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Resumo

A fotônica emerge com dispositivos promissores para o projeto de sistemas de computa-
ção de última geração. Desenvolvimentos recentes nas técnicas de fabricação de fotônica
de silício (SiP) mostram que a fotônica pode fornecer armazenamento óptico de dados,
interconexões de alta largura de banda, comutação de alta velocidade e baixo overhead de
energia-por-bit. O objetivo desta tese é explorar as novas oportunidades que a fotônica
traz para a arquitetura de computadores: 1) avaliando as características e limitações de
uma memória principal totalmente óptica, 2) propondo uma arquitetura óptica reconfi-
gurável multi-GPU, e 3) propondo uma arquitetura de memória opticamente conectada
para data centers desagregados.

Como resultado, apresentamos três contribuições. Primeiramente, propomos e ava-
liamos um processador com um sistema de memória totalmente óptica construído com
uma topologia em árvore de switches em cascata para acessar as células de memória. O
objetivo principal é obter baixa latência de acesso à memória, semelhante às latências dos
caches L1 e L2. Esta característica é baseada na escala de operação < ns de dispositi-
vos fotônicos e permite eliminar os primeiros níveis de caches simplificando a hierarquia
de memória, potencialmente economizando área de chip. Os resultados experimentais
mostram até 37% de speedup com o benchmark SPEC2006 e até 50% com aplicativos de
acesso à memória com padrão irregular, em comparação com um processador single-core

tradicional com apenas um cache L1. A execução multicore com um cache de dados L1
reduzido de 2 KB mostra um slowdown médio de 23%.

Em segundo lugar, propomos e avaliamos o uso de interconexões ópticas com chave-
amento para uma arquitetura multi-GPU. Usamos o NVIDIA NVLink comercial como
base para nossa arquitetura óptica reconfigurável, pois é a plataforma preferida para os
atuais aplicativos de aprendizado profundo. Implementamos uma versão simplificada do
algoritmo de redirecionamento de largura de banda usado para realocação de tráfego em
datacenters. Avaliamos nossa arquitetura proposta medindo o tráfego real da GPU e, em
seguida, realizando uma análise estática de direcionamento da largura de banda. Nossos
resultados mostram uma melhoria na taxa de dados de até 20% para modelos de redes
neurais convolucionais bem conhecidos na literatura.

Finalmente, propomos e avaliamos uma arquitetura Optically Connected Memory

(OCM) para desagregação da memória principal em data centers. Usamos ressonadores
de micro-anel (MRRs) de última geração para projetar e avaliar no PhoenixSim os SiP
links da OCM. Os links OCM podem sustentar a largura de banda DDR4 DRAM. Nossos
resultados mostram um baixo overhead de energia-por-bit de 1.07 pJ equivalente a ≈

10% da operação de energia DDR4. Para avaliar o desempenho com um simulador de
nível de sistema, executamos benchmarks SPEC06, SPEC17, PARSEC, SPLASH e GAP
de grafos. Comparado a um sistema sem memória desagregada, OCM mostra um slow-

down médio de 17% com SPEC, e executa ≈ 1.3× mais lento com PARSEC e SPLASH.
OCM executa até 5.5× mais rápido do que uma memória desagregada com conectores



40G PCIe NIC em nós de cómputo durante a execução de SPEC06. Avaliamos o OCM
com um cache DRAM para reduzir o overhead de latência, mostrando uma desaceleração
média de 38% com benchmarks SPEC17 e Grafos em comparação com um cenário sem
desagregação. Acreditamos que o OCM é promissor para futuros data centers devido ao
seu baixo consumo de energia e baixo overhead de latência.



Abstract

Photonics is emerging with promising devices for the design of next-gen computing sys-
tems. Recent developments in Silicon Photonics (SiP) fabrication techniques show that
photonics can provide optical data-buffering, high-bandwidth interconnects, high-speed
switching, and low energy-per-bit overhead. The objective of this thesis is to explore
the new opportunities that photonics brings to computer architecture by: 1) evaluating
the characteristics and limitations of a full-optical main memory, 2) proposing a reconfig-
urable optical multi-GPU architecture, and 3) proposing an optically connected memory
architecture for disaggregated data centers. As a result, we present three contributions.
First, we propose and evaluate a processor with a full-optical memory system built with
a tree topology of cascaded switches for accessing the memory cells. The main goal is to
obtain low memory access latency, similar to L1 and L2 caches latencies. This character-
istic is based on the < ns operation scale of photonic devices and enables eliminating the
firsts levels of caches by simplifying the memory hierarchy, potentially saving chip area.
Experimental results show up to 37% speedup with the SPEC2006 benchmark and up
to 50% with irregular memory access pattern applications, comparing with a traditional
single-core processor with only an L1 cache. Multicore execution with a reduced 2KB
L1 data cache shows an average slowdown of 23%. Second, we propose and evaluate the
usage of optical interconnects with switching for a multi-GPU architecture. We use the
commercial NVIDIA NVLink as a basis for our reconfigurable optical architecture be-
cause it is the preferred platform for current deep learning applications. We implemented
a simplified version of the bandwidth steering algorithm used for traffic reallocation in
datacenters. We evaluate our proposed architecture by measuring real GPU traffic and
then performing a statical bandwidth steering analysis. Our results show a data rate
improvement up to 20% for well-known convolutional neural network models. Finally,
we propose and evaluate an Optically Connected Memory (OCM) architecture for main
memory disaggregation in data centers. We use state-of-the-art micro-ring resonators
(MRRs) to design and evaluate in PhoenixSim the OCM SiP links. OCM links can sus-
tain the DDR4 DRAM bandwidth. Our results show a low energy-per-bit overhead of
1.07 pJ equivalent to ≈10% of the DDR4 energy operation. To evaluate performance with
a system-level simulator, we execute SPEC06, SPEC17, PARSEC, SPLASH, and GAP
graph benchmarks. Compared to a system without disaggregated memory, OCM shows
an average slowdown of 17% with SPEC and performs ≈ 1.3× slower with PARSEC and
SPLASH. OCM performs up to 5.5× faster than a disaggregated memory with 40G PCIe
NIC connectors to computing nodes while executing SPEC06. We evaluate OCM with
a DRAM cache to reduce the latency overhead, showing an average slowdown of 38%
with SPEC17 and Graph benchmarks than a scenario without disaggregation. We believe
OCM is promising for future data centers because of its low energy consumption and low
latency overhead.
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Chapter 1

Introduction

Photonic devices (also known as optical devices) are a relative newcomer for the com-

puter architecture community because of their efficient interconnection capabilities and,

the recently explored, data storage and processing potential. Silicon Photonics (SiP)

is a semi-mature technology based on CMOS-compatible processes [92] already capable

of high integration. Recently, hybrid silicon-compatible material platforms have been

demonstrated, allowing the development of complex photonic integrated circuits (PIC)

[250] with more efficient sources, photodetectors, modulators and other passive intercon-

necting devices.

The scalability of SiP has already been demonstrated. For example, similar to the first

years of microelectronics, hundreds of optical multiplexing/demultiplexing devices can be

integrated on a single chip. This points towards the beginning of a micro-photonics era,

similar to Moore’s law in the 70s [237, 235, 236].

Process Design Kits (PDK) with PIC are already offered by foundries, as CMOS com-

patible fabrication between photonics and electronics is already demonstrated [141, 83, 6].

However, it is expected that photonics reaches maturity in the following decades as hun-

dreds of active devices (e.g., lasers) can be integrated monolithically with thousand of

passive devices (e.g., photonic microring resonators arrays, multicore processors). Re-

cent works in interposer development [5, 273], show significant advances for monolithic

integration of passive and active photonics with electronic devices.

Photonic devices are widely used in sensor and telecommunication applications due to

high data density transmission over large distances with low power consumption. These

inherited characteristics by silicon-based photonic devices could address the bandwidth

density and power limitations on computing systems.

As processing requirements increase with the application demands, prior proposals

evaluated photonics as a high-bandwidth solution for communicating multiprocessors in

networks-on-chip topologies [29, 226, 101]. Moreover, the imbalanced development be-

tween processor and memory technologies causes a performance gap referred to as the

memory wall. Modern computing systems have a performance bottleneck when execut-

ing memory-intensive workloads of applications such as big-data analytics and machine

learning. This problem, related to current memory technology limitations, shows that a

memory system also requires higher bandwidth while scaling its capacity.

As photonic technology scale has already been demonstrated by integrating on the
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same die a RISC-V processor, optical interconnection and 1 MB memory bank; with ≈

70 million transistors and 800 optical devices [241]. As a result, of the improved photonic

device integration have been fabricated: a) volatile optical memory [199, 183], and b)

non-volatile optical memory cells [212, 213].

An important open question is: what opportunities can photonics bring to the memory

system? We seek to address this question by proposing and evaluating memory system

architectures with optical devices in this work.

This thesis focuses on: 1) evaluating a full-optical memory system, 2) proposing an

optical multi-GPU architecture, and 3) proposing an optically connected memory archi-

tecture for data centers. The first one analyzes fast memory operation, depending on the

novel optical cells fabrication. At the same time, the latter two explores interconnection,

which is more mature by providing high bandwidth with link reconfiguration mechanisms.

Notice that despite optical processing (data operations) using photonic device meshes was

already demonstrated [174], it is still in the early development stages and is out of this

work scope. In [270], the authors presented an all-optical transistor, and in [115, 176],

optical tensor hardware for machine learning was demonstrated.

Prior works focus on: i) showing photonic capabilities for computing systems [16,

159, 20, 232, 105, 274], or ii) introducing architectural mechanisms to support optical

disaggregation [271, 8, 121, 177]. Similar to those works, we study how we can use

photonics with processing elements such as multicore processors and GPU systems and

evaluate its performance. This thesis also seeks to estimate the number of optical devices

and their energy consumption when integrated into such a computing system.

This thesis is organized into five chapters. In Chapter 2, we describe the fundamentals

and operation of photonic devices from a system perspective. We survey state-of-the-art

devices and compare their key characteristics to help the computer architects outline their

studies. In Chapter 3, we analyze the advantages and problems of optical data buffering

for the main memory. Optical memories are seen as a potential cache replacement [158].

However, as photonics overcomes optical memory current limitations for massive integra-

tion, we must analyze their behavior compared to DRAM cells. Although their latency

is in the picosecond scale, optical read and write operations are serialized because of the

circuit switching nature and could lead to contention. We evaluate a L1 data cache reduc-

tion considering the optical read/write latency in ns. We perform a sensitivity analysis

to estimate the cache reduction using a x86_64 simulator in single-core and multicore

scenarios, and PARSEC [37, 36] and SPEC06 [107] benchmarks. Based on our results, we

consider that a full-optical memory system with a reduced 2K L1 data cache can perform

similarly to a conventional system with 32 KB L1 (data and instruction) and L2 caches,

being on average 23% slower.

In Chapter 4, we explore reconfigurable interconnection based on optical switches for

a multi-Graphic Processing Unit (GPU) architecture [15]. We propose an architecture

that relies on an optical circuit switch (OCS) to manage the virtual optical sublinks by

wavelength filtering. Our study focuses on the bandwidth steering technique to reallocate

bandwidth from GPUs underutilized links to GPUs that require higher transaction rates.

We evaluate convolutional neural network execution on a data center server and perform a

static analysis with the measured traffic during model training. In a multi-GPU scenario,
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the communication links are mainly used for direct memory access between the host

and guest memory devices of processing elements. Our results show that an optically

reconfigurable multi-GPU architecture can speed up to 20% compared to a conventional

GPU server.

In Chapter 5, we explore how photonics can extend the memory capabilities towards

exascale system [217]. We propose and evaluate the Optically Connected Memory (OCM)

architecture for disaggregated datacenters. Our architecture benefits from the high-

bandwidth and distance independent photonics characteristics to directly disaggregate

main memory from the server’s processing elements. We evaluate the performance of a

multicore processor with performance executing PARSEC [36, 37], SPEC06 [107], SPEC17

[44], and Gapb [31] benchmarks. We estimate the number of photonic devices (i.e.,

microring resonators) for modulation/demodulation required to sustain modern DDR4

bandwidth. Our SiP link estimation uses the PhoenixSim simulator based on top-notch

photonic device models. From our results, we observe that OCM produces a low energy-

per-bit overhead of 1.07 pJ, and performs up to 5.5× faster than a disaggregated memory

with conventional 40G PCIe network interfaces. In Chapter 6, we present our conclusions

and discuss opportunities for future works.
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Chapter 2

Background

Photonics is considered [221] the science that studies the generation, manipulation, am-

plification, transmission, modulation of photons. Its highly-integrable nature allows these

functions to be realized with compact and energy-efficient optical devices. Moreover,

Silicon photonics has been the key to solve the traditional photonics problems of inte-

gration and fabrication cost for more than 10 years now [249]. Its industry applications

include mainly data center interconnects, and nowadays, high-performance computing for

short-reach data communications.

This chapter presents a thorough analysis of the main components and devices re-

sponsible for realizing high-speed optical communications. We focus on the devices in the

state-of-the-art that are compatible and can scale together with Complementary Metal

Oxide Semiconductor (CMOS) fabrication processes.

2.1 Photonics, Optical Communications and Scaling

Optics is a solid contender to solve bandwidth and latency for high-performance com-

puting interconnects through a semi-mature technology called Silicon Photonics (SiP). In

addition, it allows maintaining or optimizing energy consumption. SiP is feasible by using

developed CMOS processes [92], taking advantage of Silicon, which is a transparent mate-

rial for the optical communications frequency band (from 1300 nm to 1650 nm)[224, 140]

that allows for highly integrated photonic devices.

The possibility of using other silicon-compatible materials and define complex ge-

ometries has attracted much attention from the optics community in the later years

[250]. The result is the possibility of developing complex Photonic Integrated Circuits

(PIC). PICs enable breakthrough optical technologies ranging from high-bandwidth op-

tical interconnects[58] to optical logic[208].

PICs for optical interconnects can provide high-aggregated bandwidth on an mm to cm

size chip. They can provide miniaturized versions of matured optical fiber communications

techniques with well-known physical dimensions for capacity scaling [259]: a) time, b)

frequency, c) quadrature, d) polarization, and e) space.
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2.2 Wavelength Division Multiplexing

Wavelength Division Multiplexing (WDM) is a technique that explores the physical di-

mension of frequency. Its main goal is to enable high aggregate bandwidth without adding

more fibers to a single link, and it has been extremely successful for short-reach optical

communication links. This technique has been widely used in optical fiber communications

for almost three decades [202]. On the system level, WDM fiber links are characterized

for being cost-effective and compact. It is important to note that fiber optic is the most

expensive asset on a single WDM link, while transceiver components are comparatively

cheap [259]. WDM has also become denser with the increased bandwidth-consuming

devices and applications, counting more than a hundred channels per link.

Figure 2.1: Simplified schematic of an unidirectional WDM link with N channels.

WDM is the multiplexing of many frequency channels on a single physical optical

waveguide (mainly fiber optic). Fig. 2.1 shows a basic schematic with N channels, where

the depicted main components constitute basic photonic devices. The devices that make

up the transmitter and the receiver are usually integrated on a single chip [26]. The laser

are usually comb lasers [260] which generate well-defined optical carrier in wavelengths λ1,

λ2, ..., λN−1, λN . Each λ carries data after passing through a modulator. A modulated

λ is called a channel. The fastest modulators are those driven by electric pulses known

as electro-optic modulators. The period of the DATA signal determines the speed of the

link. The most common modulators used for data center and HPC WDM interconnects

are Microring Resonators (MRR) [26] silicon modulators.

MRR modulators can perform two main roles. One role is modulating light and

multiplexing it onto a single optical waveguide. These devices offer highly compact WDM

transceivers. The second role is that MRRs can also be used for demultiplexing the

signal in the receiver end. After demultiplexing, each channel is photo detected, filtered,

amplified, and interpreted to get each data set (DATA 1 through DATA N). Furthermore,

a bidirectional WDM link has an RX and a TX on each end. Both transmitter and receiver

with basic control have already been demonstrated integrated on a single chip [129, 272, 21]

or co-packaged [196, 179, 254].

WDM links can scale up and build optical networks. Figure 2.2 shows a typical

optical WDM network. A block for optical cross-connect devices is added to articulate

and redirect individual WDM links λs to other parts of the network. We have purposely
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Figure 2.2: Simplified WDM network with switching capabilities.

left out amplifying elements in order to center our discussion on data center interconnects.

2.3 Photonic Devices

In this section, we discuss the main photonic devices for realizing a WDM link. For

the transmitter end, light sources and modulators/multiplexors; for the receiver end,

demultiplexers; for transmission, we present switches. We also include a discussion about

optical memory cells for data storage.

2.3.1 Lasers

A previously noted (see Fig. 2.1) independent laser for each optical channel that gener-

ates continuous wave light (λ) is essential for realizing WDM. Initially, independent laser

sources [180] were considered for WDM. Shortcomings included high power consumption

and overall scaling problems. However, an increasing number of studies have shown the

benefits of energy-efficient multi-wavelength light sources called Frequency Comb Gener-

ators (FCGs) [26, 52, 156].

Figure 2.3: Simplified schematic of a WDM transmitter with a frequency comb generator
(FCG).
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FCGs are single devices that generate a number of equally-spaced optical carriers in

the frequency domain (see FCG block in Fig. 2.3). A fundamental advantage of frequency

combs is that comb lines are inherently equidistant in frequency [259], and they let the link

designer avoid using a high number of independent continuous-wave lasers as previously

depicted in Fig. 2.1.

In Figure 2.3, the FCG operates as a multi-wavelength source, then each wavelength

(λ) is separated in a demultiplexer. After separation, each wavelength can be modulated

with external electrical pulses in the modulator block. The modulated light is then mul-

tiplexed onto a single channel and can be coupled onto an optical fiber or interconnected

to another section of the chip.

FCG-powered WDM links with an aggregate bandwidth that exceeds 1.2 Tbps [251]

have been demonstrated in 2016. Following a rapid scaling, 179 optical channels have been

demonstrated in 2017 [162]. Their work can transmit more than 50 Tbps. Furthermore,

there are recent efforts for maximizing the number of comb lines (lambdas) in FCGs by

using coupled photonic devices [46], which leads us to scale the number of channels and

thus the aggregated bandwidth for more demanding applications. Recent works [90, 240]

demonstrated FCG devices that require <1 W with an area of 1 cm3.

2.3.2 Modulators

The main block for converting electric pulses into light is the electro-optical modulator.

In Fig.2.4 light (λ1) from a laser source (single lambda after demultiplexing of an FCG

source can also be considered) is modulated by the serialized electric signal DATA 1. The

electric pulses drive the MODULATOR block and modulate either the frequency, phase,

polarization, or amplitude of light. The output channel contains all the information from

DATA1 on optical frequencies (around λ1), and its analog bandwidth (channel bandwidth

in Fig.2.4) is delimited by the electrical model of the photonic devices that conform to

the MODULATOR block. The analog bandwidth determines the channel’s capacity in

terms of the digital bandwidth (measured in bits-per-second). The aggregated capacity

or bandwidth of a WDM link is the accumulated capacity of all individual channels.

Figure 2.4: Simplified schematic of an electro-optic modulator. Electric and optical signals
are represented in blue and red, respectively.

In Silicon Photonics, three out of the four fundamental blocks described in Fig.2.3,

namely, demultiplexing, modulation, and WDM, can be realized on a single device such
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as an MRR modulator. The first demonstration of an MRR modulator was in 2005

[263], and it paved the way for Silicon Photonics in the industry. The possibility of small

footprint, low-cost/high-scale production, and compatibility with CMOS processes proved

that silicon could be a material to realize photonic integrated circuits. After 15 years of

development, Silicon Photonics die market is in the order of 87-million-dollar1.

Figure 2.5: Two representations of a WDM single-channel modulator. (a) Simple
schematic of microring modulator. Electric and optical paths are depicted in blue and
red, respectively. In this MRR, R and gap are optimized to couple λ1 light. (b) Block
schematic of a single-modulator transmitter with frequency comb generator source. (c)
The MRR modulator frequency response.

MRR modulators are optical waveguides[38] on a closed circular loop and can be

classified with other resonant devices. As passive elements, they have a fixed radius and

are depicted fairly close to a straight optical waveguide, as shown in Fig.2.5a. The gap

determines the "strength" of light being coupled onto and from the ring. The radius

determines the resonant lambdas. Thus, an MRR modulator can be designed to couple

light from a single wavelength. As active elements, MRR modulators can use electric

signals to control the phase of light using the plasma dispersion[209] effect that basically

changes the properties of the material in optical frequencies by using energy from an

external electrical source (blue lines in Fig. 2.5a). The frequency response of the MRR

is a notch filter centered on λ1. The modulation occurs when the electric field generated

1Yole Developpement Reports, 2020
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by DATA1 affects the Silicon waveguide and shifts the resonance peak. This phenomenon

generates a maximum (dashed brown plot in Fig 2.5(c)) that can be considered, for

instance, a logical ’1’, and a logically complementary minimum (continuous black plot in

Fig 2.5(c)) of the light intensity of λ1.

The MRR modulators can demultiplex, modulate, and multiplex signals onto a WDM

channel, as depicted in Fig. 2.5b). As a multi-wavelength signal passes through the

straight optical waveguide, only a single wavelength λ1 is selected and subsequently mod-

ulated by the electric signal in DATA 1. The MRR is electrically tuned to resonate only

at wavelength λ1.. After it resonates, the red light path (Fig. 2.5a) is re-coupled onto the

straight waveguide and takes its place in the multi-wavelength signal spectrum.

Figure 2.6: Two representations of a WDM modulator. (a) Simple schematic of MRR-
based WDM modulator, and (b) block schematic of a WDM transmitter.

To match a real WDM transmitter, we can place tailored MRR modulators for each

wavelength, as seen in Fig. 2.6a. Note that the individual channel bandwidth is important

in a multi-MRR transmitter. Signal interference or cross-talk with any of its frequency

neighbors can cause data loss. The result of a multi-MRR modulator is a multiplexed

WDM channel with the desired aggregated bandwidth (N channels are aggregated in Fig.

2.6b).

A commonly used method to calculate the free spectral range (FSR) of the system

assumes that each ring’s frequency response is a notch filter centered on its respective

λ. Then, FSR can be defined as the distance between two adjacent peaks of the WDM

multiplexed signal[38]. As radii are specifically tailored for λi resonance, FSR directly

relates to the WDM transmitter’s on-chip area.

With improved fabrication techniques, state-of-the-art Silicon MRR modulators also

improved modulation efficiency, energy, and area-on-chip. For instance, other electro-
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optic materials have been integrated with Silicon to improve modulation efficiency and

lower driving voltage, such as silicon-organic[11] and silicon-LiNbO3 [54] achieving femto-

Joule (fJ) transmission. In terms of area-on-chip, plasmonic silicon modulators are up to

6 times smaller [103] than original MRR geometries, although they can be lossy in optical

frequencies (around 2 to 3 dB per device).

2.3.3 Switches

The function of the cross-connect element in Fig. 2.2 is to switch information among

many other fibers [66]. Wavelength multiplexers function is to combine several wavelength

channels into a different aggregated channel. The switching capabilities on a high-speed

optical network do not require O/E/O (optical-electrical-optical) conversion to switch

information. A demultiplexer and a multiplexer are needed to select and switch specific

channels in the optical domain and spatially cross-connect them. An optical switch is

triggered with a low voltage or current.

Wavelength-selective switches are also based on MRRs. The frequency response of an

MRR is the key to multiplex or demultiplex optical channels. The frequency response

for a micro-ring resonator is a notch filter on the infrared regime. An MRR can work

either: a) as a multiplexer coupled with one optical waveguide, or b) a demultiplexer

coupled with two optical waveguides. As seen in Figure 2.7, there are two configurations

for passive MRRs: all-pass, and add-drop. In the all-pass configuration (Fig.2.7a), only

one lambda (λ1) resonates in the ring and afterward is re-coupled onto the same optical

bus or waveguide. R and gap are design parameters that determine the wavelength of

resonance and the coupling strength. The add-drop configuration (Fig.2.7b) works as an

add-drop filter; the resonant wavelength is dropped on to a second waveguide. All-pass

MRRs are commonly used for modulators, while add-drop MRRs are commonly used for

switch fabrics or cross-connects in optical networks.

It remains a challenge for future switches to exhibit: a) high-speed switching, b) low

energy consumption, d) low area, d) wideband transmission, and e) low optical losses.

Different than MRR’s, there are other types of optical switches based on Mach-Zender

Interferometers [206, 13], Microelectromechanical System (MEMS) [169, 75], plasmonic

materials [248, 78] and Graphene [219]. However, MRRs switches are among the most

promising devices showing selective wideband transmission with low energy and area, as

demonstrated in [272, 59, 113] for multiport switches (e.g., 4×4 input/output ports).

Although there is a trade-off between critical characteristics, such as area and switching

time, we compare several works on optical switches.

We compare several works on optical switches, although there is a trade-off between

critical characteristics, e.g., area reduction does not imply fast switching. As shown in

Table 2.1, the microring-resonator based devices exhibit a lower footprint and narrower

bandwidth than MZI. While offering selective bandwidth filtering, they still offer higher

bandwidth than plasmonic-based switches. With higher bandwidth, more wavelengths λ

could be carried during propagation. However, MZI shows a higher area (mm2) than plas-

monic switches (µm2), but the latter have higher losses during signal transmission. MRRs

show broader bandwidth than MZI and plasmonic-based switches. For more information
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Figure 2.7: Optical micro-ring resonators. (a) All-pass configuration, and (b) Add-drop
configuration.

about switches (e.g.: losses, crosstalk and timing), please refer to [246, 262].

Type Works Footprint Switching
Control
overhead

Losses Energy

MZI [206, 13, 128] mm2 ps us low moderate
MRRs [272, 59, 113] 10s µm2 ps us moderate moderate

Plasmonic [248, 78] 100s nm2 ps us high low
MEM [169, 75] um2 ns us low high

Table 2.1: Average characteristics of optical switches. Note: These values represent an
individual switch.

2.3.4 Memory Cells

Optical buffering is a very desirable functionality for both telecommunications and com-

puter architecture. In this section, we will focus on the optical memory cell perspective

related to computer architecture. For an extensive survey on optical memory, including
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optical packet storage, please refer to [10].

We observe that state-of-the-art optical memories can be classified into two main

groups:

1. Optical volatile memory cells: There are two main types of optical volatile

memory cells: 1) single-bit cross gained coupled cells, and 2) multi-bit photonic

crystal with nanocavities memory cells.

• Single-bit cross-gained coupled cells: use a passive photonic switch based on the

Mach-Zehnder interferometer (MZI), and its behavior is similar to an SRAM

cell. These devices split light into two separate paths (MZI arms) and join

them after a specific electromagnetic path. Light interference can be construc-

tive, partially constructive, or destructive, depending on the phase difference

between the two MZI arms. This critical behavior enables the control of the am-

plitude of light, allowing for spatial switching. In several works [199, 158, 122],

the authors used MZI-based switches to develop all-optical Flip-Flops (FFs) on

a master-slave configuration, with low-energy and read, write functions. How-

ever, MZIs are known in the optical community for having a large footprint (see

Table 2.1). There are efforts to shrink the size of these cells by using different

materials and monolithic 3D approaches. Figure 2.8a depicts an optical FF

composed of two active components, i.e., switches, in a master-slave topology.

Each switch resonates at a different wavelength, where λa represents a logical

0 and λb a logical 1. Only one switch will be active per time, equivalent to a

master state.

• A multi-bit photonic crystal with nanocavities memory cell: is based on a peri-

odic structure called photonic crystal. Depending on the relationship between

the period of the structure and the wavelength, light can be slowed down,

pushed forward, backward, or upwards (out-of-plane vector). Photonic crys-

tal memory cells [132] use these properties to slow down the group velocity

of light to a halt. While stored, the optical losses can be compensated with

amplifying materials. However, the threshold for power compensation needs

an external energy source (optical or electrical bias). The bias’s amplitude has

been demonstrated to relatively low, allowing for the whole device to work in

pJ/bit. Figure 2.8b shows a photonic crystal memory cell that works under

the injection lock principle. The structure has three nanocavities, each with a

different operation wavelength λa, λb, and λc. An optical source traverses the

memory cell where the injected wavelength has a specific amplitude threshold

representing a low state or logical 0 and a high state or logical 1. The optical

cell enters into a hysteresis loop, locking the state. For example, wavelength

λa is in the low amplitude threshold, exhibiting the state for a logic 0.

2. Optical non-volatile memory cells: These [212, 175] are multiple-level opti-

cal memory cells with phase-change materials (PCM). Recent years have seen the

emergence of optical PCM, potentially generating non-volatile photonic applications
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Table 2.2: Optical memory cells evolution. Since 2001 optical memory cells show a trend
in area reduction and increased energy efficiency.

Work [151] [109] [110] [178] [152] [199] [268] [122] [149] [51] [183] [132] [197, 198] [212, 239] [85] [213]

Year 2001 2001 2004 2006 2006 2008 2008 2010 2010 2011 2012 2014 2015 2015 2016 2019
Type SOA SOA micro VCSEL SOA SOA PHC VCSEL micro PhC BH-PhC PhC SOA PCM PhC PCM

ring MZI ring MZI MZI nanocavities disk nanolasers nanocavities nanocavities MZI nanolasers nanocavities
Material ** ** InP/ ** InP/ ** InP/ InP/ InP/ InP/ InP/ InP/ InP GST/ InP/ GST

InGaAsP SiO2 InGaAsP InAlGaAs SOI InGaAsP InGaAsP InGaAsP Ge2Sb2Te5 SOI Ge2Sb2Te5
Area (µm2) 1.3E13 ** 720 36 5.4E6 ** <10 10 45 <10 <10 10 1.2E7 <250 6.2 <10
T (ps) 2.5E6 3 20 <1E3 200 <1E3 100 7 60 60 44 100 77 10E3 50 <1E3
E (fJ) ** 2E4 5 0.3 ** ** 30 0.3 1.8 ** 2.5 200 ** 13.4E3 6.4 5E5
Volatile Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes No
Size (bits) 1 1 1 1 1 1 1 1 1 1 1 256 1 1(4 level) 1 1(13 level)

similar to the electronic PCM memories [238, 136]. The desired phase change for op-

tical memories on the material is amorphous to crystalline while maintaining good

transparency in optical communications wavelengths. Reading and writing func-

tions can be performed with ultrashort optical pulses. Areas are the shortest among

other kinds of memory cells. However, phase-change velocity can be slow, depending

on the material. In [173], the authors analyze the state-of-the-art of PCM materials

for optical memory devices, challenges, and future research direction. Figure 2.8c

shows an optical memory cell with a PCM material, such as Ge2Sb2Te5 (GST). The

PCM material in the crystalline state attenuates the light propagation representing

a logical 0, while the amorphous state represents a logical 1 because of the low at-

tenuation. Considering that the PCM material can have intermediate amorphous

states, it can operate as a multibit memory device.

switch a switch b

λbλa

State: logic 0

State: logic 0

switch a switch b

λbλa
λa λb

State: logic 1

State: logic 1State: logic 0

λc

λa λb λc

Amplitude
high

high

low

low

MRR PCM
material

PCM material: amorphous

PCM material: crystaline

a) b) c)

Figure 2.8: Optical memory cells operation, based on [10]. (a) set-reset optical flip-flop,
(b) photonic crystal with nanocavities working with injection lock, and (c) Phase Change
Material (PCM) optical cell.

2.4 Related Work

Pleros et al. [199] demonstrated a SOA-MZI based set-reset optical flip-flop (SR-FF).

It consists of a cross-gain modulation (XGM) array of two coupled SOA-MZI, where

each SOA-MZI device requires a 250 mA bias current. The reported footprint area is

45 × 12 mm2. Vagionas et al. [252] discussed the theoretical analysis of the FF. Fitsios

et al., in [86], measured the optical FF’s operation speed of ≈ 75 ps.
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In [158] the authors explored and evaluated a computer architecture with an 8 KB L1

optical cache architecture with an 8 core processor, using optical FF’s as memory cells.

They proposed an R-CAS (Raw-Column Address Selection) access to each optical memory

cell, using a read/write λ-controlled mechanism. This mechanism was initially proposed

by Kanellos et al. in [119]. Their multicore simulation envisions up to 256 KB L1 optical

caches obtaining a 20% performance improvement over a conventional electrical two-level

cached system running. The area and energy requirements are high because they used

commercially available modules.

Pitris et al. [197] monotonically integrated the previously discussed SOA-MZI based

FF in Indium phosphide (InP), where the area footprint is ≈ 12mm2. The SOA-MZI

need a 170 mA bias current, and performs ps switching [86]. Pitris et al. [198] further

integrated an access gate composed of two SOA’s in order to enable the previously men-

tioned R-CAS mechanism. This access gate is responsible for enabling the set and reset

FF signals via signal amplification. In Chapter 3, we study the usage of optical memory

cells for the main memory system.

Brunina et al. [42, 43] introduce the concept of optically connected memory in a mesh

topology connected with optical switches. Both works propose point-to-point direct access

to the DRAM modules using Mach Zender modulators. These works motivate our study

in optically connected memory. Brunina et al. [41] also experimentally demonstrate that

microring modulators can be used for optically connecting DDR2 memory. Our study, in

Chapter 5, builds on [41] to design the microring modulators used in our SiP links. There

are several recent works [26, 229, 27] that propose analytical models of the microring used

in our SiP links. Anderson et al. [16] extend the work of Brunina et al. [42, 43, 41] to

experimentally demonstrate the optical switches using FPGAs for accessing memory.

These prior works [16, 41, 43, 42] are all experimental demonstrations to show photonic

capabilities.

Table 2.3 shows related work for interconnecting memory and processing elements us-

ing photonics. This approach is currently known as disaggregation and is envisioned for

data centers. A disaggregated data center comprises multiple resource pools, where pho-

tonics brings energy-efficient and reconfigurable interconnects [93] to: a) enable resource

reallocation and b) avoid bottlenecks or underutilization. Disaggregation HP Enterprise

initiative, known as The Machine [123], proposes a memory-centric system using pho-

tonics while improving the operating system layer for efficient memory allocation; also

proposes a new programming model called Atlas. In [8, 271], the authors propose and

evaluate the design of dRedBox based on optical switches focusing on the reconfiguration

mechanism. In [82], the authors propose a GPU system with optical interconnects with

a static traffic analysis based on simulation similar to our proposal from Chapter 4.

In contrast, this thesis Chapter 5 addresses three important questions for memory

disaggregation that prior work does not: (1) How many optical devices (i.e., MRRs) do

we need for current DDR technology? (Section 5.4.3), (2) What is the energy and area

impact on the system? (Section 5.4.3), and (3) How does the processor interact with a

disaggregated memory subsystem? (Section 5.4.2).

Some other works, such as [256, 275], point out, without system performance evalua-

tion by executing real applications, that existing disaggregation protocols (i.e., PCIe and
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Ethernet) could lead to high-performance loss. Our work uses system-level simulation to

measure the performance overhead of such protocols. We propose to alleviate the optical

serialization overhead by using the DDR protocol (Section 5.3.1). As photonic integration

improves, we believe that the optical point-to-point links will become the main candidates

for interconnecting disaggregated memory. With our PhoenixSim [216] model, we explore

the design of SiP links based on DDR requirements. Our proposal can be used to improve

existing PCIe+photonics works, such as [264].

Works System-level Optical link CPU GPU
simulation design/eval.

[41, 274] 7 3 3 7

[8] 3 3 3 7

[123] 7 3 3 7

[82] 3 7 7 3

Table 2.3: Related works with optical disaggregation of memory and processing elements
in future data centers.

Yan et al. [264] propose a PCIe Switch and Interface Card (SIC) to replace Network

Interface Cards (NIC) for disaggregation. SIC is composed of commercial optical devices

and is capable of interconnecting server blades in disaggregated data centers. The evalu-

ated SIC shows a total roundtrip latency up to 426 ns. In contrast, the scope of our work

is point-to-point DDR DRAM disaggregation without PCIe or other additional protocols.

Other related disaggregated memory prior works (1) explore silicon photonics inte-

gration with a many-core chip in an optical network-on-chip design [30], (2) propose the

design of a DRAM chip with photonic inter-bank communication [32], (3) present an

optoelectronic chip for communication in disaggregated systems with 4-λ and an energy

consumption of 3.4 pJ/bit [7], (4) evaluate a memory disaggregation architecture with op-

tical switches focusing on re-allocation mechanisms [271], (5) analyze the cost viability of

optical memory disaggregation [4], and (6) evaluate memory disaggregation using software

mechanisms with high latency penalties in the order of µs [99]. Unlike [271, 7, 32, 4, 99],

our study evaluates i) system performance with real applications, ii) the design of the SiP

link for DDR DRAM requirements, and iii) SiP link energy for a disaggregated memory

system.

2.5 Final Considerations

This chapter detailed the Silicon Photonics (SiP) operation, including optical modulators,

muxes, switches, and memory cells. Recent works show a positive trend in photonic device

integration, reducing the device footprint, and increasing feasibility for large device fab-

rication. Tables 2.1 and 2.2 summarizes the main characteristics of switches and optical

memory cells. We observe that computer architects could benefit from the direct classifi-

cation of SiP device characteristics to simplify the system design. This chapter detailed

the Silicon Photonics (SiP) operation, including optical modulators, muxes, switches, and
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memory cells. Recent works [80, 94] show a positive trend in photonic device integration,

reducing the device footprint, and increasing feasibility for large device fabrication. Ta-

bles 2.1 and 2.2 summarizes the main characteristics of switches and optical memory cells,

which can be used as building blocks. We observe that computer architects could benefit

from the direct classification of SiP device characteristics to simplify the system design.

As photonic fabrication matures, essential metrics such as the experimental control delay

for massive integrated optical switches or memory cells optical will become available.
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Chapter 3

Full-optical Memory

This chapter explores a full-optical memory system’s key design considerations, using

state-of-the-art optical devices with a wavelength routing method. In 2016 [96], we pro-

pose a large implementation of a MB order memory and evaluate the size reduction for

the cache hierarchy. This chapter discusses challenges for a full-memory architecture and

evaluates the limitations on the photonic interconnect. We show the potential better

performance compared to a conventional electrical system in a single core and multicore

scenario. It is crucial to notice that such massive architecture is far from fabrication

maturity because of current characteristics of optical switches: 1) low count integration,

and 2) high latencies imposed by WDM control.

3.1 Photonics for the Main Memory System

Photonics have been used successfully in long link communications for many years due

to its intrinsic characteristics such as distance-independent low-power dissipation, high

communication bandwidth and low crosstalk. Design space exploration for optical on-chip

devices is an emergent research topic in computer architecture. Initial research direction

pointed to Optical Network-on-Chip (ONoC), which uses wavelength routing mechanisms

to communicate multiple cores within a chip under different topologies and arbitration

schemes [29, 226, 101].

A roadmap from the industry and the research community [94] highlights a clear

path for on-chip silicon photonics interconnections, pointing out the promising scalability

expectations in the next two decades to achieve a full-optical device integration in a

single chip. Although optical fabrication technology is still not mature, several small-scale

integrated silicon photonic devices have been recently fabricated [250]. The monolithic

integration of silicon photonics modules with processors become feasible [241] due to those

recent advances in device fabrication.

Another emerging photonic research topic is optical memory fabrication. Optical

memories leverage different techniques to achieve data buffering in optical memory cells.

To date, a 1-bit memory cell can be implemented as a Semiconductor Optical Ampli-

fier (SOA) based flip-flop [199], and a wider cell is feasible using emergent nanocavity

technologies [132]. Also optical Phase-Change Memories (PCM) were demostrated with
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non-volatile multibit storage capabilities [212].

In [96], we explored a new architecture for a single core processor with an optical RAM

(o-RAM) that could overcome the limitations of current electrical memory subsystems.

We focused on the co-design of processors and these memories. Unlike other approaches

using an ONoC and electrical memory, our proposal does not require optoelectrical con-

version on the memory side, reducing its overhead. Furthermore, the o-RAM operation

latency is in the order of picoseconds (the carrier is in THz).

Our exploration of a full-optical memory is motivated by the growing disparity between

the performance of current DRAM technology and the processor data access requirements.

Despite being in the early development stage, we consider that optical memory could be

an alternative for future computing systems similar to current relatively mature electrical

memory devices such as PCM and memristors. The two main characteristics of our full-

optical memory architecture are:

1. Using the O-RAM as the main memory system. Where the optical devices

not only offers bandwidth benefits for interconnection but also for high-speed data

storage.

2. Cache hierarchy reduction. We considered a reduction in the cache hierarchy

by estimation of the optical memory access. If the ORAM latency is equal to or

lower than the last-level cache latency, then we could remove this hierarchy level or

reduce its size.

The following section addresses how to architect an optical RAM (o-RAM) of MB

size. First, we detail the high-level architecture with its communication link based on

state-of-the-art photonic devices such as transceivers, switches, and memory cells. Sec-

ond, we evaluate our memory system proposal using microarchitectural execution-driven

simulation. Our exploration indicates o-RAM low operation latencies between the values

of the current first-level caches. As a result, we obtain speedup compared to a conven-

tional electric system due to the low latency for memory operations. Finally, we discuss

the main challenges for architecting a full-optical memory.

3.1.1 Architecture Overview

Figure 3.1 shows our architecture for a single core with an optical memory [96]. Our

proposal sets a direct link from processor to memory due to circuit switching nature of

optical networks, also aims to reduce the number of electro-optical conversions during

communication. Based on an optical communication scheme, there are three blocks: 1) a

transceiver based on modulators/demodulators [38], 2) an optical network (ONoC) formed

by switches based on MRRs [59] or MZI[128], and 3) optical memory cells as an optical

memory bank based on multibit volatile cells [132] or non-volatile cells [212].

Our ONoC design relies on a tree topology to perform direct access to all memory cells

by routing the light beam, where the tree branches are cascaded optical switches (o-SW).

Figure 3.2 shows the o-SW topology as a complete binary tree graph where the nodes are

the 1 × 2 o-SW, and its control relies on electrical signals. The number of memory cells

is equal to the number of the tree leaves, and with this configuration. Figure 3.2 shows
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Figure 3.1: Overview of a processor with an o-RAM system model: 1) a single core with
L1 caches, 2) a DWDM transceiver based network interface, 3) an optical link based on
o-SW and 4) an o-RAM bank.

Figure 3.2: Optical switch (o-SW) topology for an 256 MB o-RAM.

the ONoC for a total of 256 MB using 256-bit (32 B) volatile memory cells from [132],

therefore the binary tree has height = 24, and its total number of switches is (224−1).

A processor 1 communicates with the o-RAM using an optical communication in-

terface composed by the processor Transmission (Tx) and Receiver (Rx) modules, and

the DWDM transceiver (Figure 3.1 2 ). Each Tx’s and Rx’s pin is directly modulated or

demodulated with the DWDM transceiver setting a high-bit-rate data link.

The physical link is composed by two o-SW trees as shown in Figure 3.1 3 , which

are controlled to establish a direct access to the o-RAM by the optical communication

interface. Due to the system circuit switching nature, the interface can only handle one

in-flight request (serialized access). Therefore, o-RAM access could cause contention,

increasing the memory latency. Then, read/write instructions would have to stall until

previous o-RAM operations have finished. One way to minimize the contention is to

increase the number of paths to each o-RAM cell, at the cost of higher area footprint.

The set of paths to an o-RAM cell defines the total number of o-RAM ports. For example,

in Figure 3.1 4 an o-RAM cell has a single path. For an o-RAM implementation with

two ports, we need to duplicate the number of interfaces and o-SW trees structures. If

we consider an ideal MRRs of 5 µm2× (224− 1), a single o-SW plane will have an area of

≈0.83 cm2. Then, doubling the number of paths is ≈1.7 cm2.

There are two o-SW trees in our single port design, one before the o-RAM cell to

perform write operations, and the other after for read operations. When a write operation
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is performed a path is set from the processor Tx to the o-RAM, modulating the data on

the initiator and storing it on the target o-RAM cell structure. However, for a read

operation, a closed loop is established. This is because a path is set using both o-SW

trees, one from processor Tx to o-RAM, and another from o-RAM to processor Rx.

O-RAM effective read/write latencies are one order of magnitude lower than conven-

tional electrical DRAMs and in the same order as on-chip caches, without WDM control

and modulation latencies. This allowed us to reassess the memory hierarchy of electrical

caches with equal or higher latencies. We propose to only use L1 cache with the o-RAM,

this could reduce the processor area since the L2 and L3 cache can be approximately

one-half of the die’s silicon area [220].

Fig. 3.3 shows a multicore system with L1 Data (L1D) and Instruction (L1I) caches

without further levels of cache hierarchy. We called this L1D cache as a data buffer

because its size is lower than a conventional L1D in modern proccessors. In our design,

the L1I cache is electrical to maintain the instruction lines available to the processor,

avoiding excessive stall cycles due to misses for instruction fetching.

Figure 3.3: Multicore with an full-optical RAM. The processor only have one level of
cache, where the Data cache size can be equal or smaller than the Instruction cache size.

3.1.2 Operation and Timing

The optical memory operations could be summarized as follows:

• WRITE For writing data on an optical bank, the processor output is modulated

in the transceiver; then, a path is set within the optical network using electrical or

optical control signals depending on the switch characteristics. The optical signal

travels on the optical network to enter the memory cells and finally stay optically

buffered.
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Figure 3.4: Optical memory system read/write timing diagram.

• READ For reading data from an optical memory bank, the processor transceiver

modulates the electrical signals and sets the path using electrical or optical control

signals on the switches. The optical signal passes through the optical network

and reaches the optical bank. A read optical signal needs higher signal amplitude

than a write optical signal because the signal will traverse the memory cells and

pass backward the optical network to the transceiver’s demodulators suffering more

attenuation.

In our timing model, the overall total latency is defined by the optical switching

latency that defines the setting path time. It does not consider other latencies caused

by the electrical activation of optical switches or electrical control of modulators. This

approach is similar to other works, such as [226, 32, 30, 161]. It is motivated by two

key factors: 1) it envisions a chip with fully integrated photonic capabilities that can be

placed in a computing system, then latencies such as modulation tuning and serialization

need to be minimum due to the high efficiency of specialized hardware, and 2) other

latencies, such as group propagation in fiber, are negligible because of the on-chip or on-

board distance (max., in the order of tens of centimeters). For an extensive model, please

refer to Chapter 5, which details a disaggregated system (meters of rack distance) using

state-of-the-art optical devices, and we evaluate all the latencies.

Figure 3.4 shows the timing diagram for the read and write operations assuming a

2 GHz processor clock, a memory operation latency below one processor cycle, and a

switching delay of 2 ns (4 cycles). The switching delay is an optimistic assumption. For

example, although the effective switching latency is in ps for MRR’s optical switches, they

operate through thermal effect, leading to µs order latency [24, 16]. In Section 3.2, we

discuss recent work for fast optical switching.

In an ideal scenario, the total o-RAM access latency is 7 cycles. In cycle 1, the

processor performs a request to memory, and the communication interface modifies the

optical switch states to set the path to the requested data address (Addr). Cycle 2 contains

the decoding address delay. The communication interface sets the path in 4 cycles (from

cycle 3 to 6), as all the switches are activated simultaneously in a 2 ns electrical stimuli.

In cycle 7, as a result of the optical cells’ picoscale operation, the data is modulated

with the transceiver and stored in the memory cell in the case of a store. Otherwise,

the memory cell outputs the data stored for memory reads, which moves the data to an

electrical buffer or processor cache.
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3.2 Discussion of Implementation Challenges

We identified three key challenges to achieve a full-optical memory implementation, all

related to the improvement of photonic device fabrication and design as technology ma-

tures:

1. Provide fast switching: Reported MZI and MRRs switches exhibit optical switch-

ing delay in the order of ns for wavelength selection, enabling low access time for

our o-RAM design. However, as reported [24, 16], the latency caused by the thermal

effect required for control (i.e., optical switch phase shift) is up to 5 µs order la-

tency. The design of efficient optical switches is an active research area, as shown in

[113, 200]. Recent works reported total switching delay: 1) in the order of 200-400

ns at the cost of a narrower bandwidth as in [116, 160, 203], and 2) in the or-

der of fs using the nonlinear effects with plasmonics or photonics crystals in [190].

Recent demonstrations in [77, 76] of optical devices, based on the Pockels effect,

show promising results for high-performance switches and modulators. This type

of electro-optic switch operates at cryogenic temperatures and does not rely on the

Joule heating effect, obtaining efficient optical switches with high bandwidth, low

loss, and high-speed. However, their operation is dependant on the Pockels proper-

ties of three main materials used in thin films [165]: a) lithium niobate (LiNbO3),

b) lead zirconate titanate (PZT), and c) barium titanate (BaTiO3 or BTO). We

observe that fast optical switching can be achievable in future optical switches as

material applications mature.

2. Improve the integration feasibility: Future photonics chips need to integrate

thousands of photonic devices, being two orders of magnitude higher than the state-

of-the-art devices such as the switch arrays from [60] where dozens of switches are

used to form Benes topologies, e.g., 16 × 16 or 32 × 32 topologies. Notice that

it remains a challenge the massive integration, as we propose using millions of o-

sw. It is expected to achieve such high integration during the end of the next

two decades, according to The Integrated Photonic Systems Roadmap-International

(IPSR-I) [94]. It remains a challenge the massive integration of nonlinear photonic

devices, such as the multi-bit optical memory cell [132], because: a) most of them are

not compatible for integration with active photonic devices (e.g., lasers, modulators),

and b) is still challenging to maintain high reproducibility of the nonlinear behavior

for massive devices. Please refer to [142] for a discussion and analysis of nonlinear

photonics integration with Silicon devices.

Recent work using plasmonic materials shows promising results for area reduction of

optical switches due to its high integration and compatibility with CMOS processes

[190]. For example, an MZI [253] o-sw has an area of ≈ 0.02 mm2, then the o-

sw tree area in our design will be 0.3 m2. Using plasmonic o-sw [265], each with

4.8 µm2, the total required area will be 80.5 mm2. In [79], the authors fabricated

an atomic scale plasmonic switch, enabling research for future low footprint o-sw

devices. We observe a clear trend in area reduction of optical switches during the
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last decade. However, massive integration of photonic devices matures with the

fabrication processes.

3. Reduce the optical losses: Our o-sw tree design relies on cascaded optical

switches, which cause a loss in the transmitted signal. For example, for a 24 height

o-sw tree1 using plasmonic o-sw [265] the optical losses are up to 57.6 dB, and using

MZI [253] o-sw up to 69.6 dB. Figure 3.5 shows an state-of-the-art MRR optical

switch simulation using the reported parameters from [60]. As shown in Figure 3.6,

the estimated cross loss is 1.75 dB and the bar loss is 1.2 dB, equivalent to an optical

loss of 42 dB for a 24 height tree.

For our system implementation with this MRR switch, we need intermediate stages

of amplification between switching levels of the o-sw tree to guarantee the optical

signal propagation, significantly increasing the total design footprint.

It is essential to notice that MRRs and MZI switches offer lower losses than plas-

monic switches. Techniques and methods for obtaining reasonable energy levels and

low losses with plasmonic materials are open issues that have gained considerable

attention from researchers [125].

Figure 3.5: Optical switch (o-SW) simulation based on the measured parameters from
[60].

We expect that future device fabrication techniques will alleviate the previously

discussed trade-offs. While there are relevant technology challenges, we conclude

that implementing such a massive optical RAM is still not feasible and is still far

from maturity. Our goal is to show the potential impact of photonics and motivate

further studies at the microarchitectural level to define requirements and limitations

at the physical level.

1Without considering timing and area footprint
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Figure 3.6: Optical switch (o-SW) loss results using the measured parameters from [60].

3.3 Evaluation and Results

To assess a processor’s performance with o-RAM architecture, we used a modified ver-

sion of ZSIM simulator [222]. Table 3.1 details the three main benchmarks used in our

evaluation: 1) we used SPEC2006 [107] with the Simpoint [195] methodology, 2) we exe-

cuted PARSEC [36, 37] with medium inputs, and 3) We also executed a set or irregular

applications [153] which includes a Page Rank algorithm implementation and a Random

Memory Access application. Our architecture relies on two key characteristics: a) multibit

o-RAM storage (32 B), and b) fast-switching (tens of nanoseconds, see Section 2.3.4 for

MZI latencies), which is an ideal scenario without WDM imposed latencies (see Section

5.3.3 for a complete evaluation of a WDM link).

SPEC2006 [107] cactusADM, hmmer, astar, calculix, leslie3d, soplex, bwaves, dealII,
(pinballs) mcf, sphinx3, gobmk, milc, tonto, gromacs, gcc, GemsFDTD, h264ref,

perlbench, zeusmp, povray,amd, wrf, bzip2, gamess, omnetpp, xalancbmk
Irregular [153] pagerank, random memory access
PARSEC [37, 36] raytrace, canneal, fluidanimate, blackscholes, splash2x.fft, splash2x.barnes,
(medium) splash2x.oceancp, splash2x.waternsquared,

splash2x.waterspatial, splash2x.radiosity, splash2x.cholesky, splash2x.radix

Table 3.1: Benchmarks

We evaluated two scenarios for the optical memory system, with our o-RAM in ZSIM

that models the contention and circuit switching for different memory cell access in our

architecture.
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Scenario 1: Single core with only L1 cache

Table 3.2 summarizes our setup configuration and details the main characteristics of an

electrical processor system with: a) DRAM and, b) an optical memory system (o-RAM).

On both electrical and optical architectures, we use a 2GHz x86_64 processor model. In

the electrical platform, we use an L1+L2 cache with DDR3-1066-CL8 memory. We defined

three latencies values: 5, 7, and 11 cycles, based on average switching delays reported

values of optical switches [253, 61] without considering tuning delays. We performed a

sensitivity analysis for the o-RAM evaluation, defining the number of o-RAM banks (M)

and ports (P) per bank as a power of two and up to 4.

Processor

Cores 1 (x86_64)

Frequency 2 GHz

Main Memory
Baseline Optical

Type DDR3-1066 o-RAM

Latency
(cycles)

150 5, 7, 11

Cache

Levels
L1 I+D (64 KB)
L2 (2 MB)

L1 I+D (64KB)

Latency
(cycles)

L1 : 4 L1: 4

Associativity
L1: 4-way
L2: 16-way

L1: 4-way

Block Size 32 B

Replacement LRU

Table 3.2: Configuration to evaluate the scenario with o-RAM and a single level cache

Figure 3.7 reports the geometric mean speedup with SPEC2006 and irregular appli-

cations. Results are grouped by the number of modeled ports (P) and memory banks

(M) and normalized to the electrical baseline platform detailed previously in this section.

Each bar has three levels for the 11, 7, and 5 cycles access latencies evaluated, where the

first bar shows the results with SPEC2006, and the other bar was obtained with irregular

applications. Bars (A) and (B) are the results of a system with an L1 I-cache and D-cache

with an o-RAM.

All cases obtained better performance than the electrical case because of its lower

access latency. The speedup is up to 38% with SPEC2006 and 84% with irregular appli-

cations. Furthermore, our experiments show promising results with irregular applications.

As detailed in Fig. 3.7, the o-RAM system obtained an speedup up to 84% (B).

The speedup is higher when the memory level parallelism increases due to a higher
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Figure 3.7: Overall Speedup of processor with a L1 cache and o-RAM. On each set, the
first bar (A) represent SPEC2006 and the second one (B) irregular applications.

Figure 3.8: O-RAM port contention with SPEC2006 caused by access serialization on
7-cycle access latency

number of o-RAM banks or the number of ports. O-RAM system presents contention

on its ports, as discussed in Section 3.1.1. Fig. 3.8 shows the percentage of times that

a port P is busy when an operation is required, in the case of an o-RAM with 7 cycles

access latency with SPEC2006. With (2P×2M) and (4P×1M) the contention is 48.6% and

42.1% respectively. Both obtained an average data latency of 7 cycles. Port contention

has a direct effect on the data access latency. The 2P×2M and 4P×1M configurations

have a good balance between area and performance, where both cases obtain an ≈ ×1.36

speedup.

From our results, we made two key observations. First, using o-RAM allows rethinking

the cache hierarchy by reducing levels with similar latency to optical memory access and

obtaining better performance to the baseline. Second, to obtain an average of ≈50%

better performance, it is required ≈2 ns control and tuning for the optical switches. We

conclude that further developments in optical devices could enable the full-optical memory

architecture.
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Scenario 2: Single core and Multicore with only L1 cache (reduced L1 Data

Cache) and o-RAM,

Table 3.3 summarizes our setup configuration and details the platform cases similar to

the evaluation in Section 3.3. In this new scenario, we perform two evaluations: a) a

sensitivity analysis with a single core to explore the data cache size reduction, and b) a

multicore evaluation.

Processor

Frequency 2 GHz

Cores 1, 4, 8

Main Memory

Type DDR3-1066 o-RAM

Latency
(cycles)

150 5, 7, 11

Cache

Optical Optical
Baseline Single core Multicore

Levels
L1 I+D: 64 KB
L2: 2 MB

L1 I: 64 KB
L1 D: 32, 128, 512 B,
2, 8, 32 KB

L1 I: 64 KB
L1 D: 2KB

Latency
(cycles)

L1: 4 L1: 4

Associativity
L1: 4-way
L2: 16-way

L1: 4-way

Block Size 32 B

Policy LRU

Table 3.3: Configuration to evaluate the scenario with o-RAM and a single level cache
with reduced data cache.

Single core with o-RAM. For this experiment, we used pinballs representation

of important regions of code, enabling fast simulation. We used the SPEC06 bench-

marks presented in Table 3.1 to explore the different configurations for o-RAM. Figure

3.9 presents the results for speedup comparing the electrical and the optical system. The

results are grouped in columns by the size of L1D cache line size: 32 B, 128 B, 512 B,

2 KB, 8KB, and 32 KB; and each plot as a row shows a different estimation: speedup,

average access memory latency and port contention on banks. In Fig 3.9 a) each L1D

size configuration explores the numbers of ports (P) per o-RAM bank (B), where each

combination shows three bars for the 5,7 and 11 latencies, respectively. The speedup

reports the geometric mean of the execution of the applications of SPEC2006, as shown

in Table 3.3; these results are normalized to the execution of the electrical system. If the

values are higher than baseline 1, the result is exhibiting speedup; otherwise, it represents
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slowdown.

The speedup results show similar performance to the electrical system with a 2 KB

L1D for the (2) ports per (2) banks with a latency of 7 cycles. With the 8 KB and 32

KB, the optical systems show an average speedup of 37%. In Figure 3.9b we identify

that the average access latency for L1D 8K is 18 cycles. Figure 3.9 c shows that the

speedup occurs when the percentage of port contention is below 30%. As expected, if

the system has more ports or banks, the contention, and average memory latency drop

down. However, this requires more resources that will directly impact the total area of

the system. We also noticed that the results for 2 KB, 8 KB, and 32 KB are similar. The

contention might limit the speedup of the single-core due to circuit switching.

Multicore with o-RAM. Using the results of the single-core as a start point, we

explore the multicore system from Fig. 3.3 with N = {4, 8} cores and L1D 2 KB with a la-

tency scenario of 11 cycles. The applications executed are part of the PARSEC benchmark

and are listed in Table 3.1. Figure 3.10 shows the multicore system results where each

column groups the results per number of cores. Each bar represents a different number of

ports (p) configuration per number of banks (b). The results show an average slowdown

of 23% compared to the electrical system. The results show decreasing performance for

the configurations with 1 and 2 banks (b) while increasing the number of ports for both 4

and 8 cores, which is different for the single core evaluation in the sense of more resources

available allows better performance.

We conclude from the results of using a smaller L1D cache without L2 in the two

scenarios. First, a single core with o-RAM can achieve similar performance to a conven-

tional baseline system. Despite the sequential access required by setting paths, o-RAM

low latency (tens of ns) produces short processor stalls (tens of cycles). Second, multicore

with o-RAM performs worse than a multicore baseline system, caused by the increasing

miss occurrence of the core requests over different cache lines. This is dependant on the

workload and application type. In Chapter 5, we perform a thorough analysis of multiple

benchmarks with multicore and memory systems with photonics in data centers.

3.4 Final Considerations

We proposed a full-optical memory for the main memory system. A full-optical memory

benefits a computing system’s performance because it could provide: a) constant operation

latency and b) memory hierarchy reduction. We identified critical challenges related to

optical memory and switch fabrication that could enable such a system. However, our

exploration allows for understanding the current limitations of photonics for the main

memory. With the selected benchmarks, we observe that a full-optical memory can lead

to a 32× reduction of the L1 data cache and an average slowdown of 12%, and a maximum

slowdown of 23% for multicore processors with the selected benchmarks. We conclude

that such a full-optical RAM is far from feasible to fabricate because it is required to

obtain a switch with ≈ns of operation latency, including control delay. As switching

control is reduced and fabrication is mature, future works need to address the design of a

control layer for the optical switches.
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Figure 3.9: SPEC2006 results wih a single core with an optical RAM and a reduced L1D
(DBuffer). a) Speedup b) Average Memory Latency c) Port contention

Figure 3.10: PARSEC speedup with an optical RAM and a reduced L1D (DBuffer)
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Chapter 4

Reconfigurable Optical Multi-GPU

Architecture

In this chapter, we propose the usage of optical interconnects for inter-GPU communi-

cation. We analyze the NVLink characteristics, NVIDIA interconnection for GPU point-

to-point communication as a baseline to propose our reconfigurable optical multi-GPU

architecture. Our approach is extendable to future and similar interconnections from

other major vendors (e.g., AMD). In 2018 [15], we included our case study results with a

set of well-known machine learning models, showing promising results. In the following

sections, we 1) propose our optical multi-GPU architecture, 2) detail a bandwidth steering

algorithm for reconfigurable architecture, and 3) show results with data rate improvement

up to 20%.

4.1 Multi-GPU Computing

A Graphics Processing Unit (GPU) is a processing element composed of multiple cores,

where each core execute single-instruction multiple-thread (SIMT) programs. Figure 4.1

shows the architecture of a GPU processor. A single GPU card has multiple processing

cores on a single chip package, which is connected to high-bandwidth external DRAM

chips (e.g., GDDR5 achieving 28 GBps, or HBM2 delivering >100 GBps). The GPU chip

has an internal interconnection network to share data between the caching devices (local

memory) and the off-chip DRAM memory. For example, the V100 GPU product from

NVIDIA [189] has 80 SIMT cores and up to 32 GB of HBM memory. Each SIMT core

has five types of units: 1) 64 single-precision floating-point (FP32), 2) 32 double-precision

floating-point (FP64), 3) 64 single-precision integer, 4) 8 tensor cores1, and 5) 4 texture

units.

Multi-GPU computing is the preferred platform for the development of machine learn-

ing applications (e.g., deep neural networks and convolutional neural networks) in de-

ployed data-centers, such as Facebook, where they process daily ≈ 3 billion images with

convolutional networks [106, 261, 134]. The main reason to use GPU is its high per-

formance executing matrix-matrix multiplications (also known as, general matrix-matrix

1A Tensor core is a dedicated unit for 4 × 4 matrices operations in floating-point precision.
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Figure 4.1: High-level architecture of a GPU

multiplications or GEMM) on its tensor cores. A tensor operation, which is the core of

convolution operations in machine learning applications, consists of a matrix-multiply and

accumulation defined as D = A × B + C, where A and B are FP16 input matrices, C is

an FP16 or FP32 matrix. Then D is an FP16 or FP32 result matrix depending on its

inputs. There exist other types of dedicated hardware for machine learning, such as the

Tensor Processing Units (TPU) [118], photonic tensor cores [176], and FPGA accelerators

[120, 74]. Please refer to [242, 134], for a perspective on machine learning hardware.

4.2 Overview of Deep Neural Networks

Deep Neural Networks (DNNs) solve complex problems in diverse domains, such as image

classification, speech recognition, and genome analysis. A DNN is a Machine Learning

(ML) model, from the subset of Deep Learning (DL) in supervised learning, that emulates

the process of human learning over time by estimating the adaptable parameters of the

model (also known as weights). Figure 4.2 shows a DNN example of classification, where

the model receives lung images as input, and the output is a medical diagnosis. The

DNN model has three types of layers: 1) a single input layer, that receives raw data, 2) N

hidden layers, formed by multiple features implemented through the learning process by

discrimination of other irrelevant features, meaning that, after passing a layer, the output

is more refined, and 3) an output layer, representing the result of the model. A layer is a

set of multiple units called perceptrons that behave as a biological neuron.

A DNN model exhibit two identifiable phases during the learning process execution

[135], depicted in the classification example of Figure 4.2a. First, the DNN uses a large

data sample set in the training phase, to produce a highly accurate output adjusting the

weight vectors on each layer. Training requires parallel and computing-intensive execution

by forward passing (red arrows) the DNN model, estimating gradient vectors of the error

for each hidden layer and, back-propagating (blue arrows) the gradients to adjust and

update the weights to reduce the error. Second, the trained DNN model is fed with

new input data in the inference phase for classification; this process is equivalent to the

forward passing (blue arrows) operations and does not require back-propagation.

Figure 4.2b shows a perceptron, based on the original model proposed by Rosenblatt in

[215], which has a set of inputs x1, x2,
..., xn that are important features for the object (i.e.,
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image) classification. For each feature, there is a correspondent weight representing the

degree of importance w1, w2,
...wn. We could define the learning process y1 as an activation

function of the weighted sum of all the features. The step, sigmoid, and sign functions

are commonly used for activation; for example, in case of a step function φ the output of

y1 is -1 if
∑

n

i=1
wixi is ≤ threshold, or 1 if it is > threshold.

Figure 4.2: DNN model

4.2.1 DNNs evolution with multi-GPUs

As researchers adopted GPUs as the main device for applications that requires an in-

creasing number of threads with massive task execution in parallel (e.g., deep learning

[108, 106]), current high-performance data center need to support multiple GPUs on sin-

gle nodes and scale them by clustering several of those nodes. Figure 4.3 shows a timeline

that relates popular machine learning works of the decade with multi-GPU interconnec-

tion support. Please refer to the comprehensive survey in machine learning [12], where

the authors provided detailed information about the network models.

We identified three recent periods on GPU hardware after the release of the program-

ming model CUDA [127], and the seminal work [50] in parallelization of a convolutional

network model on GPU.

Those periods also occur after the public release of the ImageNet database for machine

learning classification [70], which contains a sizeable visual image data set for training and

is used in the annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC).

1. During the first period, GPU vendors enable direct peer-to-peer (P2P) access,

equivalent to Remote Direct Memory Access (RDMA), between different GPUs.

Initially, NVIDIA releases GPUDirect, and later AMD announces similar features

for their HyperTransport products. During this epoch, in 2011 IBM Watson won

a Jeopardy contest against human opponents that allowed deep learning to gain

the spotlight from international media [84, 164]. In [131], the authors proposed

the Alexnet model in a multi-GPU implementation, being the first time a deep

convolutional network won the ILSVRC 2012, obtaining the lowest error rate of ≈

15.3%.

2. The second period characterized by network RDMA operations allowed in GPU

device memory (NVIDIA [184] and AMD GDMA [14]), allowing communication
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between GPU memories located in remote devices. During this period, the deep

learning models consistently won the ImageNet contests, as the GoogLeNet model

[218]. Other models emerged as the ResNets [244], and the Generative Adversarial

Network (GAN) [97], which is an unsupervised model. Two events mark this time-

line, Facebook unveils details about their face recognition program, Deepface [243],

and Google’s Deepmind program defeat the human champion of the Go game using

176 GPUs [233].

3. Today, we are facing the third period, with multi-GPU platforms using high-

bandwidth interconnects between the processing devices. NVIDIA introduced their

P2P link for GPUs called NVLINK [189, 87], which allows fast transactions without

using the traditional Peripheral Component Interconnect Express Bus (PCIe). This

period is mainly focused on models with high connectivity between layers to reduce

network parameters, such as Densenet based models [111].

While larger (width of layers) and deeper (number of layers) models are developed

using larger training sets to obtain more accurate results [12], multi-GPU services need

to move towards Tbps communications for the processing elements, providing a higher

abstraction level in the programming model to alleviate the effort of the DNN designer.
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4.2.2 Parallel DNNs execution in multi-GPU

Figure 4.4 shows the DNN execution in a multi-GPU platform using the parameter server

approach. In [144, 143], authors proposed the parameter server for scaling distributed

machine learning workload. A parameter server is a technique used in distributed machine

learning. Its objective is an efficient parameter update and synchronization (i.e., weight

and gradient) across the multi-GPU. Multiple servers share the parameters globally and

reduce a bottleneck by distributing access over the servers, where each server maintains

a portion of data. A group of GPUs, named workers, can be associated with a specific

server.

In Figure 4.4, the platform has two GPUs operating as workers, a single CPU as a

task manager for the workers, and two external parameter servers. We assume that the

DNN layers execution is distributed among the workers in five stages:

1. At the beginning of the execution, the CPU receives variables from parameter

servers, such as training data.

2. The CPU transfers the variables to the workers according to each one scheduled

execution.

3. With the received data, the GPUs estimate the gradients (forward) iteratively.

4. A backward transference from the GPUs to the CPU occurs with the gradient

results.

5. Using the obtained gradients, the CPU aggregates them into a unified gradient

vector.

6. Finally, the CPU updates the parameter servers.

Figure 4.4: DNN model execution on a multi-GPU platform

DNN execution on a GPU uses the tensor cores units to achieve high throughput

in the TFLOPs order. However, bandwidth limits the overall performance [104]: 1)

the memory bandwidth that involves layer activation and data access at tensor cores
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operation level, and 2) the device interconnection bandwidth that constraints the gradient

exchange. As discussed in [104], there exist several compression techniques for DNNs to

optimize bandwidth utilization; the most studied approaches are based on quantization,

sparsification, pruning, decomposition, and distillation [33, 228].

In this work, we focus on training execution because of two key reasons. First, it is

more computationally demanding than inference because of the large size of the input set

[261]. Second, when backward propagation occurs, then training requires more commu-

nication between the execution nodes than inference [22]. In [147], the authors proposed

Deep Gradient Compression (DGC) to reduce the interconnection usage in the distributed

scenario for training.

Also, DNN training and inference performance can speed up using new hardware accel-

erators. Table 4.1 shows recent DNN dedicated hardware in six different domains. Notice

that optical accelerators appeared with a potential execution time of matrix multiplication

in constant time O(1) operation [115]. For more information about DNN accelerators,

please refer to the following surveys: 1) FPGA accelerators [100], 2) optical accelerators

[68], and 3) implementation challenges [211, 39].

Table 4.1: DNN hardware accelerators

Category Work

Systolic [205, 89]
Emerging memory [18, 155, 225]
Optical [19, 231, 115, 176]
Processing element [133, 53]
clustering/Network-on-Chip
Approximated [17, 137]
Cloud [88]

4.3 Multi-GPU Interconnects

There are two main factors for multi-GPU platform seamless implementation in data cen-

ters. First, a unified memory programming that helps the developer and supports both:

a) GPU-to-host (or GPU-to-CPU), b) GPU-to-GPU (or GPU peer-to-peer) communi-

cations. Second, a high-bandwidth and energy-efficient interconnection between GPUs.

Both conditions could lead to efficient implementations of machine learning models, that

necessitate efficient data movement for gradient propagation.

NVIDIA’s programming model introduced the Unified Virtual Addressing (UVA) and

later the Unified Memory (UM) manager [184, 187], for efficient memory transactions by

sharing data while executing a single application in multi-GPUs. CUDA API supports two

types of memory management, and the developer could use both approaches in parallel

programming:

1. With explicit memory functions: Figure 4.5 shows the operation of cudaMalloc()

and cudaMemcpy() functions highlighting their differences. With cudaMalloc()
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(red), the CPU allocates (or pins) a segment on its DRAM modules and shares it

with the GPU, then the GPU caches can modify data in the host memory accessing

trough the CPU without having a local copy. The cudaMemcpy() (blue) function

allows direct memory transactions bypassing the host, and directly reaching the

target trough the interconnect. It is allowed to perform direct operations between

GPU-GPU, CPU-GPU, storage-to GPU (e.g., cudaMemcpy() depicted in black

lines to an non-volatile memory device express (NVMe)), and GPU with a

third party devices using a NIC.

2. Using an automatic page migration: CUDA extended their original explicit

approach, and implemented the allocation function cudaMallocManaged() to de-

clare a global pointer accessible from any device (CPU or GPU). Different than the

first approach, there is an automated page manager based on heuristics to perform

allocation on device prefetch or its first access, flexible page migration, and reduce

the page faults. However, similar to the zero-copy accesses with cudaMalloc(), it

is also possible to use cudaMemAdvise() to give hints to the page manager to pin

pages, and use cudamemPrefetchAsync() for explicit page migration.

Unified Memory (UM) research is focused at overcoming memory management prob-

lems, such as complex asynchronous programming and redundant page migration over-

head [276], handling memory oversubscription with prefetching for efficient page migra-

tion due to far-faults [91], and speedup performance in multi-GPU execution with MPI

[63, 64, 214]. From the co-design perspective, hardware mechanisms can help improve data

migration efficiency further, which motivates us to study the multi-GPU interconnection.

Figure 4.5: DNN model execution on a multi-GPU platform

4.3.1 High-level architecture of multi-GPU interconnects

Efficient transactions between processing elements have a critical role in achieving high-

performance computing (HPC) in data centers. Expected HPC performance varies ac-

cording to the application domains and workloads (e.g., web services [47], deep learning
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[62]). Performance is also related to the characteristics and constraints in the data cen-

ter, such as heterogeneity of the processing elements, interconnection bandwidth, node

topology, and maintenance cost. As more massive clusters are required to solve complex

problems, the interconnect technology directly impacts three main aspects [227]: i) ex-

ecution scaling (inter- and intra-node), ii) inter-job interference, and iii) communication

patterns. Table 4.2 shows the actual top-five supercomputers according to TOP500.org

[234]. We observe two interconnection characteristics: 1) all of the data centers adopted

fat-tree topology for intra-node communication, 2) NVIDIA’s proprietary NVLink is the

preferred interconnect for inter-node communication of multi-GPUs. Intra-node intercon-

nect converges in the use of links with up to 200 Gbps and very well known topologies such

as Fat Tree [114] or Dragonfly [48]. However, inter-node communication for multi-GPU is

still an active field of study since the introduction of NVlink to complement current PCIe

usage. We outline the main architectural characteristics of multi-GPU interconnects.

Table 4.2: First five Top500 - June 2020

Ranking Name Location Nodes Config/Node Interconnect Topology

1 Fugaku JAPAN 158976
48 Fujitsu A64FX Fujitsu Torus
4 Fujitsu A64FX Tofu-D 5

1 Summit USA 4096
2 IBM Power9 Infiniband Fat

6 NVIDIA V100 EDR 1 tree

2 Sierra USA 4320
2 IBM Power9 Infiniband Fat

4 NVIDIA V100 EDR 1 tree

3 Sumway CHINA 40960 1 SW260101 Sumway Fat tree

4 Tianhe CHINA 16000
2 Intel Ivy Bridge Xeon

TH Express2 2
Fat

3 Xeon Phi tree

1 up to 100 Gbps [168]
2 approx. ≈ 100 Gbps [114]
3 up to 200 Gbps [168]
4 separate subsystem with NVIDIA GPUs [167]
5 up to 100 Gbps [72]

Peripheral Component Interconnect Express Bus (PCIe): PCIe is a high-

speed serial bus used for CPU communication with discrete devices such as NVMe storage,

network interfaces, and accelerators. Access via PCIe is in the order of µs, and it is slower

than the main memory access, which is in the order of ns. Figure 4.6a) shows the topology

for a state-of-the-art PCIe based multi-GPU system with a maximum of 16 GPU nodes

(i.e., DGX2 servers by NVIDIA [186]). Multi-GPUs with PCIe interconnects have a

complete binary tree topology, where the CPU processor is the root node, and GPUs are

the leaves; then, the PCIe switches serving as virtual PCI bridges enable the branches.

For such an extensive multi-GPU system with 16 GPUs, two separate trees with 8 GPUs

each are implemented with height equal 3, and required a multilevel (two levels) PCIe

switch network to communicate them. CPUs can communicate with each other using

a dedicated P2P interconnect (i.e., Intel Quick Path Interconnect [277]). Figure 4.6b)

depicts a PCIe bidirectional link, which is formed by N = 1, 4, 8, 16 lanes, and each lane
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has a set of wires for interconnection. A PCIe 3.0 link, which is used by current GPUs, is

bidirectional and uses up to ×16 lanes, four (unidirectional) wires form each lane working

as a differential pair delivering 2.5-16 Gbps. The maximum bandwidth of the PCIe 3.0

link is 15.75 GBps, with a total of 164 pins, being 64 pins for the differential pairs.

Figure 4.6: Multi-GPU with PCIe interconnection. a) Tree topology with 6 PCIe switches
for sustaining 8 GPUs per CPU. b) 16 GBps PCIe link formed with N lanes, where each
lane has a pair of wires.

NVlink. NVLink is a P2P communication interface developed by NVIDIA [87], and

it is envisioned to support GPUdirect operations: i) providing higher bandwidth than

traditional interconnects such as PCIe, and ii) increasing the interconnectivity support

for a higher number of devices. Figure 4.7a) shows the topology for a commercial server

using NVLinks (i.e., NVIDIA DGX1 [185]). In this system, there are 2 CPUs with a

total of 8 GPUs (GPU0 to GPU7) distributed evenly to each one. For example, CPU0

can access GPU0 to GPU3 using a PCIe interconnect with a tree topology. Therefore, in

this node arquitecture, there are two PCIe switches per CPU and two GPUs per PCIe

switch. GPUs have 50 GBps NVLink interconnects for direct access between them, with

a maximum of 6 NVLinks per GPU. NVLinks interconnections define a hypercube mesh

topology configuration between the GPUs. Figure 4.7b) shows the implementation of a

50 GBps NVLink. An NVLink is a bidirectional link composed with two unidirectional

sublinks, where each sublink has 8 unidirectional NVIDIA High-Speed Signaling Inter-

connects (NVHS) [56]. NVLink operation is packetized using messages from 16 Bytes to

128 Bytes, transmitted in smaller flit units of 128 bits.

NVSwitch. In [188], NVIDIA presented its NVSwitch product for the DGX2 server.

NVSwitches form a fully connected crossbar for non-blocking multi-GPU (total of 16

GPUs) interconnection in DGX2. The crossbar extends the PCIe network from Figure

4.6a) to allow direct GPU communication. Figure 4.8, shows the crossbar architecture and

details the NVSwitches. There are 12 NVSwitches, distributed evenly in two baseboards (6

per board), where each baseboard connects 8 GPUs. A GPU is connected to a baseboard
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Figure 4.7: Multi-GPU with NVIDIA NVLink interconnection. a) Hypercube topology
with 8 GPUs and 4 PCIe switches, 2 per cube side. b) 50 GBps NVLink with two 25
GBps unidirectional links.

using 6 NVLinks, one to each NVSwitch. There is a connection between baseboards using

8 ports per NVSwitch. Notice that a single NVswitch has 18 ports, and in DGX2 only

16 are used, allowing future interconnection increment. The aggregated throughput in

one crossbar hop is 300 GBps, considering the 50 GBps × 6 NVLinks. The aggregated

bandwidth for baseboard communication is 2.4 TBps estimated as 50 × 8 used NVLinks

× 6 NVSwitches.

Figure 4.8: Multi-GPU with NVIDIA NVSwitch interconnection. a) All-to-All topology
with 16 GPUs, 8 per side. b) NVSwitch chip photography from [188].

In [139], the authors evaluated multi-GPU interconnects observing that NVLink and

PCIe produce high non-uniform memory access (NUMA effect) during execution, while

NVSwitch memory access is uniform (UMA). The authors also highlighted the impor-
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tance of developing programming models to support diverse interconnect architectures

and to improve performance modeling to evaluate different scheduling techniques and

data migration scenarios in multi-GPU.

4.4 Optical reconfigurable architecture for multi-GPU

NVLink and NVSwitch alleviates the bandwidth-related problems on systems that only

use conventional PCIe interconnects and improves the performance in multi-GPU plat-

forms. However, such interconnects face three main scalability issues due to electrical

constraints [9, 227]. First, increasing the number of parallel wires required to achieve

higher bandwidth brings new crosstalk challenges. Second, the interconnect distance is

limited to onboard distances in the order of mm, not being compatible with rack ag-

gregation using the interconnect. Third, electrical switches ports bring new scalability

challenges as a higher number of GPUs require peer-to-peer communications. In this line,

we study Silicon Photonics (SiP) to design an efficient and high-bandwidth multi-GPU

architecture that alleviates those problems [173], and specifically, we use an optical switch

as the enabling device for such architecture [61].

SiP optical circuit switches (OCS) allow dynamic link-level reconfigurability for a new

class of bandwidth-steered applications. In [257, 232], the authors showed that bandwidth-

steering via OCS could achieve significant performance gains for dragonfly networks.

We propose an optically connected GPU architecture using SiP circuit switches, as

a new GPU communication structure to increase performance further. We introduce an

exhaustive bandwidth-steering algorithm to minimize total latency for device memory

transfers. Initial results for this algorithm and proposed architecture are reported in

Section 4.5.1 using traffic traces generated from DNNs execution on a real multi-GPU

system.

Figure 4.9a shows our optical multi-GPU architecture that enables high-bandwidth

and efficient peer-to-peer communication based on reconfiguration. In our architecture,

an Optical Circuit Switch (OCS) connects all the GPUs as a central arbiter of the SiP links.

Each SiP link uses Wavelength Division Multiplexing (WDM), achieving high bandwidth

via multiple virtual paths (please refer to Chapter 2). In our architecture, additional logic

monitors the traffic between GPUs and controls the OCS. We use bandwidth steering that

reassigns the optical channels (i.e., wavelengths) with low data rates to GPU-to-GPU

links with an increasing or more demanding data rate. Using reconfigurable OCS brings

to the multi-GPU four key features: 1) avoidance of link overprovision, 2) performance

improvement by reducing the transaction time due to bandwidth reallocation, 3) delivers

the flexibility to create adaptable topologies, and 4) enables GPU scalability because

of the continuous improvement in photonics achieving higher bandwidth than electrical

interconnects.

Figure 4.9b shows the implementation of a 50 GBps Silicon Photonics (SiP) link,

formed by two 25 GBps links. Every 25 GBps optical sublink could be implemented with

8 × 25 Gbps optical links considering that state-of-the-art photonics reaches up to 1 Tbps

bandwidth per link [24, 26]. Notice that as photonics technology progress, it is expected
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Figure 4.9: Optically Reconfigurable Multi-GPU architecture. a) Hypercube topology
with 8 GPUs and an optical circuit switch (OCS) that enables reconfigurability. Notice
that being reconfigurable, allows to change the topology according to the workload re-
quirements. b) 50 GBps Silicon Photonics (SiP) link based on two 25 GBps unidirectional
links.

that monolithic fabrication could be feasible [94, 230].

Figure 4.10 shows a simple example of the bandwidth-steering concept to optimize

the outgoing connections on a 3 GPU system (GPU A, GPU B, GPU C). Depending

on the microarchitecture of the OCS, the optical signals could each represent: i) a sin-

gle wavelength signal, or ii) a wavelength-division multiplexed (WDM) signal. The first

case scales worse than the second one because each wavelength requires an optical fiber,

therefore increases the number of ports on the OCS. In [59, 112], the authors demon-

strated scalability in a broadband WDM optical switch using microrings. Despite there

still exist challenges related to the number of ports, wavelengths, and losses; those works

show a compelling step in optical switching for high-bandwidth computing systems. Con-

sidering that the switching operation is in the order of µs and HPC applications (e.g.,

deep learning) produces a long execution time on multi-GPUs, our architecture can dy-

namically reconfigure the OCS to provide larger portions of the total bandwidth to the

highest-traffic GPU pairs (e.g., GPUA to GPUB): 1) at the beginning of each application

phase, and 2) within a phase. Fig. 4.10b illustrates a situation in which the algorithm

has determined that an unequal amount of bandwidth between GPU A and GPUs B and

C will result in increased performance. The specifics of this configuration algorithm are

detailed in the following Section 4.4.1.

4.4.1 Bandwidth Steering

Several works [245], evaluate OCS for HPC system communications to optimize the large

data flows between computing nodes (rack or servers). In [257] the optical Flexfly archi-

tecture for HPC system was proposed that allows reassignment of under-utilized links to

a group of computing nodes with saturated communication. Such an approach is known

as bandwidth steering and can be used for multi-GPU communication. Notice that band-

width steering can be used only in systems with irregular traffic patterns [232]; thus,
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Figure 4.10: Based on the relative amounts of data sent from GPU A to GPUs B and
C during a given application, the optical circuit switch (OCS) will reconfigure itself to
minimize GPU A’s total transmission latency. (a) The baseline configuration provides
equal bandwidth from GPU A to GPUs B and C (b) In this example, the optimization
algorithm has determined that GPU A requires 3x more bandwidth to GPU C than GPU
B.

the traffic flow is not evenly distributed among the links of the network topology. How-

ever, for the state-of-the-art multi-GPU platforms (such as NVLink) we identify two main

differences:

1. The complexity of the bandwidth-steering approach from [257] can be reduced to a

minimization problem because the ideal communication is peer-to-peer, where the

GPUs do not support routing of any kind, differently than HPC systems or data

centers where the computing nodes have switches on top-of-rack (ToR).

2. GPU operation is in ns order, and the OCS induced latency can lead to performance

degradation, while network communication latency is in µs the OCS latency can be

hidden in between data transmission. This limitation motivates the analysis of

traffic in multi-GPU platforms to enable dynamic optical reconfiguration.

Algorithm 1 shows the bandwidth steering minimization in pseudo-algorithmic repre-

sentation. The bandwidth steering algorithm uses as inputs the traffic matrix generated

during application execution and the connectivity matrix that represents the multi-GPU

initial topology. All the GPU-to-GPU communication must have a non-zero amount of

bandwidth allocated. Therefore to connect two GPUs, there must be a group of sublinks

assigned. After reserving the minimum amount of allocatable bandwidth, referred to as

a bandwidth unit, for every required connection, the remaining bandwidth units are dis-

tributed among the other GPUs to minimize the total amount of relative transmission

latency (RTL). To calculate the RTL for a single source-destination pair requires the

division of the element [i][j] in the traffic matrix for a given application by the corre-

sponding element in the topology’s connectivity matrix, where [i] and [j] represent the
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destination and source GPU IDs respectively. An aggregate RTL for each GPU is calcu-

lated by summing the RTLs from the appropriate column in the traffic and connectivity

matrices. An exhaustive implementation is used to minimize the aggregate RTL for each

GPU iteratively. This consists the calculation of cj ∗
(

k−1

k−cj

)

RTLs per GPU where cj is

the number of required connections for GPU j, and k is the number of bandwidth units

per GPU.

Algorithm 1 MULTI−GPU−BW−STEERING(Traffic, Connect, numgpu)

RTLinitial ← Estimate_RTL(Connect, T raffic)
for i = 1 → numgpu do
Connectopt ← feasible_combinations(Connect[i]) {Array of all possible combina-
tions of redistributed links within a connectivity matrix column};
for j = 1 → length(Connectopt) do
RTL = Estimate_RTL(Connectopt[j], T raffic)
if RTL[j] < RTLinitial then
Trafficnew ← RTL[j]

end if
end for

end for

4.5 Evaluation

We evaluated our optical reconfigurable multi-GPU architecture with bandwidth steering

using an static post-mortem approach. We executed a set of machine learning applications

and collected the traffic generated on an Amazon Server P3.16xlarge instance, which has

a DGX-1 with NVLink and 8 V100 GPUs.

Figure 4.11 summarizes our evaluation methodology in four steps:

1. First, we define a connectivity matrix based on the topology. Fig. 4.9 shows our pro-

posed reconfigurable architecture for 8 GPUs within a single server. The topology

is based on the NVLink-connected hyper-mesh GPU configuration. The connectiv-

ity matrix for this topology is shown in the center. Each element [i][j] in the

connectivity matrix denotes the total number of bandwidth units that GPU j can

use to send data to GPU i. In this experiment, each bandwidth unit represents 1

NVLink sublink that provides 25 GBps of bandwidth. Each NVLink-enabled GPU

has 6 outgoing and incoming sublinks, giving a total of 300 GBps of bidirectional

bandwidth [87]. It is important to notice that while Fig. 4.10 shows the outgoing

and incoming connections as a single bidirectional link; our optimization algorithm

treats each unidirectional connection independently.

2. Execute the DNN models on the server with multi-GPU.

3. We captured traces from the training phases execution of deep learning models gen-

erated using Tensorflow [3]. Tensorflow automatically allocates tasks on the GPUs

based on the infrastructure. The models used the parameter server stragegy for
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gradient propagation (see Section 4.2, and we also evaluated variable update with

replication where the CPU immediatly update the values on both parameter server

and the local GPU copy after the gradient aggregation. The traffic capture was

performed using the NVprof tool that creates an output log for 5 types of opera-

tions: a) memcopyHtoD, that represents host memory to GPU memory operation, b)

memcpyDtoH, which are all the operations from GPU memory to host memory, c)

memcpyDtoD, which are all GPU memory to GPU memory operations on the same

devices, d) memcpyPtoP, that represents GPU memory to peer GPU memory op-

erations (different GPU devices), and e) void, which are all the kernel execution

operations.

4. We parsed the multi-GPU transaction logs to count the latency and data movements

caused by memcpyPtoP, and generate traffic matrices.

5. We analyzed the reconfiguration mechanism with our implementation of the band-

width steering algorithm, obtaining optimized connectivity matrices.

Figure 4.11: Bandwidth steering methodology using the measured traffic from multiple
deep learning model training.

We used Convolutional Neural Networks (CNNs) in our evaluation. The Cifar10

dataset [130] was used to train the AlexNet, DenseNet100, DenseNet40, NASNet, ResNet110,

and ResNet20 models. The Flowers dataset [1] was also used, and provided input to both

MobileNet and VGG16 models.
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4.5.1 Experimental Results

Fig. 4.9a shows our proposed reconfigurable architecture for 8 GPUs within a single

server. The topology is based on the NVLink-connected hyper-mesh GPU configuration.

The connectivity matrix for this topology is shown in Fig. 4.11 1 . Each element [i][j]

in the connectivity matrix denotes the total number of bandwidth units that GPU j

can use to send data to GPU i. In this experiment, each bandwidth unit represents 1

NVLink sublink that provides 25 GBps of bandwidth. Each NVLink-enabled GPU has

6 outgoing and incoming sublinks, giving a total of 300 GBps of bidirectional bandwidth

[185, 186]. It is important to note that while Fig. 4.11 1 shows the outgoing and incoming

connections as a single bidirectional link, the optimization algorithm (Fig. 4.11 5 ) treats

each unidirectional connection independently.

Figures 4.12 to 4.15 show the results in a two-column format, where the first column

represents the traffic matrices and the second column, the optimized connectivity matrix.

In our evaluation, a bandwidth unit represents 1 NVLink sublink with 25 GBps of band-

width. Each NVLink-enabled GPU has 6 outgoing and incoming sublinks, giving a total

of 300 GBps of bidirectional bandwidth. Notice that the optimization algorithm evaluates

each unidirectional connection independently.

The scale in the first column is the total data flow (in percentage), while in the second

column is the number of 25 GBps sublinks. Our results are organized as follows:

• Case A: Figure 4.12 shows the results obtained with Cifar10 input and parameter

server without replication. Alexnet shows improvement by balancing traffic across

all nodes on the optimized connectivity matrix, considering it exhibits high traffic

interchange with node 5. Resnet exhibits high traffic across all nodes, and its

optimized connectivity matrix maintains this distribution.

• Case B: Figure 4.13 shows the results obtained with Cifar10 input and parameter

server with replication. Alexnet and densenet models show improved connectivity.

Both models have high traffic on node 5, and the resultant optimized matrix show

improved connection balancing traffic with nodes 3, 6, and 7.

• Case C: Figure 4.14 shows the results obtained with Flowers input and parameter

server without replication. Vgg16 has high traffic flow with node 4, and the opti-

mized connectivity show balanced traffic using nodes 3, 5, 6, 7, and 8. Mobilenet

model has high traffic in node 2, while the optimized connectivity show almost no

variation with the relation to the connectivity matrix.

• Case D: Figure 4.15 shows the results obtained with Flowers input and parameter

server with replication. Vgg16 shows high traffic in node 3, while the optimized

connectivity shows that it can be balanced using nodes 5 and 8.

We made three observations from the bar plot of our listed results, depicted in Figures

4.16a and 4.16b. First, the achieved average reductions in total RTL when optimizing

connectivity were: i) 2.52% in Case A, ii) 12.65% in Case B, iii) 9.75% in Case C, and

iv) 15.75% in Case D. As expected, the replicated variable models experience increased
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performance relative to the parameter server models. This is due to higher levels of peer-

to-peer traffic as a result of variable synchronization. Second, only a small reduction

is seen when the original hyper-mesh topology is well suited to the application. The

maximum percentage decrease in RTL using replicated variables was 24.77% using the

Flowers training set on the AlexNet model, and the minimum was 1.09% for ResNet110

with Cifar10 input. For parameter server, the maximum was 24.91% for AlexNet with

Cifar10 input, and the minimum was 0.52% for NasNet with Cifar10 input. Third, on

average, only four additional receivers per GPU are required to optimized traffic. However,

this can be dependant on the application communication behavior.

4.6 Final Considerations

We proposed a novel optically-connected GPU architecture that uses an exhaustive mini-

mization algorithm for bandwidth-steering multi-GPU systems. Our reconfigurable archi-

tecture efficiently distributes bandwidth between GPU devices showing up to 20% data

rate improvement with deep learning applications. Our evaluation shows a significant

decrease in measured relative transmission latency (RTL) at the cost of a few additional

receivers (Rx) per GPU. Future work will analyze the trade-offs between reduced latency

and additional Rx hardware and determine how other applications could benefit from this

architecture.
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(a) resnet110v2 parameter
server

(b) resnet110v2 optimized

(c) resnet20v2 parameter
server

(d) resnet20v2 optimized

(e) nasnet parameter server (f) nasnet optimized

(g) densenet40k12 parameter
server

(h) densenet40k12 optimized

(i) alexnet parameter server (j) alexnet optimized

Figure 4.12: Parameter server with cifar10 input
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(a) resnet110v2 replicated (b) resnet110v2 optimized

(c) resnet20v2 replicated (d) resnet20v2 optimized

(e) nasnet replicated (f) nasnet optimized

(g) densenet40k12 replicated (h) densenet40k12 optimized

(i) alexnet replicated (j) alexnet optimized

Figure 4.13: Replicated with cifar10 input
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(a) vgg16 parameter server (b) vgg16 optimized

(c) mobilenet parame-
terserver

(d) mobilenet optimized

Figure 4.14: Parameter server with flowers input

(a) vgg16 replicated (b) vgg16 optmized

(c) mobilenet replicated (d) mobilenet optimized

Figure 4.15: Replicated with flowers input
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(a) Speedup PS

(b) Speedup PSR

Figure 4.16: Data rate improvement with optical bwsteering
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Chapter 5

Optically Connected Memory for

Disaggregated Computing

In this chapter, we propose and evaluate an Optically Connected Memory (OCM) archi-

tecture that disaggregates the main memory from the computation nodes in data centers.

OCM is based on micro-ring resonators (MRRs), and it does not require any modification

to the DRAM memory modules. In 2020 [95], we calculated energy consumption from

real photonic devices and integrate them into a system simulator to evaluate performance.

Our results show that (1) OCM is capable of interconnecting four DDR4 memory chan-

nels to a computing node using two fibers with 1.07 pJ energy-per-bit consumption and

(2) OCM performs up to 5.5× faster than a disaggregated memory with 40G PCIe NIC

connectors to computing nodes.

5.1 Main Memory Disaggregation

Scaling and maintaining conventional memory systems in modern data centers is chal-

lenging for three fundamental reasons. First, the dynamic memory capacity demand is

difficult to predict in the short, medium, and long term. As a result, memory capacity is

usually over-provisioned [157, 192, 55, 210, 71], which wastes resources and energy. Sec-

ond, workloads are limited to using the memory available in the local server (even though

other servers might have unused memory), which could cause memory-intensive workloads

to slow down. Third, memory maintenance might cause availability issues [171]; in case a

memory module fails, all running applications on the node may have to be interrupted to

replace the faulty module. A promising solution to overcome these issues is to disaggregate

the main memory from the computing cores [146]. As depicted in Figure 5.1, the key idea

is to organize and cluster the memory resources such that they are individually address-

able and accessible from any processor in the data center [35]. Memory disaggregation

provides flexibility in memory allocation, improved utilization of the memory resources,

lower maintenance costs, and lower energy consumption in the data center [193].

Disaggregating memory and processors remains a challenge, although the disaggrega-

tion of some resources (e.g., storage) is common in production data centers [138]. Elec-

trical interconnections in rack-distances do not fulfill the low latency and high bandwidth
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Figure 5.1: Disaggregation concept for data centers.

requirements of modern DRAM modules. The primary limitation of an electrical intercon-

nect is that it constrains the memory bus to onboard distance [247] because the electrical

wire’s signal integrity loss increases at higher frequencies. This loss dramatically reduces

the Signal-to-Noise Ratio (SNR) when distances are large. An optical interconnect is

more appealing than an electrical interconnect for memory disaggregation due to three

properties: its (1) high bandwidth density significantly reduces the number of IO lanes,

(2) power consumption and crosstalk do not increase with distance, and (3) propagation

loss is low. Silicon Photonic (SiP) devices are likely suitable for disaggregation, delivering

≥ Gbps range bandwidth, as well as efficient and versatile switching [61].

In this thesis, our goal is to pave the way for designing high-performance optical

memory channels (i.e., the optical equivalent of an electrical memory channel) that enable

main memory disaggregation in data centers.

Our study provides an optical link design for DDR DRAM memory disaggregation,

and it defines its physical characteristics, i.e., i) number of Micro-Ring Resonator (MRR)

devices, ii) bandwidth per wavelength, iii) energy-per-bit, and iv) area. We evaluate the

performance (see Section 5.4.2) and energy consumption (see Section 5.4.3) of a system

with disaggregated commodity DDR DRAM modules.

We make three key contributions: (1) we propose the Optically Connected Memory

(OCM) architecture for memory disaggregation in data centers based on state-of-the-art

photonic devices, (2) we perform the first evaluation of the energy-per-bit consumption

of a SiP link using the bandwidth requirements of current DDR DRAM standards, and

(3) we model and evaluate OCM in a system-level simulator and show that it performs

up to 5.5x faster than a 40G NIC-based disaggregated memory.

5.2 Bandwidth Scaling for DDR memory

Photonics is very appealing for memory disaggregation because: (1) the integration

(monolithic and hybrid) between electronics and optics has already been demonstrated [6],

which allows the design and fabrication of highly-integrated and complex optical subsys-

tems on a chip, and (2) optical links offer better scaling in terms of bandwidth, energy,

and IO compared to electrical links; e.g., optical switches (o-SW) show better port count
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scaling [223]).

New electrical interfaces, such as GenZ, CCIX, and OpenCAPI, can disaggregate a

wide range of resources (e.g., memory, accelerators) [34]. Optical devices can enable scal-

able rack-distance, and energy-efficient interconnects for these new interfaces, as demon-

strated by a previous work that disaggregates the PCIe interface with silicon photon-

ics [275]. Our OCM proposal extends the memory interface with optical devices and does

not require substantial modifications to it, e.g., the memory controllers remain on the

compute nodes.

Figure 5.2 shows the IO requirements in the memory controller for electrical [163],

and optical interconnects to achieve a specific aggregated bandwidth. We define IO as

the number of required electrical wires or optical fibers in the interconnects. We use, for

both electrical and optical interconnects, 260-pin DDR4-3200 DRAM modules with 204.8

Gbps maximum bandwidth per memory channel. We make two observations. First, the

required number of optical IOs (left y-axis) is up to three orders of magnitude smaller

than the electrical IOs because an optical fiber can contain many virtual channels using

Wavelength Division Multiplexing (WDM) [40, 26]. Second, a single optical IO achieves

up to 800 Gbps based on our evaluation, requiring 2 IOs for bidirectional communication

(see Section 5.4.3). An optical architecture could reach the required throughput for a 4

memory channel system using only 2 IOs (two fibers) and for a 32-channel system with

only 10 IOs.

Figure 5.2: Required electrical and optical IO counts (lower is better) for sustaining
different amounts of aggregated bandwidth.

5.3 OCM: Optically Connected Memory

To overcome the electrical limitations that can potentially impede memory disaggregation,

we introduce an OCM that does not require modifications in the commonly-used DDR

DRAM protocol. OCM places commodity DRAM Dual Inline Memory Modules (DIMMs)

at rack-distance from the processor, and it sustains multiple memory channels by using

different wavelengths for data transmission. OCM uses conventional DIMMs and memory
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Figure 5.3: Optically Connected Memory organization: optical memory channels for dis-
aggregation of the main memory system.

Figure 5.4: Optically Connected Memory organization: optical memory channels for dis-
aggregation of the main memory system.

controllers, electro-optical devices, and optical fibers to connect the computing cores to

the memory modules. We explore the idea of direct point-to-point optical interconnects for

memory disaggregation and extends prior works [41, 16], to reduce the latency overhead

caused by additional protocols such as remote direct memory access (RDMA) and PCIe

[271]. Our OCM architecture can scale with the increasing number of wavelengths per

memory channel expected from future photonic systems [94].

5.3.1 Architecture Overview

Figure 5.3 and 5.4 show the main components of the OCM architecture configured with

state-of-the-art: a) photonic devices such as MRR modulators [24], lasers [156], and pho-

todetectors [26]); and b) DDR4 memories. OCM uses N optical memory channels, each

one consisting of X memory modules (DIMM 1 to X) operating in lockstep. OCM uses two

key mechanisms to take advantage of the high aggregated bandwidth of the optical do-
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main while minimizing the electrical-optical-electrical conversion latency overhead. First,

it implements an optical memory channel with multiple wavelengths that can support

multiple DIMMs in a memory channel. Second, it achieves high throughput by increas-

ing the cache line size and splitting it across all the DIMMs in a memory channel. For

example, if OCM splits a single cache line between two DIMMs, it halves the bus latency

(i.e., data burst duration tBL), compared to a conventional DDR memory.

In our evaluation (Section 5.4), we use two DDR channels operating in lockstep to get

a cache line of 128 bytes with similar latency as a cache line of 64 bytes in a single DDR

channel (Section 5.3.2). OCM benefits from the use of a wide Xn-bit interface, where X is

the number of DIMMs, and n is the width in bits of a DIMM bus. OCM transfers depend

on the serialization capabilities of the SiP transceiver. A SERDES allows establishing high

data rate communication channels by an encoding/decoding process, taking a parallel

input, and transforming it to a serial transmission and vice versa depending on clock

recovery. The serialization/deserialization latency increases with the number of DIMMs

in lockstep. Notice that, a commercial SERDES link (e.g., [102]) supports serialization

up to 256B (i.e., four 64B cache lines). As shown in Figure 5.3, on the CPU side, there is a

Master controller, and on the memory side, there are N Endpoint controllers that respond

to CPU requests. Both controllers have a structure called SiP Transceiver, and Figure

5.4a) shows a difference in the organization of the SiP transceivers per controller. Figure

5.4b) shows the SiP transceivers present in the Transmitter (TX) and Receiver (RX) lanes

in both Master and Endpoint controllers. A TX lane consists of a serializer (SER) and

Modulator (MOD) for transmitting data. An RX lane contains a Demodulator (DEMOD),

a Clock and Data Recovery (CDR) block, and a Deserializer (DES) for receiving data.

Both TX and RX lanes connect with a Xn-bit (e.g., X=2 and n=64 in our evaluation)

bus to the Endpoint controller, which forms the bridge between the lanes and the DRAM

module.

5.3.2 Timing Model

OCM transfers a cache line as a serialized packet composed of smaller units called flits,

whose number depends on the serialization capabilities of the SiP transceiver. Figure 5.5

presents the timing diagram of the OCM Read (RD) and Write (WR) operations. For

reference, a conventional DDR DRAM memory channel uses 64B cache lines; a data bus

transfers each line as 8B data blocks in 8 consecutive cycles, and the 1B Command (CMD)

and 3B Address (ADDR) use separate dedicated buses. In OCM, as depicted in Figure

5.5, the cache line is transferred in AB-GH flits. We show OCM timing with a flit size

that doubles the width of the memory channel data bus, and is the reason for dividing

the cache line between DIMMs 1 and 2 to perform parallel access and decrease latency.

OCM splits a single cache line between two DIMMs, which halves the bus latency (i.e.,

tBL [2]), compared to conventional DDR DRAM memory.

For the RD operation, data A and B are read from different DIMMs to compose a flit

(AB). Flit AB serialization and transmission occur after the Master controller receives the

CMD/ADDR flit. For the WR operation, the Master controller sends the flit containing

data blocks AB immediately after the CMD/ADDR flit. After Endpoint deserialization,
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Figure 5.5: OCM timing diagram for Read (top) and Write (bottom) requests.

DIMM 1 stores A, and DIMM 2 stores B. For example, OCM with a commercial Hybrid

Memory Cube (HMC) serializer [102] and 128B cache line size, transfers 2 × (4 × 16B of

data) with 1 × 4B CMD/ADDR initiator message (or extra flit).

Compared to conventional electrical DDR memory, OCM adds serialization and optical

packet transport latency to the overall memory access time (see Section 5.4). The DIMM

interface can support the latency overhead that is imposed by our optical layer integration.

In our evaluation, we consider both optimistic and worst-case scenarios. Past experimental

works [16] show that the overhead is low in the order of a few nanoseconds, requiring no

modification to the memory controller. However, if there is high latency imposed by

the optical layer, the signaling interface from the memory controller needs to be adapted.

Equation 5.1 shows the OCM latency model Tlat, which is defined as the sum of the DIMM

controller latency Tcontr, DIMM WR/RD latency Tmem(A|B) (latency is equal for both

DIMMs), serialization/deserialization latency Tserdes, modulation/demodulation latencies

Tmod and Tdemod, distance propagation latency penalty Tdist, and system initialization time

(e.g., Clock Data Recovery (CDR) latency, modulator resonance locking [191]) Tsetup.

Tlat(t) =Tsetup + Tcontr + Tmem(A|B)(t) + Tser + Tdes

+ Tmod + Tdemod + Tdist

(5.1)

Tsetup does not affect each transmission because the channel is configured only at boot

(or setup), having no impact on the system once it is configured [16]. In the optical and

millimeter wavelength bands, Tmod and Tdemod are in the order of ps[26], due to the small

footprint of ring modulators (tens of micrometers) and the high dielectric constant of

silicon.

5.3.3 Operation

Figure 5.3 illustrates the five stages of a memory transaction.



72

Stage 1 : processor generates a Read/Write (RD/WR) memory request. In the photonic

domain, a laser source generates light in λ1,2,...,K wavelengths simultaneously [27].

Stage 2 : data from the processor is serialized (SER) onto the Master Controller’s TX

lane, and the generated electrical pulses p1,2,...,m(t) drive the cascaded array of Micro-Ring

Resonators (MRRs) for modulation (MOD), represented as rainbow rings. We use non-

return-to-zero on-off keying (NRZ-OOK) that represents logical ones and zeros imprinted

on the envelope of light [26].

Stage 3 : optical signal is transmitted through an optical fiber. At the end of the fiber,

the combined optical WDM channels are coupled into an optical receiver.

Stage 4 : first, in the RX lane of an Endpoint, the WDM Demodulator (DEMOD)

demultiplexes the optical wavelengths using m MRRs. Each MRR works as an optical

band-pass filter to select a single optical channel from λ1,2,...m. Second, these separated

channels are then fed to DEMOD’s integrated photo-detectors (PD) followed by tran-

simpedance amplifiers (TIA). Together the PD and TIA convert and amplify the optical

signal to electrical pulses p′1,2,...,m(t) suitable for sampling. Third, the data is sampled,

deserialized (DES), and sent to the endpoint controller for decoding.

Stage 5 : the processor accesses memory with the DDR protocol using a RD or WR

command and a memory address. For a RD command, the Endpoint TX transmits to

the processor a cacheline with the wavelengths λ1,...,m (similar to Stages 1 to 4). For a

WR command, the data received from the processor is stored in memory.

5.3.4 Enabling Reconfigurability

OCM supports reconfigurability by placing an o-SW between the Endpoints and the

Master controller, similar to previous work [16]. OCM uses optical switching to connect

or disconnect a master controller from an endpoint. Switching can happen (1) in the setup

phase, which is the first time that the system is connected before starting execution, or (2)

before executing a workload, to adapt the amount of assigned memory to the requirements

of the workload.

As depicted in Figure 5.6, an optical switch has multiple ports, through which a set of

N processors can be connected to a configurable set of M OCMs, where N and M depend

on the aggregated bandwidth of the SiP links. In Section 5.4, we evaluate OCM with a

single CPU, and assume that the setup phase is already completed.

5.3.5 High Aggregated Bandwidth

OCM uses WDM [26, 40] to optimize bandwidth utilization. WDM splits data transmis-

sion into multiple colors of light (i.e., wavelengths, λs).

To modulate data into lightwaves, we use Micro-Ring Resonator (MRR) electro-optical
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Figure 5.6: Reconfigurable OCM with optical switches (o-SW).

modulators, which behave as narrowband resonators that select and modulate a single

wavelength. We use MRRs because they have a small hardware footprint and low power

consumption [27], and they are tailored to work in the communications C-band (1530-1565

nm). For more detail on photonic devices, please see [94, 229, 24].

OCM achieves high aggregated bandwidth by using multiple optical wavelengths λ1,2,...,K

(see laser in Figure 5.3 via WDM in a single link. The K wavelengths are evenly distributed

among the controllers, where the TX/RX lanes of a single DDR memory channel have

the same number (m) of optical wavelengths (λ1,2,...,m), see Figure 5.3. All wavelengths

have the same bit rate br, and the aggregated bandwidth for N memory channels is

BWaggr = br ×m×N . Assuming that BWaggr is higher than the required bandwidth for

a single memory channel BWmc, then BWaggr = BWmc×N . The total number of MRRs

is 2 × 2 × 2 × N × m because each TX or RX lane requires m MRRs. OCM has two

unidirectional links; each link needs both TX and RX lanes, and these lanes are located

in both Endpoint controllers and Master controllers.

5.4 Evaluation

Before showing our evaluations of OCM system-level performance (in Section 5.4.2 ), and

SiP link energy estimation (in Section 5.4.3), we describe our methodology for evaluation.

5.4.1 Evaluation Methodology

OCM performance. To evaluate system-level performance, we implement OCM archi-

tecture in the ZSIM simulator [222]. Table 5.1 shows the configuration of our baseline

system (a server processor), the two DDR4 memory configurations used in our evaluation

(MemConf1 and MemConf2), the latencies of an OCM disaggregated system, and the la-

tencies of a disaggregated system using 40G PCIe NICs. MemConf1 has 4 DDR4 memory

channels as in conventional server processors, and MemConf2 has a single DDR4 memory

channel, and an in-package DRAM cache on the processor side.

The goal of the DRAM cache is to reduce the optical disaggregation overhead [271],

which can have a significant performance impact in memory-bound applications. Our

DRAM cache resembles the Banshee DRAM cache [269] that tracks the contents of the

DRAM cache using TLBs and page table entries, and replaces pages with a frequency-

based predictor mechanism. We configure our DRAM cache to have the same operation
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latency as commodity DDR4 memory.

Table 5.1: Baseline processor, memory, OCM, and NIC.

Baseline
Processor 3 GHz, 8 cores, 128B cache lines

Cache 32KB L1(D+I), 256KB L2, 8MB L3
MemConf1 Mem 4 channels, 2 DIMMs/channel, DDR4-2400 [2]

MemConf2
Mem 1 channel, 2 DIMMs/channel, DDR4-2400

DRAM cache 4GB stacked, 4-way, 4K pages, FBR [269], DDR4-2400

OCM
SERDES latency: 10/150/340 cycles

Fiber latency: 30/60/90 cycles (2/4/6 meters roundtrip)

NIC 40G PCIe [182] latency: 1050 cycles

We calculate the SERDES link latency values for the upcoming years. We estimate

the minimum at 10 cycles, which assumes 3.2 ns serialization/deserialization latency [126].

We use 340 cycles (113ns) maximum latency reported in a previously demonstrated optical

interconnection system [204]. We simulate rack distances of 2m, 4m, and 6m with a 5

ns/m latency [4], which translates into 30, 60, and 90 cycles latency in our system.

For the 40G NIC-based system configuration, we evaluate a scenario using a PCIe

Network Interface Card (NIC) latency of 1050 cycles (350 ns) [4] (a realistic NIC-through-

PCIe latency is in the order of microseconds because of the PCIe protocol overhead latency

[182]).

We evaluate the system-level performance of OCM with applications from six bench-

mark suites representing three workload scenarios: (1) multi-program, (2) multithread,

and (3) multinode.

1. The first scenario for multi-programmed workloads depicts a mix of bench-

mark applications executing concurrently. We used SPEC06 [107] with Pinpoints

(warmup of 100 million instructions, and detailed region of 30 million instructions),

and SPEC17 [44] speed with reference inputs. Table 5.2 lists the content of the used

SPEC benchmark mixes.

Table 5.2: Evaluated SPEC06 & SPEC17 benchmark mixes.

SPEC06
mix1 soplex_1, h264, gobmk_3, milc, zeusm, bwaves, gcc_1, omnetpp
mix2 soplex_1, milc,povray, gobmk_2, gobmk_3, bwaves, calculix, bzip2_2
mix3 namd, gromacs, gamess_1, mcf, lbm, h264_2, hmmer, xalancbmk

SPEC17
mix1 exchange2, cactus, gcc_2, imagick, fotonik3d, xalancbmk, xz_2, lbm
mix2 gcc_1, nab, lbm, leela, mcf, xz_1, sroms, omnetpp
mix3 xalancbmk, nab, cactus, mcf, imagick, xz_1, fotonik3d, deepjeng

2. The second scenario represents multithreaded workloads, i.e., a single appli-

cation with multiple threads executing on a multicore processor. We used PAR-

SEC [37] with native inputs, SPLASH2 [36] with simlarge inputs, and GAP graph

benchmarks [31] executing 100 billion instructions with the Web graph input, and
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30 billion instructions with the Urand graph input. The Urand input has very poor

locality between graph vertices compared to the Web input. We also used five MPI

applications from the NAS Parallel Benchmark (NPB) [28] with class C inputs, ex-

ecuting 100 billion instructions for FT, MG and CG, and whole running IS and EP.

For these MPI applications, we split them over 8 processes, 1 process per core.

3. For multinode workloads, a single application executes on multiple nodes of a

computer cluster. We considered a computer cluster composed of eight nodes with

the same characteristics as shown in Table 5.1. We used the same MPI applications

from NPB that we used on the multithreaded workload scenario, but instead of run-

ning all eight processes on the same node, we distribute them among eight nodes,

one process per node. To consider the network overhead from node to node commu-

nication, we used a two-step simulation approach. On the first step, we execute

the MPI application on ZSIM, considering only one of the eight created processes.

This execution allows measuring performance, i.e., speedup, without node-to-node

communication overhead. On the second step, we modeled a computer cluster

with the SimGrid simulator [49] and tuned each node’s processing power according

to the speedup obtained in the first step. We executed the MPI benchmarks on

our tuned cluster model using the SimGrid MPI interface [69], obtaining a perfor-

mance measurement that considers the network overhead. The cluster model we

used resembles the topology from a local computer cluster named Kahuna, where

the eight nodes are connected via a Mellanox SX6025 switch. We measured the

bandwidth and latency on node to node communication in Kahuna, using two ker-

nels, osu_latency and osu_bw, both from the OSU benchmark suite[148]. In the

first step of our two-step simulation approach, we executed 9 billion instructions for

IS, 24 billion instructions for FT, 8 billion instructions for CG, 7 billion instructions

for MG and 21 billion instructions for EP. On the second step, all the applications

executed without any limitation on the number of instructions.

Table 5.3 summarizes the measured memory footprint values for all the benchmarks

used in our evaluation, measured using the Massif tool from Valgrind [181]. The measured

memory footprint of MPI applications from NPB is for the application code only, and it

does not include the memory footprint from the MPI process manager.

We also used a synthetic benchmark, that resembles the copy kernel from the STREAM

benchmark [166], to obtain the OCM memory roofs, based on the memory roof concept

of the Roofline model [258].

SiP link energy-per-bit. To evaluate the interconnection between processor and

memory as a point-to-point SiP link, we use PhoenixSim [216] with parameters extracted

from state-of-the-art optical devices [26, 201, 23]. Figure 5.7 shows the graphical user

interface of the PhoenixSim simulator.

PhoenixSim considers the physical features of the optical devices and their digital

semiconductor drivers to evaluate many SiP link energy-per-bit cases in terms of: (1) the

required number of optical wavelengths (λ), and (2) the bit rate per λ. Table 5.4 lists

OCM optical devices and their main characteristics used in our simulation model.
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Table 5.3: Measured memory footprints.

SPEC06 [107] MIX1 : 2.2 GB, MIX2 : 3.1 GB, MIX3 : 2.4 GB

SPEC17 [44] MIX1 : 19.9 GB, MIX2 : 36.4 GB, MIX3 : 34.7 GB.

PARSEC [37] canneal : 716.7 MB, streamcluster : 112.5 MB, ferret : 91.9 MB,
raytrace: 1.3 GB, fluidanimate: 672 MB

SPLASH [36] radix : 1.1 GB, fft : 768.8 MB, cholesky : 44.2 MB,
ocean_ncp: 26.9 GB, ocean_cp: 891.8 MB.

GAP [31] Urand graph: 18 GB, Web graph: 15.5 GB

NPB [28] Class C Integer Sort (IS): 2.3 GB, Fast Fourier Transform (FFT): 7.2 GB,
Conjugate Gradient (CG): 1.2 GB, Multi Grid (MG): 3.5 GB,
Embarrassingly Parallel (EP): 34.4 MB

5.4.2 System-level Evaluation

Multiprogrammed Evaluation. Figure 5.8 shows the slowdown of OCM and 40G NIC-

based disaggregated memory systems with MemConf1, compared to a non-disaggregated

MemConf1 baseline, for three mixes of SPEC06 benchmarks (Table 5.2). Notice that

a system with disaggregated main memory is expected to perform worse than the non-

disaggregated baseline, because of the extra latency introduced by the interconnects (see

Eq. 5.1).

We make two observations. First, the 40G NIC-based system is significantly slower

than our OCM system, even though the Ethernet configuration we evaluate is very op-

timistic (350 ns average latency, equivalent to 1050 cycles in Table 5.1). OCM is up to

5.5× faster than 40G NIC for the minimum SERDES latency, and 2.16× faster for the

maximum SERDES latency. Second, the results show the feasibility of low-latency dis-

aggregation with OCM as future SERDES optimizations become available. OCM has an

average slowdown (across all rack-distances) of only 1.07× compared to the baseline with

a SERDES latency of 10 cycles, and 1.78× average slowdown with a SERDES latency of

340 cycles.

Figure 5.9 shows the speedup of a disaggregated OCM system (green bars) compared

to a non-disaggregated baseline, both configured with MemConf1. Figure 5.9 also shows

the speedup of OCM with MemConf2 (red bars), and the speedup of a non-disaggregated

system with MemConf2 (blue bars), both compared to a MemConf2 baseline without a

DRAM cache and without disaggregation. OCM has a conservative SERDES latency of

150 cycles, and a distance of 4m.

Figure 5.9 (left) shows the results for SPEC17 mixes (see Table 5.2). We make two

observations. First, the average slowdown of OCM without DRAM cache (green bars)

is 17%, which is in the same order as the SPEC06 results (Figure 5.8). Second, with

a DRAM cache, the performance of the OCM disaggregated system (red bars), and the

non-disaggregated system (blue bars) is very close, as the memory intensity of these

benchmarks is not very high. As expected, the performance of the disaggregated system

is always lower than the non-disaggregated system.



77

(a) Graphical user interface for creating a SiP link model.

(b) Simulation output window.

Figure 5.7: PhoenixSim [216] simulator developed by the Lightwave Research Laboratory
at Columbia University.

Figure 5.8: Slowdowns of OCM and 40G NIC-based disaggregated systems, compared
to a non-disaggregated baseline with MemConf1, for three randomly-selected mixes of
SPEC06 benchmarks (lower is better).
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Table 5.4: Optical and electrical models for OCM SiP link devices

Parameter Design Criteria Details Ref.

Optical power 20 dBm Max. aggregated
Center wavelength 1.55 µm

Laser 10% and 30% Laser wall-plug efficiency [45]
Waveguide loss 5 dB/cm fabrication roughness [98]

0.02 dB/bend waveguide bend loss
Coupler loss 1 dB off-chip coupler [57]
Modulator Q = 6500 Ring resonator Q factor [201]

ER = 10 dB MRR extinction rate
65 fF Junction capacitance
-5 V Maximum drive voltage

1 mW Thermal-tuning power/ring [24]
Mod. mux and demux MRR power penalties Crosstalk model [26]

Photodetector 1.09 A/W Current per opt. power [81]

Modulator driver 28 nm Semicond. tech. for OOK-WDM [201]
SERDES power model 28 nm Semicond. tech. [201]

Digital receiver 28 nm Semicond. tech. for OOK-NRZ [201]
Element positioning 100 µm Modulator padding

Multithreaded Evaluation. Figure 5.9 (right) shows the results for multithreaded

graph applications. We make two observations. First, the maximum slowdown of OCM

without a DRAM cache (green bars) is up to 45% (pagerank (PR)), which is in the same

order as SPEC17 results, despite the Web input having very high locality. The extra

latency of the OCM disaggregated system has a clear negative effect on performance.

Second, graph workloads dramatically benefit from using a DRAM cache (red and blue

bars), e.g., PR with Urand input shows a speedup of 2.5× compared to the baseline,

which is 50% lower speedup than the non-disaggregated scenario. We believe that the

performance degradation of OCM with DRAM cache is still reasonable. However, adding a

DRAM cache also brings new challenges that need further investigation in a disaggregated

setting, such as page replacement mechanisms and caching granularity [269, 145, 170, 267,

172, 266, 207, 117].

Figure 5.10 shows the slowdown of OCM compared to the baseline, using MemConf1

with PARSEC and SPLASH2 benchmarks. We show results for the memory-bound bench-

marks only. We also test other compute-bound benchmarks that show less than 5% slow-

down, as depicted in Figure 5.13 and 5.12. We make three observations. First, with the

lower bound SERDES latency (10 cycles) and lowest rack distance (2 m), applications

such as streamcluster, canneal and cholesky, experience an average 3% speedup. This

small improvement occurs as a result of Tmem reduction (tBL related) due to splitting

of a cache line into two DIMMs. Second, the slowdowns increase slightly as distance

increases. Third, with large rack-distance and maximum SERDES latency, the slowdown

is significant. The highest slowdown measured is 2.97× for streamcluster at 6m and 340

SERDES cycles; the average slowdown is 1.3× for SPLASH2 and 1.4× for PARSEC.
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(a) Speedup for SPEC17 [44] benchmarks.

(b) Speedup for GAP [31] graph benchmarks.

Figure 5.9: OCM speedup results with 4m distance and a SERDES latency of 150 cycles
(higher is better), compared to a disaggregated baseline, with or without a DRAM cache

Figure 5.11 shows the slowdown of OCM with DRAM cache in a conservative scenario,

i.e., medium rack distance (4m) and SERDES latency (150 cycles), using MemConf2

with memory-bound benchmarks of PARSEC and SPLASH2. We additionally explore

MemConf2 with a 1 GB DRAM cache. We make two observations. First, using a DRAM

cache reduces the latency overhead caused by OCM disaggregation. The average slowdown

is 0.89× for OCM with a 1 GB DRAM cache and 0.83× for OCM with a 4 GB DRAM

cache. However, OCM with a 1 GB and 4GB DRAM cache performs faster compared

to the 1.33× slowdown of an OCM system without DRAM cache. Second, OCM can

also benefit from a lowersized DRAM cache depending on the workload memory footprint

and access behavior. The ocean_ncp and streamcluster benchmarks have the highest

slowdown with OCM. Both benchmarks exhibit a similar performance improvement using

a 1 GB DRAM cache compared to a 4 GB DRAM cache. The ocean_ncp benchmark

performs only 3% slower in an OCM system with a 1 GB DRAM cache than an OCM

system with a 4 GB DRAM cache. While executing ocean_ncp benefits from a 1 GB

DRAM cache because of its large memory footprint of ≈ 27 GB, benchmarks with low

memory footprint such as cholesky (≈ 44 MB) does not benefit from a DRAM cache due

to the TLB overhead. Using a smaller DRAM cache can help reduce area and electrical
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Figure 5.10: OCM slowdown compared to the baseline for PARSEC and SPLASH2 bench-
marks (lower is better).

energy consumption on an OCM system’s processing side.

Figure 5.11: OCM slowdown results with a DRAM cache for PARSEC and SPLASH2
benchmarks on a system with 150 SERDES latency and 2m rack distance (lower is better).

Figure 5.14 shows the OCM speedup using MemConf2 with the NPB benchmarks.

These results present a maximum slowdown of 27% with the CG benchmark, while with

the other benchmarks, the performance loss stays within 14%. Using a DRAM cache

exhibits a performance improvement on all benchmarks except on EP. This occurred due

to the extremely low memory footprint from this benchmark, as depicted in Table 5.3.

Multinode Evaluation. Figure 5.15 shows the results of a multinode scenario run-

ning NPB benchmarks on eight different nodes, one process per node. This multinode

execution case exhibits a reduced variation in performance compared to the multithreaded

workloads. The difference between the average performances of the three configurations

stays within 7%. This is due to two factors that diminish the impact of the memory sys-

tem. The first factor is that the memory footprint of each benchmark was also split among

the eight nodes. Considering the 34.4 MB memory footprint from EP, the eighth part is

around 4.3 MB, which entirely fits the 8 MB L3 Cache. The second factor is that network

performance has a significant impact on these applications. We considered a node to node

latency of 8 microseconds (around 24000 cycles). As a comparison, our worst SERDES

overhead consideration for OCM was 113 nanoseconds (340 cycles). Depending on how

the applications can overlap computation and network communication, the performance

bottleneck may shift from the memory system to the network performance.
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Figure 5.12: OCM slowdown for PARSEC benchmarks. The applications are grouped as
computing-bound (blue) and memory-bound (red).
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Figure 5.13: OCM slowdown compared for SPLASH2 benchmarks. The applications are
grouped as computing-bound (blue) and memory-bound (red).

Memory Roofs. Figure 5.16 and 5.17 present the memory roofs obtained with Mem-

Conf2 configuration. Figure 5.16 represents the memory roofs obtained from a single core

(1 thread), while Figure 5.17 represents the memory roofs obtained from a multithreaded

execution (8 threads, one per core). OCM with DRAM cache shows an increase in band-

width performance according to the bandwidth demand. They increase their bandwidth

on the multithreaded case (3.79× for DRAM cache and 1.88× for OCM), while the elec-

trical memory exhibits no variation on its performance. With the higher bandwidth

demand from the multithreaded application, OCM compares to the electrical memory in

bandwidth performance, and the DRAM cache exhibits an advantage over the electrical

memory. This behavior shows that OCM can achieve similar performance to the electrical

memory bandwidth on the best case (cache-friendly memory accesses). Concurrently, a

DRAM cache may become only an additional level on the memory hierarchy, without any

gain of performance, on lower bandwidth demands.

We conclude that OCM is very promising because of its reasonably low latency over-

head (especially with the use of a DRAM cache), and the flexibility of placing memory

modules at large distances with small slowdowns.
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Figure 5.14: Speedup of the usage of DRAM cache (with and without OCM) and OCM
compared to the baseline for NPB benchmarks (higher is better), using eight processes
all on a single node.

Figure 5.15: Speedup of the usage of DRAM cache (with and without OCM) and OCM
compared to the baseline for NPB benchmarks (higher is better), using eight processes
distributed among eight nodes (1 process per node).

5.4.3 SiP Link Evaluation

We evaluate the energy and area consumption of the SiP link to allow the system designer

to make tradeoffs about the use of SiP devices in the computing system. It is enough

to consider a single unidirectional modelled SIP link using PhoenixSim [216] with the

input parameters shown in Table 5.4 to estimate the energy efficiency. We estimate the

minimum energy-per-bit consumption and the required number of MRRs for our model,

given an aggregated optical bandwidth equivalent to the bandwidth required by DDR4-
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Figure 5.16: Memory roof, using MemConf2, of DRAM cache, electrical memory and
OCM using a single threaded application.
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Figure 5.17: Memory roof, using MemConf2, of DRAM cache, electrical memory and
OCM using a multithreaded application (8 threads).
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2400 DRAM memory.

A single DDR-2400 module requires 153.7 Gbps bandwidth [2]. 4 memory channels,

with 2 DIMMs per channel in lockstep, require∼615 Gbps/link. OCM’s maximum feasible

bandwidth (while remaining CMOS compatible) is 802 Gbps using the parameters in

Table 5.4. More advanced modulation formats, such as PAM4 [229], can be used to

achieve higher aggregated bandwidth. Figures 5.18 and 5.19 show the energy-per-bit

results (y-axis), and the aggregated bandwidth. The aggregated link bandwidth is the

multiplication of the number of λ (bottom x-axis values), and the aggregated bitrate (top

x-axis values), i.e., a higher number of λs implies a lower bitrate per λ. We consider

three feasible and efficient MRR sizes in our model: 156.4 (green), 183.5 (orange), and

218.4 µm2 (blue).

From Table 5.4, we have considered two cases of lasers, 10%-efficient epitaxially-grown

integrated laser, which is widely used in the SiP industry [124], and a state-of-the-art

laboratory laser with a nominal efficiency of 30% [45] to demonstrate that improvement

of optical features of a single device affects our SiP link energy estimation significantly.

Our previous work [95] used off-chip lasers, while in this work, we report results using

heterogeneous integration of lasers on silicon [124] and reducing the number of couplers

per link.

As shown in Figure 5.18, in OCM with 615 Gbps links using lasers with 10% efficiency,

the minimum energy consumption overhead compared to the electrical memory system is

1.02 pJ/bit for 35 optical wavelengths (λ) per link, each λ operating at 17.57 Gbps. The

SiP link with the 30% laser efficiency achieved and energy consumption of 0.64 pJ/bit

with 39 λ’s, each operating at 15.8 Gbps, as depicted in Figure 5.19.

The energy evaluation of the maximum feasible bit rate of a SiP link is also presented,

with an aggregate bandwidth of 800 Gbps. The minimum energy consumption is 1.43

pJ/bit for 36 λ’s per link, each λ operating at 22.22 Gbps using a laser with 10% efficiency.

The SiP link that has lasers with an efficiency of 30% showed energy consumption of 0.81

pJ/bit for 45 λ’s, each operating at 17.77 Gbps.

We make three observations from Figures 5.18 and 5.19. First, as in electrical sys-

tems, it is expected that a higher bandwidth per link increases the link energy-per-bit

consumption. However, the optical energy-per-bit is lower compared to electrical systems.

For reference, the energy-per-bit of a DDR4-2667 DRAM module is 39 pJ [194]; thus, the

energy-per-bit caused by an additional SiP link in the memory subsystem is less than 5%.

Second, there is a non-smooth behavior on the energy-per-bit curves due to the energy

consumption model of the optical receiver, which depends on the data rate. In our model,

we set the photodetector current to a minimum value. As the data rate increases, the

received signal becomes less distinguishable from noise. Our model forces the photocur-

rent to step into a new minimum value to avoid this, causing the repeated decrease and

increase of the energy-per-bit values [27]. For both SiP links, the 183.5 µm2 rings consume

the lowest energy. The estimated area overhead is 51.4E-3 mm2 with 2× 615 Gbps links,

and 57.3E-3 mm2 with 2×802 Gbps links. In our case study of 4 DDR4 memory channels,

OCM uses fewer physical interconnects (optical fibers) than 40G PCIe NIC links (copper

cables). In other words, to achieve the required aggregated link bandwidth, we require 2

optical fibers with OCM or 30 copper cables with 40G PCIe NICs.
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Figure 5.18: SiP link energy-per-bit using a laser with 10% efficiency. Top: at 615 Gbps
bandwidth, Bottom: at 800 Gbps bandwidth.

From Figure 5.20, we make three observations: (i) with the current setup shown

in Table 5.4, the energy per bit grows exponentially for aggregated bandwidths above

2500 Gbps and above the average DDR off-chip data movement energy at 3000 Gbps;

(ii) the most energy-efficient number of wavelengths grows approximately linearly with

the aggregated bandwidth; (iii) demonstrated fabrication feasibility is highlighted up to

800 Gbps, and the region to the right is estimated with PhoenixSim, yet currently not

feasible. Accordingly, we can say that OCM must include new and more efficient optical

device models to grow beyond the 3000 Gbps mark. Furthermore, this growth must

include optimizing MRRs -or similar devices- to either multiply the number of possible

wavelengths or raise the bitrate per wavelength. The physics of this growth will be

addressed in the Scaling of optical devices section.

We conclude that a bidirectional SiP link, formed by two unidirectional links using

current SiP devices, can fit the bandwidth requirements of commodity DDR4 DRAM mod-

ules. OCM incurs a low energy overhead of only 10.2% compared to a non-disaggregated
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Figure 5.19: SiP link energy-per-bit using a laser with 30% efficiency. Top: at 615 Gbps
bandwidth, Bottom: at 800 Gbps bandwidth.

DDR4 DRAM memory (the energy consumption of current DDR4 DRAM technology is

∼ 10pJ/bit [229]).

Scaling of optical devices. Silicon has an indirect energy bandgap in near infrared

frequencies. Thus, active devices such as lasers or photodetectors cannot be fabricated

using only a single material. Optical active devices on silicon are moving towards mono-

lithic integration of other energy efficient materials. Namely, heterogeneous integration

of III-V-group materials epitaxially grown on silicon [255], and the integration of two-

dimensional [67] and one-dimensional [150, 73] materials to improve modulation, ampli-

fication, switching and photodetection. These techniques enable more efficient lasers,

improve the sensitivity of photodetectors and reduce modulators driving power. These

improvements can affect directly the SiP link estimated energy-per-bit, as shown in the

10% versus 30% integrated laser example discussed previously on this section.

Scaling of lasers on a silicon platform has advanced from epitaxially grown III-V

quantum wells, in the scale of tens of nanometers, towards epitaxially grown quantum
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Figure 5.20: Minimum SiP link energy consumption and number of wavelengths ten-
dency as a function of the aggregated bandwidth. Results that are currently feasible are
highlighted. Aggregated bandwidth is measured in Gbps.

dots. Although the physics of transversal confinement of light does not change over

the years, the cavity length of the device has been shrunk down and its efficiency has

improved[73]. In this work we considered as feasible an epitaxially grown on silicon 10%

and 30% quantum-well lasers.

Photodetectors require active materials with an direct energy bandgap in the infrared.

Germanium has been widely used for this purpose. However, defending the tendency of

new materials for smaller footprint, quantum dot photodetors with III-V materials, and

the use of two-dimensional materials [154] are also relevant in the literature. In this work,

we considered a Germanium optimized photodetector with a high sensitivity [81] which

is feasible and CMOS compatible on a high scale.

Lastly silicon modulators are important features of the SiP link, and the ones that

require the biggest footprint. Traditionally an electrooptic effect is induced on silicon

by doping the MRR optical waveguide slightly [25, 24]. This is the modulation method

we use in this work. However, as seen in Figure 5.20, although there is a predictable

linear evolution of the required number of λ’s, the energy-per-bit grows exponentially

beyond the terahertz aggregated bandwidth, making it nonviable to use all configurations

as they are presented in the future. However, it is enough to include new devices in the

PhoenixSim platform to estimate a new path for the growth of SiP links in OCM. The

reader should also note that works with hybrid Silicon photonics and 2D semiconductor
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monolayers were demonstrated [67].

5.5 Final Considerations

We propose and evaluate Optically Connected Memory (OCM), a new optical architecture

for disaggregated main memory systems, compatible with current DDR DRAM technol-

ogy. OCM uses a Silicon Photonics (SiP) platform that enables memory disaggregation

with low energy-per-bit overhead. Our evaluation shows that, for the bandwidth required

by current DDR standards, OCM has significantly better energy efficiency than conven-

tional electrical NIC-based communication systems, and it incurs a low energy overhead

of only 10.7% compared to DDR DRAM memory. Using system-level simulation to eval-

uate our OCM model on real applications, we find that OCM performs 5.5 times faster

than a 40G NIC-based disaggregated memory. We conclude that OCM is a promising

step towards future data centers with disaggregated main memory.
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Chapter 6

Conclusions

In this thesis, we presented our study for photonics opportunities in modern computing

systems. We identify three main contributions. First, we design and evaluate a new

architecture with optical devices for the main memory system. A full-optical main mem-

ory system improves performance while allows rethinking the cache by reducing its size,

while it imposes challenges on efficient control over the silicon photonics plane as massive

memory cell fabrication matures. Second, we proposed an optical architecture for recon-

figurable interconnection of multi-GPU devices. We demonstrated it delivers efficient data

movement between multi-GPU memory devices. Third, we designed and evaluated exten-

sively an optically connected memory for data center disaggregation. We demonstrated

on both system-level and SiP link levels that optical disaggregation is viable to achieve

energy-efficient Tbps data centers (≈1 pJ/bit). We studied how we can use photonics in

computing systems with multicore processors and GPUs by: a) evaluating the system’s

performance, b) estimating the number of optical devices and their energy consumption

using realistic SiP link models.

We identified two main challenges developing our studies. First, it is important to

define realistic scenarios and parameters for the optical devices in a computing system. For

example, while it is feasible to place optical transceivers close to the processing elements.

A SiP link model based on real devices’ measures helps define the number of optical

devices according to the desired bandwidth. We overcome this challenge by collaborating

with the Lightwave Research Laboratory from Columbia University, which focuses on

experimental optical systems and develops the PhoenixSim model for SiP links. Second,

laboratory experimental testbeds are envisioned as proof of concept. Then it is challenging

to experiment with a complete system execution. We overcome this challenge by working

with accurate system-level simulators to execute real workloads.

From the studies carried out in this thesis, we summarize our conclusions from each

chapter:

• Chapter 3 introduces a full-optical main memory system. Silicon Photonics fabrics

are building blocks for next-generation interconnects because of three main charac-

teristics: a) high-bandwidth, b) CMOS affinity, and c) energy efficiency. To fully

exploit the benefit of nanosecond switching, it is required but still not feasible: a)

ns order setup time when a light path is established (including synchronization and
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clock recovery), b) an efficient control plane for massive switch activation provid-

ing adequate voltage levels. For a full-optical memory implementation, the massive

integration of non-linear optics memory cells must reach maturity. Our evaluation

shows that a full-optical memory allows us to reduce the cache levels with a latency

in the order of ns, if control delay can be reduced from the curent µs order. We

find that a full-optical memory system with a reduced 2 KB L1 data cache could

perform ≈ 23% slower than a conventional multicore system with L1 and L2 caches

of 64KB.

• In Chapter 4, we proposed and evaluated an optically reconfigurable multi-GPU

architecture that enables bandwidth reallocation between processing elements based

on bandwidth-steering. Our architecture evaluation shows up to 20% data rate

improvement with deep learning applications. We conclude that our static analysis

shows that this improvement has a reasonable tradeoff of ≈ four additional receivers

on the GPU side. For example, if a GPU has 4 sublinks, then it has 4 receivers to

sustain communication. Then, we need to double the overall receiver area (add 4

additional receivers) on the GPU to benefit from a performance improvement. The

extra receivers allow assigning extra links from other GPUs that are experimenting

with sublink underutilization.

• In Chapter 5, we proposed and evaluated the Optically Connected Memory (OCM)

architecture for main memory disaggregation. We designed and estimated the re-

quired number of photonic devices (i.e., micro-rings) to establish SiP links to sustain

the required bandwidth of DDR4 DRAM technology. Our results show a low over-

head of 10.7% energy-per-bit compared to DDR DRAM operation. Our performance

evaluation, as expected, show a slowdown for rack distance disaggregation. How-

ever, we conclude that this slowdown can be considerably alleviated using a DDR4

based DRAM cache.

• We conclude that OCM and the optically reconfigurable multi-GPU architectures

are initial steps towards future computing systems design with photonics. We can

use our results to shape experimental testbeds for testing a specific usage scenario

of the optical devices.
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Future work

• A dynamic analysis during workload execution can be studied for the Optically re-

configurable multi-GPU architecture. This type of analysis faces the main challenge

of efficient control of the optical switch for bandwidth steering. It is feasible to de-

fine µs order observation windows for bandwidth steering estimation to define the

control over switching, considering that memory communication in GPUs is in the

same latency order. In addition, SiP link design can be analyzed to determine the

constraints (e.g., energy-per-bit, number of SiP devices) to sustain multiple GPUs.

• A multiprocessor scenario can be evaluated for main memory disaggregation. Dy-

namic workload classification is required to determine subtilization and overpro-

vision of the memory SiP links. For efficient optical switching, operating system

aware mechanisms, such as page migration, can be studied to define the optical

switch control.

• Experimental demonstration in a photonic testbed can be implemented for both

multi-GPU and main memory disaggregation. As FPGAs can be used with photonic

devices, the evaluation faces the following challenges: a) implement and execute

representative benchmarks of data centers workloads, b) control the optical switches

during execution based on the workload, and c) implement the required hardware

modules to evaluate our architectures.
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