need to be scheduled on processing elements

along the Cloud to Things (C2T) continuum. In this regard, this chapter introduces

task scheduling algorithms to support multi-class services in cloud-fog computing sys-

tems, considering the CoS of applications to decide where tasks should be processed. We

first overview related work (Section 5.1). We, then, describe the cloud-fog model adopted

in this study (Section 5.2). After, we detail the two proposed workflow schedulers (Sec-

tion 5.3). Finally, we explain the experiments conducted to evaluate the performance of

the proposed schedulers (Section 5.4).

5.1 Literature review

A fundamental question in cloud-fog systems is: where the tasks of applications should

be executed: on the fog or in the cloud? Diverse studies have considered different combi-

nations of processing elements: fog nodes [1, 2, 44, 62, 81], fog nodes and cloud [6, 25, 64],

and devices and fog nodes [80]. Table 5.1 compares all these approaches, and next, we

briefly describe each of them.

Oueis et al. [62] proposed a task scheduling strategy that considers the formation of

clusters of fog nodes and load balancing in a cellular network. The strategy allocates

computational resources at the serving cell according to an ordered list of requests and

organizes clusters to satisfy the requests not yet served. Results show that users’ satis-

faction increases when compared to static clustering.

Intharawijitr et al. [44] proposed three different policies for mapping tasks onto fog

nodes to minimize blocking while respecting latency constraints. The first policy randomly

selects a fog node to host a task. The second policy selects the fog nodes to minimize

the total latency, and the third one chooses a fog node to maximize resource utilization.

Results show that minimum blocking is achieved by the policy that prioritizes latency as

the criterion for mapping tasks.

62

Table 5.1: Characteristics of solutions for task scheduling in Fog systems. In the approach
column, A, H, P and ILP mean analytical, heuristic, policy and integer linear program-
ming, respectively.

Paper
Network
Domain

Major contribution Approach
Heterogeneous

Resources

Oueis et al. [62] Fog
Management of the exe-
cution of tasks in a cellu-
lar network.

H ✓

Intharawijitr
et al. [44]

Fog
Three policies to select
fog nodes for the execu-
tion of tasks.

P

Aazam and Huh
[1]

Fog
A loyalty-based task
scheduling algorithm.

H ✓

Aazam and Huh
[2]

Fog

A loyalty-based task
scheduling algorithm
considering different
types of devices.

H ✓

Zhang et al. [81] Fog
Fair task offloading
among fog nodes in 5G
fog network.

A ✓

Agarwal et al. [6] Cloud-Fog
Workload distribution
for the reduction of the
response time and cost.

H ✓

Deng et al. [25] Cloud-Fog
Workload distribution to
minimize power.

H ✓

Pham and Huh
[64]

Cloud-Fog
A good trade-off between
makespan and the cost of
task execution

H ✓

Zeng et al. [80] IoT-Fog

Minimization of the com-
pletion time by jointly
considering task schedul-
ing and image placement.

H ✓

This thesis Cloud-Fog

Minimize of the comple-
tion time by consider-
ing the CoS of the ap-
plication to decide where
tasks should be pro-
cessed.

ILP ✓

63

Aazam and Huh [1] introduced a service-oriented resource management model for fogs,

which deals with the uncertainty associated with resource utilization of heterogeneous IoT

devices. This model employs an estimation of resource utilization, based on Relinquish

Probability. Moreover, it considers the history of resource utilization and prioritizes the

allocation of resources to frequent users. Aazam and Huh [2] extend their model [1] by

classifying the type of accessing device based on the nature of the device and mobility.

They also introduced a pricing strategy based on an incentive mechanism for frequent

users.

Zhang et al. [81] investigated the problem of fair task offloading among fog nodes

in a 5G fog network. They proposed a scheduler that considers the delay and energy

consumption of tasks. The authors defined a fairness index to select fog nodes to minimize

task delay.

Agarwal et al. [6] presented architecture and algorithms for resource provisioning in a

cloud-fog environment. The proposed architecture consists of three layers: client, fog, and

cloud. In this architecture, a fog manager enlists all the processors available to the client.

The fog server verifies whether sufficient computational resources are available on the fog

layer. Depending on the resource availability, tasks can be fully or partially executed on

the fog layer or sent to the cloud. Results show that the proposed algorithm improves the

response time, bandwidth utilization, and power consumption.

Deng et al. [25] employed optimization to study the trade-off between power consump-

tion and delay in a cloud-fog system. They modeled the power consumption and delay

of each element of the cloud-fog system in a resource allocation problem. Convex opti-

mization was employed to minimize the energy consumed by a fog layer for a particular

input workload, while a heuristic was employed to optimize the energy consumption of a

cloud. Moreover, the authors attempted to optimize the energy consumption of commu-

nications. Results show that, by sacrificing few computation resources, it is possible to

save bandwidth and reduce delay.

Pham and Huh [64] proposed a task scheduler to maximize the efficiency of large-

scale offloading applications. The aim is to achieve a trade-off between makespan and

monetary cost. The scheduler sorts the tasks based on the length of the critical paths

from each task to the final task and then select the adequate node to execute the tasks.

To calculate the monetary cost, the authors considered that the fog provider rents both

virtual host and network bandwidth from cloud providers to extend the capabilities of

the fog nodes. To prove that the proposed algorithm can achieve better tradeoff value

between the makespan and the cost of task execution than other methods, authors defined

a comparison criteria called Cost Makespan Tradeoff (CMT). Compared with Greedy for

Cost algorithm, which achieves the minimum monetary cost but long schedule length,

the proposed algorithm had better CMT in all cases. The HEFT algorithm achieved the

minimum schedule length but it went with the significant increase of cost. The Dynamic

Level Scheduling (DLS) algorithm also achieved small schedule length, but it requires

much more cost for cloud resources and thus gets the worst CMT value, which is about

from 15% to 25% lower than the proposed algorithm.

Zeng et al. [80] proposed a formulation to decide whether the processing of tasks should

be carried out on client devices or at edge nodes. The aim is to minimize the completion

64

time by jointly considering task scheduling and virtual machine image placement using a

mixed-integer nonlinear programming problem. The completion time includes the compu-

tation time, I/O time, and transmission time. Results show that the proposed algorithm

outperforms greedy solutions for different task arrival rates, client processing rates, server

processing rates, and disk I/O rates.

In this chapter, we introduce two task scheduling algorithms to support multi-class

services in cloud-fog computing systems. None of the previous proposals for scheduling

tasks in cloud-fog systems [1, 2, 6, 25, 44, 62, 64, 80, 81] considered the CoS of applica-

tions to decide where tasks should be processed. Besides that, the proposed scheduling

algorithms take into consideration different types of resources, such as CPU, RAM, and

storage space. The two proposed schedulers are based on integer linear programming

formulation. The first, called CASSIA-INT, solves an exact integer programming for-

mulation, while the second, named CASSIA-RR, solves a relaxed version of the integer

programming formulation.

5.2 System model

This section introduces models for the infrastructure and application representation as

well as provides scenarios for the proposed system model.

5.2.1 Infrastructure and application models

In this section, it is assumed a cloud-fog system based on the architecture presented

in Figure 3.1, which is composed of a fog stratum with two layers and one cloud [28].

Additionally, there is a set of isolated fog nodes intended to process mission-critical appli-

cations. Processing elements on this cloud-fog system have computational, memory, and

storage resources.

The end-user submits an application to be processed at the network edge. An applica-

tion consist of a workflow and QoS requirements. The QoS requirements are employed by

a classifier to identify the CoS associated with the application. The CoS can be Mission-

critical (MC), Real-time (RT), Interactive (IN), Conversational (CO), Streaming (ST),

CPU-bound (CB), or Best-effort (BE), in accordance to the criteria defined in Table

Table 3.2. The CoS label is used by the scheduler to decide the layer the tasks of an

application should be scheduled.

The scheduler considers the workflow and the label of an application as well as the

cloud-fog current resource availability to make scheduling decisions, as illustrated in Fig.

5.1.

An application workflow is composed of dependent tasks. Dependent tasks have a

topological order which must be respected by the schedule, and their relations are rep-

resented by a Directed Acyclic Graph (DAG) [12, 15]. In a DAG = (VD, ED), the set of

vertices VD = {i, j, ...,m} denotes the set of subsequent tasks, and on edge {ij} ∈ ED

represents the precedence constraint such that a task i should complete its execution be-

fore a task j starts [74]. Fig. 5.2 illustrates the DAG of an application workflow. Each

node of the DAG represents a task j ∈ VD. The three values in the labels represent the

65

Figure 5.1: Task scheduling in the cloud-fog system.

number of instructions to be processed (Ij), the amount of RAM demanded (Mj), and

the storage required to process the task, (Sj).

Figure 5.2: DAG of the application workflow.

Likewise, an edge {ij} has a non-negative weight value Bij that represents the number

of bytes transmitted from task i to task j. Thus, a task cannot begin execution until all

its inputs have been received. Moreover, we assume without loss of generalization that

the DAG has a single entry task (no preceding task) and a single exit task (no succeeding

task).

The cloud-fog topology is represented by a graph H = (VH , EH), where VH is the

set of vertices and contains the processing elements on different layers of the cloud-fog

system. These processing elements can be isolated fog nodes (IS), nodes at the first fog

layer (F1), nodes at the second fog layer (F2), nodes at the first and second fog layer and

66

in the cloud (FC); and nodes exclusively in the cloud (CL). Thus, VH = {(IS) ∪ (F1) ∪

(F2) ∪ (FC) ∪ (CL)}.

Fig. 5.3 illustrates a topology graph of the cloud-fog system. Nodes represent pro-

cessing elements with labels expressing the inverse of the processing capacity, (TIk), in

(instructions/units of time)−1, the available RAM, (Rk), and the available storage (Dk).

The edges represent network links, with labels indicating the inverse of the available band-

width, (TBk), in (bits/units of time)−1. The dotted lines suggest that there may be more

than one processing element at each processing layer.

Figure 5.3: Topology graph of the cloud-fog network.

A subgraph contained in the cloud-fog network topology is denoted as V
′

H and repre-

sents the processing layer on which an application should be processed according to its

CoS. Table 3.3 shows the relationship between the CoS of the fog computing applications

and the processing layers of the cloud-fog topology.

5.2.2 Application scenarios

The integration of cloud and fog processing resources offers final users the possibility

of executing both real-time and non-delay constraint applications. In this section, the

behavior of these two kinds of applications is analyzed, while a scheduling strategy based

on CoS determines the execution sequence of the tasks. For this purpose, the EEG tractor

beam game (EEGTBG) application and a video surveillance service (VSOT) were used

in the study. The operation of the modules that compose both applications, as well as

their QoS requirements and resource demands, are explained below.

In the EEG tractor beam game (EEGTBG) application, each player needs to wear

a wireless EEG headset that is connected to his/her smartphone. The game runs as an

application on a user’s smartphone. On the display of the application, the game shows

all the players on a ring surrounding a target object. Each player can exert an attractive

force onto the target in proportion to his level of concentration (estimated using a ratio

of the average power spectral density in the EEG ³, ´ and ¹ bands of the player) [35].

67

To win the game, a player should try to pull the target toward himself by exercising

concentration while depriving other players of their chances to grab the target.

Fast processing and low response times must be guaranteed to provide a high quality of

experience (QoE). The EEGTBG application is composed of five modules (Fig. 5.4): EEG

sensor, display, client, concentration calculator, and coordinator. We have considered an

application model consisting of three major modules, hereinafter, referred to as EEGTBG

tasks: client, concentration calculator, and coordinator. The client receives raw EEG

signals from the sensor and filters consistent data to the concentration calculator, which

computes the user’s concentration level. On receiving the concentration level, the client

sends the value to the display. The concentration calculator computes the concentration

level of the user. The coordinator sends the current status of the game to all players. The

CPU demands of the EEGTBG tasks are described in Table 5.2.

Figure 5.4: Modules of the EEGTBG application.

Table 5.2: CPU demands estimated for each task of the EEGTBG application [13].

Task Client
Concentration

Coordinator
calculator

MIPS 200 350 100

Moreover, each task of the EEGTBG application demands 0.5 GB of RAM and 3 GB

of storage space. Additionally, 300 MB of data is exchanged between tasks.

The VSOT application relies on a set of distributed intelligent cameras that can track

movement. Hence, the QoE experimented by the user depends on the available processing

resources. Sufficient processing power should be guaranteed for a good experience. The

VSOT application consists of five modules (Fig. 5.5): motion detector, object detector,

object tracker, user interface, and the control of pan, tilt, and zoom (PTZ). The motion

detector module filters the raw video streams captured by the camera and forwards the

frames of the video to the object detector module. The object detector module identifies

the moving objects and sends object identification and position information to the object

tracker. The object tracker receives the coordinates of the tracked objects, computes an

optimal PTZ configuration of all the cameras covering the area, and sends a command

to the PTZ control module. The PTZ module, located in each smart camera, adjusts

the physical camera according to the PTZ parameters sent by the object tracker module.

Finally, the user interface module sends a fraction of the video streams containing each

68

tracked object to the user’s device. Since it is assumed that the PTZ control module is

always placed in the camera, our application model of the VSOT application is composed

of four modules, from now on, referred to as the VSOT tasks: motion detector, object

detector, object tracker, and user interface. The CPU demands of tasks are described in

Table 5.3.

Figure 5.5: Modules of the VSOT application.

Table 5.3: CPU demands estimated for each task of the VSOT application [13].

Task
Motion
detector

Object
detector

Object
tracker

User
interface

MIPS 300 550 300 200

Each task of the VSOT application demands 1 GB of RAM and 7 GB of storage space.

Additionally, 500 MB of data is exchanged between tasks.

The EEGTBG and the VSOT applications have special characteristics that emphasize

the effect of using CoS in the scheduling of application workflows. By using the application

classification in [33], the EEGTBG and VSOT applications are labeled as real-time and

CPU-Bound applications, respectively. An EEGTBG application must be processed as

close as possible to the end-user, i.e., at the first fog layer, while a VSOT application can

be processed at any layer of the cloud-fog system.

5.3 Proposed scheduling approaches

This section introduces the CASSIA-INT scheduler, which is based on an integer linear

programming formulation, as well as the CASSIA-RR scheduler that implements the ran-

domized rounding technique. The solution given by the randomized rounding algorithm

is an approximation to the exact solution given by CASSIA-INT.

The problem formulation considers that tasks composing the application are executed

one at a time. It is also assumed that when a task arrives at the processing host, the

virtual machines (VMs), where tasks will run, are already activated.

The schedulers receive as input information regarding the availability of fog and cloud

resources, including processing elements and network links; the CoS of the application,

assigned by a classifier, and a DAG describing the workflow containing processing, RAM,

storage, and communication demands of the tasks that make up the fog application.

69

The schedulers are based on an integer linear program designed to minimize the

makespan of a schedule. The following notation is used to represent an application com-

posed of tasks and dependencies:

• m: number of tasks that make up the application (m ∈ N),

• Ij: processing demand of jth task, expressed as the number of instructions to be pro-

cessed (Ij ∈ R+),

• Mj: RAM demand of jth task (Mj ∈ R+),

• Sj: storage demand of jth task, expressed as the number of data units required by the

task (Sj ∈ R+),

• Bi,j: number of data units transmitted between the i task and the j task (Bi,j ∈ R+),

• VD: set of vertices representing the tasks of the application workflow,

• ED: set of edges representing the dependencies among tasks {ij : i < j}.

The cloud-fog topology is represented by the following notation:

• n: number of processing elements of the cloud-fog system,

• o: task scheduler,

• Rk: available RAM capacity of the kth host,

• Dk: available storage capacity of the kth host,

• kr: fastest processing node (kr ∈ V
′

H),

• ¶(k): set of processing elements linked to the kth processing element in the network,

including the processing element k,

• TBk,h: time for transmitting a data unit on the link connecting the kth processing

element and the hth processing element (TBk,h ∈ R+),

• TSk: time for transmitting a data unit on the link connecting the scheduler and the

host k (TSk ∈ R+),

• TIk: the time the kth host takes to execute a single instruction (TIk ∈ R+),

• VH : set of network hosts,

• V
′

H : subset of network hosts defined by the CoS of the application,

• EH : set of network links between hosts.

70

Moreover, three parameters are computed for each task. The first parameter, Pj,k, is

the processing time of the task j on the host k, expressed as

Pj,k = IjTIk

The second parameter, Cij, is the time taken for data transfer between two subsequent

tasks i and j of the DAG, hosted, respectively, on the processing elements h and k.

Cij = BijTBhk

The third parameter, Lj,k, represents the sum of the transmission delay, dtransj,k , and

the propagation delay, dpropj,k . The transmission delay of all data of a task is computed

by

dtransj,k = SjTSk

The propagation delay between the scheduler o and the host k is the distance between

the two hosts divided by the propagation speed of the link, É.

dpropo,k =
do,k
É

Both transmission and propagation delays are considered from nodes at fog layer 1 to

nodes at fog layer 1, fog layer 2, on the cloud, or to processing elements in isolated hosts.

Moreover, time is discretized and defined as T = {1, ..., Tmax}, where Tmax is the time

that the fastest host in V
′

H would take to execute the tasks of the application serially.

Tmax is calculated by

Tmax = TSkr

m−1
∑

j=0

Sj +m
(

dpropo,kr
)

+ TIkr

m−1
∑

j=0

Ij

+max [Bi,jTBh,k] (m− 1) ;

where,

TIkr = min
(

TI
k|k∈V

′

H

)

The solution for the integer linear program is given by the value of the decision variable

xj,t,k which is 1 if the jth task should be processed at time t on the host k. The integer

linear programming problem is formulated as follows:

Minimize

Cmax

Subject to

∑

t∈T

∑

k∈V
′

H

xj,t,k = 1, ∀j ∈ VD; (5.1)

71

∑

t∈T

(t+ Lj,k + Pj,k)xj,t,k ⩽ Cmax,

∀j ∈ VD, k ∈ V
′

H ;

(5.2)

∑

j∈VD

t+Pj,k−1
∑

s=t

xj,s,k ⩽ 1, ∀k ∈ V
′

H , t ∈ T,

where t ⩽ Tmax − Pj,k;

(5.3)

t
∑

s=1

xj,s,k ⩽
∑

h∈¶(k)

t−Li,h−Pi,h−Cij
∑

s=1

xi,s,h,

∀j ∈ VD, k ∈ V
′

H , ij ∈ ED, t ∈ T ;

(5.4)

∑

t∈T

∑

j∈VD

Mjxj,t,k ⩽ Rk, ∀k ∈ V
′

H ; (5.5)

∑

t∈T

∑

j∈VD

Sjxj,t,k ⩽ Dk, ∀k ∈ V
′

H ; (5.6)

xj,t,k ∈ {0, 1},

∀j ∈ VD, k ∈ V
′

H , t ∈ T ;
(5.7)

Rk ⩾ 0, ∀k ∈ V
′

H ; (5.8)

Dk ⩾ 0, ∀k ∈ V
′

H ; (5.9)

The objective is to find a schedule for VD on V
′

H that minimizes the makespan (Cmax),

with ending time equals to the completion time of the last task in VD. Constraint (5.1)

establishes that each task (j) must be executed at once in a single host k. Constraint (5.2)

ensures that the makespan is at least the longest completion time of the last operation

of all tasks. Constraint (5.3) establishes that there is at most one task in execution on

any host at any given time. Constraint (5.4) establishes that the execution of the jth task

cannot start until all its predecessor tasks have been completed and the data required

by the jth task transferred. Constraint (5.5) determines that the total amount of RAM

occupied by the tasks processed on host k should not exceed its available RAM capacity.

Constraint (5.6) establishes that the total amount of data occupied by tasks processed on

host k should not exceed its available storage space capacity. Constraint (5.7) defines the

domain for the variable xj,t,k. Constraints (5.8) and (5.9) state that the variables Rk and

Dk can only take non-negative integer values.

The CASSIA-INT implements the integer linear program described above, while the

72

CASSIA-RR applies the randomized rounding relaxation technique to reduce the execu-

tion time to produce a solution without significant loss of the quality of the schedule.

5.3.1 Task scheduling based on Integer linear programming

The CASSIA-INT scheduler is presented in Algorithm 5.1. The integer linear program

returns an exact schedule that gives the mapping of tasks on hosts. Integer programming

is classified as an NP-complete problem. In addition, the time taken by the optimizer

to solve the ILP problem dominates the computational complexity of the CASSIA-INT

scheduler.

Algorithm 5.1: CASSIA-INT Scheduler

Input : ILP:Integer linear program formulation.
Output: Schedule VD on V

′

H along with the schedule of the necessary hosts
k ∈ V

′

H .

1 Solve the ILP.

2 Let X be the solution schedule VD on V
′

H , where X = Xj.k and

Xj.k =
∑

t∈T xj,t,k, ∀j ∈ VD, k ∈ V
′

H

3 Return the schedule.

5.3.2 Task scheduling based on approximation algorithms

The scheduling problem is an NP-Complete problem [65]. Techniques such as approxi-

mation algorithms provide solutions that guarantee solutions close to the optimum [14].

The CASSIA-RR scheduler implements an approximation algorithm called Randomized

Rounding, presented in Algorithm 5.2. First, the integer linear program is executed with

the relaxation of the decision variables to turn the integer program into a linear program.

The relaxation of the discrete time formulation consists of replacing the set {0,1} in con-

straint (7) by the interval [0,1]. The values found when solving this linear formulation

represent the probability values of each task to be executed on a host. Algorithm 5.2

is executed P times, and the schedule with the shortest makespan is chosen. P must

be defined in order to increase the chances of obtaining a good schedule. The execution

time of the CASSIA-RR scheduler increases with the value of P. Algorithm 5.2 runs in

O(³P + P · (|VD| · |V
′

H |+ |ED|+ |V
′

H |)), where ³P represents the time complexity to set

each variable of the linear program, Xj,k, which is at least O(|VD| · |V
′

H |).

5.4 Performance Evaluation

This section assesses the performance of the CASSIA-INT and CASSIA-RR schedulers.

The cloud and fog processing layers were represented by graphs that describe the topology

of the network. Vertices of the graphs represent processing elements, and the edges

represent communication links. The topologies of the graphs are given by the Barabási-

Albert model [11], a method for generating network topologies similar to those formed

73

Algorithm 5.2: CASSIA-RR Scheduler

Input : ILP: Integer linear program formulation.
P: Number of drawings.

Output: Schedule of VD in V
′

H along with the schedule of the necessary hosts
k ∈ V

′

H .

1 Execute the ILP relaxed as a linear program (LP).

2 Let X be the solution schedule of VD in V
′

H for the LP, where X = Xj,k

3 for P times do
4 for each task j ∈ VD do
5 Let Xj,k be the probability of mapping the task j on the host k, select a

host at random where the task j should be executed, based on the
previous mapping probability.

6 Add the task selected to a provisional list of tasks to be executed.

7 if the provisional list meets the precedent constraint then
8 Add the provisional list to the final list of schedules if it doesn’t already

exist

9 Keep the provisional list in the final list producing the shortest schedule.
10 Return the schedule.

by resources on the Internet. The Barabási-Albert model was implemented using the

topology generator BRITE [58]. Table 5.4 shows the parameters of the configuration file

passed to BRITE.

Table 5.4: BRITE configuration parameters used to generate the network topology.

Parameter Meaning Value
HS Size of one side of the plane 1000
LS Size of one side of a high-level square 1000
N Number of nodes int 1 ≤ N ≤ HS ∗HS

Node
placement

Heavy Tailed 2

m
Number of neighboring node each
new node connects to.

1

BWDist Bandwidth Distribution Uniform
BWMin Minimum bandwidth value 1 Gbps
BWMax Maximum bandwidth value 10 Gbps

Experiments conducted consider two types of applications: the electroencephalography

(EEG) tractor beam game (real-time) and a video surveillance/object tracking (VSOT)

application (delay tolerant) [35]. The operation of the modules that compose these appli-

cations is explained in detail in Section 5.2.2.

Six different scenarios were used by varying the CoS of the application, the number

of hosts in the network, and the network load to study the operation of the schedulers.

The first three scenarios implement the EEGTBG application, while the remaining three

74

implement the VSOT application. The number of hosts was 36, 108, and 180, and the

mean resource and bandwidth utilization were 0%, 20%, 40%, and 60%. The utilization

level of each node and link were randomly determined so that an average target utilization

could be achieved.

Different values of P were tested for the CASSIA-RR; a value of 10,000 is recommended

since no further improvement in results can be obtained by using a larger value.

Furthermore, links with 2 Gbps, 1 Gbps, and 500 Mbps of bandwidth connect the

scheduler with the fog layer 1, the fog layer 2, and the cloud, respectively. Two other 10

Gbps links connect the fog layer 1 to the fog layer 2, as well as connect the fog layer 2 to

the cloud.

The schedulers were implemented in Java language using the IBM ILOG CPLEX

Optimization Studio V12.6.0 to solve the ILP model and its relaxation. All the programs

were executed on an AWS R5 instance Memory Optimized Intel Xeon 3.1 GHz EBS-Only

with 20 GiB storage, 128 GB of RAM, and CentOS 7.0 operating system.

The processing, RAM memory, and storage capacity of each type of host in the network

are shown in Table 5.5.

Table 5.5: Characteristics of the processing hosts distributed along the processing layers
of the architectural model.

Device’s
Location

Processing
Capacity
(MIPS)

RAM
(GB)

Storage
(GB)

Fog layer 1 1400 2.8 28
Fog layer 2 /
Isolated fog nodes

2800 4.2 42

Cloud 3600 8.4 84

To assess the performance of the proposed algorithms, we consider two traditional

scheduling schemes, namely Random and Round Robin, as the baseline algorithms.

By definition, our proposed algorithms choose the more appropriate processing layer to

execute a task according to the QoS requirements of an application. In contrast, Random

and Round Robin algorithms allocate tasks for processing at any layer of the architecture,

which may result in a QoS violation. We ascertain a QoS violation by examining both

the QoS requirements of the application and the layer where the task is processed. If

the processing layer chosen by the scheduling algorithm to process the application differs

from the potential layers for its CoS, the scheduling algorithm incurs in QoS violation.

An allowed processing layer guarantees the support of the QoS requirements of the appli-

cations. Table 5.6 shows the results of the analysis of violation of QoS requirements for

the Random and Round Robin algorithms.

As can be seen in Table 5.6, the percentages of QoS violations for the EEGTBG

application are higher than they are for the VSOT application. VSOT can be processed

at the fog layer 1, fog layer 2, and the cloud, while EEGTBG can only be processed at

the fog layer 1 since it is a delay-sensitive application. Hence, the probability of choosing

a layer not allowed is higher for EEGTBG than it is for VSOT.

75

Table 5.6: Percentage of QoS violations for different values of network load: 0%, 20%,
40%, and 60%. S1:n=36, S2:n=108, and S3:n=180.

Algorithm
Network
Load (%)

EEG VSOT

S1 S2 S3 S1 S2 S3

Random

0 52% 60% 64% 0% 44% 34%

20 74% 78% 64% 22% 28% 26%

40 44% 54% 52% 0% 0% 12%

60 70% 72% 48% 0% 0% 40%

Round
Robin

0 72% 56% 64% 26% 24% 20%

20 60% 70% 56% 18% 24% 24%

40 52% 48% 46% 20% 22% 12%

60 46% 48% 54% 22% 26% 26%

Figure 5.6 and Figure 5.7 show the makespan and the execution time of the EEGTBG

and the VSOT applications as a function of the network load. The points in the figures

correspond to mean values with a 95% confidence interval. In the makespan graphics, the

time taken to execute all tasks in sequence (Tmax) is plotted for reference.

As the percentage of network load increases, the makespan of the application also

increases. The makespan values plotted in Figures 6 and 7 show that our proposed

algorithms outperform the baseline algorithms. The advantage of our algorithm is the

result of taking the makespan into account in the optimization. Moreover, our algorithm

also avoids QoS violations (see Table 5.6).

The execution time values plotted in Figures 6 and 7 show that both CASSIA-INT

and CASSIA-RR schedulers need more time to generate a schedule as the number of

hosts increases. However, the CASSIA-RR scheduler demands much shorter execution

times than do the CASSIA-INT and yet produces similar makespan values. Although

the execution time values of Random and Round Robin algorithms are shorter than

those of our proposed algorithms, which produces less QoS violations than the two other

algorithms.

Figures 6 and 7 show that there is a great difference between the results obtained by the

EEGTBG and VSOT. This is due to the association between the CoS of the application

and the processing layer on which the application is executed. While EEGTBG is a real-

time application that must be processed as close as possible to the end-user, VSOT is

a CPU-Bound application, requiring a much larger number of processing resources and

can involve almost all layers of the reference architecture in the processing of tasks. For

this reason, the makespan values of the VSOT application are greater than those of the

EEGTBG application.

Although the makespan values produced by the CASSIA-RR and the CASSIA-INT

scheduler are very close, CASSIA-RR considerably reduces the execution time to sched-

ule the tasks of an application, even in the presence of a network load of 60%. These

76

 32

 64

 128

 0 20 40 60

M
ak

es
p
an

 (
s)

Network Load (%)

Tmax

CASSIA-INT

CASSIA-RR

Random

Round Robin

(a) S1:Makespan.

0⋅10
0

100⋅10
-3

200⋅10
-3

300⋅10
-3

400⋅10
-3

500⋅10
-3

600⋅10
-3

 0 20 40 60

E
x
e
c
u
ti

o
n
 T

im
e
 (

s)

Network Load (%)

CASSIA-INT

CASSIA-RR

Random

Round Robin

(b) S1:Execution Time.

 32

 64

 128

 0 20 40 60

M
ak

es
p
an

 (
s)

Network Load (%)

Tmax

CASSIA-INT

CASSIA-RR

Random

Round Robin

(c) S2:Makespan.

954⋅10
-9

31⋅10
-6

977⋅10
-6

31⋅10
-3

1⋅10
0

32⋅10
0

1⋅10
3

 0 20 40 60

E
x
e
c
u
ti

o
n
 T

im
e
 (

s)

Network Load (%)

CASSIA-INT

CASSIA-RR

Random

Round Robin

(d) S2:Execution Time.

 32

 64

 128

 0 20 40 60

M
ak

es
p
an

 (
s)

Network Load (%)

Tmax

CASSIA-INT

CASSIA-RR

Random

Round Robin

(e) S3:Makespan.

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60

E
x
e
c
u
ti

o
n
 T

im
e
 (

s)

Network Load (%)

CASSIA-INT

CASSIA-RR

Random

Round Robin

(f) S3:Execution Time.

Figure 5.6: Makespan and Execution Time of the EEGTBG application for selected
scenarios. S1:n=36, S2:n=108, and S3:n=180.

characteristics make the CASSIA-RR a scheduling mechanism ideal to be implemented

in environments that require short response times for the processing of applications.

77

 128

 256

 512

 1024

 2048

 0 20 40 60

M
ak

es
p
an

 (
s)

Network Load (%)

Tmax

CASSIA-INT

CASSIA-RR

Random

Round Robin

(a) S1:Makespan.

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60

E
x
e
c
u
ti

o
n
 T

im
e
 (

s)

Network Load (%)

CASSIA-INT

CASSIA-RR

Random

Round Robin

(b) S1:Execution Time.

 128

 256

 512

 1024

 2048

 0 20 40 60

M
ak

es
p
an

 (
s)

Network Load (%)

Tmax

CASSIA-INT

CASSIA-RR

Random

Round Robin

(c) S2:Makespan.

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60

E
x
e
c
u
ti

o
n
 T

im
e
 (

s)

Network Load (%)

CASSIA-INT

CASSIA-RR

Random

Round Robin

(d) S2:Execution Time.

 128

 256

 512

 1024

 2048

 0 20 40 60

M
ak

es
p
an

 (
s)

Network Load (%)

Tmax

CASSIA-INT

CASSIA-RR

Random

Round Robin

(e) S3:Makespan.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60

E
x
e
c
u
ti

o
n
 T

im
e
 (

s)

Network Load (%)

CASSIA-INT

CASSIA-RR

Random

Round Robin

(f) S3:Execution Time.

Figure 5.7: Makespan and Execution Time of the VSOT application for selected scenarios.
S1:n=36, S2:n=108, and S3:n=180.

78

Chapter 6

Multi-objective QoS-aware task

scheduling in the cloud-fog continuum

In the cloud-fog environment, the heterogeneity of applications’ Quality of Service (QoS)

requirements and the capacities of the devices impact on the scheduling decisions that

ensure that applications will finish their execution at most at their required deadlines.

Moreover, in task scheduling, the minimization of the makespan and processing cost con-

stitutes conflicting objectives. It is also widely known that scheduling multi-task work-

flows on a distributed platform is an NP-hard problem. The problem becomes even more

complicated when the dependencies of tasks have to be taken into account. To address

these issues, in this chapter, we propose three multi-objective task scheduling algorithms

for the cloud-fog continuum that minimize both the makespan and the processing cost of

the workflow, considering the QoS requirements of the applications. The system model

adopted in this chapter is the same as that adhered to in Chapter 5. We begin by re-

viewing relevant solutions in multi-objective task scheduling in Fog computing, Cloud

computing, and the Cloud-Fog continuum (Section 6.1). We, then, present the first two

multi-objective schedulers, one based on integer linear programming and the other based

on approximation algorithms (Section 6.2). Next, we describe the third multi-objective

scheduler, using a reinforcement learning-based algorithm (Section 6.3). Finally, we eval-

uate the performance of the three proposed scheduling algorithms (Section 6.4).

6.1 Literature review

Diverse studies have investigated the multi-objective task scheduling problem in different

domains: cloud computing [10, 29, 46, 53, 85, 86], fog computing [5, 78], and more recently,

the cloud-fog continuum [40]. Table 6.1 summarizes the previously mentioned works,

which are also described below.

79

Table 6.1: Characteristics of multi-objective scheduling solutions in Cloud, Fog and Cloud-
Fog systems.

Paper
Network

Domain
Multi-objective

optimization problem
Approach

Gao et al. [29] Cloud

Optimize the

makespan and eco-

nomic cost.

An hybrid algorithm

combining genetic al-

gorithm, artificial bee

colony optimization and

decoding heuristic.

Liu et al. [53] Mobile cloud

Optimize total cost,

mean load, and the

deadline-constraint

meeting rate.

A heterogeneous earliest

finish time (HEFT) using

technique for order pref-

erence.

Alsadie [10] Cloud

Optimize energy us-

age, makespan and

cost.

A metaheuristic frame-

work for dynamic virtual

machine allocation using

NSGA-II algorithm.

Jiahao et al. [46] Cloud

Minimize the execu-

tion time and optimize

load balancing.

A workflow scheduling

algorithm based on Rein-

forcement Learning (Q-

learning).

Zuo et al. [86] Cloud

Optimize resource uti-

lization according to

deadline and cost con-

straints.

Combine two single-

objective scheduling

approaches with an

entropy optimization

model to establish a

multi-objective schedul-

ing algorithm based on

ant colony optimization.

Zhu et al. [85] Cloud
Optimize the

makespan and cost.

An Evolutionary Multi-

objective Optimization

(EMO)-based algorithm.

Yang et al. [78] Fog

Optimize the execu-

tion time and the re-

source cost.

An algorithm based on

the adaptive neighbor-

hood method.

Abdel-Basset

et al. [5]
Fog

Reduce the makespan

and the carbon diox-

ide emission rate.

An hybrid approach

based on the marine

predators’ algorithm

integrated with the

polynomial mutation.

Continued on next page

80

Table 6.1: (Continued from previous page)

Paper
Network

Domain
Multi-objective

optimization problem
Approach

Ali et al. [8] Cloud-Fog

Minimize both the

makespan and total

costs.

Discrete Non-dominated

Sorting Genetic Algo-

rithm II (DNSGA-II).

Hoseiny

et al.[40]
Cloud-Fog

Optimize total com-

putation time, energy

consumption, and the

percentage of tasks

completed before their

deadline.

A priority-aware genetic

algorithm, PGA.

This thesis Cloud-fog

Minimize the

makespan and the

processing cost.

Three task scheduling

approaches based on ILP,

approximative, and RL

algorithms, considering

the QoS requirements of

the application.

Gao et al. [29] and Zhu et al. [85] aim at minimizing both the makespan and cost.

To achieve this goal, authors in [29] propose a hybrid algorithm combining genetic algo-

rithm, artificial bee colony optimization and decoding heuristic for scheduling scientific

workflows over the available cloud resources, offering a limited amount of instances and

a flexible combination of instance types. On the other hand, in [85], authors propose

an Evolutionary Multi-objective Optimization (EMO) algorithm to solve the workflow

scheduling problem on an Infrastructure as a Service (IaaS) platform.

Liu et al. [53] present HEFT-T, an algorithm that combines HEFT algorithm with

TOPSIS method to minimize both total cost and mean load in mobile cloud computing.

Alsadie [10] present a metaheuristic framework called MDVMA for optimizing multiple

conflicting objectives like energy usage, makespan, and cost using NSGA-II algorithm.

Jiahao et al. [46] implement a Q-learning algorithm to minimize the task scheduling

time and optimize load balancing.

Zuo et al. [86] propose MOSACO, an algorithm based on ant colony optimization

employed to minimize task completion times and costs using time-first and cost-first single-

objective optimization strategies, respectively, and to maximize user quality of service and

the profit of resource providers using an entropy optimization model.

Yang et al. [78] propose FOG-AMOSM, an adaptive neighborhood-based algorithm

that aims at optimizing the total execution time and costs.

Abdel-Basset et al. [5] introduce a nature-inspired metaheuristic algorithm that inte-

grates the marine predator’s algorithm with the polynomial mutation mechanism (MHMPA)

to minimize the makespan and carbon dioxide emission ratio.

Ali et al. [8] employ an optimization model based on a Discrete Non-dominated Sorting

Genetic Algorithm II (DNSGA-II) to minimize both the makespan and total costs.

81

Hoseiny et al. [40] propose a priority-aware genetic algorithm, PGA, to optimize total

computation time jointly, energy consumption, and the percentage of tasks completed

before their deadline.

In this chapter, we propose three multi-objective task scheduling algorithms for the

cloud-fog continuum, that minimize both the makespan and processing cost of the work-

flow, considering the QoS requirements of the applications. No previous work had ever

addressed the multi-objective scheduling problem considering the diversity of the QoS

requirements of applications running on the cloud-fog continuum. The FLAMSKE-INT

algorithm is based on integer linear programming, FLAMSKE-RR implements an ap-

proximation to the exact solution given by FLAMSKE-INT, and FLAMSKE-RL is a

reinforcement learning-based algorithm. Numerical results suggest that the FLAMSKE-

RL overperforms both FLAMSKE-INT and FLAMSKE-RR in terms of optimality of

scheduling and makespan, especially under network loads ranging from 60% to 95%, and

yet keeping the execution times short.

6.2 Multi-objective task scheduling approaches based

on classical optimization

This section describes FLAMSKE-INT and FLAMSKE-RR, two task schedulers based on

integer linear programming designed to minimize the makespan and cost of a schedule.

FLAMSKE-INT and FLAMSKE-RR are the multi-objective versions of the CASSIA-INT

and CASSIA-RR algorithms presented in the previous chapter. Although the problem

formulation provided below involves much of the information introduced in Section 5.3,

we wanted to display the complete problem-solving analysis to help the reader follow this

section.

The problem formulation considers that application tasks are executed one at a time.

It is also assumed that when a task arrives at the processing host, the virtual machines

(VMs), where tasks will run, are already activated.

The schedulers receive as input information about the availability of both process-

ing elements on the fog and in the cloud and network links, the CoS of the application,

and a DAG of the workflow specifying processing, RAM, storage, and communication de-

mands of the application tasks. The following notation is used to represent an application

composed of tasks and dependencies:

• m: number of tasks (m ∈ N),

• Ij: processing demand of jth task, expressed as the number of instructions to be

processed (Ij ∈ R+),

• Mj: RAM demand of jth task (Mj ∈ R+),

• Sj: storage demand of jth task, expressed as the number of data units required by the

task (Sj ∈ R+),

• Bi,j: number of data units transmitted between the i task and the j task (Bi,j ∈ R+),

82

The cloud-fog topology is represented by the following notation:

• n: number of hosts (n ∈ N),

• o: task scheduler,

• Rk: available RAM capacity of the kth host,

• Dk: available storage capacity of the kth host,

• kr: fastest processing node (kr ∈ V
′

H),

• ¶(k): set of processing elements linked to the kth processing element in the network,

including the processing element k,

• TBk,h: time for transmitting a data unit on the link connecting the kth processing

element and the hth processing element (TBk,h ∈ R+),

• TSk: time for transmitting a data unit on the link connecting the scheduler and the

host k (TSk ∈ R+),

• TIk: the time the kth host takes to execute a single instruction (TIk ∈ R+),

• Ck: processing cost of the host k,

• Buser: user budget.

Moreover, three parameters are computed for each task. The first parameter, Pj,k, is

the processing time of the task j on the host k, expressed as

Pj,k = IjTIk

The second parameter, Cij, is the time taken for data transfer between two subsequent

tasks i and j of the DAG, hosted, respectively, on the processing elements h and k.

Cij = BijTBhk

The third parameter, Lj,k, is the sum of the transmission delay, dtransj,k , and the

propagation delay, dpropj,k . The transmission delay of all data of a task is computed by

dtransj,k = SjTSk

The propagation delay between the scheduler o and the host k, is given by the ratio

between the distance between the two hosts divided by the propagation speed of the link,

É.

dpropo,k = do,k/É

Both transmission and propagation delays are considered from nodes on Fog layer 1

to nodes on Fog layer 1, Fog layer 2, on the cloud, or to processing elements in isolated

hosts.

83

Moreover, time is discretized and defined as T = {1, ..., Tmax}, where Tmax is the time

that the fastest host in V
′

H would take to execute the tasks of the application serially.

Tmax is calculated by,

Tmax = TSkr

m−1
∑

j=0

Sj +m
(

dpropo,kr
)

+ TIkr

m−1
∑

j=0

Ij

+max [Bi,jTBh,k] (m− 1) ;

where,

TIkr = min
(

TI
k|k∈V

′

H

)

The solution for the integer linear program is given by the value of the decision variable

xj,t,k which is 1 if the jth task should be processed at time t on the host k. The integer

linear programming problem is formulated as follows:

Minimize

Cmax

Cproc =
∑

t∈T

∑

j∈VD

∑

k∈V
′

H

(CkPj,k)xj,t,k

Subject to

∑

t∈T

∑

k∈V
′

H

xj,t,k = 1, ∀j ∈ VD; (6.1)

∑

t∈T

(t+ Lj,k + Pj,k)xj,t,k ⩽ Cmax,

∀j ∈ VD, k ∈ V
′

H ;

(6.2)

∑

j∈VD

t+Pj,k−1
∑

s=t

xj,s,k ⩽ 1, ∀k ∈ V
′

H , t ∈ T,

where t ⩽ Tmax − Pj,k;

(6.3)

t
∑

s=1

xj,s,k ⩽
∑

h∈¶(k)

t−Li,h−Pi,h−Cij
∑

s=1

xi,s,h,

∀j ∈ VD, k ∈ V
′

H , ij ∈ ED, t ∈ T ;

(6.4)

84

∑

t∈T

∑

j∈VD

Mjxj,t,k ⩽ Rk, ∀k ∈ V
′

H ; (6.5)

∑

t∈T

∑

j∈VD

Sjxj,t,k ⩽ Dk, ∀k ∈ V
′

H ; (6.6)

xj,t,k ∈ {0, 1},

∀j ∈ VD, k ∈ V
′

H , t ∈ T ;
(6.7)

Cproc ⩽ Buser; (6.8)

where Cmax and Cproc represent two conflicting objectives, i.e. the makespan and the

processing cost, respectively.

The objective is to find a schedule for VD on V
′

H that minimizes both Cmax and Cproc.

Constraint (6.1) establishes that each task (j) must be executed at once on a single host k.

Constraint (6.2) ensures that the makespan is at least the longest completion time of the

last operation of all tasks. Constraint (6.3) establishes that there is at most one task in

execution on any host at any given time. Constraint (6.4) establishes that the execution of

the jth task cannot start until all its predecessor tasks have been completed and the data

required by the jth task have been transferred. Constraint (6.5) determines that the RAM

occupied by the tasks processed on host k should not exceed its available RAM capacity.

Constraint (6.6) establishes that the total amount of data occupied by tasks processed on

host k should not exceed its available storage space capacity. Constraint (6.7) defines the

domain for the variable xj,t,k. Constraint (6.8) determines that the processing cost of the

application must be lower than the user’s budget.

The FLAMSKE-INT implements the integer linear program described above, while

the FLAMSKE-RR applies the randomized rounding relaxation technique to reduce the

execution time to produce a solution without significant loss of the quality of the schedule.

6.2.1 The FLAMSKE-INT scheduler

The FLAMSKE-INT scheduler is presented in Algorithm 6.1. The multi-objective integer

linear program returns an exact schedule that gives the mapping of tasks on hosts. Integer

programming is classified as an NP-complete problem. In addition, the time taken by the

optimizer to solve the MOILP problem dominates the computational complexity of the

FLAMSKE-INT scheduler.

6.2.2 The FLAMSKE-RR scheduler

The scheduling problem is an NP-Complete problem [65]. Techniques such as approxi-

mation algorithms provide solutions that guarantee solutions close to the optimum [14].

85

Algorithm 6.1: FLAMSKE-INT scheduler

Input : MOILP: Multi-objective integer linear program formulation.
Output: Schedule VD on V

′

H along with the schedule of the necessary hosts
k ∈ V

′

H .

1 Solve the MOILP.

2 Let X be the solution schedule VD on V
′

H , where X = Xj.k and

Xj.k =
∑

t∈T xj,t,k, ∀j ∈ VD, k ∈ V
′

H

3 Return the schedule.

The FLAMSKE-RR scheduler implements an approximation algorithm called Random-

ized Rounding, presented in Algorithm 6.2. First, the integer linear program is executed

with the relaxation of the decision variables to turn the integer program into a linear pro-

gram. The relaxation of the discrete time formulation consists of replacing the set {0,1} in

constraint (7) by the interval [0,1]. The values found when solving this linear formulation

represent the probability values of each task to be executed on a host. Algorithm 6.2

is executed P times, and the schedule with the shortest makespan is chosen. P must

be defined in order to increase the chances of obtaining a good schedule. The execution

time of the FLAMSKE-RR scheduler increases with the value of P. Algorithm 6.2 runs in

O(³P + P · (|VD| · |V
′

H |+ |ED|+ |V
′

H |)), where ³P represents the time complexity to set

each variable of the linear program, Xj,k, which is at least O(|VD| · |V
′

H |).

Algorithm 6.2: FLAMSKE-RR scheduler

Input : MOILP: Multi-objective integer linear program formulation.
P: Number of drawings.

Output: Schedule of VD in V
′

H along with the schedule of the necessary hosts
k ∈ V

′

H .

1 Execute the MOILP relaxed as a linear program (LP).

2 Let X be the solution schedule of VD in V
′

H for the LP, where X = Xj.k

3 for P times do
4 for each task j ∈ VD do
5 Let Xj.k be the probability of mapping the task j on the host k, select a

host at random where the task j should be executed, based on the
previous mapping probability.

6 Add the task selected to a provisional list of tasks to be executed.

7 if the provisional list meets the precedent constraint then
8 Add the provisional list to the final list of schedules if it doesn’t already

exist

9 Keep the provisional list in the final list producing the schedule that jointly
minimizes the makespan and the processing cost.

10 Return the schedule.

86

6.3 Multi-objective task scheduling approaches based

on reinforcement learning

In Reinforcement learning (RL), an agent learns from its interactions with an environment

to learn a policy that obtains the highest possible discounted cumulative reward intake.

6.3.1 Reinforcement Learning Agent

The RL agent uses the Q-learning technique to define where the application tasks should

be processed according to the QoS requirements of the application. Q-learning is a model-

free reinforcement learning method that updates the Q-value function after each iteration

with the environment without estimating a model.

The cloud-fog continuum was modeled using a Markov Decision Process (MDP), con-

sisting of the following elements:

• The state space S contains all possible states that the cloud-fog continuum can ex-

perience, where st ∈ S is the state of the environment at time-step t. We define each

state as a 3-tuple: s=(network load, class of service, number of network hosts). The

cardinality of the state space is |S = {si}| ≡ {l × c × n} where l is the number of

loads taken into consideration for assessing the network utilization, c is the number

of classes of service supported by the network, and n is the number of network hosts.

• The action space A, including all available actions that can be taken given a state s

∈ S, where at ∈ A is the action executed by the agent at time-step t. For each state

st ∈ S, the RL-agent can take one action that conducts the transition to another state

sj ∈ S. The number of possible actions for a particular state si, is the number of

processing layers, (PLR), where the application can be scheduled according to Table

3.3. The cardinality of A is |A| ≡
∑

si∈S
PLR(si).

• A reward function R(st, at) gives the expected immediate reward obtained by exe-

cuting action a in state s. The reward for the agent is dependent on the makespan,

the processing cost of the workflow, which are the objectives to be minimized in our

problem, as well as the compliance with the QoS requirements of the application. For

each action at that results in the next state st, we give a reward R(st, at) according

to the weighted fitness value function R defined as

R = [É/(m(St+1))] + [(1− É)/c(St+1)] (6.9)

where É determines the degree of contribution of each goal, and m(St+1) and c(St+1)

represent the makespan and the processing cost after the current state St is transferred

to the state St+1.

If the processing layer, (PLS), chosen by the action at, corresponds to a processing

layer (PLR) defined for the CoS of the application that is being scheduled, we give a

positive reward R; otherwise, we give a penalty with the same R value.

87

• A strategy to balance exploitation and exploration to choose the actions. To obtain

such balance, we use the ϵ-greedy strategy in which ϵ denotes the exploration rate.

With ϵ = 1, the agent always takes random actions for maximum exploration and,

with ϵ = 0, the agent always follows the currently known optimal policy with no

random actions. Initially, we set the exploration rate to 1, so that the RL agent

gets to explore the state space, and as it learns more about the environment, the ϵ is

reduced so that the likelihood of exploration becomes less probable.

• A discount factor µ, with 0 ≤ µ < 1, gives more importance to immediate rewards

compared to rewards obtained in the future.

• The Optimal policy of the MDP, with optimal being a maximized expected sum of

rewards. The Q-value function depends on the selection of action in the state. Given

the agent in state st and selecting action at, the Q-value function is expected to move

to the best state and gain to maximize the total expected reward in the environment.

The Q-value for the next state-action pair (st+1, at+1) at time t+1 can be calculated

by:

Qt+1(st, at) = (1− ³)Q(st, at) + ³[Rt + µmaxa+1Q(st+1, at+1)] (6.10)

where ³ is the learning rate.

Figure 6.1 illustrates the join operation between the RL-agent and the cloud-fog con-

tinuum for multi-objective task scheduling. Initially, at time t, the environment is in state

St. Then, the agent observes the current state and selects action At. After, the environ-

ment transitions to state St+1 and grants the agent reward Rt+1. This process then starts

over for the next time step, t+ 1.

6.3.2 The FLAMSKE-RL scheduler

Due to the dynamism of the cloud-fog continuum, as well as the heterogeneity of both QoS

requirements and the capacity of the processing devices, each state of the system requires

multiple features to be represented. We split the RL solution to the multi-objective

scheduling problem into two steps to obtain a low-dimensional representation of a state

in the cloud-fog continuum,. The first, described in Algorithm 6.3, implements a Q-

learning algorithm that finds the most suitable layer to process the application according

to its QoS requirements. The second described in Algorithm 6.4, presents an exhaustive

search algorithm that defines a scheduling plan that minimizes both the makespan and

the processing cost of the application, using the hosts belonging to the layer chosen by

the Q-learning algorithm in the first phase of FLAMSKE-RL.

The worst-case complexity of Algorithm 6.3 is derived next.

Lemma 1. In Q-learning algorithms with a state space topology with a linear upper action

bound b ∈ ℵ0 ⇐⇒ e ≤ bn for all n ∈ ℵ0, where e is the cardinality of the action space

and n the cardinality of the state space, the worst-case complexity is O(n2)

88

Figure 6.1: RL-based multi-objective task scheduling for the cloud-fog continuum.

Proof. see Page 103 in [48] ■

Theorem 1. The worst-case complexity of Algorithm 6.3 is O(S2)

Proof. PLR(si) ≤ S − 1, for S ∈ ℵ0 =⇒ |A| ≤ S2 ■

The worst-case complexity of Algorithm 6.4 is O(m2n2).

6.4 Performance evaluation

This section assesses the performance of the FLAMSKE-INT, FLAMSKE-RR, and

FLAMSKE-RL schedulers. Three metrics were evaluated, the makespan of the appli-

cation when scheduled with one of the proposed schedulers, the processing cost of the

schedule, and the execution time taken by the scheduler to give the schedule.

6.4.1 Simulation settings

The cloud-fog continuum was represented by a graph that describes the topology of the

network. The topologies of the graphs are generated using the Barabási-Albert model

with the same configuration parameters used in Table 5.4.

89

Algorithm 6.3: FLAMSKE-RL (Q-learning phase)

Input : Total number of learning episodes n, maximum number of steps per
episode s, learning rate ³, discount rate µ, exploration rate: ε,
maximum exploration rate maxε, minimum exploration rate minε,
exploration decay rate ¼, weighting factor between makespan and
processing cost Ω, set of application workflow graphs Apps, set of
topologies graphs Topos, all pair (app, topo) SList

Output: Ã ≈ Ã∗
1 for each (app,topo) ∈ SList do
2 Initialize Q(s, a) = 0, ∀s ∈ S , ∀a ∈ A ;
3 for each episode do
4 Initialize the starting state St;
5 for each time step do
6 Select At for St with policy derived from Q using ε-greedy exploration

and exploitation method;
7 Carry out action A;
8 Observe reward Rt+1 and next state St+1;
9 Rt+1 ← R(St, At) ;

10 Update Qt+1 by (6.10) ;
11 St ← St+1

12 Return Ã(s) = arg maxaQ(s, a)

Algorithm 6.4: FLAMSKE-RL (Exhaustive search phase)

Input : DAG with a set of tasks VD; Topology graph VH ; Q-value table
resulting from FLAMSKE-RL in the Q-learning phase.

Output: Multi-objective schedule of VD in V
′

H along with the schedule of the
necessary hosts k ∈ V

′

H .
1 Set the current state of the environment by using the current network load, the

CoS of the application to be scheduled, and the number of available processing
hosts

2 Select the processing layer where the application should be scheduled by choosing
the action with the highest value for the current state based on the Q-Table.

3 for each task i ∈ VD do
4 for each task j ∈ VD do
5 if dependency between i and j exists then
6 for each host k ∈ V

′

H do
7 for each host h ∈ V

′

H do
8 if data transfer link between k and h exists then
9 Compute the finishing time of ith task on host h considering

the time required to transfer data to the jth task.

10 Consider the schedule if it produces the shortest execution time.
11 Compute the cost of the schedule that produces the shortest execution time.
12 Select the shortest and least expensive schedule.
13 Return the schedule.

90

Figure 6.2: The convergence of the Q-learning phase of the FLAMSKE-RL scheduler.

We conduct experiments using workflow applications with 10 tasks for applications

with seven different CoS. Characteristic values of each application task such as processing

capacity, RAM memory, storage, and data to be transferred to the next task were assigned

by employing a uniform probability distribution, within the intervals specified for each

CoS in Table 6.2.

For each one of the seven CoS proposed in this thesis, different scenarios were generated

by varying the number of hosts in the network and the network load. The number of

hosts was 36, 72, 108, and 180, and the mean resource and bandwidth utilization were

0%, 20%, 40%, 60%, 80% and 95%. The utilization level of each node and link were

randomly determined so that an average target utilization could be achieved.

Different values of P were tested for the FLAMSKE-RR; a value of 10,000 is recom-

mended since no further improvement in results can be obtained by using a larger value.

Also, we set the user budget to US$200.

Moreover, links with 2 Gbps, 1 Gbps, and 500 Mbps of bandwidth connect the sched-

uler with the Fog layer 1, the Fog layer 2, and the cloud, respectively. Two other 10 Gbps

links connect the Fog layer 1 to the Fog layer 2, as well as connect the fog layer 2 to the

cloud.

For the Q-learning step of the FLAMSKE-RL algorithm, we choose ³ = 0.001, µ =

0.99, maxϵ = 1, minϵ = 0.01, ¼ = 0.001, and É = 0.5. We trained the Q-learning

algorithm during 7000 episodes until the required convergence was achieved, as evident

from Figure 6.2.

The two linear programming-based schedulers were implemented in Java language

using the IBM ILOG CPLEX Optimization Studio V12.10.0 to solve the ILP multi-

objective model and its relaxation. The reinforcement learning scheduler was implemented

by using Python 3.6. Algorithm 6.3 was trained on a GPU of Google Colaboratory. The

other programs were executed on an AWS R5 instance Memory Optimized Intel Xeon 3.1

GHz EBS-Only with 20 GiB storage, 128 GB of RAM, and CentOS 7.0 operating system.

Table 6.3 details information about processing capacity, RAM memory, storage, and

pricing of the processing hosts depending on which layer they are located.

91

Table 6.2: Task demands for each class of service.

CoS
Processing
(MIPS)

RAM
(GB)

Storage
(GB)

File Transfer
(GB)

Isolated
[100-350] [0.1-0.5] [1-3] [0.1-0.3]Real-time

Interactive
Conversational

[100-550] [0.1-0.7] [1-7] [0.1-0.5]
Streaming
CPU-Bound [200-550] [0.2-0.7] [2-7] [0.2-0.5]
Best-Effort [100-550] [0.1-0.7] [1-7] [0.1-0.5]

Table 6.3: Characteristics of the processing hosts distributed along the layers of the
architectural model.

Device’s
Location

Processing
Capacity
(MIPS)

RAM
(GB)

Storage
(GB)

Processing
Cost

(USD/h)
Fog layer 1 1400 2.8 28 0.0510
Fog layer 2 /
Isolated fog nodes

2800 4.2 42 0.1020

Cloud 3600 8.4 84 0.4080

6.4.2 Simulation results

In this subsection, we compare the makespan and the processing cost, generated by the

three multi-objective task schedulers in each of the experiments explained in the previous

subsection, as well as the execution time required by the schedulers to produce them.

All figures presented in this subsection correspond to mean values with a 95% confidence

interval.

Although we conducted experiments with seven different classes of service, we choose

to show figures of the most representative class, i.e. “streaming” (CoS=5), to explain key

results obtained with the rest of the classes. Results obtained with the rest of CoS are

shown in Appendix A. Specific performance details observed for other classes are also

further discussed throughout this section.

Figure 6.3 show the makespan for scenarios with 36, 72 and 108 nodes. In these figures,

Tmax corresponds to the time taken to execute all tasks in sequence. As the network load

increases, the makespan of the application also increases.

Figure 6.3: Makespan for CoS=5 with 36, 72 and 108 nodes.

92

Figure 6.4 show the processing cost for scenarios with 36, 72 and 108 nodes. In these

figures, Cost_max corresponds to the processing cost of executing all tasks in sequence.

The makespan and processing cost values generated by FLAMSKE-INT, FLAMSKE-

RR, and FLAMSKE-RL are very close, and lower than their maximum reference values

Tmax and Costmax.

Figure 6.4: Processing cost for CoS=5 with 36, 72 and 108 nodes.

In the task scheduling of resource-hungry applications, such as the CPU-Bound class

(CoS=6), FLAMSKE-INT and FLAMSKE-RR obtained solutions only for the scenario

with 36 nodes running at no load. For the other classes, the largest network load for

which FLAMSKE-INT and FLAMSKE-RR obtained optimal solutions was 60%. In con-

trast, FLAMSKE-RL obtained optimal solutions for all classes of service regardless of the

number of nodes or the load percentage present in the network.

Figure 6.5 illustrates the execution time for scenarios with 36, 72 and 108 nodes.

These figures show that when the number of network hosts increases, the FLAMSKE-

INT scheduler needs more time to generate a schedule, while the time interval required

by the FLAMSKE-RR and FLAMSKE-RL algorithms has minimal variation.

All the characteristics described above make the FLAMSKE-RL an ideal task scheduler

to be implemented in cloud-fog environments dealing with a wide spectrum of applications,

including those with latency constraints.

Figure 6.5: Execution time CoS=5 with 36, 72 and 108 nodes.

93

Chapter 7

Conclusion

This chapter highlights the main contributions and pointing out possible directions for

conducting further research. Section 7.1 presents the summary of the thesis, revisits our

contributions, and answers the proposed research questions. Then, Section 7.2 presents

the future research directions.

7.1 Summary and contributions

Quality of service provisioning is the fundamental feature for the provisioning of applica-

tions in fog computing networks, since it enables administrators to prioritize traffic and

resources to guarantee the compliance of the QoS requirements of each type of application,

in particular those with delay constraints.

The first step towards ensuring QoS in fog computing is to understand the demands

of applications arriving at the edge of the network. To this end, the traffic must be

classified by efficient approaches that discriminate QoS requirements, allowing meaningful

identification, and consequently, classification of the applications.

Another challenging process in fog computing is the processing of application tasks.

In this operation, processing resources available along to the C2T continuum must be

efficiently used, and scheduling play a fundamental role in this efficiency. Application

scheduling should be able to decide on which resource each application task should run,

given the demands of the applications and resource capacities, even in the presence of con-

flictant scheduling objectives, such as the minimization of both makespan and processing

cost.

On other hand, although in the last decades artificial intelligence techniques have

becoming increasingly versatile and powerful, to the point of permeating various areas

of knowledge, their implementation to solve classification and optimization problems in

cloud-fog environments, is still an emerging topic. One obstacle is the lack of real-world

datasets.

In this thesis, we addressed the above challenges by studying, formulating, and devel-

oping QoS provisioning mechanisms that combine service differentiation and task schedul-

ing, with mathematical optimization and artificial intelligence techniques to ensure com-

pliance with the QoS requirements of the applications arriving at the fog network for

94

processing. To achieve this objective, we had to answer four research questions enumer-

ated in Section 1.2, which are referred below for discussion.

• Research question 1: How can a fog computing network provide different levels of

service for selected applications according to their QoS requirements?

To answer this question, we first reviewed the literature in Chapter 3, pinpointed

feasible applications to be empowered or developed with the emergence of fog com-

puting. We listed the most relevant QoS requirements in the fog computing, namely

bandwidth, delay sensitivity, packet loss, reliability, availability, security, data loca-

tion, mobility support and, scalability. After that, we grouped applications running

on fog into seven classes with distinct set of requirements. The classes defined were

mission-critical, real-time, interactive, conversational, streaming, CPU-bound and,

best-effort. In addition, we provide a mapping of the proposed classes of service and

the layered architecture of the cloud-fog continuum.

The proposed classes of service can be used to prioritize network traffic and processing

demands by schedulers and resource allocation mechanisms. Prioritization will sup-

port the processing of delay sensitive applications, moving non real-time applications

farther to the edge. By promoting load balancing among the layers of a fog, it is most

likely that the fog will be able to support a higher number of requests, contributing

to the scalability of the Fog. Moreover, the definition of Class of Service can facilitate

the assignment of functionalities to different fog layers for the processing of typical

demands of applications in each Class of Service. In addition, business models will

largely benefit from the definition of Class of Services to fog computing.

• Research question 2: How can the fog computing network identify the class of

service an arriving application in search of processing belongs to?

This question was addressed in Chapter 4 by using Machine Learning (ML) classi-

fication algorithms as a tool for QoS-aware resource management in fog computing.

We used the CoSs defined in Chapter 3. First, we built a synthetic database of fog

applications from the definition of the intervals that each QoS requirement relevant

for each class. Then, the dataset was pre-processed to convert prior useless data into

new data that can be used by ML techniques. Next, a set of popular ML algorithms

was selected and trained and tested, using the examples in the synthetic database

to measure the degree of accuracy and efficiency in their prediction of the CoS an

application belongs to. For this, the synthetic database was contaminated with three

different levels of attribute noise. For each noise level, the classifier conducted training

and testing to measure the degree of robustness.

This ML-based classification methodology allows the implementation of CoS to man-

age the traffic in Fogs, which constitutes a first step in the definition of QoS pro-

visioning mechanisms in the C2T continuum. Moreover, the integration of IoT, Fog

Computing, and Cloud Computing requires efficient management strategies capable of

facilitating resource management tasks such as scheduling, allocation, and federation.

The classification of fog applications resolves all these issues; besides, classifying Fog

Computing applications can facilitate the decision-making process for fog scheduler.

95

In addition, the proposed methodology can be easily modified for the classification of

applications in networked systems.

• Research question 3: How can the network scheduler decide the most suitable loca-

tion for processing an application, whether on a the fog layer or in the cloud, to meet

the QoS requirements of the application and minimize the makespan?

To decide the locality where application tasks should run, that is on the fog (e.g., for

those tasks that belongs to mission-critical or delay sensitive applications), the cloud

(e.g., for those tasks that require massive storage and heavy-duty computation), in

Chapter 5, we introduced two scheduling algorithms based on an ILP formulation:

an optimal one, CASSIA-INT, and an approximate one, CASSIA-RR. The schedulers

differ from previous proposals by the consideration of the CoS of the application to

make decisions about the most suitable location for processing an application. Both

schedulers, in addition, seek a schedule with the smallest makespan.

The effectiveness and efficiency of these schedulers were demonstrated in different

scenarios, with different numbers of processing nodes, and utilization levels. The

CASSIA-INT and CASSIA-RR algorithms outperform traditional scheduling algo-

rithms such as Random and Round Robin in terms of makespan while not causing

QoS violations. Results obtained showed that for all scenarios, the makespan values

obtained from both schedulers were smaller than that of a serial execution. Further-

more, CASSIA-RR produces approximated results close to those given by CASSIA-

INT in a much shorter time, and its use is recommended for cloud-fog systems in

which fast decisions need to be made.

• Research question 4: Compared with integer linear programming and approximative

algorithms, can reinforcement learning be a promising technique for task scheduling in

the cloud-fog continuum to meet the QoS requirements of the application and minimize

both makespan and processing cost?

In Chapter 6, we studied the problem of multi-objective workflow scheduling in the

cloud-fog continuum. We model the multi-objective task scheduling problem as a

Markov Decision Process (MDP) theory, and made comparisons with different meth-

ods such as integer linear programming and approximative algorithms.

Numerical results showed that the Reinforcement Learning (RL) algorithm overper-

forms those based on classical optimization in terms of optimality of scheduling and

makespan, especially under extreme scenarios with network loads ranging from 60%

to 95%, yet keeping short execution times.

Unlike most other existing approaches, our multi-objective optimization models are

capable of seeking for a trade-off between makespan and processing cost without

prior experts’ knowledge, while meeting the QoS requirements of the application,

thus improving the performance of scheduling.

The management and operation of fogs present numerous challenges which call for in-

novative solutions. The interface and functionality assignment to fog layers should allow

96

efficient management and dynamic allocation of resources. Reliability schemes are neces-

sary to assure that fogs will continuously provide low latency, connectivity, and processing

even when failures occur. Moreover, self-adaptation and cognition in the management of

fogs need to be understood towards the deployment of autonomic fogs. The QoS provi-

sioning mechanisms introduced in this thesis can facilitate addressing all the challenges

that lay ahead, since they help in coping with the requirements of the applications under

limited availability of resources.

7.2 Future research directions

During the development of this research, ideas have emerged to advance the state-of-the-

art in fog computing. Such ideas are listed below, and may guide new research projects.

Quality of service differentiation for fog computing: In this thesis, we proposed

a set of classes of service for Fog Computing according to the QoS requirements of the

potential fog applications. Future work should focus on the implementation of classes of

service into existing devices of the fog computing architecture, to create self-adaptive and

cognitive network mechanisms, which are fundamental for the deployment of autonomic

fog systems in environments with limited availability of processing resources.

We also know that in the near term, improvements to existing fog applications and,

of course, new fog applications will emerge. For this reason, we recommend to validate

the intervals considered in the definition of each QoS requirement. It will probably be

necessary to add new QoS requirements, classes, or use cases to our CoS specification to

keep it up to date.

Machine learning-based QoS-aware classification of fog applications: To re-

move the burden of the analysis of the application requirements by the schedule, we

introduced the use of ML classification algorithms as a tool for QoS-aware resource man-

agement in fog computing. We used as a basis the set of CoS defined in Chapter 3 for fog

computing.

As future work, we envision the integration of an ML-based classification algorithm

into the fog network scheduler, thus enabling the network scheduler to prioritize processing

requests. It will also allow more delay sensitive demands to be satisfactorily fulfilled. We

also suggest the inclusion of other feature selection methods such as Relief-F, CFS, MCFS,

and the Student’s t-test in the pre-processing stage for future classification studies in the

context of fog computing. Moreover, we recommend a broad study on the distribution of

noise for data analysis oriented to parameters related to cloud, fog and edge applications

as well as network traffic.

Single-objective QoS-aware task scheduling in the cloud-fog continuum: In

Chapter 5, we present two schedulers based on integer linear programming, that schedule

tasks either in the cloud or on fog resources. The schedulers differ from existing ones by

the use of class of services to select the processing elements on which the tasks should

97

be executed. Numerical results evince that the proposed schedulers outperform tradi-

tional ones without causing violation of QoS requirements. Further investigations, can be

oriented to the integration of the CASSIA-INT and CASSIA-RR algorithms into the re-

source manager of a cloud-fog system. Further investigations can be oriented to integrate

the CASSIA-INT and CASSIA-RR algorithms into the resource manager of a cloud-fog

system. Also, it could be interesting to address the cross-layer application scheduling

by orchestrating the placement of application tasks along the processing layers of the

cloud-fog architectural model.

The proposed schedulers takes as input the information about the availability and

the demand of resources in the network. However, this information depends on multiple

sources of uncertainty, such as the medium used by IoT and end user devices to transmit

data, fluctuating resource availability derived from the continuous changes in the network

topology introduced by the mobility of IoT and end users, imprecise measurement tools,

and the inability to accurately estimate the true demand of applications with real-time

generated data.

Thus, vagueness in the estimation of available bandwidth can enlarge the makespan

of an application when tasks are scheduled by a deterministic scheduler, which leads to

increase in costs due to the need for leasing of processing power and additional power

consumption costs.

Accordingly, to assess the fog network performance in more realistic conditions, an

important question for future studies is to identify the main sources of uncertainty about

communication demands in fog, and propose resource management mechanisms to deal

with them.

Multi-objective QoS-aware task scheduling in the cloud-fog continuum: In

Chapter 6, we demonstrated the potential of RL algorithms to efficiently obtain an optimal

policy when the state space and action space are small. However, the multi-objective

scheduling problem in the cloud-fog context is more complex due to the heterogeneity of

both QoS requirements and the capacity of the processing devices, which usually require

large space for making an optimal decision. Moreover, although the RL mechanism makes

accurate scheduling decisions within the user budget, it takes a lot of time to reach an

optimal decision as it explores and gains knowledge about the entire system state. In

future work, we intend to implement a Deep Reinforcement Learning (DRL) methodology

for improving the performance and learning speed of the entire multi-objective scheduling

mechanism.

Another possible direction for future studies can be to include other optimization

objectives such as load balancing, power consumption, latency, and bandwidth utilization

in the multi-objective problem formulation.

98

Bibliography

[1] Aazam, M. and Huh, E. (2015a). Dynamic resource provisioning through Fog mi-

cro datacenter. In 2015 IEEE International Conference on Pervasive Computing and

Communication Workshops (PerCom Workshops), pages 105–110.

[2] Aazam, M. and Huh, E. N. (2015b). Fog Computing Micro Datacenter Based Dynamic

Resource Estimation and Pricing Model for IoT. In 2015 IEEE 29th International

Conference on Advanced Information Networking and Applications, pages 687–694.

[3] Aazam, M., St-Hilaire, M., Lung, C., and Lambadaris, I. (2016). Mefore: Qoe based

resource estimation at fog to enhance qos in iot. In 2016 23rd International Conference

on Telecommunications (ICT), pages 1–5.

[4] Aazam, M., St-Hilaire, M., Lung, C. H., and Lambadaris, I. (2016). PRE-Fog: IoT

trace based probabilistic resource estimation at Fog. In 2016 13th IEEE Annual Con-

sumer Communications Networking Conference (CCNC), pages 12–17.

[5] Abdel-Basset, M., Moustafa, N., Mohamed, R., Elkomy, O. M., and Abouhawwash, M.

(2021). Multi-Objective Task Scheduling Approach for Fog Computing. IEEE Access,

9:126988–127009.

[6] Agarwal, S., Yadav, S., and Yadav, A. (2016). An efficient architecture and algo-

rithm for resource provisioning in fog computing. International Journal of Information

Engineering and Electronic Business, 8:48–61.

[7] Alhamad, M., Dillon, T., and Chang, E. (2010). Conceptual sla framework for cloud

computing. In 4th IEEE International Conference on Digital Ecosystems and Tech-

nologies, pages 606–610.

[8] Ali, I. M., Sallam, K. M., Moustafa, N., Chakraborty, R., Ryan, M. J., and Choo,

K.-K. R. (2020). An automated task scheduling model using non-dominated sorting

genetic algorithm ii for fog-cloud systems. IEEE Transactions on Cloud Computing,

pages 1–1.

[9] Ali, N. A., Taha, A. M., and Hassanein, H. S. (2013). Quality of service in 3gpp r12

lte-advanced. IEEE Communications Magazine, 51(8):103–109.

[10] Alsadie, D. (2021). A Metaheuristic Framework for Dynamic Virtual Machine Allo-

cation With Optimized Task Scheduling in Cloud Data Centers. IEEE Access, 9:74218–

74233.

99

[11] Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks.

Science, 286(5439):509–512.

[12] Batista, D. M., Fonseca, N. L. S. d., Granelli, F., and Kliazovich, D. (2007). Self-

Adjusting Grid Networks. In 2007 IEEE International Conference on Communications,

pages 344–349.

[13] Bittencourt, L. F., Diaz-Montes, J., Buyya, R., Rana, O. F., and Parashar, M. (2017).

Mobility-Aware Application Scheduling in Fog Computing. IEEE Cloud Computing,

4(2):26–35.

[14] Bittencourt, L. F., Madeira, E. R. M., and da Fonseca, N. L. S. (2015). Resource

Management and Scheduling. In Cloud Services, Networking, and Management, pages

243–267. John Wiley & Sons, Inc. DOI: 10.1002/9781119042655.ch10.

[15] Bittencourt, L. F., Madeira, E. R. M., and Fonseca, N. L. S. D. (2012). Scheduling

in hybrid clouds. IEEE Communications Magazine, 50(9):42–47.

[16] Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog Computing and Its

Role in the Internet of Things. In Proceedings of the First Edition of the MCC Workshop

on Mobile Cloud Computing, MCC ’12, New York, NY, USA. ACM.

[17] Buttazzo, G. (2011). Hard Real-Time Computing Systems: Predictable Scheduling

Algorithms and Applications. Real-Time Systems Series. Springer US, 3 edition.

[18] Byers, C. C. (2017). Architectural Imperatives for Fog Computing: Use Cases, Re-

quirements, and Architectural Techniques for Fog-Enabled IoT Networks. IEEE Com-

munications Magazine, 55(8):14–20.

[19] Böhmer, M., Hecht, B., Schöning, J., Krüger, A., and Bauer, G. (2011). Falling

Asleep with Angry Birds, Facebook and Kindle: A Large Scale Study on Mobile Appli-

cation Usage. In Proceedings of the 13th International Conference on Human Computer

Interaction with Mobile Devices and Services, MobileHCI ’11, pages 47–56, New York,

NY, USA. ACM.

[20] Cai, D., Zhang, C., and He, X. (2010). Unsupervised Feature Selection for Multi-

cluster Data. In Proceedings of the 16th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’10, pages 333–342, New York, NY, USA.

ACM.

[21] Cardellini, V., Grassi, V., Presti, F. L., and Nardelli, M. (2015). On qos-aware

scheduling of data stream applications over fog computing infrastructures. In 2015

IEEE Symposium on Computers and Communication (ISCC), pages 271–276.

[22] Chekired, D. A., Khoukhi, L., and Mouftah, H. T. (2018). Industrial iot data schedul-

ing based on hierarchical fog computing: A key for enabling smart factory. IEEE Trans.

Industrial Informatics, 14(10):4590–4602.

100

[23] Chiang, M. and Zhang, T. (2016). Fog and IoT: An Overview of Research Opportu-

nities. IEEE Internet of Things Journal, 3(6):854–864.

[24] Cisco Systems, Inc. (2020). Cisco annual Internet report (2018—2023). White Paper.

[25] Deng, R., Lu, R., Lai, C., and Luan, T. H. (2015). Towards power consumption-delay

tradeoff by workload allocation in cloud-fog computing. In 2015 IEEE International

Conference on Communications (ICC), pages 3909–3914.

[26] Emeakaroha, V. C., Brandic, I., Maurer, M., and Dustdar, S. (2010). Low level

metrics to high level slas - lom2his framework: Bridging the gap between monitored

metrics and sla parameters in cloud environments. In 2010 International Conference

on High Performance Computing & Simulation, pages 48–54.

[27] Emeakaroha, V. C., Ferreto, T. C., Netto, M. A. S., Brandic, I., and De Rose, C.

A. F. (2012). Casvid: Application level monitoring for sla violation detection in clouds.

In 2012 IEEE 36th Annual Computer Software and Applications Conference, pages

499–508.

[28] Fonseca, N. L. S. d. and Boutaba, R. (2015). (Org.). Cloud Services, Networking,

and Management. 1. ed. Hoboken: John Wiley & Sons.

[29] Gao, Y., Zhang, S., and Zhou, J. (2019). A Hybrid Algorithm for Multi-Objective

Scientific Workflow Scheduling in IaaS Cloud. IEEE Access, 7:125783–125795.

[30] García, S., Luengo, J., and Herrera, F. (2015). Dealing with Noisy Data. In Data

Preprocessing in Data Mining, pages 107–145. Springer International Publishing, Cham.

[31] Garey, M. R. and Johnson, D. S. (1990). Computers and Intractability; A Guide to

the Theory of NP-Completeness. W. H. Freeman & Co., USA.

[32] Guevara, J. C., Bittencourt, L. F., and da Fonseca, N. L. S. (2017a). Class of service

in fog computing. In 2017 IEEE 9th Latin-American Conference on Communications

(LATINCOM), pages 1–6.

[33] Guevara, J. C., Bittencourt, L. F., and Fonseca, N. L. S. d. (2017b). Class of service

in fog computing. In 2017 IEEE 9th Latin-American Conference on Communications

(LATINCOM), pages 1–6.

[34] Guevara, J. C., Torres, R. d. S., and Fonseca, N. L. S. d. (2020). On the classification

of fog computing applications: A machine learning perspective. Journal of Network and

Computer Applications, 159:102596.

[35] Gupta, H., Dastjerdi, A. V., Ghosh, S. K., and Buyya, R. (2016). iFogSim: A Toolkit

for Modeling and Simulation of Resource Management Techniques in Internet of Things,

Edge and Fog Computing Environments. arXiv:1606.02007 [cs]. arXiv: 1606.02007.

[36] Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene Selection for Cancer

Classification using Support Vector Machines. Machine Learning, 46(1):389–422.

101

[37] Hao, Z., Novak, E., Yi, S., and Li, Q. (2017). Challenges and Software Architecture

for Fog Computing. IEEE Internet Computing, 21(2):44–53.

[38] He, X., Wang, K., Huang, H., Miyazaki, T., Wang, Y., and Sun, Y. (2018). Qoe-

driven joint resource allocation for content delivery in fog computing environment. In

2018 IEEE International Conference on Communications (ICC), pages 1–6.

[39] Hobfeld, T., Schatz, R., Varela, M., and Timmerer, C. (2012). Challenges of qoe

management for cloud applications. IEEE Communications Magazine, 50(4):28–36.

[40] Hoseiny, F., Azizi, S., Shojafar, M., Ahmadiazar, F., and Tafazolli, R. (2021). PGA:

A Priority-aware Genetic Algorithm for Task Scheduling in Heterogeneous Fog-Cloud

Computing. In IEEE INFOCOM WKSHPS 2021, pages 1–6.

[41] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-

dreetto, M., and Adam, H. (2017). MobileNets: Efficient Convolutional Neural Net-

works for Mobile Vision Applications. arXiv:1704.04861 [cs]. arXiv: 1704.04861.

[42] Huber, P., Wiley, J., and InterScience, W. (1981). Robust statistics. Wiley New York.

[43] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer,

K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5mb

model size. arXiv:1602.07360 [cs]. arXiv: 1602.07360.

[44] Intharawijitr, K., Iida, K., and Koga, H. (2016). Analysis of fog model considering

computing and communication latency in 5G cellular networks. In 2016 IEEE Interna-

tional Conference on Pervasive Computing and Communication Workshops (PerCom

Workshops), pages 1–4.

[45] Jain, R., Jain, R. K., and Jain (1991). The Art of Computer Systems Performance

Analysis: Techniques for Experimental Design, Measurement, Simulation, and Model-

ing. Wiley, New York, edição: 1 edition.

[46] Jiahao, W., Zhiping, P., Delong, C., Qirui, L., and Jieguang, H. (2018). A Multi-

object Optimization Cloud Workflow Scheduling Algorithm Based on Reinforcement

Learning. In Intelligent Computing Theories and Application, pages 550–559. Springer,

Cham.

[47] Khan, S., Parkinson, S., and Qin, Y. (2017). Fog computing security: a review of

current applications and security solutions. Journal of Cloud Computing, 6(1):19.

[48] Koenig, S. and Simmons, R. G. (1993). Complexity analysis of real-time reinforce-

ment learning. In Proceedings of the eleventh national conference on Artificial intelli-

gence, AAAI’93, pages 99–105, Washington, D.C. AAAI Press.

[49] Kohavi, R. (1995). A Study of Cross-validation and Bootstrap for Accuracy Estima-

tion and Model Selection. In Proceedings of the 14th International Joint Conference

on Artificial Intelligence - Volume 2, IJCAI’95, pages 1137–1143, San Francisco, CA,

USA. Morgan Kaufmann Publishers Inc.

102

[50] Kotb, Y., Al Ridhawi, I., Aloqaily, M., Baker, T., Jararweh, Y., and Tawfik, H.

(2019). Cloud-Based Multi-Agent Cooperation for IoT Devices Using Workflow-Nets.

Journal of Grid Computing.

[51] Kurose, J. F. and Ross, K. W. (2012). Computer Networking: A Top-Down Approach

(6th Edition). Pearson, 6th edition.

[52] Liu, H. and Motoda, H. (2007). Computational Methods of Feature Selection

(Chapman & Hall/Crc Data Mining and Knowledge Discovery Series). Chapman &

Hall/CRC.

[53] Liu, L., Fan, Q., and Buyya, R. (2018). A Deadline-Constrained Multi-Objective

Task Scheduling Algorithm in Mobile Cloud Environments. IEEE Access, 6:52982–

52996.

[54] Mahmud, R. and Buyya, R. (2016). Fog computing: A taxonomy, survey and future

directions. CoRR, abs/1611.05539.

[55] Mahmud, R., Srirama, S. N., Ramamohanarao, K., and Buyya, R. (2019). Quality

of experience (qoe)-aware placement of applications in fog computing environments.

Journal of Parallel and Distributed Computing, 132:190 – 203.

[56] MATLAB (2018). Choose Classifier Options - MATLAB & Simulink.

Available: https://www.mathworks.com/help/stats/choose-a-classifier.html [Accessed:

21/05/2018].

[57] McGregor, A., Hall, M., Lorier, P., and Brunskill, J. (2004). Flow Clustering Using

Machine Learning Techniques. In Barakat, C. and Pratt, I., editors, Passive and Active

Network Measurement, Lecture Notes in Computer Science, pages 205–214. Springer

Berlin Heidelberg.

[58] Medina, A., Lakhina, A., Matta, I., and Byers, J. (2001). BRITE: Universal Topology

Generation from a User’s Perspective. Technical report, Boston University, Boston, MA,

USA.

[59] Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H., Morrow, M. J., and Polakos,

P. A. (2018). A comprehensive survey on fog computing: State-of-the-art and research

challenges. IEEE Communications Surveys & Tutorials, 20(1):416–464.

[60] Naqa, I. E., Li, R., and Murphy, M. J., editors (2015). Machine Learning in Radiation

Oncology: Theory and Applications. Springer International Publishing.

[61] OpenFog (2017). OpenFog Reference Architecture: OpenFog Consortium. Available:

https://www.openfogconsortium.org/ra/ [Accessed: 24/05/2017].

[62] Oueis, J., Strinati, E. C., and Barbarossa, S. (2015). The Fog Balancing: Load

Distribution for Small Cell Cloud Computing. In 2015 IEEE 81st Vehicular Technology

Conference (VTC Spring), pages 1–6.

103

[63] Pearson, K. (1901). On lines and planes of closest fit to systems of points in space.

Philosophical Magazine, 2(11):559–572.

[64] Pham, X.-Q. and Huh, E.-N. (2016). Towards task scheduling in a cloud-fog comput-

ing system. In 2016 18th Asia-Pacific Network Operations and Management Symposium

(APNOMS), pages 1–4.

[65] Pinedo, M. L. (2012). Scheduling: Theory, Algorithms, and Systems. Springer-Verlag,

New York, 4 edition.

[66] Ren, Z., Lu, T., Wang, X., Guo, W., Liu, G., and Chang, S. (2020). Resource

scheduling for delay-sensitive application in three-layer fog-to-cloud architecture. Peer-

to-Peer Networking and Applications, 13(5):1474–1485.

[67] Roffo, G. (2016). Feature Selection Library (MATLAB Toolbox). arXiv:1607.01327

[cs]. arXiv: 1607.01327.

[68] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mo-

bileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv:1801.04381 [cs]. arXiv:

1801.04381.

[69] Shao, Y., Li, C., Fu, Z., Jia, L., and Luo, Y. (2019). Cost-effective replication

management and scheduling in edge computing. Journal of Network and Computer

Applications, 129:46 – 61.

[70] Skarlat, O., Nardelli, M., Schulte, S., and Dustdar, S. (2017). Towards qos-aware

fog service placement. In 2017 IEEE 1st International Conference on Fog and Edge

Computing (ICFEC), pages 89–96.

[71] Souza, V. B. C., Ramírez, W., Masip-Bruin, X., Marín-Tordera, E., Ren, G., and

Tashakor, G. (2016). Handling service allocation in combined Fog-cloud scenarios. In

2016 IEEE International Conference on Communications (ICC), pages 1–5.

[72] Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduction to Data Mining,

(First Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[73] Wang, K., Yin, H., Quan, W., and Min, G. (2018). Enabling Collaborative Edge

Computing for Software Defined Vehicular Networks. IEEE Network, 32(5):112–117.

[74] Wang, S., Li, K., Mei, J., Xiao, G., and Li, K. (2017a). A Reliability-aware Task

Scheduling Algorithm Based on Replication on Heterogeneous Computing Systems.

Journal of Grid Computing, 15(1):23–39.

[75] Wang, S., Urgaonkar, R., He, T., Chan, K., Zafer, M., and Leung, K. K. (2017b).

Dynamic service placement for mobile micro-clouds with predicted future costs. IEEE

Trans. Parallel Distrib. Syst., 28(4):1002–1016.

[76] Wang, Y., Liu, H., Zheng, W., Xia, Y., Li, Y., Chen, P., Guo, K., and Xie, H. (2019).

Multi-Objective Workflow Scheduling With Deep-Q-Network-Based Multi-Agent Rein-

forcement Learning. IEEE Access, 7:39974–39982.

104

[77] Wu, L., Garg, S. K., Buyya, R., Chen, C., and Versteeg, S. (2013). Automated sla

negotiation framework for cloud computing. In 2013 13th IEEE/ACM International

Symposium on Cluster, Cloud, and Grid Computing, pages 235–244.

[78] Yang, M., Ma, H., Wei, S., Zeng, Y., Chen, Y., and Hu, Y. (2020). A Multi-Objective

Task Scheduling Method for Fog Computing in Cyber-Physical-Social Services. IEEE

Access, 8:65085–65095.

[79] Yang, S. (2017). Iot stream processing and analytics in the fog. IEEE Communica-

tions Magazine, 55(8):21–27.

[80] Zeng, D., Gu, L., Guo, S., Cheng, Z., and Yu, S. (2016). Joint Optimization of

Task Scheduling and Image Placement in Fog Computing Supported Software-Defined

Embedded System. IEEE Transactions on Computers, PP(99):1–1.

[81] Zhang, G., Shen, F., Yang, Y., Qian, H., and Yao, W. (2018). Fair Task Offloading

among Fog Nodes in Fog Computing Networks. In 2018 IEEE International Conference

on Communications (ICC), pages 1–6.

[82] Zheng, W., Yan, W., Bugingo, E., and Zhang, D. (2018). Online Scheduling to

Maximize Resource Utilization of Deadline-Constrained Workflows on the Cloud. In

2018 IEEE 22nd International Conference on Computer Supported Cooperative Work

in Design ((CSCWD)), pages 98–103.

[83] Zhong, S., Khoshgoftaar, T. M., and Seliya, N. (2004). Analyzing software measure-

ment data with clustering techniques. IEEE Intelligent Systems, 19(2):20–27.

[84] Zhu, X. and Wu, X. (2004). Class Noise vs. Attribute Noise: A Quantitative Study.

Artificial Intelligence Review, 22(3):177–210.

[85] Zhu, Z., Zhang, G., Li, M., and Liu, X. (2016). Evolutionary Multi-Objective Work-

flow Scheduling in Cloud. IEEE Transactions on Parallel and Distributed Systems,

27(5):1344–1357.

[86] Zuo, L., Shu, L., Dong, S., Chen, Y., and Yan, L. (2017). A Multi-Objective Hybrid

Cloud Resource Scheduling Method Based on Deadline and Cost Constraints. IEEE

Access, 5:22067–22080.

105

Appendix A

Simulation results of multi-objective

QoS-aware task scheduling in the

cloud-fog continuum

This appendix presents the results obtained from experiments related to multi-objective

task scheduling in the cloud-fog continuum, described in Chapter 6. Figures A.1-A.7,

illustrate makespan, processing cost, and execution time results obtained for the classes

of service proposed in this thesis, i.e. mission-critical (CoS=1), real-time (CoS=2), inter-

active (CoS=3), conversational (CoS=4), streaming (CoS=5), CPU-Bound (CoS=6), and

best-effort (CoS=7), respectively.

Figure A.1: Makespan, processing cost and execution time for CoS=1 with 36, 72 and
108 nodes.

106

Figure A.2: Makespan, processing cost and execution time for CoS=2 with 36, 72 and
108 nodes.

Figure A.3: Makespan, processing cost and execution time for CoS=3 with 36, 72 and
108 nodes.

107

Figure A.4: Makespan, processing cost and execution time for CoS=4 with 36, 72 and
108 nodes.

Figure A.5: Makespan, processing cost and execution time for CoS=5 with 36, 72 and
108 nodes..

108

Figure A.6: Makespan, processing cost and execution time for CoS=6 with 36, 72 and
108 nodes.

Figure A.7: Makespan, processing cost and execution time for CoS=7 with 36, 72 and
108 nodes.

	Introduction
	Motivation and problem statement
	Research aim and questions
	Main contributions
	Publications
	Thesis outline

	Fog computing networks and QoS provisioning mechanisms
	Fog computing
	Definition, architecture and advantages
	Comparison among Fog, Cloud, and Edge computing

	QoS provisioning mechanisms
	Service differentiation
	Task scheduling

	Quality of service differentiation for Fog computing networks
	Literature review
	Analysis of QoS requirements for Fog computing applications
	Definition of Classes of Services for Fog computing
	Class of service and the Fog layered architecture

	Machine learning-based QoS-aware classification of fog applications
	Literature review
	Classification methodology based on machine learning
	Classification of Fog computing applications: A case study
	Labeled dataset
	Pre-processing
	Classification
	Performance evaluation
	Classification model

	Single-objective QoS-aware task scheduling for the cloud-fog continuum
	Literature review
	System model
	Infrastructure and application models
	Application scenarios

	Proposed scheduling approaches
	Task scheduling based on Integer linear programming
	Task scheduling based on approximation algorithms

	Performance Evaluation

	Multi-objective QoS-aware task scheduling in the cloud-fog continuum
	Literature review
	Multi-objective task scheduling approaches based on classical optimization
	The FLAMSKE-INT scheduler
	The FLAMSKE-RR scheduler

	Multi-objective task scheduling approaches based on reinforcement learning
	Reinforcement Learning Agent
	The FLAMSKE-RL scheduler

	Performance evaluation
	Simulation settings
	Simulation results

	Conclusion
	Summary and contributions
	Future research directions

	Bibliography
	Simulation results of multi-objective QoS-aware task scheduling in the cloud-fog continuum

