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Resumo

A orquestração dos processos celulares ocorre através de sequências de reações químicas
conhecidas como vias de sinalização celular. Essas vias, fundamentais para a regulação do
comportamento celular, enfrentam o desa�o do "problema da falta de isolamento", que
consiste na ausência de comunicação das reações contidas no modelo com as reações do
restante da célula. Esse problema prejudica a modelagem de vias de sinalização celular
usando abordagens baseadas em equações diferenciais ordinárias (ODE), pois pode levar à
perda de informações contextuais críticas, di�cultando assim a precisão da previsão. Para
abordar esse problema, uma possibilidade é o uso de uma modelagem híbrida, na qual
um modelo baseado em primeiro princípios e ODE é combinado com um modelo baseado
em redes neurais e dados. Um framework matemático que implementa tal solução é a
Equação Diferencial Universal (UDE). No entanto, em con�gurações reais de modelagem
de vias de sinalização celular baseadas em UDE, deve-se inferir não apenas os pesos da
rede neural, mas também parâmetros desconhecidos de primeiros princípios (por exemplo,
constantes de taxa faltantes); até onde sabemos, nenhum método de inferência está dispo-
nível na literatura. Portanto, aqui propomos uma abordagem para a modelagem de vias
de sinalização celular que aproveita o framework da UDE e também infere conjuntamente
os parâmetros faltantes do modelo de primeiros princípios e os pesos da rede neural. Para
avaliar essa abordagem, realizamos experimentos computacionais usando quatro mode-
los diferentes de sinalização celular e também a implementação da UDE disponível no
ecossistema SciML. Nossos achados demonstram melhorias marcantes tanto na precisão
da previsão quanto na interpretabilidade em comparação com a abordagem baseada em
ODE, destacando assim a e�cácia dos modelos híbridos baseados em UDE para estudos
de vias de sinalização celular. Em conclusão, esta pesquisa forneceu algumas ferramentas
promissoras para explorar a dinâmica complexa dos sistemas biológicos.



Abstract

The orchestration of cellular processes occurs through sequences of chemical reactions
known as cell signaling pathways. These pathways, fundamental to the regulation of
cellular behavior, face the challenge of the �lack of isolation problem�, which consists
of the absence of communication of the reactions contained in the model with the re-
actions of the remainder of the cell. This issue impairs the modeling of cell signaling
pathways using ordinary di�erential equation (ODE)-based approaches, as it can lead
to the loss of critical contextual information, thereby hindering the prediction accuracy.
To address this problem, one possibility is the usage of a hybrid modeling, in which a
�rst-principle, ODE-based model is combined with a data-driven, neural network-based
model. One mathematical framework that implements such solution is the Universal Dif-
ferential Equation (UDE). However, in real-world settings of UDE-based cell signaling
pathway modeling, one should infer not only the neural network weights, but also �rst-
principle unknown parameters (e.g., missing rate constants); to the best of our knowledge,
no such inference method is available in the literature. Therefore, here we propose an ap-
proach for the modeling of cell signaling pathways that leverages the UDE framework and
also jointly infers missing parameters of the �rst-principle model and the neural network
weights. To assess that approach, we carried out computational experiments using four
di�erent cell signaling models and also the UDE implementation available at the SciML
ecosystem. Our �ndings demonstrate marked improvements in both prediction accuracy
and interpretability in comparison with the ODE-based approach, thus highlighting the
e�ectiveness of UDE-based hybrid models for cell signaling pathway studies. In conclu-
sion, this research provided some promising tools for exploring the complex dynamics of
biological systems.
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Chapter 1

Introduction

The intricate dynamics of cell signaling pathways is fundamental for the understanding

of the myriad processes that govern cellular behavior. These pathways consist of sets of

chemical species, often proteins, that are intertwined with each other through chains of

chemical reactions. Information is propagated along those pathways through changes of

concentration in the involved chemical species along time, often through protein-protein

interactions and/or protein post-translational modi�cations (e.g., phosphorylation). Cell

signaling pathways, characterized by their complex interactions and regulatory mecha-

nisms, present a signi�cant modeling challenge within the �eld of systems biology.

Traditionally, ordinary di�erential equations (ODEs) have been employed to model

these pathways, o�ering a deterministic framework to elucidate the temporal evolution

of cellular processes [30]. To this end, chemical reactions of the pathway are modeled

using di�erential equations that describe the rate of those reactions. Kinetic constants of

the chemical reactions that were previously experimentally measured are gathered from

the literature or from repositories such as SABIO-RK [37] 1; for the unknown kinetic

constants, time series measurements must be done for one or more chemical species in

the cellular system of interest, and their values must be inferred through an optimization

method (e.g., simulated annealing [35]).

However, a persistent challenge in accurately modeling cell signaling pathways through

ODEs is the �lack of isolation� problem, wherein the interconnected nature of cellular

processes often prevents the possibility of modeling pathways in isolation without losing

critical contextual information [29]. More speci�cally, when one selects a set of chemi-

cal reactions to compose a cell signaling pathway model, it is left aside reactions which

involves chemical species not included in the model (Figure 1.1(a), left). This can lead

to a model whose �t does not explain the behaviour of the actual cellular system (Fig-

ure 1.1(b)). Common approaches to this problem includes: the inclusion of more reactions

into the model (Figure 1.1(c), left), which might lead to over�tting; the inclusion of pu-

tative species (Figure 1.1(c), right), which might lead to an unrealistic model. Both

approaches might yield a model that fails to predict the behaviour of the cell signaling

pathway for di�erent initial conditions. Therefore, it is desirable the development of

alternative approaches to deal with the lack of isolation problem.

1sabio.h-its.org/.
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(a)

(b)

(c)

u1

u2

(d)

Figure 1.1: The Lack of Isolation Problem in Modeling cell signaling Pathways.
Fig. 1.1a: A signaling pathway with two chemical species (orange and blue) measured over
a period of time. A set of reactions is selected for modeling. Fig. 1.1b: The model fails to
explain the observed data. Fig. 1.1c: Common approaches include expanding the model
or introducing hypothetical species (in gray), whose existence is uncertain. Fig. 1.1d: By
providing missing inputs, the model reproduces the observed data. Adapted from Reis
and Liepe [29].
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In recent years, the advent of data-driven models, particularly those leveraging the

power of machine learning, has o�ered new avenues for modeling complex biological sys-

tems [5]. These models perform well in handling vast datasets, learning patterns, and

making predictions where traditional mechanistic (�rst-principle) models may falter due

to their their tendency to oversimplify or omit complex network interactions. Nonetheless,

a signi�cant drawback of purely data-driven approaches is their lack of interpretability, a

critical aspect when aiming to understand the underlying biological phenomena.

To address these challenges, hybrid models have emerged as a promising solution,

integrating the interpretability of mechanistic models with the �exibility and learning

capabilities of neural networks. A notable attempt by Lee and colleagues in 2020 proposed

a complex hybrid method to tackle the lack of isolation problem [15]. However, this

method was criticized for its complexity and reliance on ad hoc procedures, highlighting

the need for a more streamlined and e�ective approach.

The introduction of universal di�erential equations (UDEs) in 2021 marked a signi�-

cant milestone in hybrid modeling, providing a framework that combines the strengths of

mechanistic models and neural networks [27]. UDEs have since been applied in various

contexts, such as the work by Bangi and colleagues in 2022, which demonstrated their

superior performance in modeling the production of beta-carotene in yeast [1]. More re-

cently, in 2023, Santana et al. explored a novel UDE-based hybrid modeling technique for

the kinetics of sorption uptake, resulting in an e�ectively �tted model that underscores

the potential of UDEs in addressing complex biological modeling challenges [31].

Recently, our research group reported the application of Universal Di�erential Equa-

tions (UDEs) to address the lack of isolation problem in cell signaling pathways [32]. The

methodology of this work involved the integration of a neural network with a system of

ordinary di�erential equations that delineates the dynamics of the investigated signaling

pathway. The primary objective of this integration was to enable the neural network to

learn the interactions between proteins within the designated pathway and those external

to it. This con�guration allows for the identi�cation of extrinsic protein interactions that

in�uence the dynamics of the pathway (refer to Figure 1.1(d), left; in our model, the ui

is represented by the output of a neural network).

However, one notable drawback of the approach is the presupposition that all �rst-

principle parameters are known, which seldom holds true in real-word scenarios. There-

fore, there is a need for the development of UDE-based models of cell signaling pathways

where one or more �rst-principle parameters, such as rate constants, are jointly estimated

from data along with the weights of the neural network. As far we know, this is still an

open problem.

1.1 Research questions

The endeavor to enhance the �delity and applicability of hybrid models for cell signaling

pathways in scenarios involving missing �rst-principle parameters necessitates a meticu-

lous investigation into the methodologies and techniques employed in their development.

Central to this investigation are two pivotal research questions that aim to dissect and
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address the core challenges of modeling such complex biological systems. These ques-

tions are instrumental in guiding the direction of our research and in formulating the

methodologies that will be employed. The research questions (RQs) are as follows:

RQ 1 How well can we identify hybrid models of cell signaling pathways by employing time

series data of species present in the �rst-principle part of the model?

This question addresses the practical applicability and robustness of hybrid models

in capturing the dynamics of cell signaling pathways, with a particular focus on

addressing the lack of isolation problem. The performance and adaptability of the

hybrid models are assessed using the Symmetric Mean Absolute Percentage Error

(SMAPE) metric, providing a quantitative measure of the �delity of the model in

capturing the dynamics of the cellular processes under study.

RQ 2 How can we e�ciently infer the parameters of the hybrid model, encompassing both

the mechanistic (�rst-principle) and data-driven components?

This question probes the challenge of parameter inference within hybrid models,

seeking strategies that e�ectively balance the interpretability of mechanistic models

with the predictive power of data-driven approaches. The inquiry is focused on iden-

tifying methods that not only optimize the �t of the model to simulated data but

also ensure that the parameters re�ect biologically plausible values. This involves

exploring novel computational techniques, optimization algorithms, and model ar-

chitectures that can integrate the distinct nature of data derived from mechanistic

understandings and empirical observations.

Together, these research questions aim to unravel the complexities of hybrid modeling

for cell signaling pathways, seeking to improve the accuracy of the model, interpretability,

and practical utility. By addressing these questions, the research seeks to contribute

signi�cantly to the �eld of computational biology, paving the way for more sophisticated

and reliable models that can aid in the understanding and manipulation of biological

systems.

1.2 Contributions of this dissertation

The main scienti�c contribution of this dissertation is a method, rooted in the principles

of universal di�erential equations, to overcome the `lack of isolation' challenge in model-

ing cell signaling pathways, in scenarios where one or more �rst-principle parameters (in

this case, rate constants) are missing. Unlike previous methods that primarily rely on

a single initial condition time series for model training and validation, our methodology

employs multiple initial conditions to train the model, followed by distinct conditions

for validation and testing. This not only enhances the robustness of the model but also

ensures its applicability across a wider range of biological scenarios. Furthermore, recog-

nizing that �rst-principle parameters are not always known a priori, we introduce a novel

method for simultaneously training the weights of the neural network and estimating the
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�rst-principle parameters. This dual approach represents a signi�cant departure from con-

ventional strategies, promising to deliver models with greater accuracy, interpretability,

and relevance to biological research.

1.3 Structure of work

After this introduction, this dissertation is organized into �ve main chapters, each of them

designed to systematically guide the reader through the research undertaken.

Chapter 2 lays the foundation by introducing the key concepts necessary for under-

standing the context and framework of our study. It provides a comprehensive overview

of the theoretical foundations that form the basis of our research.

Chapter 3 o�ers an literature review, setting the stage for our research by examining

existing studies and theories related to our topic. This chapter not only contextualizes our

work within the broader academic discourse but also identi�es gaps in current knowledge,

paving the way for our investigation.

Chapter 4 details the methodology employed in our work. This section elaborates

on the research design, data acquisition, and techniques used to address our research

questions, o�ering insight into the procedural aspects of our study.

Chapter 5 presents the �ndings of our experiments. It discusses the outcomes of

our research, providing a detailed analysis and highlighting signi�cant observations and

patterns identi�ed during the study.

Finally, Chapter 6 concludes the dissertation by summarizing the key �ndings, dis-

cussing their implications, and answering the research questions. This chapter also out-

lines the contributions of our work to the �eld and suggests directions for future research,

pointing towards potential areas for further investigation.
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Chapter 2

Fundamental Concepts

In this chapter, we establish the essential concepts that underlie our research method-

ology, beginning with an overview of cell signaling pathways in Section 2.1. This sets

the stage for understanding the modeling techniques discussed in Section 2.2, crucial for

representing the cascades of chemical reactions inherent to these pathways. We then

highlight the principles of chemical reaction kinetics in Section 2.3, essential for compre-

hending the dynamic behaviors within cell signaling. Section 2.4 recalls the fundamentals

of the neural network, a data-driven model. Concluding the chapter, Section 2.5 brings

the basic principles of universal di�erential equations (UDEs), the formalism behind our

hybrid modeling approach.

2.1 Cell signaling pathways: A brief overview

The cell represents the fundamental metabolic unit of any living organism. Bridging this

concept with cellular communication, cell signaling pathways are sophisticated communi-

cation systems that cells utilize to transmit and receive vital information. These pathways

enable cells to respond to environmental stimuli, adapt to external changes, and execute

speci�c functions.

Cellular function is grounded in various processes, including growth, proliferation, mi-

gration, and programmed cell death, among others. These processes are orchestrated by

messages transmitted through cell signaling pathways. Comprising a series of chemical

reactions, such as enzymatic reactions, the products of one reaction often serve as sub-

strates for subsequent reactions. For a cell to maintain its health and functionality, it is

imperative that these cellular processes are meticulously coordinated. Disruptions in cell

signaling pathways are implicated in the pathophysiology of several diseases, including

cancer [9, 11].

Imagine the intricate workings of cell signaling pathways akin to the multifaceted tech-

nology of a smartphone. Just as a smartphone connects with a network, receiving and

processing a myriad of signals � be it a call, a text, or an app noti�cation � it promptly

responds with speci�c actions like ringing, vibrating, or displaying messages. In a similar

vein, cells in our body are equipped with their own sophisticated �communication tech-

nology�. They continually intercept and interpret diverse signals from their surroundings
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or other cells. These signals, akin to incoming calls or messages, trigger a series of com-

plex, well-orchestrated intracellular reactions. These reactions, much like the apps on a

smartphone, are tailored to perform speci�c functions, ultimately guiding the response of

the cell to its dynamic environment.

This concept is exempli�ed vividly in the process of glucose regulation, a critical aspect

of the internal communication network of our body. Take, for instance, the process of

glucose regulation. Upon consuming food, glucose levels rise in the bloodstream, serving

as a stimulus. In response, the pancreas secretes insulin, acting as the �messenger�. This

hormone traverses the body, binding to speci�c receptors on the surface of muscle cells,

liver cells, and adipose tissues. The binding of insulin initiates a series of intracellular

events, akin to a domino e�ect, where one event triggers the subsequent one. Ultimately,

this cascade leads to enhanced glucose uptake from the blood, ensuring homeostasis of

glucose levels.

Thus, the insulin-mediated cell signaling pathway exempli�es how cells detect envi-

ronmental alterations and generate appropriate responses. It is imperative to understand

that various distinct cell signaling pathways operate in the human body, each tailored

to respond to unique stimuli and elicit speci�c cellular responses. These pathways are

pivotal in orchestrating and modulating various physiological processes.

2.2 Modeling of cell signaling pathways

Owing to the intricacies of regulatory feedback loops and signal transduction branches,

cell signaling pathways are complex nonlinear systems whose dynamics are in�uenced by

the temporal variations in the concentration of chemical species, such as proteins [28].

Given the inherent nonlinearity of these systems, human intuition alone is insu�cient to

predict the behavior of a speci�c cell signaling pathway based on alterations in initial

conditions. For instance, understanding how a particular pathway responds to various

cellular stimuli, such as the introduction of di�erent compounds into a cell culture, re-

quires more than just observational insights. In this context, modeling the dynamic of

cell signaling pathways becomes an indispensable tool for mechanistic studies of cellu-

lar processes. Two predominant approaches for modeling cell signaling pathways are the

�rst-principle models and data-driven models.

2.2.1 First-principle modeling

First-principle modeling involves describing the signaling pathway based on the physico-

chemical principles underlying its operation. In this context, a classic approach assumes

that, for each chemical species, the number of copies of the species molecule (i.e., its

concentration within the cell) is su�ciently large and that species' copies comprise a ho-

mogeneous mixture. Under these assumptions, it is feasible to model a signaling pathway

using systems of ordinary di�erential equations (ODEs) [30]. These equations describe

the temporal changes in concentration according to the principles of chemical kinetics.
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For instance, a cell signaling pathway can be characterized as follows:

dx(t)

dt
= f(x(t),u(t);θ) (2.1a)

y(t) = h(x(t)) + ϵ(t) (2.1b)

x(0) = x0, (2.1c)

where x(t) ∈ R
n
+ is a state vector at time t, dx(t)

dt
is the rate of change of the state vector

at t, x0 is the initial value of the system, and u(t) is the vector of known inputs belonging

to R
n. The output y(t) of the system is composed of the sum of a function h applied to

the state vector x(t) and an error function ϵ(t). The function f describes the dynamic

model using arguments x(t) and u(t).

First-principle parameters θ presumed to be well-de�ned are often �xed, while those

that are either not well-understood or whose alterations lead to signi�cant variations in

model outputs are targeted for estimation via optimization techniques [24]. Additionally,

certain scenarios necessitate the simultaneous adjustment of all �rst-principle parameters.

In this context, �rst-principle parameters can be determined through the application of

optimization techniques, such as simulated annealing [19].

2.2.2 Data-driven modeling

Data-driven modeling o�ers a powerful toolkit for unraveling the complexities of cell

signaling pathways, utilizing both unsupervised and supervised learning approaches to

extract meaningful insights from biological data.

In unsupervised learning, principal component analysis (PCA) is a widely adopted

technique for the dimensional reduction of phosphoprotein data, facilitating the strati�-

cation of drug-responsive melanoma cell lines and the discernment of distinctive pathways

in patients with primary Sjögren's syndrome compared to healthy individuals [24]. Beyond

PCA, nonlinear projection methods such as t-distributed stochastic neighbor embedding

(t-SNE) and uniform manifold approximation and projection (UMAP) have demonstrated

superior performance in segregating single-cell measurements, including mass cytometry

and single-cell RNA sequencing data [24]. These advanced methods provide a more nu-

anced separation of cellular states, enabling a deeper exploration of cellular heterogeneity

and pathway activation.

The realm of supervised learning encompasses a diverse array of methodologies, in-

cluding linear models, tree-based models, neural networks (detailed in Section 2.4), and

ensemble methods, each o�ering unique advantages for modeling cell signaling dynam-

ics. A notable application involved the integration of t-SNE with tree-based classi�ers

to delineate various clinically signi�cant epithelial-mesenchymal transition states in lung

cancer, utilizing mass cytometry data [24]. Furthermore, a comprehensive study under-

took the challenge of employing machine learning models to predict missing markers,

novel conditions, and the dynamic responses of single cells to stimuli, with or without

kinase inhibitors [5]. This ambitious project leveraged a mass cytometry dataset encom-

passing 36 markers across more than 4000 conditions, collecting data on 80 million single
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cells from 67 breast cancer cell lines [5]. The top three teams in this challenge achieved

notable results using an ensemble of linear and tree-based methods, convolutional neural

networks, and gradient boosting technique.

2.3 Chemical kinetics

The examples and concepts of this subsection were mainly obtained from various re-

sources [7, 14, 23].

As previously mentioned, an e�ective approach to modeling cell signaling pathways

is achieved through chemical kinetics. Chemical reactions are understood as interactive

processes between substances, which often result in the formation of new substances.

Chemical kinetics plays a crucial role in studying the rates of these reactions and the

factors in�uencing these rates.

In cell signaling pathways, the concept of chemical kinetics is fundamental. Cells use

signaling pathways to process information and respond to external and internal stimuli.

These pathways function through a series of chemical reactions, where molecules such as

proteins and small metabolites interact in a speci�c and regulated manner. Each reaction

within a signaling pathway can be viewed as an individual step in a broader chemical

process, where the speed and e�ciency of the reaction are vital for an appropriate cellular

response.

For instance, the binding of a hormone to a receptor on the cell surface triggers a

cascade of reactions, each following principles of chemical kinetics. The e�ciency with

which these reactions occur and the speed at which the products are formed or degraded

determine the intensity and duration of the cellular response. Factors such as enzyme

concentration, the presence of co-factors, and the physical and chemical conditions of the

cellular environment can alter the dynamics of these reactions, thus in�uencing the overall

behavior of the signaling pathway.

Therefore, the study of chemical kinetics in cell signaling pathways is not limited to

understanding isolated reactions but encompasses an integrative analysis of how these in-

terconnected reactions modulate complex cellular processes. This approach o�ers valuable

insights into how cells regulate their vital functions and adapt to changes in their envi-

ronment, proving crucial for advancements in �elds such as pharmacology, regenerative

medicine, and biotechnology.

2.3.1 Reaction rate

The rate of a chemical reaction is determined by the speed at which reactants are con-

sumed and converted into products. Therefore, the rate of a reaction can be represented

either by the rate of consumption of the reactants or by the rate of formation of the

products.

Consider the chemical the following chemical reaction:

aA + bB
k

−−→ cC + dD. (2.2)
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In Reaction 2.2, A and B are represent the reactants, while C and D are referred to

as products. The variables a, b, c, and d denote the stoichiometric coe�cients, which

represent the proportional quantities in which reactants and products participate in the

reaction. The symbol k denotes the rate constant, a parameter that quanti�es the rate

at which the reaction proceeds under given conditions.

The rate of a chemical reaction, denoted as v, can be mathematically represented by

the following equation [3]:

v = k

m
∏

i=1

[Ri]
ri . (2.3)

Here, k represents the rate constant of the reaction, which is a measure of the intrinsic

speed at which the reaction occurs. The term [Ri], where i ranges from 1 to m, refers

to the molar concentration of the ith reactant. The exponent ri is known as the reaction

order with respect to the reactant Ri and dictates the dependency of the reaction rate on

the concentration of Ri.

This expression is a generalized rate law for a chemical reaction, illustrating that the

reaction rate is proportional to the product of the concentrations of the reactants, each

raised to a power corresponding to the stoichiometric coe�cient in the balanced chemical

equation, which is also the reaction order for that reactant [3]. The reaction order can

be any real number and re�ects the sensitivity of the reaction rate to changes in the

concentration of that particular reactant. Thus, the rate of the chemical reaction 2.2 can

be calculated by:

v = k [A]a [B]b . (2.4)

Fundamentally, the rate of a chemical reaction dendictates the rapidity at which re-

actant concentrations deplete and product concentrations accumulate. Using the expres-

sion 2.4, we can describe the rate of variation of concentration of each element in 2.2 by:

d[B]

dt
= −k[A]a[B]b (2.5a)

d[C]

dt
= k[A]a[B]b (2.5b)

d[D]

dt
= k[A]a[B]b, (2.5c)

where [A], [B], [C] and [D] are, respectively, the concentrations of species A, B, C and D

at time t (for the sake of simplicity, we write �[A]� instead of �[A](t)�). These di�erential

equations delineate how the concentrations of reactants and products change over time.

The negative sign in the �rst two equations indicates that the concentrations of A and B

are decreasing, which is expected, as they are reactants being consumed in the reaction.

The last two equations have positive signs, indicating that the concentrations of C and

D are increasing, as would be expected for products of a reaction.

These rates of change are derived from the rate law. In the generic reaction, the

concentrations of A and B decrease as the reaction progresses, which is re�ected by the

negative sign in the rate of change. The rate of consumption of A and B is proportional
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to the rate law. For the products C and D, the formation rates are positive and also

proportional to the rate law, re�ecting the increase in their concentrations as the reaction

proceeds.

2.3.2 Parallel reactions

Parallel reactions are those where a single reactant undergoes di�erent pathways to yield

multiple products. Consider the following example:

A
k1−−→ B (2.6a)

A
k2−−→ C. (2.6b)

In these reactions, the reactant A can be converted into either product B or C, each

reaction pathway characterized by distinct rate constants (k1 and k2). This scenario is

typical in systems where a reactant can be transformed through various reaction types or

mechanisms. The rate of consumption or formation of each species in the reactions 2.6a

and 2.6b can be mathematically described as:

d[A]

dt
= −k1[A]− k2[A] (2.7a)

d[B]

dt
= k1[A] (2.7b)

d[C]

dt
= k2[A]. (2.7c)

Here, the rate of change in the concentrations of B and C is dependent solely on the

concentration of A and their respective rate constants. This is because these reactions

are �rst-order with respect to A. The negative sign in the rate expression for A indicates

its consumption, while the positive signs in the expressions for B and C indicate their

formation.

2.3.3 Sequential reactions

Sequential reactions occur when the product of one reaction serves as the reactant for a

subsequent reaction. Consider the following example:

A
k1−−→ B

k2−−→ C. (2.8)

Reaction 2.8 illustrates a series of chemical reactions where the reactant A is �rst trans-

formed into B with a rate constant k1, and then B is further converted into C with a rate

constant k2. The dynamics of the concentrations of A, B, and C over time, as governed

by the kinetics of these sequential reactions, can be described by the following di�erential
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equations:

d[A]

dt
= −k1[A], (2.9a)

d[B]

dt
= k1[A]− k2[B], (2.9b)

d[C]

dt
= k2[B]. (2.9c)

The rate of change in the concentration of A is given by −k1[A], indicating the consump-

tion of A to produce B, where the rate is directly proportional to the concentration of

A. The concentration of B increases as A is converted into B, at a rate of k1[A], but B

is concurrently being consumed to produce C at a rate of k2[B]. Therefore, the net rate

of change in the concentration of B is the balance between its formation from A and its

consumption to form C.

Lastly, the increase in the concentration of C is attributed to the conversion of B into

C, with the formation rate of C being k2[B]. This indicates that the rate at which C is

formed is directly contingent upon the concentration of B.

2.3.4 Reversible reactions

Reversible reactions are characterized by the ability of the products to convert back into

reactants, thereby establishing an equilibrium state. Consider the following reaction as

an example:

A
k1−−á¾−−
k2

B. (2.10)

Reaction 2.10 depicts a reversible chemical reaction where the reactant A is converted

into product B with a forward rate constant k1, and conversely, B is converted back into

A with a reverse rate constant k2. At equilibrium, the rate of conversion from A to B

is equal to the rate of reconversion from B to A, resulting in constant concentrations

of A and B over time. The ratio of the rate constants k1 to k2 determines the position

of the chemical equilibrium, indicating the relative concentrations of the reactants and

products at equilibrium. This relationship is crucial for understanding how changes in

conditions or rate constants can shift the equilibrium position. The rates of change in

the concentrations of A and B due to the rate law can be mathematically described as

follows:

d[A]

dt
= −k1[A] + k2[B], (2.11a)

d[B]

dt
= k1[A]− k2[B]. (2.11b)

Equation 2.11a indicates that the rate of decrease in the concentration of A is proportional

to its concentration multiplied by the forward rate constant k1, and is o�set by the rate

at which B is converted back to A, which is proportional to the concentration of B and

the reverse rate constant k2. Conversely, Equation 2.11b demonstrates that the rate

of increase in the concentration of B is proportional to the concentration of A and the
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forward rate constant k1, diminished by the rate at which B converts back to A, re�ecting

the in�uence of the concentration of B and the reverse rate constant k2.

2.3.5 Enzymatic reaction

Enzymes are proteins that function as biological catalysts, speeding up chemical reactions

within an organism without being consumed by the reaction. An enzymatic reaction

involves the chemical transformation of substrates into products, facilitated by a speci�c

enzyme. Consider the following reaction as an example:

E + S
k1−−á¾−−
k2

ES
k3−−→ E + P.

In this reaction, an enzyme (E) binds to a substrate (S) to form an enzyme-substrate

complex (ES), as denoted by the reversible arrows with rate constants k1 for the forward

reaction and k2 for the reverse reaction. This ES complex can either dissociate back into

E and S or be converted to the product (P ), with the enzyme being released to catalyze

subsequent reactions, indicated by the irreversible conversion with the rate constant k3.

This step signi�es the substrate's conversion to the product, showcasing the enzyme's

role in facilitating this transformation without being consumed, thereby being available

for further catalytic cycles. This mechanism is crucial for the regulation of metabolic

pathways and highlights the dynamic nature of enzyme activity. The rate of change of

each element due to the rate law can be mathematically described as follows:

d[E]

dt
= −k1[E][S] + k2[ES] + k3[ES], (2.12a)

d[S]

dt
= −k1[E][S] + k2[ES], (2.12b)

d[ES]

dt
= k1[E][S]− k2[ES]− k3[ES], (2.12c)

d[P ]

dt
= k3[ES]. (2.12d)

The enzyme concentration [E] changes due to the formation of the ES complex and the

release of E either upon the conversion of the complex to P or its dissociation back into

E and S. The binding of E to S decreases [E] (hence the negative term), while the

dissociation of ES and the conversion to P release E back into the system, re�ected by

positive terms in the equation for d[E]
dt
. The substrate concentration [S] diminishes as it

binds to E to form ES, with the potential to increase if the ES complex dissociates back

into E and S, as shown in the equation for d[S]
dt

with a negative term for the formation

of ES and a positive term for its dissociation. The concentration of the ES complex is

governed by its formation through the binding of E and S and its reduction via conversion

to P or dissociation back to E and S, captured in the equation for d[ES]
dt

with a positive

term for its formation and negative terms for its decrease. Finally, the product P is

generated exclusively through the conversion of the ES complex into P , as illustrated

by the equation for d[P ]
dt
, indicating the direct relationship between the rate of product
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formation and the concentration of the ES complex.

2.4 Neural networks

The concepts in this subsection were primarily derived from the book �An Introduction to

Statistical Learning with Applications in Python," written by James and colleagues [10].

A neural network can be de�ned as a nonlinear real function, f , which takes as input

a vector of size p, X = (X1, . . . , Xp), where Xi ∈ R is known as a feature. The output of

this function, Y ∈ R
n, is the predicted response. In our case, the response is quantitative,

as we aim to predict the chemical concentration of the interactions between proteins.

X1

X2

X3

Xp

f(X)

A1

A2

AK

Input Layer Hidden Layer Output Layer

Figure 2.1: Neural network architecture with a single Layer. The neural network archi-
tecture consists of three layers: The input layer has p neurons, each corresponding to one
input data value X1, X2 . . . , Xp, where Xi ∈ R. The hidden layer has K neurons, where
each neuron applies a nonlinear transformation to the inputs, producing activation values
A1, A2, . . . , A3. The output layer has one neuron, which produces an output value by
applying a linear function to the activation values from the hidden layer.

Neural networks consist of an input layer, hidden layers (which can be more than one),

and an output layer. Each layer is composed of neurons. The input layer neurons hold

the values of the input vector, while the hidden layer neurons contain values obtained

from an activation function, g. The input to this activation function is the weighted sum

of the previous neurons' values plus the bias. Figure 2.1 illustrates the architecture of a

neural network with a single hidden layer. The arrows in that �gure indicate that each
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neuron feeds into the next neuron. The neural network illustrated in Figure 2.1 can be

mathematically described as follows:

f(X) = ´0 +
K
∑

k=1

´kg(wk0 +

p
∑

j=1

wkjXk),

where g is a nonlinear function called the activation function; the parameters ´k and wkj

represent the weights of the output and hidden layer, respectively; and the parameters ´0

and wk0 represent the bias. All these parameters need to be estimated from data. The

vectorized form of this equations is:

f(X) = ´0 + ´Tg(WX + w0),

where X is the input vector, W is the weight matrix for the hidden layer, w0 is the

bias vector for the hidden layer, ´ is the weight vector for the output layer, and g is

the activation function applied element-wise. The most common activation functions are

sigmoid and ReLU. The sigmoid function is de�ned as:

g(z) =
ez

1 + ez
=

1

1 + e−z
.

The output of the sigmoid function ranges from 0 to 1. On the other hand, the ReLU

function is de�ned as:

g(z) = max(0, z).

In our work, we will use the leaky ReLU, a variation of ReLU, de�ned as:

g(z) =

{

z if z > 0

³z if z f 0.

The slope coe�cient ³ ∈ R is de�ned before training. It is important for the activation

function to be nonlinear because if the activation function is linear, the neural network

function f would collapse into a linear regression model.

Modern deep learning techniques require neural network to have multiple layers. For

a neural network with multiple hidden layers, the mathematical representation can be

extended to include all layers. Suppose we have L hidden layers. The output of each layer

is computed in a vectorized form as follows:

For the �rst hidden layer:

H [1] = g[1]
(

W [1]X + b[1]
)

.

For the second hidden layer:

H [2] = g[2]
(

W [2]H [1] + b[2]
)

.

Continuing in this fashion, for the ℓ-th hidden layer:
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H [ℓ] = g[ℓ]
(

W [ℓ]H [ℓ−1] + b[ℓ]
)

.

Finally, the output layer produces the �nal prediction Y :

Y = f(X) = g[L+1]
(

W [L+1]H [L] + b[L+1]
)

.

Here, the output Y is computed using the activation function g[L+1] applied to the weighted

sum of the �nal hidden layer's output H [L] and the biases b[L+1].

Neural networks are trained using a process called backpropagation, combined with

an optimization algorithm like gradient descent. During training, the network adjusts its

weights and biases to minimize the error between the predicted output and the actual

output. The error is calculated using a loss function, such as mean squared error for

regression tasks. The training process involves iteratively updating these weights W [ℓ]

and biases b[ℓ] using the gradients of the loss function with respect to these parameters.

This is done using backpropagation, which calculates the gradients, and gradient descent,

which updates the parameters to minimize the loss.

2.5 Universal di�erential equations

A pivotal advancement in machine learning has been achieved by incorporating more

structural knowledge into models [27]. Embedding additional structure into a model en-

hances its ability to �t data more accurately and e�ciently, even with limited datasets.

However, the application of deep learning methods is constrained in many scienti�c do-

mains due to their limited accuracy when trained on small datasets. In these �elds,

mechanistic models continue to dominate due to their reliability and foundational basis

in scienti�c principles [27].

Rackauckas and colleagues introduced the concept of universal di�erential equations

(UDEs), a sophisticated mathematical framework that synergizes the strengths of both

mechanistic and data-driven models while addressing their individual shortcomings [27].

The mechanistic component of a UDE encapsulates the structured scienti�c knowledge,

including all recognized scienti�c laws and numerical methods. In contrast, the neural

network component is tasked with ��lling in the gaps�, thereby covering aspects of the

system not explicitly de�ned by the mechanistic model.

A UDE is characterized by a di�erential equation that is de�ned, wholly or in part, by

a universal approximator [27]. A universal approximator is a parametric system capable

of approximating any function f : Rn → R
m to any desired degree of accuracy, assuming

su�cient resources are available [27].

According to the universal approximation theorem, neural networks stand out as a

prime example of universal approximators. It is crucial to recognize that, although a

universal approximator has the theoretical capability to approximate any function, its

practical ability to do so from a speci�c dataset is not guaranteed. The success of learn-

ing an accurate approximation is in�uenced by various factors, including the design of

the network architecture, the choice of optimization algorithm for training, the quality
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and volume of the training data, and the implementation of regularization strategies to

mitigate over�tting.

Let C be a cost function de�ned as:

C(ω) =
n

∑

i=1

∥x(ti,ω)− di∥, (2.13)

where x(t,ω) represents the solution to the universal di�erential equation with respect

to the parameters ω, and di is the true solution at time ti. Here n denotes the number of

data points, and ∥·∥ represents the Euclidean norm. Training a UDE involves minimizing

that cost function. By applying the chain rule, the gradient of C(ω) is given by:

∇C(ω) = 2
n

∑

i=1

(x(ti,ω)− di)∇x(ti,ω). (2.14)

E�ciently training a UDE, therefore, depends on the accurate computation of the gradient

of the di�erential equation solution with respect to the parameter vector ω. This approach

not only integrates the predictive power of neural networks with the deterministic nature

of mechanistic models but also opens a new era in modeling complex systems.
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Chapter 3

Literature Review

This chapter presents a literature review that systematically explores the domain of hybrid

modeling, particularly within the context of chemical kinetics and cell signaling pathways.

Our discussion is structured into three sections, each addressing distinct aspects of the

current research landscape and emerging methodologies. In Section 3.1, we delve into the

evolution and application of hybrid models in chemical kinetics, elucidating how these

models synergize the predictive power of data-driven approaches with the foundational

principles of traditional kinetic modeling. This section lays the groundwork for under-

standing the signi�cance of hybrid modeling in advancing our comprehension of complex

chemical processes. Section 3.2 focuses on the recent advancements in UDE-based hybrid

models. Universal Di�erential Equations (UDEs) represent a cutting-edge approach that

marries the �exibility of neural networks with the structured framework of di�erential

equations, o�ering new possibilities for modeling dynamic systems with enhanced accu-

racy and interpretability. In Section 3.3, we identify and discuss the prevailing research

gaps within the �eld. Despite signi�cant progress, certain challenges remain unaddressed,

particularly regarding the generalization of models across varying initial conditions and

the simultaneous inference of �rst-principle parameters and neural network weights. High-

lighting these gaps not only provides direction for future research but also underscores the

need for innovative solutions to enhance the utility and applicability of hybrid models.

Our �nal literature search spanned from February 8, 2024, to February 16, 2024,

leveraging the Scopus database to compile relevant studies. We employed a series of

queries focusing on �hybrid modeling� and �chemical reaction� or �cell signaling pathway�,

�universal di�erential equations�, and �parameter estimation� in chemical reactions or

cell signaling pathways, speci�cally targeting publications from 2022 to 2024. Despite

experimenting with various queries and exploring other databases such as PubMed and

IEEE, our most pertinent �ndings were derived from Scopus, owing to its comprehensive

coverage and relevance to our research focus. The selection process and the criteria for

inclusion followed the PRISMA guidelines [26], and are visually summarized in a �ow

diagram (Figure 3.1), which elucidates the systematic approach adopted in identifying

and selecting the papers for this review. In a total, we selected 16 papers to carefully

assess and discuss in this literature review. Some main properties of those papers are

summarized in Tables 3.1 and 3.2. In the following, we will critically discuss those papers.
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Figure 3.1: Flowchart illustrating our systematic review process in accordance with
PRISMA guidelines.
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Paper Dataset Data-Driven part Case studies

Zander et al. [39] Real Neural Network (NN) 2
Wouver et al. [34] Real RBF Network 1

Narayanan et al. [25] Simulation Functional 6
Transformations

Kaili et al. [16] Real LSTM 1
Dong et al. [4] N/A LSTM 1
Bang et al. [1] Real UDE with NN 1
Liam et al. [17] Real and Simulation UDE with NN 1

Santana et al. [31] Simulation UDE with NN 1
Koch et al. [12] Simulation UDE with NN 1

Kuwahara et al. [13] Real UDE with NN 1
Heimerson et al. [8] Real UDE with NN 1
Vortmeyer-Kley [36] Simulation UDE with NN 4

Table 3.1: Literature review of hybrid modeling, including UDE-bases ones. For each
paper, we present the type of dataset used in the paper, the data-driven model couple in
the �rst-principle model, and the number of evaluated case studies.

3.1 Hybrid modeling in chemical reactions

The advent of hybrid modeling in chemical kinetics marks a signi�cant milestone in the

evolution of computational modeling, blending traditional kinetic modeling with the com-

putational power of neural networks. This interdisciplinary approach, initiated by the

pioneering work of Zander and colleagues in 1999, has sought to leverage the strengths

of both physical-based and data-driven models to enhance the prediction and generaliza-

tion capabilities in dynamic modeling of chemical reaction systems [39]. The exploration

of Zander and colleagues into hybrid models for ethane pyrolysis and dodecanol ethoxy-

lation underscored the potential for such models to reduce dependency on voluminous

experimental data while improving model generalization [39]. Despite these advantages,

the work also highlighted inherent challenges, notably the intricate balance required be-

tween incorporating empirical insights and maintaining the integrity of physical modeling

principles. A critical aspect of their methodology was the evaluation of extrapolation

capabilities, pointing to the signi�cant role of physical modeling components in extending

predictions beyond the con�nes of training datasets.

Expanding upon these foundational insights, Wouwer and colleagues in 2004 ap-

plied hybrid modeling to bio-processes, speci�cally targeting batch CHO animal cell cul-

tures [34]. By integrating radial basis function (RBF) networks with physical models,

this study aimed to address non-linearities and prediction discrepancies inherent in bio-

logical reaction systems [34]. This approach detailed a comprehensive weights estimation

process, blending unsupervised and supervised learning to enhance neural network per-

formance. This approach, however, was not without its challenges. The method proposed

by Wouwer and colleagues introduced an intricate parameter estimation process that,

while innovative, raised concerns regarding its complexity and the potential for increased

computational demand.
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A signi�cant leap forward was made by Narayanan and colleagues, who introduced

a functional-hybrid modeling framework that combines domain-speci�c functional trans-

formations with symbolic regression [25]. This innovative approach, emphasizing model

interpretability, has demonstrated commendable performance across various biochemical

processes. Notably, it o�ers advantages in data-scarce environments, showcasing enhanced

extrapolation capabilities compared to traditional hybrid arti�cial neural network models.

However, while advancing model interpretability, symbolic regression introduces new chal-

lenges, including the potential for increased computational demand and the complexity

of deriving suitable symbolic expressions that accurately re�ect system dynamics.

As the �eld evolves, hybrid models have increasingly incorporated advanced techniques

such as deep learning to enhance their predictive capabilities. A notable contribution by

Kaili and colleagues represents a signi�cant advancement in environmental modeling, par-

ticularly in the prediction of nitrous oxide (N2O) emissions from wastewater treatment

plants (WWTPs) [16]. Their approach integrates a �rst-principle model based on the

activated sludge model (ASM), modi�ed to encompass major nitrogen species transfor-

mations, with a deep learning model employing long short-term memory (LSTM) ar-

chitecture. This blend of mechanistic insight and data-driven pattern recognition yields

predictions of N2O emissions with higher accuracy than either standalone mechanistic or

deep learning models. Validated against data from a full-scale WWTP, this hybrid model

underscores the potential of combining �rst-principle models with LSTM to achieve su-

perior performance across diverse operational conditions and con�gurations. Despite its

promising results, the e�ectiveness of the model hinges on data quality, highlighting the

need for broader validation across various WWTPs.

In a similar vein, Dong and colleagues developed a hybrid model that merges �rst-

principle mechanistic models with LSTM neural networks to predict the gold leaching rate

accurately, crucial for environmental and economic optimization in hydrometallurgy [4].

This model synergizes the conservation principles and chemical dynamics of gold cyanida-

tion leaching with an LSTM network, addressing unmodeled dynamics and prediction

errors inherent in �rst-principle models. Although this hybrid model shows superior pre-

dictive performance for the leaching rate compared to individual �rst-principle or LSTM

approaches, it faces limitations related to data quality and computational complexity, par-

ticularly in parameter optimization. The model's applicability to other leaching processes

and operational conditions also warrants further investigation, illustrating the ongoing

challenges and opportunities in hybrid modeling for chemical reactions.

3.2 Advancements in UDE-based hybrid modeling

The development of universal di�erential equations (UDEs) by Rackauckas and colleagues

represents a paradigm shift in hybrid modeling, facilitating the integration of symbolic

expressions with neural networks [27]. UDEs have emerged as a versatile tool, enabling

the creation of models that are both interpretable and adaptable to limited data scenar-

ios. This advancement heralds a new era in hybrid modeling, combining the precision

of symbolic regression with the �exibility of neural networks to forge models of unprece-



35

dented e�cacy and e�ciency. Recent years have witnessed signi�cant advancements in

the application of UDEs for hybrid modeling, marking a pivotal shift towards integrating

data-driven approaches with traditional di�erential equation frameworks. This section

presents recent usage of UDE-based hybrid modeling within various scienti�c domains.

In 2022, Bangi and Kwon employed a UDE-based hybrid model to elucidate the batch

kinetics of aerobic carotenoid production in Saccharomyces cerevisiae. By embedding

a deep neural network within the structure of ODEs, this model adeptly captures the

complex dynamics of the bio-fermentation process. The hybrid model demonstrated su-

perior predictive accuracy for key biochemical components, including biomass, glucose,

ethanol, acetic acid, and ´-carotene, showcasing a marked improvement over traditional

�rst-principles models [1]. However, a critical limitation emerged from its dependence

on training data, suggesting potential challenges in generalizing predictions to scenarios

not encompassed by the training dataset. This dependence underscores the need for en-

hanced methodologies or diversi�ed datasets to bolster the extrapolation capabilities of

the model.

Building on this momentum, Lima and colleagues, in 2023, introduced a novel UDE-

based hybrid model tailored for the crystallization process of potassium sulfate [17]. This

model combines population balance models (PBM) with neural networks to predict nucle-

ation, growth, and dissolution rates, trained on experimental data and validated against

PBM simulations [17]. The UDE approach not only matched the performance of conven-

tional PBMs in terms of error metrics but also achieved this with a signi�cantly smaller

dataset, spotlighting its e�ciency and reduced data requirement for model development.

Furthermore, in the same year, Santana and colleagues ventured into the realm of

sorption processes, employing a UDE-based hybrid model to investigate sorption uptake

dynamics within non-linear advection-di�usion-sorption systems [31]. Utilizing sparse

and symbolic regression to integrate missing functions into an arti�cial neural network,

this model excelled in predicting sorption breakthrough curves from noisy in-silico data.

Despite its success in modeling and discovering sorption kinetic laws, the approach raised

concerns about the computational demands of symbolic regression and the interpretability

and simplicity of the resultant models. The challenge lies in balancing the desire for model

simplicity with the need for accuracy and interpretability, particularly when extrapolating

beyond the con�nes of available data.

Integrating the concept of UDEs into broader scienti�c inquiries, Koch and colleagues

lead e�orts in data-driven modeling for networked dynamical systems, employing UDEs to

decipher the complex interrelations within such systems based on nodal observations [12].

Their work innovatively combined �rst-principles modeling and neural networks within the

UDE framework to approximate unknown dynamics, notably enhancing the understand-

ing of individual unit physics, graphical structures, and coupling physics in networked

systems. This methodology demonstrated its prowess in modeling non-linear coupled os-

cillators, o�ering insights into future state predictions and system behaviors across varied

network topologies.

Extending UDE applications, Kuwahara and Bauch harnessed this framework for

pandemic forecasting, speci�cally COVID-19, blending compartmental models with real-

world data [13]. Despite its novel integration, the dependency of the model on timely
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and accurate data collection highlighted challenges in applying UDEs across �uctuating

data landscapes, emphasizing the necessity for model re�nement to aid in public health

decision-making.

Further exploration by Heimerson and Ruuskanen into microservices modeling show-

cased the capability of the UDEs to capture dynamics unaccounted for by simpli�ed

assumptions, through a hybrid model integrating neural networks with �uid models [8].

This approach, while enhancing model adaptability, underscored the importance of an

accurate base �uid model for e�ective extension through neural networks.

Moreover, the development of a trajectory-based LDA loss function by Vortmeyer-Kley

and colleagues for systems experiencing bifurcations exempli�ed the integration of physics-

informed di�erential equations with machine learning within the UDE framework [36].

This innovation proved e�ective in capturing dynamical behaviors around bifurcation

points, despite potential limitations in data quality and the complexity of hyperparameter

tuning.

3.2.1 Estimation of First-Principle Parameters

The ongoing evolution of methodologies for �rst-principle parameter estimation in chem-

ical reaction networks is a pivotal aspect of the interplay between theoretical modeling

and experimental validation in the �eld of systems biology. As researchers seek to unravel

the complexities of biochemical processes, the accuracy and reliability of these methods

are paramount. In Table 3.2, we present the reviewed papers on �rst-principle parameter

estimation.

Paper Dataset Technique Case studies

Gasparyan et al. [6] Simulation Bézier curve 2
Tang et al. [33] Simulation Moment estimation 1
Barrows et al. [2] Simulation Particle �ltering 3

Gasparyan et al. [6] Simulation Kron reduction 2

Table 3.2: Literature review of �rst-principle parameter estimation. For each paper, we
present the type of dataset used in the paper, the used estimation technique, and the
number of evaluated case studies.

In 2021, Gasparyan and colleagues introduced an innovative approach for parameter

estimation in enzymatic chemical reaction networks based on time-series experimental

data of reaction rates [21]. The core of their method is the utilization of parametric

Bézier curves to transform available reaction rate data into species concentration data.

This key transformation enables the application of the least squares method for estimating

the parameters of a mathematical model describing the chemical reaction networks. This

technique e�ectively bridges the gap between experimental observations and theoretical

modeling, providing a more accurate and comprehensive understanding of enzymatic be-

haviors. The accuracy of the method of Gasparyan in retrieving known parameter values

from synthetic experimental data highlighted its potential for practical applications in

systems biology. The reliance of the method on Bézier curves introduces a novel and
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�exible approach for dealing with the non-linear dynamics typical of enzymatic chemi-

cal reaction networks. The automated nature of the procedure simpli�es the parameter

estimation process, making sophisticated modeling accessible to researchers without ex-

tensive expertise in computational modeling. However, the e�cacy of this approach is

contingent upon the quality and resolution of the experimental data, with sparse or noisy

data potentially undermining the reliability of the estimated parameters. The issue of

model identi�ability also presents a challenge, emphasizing the need for comprehensive

data to ensure unique and accurate parameter estimation.

Transitioning to 2022, Han Tang [33] introduced a pioneering approach that incor-

porates time delays into the modeling of chemical reactions using uncertain di�erential

equations. This method extends the traditional chemical kinetics models by providing a

more nuanced understanding of reactions, acknowledging that products may emerge after

certain time delays. The work of Tang is anchored in the established theory of uncertain

di�erential equations, applying it to chemical kinetics to o�er innovative solutions for

parameter estimation and hypothesis testing. This methodology allows for the estimation

of unknown parameters and the validation of chemical reaction models against observed

data, addressing some of the limitations found in instantaneous reaction assumptions.

Despite its innovative contributions, the methodology of Tang shares similar limitations

with previous models, particularly regarding the dependency on high-quality and granular

observed data. The generalizability of this model to reactions without signi�cant delays

or where deterministic models su�ce also poses questions, indicating a need for further

exploration into the applicability of uncertain di�erential equations in diverse chemical

reaction contexts.

In 2023, Barrows and colleagues proposed a methodological advancement by leverag-

ing iterated particle �ltering to estimate parameters within the context of the reaction-

di�usion master equation [2]. This approach, tested across various systems, demonstrates

an impressive ability to recover known rate parameters accurately. It marks a signi�cant

step forward in modeling stochastic biochemical systems, especially in the realm of systems

biology where spatial heterogeneity and low species copy numbers are common challenges.

The methodology introduced by Barrows and colleagues o�ers a sophisticated alternative

to traditional parameter estimation methods, though with increased computational com-

plexity and a requirement for specialized knowledge in particle �ltering techniques. The

sensitivity of this approach to initial conditions and data quality underscores the contin-

uing challenge of balancing model accuracy with the practicalities of experimental data

availability.

Further advancements in 2023 by Gasparyan and colleagues address the intricacies

of estimating parameters from partial experimental data, employing the Kron reduction

technique combined with least squares optimization [6]. This method facilitates parame-

ter estimation even when not all species concentrations are measurable, o�ering a solution

to a common issue in biochemical experiments. While this approach mitigates some of

the challenges associated with high-dimensional parameter spaces, it also introduces new

considerations regarding the accuracy and identi�ability of parameter estimates, high-

lighting the ongoing need for comprehensive and high-quality experimental data in the

�eld of systems biology.
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3.3 Identi�cation of research gaps

Despite the remarkable advancements in hybrid modeling, particularly those leveraging

universal di�erential equations (UDEs), our literature review has unveiled crucial gaps

in the current state of research. These gaps underscore limitations in the generaliza-

tion capabilities of existing models and highlight a reliance on prede�ned �rst-principle

knowledge that may restrict their broader applicability and e�cacy.

3.3.1 Lack of generalization across multiple initial conditions

A signi�cant research gap identi�ed is the absence of methodologies tailored to train hybrid

models across a diverse array of initial conditions. Current approaches primarily focus

on modeling speci�c scenarios or datasets, often overlooking the variability inherent in

biological and chemical systems. This limitation is particularly pronounced in models that

do not account for the wide range of initial states these systems can exhibit, potentially

restricting the ability of the model to generalize and accurately predict outcomes under

previously unencountered conditions. Addressing this gap by developing methods that

incorporate a myriad of initial conditions could signi�cantly enhance the robustness and

predictive power of hybrid models, making them more versatile and applicable to a broader

spectrum of scienti�c inquiries.

3.3.2 Joint inference of �rst-principle parameters and neural net-

work weights

Another critical gap in the existing body of research is the lack of approaches that si-

multaneously infer both the �rst-principle parameters and neural network weights within

hybrid models. The prevailing methodologies often assume that �rst-principle parameters

are known a priori, which may not always be the case. This assumption places a consid-

erable constraint on the �exibility of the model, rendering it dependent on the availability

and accuracy of �rst-principle knowledge. A reliance of the model on such prede�ned

parameters can limit its application, especially in systems where �rst-principle knowledge

is incomplete or evolving. Developing a framework that allows for the joint inference of

both sets of parameters could signi�cantly diminish this dependency, thereby enhancing

the adaptability of the model and reducing the need for extensive prior knowledge.

The identi�ed research gaps highlight an opportunity for signi�cant contributions to

the �eld of hybrid modeling. By addressing these gaps, future research can pave the way

for the development of more generalized and self-su�cient hybrid models. Such models

would not only advance our understanding of complex systems but also broaden the scope

of their applications, ultimately contributing to the advancement of scienti�c knowledge

and technology.
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Chapter 4

Methodology

The methodology of our work, depicted in the diagram presented in Figure 4.1, was de-

signed to address the lack of isolation problem in cell signaling pathways. This method-

ological framework is in direct response to our research questions. It begins by tackling

RQ 1, which concerns the e�ectiveness of hybrid models in identifying cell signaling path-

ways using simulated time series data. To this end, we simulate a comprehensive �rst-

principle model across a spectrum of initial conditions, generating an extensive dataset

that re�ects the multifaceted nature of cell signaling.

Figure 4.1: Flowchart depicting the step-by-step methodology for addressing the lack of
isolation problem in cell signaling pathways. This includes the generation of time series
data, de�nition and re�nement of pathway cutouts, inference of the hybrid model, and
the subsequent evaluation of model performance.

Subsequent to the simulation phase, we move to a critical step that directly engages

with RQ 2: the iterative removal of parameters from the mechanistic part of the model.

Our objective here is to test the robustness and predictive accuracy of the hybrid model.

Initially, we retain all �rst-principle parameters, building a pathway cutout that encap-
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sulates the complete set ofcel known parameters. Then, in a stepwise manner, we remove

parameters�one at a time, then two at a time, and so forth�until we have iteratively

tested the performance of the model with each possible subset of parameters. This it-

erative parameter removal serves a dual purpose. First, it evaluates the capacity of the

model to infer the weights of the neural network and the parameters of the �rst-principle

component simultaneously. Second, it assesses the resilience of the model and predic-

tive capabilities as the known �rst-principle parameters becomes increasingly incomplete.

This process ensures that our hybrid model is not only capable of accurately representing

the system when all �rst-principle parameters is present but also retains its predictive

power in scenarios where such knowledge is partial or uncertain.

4.1 Proposed method

4.1.1 The inference of the hybrid model

Our proposed methodology aims to use the predictive power of �rst-principle models

and the adaptability of neural networks using the universal di�erential equation (UDE)

formalism. This approach allows us to create a hybrid model, integrating the structured,

mechanistic understanding with the �exibility of machine learning. The hybrid model is

mathematically expressed as:

ẋ = f(x(t),u(t), U(x(t),u(t),ω);θ), (4.1)

where U represents the neural network, ω denotes the weights of the neural network, and θ

symbolizes the parameter vector of the �rst-principle model. As discussed in Chapter 2,

training the hybrid model involves e�ciently computing the gradients of the solution

to Equation 2.5 with respect to É. To this end, we will initially employ the ADAM

optimization algorithm, followed by the BFGS algorithm. The rationale behind this

sequence is that while ADAM excels at rapidly converging to local minima, BFGS is more

e�ective in �ne-tuning the solution within the local minima, providing a more accurate

�nal parameter set [27]. In our model, we incorporate a diverse array of time series

data generated from di�erent initial conditions. To manage this, we have designed a loss

function tailored to handle multiple time series within the training process. Algorithm 1

illustrates this loss function.

To facilitate the simultaneous inference of �rst-principle model parameters and neural

network weights, we leverage the gradient of the loss function, which involves calculating

the gradient of the hybrid model solution with respect to the neural network weights.

We approach this by treating the �rst-principle parameters as additional parameters to

be optimized in conjunction with the neural network during the training phase. This is

achieved by concatenating the �rst-principle parameters and neural network weights into

a single vector, allowing the optimizer to update all parameters simultaneously. However,

this method may encounter two potential issues: �rstly, the neural network could over-

power the hybrid model, leading the optimizer to ascribe zero values to the �rst-principle

parameters; secondly, the optimizer might return negative values for the �rst-principle
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Algorithm 1 UDE-based model approach

1: Input: n distinct time series, each describing the dynamics of a cell signaling pathway
2: Output: Optimized weights for a UDE-based hybrid model and the corresponding

loss value

3: function Loss(Θ)
4: simulations← SolveEnsemble(ensembleUDEModels,Θ, trajectories)
5: error ← CalculateRegularization(Θ)
6: instabilityPenalty ← 106

7: for i← 1 to N do
8: currentCondition← GetCondition(step+ i)
9: solution← simulations[i]

10: if IsSuccessful(solution) then
11: predictedData← ExtractSolutionData(solution)
12: errorIncrement← CalculateMAE(predictedData, currentCondition)
13: error ← error + errorIncrement

14: else
15: error ← error + instabilityPenalty

16: return error

17: function Optimizer(f , Θ0, maxIter, εΘ, εF )
18: k ← 0
19: convergence← False
20: while k < maxIter and not convergence do
21: k ← k + 1
22: ∆Θk ← ComputeDelta(f,Θk−1)
23: Θk ← Θk−1 +∆Θk

24: Fk ← f(Θk)
25: ∆Fk ← Fk−1 − Fk

26: convergence← CheckConvergence(∆Θk, εΘ,∆Fk, εF )

27: Θ∗ ← Θk

28: F ∗ ← f(Θ∗)
29: return Θ∗, F ∗

30: Θest, F est ← Optimizer(Loss,Θ0,maxIter, εΘ, εF )



42

parameters, which is not feasible in many biological contexts. To mitigate these concerns,

we apply regularization exclusively to the neural network weights and impose penalties on

negative values of �rst-principle parameters by employing a recti�ed linear unit (ReLU)

function. The Algorithm 2 re�ects the adjustments made to enable the joint inference of

neural network weights and �rst-principle model parameters.

Algorithm 2 Modi�cation in Loss Function

1: function LossFunction(Θ)
2: simulations← SolveEnsemble(ensembleODEModels,Θ, trajectories)
3: regularizationTerm← CalculateRegularization(Θ[neuralNetwork])
4: penaltyForNegatives← PenalizeNegativeParameters(Θ[firstPrinciple])
5: error ← regularizationTerm+ penaltyForNegatives

6: instabilityPenalty ← 106

7: for i← 1 to totalT rajectories do
8: currentCondition← GetCondition(step+ i)
9: solution← simulations[i]

10: if IsSuccessful(solution) then
11: predictedData← ExtractSolutionData(solution)
12: errorIncrement← CalculateMAE(predictedData, currentCondition)
13: error ← error + errorIncrement

14: else
15: error ← error + instabilityPenalty

16: return error

By integrating these techniques, we aim to construct a model that is both robust in the

face of diverse initial conditions and capable of yielding biologically plausible parameter

estimations, thereby overcoming the critical challenges of the lack of isolation problem.

4.2 Experimental details

4.2.1 Data acquisition for modeling

The data supporting our study was generated through in silico simulations, designed to

re�ect the dynamic interactions of a complete cell signaling pathway, designated as E .

This pathway is initially assumed to be free from the lack of isolation problem, providing

a fully connected and idealized network for our analysis. For the purposes of our research,

cell signaling pathways were predominantly retrieved from Odebase, a repository of ODE

systems associated with biological systems [20]. Alongside these, a toy model was crafted

by our research group to serve as a simpli�ed yet informative complement to the existing

datasets from Odebase.

To initiate the simulations, we generated a range of random initial values that conform

to the fundamental principles of chemical reactions. Using a numerical solver, we then

resolved the resulting initial value problems (IVPs) across a speci�ed time interval. This

process yielded the state vector x(t), capturing the concentration changes of each species

over time.
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The temporal resolution of our model�how frequently we sample the state vector

x(t)�is a critical factor in our simulation. In our case, the time interval [t0, tend] was

partitioned into n equal segments, resulting in a time vector t = [t0, t1, . . . , tn]. For all

our studies, we standardized the simulation interval to [0, 100] and chose to sample at 101

equally spaced time points, e�ectively setting our timestep at 1 unit (i.e., t0 = 0, t1 =

1, . . . , t100 = 100).

The �nal step in our data acquisition was to de�ne the pathway cutout F . This

involved selecting a subset of E , focusing on the time series of the chemical species common

to both E and F . This selective process was crucial for establishing the dataset from which

we would infer the missing parameter of our hybrid model.

Recognizing that biological data typically exhibits inherent noise, we also incorporated

noisy data into our experiments to simulate more realistic conditions. To introduce noise

into our synthetic data, each sample was perturbed with a Gaussian distribution having

a mean (µ) of zero, and a standard deviation calculated as follows:

Ã = 0.05xi, (4.2)

where xi represents the mean value of the state variable xi over the observed time pe-

riod. This adjustment ensured that our model training, validation, and testing phases

considered the typical variability found in experimental biological data.

This structured approach to data generation provided us with a foundation for the

subsequent stages of our methodology, ensuring that the synthetic data used for model

training, validation, and testing were relevant to the dynamics of cell signaling pathways

we aimed to capture.

4.2.2 Training process

The training process is a pivotal stage in the development of our hybrid model, where we

aim to achieve a balance between �tting the data accurately and avoiding over�tting. Our

approach is structured into two training phases: initially, we focus on training the neu-

ral network weights assuming known �rst-principle parameters; subsequently, we engage

in joint training to simultaneously infer both the �rst-principle parameters and neural

network weights.

During the training phase, the dataset is divided into three parts: training, validation,

and testing, with each set having an equal share of the data. The training set is used

to adjust the model parameters, while the validation set is employed to monitor for

over�tting and guide the early stopping mechanism. Early stopping is a crucial technique

to prevent the model from learning noise in the training data. Our early stopping criterion

is speci�cally tied to the mean absolute error (MAE) of the validation set. If the MAE

does not improve over a span of 100 iterations, the training is halted. This approach

ensures that the model generalizes well to new data and does not merely memorize the

training set.

To mitigate the risk of over�tting, we have incorporated L2 regularization into our

loss function. For a set of initial conditions {1, . . . , N}, let X
(n) be the I × J matrix
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for the nth initial condition, where a matrix entry x
(n)
ij is the concentration of chemical

species i at time point j. From now on, we will call such matrix as an observation. The

loss function is then de�ned as follows:

C(w) =
1

NIJ

N∑

n=1

I∑

i=1

J∑

j=1

|x̂
(n)
ij − x

(n)
ij |+ ¼

W∑

k=0

w2
k. (4.3)

Here, x̂
(n)
ij and x

(n)
ij are, respectively, the predicted and the actual matrix entry for the

nth initial condition, the ith species and jth time point, and w is the parameter vector

of the neural network, with weights w0, . . . , wW . ¼ is a regularization constant, which in

our experiments is set to 10−3.

The optimization process begins with the ADAM algorithm, which is selected for its

e�ciency in converging to local minima. We use a learning rate of 0.1 over 2000 iterations,

with each iteration encompassing the entire dataset (equivalent to 2000 epochs). Following

the initial optimization with ADAM, we transition to the BFGS algorithm for a further

1000 iterations, employing a backtracking line search to avoid numerical instabilities. To

enhance stability from the outset, the neural network weights are initialized with values

close to zero.

When performing joint inference, we maintain the same technical details as in the ini-

tial training phase. However, we introduce a penalty mechanism to prevent the optimizer

from assigning negative values to the �rst-principle parameters, which are not biologi-

cally plausible. The penalty for negative estimations of �rst-principle parameters is set

at 100,000, ensuring their non-negativity.

4.2.3 Model assessment

The evaluation of the performance of our hybrid model is critical for understanding its

e�ectiveness and reliability in capturing the dynamics of cell signaling pathways, especially

under conditions of uncertainty such as the lack of isolation problem or unknown �rst-

principle parameters. To assess the robustness of our model, we employ two widely

recognized regression metrics: the mean absolute error (MAE) and the symmetric mean

absolute percentage error (SMAPE).

MAE o�ers a straightforward measure of the average magnitude of errors between

predicted and actual values, without considering their direction. MAE is de�ned mathe-

matically as:

MAE =
1

NIJ

N∑

n=1

I∑

i=1

J∑

j=1

|x̂
(n)
ij − x

(n)
ij |. (4.4)

The MAE was primarily employed to train the UDE-based model rather than to assess

the performance of the model.

The SMAPE, on the other hand, provides a normalized measure of prediction accuracy,

making it particularly useful for comparing model performance across di�erent scales. It
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is expressed as:

SMAPE =
100

NIJ

N∑

n=1

I∑

i=1

J∑

j=1

|x̂
(n)
ij − x

(n)
ij |

x̂
(n)
ij + x

(n)
ij

. (4.5)

Both MAE and SMAPE are instrumental in providing insights into the predictive

accuracy of the model: while MAE gives an absolute scale of error magnitudes, SMAPE

o�ers a percentage-based comparison, which is invaluable for assessing the performance

of the model in a relative sense, especially when dealing with varying magnitudes of the

target variables. Utilizing these two metrics simultaneously allows for a comprehensive

evaluation of the model, ensuring that we can accurately gauge its e�cacy in predicting the

dynamics of cell signaling pathways under diverse experimental conditions and constraints.

4.2.4 Description of the experiments

Our experimental design unfolds in two phases, each crafted to test the resilience and

accuracy of the hybrid model, particularly when the cell signaling pathway su�ers from

the lack of isolation problem and/or the �rst-principle parameters are unknown.

First phase. Here, we focus on the inference of the neural network weights, under the

premise that the �rst-principle parameters are already established. The primary goal at

this stage is to evaluate the ability of the hybrid model to compensate for missing system

inputs. We begin with a set of 30 time series, divided equally into training, validation,

and testing subsets, each containing 10 time series. This set serves as the foundation for

our initial model assessments. Subsequently, we expand the dataset to encompass 300

time series to scrutinize the impact of dataset size on the learning capacity of the model.

An increase in the volume of time series data provides insight into the scalability of the

model and its ability to generalize across a broader range of input variations.

Second phase. This involves the joint inference of the �rst-principle parameters and

neural network weights. Here, we implement an iterative approach where we systemati-

cally remove one �rst-principle parameter at a time, gauging the adaptability of the model

in simultaneously inferring the �rst-principle parameter removed with the neural network

weights. This iterative removal continues, advancing to the exclusion of two parameters

at a time, and so forth, until all �rst-principle parameters have been considered. The

objective is to discern the degree to which the performance of the hybrid model � as

measured by the Symmetric Mean Absolute Percentage Error (SMAPE) � is in�uenced

by the omission of speci�c �rst-principle parameters. This process also helps to reveal

any potential dependencies that the model may have on particular parameters. Owing to

computational constraints, this phase utilizes a smaller dataset of 30 time series, again

evenly split across training, validation, and testing sets. This allows us to maintain com-

putational e�ciency while still rigorously testing the parameter inference capabilities of

the model.
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4.2.5 Computational resources

The development and execution of our experiments were carried out using the Julia pro-

gramming language, renowned for its performance in scienti�c computing. Speci�cally,

we leveraged the SciML ecosystem, a comprehensive suite of Julia packages designed for

scienti�c machine learning applications. This ecosystem provides a robust framework for

implementing UDEs and includes e�cient numerical solvers for ODEs, which were instru-

mental in simulating our �rst-principle models and generating the requisite datasets.

Our computational experiments were conducted on two main platforms:

� Recod.AI Cluster: This platform provided the bulk of computational resources,

featuring a processing node equipped with an Intel(R) Xeon(R) CPU E5620 @

2.40GHz, encompassing 16 cores and 48 GB of RAM. This environment was pivotal

for running large-scale simulations and training sessions that required substantial

computational power;

� Legion Notebook: For tasks necessitating portability and those of a smaller scale,

we utilized a notebook with an Intel Core i7-10750H CPU and 16GB of RAM. This

setup allowed for �exibility in development and preliminary testing of our algorithms

and models.

The combination of these computational resources, coupled with the advanced ca-

pabilities of the Julia programming language and the SciML ecosystem, enabled us to

e�ciently implement our algorithms and conduct the extensive experiments required for

this study.

4.3 Case studies

4.3.1 Toy Model

Our research group has developed a toy model (to which we will refer as �the Toy Model�),

which consists in a simpli�ed representation designed to elucidate the dynamics within

a cascade of enzymatic reactions. Detailed information on this model is available in our

conference paper [32]. The Toy Model is a comprehensive system comprising 38 chemical

species and 51 chemical reactions, governed by 12 �rst-principle parameters. A speci�c

pathway cutout, prominently featured in Figure 4.2 (marked in blue), has been carefully

selected to demonstrate the challenges associated with the lack of isolation problem. This

particular segment of the model includes 12 chemical species and 8 chemical reactions, all

regulated by 12 �rst-principle parameters.
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Figure 4.2: Diagram in systems biology graphical notation (SBGN), depicting the Toy
Model cell signaling pathway. Nodes symbolize chemical species (such as proteins) and
edges denote reactions. The pathway cutout is highlighted by red nodes and all connecting
edges, emphasizing the speci�c segments and interactions under study.

The �rst-principle model, which describes the dynamics of each chemical species within

the pathway cutout, is presented in Equations 4.6a�4.6l. The corresponding �rst-principle

parameters are listed in Table 4.1.

kf1 kr1 kcat1
0.0150 0.1000 0.0030

kf2 kr2 kcat2
0.0990 0.1150 0.0850

kf3 kr3 kcat3
0.0890 0.0500 0.1500

kf4 kr4 kcat4
0.2500 0.4325 0.0150

Table 4.1: First-principle parameters of the Toy Model pathway cutout.
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d[X1]

dt
= kcat1 [X1X2] + kr1 [X1X2]− kf1 [X1][X2] (4.6a)

d[X2]

dt
= kr1 [X1X2]− kf1 [X1][X2]− kf4 [X2][X6] (4.6b)

d[X1X2]

dt
= kf1 [X1][X2]− kr1 [X1X2]− kcat1 [X1X2] (4.6c)

d[X3]

dt
= kr2 [X3X4] + kr3 [X3X5] + kcat2 [X3X4] + kcat3 [X3X5] (4.6d)

− kf3 [X3][X5]− kf2 [X3][X4] (4.6e)

d[X4]

dt
= kr2 [X3X4]− kf2 [X3][X4] (4.6f)

d[X3X4]

dt
= kf2 [X3][X4]− kr2 [X3X4]− kcat2 [X3X4] (4.6g)

d[X3X5]

dt
= kf3 [X3][X5]− kr3 [X3X5]− kcat3 [X3X5] (4.6h)

d[X5]

dt
= kr3 [X3X5]− kf3 [X3][X5] (4.6i)

d[X6]

dt
= kr4 [X2X6]− kf4 [X2][X6] + kcat4 [X2X6] (4.6j)

d[X5X6]

dt
= kf4 [X2][X6]− kr4 [X2X6]− kcat4 [X2X6] (4.6k)

d[X7]

dt
= kcat4 [X2X6]. (4.6l)

4.3.2 JAK-STAT pathway

The JAK-STAT signaling pathway is a quintessential model that exempli�es the intricate

control mechanisms governing cellular processes [38]. This pathway, encompassing 36

chemical species and 46 irreversible reactions, is underpinned by a complex network of 86

�rst-principle parameters. Such a comprehensive assembly underscores the pivotal role

of the pathway in transmitting signals from extracellular cues to the nucleus, in�uencing

gene expression patterns crucial for cell growth, di�erentiation, and immune response [38].

In Figure 4.3, we present a graphical representation of the JAK-STAT pathway.

A speci�c subset of the JAK-STAT pathway was selected for our study. This cutout,

highlighted in red in Figure 4.3, focuses on a segment of the pathway that particularly

exempli�es this issue. The chosen cutout encompasses 5 chemical species involved in 4

irreversible reactions, delineated by 6 �rst-principle parameters. This reduced complexity

allows for a targeted investigation into the dynamics of the pathway, enabling us to assess

the e�cacy of our hybrid modeling approach under conditions where traditional modeling

techniques may falter. The chemical species of the cutout are represented as follows: x1

for IFNRJ2_star_STAT1c, x2 for SHP2, x3 for IFNRJ2_star_SHP2_SOCS1_STAT1c,

x4 for IFNRJ2_star_SOCS1_STAT1c, and x5 for IFNRJ2_star_SHP2_STAT1c. The

�rst-principle model that describes the dynamics of each species is outlined in Equa-

tions 4.7a�4.7e. Corresponding �rst-principle parameters are detailed in Table 4.2.
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Figure 4.3: SBGN diagram of the JAK-STAT cell signaling pathway. Nodes symbolize
chemical species (such as proteins) and edges denote reactions. The pathway cutout is
highlighted by red nodes and red edges, emphasizing the speci�c segments and interactions
under study.

d[x1]

dt
= −(k58[x2][x1]− k59[x5]) + k61x4 (4.7a)

d[x2]

dt
= −(k50[x2][x4]− k51[x3])− (k58[x2][x1]− k59[x5]) (4.7b)

d[x3]

dt
= k50[x2][x4]− k51[x3]− k53[x3] (4.7c)

d[x4]

dt
= −(k50[x2][x4]− k51[x3])− k61[x4] (4.7d)

d[x5]

dt
= k53[x3] + (k58[x2][x1]− k59[x5]). (4.7e)

k50 k51 k53

0.001 0.2 0.0005

k58 k59 k61

0.001 0.2 0.0005

Table 4.2: First-principle parameters of the JAK-STAT pathway cutout.
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Figure 4.4: SBGN diagram of the MAPK OrderedElementary cell signaling pathway.
Nodes symbolize chemical species (such as proteins) and edges denote reactions. The
pathway cutout is highlighted by red nodes and red edges, emphasizing the speci�c seg-
ments and interactions under study.

4.3.3 MAPK OrderedElementary

The MAP kinase (MAPK) OrderedElementary model originates from the work by Marke-

vich and colleagues, which delineates the MAPK activation pathway [22]. This model en-

capsulates the dynamics between MAPKK andMKP, underscoring the dual phosphorylation-

dephosphorylation cycle of MAPK [22]. The model encompasses 11 distinct chemical

species, 20 parameters grounded in �rst-principle knowledge, alongside 4 irreversible and

6 reversible reactions. A diagram of that model is depicted in Figure 4.4.

The pathway cutout is highlighted in red in Figure 4.4; this cutout distills the path-

way to a core subset of interactions for focused study. This reduced model comprises 4

chemical species and 3 �rst-principle parameters. The chemical species of the cutout are

represented as follows: x1 for species Mp, x2 for MAPKK, x3 for M_MPAPKK, and x4

for Mp_MAPKK. The �rst-principle model that describes the dynamics of each chemical

species within the pathway cutout is detailed in Equations 4.8a�4.8d. The associated

�rst-principle parameters are provided in Table 4.3.



51

Figure 4.5: SBGN diagram of the FeMetabolism FeDe�cient cell signaling pathway. Nodes
symbolize chemical species (such as proteins) and edges denote reactions. The pathway
cutout is highlighted by red nodes and red edges, emphasizing the speci�c segments and
interactions under study.

d[x1]

dt
= k3[x3]− (k4[x1][x2]− k5[x4]) (4.8a)

d[x2]

dt
= k3[x3]− (k4[x1][x2]− k5[x4]) (4.8b)

d[x3]

dt
= −k3[x3] (4.8c)

d[x4]

dt
= k4[x1][x2]− k5[x4]. (4.8d)

k3 k4 k5

0.01 0.032 1

Table 4.3: First-principle parameters of the MAPK orderedElementary pathway cutout.

4.3.4 FeMetabolism FeDe�cient

The FeMetabolism FeDe�cient model is a sophisticated kinematic representation of iron

metabolism, detailing the dynamics of iron pools and �uxes based on comprehensive

ferrokinetic data and chemical analyses [18]. The model draws from studies on C57BL6

wild-type mice subjected to varying dietary conditions: iron-de�cient, iron-adequate, and

iron-loaded diets [18]. A diagram of that model is showed in Figure 4.5.
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The FeMetabolism FeDe�cient model encompasses 17 chemical species and 33 �rst-

principle parameters, highlighting the network of 29 irreversible reactions that govern

iron metabolism. The pathway cutout, marked in red in Figure 4.5, includes 4 chemical

species and 4 �rst-principle parameters, underpinning 3 critical reactions. The chem-

ical species of the cutout are represented as follows: x1 for iron_in_Plasma, x2 for

iron_in_Bone_Marrow, x3 for iron_in_Spleen and x4 for iron_in_Heart. The �rst-

principle model that describes the dynamic of each species is given in Equation 4.9a�4.9d.

The �rst-principle parameters are listed in the Table 4.4.

d[x1]

dt
= −[x1]k3 − [x1]k17 + [x4]k18 (4.9a)

[dx2]

dt
= [x1]k3 (4.9b)

d[x3]

dt
= −[x3]k6 (4.9c)

d[x4]

dt
= [x1]k17. (4.9d)

k3 k6

13.22 14.61

k17 k18

0.11 0.06

Table 4.4: First-principle parameters of the FeMetabolism FeDe�cient pathway cutout.
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Chapter 5

Results and Discussion

In this chapter, we present the �ndings from our investigation into four cell signaling

pathways using the methodology outlined in Chapter 4. The analysis is structured into

four distinct sections, where we initially compared the performance of traditional �rst-

principle-based models against our hybrid modeling approach. This comparison includes

four models: a linear regression (baseline), a ODE-based �rst-principle model (baseline),

an UDE-based model using a linear regression in the place of neural network, and an UDE-

based model using a neural network designed speci�cally for each pathway. These neural

networks are feedforward with variations in their architecture tailored to each model: the

Toy model features 2 layers with 7 input neurons and 11 output neurons, the JAK-STAT

model employs 4 layers with 5 input and output neurons, and the MAPK orderedEle-

mentary and FeMetabolism FeDe�cient models use 4 layers with 4 input neurons and

similarly structured output layers. All models use 5 neurons in the hidden layers (except

the Toy model which uses 11), and RELU as the activation function in the hidden layers,

transitioning to a linear combination in the output layer.

Following this initial evaluation, we selected the most promising model for further

training on an expanded dataset {X(1), . . . ,X(100)} composed of 100 observations, gen-

erated for 100 di�erent initial conditions, aiming to demonstrate the learning capabilities

of the model. This step was taken with consideration of the computational constraints

associated with training more complex models. The progression of the analysis involved

systematically removing one �rst-principle parameter at a time and performing simultane-

ous inference with neural network weights, continuing this process until all �rst-principle

parameters have been evaluated. This included scenarios where two and eventually all

�rst-principle parameters are removed, examining the impact of such removals on the

SMAPE metric on the test set.

Each of the following sections are dedicated to one of our four case studies presented

in Section 4.3: Toy Model (Section 5.1), JAK-STAT pathway (Section 5.2), MAPK Or-

deredElementary (Section 5.3), and FeMetabolism FeDe�cient (Section 5.4). The �nal

section, Section 5.5, is dedicated to discussing these �ndings in detail.
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5.1 Results with the Toy model

Our initial analysis of the Toy Model involved three distinct modeling approaches, each

trained using 10 observations. Validation and testing datasets were equivalently sized to

the training set. The �rst-principle model, used as a baseline, achieved mean SMAPE

scores of 54.96, 53.83, and 56.08 across the training, validation, and test sets, respectively.

In comparison, the purely linear regression model demonstrated over�tting, with SMAPE

scores of 26.87 on training but escalating to 49.37 and 46.14 on validation and testing.

The UDE integrated with linear regression outperformed the purely linear model,

recording mean SMAPE of 20.65, 31.74, and 33.00, respectively, across the datasets.

Meanwhile, the UDE model utilizing a neural network architecture showed the most

consistent performance across all models, with scores of 21.80, 27.50, and 31.15, thereby

marking a signi�cant improvement over the �rst-principle baseline. These comparisons

are highlighted in Figure 5.1.

Figure 5.1: Model performance for the Toy Model, where modeling approaches are com-
pared based on the SMAPE for training, validation, and test sets (each set containing 10
observations). The error bars represent the standard deviation.

To evaluate the scalability of the UDE-based model, the neural network version was

retrained with an expanded dataset of 100 observations. An attempt to scale up to 1000

observations per species was computationally prohibitive and was not pursued further.

The UDE with neural network, when retrained, achieved marginally better mean SMAPE
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scores of 23.28, 26.24, and 25.46, respectively, suggesting slight improvements over the

initial 100-observation training. These results are illustrated in Figure 5.2.

The �nest prediction by the UDE with a neural network, trained on 10 observations,

achieved a SMAPE of 20.50, while the least accurate prediction registered at 51.74. Fig-

ure 5.3 contrasts the best and the worst predictions, showing the best predictions closely

approximating the true dynamics across all chemical species, whereas the poorest predic-

tions failed signi�cantly.

Figure 5.2: Data expansion impact on UDE with neural network for the Toy Model.
Increasing the number of training observations a�ects the mean SMAPE for the UDE
model integrated with a neural network. The x-axis indicates the number of observations,
and the y-axis shows the mean SMAPE across corresponding datasets. The error bars
represent the standard deviation.

When the neural network-based UDE was trained with 100 observations, the best and

worst SMAPE scores recorded were 11.54 and 48.18, respectively. Figure 5.4 illustrates

these outcomes, with the best prediction successfully approximating the true dynamics,

while the worst struggled considerably across most chemical species.

Lastly, Figure 5.5 explores the impact of removing and subsequently estimating �rst-

principle parameters alongside the weights of the neural network, using 10 observations for

training, validation, and testing. This analysis revealed that parameter removal signi�-

cantly in�uenced model performance; in some instances, the SMAPE deteriorated beyond

the �rst-principle model, while in others, it remained stable or improved, indicating the

model's sensitivity to parameter con�guration and estimation strategies.
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Figure 5.3: Predictive accuracy of the UDE with neural network for the Toy Model (10
observations): The best (left) and worst (right) predictions from the UDE model trained
with 10 observations against the true dynamics of the Toy Model. Solid lines denote true
dynamics, while dashed lines represent model predictions.

Figure 5.4: Predictive accuracy of the UDE with neural network for the Toy Model (100
observations). The best (left) and worst (right) predictions from the UDE model trained
with 100 observations against the true dynamics of the Toy Model. Solid lines denote
true dynamics, while dashed lines represent model predictions.

5.1.1 Experiments with noisy data for the Toy Model

To evaluate the robustness of our modeling approach under noisy conditions, we replicated

the experimental setup previously used for the Toy Model. Due to the high computational

demand, we did not conduct experiments involving the iterative removal and estimation

of �rst-principle parameters alongside neural network weights for this dataset.

The �rst-principle model yielded mean SMAPE scores of 56.28, 54.84, and 57.37 for

the training, validation, and test sets, respectively. In contrast, the purely linear regres-

sion model exhibited signs of over�tting, with SMAPE scores of 26.59, 50.67, and 49.10

across the same sets, indicating a signi�cant gap between training and validation/test

performance.

The UDE-based models demonstrated superior performance to the purely linear re-

gression model. Speci�cally, the UDE integrated with linear regression recorded mean

SMAPE scores of 21.47, 31.58, and 34.04, while the UDE coupled with a neural network

achieved almost identical scores of 21.47, 31.58, and 34.02 across training, validation, and
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Figure 5.5: Impact of �rst-principle parameter removal on mean SMAPE for the Toy
Model. It is depicted here the e�ect on the mean SMAPE of iteratively removing sets
of �rst-principle parameters, using 10 observations for training set, 10 for validation set,
and 10 for test set. The y-axis denotes the mean SMAPE of the respective dataset, and
the x-axis lists the sets of parameters removed. The error bars represent the standard
deviation (the full list of the sequence of removed rate constants is available in Table A.7).
The error bars represent the standard deviation.

test sets respectively. Figure 5.6 presents these performance metrics.

Further analysis of the predictive accuracy of the UDE-based model is depicted in

Figure 5.7. The best prediction from the UDE model integrated with a neural network,

trained with 10 observations, attained a SMAPE score of 17.80, closely approximating

the true dynamics of most chemical species but struggling with a few. Conversely, the

worst prediction yielded a SMAPE score of 49.01, showcasing a signi�cant deviation from

expected dynamics, particularly in accurately modeling the behavior of some chemical

species.

5.2 Results with JAK-STAT pathway

Our exploration of the JAK-STAT signaling pathway commenced with the training of

three models, each utilizing three 10-observation sized datasets for training, validation,

and test. Among the evaluated models, the UDE integrated with linear regression emerged

as the most e�ective, achieving mean SMAPE scores of 12.93, 17.49, and 21.40 for the

training, validation, and test sets, respectively. This performance represents a substantial
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Figure 5.6: Model performance across noisy datasets for the Toy Model. This graph
compares di�erent modeling approaches under noisy conditions by showcasing the SMAPE
values across training, validation, and test datasets, each with 10 observations. The y-axis
displays the mean SMAPE for noisy data, while the x-axis categorizes the models. The
error bars represent the standard deviation.

enhancement over the �rst-principle model, which recorded mean SMAPE scores of 40.50,

36.76, and 43.31 for the training, validation and test sets, respectively. In contrast, the

purely linear regression model yielded mean SMAPE scores of 15.64, 27.23, and 29.83,

while the UDE coupled with a neural network exhibited scores of 12.35, 25.04, and 32.60,

respectively. Notably, both the linear regression and the neural network-based UDE

models demonstrated a tendency towards over�tting, with marginal improvement on the

test set compared to the �rst-principle model alone (Figure 5.8).

To further evaluate the performance of the hybrid model, the UDE with linear regres-

sion was subsequently trained on datasets expanded to 100 and then 1000 observations,

with the validation and test sets sized equivalently to the training dataset. Training

the UDE with linear regression on 100 observations resulted in mean SMAPE scores of

16.01, 17.55, and 18.83 for the train, validation, and test sets, respectively. Training

on a larger dataset of 1000 observations slightly increased the SMAPE on train set to

16.32 but improved the SMAPE on validation and test set to 16.34 and 16.74, respec-

tively. Interestingly, enlarging the dataset led to an increase in the SMAPE on training

set but enhanced the performance of the model on the test set for both the 100 and 1000
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Figure 5.7: Predictive accuracy of the UDE with neural network in noisy conditions for
the Toy Model (10 observations). The best (left) and worst (right) predictions from the
UDE model trained with 10 observations under noisy conditions, this �gure contrasts the
model predictions (dashed lines) against the true dynamics (solid lines) of the Toy Model.

observations training scenarios, indicating improved generalizability (Figure 5.9).

Figure 5.9: Data expansion impact on UDE with neural network for the JAK-STAT.
Increasing the number of training observations a�ects the mean SMAPE for the UDE
model integrated with a neural network. The x-axis indicates the number of observations,
and the y-axis shows the mean SMAPE across corresponding datasets. The error bars
represent the standard deviation.

The better prediction achieved by the UDE model, integrated with linear regression

and trained on a dataset of 10 observations, recorded a SMAPE of 13.37. Conversely, the

least accurate prediction by this model con�guration recorded a SMAPE of 31.61. As

depicted in Figure 5.10, both the best and worst prediction scenarios reveal challenges in

accurately modeling the dynamics of chemical species x3 and x4. Notably, in the least
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Figure 5.8: Model performance for the JAK-STAT, where modeling approaches are com-
pared based on the SMAPE for training, validation, and test sets (each set containing
10 observations). The y-axis represents the mean SMAPE, while the x-axis identi�es the
model type. The error bars represent the standard deviation.

accurate predictions, the divergence between the predicted and true dynamics of these

species was signi�cantly discrepant, displaying disparate trends.

Progressing to the UDE model integrated with linear regression but trained with an

expanded dataset of 100 observations, the range of prediction accuracy widened. The most

accurate prediction within this set achieved a SMAPE of 4.67, while the least accurate

prediction escalated to a SMAPE of 49.21. The corresponding dynamics, illustrated in

Figure 5.11, indicate that despite the discrepancies in the less accurate prediction, the

model captured the general trends of each dynamics of the chemical species.

Upon further expanding the training dataset to 1000 observations, the prediction

accuracy for the UDE model integrated with linear regression showed the best and worst

SMAPEs of 4.20 and 56.12, respectively. Remarkably, the least accurate prediction for

this model surpassed the inaccuracy observed in the 100-observation training scenario.

Figure 5.12 highlights that; similar to previous results, the model struggled to precisely

replicate the dynamics of chemical species x3 and x4, especially in the least accurate

prediction scenario, where the predicted dynamics diverged signi�cantly from the true

data.

The analysis of �rst-principal parameters removal within the JAK-STAT model is
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Figure 5.10: Predictive accuracy of the UDE with linear regression (10 observations): The
best (left) and worst (right) predictions from the UDE model trained with 10 observations
against the true dynamics of the JAK-STAT pathway. Solid lines denote true dynamics,
while dashed lines represent model predictions.

Figure 5.11: Predictive accuracy of the UDE with linear regression (100 observations):
The best (left) and worst (right) predictions from the UDE model trained with 100 ob-
servations against the true dynamics of the JAK-STAT pathway. Solid lines denote true
dynamics, while dashed lines represent model predictions.

illustrated in Figure 5.13, which delineates the e�ects of removing and subsequently esti-

mating �rst-principle parameters in conjunction with the weights of the linear regression.

This experiment utilized 10 observations each for training, validation, and testing. The

�ndings reveal that the performance of the model is particularly sensitive to the removal

and estimation of three speci�c sets of parameters. In contrast, the removal of most other

parameter sets did not signi�cantly impact model stability, indicating robustness when

compared to training the UDE-based model under the assumption that all �rst-principle

parameters are accurately known.

5.2.1 Experimentation with noisy data for the JAK-STAT path-

way

To evaluate the robustness of our modeling approach, we replicated the experimental

setup for the JAK-STAT pathway, incorporating noisy data this time. We trained four
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Figure 5.12: Predictive accuracy of the UDE with linear regression (1000 observations):
The best (left) and worst (right) predictions from the UDE model trained with 1000
observations against the true dynamics of the JAK-STAT pathway. Solid lines denote
true dynamics, while dashed lines represent model predictions.

distinct models, each using 10 observations, with validation and test sets sized equally.

The �rst-principle model under noisy conditions achieved mean SMAPE scores of 40.50

on training, 44.81 on validation, and 34.86 on the test sets. In contrast, the purely linear

regression model demonstrated improved performance, recording mean SMAPE of 15.20,

31.90, and 22.11 across the respective datasets, indicating a substantial enhancement over

the �rst-principle model alone. The UDE-based models showed signs of over�tting; the

UDE integrated with linear regression achieved SMAPE scores of 13.35, 19.90, and 20.81,

while the UDE coupled with a neural network recorded SMAPE scores of 8.95, 18.89,

and 27.29 across the training, validation, and test sets, respectively. Among all models,

the UDE integrated with linear regression exhibited the best overall performance. These

comparative results are illustrated in Figure 5.14.

Further analysis involved examining the best and worst predictions from the UDE

integrated with linear regression, trained on 10 observations. The best prediction achieved

a SMAPE score of 9.51, providing a satisfactory approximation to the true dynamics

of some chemical species, yet struggled with species x3 and x4. The worst prediction,

however, resulted in a SMAPE score of 39.12, presenting dynamics signi�cantly divergent

from the true data, and performing worse than the �rst-principle model. These outcomes

are depicted in Figure 5.15.

Additionally, Figure 5.16 illustrates the e�ects of systematically removing and subse-

quently estimating sets of �rst-principle parameters along with the weights of the linear

regression. This analysis, conducted with 10 observations for each dataset, indicated that

the performance of the model remained stable when up to three parameters were removed.

However, as more parameters were excluded, the model became increasingly sensitive to

these removals, highlighting the critical in�uence of speci�c �rst-principle parameters on

model accuracy and robustness.
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Figure 5.13: Impact of �rst-principle parameter removal on mean SMAPE for the JAK-
STAT pathway. It is depicted here the e�ect on the mean SMAPE of iteratively removing
sets of �rst-principle parameters, using 10 observations for training set, 10 for validation
set, and 10 for test set. The y-axis denotes the mean SMAPE of the respective dataset,
and the x-axis lists the sets of parameters removed (the full list of the sequence of removed
rate constants is available in Table A.5). The error bars represent the standard deviation.

5.3 Results with MAPK orderedElementary

In our investigation of the MAPK OrderedElement model, the performance of di�erent

modeling approaches was quantitatively assessed using the SMAPE metric. The �rst-

principle model only yielded a mean SMAPE value of 65.50 for the training set and 67.05

for the validation set. Enhancement of model performance was observed upon the appli-

cation of our hybrid modeling approach. Initially, a linear regression-based hybrid model

demonstrated a mean SMAPE of 30.72 on the training set and 39.06 on the validation

set. Further improvements were achieved with our neural network-based hybrid model,

which recorded a mean SMAPE of 26.95 for the training set and 32.75 for the valida-

tion set, utilizing a dataset comprising 10 observations. The neural network-based hybrid

model emerged as the superior model. Figure 5.17 presents a comparative analysis of

these models, highlighting the superior performance of the neural network-based hybrid

approach.

We expanded our dataset to include 100 and subsequently 1000 observations to train

the UDE integrated with a neural network. This increase in data volume signi�cantly

improved the performance of the model, with the model trained on 100 observations

achieving mean SMAPE scores of 13.74 for training, 15.04 for validation, and 15.04 for
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Figure 5.14: Model performance across noisy datasets for the JAK-STAT pathway. This
graph compares di�erent modeling approaches under noisy conditions by showcasing the
SMAPE values across training, validation, and test datasets, each with 10 observations.
The y-axis displays the mean SMAPE for noisy data, while the x-axis categorizes the
models. The error bars represent the standard deviation.

Figure 5.15: Predictive accuracy of the UDE with neural network in noisy conditions for
the JAK-STAT pathway (10 observations). The best (left) and worst (right) predictions
from the UDE model trained with 10 observations under noisy conditions, this �gure
contrasts the model predictions (dashed lines) against the true dynamics (solid lines) of
the JAK-STAT pathway.
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Figure 5.16: Impact of �rst-principle parameter removal on mean SMAPE for the JAK-
STAT pathway, in noisy conditions. It is depicted here the e�ect on the mean SMAPE of
iteratively removing sets of �rst-principle parameters, using 10 observations for training
set, 10 for validation set, and 10 for test set. The y-axis denotes the mean SMAPE of the
respective dataset, and the x-axis lists the sets of parameters removed(the full list of the
sequence of removed rate constants is available in Table A.6). The error bars represent
the standard deviation.

the test sets, demonstrating the model's enhanced learning capability. Furthermore, the

model trained with 1000 observations recorded slightly better generalization, with SMAPE

scores of 13.99 on training, 14.63 on validation, and 14.42 on the test set. Figure 5.18

depicts these performance enhancements.

To evaluate the prediction quality of the UDE-based model, we analyzed the best

and worst predictions from the model integrated with the neural network. For the model

trained with 10 observations, the best prediction achieved a SMAPE of 24.75, while the

worst logged a SMAPE of 53.47. As shown in Figure 5.19, the best prediction accurately

approximated most dynamics but faced challenges with chemical species x2 and x3. Con-

versely, the worst prediction only reliably approximated the dynamics of chemical species

x4, with signi�cant discrepancies observed for other species.

When trained with 100 observations, the best prediction of the UDE integrated with

a neural network achieved a SMAPE of 5.62, while the worst was 36.69. Figure 5.20

illustrates that while the best prediction closely matched the true dynamics, it struggled

with species x2 and x3, similar to the smaller dataset. The dynamics of these species in

the worst-case scenario were further from the true dynamics than those observed in the

best case.
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Figure 5.17: Model performance for the MAPK OrderedElement model, where modeling
approaches are compared based on the SMAPE for training, validation, and test sets
(each set containing 10 observations). The y-axis represents the mean SMAPE, while the
x-axis identi�es the model type. The error bars represent the standard deviation.

Finally, the model trained with 1000 observations exhibited a best prediction SMAPE

of 2.23, showcasing a high degree of accuracy in capturing the true dynamics. The worst

prediction for this training setup recorded a SMAPE of 44.18, demonstrating that while

overall model performance improved, challenges remain in accurately modeling the be-

havior of certain chemical species under less ideal conditions, particularly species x2 and

x3 as detailed in Figure 5.21. This indicates the sensitivity of the model to the variability

inherent in larger datasets and the complexity of the system being modeled.

Concerning the experimentation involving the removal and subsequent joint estimation

of �rst-principle parameters, within the MAPK OrderedElementary model, Figure 5.22

illustrates the relationship between the removal of �rst-principle parameters and the mean

SMAPE on the test set. Interestingly, the mean SMAPE does not deteriorate as �rst-

principle parameters are removed and subsequently estimated, in comparison to the sce-

nario where all �rst-principle parameters are presumed known. This trend holds even
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Figure 5.18: Data expansion impact on UDE with neural network for the MAPK ordere-
dElemented. Increasing the number of training observations a�ects the mean SMAPE for
the UDE model integrated with a neural network. The x-axis indicates the number of
observations, and the y-axis shows the mean SMAPE across corresponding datasets. The
error bars represent the standard deviation.

when the estimates for parameters k4 and k3�particularly in scenarios where k4 is re-

moved alone, k3 and k4 are removed together, and k4 and k5 are removed simultane-

ously�are signi�cantly inaccurate. The exception to this observation is the removal of k3

alone, which is the only instance where the mean SMAPE of our hybrid model worsens

Figure 5.19: Predictive accuracy of the UDE with neural network for the MAPK or-
deredElementary (10 observations): The best (left) and worst (right) predictions from
the UDE model trained with 10 observations against the true dynamics of the MAPK
orderedElementary. Solid lines denote true dynamics, while dashed lines represent model
predictions.
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Figure 5.20: Predictive accuracy of the UDE with neural network for the MAPK ordere-
dElementary (100 observations): The best (left) and worst (right) predictions from the
UDE model trained with 100 observations against the true dynamics of the MAPK or-
deredElementary. Solid lines denote true dynamics, while dashed lines represent model
predictions.

Figure 5.21: Predictive accuracy of the UDE with neural network for the MAPK ordere-
dElementary (1000 observations): The best (left) and worst (right) predictions from the
UDE model trained with 1000 observations against the true dynamics of the MAPK or-
deredElementary. Solid lines denote true dynamics, while dashed lines represent model
predictions.

compared to the baseline scenario where all �rst-principle parameters are assumed to be

accurately known.

5.3.1 Experimentation with noisy data for the MAPK ordere-

dElementary

This subsection revisits the MAPK OrderedElementary model, this time evaluating its

performance under noisy data conditions. We replicated the previous experimental setup

with the same four models but introduced noise to assess robustness.The �rst-principle

model under noisy conditions yielded mean SMAPE scores of 65.50, 56.23, and 63.38 for

the training, validation, and test sets, respectively. The purely linear regression model

demonstrated a notable improvement over the �rst-principle model, with SMAPE scores

of 16.30, 18.63, and 31.98, respectively. In comparison, the UDE-based hybrid models
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Figure 5.22: Impact of �rst-principle parameter removal on mean SMAPE for the MAPK
orderedElementary. It is depicted here the e�ect on the mean SMAPE of iteratively
removing sets of �rst-principle parameters, using 10 observations for training set, 10 for
validation set, and 10 for test set. The y-axis denotes the mean SMAPE of the respective
dataset, and the x-axis lists the sets of parameters removed(the full list of the sequence of
removed rate constants is available in Table A.1. The error bars represent the standard
deviation.

showed mixed results. The UDE integrated with linear regression recorded SMAPE scores

of 30.60, 33.75, and 35.58 across the training, validation, and test datasets. Meanwhile, the

UDE model incorporating a neural network achieved better results, with SMAPE scores

of 21.46, 21.24, and 28.77, indicating superior performance over the linear regression UDE

model (Figure 5.23).

To evaluate the predictive capabilities of the UDE-based models, Figure 5.24 displays

the best and worst predictions for the UDE integrated with a neural network trained on

10 observations. The best prediction recorded a SMAPE score of 15.04, o�ering a rea-

sonable approximation of the actual dynamics. Conversely, the worst prediction resulted

in a SMAPE score of 73.06, with outputs that diverged signi�cantly from the expected

dynamics and even produced biologically implausible negative states.

Figure 5.25 illustrates the impact of parameter removal and estimation on the mean

SMAPE. The model demonstrated sensitivity to the removal of speci�c parameter sets.

Remarkably, similar to the experiments without noise, removing the parameter k3 and

estimating it along with the neural network weights yielded better performance compared

to scenarios where all �rst-principle parameters were known and only the neural network

weights were adjusted.
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Figure 5.23: Model performance across noisy datasets for the MAPK orderedELemen-
tar.This graph compares di�erent modeling approaches under noisy conditions by show-
casing the SMAPE values across training, validation, and test datasets, each with 10
observations. The y-axis displays the mean SMAPE for noisy data, while the x-axis cat-
egorizes the models.The error bars represent the standard deviation.

Figure 5.24: Predictive accuracy of the UDE with neural network in noisy conditions
for the MAPK orderedELementay (10 observations). The best (left) and worst (right)
predictions from the UDE model trained with 10 observations under noisy conditions,
this �gure contrasts the model predictions (dashed lines) against the true dynamics (solid
lines) of the MAPK orderedELementay.
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Figure 5.25: Impact of �rst-principle parameter removal on mean SMAPE for the MAPK
orderedElementary, in noisy conditions. It is depicted here the e�ect on the mean SMAPE
of iteratively removing sets of �rst-principle parameters, using 10 noisy observations for
training set, 10 for validation set, and 10 for test set. The y-axis denotes the mean
SMAPE of the respective dataset, and the x-axis lists the sets of parameters removed
(the full list of the sequence of removed rate constants is available in Table A.2). The
error bars represent the standard deviation.

5.4 Results with FeMetabolism FeDe�cient

Our initial assessment of the FeMetabolism and FeDe�cient pathway modeling involved

training four distinct models, each utilizing a dataset of 10 observations for the training

set, with matching numbers for validation and test sets. The �rst-principle only model

achieved mean SMAPE of 81.84, 82.13, and 81.47 across the training, validation, and test

sets, respectively. In contrast, the purely linear regression model, serving as our baseline,

demonstrated signi�cantly better performance with mean SMAPE of 6.70, 7.44, and 7.68

for the respective datasets.

Enhancements were further observed with the UDE models. The UDE integrated with

linear regression outperformed other models, achieving a mean SMAPE of 6.22, 6.37,

and 6.50 on the training, validation, and test sets, respectively. Meanwhile, the UDE

model employing a neural network architecture yielded a mean SMAPE of 8.15, 8.92, and

8.95, indicating a modest decrease in performance compared to the linear regression-based

UDE but still a signi�cant improvement over the �rst-principle model. These comparative

performance metrics are visually represented in Figure 5.26.

To explore the scalability and robustness of the UDE-based hybrid model, further
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Figure 5.26: Model performance for the FeMetabolism FeDe�cient Model, where modeling
approaches are compared based on the SMAPE for training, validation, and test sets (each
set containing 10 observations). The y-axis represents the mean SMAPE, while the x-axis
identi�es the model type. The error bars represent the standard deviation.

training sessions were conducted with increased dataset sizes. Training the UDE in-

tegrated with linear regression on 100 observations resulted in mean SMAPE scores of

15.51, 15.40, and 15.14, suggesting a deterioration in model generalization as the dataset

expanded. Subsequent training with 1000 observations showed an improvement in gener-

alization, with SMAPE scores reducing to 7.28, 7.48, and 7.33 for the training, validation,

and test sets, respectively. This indicates an enhanced performance relative to the model

trained with 100 observations but still not reaching the e�cacy of the initial 10-observation

training set (Figure 5.27).

The best prediction of the UDE integrate with linear regression, and trained with 10

observations, achieved a SMAPE score of 3.53, while the poorest prediction recorded a

score of 15.53. Figure 5.28 showcases a comparative analysis between the true dynamics

and both the best and worst model predictions. Notably, even the least accurate predic-

tions of the model closely followed the true dynamics, although minor discrepancies were
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Figure 5.27: Data expansion impact on UDE with linear regression for the FeMetabolism
FeDe�cient Model. Increasing the number of training observations a�ects the mean
SMAPE for the UDE model integrated with a neural network. The x-axis indicates
the number of observations, and the y-axis shows the mean SMAPE across corresponding
datasets. The error bars represent the standard deviation.

observed in accurately capturing the dynamics of chemical species x2.

Upon increasing the training dataset to 100 observations, the range of prediction

accuracy widened. The most accurate prediction yielded a SMAPE of 14.98, whereas

the least accurate was 27.95. Figure 5.29 displays how the model predictions align with

Figure 5.28: Predictive accuracy of the UDE with linear regression for the FeMetabolism
FeDe�cient model (10 observations): The best (left) and worst (right) predictions from the
UDE model trained with 10 observations against the true dynamics of the FeMetabolism
FeDe�cient model. Solid lines denote true dynamics, while dashed lines represent model
predictions.



74

the true dynamics of each chemical species. Despite a decrease in SMAPE performance

compared to the smaller dataset, the model maintained a credible approximation of the

true dynamics, with only minor di�culties in approximating the dynamics of species x2.

Figure 5.29: Predictive accuracy of the UDE with linear regression for the FeMetabolism
FeDe�cient model (100 observations): The best (left) and worst (right) predictions
from the UDE model trained with 100 observations against the true dynamics of the
FeMetabolism FeDe�cient model. Solid lines denote true dynamics, while dashed lines
represent model predictions.

Expanding the dataset further to 1000 observations, the performance of the model im-

proved signi�cantly for the best predictions but deteriorated for the worst-case scenarios.

The best prediction recorded a SMAPE of 3.25, while the worst soared to 35.86. This

dichotomy highlights an intriguing aspect of model training scalability; while the average

SMAPE across all test observations improved, as visualized in Figure 5.27, the worst-case

SMAPE of the predictions worsened compared to that of the model trained with 100

observations. Figure 5.30 contrasts these best and worst predictions, demonstrating that

while the best prediction accurately mirrors the dynamics across all chemical species, the

worst prediction struggles particularly with species x2 and x4.

Figure 5.30: Predictive accuracy of the UDE with linear regression for the FeMetabolism
FeDe�cient model (1000 observations): The best (left) and worst (right) predictions
from the UDE model trained with 1000 observations against the true dynamics of the
FeMetabolism FeDe�cient model. Solid lines denote true dynamics, while dashed lines
represent model predictions.
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Figure 5.31 demonstrates the e�ects of removing and then estimating �rst-principle

parameters while concurrently adjusting the weights of the linear regression model, using

datasets comprising 10 observations for training, validation, and testing. The analysis

reveals that the sensitivity of the model to parameter removal varies; speci�cally, removing

the following sets of �rst-principle parameters: {k4}, {k17}, and {k17, k6}. When these

parameters are excluded and their values are estimated alongside the regression weights,

the resulting mean SMAPE deteriorates compared to scenarios where all �rst-principle

parameters are held constant. However, despite this decrease in performance, the SMAPE

remains markedly better than that of the model relying solely on �rst-principle model,

with the notable exception occurring when all �rst-principle parameters are removed.

Figure 5.31: Impact of �rst-principle parameter removal on mean SMAPE for the FeDe�-
cient FeMetabolism model. It is depicted here the e�ect on the mean SMAPE of iteratively
removing sets of �rst-principle parameters, using 10 noisy observations for training set,
10 for validation set, and 10 for test set. The y-axis denotes the mean SMAPE of the
respective dataset, and the x-axis lists the sets of parameters removed (the full list of the
sequence of removed rate constants is available in Table A.3). The error bars represent
the standard deviation.

5.4.1 Experimentation with noisy data for the FeDe�cient and

FeMetabolism pathway model

The �rst-principle model, under noisy conditions, recorded a mean SMAPE of 81.84,

80.97, and 79.63 for the training, validation, and test sets respectively. In comparison,
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the purely linear regression model demonstrated substantially improved performance with

mean SMAPE of 6.14, 7.43, and 7.09, signi�cantly surpassing the �rst-principle model.

The UDE-based models, while not matching the performance of the purely linear re-

gression, still showed considerable resilience to noise. The UDE integrated with linear

regression achieved SMAPE scores of 6.91, 8.06, and 8.02 across the training, validation,

and test sets, respectively. Similarly, the UDE model using a neural network architec-

ture recorded a mean SMAPE of 8.03, 9.46, and 8.35. These comparisons are visually

represented in Figure 5.32.

Further analysis focused on the UDE model integrated with linear regression to evalu-

ate its predictive capabilities under noisy conditions. The best prediction from this model

attained a SMAPE of 4.43, while the poorest was at 19.50. Figure 5.33 shows that even

in the worst-case scenario, this model maintained a reasonable approximation of the true

dynamics across all chemical species, illustrating its robustness.

Lastly, Figure 5.34 details the impact of selectively removing and then estimating sets

of �rst-principle parameters alongside the model weights under noisy data conditions. In-

terestingly, our approach yielded better performance with noisy data than with clean data.

Although the removal of parameters {k17, k18, k3} resulted in poorer outcomes, the overall

mean SMAPE was still markedly improved compared to using the �rst-principle model

alone. The stability of other parameter sets remained consistent even when compared to

scenarios where all �rst-principle parameters were assumed known.

5.5 Discussion

This section provides a discussion of the results presented in the previous sections,

focusing on the performance of UDE-based models compared to traditional �rst-principle

models. The data clearly indicate that all UDE-based models signi�cantly outperform

the �rst-principle models alone, suggesting that this hybrid approach is promising for

modeling complex biological systems. Across various scenarios, the UDE-based mod-

els e�ectively captured the true dynamics of several observations. However, there were

challenges in accurately modeling certain chemical species, particularly in the worst-case

scenarios. An exception to this was observed in the FeMetabolism FeDe�cient pathway

model, which consistently performed well across all tests.

A critical observation from our experiments is the dependency of model performance on

data quality. Since the synthetic data was generated randomly, regions of the observation

domain of each case study were adequately represented in the training set, leading to

discrepancies in model output, especially in the worst-case scenarios.

Expanding the dataset did not uniformly enhance the performance of the UDE-based

models. This might be attributed to the random nature of the data expansion, which

sometimes failed to introduce necessary diversity in the curve types. In certain instances,

even though the expanded dataset generally improved the mean SMAPE on the test set,

the worst-case predictions were poorer than those obtained from the �rst-principle model

alone.
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Figure 5.32: Model performance across noisy datasets for the FeMetabolism FeDe�cient
Model. This graph compares di�erent modeling approaches under noisy conditions by
showcasing the SMAPE values across training, validation, and test datasets, each with
10 observations. The y-axis displays the mean SMAPE for noisy data, while the x-axis
categorizes the models. The error bars represent the standard deviation.

Figure 5.33: Predictive accuracy of the UDE with linear regression in noisy conditions for
the JFeMetabolism FeDe�cient model (10 observations). The best (left) and worst (right)
predictions from the UDE model trained with 10 observations under noisy conditions,
this �gure contrasts the model predictions (dashed lines) against the true dynamics (solid
lines) of the JFeMetabolism FeDe�cient model.
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Figure 5.34: Impact of �rst-principle parameter removal on mean SMAPE for the
FeMetabolism FeDe�cient model, in noisy conditions. It is depicted here the e�ect on the
mean SMAPE of iteratively removing sets of �rst-principle parameters, using 10 noisy
observations for training set, 10 for validation set, and 10 for test set. The y-axis denotes
the mean SMAPE of the respective dataset, and the x-axis lists the sets of parameters
removed (the full list of the sequence of removed rate constants is available in Table A.3).
The error bars represent the standard deviation.

The approach of jointly inferring �rst-principle parameters alongside neural network

weights holds signi�cant promise. However, one limitation is the identi�ability issue with

�rst-principle parameters. In many cases, the results from jointly estimating a removed

set of �rst-principle parameters with neural network weights were comparable to, or even

better than, those where all �rst-principle parameters were assumed known. Nevertheless,

it is important to note that in models sensitive to speci�c �rst-principle parameters, such

as the Toy Model, our approach faced challenges in maintaining performance.

Moreover, the robustness of our approach was tested with noisy data (a necessity to

evaluate the feasibility of application of this approach in real-world data), which appeared

to a�ect the model outcomes minimally, suggesting that the methodology is resilient to

data quality issues, preserving performance even under less ideal conditions.
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Chapter 6

Conclusion

This work provided a way of integrating hybrid modeling techniques in the study of

cell signaling pathways, particularly when one or more �rst-principle parameters are un-

known. Our �ndings indicate that our hybrid model signi�cantly outperforms traditional

�rst-principle models, showcasing enhanced predictive accuracy. However, the process of

jointly inferring �rst-principle parameters and neural network weights, while promising,

has revealed complexities that warrant further investigation. Speci�cally, challenges re-

lated to numerical instability and suboptimal estimations of �rst-principle parameters,

despite achieving satisfactory SMAPE values, need to be addressed in future studies.

6.1 Answers to the research questions

After carefully analyzing the results yielded by our methodology, we can �nally answer

the research questions made in Section 1.1:

RQ 1 How well can we identify hybrid models of cell signaling pathways by employing time

series data of species present in the �rst-principle part of the model?

Answer: The performance of our UDE-based model in identifying cell signaling

pathways varies signi�cantly across di�erent chemical species. For certain species,

the model accurately captures the interactions with external proteins, exhibiting a

high degree of generalization. However, for other species, the model faces challenges

in accurately modeling these interactions, indicating variability in model perfor-

mance across the spectrum of species within the system.

RQ 2 How can we e�ciently infer the parameters of the hybrid model, encompassing both

the mechanistic (�rst-principle) and data-driven components?

Answer: The e�cacy of parameter inference in our hybrid model is notably in�u-

enced by the speci�c set of �rst-principle parameters being removed and estimated.

Some parameter sets when removed lead to inferior model performance, even poorer

than using the �rst-principle model alone. Conversely, other parameter removals re-

sult in stable performance, and some even enhance model accuracy compared to

scenarios where all �rst-principle parameters are presumed known. This variability

underscores the sensitivity of our model to the speci�c parameters being adjusted.
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In conclusion, our investigation into the use of UDE-based hybrid models for cell

signaling pathways has yielded nuanced �ndings. The e�ectiveness of the hybrid model in

capturing the dynamics of cellular pathways varies signi�cantly across di�erent chemical

species. Speci�cally, the model excels in accurately modeling interactions for certain

species, showing a high degree of generalization and predictive accuracy. This success

depends on the model's ability to integrate interactions with external proteins e�ectively.

However, it encounters di�culties with other species, where the performance inconsistency

is largely attributable to the quality and diversity of the training data available. The

variations in data quality, especially the representativeness and diversity of curve types

for di�erent species within the training set, signi�cantly impact the model's ability to

generalize e�ectively across all species.

Additionally, the process of inferring parameters for these hybrid models is highly

sensitive to the selection of �rst-principle parameters removed for estimation. This aspect

of the methodology can either degrade or enhance the model's performance, demonstrating

a critical dependency on the nature and role of the speci�c parameters adjusted during the

model training process. These �ndings underscore the complexity and nuanced challenges

faced in the e�ective development of hybrid modeling in systems biology, guiding future

research towards improving model robustness and parameter estimation methods.

6.2 List of publications and other contributions

Besides the main scienti�c contribution of this dissertation, additional contributions have

been made, which are listed below:

1. Our research on the inference of UDE-based hybrid models with �xed �rst-principle

parameters was presented at the Brazilian Symposium on Bioinformatics (BSB) in

2023. This work was subsequently published in the proceedings of the event [32];

2. The methodology for joint inference of �rst-principle parameters and neural network

weights was showcased through a poster presentation at BSB 2023;

3. The source code for all experiments conducted as part of this study is publicly avail-

able at the following GitHub repository: cristiano-campos/UDE-based_hybrid_

modeling.com.

6.3 Suggestions for future research

Based on the current challenges in jointly infer �rst-principle parameter and neural net-

work weights, future research should explore the potential of multiple shooting techniques

as a means to enhance the predictive accuracy of the model and address the issue of numer-

ical instability observed in some scenarios. Additionally, the investigation of the LDA loss

function as a novel optimization strategy o�ers a promising avenue [36]. This approach,

focusing on comparing angles and lengths of vectors within the state space independently,

could provide a more nuanced understanding of model performance and accuracy. These
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suggestions aim to build upon the foundational work presented in this dissertation, en-

couraging further exploration and development in the �eld of hybrid modeling.



82

Bibliography

[1] Faizan M. S. Bangi, Katy Kao, and Joseph S. Kwon. Physics-informed neural net-

works for hybrid modeling of lab-scale batch fermentation for beta-carotene produc-

tion using saccharomyces cerevisiae. Chemical Engineering Research and Design,

179:415�423, 2022. DOI: 10.1016/j.cherd.2022.01.041.

[2] Dexter Barrows and Silvana Ilie. Parameter estimation for the reaction�di�usion

master equation. AIP Advances, 13(6):065318, 06 2023. DOI: 10.1063/5.0150292.

[3] Vijaysekhar Chellaboina, Sanjay P. Bhat, Wassim M. Haddad, and Dennis S. Bern-

stein. Modeling and analysis of mass-action kinetics. IEEE Control Systems Maga-

zine, 29(4):60�78, 2009. DOI: 10.1109/MCS.2009.932926.

[4] Shijian Dong, Yuzhu Zhang, and Xingxing Zhou. Intelligent hybrid modeling of

complex leaching system based on lstm neural network. Systems, 11(2), 2023. DOI:

10.3390/systems11020078.

[5] Attila Gabor, Marco Tognetti, Alice Driessen, Jovan Tanevski, Baosen Guo, Wencai

Cao, He Shen, Thomas Yu, Verena Chung, Single Cell Signaling in Breast Can-

cer DREAM Consortium members, et al. Cell-to-cell and type-to-type heterogene-

ity of signaling networks: insights from the crowd. Molecular Systems Biology,

17(10):e10402, 2021. DOI: 10.15252/msb.202110402.

[6] Manvel Gasparyan and Shodhan Rao. Parameter estimation for kinetic models of

chemical reaction networks from partial experimental data of species' concentrations.

Bioengineering, 10(9), 2023. DOI: 10.3390/bioengineering10091056.

[7] Amanda S. Guimarães. An algorithm to simplify systems of di�erential equations

that describe the kinetics of chemical reactions. Master's thesis, University of São

Paulo, 2016. DOI: 10.11606/D.45.2016.tde-23082016-170051.

[8] Albin Heimerson and Johan Ruuskanen. Extending microservice model validity using

universal di�erential equations. IFAC-PapersOnLine, 56(2):2401�2406, 2023. DOI:

10.1016/j.ifacol.2023.10.1214.

[9] Marta R. Hidalgo, Alicia Amadoz, Cankut Çubuk, José Carbonell-Caballero, and

Joaquín Dopazo. Models of cell signaling uncover molecular mechanisms of high-risk

neuroblastoma and predict disease outcome. Biology Direct, 13(1):16, 2018. DOI:

10.1186/s13062-018-0219-4.



83

[10] Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, and Jonathan

Taylor. An introduction to statistical learning with applications in python. Springer

Nature, 2023.

[11] Jin Deok Joo. The use of intra-cellular signaling pathways in anesthesiology and

pain medicine �eld. Korean Journal of Anesthesiology, 57(3):277�283, 2009. DOI:

10.4097/kjae.2009.57.3.277.

[12] James Koch, Zhao Chen, Aaron Tuor, Ján Drgona, and Vrabie Vrabie. Structural in-

ference of networked dynamical systems with universal di�erential equations. Chaos:

An Interdisciplinary Journal of Nonlinear Science, 33(2):023103, 02 2023. DOI:

10.1063/5.0109093.

[13] Bruce Kuwahara and Chris T. Bauch. Predicting covid-19 pandemic waves with

biologically and behaviorally informed universal di�erential equations. Heliyon,

10(4):e25363, 2024. DOI: 10.1016/j.heliyon.2024.e25363.

[14] Leo Lagunes. W10: Mathematical modeling of cell signaling. https://www.youtube.

com/watch?v=GuKZF2sMK7U, 2022. Accessed: 2024-02-05.

[15] Dongheon Lee, Arul Jayaraman, and Joseph S. Kwon. Development of a hybrid

model for a partially known intracellular signaling pathway through correction term

estimation and neural network modeling. PLOS Computational Biology, 16(12):1�31,

2020. DOI: 10.1371/journal.pcbi.1008472.

[16] Kaili Li, Haoran Duan, Linfeng Liu, Ruihong Qiu, Ben van den Akker, Bing-Jie Ni,

Tong Chen, Hongzhi Yin, Zhiguo Yuan, and Liu Ye. An integrated �rst principal

and deep learning approach for modeling nitrous oxide emissions from wastewater

treatment plants. Environmental Science and Technology, 56(4):2816�2826, 2022.

DOI: 10.1021/acs.est.1c05020.

[17] Fernando R.D. Lima, Carine M. Rebello, Erbet A. Costa, Vinícius V. Santana, Mar-

cellus G.F. de Moares, Amaro G. Barreto, Argimiro R. Secchi, Maurício B. de Souza,

and Idelfonso B.R. Nogueira. Improved modeling of crystallization processes by uni-

versal di�erential equations. Chemical Engineering Research and Design, 200:538�

549, 2023. DOI: 10.1016/j.cherd.2023.11.032.

[18] Tiago J. Lopes, Tatyana Luganskaja, Maja S. Vuji¢, Matthias W. Hentze, Mar-

tina U. Muckenthaler, Klaus Schümann, and Jens G. Reich. Systems analysis of iron

metabolism: the network of iron pools and �uxes. BMC Systems Biology, 2010. DOI:

10.1186/1752-0509-4-112.

[19] Zhihao Lou and John Reinitz. Parallel simulated annealing using an adaptive resam-

pling interval. Parallel Computing, 53:23�31, 2016. DOI: 10.1016/j.parco.2016.02.001.

[20] Christoph Lüders, Thomas Sturm, and Ovidiu Radulescu. ODEbase: A repository

of ODE systems for systems biology. Bioinformatics Advances, 2(1), 2022. DOI:

10.1093/bioadv/vbac027.



84

[21] Arnout V. Messem Manvel Gasparyan and Shodhan Rao. Parameter estima-

tion for models of chemical reaction networks from experimental data of re-

action rates. International Journal of Control, 96(2):392�407, 2023. DOI:

10.1080/00207179.2021.1998636.

[22] Nick I. Markevich, Jan B. Hoek, and Boris N. Kholodenko. Signaling switches and

bistability arising from multisite phosphorylation in protein kinase cascades . Journal

of Cell Biology, 164(3):353�359, 2004. DOI: 10.1083/jcb.200308060.

[23] André T. G. Mello. A proposal of new methods for parameter estimation in ordi-

nary di�erential equations. Master's thesis, University of São Paulo, 2020. DOI:

10.11606/D.45.2020.tde-10112020-091717.

[24] Paul J. Myers, Sung H. Lee, and Matthew J. Lazzara. Mechanistic and data-

driven models of cell signaling: Tools for fundamental discovery and rational de-

sign of therapy. Current Opinion in Systems Biology, 28:100349, 2021. DOI:

10.1016/j.coisb.2021.05.010.

[25] Harini Narayanan, Mariano N. C. Bournazou, Gonzalo G. Gosálbez, and Alessan-

dro Butté. Functional-hybrid modeling through automated adaptive symbolic re-

gression for interpretable mathematical expressions. Chemical Engineering Journal,

430:133032, 2022. DOI: 10.1016/j.cej.2021.133032.

[26] Matthew J. Page, Joanne E. McKenzie, Patrick M. Bossuyt, Isabelle Boutron,

Tammy C. Ho�mann, Cynthia D. Mulrow, Larissa Shamseer, Jennifer M. Tetzla�,

Elie A. Akl, Sue E. Brennan, Roger Chou, Julie Glanville, Jeremy M. Grimshaw,

Asbjørn Hróbjartsson, Manoj M. Lalu, Tianjing Li, Elizabeth W. Loder, Evan Mayo-

Wilson, Steve McDonald, Luke A. McGuinness, Lesley A. Stewart, James Thomas,

Andrea C. Tricco, Vivian A. Welch, Penny Whiting, and David Moher. The PRISMA

2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372,

2021. DOI: 10.1136/bmj.n71.

[27] Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kir-

ill Zubov, Rohit Supekar, Dominic Skinner, Ali Ramadhan, and Alan Edel-

man. Universal di�erential equations for scienti�c machine learning, 2021. DOI:

10.48550/arXiv.2001.04385.

[28] Padmini Rangamani and Ravi Iyengar. Modelling cellular signalling systems. Essays

in Biochemestry, 45:83�94, 2008. DOI: 10.1042/bse0450083.

[29] Marcelo S. Reis and Juliane Liepe. An approximate Bayesian computation-based

approach to tackle the lack of isolation problem in signaling pathway modeling. Tech-

nical report, Max Planck Institute, 2020.

[30] Marcelo S. Reis, Vincent Noël, Matheus H.S. Dias, Layra L. Albuquerque, Amanda S.

Guimarães, Lulu Wu, Junior. Barrera, and Hugo A. Armelin. An interdisciplinary

approach for designing kinetic models of the Ras/MAPK signaling pathway. In



85

Methods in Molecular Biology Special Edition on Kinase Signaling Networks, pages

455�474. Humana Press, New York, 2017. DOI: 10.1007/978-1-4939-7154-1_28.

[31] Vinicius V. Santana, Erbet Costa, Carine M. Rebello, Ana M. Ribeiro, Christopher

Rackauckas, and Idelfonso B.R. Nogueira. E�cient hybrid modeling and sorption

model discovery for non-linear advection-di�usion-sorption systems: A systematic

scienti�c machine learning approach. Chemical Engineering Science, 282:119223,

2023. DOI: 10.1016/j.ces.2023.119223.

[32] Ronaldo N. Sousa, Cristiano G. S. Campos, Willian Wang, Ronaldo F. Hashimoto,

Hugo A. Armelin, and Marcelo S. Reis. Exploring identi�ability in hybrid models of

cell signaling pathways. In Marcelo S. Reis and Raquel C. de Melo-Minardi, editors,

Advances in Bioinformatics and Computational Biology, pages 148�159, Cham, 2023.

Springer Nature Switzerland. DOI: 10.1007/978-3-031-42715-2_14.

[33] Han Tang. Uncertain chemical reaction equation with delay. Journal of Ambient In-

telligence and Humanized Computing, 14(4):3867�3874, 2023. DOI: 10.1007/s12652-

022-04458-9.

[34] Allain V. Wouwer, Christine Renotte, and Philippe Bogaerts. Biological reaction

modeling using radial basis function networks. Computers and Chemical Engineering,

28(11):2157�2164, 2004. DOI: 10.1016/j.compchemeng.2004.03.003.

[35] Peter J. M. van Laarhoven and Emile H. L. Aarts. Simulated annealing, pages 7�15.

Springer Netherlands, Dordrecht, 1987. DOI: 978-94-015-7744-1_2.

[36] Pipa G. A Vortmeyer-Kley R, Nieters P. trajectory-based loss function to learn

missing terms in bifurcating dynamical systems. Scienti�c Reports, 2021. DOI:

10.1080/00207179.2021.1998636.

[37] Ulrike Wittig, Renate Kania, Martin Golebiewski, Maja Rey, Lei Shi, Lenneke

Jong, Enkhjargal Algaa, Andreas Weidemann, Heidrun Sauer-Danzwith, Saqib Mir,

Olga Krebs, Meik Bittkowski, Elina Wetsch, Isabel Rojas, and Wolfgang Müller.

SABIO-RK�database for biochemical reaction kinetics. Nucleic Acids Research,

40(D1):D790�D796, 11 2011. DOI: 10.1093/nar/gkr1046.

[38] Satoshi Yamada, Satoru Shiono, Akiko Joo, and Akihiko Yoshimura. Control mecha-

nism of jak/stat signal transduction pathway. FEBS Letters, 534(1-3):190�196, 2003.

DOI: 10.1016/S0014-5793(02)03842-5.

[39] Hans-Jörg Zander, Roland Dittmeyer, and Josef Wagenhuber. Dynamic modeling of

chemical reaction systems with neural networks and hybrid models. Chemical En-

gineering Technology, 1999. DOI: 10.1002/(SICI)1521-4125(199907)22:7<571::AID-

CEAT571>3.0.CO;2-5.



86

Appendix A

Lists of removed sets of rate constants

In this appendix, we present the lists of the speci�c sequences of �rst-principle param-

eter sets (rate constants) removal used in our experiments. These sequences illustrate

the iterative removal of �rst-principle parameter sets and the subsequent estimation of

parameters contained within those sets, alongside adjustments to neural network weights.

Index Set of �rst-principles paremeters removed
1 First-principle alone (No removal)
2 UDE-based model (No removal)
3 k3
4 k4
5 k5
6 k3-k4
7 k3-k5
8 k4-k5
9 k3-k4-k5

Table A.1: Complete sequence of �rst-principle parameter removal sets for the MAPK
orderedElementary model.

Index Set of �rst-principles parameter removed
1 First-principle alone (No removal)
2 UDE-based model (No removal)
3 k4
4 k3
5 k5
6 k3-k4
7 k4-k5
8 k3-k5
9 k3-k4-k5

Table A.2: Complete sequence of �rst-principle parameter removal sets for the MAPK
orderedElementary model using noisy data.
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Index Set of �rst-principles parameter removed
1 First-principle alone (No removal)
2 UDE-based model (No removal)
3 k6
4 k3
5 k18
6 k17
7 k18-k6
8 k17-k6
9 k3-k6
10 k17-k3
11 k17-k18-k6
12 k17-k18-k3
13 k18-k3-k6
14 k17-k3-k6
15 k17-k18-k3-k6

Table A.3: Complete sequence of �rst-principle parameter removal sets for the
FeMetabolism FeDe�cient model.

Index Set of �rst-principles parameter removed
1 First-principle alone (no removal)
2 UDE-based model (no removal)
3 k6
4 k18
5 k17
6 k3
7 k18-k6
8 k3-k6
9 k17-k18
10 k18-k3
11 k17-k18-k6
12 k18-k3-k6
13 k17-k18-k3
14 k17-k3-k6
15 k17-k18-k3-k6

Table A.4: Complete sequence of �rst-principle parameter removal sets for the
FeMetabolism FeDe�cient model using noisy data.



88

index Set of �rst-principles parameter removed
1 First-principle alone (no removal)
2 UDE-based model (no removal)
3 k59
4 k58
5 k50
6 k51
7 k53-k61
8 k51-k58
9 k51-k59
10 k58-k61
11 k58-k59
12 k53-k58-k59
13 k50-k51-k58
14 k51-k59-k61
15 k53-k59-k61
16 k58-k59-k61
17 k50-k53-k58-k61
18 k50-k53-k58-k59
19 k53-k58-k59-k61
20 k50-k51-k53-k59
21 k51-k53-k58-k61
22 k50-k51-k53-k58
23 k51-k53-k58-k59-k61
24 k50-k53-k58-k59-k61
25 k50-k51-k53-k58-k59
26 k50-k51-k53-k59-k61
27 k50-k51-k53-k58-k61
28 k50-k51-k53-k58-k59-k61

Table A.5: Complete sequence of �rst-principle parameter removal sets for the JAK-STAT
model.
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index Set of �rst-principles parameter removed
1 First-principle alone (no removal)
2 UDE-based model (no removal)
3 k51
4 k50
5 k53
6 k61
7 k58
8 k51-k58
9 k59-k61
10 k58-k59
11 k51-k59
12 k53-k61
13 k53-k59
14 k50-k53-k59
15 k53-k58-k59
16 k51-k58-k61
17 k50-k53-k61
18 k51-k53-k59
19 k53-k58-k59-k61
20 k50-k51-k53-k59
21 k50-k51-k53-k58-k61
22 k50-k51-k53-k59-k61
23 k50-k51-k53-k58-k59
24 k50-k51-k53-k58-k59-k61

Table A.6: Complete sequence of �rst-principle parameter removal sets for the JAK-STAT
model using noisy data.
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Index Set of �rst-principles parameter removed
1 First-principle alone (no removal)
2 UDE-based model (no removal)
3 kcat2
4 kf4
5 kcat4
6 kcat3-kr4
7 kf2-kr1
8 kr3-kr4
9 kcat1-kr2
10 kcat2-kf1-kr2
11 kcat4-kf1-kr1
12 kcat2-kcat3-kf2
13 kf1-kr1-kr2
14 kcat2-kf3-kr2-kr3
15 kcat4-kf2-kf4-kr3
16 kcat1-kf1-kf2-kr1
17 kcat1-kcat4-kf4-kr3
18 kcat2-kcat3-kf1-kf2-kr1
19 kcat3-kf1-kf4-kr2-kr3
20 kcat3-kf2-kf3-kr1-kr2
21 kcat4-kf2-kf3-kr2-kr3
22 kcat2-kcat4-kf1-kf2-kf3-kr1
23 kcat3-kf1-kf2-kf4-kr1-kr3
24 kcat1-kf1-kf2-kf3-kf4-kr3
25 kcat3-kf2-kf3-kf4-kr2-kr3
26 kcat1-kcat2-kcat4-kf4-kr1-kr3-kr4
27 kcat1-kcat2-kcat3-kr1-kr2-kr3-kr4
28 kcat1-kcat3-kcat4-kf1-kf3-kr1-kr3
29 kcat3-kcat4-kf1-kf2-kf4-kr1-kr3
30 kcat1-kcat3-kcat4-kf1-kf2-kf3-kf4-kr2
31 kcat2-kcat3-kcat4-kf2-kf3-kf4-kr1-kr3
32 kcat3-kcat4-kf3-kf4-kr1-kr2-kr3-kr4
33 kcat1-kcat2-kcat3-kcat4-kf1-kf4-kr2-kr3-kr4
34 kcat1-kcat2-kcat3-kcat4-kf2-kf3-kr1-kr2-kr4
35 kcat1-kcat2-kcat3-kcat4-kf1-kf2-kf4-kr2-kr3-kr4
36 kcat2-kcat3-kcat4-kf1-kf2-kf3-kf4-kr1-kr3-kr4
37 kcat2-kcat3-kcat4-kf1-kf2-kf3-kf4-kr2-kr3-kr4
38 kcat1-kcat2-kcat4-kf2-kf3-kf4-kr1-kr2-kr3-kr4
39 kcat1-kcat2-kcat3-kcat4-kf1-kf2-kf3-kf4-kr1-kr3-kr4
40 kcat1-kcat2-kcat3-kcat4-kf1-kf2-kf3-kf4-kr1-kr2-kr4
41 kcat1-kcat2-kcat3-kcat4-kf1-kf3-kf4-kr1-kr2-kr3-kr4
42 kcat1-kcat3-kcat4-kf1-kf2-kf3-kf4-kr1-kr2-kr3-kr4
43 kcat1-kcat2-kcat3-kcat4-kf1-kf2-kf3-kf4-kr1-kr2-kr3-kr4

Table A.7: Full list of the sequence of the �rst-principle removal for Toy Model.
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