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Resumo

Bitcoin é a criptomoeda mais famosa mundialmente devido ao seu alto valor especulativo e
uso descentralizado, dispensando a existência de agentes centralizados como, por exemplo,
instituições financeiras. O protocolo da Bitcoin adota a curva elíptica secp256k1, haja
vista o seu alto desempenho. Entretanto, a curva secp256k1 é reconhecida como fraca
por não conseguir prover computações simples, eficientes e seguras ao mesmo tempo,
além de conter curvas irmãs, twists, consideradas inseguras, podendo tornar o protocolo
suscetível a ataques de curva inválida. Apesar de difícil execução, ataques de injeção
de falhas são muito poderosos pois, em sua maioria, podem explorar aspectos difíceis de
serem controlados remotamente como, por exemplo, temperatura, voltagem e frequência.
Dentre os ataques de injeção de falhas está o Rowhammer, um ataque via software que
afeta diretamente a memória DRAM, invertendo bits devido a uma grande quantidade
de leituras consecutivas. Neste trabalho, o Rowhammer foi utilizado para injetar falhas
na implementação da curva adotada pela Bitcoin, visando a subversão do protocolo e a
extração da chave privada. Além disso, observou-se que o ataque proposto é capaz de
afetar outras curvas elípticas e demais protocolos que utilizam o Algoritmo de Assinatura
Digital de Curvas Elípticas (ECDSA). Por fim, conjectura-se que a idade ou o tempo de
uso possa induzir problemas em memórias DRAM que permitam ataques de Rowhammer.
Nessa direção, iniciou-se um estudo de envelhecimento artificial de memórias DRAM
através do aquecimento usando resistências e alterações de voltagem através da placa-
mãe. As resistências possibilitaram experimentos com temperaturas acima de 200°C.
Como resultado, percebeu-se a existência de uma faixa de operação segura para a memória
DRAM. Falhas de leitura ou escrita puderam ser observadas a partir de uma determinada
temperatura e voltagem. Além disso, encontrou-se um limiar máximo de temperatura e
voltagem, a partir do qual a memória tornava-se inoperante.



Abstract

Bitcoin is the most famous worldwide cryptocurrency due to its high speculative value
and decentralized use, avoiding the need for centralized agents as financial institutions.
The Bitcoin protocol adopts the secp256k1 elliptic curve because of its high performance.
However, secp256k1 is known to be a weak curve due to not provide a simple, efficient and
secure computing at same time, in addition to containing unsafe twists, making the pro-
tocol susceptible to invalid curve attacks. Despite their complex execution, fault-injection
attacks are powerful as most exploit aspects hard of being controlled remotely, such as
temperature, voltage, frequency, and others. Among these attacks, Rowhammer is a soft-
ware attack that directly affects the DRAM memory by inverting bits via many subsequent
reads. In this work, we used Rowhammer to inject flaws in the implementation of curve
within Bitcoin, aiming to subvert the protocol and extract the private key. However, we
observed that the proposed attack could also affect other curves and protocols that use
the Elliptic Curve Digital Signature Algorithm (ECDSA). Finally, we conjecture that age
or time of use may introduce vulnerabilities in DRAM memories that allow Rowhammer
attacks. In this direction, we started exploring the artificial aging of DRAM memories
by heating, using resistors, and regulating the voltage in the motherboard. The resistors
allowed experiments with temperatures above 200°C. As a result, we obtained a secure
operating threshold for DRAM memories. Thus, read or write failures were observed
above a specific temperature and voltage. Moreover, we found a maximum threshold for
temperature and voltage, above which the memory became inoperative.
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Chapter 1

Introduction

In cryptography, a side-channel attack is performed on a collection of information gathered

during the execution of a cryptographic implementation. This information is obtained dif-

ferently from a brute-force attack – that exhaust all possible inputs – or some inherent

theoretical weakness of the algorithm, as in the case of the Data Encryption Standard

(DES), which cryptanalysis reduces a 2
56-bit brute-force attack to 2

41 [48]. Side-channel

attacks can be performed on data obtained from running time, energy consumption, elec-

tromagnetic emanation, sound waves, and others. Paul Kocher was a pioneer in this field,

showing how to perform side-channel attacks using the time channel on implementations

of public-key cryptographic systems [58].

A class of side-channel attacks is Differential Fault Analysis (DFA). The principle is

to induce failures during the execution of cryptographic implementations to partially or

entirely reveal an internal state and then derive the cryptographic key or plaintext. DFA

attacks are carried out by first injecting flaws in hardware structures, including main

memory, CPU registers, logic and arithmetic units, transistors, among others. Then, the

attacker observes the effect of the induced failure on higher layers, such as arithmetic,

cryptographic primitives, and protocols. This process of injecting and observing is exem-

plified by The Fault Attack Jungle [92], which is given in Figure 1.1. This fault injection

model is a pyramid, showing where faults are injected and where they manifest.

Faults can also occur in natural ways. For example, cosmic rays can induce bit flips in

electronic equipment’s [99]. In the 50s, anomalies were recorded by monitoring electronic

equipment thanks to nuclear bomb tests [99]. In the 60s, minor flaws appeared in elec-

tronics sent into space by the space industry [99]. In the 70s, IBM started a study on how

α particles interfered in semiconductors [99]. These examples show that the electronics

industry has been concerned with the accidental inversion of bits for over half a century.

However, the injection of intentional failures depends on the level of control over the soft-

ware or hardware by the malicious agent. Projects admit a fault tolerance probability

rate, which is usually estimated for natural causes. In the case of purposeful failures, this

probability can be as high as the failure injection power.
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Protocols

Primitives

Cryptographic

Arithmetic

ALU + Registers + Memory
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Logic
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Fault Manifestation

Fault Target

Figure 1.1: Security pyramid model of fault injection adapted from [92]. The base repre-
sents hardware at its lowest level, and the top represents software at its higher abstraction.

1.1 Objectives

The first step to being an excellent defender is to know how to perform an attack. During

the process, the attacker needs to know how the system is defended, which may require

much creativity. One way of attacking is to explore side channels, which allows observing

design flaws and adding barriers to system protection. The study of fault-injection side-

channel attacks is increasing in academy since the technologies using them are becoming

accessible. For example, Karim M. et al. showed a low cost setup for Electromagnetic

Fault-Injection (EMFI) attacks costing around $200 [1].

Some software fault-injection attacks are well known, one of which uses excessive

writing on SSDs to burn cells and perform a Denial-of-Service attack [31]. Another attack

could be the distribution of malicious binaries that perform flawed computations, such as

commercial cryptographic binaries modified by the National Security Agency (NSA) [5].

The most relevant software fault-injection attack for this work is Rowhammer [54]. The

Rowhammer attack exploits the memory design, which contains several banks with a two-

dimensional array made of rows and columns. The attack tries to focus on keeping a set of

row readings in the same memory bank using a set of physical memory address. Given a

consecutive series of readings (“hammering”) in some memory rows, it ends up flipping bits

in a predefined memory cell. The initial research of Rowhammer in Dynamic Random-

Access Memory (DRAM) memories with potential for building attacks was published by

Kim et al. in 2014 [54].

In late 2015, the Joint Electron Device Engineering Council (JEDEC) [47] standards
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association proposed the LPDDR4 memory model that includes support for hardware

that prevents the effect of Rowhammer without loss of performance and increase of power

consumption. However, these measures are not enough to mitigate Rowhammer forever.

Even with protections like Error-Correcting Code (ECC), Cojocar et al. showed in 2019

that Rowhammer can circumvent these countermeasures and affect this category of mem-

ories [19]. In 2020, two more attacks involving LPDDR4 models were conceived. One was

used to read memories after some bit flips, also bypassing ECC protection [59]. The other

can bypass the Target Row Refresh (TRR) protection, known as the ultimate defense

against Rowhammer [29].

These new attacks guarantee long research on how to design new memory models

and how to build countermeasures against Rowhammer in legacy memory systems. The

attack can also be used on personal computers and Android smartphones to gain root

privilege [89, 84]. From a cryptographic point of view, the attack has already been used

to recover RSA private keys by injecting flaws and combining cache attacks [10]. It is

important to remember that even if the hardware industry mitigates the attack at some

point, several vulnerable memory chips – the problem arose on DDR3 memories and part

of DDR4 – were sold and are still in use. In this context, this work aims to perform

fault-injection attacks in a software implementation of the elliptic curve secp256k1 used

by Bitcoin. Also, this work seeks to provide a brief study on how memory aging can lead

to attacks similar to Rowhammer.

1.2 Contributions

This work claims four contributions. First, we survey the DRAM memory operation,

including its architecture with design and construction and the memory controller re-

sponsible for managing all operations over DRAM. Secondly, we survey the Rowhammer

attack, detailing the attack types, how to execute an attack step-by-step, and some coun-

termeasures. The third contribution focuses on fault injection in Bitcoin-core wallet using

Rowhammer, in the Elliptic Curve Digital Signature Algorithm (ECDSA) protocol, and

in the implementation of the elliptic curve secp256k1. Finally, the fourth contribution

focuses on DRAM aging, seeking answers on whether a used memory may present failures

similar to Rowhammer over time.

1.3 Organization

This dissertation is organized as follows. Chapter 2 presents basic concepts of cryptog-

raphy and elliptic curves, the Discrete Logarithm Problem, the Chinese Remainder The-

orem, side-channel attacks, and fault injection. Then, Chapter 3 introduces the DRAM

architecture, showing the cells’ organization, construction details, and subsystem. It

also presents a working memory controller, showing commands executed over the DRAM

memory, memory timings used to control the memory, address mapping, Error-Correcting

Code memory, and the Target Row Refresh solution.

Chapter 4 presents types of Rowhammer attacks, such as double-sided, single-sided,
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one-location, and many-sided. This chapter continues addressing a step-by-step Rowham-

mer attack, showing how to find and put a target in a vulnerable region and flip a bit (or

bits) from the target location. Lately, this chapter enumerates some software and hard-

ware countermeasures. Chapter 5 approaches how to use Rowhammer to inject faults in

the Bitcoin-core Wallet, the ECDSA protocol, and the curve secp256k1. Then, Chapter 6

addresses an initial study about DRAM aging and how it can lead to memories vulnerable

to Rowhammer. Finally, Chapter 7 presents final remarks and directions for future works.
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Chapter 2

Preliminaries

Cryptography is the practice and the study of techniques for secure communications in

the presence of adversarial behavior [79]. These techniques aim to enforce the five pillars

from Information Assurance [95]:

Confidentiality: a security measure that protects data against unauthorized ac-

cess.

Integrity: a security measure that protects data against unauthorized

modifications.

Authenticity: a security measure that provides confidence in data senders and

validity of their message.

Availability: a security measure that ensures that data is retrieved or modi-

fied by authorized individuals.

Non-repudiation: a security measure that provides capability to determine if a

particular action occurred such as creating information, sending a message, approv-

ing information, and receiving a message. In other words, perfect non-repudiation

cannot argue falsely about the source or authenticity of data.

This chapter is organized as follows. Section 2.1 details basic concepts of cryptography,

presenting symmetric and asymmetric cryptosystems. Then, Section 2.2 introduces Ellip-

tic Curve Cryptography, including mathematical concepts, such as fields, elliptic curves

and their operations, and elliptic curve for cryptography. Subsection 2.2.6 presents the

Chinese Remainder Theorem (CRT), a fundamental theorem used to compose modular

operations. Next, Section 2.3 details the categories of side-channel attacks: timing at-

tack, cache attack, differential fault analysis, among others. Finally, Section 2.4 discusses

fault-injection attacks.

2.1 Basic Concepts of Cryptography

The etymology of the word “cryptography” comes from “the art of writing secrets”. A

cryptographic system is defined by two bijective functions [68]: one for encryption of a



22

plaintext m into a ciphertext c, denoted Ee(m), and another, Dd(c), for decryption of a

ciphertext c into a plaintext m. The encryption and decryption functions are parameter-

ized by the keys e and d, respectively, each belonging to a finite set of keys K. For every

key e ∈ K, there exists a key d ∈ K such that Dd = E−1
e ; that is, Dd(Ee(m)) = m.

A cryptographic system is weak if an attacker can systematically retrieve the plaintexts

from the ciphertexts without knowledge of the keys (e, d) in a reasonable time [68]. How

much is reasonable depends on the value of the information contained in the plaintext, that

is, the attacker must not be able to easily enumerate all decryptions for each key d ∈ K

(brute force attack) or retrieve the plaintext by using some weakness in the algorithm

(cryptoanalysis) or implementation (side-channel). In the worst case, the attacker must

spend more resources, such as time, energy, and money, than the plaintext value. These

definitions make it possible to classify cryptographic systems as symmetric or asymmetric.

2.1.1 Symmetric System

A symmetric system contains a key d for decryption and a key e for encryption, and each

can be calculated from the other in polynomial time [68, Definition 1.24]. Most symmetric

cryptosystems choose the encryption key to be identical to the decryption key [68]. A

symmetric system is represented in Figure 2.1, in which two entities, Alice and Bob, want

to establish a secure communication. The keys are generated and distributed over a secure

channel inaccessible to the attacker. In Alice’s entity, a plaintext m is obtained and given

as input to the encryption function, thus generating a ciphertext c. Then, the ciphertext

is delivered to Bob through an insecure channel, where the attacker can interact with

their communication to confuse Alice and Bob. When the ciphertext arrives at Bob, it

goes through decryption, and the plaintext m can be retrieved if there was no tempering.

Bob

Alice

Adversary

Source
Key

e

Ee(m) = c

Encryption

m

Source
Plaintext

Active

e

Secure Channel

c

Insecure Channel Dd(c) = m

Decryption

m

Destination

Figure 2.1: Representation of a symmetric cryptosystem [68].

Based on the model presented above, a modern symmetric cipher uses layers of confu-

sion (substitution), diffusion (permutation), and key addition, also known as Substitution-

Permutation Networks (SPN) [39]. During decryption and encryption, there exists an in-

ternal state that goes through each of these layers for repeated rounds. A natural example

of SPN is the Advanced Encryption Standard (AES) [25].
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2.1.2 Asymmetric System

An asymmetric system contains a public and a private key pair, so the private key can-

not be derived from the public key in polynomial time [68, Definition 1.50]. Figure 2.2

represents an asymmetric system in which Alice is sending a ciphertext to Bob.

Alice

Bob

Adversary

Source
Key

d

Ee(m) = c

Encryption

m

Source
Plaintext

Active Passive

e

Channel
Insecure

c

Channel
Insecure Dd(c) = m

Decryption

m

Destination

Figure 2.2: Representation of an asymmetric cryptosystem [68].

In this scenario, the attacker has access to two channels: one where he can actively

interact with the insecure channel, and the other is passive, and he can observe without

performing changes. Bob transmits his public key to Alice to encrypt the plaintext and

send the ciphertext, which Bob then decrypts to obtain the plaintext.

2.2 Elliptic-Curve Cryptography

This section covers introductory concepts in elliptic-curve cryptography, such as the defi-

nition of fields, elliptic curves, equivalent curves, and isomorphisms, required for a greater

understanding of the following chapters.

2.2.1 Fields

The triple (K,+, ⋆) represents a field K, in which K is an non-empty set, + is the addition

in the field K, and ⋆ is the multiplication in K. The binary operations of addition and

multiplication in the field K satisfy the following properties:

• Addition defined by the function + : K × K → K.

1. Commutative: ³ + ´ = ´ + ³, ∀³, ´ ∈ K.

2. Associative: (³ + ´) + µ = ³ + (´ + µ), ∀³, ´, µ ∈ K.

3. Neutral element: ∃0 ∈ K | ³ + 0 = ³, ∀³ ∈ K.

4. Inverse: ∃ −³ ∈ K | ³ + (−³) = 0, ∀³ ∈ K.

• Multiplication defined by the function ⋆ : K × K → K.
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1. Commutative: ³ ⋆ ´ = ´ ⋆ ³, ∀³, ´ ∈ K.

2. Associative: (³ ⋆ ´) ⋆ µ = ³ ⋆ (´ ⋆ µ), ∀³, ´, µ ∈ K.

3. Distributive: µ ⋆ (³ + ´) = ³ ⋆ µ + ´ ⋆ µ, ∀³, ´, µ ∈ K.

4. Neutral element: ∃1 ∈ K | ³ ⋆ 1 = ³, ∀³ ∈ K.

5. Inverse element: ∃³−1 ∈ K \ {0} | ³ ⋆ ³−1 = 1, ∀³ ∈ K \ {0}.

In the field K, subtraction is done by adding the inverse additive, and division is performed

by multiplying by the multiplicative inverse. The sets of rational Q, real R, and complex

numbers C are examples of infinite fields.

The order of a field is the number of elements in K. There exists a finite field F of

order q if and only if q is a prime power, that is, q = pm for a prime number p called

the characteristic of F , and m a positive integer. If m = 1, F is said to be a prime field ;

otherwise, it is an extension field.

Example 2.1 (Prime field F11). The elements of the prime field F11 are {0, 1, 2, . . . , 10}.

Examples of arithmetic operations in F11 are as follows.

i) Addition: 5 + 9 = 3, since 14 mod 11 = 3.

ii) Subtraction: 6− 9 = 8, since −3 mod 11 = 8.

iii) Multiplication: 7 ⋆ 3 = 10, since 21 mod 11 = 10.

iv) Inversion: 7−1 = 8, since 7 ⋆ 8 mod 11 = 1.

Let p be a prime and m g 2. Fp[x] denotes the set of all polynomials in the variable

x with coefficients in Fp. Let f(x) be an irreducible polynomial of degree m in Fp[x]. A

polynomial f(x) that cannot be factored as a product of polynomials in Fp[x], each of

degree less than m, is said to be irreducible. The elements of Fpm are the polynomials in

Fp[x] of degree at most m− 1:

Fpm = {am−1x
m−1 + am−2x

m−2 + . . .+ a2x
2 + a1x+ a0 : ai ∈ Fp}

The addition in a field is the usual addition of polynomials with coefficient arithmetic

done in Fp. In turn, the multiplication of field elements is performed modulo an irreducible

polynomial f(x).

Example 2.2 (Extension field F414). Let p = 41 and m = 4. It is possible to use the

irreducible polynomial f(x) = 2x4 + 15x2 + 29x + 21 in F414 . Examples of arithmetic

operations in F414 are as follows. Let a = 32x3 + 39x+ 5 and b = 15x3 + 10x2 + 21.

i) Addition: a+ b = 6x3 + 10x2 + 39x+ 26.

ii) Subtraction: a− b = 17x3 + 31x2 + 39x+ 25.

iii) Multiplication: a ⋆ b = 18x3 + 6x2 + 33x+ 8.

iv) Inversion: a−1 = 21x3 + 14x2 + 2x+ 24.
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The algebraic closure of a field K is denoted K, such that ³ ∈ K is root of a non-

constant polynomial P (x) =
∑n

i=0
aix

i, ai ∈ K, that is, P (³) = 0 [49]. For example,

the algebraic closure of R is the set of complex numbers C. Also, every non-constant

polynomial P (x) with coefficients in R has roots in the set of complex numbers. For

example, the polynomial P (x) = x3 − x2 + x − 1 has one real root, which is 1, and two

complex roots: i and −i. The algebraic closure of a field Fpm is the union of all fields of

extensions Fpm for all m g 1.

2.2.2 Elliptic Curves

An elliptic curve E over a field K, denoted E(K), can be defined by the Weierstrass

equation [38, 9] as

E : a0y
2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6, (2.1)

for all ai ∈ K and a0 ̸= 0. An elliptic curve requires the discriminant to be to ensure

the non-existence of points P = (xP , yP ) ∈ E(K) for which the curve has two or more

distinct tangent lines. This requirement forms a rule used to perform point additions.

The discriminant is obtained using the j-invariant equation [94, 23], which was studied

as a parameterization of elliptic curves over complex numbers, denoted j(E) in the short

Weierstrass (Equation 2.2) and Montgomery (Equation 2.3) equations. The j-invariant

equation indicates if an elliptic curve equation can be transformed into another one in the

algebraic closure K. In other words, the points satisfying the curve equations E and E ′

can be transformed into each other if j(E) = j(E ′), showing that E is isomorphic to E ′

as described in Theorem 2.1. Moreover, elliptic curves with the same j-invariant are said

to be a twist of each other.

Figure 2.3 exemplifies the elliptic curve E : y2 = x3 − x + 1 over the infinite field R

and the finite prime field F43.
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Figure 2.3: Example of elliptic curves over R and F43.
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The Weierstrass equation, given in Equation 2.1, contains many simplifications, includ-

ing the short Weierstrass and Montgomery curves equations, commonly used to represent

elliptic curves defined over a finite prime field Fp. The short Weierstrass equation has the

form

E : y2 = x3 + ax+ b

j(E) = 1728
4a3

∆
= 1728

4a3

4a3 + 27b2

4a3 + 27b2 ̸= 0 mod p,

(2.2)

whereas the Montgomery equation is given by form:

E : by2 = x3 + ax2 + x

j(E) = 256
(a2 − 3)3

∆
= 256

(a2 − 3)3

a2 − 4

b(a2 − 4) ̸= 0 mod p.

(2.3)

The addition of two points in E(K) is given by chord-and-tangent rules, for which

the result is a third point in E(K). The chord rule, also known as the secant rule, is

used to add two distinct points P +Q. In contrast, the tangent rule is used to double a

point P as P + P = 2P . Thus, elements of E(K) form an additive group endowed with

chord-and-tangent rules for addition, having O as the neutral element. Commonly, the

neutral element is also represented as∞ and referred to as the point “at infinity”. Additive

operations and the representation of the neutral and inverse elements are illustrated in

Figure 2.4 for the elliptic curve E(R). Note that the secant-tangent rules can be used

interchangeably to obtain n doublings of the point P , that is, for computing nP . For

example, the calculation of 5P can be made up of two doublings using the tangent rule

– one for getting 2P and the other for 4P – and a sum of points using the chord rule for

obtaining 4P + P .

O

Neutral element O

•
P

•
−P

Inverse element −P

•
P •

Q •

•
P +Q

Addition P +Q

“Secant rule”

•
P

•

•
2P

Doubling P + P

“Tangent rule”

Figure 2.4: Operations performed in an elliptic curve E in its additive group over R.

We can also perform addition operations in an elliptic curve over a finite field. For

instance, Figure 2.5 represents the chord-and-tangent rules for the curve E : y2 = x3−x+1

over F43. In the figure, consider that P = (7, 6) and Q = (12, 13). Thus, P +Q = (38, 28)

and 2P = (11, 17). Also, the angular coefficient ³ of the tangent line y = ³x + ´
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is ³ = (3x2
R − 1)2−1y−1

R mod 43 for R = (xR, yR) ∈ E(F43). Thus, from the angular

coefficient equation, we obtain that ³ = (3x2
P − 1)2−1y−1

P = (3 · 72 − 1)2−16−1 = 5 and,

from the line equation, the first ´ is ´ = yP − ³xP = 6 − 5 · 7 = −29. Observe that ´

needs to be changed for the line being kept inside F43.
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Figure 2.5: Representation of the addition and doubling operations for the elliptic curve
E : y2 = x3 − x+ 1 in its additive group over the field F43.

The order of an elliptic curve E defined over a prime finite field Fp is of the form

#E(Fp) = h · ℓ, where ℓ ∈ Z is the largest prime number that divides #E(Fp) and h ∈ Z

is the cofactor. In particular, the curve E : y2 = x3−x+1 over F43, depicted in Figure 2.3,

has order 52 = (24) · 13, meaning that h = 24 = 4 and ℓ = 13.

2.2.3 Short Weierstrass

This section introduces concepts of group law and isomorphism for elliptic curves, as

required by Short Weierstrass curves that are elaborated in Chapter 5.

Group Law

A group law for the elliptic curve E(K) : y2 = x3 + ax+ b with characteristic K ̸= {2, 3}

contains the following properties [38, Section 3.1.2].

i) Identity: P +∞ =∞+ P = P for all P ∈ E(K).

ii) Inverses: If P = (x, y) ∈ E(K), then (x, y) + (x,−y) = ∞. The point (x,−y) is

denoted by −P and is called the additive inverse of P . Note that −P is a point in

E(K). Also, −∞ =∞.
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iii) Point addition: Consider P = (x1, y1) ∈ E(K) and Q = (x2, y2) ∈ E(K) with

P ̸= ±Q. Then, the addition P +Q = (x3, y3) is given by

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2 and y3 =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1.

iv) Point doubling: Consider P = (x1, y1) ∈ E(K) with P ̸= −P . Then, 2P = (x3, y3) is

given by

x3 =

(
3x2

1 + a

2y1

)2

− 2x1 and y3 =

(
3x2

1 + a

2y1

)
(x1 − x3)− y1.

Isomorphisms

The isomorphism of two short Weierstrass elliptic curves is addressed by the Short Weier-

strass Isomorphism, which is given in Theorem 2.1.

Theorem 2.1 ([94, Theorem 2.19] Short Weierstrass Isomorphism). Let y21 = x3
1+a1x1+b1

and y22 = x3
2 + a2x2 + b2 be two elliptic curves with j-invariants j1 and j2, respectively. If

j1 = j2, then there exists 0 ̸= µ ∈ K such that

a2 = µ4a1 and b2 = µ6b1.

Moreover, the transformation

x2 = µ2x1, y2 = µ3y1

takes one equation to the other.

Proof. First assume that a1 ̸= 0. Since this is equivalent to j1 ̸= 0, this imply also a2 ̸= 0.

Choose µ such that a2 = µ4a1. Then

4a32
4a32 + 27b22

=
4a31

4a31 + 27b21
=

4µ−12a32
4µ−12a32 + 27b21

=
4a32

4a32 + 27µ12b21

which implies that

b22 = (µ6b21)
2.

Therefore b2 = ±µ6b1. If b2 = µ6b1, ended. If b2 = −µ6b1, then change µ to iµ (where

i2 = −1). This preserve the realation a2 = µ4a1 and also yields to b2 = µ6b1.

If a1 = 0, then a2 = 0. Since 4a3i + 27b2i ̸= 0, we have b1, b2 ̸= 0. Choose µ such that

b2 = µ6b1.

2.2.4 Elliptic Curves for Cryptography

An additive group E(Fp), for p prime, can be composed with linear combinations of its

subgroups. In particular, it is possible to compose E(Fp) with the subgroups E[h] and

E[ℓ], which order subgroups are h and ℓ, respectively. When the integer h is composite,
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the subgroup E[h] can be decomposed into the subgroups corresponding to the factors of

h. A point G is said to be a generator of the subgroup E[x] if, for each point R in the

subgroup x, there exists a scalar n such that R = n ·G.

For cryptography, the order h · ℓ of an elliptic curve is appropriate when ℓ is a large

prime number, and h is a small integer. Thus, this format of group order avoids a

decomposition of E(Fp) into much smaller subgroups [8]. Additionally, only one generator

is used for the subgroup E[ℓ], avoiding confinement in subgroups. In other words, for a

generator G ∈ E[ℓ] with k ∈ Z, we choose k · G ∈ E[ℓ] instead of a random generator

G ∈ E(Fp) that can lie in some subgroup in E[h].

A curve E1 with order h · ℓ may contain an unsafe twist curve E2 with order h′ · ℓ′,

for which the subgroup E[h′] is composed of several small subgroups and h′ k h. Thus,

an invalid curve attack can be performed by computing a point Q ∈ E2 as if it was on

E1 [8]. Figure 2.6 exemplifies a curve E1 with good properties for cryptography and an

insecure twist E2 containing several smaller subgroups.

E1
P

P = m1 · P1 +m2 · P2

P1

P2

h `

E2

Q

Q = n1 ·Q1 + n2 ·Q2 + n3 ·Q3 + n4 ·Q4

Q1

Q2

Q3
Q4

h′ `′

Figure 2.6: Two elliptic curves E1 and E2, where one is a twist of the other. If ℓ is a large
prime, the curve E1 contains a good safety margin since h is a small integer. The curve
E2 is considered unsafe because it contains a composite cofactor h′, allowing the subgroup
E[h′] to be factored into several smaller subgroups. Both curves contain illustrations of
how a point behaves in E(Fp) and in its subgroups.

Compared to RSA1 [78], asymmetric cryptosystems based on elliptic curves excel in

two aspects. The first is performance, as curve implementations are more compact and

efficient [38]. The second aspect is the key size to achieve a certain security level. When

considering the bit security provided by a symmetric system using a 256-bit AES key [25],

1RSA, an asymmetric cryptographic system based on integer factorization.
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RSA requires a 15360-bit key, whereas a curve-based cryptosystem needs only a 512-bit [6].

For illustration, the ElGamal cryptographic system using elliptic curves is presented

in Algorithm 2.1, Algorithm 2.2, and Algorithm 2.3, which describe the tasks of key

generation, encryption, and decryption, respectively.

During encryption, the function Change_To_Point takes as input a plaintext m,

given as a sequence of bytes, and encodes it into a point M = (x, y). In the Elliptic

Curve Cryptosystems [56, section 3], Koblitz describes some methods to encode plaintext

messages as elliptic curve points. One of the methods is usually described as Koblitz’s

method and assumes that we are working over a prime field Fp and that plaintext is

represented as a non-negative integer m less than p

1000
− 1. To encode, let x coordinates

be x = 1000m, 1000m+1, · · · , 1000m+999 until find one where it is possible to compute

the corresponding y-coordinate. Generally speaking, if the Koblitz method does not lead

to a valid point on the curve, an alternative approach is to adopt a more complex encoding

mechanism [28].

At the decryption’s end, the inverse function Change_To_Message maps a point

M back into a byte array m. In the above example, if M = (x, y) and x = 1000m, 1000m+

1, · · · , 1000m+ 999, then Change_To_Message decoding is achieved by deleting the

last 3 digits of the x-coordinate of an elliptic curve point.

Algorithm 2.1 Public and private key pair generation for ElGamal

Require: Prime p, curve E, generator point G, and order n

Ensure: Point S as the public key and scalar d as the private key

1: d
$
← Z∗

n ▷ Choose a random number in Z∗

n = {a | gcd(a, n) = 1}

2: S ← d ·G

Algorithm 2.2 Encryption of a plaintext m using elliptic curves in ElGamal

Require: Prime p, curve E, generator point G, order n, public key S, and plaintext m

Ensure: Ciphertext (C1, C2)

1: M ← change_to_point(m) ▷ Transform the message m into a point (x, y)

2: k
$
← Z∗

n ▷ Choose a random number in Z∗

n = {a | gcd(a, n) = 1}

3: C1 = k ·G

4: C2 = M + k · S

Algorithm 2.3 Decryption of a ciphertext c using elliptic curves in ElGamal

Require: Prime p, curve E, order n, private key d, and ciphertext (C1, C2)

Ensure: Plaintext m

1: X ← d · C1 ▷ d · C1 = d · k ·G = k · S

2: M ← C2 −X

3: m← change_to_message(M) ▷ Transform the point (x, y) into the message m
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2.2.5 Discrete Logarithm Problem

The logarithm logb a is a number k such that bk = a. In mathematics, a group is a

set equipped with an operation that associates any two elements with a third element

belonging to the same group. A discrete logarithm is a group G, where logb a is an integer

k such that bk = a. For finite cyclic groups, it follows that logb a = k is bk ≡ a mod m.

Example 2.3 (Discrete logarithm group modulo 13). Next, we enumerate every in-

teger number b in the group G that has solution for logb 5 in the cyclic group G =

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, the set of integers modulo 13. By definition, bk =

5 mod 13 with b, k ∈ G. Thus, the solutions are:

• b = 2, k = 9: 29 ≡ 5 mod 13

• b = 5, k = {1, 5, 9}: 51 ≡ 55 ≡ 59 ≡ 5 mod 13

• b = 6, k = 9: 69 ≡ 5 mod 13

• b = 7, k = 3: 73 ≡ 5 mod 13

• b = 8, k = {3, 7, 11}: 83 ≡ 87 ≡ 811 ≡ 5 mod 13

• b = 11, k = 3: 113 ≡ 5 mod 13

Similar to integer factorization, the complexity of solving an instance of the Discrete

Logarithm Problem increases according to the size of the numbers. In 1993, Menezes et

al. showed how to convert Elliptic Curve Discrete Logarithm Problem (ECDLP) into the

Discrete Logarithm Problem over a finite field [67]. This made it possible to finding the

private key of an elliptic curve system instantiated with supersingular curves.

2.2.6 Chinese Remainder Theorem

Invalid curve attacks occurs when an attacker forces the victim to compute a common

secret point d·G′ using a point G′ ∈ E ′[ℓ′] outside of the original defined curve E subverting

the computation of d ·G to d ·G′. Where G is the generator of E[ℓ], G′ is the generator

of E ′[ℓ′] with ℓ k ℓ′, and d is the private key. Because of that, an attacker can solve

the Discrete Logarithm Problem over ℓ′ and partially recover d. As a result, instead of

obtaining d mod ℓ, the attacker will have d mod ℓ′. Then, using some computations in

other subgroups, the result is combined using the Chinese Remainder Theorem (CRT):

Theorem 2.2 ([94, Theorem 2.19] Chinese Remainder Theorem (CRT)). If the integers

n1, n2, . . ., nk are pairwise relatively prime, that is, gcd(ni, nj) = 1 for i ̸= j, then the

system of simultaneous congruences

x ≡ a1 mod n1

x ≡ a2 mod n2

...

x ≡ ak mod nk
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has an unique solution modulo n = n1n2 · · ·nk [68, Definition 2.120]. By Gauss’s algo-

rithm [68, Definition 2.121] the solution x to the simultaneous congruences in the Chinese

Remainder Theorem may be computed as x =
∑k

i=1
aiNiMi mod n, where Ni = n/ni and

Mi ≡ N−1
i mod ni.

The CRT can be used to recover an elliptic curve point from subgroups, as shown

in Figure 2.6. The potential of CRT is illustrated in Example 2.4 and Example 2.5.

Example 2.4 shows the uniqueness of group elements when represented in its subgroups.

Also, Example 2.5 illustrates how the theorem can be used with large numbers.

Example 2.4 (Uniqueness of all elements mod 15). Table 2.1 enumerates all numbers

from 0 to 14, showing that each number is unique when written modulo 3 and modulo 5.

For example, 11 ≡ 1 mod 5 and 11 ≡ 2 mod 3.

Table 2.1: Uniqueness of elements mod 15. Rows and columns show elements modulo 3
and 5, respectively.

P
P
P
P
P
P
P

P
P
P

mod3

mod5
0 1 2 3 4

0 0 6 12 3 9

1 10 1 7 13 4

2 5 11 2 8 14

Example 2.5 (NATO against Russia). A North Atlantic Treaty Organization (NATO)

captain is responsible for counting the number of soldiers about to invade Russian terri-

tory. When he arrived in front of the squad of soldiers, they were organized in groups of

n1 = 11×11. One of the groups contained only four soldiers. The captain wanted to know

the exact number of soldiers, and he knew the approximate number was 200,000. So, he

asked the soldiers to reorganize themselves into groups of n2 = 5 × 5, n3 = 4 × 4, and

n4 = 3×3. In all configurations, there was an incomplete group, as depicted in Figure 2.7.

Particularly, for the 5 × 5 and 4 × 4 compositions, the number of remaining soldiers in

the incomplete group was 24 and 13, respectively.

a1 mod n1

4 mod 121

a2 mod n2

24 mod 25

a3 mod n3

13 mod 16

a4 mod n4

0 mod 9

Figure 2.7: Columns and columns of soldiers organized in groups of 11 × 11 = 121,
5× 5 = 25, 4× 4 = 16, and 3× 3 = 9.

Thus, the exact number of soldiers sent for the mission was obtained via CRT. First,

consider that n = n1n2n3n4 = 121 · 25 · 16 · 9 = 435,600. Then, the computation proceeds
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as follows.

N1 = n/n1 = n2n3n4 = 25 · 16 · 9 = 3,600

N2 = n/n2 = n1n3n4 = 121 · 16 · 9 = 17,424

N3 = n/n3 = n1n2n4 = 121 · 25 · 9 = 27,225

N4 = n/n4 = n1n2n3 = 121 · 25 · 16 = 48,400

M1 ≡ N−1
1 mod n1 ≡ 3,600−1 mod 121 ≡ 91−1 mod 121 ≡ 4 mod 121

M2 ≡ N−1
2 mod n2 ≡ 17,424−1 mod 25 ≡ 24−1 mod 25 ≡ 24 mod 25

M3 ≡ N−1
3 mod n3 ≡ 27,225−1 mod 16 ≡ 9−1 mod 16 ≡ 9 mod 16

M4 ≡ N−1
4 mod n4 ≡ 48,400−1 mod 9 ≡ 7−1 mod 9 ≡ 4 mod 9

Finally, the exact number of soldiers is the combination of the partial results

x = (a1N1M1 + a2N2M2 + a3N3M3 + a4N4M4) mod n

= (4 · 3,600 · 4 + 24 · 17,424 · 24 + 13 · 27,225 · 9 + 0 · 48,400 · 4) mod 435,600

= 221,149 mod 435,600,

which is x = 221,149.

2.3 Side-channel Attacks

From time to time, an ingenious side-channel attack emerges. Examples are acoustic

cryptanalysis that gained strength in 2014 [32], and speculative attacks such as Melt-

down [64] and Spectre [57] in 2018. The following are the most popular categories of

side-channel attacks, demonstrating the importance of concerning side-channel attacks

when building a cryptographic model and carefully implementing it.

2.3.1 Timing Attacks

Timing attacks (TA) rely only on the algorithm execution time. This type of attack

was introduced by Paul Kocher, who demonstrated its use on asymmetric cryptographic

algorithms for recovering the private key [58]. Another classic timing attack relies on an

authentication forge attack over HMACs2, in which the attacker uses variances on the

HMAC verification time to build a forged HMAC [61]. A countermeasure against timing

attacks is the isochronous implementation of primitives that handle sensitive information.

2.3.2 Cache Attacks

Cache attacks (CA) are based on the ability to monitor the accesses to the victim’s cache

by sharing part of the same physical memory addresses. For example, both the victim and

attacker can share the same library. Cache attacks can be considered a subcategory of

2HMAC, the acronym for Hash Message Authentication Code.
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timing attacks, as they require comparing time measurements. An example is the attack

FLUSH + RELOAD [97], which managed to retrieve an RSA key of 1024 bits by watching

accesses to the cache of a GnuPG implementation3.

2.3.3 Speculative Attacks

Speculative Attacks (SA) are based on the ability to monitor the speculative execution

of the processor. Speculative attacks can be considered a subcategory of cache attacks,

as they require comparing time measurements in the cache memory. Examples are Melt-

down [64] and Spectre [57]. In particular, Meltdown breaks the mechanism that keeps

applications from accessing the system’s arbitrary memory (a.k.a, the kernel memory). In

turn, Spectre tricks other applications into accessing arbitrary locations in their memory,

allowing secret information to be leaked.

2.3.4 Simple Power Analysis

Simple Power Analysis (SPA) is a type of side-channel attack based on the observation

of electromagnetic emanations that allows the reconstruction of related information. A

classic example of a SPA attack was performed by Van Eck [90], which recovered what

was being played on a monitor about 1 km away through the leakage of electromagnetic

waves. This category of attacks is old, prior to the 80s, and contains examples of how

spy agencies use it to retrieve information. In the case of the United States, the project

dedicated to observing these leaks is known as TEMPEST [42] and is implemented by the

National Security Agency (NSA).

2.3.5 Differential Power Analysis

Side-channel attacks using Differential Power Analysis (DPA) interconnect data depen-

dencies by capturing electromagnetic emanations. In other words, several power measure-

ments of the same stretch can make a difference and help infer some private data. An

example of a DPA attack is the work of Nascimento et al., which used 1,000 measures to

recover about 80% of a 256-bit key of an elliptic curve [60].

2.3.6 Differential Fault Analysis

Differential Fault Analysis (DFA) is a side-channel attack that introduces faults during

computation. In the work of Tunstall et al. [88], for example, a 128-bit key was retrieved

from AES by injecting faults through the clock.

2.3.7 Acoustic Cryptanalysis

Attacks based on Acoustic Cryptanalysis (AC) use the sound produced during computa-

tion. An example was given in 2014 by Genkin et al. when a 4096-bit RSA key was fully

recovered through the sound emitted by the processor [32].

3https://www.gnupg.org/.
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2.3.8 Remaining Data

Side-channel attacks can be performed based on retrieving sensitive data remaining in

memory after being supposedly deleted. The work of Halderman et al. showed how

to obtain the decryption key from an encrypted hard drive by freezing the memory in

liquid nitrogen [37], characterizing a cold boot attack. Cold boot attacks can retrieve

cryptographic keys in memory even when the computer screen is locked.

2.4 Fault Injection Attacks

The fault injection model works with four aspects [92]:

1. Granularity: how many bits are affected by the failure.

2. Modification: given a fixed bit, set as either zero or one, a modification can invert

its value or make it random.

3. Control: guarantees location and when the failure will occur. The control can be

precise, vague, or none.

4. Duration or failure effect: describes whether the failure is transient, permanent,

or destructive.

A system can be attacked or analyzed in a non-invasive or invasive way. The clas-

sification is defined according to the operations performed on the chip. The best non-

invasive techniques consist of reducing the supply voltage [4], changing the tempera-

ture [41], increasing supply voltages in small spikes [51, 82], and inducing fault-injection

by clock [3]. On the other hand, the invasive technique can be considered an optical ex-

posure [85, 91, 24]. For that, the attack requires uncapping the chip, causing permanent

damage.

The Chinese Remainder Theorem (Subsection 2.2.6) is employed in implementations to

accelerate computational calculations with large numbers. In the 90s, researchers began to

worry about generating intentional failures [14, 13]. The RSA was the first cryptographic

algorithm to suffer a fault-injection attack. In the implementation in question [14], RSA

used the CRT for working with the primes that lead to the module n = p · q so that the

decryption would follow the procedure described in Algorithm 2.4.
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Algorithm 2.4 RSA decryption using CRT

Pre-computed: pinv ← p−1 mod q, n = p · q.

Require: Primes p and q, ciphertext c, and a private key given by the pairs dp = e−1 mod

(p− 1) and dq = e−1 mod (q − 1), where e is the public key.

Ensure: Plaintext m.

1: procedure RSA_CRT(p, q, c, dp, dq)

2: mp ← cdp mod p

3: mq ← cdq mod q

4: m← (((mq −mp) · pinv) mod q) · p+mp mod n

5: return m

6: end procedure

The attack [14] used the following procedures:

• Insert ciphertext c and collect plaintext m.

• Insert ciphertext c, inject any failure into mp or mq, and collect the plaintext m̂.

• Compute the greatest common divisor of (m−m̂) and n to factor the RSA modulus,

since (m− m̂) contains a common factor with n.

Without loss of generality, suppose that the fault was injected in mq. Thus,

m− m̂ = ((((mq −mp) · pinv) mod q) · p+mp)

− ((((m̂q −mp) · pinv) mod q) · p+mp) mod n

= (mq − m̂q) · pinv · p mod n

Therefore, gcd(m− m̂, n) = p.

In 2000, three fault injection attacks were proposed on elliptic curves in the work of

Biehl et al. [12]:

1. Some implementations do not check if a certain point is on the desired curve. Thus,

the attacker can use a point on another curve (a twist curve) and perform an invalid

curve attack.

2. The second attack uses the fact that the implementation checks for an invalid point.

The attacker injects faults during this verification to corrupt and therefore bypass

it. After successfully bypassing the check, the attacker performs the first attack.

3. Finally, the last attack uses fault injection during point duplication and performs a

differential analysis through these faults. This attack works similarly to the attack

employed in the RSA + CRT described in Algorithm 2.4.

Higher-order attacks require capturing more data from side channels to retrieve the

desired secret information. Suppose an attack on a given algorithm that needs to obtain

or change x operations to be successful (i.e. first-order attack). Another attack that

needs to obtain or change about n · x operations in the same algorithm by, for example,
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inserting redundancy into the algorithm is called an attack of order n. Compared to their

first proposal, the second attack of Biehl et al. [12] is an example of a second-order attack,

since it needs to inject faults in the check phase and provide an invalid point.

Countermeasures against fault injections are always challenging, as preventing an at-

tacker from trying to mount an attack is impossible. However, the attack can be made

more demanding to succeed. A typical barrier against fault injection attacks is hiding

sensitive hardware information as much as possible. These barriers can be built by en-

crypting the main memory and employing purposeful noises to make it difficult to read

the bus. Moreover, one can enhance the metal layers to be a passive shield, add filters or

security sensors such as power, time, light, and temperature, and wire the meshes to act

as an active shield [66].

Computational barriers via software are also possible by performing several operations

that lead to the same point and comparing the results. Alternatively, the inverse operation

can be used to check if the result has not been changed, and both software countermeasures

can be used concurrently. Nevertheless, second and higher-order attacks are still highly

probable to succeed [12].
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Chapter 3

DRAM Memory

Dynamic Random-Access Memory (DRAM) is the main memory in most computational

systems. DRAMs are composed of memory cells, each having a capacitor responsible for

holding a bit of information. Due to the capacitor’s nature, the DRAM uses a process

called refresh that updates memory cells frequently to preserve their charge and recover

the stored logical bit.

In the computer system’s, the main memory is critical to maintain its performance

growth and technology scaling benefits. Lim et al. [63] showed that the number of proces-

sor cores in a computer doubles every two years, whereas the amount of DRAM memory

doubles every three years. Thus, the memory capacity per core is affected by around 30%

every two years, and even worse regarding memory bandwidth since the number of pins

in a physical memory is limited and can not grow indefinitely. Figure 3.1, extracted from

the work of Lim et al. [63], shows a projection for the growth in the number of processor

cores and memory capacity over the past years.
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Figure 3.1: On average, the memory capacity per processor core is supposed to decrease
30% every two years [63].

A system’s main memory must scale in size, technology, efficiency, cost, and algorithms
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management to preserve performance even with its capacity growing slower than the

number of processor cores. For this to be successful, many challenges need to be addressed

since memory technology needs to handle multi-core accesses, data-intensive applications,

and different technologies like GPUs1, mobile, among others.

This chapter is organized as follows. Section 3.1 shows details about the DRAM

architecture, including DRAM cell information, construction materials, and subsystem.

Section 3.2 presents how the memory controller accesses DRAM information, detailing

the required commands, the timings needed to execute each command, and the address

mapping to distribute DRAM accesses.

3.1 DRAM Architecture

The following sections present the DRAM construction and architecture, showing its

complexity in material selection, internal arrangement, and subsystem structure. For

instance, each subsystem of the DRAM construction increments a specific size in its final

configuration. Finally, an overview of the DRAM is presented to show its function and

how large it can be.

3.1.1 DRAM Cells

DRAM memories can be seen as a two-dimensional array of cells, each cell composed of

a transistor and a capacitor, known as DRAM array [47]. Part of a physical address

contains the row and column number in the DRAM array. The DRAM array is composed

of DRAM rows ; otherwise, it is known as a DRAM page.

The Row Decoder selects the DRAM page in the DRAM array by activating a specific

wordline. The Sense Amplifier amplify the signal through bitlines and copies the result of

the cells selected by the wordline to the Row Buffer. Then, the row’s content is entirely

moved to the Row Buffer. This process is said to leave that row open. Any read or write

in some column is processed over the Column Decoder directly affecting the Row Buffer.

The row is closed – that is, the data kept by the Row Buffer is returned to the original

row – only by command [47]. This entire process is illustrated in Figure 3.2.

1GPU, the acronym for Graphics Processing Unit.
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Figure 3.2: Memory arrays with an expansion of the memory cells in red.

Example 3.1 presents a decoder from a physical address. For better understanding,

combine Figure 3.2 and Example 3.1.

Example 3.1 (Finding the physical address 0b000100001). Consider a DRAM array with

five columns and four rows bits addresses respectively, in which the address 0bCCCCCRRRR

represents the column 0bCCCCC and the row 0bRRRR. Then, the address 0b000100001

needs to activate the wordline 1 (0b0001), bring the entire row to the Row Buffer, and

then select column 2 (0b00010).

3.1.2 DRAM Construction

According to the International Technology Roadmap for Semiconductors (ITRS) [44], the

scaling of the DRAM technology is ending since hardware projects will not be able to scale

below a certain length in nanometers. The most used material for building a capacitor in

DRAMs has a minimum distance between 5 and 7 nanometers of manufacturing concern-

ing proper capacitance. If the capacitor has a higher capacitance, the data in memory

does not need to be refreshed frequently because a more elevated capacitance implies the

possibility of recovering the logic value of the capacitor, which is zero or one, even with

a charge loss. On the other hand, a distance below 5 nanometers requires new materials

for manufacturing the capacitor.

Recall that the capacitor is only a part of the memory cell, as shown in Figure 3.2. The

entire DRAM cell can reach up to 28 nanometers using TiN (Titanium and Nitrogen), the

currently most used material for building capacitors. In 2009, the ITRS [44] considered

adopting other materials for 20 nanometers. From 2019 to 2024 the DRAM memories

will be made it in 20 nanometers [45, Section 8.2]. Kim et al [52] claimed that will
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be really challenging for further scaling toward 10 nanometers and DRAM may end at

approximately 15 nanometer technology due to the capacitor constraints. The Figure 3.3

shows the evolution of the DRAM capacitors scaling.

Scaling of DRAM capacitors

170nm 150nm 100nm 70nm < 40nm

Figure 3.3: Scaling of DRAM capacitors over the years [53].

The time to access a transistor and capacitor based memory should be large enough

to allow low leakage and high retention. However, creating a reliable sense amplifier is

challenging since cell storage tends to reduce over time.

3.1.3 DRAM Subsystem

The DRAM subsystem is depicted in Figure 3.4, showing from its outer (channel) to the

inner (column and row) composition. This section focuses on the DRAM Double Data

Rate 4 (DDR4) standard [47], presenting each layer in a DRAM subsystem.

ChannelChannel

DIMMDIMM

RankRank

ChipChip

BankBank

Column/Column/
RowRow

Figure 3.4: Memory subsystem organization from multiple modules to cells.
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Column and Row

The DRAM row, or DRAM page, has a maximum of 18 physical pins for access. The

maximum number of rows is 218 = 256K. Nowadays, the common number of rows is 32,768

or 32K – giving an 8GB memory. For reading and writing, a DRAM page is moved to

the Row Buffer. Internally, the rows are split into small groups known as subarrays [55]

to facilitate accesses on different rows of the bank. Therefore, each sub-array contains its

Row Buffer that can then be copied to a global Row Buffer.

A DRAM column can be accessed from the Row Buffer and have a maximum of 10

physical pins for access. The maximum number of columns is 210 = 1K. Nowadays, a

common number of columns is 1024 or 1K, and each column usually has 8 bits. With this

information, it is possible to observe that a natural size for the Row Buffer is 8,192 bits

or 8Kb.

Banks

A DRAM bank is a series of bi-dimensional arrays of cells in the form of rows and columns.

Additionally, the bank has a Row Decoder, a Column Decoder, and a Row Buffer, as

illustrated in Figure 3.5. Usually, the bank has an 8-bit input and output. Considering

the values mentioned previously, the bank is composed of a three-dimensional matrix of

bits, having 8 bits in depth, 1K addresses through the columns, and 32K addresses in the

rows.

The Chip

A DRAM chip consists of multiple banks. The chip is composed of four bank groups,

and each group has four banks. Resulting in 16 banks in a chip. The chip has a narrow

interface providing from 4 bits to 16 bits per reading – the most common number is 8

bits.
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Figure 3.5: A high-level overview of a DRAM chip consisting of multiple banks sharing
addresses, data, and command buses. Memory bank – array, row address, column address
and sense amplifiers.

The Rank

The DRAM rank comprises multiple chips operating together by a single interface. All

chips composing a rank are controlled concurrently by sharing the address and command

buses, but each is provided with different data information. The rank has three physical

pins to be selected, so the maximum number of ranks is eight. A typical number of chips

in a rank is eight, and each chip in this configuration provides 8 bits, resulting in 64-bit

wide data. Recall that a bank’s standard number for the Row Buffer is 8Kb. However, as

a rank opens a row in a bank on each chip, it is possible to consider a larger Row Buffer

of 8× 8Kb = 8KB, or 8,192 bytes.

The Dual Inline Memory Module

The Dual Inline Memory Module (DIMM), also called a module, consists of one or more

ranks. The terminology dual inline came from the front and back pins of the module. In

DDR4’s case, there are 144 pins in the front and 144 pins in the back, apart from the

Error Correction Code (ECC). A DIMM composed of ranks with 8 chips and providing

8 bits per chip has the advantage of high capacity and flexibility for the memory con-

troller since it does not need to deal with individual chips. However, it has at least one

disadvantage, which is the granularity, because the access cannot retrieve less than the

interface width [69]. Figure 3.6 shows the chip and rank location in a DRAM module,

allowing the visualization of the memory structure from the chip to the DIMM.
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Figure 3.6: DDR4’s DIMM without Error-Correcting Code (ECC). The figure shows the
front of the modulo and half of the pins.

The Channel

The DRAM channel has one or more DIMMs. Each channel needs a different memory

controller from the CPU [69]. The typical number of DIMMs per channel is two. This

information can be retrieved from the processor and motherboard.

Example 3.2 (16GB DDR4 laptop). Consider a laptop with one channel and two DDR4

slots, each having two DIMMs of 8GB. Each DIMM has 2 ranks having 8 chips. Note that

each rank has 4GB (8GB/2) and each chip has 512MB (4GB/8). Thus, the computation

of the number of banks, columns, and rows of the 8GB DIMM proceeds as follows.

• Banks: Each chip has 4 bank groups and 4 banks per bank group, leading to 16

banks in total. A physical address selecting the bank group X ∈ {1, 2, 3, 4} and the

bank Y ∈ {1, 2, 3, 4} from the group X will select the same bank on all eight chips.

Then, the number of banks in the DIMM can have two possible values: 16 banks,

from a physical address perspective, or 2× 16× 8 = 256 banks, considering all the

chips in the two ranks. Thus, taking the physical address perspective, each bank

has 32MB (512MB/16).

• Columns: The higher the number of columns, the greater the Row Buffer will be

(Figure 3.5) and potentially larger the consecutive addresses that can be accessed.

With 32MB remaining for each bank, it is possible to maximize the number of

columns to 210 or, equivalently, 10 bits in the physical address. Thus, each column

will have 1,024 bytes.

• Rows: The bus data needs to provide 64-bit wide data, assuming eight chips and

each chip giving 8 bits. The entire bank has 8×#rows×#columns bits = 32MB =

8× 32× 1,024× 1,024 bits. Since the number of columns is 1,024 and each column

provides 8 bits, the above computation ends up resulting in 32×1,024 = 32,768 = 215

rows, which represents 15 bits in the physical address.

3.2 Memory Controller

The memory controller is complex, comprehending more than fifty time constraints for

its proper functioning [47, 62]. Examples of constraints are Read to Read Delay (tRTR),
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Read to Write Delay (tRTW), and Refresh Period (tREF). Beyond the constraints, the

memory controller needs a minimum of bank conflicts, a good rank selection, and knowing

the open rows and refresh rate to avoid loss of information and save energy. Moreover,

the controller still needs to maintain quality of service [62, 55].

Although having a high-level view of the system’s memory, the memory controller

needs to control some commands to prevent leaks to maintain reliability and security.

DRAM and memory controllers, as known today, are unlikely to satisfy all requirements

of capacity, bandwidth, and, especially, reliability and security [54]. Thus, rethinking the

main memory system is necessary to fix DRAM issues and enable emerging technologies

while satisfying all requirements.

3.2.1 Memory Controller Commands

Table 3.1 presents each memory controller command:

Table 3.1: DDR4 commands summarized [47].

Command Abbreviation CS
BG1−0

BA1−0

ACT A17

A16

RAS

A15

CAS

A14

WE
A13

A12

BC
A11

A10

AP
A9−0

Deselect DES H X

Active

(Row Opening)
ACT L Bank L Row Address

No Operation NOP L V H V H H H V V V V V

ZQ Calibration ZQCL/ZQCS L V H V H H L V V V Long V

Read

RD/RDA

RDS4/RDAS4

RDS8/RDAS8

L Bank H V H L H V
Burst

Chop
V

Auto-

Precharge

Column

Address

Write

WR/WRA

WRS4/WRAS4

WRS8/WRAS8

L Bank H V H L L V
Burst

Chop
V

Auto-

Precharge

Column

Address

Reserved for

Future Use
RFU L V H RFU L H H RFU

Precharge

All Banks
PREA L V H V L H L V V V H V

Single Bank

Precharge
PRE L Bank H V L H L V V V L V

Refresh REF L V H V L L H V V V V V

Mode Register

Set
MRS L Register H Opcode L L L Opcode

Signal level: high (H), low (L), valid signal (V) either low or high, and irrelevant (X). Logic level: Active , Inactive , Not interpreted .

All other words have a specific value depending on the command.

• Deselect: A chip only recognizes a command when Chip Select (CS) is low. Thus,

this command deselects a chip by setting CS as high. Three more signals, C0, C1,

and C2, are required for selecting a chip, omitted in Table 3.1 for simplicity.

• Active: This command opens a specific row – that is, moves the DRAM row to the

Row Buffer – of an idle given bank by selecting a Bank Group (BG1−0) and a bank

(BA1−0) inside the bank group. The read and write commands are valid only if the

banks row is open.

• No Operation: This command does not specify an operation, but the chip remains

selected.
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• ZQ (or Zero-Quotient) Calibration: This command has two versions. The first

version is ZQCL, denoted long when the signal A10 is high, used during a power-up

initialization sequence. In a final step of this command, the DRAM provides an

impedance of transmission lines and output driver (signal after column decoder).

The second version is ZQCS, called short (A10 is low), performed periodically to

adjust for voltage and temperature variations.

• Read: This command reads from a specific bank and column address (A9−0) and

has six variations depending on the burst chop and auto-precharge modes. In mod-

ern processors, a typical cache line size is 64 bytes, but the memory only provides

8 bytes (64 bits) of data simultaneously. For convenience, the DRAM memory im-

plements the burst chop that receives as input and provides as output 4 cycles of

data (32 bytes) or 8 cycles of data (64 bytes) of sequential columns. The auto-

precharge command finalizes a reading or writing with precharge. In other words,

the precharge closes the row, returning the data from the Row Buffer to the original

row. From hereon, commands terminated with ‘A’ mean auto-precharge (AP equals

high), and ‘S4’ and ‘S8’ are meant for on-the-fly burst chop of size 4 and 8, respec-

tively. The commands RD and RDA have fixed-size burst chop (4 or 8) configured

by the register’s mode.

• Write: This command works similarly to the read command, but, as the name

indicates, it writes information in the DRAM.

• Reserved for Future Use: This command can extend the DRAM functionality

in the future. All the address pins with RFU2 (A13−0, A17) can be changed in the

future.

• Precharge All Banks: This command closes all rows in all banks.

• Single Bank Precharge: This command closes a single row from a specific bank.

• Refresh: This command acts similarly to executing the active and precharge com-

mands in a row. During refresh, the bank is unavailable, and each row typically

requires refreshing at a specified number of milliseconds – this number is usually

64 milliseconds [47]. There exist two models of refresh: burst and distributed. The

burst model refreshes all rows, one after the other. The distributed model refreshes

each line at a different time and at regular intervals. Because of the refresh, the

memory has a limited density, as refreshing needs to be fast and at a well-defined

interval [65, 18]. The refresh command has two variations: refresh and self-refresh.

The first variation refreshes a row using an internal row counter and auto-increments

the counter in each requested refresh command. The second command orders the

chip to self-refresh on schedule without an external clock.

• Mode Register Set (MR0-MR6): This command configures options such as

normal operation, reset an operation, burst type, and burst length. It also defines

some latency preferences.
2RFU, the acronym for Reserved for Future Use.
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3.2.2 Memory Timings Explained

Although the DRAM memory has many different internal latencies, this section focuses

on the most important timing parameters. In order of relevance, the memory timings are

the CL, the tRCD, the tRP, and the tRAS. For example, a 4GB DDR4-2400 UDIMM

1.2V CL17 is a memory with 4GB of capacity, a clock rate of 2400 MHz, a UDIMM from

an unbuffered module, a nominal voltage of 1.2V, and a CL that takes 17 clock tics for

execution. The most crucial timings are detailed in the following:

• CL (CAS Latency): CAS stands for Column Address Strobe. After opening a

row, it refers to how many clock cycles will be necessary until receiving a result after

sending a column address to a read command. The write command has a similar

latency, called CWL (CAS Write Latency), which is usually smaller than the CL.

The time required to send the column address is called AL (Address Latency). The

latency of AL is zero sometimes, and only the CL is relevant.

• tRCD (RAS to CAS Delay time): RAS stands for Row Address Strobe. Once

the activation command is sent, one must wait for the tRCD to execute a read or

write command.

• tRP (RAS Precharge time): tRP refers to the time required for closing a row

in a bank.

• tRAS (RAS Active time): tRAS is the minimum number of cycles a row has to

be active to ensure a certain amount of time to access the data. Usually, the tRAS

needs to be greater or equal to the sum of the CL, tRCD, and tRP latencies.

Figure 3.7 exemplifies a writing on a CPU cache line, where memory controller uses

the active command to denote that the row is already open before the writing. More

columns can be read or written from this row before closing. Also, Figure 3.8 shows an

example of reading a CPU cache line, where memory controller, after the active command

also uses precharge command to close the row before finishing the read command. It is

possible to start the precharge before finishing the read command, since the data will be

present in the Row Buffer [44, Section 4.24.3]. For write command it is necessary finishing

to start the precharge, because wrong data can be saved.
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Figure 3.7: Memory controller executing a activate, and a write in a burst of 8 × 64-bit
data.
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Figure 3.8: Memory controller executing a activate, a read in a burst of 8× 64-bit data,
and a precharge command for close the open row.

3.2.3 Address Mapping

When scheduling commands, the memory controller prioritizes older commands first and

column commands (read/write) before row commands (active/precharge) [62].

Multiple banks and channels enable concurrent accesses in the DRAM since there

is no intersection between the addresses of different banks. Moreover, channels enable

concurrency because they have different physical buses, which also rises the bandwidth.

The higher concurrence between banks and channels is necessary to minimize conflicts. In

this sense, the controller tries to randomize the index selection of banks and channels [75].

In an address, the least significant bits have the largest entropy as they change faster than

the most significant bits. Additionally, a way to select banks and channels is to perform

a simple hash function that can be implemented by XORing the indexes.

Intel processors do not present the mapping of the physical address and the memory

pins in their manual. Because of that, Pessl et al. [72] presented a side-channel attack for

reverse engineering the mapping of the DRAM. The attack is based on time measurements
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of memory accesses for two different addresses. In this case, three access possibilities exist:

i) the addresses are in different banks, ii) the addresses are in the same bank and row, and

iii) the addresses are in the same bank but in different rows. In the case of two addresses

in the same bank but in different rows, accesses generate a bank conflict, thus having a

more significant access latency since an active, a precharge, and a new active command

are performed. In other cases, there is no precharge latency, and different banks can be

accessed concurrently. Therefore, it is possible to conclude that any two addresses are

in the same bank but in different rows by identifying a latency higher than the average.

Moreover, doing this several times and creating sets of addresses residing in the same

bank allows reverse engineering the mapping. Figure 3.9 shows a reversing of an address

mapping in a server with four DIMMs of 8GB.

Byte index into a 64-bit (never transmitted)Column addressRow address

012345678910111213141516171819202122232425262728293031323334

Channel

BG0
CPU
Rank
BG1
BA0
BA1

Figure 3.9: Memory controller mapping of a dual Haswell-EP Xeon E5-2630 v3 with
4x8GB dual rank DIMMs. Figure adapted from DRAMA paper [72]. DDR4 memorires
contains four Bank Groups (BG1, BG0), four Banks (BA1, BA0) in each Bank Group.

3.2.4 The Error-Correcting Code Memory

In a 64-bit system, a DDR memory provides 64 bits of data [47], and 72 bits of data in the

case of an Error-Correcting Code (ECC) memory. To simplify memory manufacturing,

one more chip is added for the 8-bit correction [20]. A DRAM with ECC can detect

single-error correction and double-bit error detection (SECDED) inspired by the extended

Hamming code [20].

3.2.5 The Target Row Refresh Solution

For preventing memory corruption, DDR4 memories isolate rows neighboring the one that

will perform an activation or precharge [47]. This technique is called Target Row Refresh

(TRR), and each manufacturer implements their own solution [29].
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Chapter 4

Rowhammer

Rowhammer is a security vulnerability that takes advantage of an unintended and un-

desirable side effect in DRAM memories construction in which memory cells interact

electrically between themselves by leaking their charges, possibly changing the contents

of nearby memory rows by specially crafted memory access patterns that rapidly activate

the same memory rows in short time window.

The first study showing a more complex test for detecting Rowhammer appeared in

2012, focusing on embedded DRAMs (eDRAMs) [40]. The study found that alternate tog-

gling between wordlines accelerates the flow of charge between two bridged cells, causing

the cell to fail. In 2014, Kim et al. [54] published a well-documented study showing that

Rowhammer is a severe security issue that can be activated from typical DRAM systems

like DDR3. According to Kim et al., the continued reduction of DRAM memory cells

created some advantages, such as reduced cost per memory bit and increased cell density.

However, this same reduction assisted in the arise of Rowhammer, which occurred mainly

because of three reasons:

1. The memory cell reduction implies the reduction of the capacitor size, and so the

amount of stored charge. This fact hinders the sense amplifier’s ability to determine

the logical condition of a memory cell. In order to maintain the capacitor charge,

even with its reduction, it is necessary to change the material used in its construc-

tion. However, the materials introduced the hot carrier injection, a phenomenon

in solid electronic circuits in which an electron can gain enough kinetic energy to

overcome the potential barrier needed to change a state.

2. The cells have become increasingly closer, which introduces the electromagnetic

coupling effect, in which they unintentionally interact electromagnetically among

themselves. In other words, during an active or precharge instruction, the chosen

row influences the near rows by unintentionally opening them with less intensity,

implying in loss of charge.

3. Due to variations in the technology adopted in the manufacturing process, an

increased number of outlier cells interact among themselves by doing inter-cell

crosstalk, implying the construction of conductive bridges.
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According to a news story from Motherboard Vice [46], the Rowhammer attack is

“like breaking into an apartment by repeatedly slamming the neighbor’s door until the

vibrations open the door you were after”. In the context of memories, when performing

readings by opening (activating) and closing (precharge) the same row several times in

a small interval, the neighboring rows are affected, having their bits flipped. According

to Kim et al. [54], the amount of opening and closing instructions required to perform a

Rowhammer via bit flips is about 139K in old DDR3 memories.

In the study of Kim et al. [54], two addresses are in the same bank but different rows

known as aggressors rows. As each address is in a different row, switching the address

access requires toggling the active, read, and precharge commands at all times, maximizing

the opening and closing rates of the same row. Thus, some observations in older DDR3

memories could be made:

• The shorter the access time between the aggressors, the greater the number of

induced errors. The time of 55ns is the smallest that can be used to alternate access

the two aggressors. However, about 65ns is enough to generate many errors. Above

500ns, the error rate is zero.

• If the refresh rate is reduced by about seven times, from 64 ms to an average of 10

ms, the error rate also becomes zero.

• If the two aggressor rows are adjacent to the victim row, the number of errors is

hundreds of thousands of times greater than if the two aggressors are far from the

victim.

• The data pattern in memory is also relevant when inducing errors. If the aggressor

rows are filled with ‘v’ (0 or 1) and the victim row is filled with ‘¬v’ (1 or 0), the

amount of generated errors is ten times greater than in other patterns.

• The errors were also repetitive: if a cell presented a failure when taking from 0 to

1, or contrariwise, the chance to repeat the same fault is 70%.

• In some cases, it was shown that some cache lines presented at least four errors,

making it impossible to correct them via Error-Correcting Code (ECC) only. The

ECC is a process based on redundant data that can be retrieved, and is able to

correct n out of m bits.

Abstraction barriers between different security systems have been extensively broken

by devastating attacks using Rowhammer. Examples of attacks include privilege escala-

tion from native environments [83, 34], privilege escalation from a JavaScript browser’s

sandbox [36], privilege escalation from a virtual machine running on third-party com-

putation clouds [96], mounting fault attacks on signatures using RSA public-key cryp-

tography [11, 76], and obtaining root privileges on Android mobile phones [89]. Due to

the large range of critical attacks, there were many techniques to mitigate Rowhammer.

Hardware countermeasures such as Error-Correction Code (ECC-RAM) [26] appeared to

make Rowhammer attacks harder [54], but not infeasible [71, 59, 20].
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This chapter is organized as follows. Section 4.1 details the Rowhammer types, like

double-sided, single-sided, one-location, and many-sided. Then, Section 4.2 presents the

steps of a Rowhammer attack: finding a vulnerable region, putting a target in a vulnerable

region, and flippling a bit (or bits) from the target. Finally, Section 4.3 shows how

Rowhammer countermeasures work in software and hardware.

4.1 Types of Rowhammer

Rowhammer has some variations techniques used to generate bit flips. The most common

are double-sided, single-sided, one-location, and many-sided.

4.1.1 Double-sided Rowhammer

The double and single-sided Rowhammer types were conceived by Kim et al. [54]. Re-

gardless, that nomination was proposed by Seaborn and Dullien from Google Project

Zero [83]. The double-sided Rowhammer targets both rows around the victim’s row, also

known as the aggressor rows, which requires knowing the mapping between virtual and

physical addresses.

In 2015, Seaborn and Dullien [83] observed that, in a system with two DDR3 with 8

banks each, one aggressor row has 256KB more physical addresses than the victim’s row,

and the other has 256KB less physical addresses than the victim’s row. They notice that

the number of bit flips increased considerably during an experiment, as already predicted

by Kim et al. [54]. In 2016, Gruss et al. [72] used the DRAMA attack to show that the

mapping of a physical address to the memory pins can be precisely known through a

timing side-channel attack as the one in Figure 3.9, Section Subsection 3.2.3. Due to

Gruss et al. [72], the double-sided Rowhammer attack became facilitated and relevant as

the DRAMA attack helped test DDR4 memories, which were also found to be vulnerable

to Rowhammer.

Listing 1 shows how to execute a double-sided Rowhammer after knowing the ag-

gressors’ addresses of a target row. To be more clear if the row of the target is A, the

aggressors addresses X and Y need to be located at the row A− 1 and A+1 respectively.

1 code1a:

2 mov (X), %eax # read from address X

3 mov (Y), %ebx # read from address Y

4 clflush (X) # flush cache for address X

5 clflush (Y) # flush cache for address Y

6 jmp code1a

Listing 1: Double-sided Rowhammer in x86 assembly code. Aggressor lines are loaded in
X and Y. The instruction mov reads from the memory, and clflush removes data from
the CPU cache.
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Notice that the attack presented in Listing 1 only succeeds in Intel x86-64 processors

since the clflush instruction presents different results in AMD processors. In both AMD

and Intel processors, the instruction clflush removes the data from the L3 cache, but

in Intel processors, the caches are inclusive. In other words, the L1 cache content is also

present at the L2 content, and the L2 content is present in the L3 cache. On the other

hand, AMD processors have exclusive caches, meaning that L1 content is not necessarily

in L2 content, and L2 content is not necessarily in L3 content. In ARM processors, the

equivalent instruction is the Master Control Reset (MCR). However, the userland cannot

be accessed without permission. Figure 4.1a shows, at a high level, how the attack works

in DRAM memories.

4.1.2 Single-sided Rowhammer

Because of the restrictions inherent to double-sided Rowhammer, Seaborn and Dullie [83]

proposed the single-sided Rowhammer. Unlike the double-sided, the single-sided only

needs that a single aggressor row is near to the victim’s. By experimental observation,

they realized that Rowhammer can be triggered using four or eight accesses to random

addresses without slowing down the time per iteration. Thus, single-sided Rowhammer

was proposed using four or eight random addresses.

Also, single-sided Rowhammer allows testing if at least two random addresses are

in the same bank but in different rows. This is done by measuring the access time to

two uncached addresses using a fine-grained timer such as the rdtsc instruction in x86

processors. Then, pairs that do not satisfy the above property have faster access time

than those that satisfy.

Listing 2 shows how to execute a single-sided Rowhammer after knowing the aggres-

sors’ addresses in the variable vector addr. Similar to double-sided Rowhammer (List-

ing 1), the single-sided Rowhammer in Listing 2 only works in Intel x86-64 processors.

For clearness, the code in Listing 2 is presented at a higher level than the double-sided

Rowhammer. Also, Figure 4.1b shows how the attack performs in DRAM memories.

4.1.3 One-location Rowhammer

One-location Rowhammer was discovered by Gruss et al. [34], who observed that the

memory controller on modern processors uses a policy for closing an opened row after an

amount of time. This policy improves the processor’s performance because the probability

of two address accesses falling in the same row is tiny. In this sense, Gruss et al. used

only one address to access the memory: as the memory controller closes the row, a new

command for opening a row will be triggered, leading to a Rowhammer attack. In other

words, bit flips occur because this single address will open and close a row in the same

bank.

Gruss et al. [34] also observed that a single 4KB page could be tested since a single

address is needed for the access. Thus, a bit flip inside of a 4KB page could be tested, and,

unlike double-sided Rowhammer, the mapping between virtual and physical memories

does not need to be known for a one-location Rowhammer. Considering the amount of
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1 long int * addr[NUMBER_ADDR]; // NUMBER_ADDR := 4 or 8

2 ...

3 while(1) {

4 for(int i=0; i < NUMBER_ADDR; i++) {

5 volatile long int * access = addr[i];

6 *access;

7 __asm__ volatile (

8 "clflush (%0);"

9 : /* out registers */

10 : /* in registers */ "r"(access)

11 : /* used registers */ "memory"

12 );

13 }

14 }

Listing 2: Single-sided Rowhammer in C and x86 inline assembly. The variable vector
addr has 4 or 8 address pointers to some memory location. For each address in this
variable, one access is done using a volatile variable to make the compiler execute the
code without being removed by any optimization. Also, one clflush is executed to take
the address from the cache.

bit flips in a page of 4KB, the one-location Rowhammer influences much fewer bits than

other techniques. Particularly, one-location Rowhammer flips about 36% of the bits in a

4KB page. On the other hand, double-sided and single-sided Rowhammer flip more than

76% of the bits on the same page.

Listing 3 shows how to execute one-location Rowhammer after knowing the address

of the aggressor rows in the variable X. Similarly to other Rowhammer types, the attack

in Listing 3 only works in Intel x86-64 processors. Figure 4.1c shows, at a high level, how

the attack works in DRAM memories.

1 code1b:

2 mov (X), %eax # read from address X

3 clflush (X) # flush cache for address X

4 jmp code1a

Listing 3: One-location Rowhammer in x86 assembly. The variable X has the address to
some memory location known as the aggressor address. For each access in the address X,
a clflush instruction is executed to take the address from the cache.

4.1.4 Many-sided Rowhammer

In 2020, Frigo and Vannacci et al. [29] defined a new category of Rowhammer, in which

they explored the fact that bit flips in DDR4s can be done with less activation than
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in DDR3s. They observed that DDR4s present bit flips with only 45K activations [29]

instead of the 139K from the DDR3 [54]. In DDR4 memories, the shortest time between

two activations is approximately 45ns, with a refresh rate of 64ms. Moreover, with 45K

activations, a DDR4 can contain approximately 28 aggressor addresses accessing the same

bank before some row is refreshed. In this sense, Frigo and Vannacci et al. created

a technique similar to double-sided Rowhammer in which around 3 to 28 aggressor rows

can be used in the same bank, bypassing some recent DDR4 countermeasures. Figure 4.1d

shows, at a high level, how the attack works in DRAM memories.

Figure 4.1 summarizes the Rowhammer types described above. The attacker uses the

accessed row through some access to an aggressor address. Also, the affected row indicates

the possible location of the target row. Figure 4.1 was adapted from Gruss et al. work,

describing one-location Rowhammer [34].

(a) Double-sided (b) Single-sided (c) One-location (d) Many-sided

Less
error

Accessed/
Agressor
row

Affected
row

Figure 4.1: The Rowhammer types: (a) two aggressors in the same bank and both adjacent
to the victim’s row, (b) at least two aggressors in the same bank and at least one adjacent
to the victim’s row, (c) just one aggressor in the same bank and preferably adjacent to
the victim’s row, and (d) many aggressors in the same bank and, as close as possible, to
the victim’s row.

4.2 Rowhammer Attack: Step-by-step

The Rowhammer attack consists of a few steps:

1. Find a vulnerable region:

(a) Allocate memory;

(b) Use a pointer for testing the allocated memory;

(c) Check for vulnerable region;

(d) Collect some memory information from the vulnerable region;

(e) Release the vulnerable memory.

2. Put a target on the vulnerable region:

(a) Force the target to go to the vulnerable region using some technique;
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(b) Test if the target is in the vulnerable region.

3. Flip a bit (or bits) from the target:

(a) Flip the desired bit (or bits);

(b) Force the target to execute the changed part.

These steps have been developed since 2015 after the publication of the first successful

attack [83]. Figure 4.2 shows, at a high level, the steps of a Rowhammer attack.

Aggressive

pointer

Aggressive

pointer

Aggressive

pointer

Vulnerable

pointer

Check

pointer
Check

pointer

Check

pointer

Attacker page memory

Attacker bit flip page memory

Bit flip

Attacker vulnerable page memory

Attacker page target

Free page memory

region

(a) Find vulnerable

vulnerable region

(b) Put target on

the target

(c) Flip bits from

Figure 4.2: Step-by-step Rowhammer attack, passing from (a) finding a vulnerable region,
(b) putting a target on the vulnerable region, and (c) flipping the bits from the target.

4.2.1 Finding a Vulnerable Region

Finding a vulnerable region is also known as Memory Massaging [15, 34, 89, 29]. This step

is crucial for the attack’s success, but it is not sufficient. The hardest part of the attack

is not how to find the vulnerable region but how to hold information about that memory

location. Finding the vulnerable region is not difficult, as the attacker can allocate several

pages, carefully choose pointer addresses to be the aggressors, and finally test memory

positions around the aggressors. Note that, at this step, the attacker controls both the

aggressor’s and the victim’s regions using its memory. In the memory test phase, when

the vulnerable location is found, the memory location needs to be stored somehow.

The first way to know the memory location was presented by Google’s Project Zero [83],

which consists in saving the target physical address by accessing the /proc/PID/pagemap

file that holds the map from the virtual address to the physical address in the Linux

operating system. This technique helps the attacker to save the memory address when it

still belongs to him during the test phase. In this sense, a small amount of memory can be

allocated for the attack, since the physical address is known and this help to bypass some

defenses that check huge memory allocation in a short time. However, the Linux Kernel
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solves this problem by limiting the access of non-privileged userspaces to the pagemap1.

Consequently, a new technique should be designed to face the limitation imposed by

the translation of virtual to physical addresses in Linux systems. Novel attacks arose,

especially a prefetch side-channel attack by Gruss et al. [35]. Prefetch instructions are

non-blocking memory loads that fill the cache with the requested addresses. In other

words, a prefetch instruction gives a hint to the processor of an address that may be exe-

cuted in the future [22]. Intel® states that prefetching addresses not mapped to physical

pages can introduce non-deterministic performance penalties [22]. Thus, virtual addresses

not belonging to the requesting process (for instance, a kernel virtual address) can be

prefetched and used in timing side-channel attacks to recover an address that belongs to

both the kernel and the process, breaking the kernel and user’s memory isolation. Then,

this attack allows holding information about some address since a virtual pointer inside

the kernel with address X and a user space pointer with virtual address Y will point to

the same physical memory address, as depicted in Figure 4.3.
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0 247 −247 −1
User Kernel

Virtual address space

Figure 4.3: Mapping physical memory using Prefetch Attack [35].

The prefetch side-channel attack [35] helped the rise of new types of Rowhammer [34].

However, the issue of address space isolation was fixed by the Linux Kernel [33, 27],

and the solution was named Kernel Address Isolation to have Side-channels Efficiently

Removed (KAISER) by Gruss et al. [33] and Kernel Page-Table Isolation (KPTI) by the

Linux Kernel [27] as shown in the Figure 4.4. Before the fix, adding a kernel base address

and scanning a certain amount of addresses was enough for the attack’s success. Now, the

kernel pages are isolated from the pages of the user’s process, and accessing some pages

will only result in page fault without any gain of side information.

1Kernel commit: “pagemap: do not leak physical addresses to non-privileged userspace”.

Available at https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/

?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce.



58

Kernel space

User space

User mode
Kernel mode

with KPTI

Kernel space

User space

Kernel mode

Kernel space

User space

User mode

Figure 4.4: Kernel Page-Table Isolation in a high level overview in the actual Linux kernel.
CONFIG_PAGE_TABLE_ISOLATION=y is used to enable this feature.

Nonetheless, address space isolation can be bypassed by allocating huge pages, with

sizes like 2MB or 4MB, because huge pages are continuously allocated in memory, leaking

the offset of the physical address. In particular, at least 21 and 22 bits are leaked in the

case of 2MB and 4MB pages, respectively. The leaked offset, added with Address Mapping

(Subsection 3.2.3), suffices to get a few 4KB pages within the same DRAM bank, allowing

the collection of information from memory. On the other hand, if huge pages cannot be

allocated, other techniques can be used as knowing the system allocator [89, 59]. Also,

some information can be used to allocate memory blocks contiguously [89, 59], as several

small blocks allocated in sequence can result in huge pages when combined.

4.2.2 Putting a Target on the Vulnerable Region

The first challenge that Rowhammer has faced so far is saving some information about the

position of the vulnerable region. Thus, the second challenge becomes guiding the target

to the vulnerable memory. Examples of techniques used to guide the target to the desired

position are memory spraying [36, 84], memory grooming [89], page deduplication [15],

memory page cache eviction [34], and Frame Feng Shui [59].

Memory Spraying

Memory spraying was the first public technique to guide the target to a specific mem-

ory [84, 36]. This technique works by first exhausting almost all the system’s physical

memory [98]. Then, it starts to replicate (“spraying”) the target’s memory page, expecting

that a page to fall into the vulnerable region released for the target. For instance, the

attacker can make many forks of the target.

Memory Grooming

Similarly to memory spraying [89], memory grooming works by first exhausting almost all

physical memory. Then, only the vulnerable region is released, with just enough memory
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to load the target. When loading the target, it will get the vulnerable page as it is one of

the few memory pages available.

Page Deduplication

Memory pages with the same content can be shared across independent processes to reduce

the total memory footprint of a running system [15]. Memory deduplication is known

as Kernel Samepage Merging (KSM) in Linux and as memory combining in Windows

operating system [15]. Deduplication uses an algorithm that periodically merges memory

pages with the same content into the same physical memory page. Figure 4.5 is an

adaptation from [15] depicting the page deduplication technique.

(a) After massaging step

Physical Memory
Attacker Pages

Victim Pages

(b) After victim load

Physical Memory
Attacker Pages

Victim Pages

(c) After system merging

Physical Memory
Attacker Pages

Victim Pages

Figure 4.5: Page deduplication adapted from [15]. (a) Physical and virtual memory
layout after the massaging step. The red square indicates the copy of the victim’s page.
(b) Load the victim’s page in memory, each duplicated page points to different places
in the physical memory. (c) After the system merging, the victim’s and attacker’s pages
point to the same physical page.

Then, the attacker can put the same content from the target page on the vulnerable

page, hoping that the system will merge the physical page with the vulnerable page. If

this does not happen, the attack is restarted until the attacker gets the desired result.

The deduplication algorithm merges pages in about 15 minutes, so this technique requires

the attacker not to be in a hurry.

Page Cache Eviction

The operating system contains a cache page for the most used memory page [34]. For

instance, an attacker can use a fork from the target until the desired target page gets

in the vulnerable region, force the eviction from the cache page, and unmmap and mmap

the binary target. Thus, when the target is executed, it will use the same physical page.

Some information on the address resolution is required to know if the target falls into the

vulnerable region. In the case of Gruss et al. [34], they used the prefetch side-channel

attack [35].

Frame Feng Shui

Kwong et al. [59] developed the Frame Feng Shui technique exploring the Linux Buddy

allocator operation. When a process requests memory, the Buddy allocator provides the
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smallest available pages that meet the request. The smallest available blocks can be

checked via /proc/pagetypeinfo. Then, the attack consists of requesting the smallest

available blocks during the memory massaging step, releasing the vulnerable page (block)

to the system, and immediately executing the target. Thus, the target will acquire the

vulnerable region.

4.2.3 Flipping Bits From the Target

Unlike the previous steps, flipping bits from the target does not contain any challenges.

The memory region was already confirmed as vulnerable in step one, and the target was

guaranteed to be in the vulnerable region in step two. At this point, it only reuses

the aggressor pointers and flips the bits from the target. As it is possible to observe

at Figure 4.2 (c) where the attacker access the aggressive pointer several times until

trigger the same bit flips pattern from the vulnerable region.

4.3 Countermeasures

The first Rowhammer attacks targeted DDR3 memories. Because of that, the DDR4

standard was built, and many thought the Rowhammer problem was solved. However,

recent attacks showed that much still needs to be done to address this issue [59, 29].

In this sense, this section covers some software and hardware countermeasures against

Rowhammer.

4.3.1 Software Countermeasures

Software solutions are much slower than hardware solutions but are malleable and much

simpler to change than hardware solutions. This section lists some software countermea-

sures against Rowhammer, such as static analysis and memory encryption.

Static Analysis

One way of employing Rowhammer is to use specific statements like the clflush instruc-

tion from Intel. For this reason, a system can statically parse the binary code looking for

the instructions used by Rowhammer [43]. However, this countermeasure is insufficient

since some attacks do not adopt these instructions [34].

Hardware Performance Counters

Processors come with several performance counters, such as the cache miss counter. These

counters can be used to prevent Rowhammer attacks [2]. However, this defense mechanism

is insufficient to avoid Rowhammer, as shown by Gruss et al. [34].
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Memory Access Pattern Analysis

Techniques like double-sided Rowhammer use a specific memory access pattern that can

be identified and prevented [2]. However, Rowhammer attacks such as one-location still

can bypass this countermeasure [34].

Physical Proximity Prevention

Still, one can completely isolate some memories. For instance, the Kernel and User

memories can be placed as far as possible in the physical memory [16, 27]. However,

this countermeasure only prevents the user from attacking kernel addresses. For example,

the attacker can perform bit flips of binaries in the userland using the sudo command to

elevate privilege [34].

Prevention of Near-out-of-memory Situations

Preventing the system from getting too close to exhausting all physical memory [36] can

mitigate attack techniques like memory spraying and grooming, which are used to put

the intended target in place. Other techniques for putting the target in place are page

deduplication [15], page cache eviction [34], and Frame Feng Shui [59].

Memory Encryption

Another technique is to encrypt the memory that must be protected since a bit flip in

this region can lead to a result entirely different from the expected by the attacker [59].

Nonetheless, a caveat is a latency of encrypting the entire memory region via software.

4.3.2 Hardware Countermeasures

Considering that a hardware issue generated the Rowhammer, one may also try to solve

this problem in the hardware sphere by employing some of the countermeasures listed in

the following.

Doubling Refresh Rate

One of the first hardware countermeasures was to double the refresh rate [2]. Instead of

refreshing the entire memory at every 64ms, perform it at 32ms. However, that was not

enough to prevent Rowhammer attacks [29].

Memory Encryption

Using hardware enclaves to encrypt memory spaces is also an alternative to prevent

Rowhammer attacks. However, some works use this countermeasure to perform Denial of

Service attacks on the system [34]. Flipping bits in the encrypted region will be seen as

an integrity violation, leading the processor to stop working until it is manually reset.
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ECC Memories

Memories with ECC are commonly used in servers and can detect two bit flips but correct

only one. However, what happens if three bit flips are found when transmitting 72 bits to

the processor? Cojocar et al. [20] demonstrated with reverse engineering the functioning

of the bit correction system. Thus, by carefully choosing three bits to be flipped, they

showed that one could bypass the ECC system. Indeed, Cojocar et al. [19] showed that

Rowhammer could be used against a system using ECC memories.

Moreover, most works are only concerned with system integrity since flipping a bit

would, in theory, ends with system integrity. Kwong et al. [59] showed that the latency

resulted from the ECC system could be used to create a timing side-channel attack to

break the system confidentiality, retrieving information in memory such as passwords,

cryptography keys, and others.

TRR Memories

Memories with Target Row Refresh (TRR) were sold as the “silver bullet” [29] against

Rowhammer attacks since target rows are refreshed with the highest priority. However,

this countermeasure was also bypassed by Frigo et al. [29].
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Chapter 5

ECDSA, secp256k1, and Bitcoin

A major problem with digital money is preventing it from being copied [30]. Traditionally,

the coins used as money could not be easily counterfeited like the coins-commodities, such

as cocoa, salt, barley, and other valuable objects. Metals such as gold and silver plate are

rare enough not to be found on a large scale, thus preventing the currency from losing or

inflating its value.

Clay tablets were used as tenure records, marking how much silver or grains one would

receive from the government. The problem arose when the government had to prevent

people from duplicating the record. The Chinese took advantage of material they had

invented, paper, to start making receipts. Then, this paper money was getting more

elaborate and fabricated with exclusive materials that could guarantee that no one could

copy the currency.

Copying or fraud has always been a problem when managing financial transactions.

In the digital age, controlling this type of copying is even more challenging because infor-

mation about a transaction can be easily copied as music in digital format. For example,

when using a credit card, there is a mediator, the card operator, to ensure a fund for the

purchase and that no spend was duplicated. Thus, banks, card companies, and financial

institutions act as arbiters for electronic transactions to ensure that there has been no

fraud.

In 2008, banks continued to lend money mainly for unsustainable real-estate financing,

leading to a significant drop in confidence in the banking systems. Therefore, a fall took

the price of real estate and the economy to the ground. Along with this financial crisis,

the American government spent considerable money to prevent more institutions from

failing, generating the highest inflation in the country since the 90s. In this context of

digital advancement, with the distribution of computing power and distrust of the financial

system, Satoshi Nakamoto created Bitcoin.

In the article “Bitcoin: A Peer-to-Peer Electronic Cash System” [70], Nakamoto pre-

sented a system based on cryptography that does not need an intermediary like a financial

institution and that is practically irreversible due to its mathematical nature. The mathe-

matical framework is known as the blockchain, which audits all transactions on the Bitcoin

network. Participants in the Bitcoin network become a node of the network and record

all transactions, performing accounts and keeping the system running without a central

system. In the Bitcoin network, every transaction uses the public-private key system to
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prevent a transaction from duplicating. Thus, the receiver shares his public key, and

the sender must sign the transaction with his private key. Bitcoin is the most popular

cryptocurrency, and a single coin is currently estimated to be worth tens of thousands of

dollars.

This chapter is organized as follows. Section 5.1 details the ECDSA protocol, showing

invalid-curve attacks and introduces the curve secp256k1. Then, Section 5.2 presents the

Bitcoin Core wallet with the implementation of countermeasures against fault injection

attacks in the library libsecp256k1 and a possible fault injection attack in the ECDSA

protocol of the curve secp256k1.

5.1 ECDSA

In 1991, The Digital Signature Algorithm (DSA) was proposed by the U.S. National

Institute of Standards and Technology (NIST) and specified in a U.S. Government Federal

Information Processing Standard (FIPS 186) called Digital Signature Standard (DSS) [38].

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analog of

the Digital Signature Algorithm (DSA). It is the most widely standardized elliptic curve-

based signature scheme, appearing in the ANSI1 X9.62, FIPS 186-2, IEEE 1363-2000,

and ISO/IEC 15946-2 standards, as several draft standards [38]. The procedures for

signature generation and verification are presented in Algorithm A.1 and Algorithm A.2,

respectively.

The ECDSA protocol needs to handle random number generation to create keys and

unique signatures. It also has to handle big numbers and modular arithmetic since the

curve points are represented by several bits. Moreover, the protocol handles curve arith-

metic, that is, point doubling (2P = P + P ), and point addition (3P = 2P + P ). The

curve arithmetic is performed in a large prime field because the coordinates of the curve

points belong to this field. The ECDSA support modules are summarized in Figure 5.1,

adapted from [38].

Elliptic Curve Digital Signature Algorithm

Random numbers

generation
Big numbers and

modular arithmetic
Curve arithmetic

Field arithmetic

Figure 5.1: Module framework required by the Elliptic Curve Digital Signature Algorithm
(ECDSA) protocol, adapted from [38].

1ANSI, the acronym for American National Standards Institute.
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5.1.1 Invalid Curve Attacks

The main observation in invalid-curve attacks is that the usual formula for adding points

on a short Weierstrass elliptic curve E : y2 = x3 + ax+ b defined over Fq does not involve

the coefficient b (see Section 2.2.3) [38]. Thus, an attacker can replace G in Algorithm A.1,

an elliptic curve point generating a subgroup with order n, by G′, which does not belong

to E, but rather to an unsafe curve E ′ carrying many small subgroups [8] (see Figure 2.6).

Also, the curve E ′ contains an order h′ℓ′ with many smaller subgroups (h′ k 1), unlike

the curve E of order hℓ (with small h). Normally, G contains the order n = ℓ, and G′ is

chosen to have order n′ ≈ h′ℓ′ j ℓ. Thus, r = x1 mod n is delivered as r = x′

1 mod n,

in which P = (x′

1, y
′

1) = kG′. With enough invalid curves E ′, E ′

2, · · · , E
′

m the attacker

will recover k partially by solving m instances of the Elliptic Curve Discrete Logarithm

Problem, to obtain k mod n′, k mod n′

2, · · · , k mod n′

m. With the Chinese Remainder

Theorem the attacker will recover k mod n, and thus the private key dA.

Recall from Section 2.2.3, Short Weierstrass, that if all curves with the same equation

E do not contain many small subgroups, changing G to G′ will not help recover the private

key. For example, consider that the group order of G′ is prime and much larger than that

of G. Then, it would be more productive to attack k directly using the point order of G,

which is chosen to generate a high bit security.

Consider the situation that an attacker wants to change one of the public parameters

inherent to the implementation. An approach is to inject faults in the victim’s imple-

mentation. However, injecting faults in the implementation can open possibilities beyond

attacking the parameters. The attacker can control the message by requesting multiple

signs of different messages to the victim. The other parameters are the curve E, the gen-

erator point G, the order n, and the algorithm itself. The attacker could choose to change

E, but, in this case, he would have to change many instructions that perform the calcu-

lations, such as the functions of point doubling and addition. Moreover, the algorithm

can be changed by injecting faults in the instructions. For instance, the multiplication

parameters can be changed using just a few bits, and secret parameters like the private

key dA could be leaked.

5.1.2 The Elliptic Curve secp256k1

The elliptic curve secp256k1 is the curve adopted by Bitcoin to implement its public-key

cryptography. All points on this curve are valid Bitcoin public keys. For generating the

public key, a user multiplies the private key, a large number, by the generator point, a

point defined in the secp256k1 curve. Due to the Discrete Logarithm Problem, recovering

the private key using the public key is a hard task using classical computers.

secp256k1 is a short Weierstrass curve (y2 = x3 + ax + b). Specifically, a = 0 and

b = 7, yielding the equation y2 = x3+7 [17]. The order of the generator point G is a large

prime p. Since the y equation component is a square, secp256k1 is symmetric across the

x-axis, which means that, for each value of x, two values of y exist, one is even, and the

other is odd. For instance, if y = ±2 mod p, then y = 2 mod p (even) and y = p−2 mod p

(odd). This fact allows public keys to be identified simply by the x-coordinate and the

parity of the y-coordinate, saving significant data usage on the blockchain.
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Particularly, this curve has a weakness that helps attackers to pursue invalid curve

attacks, one of them being the controlled injection of faults. For instance, injecting a

fault in the generator point G leads to a new curve equation that can be cryptographically

weaker than the original curve. Toward the curve secp256k1, any fault injected in the

generator point conducts to an isomorphic curve, which comes from the Short Weierstrass

equation (Equation 2.2), in which a = 0 implies that any curve of the type y2 = x3+b will

have the same j-invariant. Still, evaluating Theorem 2.1 results in six different curves, all

others equivalent to these six. Table 5.1 shows all the six twists of secp256k1, and the

secp256k1 curve itself, over the prime field Fp with p = 2256−232−29−28−27−26−24−1.

Table 5.1: Equations and order of the twists of secp256k1, and the secp256k1 itself. All
the orders are evaluated over the field Fp with p being the prime p = 2256 − 232 − 29 −
28 − 27 − 26 − 24 − 1.

Curve Equation

(E : y2 = x3 + b)

Order

(n)

E1 : y
2 = x3 + 1 22 × 3× 20412485227× 83380711482738671590122559× 5669387787833452836421905244327672652059

E2 : y
2 = x3 + 2 32 × 132 × 3319× 22639× 1013176677300131846900870239606035638738100997248092069256697437031

E3 : y
2 = x3 + 3 109903× 12977017× 383229727× 211853322379233867315890044223858703031485253961775684523

E4 : y
2 = x3 + 4 3× 199× 18979× 5128356331187950431517× 1992751017769525324118900703535975744264170999967

E6 : y
2 = x3 + 6 22 × 72 × 10903× 5290657× 10833080827× 22921299619447× 41245443549316649091297836755593555342121

E7 : y
2 = x3 + 7 115792089237316195423570985008687907852837564279074904382605163141518161494337

5.2 Bitcoin Core Wallet

Bitcoin Core2, formerly Bitcoin-Qt, is a Bitcoin client developed by Wladimir van der Laan

based on the original reference code by Satoshi Nakamoto dated in 2009. The Bitcoin

Core can be used as a desktop client for payments or as a server utility for merchants.

Satoshi Nakamoto initially used Bitcoin-Qt, but the name has been rebranded to Bitcoin

Core since version 0.9.0. Bitcoin Core uses the ECDSA protocol to sign a transaction.

The elliptic curve used in the protocol is an implementation of the secp256k1 in the

library libsecp256k13.

5.2.1 Countermeasures Against Fault Injections

The libsecp256k1 library implements several countermeasures that harden the introduc-

tion of fault injections using Rowhammer or similar fault attacks. These countermeasures

are used to handle other types of side-channel attacks, such as timing attacks. Hence, im-

plementations try to perform uniform accesses to the memory to prevent timing attacks,

making it difficult to recover any private data.

Nonce Generation

A crucial aspect of ECDSA is the generation of nonces, which corresponds to the random

number k in line 4 of Algorithm A.1. libsecp256k1 solves this problem by relying on

2Bitcoin Core - Bitcoin Wiki https://en.bitcoin.it/wiki/Bitcoin_Core
3libsecp256k1’s GitHub repository: https://github.com/bitcoin-core/secp256k1.
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the RFC6979 [74], which specifies how to generate derandomized nonces for ECDSA.

The nonces are computed deterministically, given the message and the private key d as

input to SHA256 HMAC [7], a pseudo-random function. The conventional approach of

libsecp256k1 is to recompute the nonce periodically, making it difficult for an attacker to

generate several signatures with the same nonce. This countermeasure makes it difficult

to keep the nonce as a constant, hampering the retrieval of several signatures generated

with the same nonce and, thus, the recovery of the private key d.

Precomputed Table

Another countermeasure implemented by libsecp256k1 is generating a precomputed ta-

ble to evaluate the nonce multiplication. Thus, the signature generation algorithm does

not need to evaluate several point additions. Equation 5.1 exemplifies a precomputed

table for nonce multiplication. Notice that, after the addition at each line, the point P

tends to disappear, leaving only a k ·G term. In Equation 5.1, G is the generator point,

and P is a fixed point P = (x1, y1)← k ·G for k a random number in the interval [1, n−1].

Thus, by construction, this fixed point does not allow the derivation of the scalar k used

to produce the fixed point P .















P, P +G, ..., P + 15 ·G

2 · P, 2 · P + 16 ·G, ..., 2 · P + 31 ·G
...

(262) · P, (262) · P + (1662) ·G, ..., (262) · P + (1662 + 15) ·G

(1− 263) · P, (1− 1663) · P + (1663) ·G, ..., (1− 263) · P + (1663 + 15) ·G















(5.1)

This countermeasure is enabled by default in Bitcoin Core using libsecp256k1, ham-

pering fault injections in just one point, forcing the attacker to inject failures throughout

the table to succeed. If this table is disabled by default, a fault injection attack still needs

to conduce the point P to infinity to avoid affecting the point G′ with the fault, which is

possible by inverting a single bit from P .

Blinding Point

The blinding point [21] is a scalar number used to prevent timing side-channel attacks.

Instead of evaluating k·G for calculating the signature, use the computation (k−b)·G+b·G.

This type of computation helps to avoid the leakage of any private data in the array of

indexes. The Bitcoin Core wallet saves the result of the b·G computation to make it easier

to compute only (k− b) ·G. Thus, it would be necessary to modify b ·G to inject a fault,

moving this point to the desired fake curve. A fault can also be injected by preventing

the blind computation from happening, which could be done by avoiding the function call

responsible for using the blind computation.
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5.2.2 A Fault Injection in secp256k1

All the countermeasures in a secp256k1 implementation (Subsection 5.2.1) makes it

harder to perform an invalid curve attack. However, supposing that each of the coun-

termeasures mentioned above can be circumvented, the protocol itself still needs to be

bypassed. For instance, flipping the y-coordinate first bit from secp256k1’s generator

G will guide the curve E7 to E3, as shown in Table 5.1. Moreover, notice that flipping

any bit of the secp256k1 generator guides the curve E7 to one of those six twists listed

in Table 5.1.

From the attacker’s perspective, faults can be injected into the generator in a non-

controlled way, and luckily the fault will guide the original curve to one of its five insecure

twists. For verifying that the point is in one of the insecure twist curves, the attacker can

receive the malformed signature and check if the point is in one of the curves in Table 5.1.

On the other hand, if the attacker can control the fault injection, the fault can be injected

in the curve order n, which is a value used during the signature generation for modular

reduction when computing the values of r (line 6) and s (line 10) in Algorithm A.1. For

instance, flippling the 237th bit of the original n (Table 5.1) generates the curve order

n = 5× 19× 937× 55409197× 26698940729717×

16417030323195811079× 53560469775481898997442373619121,

which can leak some bits of the private key. For instance this will allow the attacker

to obtain r, Algorithm A.1 line 6, by small factors modulus, such as, r = x mod 5,

r = x mod 19 and so on.

In Algorithm 5.1 we propose a procedure for recovering a private key d by injecting

faults in the original generator G = (Gx, Gy). For instance, flipping the 6th, 5th, 1st,

3rd, and 24th bits from the Gy coordinate generates a point in the curves E1, E2, E3,

E4, and E6 respectively. Then, the private key d can be recovered by collecting all forged

signatures and the original signature using the E7 curve. For each x-coordinate of r in the

signature (r, s), four possible points can be generated, as described from line 10 to line 12

in Algorithm 5.1. This occurs because each square root can generate an odd and an even

point. Also, the reduction ri = xi mod n7 can generate a different value for ri = xi mod ni

for all i in {1, 2, 3, 4, 6}.

The curve E1 : y21 = x3
1 + 1 is the only one with an order smaller than that of

E7 : y27 = x3
7 + 7. All other twists have order ni greater than n7, the order of the E7

curve. When performing the attack and jumping to a curve Ei (i ̸= 7), the result will

be delivered to the attacker in the form of xi mod n7. However, xi is in the Ei curve.

So xi mod n7 can be different from xi mod ni, which can lead to a failure when trying to

retrieve the integer square root yi = (x3
i + i)(1/2). In this case, one can use the value of

x′

i = xi + n7 that contains a square root. Because, except for n1 all values respect the

interval n7 < ni < 2n7
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Algorithm 5.1 ECDSA key recovering algorithm

Require:

Ei: twist elliptic curve Ei : y
2 = x3 + i, ∀i ∈ {1, 2, 3, 4, 6, 7},

Gi: generator of each twist curve Ei,

ni: order of each curve Ei as in Table 5.1,

h: truncated hash used for computing the signature,

(ri, si): signatures in all twist curves, ∀i ∈ {1, 2, 3, 4, 6, 7}.

1: procedure ECDSA_RECOVERY({Ei, Gi, ni, (ri, si), ∀i ∈ {1, 2, 3, 4, 6, 7}}, h)

2: m1 ← {20412485227} ▷ Small cofactors from unsafe curve orders

3: m2 ← {3319, 22639}

4: m3 ← {109903, 12977017, 383229727}

5: m4 ← {199, 18979}

6: m6 ← {10903, 5290657, 10833080827, 22921299619447}

7: m← m1 ∪m2 ∪m3 ∪m4 ∪m6

8: for ∀i ∈ {1, 2, 3, 4, 6} do

9: Ps←
(

x = ri, y = (r3i + i)
1

2 odd
)

∪

10:

(

x = ri, y = (r3i + i)
1

2 even
)

∪

11:

(

x = ri + n7, y = ((ri + n7)
3 + i)

1

2 odd
)

∪

12:

(

x = ri + n7, y = ((ri + n7)
3 + i)

1

2 even
)

13: for P ∈ Ps do

14: fi ← ∅

15: for h ∈ mi do

16: fi ← fi ∪ (ni/h) ·Gi discrete log with (ni/h) · P

17: end for

18: end for

19: end for

20: for ∀v = {v1, v2, v3, v4, v6}, ∀vi ∈ fi do

21: k′ ← CRT(v,m)

22: P ′ = (x′

7, y
′

7)← k′ ·G7

23: if x′

7 = x7 then

24: k ← k′

25: end if

26: end for

27: d← s7 · k mod n7

28: d← (d− h) mod n7

29: d← d · x−1
7 mod n7

30: return d

31: end procedure

This attack is hard to conduct in practice, so for demonstration purposes a wrapper was

built around only the libsecp256k1 code with all countermeasures from Subsection 5.2.1

disabled. The attack consists in injecting a fault in the curve generator, one for each
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twist curve, for collecting five corrupted signatures and one valid signature to employ

Algorithm 5.1. This was sufficient to recover the private signing key used in the victim’s

wallet.

5.2.3 A Fault Injection in ECDSA

This proposed attack does not affect only the libsecp256k1 library but also the ECDSA

protocol. This attack considers that instructions can be changed through bit flips. Instead

of evaluating s as k−1(h+rd) mod n, a fault injection can lead this computation to another

that facilitates the recovery of the private key d. At some point, the implementation needs

to multiply k−1 and (h+ rd) to obtain s. However, the call to the multiplication function

can be changed, so it computes the multiplication of (h + rd) and (h + rd). Then, the

value of s will be (h + rd)2, allowing a direct recovery of the private key d. In an x86-

64 platform, changing just a mov instruction can lead to the desired evaluation. For

instance, given a version of the Bitcoin Core wallet, it suffices to change the instruction

4c 89 fe (mov rsi, r15) by only three bits to 48 89 d6 (mov rsi, rdx) as can be

seen in Figure 5.2. In Table 5.2 representing the x86-64 calling convention it is possible

verify why the changing from r15 to rdx, since the multiply_function(output, num1,

num2) uses the rdi for output parameter, rsi and rdx for num1 and num2 parameters

respectively, where multiply_function makes output = num1× num2.

Table 5.2: x86-64 calling conventions. Conventions primarily intended for C/C++ com-
pilers. Other languages may use other formats and conventions in their implementations.
In case of more parameters than registers the remaining are saved on the stack.

Systems Register Parameters

Windows rcx, rdx, r8, r9

Linux, macOS rdi, rsi, rdx, rcx, r8, r9

Index

Transition
64-bit
register

New
64-bit
register

0 1

0 rax r8

1 rcx r9

2 rdx r10

3 rbx r11

4 rsp r12

5 rbp r13

6 rsi r14

7 rdi r15

0x48

+4 · (red right index)

+(red left index)

extended register choice

0x89

mov opcode

0xc0

+8 · (blue right index)

+(blue left index)

register choice

left right

mov a, b

a := b

mov rsi, r15

(0x48 + 4 · 1 + 0) (0x89) (0xc0 + 8 · 7 + 6)

4c 89 fe

Figure 5.2: x86-64 mov operation. For 32-bits system all transition register replace letter
‘r’ by letter ‘e’ (eax, ecx, ...) and keep register choice field.
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This technique can be applied not only against the secp256k1 curve, but also in any

curve that can be used with the ECDSA protocol. Given that this technique targets

line 10 in Algorithm A.1, the attacker just needs to find the call of the multiplication

of k−1(h + rd) mod n in target binary, and introduce faults to changes to generate (h +

rd)2 mod n. The private key can then be recovered directly by solving for d.



72

Chapter 6

DRAM Aging

Accelerated aging is a general technique for product testing to help determine the long-

term effects of expected stress levels within a shorter time [77, 81]. A test may use

aggravated conditions of heat, humidity, oxygen, sunlight, vibration, and others to speed

up the normal aging processes of items. Accelerated aging tests are done on products

that have not existed long enough, such as a new car engine or battery, to predict an

approximated lifespan since the actual lifespan data is unavailable.

A prominent example of accelerated aging occurred during land grabbing in Brazil

when large-scale land acquisitions were made. In Portuguese, land grabbing is translated

as “grilagem” [80], meaning the “cricket way”. In Brazil, pieces of land were distributed to

beneficiaries in the name of Portugal’s king. However, after a 1850 law, the lands started

to be registered, and the old sheets of paper were considered as documents delivered

directly by the Portuguese king. Thus, some people made fake copies of these old papers

and put them in a drawer full of crickets. This way, a brand-new sheet of paper became

artificially aged, appearing as an original old document.

The accelerated aging of paper sheets is also applied in libraries and archives. In this

context, the paper is subjected to elevated temperature, concentrated pollutants, and

intense light [73]. These tests try to predict the long-term effects of particular conservation

treatments, the fundamental processes of paper decay, and to predict the lifespan of a

particular paper type.

Accelerated aging does not have a recommended set of guidelines for its execution.

In fact, in semiconductors, it is possible to use temperature variations, voltage changing,

relative humidity ranging from 1% to 100%, and timing varying from hours to days.

Chapter 4 presented how Rowhammer can harm DRAM memories. This chapter starts

a long yet unfinished research project that seeks to answer whether DRAM aging leads

to a memory vulnerable to Rowhammer. In other words, this chapter seeks to answer if a

brand new memory, which does not present a Rowhammer problem, will start presenting

issues after a while, which can be months or even years.

This chapter is organized as follows. Section 6.1 details how some types of memory

aging are measured. Then, Section 6.2 illustrates the setup adopted in this work to age

memories, including the machine configuration, memory type, and how to produce heat.

Finally, Section 6.3 presents our initial results from memory aging, such as temperature

thresholds for the occurrence of failures.
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6.1 DRAM Aging Evaluation

Conceiving a mathematical model for complex devices like DRAM memory is challenging,

even having several mathematical models for the individual components [77, 81].

Some works claim to use high temperatures to accelerate the aging of DRAMs [87,

86]. Tehranipoor et al. [86] started the argument that memories can present problems

with aging. In the first part of their paper, they aimed to evaluate stable bits in the

nominal operation of the DRAM memory – nominal voltage and 25◦C – and measure the

charge retention factor on top of these bits during the time. Also, half of the bits were

assigned to one and the other half to zero. As a result, about 64% to 81% of the charges

remained stable, and those bits were counted stable. After that, they started to use a

high (80◦C) and a low temperature (0◦C) to check how many of those bits would remain

stable compared with the nominal operation. In both scenarios, there was a significant

drop in the number of stable bits. For the low temperature, it was shown that about 50%

of bits start to lose their stability. The experiment was repeated, varying the nominal

voltage by ±10%. Similarly, the low voltage showed that more than 50% of bits lose their

stability. Therefore, the voltage showed to be more aggressive when related to the bits’

stability.

Wang et al. [93] discussed the Very Large Scale Integrated (VLSI) phenomena with

Bias Temperature Instability (BTI). In this case, aging was evaluated using high temper-

ature and voltage, and this combination resulted in a higher threshold voltage for charge

retention while decreasing the speed of transistors. They also created a circuit called

Radic that works with different clock frequencies. Thus, the aging rate is calculated

based on the difference between the clocks. It seems that Tehranipoor et al. [86] used this

method to claim that 8 hours of high temperature (80◦C) generates an effect of 6 months

of aging.

Table 6.1 summarizes the results of Tehranipoor et al. [86]. This table shows that

aging also affects stable bits that may indicate unusual access, such as those generated by

Rowhammer, that leads to bit flips errors. As the process technology scales further, aging

in integrated circuits becomes a major challenge [93], causing an increased mismatch

between modeled and actual silicon behavior. However, only a few works discuss this

mismatch in behavior and its implications.

Table 6.1: Stable bits under different operating conditions. Adapted from Tehranipoor
et al. [86]. The first column shows different conditions, and the remaining columns show
three types of vendors.

Condition % of stable bits

Type Operation DRAM 1 DRAM 2 DRAM 3

Nominal Operation 1.50V, 25◦C, 0 year 81.4% 65.5% 64.3%

High Temperature 1.50V, 80◦C, 0 year 78.8% 64.4% 49.8%

Low Temperature 1.50V, 0◦C, 0 year 49.9% 54.4% 43.3%

High Voltage 1.65V, 25◦C, 0 year 55.4% 54.3% 30.5%

Low Voltage 1.35V, 25◦C, 0 year 43.3% 36.7% 23.8%

Aged 1.50V, 25◦C, 1 year 71.0% 65.0% 55.1%
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6.2 Methodology Setup

This section discusses the setup adopted for DRAM aging and testing, detailing each step

of the proposed experiment.

6.2.1 Experimental Setup

This study focused on a low-cost setup in a Desktop instead of a server, so no Xeon

processor was used. At first, the chosen processor was an Intel Kaby Lake i5-7400, with

four cores running at 3GHz, with a memory known to be vulnerable to Rowhammer.

However, even after several hours of running Rowhammer at a high temperature, no

flipped bits were found. So, the processor was replaced by a more powerful one, an Intel

Skylake i7-6700k, with four cores running at 4GHz. Besides the higher frequency, it is

also 5% faster in the memory access latency and contains an overall effective speed 14%

greater than Kaby Lake. The performance comparison between both processors can be

see at Figure 6.1.
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Higher is better
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9MB

On-chip L2 + L3 cache
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88
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44
22
0

65W

91W

Thermal Design Power

Lower is better

Kaby lake - Intel Core i5-7400 Skylake - Intel Core i7-6700K

Figure 6.1: Performance comparison between the Kaby Lake i5-7400 and Skylake i7-
6700k. Some processors do not have enough power to trigger Rowhammer, in this case
we were able to flip bits only in the Skylake i7-6700k.

Then, the DRAMA attack [72] was used to find the memory mapping for the following

main purposes:

1. Use an access pattern that would increase the number of row misses, inducing some

types of damage to memory components such as the Row Buffer;

2. Find bit flips via Rowhammer with high precision;

3. Change the memtest instruction so it would run for several hours in a loop, per-

forming access patterns through all memory.
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The focus was in control voltage and temperature as showed in Tehranipoor et al. [86].

So the motherboard was used to control voltage changing and was used an external circuit

for heating control. Due to a large number of timing parameters to control the memory

operation it was decided not address frequency changing.

Brand new memories were used for the experiment due to some difficulties, such as only

a few DDR4 memories at beginning of 2016 were known to be vulnerable to Rowhammer.

With artificial aging would it be possible to compare in a short time how much worse it

the memory state became with respect to Rowhammer.

6.2.2 Heating Setup

This experiment focuses on creating a low-cost but efficient setup for heating. First,

the memory cases were constructed using Peltier plates and a 3D printer. In this first

setup, it was also expected to observe the impacts of cooling the memory. However, it

was not possible to reach high temperatures since it was not possible to create a 3D case

with sufficient thermal isolation, due the amount of air between case with Peltier and the

memory.

Because of that, the initial idea of cooling was discarded. Then, a molded copper plate

was used to surround a memory DIMM and a hair straightener resistance was used in

contact with the copper plate. Thermal isolation was done outside with a fiber thermal

blanket, a plate of aluminum, and Kapton tape for fixation. The resistance’s current flow

was controlled using a dimmer, and the complete setup was controlled via a thermostatic.

The final setup can be seen in Figure 6.2 and a block diagram can be seen in Figure 6.3.
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Figure 6.2: DRAM aging setup using a plate of copper in contact with the memory, a hair
straightener resistance in contact with the plate of copper, a thermal sensor in contact
with the plate of copper, a fiber thermal blanket in contact with the plate of copper, the
resistance and the aluminum plate. Finally, a Kapton tape was used to keep all parts
connected and isolated. A dimmer was adopted to control the resistance’s current flow,
and a thermostatic was used to control the temperature.
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Figure 6.3: Diagram setup used to heat memories. A digital thermostat Full Gauge TIC-
17RGTi, B thermostat terminals from 1 to 12, C thermistor sb59 sensor from −50 to
200◦C, D RC 5W suppressor filter, E dimmer for power control, and F heat resistance
from a hair straightener.
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6.3 Preliminary Results

Several preliminary tests were performed using the setup presented above, some of them

to answer how long it takes for a memory to stop working under extreme conditions. At

first, the following patterns of reading and writing were applied:

0xaaaaa...aa and 0x55555...55.

These patterns consist of the intercalated bit sequences 1010 and 0101, respectively.

Thus, a zero bit is surrounded by ones, or contrariwise, increasing the chance of a bit

being flipped.

A 4GB DDR4 memory using 2400MHz and 1.2V for nominal operation and 125◦C

was chosen for the first experiment. These two patterns were read and written in the

computer setup, presented in the Figure 6.2, at every 7 seconds. In this context, one

can argue whether the setup memory could be burned by using a temperature close to

125◦C during a certain time. This first test observed if a reading or writing error occurred

when running this memory under 125◦C for over 800 hours. As a result, the memory kept

working well, and no problem was detected using memtest for memory testing. After

that, some types of failures were observed by changing the nominal voltage. For instance,

the nominal operation of 1.2V, 2400MHz, and 25◦C was adjusted to a configuration close

to 1.65V, 2700MHz, and 125◦C. The frequency only helped to perform more reading and

writing in the same amount of time, but, excluding this test, the default configuration

was the nominal frequency.

In a second test with a brand new 4GB DDR4 2400MHz 1.2V memory, the goal was to

search for operating ranges using the same reading/writing pattern above. For operations

in the setting 1.4V and 127◦C, the memory started to present errors under 3 minutes.

However, adopting the 1.4V and 100◦C configuration, the same memory did not present

any error also under 3 minutes. On the other hand, the computer could not be turned

on with 1.4V and 155◦C. Due to the motherboard limitation, only some points could be

measured. Figure 6.4 exemplifies this setup, and the graph can be interpreted as follows:

• The black curve is the lower bound, where the memory starts presenting errors. The

curve was extrapolated in regions where points could not be collected.

• The red curve defines the upper bound in which the memory stops working; that is,

the computer can no longer be turned on.

• The red and black points represented the collected data.
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Figure 6.4: Operation of a 4GB DDR4 2400MHz 1.2V memory. Below the black curve,
the memory works normally. The memory presents read and write errors between the
black and red curves. After the red curve, the memory does not work. The points are the
collected data, and the black and red dot line are the curve extrapolation.

Another focus of attention was the temperature at 175◦C, in which the memory got

damaged on cooling and stopped working, implying that the red curve is an extreme case.

In summary, Figure 6.4 shows that the memory works perfectly below the black curve,

the memory presents read and write errors between the black and red curves, and the

memory does not work above the red curve.
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Chapter 7

Conclusions

This work provided a survey on DRAM memory working, including the DRAM architec-

ture with design and construction and the memory controller responsible for managing

all operations over DRAM. In addition, this work showed how challenging it is to keep

DRAM security at a higher level due to its high complexity and the need for new memory-

building technologies to speed up access and security. Finally, it showed the significant

academic effort to reverse engineering the DRAM details, such as the memory controller

mapping. Notice that some memory manufacturers are unwilling to publish architectural

details, trying to protect the technology involved or using security through obscurity,

which relies on the idea that a system can be safe if vulnerabilities are secret or hidden.

This work also surveyed Rowhammer, detailing its types, how to execute the attack

step-by-step, and some countermeasures. The survey showed how powerful Rowhammer

is as a software fault injection attack. Since Rowhammer still works on modern DRAM

memories, it implies that new memory-building technologies need to be developed to

improve access time and security. Finally, the survey presented how the dispute attackers

against defenders works, showing the countermeasures’ evolution.

After that, this work focused on fault injection using Rowhammer in the Bitcoin Core

wallet, the Elliptic Curve Digital Signature Algorithm (ECDSA) protocol, and the elliptic

curve secp256k1 implementation. This approach presented how invalid curve attacks can

be implemented, especially how the libsecp256k1 library can be subverted to leak the

private key d by using twist curves. On the other hand, it also exposes how fragile the

ECDSA protocol can be if the attacker injects faults in certain computations.

Finally, this work initiated research on DRAM aging and its effects on attacks such

as Rowhammer. The primary goal of this research was to claim that, after some time,

the memory will start to present vulnerabilities. DRAM aging uses extreme operation

conditions, such as high temperature and voltage.

7.1 Future Work

On the Rowhammer front, new variants can still be researched, keeping the push for new

hardware updates. The attack variants now needs to bypass hardware countermeasures,

such as the attack focusing on the Target Row Refresh (TRR), which is one of the features
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in DDR4 memories, or the attack focusing on Error-Correcting Code (ECC) memories.

On the other hand the attack may also become stronger with the arrival of 3D memory

printing, where layers of memory arrays begin to stack, meaning that the aggressor line

also interacts with lines in other arrays.

In the ECDSA protocol, the recommendation is to add more countermeasures against

fault injection attacks in real-world implementations like the Bitcoin Core wallet. In

particular, high-level multiplications performed by the protocol must be protected, as

it was proved to be highly vulnerable to Rowhammer. For instance instead of evaluate

s = k−1(h+rdA) mod n change this computation for a masked one like s = s1+s2+· · ·+sn.

Finally, the research on DRAM memory aging can be continued by analyzing more

evidence on aging effects. The research still requires the creation of new patterns for the

Rowhammer test and a better strategy for testing the DRAM memory aging.
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Appendix A

ECDSA Algorithms

Algorithm A.1 ECDSA signature generation

Require:

E: elliptic curve field and equation,

G: elliptic curve point that generates a subgroup with large prime order n,

n: order of the subgroup generated by G, meaning that nG = O, where O is the identity

element,

Ln: bit length of the group order n, which means that Ln = (1j (+log2(n),+ 1))− 1,

m: a message to be signed,

dA: a randomly selected private key.

Ensure:

(r, s): a signature represented by a pair of integers, each in the interval [1, n− 1].

1: procedure ECDSA_SIGN(E,G, n, Ln,m, dA)
2: ³← HASH(m) ▷ Cryptographic hash with the output converted into an integer

3: h← Ln bits of ³ ▷ Note that h can be greater than n but not longer in bit size [50]

4: k ← (random() mod (n− 1)) + 1 ▷ Selects a random number from [1, n− 1]

5: P = (x, y)← k ·G
6: r ← x mod n
7: if r = 0 then

8: go to 4
9: end if

10: s← k−1(h+ rdA) mod n
11: if s = 0 then

12: go to 4
13: end if

14: return Signature pair (r, s)
15: end procedure
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Algorithm A.2 ECDSA signature verification

Require:

E: elliptic curve field and equation,

G: elliptic curve point that generates a subgroup with large prime order n,

n: order of the subgroup generated by G, meaning that nG = O, where O is the identity

element,

Ln: bit length of the group order n, which means that Ln = (1j (+log2(n),+ 1))− 1,

QA: the public key computed by the elliptic curve as QA = dAG, with dA the private key,

m: the message used to generate the signature,

(r, s): a signature to be verified.

Ensure:

A flag indicating if the signature is valid.

1: procedure ECDSA_VERIFY(E,G, n, Ln, QA,m, r, s)
2: if QA = O or QA ̸∈ E or n ·QA ̸= O then

3: return Invalid!
4: end if

5: if r ̸∈ [1, n− 1] or s ̸∈ [1, n− 1] then

6: return Invalid!
7: end if

8: ³← HASH(m) ▷ Same hash function used in Algorithm A.1

9: h← Ln bits of ³
10: u1 = hs−1 mod n
11: u2 = rs−1 mod n
12: P = (x, y)← u1 ·G+ u2 ·QA

13: if P = O then

14: return Invalid!
15: end if

16: if x ≡ r mod n then

17: return Valid!
18: else

19: return Invalid!
20: end if

21: end procedure
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