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Resumo

Uma solugao eficiente para corrigir desvios na estimagao da trajetéria da caimera em siste-
mas de Mapeamento e Localizagao Simultanea Visual (Visual Simultaneous Localization
and Mapping - Visual SLAM) é usar a Otimizacdo do Grafo de Poses (Pose Graph Op-
timization - PGO) com submapas da cena gerados a partir de subconjuntos dos quadros
do video de entrada. Embora o PGO sozinho consiga oferecer alinhamento global consis-
tente, ainda é necessario um estégio extra para alinhar os submapas de maneira pareada
usando todas as suas superficies tridimensionais, a fim de obter uma reconstrucao ainda
mais fina. No entanto, ainda é desafiador construir grafos de pose com fechamentos de
loops adequados e realizar os alinhamentos pareados finais quando a cena, e conseqiien-
temente os submapas, apresentam alteracoes fotométricas ao longo dos quadros do video.
Para tentar resolver esse problema, adicionamos descritores densos aprendidos por uma
Rede Neural Convolucional (Convolutional Neural Network - CNN) aos elementos das
superficies dos submapas para melhorar a robustez na deteccao de fechamento de loops
e no alinhamento pareado. Recentes trabalhos apontam que os descritores aprendidos
capturam contexto para além de informacoes estruturais ou fotométricas dos descritores
classicos anteriormente usados, e assim, beneficiando a correspondéncia entre imagens
em situagoes de variagao de luminosidade. Outra vantagem de aplicar descritores den-
sos de CNNs no Visual SLAM ¢é uma potencial integracao da localizagao e informagoes
semanticas em sistemas roboticos que também realizam segmentagao de objetos do ambi-
ente. Os experimentos realizados demonstram as possiveis vantagens desses descritores,
produzindo resultados equivalentes as técnicas padroes para Visual SLAM. Além disso,
desenvolvemos um pacote de software para Visual SLAM para sensores RGB-D que inclui
os descritores aprendidos de imagens como quaisquer outras propriedades das superficies,
COmo suas cores ol NOrmais.



Abstract

An efficient solution to correct the tracking-drift problem in camera trajectory estimation
in Visual Simultaneous Localization and Mapping (Visual SLAM) systems is to use Pose
Graph Optimization (PGO) with generated scene submaps from subsets of the input
video frames. While PGO alone can provide consistent global alignment, an extra stage
is still needed to align submaps evenly using all of their three-dimensional surfaces for
an even finer reconstruction. However, it is still challenging to construct pose graphs
with proper loop closures and perform the final paired alignments when the scene, and
hence the submaps, exhibit photometric changes across video frames. To try to solve this
problem, we added dense descriptors learned by a Convolutional Neural Network (CNN)
to submap surface elements to improve the robustness in detecting loop closure and paired
alignment. Recent works show that learned descriptors capture context beyond structural
or photometric information of the previosly used classical descriptors, thus improving the
correspondence between images in situations of varying brightness Another advantage of
applying dense CNN descriptors in Visual SLAM is a potential integration of location and
semantic information in robotic systems that also perform segmentation of objects in the
environment. The experiments carried out demonstrate the possible advantages of these
descriptors, producing results equivalent to the standard techniques for Visual SLAM. In
addition, we have developed a Visual SLAM software package for RGB-D sensors that
includes the learned image descriptors as any other surface properties, such as their colors
or normals.
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Chapter 1

Introduction

Simultaneous Localization and Mapping (SLAM) is the problem of estimating the posi-
tions and orientations of a sensor such as a video camera or Light Detection and Ranging
(LiDAR) equipment throughout a capture while also mapping the observed scene geom-
etry. Understanding a sensor’s trajectory and the map of the environment is critical to
enable robots to navigate and avoid collisions or to interact with objects. Other areas that
beneficiate from solving SLAM are Augmented Reality (AR) and Mixed Reality (MR),
where the trajectory and mapping of a SLAM subsystem can replace the printed markers
used previously to locate virtual objects in the scene in those applications.

One component across SLAM algorithms is associating different measurements of 2D
pixels from the stream’s frames, or even 3D points from the mapping, as representations of
the same point in the environment. Associating measurements is essential because they
are inputs for position and orientation estimation, conversion of 2D image coordinates
into 3D ones, recognition of already seen places (or loop closure detection) and alignment
of submaps of the 3D mapping being reconstructed. However, establishing those associ-
ations between environment measurements in either 2D or 3D can be prone to false or
missing associations due to sensor noise, lighting conditions, or geometric transformation
produced by the sensor’s motion. Authors have proposed using advanced handcraft fea-
ture techniques [53, 66, 67| or learning-based methods [23, 68, 86]. Nevertheless, all those
works focus on exploiting sparse feature associations, that is, working with a small set of
predicted points to be good ones to track. Rather than handling sparse feature sets, we
explore deep learning techniques of descriptor learning to extract dense image descriptors
and incorporate them into a SLAM system. A dense image descriptor extraction is a
process of obtaining a feature vector for every pixel that is more meaningful and easier to
compare than its original intensity or color values from an image.

Using dense learned descriptors already provided good results for registering 3D human
reconstructions [70], robot picking [29], stereo matching [85], and image alignment [69].
Because of those evidence, this dissertation’s contribution is the verification of dense
learned descriptors for SLAM by incorporating them as integral part of the mapping
surface elements — or surfels. More specifically, we add a descriptor into every surfel of
the map, and use them to improve tasks that are sensible to lighting conditions.

For experimenting with the surfel descriptors, we propose a SLAM system using two
popular techniques in the SLAM community: submaps and pose graphs. Submaps refer
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(a) (b) (©) (@) ©

Figure 1.1: Our work investigates the use of dense features produced from Convolutional
Neural Networks (CNNs) models for semantic segmentation for improving them since
they can express context beyond photometric-based features, enabling more robust point
associations In the following images, we show (a—b) two overlapping submaps built from
multiple RGB-D frames fusion. (c) The first submap with its surfels assigned to a se-
quential RGB value. (d) Associations of the first submap’s surfels w.r.t. the second one
using by comparing their RGB similarity. (e) Associations as in (d) but using our model
trained with D = 16. Notice the less amount of noise on some spots, like in the red or
orange color tones. Our

to map the scene into smaller chunks that are later aligned altogether instead of mapping
the whole scene into one big map. Some systems [17, 45| use this technique, especially for
performance reasons, so the localization back-end does not need to consider every frame
at once.

In the other part, pose graphs are an essential technique for SLAM in large-scale
environments for correcting the sensor’s course. It consists of treating the SLAM as a
graph optimization problem. Each camera location is a node, and the edges are relative
transformations between nodes that share the same view or scene geometry. By having
pose nodes connection, algorithms can optimize the graph according to the confidence
in the edges’ measurements, so it estimates the trajectory with the highest probability
of being the actual one. Hence, a fundamental step is to detect and add loop closures
edges for adjusting the sequential trajectory of camera poses. As our first experiment
with the deep features, we use them for detecting and estimating the transformation of
loop closures between submaps with feature matching approach for finding keysurfels and
aligning according to their correspondence. Once it creates the pose graph, we run a Pose
Graph Optimization (PGO) routine for refining the trajectory.

Authors of similar works with submaps who also base their trajectory correction using
PGO, may add a step after it to refine the alignment in a pairwise manner, since PGO
itself may fail to provide tight alignment between submaps. For instance, the solution
proposed by Choi et al. [17] performs fine alignment on every pair of submap along the
trajectory using the Iterative Closest Point (ICP) algorithm after it runs PGO. The ICP
can achieve better fine alignment because it considers all points of a submap. That is, it
is a dense registration algorithm. In the algorithm of Park et al. [61], the authors include
color information to improve the ICP registration. Inspired by their work, we propose ICP
alignment that uses deep features for guiding the alignment consistency of two submaps
after a PGO execution. The potential advantages of including deep descriptor for guiding
the ICP alignment may be observed in Figure 1.1, which shows two submaps illustrating
the matchings of their surfaces using RGB and deep features information. We can notice
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that dense associations using deep features is more stable than with RGB information.

Our experiments show that the dense learned features can perform equivalent to the
already established Fast Point Feature Histogram [67] (FPFH) and Scale-invariant Feature
Transform [53] (SIFT) for loop closure detection. Whereas, for the submap registration,
the dense CNN features performed better for registering submaps captured with different
light conditions, where the previous method that uses the only color may fail with submaps
produced during different lighting conditions.

Before continuing to our contributions, the following sections further introduce Visual
SLAM and Descriptor Learning.

1.1 Visual Simultaneous Localization and Mapping

In more concrete terms, the objective of a SLAM system is, given a video stream with
N frames, output N rigid transformations Py, P, ..., Py containing the sensor’s absolute
position and rotation at every frame n; and a map from the scanned environment. A
3D rigid transformation is a motion that rotates and translates bodies preserving angles
and distances. In other words, objects that undergo a rigid transform do not have their
structure deformed. They represent the sensor poses because their translation component
is interpreted as the position of the sensor in the 3D world, and their rotation part
expresses the sensor’s viewing orientation.

Figure 1.2 shows a high-quality synthetic 3D scene that will serve as our sample
environment throughout this document in which a hypothetical sensor will move and
map. Next, in Figure 1.3, it displays the steps of a SLAM output using the sample
scene of Figure 1.2. Each step shows a stage of outputted sensor’s pose and mapping
of the environment. The process of estimating the camera poses with visual information
is named Visual Odometry (VO). In some cases of robotics, autonomous navigation, or
handheld device applications, the VO may be aided with other odometry sensors (e.g.,
wheel rotation measurements, inertial measurements) to complement the estimation.

The other part of the SLAM output is the mapping of the environment, and as show
in Figure 1.3, every new frame adds more information to mapping. One of the first archi-
tectural considerations of any SLAM system is choosing how to represent the environment
map which varies according to the application specification and available sensors. The
map may be represented by points [57], surfels [46, 71, 83|, or volumetric [17, 58, 59|
structures. A sample visualization of the representation kinds is shown in Figure 1.4.
Points or point-cloud represent the surface with 3D points with no explicit associations
between them. Each point can optionally have a color value and a normal vector from its
corresponding surface. Like point clouds, we can represent the scene with surfels repre-
sented by flat disks oriented according to the normal vector of the surface at that point.
Every surfel has a radius indicating the surface’s portion that it’s representing. The vol-
umetric representations are the most popular in the literature, consisting of placing the
scene inside a discrete volume where the cells (or voxels) contain quantity describing the
surface. The quantity can be a boolean value for occupied or not or a number value from
a Truncated Signed Distance Function [20] (TSDF) which informs the distance from the
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Figure 1.2: A high-quality synthetic 3D model of a real-world scene. In the next figures,
we use this scenario to demonstrate SLAM concepts. (a) A top-down view of the input
scene. (b) A closer look at the same scene.

cell to the nearest scanned surface. In this work, we adopt the surfel to model our maps
and submaps. Since, it can represent surface parts at different detail levels, according
to the sensor’s distance to the surface while capturing, which we can dynamically add
more surfels when the sensor is closer to the surface. Hence, this characteristic is vital to
our project since it avoids mixing pixel-deep features from different image resolutions, in
which descriptor values may vary.

To situate this work’s applicability, we write a brief classification of SLAM systems.
Most of the systems are related by three characteristics: 1) input type, 2) mapping output
density, and 3) running mode.

1. Monocular, Stereo, RGB-D, or LiDA R: Methods that work with one image per
frame are said to be monocular systems. Stereo SLAM or RGB-D inputs can refer
to methods that estimate a depth image from stereo pair per frame or with a depth-
sensing device like Microsoft Kinect or structured light sensors. A depth image is a
kind of image where pixels contain the distance from its point in the camera plane
to the captured surface in the real world. Having depth images offers the advantage
that every frame can contribute to the scene map with a dense 3D point cloud. On
the other side, monocular SLAM requires triangulating pixels of correspondences
to estimate its point 3D coordinate in the map [26]. The triangulation makes it
challenging to obtain a dense map since correspondences with high confidence can
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Figure 1.3: RGB-D-based SLAM mapping along time. Each image shows a moment of the
camera trajectory and the produced mapping of a dense SLAM system. The pyramid-like
wire drawings represent the sensor’s pose from the beginning of the motion (blue) to the
ending (green).

be established for few pixel pairs. Also, due to the scale ambiguity of perspective
transform, the map reconstruction is limited to a scale factor unless an external
sensor or reference object provides sizing information with monocular input. LiDAR
sensors use the time of flight of laser signals to measure the distance from surfaces,
rendering them considerably more precise than RGB-D or Stereo cameras and able
to capture longer distances. Although LiDARs perceive the geometry directly as a
point cloud from an almost 360° angle rather than a depth image. Some of the core
techniques of SLAM for RGB-D sensors also apply to this kind of device.

2. Dense or Sparse: Often correlated with non-monocular SLAM, dense methods
include all valid pixels or point measurements from all frames to model the trajectory
and map estimates. They will output a detailed reconstruction of the environment
at the cost of requiring more computation effort and inherently add more noise from
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Figure 1.4: Samples of the possible map representations in the literature. (a) Input image
of the frame. (b) Point cloud representation. (c) Surfels representation, each point is a
disk with a variable radius. (d) Occupancy volume, the ambient is discretized into voxel
cells. (d) Volumetric representation, here we show the environment with an occupancy
value and a color. (e) A mesh made with triangles.

the more data used in its estimations. On the other hand, sparse methods select key
points in the images as elements to the map producing less detailed geometry, but
more stable estimations and less computing required. While this often relates to the
input type, dense and monocular systems can be built using multiview stereo [26],
and other works prefer sparse methods even when depth input is available [56].

3. Online or Offtine: Online methods are designed to work for real-time applications
that do not require looking at previous trajectories or maps. Only the latest state
is essential. Those methods are commonly applied in vehicle guidance, for example.
In offline SLAM, the application is interested in inspecting the entire trajectory and
map as in 3D reconstruction, which may or may not require real-time performance.

The SLAM method described here is categorized as RGB-D-dense-offline. It uses an
RGB-D sensor to create a dense surfel mapping, and, as will be seen, it refines the previous
trajectory to improve the current ones.
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Figure 1.5: Translation, rotation, scale image transformations. In all illustrations, we
show two different images. (a) Two different images with only translation motion, in this
case, metrics like SSD will work regardless that both patches come from different images,
their pixelwise pairs remain valid. (b) Rotation transformation. (c) Scale transformation.
In the last two, metrics like SSD will not work well since both patches have different
correspondence pairs along with their pixelwise 2D positions.

The choice of the RGB-D modality is a consequence of using dense descriptors in our
research because its frames are convertible into dense point clouds to which we can attach
a pixel’ descriptor to each of its points.

1.2 Descriptor Learning

Associating pixels or points from different images as representations of the same instance
in the environment is not only an essential step for SLAM. It is also at the core of other
computer vision tasks such as photo stitching, stereo matching, and image retrieval.
One of the first correspondence matching methods is finding image patch pairs with
the nearest difference according to their pixel values. We refer to patch any rectangular
image crop centered around the target pixel. It is more reliable to compare regions rather
than individual pixels since neighborhoods contain regions’ structures. Directly compar-
ing patches is particularly viable in situations like stereo matching, when the images are
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transformed by a translation-only motion, shown in Figure 1.5a. In such configurations,
the similarity of two patches may be calculated from a metric that aggregates the pairwise
pixel-to-pixel differences, as the Sum of Squared Distances (SSD), for instance. However,
under scale, rotation, or perspective transformations, the trivial pixel-to-pixel positions
are changed, invalidating the differences computed by SSD. For instance, Figures 1.5b
and 1.5¢ show how a scale or a rotation transformation changes the trivial pixelwise associ-
ations. To overcome those two transformations, established handcraft descriptors [53, 66|
try to encode the shape and orientation of the region into a feature vector — enabling
many vision tasks in their time — but there can be outlier sensitive, having SLAM au-
thors |21, 57| to add filtering heuristics.

As an alternative to handcraft descriptors, the present work follows machine learning
methods to produce descriptors from image priors to improve the robustness to outliers.
CNN models were proven to learn image filtering operations for ground-breaking image
classification, recognition, and detection in recent years. In the descriptor learning task,
the model outputs feature vectors from image regions using the learned priors from a
dataset of good matchings samples. Hence, learning descriptors may offer a solution to
situations where the target images undergo significant geometric and illumination trans-
formations, being challenging for handcraft descriptors to account for so many distortions.
In some works [19, 29|, the authors demonstrate the possibility of performing semantic
comparisons with the prior information from a dataset to encode common attributes of
objects. For example, Florence et al. [29] learn descriptors of household objects (shoes or
toys) that identify corresponding regions of different object instances that belong to the
same category, like the strings of different shoe models.

As a sample experiment using the learned feature model in SLAM, this dissertation
uses the CNN architectures based on existing works [19, 29, 70| for dense descriptor
extraction.

1.3 Contributions

In summary, we build an RGB-D SLAM system that integrates deep learned features into
every surfel during its mapping and use those features for finding loop closures and fine
alignment of submaps. From this framework, we contribute with the following:

e We build a mapping framework for SLAM that incorporates descriptors as any
other property of its mapping surfaces. This allows other applications like reusing
the descriptors for scene relocalization in AR or refining semantic segmentation in
a similar way as suggested by McCormac et al. [55].

e We use learned features in the submaps for detecting loop closures. Our results
show that learned descriptors perform equivalently to SIFT and the FPFH features
for detecting and estimating the loop closure in submap-based SLAM.

e We propose a novel ICP method for aligning submaps with dense descriptors. Our
results show that incorporating dense features have the potential to improve align-
ment tasks. However, as can be seen in Chapter 4, it depends on the CNN’s model
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generalization capability to perform better than color information on never seem
scenarios. We compare it with the state of art method, ColoredICP [61] and RGB-
based ICP, which shows that deep features may not be better, but it suggests more
stable results than the other algorithms.

e Besides building our work with know architecture and loss for descriptor learning,
we propose a dataset generation strategy by building a connection graph of frames
from RGB-D datasets. So, each pair of sample training descriptors can have a wider
variety of viewing angles. This contribution is described in Section 3.7.2.

Although our results do not present marginally better results, exploring features from
CNNs may be an alternative in SLAM that already uses them for semantically information
mapping. As those systems already process the image in CNNs, using them as features
instead of adding another descriptor extraction mechanism may save processing time.

Besides those results, from the engineering perspective, we have also contributed with
two Python libraries that allowed us to quickly prototype and test ideas on our SLAM
system:

e TensorViz !: An OpenGL interface for rendering geometric models directly from
the GPU memory of PyTorch’s [62] tensors, avoiding unnecessary data transfers or
copies between GPU or CPU. That was critical for us for inspecting our system’s
states.

e SLAM Toolbox ?: Python module with PyTorch integration containing various
structures and algorithms for building SLAM or 3D visualizations. This library
is similar to the Open3D library [88] but is more geared towards GPU and surfel
handling.

Their initial necessity was to build a surfel mapping mechanism to handle multiple size de-
scriptors. However, it had grown to attend to our visualization, data loading, evaluation,
VO, and registration demands.

1.4 Dissertation Structure

The dissertation structure is the following:

e Chapter 2 starts with reviewing the math prerequisites related to rigid transforma-
tion and solving non-linear least-squares problems. Next, it presents registration
methods to align 3D geometry, which is later used to understand SLAM techniques
and our submap alignment method. Then it further reviews the overall SLAM
techniques, covering techniques not only for the RGB-D-dense-offline method but
briefly states other methodologies. Moreover, its second part reviews the technique
for descriptor learning using CNN from the perspective of handcraft descriptors.

!TensorViz - https://gitlab.com/mipl/3d-reconstruction/tensorviz
2SLAM Toolbox - https://gitlab.com/mipl/3d-reconstruction/slam-toolbox
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e Chapter 3, we present our SLAM solution consisting of a preprocessing module to
filter the incoming RGB-D frames; a visual odometry module for RGB-D sensors;
loop closure detection module; submap alignment; deep dense feature extraction
CNN architecture and training.

e In Chapter 4 shows the evaluation methodology and the results for performing loop
closure detection and submap alignment.

e We review and draw our conclusions about this dissertation in Chapter 5.
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Chapter 2

Background

The dissertation unites two main computer vision topics of high relevance: SLAM and
Machine Learning (ML). This section provides an overview of Visual SLAM and ML from
the point of view of RGB-D data and visual descriptor learning.

By the nature of the SLAM problem, we must start with the mathematical tools
for working with trajectories and rotations. Firstly, we define the math notations and
prerequisites used throughout this dissertation in Section 2.1. Next, we review matrix
representation of motion transformations as special mathematical sets expressed using
Group and Lie theories (Section 2.2), which differentiate rotations and give compacter
representations rather than matrices. As our work is visually based, Section 2.3 defines
the pinhole camera projection model to project 2D points and back project them into 3D.

SLAM can be thought of as a series of registration problems at different levels and
kinds of data, so it is important to understand those algorithms before entering SLAM
itself. The foremost step to understanding registration methods is to cover how to solve
weighted non-linear least-squares problems. Those problems are our interest because reg-
istration is often described by minimizing an energy function that measures the alignment
of two inputs given the optimization’s target transformation parameters. Not only that,
solving non-linear least squares will grow as an essential operation for any SLAM since
we constantly estimate the sensor’s most likely state given its previous one and current
measurements as energy minimization. Therefore, Section 2.4 presents a framework to
minimize weighted non-linear least-squares problems with Gauss-Newton (GN) routine
in an abstract problem. Then, this framework is adopted during the rest of the text to
describe concrete problems as the ICP algorithm, VO, and our deep-feature submap reg-
istration algorithm in Chapter 3. The GN procedure is chosen because of its simplicity,
and the non-linearity property of rotations requires iterative numerical approaches.

Section 2.5 reviews the basic techniques for registering point cloud representable 3D
geometry with the ICP algorithm using the GN framework previously mentioned. The
ICP is a base routine for implementing VO in RGB-D SLAM, since the frames can be
turned into point-clouds, which we can register together with it and accumulate the
transformation to obtain the initial trajectory. Another reason for focusing on ICP is that
our submap registration algorithm is an ICP algorithm adapted to measure the alignment
energy from deep features. However, ICP methods usually fail badly when the 3D points
are not already close to an alignment. Therefore, we also present two other algorithms
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based on correspondence matching of sparse points. When point correspondences from
the two geometries, it is possible to register at any initial condition but without the
same precision. This family of sparse algorithms is handy in SLAM for running initial
estimation guesses and to detect loop closures as done by Choi et al. [17] and we.

Section 2.6 explains how to create a naive SLAM system and why simple approaches
are insufficient to create a functional system due to a problem known as tracking drift.
Then we review how successful SLAM techniques solve that by dividing the problem
into front-end and back-end parts. The front-end is responsible for computing estimates
directly from sensor or image measurement at the per-frame level. In contrast, the back-
end computes refined answers for the trajectory and mapping by globally examining the
estimations of the front-end, being essential to the high quality of recent works.

Image descriptors always had an essential role in SLAM works. So, in the second part
of this chapter, we discuss the steps taken from early works — many powerful techniques
even in today’s standards — and how authors have been researching CNNs to improve the
area. In it, we review handcraft descriptors, network architectures, datasets, and training
of models to outputting dense descriptors.

2.1 Math Notations and Definitions

When working with motion estimation, camera projection, or geometric processing, linear
algebra’s tools becomes the workhorse of algorithms in those fields. In the following
section, we summarize common mathematical definitions and tools.

In this text, vectors are written in bold font, for example: v, w or w. While scalar val-
ues are in regular math typefaces: i, t or &« — even when referencing a vector component,
like p;. Matrices are uppercase letters like M, T or R.

The dot product of two vectors v,w € R” is written as vIw and defined as: viw =
VW + Vawy + - - - + vpwp. We symbolize the angle between two vectors v and w with
symbol Z which is calculated using the dot product and the inverse cosine function,

T
n,/n, = cos ' YW (2.1.1)
Ivi[lwl
The cross product between vectors v, w € R? is the following operation:
VoW, — V, Wy
VX W= |v,w, —v,w,| . (2.1.2)

VpWy — VyWy

T
The cross product operation of any vector v = [Um Uy vz} by another one is encoded

in skew-symmetric matrices:

Vix=1v. 0 —uv], (2.1.3)
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where the vector in the middle of the brackets followed by a subscript cross symbol x
constitutes the skew-symmetric matrix version of its cross product. A matrix R3*3 is

skew-symmetric if the equality [v]l, = —[v]x holds true. This is empirically verified in
0 —v, vy ! [ 0 —v, vy |
U, 0 —v,| =—1| v, 0 —wugl, (2.1.4a)
—Uy Uy 0 —Uy Vg 0
0 v,  —U, I 0 v, —vy-
—v, 0 Vg = —v, 0 Uy (2.1.4Db)
vy —v; O vy —vy, O

vk = =Vl (2.1.5a)
V]2 = vvT —vTv] (2.1.5b)
V= [V, (2.1.50)
VI = —IvI% (2.1.5d)
VI = v (2.1.5¢)

Those properties are helpful during Section 2.2.1 to convert rotation in the form of an
axis and rotation angle into matrices (or Rodrigue’s rotation formula).

Another property of square matrices used by us is that the transpose of the product of
two matrices A and B equals to the inverse multiplication order transposed individually,
that is

(AB)T = BTAT (2.1.6)

In the text, we only refer to 3-dimensional tensors, and their sizes are stated as W x
H x C, with W, H, and C being its width, height, and depth. For instance, RGB images
are three-dimensional tensors with three channels (C' = 3).

We use the symbol N (x; u,Y) to represent a normal distribution parameterized by
the mean p and the covariance matrix ¥. The symbol E[-| defines the expected value of a
random variable. Another miscellaneous identity used during the uncertainty estimation
(Section 2.6.2) is that the covariance of expressions such as Ax + €, where A and € are
fixed variables, is cov(Ax + €) = A cov(x)AT, because

cov(Ax +€) = E[(Ax + € — E[Ax + €])(Ax + € — E[Ax + €])7], (2.1.7a)
=E[(Ax + € — E[Ax] — €)(Ax + € — E[Ax]| — €)T], (2.1.7b)
= E[(Ax — AE[x])(Ax — AE[x])T], (2.1.7¢)
=E[A(x — E[x])(x — E[x])TAT], (2.1.7d)
= AE[(x — E[x])(x — E[x])T]AT, (2.1.7e)
= Acov(x)AT. (2.1.71)
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r, = (0.0 1.0 0.0

ry = [0.0 0.0 1.0}

ry = [—0.26 0.97 0.0}

r; = (097 0.26 0.0

r3;=10.0 0.0 1.0

Figure 2.1: The column vectors of a SO(3) rotation matrix are the axis of a coordinate
system. Top: the coordinate system spanned by the identity matrix, any point that
we multiply by it keeps the same. Bottom: the column vectors of a rotation matrix
corresponding to its reorientation of the space. The act of multiplying the matrix by
a point x reprojects its x, y, and z components according to a new vector basis, thus,
rotating it.

2.2 Motion Representation

Orthonormal matrices R € R3*3

with determinant equal to one (det R = 1) represents
rotation around the origin of the 3D Euclidean space. Orthonormality is when a set
of unit vectors are linearly independent, hence perpendicular one to another. In the
case of rotation matrices, their three column vectors e;, e, and e3 composing a matrix
R = [el e e3} are orthonormal since a rotation must span a 3D cartesian coordi-
nate space without scale changes, see Figure 2.1 for an illustration. Formally, linear
independent vectors have 0 scalar products between them, e;Te; = e;Te3 = exTes = 0.
Matrices with a reflection operation are not rotations because their determinants are neg-
ative. Therefore, those properties restrict rotation matrices to have only 3 Degrees of
Freedom (DoF) besides having 9 values. In some situations, as in motion estimation,
over-parameterization is not desirable, but will be seen in the following sections, it is
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possible to convert them into compacter representations.
As shown in Figure 2.1, the rotation action of a matrix is applied when multiplying a
point (e.g., one from a point cloud) or a vector x at its right side:

elTX
x' = Rx = [el e eg} X = |e) x| . (2.2.1)

e3TX

The composition of multiple rotations is done by multiplying their matrices, consis-
tently producing another valid rotation matrix. For example, R3 = RyR; generates Rj
that has the same effect of multiplying a point x by R; first and then by R, that is

(RyR1)x = Ry(RyX). (2.2.2)

Such properties and structure of rotation matrices made them part of it is known as the
special orthogonal rotation group SO(3). The field of Group Theory studies how certain
mathematical objects share actions and structure. Characterizing groups is vital for
many applications because it allows us to project algorithms to manipulate mathematical
elements with the certainty that if the structure is kept, then its actions and properties
will remain valid. Group Theory identifies a set of elements G as a group if the following
properties are met:

e [t exists a binary action, written here with a o, that always maps two elements to
be inside the group’s set, G x G — G. Example: X o) = Z for any X, ), Z € G;

e The action operation is associative: (XY o))oZ =X o (Yo Z) for any X, ), Z € G.

e The group has an identity element Ig € G such X oIg = & and Igo X = X for any
element X € G;

e The group elements are invertible: X 1o X = I3 and X o X~ = I for any X € G;

The SO(3) matrices have all those requirements. Its action operation is the matrix
multiplication, also being associative. Its identity element is the 3 x 3 identity matrix
I3*3. Moreover, the matrices are invertible: R7'R = I3*3 and RR™! = I**3. Related
to inverse, one special property of orthonormal matrix is having the transpose operation
being equivalent to the inverse: RT = R

To also represent translations, the SO(3) elements can be accompanied by a vector
t € R3 for turning the action over a point x € R? into rotation followed by a translation:
Rx 4+ t. Those action are encompassed in 4 x 4 matrices having the following structure

R t

2.2.3
e (223)

forming the special Euclidean group, denoted SE(3). The matrices are 4 x 4 and not
3 x 4 dimensions to keep the associative property of the matrix multiplication, which is
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Figure 2.2: Camera pose represented by a SF(3) matrix P. The dashed wireframe pyra-
mid represents the sensor’s pose. It also draws the three orthonormal columns vectors
ri, ry, T3 € R? of the rotational part of the pose. The positional part is show in vector

t € R?. The last row of P is read as the vector [0 00 1}

undefined between two 3 x 4 matrices. The 4 x 4 dimensions also impose that 3D vec-
tors should be expressed in homogeneous coordinates (e.g., [a: Yy oz 1}T). However, to
unclutter the calculations, we will multiply homogenous matrices with non-homogeneous
points or matrices at most occurrences in this dissertation.

When composing two transformations 753 = 757} in which 77 is applied first, its matrix
multiplication is equivalent to

Ry to
0 1

Ry t
0 1

0 ' (2.2.4)

Another helpful property is that the rotation matrix transpose can be used to aid the
inverse of 7"
RT —RTt

o 1 (2.2.5)

The primary usefulness of the groups SO(3) and SE(3) for SLAM is being convenient
representations for the sensor position and orientation at a specific time. For example, as
illustrated in Figure 2.2, a SFE(3) matrix can represent the direction and orientation of a
sensor’s pose by using its rotation and translation parts.

2.2.1 Lie Groups and Algebras for SLAM

Formulated from the work of Marius Sophus Lie in the XIX century, Lie Theory relates
group theory and differential geometry on manifolds. Most used in physics, Lie Theory
offers a mathematical framework for SLAM and robotics engineering to compose, inter-
polate and differentiate geometric transformation as any other algebraic expression. In a
very brief definition, a set of mathematical objects forms a Lie group if they are a group
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with the additional properties:

e The elements are embedded in a differentiable (or smooth) manifold. In informal
terms, elements are on a curved surface without edges or spikes, and the surface is
inside a larger dimensional space.

e The group’s action operation (o) and element inverse are differentiable.

e Formally, a Lie group must have a Lie bracket operator [42|. But since this is not
required to use Lie Groups in our context, we do not discuss it.

This section is given a very shallow and non-rigorous overview of Lie Theory applied
into the computation of registration of 3D geometry used in VO and map alignment.
For a deeper discussion in our same context, the reader may refer to Bloesch et al. [6],
Eade [24], or Sola et al. [74].

The SO(3) group is a Lie Group because its matrices are embedded on a smooth
manifold inside the set of all R3*3 matrices. This manifold can be interpreted as the
surface of a unit hypersphere since SO(3) matrices do not change space volume, i.e.,
det R = 1.

As SO(3) lies on a smooth manifold, then given any trajectory defined by a function

R(t) over time ¢ on its surface, it is possible to derive a vector space tangent to the surface
OR(t)
ot
the tangent space has the same structure at any given point of the SO(3) manifold.

at any element R(t) with its derivative . By being a smooth surface, its results that

To emerge the tangent space structure of SO(3), we can differentiate the property that

RTR=1wrt. t
OR(t)TR(t) — I

2.2.6
HIZAES (22.6)
apply the product and constant rules
OR(t) OR(t)T
R(t)T R(t 2.2.7
(= + SRR, (227)
and rearrange with transpose to make skew-symmetrically evident
0 OR()T
R(t)T2E0 — RO Ry, (2.2.8a)
= (RO 252)" (2.2.8b)
The fact that R(t)Tag—t(t) is equal to the negative of its transpose, — <R(t)T8};§t)>T, matches

the skew-symmetric structure demonstrated in Equation 2.1.4. We can further manipulate
Equation 2.2.8b by replacing the right side with a skew-symmetric matrix [w]« to finally

arrive at Ordinary Differential Equation (ODE) over the derivative of az;it)
R(t)T220 — [y],, (2.2.9a)
RR()THEY = R(t)[w], (2.2.9b)
0RO — R(t)[w]x. (2.2.9¢)
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And when R(t) = I then the result is just:

OR(t)

o = W] (2.2.10)

From the previous equation (Equation 2.2.10), we arrive that derivative or tangents over
the SO(3) manifold are skew matrices. Consequently, they can be decomposed from the
linear combination of three basis skew-matrices G, Gs, and Gj3

0 0 O
Gi=10 0 -1}, (2.2.11a)
01 0
[0 0 1]
Go=110 0 0}, (2.2.11b)
-1 00
[0 —1 0]
Gs=11 0 0], (2.2.11c)
0O 0 O
such that
[UJ]X = lel + LUQGQ + W3G3. (2212)

The space span by the generator matrices G, G, and Gj is the Lie algebra of SO(3), or
50(3) [74]. As we found the skew matrix-structure from Equation 2.2.10 when R(t) = I
its lie algebra is in relation to the identity matrix. Moreover, as linear combinations
from the generators, the s0(3) members are also expressed by any vector w € R3 =
[wl Wo wg]. This compact representation is one of the benefits of the Lie Theory.
It assures that the members of a lie algebra are always represented by vectors having
the exact dimensions of its Lie group’s DoF |[74], which is advantageous for numerical
state estimation algorithms because they will have fewer parameters to search for optimal
values. During the dissertation, we will refer to any member of s0(3) from a w vector
represents with a cross product, e.g., [w]«.

To go from a s0(3) matrix or vector to a rotation matrix in SO(3), we can solve the
ODE in Equation 2.2.10, which the answer is the exponential function

R(t) = R(0) exp([w]xt), (2.2.13)

where [w]xt = [w]x for decomposing w into a unitary vector w and its magnitude ¢.
By setting the start condition of Equation 2.2.13 to R(0) = I, thus matching the so(3)
members, we expand the exponential in Equation 2.2.13 with the power series to obtain
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a closed-form equation:

oo

exp (W)t) = 3 g[w]g, (2.2.14a)
= T oW+ Wl + oWl + il (2.2.14D)

and then rearranging the series to match Maclaurin series for sine and cosine,

3 U A
exp ([w]xt) = I + [w]x (t— §+§> + [wl3 (5 _I+§"') : (2.2.15)
where the Maclaurin series for sine is
sint:zn:(;;—_?z)!ﬂ”“:t—;—j%—g—7;—7!+..., (2.2.16)
and cosine .
cost:Z%t%zl—;—j—i—g—é—i%—.... (2.2.17)

Replacing the terms in Equation 2.2.15 with Equations 2.2.16 and 2.2.17 we obtain a
closed-form for the so0(3) exponential map, or a.k.a., the Rodrigue’s formula for exponen-
tial 3D rotation:

exp([w]x) = exp([wt]x) = I + [W]x sin € + [w], (1 — cosf). (2.2.18)

Following the definitions from Sola et al. [74], we let the uppercase exponential function
being an alias for the vector representation of s0(3)

Exp(w) £ exp([w]x). (2.2.19)

When working with numerical optimization methods for finding the best alignment
between 3D geometric, we will often require computing the derivative of an expression

0 Exp(w)Rx

2.2.2
bl (22.20)

where x € R? is a given 3D point. This derivative will be used on alignment estimation
routines to state how much the change in the parameters w change the rotation of a point
x that we rotate by at least the R € R3*3 matrix. For finding the derivative of a rotation
over its parameters w, one could use the compact and closed formulas from Gallego and
Yezzi [32]. However, as our usage will target minor parameter updates in w, we can use
a linearized version often applied for numerical optimization methods [38] considering

w & wq, where wy = [0 0 0] Our derivative approximation becomes

J Exp(w)Rx 0 Exp(wg) Rx
ow - dw, '

(2.2.21)
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To find the approximate derivative, we first must note that the zero 3-dimensional vector
wy results the following decomposition in s0(3):

—1

01
0 0| +0 (2.2.22)
0 0

S = O
o O O

0
0

that is, each component has a matrix that specifies its rate of change. For example, a
slight movement on w; will result in a reciprocal scaling in the generator (G; being its
tangential direction. In other words, it is the derivative of Exp(wg) in respect to w;.
Furthermore, we can compute using the same concept the partial derivatives w.r.t. wq for
the other components

BEgz(wo) — Gl; (22233)
BEgz(wo) — Gz’ (2223b)
0 Exp(w

OBplen _ G, (2.2.23¢)

Therefore, returning to derivative from Equation 2.2.20, we can then arrange its approx-

imation
0 Exp(w)Rx 0 Exp(w
pllts ~ 250l px, (2.2.24a)
~ [Gle Gy Rx Gng], (2.2.24b)
~ —[Rx]|, (2.2.24c)

resulting in derivative approximation for use in our 3D registration algorithms.

Multiplying a rotation R with an update represented by Exp(w) as we did in Equa-
tion 2.2.20 is quite frequently in numerical methods that evolves the SO(3) or s0(3) groups
because the plus operator is not valid on those manifolds, e.g., the following expression
do not produce a valid rotation

R+ Exp(w) ¢ SO(3). (2.2.25)

Thus, for the algorithms to express an update over a current estimative R with param-
eters w, they must use the multiplication Exp(w)R. Moreover, to reuse the numerical
methods formula patterns that are defined with plus (4) operator and avoiding repeating
expressions at the same time, we let the boxplus operator () be

RBw £ Exp(w)R. (2.2.26)

The inverse order of the expression is to salient that the rightmost matrix’s action is
applied first!. The boxplus operator will be highly used in the Chapter 3 for minimizing
rotation-based energy functions with the GN method.

! Authors do not have a canonical definition about the boxplus operator order, some may define as
RBw = RExp(w). [74]
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Like SO(3), SE(3) is a Lie group with its Lie algebra se(3) that is compactly repre-
sented by vectors £ € RS such that

£= H : (2.2.27)

with p € R and w € R? being its s0(3) part. The se(3) matrices are generated from
linear combinations of a set of generators {G1, G, G5, G4, G5, Gg} of its tangent space:

€ = p1G1 + p2Ga + p3Gs 4+ w1 Gy + waGs + w3Ge (2.2.28)
where:

[0 0 0 1 000 O] (0 0 0 0
0000 000 1 0000
Gl_oooo’ GQ_oooo’G3_ooo1’
0000 0000 0000

- - - (2.2.29)
00 0 0 0 010 0 —1 0 0
00 —1 0 0 00 0 1 0 00
G4_0100’G5_—1000’G6_0000
00 0 0 0 00 0 0 0 00

The generators Gy, G5, Gg are the same from so(3), and generators Gy, Go, G3 corresponds
to the translational components.
The exponential operator to convert from se(3) into SE(3) is

exp [["B]X g] :Z%[[“:)]Xg’ , (2.2.30a)
Wl p| | 1 |[w? [wkp| 1 |[w [wip
=10 ol Tarl o 0o | T3 o 0o | T
(2.2.30b)

The rotation part [w]y of the power series is the same of Equation 2.2.18. The translational
part’s closed-form is
1 1. 5 1. 4
V:I—I—E[w]x+§[w]x+—[w]x+..., (2.2.31a)
= I+ [w] (1 —cost) + [w]%(t —sint), (2.2.31b)

then

exp [[uz)]x 8] :Z%[[“gx ‘gt (2.2.32)
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As in the s0(3), the differential of Exp w.r.t. to a vector p, = [O 0000 0] is

OExp(§y) _ G 9 Exp(&) G 9 Exp(&y) — G3

9p, 9p, Ops
8E;<E &) _ = Gy, 8EXp So — G, 8Exp(£o) = G ’ (2.2.33)

We can then write the approximate derivative of an expression Exp(€)Tx where T =

t
R € SE(3) and a homogeneous point x’ € R* with

0 1
aE%g?TX JE;SPSMTX/, (2.2.34a)
%[GlTx’ GoTx GyTx GuTx GsTX GGTX/], (2.2.34b)
/
~ | T [TX (2.2.34¢)
01><4 01><4

Removing the unnecessary values from the homogeneous matrix and vector, we can rewrite
the derivative for the point x € R? with

0Exp(€)Tx
9
Remembering that the approximation works for small values of &.

As we did for the SO(3) group, we also define the boxplus operator for the SFE(3)
group in the same manner

~ [[M [Rx 4+ t]y| . (2.2.35)

THE¢ = Exp(€)T. (2.2.36)

2.3 Pinhole Camera Model

We follow the pinhole camera modeling of projecting 3D points from world space into
a 2D image plane. The modeling replicates the physics of most photographic cameras,
where rays of reflected light from the world converge into a small pinhole or the camera’s
center of projection. Those rays that pass through the pinhole will hit the projection
plane with the color of its reflected point’s surface, forming an image.

In this modeling, a 3D point x = |z y =z ! is transformed into 2D coordinates by
dividing its x and y with z and then multiplying them by the distance of the pinhole’s
center to the projection plane, or namely, the camera’s focal length f. The formula for
projecting the point x into 2D with a camera with a focal length f is

[Z] =n(z,y,2)f, (2.3.1)
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Y -axis

P f 777—>J Z-axis

Figure 2.3: The pinhole camera model being viewed from the Y-Z axis of a 3D point x
projected on the 2D point u on the image plane (blue rectangle). The u projection is
the intersection of the ray from the x to the camera’s projection center o with the image
plane. The focal length f is the distance of the image plane to the projection center. In a
real photographic camera, the image plane on the figure would be its lens, and the actual
image plane would be before the center of the projection. Nevertheless, as this is a virtual
model, we can simplify and treat the image plane in the lens’ position.

in which the function 7 does the division by z,

IRE7E
m(x,y,2) = [y/z] : (2.3.2)

Figure 2.3 displays an illustration of the camera projection when looking from the Y-Z-
axes.

However, for modeling the projection of real sensors, we must account that their actual
pixel sizes are rectangular and not square. Also, the actual center pixel position on the
image is not exactly the center of the digital image. For those reasons, computer vision
algorithms model those differences between the pinhole model and real sensors with an
intrinsic camera matrix K as

Jo 0 ¢
K=10 f, ¢f, (2.3.3)
0 0 1

where f, and f, are the camera’s focal length multiplied by, respectively, the sensor’s
horizontal or vertical pixel sizes. The ¢, and ¢, are the camera’s projection center on
the image plane. We assume that the intrinsic camera parameters K of any sensor are
always known during this text. That is so because the intrinsic matrix is often supplied by
the sensor’s manufacturer or found with camera calibration patterns. Using the intrinsic
matrix, then the 2D pixel of a 3D point is

H = 1(Kx). (2.3.4)
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The point projection formula can be yet augmented by including the sensor pose
matrix T = [R t] described in Section 2.2. In this way, for converting a point from its
world space into camera space and then into 2D image space is given by

[Z] =m(K(RT [:1: Yy z]T — RTt)). (2.3.5)

In the previous equation we used the inverse matrix of 7', Equation 2.2.5, to highlight that
poses are in world space. Hence, its inverses map points into the camera’s local space.
When depth information is available, the back projection of any pixel coordinates

:
u= [u v d} , with d being its sensed depth, to camera space is

T d(u - Cx)/f:p
y| =7 (K0 = [do—c)/f | . (2.3.6)
z d

with the function 7=! being the inverse of the z division
™ (u,v,d) = [ud vd d] : (2.3.7)

As the backprojection is a common operation for this dissertation, we express it by the
function II( K, u), such that it maps u coordinates into 3D points:

= H(K) u) (238)

INEENSIE

2.4 Weighted Non-linear Least Squares Problems

When working with problems from areas such as SLAM, robotics, or 3D reconstruction
is usual to have to estimate a d-dimensional vector x* for minimizing an energy function
formed by N sums of weighted squared residual error terms r;, exemplified bellow

N

BE(x) =Y _ri(x)Twiry(x), (2.4.1)

i

where the scalar w; is the confidence weight term for a particular residual. In this defi-
nition, we are assuming a vector-valued residual function r; mapping R? — R*, for any
other size z, but it is also common to use scalar-valued R% — R without loss of generality
on the equations that we will develop next.

A set of residuals can refer to calculations from measurements used to estimate the
alignment level during 3D geometry registration, e.g., the difference between points from
point clouds, as seen in Section 2.5. However, right now, we refer to them as abstract
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measurements and focus on presenting a general framework for solving such weighted
non-linear least squares problems.

Finding the parameters x*, like the ones from Equation 2.4.1, means equalizing the
first derivative of E to zero, g—f = 0, solving it to find the extrema points, and testing
if they are minima or maxima of the function. Nevertheless, a closed-form solution for
finding the extrema points are challenging to achieve in many SLAM routines. Mainly
because the residual functions are non-linear due to rotation transformations. A more
effective approach is to use iterative numerical methods for finding a minimum starting
from an initial guess.

In the areas mentioned earlier, the numerical approaches are often based on second-
order optimization algorithms for fast convergence when the answer’s dimension d is small.
As we estimate only six parameters during this dissertation, we base our routines on the
GN second-order optimization algorithm, widely adopted in SLAM |9, 17, 21, 26, 45, 46,
58, 59, 71, 83].

The GN procedure starts with a linearized version of the residual function found with
a Taylor Expansion at any initial point x:

ri(x + Ax) ~ r;i(x) + J;Ax, (2.4.2)
where J; is a N X d jacobian matrix of the derivative %‘:, or
-87‘2‘1 87‘2‘1 . 8”1_
Ox, Oz, Oz,
Oria  Oriz .. Orio
1o} 1o} 0
Ji= | o T (2.4.3)
Oriz  Oriz .. Or
Oz, Oy Oz,

. . . .o dr;  Ory Or;
For scaled-valued residuals the jacobian is just a vector J; = [ bor oo T on|-

Replacing Equation 2.4.1 with the linearized version of the residuals from Equa-
tion 2.4.2 yields:

E(x)~ ) (ri(%) + J,AX)Twi(r3(%) + J;Ax). (2.4.4)

i

Equation 2.4.4 approximates the original F(x) at a point X with a quadratic function,
which the reader can visualize as a parabola-like or saddle-like shaped surface. Then the
intuition of GN is that such quadratic functions have only one extremum point being also
its minimum point. Following that fact, the GN algorithm runs iterations of finding the
extrema point Ax* of the energy function’s approximation at X, and then update x with
the found result

X X + Ax", (2.4.5)

with each iteration putting x closer to a minimum of the true function. It keeps running
this update until a max number of iterations or a minimum mean residual value is met.
To calculate the minimum Ax* of the approximation in Equation 2.4.4, we equal to
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zero its first-order derivative:

A SN (ri(x) + JiAX)w;i(ri(X) + J;AX)

D Ax =0 (2.4.6)

By the sum-rule of derivation, we can expand the errors terms separately to unclutter the
derivation:

(ri(X) + JiAX)w;(ri(x) + J;Ax), (2.4.7a)

ri(X)w;ri(X) + 2r;(X)w; J;AX + (J;Ax)Tw; J;Ax, (2.4.7b)

r; (X)w;ri(X) + 2r;(X)w; J;AX + AXTJTw,; J;Ax, (2.4.7¢)

rewriting it with the variables H;, b;, and ¢;:

H; = JMw; J;, (2.4.8a)

b; = 2r;(X)w; J;, (2.4.8b)

¢; = 1i(X)w;r;(x), (2.4.8¢)

¢ + 2b;Ax + AxTH;Ax, (2.4.8d)

with H; € R¥*¢ b, € R ¢; € R. Using the sum rule again, Equation 2.4.6 is rewritten to

N

H=> H, (2.4.9a)
N

b=> b, (2.4.9b)

N
c= Zci, (2.4.9¢)

Bc+2bAgZ$xTHAx ’ (249d)
for which the solution is
0 2bA AXTHA
CHEDAXT AXHAX _ oh 4+ (H + HT)Ax. (2.4.10)

0Ax

Since the matrix H is symmetric because Equation 2.4.8a obtains it from a matrix product
with its transpose. Then, the term (H + HT) of Equation 2.4.10 can be replaced with 2H.
Simplifying, it results in:

HAx = —b, (2.4.11)

which we can efficiently solve Equation 2.4.11 with the Cholesky decomposition algorithm
for obtaining the update Ax* [37].

In the Sections 2.4.1, 3.2 and 3.6, we will employ the GN algorithm by replacing the
matrix H, vector b, and scalar w; according to actual residual functions without changing
the routine.
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Unlike Stochastic Gradient Descent (SGD) used by ML training, the GN algorithm
requires fewer iterations to converge at the cost of more memory required by the hessian
matrices. Although the latter is not a problem since SLAM optimizes a small set of
parameters compared to ML methods, or in some large dimensional problems such as
Bundle Adjustment or PGO, the algorithm implementation may take advantage of know
sparsity constraints on H matrices. Unfortunately, the main caveat of GN is that its
quadratic function approximations are sensitive to initialization at plateau regions, making
the approximation into a hyperplane and getting stuck. A manner to improve the ability
of getting out of plateau regions is replacing the GN with the Levenberg-Marquardt
(LM) algorithm which incorporates the GN and Gradient Descent (GD) according to the
approximations of the residual function.

2.4.1 Robust Estimation

Frequently, a subset of residual terms from energy function such as Equation 2.4.1 corre-
sponds to outlier measurements, like false point correspondences introduced by a moving
object during capture of point clouds. When such outlier cases happen, even with a
large portion of the current estimation producing the correct measurements, it is likely
to introduce a sizeable residual error value, deviating the optimization from the actual
minimum. To reduce the impact of those circumstances in SLAM, M-estimators have
been found [1, 8, 38] an effective way to modulate the effect of high residual terms. In
essence, a M-estimator £ controls the cost of high residuals. One example is the Huber
loss,
Lor) = 12 r=o (2.4.12)
T 2V/or —§ otherwise o

with the 0 being a given threshold value. Note that r should be the squared residual, so
Ls(r) does not return a negative value.

To use a M-estimator in an energy function, we simply evaluate it for every residual.
For instance, we transform an expression like

E(x) = Zri(x)Twiri(x) (2.4.13)

(A
into

Ep(x) = Z L (r;(x)Twir;(x)) . (2.4.14)

To illustrate the attenuation of the Huber function in relation to the raw residual
value, we show a comparison in Figure 2.4 with a squared residual.

To use M-estimator function with GN optimization algorithm, we can calculate the
new energy function derivative

OL(r;(x)Tw;r;(x))
0x ’

(2.4.15)
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Plot for Huber Estimator Lg(r)
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Figure 2.4: The Huber estimator (blue line) and the actual output of the error term (red).
The Huber loss diminishes larger errors caused by outliers.

which is expanded with the chain rule

OL(r;(x)Tw;r;(x)) Or;(x)Tw;r;(x)
Or; (x)Tw;r;(X) ox ’

(2.4.16)

resulting that the first partial derivative term is just a scalar value that gets multiplied
with the same derivatives from the original GN’s quadratic residual. As it is a simple
multiplier, we can mix the derivative’s value with the existing weight factors,

OL(r;(x)Tr;(x))
ox ’

and continue the routine exactly as in Section 2.4 without changing the rest of the equa-
tions.

During our experiments on dense registration from Chapter 3, we use the Huber loss
of Equation 2.4.12, having the following derivative

9L5() _ nin (1, é) . (2.4.18)

or r

While for estimating the registration of loop closures with the algorithm proposed by
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Plot for Geman McClure Estimator G,(r?)
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Figure 2.5: The Geman-McClure robust estimator with different settings of the parameter
L.

Zhou et al. [87], their procedure uses the Geman-McClure estimator

1
= 1— , 2.4.19
6,00 = (1= 1557 (2.419)
where p controls the effect of residuals on the object, see Figure 2.5 for its attenuation
factor with different values of p.

2.5 Point Cloud Registration

Registration of 3D geometry is a common operation on SLAM. This section starts review-
ing the ICP algorithm for aligning dense and already close point clouds. After, we review
techniques based on feature matching: the Kabsch-Umeyama [80] (Kabsch-Umeyama)
and Fast Global Registration [87] (FGR) algorithms that can register severe miss-aligned
point clouds. Although the algorithms are defined with point cloud representation, they
might be applied regardless of whether 3D data was obtained as depth sensors, 3D recon-
struction, or 3D Computer-Aided Design (CAD) models.

Later on Chapter 3, we apply ICP for computing RGB-D odometry and submap
alignment, and the FGR for detecting loop closures.
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2.5.1 The Iterative Closest Points Algorithms

The most popular form of dense alignment is the family of ICP algorithms for geometry
consistency between points clouds. The ICP algorithms work in iterations consisted of
two steps. According to a current transformation estimative T, the first step finds the
closest point q, in the target set for every inth point p, in the source set. The second
step updates the current transformation estimative according to a cost function to move
closer to their actual neighbors in the next iteration. Among the cost function to guide
ICP, the first one is the distance between points p; and q;, known as point-to-point cost
metric [4]. Shortly after, Chen and Medioni [16| propose the point-to-plane cost metric
for faster convergence. It offers a smoother error residual since the source points “slide”
over the target surface. The point-to-plane cost is

Eiep(T) = Z ri(T)weri(T), (2.5.1a)
ri(T) = n;"(Tp; — q;), (2.5.1b)

meaning that conforming to the candidate T}, the term r; is the distance of the source
point p; from the target’s surface that its corresponding closest point q; belongs. The
vectors n; are the normal of the surface associated with the target points q;. The normal
vectors can be obtained from depth images, point clouds, or mesh geometries. The scalar
w; is a weighting factor of the matching’s confidence. To find the closest points quickly,
we can query them from a KD-Tree. Another way, when the point clouds originated
from RGB-D images, is to project and back project the points to find the nearest ones
immediately. This later technique is described in Section 3.2.

In order to improve the original point-to-plane cost function in Equation 2.5.1 against
outlier associations, we can complement it with a robust error score, like the Huber loss

Ls

N

Eiep(T) = Z Ls(r(T)wer(T)), (2.5.2a)

ri(T) = n;"(Tp; — q;), (2.5.2b)

Next, we show how to minimize the non-linear least-squares problem of Equation 2.5.1
with the GN optimization framework described in Section 2.4. GN is a popular choice for
ICP, but other authors may choose to use LM or even first-order gradient descent.

We start the actual minimization of Equation 2.5.2 by establishing its quadratic ap-
proximation:

N

E(TBE~) (r(TBE) + J&)uw(r(TBE) + J), (2.5.3)

7

with T' = [R | t]. The approximation in Equation 2.5.3 replaces the plus (+) in Equa-

tion 2.4.2 with the box plus (H) operator. The change is necessary because we are opti-
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mizing over the SFE/(3) manifold, so the state update operation must keep a valid member
of the manifold. Consequently, this also results that we can parameterize the state update
with & € se(3), being beneficial because we only need to estimate 6 parameters instead of
12 of the full matrix. To compute the Jacobian J; € R of the point-to-plane distance r;

_ OnyT (Tﬁﬂﬁpi—qi)

Ji=——Z " (2.5.4a)
— TR Onoks (2.5.4b)
= QnTTEEp: (2.5.4c)
Using the chain rule, we obtain
= on,"T'HEp, 0T B Epi. (25.5)
OTEép,  0f

For readability, let x = T'H &£p,, then the first term of the jacobian is

On,"THEp, OJIn;'x

= T
T o = (2.5.6)

Equation 2.2.35 gives the analytical answer for the second term

OTHEp; _ d Exp(§)T'p, _
85 - 05 - []3><3 _[Rpi"_t]x} (2.5.7)

Replacing the terms of Equation 2.5.5 with Equation 2.5.6 and Equation 2.5.7:

Ji = niT |:13><3 _[sz + t]x] (258)
Let v=—n; x (Rp; +t) and n; = [nl ng ng}, we can rewrite it
Ji = [nl TNy N3 V1 Vg 1)3] . (259)

Using the analytical jacobian in Equation 2.5.9, we can then plug J; into the terms
ngom and bgeom

N
Hyeom = > _ JTw;J;, (2.5.10a)
N
bgeom = Z m(T)lez, (2510b)

and we set w; to value of the Huber loss derivative
w; = Ls(r;(T)?) (2.5.11)

The optimal £* for only the geometric term can be found using the Cholesky decom-
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Algorithm 1 Point-to-plane ICP

Input: Source points set P; target points set @); initial guess transformation matrix

T € SE(3).
1. T+ T
2: while maximum number of iterations do
3: let R,t =T
4: for every point p € P do
5: q, = find_nearest neighbor(Q, Rp + t) > Finds the nearest point in the set @
6: n; = normal associated with q;
7 Jz — [nl No N3 —N; X (sz +t)
8: r; < (n] (Rp, +t — q)i))?
9: W; <— E(;(T’i)

10: end for

11: H «+ Zz JZTU)ZJ%
12: b Zz riw; J;

13: &" < Cholesky(H,b)
14: T+ THE"

15: end while

16: output 7T’

position and integrated on the current estimative 7" with the boxplus operator:
T+ THE¢ (2.5.12)

After an update, the algorithm starts another iteration of approximation and update
until a max number of iterations is met. The ICP for only the geometric term is presented
in Algorithm 1.

It is important to note that the GN is naturally sensitive to poor initial parameters.
Its estimation can not reach a good solution if any unrelated geometry regions have similar
properties that pull the optimization to a poor local minimum. To avoid local minima,
authors often try to use the result of sparse registration as an initial guess [21, 30] or the
use of gaussian pyramids [27, 28, 45, 58, 71, 83, 88|.

2.5.2 Sparse methods

This section explains the Kabsch-Umeyama and FGR, which work by computing the regis-
tration from sparse point matches, rendering them invariant to initial transformation and
usable for loop closure detection. That is, similarly to ICP, the goal of those algorithms
is to estimate a rigid transformation [R ] t} which best aligns two sets of paired points

{P1, Py, ---,Pn} and {q;,dy,...,qy} Where their index are ordered by correspondence.
The point correspondence mechanism may be carried by matching 3D points according
to the local similarity of descriptors associated with each one. Such local features may
be extracted from methods like Oriented FAST and rotated BRIEF [66] (ORB), SIFT, or
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FPFH.

Kabsch-Umeyama

The Kabsch-Umeyama is one of the simplest methods. It first estimates the rotation
matrix R by finding the rotation matrix that maximizes the trace of the points’ covariance
matrix, which minimizes the covariance values that are not in the diagonal. Meaning that,
given the point covariance matrix

N
cov(p,q) = Y _pla;, (2.5.13)

any matrix such that must have highest covariances for cov(x, z), cov(y,y) and cov(z, z)
coordinates than for others like cov(x,y) or cov(z,y) for representing an optimal rotation
alignment. Alternatively, the Kabsch-Umeyama can be proof by minimizing the average

distance error
N

argénin Z(sz‘ —¢)" (Rps — q;) (2.5.14)
Computing its first derivative

037 (Rpi—a:)" (Rpi—a;)
OR )
037 pf R" Rpl —p! R"qi—q] Rpi+a} ai

R ’ (2.5.15)

N N
ZP?RT% —q; Rpi = Z —2p{ R"q;.

Minimizing Equation 2.5.15 is equivalent to maximizing

T pT
arg max E . R g 2.5.16
gR D q ( )

We can find the optimal matrix for maximizing Equation 2.5.16 using the SVD decom-
position va plq; = USVT, resulting that the optimal rotation matrix is R = VUT [25].
Furthermore, once we have the rotation R, we find the vector t by translating the mass
centers:

t=Rp—q, (2.5.17)

where p and ¢ are the center of masses or simple their mean points:

N N

pz%Zpi q=%2q¢ (2.5.18)

For making more robust to outlier associations, the Kabsch-Umeyama is often run
with Random Consensus Sampling (RANSAC), so it can detect and remove outliers by
running the Kabsch-Umeyama multiple times with different correspondences subsets.
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2.5.3 Fast Global Registration

For robustness to outlier proposes, the Kabsch-Umeyama algorithm is run with the
RANSAC framework. However, besides introducing indeterminacy to the estimation, the
RANSAC’s random process is slower since multiple executions are necessary to improve
the answer.

As a faster alternative algorithm, Zhou et al. [87] proposed the FGR algorithm, which
filters outliers by minimizing the following cost function with the robust Geman-McClure

E ([R | tD - igu (17p, + t = ) (2.5.19)

where G, is the Geman-McClure estimator parameterized with a given pu.
Nevertheless, rather than directly estimating Equation 2.5.19, the authors noted that

estimator:

is more comprehensive and faster to execute when we formulate it with line processes.
Line processes refers, in our context, in including a scalar set L = {l;} expressing the
belief of every inth correspondence between points p, and q; being true. Each [; goes
from 0-1 indicating either less or more emphasis on the distance between the Rp,+t and
q,;- In that way, under line processes, we estimate not only the optimal pose [R | t} , but
also the optimal set L

E ([R | t} ,L) - ili||Rpi +t—q* + ﬁ: W(ly). (2.5.20)

To avoid just assigning 0 to every [;, hence obtaining 0 energy during minimization, Zhou
et al. [87] express the function W(l;) to penalize lower values of [; as the following

V(i) = p(v/1; = 1)%, (2.5.21)

where p is the same parameter of the Geman-McClure estimator. The function ¥ repre-
sents a curve in such way that it outputs higher values when the [; inputs are closer zero,
therefore penalizing the marking the correspondence as outlier, and lower ones when [;
are closer to one. Optimizing Equation 2.5.20 is efficiently implemented using the GN
method, in which we can at each step separately estimate first the pose [R | t] and then

all [;, which have the following derivative:

OE s V-1
= —||IRp, +t — q, 92.5.22
. |Rp; +t —q,|” + 1 N ( )

then setting the first derivative to zero and solving for /;

2
W
l; = ) 2.5.23
</‘L+||Rpi+t_qi||> ( )

Where the method for updating [R | t] during one GN step is similar to the ICP in
Section 2.5.
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We may observe what is known as the Black-Rangarajan [5| duality between robust
estimation and line process by substituting the result of [; from Equation 2.5.23 into
Equation 2.5.20 which then becomes Equation 2.5.19, demonstrating the equivalence of
the optimization of both energy functions

In the methodology Chapter 3, we use the FGR along with a heuristic for determining
alignment success for detecting loop closures.

2.6 Visual SLAM

7 N
! Registration
L algorithm
~ 7/
- - -
1
1
Frame
Frame Frame-to-Frame .
Input Frame £ . £ »| Integration on »| Export to mesh
Preprocessing Odometry Global Map

}

Input data source

Ran after all frames processed

D Ran for every frame

11 Commentary

Figure 2.6: A Naive Visual SLAM pipeline. An input source feeds the pipeline with newly
acquired frames. The frames can undergo a preprocessing stage to alleviate noise. After,
the pipeline uses frame-to-frame odometry to integrate relative pose estimation into a
trajectory, but as we will exam, this suffers from severe drift, requiring global alignment
routines. Once the frame pose is known, any 3D geometry may be integrated into a global
map. This operation combines previous 3D information with the newly received ones to
refine the global map. In the end, once all frames are processed, the user may export the
final map into a mesh.

As stated in the introduction, the goal of SLAM is to find the camera trajectory and the
scene’s mapping, as show in Figure 1.3. First, let examine the first part of the problem,
the VO, or finding the camera’s poses { Py, P, ..., Py} throughout the N frames of the
stream. Any pose P; of the camera at the frame 7 can be decomposed into the accumulation
of relative transformations of previous frames: P = I'Ty; ... T{;—1)(i—2)Tii—1). That is, each
T(i-1) is a relative SE(3) transformation from a pose P; to its previous one P;_;. A pose
P; can then be stated recursively

P 1 Tii—1y ©2>0
p = e =T (2.6.1)
I i =0
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The geometric interpretation is that the points from the first frame are oriented at the
origin of the coordinate system, or the identity matrix I. In essence, a VO algorithm
can align the frames in respect to their previous one using a registration algorithm, and
hence finding the transformations 7;;_1). And by accumulating them, the VO algorithm
estimate the absolute poses P;. For the second part, constructing the mapping, in the case
of monocular inputs, it is possible to estimate the map’s elements by triangulating the
intersection of rays originating from pixel correspondences across the frames. However,
for our case of RGB-D input, the system can back project the depth images into point
clouds (or other representations like surfels or volumes), position them in the world space
according to the cameras’ poses, and fuse them all into a single map.

Figure 2.7: Tracking drift is the problem of algorithms predicting sensor poses that grad-
ually deviate from the actual trajectory. (a) Input scene overlaid with the ground truth
and a drifted trajectory. Whiter colors mean near the start of the trajectory, and darker
colors are closer to the motion’s end. (b) The resulting scene map using the correct tra-
jectory. (c) The resulting scene map using the ill-estimated trajectory. Note the various
miss alignments. (d) Correct alignment. (e) Misalignment of geometry caused by track
drifting.

Given this overall function of a naive SLAM, with its parts shown in Figure 2.6,
aligning pairs of adjacent frames and accumulating their relative transformations as in
Equation 2.6.1 would be a straightforward but ineffective solution due to a problem known
as tracking drift. Algorithms for registering two frames like the ones of Section 2.6.1 will
inevitably add small errors at every estimation due to sensor noise, miss-associations
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Figure 2.8: (a) A camera trajectory and its frames and keyframes (larger wireframe
drawings). We mark the frames with the same colors as their parent keyframes. (b) Closer
view.

of features, or just lack of information in the scene (or the aperture problem). Those
small errors will accumulate at every estimation Tj;_1), and in few dozens of frames, the
trajectory will likely deviate from the actual one. Figure 2.7 illustrate how tracking drift
affects the mapping.

One of the first strategies to mitigate the tracking drift problem is submapping.
The camera tracking drift is unnoticeable for small frame intervals even when using
accumulation-based frame-to-frame registration algorithms [17]. With that fact in mind,
various authors [15, 17, 41, 45, 54] proposed methods where the trajectory is subdi-
vided into keyframes, with each interval between them contributes with a submap. Fig-
ure 2.8 shows a trajectory with keyframes along the frames’ poses in their intervals.
Figure 2.9 shows two submaps that we produce from the frames in the interval between
their keyframes. Later the submaps are aligned, and being the fusion of multiple frames,
they tend to present less noise and completer geometry, which an additional registration
may improve the one found during VO.

Submapping alone only reduce the error for small trajectories and can be better ap-
plicable with dense mapping. Although, to overcome the tracking drift, we require opti-
mization routines to align multiple frames, keyframes or submaps globally. One example
of such method is Bundle Adjustment (BA), often used in structure from motion. It
optimizes the poses and mapping by minimizing the error between 2D reprojection of
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Figure 2.9: (a) A submap of the scene, its keyframe’s pose is shown in Brown color. (b)
Another neighbor submap. Its starting camera pose is shown in Pink. (c¢) Both submaps
aligned together

estimated 3D points and their original 2D keypoints coordinates from the frames. An-
other example is the PGO, which optimizes the poses by maximizing the consistencies
between odometry and the found loop closure transformations. Usually, those global op-
timization methods are not invoked to estimate every frame’s parameters; otherwise, the
processing would be computationally expensive for bigger streams. Instead, besides of
submaps-based input for global optimization [17, 45|, other authors [21, 56, 57| select a
few keyframes to optimize the poses and map globally. Consequently, the non-keyframes
in the intervals are modified according to the global result.

However, the weak estimation from VO algorithms remain important since they will
serve as initial state for the global optimization algorithms start from, that without it
would render a massive parameter space to search. This framework of using estimations
from VO and then globally optimizing them reflected that SLAM system architectures are
typically divided into front-end and back-end. The front-end is responsible for performing
initial guesses for the trajectory and the map using the sensors’ measurements directly.
It is also responsible for establishing other measurements, such as detecting loop closures,
landmarks, key points, and correspondences. The back-end is responsible for the global
optimization routine using the inputs from the front-end to update the poses and map
into the state with the most probability. We describe the workings of two classic back-end
procedures: BA and PGO, in respectively, Sections 2.6.3 and 2.6.4.
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2.6.1 Visual Odometry

The central part of the front-end is the VO estimation. The methods that accumulate
relative transformation in the same fashion of Equation 2.6.1 from pairs of consecutive
frames are referred to as frame-to-frame tracking. Another modality is frame-to-model
tracking [58, 83]: the front-end register the sensor’s input w.r.t. to the current recon-
structed map representation. Frame-to-model tracking is more advantageous because it
leverages less noise and more complete geometry of the mapping than what single frame
information may offer.

Engel et al. [27] categorize the VO methods regarding if they consider dense or sparse
set of pixels; and if they use pixels’ color or intensity values or prefer indirect descriptors
to associate points in images. The two more relevant category permutations are indirect-
sparse and dense-direct.

Indirect-sparse are methods that infer the relative SE(3) transformation of two
cameras using sparse keypoints correspondences pairs found by image descriptor match-
ings [53, 66]. Often, the keypoint correspondences serve as inputs for estimation of the
essential matrix E (calibrated case) [60] or of the fundamental matrix F (uncalibrated
case) [52] that relates the epipolar geometry of the two camera poses. With one of those
matrices, the rotation matrix R and the translation vector t composing a relative trans-
formation can be extracted. If the 3D positions of the key points are known, then the
transformation can alternatively be estimated by minimizing least-squares differences of
the keypoint correspondences [25]. Nevertheless, all the algorithms require only a few
correspondences that are often selected in conjunction with RANSAC to remove out-
liers [56, 57].

Darect-dense tracking refers to methods that use all valid pixels to estimate the
tracking without converting the pixels into an intermediate descriptor. For instance,
Steinbriicker et al. [75] proposed to jointly optimize the photometric alignment cost in
addition to the ICP’s geometric cost, applied on many frame-to-frame or frame-to-model
systems [17, 21, 45, 46, 71, 83]. The photometric consistency obtained by a candidate
estimative Ty, = |R | t| between the pixel intensities at coordinates u of a source image

I* w.r.t. to their corresponding projection in a target image I* can be modelled by us as

ew = I°(u) — I'(7m (KT, JI(K, 1)), (2.6.2a)
13

arg min uWytu.- 2.6.2b

gTst ; ( )

The term e, is the residual photometric error of the estimative T,. It projects a pixel
coordinate u from the source image into the target with the expression 7(KTII(K, u)).
That is, it first back-projects u into its camera 3D space, then transforms it with the
estimative T}, and reprojects on the target’s image. The back-projection requires that
u also have a depth value d associated with it, requiring a depth image. The scalar wy
is a confidence weight that the mapped pixels on both images are representations of the
same point, which may be affected by occlusions or wrong transformation estimation. For
instance, its value may be a difference measure of the intensities of u at the source image
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and its projection on the target.

A monocular system may use this kind of dense photometric consistency like in LSD-
SLAM [26]. After initial alignments from a sparse indirect algorithm, LSD-SLAM infers
the pixels’ d coordinate with the stereo match of images from different frames.

2.6.2 Uncertainty Estimation

Estimating the uncertainty of estimations or measurements is a fundamental feature for
SLAM'’s front-ends because various methods for tuning the localization on back-ends rely
on modifying the poses according to the degree to which their parameters can be assumed
to be true. Good examples are the Kalman filtering or the PGO techniques, the latter
being used on our system. They use the uncertainties of relative transformations between
estimated sensor poses either acquired from odometry or loop closures to infer the most
likely trajectory. In our case, the target is to estimate the uncertainty from the results
of the 3D geometry alignment algorithms such as ICP, being, as will be seen, a different
process than with physical sensor of wheel metering. The uncertainty of an estimated
rigid motion parameters & = [p w] with p € R3, w € R3, either from a physical sensor

or an algorithm is usually expressed in the form of covariance matrices,

Cop Cow

cov(€) = Cop Co

(2.6.3)

That is, submatrices C,p, Cy € R**3 are, respectively, the covariance for translation and
rotation parameters, and submatrices Cp,, and C,,, are their cross-covariances.

To compute the covariance, we need an unbiased estimator of &, which we denoted by
its expected value E[£], then

cov(€) = E[(€ — E[€])(€ — E[€])]. (2.6.4)

For physical odometry devices like wheel sensors or Inertial Measurement Units (IMUs),
a covariance matrix can be calibrated once using ground truth trajectories or from other
forms of high precision sensing that provide the true parameters € for the expected value

E[g] = € [11, 35, 49].

However, contrary from physical sensors, the result of algorithms dramatically de-
pends on the inputted measurements. For example, wheel sensors will likely suffer slight
variations according to the terrain. Whereas visual inputs can easily change. Let consider
small lobby and corridor scenes. In those situations, the uncertainty on those ICP’s an-
swers will be different because the corridor scene will provide more information from the
walls since they are closer to the sensor. For that reason, we must estimate the covariance
for each call taking in account the inputs. One class of methods for estimating such type
of covariance scenario where a registration algorithm aligns a source point cloud into a
target one is to sample multiple executions of it with randomly generated arguments.
On this estimation technique, the random arguments are usually initial transformation
perturbations or generated noisy versions of the target point cloud. Often with the aid of
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Monte-Carlo simulation, they obtain a numeric approximation of the true expected value
E[€] for plugging it on Equation 2.6.4.

Although providing good results, techniques based on numeric simulation are ineffi-
cient for real-time applications, making authors [2, 10, 63] look for closed-form solutions
of an algorithm’s covariance. Since being the most used method for point cloud alignment
in robotics, the closed-form covariance estimation techniques are mostly based on the ICP
algorithm. Whatsoever, they can be used to estimate the answer of other algorithm if
they are also destined for point cloud pair alignment.

The first closed-form covariance estimation technique investigate by us is the Hessian
method initially purposed by Bengtsson and Baerveldt [3| for point-to-point error. It has
this name because it is based on hessian matrix of the linearized ICP’s cost function.
Although, Bengtsson and Baerveldt [3] uses the point-to-point cost, we derive here the
one based on point-to-plane in Bonnabel et al. [7]. The rationale of this method is to
treat the ICP’s output as linear least squares problem for which is possible to obtain a
covariance. First, it is necessary to linearize point-to-plane cost function of Equation 2.5.1
that measures the alignment of N correspondent point pairs {p,} into {q,}, replicated

ZH — Exp(& )-nl-

For small angles, the rotation component Exp(w) from Exp(&) can be approximated by

next:
2

(2.6.5)

Exp(w) =~ I + [w]x, (2.6.6)
then we approximate the transformation of the source point p, to

Exp(§)p; ~ (I + [w]x)p; + p. (2.6.7)

Hence, it is possible to linearize Equation 2.6.5 into

ZH p; + [wxp; + p —q;) - ny|° (2.6.8)

To transform Equation 2.6.8 into a linear least squares problem we rearrange it using the
row vectors j;, € R1*6 and scalars r; € R, defined as

Ji = [_(Pi x ;)T _nz‘T}

, (2.6.9)
Ty = nzT(Pz' - qi)

hence, obtaining

F&) =Y (ri—ji6)” (2.6.10)

Using the normal equation, the solution for £ in Equation 2.6.10 is

-1
il D il (2.6.11)
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Let
H=> jlj (2.6.12)

we can now write the covariance of &, aided by the property of Equation 2.1.7, as
cov(g) mcov [ HY ilri |, (2.6.13a)

~ H ' cov ngm [H']", (2.6.13Db)

~ HTYY jlvar(r) Y 5 [HTYT (2.6.13¢)
We can assume the residual error is normally distributed,
= N(0,0%), (2.6.14)

with a given standard deviation o2 obtained from sensor measurements. Following, equa-
tion 2.6.13 is then simplified to

cov(€) ~ H™ ZJZ var(r;) ZJZ : (2.6.15a)
~ H™ 1022JZ ZJZ , (2.6.15Db)

~o’H™ 1H [H- } : (2.6.15¢)
As H is a symmetric matrix, we may omit the transpose, leaving the result to just
cov(€) ~ oc*H . (2.6.16)

In order to be accurate as the numeric techniques, the covariance estimation using
Equation 2.6.16 must account for precise values of residual’s variance o2, which according
to Bonnabel et al. [7] will be optimistic if based on identically distributed gaussian noise.
However, many authors [17, 45, 83] found acceptable the following approximation

cov(€) ~ H™ . (2.6.17)

The method is named Hessian because the resulting matrix matches the second derivative
approximation ) . jIj; of the cost function f. Once having the covariance matrix, we may
analyze its eigenvectors and eigenvalues for finding the maximum axis of variation, for
besides using in global alignment methods, verifying the tracking errors [83].

A more realistic approach was proposed by Censi [10]. He treats the ICP procedure
as a function

§ = icp(z), (2.6.18)

where z represents the input points p, and q, correspondences generated by the transfor-
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mation & With this assumption, we can take its Taylor series for approximation

icp(z) =~ icp(zg) + %;: (z — 2), (2.6.19a)
~ icp(zo) + %ichz — Givg, (2.6.19b)

0

This formulation allows us to use the Equation 2.1.7 to extract its covariance noting that
icp(zo) and 22 are fixed values
0

cov(€) ~ g—z‘i cov(z) [ﬁr. (2.6.20)

To compute the required derivative ng, Censi [10] applies the central limit theorem which
0
states that

-1
af _ | 9*f 0% f
8—20 = |:8_§2:| 9208 (2621&)
— 19
= 2L (2.6.21D)

Resulting that the covariance can be expressed as

cov(€) ~ H™* (5&) cov(z) <8i2g€>T H™ (2.6.22)

noting again the hessian H transpose can be ignored because of its symmetry. The

Equation 2.6.22 provides more realistic estimations of the covariance because the term
3
0z0€
is 6 x 6N which must be numerically calculated, rendering considerable computation

accounts for changes in the shape of the cost function f. However, its matrix shape

requirements for real-time use [63].

Albeit covariance estimation, other form of uncertainty is assessing whether the track-
ing or registration was successful or not, which can be evaluated with heuristic as the
ratio of inlier keypoints |17, 57|, or the ratio of the residual error from energy functions
like in Equations 2.5.1 and 2.6.2 [83]. Kéhler et al. [45] goes as far as creating Support
Vector Machine (SVD) classifier to determine whether a registration was successful or
not, which inputs the hessian covariance approximation among other parameters.

2.6.3 Bundle Adjustment Back-end

Although oriented popular for photogrammetry, BA is also used as back-end in many [9,
21, 56] SLAM systems. We do not use on our system, but provide now a quick overview
of it for sake of completeness.

In BA a set of initial 3D points estimates {x;} are indexed along a set of is 2D
keypoints appearance {u; ;} along the N frames. Moreover, it is also given a set of initial
guesses for the camera poses {P;}. Both sets {x;} and {P;} are initial guesses from the
front-end, and therefore, it is likely that many reprojections of x; on their appearances
frames will not precisely match one to another. Let the vectors e;; = u;; — m(KP;x;)
contain the reprojection error of a point x; with respect to its original keypoints u;;,
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Figure 2.10: The reprojection errors in Bundle Adjustment. The errors e;; are the
difference between initially found 2D features (lighter green) in the images Fy, F,, and
F3 and the reprojection of the estimated 3D point p, on the images (darker green). The
goal of bundle adjustment is to correct the poses and map’s 3D point to diminish those
reprojection errors.

which is illustrated on Figure 2.10. The goal of BA is to optimize the positions in {x;}
and poses {P;} by minimizing the squared reprojection errors e;; of all x; to be the close
as possible to their respective source keypoints u;;. In other words, we can formulate the
BA optimization with the following equation

Eba({Pi}y {Xj}, {uij}) = arg min Z elei,jem. (2623)

Pr:n,x1:0 i,j

Besides the keypoint coordinates u; ;, it is possible to supply the information matrices
Q,;; € R?*? which weights the confidence of the 4, j keypoint u, ; along the X-axis and
Y-axis [57].

BA is extensively used throughout different kinds of SLAM being either monocular,
stereo, sparse, or dense. As examples, Maier et al. [54] and Mur-Artal and Tardos [56]
uses BA to align odometry and keyframes. Cao et al. [9] aligns submap with BA.

2.6.4 Pose Graph Optimization Back-end

PGO optimizes the camera poses into a maximum likely configuration according to
the level of uncertainty estimated on the odometry and loop closure measurements.
Other works may also include landmark detection measurements, but this is not dis-
cussed in this dissertation for simplicity. The poses and the measurements are de-
scribed in a probabilistic graphical model for finding the most likely configuration. More
specifically, a pose graph is a directed graph where the camera poses are the nodes
V = {P,P,,...,Py_1, Py}, and the relative transformation between poses, either ac-
quired by VO or loop closure detection, are the edges € = {(T12,12),. .., (T, Q) }-
Expressly, the edge set is the union of the sets O and C of, respectively, odometry and
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loop closures estimations,

O = {(T127 912)7 (T237 Q23>7 ey (T(N—I)N7 Q(N—I)N)}7 (2624&)
C = {(Ts, ) | V loop closures from a source pose s to a target pose t},  (2.6.24b)
E=0UC. (2.6.24c)

The edges are composed of a relative transformation Ty, of the source pose s to the
target pose t, and the uncertainty of T; in the form of an information matrix 2 estimated
by the front-end with techniques such the ones on Section 2.6.2 — information matrices
are the inverse of covariances matrix, Qg = cov(Ty)~!. As the edges have an associated
uncertainty, we can formulate the probability of the whole pose graph arrangement by
joining how much uncertainty each node in ¥ has

N
p(V | 5) = Hp(Pi+1 | Piaﬂ(i—i—l)) : H p(Pt ’ P87Tst>7 (2-6-253)
i s,teC
=[] »(P | P, Tw). (2.6.25b)
s,te€

We may explicitly refer to the probability of a pose graph as two separated products, one
for odometry and another for loop closures (Equation 2.6.25a), but we can group them
as the same (Equation 2.6.25b). For the conditional probabilities given an edge with
source node P, and relative transformation Ty, we may assume a normal distribution
centered around the nodes relative transformation and spread with the uncertainty of the
transformation’s covariance matrix

(P | Py, Ty) = N(Ty; P71 Py, cov(Ty)), (2.6.26)
that can be expanded as
1
p(Py | Py, Ts) = nexp(—ﬁrsthtrst), (2.6.27a)
ry =Ty — PP, (2.6.27b)

Since the minus operation is not part of the SF(3) group, making the numerical opti-
mization search on non-valid elements of the parameters’” manifold, we can rewrite the
residual term replacing the minus with the inverse T3,':

ry =1,'P 'P,. (2.6.28)

The expression P, ' P, computes the relative transformation from node s to ¢, meaning
that our objective is to adjust the poses to match the transformation Ty;
Therefore, the goal of PGO is to maximize the probability in Equation 2.6.24a, which
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Figure 2.11: (a) Sample initial pose graph. The blue-to-red lines are odometry edges.
Redder specifies the accumulated uncertainty over the odometry measurements. The
green-to-blue lines are loop closure edges. In this illustration, the loop closure edges are
well aligned and have low uncertainty, thus making PGO adjust the poses represented
by the green arrows. The red arrow symbolizes the pose from the odometry nodes with
higher uncertainty. (b) Result of the PGO algorithm. It adjusts the high accumulated
uncertainties on the odometry edges using loop closure measurements.

is the same as minimizing its log-likelihood sum

argmaxp(V | £) = argmin — log Z p(P | Ps,Ts) |, (2.6.29a)
4 s,te€
= arg min Z ||IrstQserse]| - (2.6.29Db)
s,te€

A visual intuition of PGO is that edges act like springs pulling the pose nodes. For
example, suppose a loop close’s spring has more compression rate than a sequence of
odometry ones. In that case, they will be unwound according to the accumulated sum
of their compression rates until they can balance the one with the loop closure. In this
example, the compression rate is the level of uncertainty of their information matrices.
With submaps, PGO acts like in Figure 2.11, the loop closure edge will bend the odometry
ones to adjust the trajectory.

Following Equation 2.6.29, we again arrive on a least square problem that is solvable
using numerical algorithms such as GN or LM. Given the residual formulation of Equa-
tion 2.6.28, we can linearize the Equation 2.6.29 as we did for the other energy functions

ra(P B E, PBE) mralTuly )+ J [ & o &+ (2.6.30)

and fit using second order algorithm such as the GN or the LM. We use &, € R% ¢, € R® to
define, respectively, the increment over the parameters of the pose of nodes s and t. The
regions with the dots (---) symbolizes zeroed values, i.e., elements with no contribution
to the derivative for the poses at nodes s and ¢. For a graph with V' nodes, we must define
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jacobian matrices Jy; € R6*V for every term expressing an edge s to t

0T, (P, B¢, P, B
g, = T (RBE) Es:[... Ag o By -, (2.6.31)

e e ]

in which the matrices A € R®*% and B € R5%6 are the jacobians

Ay = OB, (2632
—1 —
B, = T (Pta;sé) 'PBE, (2.6.32b)

In PGO version purposed by Choi et al. [17], they add a line process set L = {l}
over the loop closure edges, thus making their optimization function be

arg min Z lrseQserse || Ise + W (Lst) (2.6.33)
v.L s,te€

where [ for odometry’s edges are fixed and always equal to 1. Its penalty for marking
an edge as an outlier is

U(ly) = p(v/Ii = 1)% (2.6.34)

We can then proceed the optimization in the same sense of the FGR algorithm, by up-
dating the estimation of L and the poses separately.

Implementations like the one [88] used by us take advantage of the sparse structure
of the jacobians at Equation 2.6.31 for calculating the hessian matrix approximation
H = JLJy € RS>V TInstead of computing the product of jacobians directly, the imple-
mentation may compute the H matrices in subparts [37]. Once knowing how to compute
the H term, then the implementations can carry numerical optimization method with it.

PGO is applied in various SLAM modalities, including aligning submaps [17, 45| or
keyframes |21, 56, 57]. For instance, InfiniTAM [45] creates TSDF volumes submaps with
a fixed number of frames. The submaps are globally aligned by setting them on a PGO
with loop-closures detected via Ferns descriptor coding [34]. Choi et al. [17] build a pose
graph made of submaps like InfiniTAM but introduces line-process to mitigate the effect
of outlier loop closure edges.

Our backend uses the PGO algorithm and implementation of Choi et al. [17], later
integrated into the Open3D library [88]| by Intel Corporation.

2.6.5 Mapping on RGB-D SLAM

In RGB-D systems, the frame’s point cloud already provides a dense geometry to update
the map once a camera pose is estimated. In those systems, the integration of a frame
into the map finds which points from the frame’s point cloud should be added as a new
element or fused with an already existing map element.

Most of major works [17, 21, 45, 58, 59] on RGB-D SLAM represent their scene’s
map with a TSDF volume. The elements of TSDF volume contain a positive or negative
measurement of the distance from it to its nearest scene’s surface point. A positive
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TSDF value corresponds to an element in front of the surface, while a negative one places
the element in the surface’s back. Consequently, placing the actual surface at the zero-
crossings elements can be efficiently converted into a mesh using the marching cubes
algorithm [58]. Initial TSDF volume implementations were based on allocating fixed size
volume, consuming much memory, that later Niefner et al. [59] improved by offering a
hash-based sparse data structure to store it, rendering significant reduction in memory
requirement.

Another popular map representations are point clouds or surfels, which can offer less
memory usage and more efficient deformation than volumes. However, they cannot be
transformed in a mesh with the marching cubes algorithm. Although, recently, Schops
et al. [72] has proposed an algorithm that delivers such conversion from surfels.

In either volumetric or point-based representations, the algorithm for integrating an
RGB-D image casts a ray from every point and finds where it hits the current model’s
surface. Those incoming rays with no intersection in the map are added as new elements to
the latter, having their color and other properties set according to their pixels. Otherwise,
those rays’ points that does intersect with the map are fused with their respective map
elements. The fusion process averages the attributes of the map element with the incoming
pixel, hence improving the element with more information about its position and color,
for example. Differently from volumetric representations, the point representations have
more complex integration algorithm because it requires fast point search structures such
as a KD-tree or rendering the scene into an index map [46] for query the ray intersections
with the map. Whereas in volumetric representations, the nearest neighbors query can
be realized in constant complexity.

Another challenge in mapping is cope with noise that produce outlier 3D points on
the reconstruction. To remove wrong points, Klingensmith et al. [48] suggest using space
carving on TSDF volumes, meaning that it removes voxels with lower confidence in front
of new geometry. A similar strategy is implemented by Keller et al. [46]. On the other
hand, recently machine learning methods [12, 64, 77| based on TSDF were proposed to
train models that smooth noise based on priors and even to complete missing parts of the
map that were not observed. For instance, if only the front side of a chair was captured,
the model could predict the non-captured backside.

Regarding to the inclusion of feature into mapping elements, as far we could research,
the closest work to ours is from McCormac et al. [55|, where they use the descriptors to
segment the scene, but do not apply them into the SLAM process.

2.6.6 RGB-D SLAM

So far, we have have covered works of different SLAM modalities, in this section we will
focus on RGB-D or stereo SLAM works that reassemble our system. Using consumer
affordable sensors, like RGB-D or stereo cameras, is a desirable target in the literature
since they are less expensive than LiDAR equipments or can be turned into portable dense
reconstruction sensors.

As already stated in this dissertation, video streams offer an overwhelming quantity of
data, therefore most of the works can be classified (among other categories) in those that
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break the video input into submaps [17, 45, 54, 88|, keyframes |21, 56, 71| for applying
global optimizations.
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Figure 2.12: Pipeline for 3D reconstruction suggested by Choi et al. [17] (Redwood). The
authors divide the scene into submaps, where loop closure is detected, and PGO with line-
process performs global alignment. The authors include ICP registration on the submaps
after PGO as a manner to increase the final map alignment.

As already mentioned, we base our pipeline on the Redwood [17] offline reconstruc-
tion system, which originated the Open3D project [88]. The Redwood system works
by generating submaps with frame-to-frame odometry; detecting loop closure between
the submaps using FPFH; global aligning them with PGO and finally applying pairwise
registration of submaps for further refining the alignments. Its pipeline is illustrate in
Figure 2.12. Our work first differs from Redwood in the choice of map representation
by the use surfels while theirs is based on TSDF volume. Although, the main difference
resides in the loop closure and the pairwise map alignment steps where we replace their
methods with ones powered by the deep descriptors of the surfels.
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Figure 2.13: This Figure shows a simplification of the pipeline for RGB-D SLAM done by
Kahler et al. [45]. We highlight that their pipeline uses submaps and finds loop closures
using depth images from the frames. The yellow coloring of the pose graph optimization
stage represents that their system runs PGO continuously during the execution. For more
detail, see its original article.

Another important submap-based SLAM system is InfiniTAM [45], which also uses
a pose-graph within the submap level. Unlike Redwood’s pipeline, theirs is planned to
execute PGO continuously during the execution inside the subset of active submaps that
the system maintains. Figure 2.13 depicts InfiniTAM’s pipeline.

Nevertheless, the third category of works, besides submap or keyframe, can be drawn
from those |21, 83| that continuously deform the global map. Rather than having explicit
submaps or keyframes, this architecture mode changes the map on the spots when a loop
closure is found.

One state-of-the-art method to highlight is BundleFusion [21], which applies global
optimization at the keyframe level and the frames between keyframe intervals in a hier-
archical fashion of resolving the camera poses. The BundleFusion’s global optimization
is based on sparse and then dense registration. Its sparse method uses SIFT matching to
find the keypoints correspondences. And its dense optimization part uses photometric and
geometric consistency for aligning the frames. The system runs in real-time, continuously
adjusting the map according to the new refinements in the previous camera poses in the
process of re-integrating the past frames. Since adjusting overlapping keyframes by sparse
features matching during global optimization and correcting them during re-integration
renders BundleFusion an implicit loop closure correction mechanism.

ElasticFusion [83] is another work that performs loop closure correction without re-
quiring a pose graph. The method is based on surfel map representation and uses frame-
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to-model odometry while tracking active and inactive map portions. When a loop closure
is detected by the analysis of ferns [34] features between the active and inactive map
portions, the system registers the portions while deforming the map’s surfels to match
their alignment. All its registrations use geometric and photometric consistencies.

Besides BundleFusion and ElasticFusion not being directly submap or PGO based,
in our belief, those methods could potentially gain from the research of (learned) dense
features to improve their sparse or dense registration pipelines.

2.7 Descriptor Learning

Image descriptor learning aims to obtain a function ¢ that outputs high discriminative
feature vectors for images. Furthermore, as in previous handcraft feature methods, the
comparison mechanism between descriptors is measured via a metric function, such as the
{5 distance or cosine similarity. The motivation behind learning descriptors is to try to
improve the invariance to noise, lighting, and geometric transformations over handcraft
ones through prior information, which can also account for semantic invariance. Semantic
invariance refers to matching regions of the same functionality on different objects, such
as the wing parts of two different airplane models.

In our case, we obtain a descriptor for every pixel that is later integrated on the surfels
of submaps. Therefore, the input to our trained model will be a W x H x 3 image tensor
and then it outputs a W x H x D descriptors tensor. In this modality, some recent good
results on using CNNs to model such function from previous works [18, 19, 23, 29, 70|
hence motivating our interest on evaluate their potential use for SLAM.

The training of descriptor learning CNN models can be divided into three main parts:
network architecture (Section 2.7.2), training procedure (Section 2.7.3), and dataset gen-
eration (Section 2.7.4). Nevertheless, to understand CNN architectures for descriptor
learning and how their literature evolved, it is necessary first to review the concepts taken
from handcraft descriptors.

2.7.1 Handcraft Descriptors

Authors of handcraft descriptors tried to produce image patch descriptors that output
close distance feature vector of patches representing the same point independently of the
distortions that it suffers from one image to another. Some of the most common distortions
are geometric transformations, including translation, scale and rotation, lighting changes,
and noise.

For dealing with the previously mentioned actions, methods mainly relied on cap-
turing edges and corners since they are distinguishable features on images. The pixel
representation of those structures is characterized by sudden intensity change in pixel
neighborhoods. Its direction and magnitude can be approximated by convolving the im-
age with the Sobel filters. By convolving the image I at a coordinate [u v] with the
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sobel filters G, and G,, we obtain the gradient vector V(u,v) at its position

I(u,v) * G,
= 2.7.1
V(u,v) [I(u,v)*Gy ’ (2.7.1)
where
+1 0 -1 +1 42 —+1
Go=|+2 0 =2|G,=]0 0 o0]. (2.7.2)
+1 0 -1 -1 -2 -1

The * operator is the discrete image convolution operation defined by

Ky Kp

(I % K)(u,v) = Z Z I(i, ) K (u—i,v — j), (2.7.3)

where K is a kernel such as G, or G,. The values K, and K}, are the kernel’s width and
height.

The Sobel kernels can be understood as applying the finite differences method for
computing numerical derivatives of a discrete signal function f(u,v) which inputs u and
v are pixel coordinates, and its output is one of the color’s channel at that point.

One of the first descriptors to offer better light-invariance by the use of gradient vectors
was the Histogram of Oriented Gradients [22] (HoG) descriptor for image patches. It is
a histogram of the gradient’s magnitudes according to their orientation angle. In other
words, each histogram’s bin refers to a rotation angle interval from 0 to 360 degrees
(or unsigned bins from 0 to 180). After a final step of normalizing the histogram, it
results that a HoG descriptor is less sensitive to illumination changes since the captured
gradient structures are independent of the pixels’ brightness level. To also account for
scale-invariance the HoGs may be computed at multiple scales [65].

The SIFT method is composed of two stages: finding keypoints that remain stable at
different scales and then building the descriptor around the keypoint’s region. The key-
point detector tests for scale invariance of pixels by verifying if they lie in saddle-points
of the scale-space 53] representation of the image. Then in the descriptor building for
a keypoint, it extracts the descriptor from the image at the scale that found the best
response during the scale-space test, providing scale-invariance to the representation. A
descriptor is computed from 16 x 16 pixels patches centered around the keypoint, which
are further subdivided into 8 x 8 cells, resulting in 4 HoG descriptors. The bins of 4 HoGs
are rotated to their most predominant orientation for providing a high level of rotation
invariance. And finally, the 4 HoGs are concatenated into one feature vector. The deep
CNN-based Universal Correspondence Network [19] (UCN) revisits the concept of esti-
mating a good scale and orientation using a layer to learn not only those transformations
but the parameters of an affine transformation. As histograms based, both HoG and SIF'T
descriptors are comparable with /5 distance to find the most similar matches. One of the
few dense handcraft features is DAISY [79] (DAISY) which computes similar descriptor
values of SIF'T but using improved performance constructs for the dense extraction.
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Figure 2.14: Convolution of an input tensor (green) with a single filter (red) at the
point (u,, viy). The operation will convolve each channel of the input tensor with its
corresponding channel of the filter, represented in the bottom. The operations will be
sum resulting in a single value that is placed in a channel of the output tensor (purple) at
the position (Uout, Vous). In the figure, we show the slice of output tensor corresponding
to the index of the filter.

2.7.2 Convolutional Neural Networks

A type of neural network, CNNs has established a new paradigm for state-of-the-art
visual recognition tasks. Besides much-existing literature explaining their operation being
rooted in the biology of mammals’ vision, we opt for a more straightforward interpretation
analogous to the Sobel filters, that is closer to the concepts of image descriptors studied
by this dissertation. If the Sobel filters can capture corners and edges, then other kernels
with the appropriate configurations (size, stride, and padding) and values can respond to
richer geometric structures in images. The layers of a CNN are in essence those kernels,
which its values are denominated as weights — in the same sense of a Multilayer Percepton
(MLP) network. In a process designated as training in the ML literature, optimization
algorithms such as the standard SGD or Adam [47] finds the kernels’ values in such a way
that minimize a loss function of a learning task.

A basic 2D neural convolutional layer is defined to accept a 3-dimensional input tensor
F;,, let its size be W, x H;, x Cj,, and outputs a new one, F,,; of size Wo; X Hyyp X Copt.
We often refer to the W x H extent of a tensor as its spatial axis and the C' extent as its
channel, depth, or descriptor axis. While W,,,; and H,,; will depend on the input tensor’s
spatial dimensions, the axis C,,; is set independently from them, and it specifies how
many filters should be learned by the layer. A single filter is a sequence of two-dimensional
kernels in the same number of input channels C;,. Each filter convolves a different input
channel. Then, given spatial coordinate (u;,, v;,) in the input tensor, the results of the Cj,
convolutions are all sum, and put at its corresponding coordinate (wout, Vout, kour) in the
output tensor, where k,,; is the current filter’s index. Such 2D convolutional operation is



CHAPTER 2. BACKGROUND 65

illustrated Figure 2.14 and can be defined in the following formula,

C’Ln
Fout(uouty Vout kout) - B(kout) + Z -an(uznu Vin, k) * Kout,k (274)
k

where K,y is the knth convolution kernel of the filter C,,;. Commonly, the CNN ar-
chitecture also includes a bias value to the filters, represented by the function B(-) in
Equation 2.7.4, making them into affine transformations.

With an effective training process, the multiple filters of one convolutional layer can
output new images that highlight multiple kinds of significant patterns for the learning
task. Because the output tensor of a convolutional layer exhibits response to patterns,
they are referred to as feature maps. Furthermore, combining the feature maps with
elementwise activation functions such as Sigmoid, ReLLU, PReLu yet better salient the
patterns on those tensors. Nevertheless, typical CNN architectures are sequences of con-
volutional layers in such a way that they learn hierarchical relations between low-level
structures, such as edges, at the layers closer to the input, and high-level features, such
as objects or human contours, it the layers in the end.

An illustrative example of CNN architectures for descriptor learning are the works
from Schmidt et al. [70] and Florence et al. [29], which we also use in our experiments.
Their proposed architectures are based on Dilated ResNet [84] (DRN), which is yet an
extension of the ResNet [40]. ResNet is an architecture initially designed for classifying
entire image content, e.g., whether an image displays a cat or a dog. Its difference for other
works is the inclusion of residual connections between blocks of convolution layers. Its
authors noted that summing the output of a convolutional layer block with its input allows
deeper architectures without suffering the vanishing gradient during training that happens
when stacking too many network layers. More information about residual connections and
their effect on training may found in its original article [40].

However, like many architectures for classification tasks, ResNet applies spatial reso-
lution reduction throughout the feature maps from early convolutional blocks to the last
one. That is done to enlarge the later layers’ receptive fields. The receptive field is a
term from the biological foundation of CNNs to designate the spatial size of the input
image that end-up contributing to a layer’s output. For instance, a filter that operates
on a down sampled feature map has a greater receptive field than the ones with the same
kernel size but operates directly in the input tensor. This behavior happens because the
elements of the down sampled feature map will represent a larger portion of the image.

The rationale for having larger receptive fields from gradually down sampling is to
improve scale invariance. It will unite local information to disambiguate global objects,
which is beneficial for the classification task, but it has the cost of losing local information.

The reduction of the spatial size of a feature map may happen by three means. The first
one is when the layer has no border padding configuration. For instance, a 5x5 convolution
will convolve a 25 x 25 feature map into 21 x 21 if there is no 2—element padding to the
borders. The second mean are layers configured with stride size § higher than one for
traversing the input feature map. The routine convolves the kernel at a coordinate (u,v)
and steps to the coordinates (u + f,v + () where convolution is calculated again. For
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example, a convolution with 5 = 2 has the effect of reducing the spatial resolution by 2 of
the outputted feature maps. The other manner is to include spatial pooling layers on the
architecture. Like the convolutional ones, those layers are applied over a sliding window
of fixed size over the input feature map, but they aggregate the window values into one
conforming to a metric. Usually, it is the maximum or the average value. Pooling layers
also accept a stride parameter for downsampling input tensors. One important use of the
max-pooling layer is to improve the translation invariance for small shifts, which is the
consequence of passing forward the maximum filter responses [36].

However, too much downsampling is not desirable on descriptor and segmentation
tasks because both tasks are sensitive to small details. Consider thin objects like a
camera tripod or a pen; such objects are likely to disappear from the final feature maps,
which can arrive to be small spatial sizes as 7 x 7 in state of the art CNNs for image
classification like ResNet. Hence, to adapt ResNet for those learning tasks, where such
reduction would remove detail, the authors of DRN proposed the use of convolution with
dilated kernels (or atrous convolutions) for not losing receptive field size while keeping
larger spatial size at the final feature maps. Unlike a usual convolution in which the
kernel window is multiplied with consecutive elements, a dilated convolution selects the
input tensor elements within a step size between them. Its convolution formula is like
Equation 2.7.3 but adding a step, or dilatation size d

Ky, Kp

(I x K)(u,v) :ZZI(md,nd)K(i—m,j—n). (2.7.5)

Note that the standard convolution layer can be thought as having d = 1. When dilated
convolution is put at the end layers, its kernels can capture larger receptive fields than
possible without down sampling the feature maps. Therefore, the network architecture
may be projected not to reduce the spatial resolution at the end and thus to have more
spatial descriptors while keeping sensitive to context.

Another important decision of CNN architectures present in works for descriptor [19,
23, 29, 70] and segmentation [14, 51, 84| tasks are being fully-convolutional, in other
words, its network only has convolutional or feature map transformation layers. Being
fully convolutional allow them to adapt to any resolution at the input, but on the other
hand, the architecture cannot have any fully connected neural network layer that is often
used to classify the feature maps. Fortunately, the fully connected mechanism can be
reproduced along the channel axes of the feature map with pointwise or 1 x 1 convolutions.
A pointwise layer has 1 x 1 kernel size. Since its computation is reduced to just

C’L’n
Fout(uouta Vout kout) = B(kout) + Z En(uzna Vin, k) * Kk,out (276)
k

The pointwise convolution layers act like a linear regression over the C;, channel elements
in the input tensor to learn a mapping to a C,,;—size descriptor. For example, in seg-
mentation tasks, those element-wise descriptors can form the probabilities for each pixel’s
class after an activation function.
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Figure 2.15: The intent of the contrastive loss for one training descriptor, symbolized
by the green circle in the middle, is to attract those other descriptors from samples that
are correlated with it (blue circles), and at the same time to repeal those that are from
different samples to be far at least the radius m. So if the training starts with the left
image, it should transform to the one in the right.

One interesting improvement on CNN specifically for descriptor learning was made in
UCN, which has a layer to explicitly learn the parameters of a 2D affine transformation
for reorienting the receptive fields in a similar fashion of SIFT for providing scale and
rotation invariance. Such layers are beneficial to keep the architecture lightweight since
other forms to coop with scale and rotation invariance are adding more filters to recognize
rotated and scaled patterns [18].

Still, specifically for descriptor learning, some authors [18, 19, 23] found it beneficial for
training convergence to include ¢ normalization layer before the final pointwise descriptor
layer, so it mitigates the training algorithm from calculating weights with overflowing
values.

For a final note in the review of works, some authors explore other types of convolutions
according to the input data, e.g., 3D convolutions [86] for volumetric representation, and
sparse convolutions [18| for point clouds or similar representations.

2.7.3 Training

For training CNNs of dense descriptor models, most works [18, 19, 23, 29, 70| rely on a
version of the contrastive loss [39] for objective function that is minimized using one of
the standard optimization methods such SGD or Adam [47]. The basic contrastive loss
formula from Hadsell et al. [39] drives small values of a distance function d when a positive
pair of descriptors is input and drives the distance to be at least far by a margin m from
one another with negative pairs. In other words, the contrastive loss pulls positive pairs
to be closer and pushes away unrelated descriptors, as illustrated in Figure 2.15.

Let the sets P and N be, respectively, the positive and negative pairs of pixels de-
scriptors produced by a model from two training images, with them we formulate the
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contrastive loss [39)]:

1 =
E(P,N) = W Zd(a, b)2 +
a,b

, (2.7.7)

N
1
m Z max(m — d(af, b_), 0)2
a—,b~

for positive pairs, the loss is the distance function itself since the goal is to be small
for correspondent samples. On the other hand, for the negative pair of descriptors, the
max(-,0) function ensures that only distances lower than the margin are penalized. Any
distance result larger than the margin m will evaluate to a negative number and max
out by zero. Without a margin m, during training, the model may bias towards favoring
the recall of true-negative and losing the precision for true-positives because the set of
negative pairs tends to be much larger and more diverse than the positive ones. Lastly,
the two terms are normalized according to their set sizes.

To improve contrastive loss train effectiveness, authors have added some weighting
or mining hard-negatives pairs [18, 19, 29, 70]. The negative pairs are the ones that
remain inside the margin according to the model at the current state, i.e. samples with
d(a=,b™) < m. Those patches will contribute more to the model’s discrimination learning
because they will not evaluate to zero in the negative term of Equation 2.7.7. Florence
et al. [29] normalizes the negative term by the hard negative count, which by their em-
pirical test improves training. The only change is the loss of Equation 2.7.7 is to replace
the total negative set size by the count of hard negatives, which we store in the scalar h,

P
LP,N) = ﬁ > d(a,b)* +
o (2.7.8)

) .
7 Z max(m — d(a~,b"),0)?
a—,b~

During training, the network model is forward two times, one for each image, and its
weights update the backpropagation of the loss value according to the optimizer algorithm.

Although, the more effective approach is to actively search for hard negatives [18, 19|,
either using brute force search or query with KD-Tree. Choy et al. [18] search hard-
negative pairs in respect for the two positive descriptor, resulting in two sets of hard-
negatives, N and N,. Following Lin et al. [50], they also add a positive margin value



CHAPTER 2. BACKGROUND 69

m,, resulting in

L2
L(P,Na, Np) = T Zmax[d(a, b) — m,, 0]?
a,b
1 Na
+ Z max[m — d(a,a”),0]* . (2.7.9)
TAGT 2
1
— —d(b,b7),0?

In our work we use the less aggressive method of reweighing the loss function of
Equation 2.7.8.

2.7.4 Datasets

Unlike other tasks based on contrastive learning such as face identification, the datasets
applied for descriptor learning are not instantly available with the image pairs. Especially
for dense descriptor learning, the works rely on extracting the pairs from datasets of RGB-
D videos annotated with camera poses. It is possible to back project pixel coordinates
from the depth image and map to its respective representation in other images because
of that. Meanwhile, the negative pairs can be collected from random images without
necessarily having overlapping views. However, it is often more efficient to collect them
from the same image pairs to obtaining hard negatives. This self-supervision strategy
was extensively exploited [17, 29, 31, 70, 85, 86| using base datasets such KITTI [33] and
SceneNN [43]. In Section 3.7.2, we show details how we generate those samples using self-
supervision from a RGB-D dataset. A second strategy is to generate computer graphics
synthetic images, which DeTone et al. [23] uses to initialize the training of its keypoint
detection model.
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Chapter 3

Methods

In this chapter, we discuss our SLAM solution using deep features at the stages of loop
closure detection and alignment of submaps. Figure 3.1 illustrates our pipeline.
The core concept of this work is to extract deep dense descriptors from every incoming
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Figure 3.1: The architecture of our SLAM with deep features integrated during surfel
mapping. The pipeline first processes an input RGB-D frame (red box) to reduce noise.
Then the system extracts dense features from a CNN model and detects key pixels using
SIFT that are later used for selecting key surfels in the submap for loop closure detection.
With the RGB-D frame and CNN features, the system fuses those pieces of information
on the current submap. When the system emits a new submap, it finds loop closures
between all the previous submaps. After processing all submaps, we run our PGO back-
end to correct global drift in the trajectory using the found loop closures. The final steps
run the pairwise submap alignment for tight alignment and merge all submaps into one
point cloud, creating the final map. Our work’s main contributions and differences from
other authors are highlighted with bold fonts and darker colors, namely, the CNN feature
submaps and their use for loop closure detection and pairwise submap alignment.
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frame and to incorporate them as a property of surfels in a submap-based SLAM. The
deep features are then used at loop closure and submaps registration tasks for improving
the final trajectory estimation.

The dense descriptors are produced by a CNN trained by us for extracting comparable
descriptors. Its architecture is the DRN, a ResNet version designed for image segmentation
having larger receptive fields, so its final layers produce descriptors with larger spatial
sizes. Its training process uses a contrastive loss function that relates the /5 distances of
the descriptors according to the representativeness of their pixels being the same point
in the scene. To obtain data for such training, we employ a strategy of finding every
pair of frames with view overlaps from a series of datasets of RGB-D sequences. From
those pairs, we extract positive sample correspondence of points, i.e., pixel coordinates
from different images that are representations of the same point. Section 3.7 contains the
details about our descriptor learning architecture and training.

Aside from the integration of deep features, our SLAM architecture follows the front-
end and back-end division. The front-end tracks the frame-to-frame VO with an ICP
algorithm that estimates the pose from geometric and photometric consistency. The
front-end is also responsible for generating the submaps and executing the loop closure
routine, hence, building the pose graph with the initial estimations. The initial pose of a
submap’s node is the odometry of its first camera. Moreover, the edge connecting with
the next submap’s node is the relative transformation of its last camera pose between
the first camera pose of the next one. The frame intervals that build the submaps are
simply chosen by emitting a new keyframe at every 50 frames. We choose this interval
size because it provided on our experiments a good tradeoff between track drifting and
subdivision of the input. The data structures and algorithms to create the surfel submaps
and incorporate the learned descriptor into them are in Section 3.3. We describe the
method for detecting and creating loop closure edges in Section 3.4. The back-end part
accepts the front-end’s pose graph and uses the PGO algorithm of Choi et al. [17] to
global optimize the submaps poses.

Finally, in Section 3.6, we present the last part of our pipeline, the submap registration
algorithm, an ICP adapted to minimize the alignment energy of the deep features fused
in every submap.

Nevertheless, before all those sub modules, the first step of our pipeline is the frame
preprocessing stage for reducing noise and computing the depth image normals. Our
system carries those transformation throughout the rest of the SLAM pipeline.

3.1 Frame Preprocessing

In the frame preprocessing stage, the system filters the frame’s depth image and computes
per point surface’s normal vectors in this beginning stage.

Filtering the depth image is crucial to obtain reliable results from VO because it is
typical for consumer RGB-D sensors to produce high levels of noise since they deal with
signals in the range of 16-bit integers. Without depth filtering, the VO, for instance, is
likely to get stuck in its optimization objective.
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Figure 3.2: A sample depth image scanline (top left). The same scanline after being
processed with a gaussian filter (top right). The same scanline after being processed with
a bilateral filter (bottom middle).

The normal vectors computed in this stage are used many times throughout the system.
First, they are inputs to the ICP’s point-to-plane distance during VO and for the fine
alignment of submaps. Another example is on the surfel mapping, the angle of the normal
vectors from a point in the incoming frame and surfel serves as criteria for merging the
information. Furthermore, the normal guides the 3D direction in which the mapping

viewer draws a surfel’s circle.

3.1.1 Depth Image Filtering

For reducing the noise of depth images, we, as other authors [45, 46, 58, 71, 83|, smooth
the depth image using the bilateral filter algorithm for preserving edges. Edge preserv-
ing operations are essential properties of any processing on depth image since altering
depth pixels can significantly change the map’s geometry. For example, in the 1D sig-
nal corresponding to a horizontal line of a depth image shown in Figure 3.2, a standard
Gaussian filter replaces depth discontinuities with a soft decay. In contrast, the bilateral
filter smooths the signal and preserves hard discontinuities at the same time.
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To understand the bilateral filter’s formula, we must first analyze the Gaussian filter

1 . 18 { Al [2 ‘7}
Jd(u)zgﬁ > Lii,j)exp -5 5oz )|, (3.1.1)

1,J€Qu 5
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A

where [, is the input depth image and I, is the output. The point u is the current pixel’s
coordinates that the filtering is passing. We let the set (), denote the pixel neighborhood
coordinates around the filtering window. The exponential term is a Gaussian function
on the spatial domain with o, being its standard deviation. The bilateral filter differs by
adding a second statement that measures the depth discontinuities according to a second
normal curve parameterized with the standard deviation oy
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Iy(u) = > L, )Wy (3.1.2a)
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(3.1.2b)

This extra gaussian function on the signal space results that elements with small depth dis-
continuities, it approaches 0, and the value of W; ; becomes closer to the gaussian function
on the spatial domain. Otherwise, elements with significant discontinuities will provide a
large negative number to the exponential function, hence gradually eliminating a neigh-
bor’s contribution to the filter at the coordinate u. Contrary to the standard Gaussian
filter of Equation 3.1.1, the bilateral filter algorithm must recalculate the normalization
factor to account for the contributions of the depth values. A naive implementation can
make a bilateral filter computationally expensive, but fortunately, it can significantly be
accelerated by implementing it with a bilateral grid data structure [13].

3.1.2 Normals Computation

To compute the normal vectors of a captured surface, first consider a 3D point originated
T

from the pixel coordinate u = [u v d} of a depth image. Let its back projection into

the 3D local space of its camera be

Py, = II(K, u). (3.1.3)

For computing the normal vector associated with p,,,,, we approximate the surface where it
lies by creating a plane considering its direct pixel neighborhood on 3D space. The plane
is built from two coplanar vectors v, € R? and v, € R? that we calculate from the back
projection of the pixel neighbors of p,, in the horizontal and vertical pixel directions.
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Then the plane’s normal vector can be obtained from their cross products:

1

T =y v

, Vi XV, (3.1.4)
The division ensures that the resulting normal vector is unit length.

However, to calculate the v, and v, vectors, it is necessary to select the right neighbors.
Creating the vectors from fixed neighbors of p, ., like v, = p,1, — Py, and v, =
Puwvi1 — Pu,_1 may result in wrong normal products if any of the points are from depth
discontinuities, invalid depth values, or even being to close. To avoid those cases, we
follow the work of Schops et al.’s [71] and select the neighbor pairs that are within an
ideal length between [ey, €5]. Otherwise, it chooses the smaller vector that connects with

the center:
.
Put1pv = Pu—10 if 1 < ’ Putiv 7 Pu—1v < €
Vu =1 Puov — Pu—1. if‘ Puv — Pu_1.v g‘ Putto — Puol|| (3.1.5a)
(Put1o ™ Puy otherwise
(
Puy-1 ~ Pupr if e < ’ Puy—1— Pu,v+1H < €
Vy, = < puﬂ) - pu7v+1 lf pu,v — pu,v—l—l S I:)uyv_1 — pu’v (315b)
Puv—1 — Puy otherwise
Sl ’

3.2 Visual Odometry

Our SLAM solution computes the VO in a frame-to-frame manner. We estimate 3 x 4
rigid transformation matrices T = [R t} for aligning every incoming RGB-D image
into the space of its previous one. The final camera poses matrices are the accumulated
composition of the pairwise registrations as calculated in Equation 2.6.1.

For computing the transformation 7', as other authors [17, 45, 71, 75, 83|, we estimate
the combined geometric and photometric dense consistency residuals for aligning the
frames

For the photometric cost term Eppot0, We use the same one from Equation 2.6.2

Epnoto(T) = Y L5 (ra(T)wara(T))
uels (321)

ro(T) = I'"(7(KTII(K,u))) — I*(u),

its goal to measure the alignment of the transformation 7" as the difference of the pixelwise
intensities of the target image I' and the source one I*. The differences are computed
by back-project every valid pixel coordinate u of the source image, transforming them by
T, and projecting again on the target image to retrieve its correspondent intensity value.
A scalar w, is again added for discarding bad matches, it is set to either Ls(ryry) or 0
according to a threshold the corresponding pixels’ intensity difference.
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As we did with the geometric term in Section 2.5.1, we apply the GN steps (Sec-
tion 2.4). The approximation of the photometric residual is

ro(TBE) = I'(n(KT B EI(K,u))) — I°(u), (3.2.2a)
~ro(T) + Ju€. (3.2.2b)

A semi-analytical form of the Jacobian J, can be found by first applying the chain rule.
For convenience, let p, = II(K, u)

_ OI'(n(KT 8¢€p,)) — I'(w) _ OI'(m(KT B &py))

Ju D¢ O€ , (3.2.3)
applying the chain rule
I (x(KT B gpu)) 9n(KT B €p.) OKT B £p, 0T B £p, 524

or(KT Béps) OKT@ép, oI Bép, O

The jacobian of the image function I'(-,-) is computed numerically with the finite differ-
ences method as follows:

ort a1t | _ | It(u+hw)—It(u—hw)  It(up+h)—It(u,v—h)
[8% %] - [ = — , (3.2.5)

where h is a sufficiently small value, and the image function I'(-,-) returns bilinearly
interpolated intensity values for input coordinates with decimal values.
For expanding the projection function jacobian, let the expression K'I"H £p,, be as-

.
signed to the variable x = [m Y z} :

or(KTSeps) _ Om(x) 8{55/ zy/ Z}

OKToép,  ox ax ) (3.2.6a)
Gg/z 8;/2 Bg/z 1 0 —=
= Bya;z 8y§z 8y7z = 6 1 _Zi (326b)
oz dy 0z z 22
To compute the next jacobian, let 7'H Ep,, be assigned to M:
OKTH OKM
EPu _ =K (3.2.7)
oI Bép, oM
The last jacobian matches the B derivative in Equation 2.2.35:
0T HEp, OJExp(&)Tp, . .
OE = a(f) = [[3X3 —[Rp, + t]x (3.2.8)

Updating Equation 3.2.4 with Equations 3.2.5 to 3.2.8 and the K matrix definition from
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Equation 2.3.3, results in:

1 g _=z fo 0 ¢
Ju= [giw 3_12/] [6 1 _z] 0 fy o [ISxB _[Rpu+t]x]- (3.2.9)
? N 0 0 1

We can evaluate the expression in the middle to

1 0 _% fa: 0 Cyg fo 0 & _ le?-gczz
6 P B U T 6 [ e (3.2.10)
= 2110 0 1 P
Turning Equation 3.2.9 into
. " fa 0 S — fzxtczz
Ju = |:g’iz g_iyi| [6 fy Czy fyyircyz] |:L3><3 _[Rpu + t]xi| . (3211)
z z 22
Let r € R? be
oIt oIt f?”” 0 = - —fz’j;%z
r= |:8uz ‘9_%] 0 fv o _ Jutesz | (3.2.12)
z z 22
and let v € R? be
v =—rx(Rp,+t), (3.2.13)

then resolving Equation 3.2.11, the final values of J,, are
Ju = [Tl e T3 U1 Vg ’U3} (3214)

With the jacobian for .J,, we now compute Hpnoto, Pphoto

[S
HP = Jywy Ju, (3.2.15a)
IS
BP0 = "y (T)wy . (3.2.15h)

u

To combine both the geometric and photometric terms, we change Algorithm 1 to sum
He©™ with HPhotogphoto  and be*™ with bphomaphoto. The final VO algorithm is listed on
Algorithm 2, where we added a common [45, 83| heuristic for discarding potential bad
associations, if the normals of two corresponding points p, and q; have normals with not
more than 45 degrees apart.

While computing the VO, we ran the Algorithm 2 with a 3-scale Gaussian pyramid for
a 640x480 input image. Executing the algorithm first at smaller resolution scales improves
the convergence because the energy function will be smoother since high-frequency details
are diminished in those scales. By having a better initial guess obtained from a lower-scale
run, the algorithm will less likely attract its parameter estimation to a local minimum.

In the final step, our SLAM system also returns the inverse of the hessian of the
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Algorithm 2 RGB-D ICP

Input: Source intensity, depth, and normal images I*, D* € RW*H N* ¢ RW>H*3. target
intensity, depth and normal images I, D! € RW*# Nt ¢ RW>*H*3. intrinsic matrix
K € R**3; initial guess transformation matrix 7' € SFE(3).

1. T+ T
2: while maximum number of iterations do
3: let R,t =T
4: for Every pixel coordinate u = [u v d} in the depth image D* do
5: let p, = II(K,u),
6: v = D'[r(Rp; +t)],
7 q, =(K,v),
8: n; = N'[u
9: ng <— |:TL1 No Mg —Nn; X (RpZ +t):|
10: r{ < (n](Rp; +t — q;))?
. W e Ls(r]) niéNs[v] < 70°
0 otherwise
12: let r = [%ff g—i:f—: %(% - —fxx;w) + %f_j(% - _fyy;zcyz)
13: sz — |:7’1 To T3 —I X (sz +t):|
14: r? «— (I'(v) — I*(u))?
15: w? Ls(r) i <
0 otherwise

16: end for

17 H 30 JPTwlJ? + 37 Il TP ey,
18: b« > . riwl I+ 5 rtwl I o,

19: &" < Cholesky(H,b)

20: T+ THE"

21: end while

22: output 7, H=' © It also outputs the inverse hessian for uncertainty approximation.

geometric term, Hyl ., as the found transformation uncertainty. This matrix later will

be the information matrix for the edges that unites two odometry-connected submaps.

3.3 Surfel-based Mapping

Our surfel mapping is based on previous works [46, 82, 83| on surfel SLAM. In essence,
every surfel of a submap at an index s have the following properties:

e A position p, € R?;

e A normal vector n, € R? for, among other uses, orienting the surfel’s disk;
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e An RGB color value ¢, € R? from their pixel assessments;
e A radius value r; € R of its circle;

e A descriptor g, € R” obtained from the inference of our CNN feature model with
the frames’ images;

e A confidence value w, € R indicating its stability. A surfel is considered stable
enough when it reaches a certain threshold. Our SLAM system increases it when
new incoming frame’s pixel is found to correspond to its surfel.

e A timestamp t, € N of its last update time. The timestamp will be used to remove
surfels that remain unstable for a certain period.

e Keypoint count k. The number of times that a pixel measurement of this surfel
was detected to be a good feature to track by the SIFT detector.

e For comparing with the deep features for loop closure detection, we extract an
optional SIFT descriptor s, € R'?®. The descriptor is only allocated if the surfel
was detected to be a keypoint on one of its image measurements.

The surfel mapping submodule is called at every incoming RGB-D frame to integrate
its pixels into the current submap. The integration can either add the RGB-D pixels as
new surfels or update existing ones with new measurements on those that are likely to
be the same point on the scene. By updating an existing surfel with a depth pixel, the
mapping submodule refines the surfel’s attributes by merging their values. Hence, the
update operation also increases the stability w, value since the surfel incorporates more
measurements from the scene. When a surfel reaches the stability threshold, it is declared
part of the submap and cannot be removed. After integrating a frame, a second stage
finds close stable surfels and merges them to remove redundant surfels from the submap.
Before exiting its per frame call, the mapping subsystem deletes surfels that remained
unstable for a certain amount of time.

As stated in Section 1.1, the surfel mapping can adapt to the detail given by the
capture at different distance moments from the surfaces. This detail capture is possible
because, at the integration step, when the algorithm finds a surfel merge with a pixel
representing a smaller surfel, the algorithm will reduce the surfel radius, so it represents
a lesser portion of its surface. This is later show on Equation 3.3.3e.

The system stops reconstructing the current submap when it emits a new keyframe.
It saves the submap to the memory inside a new pose graph node. Upon stopping, the
system also reset the mapping subsystem for preparing to generate the next submap.

Now we look in more detail at the integration of an incoming RGB-D frame. Given a
frame, we iterate on its valid depth coordinates u = [u v d] ! and find the surfel closest
to ray formed from the camera’s center t to its back projection x. The camera’s center
t is just the translation vector of the current camera pose [R | t} obtained from the VO.

Let x € R? be the back projection for some u

x = II(K,u) (3.3.1)
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Then we calculate the distance from the ray from t passing through x and any surfel
candidate p, using the ray to point distance

[(p. ) (R)]|

T (3.3.2)

d(x,p,) =
Since we need to transform x into world space by multiplying it with the camera pose
[R | t] , instead of explicitly calculating the ray with Rx +t — t, we write only with the
rotation matrix since both translations cancel each out.

Nevertheless, for being considered for merging with an incoming ray, a surfel candidate
must be no farther than a small threshold distance from it. Also, the surfel’s normal
and the normal associated with image coordinate u — calculated during preprocessing
(Section 3.1.2) — must be not more than 45° degrees apart, i.e., ny/n,, < 45°.

When a surfel and an incoming ray satisfy the distance and normal requirements, then
the mapping submodule merges the point x properties into the surfel by the weighted
average according to the surfel’s confidence ws and an estimated confidence w, of the
incoming point:

WP, + wu(Rx + t)

- 3.3.3
P; R : (3.3.3a)
S++S u R_l T u
n, « el (R Ty (3.3.3b)
Ws + Wy
o, o WsCs + Wl (33.30)
Ws + Wy
wsgs + wugu
¢ 85s | 7usu 3.3.3d
gs T ( )
s <— min(rs, ry), (3.3.3¢)
1 if the pixel is a keypoint,
ks < P P (3.3.3f)
0 otherwise
ts < [current timestamp], (3.3.3g)
Wg 4= Ws + Wy. (3.3.3h)

The w, confidence level of the incoming point measurement is based on a Gaussian func-
tion with the mean being the pixel’s distance to the image’s center

o i ]

202 ’

(3.3.4)

Wy = exp

where « is an empirically found [46] ratio set to @ = 0.6. This weighting originated from
the work of Keller et al. [46]. They have observed that depth values near to image’s center
are freer from noisy measurements. In Equation 3.3.3b, the incoming normal vector n,, is
oriented according to the world space using the transposed inverse of the rotation (R~1)T
to remove any potential scaling. We set the fusion to estimate a conservative small radius
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value ry, for the incoming element. Its formula uses the normal’s z coordinate for weighting
the size according to the degree that it is facing the camera

Ly
u_\/ﬁ[nu]z

Equation 3.3.3e merges the radius with the lesser one, so it increases the mapping reso-

(3.3.5)

lution. Equation 3.3.3f increment the surfel’s counter if SIFT detects the source pixel as
a keypoint. When running for evaluating the SIFT descriptors, we also append it to the
optional feature field f,

fs < fs + [Incoming SIFT descriptor]. (3.3.6)

If the integration algorithm does not find any compatible surfel to match the current
ray, then it adds a new surfel with its properties being

Psy1 < RBx+t,

ngiy < (R71)Tny,

Csy1 < I(u),

rs+1 < Tu,

8541 < G(u), (3.3.7)
tsy1 < [current timestamp],

Wg41 € Wy

1 if the pixel is a keypoint,
ksy1 . .
0 otherwise

Again, during the SIFT descriptor evaluation mode we set the descriptor:
f, < incoming SIFT descriptor, (3.3.8)

if the incoming point is keypoint.

For querying surfels that are close to the casted rays in an efficient manner, we employ
the technique [46] of generating an index map by rendering the submap’s surfels from
the perspective of the current pose. However, rather than drawing any visual properties
of the surfels, we write the surfels’ indices s using the graphics hardware pipeline to a
32-bit integer framebuffer. Later, the mapping submodule converts it into an image for
fast look-up by the integration algorithm. We render the index map into an image four
times bigger than the input frame, so it can account for overlapping surfel’s points. With
the index map, the integration algorithm can efficiently lookup the index of the surfels
already in the submap that are potential neighbors of any incoming ray’s origin pixel u.

After updating the submap with an RGB-D frame, we do further processing to merge
stable surfels that end up being near after sequential updates. The merge algorithm
renders an indexmap again and uses it to locate pairs of stable surfels that are normal
vector compatible and have overlapping radii. Those pairs are then merged similarly to
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the pixels of Equation 3.3.3.

The last step is to remove unstable surfels. We remove every surfel in the submap
with a confidence value wg less than a minimum threshold W, and an elapsed time
greater than 7 since its last update. In other words, all surfels s with wy, < W and
t. — [current timestamp| > T are removed. The removal operation will delete most spu-
rious surfels and those with insufficient measurements to have a reliable position.

3.3.1 Implementation Details

Our system stores the submap surfels in GPU memory. They are accessible by both
OpenGL for rendering and by our CUDA kernels for manipulating the surfels directly
during an update, merge, or removal operations. Those functionalities are inside a custom
Python package TensorViz .

For rendering and maintaining a submap, we allocate a large memory chuck in the
GPU for holding a maximum possible number of surfels. Along with the other surfels’
properties, we add an extra flag property to indicate if they are allocated or not. Therefore,
the surfel adding and delete operations merely change this flag. Those surfel entries with
the flag marked are passed to a geometry shader that generates the surfel’s disk during
rendering.

3.4 Loop Closure Detection

The loop closure detection submodule runs after the system outputs a new submap. It
iterates throughout all previous submaps and adds a loop closure between two of them if
the FGR keypoint-based registration algorithm finds an alignment result that ensures a
low ratio of correspondences outliers.

As saw in Section 2.5.3, FGR is based on sparse keypoint comparison, for selecting
them from our dense submaps, we select the p, surfels that have keypoint counter k;
greater than or equal to 2. Those keypoints are then matched together using their deep
features g, on their surfels to find the closest pairs. With those 3D point correspondences
from surfels, we proceed in finding the alignment using the FGR implemented by the
Open3D [88] project.

After executing the fast registration for a pair, the system adds a loop closure edge
between them to the current pose graph if the answer has a ratio of outliers to inliers above
5%. The added edge’s covariance is the simple hessian approximation of Equation 2.6.17
described in Section 2.6.2. As the approximation is based on the ICP, we calculate the
hessian of the linearized point-to-plane distance of the estimated transformation using all
surfel’s points from a pair of submaps.

"https://gitlab.com/mipl/3d-reconstruction/tensorviz
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Figure 3.3: Visualization of a pose graph along with its submaps.

3.5 Pose Graph Optimization

From the VO with RGB-D images (Section 3.2), we find the odometry edges while also
constructing the submaps’ geometries. We also have defined a loop closure method (Sec-
tion 3.4) method to find edges between non-adjacent submaps. Now with those nodes
and edges, and along with their uncertainties in the form of covariance matrices (Sec-
tion 2.6.2), we input them into the PGO algorithm for globally estimating the submaps
poses.

For performing the PGO, we use the algorithm proposed by Choi et al. [17] from
the Open3D library [88| implementation. Their version of the PGO algorithm is the
line-process for filtering outlier loop closures, which we described in Section 2.6.4.

The system does not use the submaps during the PGO, but we keep them in the nodes
to facilitate the implementation of visualization, as in Figure 3.3, and other registration
algorithms that require them. An edge, either estimated from odometry or by loop closure,
contains the transformation T being the relative one from the pose of the node s to the
t.

3.6 Pairwise Submap Registration

Our solution runs pairwise registration for refining the alignment between consecutive
submaps after PGO execution. This registration algorithm uses the same methodology of
GN optimization that we employed for the VO module. Although, its alignment energy
function calculates the squared differences of features from the nearest target surfels to
the source ones when both surfel sets are aligned with a transformation T’

S
Erear(T) = Y Ls(ro(T)Tw,r(T)), (3.6.1a)

S

r(T) = G(T'p,) — 8., (3.6.1b)
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where S is the total number of surfels in the source set. The value w, is the surfel
association confidence score based on their difference 2. The vectors p, € R? and g € R”
are the inth position and feature of the source surfel presented in Section 3.3. The function
G calculates the weighted-sum of the features of the k-nearest surfels on the target submap
around a 3D coordinate p € R3

G(p) =

Z gl sim(qy, p), (3.6.2)

sim
Zk@mn (., P) keknn(x)

where q,, is the k-closest neighbor surfel to x in the target submap’s surfels, and gt is
its feature descriptor. The function sim(-, -) returns the similarity of points q, and p by

their inverse distance: 1

(1 +llax —pll)

For querying the closest surfels of the expression knn(x), the implementation uses a KD-

sim(qy, p) = (3.6.3)

Tree for fast searching over the target surfel’s 3D positions. Continuing the preparation
for using GN, we linearize the residual term r,; from Equation 3.6.1 with a £ € se(3)
increment on the current transformation matrix 7°

r (T BE) ~ry(T) + JE. (3.6.4)

Decomposing the jacobian with the chain rule

0G(THEpP:)—g?
J, = 2CTEep) e (3.6.5)
OG(THEPS
_ 6, (3.6.5b)
_ OG(THETp,) OTBET D,
= J0(ReTD,) OTeT: (3.6.5¢)

The second term of the jacobian was analytically derived in Equation 2.2.35, expanding
into

OTHE¢p, OE Tp.
(%gp - X%(? 2o = [sts —[Rp, + t]«| - (3.6.6)

However, in the case of the first jacobian, its value must be numerically computed. To

visualize the terms, consider their structure:

5}

9G1
oz Oy Oz

OG(T@BEp,) _ 0G(x) _ |52 5 B2
ITEEp, Ox : Co|

0Gp O0Gp 0Gp
oz oy 0z

G1 0G1

o5}

(3.6.7)

T
where we let the vector x = [.Z‘ Y z} be THEp; for writing convenience. The ¢ subscript

in G, refers to the channel index of the returned feature. To compute the numerical partial

0G. 0G. 0Gc
z

derivatives ¢, TR

for all ¢ channels of the descriptor, we use a limited version of

2In our previous equations we designated the letter w for the weight factors, but in this section we
change the symbol to an w to not mix with the surfel weight w;.
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the finite differences. First, let the vectors h,, h, and h, hold a small increment % over,
respectively, the z, y and z-direction like below

h, — [h,O,O]T,hy - [o,h,o}T h, — [o,o, hr. (3.6.8)

When computing the completer finite differences for 0G., we should perturb the input’s
coordinates with by h value on z, y and z directly on G, as following

ve, _ Ge(x+h,) = Golx — hy)

G.x+h,) — G.(x —h,)

aa_ic — Y o vl (3.6.9b)
Ge(x+h,) —G.(x—h,)

0G. _

Nevertheless, the function G, would require two KNN searches per coordinate, six in total
for the derivatives w.r.t. to x, y, and z. To mitigate sensitively performance impact, we
adopt an approximation to reuse the same KNN query by assuming that small increments
do not change the query’s neighborhood, but just their weighted similarity suffers mod-
ifications. In that way, we expand the definition of Equation 3.6.1 and add the small
increments of finite differences on the similarity function

knn(x . :
06 Lo (ghe sim(p}, X + hy) — gf, sim(p}, x — h,))
o) , (3.6.10a)
a: 2h
knn(x . :
0600 o 2o (Ghesim(ph,x + 1) — gf, sim(pf,x — b)) (3.6.10b)
? , 6.
Yy 2h
knn(x . 3
0Ge(x) . 2k ( )<gltcc sim(pl,x + h,) — ¢t sim(p},x — h,)) (3.6.10c)
o0 o , 6.

where gp. is the value on the ¢ channel of the feature in the knth surfel of the target
submap. Finally, joining the results of Equations 3.6.6 and 3.6.10 into one jacobian

product

9G1 oG G
oz oy Oz
9G2  0G2  0Ga

Js — ox Oy 0z []3><3 _[Rps + t]x] , (3611)
9Gp  9Gp  9Gp
ox dy 0z

we can then compute its H and b values to use with GN

Hicat = Y _ Jlws s, (3.6.12)

brear = 3 r(T)w s (3.6.13)

where we adjust w, = L5(rs(T)?).
Besides feature term, we also compute geometric terms with the point-to-plane cost.
The submap registration final algorithm like Algorithm 2, only replacing the projection-
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based mechanism for finding the point pair correspondences with a KD-Tree.

From our research, our algorithm is the first designed to register point clouds that
contain dense and high-dimensional features on non-grid structures using our numerical
approximation of the nearest neighbor differentiation. The closest methods include color
information from RGB-D images, having an intrinsic grid structure for numerical differen-
tiation (i.e., Equation 3.2.5), or the state-of-art ColoredICP [61] that computes intensity
gradients from point clouds by projecting their points onto virtual cameras.

As in VO, it is also beneficial to execute the submap registration with multiple scales
for gradually converging the estimation into a global minimum. We use the same gaussian
pyramid mode of downsampling the submaps by powers of 2. To downsample loose point
sets as the surfel submaps, we put the surfels into a volume of a given voxel size at every
step. During this process, we average the properties of the surfels that end up on the
same voxels. Although we use a volume for this process, it returns a new lower resolution
submap.

3.7 Descriptor Learning

So far, we have been examining how this dissertation’s RGB-D SLAM system works;
this next section examines how to train the deep descriptor CNN model to extract the
pixelwise descriptors that we integrate on the submap and use for the loop closure and
pairwise registration tasks.

3.7.1 CNN Architecture

We use the DRN architecture from previous works |29, 70] that had good results on dense
descriptor learning. To describe the architecture, we will refer to a convolutional block as
an arrange of few convolutional, batch normalization, and activation layers. Those three
layers are frequently connected on our architectures. The ResNet authors add the batch
normalizations after every convolutional layer throughout the architectures to improve
training convergence speed [44]. The DRN model family consists of an initial convolu-
tional block, a ResNet-32 architecture with dilated convolutions, and final convolution
and upscale layers to generate the per-pixel descriptors. In the following paragraphs, a
description of those blocks is given.

The first convolutional block consists of a convolution layer, batch normalization, and
activation layer. It convolves the entire image with a 7 x 7 kernel size filter, which shows
effectiveness in various tasks to capture local patterns in imagining tasks.

The second part is basically the ResNet-32 architecture being a set of groups of a
convolutional block know as residual convolutional blocks. A residual convolutional block
is a sequence of 2 convolutions, each one followed by a batch normalization and activation
layers. Together with them, there is a skip connection summing the input feature map
with the output one, following the residual mechanism to mitigate the gradient vanishing
problem [40]. Figure 3.4 has a diagram of a residual convolutional block. When specifying
a residual block, the convolutional layers have the same parameters, except for stride size
for avoiding over downsampling. In the skip connection, ResNet-32 has a third convolution
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Operation Number Kernel . Activa Dilata .
Layer /Block of Size Stride -tion  -tion Size
Filters
Input - - 640 x 480 x 3
Convolution Block 64 Tx7 2x2 ReLU - 320 x 240 x 64
MaxPool i 3x3 2x2 - - 160 x 120 x 64
ResNet 64  3x3 1x1 ReLU - 160 x 120 x 64
Group (3)
ResNet 128 3x3 2x2 ReLU -  80x060x 128
Group (4)
ResNet 256 3x3 1x1 ReLU 2x2 80 x 60 x 256
Group (6)
ResNet 512 3x3 1x1 ReLU 4x4 80x60x 512
Group (3)
Pomtvvl?e D I1x1 1x1 - - 80 x 60 x D
Convolution
Upscale - - - - - 640 x 480 x D

Table 3.1: The Dilated ResNet32 architecture. The number inside the parenthesis on the
ResNet Groups refers to the number of ResNet’s basic blocks are inside the group. The
number D refers to the dense descriptor size.

layer for downsampling when the first one downscales (e.g., stride size greater than 1)
the spatial size of the input, so the element-wise sum with the output can be valid.
The ResNet-based architectures are divided into groups because they can be modified to
increase or reduce the number of parameters according to the task by just modifying the
number of residual blocks. In the ResNet-32 DRN configuration, the network has 4 ResNet
Groups, with respectively, 3, 4, 6, and 3 consecutive residual blocks show in table 3.1,
where the number of residual blocks inside a group is indicated between parenthesis,
like ResNet Group (3) to indicate 3 ResNet blocks. Also, in the architecture, the two
later blocks include the dilated convolution so that the features at the end include larger
receptive fields to compute the descriptor.

The last layers learn a linear regression to map the 512-channel size into our target
descriptor size. At that point, the spatial size of the layer 80 x 60, to have a per-pixel
descriptor, is upscaled to match the input resolution size.

With this architecture we input a 640 x 480 RGB images and obtain a descriptor of
each pixel, either being D = 16 or D = 32.

3.7.2 Self-supervised Dataset for Descriptor Learning

To generate the training samples, we build an approach of selecting two random overlap-
ping image pairs from the RGB-D sequence dataset and finding correspondent pixel pairs
with the aid of the depth images and annotated camera poses.

One of the critical challenges of such approaches is how to find image pairs with
diverse view angles in an efficient manner. For instance, randomly choosing frame pairs
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X
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Convolution
Num. Filters = F
Kernel Size = K x K
Stride =S x S
Dilation = D x D
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/
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Figure 3.4: Diagram of the ResNet’s residual convolution block. The input feature map
x first passes through a convolution layer that may downsample it and then to a second
convolution for learning more convolutional filters. After, the feature map x is added
to the result to mitigate the vanish gradient problem. If the first layer downsamples
the input, then the connection also has one for matching the tensor sizes. The batch
normalization layers act for improving training convergence.

may take too many trials to find overlapping ones. A way to avoid too many trials from
random processes is limiting the sampling to the ones near in time, but it will degrade
the viewing angle variety. To have the best of both ideas, before training, we build an
undirected graph connecting every frame pair permutation with a view intersection. Our
graph building routine considers a view overlap as any frame pair with at least 50% shared
viewing and additionally their viewing angles are at a maximum of 75° apart. To calculate
the shared viewing area, we compute * the polygon resulting from the intersection of the
two cameras’ frustum geometry. A camera frustum is a closed pyramid polygon structure
build from pose and intrinsic parameters annotation that represents the volume which a
camera observes. The angle restriction is for avoiding cases when the sensors’ frustums
overlap but they are fronting each other, hence, not observing the same scene.

3We use polygon boolean operations from the Computational Geometry Algorithms Library [7§]
(CGAL)
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Our self-supervision mechanism was key for training our network with larger RGB-
D scenes since it could generate training samples with diverse viewing angles. As far
we could research, this was the first work to use such a scheme of computing frustum
overlaps, with other works based on random frame sampling from small sequences [29, 70|
or extensively sampling over all frames [86] offline.

After preprocessing all RGB-D sequences into graphs, we wrap them into one dataset.
During training, the sample batching procedure selects two random frame nodes from
an RGB-D sequence’s graph and selects around 4000 samples of correspondence point
pairs. Theoretically, it is possible to use a massive number of pairs since the images
have around 640 x 480 resolution, but that would demand too much memory. A pixel
correspondence sample is found by selecting random coordinates u in one of the images,
then back projecting and transforming in world space. Once in world space, we look for
the other position of pixel u on the second frame by transforming it into its camera space
and projecting it into its depth image. In summary, this process has the following steps,
let p be the depth pixel u of the first image in world space

p = PII(K, u), (3.7.1)

where P; € SFE(3) is the first camera’s pose transform the back-projected point into world
space. The matrix K is the ground-truth intrinsic matrix of the sensor. Then to project
into the second image, it is transformed into its camera space:

v =n(KP;'p), (3.7.2)

where P, is the pose of the second camera, it is inverse to back project it on the image.
Before emitting the pair, we verify if v € R? was not occluded by testing if its back-
projection this time matches the same world position of point p, discarding any pairs
with a distance greater than a small threshold.

After obtaining the true point correspondences on each image, then the system pro-
ceeds to generate the negative ones by either selecting few random pixels for each positive
point u and v, or by perturbing them with small increments to provide hard-negative
candidates.

We experiment with sequences from the Indoor Lidar-RGBD Scan Dataset [61] (IL-
RGBD) and SceneNN [43] (SceneNN) RGB-D datasets. Each dataset contains a series of
RGB-D sequences with trajectory ground-truth.

3.7.3 Training

For training, we use the contrastive pairwise loss from Choy et al. [18|, which we reviewed
in Section 2.7.3. But in this time, we rewrite its formula adapting for dense descriptor
extraction. Let the set P = {(a;, b;)} be positive pairs of descriptors a € R” and b € R”
that the model outputs. Each descriptor a; and b; are extracted from the channel axes
at positive matching coordinates u and v from overlapping image pairs that our dataset
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generated, that is, we create P in the following manner

P ={(Gi(n),G:(v)) | Yu,v € B}, (3.7.3)

where G; and G, represent the slicing of the feature map from the DRN’s last layer after
the forward with the first and second overlapping images from the dataset. We say slicing
because both G; and Gy returns the descriptor at the input coordinates u and v. Also,
in the Equation 3.7.3, the variable B indicates the set of pixel coordinate pairs from
the current batch. In similar fashion, we also build the sets of negative descriptor pairs
Na ={(a;,a;)} and N}, = {(b;, b; )} with non-correspondent descriptors from two images
using their feature maps G; and G,.
With those inputs, the training routine computes the loss as the following

L(P,NayNp) = P Zmax la — b|| — m,, 0]?

!N 2 Zmax —|la—a"],0]? (3.7.4)

|Nb| Zmax —||b_

b,b™

with m, being the positive margin value in the loss function as suggested by Choy
et al. [18]. The optimization algorithm used to train using the loss is the Adam opti-
mizer. The batch size is set to one because one image already produces many positive
samples, rendering multiple images per batch unnecessary.
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Chapter 4

Experiments

We experiment with our proposed algorithms for loop closure detection and dense regis-
tration of submaps with DRN models that output pixelwise descriptors with dimension
sizes D = 16 and D = 32.

The first analyzed experiment in this section is the quality of the dense submap reg-
istration algorithm separated from the complete SLAM system. By separated, we mean
comparing algorithms with submaps that we create with ground-truth odometry. So, the
submaps have less noise, and the surfels always contain fusions of the same correspond-
ing deep descriptors. Hence, this testing provides a controlled scenario from odometry
errors caused by sensor noise or VO’s algorithm’s lack of robustness. We compare our
ICP with both training, namely, Feature-ICP (D = 16) and Feature-ICP (D = 32), and
with state of the art in point cloud submap registration, ColoredICP [61]. In addition, we
add our same ICP algorithm for RGB color, namely RGB-ICP, and using only geometry
information, Geom-ICP, for testing the effect of descriptor learning.

Sequentially, we evaluate the effectiveness of the learned features for loop closure
and submap registration in our SLAM system — using the VO module developed in
Section 3.2 — for correctly estimating trajectories. As previously stated, our goal is to
explore the usage of CNN features for SLAM. In that sense, we do not evaluate different
SLAM methods, but we use our proposed pipeline changing the loop closure features and
submap registration part with well-established methods. For the loop closure detection,
we compare the deep features with the FPFH and SIFT descriptors. For the pairwise
submap registration in the SLAM, we compare with the methods: Feature-ICP (D = 16),
Feature-ICP (D = 32), RGB-ICP, Geom-ICP, and Colored-ICP [61]. In the end, we
display the resulting mappings for qualitative comparisons.

The RGB-D sequences during our experiments are the “Bedroom”, “Boardroom”, “Loft”,
and “Lobby” from the IL-RGBD; and “021”, “0307, “045,” “081,” and “087” from the Sce-
neNN dataset. Both datasets contain ground truth trajectories generated by state-of-the-
art localization and reconstruction methods |17, 21].
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4.1 FEvaluation Metrics

We compare the difference in translation and rotation components to evaluate the regis-
tration transformations between two geometries. The evaluation metrics compares every
pair 7 of a resulting relative rigid transformation 7; € R**# and a ground truth G; € R**4,
For each ith pair, we compute the root mean squared Relative Translational Error (RTE)

B ZfVHtrans(Gi_lTi)HZ
RTE = \/ ~ , (4.1.1)

and the root mean squared Relative Rotation Error (RRE)

va cos~! | clip (tr(mt(G; Ti))1>

RRE = ¥ : (4.1.2)

where trans(-) is the translational part of a 4 x 4 rigid motion matrix, rot(-) specifies its
3 x 3 rotation matrix, on RRE, the residual rotation angle is measured using the matrix’s
trace, tr(-) [76], and the clipping function is

clip(z) = max (—1,min (z, 1)) . (4.1.3)

On the comparisons of the complete SLAM, instead of the RTE, we compute the root
mean squared Absolute Trajectory Error [76] (ATE) for comparing the entire trajectory
of poses P; with their corresponding ground truth Y;

N —1 ' 2
ATE = \/Z" Htransj(vn AR : (4.1.4)

where A is a matrix that aligns the predicted trajectory P; with the ground truth Y;.
We compute the matrix A using Kabsch-Umeyama algorithm for alignment from point
correspondences. This alignment is precise since each point trans(Y;) corresponds to
trans(D5;).

As a final note, the reason for using root mean squared errors in Equations 4.1.1, 4.1.2
and 4.1.4 is to accentuate the impact of estimation errors [76].

4.2 Training Settings

We train for 50 epochs on all experiments using Adam Optimizer, dropping every ten
epochs’ learning rate. In most experiments, we set the learning to vary between 5 x 10~
to 5 x 107!, The training scenes are SceneNN’s 016, 021, 030, and 032. The complete
training and evaluation system is available on our Gitlab.!

https://gitlab.com/mipl/3d-reconstruction/slam-feature
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Table 4.1: Alignment Metrics for Controlled Submap Registration (RRE values are in
degrees).

Algorithm ColoredICP [88] Geom-ICP RGB-ICP Feature-ICP (D = 16) Feature-ICP (D = 32)
Scene RTE RRE RTE RRE RTE RRE RTE RRE RTE RRE

Bedroom 0.0991 3.7162 0.1297 4.6003 0.2276 12.2094 0.1390 4.1657 0.1459 4.3618
Loft 0.1847 8.5957 0.2425 10.3742 0.2035 8.8559 0.2434 10.3663 0.2428 10.3381
Boardroom 0.4549 9.9260 0.7042 24.3149 0.4824 15.6287 0.4391 20.1797 0.4412 20.9569
021 0.2200 5.4541 0.0494 1.4103 0.1963 5.7274 0.0496 1.4489 0.0495 1.4174
030 0.3063 7.4158 0.0857 1.4597 0.1629 4.2100 0.0938 2.6667 0.0849 1.4814
045 0.2391 6.1203 0.0553 1.4831 0.2655 6.2827 0.0547 1.4366 0.0546 1.4356
081 0.0346 1.0184 0.0281 0.6059 0.0878 4.5969 0.0268 0.6052 0.0268 0.5736
087 0.0330 0.8818 0.0275 0.7029 0.0548 2.0559 0.0274 0.7060 0.0276 0.7033

Figure 4.1: Two Submaps with Different Lighting Conditions. Note the more brightness
on wall regions and the reflexes on the green chest from (a) to (b).

4.3 Submap Registration under Controlled Scenario

After generating submaps using the ground truth odometry, we select pairs of overlapping
submaps with at least 30% of surface overlap to create our test set for the registration
algorithm. From the ground truth odometry, we also extract their relative ground truth
transformations G; € R**. We then disturb the submaps’ orientations with random
rotations up to 5 degrees and random translations up to 0.1 units during evaluation. This
initialization is enough to create challenging alignment but not enough to make most ICP
convergence infeasible.

All algorithms use the same coarse-to-fine alignment settings of 3 pyramid levels with
downsampling voxel sizes 0.03 and 0.02, and the last level is the original submaps. For
the Feature-ICP and RGB-ICP, we run the experiments with the alignment of the deep or
RGB features only at the final (or denser) level, running the two first layers only with the
geometric term. We do this after noticed during the experiments that the deep features
are more sensitive to initial alignment.

Table 4.1 contains our obtained results for our selected scenes. We observe that CNN
features obtained better results in the scenes from SceneNN, where the training data
may share certain scenes objects (like tables or chairs). For SceneNN’s “045” and “081,”
ColoredICP obtained lower scores because, for some submaps, the algorithm outputted
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Table 4.2: Precision and recall of the features for detecting loop closures.

Feature FPFH [67] SIFT [53] DRN(D = 16) DRN(D = 32)

Scene Precision Recall Precision Recall Precision Recall Precision Recall
Loft 0.43 0.98 0.20 0.99 0.31 0.99 0.32 0.98
Lobby 0.79 0.99 0.59 0.99 0.83 0.99 0.82 0.99
Boardroom 0.95 0.15 0.99 0.19 1.00 0.15 1.00 0.15
Bedroom 1.00 0.21 0.99 0.31 1.00 0.16 1.00 0.14
021 1.00 0.34 0.97 0.42 0.99 0.31 0.99 0.31
045 0.44 0.98 0.34 0.98 0.55 0.98 0.55 0.98
081 0.47 0.99 0.30 0.99 0.50 0.99 0.51 0.99
087 0.41 0.98 0.24 0.98 0.43 0.98 0.45 0.98

severe misalignment. We hypothesize that our experimental evaluation using surfels in-
cludes more noise than the TSDF submap proposed by its authors [61]. As for the overall
better results of the Geom-ICP for most cases compared to the other color or deep feature,
this is likely due to the submaps having photometric differences like in Figure 4.1. Results
which can be noted from the poor results of RGB-ICP.

Furthermore, we have found for various cases that the residual values when the
submaps are aligned with the ground truth transformation are greater than the ones
from the GN iterations. Therefore, our learned features do not ideally map their dif-
ferences minima to the transformation ones. However, they perform better than RGB,
indicating some level of generalization for scenes not contained in the training dataset.

4.4 SLAM

This section shows comparisons of the features on our complete SLAM pipeline. We first
analyze the effectiveness of the learned features for loop closure detection and its effect on
the PGO as indicated in Figure 4.2. Lastly, as in Figure 4.3, we compare the Feature-ICP,
RGB-ICP, Geom-ICP, and ColoredICP on the task of registering submaps. We ran all
scenes to the maximum of 4500 frames due to time constraints of processing times.

4.4.1 Loop Closure Detection

For evaluating the deep features on loop closure detection, we select the same models with
descriptor sizes of D = 16 and D = 32, namely, DRN(D = 16) and DRN(D = 32), and
compare them with the geometric FPFH features, and the image-based SIFT features.
As being point-cloud based, the FPFH features are directly extracted from the submap
surfels. In the SIFT-based loop closure detection case, we replace the deep features with
the SIFT ones, and also using the keysurfels selection as explained in Sections 3.3 and 3.4.

We again create our test set with submaps that share 30% surface overlap, producing
a ground truth pose graph. From this ground truth graph, we extract the precision and
recall of the edges. The precision provides the rate of true edges that our system detects.
While the recall provides the percentage of the edges that it detects. Table 4.2 shows
their results on each feature. We observe that all methods have similar precision and
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Table 4.3: Evaluation metrics of the loop closure found transformations. The RRE values
are displayed in degrees.

Feature FPFH [67] SIFT [53] DRN(D = 16) DRN(D = 32)

Scene RTE RRE RTE RRE RTE RRE RTE RRE

Loft 0.334 7.492 0.393  15.480 0.370  16.786 0.322 7.560
Lobby 0.571 3.489 0.574 3.219 0.556 3.487 0.561 3.569
Boardroom 0.619  24.663 0.062 2.484 0.030 1.902 0.040 2.229
Bedroom 0.045 2.331 0.060 3.605 0.061 3.532 0.057 3.382
021 0.068 2.645 0.075 3.442 0.074 2.734 0.083 3.547
045 0.479 15.331 0.488 14.298 0.484  14.680 0.480 14.732
081 0.280  25.505 0.271  25.989 0.263  27.130 0.267  26.105
087 0.525 9.349 0.519 9.478 0.518 9.558 0.521 9.729

Table 4.4: Evaluation metrics of the trajectories after the pose graph optimization. The
RRE are displayed in degrees.

Feature Odometry Ref. FPFH [67] SIFT [53] DRN(D = 16) DRN(D = 32)

Scene ATE RRE ‘ ATE RRE ATE RRE ATE RRE ATE RRE

Loft 0.548 0.044 4.400 0.380 2.652 0.582 0.998 0.076 0.585 0.065
Lobby 0.261 0.044 0.399 0.085 0.685 0.114 1.352 0.266 0.209 0.054
Boardroom 0.277 0.044 3.962 0.651 2.293 0.262 0.290 0.037 0.330 0.032
Bedroom 0.172 0.057 0.086 0.035 0.073 0.040 0.142 0.052 0.103 0.041
021 0.266 0.086 0.137 0.066 0.229 0.059 0.243 0.062 0.107 0.053
045 0.173 0.033 0.387 0.178 0.076 0.036 0.091 0.037 0.115 0.042
081 0.208 0.032 0.090 0.031 0.186 0.028 0.477 0.092 1.410 0.207
087 0.245 0.057 0.318 0.036 0.209 0.029 0.317 0.070 0.239 0.038

recall, highlighting that the deep features are smaller in dimensional size, SIF'T being
128-dimensional and FPFH being 33-dimensional.

Next, Table 4.3 shows the result for estimated loop closures transformation between
the submaps. Some values of the rotational error are up to 26°, but this is expected as
this alignment must deal with more challenging initial conditions than registering submaps
that already have an initial alignment. From that table, it is possible to conclude that
FPFH has provided overall more tight alignments than the other features. However, the
DRN(D = 32) has better stability since it demonstrated a rotational error larger than
10° degrees in two scenes in which all methods also had a similar RRE.

Our final evaluation on sparse registration is how the features impacts the result of
the PGO algorithm, show in Table 4.4, in the sense that better features offer better
loop closures, and hence improve the result of the PGO procedure. In this case, we
looking at the result of the pipeline after the PGO stage, as highlighted in Figure 4.2.
Instead of comparing the RTE metric, this evaluation uses the ATE metric because we
are only interested in the final pose trajectory for now. The table also displays the results
considering only the VO trajectory to aid the analysis. For the scenes Loft and Lobby
from IL-RGBD, the result of PGO using any feature was worse than just using the VO
trajectory. Those results that were worse than the VO are drawn with red colored font on
the table. Although, it is possible to notice that the methods have similar results, with
the loop closures with DRN(D = 32) producing better results in the most of the cases.
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Figure 4.2: We evaluate the final quality of the sparse features for loop closure detection
by comparing their effect on the trajectory produced after the PGO stage on the pipeline,
highlighted in the dark green on the diagram.

Moreover, one possible improvement is uniting the features to increase robustness since
some feature kinds were good on some scenes while others were poor.

4.4.2 Evaluation of Submap Registration on Complete SLAM

Table 4.5 compares the final pairwise submap pose alignment step — which the system
calls after PGO. That is, we are evaluating the pipeline after its final alignment stage, as
show in Figure 4.3. In Table 4.5, we again mark the result worse than the pure visual
odometry in red colored font.

As in the controlled evaluation scenario described in Section 4.3, the results shows
that the deep based feature did not provide a considerable gain on average about only
using geometric alignment of submaps, reinforcing the same arguments about the minima
representativeness of the feature in relation to optimal transformations.

Although, surprisingly, the pairwise registration algorithms could correct the PGO
estimation for scenes “Loft” and “Lobby” in most of the algorithms. And for the scenes
“081” and “087”, Feature-ICP(D = 32) obtained better score than the other methods.
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Figure 4.3: As our final evaluation of the pipeline, we compare the results from the
pairwise submap alignment stage (dark green), which produces the final trajectory of our

SLAM.

4.4.3 Qualitative Results

In the subsequent Figures, our obtained maps for the scenes are shown. Those results do
not include the scene “Boardroom” because no method achieved sensible results.
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Table 4.5: Evaluation of SLAM after Dense registration

Algorithm Odometry Ref. ~ FPFH+ColoredICP[53, 67| SIFT+RGB-ICP SIFT+Geom-ICP  Feature-ICP(D=16) Feature-ICP(D=32)

Scene ATE RRE ‘ ATE RRE ATE RRE ATE RRE ATE RRE ATE RRE

Loft 0.548 0.044 1.811 0.342 0.125 0.0227 2.748 0.584 0.0774 0.024 0.0765 0.023
Lobby 0.261 0.044 0.106 0.039 0.486 0.043 0.457 0.045 0.158 0.031 0.231 0.032
Boardroom 0.277 0.044 0.328 0.145 0.295 0.042 0.207 0.040 0.210 0.038 0.216 0.037
Bedroom 0.172 0.057 0.101 0.045 0.105 0.027 0.105 0.026 0.070 0.025 0.063 0.022
021 0.266 0.086 0.717 0.145 0.168 0.045 0.166 0.044 0.199 0.049 0.197 0.048
045 0.173 0.033 0.611 0.179 0.089 0.037 0.090 0.036 0.096 0.038 0.098 0.038
081 0.208 0.032 0.705 0.148 0.931 0.123 0.257 0.031 0.257 0.030 0.236 0.026
087 0.245 0.057 0.353 0.111 0.273 0.036 0.264 0.036 0.293 0.035 0.269 0.039

(c) DRN(D = 16) (d) DRN(D = 32)

Figure 4.4: Map results of the scene “Lobby” from IL-RGBD. (a), (c¢), and (d) Note that the
left part of the scene is correctly aligned with floor. (b) Part of the submap not aligned.
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(¢) DRN(D = 16) (d) DRN(D = 32)

Figure 4.5: Map results of the scene “Bedroom” from SceneNN. (a) Best alignment of the
submaps over (b), (c), and (d).
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(b) SIFT+RGB-ICP

(¢) DRN(D = ia) “ () DRN(D‘; 32)

Figure 4.6: Map results of the scene “021” from SceneNN. The deep-feature based methods
usefully found aligned the bed submaps
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() bﬁN(D = 16) () bRN(b = 32)

Figure 4.7: Map results of the scene “045” from SceneNN. (a) The method has a poorly aligned
submap floating. (b) Result with the tightest alignment. (c) and (d) have some misaligned
submaps.
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(¢) DRN(D = 32) ICP (d) DRN(D _ 32) ICP

Figure 4.8: Map results of the scene “081” from SceneNN. (a) Misaligned result, then floor
bends. (b) Misaligned submaps on the border. (c) (d) Both contains misaligned submaps.
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(c) DRN(D = 16) (d) DRN(D = 32)

Figure 4.9: Map results of the scene “087” from SceneNN. (a) The floor bends in one. (b), (c)
and (d) Better alignments.
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Chapter 5

Conclusion

This dissertation presented an RGB-D-based SLAM system that repurposed the features
from a CNN architecture designed initially for semantic segmentation for two SLAM tasks:
loop closure detection and submap registration.

We first highlight as a contribution our simple and yet efficient frustum overlap frame
graph to match pixel samples from large RGB-D sequences for the generation of self-
supervised data. That mechanism was vital to create samples with various angles for the
successful training of descriptor models. From our research, we did not find any similar
algorithm available, rather than choosing random frames.

The next contribution that we review is our mapping framework that integrates dense
features into its surface elements, which we use for detecting loop closures and registra-
tion of submaps. Future works may use features in the map to develop frame-to-model
registration and relocalization modules for aligning the current stream to a previously
perceived map, with applications in AR and MR. Another potential gain of the features
in the map is to aid semantic reasoning tasks or reuse the later processings on SLAM
tasks, as we did in this work.

Our third contribution is the application of the deep features integrated on the submaps
for performing loop closure detection providing similar results in PGO compared to SIFT
or FPFH.

The final contribution that we highlight is our joint optimization of the point-to-plane
cost and feature residual of submaps within the ICP framework. This method differs from
existing ICP algorithms [61, 73] by enabling numerical optimization with high dimensional
features that occupy a non-grid structure.

However, we cannot conclude from the presented results that learning techniques may
surpass handcraft features for SLAM tasks, especially in environments not seen during
model training. Still, our loop closure and PGO have shown comparable results with
advanced methods, even in unseen scenes from the training dataset. That suggests future
research on new architectures, like in recent publications [69, 81| that show promising
results for deep learning-based image registration.

From the software engineering perspective, we contribute with new libraries for 3D
visualization (TensorViz !) and prototyping RGB-D SLAM systems (SLAM-Toolbox ?).

!TensorViz - https://gitlab.com/mipl/3d-reconstruction/tensorviz
2SLAM Toolbox - https://gitlab.com/mipl/3d-reconstruction/slam-toolbox
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Besides our exploration with SLAM features, we also presented a detailed overview of
SLAM methods’ main components and techniques, including mathematical background,
energy optimization algorithms, main SLAM front-ends and back-ends, and mapping
representation. We also presented a review on descriptor learning using self-supervised
learning of CNNs models.
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