N
»

Universidade Estadual de Campinas
." Instituto de Computagao /

() INSTITUTO DE
UNICAMP COMPUTACAO

0

Isaias Bittencourt Felzmann

Architectural Support for Approximate Computing

Suporte Arquitetural para Computacao Aproximada

CAMPINAS
2023

Isaias Bittencourt Felzmann

Architectural Support for Approximate Computing

Suporte Arquitetural para Computacao Aproximada

Tese apresentada ao Instituto de Computagao
da Universidade Estadual de Campinas como
parte dos requisitos para a obtencao do titulo
de Doutor em Ciéncia da Computacao.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Doctor in Computer Science.

Supervisor /Orientador: Prof. Dr. Lucas Francisco Wanner

Este exemplar corresponde a versao final da
Tese defendida por Isafas Bittencourt
Felzmann e orientada pelo Prof. Dr. Lucas
Francisco Wanner.

CAMPINAS
2023

Ficha catalografica
Universidade Estadual de Campinas
Biblioteca do Instituto de Matematica, Estatistica e Computacao Cientifica
Ana Regina Machado - CRB 8/5467

Felzmann, Isaias Bittencourt, 1992-
F349a Architectural support for approximate computing / Isaias Bittencourt
Felzmann. — Campinas, SP : [s.n.], 2023.

Orientador: Lucas Francisco Wanner.
Tese (doutorado) — Universidade Estadual de Campinas, Instituto de
Computacao.

1. Computacdo aproximada. 2. Computacao consciente de energia. 3.
Arquitetura de computador. I. Wanner, Lucas Francisco, 1981-. Il. Universidade
Estadual de Campinas. Instituto de Computagéo. lll. Titulo.

Informacbes Complementares

Titulo em outro idioma: Suporte arquitetural para computagéao aproximada
Palavras-chave em inglés:

Approximate computing

Energy-aware computing

Computer architecture

Area de concentracéo: Ciéncia da Computagao
Titulacao: Doutor em Ciéncia da Computagéo

Banca examinadora:

Lucas Francisco Wanner [Orientador]

Jorge Castro-Godinez

Alfredo Goldman Vel Lejbman

Guido Costa Souza de Araujo

Sandro Rigo

Data de defesa: 04-08-2023

Programa de Pés-Graduacéao: Ciéncia da Computacdo

Identificacdo e informacdes académicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0003-3048-8310
- Curriculo Lattes do autor: https:/lattes.cnpg.br/3499341475094394

N
»

Universidade Estadual de Campinas
." Instituto de Computagao /

() INSTITUTO DE
UNICAMP COMPUTACAO

0

Isaias Bittencourt Felzmann

Architectural Support for Approximate Computing

Suporte Arquitetural para Computacao Aproximada

Banca Examinadora:

e Prof. Dr. Lucas Francisco Wanner
IC/UNICAMP

e Prof. Dr. Jorge Castro-Godinez
TEC/Costa Rica

e Prof. Dr. Alfredo Goldman vel Lejbman
IME/USP

e Prof. Dr. Guido Costa Souza de Aratjo
IC/UNICAMP

e Prof. Dr. Sandro Rigo
IC/UNICAMP

A ata da defesa, assinada pelos membros da Comissao Examinadora, consta no
SIGA /Sistema de Fluxo de Dissertacao/Tese e na Secretaria do Programa da Unidade.

Campinas, 04 de agosto de 2023

To Andressa.

Acknowledgements

This work was directly supported by the Sdo Paulo Research Foundation (FAPESP) grant
#2018/24177-0. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author and do not necessarily reflect the views of the
Foundation. This work received additional support from the National Council for Sci-
entific and Technological Development — Brazil (CNPq), under grants 404261,/2016-7,
438445/2018-0, and 402467,/2021-3, and the Coordination for the Improvement of Higher
Education Personnel — Brazil (CAPES), Finance Code 001.

This text contains significant text excerpts extracted, with permission, from Isaias
Felzmann, Joao Fabricio Filho, and Lucas Wanner, Risk-5: Controlled approximations
for RISC-V, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, November 2020 [46]. (©)2020 IEEE.

This text contains significant text excerpts extracted, with permission, from Isaias
Felzmann, Joao Fabricio Filho, Juliane Regina de Oliveira, and Lucas Wanner, Spe-
cial Session: How much quality is enough quality? A case for acceptability in approzi-
mate designs, IEEE 39th International Conference on Computer Design (ICCD), October
2021 [45]. (©)2021 IEEE.

In reference to IEEE copyrighted material which is used with permission in this thesis,
the IEEE does not endorse any of University of Campinas’s products or services. Internal
or personal use of this material is permitted. If interested in reprinting/republishing IEEE
copyrighted material for advertising or promotional purposes or for creating new collective
works for resale or redistribution, please go to http://www.ieee.org/publications_
standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

This text contains significant text excerpts extracted from Isaias Felzmann, Joao Fab-
ricio Filho, Lucas Wanner, AzPIKE: Instruction-level Injection and Evaluation of Ap-
proximate Computing, Design, Automation & Test in Europe Conference & Exhibition,
February 2021 [47]. (©)2021 EDAA.

Resumo

A Computagao Aproximada é uma metodologia que proporciona ganhos em eficiéncia
energética ao relaxar requisitos de qualidade em aplicagoes resilientes. Varias técnicas de
hardware, desenvolvidas sem vinculo com uma aplicagao, tém potencial de proporcionar
grandes beneficios em cenarios favoraveis, mas a integracao delas em uma arquitetura de
proposito geral traz novos desafios para seu controle, tais como determinar, em tempo de
execugao, que regioes de aplicacao se beneficiam de aproximagoes, que tipos de aproxi-
magoes sao essas, e até que ponto elas sao vantajosas.

Nesta tese, apresentamos extensoes para a arquitetura RISC-V que implementam me-
canismos de controle para coordenar miltiplas técnicas de aproximagao coexistentes no
mesmo sistema. Através dessas extensoes, as habilidades de um hardware de aproximagcao
sao expostas ao software por meio de registradores para identificagao, estruturas de dados
e drivers que descrevem a natureza e parametros de configuragdo para cada elemento
do sistema aproximado. Isso permite que a pilha de software controle o que e quanto é
aproximado em uma aplicacao. As aproximagoes podem ser dinamicamente configuradas
e combinadas em tempo de execucao, ampliando os horizontes de exploracao.

Para expor ao software os mecanismos de controle, nés também construimos uma
interface em nivel de software supervisorio contendo uma camada de abstracao e permi-
tindo a coexisténcia de diferentes configuracoes de aproximacao dentre as aplicagoes que
compartilham o processador. Os elementos necessarios para esse nivel de controle foram
implementados em dois niveis: um simulador em software e um protétipo sintetizado para
FPGA, que possibilitaram uma demonstracao da funcionalidade do sistema e estimativas
de custo energético.

Nos nossos resultados, selecionamos aproximacgoes para avaliacao tanto no simulador
como no prototipo em FPGA. Esses resultados destacam a necessidade de integragao
em nivel de arquitetura de aproximagcoes em hardware para melhor avaliagao de como
aplicacoes se comportam quando expostas a aproximacao. Nesse sentido, esta tese propoe
uma nova ferramenta que preenche a lacuna entre o software e hardware de aproximagao,
permitindo que desenvolvedores avaliem os beneficios e custos de técnicas de aproximagao
em um ambiente controlado e configuravel.

Abstract

Approximate Computing offers enhanced energy efficiency by exploring quality relaxation
on resilient applications. Application-agnostic hardware-level techniques can provide high
benefits under certain scenarios, but their integration on a general-purpose architecture
presents novel control challenges, such as determining, at runtime, what application re-
gions benefit from approximation, which approximations are favorable, and by how much.

In this thesis, we present extensions to the RISC-V architecture that implement con-
trol mechanisms to orchestrate multiple coexisting approximation techniques within an
architecture. Through these extensions, approximate hardware capabilities are exposed
to software through identification registers, data structures, and drivers that describe the
nature and configuration parameters for each approximate design. Approximations may
be configured and combined at runtime, allowing for simplified design space exploration.

To allow high-level software to take control of the approximate state of the system,
we also built a supervisor-level software interface that provides the hardware abstraction
layer of the approximation and supports the coexistence of different levels of reliability
within applications that share the processor. The underlying hardware needed to sup-
port the control of approximations was implemented in two levels, a software simulator
and a prototype synthesized for FPGA, which allowed the functional demonstration of
the system and energy estimation. In our experiments, we selected approximations for
evaluation both in the simulator and in the FPGA prototype.

Our results highlight the need for architectural integration of hardware approximations
in order to provide an accurate evaluation of how applications behave when subjected to
approximations. To this end, this thesis proposes a novel hardware-software framework
that bridges the gap between software and hardware approximations, allowing designers
to easily evaluate energy-quality trade-offs of approximation techniques in a controlled
and configurable environment.

List of Figures

1.1

4.1
4.2
4.3
4.4
4.5

5.1
5.2
2.3
5.4
2.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3
7.4

7.5

The role and contributions of this thesis

Structure of the Approximation Description Table
Supporting hardware for the ISA extension
Implementation of non-configurable multiplication hardware
Implementation of indirectly-configurable DRAM
Implementation of the approximation controller

Workflow of the simulation environment.
Sample approximation models.o
Sample approximation configuration.
AXPIKE control interface.
Architecture of the hardware prototype
Energy-quality trade-off individual EvoApprox8b multipliers
Software to support the hardware prototype

Demonstration experiments in the simulation environment
Output quality of applications using the approximate DRAM
Energy to achieve 90% quality on approximate DRAM
Sobel execution using approximate DRAM and multipliers
Quality distribution on approximate DRAM
Sample images at given quality thresholds
Quality of results after integrating the approximate multipliers
Sample images illustrating outputs of approximate multiplication
Correlation test between input size and quality of results

Effect of morphological changes and noise injection in the quality metric
Our proposed approach to evaluate the acceptability of results
Percentage of results that are acceptable within bins delimited by quality
thresholds
False positives or negatives: percentage of unacceptable or acceptable re-
sults that are wrongfully classified using quality thresholds only
Percentage of acceptable and unacceptable results with quality above pre-
determined thresholds oo

List of Tables

1.1
3.1
4.1

5.1
0.2

2.3
5.4
2.5
2.6
5.7

6.1

List of authored publications related to this thesis
Qualitative classification of related work and comparison with this thesis

CSRs defined in Risk-5

Statistics collected for Matrix Multiply
Quality and Energy evaluation of selected applications subjected to ap-
proximation e e
Comparison of simulation performance under different configurations
Resource utilization of FPGA Baseline implementation.
Selected EvoApprox8b multipliers.
Overhead introduced in the FPGA implementation.
Software tools in the prototype framework.

Regression of error rates in the DRAM approximation scenario.

Glossary

This is a non-exhaustive list of terms and acronyms used in this thesis. The provided
definitions are not intended to be broad, but to reflect the meaning in the scope of this
thesis, as a reference for the reader.

6T-SRAM

ALU

AMBA AXI4

ARCS

ARM

Arty A7-100T
AXI

AxPIKE
AxRAM

CPU

CSR

DATE

DDR4

DMA

6T Static Random Access Memory. The typical SRAM cell made of 6
transistors.

Arithmetic and Logic Unit. The part of the processor that computes
arithmetic and logic functions.

Advanced Microcontroller Bus Architecture (AMBA) Advanced eXten-
sible Interface (AXI). The fourth generation of a royalty-free on-chip
communication bus protocol developed by ARM.

International Conference on Architecture of Computing Systems. An
international scientific event.

Advanced RISC Machine. Both a family of ISAs and the company that

develops 1it.

A development board based on a Xilinx Artiz-7 FPGA.

See AMBA AXIj.

Our in-house functional simulator for Approximate Computing.

Our in-house data access interface for approrimate memories.
Central Processing Unit. The main processor in a computing system.

Control and Status Registers. The registers that control and store in-
formation about the CPU in a RISC-V architecture.

Design, Automation and Test in Europe. An international scientific
event.

Double Data Rate SDRAM. The fourth generation of the most common
class of DRAM.

Direct Memory Access. A method that allows a peripheral device to
communicate data directly with the main memory.

DRAM

DSP
DVFS

EDAA
ELF

ERAD-SP

EvoApprox8b
FFT

FGCS

FPGA

FPU

GPIO
1/0
ICCD

IEEE

IoT
IP
ISA

JEDEC

JPEG
JTAG

L1, L2

Dynamic Random Access Memory. A type of random access memory
typically used as main memory.

Digital Signal Processing (slice). An internal structure in an FPGA.

Dynamic Voltage-Frequency Scaling. A mainstream energy-saving tech-
nique that adjusts voltage and frequency on demand.

European Design and Automation Association. A scientific association.

Executable and Linkable Format. A common standard for executable
files in Linux.

Escola Regional de Alto Desempenho de Sao Paulo. A regional academic
event held in Sao Paulo.

A library of approximate integer multipliers and adders.

Fast Fourier Transform. An algorithm that calculates the discrete form
of the Fourier Transform.

Future Generation Computer Systems. A scientific journal published by
Elsevier.

Field Programmable Gate Array. A hardware device designed to be
reconfigured after manufacturing, representing different logic circuits.

Floating-Point Unit. The part of a processor that computes arithmetic
with real numbers (Floating-Point representation).

General-Purpose Input/Output. An I/0 interface for general purposes.
Input/Output. One of the main functions of a computer.

International Conference on Computer Design. An international scien-
tific event.

Institute of Electrical and Electronics Engineers. A professional associ-
ation.

Internet of Things. A network of small connected devices and sensors.
Intelectual Property. The proprietary designs by a given company.

Instruction Set Architecture. The interface between hardware and soft-
ware implemented by a processor.

Joint Electron Device Engineering Council. An independent standard-
1zation body.

An algorithm for lossy image compression.
The industry standard interface for design verification.

Level 1/2 Cache. The first/second level of cache memory.

Linux

LLC

LUT
MMIO

(O

RAM
RISC-V
Risk-b5
Rocket Chip
RTL

RV64g
SBAC-PAD

SBESC

SDRAM
Sobel
SSIM

SUSCOM

TCAD

TLB

UART

USB
WSCAD

ZCU102

A reference to a given Operating System based on the Linux kernel.

Last Level of Cache. The last level of cache memory, from which misses
are then fetched from the main memory.

Lookup Table. An internal structure in an FPGA.

Memory-mapped Input/Output. A technique that maps communication
with peripherals as memory-like accesses.

Operating System. A collection of software that manages computer
hardware resources and provides common services for other programs.

Random Access Memory. A memory that can be accessed at any order.
An open-standard ISA.

Our ISA extension to support approximation.

A processor implementation based on the RISC-V architecture.

Register-transfer level. A design abstraction that models digital circuits
in terms of the flow of data.

A subset of the RISC-V ISA.

International Symposium on Computer Architecture and High Perfor-
mance Computer. An international scientific event.

Brazilian Symposium on Computing Systems Engineering. A national
scientific event held in Brazil.

Synchronous Dynamic Random Access Memory. See DRAM.
An algorithm to identify borders in an image.

Structural Similarity Index Metric. A metric that computes the simi-
larity between two tmages.

Sustainable Computing: Informatics and Systems. A scientific journal
published by Elsevier.

Transactions on Computer-Aided Design of Integrated Circuits and Cir-
cuits. A journal published by IEFEE.

Translation Lookaside Buffer. A part of the virtual memory translation
system that caches page table entries.

Universal Asynchronous Receiver/Transmitter. A protocol for asyn-
chronous serial communication.

Universal Serial Bus. An industry standard for serial communication.

Simposio em Sistemas Computacionais de Alto Desempenho. A na-
tional scientific event held in Brazil.

A development board based on a Xilinx FPGA.

Contents

Introduction: An architecture for Approxrimate Computing

Background: Approximate Computing and approximation techniques

2.1 Configurability of hardware-level approximations
2.1.1 Non-configurable approximation techniques
2.1.2 Directly-configurable approximation techniques
2.1.3 Indirectly-configurable approximation techniques

Related work: Interfacing hardware approrimations and software

3.1 Approximation-only related projects
3.2 Interface-only related projects
3.3 Approximation and interface related projects
3.4 The design choices that led to this thesis

Integrating Approximate Computing: Architecture-level specification
4.1 Risk-5: Approximation-aware ISA Extension
4.1.1 Approximation groups
4.1.2 Approximation Description Table
4.1.3 Approximation availability and delegation
4.1.4 Approximation status and control L.
4.1.5 Activation/Deactivation behavior 0L
4.1.6 Approximation-specific controllability
4.1.7 Interaction in multicore architectures
4.2 Hardware support
4.2.1 Non-configurable approximate multipliers
4.2.2 Configurable approximate DRAM
4.2.3 Approximation controller
4.3 Software Interface L
4.3.1 Minimalist supporto
4.3.2 Approximation coherence of shared resources

Implementation: Simulated behavior and FPGA prototype
5.1 The AXPIKE ISA Simulator
5.1.1 Comparison with other simulators
5.1.2 The Simulation Environment
5.1.2.1 Approximation Modeling and Injection
5.1.2.2 Software Control Interface
5.1.2.3 Statistics generator
5.1.3 A sample usage case

16

22
23
23
24
25

26
29
31
32
35

37
37
38
39
40
41
41
42
42
42
43
45
46
48
48
49

5.2 FPGA-based Full Approximate System Prototype 59

5.2.1 Hardware Workflow 60
5.2.1.1 Base ZCU102 Support 61
5.2.1.2 Approximation controller 62
5.2.1.3 Approximate Multipliers 62
5.2.1.4 DRAM Error Injector 64
5.2.1.5 Areaoverhead, 64
5.2.2 Software Framework, 66

6 Experimentation: Fwvaluating the Approximate Computing integration 68

6.1 Experiments on the simulation environment 68
6.1.1 Configurable approximate DRAM 69

6.1.2 Non-configurable approximate multipliers 72

6.2 Experiments on the hardware prototype 75
6.2.1 Evaluating the Approximate DRAM operating point 76

6.2.2 Integrating the Approximate Multipliers 78

6.2.3 The impact of scaling input size, 81

7 A case for acceptability: Is quality enough? 83
7.1 Quality evaluation of Approximate Systems 84
7.2 Analyzing Acceptability of Application Output 85
7.3 Results: Quality vs Acceptability 87

8 Conclusions: Architectural support and future directions 89

Bibliography 92

16

Chapter 1

Introduction

An architecture for Approximate Computing

In modern computing systems, power dissipation and energy efficiency are important
factors to take into consideration in the design process. It is not uncommon to find
these limiting scalability, as performance requirements may not be sustainable in the long
run [68,140]. Approximate Computing has emerged as a design methodology to answer the
computing systems’ ever-increasing need for energy efficiency. This methodology explores
the exposition of intermediary processing steps to minor deviations that do not affect
the final result in a significant way for many computing domains. When the applications
are resilient to some accuracy degradation, allowing approximate results can potentially
lead to significant energy savings. These led to multiple software- and hardware-level
approximation techniques to explore this energy-quality trade-off [6,83,91].

These approximation techniques, by themselves, are just a different way to perform a
given operation. They need to be applied in solving a computing problem, on a target
scenario, to achieve their expected energy-quality trade-off. This requires that the ap-
proximations are integrated into an application. Since software-level approximations are
designed to be part of an application, this integration is resolved at design time. Loop
perforation [125], for example, modifies the implementation of loops to skip iterations
to save computation time and energy and, therefore, is integrated within an application
at design time. Hardware-level techniques, on the other hand, require an architectural
interface to support the execution of a full application stack. An approximate arithmetic
unit [96] would require a coexistent accurate counterpart to support the execution of non-
resilient code segments, imposing overheads and adding control requirements. Existing
hardware techniques, however, typically lack this level of architectural integration.

Approximation-hardware units are usually built as standalone units that introduce
some level of imprecision at design time, or designed to offer some level of controllability,
either directly or by adjusting some external parameter [6,91]. In this thesis, these are
refered as nonconfigurable, directly-configurable, and indirectly-configurable approxima-
tion units, respectively. Any of the approaches cause overhead at the architecture level,
such as the need for replicated units to support non-resilient application segments, addi-
tional hardware to provide controllability or error recovery, or circuitry to allow operating
parameters to be adjusted and to coexist. Approximation-hardware designs are, however,

Software-level approximation Function replacement

Task skipping Loop perforation Precision scaling

Architecture-level Speculative execution
This approximation
Thesis Branch Load value
Cache coherence prediction approximation
Hardware-level approximation Approximate accelerators
Approximate Signal Reconfigurable

App-specific co-processors

1
1
1
|
circuits i processing architectures
|
Voltage scaling :
1

Risk-5: Approximation-aware ISA Extension

Specification Implementation Evaluation
* Control interface * Software simulator * Energy-quality trade-off
* Exposure * Hardware prototype * Scaled-up scenario
* Hardware controller * Analysis of quality metrics

Figure 1.1: The role and contributions of this thesis. We propose an approximation-aware
ISA extension to integrate approximate hardware in the general-purpose scenario.

usually demonstrated and evaluated in isolation, applied to specific application-level con-
structions, with limited or no discussion of the architecture-level integration with other
hardware components in an actual processor.

Individual approximate multiplication units, for example, can report energy savings
in the range of tens and up to 80%, in comparison to their accurate counterparts, with
limited impact on expected error per operation [8,77,96]. These results, however, are of-
tentimes obtained in very limited scenarios based on mathematical modeling and software
simulation of the multiplier alone, applied over synthetic workloads or case studies that
profit from the multipliers at their best. Multipliers do not live alone in a general-purpose
processor. They are just a part of the design, even if a significantly costly one [144]. Also,
they may not be sized and optimized as demonstrated for their approximate designs and
represent just a fraction of the instructions executed in a typical application. By taking
these factors into consideration, we show that energy savings can be reduced to modest
single-digit values at a significantly higher quality impact compared to other classes of
approximation [46,49]. Thus, the lack of architecture-level considerations when analyzing
and demonstrating approximation hardware results can potentially leave energy savings
figures overestimated.

Figure 1.1 shows where this thesis is inserted in the Approximate Computing stack
and summarizes its contributions. We study approximation techniques and approximate

18

architectures to answer whether and how approximation-hardware modules can be applied
to general-purpose computing. The architecture-level integration is determinant in this
scenario, and this requires an adequate hardware-software interface to recognize, expose,
and control the approximation capabilities: recognize what kind of approximation is avail-
able and how to use it, expose it to the software application or supervisor so that they can
evaluate whether they can profit from it, and control where and when the approximation
should be employed as determined by the software.

Previous work has shown the potential of integrating approximations into architecture
design [25-27,53,63,93,99| and proposed generic interfaces to control approximations and
account for execution resilience [28,31,48,49,81,114,134|. These integration alternatives
are, however, usually applied only to a limited number of specific approximation scenar-
ios, and the generic control is mostly focused on the software controller, not reflecting
a wide range of available approximation techniques. The differences in the behavior of
applications when subjected to approximations [25,44| require a control interface to be
designed using a more approximation-centered approach, while still leaving enough links
with the software for reliable execution. Existing integrated hardware-software alternative
interfaces, however, are not focused on a general-purpose scenario, have limited compat-
ibility with existing approximation techniques, underestimate control overhead, or are
applied directly to the application, in a scenario not compliant with modern multipro-
cess and multi-application computing controlled by a supervisor system [6,29|. Thus,
how to orchestrate multiple coexisting hardware approximation techniques in a general-
purpose processor is a question that has not yet been fully answered [83]. Since different
applications have different levels of compatibility with different approximations, manag-
ing coexisting techniques is essential to apply Approximate Computing into compatible
applications in a general-purpose scenario.

This thesis advances into the ability to provide approximation control by proposing
and demonstrating Risk-5 [46], an ISA extension that provides a hardware-software inter-
face, based on RISC-V, to coordinate multiple hardware-level approximation techniques
within an architecture. In Risk-5, each approximation technique is integrated within the
processor as a dedicated controllable module that can be activated or deactivated at execu-
tion time as instructed by a set of standardized control registers. The main contributions
of this thesis are:

e the architecture-level specification of the Risk-5 extension and interface, discussing
how it manages and integrates approximation techniques,

e the definition of a hardware controller that allows applications and operating systems
to manage different degrees of approximation,

e the definition of a software interface for the applications to communicate with the
operating system and underlying hardware to recognize and configure the approxi-
mation capabilities of the system, and

e a scaled-up exploration and demonstration of approximation techniques and tar-
get applications, identifying computing scenarios that can benefit from hardware
approximation and how they behave when scaled to larger requirements.

19

Furthermore, to demonstrate the capabilities of the proposed control interface and the
applicability of hardware approximation in a general-purpose processor, this thesis incor-
porates two different levels of implementation as technical contributions. At the simula-
tion level, we developed AXPIKE, an instruction-level simulator that introduces versatil-
ity in representing approximate systems allowing designers to quickly model and evaluate
their approximation concepts. Based on the demonstration performed on AxPIKE, we
show how our control interface can allow the reliable and energy-efficient execution of
applications on a general-purpose system employing approximation in two architectural
resources: the memory hierarchy [37,38] and the multiplication operation [8,77,96].

At the hardware level, we implemented the approximation controller and modules in
Hardware Description Language, integrated with the RISC-V Rocket Chip Generator.
The design was synthesized as a standalone multi-core system in an FPGA and demon-
strates how the control operations behave in a multi-application scenario. The prototype
runs the approximations in a bare-metal multithreaded framework, limited only by the
FPGA size and connectivity, that communicates data with an auxiliary computer using
a standard serial interface and controls each test application. It also exposes a standard
debugging interface that allows the designer to observe and interfere with the execution,
which includes loading different applications using off-the-shelf debugging tools.

Based on both the software-level simulator and the hardware-level prototype, exper-
iments were conducted to demonstrate and validate the designs and their applicability,
considering scenarios where approximations may be employed to improve the efficiency of
application execution. In the more versatile simulation environment, we selected a subset
of six test applications to be evaluated in the data approximation scenario, where errors
are introduced in the access to a DRAM memory, considering three different reliability
scenarios. The test scenarios were then augmented to include the approximate multipli-
cation operator in the processor. Our results show how applications can potentially save
22.4% energy for a 90% quality requirement, on average, and up to 22.8% energy in mem-
ory and 1.79% in CPU execution, while still maintaining visual quality in a more specific
Sobel Edge Detection scenario. More prominently, the results highlight the impact of
approximation control on the energy benefits provided by approximations, reinforcing the
need for architectural integration to properly evaluate approximation-hardware units.

The simulation environment is more flexible in representing different applications and
scenarios, including support for Linux-based libraries and redirection of environment calls
to the host system. However, the simulation time and memory usage scale up as more
execution statistics are needed, especially for detailed energy accounting and simulation
of multiple levels of cache. Moreover, the instruction-level functional simulation cannot
fully represent the behavior of executing the approximations in a real scenario, as the
simulator lacks architectural characteristics such as a real cache and branch prediction.
The hardware prototype, on the other hand, is faster, more scalable, and represents pre-
cisely the behavior of the approximation when implemented at the hardware level, but
requires significantly more effort to adapt the applications. Thus, to validate the sim-
ulation results against the hardware prototype, we designed experiments that meet the
requirements of both environments, in a single Image-Processing scenario executing over
a larger amount of data, showing how the DRAM and multiplication approximations be-

20

have at JPEG compression of approximately ten thousand images from the Imagenette
dataset [56]. The results show that quality evaluation is compatible between the two
environments, as evidence that the approximations can be applicable at these scenarios,
and that this applicability of the approximation techniques can scale to larger scenarios.
Moreover, the results highlight the need to design the approximation themselves for archi-
tecture integration from the beginning, since the integration depends on decisions made
early in the design process.

Throughout every experiment conducted, quality evaluation was chosen as the pri-
mary method of deciding what results are “good enough” approximations of the expected
result 76| and, therefore, would be an acceptable application execution instance. Qual-
ity metrics were chosen per application, considering the computing domain and expected
results, in alignment with the evaluation found in the relevant literature. However, the
process of analyzing the quality results of the application led to the observation that the
value of the quality metric would not always correlate with quality as perceived by a hu-
man observer. We put idea to test by reinterpreting the meaning of what is an acceptable
approximation as not how high is the quality of the results, but as how useful the results
are for a second processing step. The results show that designing approximate systems
that rely on this acceptability concept can produce up to 20% more valid results than the
conservative quality thresholds commonly adopted in the literature, allowing for higher
error rates and, consequently, lower energy costs. This points to a direction where quality
evaluation may be replaced by a more useful acceptability criteria, as we further discuss
in Chapter 7, and represents a complementary contribution of this thesis.

The main contributions in this thesis, the technical implementation, and the analysis
of quality and acceptability metrics represent alternatives to the architecture-level inte-
gration of Approximate Computing in general-purpose systems. The control interface was
essential in determining the impact of approximating hardware modules both in terms of
quality and energy, and architecture-level design decisions also influence the applicability
of approximations. General-purpose systems need to be built for interoperability, and the
support proposed in this thesis enables a level of cooperation between the approxima-
tions and the system as a whole. Only after enabling this cooperation, the approximate
computing can be reliably employed in general scenarios, as we show in this thesis. The
selected approximations scale to larger scenarios and show potential to provide significant
energy savings, even though the effects are amortized by the architectural integration.

The results obtained by the work in this thesis resulted in publications as listed in
Table 1.1. The main thesis publications specify the ISA extension [46], present and
demonstrate the software-level simulator [47], and analyze the correlation between qual-
ity metrics and perceived acceptability [45]. These were based on other previously or
concurrently published results. In ADeLe [48,49], we present a descriptive language that
describes the behavior of approximations, at the architecture level, as software models
that can replace existing operators in a functional CPU simulator. The language enabled
further studies on the impact of injected approximations in memory and internal registers
as seen from the architecture level [39,40,44]. Understanding the error profiles resulted in
the definition of an implicit memory access interface that divides a memory array into ap-
proximate and accurate regions, protecting non-resilient data from errors [37,38|. Aided

21

Table 1.1: List of authored publications related to this thesis

Target | Title/Co-authors | Ref.

Main thesis publications

TCAD 2020 Risk-5: Controlled approximations for RISC-V [46]
Isaias Felzmann, Joao Fabricio Filho, Lucas Wanner

DATE 2021 AxPIKE: Instruction-level Injection and Evaluation of Approximate Com- | [47]
puting

Isaias Felzmann, Joao Fabricio Filho, Lucas Wanner
ICCD 2021 How much quality is enough quality? A case for acceptability in approxi- | [45]
mate designs

Isaias Felzmann, Jodo Fabricio Filho, Juliane Regina de Oliveira, Lucas Wanner
Supporting and background publications

SBAC-PAD 2018 | ADeLe: Rapid Architectural Simulation for Approximate Hardware [48]
Isaias Felzmann, Matheus Susin, Liana Duenha, Rodolfo Azevedo, Lucas Wanner
WSCAD 2018 (In Portuguese) Impact of Memory Approximation on Energy Efficiency [44]
Isaias Felzmann, Jodo Fabricio Filho, Rodolfo Azevedo, Lucas Wanner
ERAD-SP 2019 | (In Portuguese) Tratamento de Ponteiros Incorretos armazenados em | [39]
Memdrias Aprozimadas

Jodo Fabricio Filho, Isaias Felzmann, Lucas Wanner

SBESC 2019 A Resilient Interface for Approximate Data Access [37]
Joao Fabricio Filho, Isaias Felzmann, Rodolfo Azevedo, Lucas Wanner
FGCS 2020 ADeLe: A description language for approximate hardware [49]

Isaias Felzmann, Matheus Susin, Liana Duenha, Rodolfo Azevedo, Lucas Wanner
ERAD-SP 2020 (In Portuguese) Sensibilidade a erros em aplicagoes na arquitetura RISC-V | [40]
Joao Fabricio Filho, Isaias Felzmann, Lucas Wanner
FGCS 2020 AxRAM: A lightweight implicit interface for approximate data access [38]
Joao Fabricio Filho, Isaias Felzmann, Rodolfo Azevedo, Lucas Wanner
Derived publications

ARCS 2021 Transparent Resilience for Approximate DRAM [41]
Jodo Fabricio Filho, Isaias Felzmann, Lucas Wanner
SUSCOM 2022 SmartApprox: Learning-based Configuration of Approximate Memories | [43]
for Energy-efficient Execution

Jodo Fabricio Filho, Isaias Felzmann, Lucas Wanner
SBAC-PAD 2022 | Approximate Memory with Protected Static Allocation [42]

Joao Fabricio Filho, Isaias Felzmann, Lucas Wanner

by the architecture-level integration developed in this thesis, the approximate memory
models were later enhanced with accounting for the cache impact [41], considering the
application memory layout [42]|, and automatic inference of approximate level parame-
ters [43]. These show the potential of architectural integration to show the impact of
approximations in general-purpose scenarios.

This thesis is organized as follows. Chapters 2 and 3 present the relevant literature in
the field, containing the main background aspects for understanding Approximate Com-
puting and hardware modules, as well as a review of the related work. Chapter 4 contains
the core proposal of this work, discussing the main contributions and how they relate
to the specification for architecture integration. Chapter 5 describes the implementation
of the two technical contributions in this project, the software simulator and the FPGA
prototype. Chapter 6 details the experiments conducted to evaluate the proposed designs
and discusses the results. Chapter 7 makes a case for the use of acceptability metrics
disjoint from quality-accuracy evaluation in the design of Approximate Computing. The
thesis is concluded with the main conclusions and future directions in Chapter 8.

22

Chapter 2

Background

Approximate Computing and approximation techniques

The evolution of Computing, as we know it, has been made upon a research effort focused
on improving the performance of hardware and software within an energy budget. The
improvements in both performance and energy have been powered by miniaturization [14],
leading to an exponential growth in the number of transistors within a single chip and
little impact on power and energy, which has been known even outside of the computing
world as Moore’s law. This level of profitable and low-overhead miniaturization, however,
has ended with the end of Dennard scaling [35,68].

For years since scaling alone ceased to be enough to sustain the rapid evolution of Com-
puting, research effort has been mitigating the challenges associated with post-Dennard,
deep-submicron miniaturization. For example, increased leakage power caused by down-
scaled voltages forbids chips to be used at full capacity for extended periods of time,
leaving them partially dimmed or even off, creating the phenomenon called “Dark Sili-
con” [35]. Despite being a waste of resources, leaving silicon dark does not necessarily
improve efficiency, as the increased distance the data needs to travel within the chip affects
both performance and energy [62,140].

The challenge to design high-performance and energy-efficient computers led to ad-
vances at various levels in the design stack, such as longer-lasting batteries, application-
specific processor designs, hardware accelerators, cloud offloading, more efficient algo-
rithms, and lower overhead communication [29]. In common, and as with any other
design choice in engineering, these trade some aspect for improved performance or energy
efficiency, such as weight, size, portability, programmability, or cost. In particular, one
aspect that can be included in this trade is quality, defined as the accuracy of the final
application results [29, 76]. In many computing domains, fully accurate results are not
needed or even not expected, and thus resources invested in producing results at higher-
than-needed quality could be redirected to other useful computation. In Edge devices, for
example, users expect low-latency, good-enough quality, and long enough battery life [108|.

Despite the uncertainty in defining what is “good enough”, Approximate Computing
has emerged as a promising solution to explore how to achieve less-than-perfect quality
and trade it for energy. Approximate Computing techniques can achieve energy savings
and improve efficiency both at the software and hardware levels [6,83,91]. Software-level

23

approximation techniques are changes performed in the software code that reduce the
quality of results by exploring some inherent resilience of the target application. They
include loop perforation, in which some iterations of a long loop are skipped [87,89, 90,
125], task skipping, in which parallel computation units are selectively dropped [60,117],
and precision scaling, such as lowering the precision of floating-point computations or
converting values to fixed-point representations [1,55,78,88,120]. Even though some of
these transformations may be automatically performed by dedicated compilation tools [15,
32,119,121], the final result is still a dedicated implementation of the given application for
a specific approximation. Thus, these techniques are, by definition, integrated within the
application at design time and can run and communicate with the underlying hardware
using the usual means that any other not approximated software would use.

Hardware-level approximation techniques, on the other hand, should not be intimately
linked to a single application or execution scenario to be applicable to general-purpose
computing. Different approximation techniques cause different quality and energy impacts
on an application, and different applications behave differently under the same approxi-
mation [25-27,44|. Thus, there is no generic approach to offer hardware approximation in
a general-purpose computing scenario. Approximations need to be tweaked to allow reli-
able execution, such as isolating critical or nonresilient application regions, scaling data
precision levels, or even selecting individual arithmetic operations that allow imprecision
in their results. In other words, approximations need to be configured for each scenario,
preferably configured at runtime by the application itself, and this raises the need for a
hardware-software interface to support approximations.

2.1 Configurability of hardware-level approximations

Hardware-level approximation techniques require different levels of configurability accord-
ing to their design and the source of approximation. If the logic is fully optimized to offer
approximated results, it cannot produce error-free results to reliably execute nonresilient
software. Alternatively, the design may offer a configuration knob that allows the approx-
imation hardware to be defined in a reliable execution status. These different options are
translated into different requirements from the point-of-view of the controller.

2.1.1 Non-configurable approximation techniques

One approach to developing approximation hardware is to design and fully optimize a logic
circuit to offer a result that shows some deviation from an accurate result for the same
operation deterministically. This is the case of, for example, slicing the carry chain of a
ripple-carry adder [16,50,106], replacing an adder’s basic building blocks with a different
dedicated logic function [16,141], simplifying the truth table of low-order multipliers [77],
replacing multiplication with less costly alternatives [8,106], implementing neural-network
accelerators to predict the outputs of complex software functions [36,54,95], or other gen-
eral methods to evolve approximate logic circuits [79,96,123,133,145]. The circuits that
follow this design approach share two characteristics that are especially relevant for a
control interface. First, since they are optimized to provide an approximate result, they

24

are typically smaller, less complex, faster, and more energy-efficient than the accurate
version of a circuit to perform the same operation. Second, once implemented and de-
ployed, they can only produce the same results for the same inputs, which can be known
in advance whether by design modeling or experimentally sampling the operations. In
other words, what this second aspect means is that they cannot be configured to produce
a more (or less) approximated result and, by the same means, cannot be configured to
reliably produce accurate results for critical computation.

If a hardware operator cannot produce reliable results, it also cannot be employed for
general-purpose computation without additional supporting hardware. Thus, any archi-
tecture that implements such a non-configurable operator needs to also provide additional
means for accurate computation. In the best-case scenario, error-free execution can be
achieved enhancing the non-configurable unit with an error-correction circuit [19,77]. In
the worst-case scenario, a fully optimized accurate design to perform the same operation
needs to coexist in the system. Replicating or adding hardware modules in the system
increase the area cost, and this overhead, if not considered, can void any energy benefits
achieved by the approximate design. Thus, the additional hardware needs to be dynami-
cally deactivated using gating techniques. Traditional clock- and power-gating techniques,
however, introduce themselves a trade-off between latency and residual energy cost, which
is one of the main challenges in controlling non-configurable units.

2.1.2 Directly-configurable approximation techniques

Instead of fully optimizing a hardware design to offer approximate operation, a mod-
ule can be generalized to expose a configuration knob that directly scales the precision
of the operation. These are still deterministic designs since the output of the opera-
tion can be modeled in advance taken as input the selected precision. This is the case
of adders in which the size of the carry chain is selectable [61,70, 71|, multipliers that
can use multiple-precision adders to aggregate partial products [106], precision-scalable
Floating-Point Units [17,72,86,102], or scaling the precision of data values by truncating
lower magnitude bits [94, 115, 142|. Generalizing the components and introducing the
configuration knob, however, tends to create components that are less energy efficient
in the error-free mode of operation when compared to fully optimized error-free coun-
terparts [49]. Thus, configurable approximation units may not eliminate the need for
replicated and optimized units as in non-configurable designs.

Furthermore, configurable approximation units introduce another design challenge on
the controller, which is the configuration knob itself. While non-configurable units sup-
port at most two states (off/accurate and on/approximate), configurable ones support
many, and this needs to be taken into account by hardware and software controllers.
More states increase the amount of information to be transferred from the controller to
the approximation unit on state changes, requiring wider communication buses, imposing
additional hardware overhead, and increasing the complexity of software drivers. More-
over, the different levels of configurability increase the number of degrees of freedom for
design space exploration, complicating the process of finding optimal operating points of
applications with different quality requirements and resilience characteristics.

25

2.1.3 Indirectly-configurable approximation techniques

Another approach for introducing approximate behavior into hardware modules is to scale
operating parameters below the nominal guardbands. Nominal operating parameters are
usually overestimated to ensure error-free reliable execution and to account for hardware
variability. Further scaling of parameters may trigger non-deterministic execution errors.
In exchange, they offer high potential energy benefits. The most popular parameter of
choice is the supply voltage, in a technique commonly referred to as Voltage Overscal-
ing |24,30,37,38,92,98,103,112|. Lower voltages directly lead to circuit timing errors when
the frequency is not adjusted accordingly, and even lower (Near-Threshold) voltages may
lead to transistor switching failures [25,30]. Other similar approaches are extending the
refresh rate or artificially decreasing the latency of DRAMs [23,75,82,84,113| or scaling
the retention time of STT-MRAMs [111,115].

Because of the extended level of configurability, indirectly-configurable approximation
techniques also share the challenges that lead to overhead in the hardware and software
controllers. In indirectly-configurable hardware, the scaling knob is outside the hardware
unit, and thus the error-free point of operation should not be less efficient than a non-
scalable version of the same unit. However, high-performance, fully optimized hardware
may not be compatible with this type of configurability. For example, a Ripple-Carry
Adder is slower and less efficient than a Kogge-Stone Adder for error-free execution, but
it fails gracefully at each step of voltage overscaling instead of abruptly [99]. Thus, the
Kogge-Stone Adder is more appropriate for error-free execution, while the Ripple-Carry
Adder performs better under approximation, and using both in the same design could
lead to the best energy efficiency overall. However, joining both modules adds an aspect
of non-configurability to the design, increasing the complexity of the controller.

Furthermore, scaling operating parameters introduces circuit-level area overhead to
the design. To scale voltage, for example, additional voltage domains need to be present
in the project, including additional layers of insulation and level shifters. The scaling
itself produces noise that may affect nearby circuits. Also, scaling operating parameters
is not instantaneous, and this delay needs to be accounted for in the latency of hardware
and software controllers. Finally, these non-deterministic approximations require more
complex design space exploration to search for the proper operating points of the appli-
cations, in addition to recovery or resilience mechanisms to account for the probabilistic
outcome of the execution [38].

26

Chapter 3

Related Work

Interfacing hardware approxrimations and software

This project proposes the definition of an architecture-level interface and underlying hard-
ware support to allow general-purpose applications to take advantage of the Approximate
Computing benefits, towards a general-purpose approximation-capable CPU. The concept
of scaling precision, at the architecture level, to introduce some kind of hardware-level
approximation in exchange for efficiency has been introduced by many architectures. The
most straightforward example is the standardized adoption of multiple floating-point in-
structions that control different precision levels in a hardware Floating-Point Unit. The
choice between at least single- and double-precision IEEE 754 floats is available in most
modern architectures. The translation of this concept to Approximate Computing sce-
narios, however, brings additional challenges. Approximation techniques increase impre-
cision across common guardbands, possibly triggering unrestrained errors and unreliable
execution if not properly controlled. This more complicated control requirement imposes
overhead, and thus the ratio between specific approximation capabilities and their control
needs to be well tweaked to amortize the overhead and to allow efficiency improvement.
Moreover, the diversity of possible approximation techniques and their applicability to
distinct and disjoint execution scenarios requires the software — or the programmer —
to have deep knowledge of the hardware approximations. Thus, a general Hardware-
Software interface for approximation control is the subject of existing research efforts. In
this Chapter, we describe existing alternatives in face of the mentioned design challenges
in comparison with our proposed interface.

Approximation techniques have been integrated into ad hoc, specific designs. Dedi-
cated hardware for video post-processing [33], biosignal analysis [13,110], and more gen-
eral signal processing 64,118, 139] demonstrate the potential of Approximate Comput-
ing for these domains, expanding results obtained for single hardware operators to full
application flows. Some of these specific architectural alternatives allow reconfigurabil-
ity [3-5,124,129], potentially increasing applicability to different domains. Although dedi-
cated architectures can be redesigned as accelerators, acting in conjunction with software-
level approximation interfaces [18,36], they are accessories of a full general-purpose pro-
grammable processor. One of the main goals of our project is to allow approximate
execution in a general-purpose processor.

Table 3.1: Qualitative classification

of related work and comparison with this thesis

Year | Work Purpose Approximation Hardware-Software Software controllability Impl.
Coverage | NC!'| DC?| 1C3 interface Granularity Level SW*| HW?

2000 | Example: Multiple-precision FPU General Single v Dedicated instructions Instruction Application v v

Approximation-only related projects

2009 | Significance Driven Computation [93] Single Single v — — — v

2010 | HERQULES [63] Single Single v — — — v

2010 | Scalable Stochastic Processors [99] Specific Single v v — — — v

2010 | Scalable Effort Hardware Design [25-27] Specific Multiple v v — — — v

2017 | ACR [53] General Single v v 6

Interface-only related projects

2007 | ERSA [28,81] General — — — | — Scheduling Thread Supervisor v

2010 | Relax [31] General — — | — | — || Transition instructions Block Application v

2013 | Rahimi et al. environment [114] General — — — | — MMIO registers Statement Application v 4

2018 | ADeLe [48,49] General — — | — | — || Transition instructions State Both” v

2019 | Crash Skipping [134] General — — — — Scheduling Process Supervisor v 6

Approximation and interface related projects

2011 | EnerJ [122] General Generic 4 4 Dedicated instructions Instruction | Application v

2012 | Truffle [34] General Single v Dedicated instructions Instruction Application v

2013 Quora [132] Specific Multiple v v Dedicated instructions Instruction Application v

2013 | TABSH [2] Single Single v Dedicated instructions Instruction Application v

2014 | Accordion [65,69] Specific Single v v Scheduling Thread Application v

2015 | Tagliavini et al. memory [126,127] General Single 4 HAL (unspecified) Process Application v

2017 | Parasyris et al. Execution on Unreliable Hardware [107] General Single v DVFS (unspecified) Task Application v

2017 | ProACt [22] General Single v v Transition instructions Block Both” v

2018 | Ndour et al. approximate units [100,101] General Multiple v v Dedicated instructions Instruction Application v

2019 | AxRAM ([37,38] General Single v MMIO registers Process Both” v

2019 Nongpoh et al. approximate cache coherence [104] General Single v Dedicated instructions Instruction Application v

2019 Nongpoh et al. approximate speculative execution [105] General Multiple v Dedicated instructions Instruction Application v

2020 | Tastan et al. approximate CPU for IoT [128] Specific Multiple v v Dedicated instructions Instruction Application v

2021 | HIART-MCS [58,59] General Single 4 MMIO registers Task Supervisor v

2021 VSX [74] General Single v Dedicated instructions Block Application v 6

2021 | SIA [97] Specific Single v Dedicated instructions Instruction | Application v

2022 | AxE [12] General Single v Dedicated instructions Instruction | Application v

2023 | This thesis General Generic v v v Control registers State Both v v

I Non-configurable
6 Hardware implementation without behavioral results

2 Directly-configurable

3 Indirectly-configurable

4 Software-level simulation
7 No explicit privilege-level protection

5 Hardware-level prototype

LC

28

Table 3.1 establishes a qualitative classification and compares related projects that
are compatible with this programmable model. For each project, we evaluate the purpose
of the design, its compatibility with approximation techniques, the proposed hardware-
software interface for control, the behavior of the control mechanism itself, and how its
demonstration was implemented.

e The purpose of a design may be (a) general, in which it applies to a wide range
of applications or application domains, including automatic adaptation mechanisms
to different applications or a general methodology for it, (b) single, when a single
application was manually tweaked for the demonstration, or (c¢) specific, in which
the design is demonstrated for multiple applications but without enough evidence
of its generality.

e The coverage of approximation techniques may (a) include a single ad hoc model,
(b) be demonstrated to multiple approximations, or (c) provide evidence of being
generic. Also, we classify the levels of configurability of the compatible techniques
according to the classification in Section 2.1: (a) non-configurable, in which accu-
rate counterparts of the modules are required to support critical computation, (b)
directly-configurable, in which a quality scaling knob is designed and included in
the implementation, and (c) indirectly-configurable, in which an existing operating
parameter is used to cause side effects on quality.

e The proposals of hardware-software interfaces include (a) dedicated instructions
for accurate and approximate operations (e.g., an accurate mul and an approximate
mul.approx), (b) transition instructions that activate or deactivate the approximate
mode of operation for one or more modules in the system, (c) memory-mapped
input/output (MMIO) registers or control registers that store the current mode of
operation, (d) scheduling mechanisms that define the status of approximations for
given processes or threads, and (e) other unspecified mechanisms based on existing
general structures.

e About the software-level controllability, we detail the granularity at which
changes in the mode of operation are assumed — from finer to coarser, (a) a sin-
gle instruction, (b) a software-level statement, (c¢) a block of instructions, (d) a
software-level task, (e) a thread within a process, (f) a process, or (g) a system-level
state. Also, we identify the software entity responsible for control as the user-level
application, a supervisor system, or both.

e The level of implementation that the design was demonstrated for, if (a) some
software-level simulation was used, such as directly modifying an application, lever-
aging an architecture-level or a full-system simulator, or building a Matlab model,
or (b) a hardware-level prototype, whether in an FPGA or synthesized for ASIC.
Some designs report area and power results after hardware synthesis, implying the
existence of a hardware-level implementation, but base their behavioral demonstra-
tion solely on software simulation, without any results from the actual hardware —
these are marked with a footnote.

29

As an example, we include in the proposed classification the interface for a multiple-
precision Floating-Point Unit. It has a general purpose since it is compatible with any
software that uses floating-point values and is seamlessly introduced by compilers from
higher-level software data types. It introduces precision scaling of a particular data value
representation. Thus, it handles a single directly-configurable approximation technique.
Hardware and software communicate using dedicated instructions for each operation and
precision level. The hardware operations that use the determined precision are only
the ones triggered by the executed instruction, so it acts at an instruction granularity.
The dedicated instructions are injected directly into the application binary and require
recompilation to change the precision level, which means the application itself is in control
of the approximations. Finally, implementations exist in both hardware and software.

Also, we split the related projects into three major categories. The first (Section 3.1)
holds experimental results that demonstrate the impact of approximation techniques on
the software. These are baseline projects that do not propose nor evaluate a full ap-
proximate architecture. Although they do not share the general controllability objectives
we have in our project, they present results on how applications react after approxima-
tion injection and help to understand the requirements of an architecture-level interface
between hardware approximations and software. Since they do not define the interface
itself, the classification of the interface and its controllability characteristics are out-of-
scope. Understanding the requirements leads to the second category (Section 3.2), which
contains projects that detail only the control interface. These propose to be agnostic of
approximation technique but their demonstration uses software instrumentation or error
injection that does not necessarily represent the outcome of generic approximations. This
approach also tends to ignore much of the overhead caused by requirements of different
approximation techniques, such as the need for replicated units and power gating. Then,
details about approximation techniques are out-of-scope. The third category (Section 3.3),
in which our project is inserted, contains projects that both propose the control inter-
face and demonstrate its interaction with models of approximation techniques. Finally,
Section 3.4 presents and justifies the concepts and design choices behind our proposal,
pointing out how they compare with the alternative solutions.

3.1 Approximation-only related projects

Understanding the impact on applications of introducing approximations into hardware
components is a fundamental step towards adopting Approximate Computing in a general-
purpose scenario. Also, introducing a feedback loop from the software design flow to the
architecture definition demonstrates the specificity of each application when it comes to
approximation and, consequently, the need for control in a programmable scenario. Moha-
patra et al. [93] proposed Significance Driven Computation, a methodology to identify less
significant computations at the algorithmic level to voltage-overscale processing elements
in the underlying architecture. The method was demonstrated for a motion estimator
in video encoders, from which they evaluated the energy-quality trade-off after inject-
ing approximations. In HERQULES [63], voltage overscaling in a digital camera and a

30

wireless transceiver was also employed to increase the design space for image acquisition
software. The design was optimized to ensure low energy cost for a given quality require-
ment. He et al. [53] exploited locality to introduce approximation in computation reuse
for error-tolerant applications. Their Approximate Computation Reuse (ACR) method
relaxes the similarity criteria in the input of computation tasks when deciding whether
previous results for the same computation pattern can be extrapolated to the current op-
eration. If results not exactly for the same scenario are reused, due to the relaxed criteria,
then approximation was introduced. These projects use ad hoc evaluation and do not
expose a control interface to the applications, but provide evidence that applications may
support execution under approximation. In this thesis, we expand the evaluation of how
applications behave under approximation techniques to general-purpose scenarios.
Narayanan et al. [99] introduced the concept of Scalable Stochastic Processors, a system

4

architecture that includes “voltage scaling-friendly” blocks. These are functional unit
designs that present predictable and controllable error patterns when subjected to voltage
scaling. The authors proposed three alternative organizations. First, to replace the
existing functional units with friendly units, introducing error scalability at the cost of
compromising the best power-performance trade-off. Second, to include friendly units in
addition to the original ones and switching them on and off, adding a non-configurable
aspect to the design. Third, to design different cores with distinct structures. The concept
was demonstrated by evaluating the impact of scaling a non-friendly, but highly optimized,
Kogge-Stone adder in comparison with a friendly, but much slower, ripple-carry adder
in a mobile video encoding application. This conceptual evaluation, however, considered
energy and quality only specific to the adders, not detailing their architectural integration.
These results highlight that a configurable approximation unit, when operating in the
higher accuracy mode, is not necessarily equivalent to an optimized accurate unit. Thus,
besides the overhead caused by any configuration delay, a configuration interface needs
to take into account that the module itself may reduce the efficiency and that additional
levels of controllability may be needed to overcome this limitation. Our proposal for a
control interface is designed to mitigate the overheads of power and clock gating in such
scenarios.

Chippa et al. [25-27| presented Scalable Effort Hardware Design, one of the first
projects to introduce the term Approximate Computing at the architectural level. The
project implements a specific-purpose Recognition and Mining processor that aggregates
approximation scalability at algorithm, architecture, and circuit levels. At the algorithm
level, the design flow skips computation entities. At the architecture level, it scales the
precision of less significant variables identified in the algorithm. At the circuit level,
it overscales the voltage of processing elements that compute less significant software
structures. Demonstration results based on ad hoc software instrumentation showed sig-
nificant energy savings for Support Vector Machine (SVM) Classification and K-Means
clustering. These results show that integrating different techniques within the same ar-
chitectural implementation increases the potential benefits. Also, the distinct patterns
of the energy-quality trade-off for different applications and input datasets highlight that
runtime scalability, as we propose in this thesis, is required to tweak the execution to the
expected quality requirement.

31

3.2 Interface-only related projects

Studying the impact of hardware-level approximations on applications suggest that their
behavior varies according to the source of approximation, the application itself, and the
operands [25,44]. The distribution of critical and non-critical data and the nature of
computation determine how deviations from accurate results in specific operations affect
the final quality of results. Thus, the ability to control the approximations at execution
time is necessary to favor energy efficiency while still maintaining enough quality.

In ERSA [28,81], a scheduling mechanism was proposed to allow this control in a
many-core architecture. The idea is that applications that are compatible with massive
parallelism, such as Recognition, Mining, and Synthesis (RMS), are distributed into a set
of reliable and unreliable computing cores. The reliable cores execute the main threads,
responsible for the control and critical execution, while the unreliable cores deal with
highly-resilient code in worker threads. To represent unreliable computation, ERSA’s
evaluation injects probabilistic errors into architecturally visible registers. Before execu-
tion under ERSA, applications are subjected to an analysis and “enhancement” method-
ology at design and compilation time. At this stage, resilient and non-resilient threads
are chosen and application-level modifications, such as sanity checks, convergence control,
and function inline expansion, are employed to improve error resilience. Under ERSA,
although applications support substantially high error rates while still providing bounded
quality degradation, this comes at the cost of time overhead that may amortize the energy
benefits of approximation. Also, the error injection methodology used in the evaluation
is artificial and not based on any real approximation models. Thus, the evaluation does
not allow energy estimations, which would require the error injection to be completely
redesigned. Our proposal is built around a subset of representative approximation tech-
niques, allowing for an actual implementation. The design was demonstrated using a
dedicated software simulator and evaluated for energy off-the-shelf specialized tools, and
a hardware-level prototype accounts for scaling-up the results.

Relax [31] presented a framework to allow software-level recovery of hardware errors.
A software representation and an ISA extension mimic the behavior of exception control
try/catch blocks, in which error-prone code (try) may trigger software recovery (catch)
if hardware-level errors are detected during execution. For error-resilient code, the re-
covery routine may be “relaxed”; or skipped, introducing approximation control. The
approach, however, initially assumes that hardware error patterns can be bounded to
specific high-level “try” blocks, which itself requires a preliminary level of controllabil-
ity of approximations. Rahimi et al. [114] presented an OpenMP-based extension that
guides computation offloading to processing units subjected to variability. Software-level
pragmas are translated into special instructions sent to memory-mapped registers that
trigger the approximate execution of software statements. In this thesis, an ISA exten-
sion includes control registers that store the current configuration of approximations in
the system. The software can handle these registers using the instructions defined for this
purpose in the RISC-V specification. Thus no special compiler is required. However, this
concept is compatible with the try/catch-like blocks and the OpenMP-based extension,
allowing a customized compiler to translate similar high-level constructs to our extensions.

32

In our previous work, ADeLe [48,49|, an ISA extension introduces instructions that
activate or deactivate a predetermined approximate operation for the whole core. This
defines an architectural-level state at which all instructions that are affected by a given
approximation hold the approximate behavior. Crash Skipping [134] proposed resilience
and approximation control based on events of software crashes. When exceptions, such
as memory access violations or illegal instructions, occur, a treatment mechanism chooses
between skipping the faulty instruction, skipping the whole function, or re-executing the
entire application. The Operating System stores application-specific choices of behavior
and exception counters for each process to base the decision. In this thesis, we refrain
from defining approximation- or scenario-specific recovery routines, leaving these to the
underlying approximation units, if they support any. Instead, we inherit the controlling
mechanism based on states from our previous project [48,49] to isolate the areas that are
affected by approximation and scale quality at execution time.

3.3 Approximation and interface related projects

Analyzing the behavior of applications when subjected to approximation highlights the
need for runtime control [25,44], and approximation-agnostic control interfaces miss speci-
ficities of hardware approximations and the impact of their overhead on energy effi-
ciency [28,31,81]. Thus, integrating approximation and application in the evaluation
is essential to accurately demonstrate the impact of specific execution scenarios on un-
derlying approximation hardware. The EnerJ interface [122] and its Truffle [34] hardware
support are an outstanding attempt towards this objective. EnerJ introduced the concept
of high-level software type specifiers that indicate data values that allow deviations from
the exact value or not. Upon compilation, software operations that handle approximable
values are replaced with approximate versions of instructions that guide fine-grained scal-
ing of approximations at multiple levels, such as logic and memory voltage scaling, FPU
precision scaling, and DRAM refresh rate. Truffle defined the microarchitectural structure
to support the language, as well as the actual ISA semantics. The architecture implements
scalable dual-voltage storage structures, register bank and SRAM, and shadow approx-
imate functional units as sources of approximations. The fine-grained control, however,
does not consider the control delay to transition voltage domains or to adjust parameters
that may amortize the energy benefits of approximation. Our design, instead, is based on
a coarser control mechanism in the granularity of states to mitigate such delay.

Quora [132] introduced a domain-specific vector processor that can scale the precision
of computation elements. An ISA extension includes fields that encode a quality require-
ment within each instruction, which Quora uses to scale precision of operands, choose
between fully-accurate or approximate processing elements, or guide voltage scaling. In
TABSH [2], a conceptual processor containing approximate and precise functional units
was proposed. Instructions were manually tagged, from the assembly code, to run on
the approximation units. The evaluation included synthetic tests, not applied to applica-
tions, but indicates potential energy savings on instruction execution. Accordion [65,69|
presented a conceptual many-core processor at which individual cores may run at a nom-

33

inal or an overscaled near-threshold voltage. The authors demonstrated, for Recognition,
Mining, and Synthesis (RMS) applications, how scaling the problem size and correctly
distributing the application into the accurate and approximate cores jointly affects the
level of parallelism and the application output quality. The ISA extension designed in
this thesis encodes the scaling of quality within architectural states in the target pro-
cessor, instead of directly embedded within instructions fields such as in Quora [132]
and TABSH [2]. Thus, compatibility with non-approximated binaries is maintained and
modifications in the compilation tools are not required.

Some designs exploit existing speculation and reuse techniques, created to improve
performance, in order to introduce approximation. The Value Similarity Extensions
(VSX) [74] extended the reuse concepts discussed by He et al. [53] in an ISA exten-
sion. After an analysis step on what code regions may be targets of relaxed similarity for
code reuse, the compiler tags groups of instructions that can be skipped and generates
custom code to populate hardware-level tables. Upon execution, when the skippable in-
structions are fetched and the input similarity criteria with previous results are met, the
VSX microarchitecture uses the previously computed results as an approximation of the
outputs for the code block. Nongpoh et al. exploited the cache coherence protocols [104]
and speculative execution [105] to introduce approximation. In shared-memory multi-
threaded environments, a preliminary sensitivity analysis tests which variables can read
non-coherent values between different processing cores [104]. These memory accesses are
marked with specialized load instructions that skip steps in the MESI cache coherence
protocol implemented in the processor and may return correct, although not coherent,
values. A similar compiler-time analysis marks branch and load instructions that have a
lower influence in the final application results [105]. These are replaced with specialized
approximate instructions that are not rolled back in case of a branch misprediction or
failed load value speculation, proceeding with the processor execution as if the values
were correctly predicted. These designs are based on existing architecture-level features
and are naturally integrated within the architecture. However, a true general-purpose
approximate architecture requires integrating traditional hardware-level approximation
techniques, which is the purpose of this thesis.

Tagliavini et al. [126,127] proposed an architecture in which a multi-banked tightly
coupled data memory (TCDM) is shared between processing elements as a first-level mem-
ory in the hierarchy. Each TCDM bank is organized in two memory regions: a smaller,
lower-voltage, but lower-density region, constructed using standard cells (SCM), and a
larger, higher-voltage, but higher-density region, constructed using 6T-SRAM cells. Al-
though the 6T-SRAM cells require higher voltage for reliable operation, the voltage can be
overscaled at the cost of read and write errors. Thus, the design trades higher memory ca-
pacity within the core for reliability using voltage scaling. A reliability management unit
(RMU) is responsible for placing critical data entirely in the SCMs, fully approximable
values in the overscaled 6T-SRAMs, and tolerant data split between both, allowing errors
only in the least significant bits. For control, the authors proposed an OpenMP-based
programming model that tags variables or computation blocks as approximation tolerant.
Then, the compiler places the associated data within the correct memory regions and
inserts voltage switch points that activate the approximate operation in the 6T-SRAMs.

34

Nakamura et al. [97] exploited compression in the cache level to introduce approximate
memory accesses using a specialized load instruction. The authors discussed a program-
ming model to define the level of approximation using dedicated probabilistic branch
instructions, manually annotated by the programmer. Thus, error-resilient data can be
accessed through the compressed cache to introduce approximation. The idea of resilient
and nonresilient data to be distributed into distinct memory regions was also demon-
strated in our previous work, AxXRAM [37,38]. Instead of being based on annotations,
AxRAM attempts to automatically identify structures that typically store critical data
and maps them in the reliable region. The resilient data are stored in voltage-overscaled
regions within the same memory structure. Although such a generic approach does not
guarantee every execution instance to be reliable, it allows for supervisor-level controlled
execution of unchanged applications. If the applications allow changes, they can tweak
their configurability for improved resilience.

Parasyris et al. [107] presented another OpenMP-based programming model that clas-
sifies individual tasks in the application according to their significance to the final re-
sult. Less significant tasks may be scheduled to run in entirely voltage-overscaled cores
in the target system employing Dynamic Voltage-Frequency Scaling (DVFES) to select a
fast and low-energy, but unreliable, operating point (low voltage, high frequency). The
programming model includes the definition of recovery routines, that trigger a fast tran-
sition to a slow, but reliable, configuration at the same core (low voltage, low frequency).
HIART-MCS [58,59] introduced a processor for mixed-critically systems that embeds an
accuracy-configurable floating-point unit to reduce the overhead of computation. Their
main objective was to improve the survivability of lower-priority tasks in such systems
by varying the accuracy of computation. AxE [12] proposed another task-based pro-
gramming model in which tasks are mapped according to their resilience in accurate and
approximate cores within the same chip. In their demonstration, the authors introduced
approximation capturing a specialized multiplication instruction in a co-processor in the
approximate core. In this thesis, we discuss an architectural extension compatible with
multicore implementations that can integrate multiple levels of approximation within dif-
ferent cores, allowing a supervisor-level software arbitrator to distribute tasks according
to their resilience to error and criticality.

Finally, few projects attempt to cover aspects of nonconfigurability into their designs,
even though many are the dedicated logic alternatives for approximate operations avail-
able in the literature. ProACt [22]| proposed an Approximate Floating Point Unit that
employs memoization to predict the results of floating-point computations. The memoiza-
tion look-up table is activated and has its precision configured using a dedicated instruc-
tion. This transition instruction activates an approximate mode of operation, at which
the results of floating-point operations are preferably fetched from the table. ProACt
was built to provide performance improvement, thus the energy overhead of maintaining
both the look-up table and the Floating-Point Unit in the system is not treated. Ndour
et al. [101] presented an architecture that included approximate arithmetic and memory
management units that coexist with their accurate counterparts. Accurate and approxi-
mate versions of instructions were implemented to select which unit to use for execution.
Tagtan et al. [128| implemented approximate arithmetic units and precision scaling to of-

35

fer approximate behavior to specific instructions. The design was optimized for machine
learning applications in IoT environments. Our architectural extension was specifically
built to accommodate the overhead of non-configurable units, allowing it to be amortized
between coarser-grained state changes, instead of rapid transitions as in ProACt [22] and
the proposal by Ndour et al. [101].

3.4 The design choices that led to this thesis

Our fundamental design requirement is a generic hardware-software interface that al-
lows general-purpose hardware to employ and control hardware approximations and run
resilient applications reliably based on application-level instructions or supervisor-level
knowledge of the behavior of approximations. To offer such a generality, first, we build
the design as an extension to a prominent open ISA Specification, RISC-V. Next, the
architecture needs to take into account the different levels of configurability of approxi-
mation modules. Non-configurable modules require that their accurate counterparts are
available in the system, which imposes area and energy overhead, and control mecha-
nisms that account for gating the unused modules. Indirectly-configurable modules need
to be linked to external configuration knobs to scale operating parameters, such as DVFS
mechanisms, and expose this interface to the software controller. Directly-configurable
modules need to expose their own dedicated configuration knobs. Moreover, these config-
uration knobs need to be consistent and coherent between different applications running
on the same system.

To amortize the overhead of approximation control, we increase the control granularity
to create approximation states. A state exposes the execution of all affected instructions
to the approximate operation. This allows for lengthy power-gating transitions of non-
configurable modules, as well as selectable voltage scaling of indirectly-configurable ones.
The transition between states is handled by control registers integrated within the ISA,
creating a straightforward interface for the software to query the current state and define
the next one by reading and writing the registers. Differently from employing dedicated
control instructions, writing to and reading from dedicated control registers can be done
using the existing RISC-V CSR instructions without any change to the existing software
toolchain, reducing the design overhead. The register-based control may slightly increase
the complexity of analyzing code that may be approximated or not. The designer would
need to identify whether a code section is enclosed or not by the operations to turn
approximations on or off to identify the approximation state, instead of just focusing on
the code section itself. This increased complexity, however, is easily mitigated by the
ability to actually query the system for the current approximation level, by reading the
registers, and delegating control to an external entity, such as a supervisor system. Also,
the control registers are tightly integrated within the core, where approximation modules
such as multipliers and adders are, without the need to go through the data bus, as for
memory-mapped registers.

Separated registers for different privilege levels allow explicit supervisor-level control of
the approximate state in which the user-level application runs. Thus, the approximation

36

state is also seamlessly saved and restored during context switches. Finally, this thesis
defines the means for the applications to recognize the approximation environment and
adapt to it. This exposition of approximation capabilities is handled by a dedicated data
structure stored in memory that holds enough information for the software to know, at
execution time, what are the available approximations and how they should be used.
This allows future software implementations to query their approximation environment
and then explore the approximations under their requirements, instead of requiring ad
hoc approximation-specific implementations for each target scenario.

37

Chapter 4

Integrating Approximate Computing

Architecture-level specification

The main goal of this thesis is to design a general-purpose programmable processor that
allows the integration of coexistent hardware-level approximation techniques. To achieve
this, it is fundamental to provide a generic hardware-software interface that allows the
software to recognize the hardware approximation capabilities and control the approxima-
tions at execution time. Our design is the Risk-5 ISA extension (Section 4.1), an interface
between the approximations and the running software offering control registers for differ-
ent privilege levels to establish their requirements. To actually support this extension,
we also describe the concepts of a hardware controller and the underlying approximation
units that communicate with it (Section 4.2). Finally, to allow efficient and reliable execu-
tion in multi-application scenarios, we propose a supervisor extension defining high-level
control operations (Section 4.3).

4.1 Risk-5: Approximation-aware ISA Extension

One of the main requirements of approximation control is to provide a low-overhead soft-
ware interface. Energy savings achieved by approximations are limited to the amount of
time they are active and how much of the total application execution time this represents.
Thus the time dedicated to control should be kept to a minimum. Moreover, different
software, including the Operating System, have different levels of quality requirements,
and their execution needs to be protected from each other. Different approximation tech-
niques also offer different levels of controllability. The characteristics of a modern system,
in which multiple applications coexist and communicate with a higher privilege-level su-
pervisor, need to be accounted for to design a hardware-software interface.

A common approach to offer a software interface for approximation units is to define
alternative approximation-specific instructions that indicate that the operation should be
executed in the approximate functional unit [2,34,100,101,122,128,132]. Although this
incurs the lowest possible software overhead, it requires every application to be recompiled
to the new architecture to support approximations. Moreover, such control in an instruc-
tion granularity would require functional units to be duplicated and left always active to
support both accurate and approximate execution, imposing an energy overhead.

38

Table 4.1: CSRs defined in Risk-5
Register | Description

mrkgroup | Current approximation group
Approximation Description Table

mrkaddr base address

mrkav Available approximations at
srkav machine/supervisor /user
urkav privilege mode

mrkst Control of approximations at
srkst machine/supervisor /user
urkst privilege mode

mrkacbhv | Activation/Deactivation
mrkdcbhv | behavior of approximations
(Reused, with permission, from [46] (€)2020 IEEE)

Risk-5, instead, exposes to the software stack RISC-V Control and Status Registers
(CSRs) that define an approzimate state of the target RISC-V implementation. After
the state is defined, the execution is affected by the selected approximations without
any changes in the instruction-level software interface. This allows privileged-level code
in a supervisor system to launch an application in approximate or unreliable hardware,
regardless of any support from the application side. Moreover, the coarse-grained control
allows the architecture implementation to fully disable hardware modules that are not in
use in the given approximate state, increasing the potential energy savings.

The CSRs, defined in Table 4.1, are registers that encode a selection of approximation
groups and define the base address of a data structure containing information about each
approximation unit, the availability of each approximation unit within the current group,
whether the control of specific approximation units is delegated from machine-level to
less privileged code, the current status of every available approximation, and the behav-
ior of their activation and deactivation operations. Moreover, individual approximation
units that support additional controllability are exposed as peripherals, and the software
interacts with them using approximation-specific device drivers.

4.1.1 Approximation groups

Approximation units in an implementation are distributed within approzimation groups.
A group is an arbitrary selection of approximation units where individual units may be
part of one or more groups concurrently. Approximation groups are particularly necessary
for implementations that integrate a large number of approximation units in the same
architecture so that single registers cannot store status information for all of them at the
same time.

The selection of an approximation group is the primary control mechanism in the ISA
extension. The register mrkgroup is visible only at the machine level and holds the value
of the current selection. If the implementation integrates a few approximation units and
does not use any group, mrkgroup may be hardwired to zero. Otherwise, its value is
monitored and any changes trigger a group change operation.

39

When a group change operation is started, the implementation ensures consistency
of the execution state by suspending the issue of any new instructions. All pending
operations that should take place before the write to mrkgroup are committed and the
remaining ones are discarded, leaving all execution units idle. Any active approximation
units are deactivated, and only the ones belonging to the new group are seen as available
by the software. Any delegation settings from machine-level to less privileged code are
discarded. The program counter is set to the instruction just after the write to the control
register, and only after every functional unit is ready the execution is resumed.

Changing the current approximation group may be a lengthy operation, and software
should see it as an initialization step or an adjustment to a different execution scenario.
Thus, implementations should place in a group approximation units that are likely to be
used together by the software stack, even if the same unit appears in multiple groups,
thus allowing an approximation group setting to be kept for an extended time.

4.1.2 Approximation Description Table

The Approzimation Description Table (Figure 4.1) is a data structure stored in a read-only
protected memory region that contains additional information about the approximation
units and the approximation groups in the implementation. It should be read upon ini-
tialization to identify the appropriate approximation group for the scenario and load the
respective device drivers for fine control of configurable approximations. The register
mrkaddr is a read-only register, visible only for machine-level code, containing the base
memory address of the table. This base address contains a value that encodes the specifi-
cation version of the implementation, and it should be used by software to gain knowledge
on how to read the table and its respective fields.

Below the specification version, the current specification of the Approximation De-
scription Table is divided into two major sections: the list of groups and the list of
approximation units. The first row in the list of groups contains the number of available
groups and is followed by a description of each group. Each group has an ID (gid,),
which is the value that the software should set to mkrgroup to select it, and a value rep-
resenting the number of approximation units belonging to the particular group. Finally,
the description of the group contains a list of approximations in the group, formed by
the approximation ID within the group and a pointer to the location of the approxima-
tion unit description. Software can find the description of the approximation unit in the
second section of the Approximation Description Table by fetching the memory address
mrkaddr + Papprozgroup,,,,.- Group IDs and approximation unit IDs within each group
are completely independent and not necessarily incremental or contiguous.

In the list of approximation units, the second section of the Approximation Description
Table, each unit is represented by five attributes: a unique identifier of this unit in the
implementation, a taxonomy index, the JEDEC Manufacturer ID encoded according to
the mvendorid RISC-V CSR [137], a vendor-specific identifier, and the hardware identifier
for the software to find a driver. The taxonomy locates the approximation unit in a group
of attributes that characterizes it, such as the type of controllability it offers, the execution
unit or hardware module it affects, the technique it employs, and the expected outcome.

40

Specification Version

G: Number of groups
gidy: Group ID

N A;: Number of approximations in group gid;

ApproxI Dy, Papproz,: pointer
ApproxI D, Papproz,,: pointer
Ap]m“oxIDlNA1 PozpproxlNA1 . pointer

gidg: Group 1D

N Ag: Number of approximations in group gidg

ApproxIDg¢, Papproxq,: pointer
ApproxIDg, Papproxg,: pointer
ApproxIDg, , . Papprozg, , : pointer

aidy: Implementation-specific approximation 1D
tidy: Taxonomy index

vidy: JEDEC Manufacturer 1D

vaidy: Vendor-specific approximation ID

hwid;: Hardware 1D

aid,: Implementation-specific approximation 1D
tid,: Taxonomy index

vid,,: JEDEC Manufacturer 1D

vaid,: Vendor-specific approximation ID

hwid,,: Hardware 1D

Figure 4.1: Structure of the Approximation Description Table. This data structure stores
information about all approximation units available in the system.
(Reused, with permission, from [46] (©)2020 IEEE)

4.1.3 Approximation availability and delegation

The registers mrkav, srkav, and urkav expose and control the availability of approxi-
mation units at machine, supervisor, and user privilege levels, respectively. Each of its
bits represents the availability of one of the approximation units belonging to the current
approximation group — a value of 1 means the unit is present. The register mrkav is seen
as read-only by software. It can be written only by the hardware implementation during
an approximation group change operation.

Registers srkav and urkav can be written by more privileged code to delegate the
control of a given approximation unit to less privileged code. The control of approximation
units that are not delegated falls into more-privileged code and is completely transparent
to less-privileged code. This allows a higher-ranked application to force execution under
approximation hardware even though the target application does not request nor is aware
of it. When the control of an approximation unit is delegated to less-privileged code, the
execution of any operation that changes the privilege level may result in the activation or

41

deactivation of given approximation units. By default, no approximation unit is delegated
to less privileged code, leaving all control to machine mode only. This default configuration
translates into a default value of 0 for all bits of both srkav and urkav.

4.1.4 Approximation status and control

The registers mrkst, srkst, and urkst define the status of each approximation unit in
the current group at the machine, supervisor, and user privilege levels, respectively. Each
of its bits represents the status of one unit in the group, and a value of 1 means that the
approximation is active. Deactivating an approximation unit may mean turning it off and
directing the datapath to an accurate counterpart, in case of non-controllable units, or
resetting the specific control knobs to an accurate level, in case of controllable ones.

Control and status registers can be read and written by code in the same and higher
privilege levels, but only writes of valid values are held. The invalid are values that attempt
to activate approximations that are not in the current group, have not been delegated to
the current privilege level, or would lead to a conflicting approximate state. Reads on the
same privilege level of non-delegated approximations should show a deactivated state.

A conflicting state is a state in which multiple approximation units that serve the
same purpose are concomitantly activated in an implementation that does not support it.
For example, a scalar architecture in which one single integer multiplier may be replaced
by an approximate non-configurable multiplier. To offer multiple approximation levels,
the architecture contains three approximate multipliers connected to the datapath, each
yielding a different error pattern. Since they all replace the multiplication operation, they
cannot be activated at the same time. In that case, writes to control registers that would
lead to more than one multiplier active should be filtered out by the implementation.

4.1.5 Activation/Deactivation behavior

The status and control registers expose to the application information on the status that
the approximation units were requested to be. However, this is not necessarily their
actual status. The activation or deactivation of approximation units may impose some
delay before the requested execution unit is available to be used. It is the responsibility
of the machine-level code to determine whether it is safe to execute code while activation
or deactivation operations are in process.

The expected behavior, when activating or deactivating approximation units, is de-
fined in registers mrkacbhv and mrkdcbhv, respectively. Each of their bits contains the
behavior for one of the approximation units in the currently selected approximation group.
A value 0 means that, while the activation/deactivation operation is in progress, the im-
plementation should proceed with software execution as usual. This behavior assumes
that (a) the operation has no side effects in the overall execution behavior, (b) it is safe
to run the section of code that follows the operation beginning because the particular
approximation unit in question is not used, or (c) the activation/deactivation delay of the
unit in question is negligible in the current execution scenario. These assumptions imply
a design choice in the system and have their own implementation- and application-specific

42

considerations. For example, if changing the status of an approximate data memory sets
it in a very unreliable state for a delayed time, it is likely not safe to proceed. On the
contrary, if dealing with an approximate multiplier, it is probably safe to proceed as long
as the application does not use multiplication in the status change delay timeframe. If the
assumptions do not hold true for the current execution scenario, the behavior can be set
to 1, which instructs the implementation to wait until the operation is complete, similar
to the group change operation described in Section 4.1.1.

4.1.6 Approximation-specific controllability

Apart from the generic activate/deactivate control offered by the status and control reg-
isters, controllable approximation units may expose to software additional control knobs.
In that case, the approximation unit itself defines the appropriate software interface,
connecting the control knob to the architecture as a peripheral and providing a driver.
The Approximation Description Table includes information, such as the Vendor ID and
Hardware 1D, for the software to find and load the appropriate driver. Regardless of
approximation-specific controllability, however, approximation units should still offer the
default activate/deactivate control for architecture-level and application-agnostic support.

4.1.7 Interaction in multicore architectures

In a multicore architecture, some approximation units, such as memory or storage, may
reside outside of the cores and be shared by them. Attempting to implement independent
control for these units would likely result in a conflict if the software running on different
cores requests different levels of approximation to the same shared resource, such as cache
or main memory. Thus, approximation units that are shared between multiple cores have
their control interface attached only to a single master core. Software running in other
cores should communicate their approximation requirements to the master core, which
configures a shared approximate resource to the lowest value required. This conservative
configuration exposes all applications that share the same approximation unit to the
lowest value supported, restricting energy savings but allowing for safer resource sharing.
Since different cores are likely running under different privilege levels at a particular time,
the delegation of control to lower-privilege code is not practical for shared resources and
should be restricted by machine-level software at the master core.

4.2 Hardware support

The architectural specification describes the architecture-level interface to offer software
the ability to control approximation-hardware units without any implementation details.
In this section, we discuss a sample implementation of the hardware features needed
to support the ISA extension. Figure 4.2 shows a high-level diagram of the additional
supporting hardware, including the approximation units and the main connections to the
relevant existing RISC-V core. This sample implementation includes, within the core,
as approximation units, two integer multipliers [96]. Since the integer multipliers are

43

RISC-V Core Memory

MUL MULS MULS

) Accurate 479 423
Register
File
status busy
_ _ = DRAM
bus Approximation Controller |.:.:,
mrkaddr |mrkgroup] busy

Core mrkdcbhv|mrkacbhv]

Controller _mrkst | srkst | urkst |
| mrkav || srkav || urkav |

Figure 4.2: Supporting hardware for the ISA extension. An approximation controller
decodes the control and status registers and distributes internal circuitry to activate or
deactivate each approximate module.

(Reused, with permission, from [46] (€)2020 IEEE)

non-configurable, an accurate multiplier is also included. Outside the core, an external
voltage overscaled DRAM module communicates with the core through a configurable
approximation-aware data access interface [37,38]. To control the execution, the core
includes the approximation controller and the special registers described in Section 4.1.
This controller determines the status of each approximation unit and sends to the core a
single aggregated busy signal, which indicates whether the execution needs to be held to
accommodate an activation/deactivation operation (see Section 4.1.5).

4.2.1 Non-configurable approximate multipliers

Non-configurable approximation units are designed to replace their accurate counterparts
during approximate execution. Naturally, this requires that both accurate and approxima-
tion units coexist in the design, which produces area and energy overheads. To minimize
overhead and maximize energy savings, units that are not in use need to be deactivated,
preferably for extended periods of time to mitigate the delay of power gating [66]. Our
coarse-grained control is designed to allow the mitigation of this delay.

Integer multiplication is a computationally intensive operation with high energy
cost [144], which makes it a popular target of research effort in designing approximation
units. In this implementation, we used two multipliers from the EvoApprox8b library [96],
mul8 479 and mul8 423. These were composed from 8-bit partials and selected to pro-
duce approximately 2% and 5% mean relative error, at an energy cost of 70% and 50%
compared to an accurate multiplier [49].

Figure 4.3 shows the hardware implementation. Each of the multipliers — two approxi-
mate and one accurate — is placed in its own power domain with independent power-gating
controllers. Each controller takes an input status,,,.,, to indicate whether the unit is
active or not, and outputs busy,, . Wwhile a status change is in progress. The input

44

MULS8
423

MULS
479

MUL
ccurate

Controller
Controller

statusmul,.[Power Gating|PUsYmul,c.
Controller

statusmul,;,|Power Gating[?UsYnulss;

statuspuly,sPower Gating!>Ymulss

Figure 4.3: Implementation of non-configurable multiplication hardware. Multipliers that

are not in use in the current state are power gated for further energy savings.
(Reused, with permission, from [46] ()2020 IEEE)

operands of all multipliers are directly connected to the same source. Each individual
output product is clamped low in isolation cells when status,,;, is 0 or busy,, ;. is 1
to ensure signal integrity [66], and the final multiplication product is the logical OR of
each output. Taking a reasonable assumption that the critical path delay of each multi-
plier is significantly higher than the delay to build the busy,,,;,, signal (implemented as a
counter, for example), this adds a delay of two gates to the overall multiplication critical
path. This power-gating approach is compatible with existing high-efficiency power-gating
controllers available in the literature [85,109, 143, 147].

An alternative gating for non-configurable approximation units is clock gating. This
would eliminate the power-gating controllers and the isolation cells, adding a two-way
multiplexer in the input operands that selects a value 0 if the individual multiplier is
deactivated (the status,,,;, signal is 0). Since such a two-way multiplexer can be built
as just a logical AND with status,,,;,, this clock-gated approach adds the same two
gates delay to the overall multiplication critical path, reduces hardware overhead, and
allows a finer-grained control for eliminating the power-gating controller delay. However,
clock gating reduces only dynamic power dissipation, leaving static power untouched, and
leakage has become a significant source of energy overhead [68|, especially if multiple
replicas of the same hardware module need to be included in the design. The control
mechanism favors coarse-grained control to accommodate the power-gating control delay,
and the implementation employs isolation cells to allow the execution to proceed, provided

that the specific hardware unit is not required.

45

\/in DRAM banks Banks
H<_| | Selector
-V
Voltage Vs <Vin |
| Regulator [
dram_x
statusSgranm dram a
buSYdram

Figure 4.4: Implementation of indirectly-configurable DRAM. The memory is divided into
nominal reliable banks and error-prone energy-efficient banks.
(Reused, with permission, from [46] (©)2020 IEEE)

4.2.2 Configurable approximate DRAM

Configurable approximation units expose an architectural control knob that allows an
external controller to define the amount of approximation for computation. It would be
desirable that the knob allowed the unit to be configured in accurate mode. However, this
is not always necessarily true, in which case it should coexist with an accurate counterpart
as such a non-configurable unit. The configuration may affect the approximation directly,
such as the selection of an approximated Floating-Point format [86|, or indirectly, by
adjusting an external parameter, such as the supply voltage of the memory module [37].
From a controller point of view, the interface for both approaches is the same. Both
expose an interface where some value needs adjustment. Despite that, controlling external
parameters imposes additional hardware overhead and execution delay, while directly-
configurable units are usually self-contained.

DRAM represents a large fraction of the power dissipation of a RISC-V system imple-
mentation [67]. Adjusting common DRAM parameters, such as supply voltage, refresh
rate, or latency, can significantly reduce energy cost, while exposing the stored data to
some degree of error [23,24,75,82,113]. However, some values stored in RAM, such
as code regions, pointers, and control variables, are critical data and cannot be safely
subjected to errors. Since such data is indistinguishable at the memory level, an ap-
proximate DRAM implementation requires additional information from software and a
dedicated control interface. In this implementation, we use voltage scaling as a source of
approximation [24, 75|, controlled through a memory access protection interface [37,38].

Figure 4.4 shows the approximate DRAM controller and its interface. It implements
a power network that can independently supply each memory bank in the DRAM mod-

46

ule [75]. Each voltage sink connects to a switch that selects one of two voltage sources:
an external and higher supply and an internal and lower, provided by a voltage regulator.
The selection is made according to the value of a dram_x memory-mapped register and a
statusg,q, input signal. Each bit of dram_x corresponds to a memory bank and takes a
value of 1 to select the lower voltage from the regulator, which is then logically AND-ed
with statusg.qm, to feed the selector.

The error characteristic of a DRAM module suffers from strong variability when sub-
jected to lower voltage supplies [24]. To account for this variability, the interface allows
the voltage supply to be adjusted through a dram_a register. The approximate DRAM
controller also outputs a busy,,,,, signal, which is generated from a fixed-value counter
that is triggered at every change on any of the input signals or registers. The counter
value reflects the delay imposed by changing the voltage levels in the DRAM banks.

4.2.3 Approximation controller

The approximation units communicate with the main control unit of the processing core
through an approximation controller. The controller stores the Control and Status Reg-
isters, outputs the status; signals for each approximation unit, and builds the core busy
signal composing all busy,. It also receives a CSR selector, write enable, and data values,
acting as a portion of the CSRs register file, and a two-bit representation of the current
privilege level the core is running [137]. In this implementation, we demonstrate the inte-
gration of three approximation units — two multipliers and a DRAM controller — that are
selected using the three least significant bits of control registers, leaving the remaining
unused and hardwired to zero. Considering the reduced number of approximation units,
no additional approximation groups are necessary, and mrkgroup is hardwired to zero.

Figure 4.5 shows the partial structure of the controller that builds status and busy
signals in the user privilege level. Gray lines represent connections, and their thickness
relates to the width of the bus. For the sake of simplicity, we omit circuitry to select, read,
and write registers, as well as protection and trap generation. The former is no different
from a regular implementation of a register file, and the latter traps the processor whenever
the software attempts to read or write registers that it is not allowed to in the current
privilege level, to maintain and mask virtualization support [137]. The implementations
for the supervisor and machine levels are equivalent, except that the machine-level mrkav
is a constant, not a regular register. In the complete implementation, the outputs status;
are multiplexed according to the privilege level.

The status registers mrkst, srkst, and urkst are multiplexed according to the current
privilege level to produce the status signals for the approximate multipliers (status,,uitm,
and status,uy,,) and the DRAM controller (statusgqqm). The accurate multiplier
(status,u,,.) is active whenever neither of the approximate ones is. Attempted reads
and writes to srkst and urkst from the same privilege level as the register are logically
AND-ed with srkav and urkav to mask not delegated approximation control. The im-
plementation also restricts that both approximate multipliers are activated at the same
time. The group change operation, identified by an attempted write to mrkgroup, forces
the default initial values to be written to all registers.

47

=

]

—?mrkdcbhv statusdrar
groupchange Shatismules
statusmulasa
l7_1 if o
}mrkaCbhv g statusmul,ce
groupchange __j5
“BH urkst ;

groupchange

L' urkav

groupchange

datain

Figure 4.5: Implementation of the approximation controller. Control signals are generated
from the state indicated by Risk-5 CSRs.
(Reused, with permission, from [46] (©)2020 IEEE)

The global busy signal is a combination (logical OR) of busy, masked with its respec-
tive behavior and current state. Each individual busy, is considered if its current state is
deactivated and the deactivation behavior is to hold execution, or if the state is activated
and the activation behavior is to hold. Since the accurate multiplier is a complement
of the approximate ones, its busy signal considers the state of any of the approximate
counterparts. During a group change operation, the default values written to all registers
force the processor execution to be held while any of the busy, signals are active, ensuring
execution consistency, and only then any configuration is applied.

Finally, in a scenario in which multiple approximation groups are necessary, the im-
plementation requires some modifications. The approximation availability register mrkav
is implemented as a read-only memory and the status registers mrkst, srkst, and urkst
as inner register files, all addressed by mrkgroup. Since all registers are reset on a group
change, only one of the status registers for each privilege level can contain a value different
from zero at any time, and the output status signal can be inferred by the logical OR of
their individual positions in each status register they appear.

48

4.3 Software Interface

The ISA extension specified in this thesis defines that any software interacts with the
architecture-level control structure by reading and writing the specific Control and Status
Registers. RISC-V provides dedicated instructions to read and write CSRs from/to inte-
ger registers, immediate values, or by setting or resetting specific bits in the CSR while
leaving the remaining unaltered. Thus, no additional instructions are required. However,
some operations are privileged, such as modifying the execution behavior while control-
ling approximations, or require interaction with device drivers, in the case of controllable
approximation units. For this reason, in a multi-privileged system, these should be imple-
mented as environment calls. In this Section, we discuss a software interface to support
the approximation control capabilities, initially focusing on a minimalist operating sys-
tem that offers approximate execution behavior to a mixed-resilience application. We
then discuss support for more complex scenarios with shared resources.

4.3.1 Minimalist support

To offer minimalist support to approximation control during execution, we describe an
Operating System (OS) that implements a Hardware Abstraction Layer, including device
drivers to communicate with the approximate DRAM controller from Section 4.2.2, and
a virtual memory manager. The target application reads four matrices from memory
and performs two matrix multiplications, where the first multiplication result is used in
a scenario that admits some error and the second does not. For illustration purposes, we
consider that the OS runs entirely in machine level, addressing all memory physically, and
the application at the user level. Before the deployment of the application, a profiling step
is executed in the target execution hardware. This step extracts the error characteristics
of the installed DRAM module, mitigating variability aspects [24], and establishing a safe,
although error-prone, voltage level for execution.

Upon initialization, the OS reads the Approximation Description Table and finds that
it has available a single approximation group. It infers from the taxonomy index that the
approximation units are two integer multipliers and a DRAM controller and loads the
driver to configure the DRAM. Then, the memory-mapped register dram_a is configured
to provide the voltage level established during the profiling step, and dram_x sets in the
accurate state only the memory banks that contain addresses within the bounds of the
OS own code and data. These configurations protect the OS operations from unreliable
execution while preparing the system to transparently offer to applications an approximate
environment. Then, the approximate DRAM is activated for both machine and user levels
by setting the third bit of mrkst and urkst to 1. The approximate multipliers are made
available to the application by setting the two right-most bits of urkav to 11 and, to
minimize the delays of power gating, execution holding is disabled for the multipliers
by setting the two right-most bits of mrkacbhv and mrkdcbhv to 00. In the worst-case
scenario, if the application attempts to perform multiplication while the operators are
not yet available, the operation will return zero, which is itself a degree of approximation.
The system is now ready to build the application address space for execution.

49

The Page Table is built, adding an extra field for each Page Table Entry that catego-
rizes the page as accurate or approximate. When storing pages in the RAM, pages tagged
as accurate are always physically placed in memory banks marked as accurate in dram_x,
increasing the number of accurate banks if necessary. Approximate pages may be stored
in either type of memory bank, but preferably in the approximate ones. Then, the system
allocates accurate pages to store the application code and the program stack. Fetching
instructions reliably is critical for any application since a single bit flip in an instruction
would likely result in the unsuccessful execution of the application. The program stack
stores other critical data, such as statically allocated local variables, loop indices, memory
pointers, and return addresses, thus protecting it can avoid execution crashes [37,38].

In the end, the OS launches the application. Upon initialization, the application uses
a system call to inquire about the availability of any approximations and receives back a
modified copy of the Approximation Description Table containing only the multipliers. It
selects mul8_ 472, based on its taxonomy tag, for having the higher potential for energy
saving, and activates it by setting the second bit of urkst to 1 before loading the first
two matrices. It performs the multiplication, stores the matrices, and deactivates the
approximate multiplier before loading the remaining matrices. Fetching and loading the
data from storage is a lengthy operation, so it allows enough time for the approximate
multiplier to be activated and deactivated safely before the multiplication. Since all
matrices are dynamically allocated, they are transparently stored within approximate
memory pages, exposing even the data of the second set of matrices to a low level of
errors without any intervention or knowledge from the application side.

Finally, both memory allocation and I/O handling use environment calls in their im-
plementation. These implicitly trigger approximation status changes to whatever is set
in mrkst when elevating the privilege level. To ensure that the application gets the level
of approximation it requested, the OS checks the value of urkst when entering the envi-
ronment call, and resets its own setting accordingly before returning the execution to the
user level, allowing enough time for the setting to be applied.

4.3.2 Approximation coherence of shared resources

The minimalist support discussed in Section 4.3.1 coordinates approximation control for a
single application scenario. However, more complex scenarios may introduce multiple ap-
plications running under multiple processing cores, accessing shared computing resources,
including the approximation units, in a multi-user virtualized execution. All these vari-
ables create additional challenges to coherently control the approximate execution level
of the target architecture. The architectural interface offers direct control over the under-
lying hardware, thus allowing these matters to be dealt with at the software level.

In scenarios of shared approximate resources, the software controlling approximations
should guarantee that the configuration is compliant with the requirements of every appli-
cation. A configurable approximation unit should avoid coherence issues so that multiple
applications, cores, operating systems, and users can concurrently access the approximate
resources. In essence, the interfaces of the shared configurable approximation hardware
should be centralized on a single controller that decides which configuration is applied.

20

If multiple applications are allowed, each application informs the OS about its spe-
cific configuration through system calls that adjust the availability, the status, and any
configurable parameters of the shared approximation units. If more than one running
application shares the same resource, conservative configurations should be kept by the
OS to avoid any application being subjected to a higher level of approximation than
supported and to reduce configuration overhead. Furthermore, status control of approxi-
mations comes naturally from the interface by saving and restoring the user-level status
register (urkst) on context switches.

In multicore environments, the control interfaces of the approximate resources that
are shared between cores are attached to one single master core. For example, in the con-
figurable approximate DRAM introduced in Section 4.2.2, all cores would be aware of the
memory approximation, but only the master core would have the ability to enable, disable,
and configure it. The software running on other cores sends their approximation require-
ments to the master core that configures each approximation unit with a conservative
configuration, the lowest level received. Thus, although the higher error-tolerant software
had decreased energy benefits, the less error-tolerant one avoided execution faults due to
higher-than-supported error. This level of coordination between cores can be achieved
either explicitly, when the higher-privileged OS is the only responsible for the configura-
tion, such as in the shared DRAM example, or implicitly, by trapping accesses to control
registers for the OS to handle the request in the master core. This implicit approach
also allows the OS to coordinate accesses from concurrent processes to a single shared
approximate resource, such as a neural accelerator [36], by trapping activation requests
and only re-scheduling the process for execution once the resource is available.

Finally, if supervisor execution level is supported, it would implement a second control
layer, with its own access to status and delegation registers, communicating with machine
level using environment calls. Additional privilege levels are possible by replicating the
status and delegation registers. In a virtualized scenario, our extension supports trapping
CSR accesses for higher-privileged software to handle the request, as defined in the RISC-V
specification. Thus, when a virtualized OS, running in user-level, attempts to access higher
privileged control registers, these accesses are trapped and redirected to the host OS. The
host OS deals with the request and provides the virtualization interface. Therefore, Risk-5
supports the specific control registers for each privilege level to protect and configure the
approximate resource through the management of the host OS.

ol

Chapter 5

Implementation

Simulated behavior and FPGA prototype

This project proposes the architectural integration of approximation-hardware modules in
a general-purpose processor. This is achieved by setting up an ISA extension that exposes
the approximation capabilities of the underlying hardware to the software and allows
for the configuration and orchestration of these capabilities. To support these features,
the organization needs hardware controllers that store the status and interface with the
approximation-specific modules. Chapter 4 illustrated these concepts for approximations
that can allow configuration on-the-fly, discussing some of the implications of the hardware
controllers. To better understand these implications and demonstrate the designs, we
offer two levels of implementation for these concepts: an architecture-level functional ISA
simulator and a full-system FPGA-based hardware prototype.

The ISA simulator, AxPIKE, was designed as a generalizable tool that allows design-
ers to inject models of hardware approximation at the instruction level and evaluate their
impact on the quality of results. AxPIKE is a high-level representation of a RISC-V sys-
tem and implements the control registers that allow the simulated software to manage the
approximate behavior of compatible execution scenarios. The environment also provides
detailed execution statistics that are forwarded to dedicated tools for energy accounting.
In the simulation, the framework can forward environment (“system”) calls to the host
system, aiding in the flexibility of the implementation by allowing applications written
for Linux to be executed with minimal modification. These features allow approximation
designers to rapidly evaluate the impact on quality and estimate the impact on energy of
their design while accounting for controllability and possible architectural overheads.

The flexibility of the simulation platform, however, comes with a cost, which is mostly
related to performance, in terms of scaling the experiments to larger scenarios, and to sim-
ulation fidelity and accuracy, in terms of how representative the results are. Accounting
for multiple levels of cache and multicore organizations, for example, can cause simula-
tion delays higher than desirable. Moreover, even though the simulator does represent the
architectural integration between components, it does not consider that an architectural
operation may be implemented in different ways in the microarchitectural level. This is
not a problem when they are all accurately predictable, but it may be when their imple-
mentation is tampered with — i.e., when they are approximated. To validate these factors,

o2

our second level of implementation is a hardware prototype. The prototype is powered
by a real standalone quad-core RISC-V processor connected to cache and external memo-
ries, UART communication, and JTAG debugging. We augmented the RISC-V processor
with the approximation controller, approximate multipliers, and an error injector on the
memory accesses to represent the system proposed in Chapter 4. The communication and
debugging ports, all implemented within an FPGA, allow designers to interact with the
system using standard tools. Both the simulated and FPGA implementations were used
to base the demonstration of the architecture proposed in this project and are described
in further detail throughout this Chapter.

5.1 The AxPIKE ISA Simulator

Common hardware techniques to achieve some level of approximation are the design
of dedicated logic that outputs error-prone results, the scaling of external parameters
that have side effects on quality, and the inclusion of configuration knobs that introduce
deviations [91]. These hardware modules are often evaluated in isolation from the rest
of the system or in applications by replacing some high-level software operation with a
specific software model. This approach tends to disregard the interaction and integration
between the approximation units and other components in the system, limiting essential
co-design possibilities [83]. An alternative for evaluation is to inject the approximations
at the instruction level. Thus, instead of, for example, evaluating a hardware multiplier
using a subset of random operands or overloading the high-level multiplication operator
with a specialized function [8], the designer would replace the behavior of multiplication
instructions in an ISA simulator. This places the approximation where it would be noticed
in the application, considering the interaction with instructions and reducing the software
overhead of higher-level modeling.

Setting up a simulator for this purpose, however, involves several challenges. CPU
simulators are designed to produce the application output and some simplified aggregated
execution statistics, such as a global instruction counter, number of memory accesses,
and cache misses. Even though these statistics can be used to estimate performance,
more data is needed to account for energy. Moreover, although some simulators disclose
the modeling of instructions, allowing for straightforward changes, control mechanisms
such as instruction issue and decode, memory and register accesses, and the production
of statistics are often embedded in the software structure, requiring extensive effort to
understand and modify the simulator.

To overcome these difficulties in representing and evaluating hardware for Approximate
Computing in off-the-shelf instruction-level simulators, we built our own RISC-V-based
simulation environment. AxPIKE uses a CPU simulator to inject approximation into
instructions or data accesses. In addition, an ISA-level interface and a software library
control the approximate behavior, protecting critical regions to tweak the energy-quality
trade-off. The approximate behavior is represented in ad hoc instruction-level models
interpreted through a configuration file. The CPU simulator produces the application
output and detailed execution statistics to account for energy, such as memory access

93

traces, instruction-specific counters, and specific operand traces. These statistics are
forwarded to dedicated tools and models that evaluate energy and quality.

This Section presents the AXPIKE environment development and implementation and
demonstrates its usefulness in a set of summarized experimentation results. For a set of
applications, we inject a high-level approximate multiplication model [8] and a DRAM
error model based on voltage overscaling [38]. We configure the simulator to produce
statistics about executed multiplications and DRAM accesses and then apply specialized
tools to estimate energy consumption.

5.1.1 Comparison with other simulators

Approximate Computing designers have proposed different solutions to evaluate approxi-
mations at the architecture level. VarEMU [136] extends instructions by replacing or aug-
menting them with custom software models, estimating energy based on internal power
models. It does, however, limit the representation of microarchitecture details to improve
performance. This reduces the accuracy of execution statistics to the modeled details
and restricts the evaluation of low-level approximations. Also embedding its own power
model, React [138] instruments applications at design time for later simulation. Apart
from requiring changes in the source code and recompilation, it limits the evaluation to
pre-defined approximation techniques and statistics, not allowing further configuration.
Approxilyzer [131] evaluates the impact of perturbations in the execution caused by
Approximate Computing using single soft-error models. The approach allows designers
to estimate the application resiliency but limits a more accurate representation of many
approximation techniques. ADeLe [49] introduces customizable error and power models
to be applied to a custom CPU model. Although stacking levels of customization enlarges
the frontiers of design space exploration, it tends to increase the effort in setting up the
evaluation. Moreover, the simulation is only as accurate as the architecture is detailed in
the base CPU model, creating a direct dependency on the representativeness of results.
Our simulator inherits the customization of error models from VarEMU [136] and
ADeLe [49] while linking it with the rapid setup time of React [138] and Approxilyzer [131].
Based on the Spike RISC-V ISA simulator, AxPIKE can run an application off-the-shelf,
representing a multi-privilege multicore CPU and including ISA-level microarchitectural
details. Still, it allows the injection of errors and the collection of statistics. Also, we
refrain from embedding power models in favor of producing data for external energy
estimation. Thus, we leave to the CPU simulator only the aspects that are related to
the behavioral execution of instructions itself while still allowing flexible extension and
collecting enough information for the evaluation of Approximate Computing designs.

5.1.2 The Simulation Environment

AXPIKE core simulator is forked from the Spike RISC-V ISA simulator. Figure 5.1
shows the workflow to evaluate an application. The core simulator is compliant with the
RISC-V ISA and runs binaries compiled using standard tools. A high-level descriptive
file configures the simulation and associates instructions and data accesses with custom

54

Configuration — Access traces Memory model Energy
/ library \ ! (memory)
Application AXPIKE .
Instruction
‘[— CPU model Energy
traces (CPU)
Approximation

model
I—‘—\

Instruction Data —— App output Quality metric Quality

|

Figure 5.1: Workflow of the simulation environment. It produces detailed execution statis-
tics to estimate quality and energy of application execution.
(Reused from [47] (©)2021 EDAA)

approximation models [49]. A priori, the simulator does not require any changes in the
application to inject approximations. However, in a common scenario in which certain
structures or code regions need to be protected, we provide a low overhead configuration
interface based on dedicated control registers [46]. For convenience, AxPIKE generates a
software library for the current configuration of approximations, translating comprehen-
sive function calls into the lower-level register-based control.

The execution produces the application output and simulation statistics. The output
is evaluated using a scenario-specific quality metric to determine the quality of the results.
By default, the statistics include memory accesses and instruction counters, such as the
number of accesses and misses for each level of cache and the number of executions of each
instruction. These are detailed specifying privilege level, approximation configuration, and
region in the application code. Additionally, we provide a configurable statistics generator
to produce custom traces, as well as other aggregated performance metrics.

5.1.2.1 Approximation Modeling and Injection

Approximation hardware is modeled as functions that can be injected into any instruc-
tion in the ISA. Also, the models can modify the data read from or written to any register
or memory location. These models can receive user-defined parameters and access the
full state of the simulated CPU. Moreover, the data models provide metadata about the
operation, such as the source, the type of operation (read, write, instruction fetch), virtual
and physical addresses, and whether there was a TLB entry for it. Thus, the models allow
for flexible and extensible instruction-level instrumentation of the approximated scenario.

Figure 5.2 exemplifies the approximation models to implement an approximate loga-
rithm multiplier (/LM _EA [8]) and to inject errors into data read from the DRAM main
memory (AzRAM [38]). The word datatype holds references to custom parameters that
assume the size of a data word in the simulated CPU. In this multiplier scenario, they will
refer to the respective registers in the register bank. The DRAM approximation emulates
a scenario in which the supply voltage of the DRAM is scaled below common guardbands,
subjecting the data to errors modeled as uniformly distributed bitflips. Supervisor and
machine privilege code (e.g., the Operating System) run in protected memory regions and
are thus exempt from these errors.

95

1|{IM ILM_EA(word a, word b, word r, processor_tx* p) {
2 // r~a * b

3| Reinterpret(a = m; + ¢, where m; =2M);

4 Reinterpret (b = my + ¢, where my = 2k2) ;

5] T o= 2MTR b 2R v g2k

6 }

7

8|DM AxRAM(processor_t* p, source_t* source, void* data) {
9 if (source->hierarchy == DRAM &&

10 p->get_state () ->prv == USER) {

11 UniformBitFlip (1.4E-5, data);

12 }

13| }

Figure 5.2: Sample approximation models. They represent instruction behavior (IM) or
changes in data accesses (DM).
(Reused from [47] (©)2021 EDAA)

IM ILM_EA(word a, word b, word r);
DM AxRAM();

approximation Approx_ILM_EA {
instruction mul {
alt_behavior = ILM_EA(FETCH_RS1, FETCH_RS2, FETCH_RD);

© 00 N O Ut k= W N =

—
[=]

approximation Approx_AxRAM {
mem_read = AxRAM();

—_
—

3

—
)

Figure 5.3: Sample approximation configuration. Approximation models are distributed
into approximation states that can be switched off and on dynamically.
(Reused from [47] (©)2021 EDAA)

A configuration file associates the models with instructions and data accesses [49].
Figure 5.3 illustrates the configuration to inject the multiplier and the DRAM mod-
els. The configuration starts with declaring the models, in which the metadata
(processor_t* p, source_t* source, and void* data) are implicitly assumed and ref-
erenced when processing the configuration. The multiplier model uses the attribute
alt_behavior to replace the behavior of the multiplication (mul) instruction and re-
ceives its operands. Similarly, a model could be injected before (pre_behavior) or after
(post_behavior) the instruction execution. The DRAM model is injected when read-
ing data from memory (mem_read), regardless of the instruction. The error could also
affect write accesses (mem_write) and other storage structures such as the register bank
(regbank_[read/write]).

o6

axpike iface.h :

1| #define Approx_ILM_EA 1

2| #define Approx_AxRAM 2

3

4| #define axpike_activate (approx) \

5 asm volatile ("csrrs %0, urkst, %1" :: "rK"(approx));
6

7|#define axpike_deactivate (approx) \
8 asm volatile ("csrrc %0, urkst, %1" :: "rK"(approx));
matrix _multiply.c :

1|#include "axpike_iface.h"

2| #define SIZE 100

3

4/ int main(int argc, char* argv[]) {

5 int A[SIZE][SIZE], B[SIZE][SIZE], C[SIZE][SIZE];
6 int i, j, k;

7

8 read_inputs (A, B);

9 axpike_activate (Approx_ILM_EA);

10

11 for (i = 0; i < SIZE; i++) {

12 for (j = 0; j < SIZE; j++) {

13 Clil[jl = o0;

14 for (k = 0; k < SIZE; k++) {

15 CLil[j]1 += A[illk] = B[k1[jI;
16 }

17 X

I

19

20 axpike_deactivate (Approx_ILM_EA);

21 write_output (C);

22 return O;

23| }

Figure 5.4: AxPIKE control interface. Software communicates with the simulator using

control registers via a dedicated software library.
(Reused from [47] (©)2021 EDAA)

The models are grouped together into higher-level approzimations. An approximation
is an entity that defines a state of the simulated system, whose behavior can be described
by multiple models injected into multiple instructions. For example, an approximate mul-
tiplier could also affect multiply-and-accumulate instructions, in which case the software
model differs but would be grouped in the same approzimation. Approximations can be
enabled or disabled at execution time, defining when the models should be injected.

5.1.2.2 Software Control Interface

The simulator offers a control interface that allows the simulated software to take con-
trol over the approximations using a control interface based on the CSRs proposed in
Chapter 4. Figure 5.4 shows an example in which the main computation kernel of ma-
trix multiplication uses the ILM FEA approximate multiplier [8]. The interface library

Table 5.1: Statistics collected for Matrix Multiply

Instruction statistics
Instruction | Prv.!| Approximation Counter
M/S None 52,100,132
AL Approx ILM EA 21,383
U None 21,036,963
Approx_ ILM EA | 7,082,321
None 0
Multinlication? M/S Approx ILM EA 0
whplcatio U None 03,143
Approx ILM _EA | 1,000,000

Memory statistics

Access level | Prv.l| Approximation Counter
M/S | Approx AxRAM | 1,451,651
L1 cache U | Approx AxRAM | 8,373,444
M/S | Approx AxRAM 52,308
1.2 cache U | Approx AxRAM | 244,016
M/S | Approx AxRAM 51,540
DRAM U Approx AxRAM 195,925

57

! Privilege: M = machine, S = supervisor, U = user

2 Includes the whole integer multiplication family
(Reused from [47] (©)2021 EDAA)

(axpike_iface.h) is automatically generated by the simulator and defines the functions
to control the approximations. Approximations are activated by setting the corresponding
bits in the urkst control register, which defines their status for any code running in user
privilege level. Similarly, the interface allows approximations to be controlled by machine
and supervisor code, and the state can be controlled by a supervisor system.

5.1.2.3 Statistics generator

To support performance and energy evaluation, AXPIKE provides detailed data about
the execution. A configurable statistics generator allows designers the creation of custom
performance counters and traces. For example, it can create detailed memory traces to
feed external tools for energy estimation and log operands and results of every instruction
to produce activity factors for RTL simulation. Collecting statistics represents a signifi-
cant overhead in simulation execution. For example, for the simple Matrix Multiply case,
tracing every memory access almost doubles the execution time and produces a log file of
more than 40X the size, compared to tracing only accesses in the main DRAM memory.

Even when the customized statistics class is not used, some aggregated instruction and
memory access counters are produced. Table 5.1 exemplifies the default counters for the
Matrix Multiplication application. The counters are detailed for each instruction in the
ISA and level in the memory hierarchy. They also provide information on which was the
privilege level of the execution and the active approximations at the time. In the example,
some of the multiplication instructions are executed in the approximate multiplier [8] and
only unprotected memory accesses are subjected to the DRAM error model [38].

o8

Table 5.2: Quality and Energy evaluation of selected applications subjected to approxi-
mation

ILM EA AxRAM
Application | Quality | Energy | Quality | Energy
Matrix multiply | 79.85% | 99.62% | 95.17% | 90.46%
Sobel 79.55% | 98.30% | 95.12% | 89.58%
JPEG 97.68% | 99.62% | 85.83% | 88.53%

Table 5.3: Comparison of simulation performance under different configurations

(Reused from [47] (©)2021 EDAA)

Application | Spike | AXxPIKE | ILM_ EA | AxRAM
Matrix multiply | 22 s 61 s 61 s 63 s
Sobel 8s 23 s 23 s 23 s
JPEG 50 s 158 s 160 s 158 s

(Reused from [47] (©2021 EDAA)

5.1.3 A sample usage case

To illustrate how the simulator operates, we selected the applications Matrix multiplica-
tion, Sobel, and JPEG to evaluate the approximate logarithm multiplier [8] and approxi-
mate DRAM access [38] scenarios. Both scenarios are exclusive. Matrix multiply operates
on two 100x100 integer matrices, Sobel detects edges in a 256x256 image, and JPEG com-
presses a 512x512 bitmap. For each application, we compute the quality of results and
estimate the energy relative to an execution that does not employ an approximation. In
our experiments, the applications are compiled as Linux ELF files, and the OS behavior is
emulated by the RISC-V Proxy Kernel, running on a single-core RV64g CPU, configured
with independent 32 KB instruction and data L1 caches and a single 128 KB L2 cache.

Table 5.2 summarizes quality and energy results. The quality metrics are the Mean
Relative Error for Matrix multiply and the Structural Similarity Index for Sobel and
JPEG. To calculate the DRAM energy, we configured the simulator to produce traces of
every DRAM access, which were then forwarded to Ramulator [73] and DRAMPower [21]
for estimation. The DRAM energy and error models were derived from experimental data
from Chang et al. [24]. We consider that both the CPU and the DRAM contribute equally
to the overall system energy cost, and that multiplication accounts for 8.5% of the energy
cost of the CPU [144]. In the multiplication scenario, only the main computation ker-
nel can be exposed to the approximation, which restricts energy savings. In the DRAM
scenario, on the other hand, the entire application can be subjected to approximation, ex-
cept for some small protected memory regions that store mostly control structures. Thus,
approximating the memory accesses shows a wider margin to improve energy efficiency.

Producing simulation statistics and injecting the approximations imposes overhead in
the base Spike simulator. Table 5.3 shows the execution time for each of the applications
in the original Spike simulator, without injecting any approximation nor producing ad-
ditional statistics, and each of the approximation scenarios. Although the approximated
scenarios required three times longer to compute results, they represent a richer evaluation
allowing approximation control and producing extended statistics.

29

5.2 FPGA-based Full Approximate System Prototype

The aforementioned AxPIKE simulator is very versatile in representing applications when
executed in an Approximate Computing scenario. It allows for rapid prototyping since
the approximation modules are translated as straightforward C-language models that re-
place the original behavior of instructions. It requires little-to-no modification in the
original application source code, depending on the scenario to be represented, since it
supports loading Linux applications and forwarding environment calls to the host system.
However, accounting for cache behavior and generating simulation statistics significantly
affects simulation performance, jeopardizing the ability to represent more complex sys-
tems. Moreover, the functional simulator abstracts and may not correctly account for
organization-level design choices, even when they affect the overall application behavior,
such as the pipelined organization, exception handling, branch prediction, and cache orga-
nization. To introduce a new perspective on how a general-purpose approximate processor
behaves, we built a complete system prototype synthesized for an FPGA.

The system is based on the Chipyard framework [7| and is synthesized for the Xilinx
ZCU102 Evaluation Board. The board is powered by a Zynq UltraScale+ SoC, which
embeds an ARM Processor with the FPGA in the same chip. The ARM Processor was not
used in this project, which significantly limits the available peripherals and connectivity in
the evaluation board. However, by using only the FPGA side of the SoC, we demonstrate
the approximate processor as a standalone system, instead of as an accelerator dependent
on another main processor.

Figure 5.5 shows the general architecture of the FPGA prototype. The Chipyard
system features a Quad-Core Rocket Processor, where each core received the internal ap-
proximation controller and five approximate multipliers derived from the EvoApprox8B
library [96]. In the classification introduced in Chapter 2.1, the multipliers are non-
configurable units and, as such, the execution control relies on selecting which of the
multiplication modules receives the operands and provides the product in the particular
operation. Outside the core, another source of approximation was introduced to emulate
a voltage-overscaled DRAM module. An error injector sits between the main memory
port and the external DRAM controller and causes bit-flips in data read from the DRAM
according to a configurable probability in a uniform distribution [24|. The error injector
exposes a configuration interface, as memory-mapped 1/0O, that allows protecting certain
memory regions and defining the probability of error [38]. The system communicates with
the external world via two UART interfaces and a debugging JTAG interface, which can
be used to load an application, control execution, and send and receive data.

To allow application execution, the prototype uses SiFive’s Freedom E Software De-
velopment Toolkit (SDK). The SDK includes Freedom Metal, a Hardware Abstraction
Layer built to interface SiFive’s hardware, including hardware with Chipyard, with stan-
dard software tools. Our application code is a multithreaded software that receives data
to be processed, along with information about the target application, from an auxiliary
computer using UART communication lines, runs the target application, and returns
the application result back via the UART lines. In this environment, we show how the
proposed architecture behaves in a multi-application multicore scenario.

60

To aux computer 4—| |—> To aux computer
|ImTTss T T E T EE T mmm e mmEEm e USB-UART |71 .. . |7~~~ ===777773
bridge GPIO]

UART 1
Small Large UART 2
core core

DRAM

1
1
1
1
}
1
1
1
1
1
}
1
1
:
: Small Large
| core core AXRAM . -
! Controll e =
ontroller © . °
: Rocket Chip kol o g
= — c
i | = o 5
1 5 = o
1 ped
1 fiv 8 <§(
1 2 ; o
! L2 Cache < < a
3
1 (a) <
1
: Chipyard SoC
1
: FPGA
: ZCU 102 Evaluation Board !
(a) Overall architecture
Unrolled Multiplier Single-cycle Multiplier
Core Accurate EvoApprox8b Core Accurate EvoApprox8b
Controller Controller
l |
L1 SR file Approximation | SR file Approximation
controller controller
L1 Cache L1 Cache
(b) Small core (c) Large core

Figure 5.5: Architecture of the hardware prototype. The prototype is a multi-core SoC
implemented in a FPGA. Gray modules were created or modified in this thesis.

5.2.1 Hardware Workflow

The Chipyard framework encapsulates a series of RTL generators and auxiliary synthe-
sis and simulation tools that can help designers in the hardware development flow of
RISC-V-based systems. It includes code for processing cores, intra-chip communication
modules, and peripherals that can be joined together as described in configuration files.
The customization options, however, are primarily designed towards reusing the avail-
able modules as they are, with little guidance on how to customize the internals. Our
design requires changes in the Register File and internal communication buses to allow
the register-based control described in Chapter 4. Moreover, Chipyard’s support to bench
FPGA prototyping is rudimentary and largely undocumented, as the targets moved to re-
lying on cloud-based providers. However, Chipyard groups the reference implementation,
by the creators of the RISC-V Open Standard themselves, of various aspects of the archi-

61

Table 5.4: Resource utilization of FPGA Baseline implementation.

Component LUTs Registers Block RAM DSPs

available 274,080 548,160 912 2,520
CPU 142,864 52.1% | 68,755 12.5% 210 23.0% | 60 2.4%
Core (Each of 4) 31,537 11.5% | 15,501 2.8% 43.5 4.8% 15 0.6%
FPU 12,383 4.5% 3,824 0.7% - - 11 0.4%
Multiplier 1,721 0.6% 214 0% - - 4 0.2%

CSR File 2,365 0.9% 1,081 0.2% - - - -

L1 I-Cache 1,929 0.7% 1,235 0.2% 10 1.1% - -

L1 D-Cache 3,565 1.3% 2,279 0.4% 32 3.5% - -

L2 Cache 9,331 3.4% 3,399 0.6% 36 3.9% - -
DRAM Controller 8,492 3.1% 9,472 1.7% 25.5 2.8% 3 0.1%

AXI Clock Converter 446 0.2% 1,232 0.2% - - - -
Total 152,291 55.6% | 80,467 14.7% | 235.5 25.5% | 63 2.5%

tecture, such as the Rocket Chip Generator 9], the Berkeley Out-of-Order Machine [146],
the Hwacha vector extension [80], the Gemmini accelerator [51], and others. Thus, build-
ing our prototype in this framework, despite the design and development effort, prepares
the environment for future compatibility with these standard and third-party tools.

5.2.1.1 Base ZCU102 Support

The FPGA prototype was developed as a standalone system. That is, even though it
may communicate with an external system using standard communication interfaces, it
should not be dependent on another CPU for its base functionality. The base support
for the ZCU102 board was derived from the existing Chipyard support to the Diligent
Arty A7-100T, a significantly smaller and less resourceful board but similar in features
and FPGA-connected peripherals to the larger ZCU102. The base support comprises the
main CPU, two levels of cache, an external DRAM controller, two UART communication
ports, and JTAG debugging. The main CPU is a Quad-Core RV64 Rocket CPU, at which
each core consists of a single hardware thread in a 5-stage in-order pipeline, augmented
with hardware multiplication and division, atomic extensions, and floating-point support.
Each core is connected to split instruction and data L1 caches of 32 KB each. All cores
share a single 128 KB L2 cache. These settings are derived from the Rocket “Big Core”
configuration and were adapted for compatibility with both the Arty FPGA support and
experimental settings with the AxPIKE simulator.

The ZCU102 exposes to the FPGA a 512 MB DDR4 memory compatible with the
Xilinx DDR4 Controller IP. The DDR4 Controller can communicate with user logic (in
this case, the Chipyard implementation) using a standard AMBA AXI4 interface, which
is also supported as the external memory port interface in the Rocket Chip configuration.
Both sides of the channel, however, operate at different clock domains, and thus an
AXT Clock Converter was needed. In terms of communication, the board exposes a single
channel of a USB-UART bridge to user logic, out of the four existing in the communication
module. Also, the USB-JTAG port is not readily available. Thus, we took advantage of
the GPIO pins to enable a second UART port and the JTAG port. Both are connected
to external devices to allow communication with an auxiliary computer. The auxiliary
computer transfers the needed application and data for experimentation.

62

Table 5.4 shows the area of the baseline implementation, expressed in terms of resource
utilization in the FPGA. The percentages are relative to the total number of each resource
instance available in the FPGA. In particular, we highlight the internal utilization of
the internal CPU Control and Status Registers Files and hardware multipliers, as these
are the components that need modification to include the approximations. The CSRs
include the configuration registers defined in our ISA extension, as described in Chapter 4,
and the multiplication hardware is replicated to allow the inclusion of non-configurable
approximate multipliers [96].

5.2.1.2 Approximation controller

The Approximation Controller is the hardware module that enables the architecture to
recognize and configure the status of different approximation sources. The configurations
are derived from the Control and Status Registers defined in Chapter 4, which are decoded
in the controller to determine which approximations are active at any given point in the
execution. The CSR Register File in each core was modified to include references to the
registers specified in the ISA extension, where any read or write operation within these
registers is forwarded to the Approximation Controller. The controller itself sits next to
the Register File and is based on the concept described in Figure 4.5, Chapter 4 to store
the control registers and translate their data into the necessary configuration signals.

The ISA extension proposed in this thesis considers that approximations may require
some time to be activated or deactivated, such as to allow power gating of unused com-
ponents. Because of that, the extension introduces configuration registers that indicate
what is the general behavior of the processor execution during this time. In our behav-
ioral FPGA implementation, however, power gating is not achievable and, in practice,
the activation and deactivation delay is irrelevant in comparison to a CPU cycle time.
Therefore, the behavior registers (mrkacbhv and mrkdcbhv in Table 4.1) are irrelevant in
the implementation and were ignored.

5.2.1.3 Approximate Multipliers

The FPGA prototype was configured to include partial Approximate Multipliers selected
from the EvoApprox8b library [96]. The selection of multipliers was derived from our
previous work on the ADeLe language [49]. The design considers how the individual
multiplication modules behave when extended from their original 8-bit length to wider
32-bit multipliers, in a Wallace Tree organization, in terms of energy and error, as shown
in Figure 5.6. Energy was accounted for a 45 nm fabrication process in Cadence Design
and Synthesis tools, and quality is the mean relative error, compared to an accurate
multiplier, for an extensive uniform multiplication dataset. From these, we selected five
multipliers on the Pareto frontier that show the lowest energy cost at different error levels.
Specific error and energy metrics for each selected multiplier are detailed in Table 5.5.
The Rocket Chip implements a multicycle “unrolled” multiplier, where a full-length
multiplication operation is divided into a series of multiplications of narrower data words.
Each partial multiplication is calculated in a hardware multiplier and accumulated to
build the final result. Our approximate implementation replicates the partial hardware

63

=
N

=
o

o
o)

o
o))

o
N

Energy/operation (normalized)

o
N
SN
[e)]
(o]

10
Mean relative error [%]

Figure 5.6: Energy-quality trade-off individual EvoApprox8b multipliers. Widening
operand and product data words affects both energy and error, and this analysis can be
used to select the most applicable multiplication instances.

(Reused, with permission, from [49] (©)2020 Elsevier)

Table 5.5: Selected EvoApprox8b multipliers.

Multiplier | Mean relative error | Relative energy
Accurate 0.00% 100.0%
mul8 303 0.22% 95.68%
mul8 469 0.93% 79.19%
mul8 479 2.00% 70.05%
mul8 423 5.23% 49.97%
mul8 279 9.39% 39.30%

(Reused, with permission, from [49] (©)2020 Elsevier)

multiplier including each of the five EvoApprox8b options side by side. The unit that
performs each partial operation is selected according to the configuration indicated by
the Approximation Controller. This implementation introduces an area and static power
overhead, due to replicating hardware units and power gating being impractical. The
impact on dynamic power was mitigated by keeping the operand inputs of each individ-
ual partial multiplier constant when not in use, which reduces the activity factor and
translates to what would be expected from clock gating.

The multi-cycle unrolled method taken by Rocket Chip to perform wider multiplication
operations is only coherent for accurately computed partials. This means that when each
partial multiplication is taken from an approximation unit, the accumulated result may
not be, and most likely is not, the same as expected if the partial were taken from
the wider operands in a larger single-cycle multiplication unit. This situation adds a
second level of approximation in the operation and may severely affect the overall error
rate and quality of the results. This illustrates precisely the reason for considering the
integration of individual approximation units into a larger system at design time. The
unrolled multiplier is efficient in terms of area and energy for accurate multiplication, but
when considering approximate partials the expected results are only achievable in a much

64

larger and more energy costly single-cycle multiplier. In our FPGA implementation, two
of the four cores were configured to use the original unrolled multiplier with replicated
approximated partials, and the other two implement single-cycle multipliers derived from
each narrower EvoApprox8b unit. This difference in implementation has a significant
impact in the final resource utilization in the FPGA and efficient mapping of the design
in LUTs and DSP slices, as discussed later in Section 5.2.1.5.

5.2.1.4 DRAM Error Injector

The second source of approximation in the system is the main memory. The prototype
simulates the behavior of a voltage-scaled DRAM device and implements a protection
interface to control which memory regions are exposed to error and at what level [38|.
However, since scaling the supply voltage in the single-chip DDR4 module in the ZCU102
board is not practical, we introduce an artificial error injector that sits between the DRAM
controller and the CPU external memory port.

The error injector acts as a peripheral and communicates with the CPU via two
memory-mapped registers, dram_a and dram_x, as exemplified in Figure 4.4, Chapter 4.
Register dram_a configures the error rate introduced in data accesses, which is translated
from the supply voltage level 24|, while register dram_x selects which memory regions
are affected. Each memory region is a fixed and predetermined set of contiguous physical
addresses in the memory array that can be controlled independently. Errors are injected
in the form of a single bitflip at a random position of the data read from memory into an
L2 cache block. A pseudorandom number extracted from a Fibonacci Linear Feedback
Shift Register (LFSR) is used to both determine whether a memory access is affected,
according to the probability determined by the configuration register, and which bit in
the data word should be flipped. The LFSR was imported from a package of common
hardware components package available in the Chisel Hardware Description Language.

5.2.1.5 Area overhead

The prototype implementation required additional hardware modules and modifications
to existing ones. In particular, the extension is exposed to the application software via
Control and Status Registers, which were included among the existing CSRs. The Ap-
proximation Controller coordinates the activation and deactivation of the approximation
modules and was implemented as a new component in each core. Including the approx-
imate multiplication operator required changes in the existing multiplier organization,
besides replication of partial multiplication units. Finally, simulating the voltage-scaled
DRAM module included an additional peripheral and, similarly, another component would
be required to control an actual approximate memory. All these components impact the
area of the final system.

Table 5.6 details the area overhead of the final system compared to the baseline im-
plementation (Table 5.4), in terms of FPGA resources utilization. For each hardware
component, we show the absolute value (left column) and the impact on the overall re-
source utilization in percentage points over the baseline (right column). The “Small Core”
uses the original multicycle unrolled multiplier, while the “Large Core” had the hardware

65

Table 5.6: Overhead introduced in the FPGA implementation.

Component LUTs Registers Block RAM DSPs
available 274,080 548,160 912 2,520
CPU 227,170 +30.8 70,162 +0.3 210 - 44 -0.6
Small Core (Each of 2) 38,891 +2.7 15,722 - 43.5 - 11 -0.2
Approximation controller 266 +0.1 222 - 0 - 0
Multiplier 8,377 +2.4 233 - 0 - 0 -0.2
CSR File 2,728 +1.0 1,081 - 0 - 0
Large Core (Each of 2) 66,184 +12.6 15,902 +0.1 43.5 - 1 -0.2
Approximation controller 1,019 +0.4 222 - 0 - 0
Multiplier 35,222 12.2 413 - 0 - 0 -0.2
CSR File 2,460 +0.9 1,081 - 0 - 0
Common (All 4 cores)
FPU 12,393 - 3,824 +0.7 0 - 11
L1 I-Cache 765 -0.4 1,235 - 10 - 0
L1 D-Cache 3,567 - 2,277 - 32 - 0
L2 Cache 9,408 - 3,399 - 36 - 0
DRAM Controller 8,480 — 9,472 — 25.5 - 3
DRAM Error Injector 360 +0.1 582 +0.1 0 - 0
Fibonacci LFSR 182 +0.1 64 - 0 - 0
AXIT Clock Converter 447 1,232 0 - 0
Total 238,926 +31.6 | 82,328 +0.3 | 235.5 - 47 -0.6

multiplier replaced with a single-cycle unit within the pipeline. The distribution of re-
sources during the Place & Route phase of synthesis can cause more or fewer elements in
the FPGA to be allocated to the same component, which explains the small variations
perceived in the instruction cache and the floating-point unit. This also happens with
different instances of the same component, such as the CSR files and the approximation
controller between the small and large cores. On average, the most significant impact
of introducing the extension itself, disregarding the specific multiplication and DRAM
approximation units and considering only the additional control registers and the ap-
proximation controller, adds 1.2 p.p. area overhead per core. In absolute terms, this is
comparable with the area of the original CSR File.

The more considerable impact comes from the approximation sources themselves, in
particular the multiplication units. The modified multiplier organization, which replaces
a wider abstract multiplier with an explicit Wallace tree organization of narrower ones,
forces the synthesis tool to build the logic using look-up tables instead of allocating the
existing DSP slices in the FPGA, which itself impacts resource utilization. The more
reliable multiplication unit in the large core is substantially more costly than the original
multiplier because the previous multi-cycle organization was not compatible with the
partial approximate multipliers. However, the multiplication unit in the small core uses
less than 5 times the number of LUTs in comparison with the original one, and yet
encapsulates 6 different multipliers — the accurate and five approximate ones — an impact
lower than the inclusion of a floating-point unit, for example. This highlights that, had the
approximate multiplier units been designed for architecture-level integration, considering
the error propagation within the design [19,20], they would have caused a more favorable
energy-quality trade-off, as translated from area and error rates.

66

Table 5.7: Software tools in the prototype framework.
Tool Version
SiFive Freedom E SDK 20.05.01.00 dev
SiFive RISC-V64 Bare Metal Toolchain 10.2.0-2020.12.8
SiFive Freedom Binutils
SiFive Freedom GCC
SiFive Freedom GDB
SiFive Freedom OpenOCD 0.10.0-2020.12.1

5.2.2 Software Framework

Chipyard’s Rocket Chip implementation contains a small boot ROM with code to wake
the processor up from a halt state. This boot procedure, however, does little more than
looping forever waiting for an external interrupt. Since there is no access to a boot
device in the implemented prototype, any application software needs to be sideloaded
from external sources. In our prototype, we use the JTAG port and an external hardware
debugger to load software. Rocket Chip implements the RISC-V ISA Open Standard, and
thus it is compatible with de facto standards to build and debug applications. Table 5.7
details the software tools and respective versions, available from SiFive.

To create application software, we rely on the Hardware Abstraction Layer and com-
patibility libraries provided by SiFive in the Freedom E Software Development Kit. The
SDK is intended to allow the development of software targeting SiFive’s embedded RISC-V
platforms, which included! a ported development board based on the Arty FPGA Evalua-
tion Kit, which is an earlier generation of the Arty A7-100T board on which we based our
hardware prototype implementation. The Freedom Metal compatibility library, included
in the SDK, provides routines and underlying drivers to support features such as UART
interfaces, serial terminals, software locks, and general 1/0, as well as a base implementa-
tion of common Linux system calls. The proper drivers and libraries are recognized and
configured for the FPGA target according to the description imported from the Device-
tree, which is automatically generated from the Chipyard configuration. Thus, following
the same principles as in the available Arty target, we created a new ZCU102 target that
matches our prototype implementation.

The target software is a multi-threaded data loader and processor, distributed through
the four cores, based on a producer-consumer fashion. The scheme in Figure 5.7 shows
this organization. Two of the four threads manage data acquisition, data delivery, and
control. The other two are worker threads that execute the target application, selectively
controlling how they are exposed to the multiplier approximation. The data acquisition
and delivery threads communicate with an auxiliary computer through the two UART
interfaces. The more reliable port, connected to the USB-UART bridge in the board, was
configured at a faster 1 MBd rate? and transfers the main application data. The other
port, connected through the GPIO pins and external devices, serves the serial terminal
for message exchange and control flow at the standard 115.2 KBd.

!SiFive discontinued the Freedom project repository and FPGA targets as of March 2021.
21 MBd = 1 megabaud, roughly equivalent to 1 megabit/s in this scenario.

67

Prototype
Aucxiliary Computer
-t Input Thread
Input > Input Thread — ‘
fil —_
iles E __ USBUART __ | J»"l Buffer l“»l |
Control Thread = Execution Thread Execution Thread
‘ ! 3 ¥ v
O]:;lt::t » OutputThread [« - GP|0-UART:: - | >III Buffer III> |
_ Output Thread

Figure 5.7: Software framework to support the hardware prototype. A multi-threaded
framework consumes input data and executes the target applications. Gray blocks are
subjected to approximations.

The memory array is divided into two contiguous regions: one small accurate re-
gion and a large region subjected to the DRAM approximation, which is injected by the
hardware error injector. The two main data buffers are allocated in a “data blob” in
approximable memory and are used to store raw application data. Thus, the dynamically
allocated application data is stored separately from other control structures and local
variables, which are usually less resilient to the noise of the approximation [42]. Space
in the data blob is requested by the data acquisition thread, to store input data, and by
the worker threads, to use as working memory and store output data, using specialized
memory allocation functions. Requested memory regions are reserved noncontiguously
in the approximable memory region to simulate the behavior of an Operating System
mapping memory for multiple concurrent applications and to mitigate the impact of the
cache by breaking data locality.

Unlike the AXxPIKE Simulator implementation (Chapter 5.1), which could run Linux-
compiled applications virtually unchanged due to redirecting system calls to the host
system, target applications in the hardware prototype require some more extensive adap-
tation. First, support to system calls and the C library is limited, thus file and serial
terminal 1/O need to be replaced with direct UART handling, with secondary software
running in the auxiliary computer to translate the raw data. Additionally, memory al-
location must be analyzed and directed to the approximable memory when applicable,
effectively selecting what data can be exposed to errors. Finally, every shared-memory
and global variables need to be accounted for to allow the multi-threaded execution of the
execution cores. These changes are needed to make the application compatible with the
bare-metal execution model in the software framework, in its current implementation.

Despite this need for further adaptation, the prototype is a real approximate system
and provides higher performance in the experimentation. In Chapter 6, we demonstrate
the proposed ISA extension and its two levels of implementation using the simulator to
produce more detailed energy results and the prototype to represent a scaled-up scenario.

68

Chapter 6

Experimentation

FEvaluating the Approximate Computing integration

We demonstrate the proposed control interface in operation and how different approxi-
mation techniques interact with each other in both the functional AxPIKE simulator and
the hardware prototype. Both demonstration scenarios were constructed to show our ISA
interface managing non-configurable replicated hardware multipliers and an externally-
configurable approximate memory, considering the particularities of each environment in
designing the experiments. The environments were configured to target an RV64g ar-
chitecture, accessing the main DRAM approximate memory through independent 32 KB
instruction (4-way 256 sets) and data (8-way 128 sets) L1 caches and a shared 128 KB
L2 cache (4-way 1024 sets). The simulation environment can execute a wider range of
applications and produces more data about each execution, and thus can base a more
extensive analysis on the energy-quality trade-off of different design choices. The hard-
ware prototype involves a higher design effort on integrating the approximation modules
and adapting applications for execution and produces a limited amount of data of the
execution. However, it is more representative, for being an actual implementation, and
it is much faster to show how the approximation behaves when applied to a variety of
different input data. For these reasons, we took advantage of the simulation results to
evaluate the energy and quality of results for different applications, while the prototype
results show the real integration of approximation for a single application consuming a
larger amount of data, in a more limited approximation scenario.

6.1 Experiments on the simulation environment

The AxPIKE simulation environment is more versatile in representing different applica-
tions and approximations. Also, it produces richer information about each execution using
various statistical counters and logs. It allows direct communication with the host com-
puter Operating System, reducing the required effort to introduce new applications. Thus,
we designed the experiments in the simulation scenario to cover more applications and a
more diverse approximation scenario. The demonstration was divided into two phases, as
shown in the scheme in Figure 6.1. First, we modeled a voltage-overscaled DRAM main
memory to show how setting the level of approximation affects energy and quality for

69

-Scholes | . _ _ __--- + Voltage — |
Black-Scholes Bit Error Rate _____- , g DRAMPower h—» I%Ir)\Re;'\g/I}/
FET (LLC Misses) t
1 DRAM commands
InverseK2J f

., DRAM access 4 Ramulator
traces ‘

r AxPIKE ISA Simulator ’—

JPEG

Pl . I Instruction E del E
Multiplier model counters nergy mode ‘—’ nergy

Sobel (CPU)

— Appoutput — Quality metric | - Quality

Figure 6.1: Demonstration experiments in the simulation environment. Applications were
evaluated for energy and quality under approximate multipliers and DRAM.

different applications, also accounting for variability. This analysis highlights scenarios
that can profit the most from the approximations by efficiently computing higher-quality
results. Then, we selected one of these favorable DRAM approximation scenarios to
introduce a second level of approximation in the multiplication operation.

6.1.1 Configurable approximate DRAM

In our proposed interface implementation, the DRAM controller exposes two knobs that
determine the bit error rate (i.e., the approximation level) and the memory regions that
are free from errors [37,38]. These knobs were set to protect machine- and supervisor-
level accesses, instruction fetch, and the program stack, as discussed in Section 4.3. These
controls are sufficient to manage the approximation without changes in the application.
Thus, after configuration by the OS, the application is launched to run entirely and
transparently in DRAM approximation mode. The simulator allows direct access to the
internal registers that store information on the privilege level of execution and stack
pointers. It is also possible to precisely trace which instruction triggered a given memory
access. Thus, we rely on such detailed information about processor execution to implement
data protection in the simulated environment, not requiring a redesign of the application
or memory allocation scheme.

The probability of data being incorrectly fetched from DRAM was derived from ex-
periments reported by Chang et al. [24]. The authors studied the reliability of DRAM
chips by three different vendors when subjected to adjustments in supply voltage in the
range from lower-than-nominal 1.025 V to nominal 1.35 V at a fixed access latency. They
report the fraction of cache lines within the DRAM chip that exhibit erroneous data after
stress, which can be reinterpreted as the probability of error when fetching a cache line
at the given voltage level. These data exhibit high variability due to the characteristics
of the memory modules. Of the three experimented vendors, two behave not friendly to
voltage scaling as the errors start happening too soon, at high voltage levels, and scale up

Table 6.1: Regression of error rates in the DRAM approximation scenario.

70

Scenario 1.025 V 1.050 V 1.075 V 1.100 V 1.125 V
best 3.728 x 107 | 3.016 x 107° | 2.980 x 10~® 0 0
intermediate | 1.096 x 10~! | 6.461 x 107* | 5.181 x 10~ | 5.811 x 10~ 0
worst 5.638 x 1071 | 3.196 x 107! | 1.660 x 1073 | 1.016 x 10~° 0
100% - 100% -
E‘ 80% - _,? 80% -
® ®
3 60% - Z 60% -
[}]
o) <)
S 40% A B 40% -
g best g best
© 20% - intermediate © 20% - intermediate
worst worst
O% 1 1 1 1 1 O% 1 1 1 1 1
1.025 1.050 1.075 1.100 1.125 1.025 1.050 1.075 1.100 1.125
vdd vdd
(a) PI (b) JPEG

Figure 6.2: Output quality of applications using the approximate DRAM. All tested appli-
cations show graceful quality degradation in the intermediate scenarios of error injection.
(Reused, with permission, from [46] ()2020 IEEE)

too quickly. Thus, to account for such variability, we extracted the data from the third
vendor, which exhibits the most intermediary error values across a wider voltage range
between 1.025 V and 1.125 V. Then, we regressed, for each 0.025 V voltage step, the error
rates that represent the worst-case (maximum error), the best-case (minimum error), and
an intermediate (median error) scenarios. Table 6.1 shows the considered error rates for
each voltage level.

For each voltage level, we execute 100 instances of applications Black-Scholes, FFT,
InverseK2J, JPEG, PI, and Sobel.

ent computing domains, such as Image Processing, mathematical applications (number

The applications were chosen to represent differ-

crunching), signal processing, and mechanical simulation, besides different access patterns
to memory. The Image Processing applications JPEG and Sobel are expected to be par-
ticularly applicable in the approximation scenarios due to their perceived resilience to
error, higher use of memory to store the raw image data, and reliance on multiplication
during processing.

To evaluate each application behavior, we compute the quality of results in comparison
to an accurately-computed output. The quality metrics essentially represent the accuracy
of the application output. For the Image Processing applications, quality is the Structural
Similarity Index Measure (SSIM) [10,135] of the output images. The SSIM compares an
original and a noisy image attempting to predict the perceived similarity from a human
observer, where a maximum value of 1.0 (or 100%) means images are identical. For the
other applications, we compute the mean relative error comparing accurately-computed

71

82%
] worst

intermediate
]]]] best

78%- | | | | Jf{_

76% 1

80%

74% 1

relative energy consumption

n o n n o n n o n o o n o n n o n
~ n o ~ n o~ ~ n o~ o n ~ n o~ ~ n o~
|l e | e °elefe ol e| e =1 2| e |l e| e |l e | e
o, — — — — — — — — — — — — — — — — — —
72% 1 [Il]]]] Il [[]]]]] I [Il Il
o e} o o o o o © © i} e} e} o o il o e} °
kel kel kel kel kel kel o kel el kel kel kel e e kel el kel
> > > > > > > > > > > > > > > > > >
70% T T T T T T
blackscholes fft inversek?j jpeg pi sobel

application

Figure 6.3: Energy to achieve 90% quality on approximate DRAM. The DRAM approxi-
mation can provide average energy savings of 22.4% considering the intermediate scenar-
108.

(Reused, with permission, from [46] (©)2020 IEEE)

and approximation-affected outputs. All metrics are normalized and reported as percent-
ages from 0% to 100%. In the event of failed execution that produces no valid output,
the quality metric is considered as 0%.

Figure 6.2 shows the average quality and the 95% confidence interval of results for PI
and JPEG, which are the two applications that presented the best and the worst resilience
to the injected errors, respectively. From the evaluated applications, PI is the less memory-
intensive one, so its high resilience to errors injected in DRAM memory is the expected
behavior. As for JPEG, even though Image Processing applications are usually considered
more resilient due to human perception of results, in the case of compression the injected
noise can affect greater regions of the image during encoding. All other applications
presented a similar pattern of degradation as voltage levels scale down. Even so, in the
intermediate case, all applications achieve quality of more than 90% in the 1.05 V level.
This means that considering the evaluated scenario, selectively and controllably varying
the voltage levels from the nominal 1.35 V down to 1.05 V can potentially lead to energy
savings maintaining an expected level of quality of results, indicating a reasonably wide
margin of controllability of approximations.

To understand these savings, we evaluate the energy cost of each execution instance
based on traces of DRAM accesses after each L2 cache miss in the simulation. For every
execution of each application at each voltage level, these traces were filtered to include
only DRAM user-level approximate accesses. Then, they were fed to Ramulator [73| to
generate DRAM commands, based on a DDR3 module compatible with the error rate
data (1600 Mhz, 64 bit, 8 banks, 2 ranks, 1024 columns, 8 bytes burst length, 16384 rows,
1.35 V Vdd, 13.75 ns tRCD, 13.75 ns tRP) [24]. These commands are used as input of
DRAMPower [21] to get the energy cost according to supply voltage changes.

Figure 6.3 shows the memory energy cost of executing each application at the lowest
voltage level that exhibits average quality higher than 90% for the best-case, worst-case,
and intermediate scenarios, normalized to an execution at the nominal 1.35 V voltage.

72

Energy savings range from 18.6% (JPEG, worst-case scenario) to 24.6% (JPEG, best-
case scenario). All applications are degraded by the injected approximation, and all
applications can profit in the form of energy savings. The most efficient voltage level
in the intermediate scenario is 1.05 V, expected to provide 22.4% energy savings, on
average, considering all applications. In the best- and worst-case scenarios, the optimal
voltage scales one step down or up, respectively, for all applications except JPEG. This is
consistent with the raw error rates considered (Table 6.1), indicating that the applications
can tolerate errors up to the order of 10™* in these scenarios, which is equivalent to one
access affected by noise for each circa 10 thousand LLC misses. In the other variability
scenarios, however, these error rates are characteristic of different voltage levels. Also,
they are only sustainable considering data access protection to avoid errors in critical data
and application crashes [38,42]. Account for variability and protection highlights the need
for configurability of the approximation at the architecture level.

6.1.2 Non-configurable approximate multipliers

The quality and energy characterization points to operating conditions at which an appli-
cation, although error-prone, is expected to produce high-quality results. In the interme-
diate scenario, this operating point is 1.05 V, at which the Sobel application, for example,
shows a memory energy cost of 77.2% of an accurate execution. Thus, to evaluate the
impact of integrating the multipliers, we elected one arbitrary execution instance at this
operating point and executed Sobel with approximate multipliers varying the selection of
an approximate region. To emulate the multiplication behavior, our extended simulator
was configured to replace multiplication instructions by the software model that describes
two EvoApprox8b multipliers, mul8 479 and mul8 423, [96] using a Wallace-tree archi-
tecture to produce higher bit length multiplications.

For the approximate multiplication unit, the code region affected by approximation
was manually selected by analyzing the application execution pattern. The approximate
region is delimited by the application using the user-level status registers defined in Sec-
tion 4.1.4. Firstly, attempting to expose the whole application to errors in multiplication
results in failed execution. Application initialization, finalization, I/O operations, and
memory allocation rely on multiplications of critical information, causing the application
to crash. Then, we narrowed the possible approximate region down to the main computa-
tion kernel, composed of the Sobel operator gradients computation and final combination.
From these, using the approximate multiplier to compute the squaring of each element
on the gradient matrices amplifies all errors injected by the multipliers, resulting in a
much noisier output image. Thus, we apply the approximate multiplication only in the
convolutions to compute the gradients themselves. According to the detailed instruction
counters produced by our extended simulator, these convolutions represent 78.3% of all
multiplication instructions executed by the application, and the approximate region cov-
ers 42.1% of the total number of instructions. Alternatively, automated tools such as
ACCEPT [121], ASAC [119], DECAF [15], ApproxSymate [32], and SmartApprox [43]
can be extended using our architectural specifications to allow designers to find optimal
selections of approximate regions and configurations.

73

(j) DRAM -+ Kulkarni (k) DRA (1) DRAM + ILM_ AA

Figure 6.4: Sobel execution using approximate DRAM and multipliers. Approzimate
multiplication lead to increased quality degradation in comparison to the DRAM approxi-
mation.

(Reused, with permission, from [46] ()2020 IEEE)

74

Figure 6.4 shows a quality comparison between an accurate execution (6.4.a) of the
Sobel application and scenarios in which the DRAM (6.4.g) and multiplication approx-
imation units are used in isolation (6.4.b and 6.4.c) and integrated (6.4.h and 6.4.i). In
this example, the quality degradation imposed by the DRAM approximation (6.4.g) is not
visually noticeable, yielding very high quality metrics (image 6.4.g SSIM = 99.9%; average
SSIM = 98% for the Sobel application). Thus, the impact on quality in the integrated
scenario is predominantly derived from the multipliers only, even though all pixel matri-
ces are stored in the approximate region and the image does not fit our L.2 cache. Both
multipliers fail to capture minor contrast differences in the source image, which results in
highlighting less prominent edges. This effect is more perceptive in mul8 479 (6.4.b and
6.4.h) than mul8_ 423 (6.4.c and 6.4.1), that fails to detect some edges and pushes down
quality to 58.4% and 47.2%, respectively.

The impact imposed by the multipliers on energy depends on various factors, such
as the energy savings provided by the multiplication operator, the relative energy cost
of multiplication in the target hardware, and the coverage of the approximate region in
the whole application. Considering that mul8 479 and mul8 423 cost 70% and 50%
of an accurate multiplication, respectively [48,49|, that a multiplier represents 8.5% of
the execution energy cost per instruction of a generalized RISC-V workload [144], and
that we achieve 42.1% coverage, this represents saving 1.07% and 1.79% on execution
energy. Even for applications that tolerate a larger fraction of approximate multiplica-
tions, the upper bound on energy savings is 4.25%, maintaining a 5% mean relative error
(mul8_ 423). In the integrated scenario, the accumulated energy savings depend on how
the memory energy cost compares to the execution energy. The DRAM energy cost varies
significantly according to the CPU and cache configuration and the application access
pattern, for example [67]. Taking a reasonable conservative assumption that both DRAM
and the CPU contribute equally to the total energy cost of the system, energy savings
add up to 11.9% for DRAM + mul8 479 and 12.8% for DRAM + mul8 423 in the
sample Sobel application, and 14% for an application that accepts all multiplications to
be approximated to 5% mean relative error.

The evaluation of the Sobel application in this scenario suggests that approximating
multiplications imposes higher quality degradation and lower energy savings than the
DRAM approximation. Any multiplication energy gains are limited both by the coverage
this operation achieves in the scenario and the relative energy cost of multipliers, an
upper bound of 3.58% of the overall execution energy cost. To verify that the higher
quality degradation characteristic is not particular to the selected multiplier library [96],
we expanded our demonstration to other classes of approximate multipliers: Kulkarni’s
dedicated logic multiplier [77] and two logarithm multipliers — ILM FEA and ILM AA [8|.
All three architectures exhibit higher quality degradation, even though the image is still
distinguishable. Kulkarni (SSIM = 39.4%, 6.4.d and 6.4.j) and ILM EA (SSIM = 39.1%,
6.4.e and 6.4.k) tend to overly highlight lighter edges, such as in the image background.
The multiplier ILM AA includes an approximate adder to accumulate the logarithmic
multiplication partials that truncates most of the pixels to a mid-range gray, highlighting
only the main edges of the image (SSIM = 12.2%, 6.4.f and 6.4.1).

75

6.2 Experiments on the hardware prototype

The experiments in the simulation environment were designed to demonstrate how the
approximation control behaves when operating with different configurations of approxi-
mation and for different application domains. The simulator allows easy access to the
internal structures of the processor, producing detailed statistics and traces of execution
that can be used for a more representative energy estimation of the different execution
scenarios. The higher level of abstraction in the implementation also helps to design
special cases of approximation injection, such as protecting the execution of a supervi-
sor system and specific memory regions. The main drawback of experimenting with the
simulation environment is scalability. One single execution instance of the JPEG applica-
tion for a reasonably small input image (512x512 pixels), for example, takes a simulation
time in the order of minutes, due mainly to a performance bottleneck on accounting for
cache accesses and producing the memory access traces for later offline energy estimation.
Even though single execution instances of the simulator can be run in parallel, that only
goes up to a point and does not help with scaling up the input data size. Moreover, the
simulator is a functional representation of the system and abstracts microarchitectural
details of the implementation that can affect the overall execution, the design choices for
approximation, and the final quality results.

The FPGA prototype, on the other hand, performs much better than the simulator
and is an actual processor implementation, thus representing the system without the
level of abstraction in the simulator. The same previous example of a JPEG execution
instance takes less than 4 seconds to complete in the prototype while representing a real
implementation of the approximate architecture. However, the design effort to adapt
applications to run in the FPGA prototype is greater and the flexibility to represent
different approximations is limited. Also, the prototype produces less detailed information
about execution, jeopardizing the possibility of energy estimation without the detailed
instruction counters and access traces produced by the simulator.

Taking into account these differences between the simulation and prototype environ-
ments, we designed the hardware prototype experiments to scale the quality results for
one pair of applications and operating points obtained in the simulator. We selected
the JPEG application and the 1.05 V intermediate operating point, subjected to a
6.461 x 10~* error rate, combined with the five approximate multipliers in the prototype
(Table 5.5) [96]. Each configuration was iterated over the complete Imagenette Full-size
train dataset [56]. The dataset comprises 9,855 images ranging in raw image data size
from 11.3 KB (80x24 pixels) to 78.8 MB (2,912x4,368 pixels), totalizing 13 GB of data
for each of the 12 different configurations.

The JPEG application was modified to work with the raw image data as input and
produce the final compressed image file as output. Both input and output data are re-
ceived from and transmitted to an auxiliary computer using the faster 1 MBd UART
port. The auxiliary computer application reads the image files and extracts the raw im-
age data, preparing the input for the JPEG application, and after processing, it receives
the compressed image and stores them for quality evaluation. Within the JPEG appli-
cation, input and output data are stored in the approximable memory region and thus

76

100%

95%

90%

% of executions

85%

80%
>20% >40% >60% >80% >90% >95% >99%
Quiality thresholds

Figure 6.5: Quality distribution on approximate DRAM. More than 85% of the JPEG
executions meet common quality thresholds of 90%, 95% and 99%.

are subjected to the configured error rate if missed from the cache into DRAM. Due to
limitations in the ported JPEG application, the images are converted to single-channel
grayscale before compression. The approximate multiplication operators were activated
for all multiplication instructions within the main encoding algorithm, which includes
quantization, downsampling, computing the discrete cosine transformation, and writing
the output data. To account for quality of results, we use the Structural Similarity metric
(SSIM), comparing the accurate results with the ones subjected to approximation.

6.2.1 Evaluating the Approximate DRAM operating point

The previous experiments in the simulation environment tested the behavior of applica-
tions subjected to five different levels of approximation from a voltage-overscaled DRAM
memory, considering three scenarios of variability. The results concluded that, for the
applications tested and considering the intermediate variability scenario, a voltage level
of 1.050 V can provide results at an average quality level higher than 90% and provide
significant energy savings. For the JPEG application, in particular, these savings are
expected to range from 21% to 25% at this operating point. These expectations, however,
are based on a more limited scenario where the applications were executed on a single
rather small input. In the prototype environment, we analyze whether the expectation of
producing results with good enough quality at 1.05 V is maintained as the applications
grow in size and in the number of inputs.

Figure 6.5 shows the percentage of JPEG executions that meet different criteria re-
garding quality of results. On average, the 1.05 V operating point provided results of
94.60% SSIM (o = 14.91 p.p.), and only 11.9% of the execution instances would not meet
a 90% quality threshold. This indicates that the perceived resilience of the application
scales up with the number and size of inputs. Moreover, by visually analyzing the image
outputs, the JPEG application is particularly well-behaved under DRAM approximation.

Figure 6.6 exemplifies output images that represent each level of reported quality of
results. For each level, we selected an image with Structural Similarity close to the average
in the class, lower-bounded by the quality threshold and upper-bounded by the first higher
level. At higher quality levels, the noise in the outputs is composed mostly of small groups

7

(a) Accurate

(e) Accurate

(i) Accurate

) 99%

) Accurate

Figure 6.6: Sample images at given quality thresholds. The JPEG application behaves
resiliently under DRAM approximation, maintaining visual quality.

of distorted pixels distributed within the image, as shown in Figure 6.6.n. This is con-
sistent with output data being affected by noise after computation. As quality decreases,
the images exhibit displaced stripes of pixels (Figures 6.6.b-h) or inconsistent levels of
brightness (Figures 6.6.f-1). These indicate that the processing step was further affected
by noise propagated throughout cascaded Huffman coefficients in the JPEG implemen-
tation, causing a more significant impact. Despite the quality measurement, the images
appear distinguishable to the human eye. Depending on the scenario the application is
introduced, all images could be acceptable for their endpoint use case. This observation
may indicate that the usual methods to evaluate the quality of results, such as the Struc-
tural Similarity Index for Image Processing applications, may not necessarily correlate
with the actual outcome of the approximation, as we further analyze in Chapter 7.

78

100% ——

80%

1@
| —— |
| |

60% ™ L]

SSIM

40%
]

20% I

0%

accurate mul8_303 mul8_469 mul8_479 mul8_423 mul8_279

(a) Accurate DRAM

100%] I
n
80% T
9]
s 60% -
n
(%]
40%
]
20% . I
0% - < I
accurate mul8_303 mul8_469 mul8_479 mul8_423 mul8_279

(b) Approximate DRAM

Figure 6.7: Quality of results after integrating the approximate multipliers. On average,
the multipliers have a higher impact on the Structural Stmilarity.

6.2.2 Integrating the Approximate Multipliers

The results of the DRAM approximation show that setting the DRAM voltage level to the
most efficient operating point in an intermediate scenario, 1.05 V, introduces a significant
error probability of 6.461 x 10~* in memory accesses but can still result in high-quality
results, on average, and particularly well distinguishable images for the JPEG application.
They also indicate that scaling input sizes maintains the expected average output quality
at similar levels. After studying the DRAM operating point, we expand the analysis by
integrating the selected approximate multipliers from the EvoApprox8b library [96]. The
previous results in the simulation environment showed that the approximate multiplication
highly impacts the quality of results and has an energy cost jeopardized by the integration
of the multipliers within the architecture. These factors indicate that approximating
the multiplication operator may not be profitable in terms of energy-quality trade-off.
The integrated experiments on the FPGA prototype analyze how these quality findings
translate when the experiment is scaled further.

Figure 6.7 shows the distribution of the quality of the results generated with each ap-
proximate multiplier, with and without the approximation injected also in the DRAM. In-
troducing approximate multiplication significantly degrades quality compared to the pre-
vious DRAM approximation. Less than 10% of the executions would meet the 90% quality
criteria, considering all multipliers combined. Even the higher-quality mul8 303 achieves

79

90% at less than 45% of the executions, which is 90% of the total results that meet the
criteria. The best multiplier (mul8 303) has average quality of 87.65% (o = 7.85 p.p.),
the worst (mul8_279) averages at 36.57% (o = 16.12 p.p.), and the three intermediate
ones overlap ranging from 58.98% to 63.61% averages (o = 11.47 — 11.75 p.p.).

The introduction of DRAM approximation together with the multipliers (Figure 6.7.b)
has little impact on quality of results, except for mul8 423. The similarity is expected,
as the DRAM approximation introduces little degradation in the design and, being
the individual multiplier degradation higher, it is expected to dominate. However, the
EvoApprox8b multipliers, although all members of the same library, are actually differ-
ent multiplication hardware designs that were conceived using the same methodological
approach [96]. Thus, even though they are expected to have similar behavior, this is
uncertain, especially when integrated with other sources of approximation.

Figure 6.8 selects individual JPEG execution instances to visually demonstrate how
the approximate operation affects the image output. Figures 6.8.a-f show the six levels of
approximation injection in the same input image, while Figures 6.8.g-k select a particular
input that represents the average quality for each of the approximate multipliers. Intro-
ducing approximate multiplication noticeably and strongly degrades the visual quality of
output images. Differently from the DRAM approximation, which is non-deterministic
and results in less predictable distortions on the output image, the approximate multi-
pliers are deterministic and produce results that follow a clear pattern of creating less
detailed images as quality degrades.

The multiplier mul8 423, which introduces the second-highest mean relative error on
the order of 5% [49], shows another discrepant behavior and has better visual quality
than the lower error mul8 469 and mul8 479. Despite any differences in the design of
the multipliers, as discussed above, the specific mean relative error metric is computed
over a uniform distribution of multiplication operands and does not capture any archi-
tectural level integration of the multiplication hardware or particularities of the target
application, JPEG in this case. At an energy cost of approximately 50% of an accu-
rate multiplication [49], this could indicate that mul8 423 is particularly suitable for
the JPEG application and a good energy-error trade-off. However, any per-operation
energy savings are rapidly amortized when considering the architecture-level integration,
as discussed in the simulation-environment results, making the particular approximate
multiplication seldom worth it. Similarly, mul8 303, although producing higher-quality
results in comparison to the other multipliers, has an energy cost per operation that comes
near 95% of an accurate operation and would not particularly impact the overall energy
efficiency in the architecturally-integrated scenario.

Differently from the DRAM-only scenario in Section 6.2.1, the approximate multi-
plication SSIM metric captures more linearly the perceived degradation of visual qual-
ity. However, the similarity results of the multiplication and DRAM scenario seem not
comparable, even though the same metric, with the same interpretation, has been used.
Figure 6.8.c, for example, has a higher similarity metric than Figure 6.6.d, both generated
from the same input, but appears significantly more degraded. Both Figures 6.8.b and
6.8.g have fairly good quality visually, at over 85% SSIM, but would hardly be considered
better than Figures 6.6.b, 6.6.d, and 6.6.f by a human observer, all bellow 80% SSIM. This

80

T

(a) Accurate (SSIM 100%) (b) mul8 303 (SSIM 85.83%) (c) mul8_ 469 (SSIM 54.89%)

i

¥ iz .f“‘"‘; ; i =
(d) mul8_479 (SSIM 49.83%) (e) mul8_ 423 (SSIM 52.89%) (f) mul8_ 279 (SSIM 21.33%)

(g) mul8 303 (SSIM 87.65%) (h) mul8 469 (SSIM 63.61%)

(i) mul8_479 (SSIM 58.98%) () mul8_423 (SSIM 61.79%) (k) mul8_ 279 (SSIM 36.57%)

Figure 6.8: Sample images illustrating outputs of approximate multiplication. The approz-
imate multiplication operators impact heavily on the visually perceived quality of results.

81

Spearman p =-0.20 Spearman p =-0.01

Input size Input size
(a) Approximate DRAM (b) Approximate Multiplier

Figure 6.9: Correlation test between input size and quality of results. The Spearman test
shows no correlation, which indicates both techniques scale gracefully with input size. Both
ares X and Y are ranked and do not represent the actual input size or quality values.

flawed correlation between the quality metric and the perceived visual quality indicates
that the SSIM metric may not be the most suitable evaluation in these approximate JPEG
scenarios, especially for the DRAM case, even though it is a traditional and extensively
used metric. In Chapter 7, we extended this empirical observation to other metrics and
applications, using a methodological approach to evaluate the correlation between quality
metrics and the perceived acceptability of results.

6.2.3 The impact of scaling input size

In the simulation environment, the experimentation results were limited by the number
and size of the inputs. Mainly because of simulator performance limitations, experiment-
ing with larger input sizes was impractical. The performance improvement achieved by
the FPGA prototype allows these results to be scaled to a greater number of use cases
and larger input sizes. The quality results demonstrated that the experiments are com-
parable and, in the scaled-up scenario, the selected approximate DRAM operating point
can also lead to results that meet the proposed quality criteria. These indicate that the
approximations can deal with larger scenarios, but do not provide any evidence on to
what extent the results are representative.

To better understand how the input size impacts the quality of results, we analyzed
the correlation between these two aspects. We compared how the input size influences
the overall quality of results for the DRAM approximation and one of the approximate
multipliers. In the multiplication scenario, we elected only mul§ 303, which is the one
that showed higher average output quality. The approximate multiplication operators are
deterministic and affect the operands in a similar and predictable way throughout the
execution, and thus were expected to correlate poorly with input size. The approximate
DRAM accesses, on the other hand, are probabilistic and distributed through the exe-
cution. The longer an application lives, the more access errors are expected to happen.
Since larger input sizes would typically lead to longer execution times, more access errors
happen for larger inputs. Moreover, being the approximation source the DRAM accesses,
larger inputs also are less likely to be efficiently stored in the cache, increasing the like-
lihood of errors. It would be natural to assume that more errors lead to lower overall
quality, thus inferring some correlation between input size and quality.

82

Figure 6.9 shows the Spearman correlation between input size and quality of results
for both the DRAM and multiplication scenarios. The Spearman’s rank correlation coef-
ficient p measures how related are two variables in the same population. The coefficient
is computed over ranked values, and thus it assesses the relationship capturing non-linear
relations. In our scenario, we want to evaluate whether quality actually decreases as the
input size increases, regardless of the nature of the relation, and thus this monotonic de-
scription in Spearman’s test is applicable. The coefficient p increases to 1 the stronger
the correlation, and equals 0 when there is no correlation.

If the quality of results indeed decreased with larger input sizes, the Spearman coef-
ficient p should be close to —1. However, both scenarios have values close to 0, showing
that the correlation is very weak, if any. This indicates that the size of inputs is unlikely to
significantly affect the overall quality of results in these scenarios. Also, it validates that
the results reported both in the more limited simulation environment and in the hard-
ware prototype are representative of what should be expected in a real-world scenario,
regarding quality of results.

83

Chapter 7

A case for acceptability

Is quality enough?

Approximate systems offer improved efficiency in computing at a cost of accuracy in the
final result. The main observation behind such systems is that there are applications,
within certain scenarios, that do not require accurate computation in order to produce
useful results for their purpose. Typically, less accuracy means less effort on computation,
lower energy cost, and higher performance, which may highly benefit applications that
tolerate inaccuracy during computation [91]. The level of inaccuracy can be measured
using application-specific quality metrics that compare the results with golden standards
and quantify how far away they are [11]. With such an quantifiable method, approximate
systems tend to rely on quality metrics to determine when the approximation results
are acceptable. Automatic configuration of approximate systems is designed to provide
results above a predetermined quality threshold, and approximate models are evaluated
based on similar quality requirements [91|. However, the correlation between quality and
acceptability of results is not always implied, as an empiric inspection of approximate
data shows that low-quality results may be acceptable within certain scenarios, while
high-quality results, as measured by a certain metric, may not imply acceptability.

In this Chapter, we propose an application-oriented approach to determine whether
results from approximate models are acceptable. In this method, the approximate appli-
cation is inserted within a computation scenario, at which the results of the approximation
are the inputs of later transformations in the pipeline. The later step can unequivocally
determine whether it had affected the result in a way that the final interpretation was
changed. This translates the objective quality threshold into a subjective acceptabil-
ity evaluation, as it takes into account the purpose of the application in the evaluation
workflow, as the answer to whether results are useful cannot be fully generic.

We demonstrate the method in applications of Image Classification, License Plate
Recognition, and Pitch Recognition when subjected to approximation. The scenarios
were solved at increasing levels of approximation according to each application resilience.
Our results provide statistical evidence on the empiric observation that quality does not
translate into acceptability, quantify the fraction of results that are misclassified as useful
or not useful by arbitrary quality thresholds, and show to what extent acceptable results
are discarded and the unacceptable ones are not on a quality evaluation.

84

7.1 Quality evaluation of Approximate Systems

The configuration of approximate systems typically hinges on finding an error balance
that respects the limit of acceptable depreciation of the results. This allowed depreciation
depends on a decision problem that evaluates whether a result is useful to the context
of its application. A practical solution often involves quality metrics that rely on the
type of data, where multiple metrics can be used for evaluating quality loss for several
applications, although they are not mutually exclusive [91]. Common quality metrics
adopted for approximate systems are Structural Similarity Index Measure (SSIM) and
Peak Signal-to-Noise Ratio (PSNR) for image processing applications, PSNR for signal
processing, variants of Mean Absolute Error (MAE) for numerical results, and the number
of mismatches from positional data [11]. In common, these metrics measure how far from
an “accurate” result the approximation was.

The utilization of quality metrics transforms the initial decision problem into calcu-
lating or quantifying the metric, which means defining a quality threshold. Approximate
systems are often designed to work with conservative quality thresholds, and approxi-
mate applications are demonstrated as more effective when they are able to meet these
requirements [91]. Although these thresholds are an objective way to determine useful
results, they can be ineffective by not considering the context of the application. For in-
stance, noise may spoil a minor but determinant portion of an image like a character from
a license plate, leading to a high-quality but useless result in a recognition application.
Therefore, quality metrics do not determine effectively the acceptability of a result and
may mislead the configuration of approximate components. This misguided configuration
may lead to excessive production of useless results or avoidance of useful ones, which
decreases approximation benefits by wasting computing resources.

Figure 7.1 illustrates how quality measures can mislead the observation with exam-
ples of noise injection and morphological changes and their respective values of SSIM
and PSNR. Figures 7.1b and 7.1c emulate the behavior of lossy compression algorithms
executing on approximate systems, where the image was slightly cropped and has blurred
results by restoring a resized pixel array, respectively. In Figure 7.1b, the image has no
subject visible differences with baseline but has lower values of PSNR and SSIM than Fig-
ure 7.1c that has visible distortions from the baseline image. Figure 7.1d inserts noise in
the baseline image as the data had passed through an unreliable channel (e.g., an approx-
imate memory). Despite Figures 7.1b, 7.1c, and 7.1d being acceptable in an application
of image classification, for example, they would seldom meet the quality requirements
of commonly adopted thresholds. Figures 7.1e and 7.1f are completely different images,
while still evaluated as better than Figure 7.1d, which is visually similar to the baseline.
Considering that Figure 7.1b is the most useful one, followed by 7.1c and 7.1d if more
error is accepted, there is no quality threshold that can solve the acceptability decision
problem, based on SSIM and PSNR metrics alone, in this particular set. Deciding what
is acceptable is highly dependent on the application and the overall computing scenario,
and, therefore, an application-oriented approach is required.

85

(a) baseline image (b) SSIM 35.7%, PSNR 17.7 dB (c) SSIM 49.1%, PSNR 20.2 dB

(d) SSIM 18.5%, PSNR 14.0 dB (e) SSIM 19.3%, PSNR 12.4 dB (f) SSIM 26.8%, PSNR 14.1 dB

Figure 7.1: Effect of morphological changes and noise injection in the quality metric.
All images are below conservative quality thresholds, visually better images are evaluated
worse, and clearly different images are evaluated better than similar ones.

(Reused, with permission, from [45] (€)2021 IEEE)

7.2 Analyzing Acceptability of Application Output

Approximate systems use a threshold on common quality metrics to define whether the
application output is acceptable or not. However, this approach tends to produce mis-
guided results, as discussed in Section 7.1. One factor that contributes to the sub-optimal
evaluation of quality thresholds is that they do not consider what for a result is accept-
able. In our analysis, the approximate app is embedded as a portion of a more complete
computation scenario. Thus, instead of evaluating the quality of the “midstream” data
that outputs from the approximate portion, we evaluate how useful it is for the later
processing steps. The output of the approximation is considered useful, and therefore ac-
ceptable, if and only if the output of the whole computation scenario is interpreted as the
same as what would result from accurately-computed data. This translates an objective,
but unreliable, quality threshold into a subjective, but more meaningful, acceptability
evaluation.

Figure 7.2 summarizes the three computation scenarios analyzed in this work. For
each scenario, we employed architectural simulation [47] to model the execution of the
approximate portion using voltage-overscaled memory devices that reduce power with an
associated increased probability of errors in memory accesses [38]. Each application was
subjected to at least four incremental error rates, according to its inherent resilience to
error, iterating over the full input dataset for each error rate. The approximate outputs
are evaluated for quality against accurately-computed ones using common quality metrics
for the given applications.

86

Input Approximate portion Acceptability metric

- Image Classification:

| imagenette el JPEG e ResNet-50 |
‘ Quality: Acceptability:
>SSIM >Topl classification
- License Plate Recognition:
| OpenALPR e Data Transfer |m OpenALPR |
| AOLP |' Quality: *Acceptability:
SSIM Recognized plate
- Pitch Recognition:
| Instrument samples jmsf FFT f= Frequency Spectrum
>Quality: ’ >Accep'cability:
MAPE Pitch of dominant frequency

Figure 7.2: Our proposed approach to evaluate the acceptability of results. Approzrimate
applications are inserted as part of a computing scenario, and acceptable results are the
ones that do not change the general outcome.

(Reused, with permission, from [45] (©)2021 IEEE)

The computing scenarios are:

e Image Classification: We use ResNet-50 [52| under TensorFlow to label the Ima-
genette [56] dataset, adopting the network pre-trained with Imagenet weights. The
approximation was injected in JPEG preprocessing, and the quality metric is SSIM.
The acceptable outputs are those whose top-1 classification label matches the error-
free JPEG. In this JPEG application, the approximation in the output images is
visually perceived as losses in resolution, similar to Figure 7.1c.

e License Plate Recognition: We use OpenALPR [116] to read the license plates
from the software’s benchmark dataset (400+ plates from Brazil, Europe, and The
United States) and the AOLP [57] complete dataset (2000+ Taiwanese plates). The
approximation emulates the data transfer of the images, from a camera to memory,
for example, through an unreliable channel, and the quality metric is SSIM. The
acceptable outputs are the ones in which the recognition result is the same, even
if no plate is detected. This scenario represents a more classical feature extraction
and character recognition approach for Computer Vision. Also, the approximate
data transfer inserts random noise in the data, such as depicted in Figure 7.1d.

e Pitch Recognition: We analyze the frequency spectrum of 2.5K+ single-note in-
strument samples [130]. The frequency spectrum was derived from the Fast Fourier
Transform (FFT) of the samples, and the final pitch is the dominant (highest am-
plitude) frequency in the signal. Even though the dominant frequency is not the
actual definition of pitch, it is a good estimation for the single-note samples that
was accurate 68% of the time. FFT outputs are compared for quality using the
complement of Mean Absolute Percentage Error (100% - MAPE), and the result
is considered acceptable if both accurate and approximate frequencies translate to
the same note — for example, 430 Hz and 450 Hz would be a match since they both
represent the note A4.

87

Image Classification License Plate Recognition Pitch Recognition

100% 100%
75% 75%
50% 50%
25% 25%

9 o
0% 50% 60% 70% 80% 90% 95% 99% 100% 0% 0% 50% 60% 70% 80% 90% 95% 99% 100% 0% 0% 50% 60% 70% 80% 90% 95% 99% 100%

Quality bins Quality bins Quality bins

100%
75%
50%
25%

0%

% of results
% of results
% of results

Figure 7.3: Percentage of results that are acceptable within bins delimited by quality
thresholds. Higher quality generally correlates with higher acceptability, but low-quality
bins still contain acceptable results and high-quality bins, unacceptable ones.

(Reused, with permission, from [45] (©)2021 IEEE)

Image Classification License Plate Recognition Pitch Recognition
False negative False positive False negative False positive False negative False positive
- Q>99% - Q>99% - Q>99%
__g Q>95% E) Q> 95% E Q>95%
§ Q> 90% § Q>90% § Q>90%
= Q>80% = Q>80% £ Q>80%
Z Q>70% Z Q>70% ZQ>70%
S a>60% S a>60% 5 a>60%
Q> 50% Q> 50% Q> 50%
60% 30% 0% 30% 60% 60% 30% 0% 30% 60% 60% 30% 0% 30% 60%
% of false results % of false results % of false results

Figure 7.4: False positives or negatives: percentage of unacceptable or acceptable results
that are wrongfully classified using quality thresholds only. Since they are inversely pro-
portional, quality thresholds cannot sufficiently minimize them both.

(Reused, with permission, from [45] (©)2021 IEEE)

7.3 Results: Quality vs Acceptability

The relation between the quality of an application output and how acceptable it is for a
given computing scenario is not clear, and, thus, relying on a quality threshold may lead to
unreliable results. Thus, we propose to replace the quality evaluation with an acceptability
analysis that inserts the approximate application within a larger scenario. This Section
shows how the Image Classification, License Plate Recognition, and Pitch Recognition
scenarios behave when subjected to approximation, and how quality evaluation correlates
with but does not translate to acceptability of outputs.

Figure 7.3 shows the fraction of results that are rendered acceptable within bins de-
limited by quality thresholds. In general, higher-quality bins contain a higher fraction of
acceptable results, but not exclusively. The average quality of acceptable results is higher
than 93% and lower than 43% for unacceptable ones. However, these averages present
standard deviations in the order of 820 p.p. for acceptable results and 23-42 p.p. for
unacceptable ones, which highlights how unreliable the quality evaluation can be to deter-
mine whether results are useful. The quality of acceptable results can be as low as 0.6% for
Pitch Recognition, 20.4% for Image Classification, and 51.93% for License Plate Recogni-
tion, while unacceptable results can have quality up to 99.9% for all three scenarios. This
means that, whichever is a chosen quality threshold, a fraction of the unacceptable results
would be falsely evaluated as useful, and acceptable ones would be falsely discarded.

The fraction of these incorrectly classified results in relation to the overall number of
acceptable or unacceptable results is quantified in Figure 7.4. False positives are unac-

38

Image Classification License Plate Recognition Pitch Recognition
M % acceptable 0% unacceptable M % acceptable 0% unacceptable W% acceptable O% unacceptable
100% 100% 100%

2 2 2

S = S

S 75% s 75% 8 75%

5 5 =

e 50% e 50% e 50%
X X X X X X x® R X X X X X X X W X X X XX R R R
[=2) wn o o o o o o (o2} wn o (=] o o o o foa) n o o o o o o
(<)) a (=)} o0 ~ (=} wn A [e)} (o)} (o)) o0 ~ o wn A (o)) a (o)) o0 ~ () wn A
A A A A A A A o A A A A A A A o A A A A A A A o
g o o o o o g g o o o o o d g o o o o o o

Quality Threshold Quality Threshold Quality Threshold

Figure 7.5: Percentage of acceptable and unacceptable results with quality above prede-
termined thresholds. Conservative quality thresholds limit the number of acceptable results
and still allow unacceptable ones.

(Reused, with permission, from [45] (€)2021 IEEE)

ceptable results that are incorrectly classified as useful by a quality threshold, and false
negatives are acceptable ones left behind. Naturally, the false negatives increase and the
false positives decrease the higher is the quality threshold. This inverse proportion makes
it difficult to design a system that minimizes false results below an acceptable noise margin
based on quality thresholds only. For example, the quality threshold that most efficiently
minimizes false results is Q > 70% for Image Classification, even though it includes 6.1%
of the unacceptable results and misses 2.9% of the acceptable ones. In approximate sys-
tems, both false positives and false negatives represent losses in the overall efficiency of
the system, since false positives mean computation time that could be used to produce
actually useful results, and false negatives imply missed opportunities to take profit from
more aggressive approximations.

Figure 7.5 shows the cumulative distribution of both acceptable and unacceptable
results where the quality metric is evaluated above given thresholds. This aggregates
the previous analysis and highlights how many of the individual instances that were to
be accepted by a quality threshold are actually acceptable, as well as how many are left
behind and incorrectly evaluated. In all cases, decreasing the quality thresholds increases
the number of acceptable results produced, especially for more resilient applications such
as Image Classification. Compared with a system trained to deliver 90% quality, an
acceptability analysis can deliver up to 12.6% more useful results in this scenario. Even
for less-resilient applications, such as License Plate Recognition, the number of useful
results can increase 4.7%, while still avoiding 4.9% of results that were not acceptable
but surpassed the quality threshold. Considering the extra-conservative threshold 99%,
up to 19.7% more results could be rendered useful. These results show that any choice of
quality threshold leads to sub-optimal results regarding acceptability.

Our evaluation shows that arbitrary thresholds can misclassify the results, as accept-
able results are perceived within a wide range of quality bins. Our method of evaluation,
on the other hand, can produce up to 20% more valid results, while still avoiding a large
fraction of unacceptable ones. These results suggest that a quality-only approach to ana-
lyze approximate systems may leave their efficiency evaluation over- or under-estimated,
while its evaluation against a more realistic acceptability scenario can help to understand
the approximation gains.

89

Chapter 8

Conclusions

Architectural support and future directions

Hardware-level approximation techniques present a significant opportunity to offer in-
creased energy efficiency in error-tolerant applications. Their design either focuses on
the development of the approximated modules themselves in a dedicated and fully op-
timized way or is built to provide a scaling knob that configures a level of quality in
the results of the hardware unit. The dedicated hardware alternatives, however, cannot
handle full accuracy computation and, therefore, are not compatible with computation
in a general-purpose scenario. The alternatives that support configuration, on the other
hand, provide an evaluation of how each quality level impact the final quality, with little
insight into how a target application or system could control it. Either way, an adequate
hardware-software interface is needed to allow applications to control what and how the
approximation affects their behavior.

Previous attempts to integrate approximations and control within an architecture
present limitations to be applicable in a general-purpose scenario, and do not represent
the full picture on how approximation hardware affects the quality of results and energy.
To overcome these limitations, we propose a generic architecture-level interface that al-
lows software to control approximation hardware. Our ISA extension was built to offer
control capabilities in a coarse granularity, thus allowing for the mitigation of the time
overhead imposed by the need of turning approximation-hardware modules on or off at
runtime. In the software side, the mechanism to allow control is based on rapidly-available
control and status registers that can be written and read using existing instructions in
the ISA specification, which reduces the software overhead and derives compatibility with
existing compiled software. This control mechanism also applies to multi-application and
multi-user environments, in which a supervisor system can analyze and control the approx-
imation capabilities of the system on behalf of application software. This ISA extension
represents a significant contribution of this thesis that allows approximation-hardware
designers and approximation-aware software developers to test approximations integrated
within a general-purpose computing scenario.

Our demonstration of how integrating hardware-level approximation affects general-
purpose application scenarios covers two levels of implementation. First, in a functional
simulator, we show how both quality and energy figures diverge greatly from the ones

90

reported for approximation units in isolation when architectural requirements and the
need for allowing reliable execution levels are considered. Also, the results demonstrated
that architectural integration and a proper control interface are required to properly
understand the impact of Approximate Computing on applications. Based on functional
simulation, however, these results cannot capture all hardware- and architectural-level
considerations that apply to an actual processor. The simulator does not cover aspects
such as cache implementation, branch prediction, and the actual organization of some
approximation units.

The limitations of the simulator create a level of uncertainty on whether these results
actually scale to real-world, larger, general-purpose scenarios. Thus, we introduce a second
level of implementation for the same architecture-level design concepts. A full-system
multi-core hardware prototype was developed and demonstrated for an execution scenario
involving a substantially larger input dataset. This scenario showed a similarity of results
with the simulated scenario, indicating that the approximation benefits can be extended.
Moreover, an statistical analysis of the results over a varied-sized input dataset showed
that the benefits scale gracefully in larger scenarios. This highlights that an appropriate
level of architectural control can enable approximate computing in a general-purpose
scenario. Also, the results with the hardware prototype validated that the energy-quality
trade-offs obtained with the software simulator are representative of real use cases in
which such approximations could be inserted in a general-purpose computer.

Further analysis of the results obtained in both the simulation and prototype envi-
ronments raised concerns about how representative the usual quality metrics are when
facing the actual perceived quality by a potential human observer. This motivated an
auxiliary study on quality and acceptability metrics. We show that, even though there is
some correlation, both high- and low-quality metrics do not necessarily mean results are
acceptable or not in a significant number of cases. This analysis can serve as motivation
for further studies about the actual meaning of quality metrics, the development of new
quality and acceptability metrics, as well as the extension of previous quality results to the
subjective scenario. With the design tools presented in this thesis, researchers can pursue
opportunities to improve approximate systems to offer guarantees of acceptable results.
Previous work has shown an inference-based configuration of approximations based on
existing hardware-level counters by correlating their values with known applications [43].
However, the evaluation of results was based on a fixed quality threshold, which we showed
may not mean an acceptable result. By introducing acceptability metrics in the learn-
ing mechanism, researchers can obtain a system that is trained to provide acceptable
results and introduce scenarios in which a fully-featured quality metric to analyze results
is superseded.

Besides the opportunities with the acceptability analysis, the studies conducted in this
thesis identified other different scenarios that require further understanding and research
questions that can also motivate future work. The experimental analysis can be extended
to include more application and approximation scenarios. There is increasing interest
in creating new approximation sources and identifying different target applications that
can be resilient to them. In particular, applications that rely on heavy floating-point
computation can be good candidates to approximate Floating Point Units [17,72,86,102].

91

Floating-point values are likely not in the control flow of applications, or at least not
directly compared for equality in the control flow of applications. Our previous studies
of resilience of applications indicated that a separation of the control flow is a dominant
characteristic to avoid application crashes, and avoiding application crashes is determinant
towards increasing energy efficiency in approximation scenarios [37,40]. Also, the floating-
point representation is, by the very definition, an approximated concept to represent the
infinite set of real numbers. Thus, these applications and supporting hardware are good
candidates to be resilient to approximation techniques.

Another computing domain that is considered to be resilient to input noise, which
extends to being resilient to approximations, is the computation of deep neural networks.
Popular machine learning frameworks can be implemented within our software simulator
and hardware prototype to analyze the energy efficiency of introducing approximations
towards acceptable results. These, however, are likely to depend more strongly on ex-
ternal libraries and tools that rely on functions by an Operating System. In this case,
even though our experimental environment is Linux-capable, running an actual Operating
System requires additional kernel extensions and device drivers to accommodate approx-
imation control at the supervisor level. Similarly, in a multi-core environment, different
cores configured with different approximation environments create a scenario similar, in
essence, to what is expected in a heterogeneous multi-core architecture, raising an addi-
tional need for supervisor-level orchestration. These aspects are discussed in this thesis,
but the implementation of an actual generalizable OS extension is a prominent research
opportunity.

Finally, superscalar characteristics in a CPU pipeline and out-of-order execution rep-
resent additional challenges in the integration of approximation units. In this case, the
problem of orchestrating replicated approximation units in the pipeline may be a natu-
ral extension of the utilization problem of replicated execution units in the superscalar
pipeline with additional design choices and considerations. Still, all of those require some
level of cooperation at the architectural level and a better understanding of quality require-
ments and their correlation with acceptability, which are part of the main contributions
of this thesis.

92

Bibliography

[

2|

6]

17l

8]

Tor M. Aamodt and Paul Chow. Compile-time and instruction-set methods for im-
proving floating- to fixed-point conversion accuracy. ACM Trans. Embed. Comput.
Syst., 7(3), May 2008.

S Abdallah, A Chehab, A Kayssi, and I H Elhajj. TABSH: Tag-based stochastic
hardware. In 2013 4th Annual International Conference on Energy Aware Comput-
ing Systems and Applications (ICEAC), pages 115-120, 2013.

O. Akbari, M. Kamal, A. Afzali-Kusha, M. Pedram, and M. Shafique. PX-CGRA:
Polymorphic approximate coarse-grained reconfigurable architecture. In 2018 De-
sign, Automation Test in Furope Conference Exhibition (DATE), pages 413-418,
2018.

O. Akbari, M. Kamal, A. Afzali-Kusha, M. Pedram, and M. Shafique. Toward ap-
proximate computing for coarse-grained reconfigurable architectures. IEEE Micro,
38(6):63-72, 2018.

O Akbari, M Kamal, A Afzali-Kusha, M Pedram, and M Shafique. X-CGRA: An
Energy-Efficient Approximate Coarse-Grained Reconfigurable Architecture. IFEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, page 1,
2019.

M Alioto, V De, and A Marongiu. Energy-Quality Scalable Integrated Circuits and
Systems: Continuing Energy Scaling in the Twilight of Moore’s Law. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 8(4):653-678, 2018.

Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar,
Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton,
Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao, Krste
Asanovi¢, and Borivoje Nikoli¢. Chipyard: Integrated Design, Simulation, and Im-
plementation Framework for Custom SoCs. IEEE Micro, 40(4):10-21, 2020.

M S Ansari, B F Cockburn, and J Han. A Hardware-Efficient Logarithmic Multiplier
with Improved Accuracy. In 2019 Design, Automation Test in Furope Conference
Ezhibition (DATE), pages 928-931, 2019.

Krste Asanovi¢, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Palmer Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Benjamin Keller, Donggyu Kim, John Koenig, Yunsup Lee,

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

93

Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou,
David Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and
Andrew Waterman. The Rocket Chip Generator. Technical Report UCB/EECS-
2016-17, EECS Department, University of California, April 2016.

Alireza Nasiri Avanaki. Exact global histogram specification optimized for structural
similarity. Optical Review, 16(6):613-621, nov 2009.

R. Iris Bahar, Ulya Karpuzcu, and Sasa Misailovic. Special session: Does approxi-
mation make testing harder (or easier)? In 2019 IEEE 37th VLSI Test Symposium
(VTS), pages 1-9, 2019.

A S Baroughi, S Huemer, H S Shahhoseini, and N TaheriNejad. AxE: An
Approximate-Exact Multi-Processor System-on-Chip Platform. In 2022 25th Fu-
romicro Conference on Digital System Design (DSD), pages 60—66, 2022.

Soumya Basu, Loris Duch, RubEn Braojos, Giovanni Ansaloni, Laura Pozzi, and
David Atienza. An Inexact Ultra-Low Power Bio-Signal Processing Architecture
With Lightweight Error Recovery. ACM Trans. Embed. Comput. Syst., 16(5s),
2017.

Shekhar Borkar and Andrew A Chien. The future of microprocessors. Communica-
tions of the ACM, 54(5), may 2011.

Brett Boston, Adrian Sampson, Dan Grossman, and Luis Ceze. Probability type in-
ference for flexible approximate programming. In Proceedings of the 2015 ACM SIG-
PLAN International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2015, page 470-487, New York, NY, USA, 2015.
Association for Computing Machinery.

Martin Bruestel and Akash Kumar. Accounting for systematic errors in approximate
computing. In Design, Automation € Test in FEurope Conference & Ezxhibition
(DATE), 2017, pages 298-301. IEEE, mar 2017.

A. Carvalho and R. Azevedo. Towards a transprecision polymorphic floating-point
unit for mixed-precision computing. In 2019 31st International Symposium on Com-
puter Architecture and High Performance Computing (SBAC-PAD), pages 56—63,
2019.

Jorge Castro-Godinez, Julian Mateus-Vargas, Muhammad Shafique, and Jorg
Henkel. AxHLS: Design space exploration and high-level synthesis of approximate
accelerators using approximate functional units and analytical models. In Proceed-
ings of the 39th International Conference on Computer-Aided Design, ICCAD ’20,
New York, NY, USA, 2020. Association for Computing Machinery.

Jorge Castro-Godinez, Muhammad Shafique, and Jorg Henkel. ECAx: Balancing
error correction costs in approximate accelerators. ACM Trans. Embed. Comput.
Syst., 18(5s), oct 2019.

[20]

[21]

22]

23]

[24]

[25]

26]

[27]

28]

[29]

94

Jorge Castro-Godinez, Sven Esser, Muhammad Shafique, Santiago Pagani, and Jorg
Henkel. Compiler-driven error analysis for designing approximate accelerators. In
2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
1027-1032, 2018.

Karthik Chandrasekar, Christian Weis, Yonghui Li, Sven Goossens, Matthias Jung,
Omar Naji, Benny Akesson, Norbert Wehn, and Kees Goossens. DRAMPower:
Open-source DRAM Power & Energy Estimation Tool. http://www.drampower.
info.

Arun Chandrasekharan, Daniel Groundefinede, and Rolf Drechsler. ProACt: A
Processor for High Performance On-Demand Approximate Computing. In Proceed-
ings of the on Great Lakes Symposium on VLSI 2017, GLSVLSI ’17, pages 463-466,
New York, NY, USA, 2017. ACM.

Kevin K. Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose, Kevin Hsieh,
Donghyuk Lee, Tianshi Li, Gennady Pekhimenko, Samira Khan, and Onur Mutlu.
Understanding latency variation in modern DRAM chips: Experimental char-
acterization, analysis, and optimization. SIGMETRICS Perform. FEval. Rev.,
44(1):323-336, June 2016.

Kevin K. Chang, A. Giray Yaglik¢i, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O’Connor, Hasan Hassan, and
Onur Mutlu. Understanding reduced-voltage operation in modern DRAM devices:
Experimental characterization, analysis, and mechanisms. Proc. ACM Meas. Anal.

Comput. Syst., 1(1), June 2017.

V. K. Chippa, D. Mohapatra, K. Roy, S. T. Chakradhar, and A. Raghunathan.
Scalable effort hardware design. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 22(9):2004-2016, Sept 2014.

V K Chippa, S Venkataramani, S T Chakradhar, K Roy, and A Raghunathan.
Approximate computing: An integrated hardware approach. In 2013 Asilomar
Conference on Signals, Systems and Computers, pages 111-117, nov 2013.

Vinay K. Chippa, Debabrata Mohapatra, Anand Raghunathan, Kaushik Roy, and
Srimat T. Chakradhar. Scalable effort hardware design: Exploiting algorithmic
resilience for energy efficiency. In Proceedings of the 47th Design Automation Con-
ference, DAC 10, page 555-560, New York, NY, USA, 2010. Association for Com-
puting Machinery.

H Cho, L Leem, and S Mitra. ERSA: Error Resilient System Architecture for Prob-
abilistic Applications. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 31(4):546-558, 2012.

Hans Jakob Damsgaard, Aleksandr Ometov, and Jari Nurmi. Approximation op-
portunities in edge computing hardware: A systematic literature review. ACM
Comput. Surv., 55(12), mar 2023.

[30]

[31]

32]

33]

[34]

[35]

36]

37]

38]

[39]

[40]

95

V. De, S. Vangal, and R. Krishnamurthy. Near threshold voltage (NTV) computing:
Computing in the dark silicon era. IEEE Design Test, 34(2):24-30, 2017.

Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. Relax: An Archi-
tectural Framework for Software Recovery of Hardware Faults. SIGARCH Comput.
Archit. News, 38(3):497-508, 2010.

Himeshi De Silva, Andrew E. Santosa, Nhut-Minh Ho, and Weng-Fai Wong. Ap-
proxSymate: path sensitive program approximation using symbolic execution. In
Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on Lan-
guages, Compilers, and Tools for Embedded Systems - LCTES 2019, pages 148-162,
New York, New York, USA, 2019. ACM Press.

W El-Harouni, S Rehman, B S Prabakaran, A Kumar, R Hafiz, and M Shafique.
Embracing approximate computing for energy-efficient motion estimation in high

efficiency video coding. In Design, Automation Test in Furope Conference Ezhibition
(DATE), 2017, pages 1384-1389, 2017.

H Esmaeilzadeh, A Sampson, L. Ceze, and D Burger. Architecture support for
disciplined approximate programming. In International Conference on Architectural
Support for Programming Languages and Operating Systems - ASPLOS, pages 301—
312, 2012.

Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. Dark silicon and the end of multicore scaling. SIGARCH Comput.
Archit. News, 39(3):365-376, June 2011.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural ac-
celeration for general-purpose approximate programs. In Proceedings of the 2012
45th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-
45, page 449460, USA, 2012. IEEE Computer Society.

Joao Fabricio Filho, Isafas Felzmann, Rodolfo Azevedo, and Lucas Wanner. A
Resilient Interface for Approximate Data Access. In 2019 IX Brazilian Symposium
on Computing Systems Engineering (SBESC), pages 1-8, nov 2019.

Joao Fabricio Filho, Isaias Felzmann, Rodolfo Azevedo, and Lucas Wanner.
AxRAM: A lightweight implicit interface for approximate data access. Future Gen-
eration Computer Systems, 113:556-570, 2020.

Joao Fabricio Filho, Isafas Felzmann, and Lucas Wanner. Tratamento de Ponteiros

Incorretos armazenados em Memorias Aproximadas. In 10% Escola Regional de Alto
Desempenho de Sao Paulo, ERAD-SP’2019, Campinas, 2019.

Joao Fabricio Filho, Isafas Felzmann, and Lucas Wanner. Sensibilidade a erros em
aplicacoes na arquitetura RISC-V. In 11% Escola Regional de Alto Desempenho de
Sao Paulo, ERAD-SP’2020, 2020.

[41]

42]

[43]

|44]

[45]

[46]

147]

48]

[49]

[50]

[51]

96

Joao Fabricio Filho, Isajas Felzmann, and Lucas Wanner. Transparent resilience
for approximate DRAM. In Christian Hochberger, Lars Bauer, and Thilo Pionteck,
editors, Architecture of Computing Systems, pages 35-50, Cham, 2021. Springer
International Publishing.

Joao Fabricio Filho, Isaias Felzmann, and Lucas Wanner. Approximate memory
with protected static allocation. In 2022 IEEE 3jth International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD), pages 51—
59, 2022.

Joao Fabricio Filho, Isaias Felzmann, and Lucas Wanner. Smartapprox: Learning-
based configuration of approximate memories for energy-efficient execution. Sus-
tainable Computing: Informatics and Systems, 34:100701, 2022.

Isaias Felzmann, Joao Fabricio Filho, Rodolfo Azevedo, and Lucas Wanner. Im-
pact of Memory Approximation on Energy Efficiency. In 2018 Symposium on High
Performance Computing Systems (WSCAD), pages 53-60, 2018.

I[saias Felzmann, Joao Fabricio Filho, Juliane Regina de Oliveira, and Lucas Wanner.
Special Session: How much quality is enough quality? A case for acceptability in
approximate designs. In 2021 IEEE 39th International Conference on Computer
Design (ICCD), pages 5-8, 2021.

Isaias Felzmann, Joao Fabricio Filho, and Lucas Wanner. Risk-5: Controlled approx-
imations for RISC-V. IEEFE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 39(11), 2020.

Isafas Felzmann, Joao Fabricio Filho, and Lucas Wanner. AxPIKE: Instruction-level
Injection and Evaluation of Approximate Computing. In 2021 Design, Automation
€9 Test in Europe Conference € Exhibition (DATE), pages 491-494, 2021.

Isafas Felzmann, Matheus M. Susin, Liana Duenha, Rodolfo Azevedo, and Lucas
Wanner. ADeLe: Rapid Architectural Simulation for Approximate Hardware. In
2018 30th International Symposium on Computer Architecture and High Perfor-
mance Computing (SBAC-PAD), pages 9-16, 2018.

Isafas Felzmann, Matheus M. Susin, Liana Duenha, Rodolfo Azevedo, and Lucas
Wanner. ADele: A description language for approximate hardware. Future Gener-
ation Computer Systems, 102:245 — 258, 2020.

S. Geetha and P. Amritvalli. High Speed Error Tolerant Adder for Multimedia
Applications. Journal of Electronic Testing, 33(5):675-688, oct 2017.

Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav Prakash,
Jerry Zhao, Daniel Grubb, Harrison Liew, Howard Mao, Albert Ou, Colin Schmidt,
Samuel Steffl, John Wright, Ion Stoica, Jonathan Ragan-Kelley, Krste Asanovic,
Borivoje Nikolic, and Yakun Sophia Shao. Gemmini: Enabling systematic deep-
learning architecture evaluation via full-stack integration. In Proceedings of the
58th Annual Design Automation Conference (DAC), 2021.

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

62]

63]

[64]

97

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition, 2015.

Xin He, Shuhao Jiang, Wenyan Lu, Guihai Yan, Yinhe Han, and Xiaowei Li. Ex-
ploiting the potential of computation reuse through approximate computing. I[FEE
Transactions on Multi-Scale Computing Systems, 3(3):152-165, 2017.

Xin He, Liu Ke, Wenyan Lu, Guihai Yan, and Xuan Zhang. AxTrain: Hardware-
Oriented Neural Network Training for Approximate Inference. In Proceedings of the

International Symposium on Low Power Electronics and Design, page 20. ACM,
2018.

N. Ho, E. Manogaran, W. Wong, and A. Anoosheh. Efficient floating point precision
tuning for approximate computing. In 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 63-68, 2017.

Jeremy Howard. imagenette. https://github.com/fastai/imagenette/.

Gee-Sern Hsu, Jiun-Chang Chen, and Yu-Zu Chung. Application-oriented license
plate recognition. IFEE Trans. Veh. Technol., 2012.

Zhe Jiang, Xiaotian Dai, and Neil Audsley. HIART-MCS: High resilience and ap-
proximated computing architecture for imprecise mixed-criticality systems. In 2021
IEEFE Real-Time Systems Symposium (RTSS), pages 290-303, 2021.

Zhe Jiang, Xiaotian Dai, Alan Burns, Neil Audsley, Zonghua Gu, and Ian Gray. A
high-resilience imprecise computing architecture for mixed-criticality systems. IEEFE
Transactions on Computers, 72(1):29-42, 2023.

Jiayuan Meng, S. Chakradhar, and A. Raghunathan. Best-effort parallel execution
framework for recognition and mining applications. In 2009 IEEE International
Symposium on Parallel Distributed Processing, pages 1-12, May 2009.

Andrew B. Kahng and Seokhyeong Kang. Accuracy-configurable adder for approx-
imate arithmetic designs. In Proceedings of the 49th Annual Design Automation
Conference, DAC 12, page 820-825, New York, NY, USA, 2012. ACM.

N Kapadia and S Pasricha. A runtime framework for robust application scheduling
with adaptive parallelism in the dark-silicon era. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 25(2):534-546, 2017.

G Karakonstantis, G Panagopoulos, and K Roy. HERQULES: System level cross-
layer design exploration for efficient energy-quality trade-offs. In 2010 ACM/IEEE

International Symposium on Low-Power Electronics and Design (ISLPED), pages
117-122, 2010.

Georgios Karakonstantis, Debabrata Mohapatra, and Kaushik Roy. Logic and Mem-
ory Design Based on Unequal Error Protection for Voltage-scalable, Robust and
Adaptive DSP Systems. Journal of Signal Processing Systems, 68(3):415-431, 2012.

[65]

[66]

67]

68

[69]

[70]

[71]

[72]

73]

[74]

[75]

98

U R Karpuzcu, I Akturk, and N S Kim. Accordion: Toward soft Near-Threshold
Voltage Computing. In 2014 IEEE 20th International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 72-83, 2014.

Michael Keating, David Flynn, Robert Aitken, Alan Gibbons, and Kaijian Shi.
Designing power gating. In Low Power Methodology Manual: For System-on-Chip
Design, pages 41-73. Springer US, Boston, MA, 2007.

D. Kim, A. Izraelevitz, C. Celio, H. Kim, B. Zimmer, Y. Lee, J. Bachrach, and
K. Asanovicc. Strober: Fast and accurate sample-based energy simulation for ar-
bitrary RTL. In 2016 ACM/IEEE }3rd Annual International Symposium on Com-
puter Architecture (ISCA), pages 128-139, 2016.

N S Kim, T Austin, D Baauw, T Mudge, K Flautner, J S Hu, M J Irwin, M Kan-
demir, and V Narayanan. Leakage current: Moore’s law meets static power. Com-
puter, 36(12), 2003.

Nam Sung Kim and Ulya R Karpuzcu. Approximate Ultra-Low Voltage Many-Core
Processor Design. In Sherief Reda and Muhammad Shafique, editors, Approximate
Clircuits: Methodologies and CAD, pages 371-382. Springer, Cham, 2019.

Sunghyun Kim and Youngmin Kim. Adaptive approximate adder (A®) to reduce
error distance for image processor. In 2016 International SoC Design Conference
(ISOCC), pages 295-296. IEEE, oct 2016.

Sunghyun Kim and Youngmin Kim. Energy-efficient hybrid adder design by using
inexact lower bits adder. In 2016 IEEE Asia Pacific Conference on Circuits and
Systems (APCCAS), pages 355-357. IEEE, oct 2016.

Sunwoong Kim and Rob A. Rutenbar. An Area-Efficient Iterative Single-Precision
Floating-Point Multiplier Architecture for FPGA. In Proceedings of the 2019 on
Great Lakes Symposium on VLSI - GLSVLSI '19, pages 87-92, New York, New
York, USA, 2019. ACM.

Y. Kim, W. Yang, and O. Mutlu. Ramulator: A fast and extensible dram simulator.
IEEE Computer Architecture Letters, 15(1):45-49, 2016.

Younghoon Kim, Swagath Venkataramani, Sanchari Sen, and Anand Raghunathan.
Value similarity extensions for approximate computing in general-purpose proces-
sors. In 2021 Design, Automation & Test in Furope Conference & FEzxhibition
(DATE), pages 481-486, 2021.

Skanda Koppula, Lois Orosa, A. Giray Yaglik¢i, Roknoddin Azizi, Taha Shahroodi,
Konstantinos Kanellopoulos, and Onur Mutlu. EDEN: Enabling energy-efficient,
high-performance deep neural network inference using approximate dram. In Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO ’52, page 166-181, New York, NY, USA, 2019. Association for
Computing Machinery.

[76]

7]

78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

99

Logan Kugler. Is "good enough" computing good enough? Commun. ACM,
58(5):12-14, apr 2015.

Parag Kulkarni, Puneet Gupta, and Milos Ercegovac. Trading Accuracy for Power
with an Underdesigned Multiplier Architecture. In 2011 2/th Internatioal Confer-
ence on VLSI Design, pages 346-351. IEEE, jan 2011.

Michael O. Lam, Jeffrey K. Hollingsworth, Bronis R. de Supinski, and Matthew P.
Legendre. Automatically adapting programs for mixed-precision floating-point com-
putation. In Proceedings of the 27th International ACM Conference on International
Conference on Supercomputing, ICS ’13, page 369-378, New York, NY, USA, 2013.
Association for Computing Machinery.

Seogoo Lee, Lizy K. John, and Andreas Gerstlauer. High-level Synthesis of Ap-
proximate Hardware Under Joint Precision and Voltage Scaling. In Conference
on Design, Automation € Test in Furope, pages 187-192, 3001 Leuven, Belgium,
Belgium, 2017. European Design and Automation Association.

Yunsup Lee. Decoupled Vector-Fetch Architecture with a Scalarizing Compiler. PhD
thesis, EECS Department, University of California, Berkeley, May 2016.

L Leem, H Cho, J Bau, Q A Jacobson, and S Mitra. ERSA: Error Resilient System
Architecture for probabilistic applications. In 2010 Design, Automation Test in
Europe Conference Ezhibition (DATE 2010), pages 1560-1565, 2010.

Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu. RAIDR: Retention-aware
intelligent DRAM refresh. In Proceedings of the 39th Annual International Sympo-
sium on Computer Architecture, ISCA 12, page 1-12, USA, 2012. IEEE Computer
Society.

W Liu, F Lombardi, and M Shulte. A Retrospective and Prospective View of
Approximate Computing |Point of View|. Proceedings of the IEEFE, 108(3):394-399,
2020.

Jan Lucas, Mauricio Alvarez-Mesa, Michael Andersch, and Ben Juurlink. Sparkk:
Quality-Scalable Approximate Storage in DRAM. In The Memory Forum, pages
1-6, 2014.

Anita Lungu, Pradip Bose, Alper Buyuktosunoglu, and Daniel J. Sorin. Dynamic
power gating with quality guarantees. In Proceedings of the 2009 ACM/IEEE In-
ternational Symposium on Low Power Electronics and Design, ISLPED ’09, page
377-382, New York, NY, USA, 2009. Association for Computing Machinery.

S. Mach, D. Rossi, G. Tagliavini, A. Marongiu, and L. Benini. A transprecision
floating-point architecture for energy-efficient embedded computing. In 2018 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1-5, 2018.

87]

33

[89]

190]

[91]

[92]

193]

[94]

[95]

196]

100

Daniel Maier, Biagio Cosenza, and Ben Juurlink. Local memory-aware kernel perfo-
ration. In Proceedings of the 2018 International Symposium on Code Generation and
Optimization, CGO 2018, page 278287, New York, NY, USA, 2018. Association
for Computing Machinery.

Ramy Medhat, Michael O. Lam, Barry L. Rountree, Borzoo Bonakdarpour, and
Sebastian Fischmeister. Managing the performance/error tradeoff of floating-point
intensive applications. ACM Trans. Embed. Comput. Syst., 16(5s), October 2017.

Sasa Misailovic, Daniel M. Roy, and Martin C. Rinard. Probabilistically accurate
program transformations. In Eran Yahav, editor, Static Analysis, pages 316-333,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and Martin Rinard. Quality
of service profiling. In Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 1, page 25-34, New York, NY, USA, 2010.
Association for Computing Machinery.

Sparsh Mittal. A survey of techniques for approximate computing. Computing
Surveys, 48(4), March 2016.

D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy. Design of voltage-
scalable meta-functions for approximate computing. In 2011 Design, Automation
Test in Furope, pages 1-6, March 2011.

Debabrata Mohapatra, Georgios Karakonstantis, and Kaushik Roy. Significance
Driven Computation: A Voltage-Scalable, Variation-Aware, Quality-Tuning Motion
Estimator. In Proceedings of the 2009 ACM/IEEE International Symposium on Low
Power FElectronics and Design, ISLPED 09, pages 195-200, New York, NY, USA,
2009. Association for Computing Machinery.

Bert Moons and Marian Verhelst. DVAS: Dynamic Voltage Accuracy Scaling for
increased energy-efficiency in approximate computing. In International Symposium
on Low Power Electronics and Design, volume 2015-Septe, pages 237-242. IEEE,
jul 2015.

Thierry Moreau, Mark Wyse, Jacob Nelson, Adrian Sampson, Hadi Esmaeilzadeh,
Luis Ceze, and Mark Oskin. SNNAP: Approximate computing on programmable
SoCs via neural acceleration. In International Symposium on High Performance
Computer Architecture, pages 603-614. IEEE, feb 2015.

V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina. EvoApprox8b: Library of
approximate adders and multipliers for circuit design and benchmarking of approx-
imation methods. In Design, Automation Test in Europe Conference Ezhibition
(DATE), 2017, pages 258261, March 2017.

97]

98]

199]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

101

Tomoki Nakamura, Kazutaka Tomida, Shouta Kouno, Hidetsugu Irie, and Shuichi
Sakai. Stochastic iterative approximation: Software/hardware techniques for adjust-
ing aggressiveness of approximation. In 2021 IEEE 39th International Conference
on Computer Design (ICCD), pages 74-82, 2021.

Farzaneh Nakhaee, Mehdi Kamal, Ali Afzali-Kusha, Massoud Pedram, Sied Mehdi
Fakhraie, and Hamed Dorosti. Lifetime improvement by exploiting aggressive volt-

age scaling during runtime of error-resilient applications. Integration, 61:29 — 38,
2018.

Sriram Narayanan, John Sartori, Rakesh Kumar, and Douglas L. Jones. Scalable
Stochastic Processors. In Proceedings of the Conference on Design, Automation and
Test in Europe, DATE 10, pages 335-338, Leuven, BEL, 2010. European Design
and Automation Association.

Geneviéve Ndour, Tiago Trevisan Jost, Anca Molnos, Yves Durand, and Arnaud
Tisserand. Evaluation of Approximate Operators Case Study: Sobel Filter Appli-
cation Executed on an Approximate RISC-V Platform. In Proceedings of the 18th
International Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation, SAMOS 18, pages 146-149, New York, NY, USA, 2018. Association
for Computing Machinery.

Genevieve Ndour, Tiago Trevisan Jost, Anca Molnos, Yves Durand, and Arnaud
Tisserand. Evaluation of Variable Bit-Width Units in a RISC-V Processor for Ap-
proximate Computing. In Proceedings of the 16th ACM International Conference
on Computing Frontiers, CF '19, pages 344-349, New York, NY, USA, 2019. ACM.

J. Jean Jenifer Nesam and S. Sivanantham. An area-efficient 32-bit floating point
multiplier using hybrid GPPs addition. In 2017 International conference on Micro-
electronic Devices, Circuits and Systems (ICMDCS), pages 1-4. IEEE, aug 2017.

Mohammad Taghi Teimoori Nodeh, Mostafa Bazzaz, and Alireza Ejlali. Exploiting
approximate MLC-PCM in low-power embedded systems. ACM Trans. Embed.
Comput. Syst., 17(1), December 2017.

Bernard Nongpoh, Rajarshi Ray, and Ansuman Banerjee. Approximate comput-
ing for multithreaded programs in shared memory architectures. In Proceedings
of the 17th ACM-IEEE International Conference on Formal Methods and Models
for System Design, MEMOCODE 19, New York, NY, USA, 2019. Association for
Computing Machinery.

Bernard Nongpoh, Rajarshi Ray, Moumita Das, and Ansuman Banerjee. Enhancing

speculative execution with selective approximate computing. ACM Trans. Des.
Autom. Electron. Syst., 24(2), feb 2019.

Mario Osta, Ali Ibrahim, Hussein Chible, and Maurizio Valle. Inexact Arithmetic
Circuits for Energy Efficient IoT Sensors Data Processing. In 2018 IEEE Interna-
tional Symposium on Clircuits and Systems (ISCAS), pages 1-4. IEEE, may 2018.

[107]

[108]

[109]

[110]

[111]

[112]

[113]

114)

[115]

[116]

102

Konstantinos Parasyris, Vassilis Vassiliadis, Christos D Antonopoulos, Spyros Lalis,
and Nikolaos Bellas. Significance-Aware Program Execution on Unreliable Hard-
ware. ACM Trans. Archit. Code Optim., 14(2), 2017.

Jongse Park, Emmanuel Amaro, Divya Mahajan, Bradley Thwaites, and Hadi Es-
maeilzadeh. Axgames: Towards crowdsourcing quality target determination in ap-
proximate computing. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems, AS-
PLOS ’16, page 623-636, New York, NY, USA, 2016. Association for Computing
Machinery.

M. Powell, Se-Hyun Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar. Gated-
v/sub dd/: a circuit technique to reduce leakage in deep-submicron cache memories.
In ISLPED’00: Proceedings of the 2000 International Symposium on Low Power
FElectronics and Design (Cat. No.00TH851/), pages 90-95, July 2000.

Bharath Srinivas Prabakaran, Semeen Rehman, and Muhammad Shafique.
XBioSiP: A Methodology for Approximate Bio-Signal Processing at the Edge. In
Proceedings of the 56th Annual Design Automation Conference 2019, DAC ’19, New
York, NY, USA, 2019. Association for Computing Machinery.

K. Qiu, J. Luo, Z. Gong, W. Zhang, J. Wang, Y. Xu, T. Li, and C. J. Xue. Refresh-
aware loop scheduling for high performance low power volatile stt-ram. In 2016
IEEE 34th International Conference on Computer Design (ICCD), pages 209-216,
2016.

Rengarajan Ragavan, Benjamin Barrois, Cedric Killian, and Olivier Sentieys. Push-
ing the limits of voltage over-scaling for error-resilient applications. In Design, Au-
tomation and Test in Furope, pages 476-481. IEEE, mar 2017.

A. Raha, S. Sutar, H. Jayakumar, and V. Raghunathan. Quality configurable ap-
proximate DRAM. IEEE Transactions on Computers, 66(7):1172-1187, July 2017.

A Rahimi, A Marongiu, R K Gupta, and L Benini. A variability-aware OpenMP
environment for efficient execution of accuracy-configurable computation on shared-

FPU processor clusters. In 2018 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+1SSS), pages 1-10, 2013.

Ashish Ranjan, Swagath Venkataramani, Zoha Pajouhi, Rangharajan Venkatesan,
Kaushik Roy, and Anand Raghunathan. STAxCache: an approximate, energy effi-
cient STT-MRAM cache. In Proceedings of the Conference on Design, Automation
& Test in Europe, pages 356-361. European Design and Automation Association,
2017.

Rekor Systems. OpenALPR - Automatic License Plate Recognition. https://
github.com/openalpr/openalpr.

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

103

Martin Rinard. Probabilistic accuracy bounds for fault-tolerant computations that
discard tasks. In Proceedings of the 20th Annual International Conference on Su-
percomputing, ICS 06, page 324-334, New York, NY, USA, 2006. Association for
Computing Machinery.

Gennaro S Rodrigues, Juan Fonseca, Fabio Benevenuti, Fernanda Kastensmidt, and
Alberto Bosio. Exploiting Approximate Computing for Low-Cost Fault Tolerant
Architectures. In Proceedings of the 32nd Symposium on Integrated Crircuits and

Systems Design, SBCCI "19, New York, NY, USA, 2019. Association for Computing
Machinery.

Pooja Roy, Rajarshi Ray, Chundong Wang, and Weng Fai Wong. ASAC: Auto-
matic sensitivity analysis for approximate computing. In Proceedings of the 2014
SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded
Systems, LCTES ’14, page 95-104, New York, NY, USA, 2014. Association for
Computing Machinery.

Cindy Rubio-Gonzalez, Cuong Nguyen, Hong Diep Nguyen, James Demmel,
William Kahan, Koushik Sen, David H. Bailey, Costin Iancu, and David Hough.
Precimonious: Tuning assistant for floating-point precision. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, SC ’13, New York, NY, USA, 2013. Association for Computing Ma-
chinery.

A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip, L. Ceze, and M. Oskin.
ACCEPT: A Programmer-Guided Compiler Framework for Practical Approximate
Computing. Technical report, University of Washington, UW-CSE, 01 2015.

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. EnerJ: Approximate Data Types for Safe and General
Low-power Computation. SIGPLAN Not., 46(6), 2011.

Doochul Shin and Sandeep K Gupta. Approximate logic synthesis for error tolerant
applications. In 2010 Design, Automation € Test in Furope Conference € Exhibition
(DATE 2010), pages 957-960. IEEE, mar 2010.

Qilin Si, Prattay Chowdhury, Rohit Sreekumar, and Benjamin Carrion Schafer.
Application specific approximate behavioral processor. IEEE Transactions on Sus-
tainable Computing, 8(2):165-179, 2023.

Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard.
Managing performance vs. accuracy trade-offs with loop perforation. In Proceed-
ings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ESEC/FSE 11, page 124-134, New York,
NY, USA, 2011. ACM.

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

137]

138

104

G Tagliavini, D Rossi, L Benini, and A Marongiu. Synergistic Architecture and
Programming Model Support for Approximate Micropower Computing. In 2015
IEEE Computer Society Annual Symposium on VLSI, pages 280-285, 2015.

G Tagliavini, D Rossi, A Marongiu, and L Benini. Synergistic HW /SW Approxima-
tion Techniques for Ultra-Low-Power Parallel Computing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(5):982-995, 2018.

Ibrahim Tagtan, Mahmut Karaca, and Arda Yurdakul. Approximate CPU Design
for ToT End-Devices with Learning Capabilities. FElectronics, 9(1):125, jan 2020.

F Tu, S Yin, P Ouyang, L. Liu, and S Wei. Reconfigurable Architecture for Neu-
ral Approximation in Multimedia Computing. IEEE Transactions on Circuits and
Systems for Video Technology, 29(3):892-906, 2019.

University of lowa Electronic Music Studios. Musical instrumental samples. http:
//theremin.music.uiowa.edu/MIS.html.

R Venkatagiri, A Mahmoud, S K S Hari, and S V Adve. Approxilyzer: Towards a
systematic framework for instruction-level approximate computing and its applica-
tion to hardware resiliency. In MICRO, pages 1-14, 2016.

S Venkataramani, V K Chippa, S T Chakradhar, K Roy, and A Raghunathan. Qual-
ity programmable vector processors for approximate computing. In 2013 46th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
1-12, 2013.

S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan. SALSA:
Systematic logic synthesis of approximate circuits. In DAC Design Automation
Conference 2012, pages 796-801, June 2012.

Yan Verdeja Herms and Yanjing Li. Crash Skipping: A Minimal-Cost Framework for
Efficient Error Recovery in Approximate Computing Environments. In Proceedings
of the 2019 on Great Lakes Symposium on VLSI, GLSVLSI 19, pages 129-134, New
York, NY, USA, 2019. Association for Computing Machinery.

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assess-
ment: from error visibility to structural similarity. IEFEE Transactions on Image
Processing, 13(4):600-612, 2004.

L Wanner, S Elmalaki, L. Lai, P Gupta, and M Srivastava. VarEMU: An Emulation
Testbed for Variability-aware Software. In CODES+I1SSS, 2013.

Andrew Waterman and Krste Asanovic. The RISC-V Instruction Set Manual -
Volume II: Privileged Architecture, 2019.

Mark Wyse, Andre Baixo, Thierry Moreau, Bill Zorn, James Bornholt, Adrian
Sampson, Luis Ceze, and Mark Oskin. REACT: A Framework for Rapid Exploration

of Approximate Computing Techniques. In Workshop on Approximate Computing
Across the Stack, 2015.

[139]

[140]

141

142

143

[144]

[145]

[146]

[147]

105

S Xu and B C Schafer. Toward Self-Tunable Approximate Computing. [FEE
Transactions on Very Large Scale Integration (VLSI) Systems, 27(4):778-789, 2019.

Lei Yang, Weichen Liu, Weiwen Jiang, Chao Chen, Mengquan Li, Peng Chen, and
Edwin H M Sha. Hardware-software collaboration for dark silicon heterogeneous
many-core systems. Future Generation Computer Systems, 68:234-247, 2017.

Zhixi Yang, Ajaypat Jain, Jinghang Liang, Jie Han, and Fabrizio Lombardi. Ap-
proximate XOR/XNOR-based adders for inexact computing. In 2013 15th IEEE
International Conference on Nanotechnology (IEEE-NANO 2013), pages 690-693.
IEEE, aug 2013.

Hasan Erdem Yantir, Ahmed M. Eltawil, and Fadi J. Kurdahi. Approximate Mem-
ristive In-memory Computing. ACM Transactions on Embedded Computing Sys-
tems, 16(5s):1-18, sep 2017.

Yi-Ping You, Chung-Wen Huang, and Jenq Kuen Lee. Compilation for com-
pact power-gating controls. ACM Trans. Des. Autom. Electron. Syst., 12(4):51-es,
September 2007.

F. Zaruba and L. Benini. The cost of application-class processing: Energy and
performance analysis of a Linux-ready 1.7-GHz 64-bit RISC-V core in 22-nm FDSOI
technology. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
27(11):2629-2640, 2019.

Ziji Zhang, Yajuan He, Jin He, Xilin Yi, Qiang Li, and Bo Zhang. Optimal slope
ranking: an approximate computing approach for circuit pruning. In IFEE Inter-
national Symposium on Circuits € Systems (ISCAS), pages 1-4. IEEE, may 2018.

Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. SonicBOOM:
The 3rd generation Berkeley Out-of-Order Machine. In Fourth Workshop on Com-
puter Architecture Research with RISC-V, May 2020.

Zhigang Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and
P. Bose. Microarchitectural techniques for power gating of execution units. In
Proceedings of the 2004 International Symposium on Low Power Electronics and
Design (IEEE Cat. No.04TH8758), pages 32-37, Aug 2004.

	Introduction: An architecture for Approximate Computing
	Background: Approximate Computing and approximation techniques
	Configurability of hardware-level approximations
	Non-configurable approximation techniques
	Directly-configurable approximation techniques
	Indirectly-configurable approximation techniques

	Related work: Interfacing hardware approximations and software
	Approximation-only related projects
	Interface-only related projects
	Approximation and interface related projects
	The design choices that led to this thesis

	Integrating Approximate Computing: Architecture-level specification
	Risk-5: Approximation-aware ISA Extension
	Approximation groups
	Approximation Description Table
	Approximation availability and delegation
	Approximation status and control
	Activation/Deactivation behavior
	Approximation-specific controllability
	Interaction in multicore architectures

	Hardware support
	Non-configurable approximate multipliers
	Configurable approximate DRAM
	Approximation controller

	Software Interface
	Minimalist support
	Approximation coherence of shared resources

	Implementation: Simulated behavior and FPGA prototype
	The AxPIKE ISA Simulator
	Comparison with other simulators
	The Simulation Environment
	Approximation Modeling and Injection
	Software Control Interface
	Statistics generator

	A sample usage case

	FPGA-based Full Approximate System Prototype
	Hardware Workflow
	Base ZCU102 Support
	Approximation controller
	Approximate Multipliers
	DRAM Error Injector
	Area overhead

	Software Framework

	Experimentation: Evaluating the Approximate Computing integration
	Experiments on the simulation environment
	Configurable approximate DRAM
	Non-configurable approximate multipliers

	Experiments on the hardware prototype
	Evaluating the Approximate DRAM operating point
	Integrating the Approximate Multipliers
	The impact of scaling input size

	A case for acceptability: Is quality enough?
	Quality evaluation of Approximate Systems
	Analyzing Acceptability of Application Output
	Results: Quality vs Acceptability

	Conclusions: Architectural support and future directions
	Bibliography

