
UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Engenharia Elétrica e de Computação

Francisco Germano Vogt

In-band telemetry using inter-packet gap

metrics for network and service management

Telemetria em banda usando métricas de

intervalo entre pacotes para gerenciamento de

rede e serviço

Campinas

2023



Francisco Germano Vogt

In-band telemetry using inter-packet gap metrics for

network and service management

Telemetria em banda usando métricas de intervalo entre

pacotes para gerenciamento de rede e serviço

Dissertation presented to the Faculty of Elec-
trical and Computer Engineering of the Uni-
versity of Campinas in partial fulfillment of
the requirements for the degree of Master, in
the area of Computer Engineering.

Dissertação apresentada à Faculdade de En-
genharia Elétrica e de Computação da Uni-
versidade Estadual de Campinas como parte
dos requisitos exigidos para a obtenção do
título de Mestre em Engenharia Elétrica, na
Área de Engenharia de Computação.

Supervisor: Prof. Dr. Christian Rodolfo Esteve Rothenberg

Este exemplar corresponde à ver-
são final da tese defendida pelo
aluno Francisco Germano Vogt, e
orientada pelo Prof. Dr. Christian
Rodolfo Esteve Rothenberg

Campinas

2023



Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Área de Engenharia e Arquitetura
Rose Meire da Silva - CRB 8/5974

    
  Vogt, Francisco Germano, 1999-  
 V868i VogIn-band telemetry using inter-packet gap metrics for network and service

management / Francisco Germano Vogt. – Campinas, SP : [s.n.], 2023.
 

   
  VogOrientador: Christian Rodolfo Esteve Rothenberg.
  VogDissertação (mestrado) – Universidade Estadual de Campinas, Faculdade

de Engenharia Elétrica e de Computação.
 

    
  Vog1. Redes definidas por software (tecnologia de rede de computador). 2.

Software - Desempenho. 3. Redes locais de computação. I. Esteve
Rothenberg, Christian Rodolfo, 1982-. II. Universidade Estadual de Campinas.
Faculdade de Engenharia Elétrica e de Computação. III. Título.

 

Informações Complementares

Título em outro idioma: Telemetria em banda usando métricas de intervalo entre pacotes
para gerenciamento de rede e serviço
Palavras-chave em inglês:
Software defined networks
Software - Performance
Local computer networks
Área de concentração: Engenharia de Computação
Titulação: Mestre em Engenharia Elétrica
Banca examinadora:
Christian Rodolfo Esteve Rothenberg [Orientador]
Marco Aurélio Amaral Henriques
Rodolfo da Silva Villaca
Data de defesa: 12-06-2023
Programa de Pós-Graduação: Engenharia Elétrica

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0003-1467-7146
- Currículo Lattes do autor: http://lattes.cnpq.br/5626844343227840  

Powered by TCPDF (www.tcpdf.org)



COMISSÃO JULGADORA - DISSERTAÇÃO DE MESTRADO

Candidato: Francisco Germano Vogt RA: 234632

Data da Defesa: 12 de junho de 2023

Título da Tese: “In-band telemetry using inter-packet gap metrics for network and

service management”

Prof. Dr. Christian Rodolfo Esteve Rothenberg (FEEC/UNICAMP)(Presidente)

Prof. Dr. Marco Aurélio Amaral Henriques (FEEC/UNICAMP)

Prof. Dr. Rodolfo da Silva Villaca (UFES)

A ata de defesa, com as respectivas assinaturas dos membros da Comissão

Julgadora, encontra-se no SIGA (Sistema de Fluxo de Dissertação/Tese) e na Secretaria

de Pós Graduação da Faculdade de Engenharia Elétrica e de Computação.



This work is dedicated to my family, friends, and everyone who somehow participated in

my academic trajectory, especially my mother, Noemi, who raised me alone and went to

great lengths to get me here.



Acknowledgements

First, I would like to thank my family, especially my mother, for the love,

affection, understanding, and help they have given me so far. Indeed, without your sup-

port, none of this would have been possible. In addition to the family, I especially thank

two professors, my advisor Prof. Christian Esteve Rothenberg, and former advisor Prof.

Marcelo Caggiani Luizelli, whom I am very proud to have been guided. So, thank you for

all the motivation, teachings, opportunities, and friendship offered throughout my tra-

jectory. Also, I’m very grateful for all the friends I’ve made in Campinas, especially my

housemates. So, to all my friends from Republica Marimbondos, thank you very much for

the reception, hospitality, support, and principally true friendship.

This work was supported by the Innovation Center, Ericsson S.A. and by the

Sao Paulo Research Foundation (FAPESP), grant 2021/00199-8, CPE SMARTNESS.



Abstract

With the rapid expansion of network traffic and the growing demand for high-quality

multimedia applications, the need to ensure optimal network performance and user sat-

isfaction has become increasingly crucial. Real-time monitoring and analysis of network

behavior have emerged as essential practices in this evolving landscape. In-band Network

Telemetry (INT) has quickly gained recognition as a powerful technique for capturing

fine-grained network measurements, enabling network management to make informed and

intelligent decisions.

However, the effectiveness of INT data collection is influenced by various factors, such as

packet size limitations and processing overhead. Therefore, it becomes crucial to carefully

select the data to be collected and determine the most appropriate timing for data collec-

tion. In this research, we propose a novel approach to network monitoring by leveraging

the Inter Packet Gap (IPG) metric, collected using INT, as the primary metric of interest.

By monitoring the IPG hop-by-hop, we can harness this valuable information to identify

and detect network anomalies more accurately.

This study focuses on two critical use cases where the application of INT and IPG metrics

proves to be particularly beneficial: microburst detection and Quality of Experience (QoE)

inference in Virtual Reality (VR) video streaming applications. Through extensive re-

search and development, we have devised autonomous strategies that operate exclusively

on the data plane, eliminating the need for any intervention from the control plane. These

strategies have been designed to efficiently detect microbursts, which are rapid bursts of

network traffic that can lead to performance degradation, as well as estimate the QoE for

VR video streaming applications.

By integrating INT and IPG metric analysis into the data plane, our strategies offer signif-

icant advantages in terms of real-time monitoring and decision-making. The autonomous

nature of our approach enables timely and accurate detection of network anomalies, al-

lowing for proactive management and mitigation of potential issues. Furthermore, by

estimating QoE in the data plane, we can gain valuable insights into the user experience

during VR video streaming, enabling network operators to optimize their services and

enhance user satisfaction.

Keywords: SDN; P4; Network monitoring.



Resumo

Com a rápida expansão do tráfego de rede e a crescente demanda por aplicativos multimí-

dia de alta qualidade, a necessidade de garantir o desempenho ideal da rede e a satisfação

do usuário tornou-se cada vez mais crucial. O monitoramento e a análise em tempo real

do comportamento da rede surgiram como práticas essenciais nesse cenário em evolução.

A Telemetria de Rede In-Band (INT) ganhou rapidamente reconhecimento como uma téc-

nica poderosa para capturar medições de rede refinadas, permitindo que o gerenciamento

de rede tome decisões informadas e inteligentes.

No entanto, a eficácia da coleta de dados INT é influenciada por vários fatores, como

limitações de tamanho de pacote e sobrecarga de processamento. Portanto, torna-se crucial

selecionar cuidadosamente os dados a serem coletados e determinar o momento mais

adequado para a coleta de dados. Nesta pesquisa, propomos uma nova abordagem para

monitoramento de rede, aproveitando a métrica Inter Packet Gap (IPG), coletada usando

INT, como a principal métrica de interesse. Ao monitorar o IPG salto a salto, podemos

aproveitar essas informações valiosas para identificar e detectar anomalias de rede com

mais precisão.

Este estudo se concentra em dois casos de uso críticos em que a aplicação da métrica INT e

IPG se mostra particularmente benéfica: detecção de microburst e inferência de Qualidade

de Experiência (QoE) em aplicativos de streaming de vídeo de Realidade Virtual (VR).

Através de extensa pesquisa e desenvolvimento, criamos estratégias autônomas que op-

eram exclusivamente no plano de dados, eliminando a necessidade de qualquer intervenção

do plano de controle. Essas estratégias foram projetadas para detectar microbursts com

eficiência, que são rajadas rápidas de tráfego de rede que podem levar à degradação do

desempenho, bem como estimar a QoE para aplicativos de streaming de vídeo VR.

Ao integrar a análise métrica INT e IPG no plano de dados, nossas estratégias oferecem

vantagens significativas em termos de monitoramento em tempo real e tomada de de-

cisões. A natureza autônoma de nossa abordagem permite a detecção oportuna e precisa

de anomalias de rede, permitindo o gerenciamento proativo e a mitigação de possíveis

problemas. Além disso, ao estimar a QoE no plano de dados, podemos obter informações

valiosas sobre a experiência do usuário durante o streaming de vídeo VR, permitindo que

as operadoras de rede otimizem seus serviços e melhorem a satisfação do usuário.

Palavras-chaves: Redes definidas por software; P4; Monitoramento de rede.
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1 Introduction

1.1 Context and Motivation

The rapid growth of network traffic in recent years has presented significant

challenges for network operators and service providers. Bandwidth-intensive applications,

such as video streaming, Virtual Reality (VR), and cloud-based services are already a

reality. VR head-mounted displays are expected to grow to nearly 34 million by the end of

2023, while the associated network traffic is expected to increase at least 12-fold (CISCO,

2019). Consequently, the networks face unprecedented demands in terms of capacity, la-

tency, and quality of service. As a result, monitoring and analyzing network performance

have become crucial for ensuring efficient operations and delivering a satisfactory user

experience.

In-band Network Telemetry (INT) (TAN et al., 2021) is an emerging tech-

nique for network monitoring in the Software Defined Networking (SDN) context (KREUTZ

et al., 2014). Different from the traditional network monitoring techniques like Inter-

net Control Message Protocol (ICMP) (GUO et al., 2015), Traceroute (AGARWAL et

al., 2014), NetFlow (SOMMER; FELDMANN, 2002), and Simple Network Management

Protocol (SNMP) (HARRINGTON et al., 2002), INT can provide finer-grained net-

work monitoring with better network visibility and coverage (LIU et al., 2018). Through

programmable devices and high-level languages like Programming Protocol-Independent

Packet Processors (P4) (BOSSHART et al., 2014), INT can collect a large and flexible

set of information (e.g., ingress timestamp, queue length) by the network. This informa-

tion can be used to detect and mitigate several network problems, like network congestion,

packet loss, and delay. Each application used to detect and mitigate these problems re-

quires a specific set of network information. However, INT data collection is limited by

some network factors (e.g., bandwidth and latency of INT processing (KIM et al., 2018)),

making it too costly to collect all network information every time due to the associated

overheads.

Due to concerns regarding scalability and overhead in running INT, it is crucial

to carefully select the collected information. Recent research efforts have focused on INT

orchestration, maximizing, and optimizing information collection (HOHEMBERGER et

al., 2019) (CANOFRE et al., 2022). In this work, we propose a different approach by

arguing that instead of collecting more network information, it is more beneficial to focus

on gathering information that can be utilized for multiple use cases. In this context, the
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Inter-Packet Gap (IPG) emerges as a promising network measurement and management

metric. The IPG metric offers several advantages: it enables the identification of a broader

range of events with high accuracy compared to traditional metrics, and it requires min-

imal storage capacity (e.g., only 16 bits for IPG size in heavy hitters detection (SINGH

et al., 2022). Previous studies have demonstrated the effectiveness of IPG for various net-

work problems, including packet loss (SA-INGTHONG et al., 2021), delay measurement

(PIRATLA et al., 2004), and heavy hitters detection (SINGH et al., 2022).

1.2 Research Goals

We present in-band Inter Packet Gap NEtwork Telemetry (IPGNET), a sys-

tem to detect network anomalies based on the analysis and collection of the IPG. The

main idea is to develop a low-cost autonomous data plane solution to detect and report

these anomalies. In our context, we focus specifically on two use cases: (i) The microbursts

detection report and (ii) The QoE estimation of VR video streaming.

Microbursts, short-duration bursts of high packet intensity, often remain un-

noticed by traditional network monitoring methods due to their brief duration and high

data rates. These microbursts can cause network congestion, packet loss, and ultimately

degrade application performance. Additionally, providing an accurate Quality of Experi-

ence (QoE) inference for VR video streaming allows for targeted optimizations, reduc-

ing latency, improving video quality, and delivering an immersive user experience. The

Figure 1.1 shows the proposed architecture with the microburst detector and the QoE

estimator running autonomously on the data plane, and reporting the data just when

necessary, using INT.

Furthermore, we seek to evaluate our strategies using high-fidelity experiments.

For this, we focus on implementing our solution and running the experiments using phys-

ical hardware (i.e., Tofino switch). However, as we have a limited physical network in-

frastructure available, we look for alternatives to perform these high-fidelity experiments.

Nevertheless, the existing software-based solutions like Mininet (LANTZ et al., 2010) can

suffer from performance and scalability limitations, while hardware-based solutions like

(KANNAN et al., 2018) are limited by factors like, not providing support for emulating

all link characteristics and the support of a custom P4 code.

Then, to address these limitations, we propose the development of an emu-

lation tool capable of simulating different events with high fidelity. So, we proposed P4

Programmable Patch Panel (P7). With P7, we can include in our experiments limitations

like bandwidth, latency, jitter, and packet loss. Thus, we can evaluate how the proposed

strategies behave in different network scenarios, even using a physical device like Tofino.
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Figure 1.1 – IPGNET architecture.

So, the objectives of this work can be summarized as:

• Explore the capabilities of IPG as a network metric for capturing fine-grained packet

transmission characteristics.

• Develop algorithms and methodologies for microburst detection using IPG monitor-

ing within the INT framework.

• Investigate the correlation between IPG metrics and the estimated QoE in VR video

streaming.

• Evaluate the performance and effectiveness of the proposed techniques through ex-

tensive experimental simulations and real-world network deployments.

1.3 Main Contributions

Considering the proposed objectives, the contributions of this dissertation can be sum-

marized as follows:

• Data plane autonomous solution. We have developed a low-cost solution to two

network problems that are able to operate autonomously in the data plane without

the need for intervention from the control plane;

• Microburst detection strategy. We implemented a microburst detection strategy

able to report the contributing flows;
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• QoE estimation in the data plane. We designed an in-network VR video stream-

ing QoE estimation directly in the data plane;

• Realistic implementation and evaluation. We developed our prototype imple-

mentation using Barefoot Tofino hardware;

• Advances to P4-based network emulation. We contributed to the development

of a P4-based network emulation platform that offers high-fidelity 100G traffic net-

work emulation;

• Open-source software artifacts. Both our use cases and our P4-based emulator

are open-source projects.

This work has benefited from previously published demos and papers, taking

advantage of the feedback received from the network community to improve the work

quality. Below we summarize the publications made during the development of this work,

as well as the awards received.

1.3.1 Publications

1. Fabricio Rodriguez, Francisco Germano Vogt Ariel Góes De Castro, Marcos

Felipe Schwarz, and Christian Rothenberg. “P4 Programmable Patch Panel (P7):

An Instant 100G Emulated Network on Your Tofino-based Pizza Box”. In: ACM

SIGCOMM 2022 Demos and Posters 2022.

2. Francisco Germano Vogt Fabricio Rodriguez, Christian Rothenberg, and Gergely

Pongrácz. “In-band Inter Paket Gap Telemetry (IPGNET): Unlocking Novel Net-

work Monitoring Methods”. In: 2022 IEEE Global Communications Conference

(GLOBECOM) Industry Demo Sessions. IEEE. 2022.

3. Francisco Germano Vogt Fabricio Rodriguez, Christian Rothenberg, and Gergely

Pongrácz. Innovative network monitoring techniques through In-band Inter Packet

Gap Telemetry (IPGNET). In P4 Workshop in Europe (EuroP4 ’22), December 9,

2022, Roma, Italy. ACM, New York, NY, USA, 4 pages.

4. Fabricio Rodriguez, Francisco Germano Vogt Ariel Góes De Castro, Marcos

Felipe Schwarz, and Christian Rothenberg. “Network Emulation with P7: A P4

Programmable Patch Panel on Tofino-based Hardware”. In: Salão de Ferramentas

do Simpósio Brasileiro de Redes de Computadores 2023.

5. Francisco Germano Vogt, Fabricio Rodriguez, Ariel Góes De Castro, Marcelo

Luizelli, Christian Rothenberg, and Gergely Pongrácz. “QoEyes: Towards Virtual



Chapter 1. Introduction 20

Reality Streaming QoE Estimation Entirely in the Data Plane”. In: Manuscript

Accepted in IEEE International Conference on Network Softwarization. 2023.

6. Francisco Germano Vogt, Fabricio Rodriguez, Ariel Góes De Castro, Marcelo

Luizelli, Christian Rothenberg, and Gergely Pongrácz. “Demo of QoEyes: Towards

Virtual Reality Streaming QoE Estimation Entirely in the Data Plane”. In: Demo

Accepted in IEEE International Conference on Network Softwarization. 2023.

7. Fabricio Rodriguez, Francisco Germano Vogt Ariel Góes De Castro and Chris-

tian Rothenberg. “Towards Multiple Pipelines Network Emulation with P7”. In:

Demo Accepted in IEEE International Conference on Network Softwarization. 2023.

1.3.2 Awards

• 8 2º Best Paper of the Student Research Competition at ACM SIGCOMM 2022.

Title: "P4 Programmable Patch Panel (P7): An Instant 100G Emulated Network

on Your Tofino-based Pizza Box", Aug, 2022.

• 8 Best Paper presented at Salão de Ferramentas do Simpósio Brasileiro de Redes

de Computadores. Title: "Network Emulation with P7: A P4 Programmable Patch

Panel on Tofino-based Hardware", May, 2023.

1.3.3 Open Source Artefacts

• P7 Emulator. <https://github.com/intrig-unicamp/p7>

• IPGNET Microburst Detector. <https://github.com/intrig-unicamp/IPGNET>

• QoEyes. <https://github.com/intrig-unicamp/QoEyes>

1.4 Outline

The dissertation is organized as follows. Chapter 2 presents a literature review

by introducing the key background topics and related work. Chapter 3 presents the design

an implementation of our proposed system (IPGNET) along with the problem definition

and a discussion on challenges and limitations. Chapter 4 introduces the P7 network

emulator used in our experimental evaluation, which is the focus of Chapter 5 divided

into the two main use cases explored. Finally, Chapter 6 concludes the work with final

remarks and future work perspectives.
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2 Literature Review

In this chapter, we review relevant topics in the literature for our work. For

this, we start reviewing the background concepts in section 2.1, and next, we review recent

research efforts related to our work in section 2.2, emphasizing our contributions.

2.1 Background

In this section, we discuss the background topics related to our proposed sys-

tem. These topics include an overview of SDN, P4 and Tofino Native Architecture (TNA),

INT, IPG metric, QoE, and VR video streaming. Each of these sections plays a funda-

mental role in the context of the work carried out, and some of them are directly linked

to the development of the proposed method

2.1.1 Software-Defined Networks (SDN)

SDN is an architectural approach to network design and management that

separates the control plane from the data plane. It introduces programmability, centralized

control, and network virtualization, offering greater flexibility, scalability, and agility in

network operations. These benefits are included because with the control plane decoupled

from the data plane and centralized in a software-based controller, the controller acts

as a single point of control for the entire network, providing a global view and making

intelligent decisions on how to forward traffic. In the next sessions, we discuss how SDN

is implemented, highlighting its differences with traditional network architecture, and its

key benefits such as network programmability.

2.1.1.1 Traditional vs Software-Defined Networks

Since the adoption of the traditional IP networks, tasks like network manage-

ment and reconfiguration are complex due to the complexity of managing this kind of

networks (BENSON et al., 2009). One example of these difficulties is the migration from

IPv4 to IPv6 (WU et al., 2012), which has not been finished yet. Furthermore, the config-

uration of current networks based on predefined policies presents significant complexities,

rendering the network inflexible and inefficient in responding to faults and changes in

workload. When network operators need to establish new high-level policies, they must

individually configure each network device, further adding to the intricacy. Moreover,

implementing these policies often involves using device vendor-specific Command-Line
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Interface (CLI) and low-level commands (Kim; Feamster, 2013). Additionally, the tight

coupling of the management, forwarding, and control planes in network devices exacer-

bates the configuration complexity. This inherent complexity makes it challenging, and in

some cases even unfeasible, for the network to dynamically adapt and respond to faults

and network alterations.

These difficulties occur mainly because the control and data planes are tightly

coupled in traditional network architectures, which makes network management and oper-

ation ineffective. So, to address these difficulties, Software-Defined Networks (SDN) have

emerged as a new network paradigm to improve network operation and management; One

of the main contributions of the SDN paradigm is decoupling the control and data planes

as two different entities, one logically centralized (control plane), and other distributed in

all network devices (data plane).

In the network context, the control plane is the layer responsible for managing

the network, creating and defining the network policies (e.g., using routing algorithms),

while the data plane is responsible for forwarding the packets according to these policies

defined by the control plane. Decoupling the control and data plane, we get some benefits

like (i) The network management is eased because it is possible to define all network

policies independently and in a centralized way, with a global vision of the network;(ii)

The network applications (network functions) now run on the control plane and can be

developed with architectural-independence. (iii) The cost of network devices (routers) is

reduced, because they need forward the packets. Figure 2.1 compares the SDN and tra-

ditional networks, emphasizing their main differences. Note that in traditional networks,

the control and data plane are executed in the network devices, and the network functions

are physical middle-boxes. On the other hand, in the SDN network, the control plane runs

as an external and centralized entity, executing all network functions and communicating

with the data plane (routers) using protocols like OpenFlow(MCKEOWN et al., 2008).

2.1.1.2 Data Plane Programmability

Another advantage of the decoupling between the control plane and the data

plane introduced by the SDN architecture is the possibility of programming the data

plane with high-level languages. It provides the ability to customize and manipulate the

behavior of the network’s data forwarding plane. This ability allows network operators

to define and implement specific forwarding rules and actions, tailoring the network’s

behavior to meet their unique requirements.

With dataplane programmability, network devices such as switches and routers

can be programmed to process and forward packets based on specific criteria, such as

packet headers, protocols, or even application-specific information. This level of pro-
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Figure 2.1 – Comparing traditional networks with SDN. Figure adapted from (KREUTZ
et al., 2015).

grammability empowers operators to adapt and optimize their networks dynamically,

enabling the implementation of advanced features, network slicing, traffic engineering,

and the efficient allocation of network resources. By decoupling the control plane from

the data plane and providing programmable interfaces, dataplane programmability en-

hances network flexibility, scalability, and innovation, enabling the development of more

intelligent and responsive networks.

Data plane programmability is marked by advancements in programming lan-

guages, hardware support, and frameworks tailored for network devices. These develop-

ments have significantly expanded the capabilities and flexibility of programmable data

planes. The principal programming language in this domain is P4, which will be discussed

in more detail in section 2.1.2.

2.1.2 Programming Protocol-Independent Packet Processors (P4)

The P4 language (BOSSHART et al., 2014), is an open, domain-specific pro-

gramming language designed for network switches and routers. It was developed to address

the need for flexible and programmable data plane processing in modern networking de-

vices. Traditionally, network devices have fixed-function data planes that handle packet

processing tasks such as parsing, matching, and forwarding. However, with the increasing

complexity and diversity of network protocols and applications, there is a demand for

more programmable and customizable data planes.

P4 allows network engineers and researchers to define the behavior of the

data plane in a high-level language. It provides a way to describe how packets should be
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processed, parsed, matched, and transformed as they traverse through the network device.

P4 programs specify how packets are processed protocol-independently, enabling network

devices to support new protocols and adapt to changing requirements without requiring

hardware modifications.

One of the key principles of P4 is protocol independence. P4 programs are not

tied to any specific network protocol, allowing network engineers to define their own pro-

tocols or customize existing ones. This flexibility enables innovation and experimentation

in network design and protocol development. P4 programs are typically compiled into

target-specific configurations, which can be deployed on programmable network devices

that support the P4 language. These devices use programmable forwarding chips or SDN

frameworks to execute the P4 program and process packets according to the defined data

plane logic.

2.1.2.1 Traditional P4 Architecture

The traditional P4 language architecture refers to the original design and prin-

ciples of the P4 language. These definitions consist of several key components:

• Parser: The parser is responsible for converting raw packet data into a structured

format that can be processed by subsequent stages. It extracts header fields from

the packet and populates metadata associated with each field.

• Control Plane: The control plane defines the high-level behavior of the packet

processing pipeline. It typically includes tables, Match-Actions Units (MAU), and

control flow constructs such as conditionals and loops. The control plane decides how

packets are processed and forwarded based on their header fields and metadata.

• Tables: Tables define the forwarding behavior of the network device. They contain

match-action entries that specify how to handle packets that match certain criteria.

The control plane determines which entry applies to a given packet and invokes the

associated actions.

• Actions: Actions define the operations to be performed on packets that match

specific table entries. Examples of actions include modifying header fields, forward-

ing packets to specific ports, dropping packets, or sending packets to the Central

Processing Unit (CPU) for further processing.

• Deparser: The deparser is responsible for converting the processed packet back into

its raw format. It takes the modified headers and metadata and assembles them into

the final packet that will be transmitted over the network.
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Figure 2.2 – P4 Pipeline

• Metadata: Metadata holds additional information associated with packets beyond

the header fields. It can be used by the control plane to make forwarding decisions

or pass information between different stages of the pipeline.

Figure 2.2 illustrates an abstraction of the P4 traditional forwarding model;

When a packet is received on the switch, the first stage is the parser. In the parser, the

packet headers and payload are extracted and stored in internal memory structures. The

packet payload is buffered (unavailable for matching), and the header fields are used to

match with the protocols supported by the switch and define the sequence of actions to

be performed. Then, the extracted headers are forwarded to match/action tables. The

match/action tables are divided into ingress and egress, although both can modify the

headers fields, they do different tasks. Ingress match/action tables are responsible for

determining the egress port/queue into which the packet is placed. Then, based on this

decision, the packet is forwarded, replicated, or dropped. In the egress, match/action

tables are performed only per-instance modifications as an example by adding or removing

monitoring information (e.g., timestamp). Last, the packet is remounted on the departure,

finishing processing.

2.1.2.2 Tofino Native Architecture (TNA)

Despite being based on the P4 language, the TNA refers to a programming

model and hardware design specifically tailored for the Tofino family of programmable

networking Application-specific Integrated Circuit (ASIC) developed by Barefoot Net-

works. This programming model, and consequently the Tofino Switch, were used in our

implementations and evaluations, so their details and differences are discussed below.

The TNA provides a set of programming abstractions and tools that allow net-

work operators to directly control and customize the behavior of Tofino ASICs. It enables

the creation of highly efficient and flexible data plane pipelines that can be customized to

meet specific network requirements. Additionally, TNA also includes a compiler and run-
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Figure 2.3 – TNA P4 Pipeline

time system that translates P4 programs into low-level instructions suitable for execution

on Tofino ASICs. This compilation process optimizes the program for performance and

efficiency, taking advantage of the capabilities of the underlying hardware.

Furthermore, TNA incorporates a highly parallel and programmable pipeline

design, supporting the execution of 2 or even 4 P4 codes running in parallel pipelines. The

pipeline consists of multiple stages that can be customized to perform specific packet pro-

cessing tasks efficiently. This design allows for fine-grained control over packet processing

and enables the execution of complex forwarding behaviors at high speeds.

The TNA P4 pipelines, although similar to the traditional ones, include addi-

tional components (see Figure 2.3). These components, presented in order in Figure 2.3,

are responsible for:

• Traffic Manager: The TNA P4 pipeline includes a built-in traffic manager as

a core component. The traffic manager handles various functions related to traffic

scheduling, buffering, and congestion management. It helps optimize the packet flow

and ensure efficient utilization of network resources within the Tofino switch.

• Ingress Parser/Deparser: In addition to the standard parser and deparser com-

ponents found in traditional P4 pipelines, the TNA P4 pipeline includes a specialized

ingress parser and deparser stages. The ingress parser processes incoming packets,

extracting the packet headers and relevant information for subsequent processing.

The ingress deparser is responsible for reconstructing packets with modified headers

or other modifications before forwarding them to the appropriate egress processing

stages.

• Egress Parser/Deparser: Similar to the ingress side, the TNA P4 pipeline in-

cludes a dedicated egress parser and deparser stages. The egress parser is responsi-

ble for processing packets before they are transmitted, handling any modifications

or encapsulation required for the outbound traffic. The egress deparser handles the

final packet reconstruction and prepares the packet for transmission.
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These additional components in the TNA P4 pipeline, such as the traffic man-

ager, ingress parser/deparser, and egress parser/deparser, are specifically designed to en-

hance the functionality and performance of the Tofino ASICs. They contribute to the

efficient processing and management of packets within the Tofino-based switches, ensur-

ing optimized traffic handling and transmission.

2.1.2.3 Differences Between Traditional P4 and TNA

In addition to the differences in its components, and despite both the tradi-

tional P4 pipelines and the TNA are based on the P4 language and share some similarities,

but there are differences between them. Here are the key distinctions:

• Hardware Target: Traditional P4 Pipeline: The traditional P4 pipeline is designed

to be hardware-agnostic, allowing P4 programs to be compiled and executed on var-

ious programmable forwarding devices, including Field Programmable Gate Array

(FPGA)s, Network Processing Unit (NPU)s, and ASICs from different vendors.

TNA P4 Pipeline: The TNA P4 pipeline is specifically tailored for the Barefoot

Tofino family of programmable Ethernet switches, which are ASICs optimized for

P4-based packet processing.

• Pipeline Structure: Traditional P4 Pipeline: The traditional P4 pipeline provides

a flexible and customizable pipeline structure. It allows users to define the number

and order of pipeline stages, including parsing, matching, and actions, providing

fine-grained control over packet processing. TNA P4 Pipeline: The TNA P4 pipeline

follows a fixed pipeline structure designed by Barefoot Networks. It consists of sev-

eral predefined stages, including parser, deparser, match-action units (MAUs), and

egress processing. While it offers less flexibility than the traditional P4 pipeline, it

is optimized for efficient packet processing on Tofino ASICs.

• Architecture Features: Traditional P4 Pipeline: The traditional P4 pipeline al-

lows users to define their own packet header formats, parsers, match-action tables,

and actions using the P4 language designed for the v1 model architecture. It pro-

vides a high level of programmability and extensibility, enabling the creation of

custom forwarding behaviors. TNA P4 Pipeline: The TNA P4 pipeline supports

the P4 language but is specifically designed to leverage the unique capabilities of

Tofino ASICs. It provides enhanced features and optimizations that take advantage

of Tofino’s hardware capabilities, such as large match-action tables, efficient table

lookups, and high throughput packet processing. However, it also includes a series

of programming limitations, such as a limited number of stages and restrictions on

operations.
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Figure 2.4 – Embedding telemetry information in the packet

• Performance and Efficiency: Traditional P4 Pipeline: The performance and ef-

ficiency of the traditional P4 pipeline depend on the target hardware platform and

its capabilities. It allows users to optimize their P4 programs for specific hard-

ware architectures and performance requirements. TNA P4 Pipeline: The TNA P4

pipeline is optimized for the Tofino ASICs and takes advantage of their advanced

features, such as the ability to process packets at a line rate with high through-

put and low latency. The TNA pipeline aims to deliver high-performance packet

processing specifically for Tofino-based switches.

In summary, while both the traditional P4 pipeline and the TNA P4 pipeline

are based on the P4 language, the TNA P4 pipeline is specifically designed for the Barefoot

Tofino ASICs, providing optimizations and features that leverage the capabilities of these

switches. The traditional P4 pipeline, on the other hand, is hardware-agnostic and offers

more flexibility and programmability to target various programmable forwarding devices.

2.1.3 In-band Network Telemetry (INT)

As previously discussed, the network programmability and the P4 language en-

able several benefits related to the management and operation of network infrastructures.

One of them is the INT monitoring, which has emerged as a promising network monitor-

ing mechanism that provides higher network-wide visibility to network operators (LIU et

al., 2018).

INT offers several advantages over traditional monitoring methods. By embed-

ding telemetry data in the packets themselves (see Figure 2.4), it provides fine-grained

visibility into the network without requiring additional hardware or out-of-band probes.

This approach allows for real-time monitoring, reduces network monitoring complexity,

and enables more accurate and detailed analysis of network behavior.

Since its initial introduction at P4.org in 2015, INT has undergone significant

evolution and discussion within the Internet Engineering Task Force (EITF) and industry

communities. Furthermore, the term ’INT’ has been utilized to encompass a broader

concept of data plane telemetry, extending beyond the conventional classic INT, where
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both instructions and metadata are embedded in data packets. As a result, different modes

of INT operation have been established, considering the extent of packet modifications

and what specific content is to be embedded within the packets. Figure 2.5 summarizes the

INT operation modes as described in (P4.ORG APPLICATIONS WORKING GROUP,

2020).In addition, these modes are described below:

• INT eXport Data (INT-XD): In INT-XD, metadata is exported directly from

INT nodes in the dataplane to the monitoring system based on the configured INT

instructions in their Flow Watchlists. This export of metadata occurs without the

need for packet modification.

• INT instruct(X)ions Data (INT-MX): In INT-MX, the INT Source node em-

beds INT instructions in the packet header. Then, each INT Transit node and the

INT Sink node follow these embedded instructions to directly send the metadata

to the monitoring system. The INT Sink node removes the instruction header be-

fore forwarding the packet to the receiver. Packet modification is limited to the

instruction header, ensuring that the packet size doesn’t increase as it traverses

more Transit nodes.

• INT eMbed Data (INT-MD): In INT-MD, both INT instructions and metadata

are written into the packets. This mode represents the classic hop-by-hop INT. The

process involves the INT Source embedding instructions, the INT Source and Transit

nodes embedding metadata, and the INT Sink node stripping the instructions and

aggregated metadata from the packet. The INT Sink node selectively sends this

data to the monitoring system. This mode modifies the packet the most but reduces

overhead at the monitoring system by collating reports from multiple INT nodes.

In general, INT has gained traction in modern networking environments, espe-

cially in data centers and cloud-based networks, where visibility and performance monitor-

ing are critical for efficient operations and troubleshooting. It complements other monitor-

ing techniques and contributes to the advancement of network monitoring and analytics

capabilities. In this work, we use the INT-XD strategy to export INT information related

to the bursts and QoE estimation (More details of this will be discussed in Chapter 3).

2.1.4 Inter-Packet Gap (IPG)

The IPG is a promising network metric that has proven recently to be efficient

in solving several network problems such as microbursts (VOGT et al., 2022), heavy

hitters detection (SINGH et al., 2022) and QoE inference (MUSTAFA; ROTHENBERG,

2022). Traditionally, the IPG refers to the arrival time difference between two consecutive
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network packets. and can be calculated according to Equation 2.1, where TSl and TSc

are the arrival time of the last and penultimate packets, respectively.

IPGc = TSc − TSl (2.1)

Despite being a simple metric to be calculated, the IPG metric provides valu-

able information about the timing characteristics of packets in a network stream. It can

be used to analyze network behavior, identify congestion, assess QoS parameters, and

troubleshoot network issues. By monitoring and analyzing IPG values, we can gain a bet-

ter understanding of network performance and make informed decisions to optimize and

improve the network infrastructure.

So, in this work, we argue that the IPG monitoring, combined with other

mathematical methods such as Exponentially Weighting Moving Average (EWMA), can

be used for several proposes. More details about the use cases explored and the IPG

implementation details can be found in Chapter 3.

2.1.5 Quality of Experience (QoE)

QoE is a measure that assesses users’ overall satisfaction and subjective per-

ception when interacting with a particular application, service, or system. It takes into

account various factors that influence the user’s perception of quality, including technical

performance, usability, and user expectations.

QoE has significant implications for businesses and service providers. A positive
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user experience and high QoE can lead to increased user engagement, customer loyalty,

and business success. On the other hand, poor QoE can result in user dissatisfaction,

churn, and negative impacts on brand reputation and revenue.

In general, the QoE measurement is subdivided into subjective and objective

approaches.

• Objective Approach: The objective approach focuses on measuring specific tech-

nical parameters and performance metrics that can impact the user’s experience.

These metrics are typically obtained through automated monitoring and measure-

ments. Examples of objective metrics include network latency, packet loss rate, video

bitrate, audio distortion, or application response time. By quantifying these metrics,

service providers can assess the technical performance of their systems and identify

potential issues that may degrade the user experience. However, objective metrics

alone may not capture the full user experience and may not align with the user’s

subjective perception.

• Subjective Approach: The subjective approach involves collecting user feedback

through surveys, interviews, rating scales, or other qualitative methods. Users are

asked to provide their subjective assessment of the quality of their experience, con-

sidering factors such as audiovisual quality, responsiveness, usability, and overall

satisfaction. This approach captures the user’s emotional and cognitive responses

and provides insights into their preferences, expectations, and overall perception

of quality. Subjective assessment is often quantified using metrics such as Mean

Opinion Score (MOS), which represents the average user rating of the quality on a

numerical scale.

The MOS is a widely used subjective metric for assessing QoE. MOS represents

the average rating provided by a group of users on a predefined scale. The scale typically

ranges from 1 to 5, with 1 representing the lowest perceived quality and 5 representing the

highest. Users are asked to rate the quality of their experience based on specific criteria,

such as audio quality, video quality, or overall satisfaction. MOS provides a standardized

way to quantify the user’s subjective perception of quality and allows for easy comparison

and benchmarking across different services or systems.

To better capture the user’s experience, subjective and objective metrics are

often best. It’s important to note that subjective and objective approaches complement

each other in assessing QoE. While subjective assessment captures the user’s perception

and satisfaction, objective metrics provide insights into the technical performance and po-

tential issues. By combining both approaches, service providers can gain a comprehensive
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understanding of the user experience and take action to improve the quality and meet

user expectations.

So, in this work, we have focused in develop an objective approach that es-

timates the QoE entirely in the data plane. To validate our technique, we compare our

estimation results with a subjective approach, calculating the real MOS. More detail about

this will be discussed in the Chapters 3 and 5

2.1.6 Virtual Reality (VR) Video Streaming

A real scenario where QoE methods can be applied is VR video streaming. VR

video streaming refers to delivering 360-degree video content that users can interact with

and explore as if they were in the environment. Unlike traditional 2D video, it provides a

fully immersive experience that allows users to look around and explore the virtual world

from different perspectives.

However, VR video streaming faces several technical challenges, principally

from a network perspective, such as high bandwidth requirements, high image quality,

and low latency. These challenges are summarized below:

• Bandwidth and Quality: VR video streaming requires higher bandwidth com-

pared to traditional video streaming due to the larger data size and the need to

transmit multiple perspectives to support the 360-degree view. To ensure a smooth

and high-quality VR experience, a reliable and high-speed network connection is

crucial to avoid buffering or latency issues that can disrupt the immersion.

• Latency and Synchronization: In VR streaming, minimizing latency is crucial

to maintain the synchronization between head movements and the corresponding

video playback. High latency can cause a noticeable lag between the user’s actions

and the visual response, leading to a less immersive experience. Efficient encoding,

streaming protocols, and network optimization techniques are employed to minimize

latency and ensure smooth synchronization.

These difficulties stem from the need to project/decompose the video into tiles

for the user. Figure 2.6 summarizes an 8x5 tiling scheme. In summary, we break down

the VR video into smaller tiles or fragments, encoding each tile separately, and then, the

tiles are transmitted over the network. The goal of the tiling is to provide the viewer with

the ability to view a high-resolution VR video without having to download the entire

video beforehand. To that end, the tiling scheme also allows for the use of Adaptative

Bit Rate (ABR) algorithms, which adjust the bitrate of each tile based on the network
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conditions to ensure smooth playback. For example, Zone z1 is defined as containing only

the viewport’s central tile, Zone z2 encompasses the viewport border tiles (8 tiles), and

Zone z3 has the 31 remaining tiles.

5 vertical tiles

Zone Z1

Viewport = Z1 + Z2 

Zone Z2

8 horizontal tiles

Zone Z3

Figure 2.6 – Three zones 8×5 tiling scheme.

To overcome these challenges, developers are improving VR video compression

algorithms, hardware, and software solutions. To reduce the high bandwidth demands,

the user viewport is limited to the portion of the virtual environment that the user can

see at a given time and is defined by the Field Of View (FOV) of the VR headset or

device, which determines the size and shape of the virtual environment that is visible to

the user. With that in mind, a key aspect in the future of VR is selecting a set of objective

metrics (e.g., Quality of Service (QoS) metrics). However, little has been done (YU et

al., 2015; ZAKHARCHENKO et al., 2016) in a network perspective (such as data plane

solutions) towards which metrics can be better used to guarantee a better experience for

the user in real-time.

2.2 Related Work

This section provides an overview of related works that share similarities with

our proposal. Firstly, we discuss studies that employ the IPG metric to identify and

address network issues. Next, we present studies that focus on detecting microbursts,

which is one of the use cases addressed in our proposal. Subsequently, we delve into works

that are relevant to our second use case, which involves measuring Quality of Experience

(QoE). Additionally, we examine alternative monitoring strategies that aim to identify and

mitigate various network problems, particularly those based on INT monitoring. Finally,

we summarize all the presented works, highlighting their key contributions and points of

differentiation from our proposal (refer to Table 2.1 for a comprehensive comparison).
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2.2.1 Inter-Packet Gap Based Solutions

In the past, the IPG metric demonstrated its potential when used for some

network applications like packet loss detection (SA-INGTHONG et al., 2021), delay mea-

surement (PIRATLA et al., 2004), traffic classification (HAO; LAKSHMAN, 2011) and

network performance measurement (SUN V. XU; DAFTARY, 2015).

Most recently, with the network programmability enabled by SDN, (SINGH et

al., 2022) have used the IPG as an alternative to packet counters and slide windows for

heavy hitter detection. Similarly to the strategy used in this work, the authors calculate

the IPG as an EWMA in the data plane and use a tau threshold to decide the heavy

hitters. Their results suggest that IPG metrics are a strong candidate for HH detection

and other traffic management applications.

Similarly, and related to QoE inference, (MUSTAFA; ROTHENBERG, 2022)

reveals a high correlation between the QoS features derived from IPG and the QoE of

encrypted DASH traffic. In this case, the IPG is derived in three sub-features: Cumu-

lative Sums (CUSUM), EWMA, and Double Exponentially Weighted Moving Average

(DEMA). To further investigate, various machine learning classifiers, including Artifi-

cial Neural Networks (ANN), K-Nearest Neighbors (KNN), Decision Trees (DT), and

Random Forests (RF), were employed. These classifiers were used to predict the QoE

class based on ITU-T Rec. P.1203 QoE standard, specifically mode 0. The prediction was

achieved by considering metadata only, such as bitrate, frame rate, and resolution. The

results demonstrate high accuracy in predicting the QoE class using these classifiers.

However, we argue that none of the cited works uses the full potential of the

IPG. First, none of them explore problems like microburst detection data plane QoE

estimation, and second, they do not explore the possibility of detecting multiple network

events using the same IPG calculation and implementation.

2.2.2 Microburst Detection Strategies

Following, related to the microburst detection use case, recent research efforts

have made improvements to detect microbursts on programmable dataplanes. In this con-

text, BurstRadar (JOSHI et al., 2018) is the state-of-the-art for full dataplane microburst

detection strategies. The authors proposed an approach to detect the microbursts based

on a queue depth threshold (specified as an Round Trip Time (RTT) increase tolerance)

and report all the packets in the queue with a snapshot algorithm. As a result, they can

detect the microbursts with ten times less data collection than the existing strategies.

However, BurstRadar can not detect microbursts in multiple queues and report all pack-

ets on the queue, while our strategy reports just the contributing flows (we will discuss
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more in Chapter 3).

As a breakthrough to BurstRadar (JOSHI et al., 2018) Gao et al. (GAO et

al., 2022) proposed BurstScope: a hybrid control and data plane microburst detection

strategy. Burst scope emerged as an alternative to the limitations present in BurstRadar,

like it can not detect the bursts on multiple queues and always report all flows in a burst

case. So BurstScope can detect the bursts in multiple queues and seeks to report just

the contributing flows through a strategy with an invertible sketch. Their results show

that BurstScope can detect microbursts with high accuracy ( 95%) and can reduce the

bandwidth overhead by 60x when compared with burst radar. However, BurstScope uses

a hybrid strategy (combining control and data plane) to detect the contributing flows,

implying a longer response time in detecting microbursts. It occurs due to the necessary

communication between the control and data plane and the time it takes, which can be

significant for this kind of problem.

Alternatively, (CHEN et al., 2018b) proposed Snappy, a probabilistic strat-

egy to detect the microbursts and report the contributing flows. Snappy estimates the

microburst queue and identifies the contributing flows through a probabilistic algorithm

(Recall). However, to determine the contributing flows in practice with high accuracy, it

is expected that Snappy to require more than 128 pipeline stages (JOSHI et al., 2018),

which is infeasible in today’s programmable switching ASICs. So, using Snappy to detect

the microbursts in the control plane is infeasible, considering the resource utilization and

restrictions.

2.2.3 QoE Measurement and Prediction

Related to QoE estimation or prediction, we have works like VR EXP (FILHO

et al., 2019), which is a platform that enables a set of adaptive tile-based schemes for var-

ious network conditions. PREDICTIVE (FILHO et al., 2018) is a two-stage ML-assisted

approach that infers how the user perceives the resulting VR video playout performance.

In summary, a set of predictors have the network QoS (i.e., delay, packet loss, and TCP

throughput) and the tiling scheme as input. In contrast, Vidhya et al. (VIDHYA et

al., 2020) introduced a fuzzy logic mechanism within the Network Data and Applica-

tion Function (NWDAF) entity in 5G to perform QoE evaluation. Similarly, Schwarz-

mann et al. (SCHWARZMANN et al., 2022) leverages NWDAF standardized interface

capabilities in 5G networks to estimate the accuracy of different state-of-the-art regres-

sion techniques. Chen et al. (CHEN et al., 2018a) propose an SSIM-based approach for

360-degree video quality assessment. The algorithm explores a correlation between 2D

and spherical projection. Also, it is verified on a subjective 360-degree video quality as-

sessment database. On the other hand, FastInter360 (STORCH et al., 2021) exploits a set
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of texture features to reduce the encoding time of 360-degree videos with equirectangular

projection (ERP) while Upenik et al. (UPENIK et al., 2017) extends Yu et al. (YU et al.,

2015) and benchmarks PSNR-based approaches against ground-truth subjective quality

data.

Iurian et al. (IURIAN et al., 2022) analyzed the impact of priority queues

in a video streaming scenario. However, the work is preliminary and does not provide

QoE inference. Conversely, Bhat et al. (BHAT et al., 2019) leverage Q-in-Q tunneling

and translates the application- into link-layer header information at the edge to infer

objective QoE metrics and the model QoE value score of VR streaming sessions.

Despite existing research efforts to achieve QoE closer to the edge, to the best

of our knowledge, our proposal is the first approach toward designing an in-network VR

video streaming QoE estimation directly in the data plane.

2.2.4 Monitoring Systems

Concerning monitoring systems similar to our proposal, looking to solve multi-

ple problems or use INT-based network monitoring, (ZHAO et al., 2021) proposed Light-

Guardian, a monitoring system based on in-band telemetry and a new sketch strategy

to provide complete network visibility with low overhead. LightGuardian combines the

traditional INT with per-flow sketches called “sketchlets” to include fewer telemetry data

in the packets but maintain accuracy. Their results show that LightGuardian can ac-

quire per-flow per-hop flow-level information within 1.0 - 1.5 seconds, using only 0.07%

of the total network bandwidth. However, LightGuardian seeks to collect all network in-

formation, unlike our work which detects multiple events using a single network metric.

Consequently, LightGuardian needs more control and data plane processing and data to

maintain and reconstruct the sketches, increasing the overhead.

Similarly, (ZHOU et al., 2020) proposed NetSeer, a monitoring system to de-

tect network performance anomalies such as packet drops, congestion, path change, and

packet pause principally for the cloud network context. NetSeer is based on the idea of

detecting the flow events in the data plane and reporting it using compressed data for

the management plane. Their implementation for Barefoot Tofino can reduce the cause

location time with a low traffic overhead (0.01%).

Focusing on performing the root cause analysis, (TAN et al., 2019) proposed

NetBouncer, and an active probing system to detect link and device failures, especially

gray failures. This kind of failure drops packets probabilistically, making them not so

easily detectable by traditional monitoring applications or by a simple connectivity test.

Then, the authors developed a packet bouncing technique to probe the designed paths
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and distinguish device failures. However, despite not presenting false positives in practice,

NetBouncer has some limitations, such as including extra packets in the network (the

probe packets) and suffering from transient failures and packet loss. Also, for gray failure

detection, (MOLERO et al., 2022) proposed a gray failure detector (FANcY) for the ISP’s

context. FANcY uses a solution based on in-switch packet counters that perform packet

counts and compare the results to detect packet losses. Despite its success in detecting

gray failures in ISP configurations, FANcY cannot detect other network problems (such

as microbursts) and uses more hardware resources.

Recently, several works (JIA et al., 2020) (BASAT et al., 2020) (CANOFRE

et al., 2022) (HUANG et al., 2020) have focused on improving network management and

problem identification by optimizing the collection of telemetry data acquired using INT.

So, all of these works seek to collect several network information but with lower overhead

(in terms of reports in comparison with the traditional INT) through the use of techniques

like aggregations, probabilistic methods, and moving averages. In contrast, our work seeks

to collect only one network information and optimize its use, using it for several use cases.

However, this does not prevent our IPG method from using any of these INT collection

methods, which could further reduce its overhead.

2.2.5 Comparison

In this section, we summarize the related work presented in the previous sec-

tions and classify them into four general categories for comparison purposes:

• IPG-based solutions: In this category, we include all works that also use IPG-

based solutions. With this, we can observe that despite using the IPG, these works

do not explore its full potential.

• Multiple use cases: In this category, we include all works proposing solutions for

multiple use cases or minimally collecting the necessary information for this, as in

the cases of monitoring systems based on INT.

• Data plane solutions: In this classification, we include all works that implement

your solution at least partially in the data plane. This is important because this

type of implementation brings benefits such as reduced network control overhead,

better management, and low response latency.

• Depends on the control plane: Here, we highlight the developed solutions that

are dependent or fully implemented in the control plane. This, even though it is often

essential, includes a time overhead (when compared to full-data plane solutions) in

detecting and responding to network problems
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Table 2.1 presents this classification for all previously described related works.

As we can see in the table, although there are solutions for multiple use cases imple-

mented in the data plane (especially INT-based monitoring solutions), all these solutions

also depend on the control plane to work. In addition, they are usually based on the

collection/analysis of multiple network metrics, while our solution manages to perform

using only one, the IPG. In addition, we can highlight other solutions like (SINGH et al.,

2022), which is capable of using only a single metric (IPG) and implementing a solution

in the data plane that works autonomously (without dependence on the control plane);

however, it solves only one problem, heavy hitters detection. Altogether, our IPGNET

proposal is the first low-cost solution based on a single network metric (IPG) capable of

assisting with multiple network problems entirely in the data plane.
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3 IPGNET Design & Implementation

In this chapter, we discuss the aspects of our proposed monitoring system,

focusing on how it works to identify and react autonomously to network problems. We

visit the strategies used for the proposed use cases, which include the microburst detection

and contributing flows reporting, and the QoE estimation entirely in the data plane. In

each use case, we explain the problem; the solution developed, and its challenges and

limitations.

3.1 Microburst Detection and Report

In this section, we detail our microburst detection use case. Initially, we give a

general description of the problem, and then we set out to formalize it. Then, we proceed

to an overview of the proposed strategy, following the data plane design, implementation,

challenges, and limitations.

3.1.1 Problem Overview

In computer networks, microbursts are brief and intense bursts of network

traffic transmitted in a short period of time. They are characterized by a sudden surge in

packet transmission at extremely high data rates, followed by a period of low or normal

traffic. Usually, they are often caused by bursty traffic patterns, where packets arrive

in rapid succession instead of being evenly distributed. This can happen due to various

factors, such as sudden data transfers or network protocols with variable packet arrival

rates.

Network devices typically use buffers to temporarily store incoming packets

before forwarding them. Buffers help smooth out fluctuations in traffic and prevent tradi-

tional congestion. However, during microbursts, the burst of incoming packets can exceed

the buffer capacity, leading to congestion and packet loss. The impact of these events on

network performance can be significant; For example, when packets are dropped due to

congestion, retransmissions are required, which reduces overall throughput. Additionally,

the dropped packets can also cause delays and increased latency, affecting the quality of

service experienced by network users.

Despite their impact detecting microbursts can be challenging, principally us-

ing traditional monitoring strategies, because they are transient events that occur at
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a small timescale. Below we discuss the main challenges encountered in detecting mi-

crobursts:

• Information granularity: Microbursts occur over very short durations, often in

the range of microseconds to milliseconds. Traditional monitoring tools and strate-

gies (e.g., SNMP) may not capture or analyze traffic patterns with such fine granu-

larity. They are designed to operate at longer timescales, such as seconds or minutes,

making it difficult to identify and measure these brief bursts accurately.

• Limited information: In addition to the low granularity of the information col-

lected, traditional monitoring tools may not have visibility into the buffer occupancy

levels or queue lengths at fine timescales. As a result, they may not directly observe

the congestion caused by microbursts, making their detection challenging.

• Packet/flow level information: Traditional monitoring techniques often focus

on aggregated traffic statistics, such as average bandwidth or utilization over longer

time intervals. They may not provide detailed packet-level information required to

identify microbursts. Since microbursts involve rapid packet arrivals within a short

period, analyzing individual packets becomes crucial for detection.

To overcome these challenges, specialized monitoring tools and techniques

should be developed (see Section 2.2.2) specifically for detecting microbursts and their

contributing flows (discussed in detail in Section 3.1.1.1). These tools often employ high-

speed packet capture, fine-grained analysis, and real-time monitoring to capture and an-

alyze traffic at the required timescales.

3.1.1.1 Contributing Flows

In a microburst scenario, the concept of contributing flows, also covered in (GAO

et al., 2022), refers to the individual flows or streams of network traffic that collectively

contribute to the occurrence and intensity of a microburst event. A microburst can be

composed of multiple contributing flows, where each flow represents a specific commu-

nication session or data stream between network devices. These flows may be generated

by different applications, services, or users, and they collectively contribute to the overall

burst of traffic.

Contributing flows are crucial in microbursts because their combined transmis-

sion patterns can lead to congestion and overload network buffers. When multiple flows

coincide and transmit a significant amount of data simultaneously, the resulting packet

burst can exceed the network devices’ capacity, causing congestion and potential packet

loss.
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Identifying the contributing flows within a microburst is important for under-

standing the root causes and characteristics of the event. By analyzing the properties

of individual flows, such as their packet arrival rates, data volume, or source-destination

pairs, network administrators can gain insights into the specific flows that contribute to

the burst traffic. Also, distinguishing the contributing flows within a microburst can aid

traffic engineering and capacity planning. By understanding which flows are most respon-

sible for the bursty behavior, network administrators can allocate resources, adjust the

quality of service settings, or apply traffic shaping techniques to prioritize or regulate

specific flows and minimize the occurrence of microbursts. So, understanding and man-

aging these contributing flows are essential for effectively addressing microburst-related

challenges in network management.

3.1.2 Problem Definition

Understanding the importance of detecting microbursts, and identifying the

contributing flows, we can then formalize the problem as follows; Considering a physical

network infrastructure G = (D, L) and a set of active network flows F . The set D in

the network G represents all programmable forwarding devices, then D = {1, ..., |D|},

while set L represents the links interconnecting pair of devices (d1, d2) ∈ (D × D). Each

flow f ∈ F has two endpoints (i.e., ingress and egress forwarding devices) and is routed

through the network infrastructure G using a simple path. Furthermore, each flow f

transmits packets at a rate Tx(f).

A device d is considered in burst state b ∈ B (set of all microbursts) when its

queue occupancy Qocup(d) is greater than a threshold th. Then the duration time of a

burst bx can be defined as T (bx), which corresponds to the interval [Ts, Te] representing

the time that the burst started and ended (Qocup(d) is again smaller than th ), respec-

tively. Additionally, between each time interval [Ts, Te], there is a subset CB ⊆ F that

corresponds to the contributing flows. These flows are defined when the rate Tx(f) of a

flow f is greater than a threshold thf .

The problem is to detect all existing microbursts and their contributing flows.

Therefore, we first need to detect all bursts b ∈ B that occur in the devices d ∈ D, setting

an appropriate th threshold. In the sequence, we need to find the set CB corresponding to

each burst b ∈ B corresponding to the list of contributing flows of each burst. Note that

in these cases, the biggest challenges are how to define the th and thf variables, which

will define when a burst will be detected, and which flows will be chosen as contributing

flows. These decisions will directly impact the method’s effectiveness and, consequently,

the network management.



Chapter 3. IPGNET Design & Implementation 43

3.1.3 Proposed Approach

To perform the microburst detection and report the contributing flows, unlike

(GAO et al., 2022) we use a full-data plane approach. The main idea of our strategy is to

detect the microbursts based on the queue depth and then report the contributing flows

for the control plane based on their IPGs. To do this, we use the basic IPG calculation de-

scribed in section 2.1.4 combined with an EWMA function to consider recently measured

IPGs in the calculation.

So, we perform the per-flow IPGw calculation according to Equation 3.1, where

IPGc is calculated using Equation 2.1, and α is a parameter between [0, 1];

IPGw = α · IPGw−1 + (1 − α) · IPGc (3.1)

We argue that differently from what is proposed in (GAO et al., 2022), it is

possible to detect the contributing flows in a burst scenario entirely in the data plane,

just by calculating the proposed IPG. Furthermore, with the proposed method, it is not

necessary to use as many hardware resources as in the probabilistic technique proposed

by (CHEN et al., 2018b), which needs a large number of pipeline stages to get a decent

recall.

This is possible because the use of the IPG has already proven efficient in

detecting heavy flows in the data plane (SINGH et al., 2022), making a precise detection

with low overhead. Then, as they are similar events (flow bursts and heavy hitters), with

some modifications in the detection strategy, it is possible to use the same IPG calculation

for both problems. Below, we discuss in more detail how our approach works.

3.1.3.1 Workflow

Figure 3.1 presents the workflow of our microburst detection strategy, demon-

strating the process performed from the moment the device receives the packet until it

is forwarded. Note that although IPG monitoring is performed per flow, this process is

performed packet by packet, which provides a very fine monitoring granularity, and, con-

sequently, a very fast burst detection. Below, we discuss each of the steps presented in

the figure.

• Packet arrives: The packet arrives at the network device, then the packet is pre-

processed, identifying, for example, which flow it belongs to.

• IPGw calculation: The flow IPGw is calculated using Equations 2.1 and 3.1, and

the result is stored in a register for later use.
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Figure 3.1 – Microburst detection workflow

• IPGw average: With the IPGw calculation of the flow already performed, now

the average IPGw is calculated, which corresponds to the average of all active flows.

The result is also stored for later use.

• Burst detection: Performs the detection of microbursts based on the queue occu-

pancy (metadata provided by Tofino), which is compared with a previously defined

threshold.

• Contributing flow detection: If a burst is detected, it uses the pre-calculated

IPGw and IPGw average values to decide whether the flow is a contributor or not.

If the IPGw is less than the average IPGw, the flow is considered a contributor.

• Contributing flow reporting: If the flow is marked as a contributor, report the

flow to the control plane using the INT-XD concept, discussed in Section 2.1.3.

• Packet forwarding: Performs post-processing of the packet, and normally forwards

it to the network.

3.1.3.2 Design on Programmable Data Planes

Our algorithm is implemented using P4 language for the TNA (discussed in

Section 2.1.2.2). As we discussed in our background, the P4 language naturally presents

implementation challenges, especially when used with the TNA architecture. In the fol-

lowing section, we will describe the main challenges encountered, followed by details of

the implemented solution and its limitations.
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3.1.3.2.1 Challenges

The utilization of P4 introduces an exciting opportunity to execute algorithms

directly on programmable switch ASICs. However, this implementation poses certain chal-

lenges. In this discussion, we delve into the engineering obstacles associated with integrat-

ing algorithms on switch ASICs and highlight the adopted solutions. These solutions were

employed to successfully implement a P4 pipeline for the proposed IPG-based method,

which underwent validation on a programmable switch ASIC.

Below we summarize the main challenges encountered and the strategies used

to deal with them.

• Access Limitations to Registers: In per-flow monitoring algorithms, the switch

typically performs an initial check of the flow ID for incoming packets against the

entries in the register. Subsequently, the corresponding parameters, such as IPGs

or packet counters, are updated accordingly. For instance, in a packet counting-

based solution, the counter is decremented, and the flow is evicted from the data

structure once the counter reaches zero. However, since the flow ID register has

already been accessed to confirm the match, it cannot be accessed again to replace

the entry. In the Tofino switch ASIC, the register can only be accessed once per

packet lifetime. To overcome this challenge, the solution implemented is rewriting

the IPG registers every time there is a flow ID match. This approach eliminates the

need for recirculations (e.g., for a second update) and ensures efficient operation.

• Arithmetic and Comparison Operations. Conventional switch hardware lacks

support for multiplication and division operations in register actions. Additionally,

comparison operations are limited to a fixed number of bits and can only be per-

formed between constant and variable values, preventing the comparison of two

variables. However, the Tofino Switch offers bit operations that can be utilized to

perform basic multiplications and divisions. Implementing an exponential weighted

moving average (EWMA) calculation in an HW pipeline, as per Equation 3.1, can

be challenging. To address this challenge, our solution is based on an approximate

EWMA calculation that utilizes the available arithmetic and comparison bit oper-

ations within the limited hardware resources.

• Limited Number of Stages: In order to achieve low and predictable per-packet

latency, the Tofino hardware architecture relies on a fixed number of pipeline stages.

To accommodate our program within the available stages, it is crucial to minimize

unnecessary table dependencies in implementing our proposed algorithm. Currently,
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our algorithm requires ten stages to complete all the necessary steps. Running our al-

gorithm on top of a baseline switch.p4 (P4.ORG, 2015), compiled on Tofino, demon-

strates that it can operate alongside other switching functions without imposing

significant additional resource and stage constraints. A more detailed analysis of

the resource utilization of our strategy will be presented in Section 5.1.2.

3.1.3.2.2 Implementation

So, in the P4 code, to calculate and store the per-flow IPGw, we use registers

and actions. For the IPGw
f , we use 16-bit registers, and for TSl

f 32-bit registers, totaling

48-bit of memory for each flow entry. We assume a capacity for 2048 flow entries, resulting

in a total of 98k bits of storage used. In addition, we use the value of α = 0.99, as it proved

to be the most suitable value for the detection of heavy flows in (SINGH et al., 2022).

Control IngressPipeline():

RegisterAction ComputeIPG(IPGc):

IPGw = α * IPGw−1 + (1 - α) * IPGc

return IPGw

Register<bit<16>> IPGavg

Register<bit<16>> IPGw

Register<bit<32>> TSl

Apply:

flowIndex = computeFlowIndex()
TSl = readAndUpdateTimestamp(flowIndex)
IPGc = TSc - TSl

IPGw = ComputeIPG(IPGc, flowIndex)
IPGavg = ComputeIPG(IPGw)
InsertIPGHeader()

Control EgressPipeline():

if deqDepth > threshold then

slotsRemain[queueID] = deqDepth
if IPGw < IPGavg then

reportContributingFlow(pkt)
end

end

else if slotsRemain[queueID] > 0 then

slotsRemain[queueID] = slotsRemain[queueID] - pktLen/slotSize
if IPGw < IPGavg then

reportContributingFlow(pkt)
end

end

Algorithm 1: Microburst Detection Algorithm

The Algorithm 1 illustrates how our approach implemented in P4 works.

For simplicity, we present only the ingress pipeline and egress pipeline blocks, as our

parser/deparser blocks are only used to extract/include the standard headers (ethernet,

IP, and transport protocol). So, the first part performed when the packet enters the ingress

pipeline is to compute its flow index using a crc32 hash function. This hash function uses



Chapter 3. IPGNET Design & Implementation 47

as input the source and destination IP, transport protocol, and source and destination

port. The result is used to identify the flow and indicate the correct position of the registers

in which its IPG is stored and must be updated.

In the sequence, we start to calculate the flow IPGw, and IPGw overall average.

For this, we use the Equations 2.1 and 3.1 with the help of a register action and a math

unit. After calculating and storing the results, in addition to updating the timestamp

of the last package to the current timestamp, we include these results in the packet to

be used in the egress pipeline. Note that this inclusion is necessary because the queue

occupancy metrics are only available in the egress pipeline. Therefore the detection of

bursts and the decision of the contributing flows has to be done in the egress pipeline.

So, after finishing the ingress pipeline and after the packet passes through the

traffic manager, the packet enters the egress pipeline. Now, the algorithm checks if the

occupation of the queue that the packet passed through the traffic manager is greater

than the threshold predefined by the network operator. The network operator can define

a threshold for an increase in latency (expressed as a percentage). As an illustration, if

the network’s round-trip time (RTT) with no queuing is 50 µs, the operator can set a

30% threshold, corresponding to a minimum latency increase of 15 µs. Consequently, the

algorithm would disregard any microbursts resulting in a delay of less than 15 µs delay.

In practice, this threshold means a queue of 18750 bytes in a queue with a throughput

of 10Gbps and must be divided by the size of the queue slots to find the number of slots

corresponding to the desired threshold (e.g., 293 for 64B slots).

So, when the queue depth is greater than the threshold, we have detected the

burst and must decide whether the packet belongs to a contributing flow or not. Then,

we check if the IPG of the flow to which the packet belongs is less than the overall IPG

average, and if so, we report the flow as a contributor to the control plane, using the INT

concept as discussed in Sec. 2.1.3.

However, note that there is another case, where the queue depth is smaller

than the threshold, but we still check whether the flow is contributing. This situation

arises when the current occupancy of the queue does not surpass the threshold, yet there

are still packets being released from the queue that were present during a previous period

when the occupancy exceeded the threshold. In other words, these packets were part of

an earlier burst. In this case, as before, we check if the packet belongs to a contributing

flow, and report to the control plane if necessary. Note that to maintain this control, we

have a variable called slotsRemain, which stores the total occupation of the queue each

time a burst is detected.

Another important point to note is how the IPGw average works as a threshold
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to separate the normal and contributing flows. It occurs because, in general, the link

utilization is about 10% for 90% of the time (ZHANG et al., 2017), which means that

when a burst starts, the tendency is that we have several heavy flows that make the

average become a threshold between flows with normal rates and heavy flows.

To summarize, our microburst detection algorithm operates entirely within the

data plane and is designed to identify microbursts and the corresponding contributing

flows. It sends relevant reports about these heavy flows to the monitoring server in the

control plane using INT. This approach reduces the information overhead in the control

plane, as the monitoring server only receives pertinent details, such as information about

flows that caused burst events. This enables the network operator to promptly apply

network policies when necessary, resulting in more efficient network management.

3.1.3.3 Limitations

We will now summarize the primary limitations encountered in the developed

solution, considering aspects related to implementation, hardware, and language.

• Hash Collisions: We use a hash function to identify and index the flows in the

registers (which use source and destination IPs/ports and the protocol). However,

when we have collisions, what happens in practice is that we have two or more

flows updating the same register slot, decreasing the accuracy of the detection of

contributing flows (i.e., reporting flows that should not be reported).

• Fixed Threshold: Similar to existing solutions, our solution requires the prior

definition of a threshold for queue occupation and, consequently, detection of bursts.

This makes the solution less dynamic since this threshold cannot be changed at

runtime.

• False Positives: While utilizing the IPG average as a dynamic threshold effectively

helps in identifying contributing flows, it can still lead to some false positives. This is

particularly noticeable when dealing with a limited number of heavy flows. However,

it is important to note that our strategy still outperforms state-of-the-art approaches

by reporting fewer flows overall.

3.2 Inferring QoE In The Data Plane

This section introduces and discusses our second use case, called QoEyes: esti-

mating QoE entirely on the data plane. This is still a developmental use case, as it is the

first effort in the literature to perform QoE estimation entirely on the data plane.
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3.2.1 Problem Description

Typically, the QoE is estimated by utilizing methods of measurement or pre-

diction in either the user plane or the control plane side. These methods are known for

their accuracy in estimating the user’s QoE and generally involve measuring various QoS

metrics and utilizing machine learning or deep learning algorithms. Despite providing ac-

curate results, these techniques may not always be as quick in their measurement due

to the extent and complexity of the network metrics that need to be measured and the

efficiency of the machine learning or deep learning algorithms employed. As a result, it

becomes difficult to promptly implement network policies to address potential problems

or quality degradation.

To address this limitation, in this work, we propose a first step to the QoE

estimation entirely in the data plane. The data plane QoE assessment enables us to make

decisions at a nanosecond level, enhancing our reaction time to problems and improving

the user QoE. By processing and evaluating QoE metrics closer to the source of network

traffic, latency can be minimized, resulting in faster response times and improved user

satisfaction. For instance, if we detect a loss in the QoE of a video session, we can use

strategies like (IURIAN et al., 2022) to prioritize that flow and thus recover the desired

QoE.

Furthermore, performing QoE estimation in the data plane reduces the need

for exposing sensitive data to the control plane. By keeping QoE analysis within the data

plane, user privacy can be better protected as sensitive information does not need to be

transmitted to external systems for analysis.

Finally, from a network perspective, performing QoE estimation in the data

plane reduces the burden on the control plane by offloading computational tasks. This

leads to more efficient utilization of network resources and enables the control plane to

focus on higher-level network management functions.

3.2.1.1 Challenges

Despite all the benefits, there are several challenges to performing QoE in-

ference on the data plane. From an implementation perspective, and similarly to the

challenges encountered in detecting microbursts, we have challenges like (i) hardware re-

source and operation constraints; and (ii) limited information about data flow. In the

P4 programmable hardware targets, such as the Tofino hardware, we have limited stor-

age capacity, memory access restrictions, and limitations with arithmetic and comparison

operations. As previously discussed, the register can only be accessed once during the

lifespan of a packet, comparisons are restricted to a set number of bits and arithmetic
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operations such as division and multiplication can only be performed using bit shifting.

Additionally, implementing in the data plane, we have other conceptual chal-

lenges, like limited knowledge about the data flow. For example, we do not possess infor-

mation about the application level, including aspects such as video resolution, buffer size,

and segment size. So, below we describe some of these main challenges:

• Lack of End-to-End Visibility: The data plane operates at a lower layer of the

network stack, which means it may not have complete visibility into higher-level

network layers and end-to-end factors that can affect QoE, such as congestion in

the network or application-specific metrics.

• Limited Contextual Information: The data plane typically focuses on packet

forwarding and processing, lacking access to critical contextual information about

user behavior, application requirements, or device characteristics. This can hinder

accurate QoE estimation, as these factors play a significant role in determining user

experience. Furthermore, the QoE estimation for VR applications involves intri-

cate algorithms and analysis of media-specific parameters (e.g., video quality, audio

clarity) that are not available in the data plane.

• Traffic Classification: In order to estimate the QoE of an application in the data

plane, it is crucial to identify that specific application accurately. This necessitates

using effective traffic classification algorithms that can seamlessly integrate with the

proposed solution.

• Scalability and Performance: Implementing comprehensive QoE estimation al-

gorithms entirely in the data plane using P4 code can introduce scalability and

performance challenges. This is primarily due to the inherent complexity of these

algorithms, which often rely on sophisticated techniques such as machine learning.

3.2.2 Proposed Approach

So, we introduce QoEyes, a QoE estimation technique that uses IPG calculation

to carry out the QoE estimation entirely in the data plane. Our strategy is driven by recent

academic studies that have already utilized IPG as the primary metric for inferring QoE,

demonstrating a direct correlation between IPG and QoE (MUSTAFA; ROTHENBERG,

2022). We argue that we can get a QoE estimation directly in the data plane by calculating

the IPG as an EWMA.

Figure 3.2 presents the desired workflow for estimating QoE entirely in the

data plane. In that workflow there are some stages that are described below:
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Figure 3.2 – QoE estimation workflow

• Packet arrives: The packet arrives at the network device, then the packet is pre-

processed, identifying, for example, which flow it belongs to.

• Classify the flow: At this stage, the traffic is classified, identifying its type of

application (e.g., VR video streaming).

• Monitored Traffic?: In this state we check if the traffic that was classified is a VR

traffic. If the test results in true, the workflow proceeds to QoE estimation, and if

false, it simply forwards the traffic normally.

• Estimates the QoE: In this state, the QoE estimate is calculated, which in our

case is done by calculating the IPGw.

• Bad QoE?: After calculating the current QoE estimate, we check whether this

estimate is good or bad. If the QoE has a good estimate, the traffic is forwarded

normally. In case there is a bad QoE, we move to the state of taking action to

improve the QoE.

• Actions to improve the QoE: In this state, actions are taken to try to improve

the QoE that was detected as bad. These actions may include routing changes, and

queue management actions, as proposed in (IURIAN et al., 2022).

• ReportQoE: It then reports the estimated QoE to the control plane so that it also

has updated information on the quality of the QoE.
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• Packet forwarding: Performs post-processing of the packet and normally forwards

it to the network.

Note that in Figure 3.2, there are paths with blue, black, and red arrows. The

blue arrows represent the ideal workflow, where the packet goes through all the described

stages, being classified, calculating the QoE estimate, and taking actions when necessary.

However, the red arrow represents the current path of the proposed strategy, where we

still don’t have a traffic classifier algorithm, and also, we don’t take action when we detect

a bad QoE, we just focus on estimating the QoE and reporting it to the control plane.

The black arrow only represents the shared path.

With the current QoEyes limits well defined, Figure 3.3 shows an example

of QoEyes application. In the figure, we can see some VR video clients connecting to a

streaming video server. In this process, the QoE of the video sessions is being estimated

directly in the data plane (switches) and reported to the control plane when necessary. In

this way, devices can act more quickly in the event of a problem (i.e., QoE degradation),

improving the end-to-end user experience.

VR

VR

Monitoring

Server

IPGw

ID

720s

21

360 VR

Server

QoEyes

Figure 3.3 – Illustrating an use case of QoEyes in a P4-based network.

3.2.2.1 Implementation

So, in this section, we discuss about the QoEyes implementation details. The

Algorithm 2 illustrates how we implemented the QoEyes strategy to perform the IPGw

measurement in the Tofino architecture. Similarly to what is done in detecting microbursts,

we perform all the calculations in the ingress pipeline, using registers to store the IPGw

and the last noted timestamp (TSl). In addition, we use register actions to perform the

approximate EWMA calculation, which is done through bit operations exactly as done

before. If you want more details about the IPG calculation, revisit Section 3.1.3.2.2.
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Next, unlike the microburst strategy, we check whether the flow in question

is a monitored flow. The monitored flows are decided in the control plane, assuming we

know which VR flows we want to monitor. So when we find a monitored flow, we clone

the packet to send it to the control plane with the desired information (IPG header).

This IPG header has the measured IPGw and the corresponding flow ID and is

reported to the control plane. In practical applications, these reports can be conducted at

regular intervals or only when necessary to monitor the IPGw. Additionally, the reporting

can be triggered only when a drift in the IPGw is detected, which signifies a decline in

the QoE.

Control IngressPipeline():

RegisterAction ComputeIPG(IPGc):

IPGw = α * IPGw + (1 - a) * IPGc

return IPGw

Register<bit<16>> IPGw

Register<bit<32>> TSl

Apply:

flowIndex = computeFlowIndex()
IPGc = TSc - TSl

IPGw = ComputeIPG(IPGc)
if monitoredFlow.hit() then

PacketClone()
end

Control EgressPipeline():

if Cloned Packet then

InsertIPGHeader()
end

Algorithm 2: QoEyes data plane algorithm

3.2.2.2 Limitations

In addition to the hardware and IPG calculation limitations already discussed

in section 3.2.1.1, here we discuss other limitations that our QoE estimation strategy has:

• Traffic Classification: As highlighted in the challenges, one of the prerequisites for

performing QoE inference in the data plane is traffic classification, particularly in

scenarios where the objective is to identify specific applications or services, such as

video sessions in a VR video streaming. However, in our implementation, we do not

implement any traffic classification strategy in our implementation, and we assume

that we know in advance which flows we want to analyze.

• Simplicity of the Method: While our approach demonstrates a strong correlation

with actual QoE, as we will discuss in detail in Caption 5, it is important to note

that we rely on a single network metric to establish this QoE estimate. We are aware
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that QoE is a complex metric to measure, and as such, our approach may not always

provide an accurate estimate in every case.

• Objective Approach: As we only use the IPG (network metric) to estimate the

QoE, we are making an estimate only with objective methods that can have limita-

tions because QoE is a subjective metric that depends on individual user perception

and preferences. Objective metrics can not capture the entire user experience, as

they do not consider the subjective aspects of perception and user satisfaction.
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4 P4 Programmable Patch Panel (P7)

We faced a challenge in conducting our evaluations due to the limited avail-

ability of Tofino switches (just one is available in our infra). Conducting experiments

on larger-scale network topologies while maintaining high-fidelity results was difficult.

So to validate our use cases in different networking scenarios, performing line-rate and

high-fidelity experiments for evaluation, we participated in developing the open-source

P4-based network emulator called P7. More specifically, we worked on developing and

improving features such as latency, jitter, packet loss, forwarding, and the user’s P4 code

support. This chapter discusses P7 in detail, exploring its goals, architecture, and imple-

mentation details, focusing mainly on the features contributed within the scope of this

dissertation.

4.1 Motivation and Objectives

Existing network experiment solutions, such as virtual and emulation-based en-

vironments, encounter issues with performance fidelity, scalability constraints, and trade-

offs. Therefore, there is a growing demand for a realistic experimental platform that offers

high-fidelity performance, scalability, and flexibility.

Existing software-based solutions like Mininet (LANTZ et al., 2010), NSX

(KOPONEN et al., 2014) and CrystalNet (LIU et al., 2017) may not be sufficient for test-

ing and evaluating large-scale production networks, as they can suffer from performance

and scalability limitations. On the other hand, hardware solutions like BNV (KANNAN

et al., 2018), SimBricks (LI et al., 2020), and specially TurboNet (CAO et al., 2020) are

hardware solutions for network emulation, however are limited by factors like, not provide

support for emulate all link characteristics and the support of a custom P4 code.

To meet this demand, we plan to utilize the power of P4-based hardware,

specifically Tofino, to create a realistic experimental platform that provides high-fidelity

performance, scalability, flexibility, and support for data plane programmability through a

hardware-based environment. P7 leverages the programmability and capabilities of new-

generation P4 hardware to emulate network links and instantiate a network topology,

allowing line-rate traffic to operate using a single physical P4 switch. With P7, it is

possible to provide realistic emulation of network topologies using programmable hardware

pipeline features such as recirculations, port configurations, different match+action tables,

and even Direct Attach Copper (DAC) cables. Furthermore, the user or experimenter can
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connect physical servers to inject custom traffic (e.g., PCAP-based or Tofino-based) to

the emulated networking scenario. Additionally, we increased the level of customization

by supporting user-defined P4 codes on each “emulated” switch.

4.2 Design and Implementation

P7 is a high-end, affordable network emulation platform that realistically emu-

lates network topologies using programmable hardware features. P7 overcomes the short-

comings of traditional testbed emulation approaches limited by small-scale environments,

software-based/virtualization environments, or simulation-based approaches, compromis-

ing different aspects such as fidelity with real networks, flexibility, scalability, and the

customizability of experiments.

P7 allows users to define a network topology, including the link metrics, in a

user-friendly script, similar to defining topologies using the popular Mininet. From the

user-defined topology, P7 internally generates all the necessary files to transform a single

P4 hardware switch into a P7 emulator that can realistically run different scenarios. The

design of P7 prioritizes simplicity, making it a hardware-based emulation testbed that

allows speeds of 10G, 25G, or 100G.

4.2.1 Architecture

The P7 architecture presented in figure 4.1 illustrates the high-level compo-

nents and their interconnections.

Input: The user defines the topology in the P7 main script. The setup includes the

number of links and their characteristics (link metrics), the number of nodes, the custom

P4 code (user P4 code), and table configuration.

P7: The central part of our tool, where all the data is processed, and the corresponding

files are generated.

• User P4 Code: The P4 code is parsed to identify the principal parts of the code

such as the parser, ingress, and tables, then the necessary modifications are made,

including index in the table and P7 header parser), and the Modified User P4 code

is generated.

• Packet Forwarding: To perform the routing, we predefine the routing using the

Dijkstra algorithm to define the internal forwarding routes based on the shortest

path.
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Figure 4.1 – P7 high-level architecture and workflow.

• Controller files: Using this information, the table information for the P7 P4 code is

prepared using the barefoot runtime (bfrt) format. In addition, The bfrt file includes

table information from the user’s P4 code. Port mapping and configuration files are

also generated from the port configuration input in the main P7 file.

• P7 P4 Code: In this part of the architecture, the heart of P7 is also built. This file

contains all the recirculation, metrics, headers, and forwarding information running

in the Tofino switch.

• Topology Graph: In addition to the generated files, a topology graph is also

created based on the user configuration.

Run P7: To run P7, it is necessary to compile the generated P4 codes (i.e., User, P7)

using the Software Developer Environment (SDE) tools and run the Tofino switch (with

the correct pipeline configuration) from the P4 studio environment. On the other hand,

it is necessary to set the port configuration and the table information using the bfrt.

From a hardware perspective, the P4 codes deployment is introduced in fig-

ure 4.2. To distribute resources, each P4 code (i.e., P7, user) runs in separate pipes (0 and

1). One pipe allocates the P7 P4 code, including all link characteristics logic and forward-

ing process to the corresponding “emulated” switch. In a different pipe, the user P4 code
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Figure 4.2 – P7 P4 architecture.

is set. The TNA recirculation feature is used to create internal switch representations.

When packets need to be forwarded to a switch, a recirculation + pipeline change occurs.

Then, the packet is sent back to the P7 pipe to continue with the topology logic.

4.2.2 Main Features

P7 offers several features and characteristics that make it a reliable and acces-

sible tool for network emulation. These features are summarized below:

P4 programmable: P7 is built on P4 hardware, which provides programmable char-

acteristics such as packet recirculation, port configuration, and match+action table ab-

stractions to offer realistic emulation of network topologies.

Affordable: P7 provides high-end emulation capabilities at an affordable cost, making it

accessible to researchers with limited budgets and access to a single P4 hardware.

Realistic emulation: P7 allows users to define network topologies with predefined link

metrics (Implementation details in table 4.1). The following link metrics can be defined:

• Bandwidth: Users can define the bandwidth limit (in Mbps) for each individual

link in the topology.

• Latency: Users can define per-link latency in milliseconds.

• Packet loss: Users can define the probability of dropping a packet as a percentage.

• Jitter: In addition to latency, users can define per-link jitter (in ms) plus a proba-

bility (per packet) that the jitter will be applied.

Programmable data plane emulation: P7 allows users to add custom P4 code to the

internal switches. The user can define the table information using the same P7 script.
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Custom traffic traces: P7 allows users to inject custom traffic flows from traffic or trace

generators, emulating real-world network scenarios.

Simplicity: P7 provides a user-friendly interface for defining network topologies and

autogenerates all the necessary files.

High-speed interfaces: P7 supports high-speed interfaces, such as 10G, 25G, and 100G.

Open source: P7 is publicly available under the Apache License 2.0.

Table 4.1 – P7 link characteristics and P4/TNA implementation approaches.

Link characteristic P4/TNA implementation approach

Connectivity
Dijkstra algorithm to calculate the routes
Internal recirculation to the same pipe represents a link

Latency [ms]
Timestamp-based timer
Recirculation via internal port until the timer reach the desired latency

Jitter [ms]
Random number generator to vary the latency
Lookup table with mathematical functions to perform the calculations

Packet loss [%]
Random probability generator to decide the packet discard probability
Realistic definition of packet loss to define the good or bad state

Re-ordering [%]
TNA Traffic Management (TM) features
Per-packet probability based recirculation

Bandwidth [bps]
Rate limit using the Traffic manager feature
Port shaping configuration of the ports

Background Traffic [bps]
Tofino packet generation engine
Up to 100G per pipeline of custom traffic profiles

4.3 Use Case

In this section, we first provide an example of a topology that can be instan-

tiated and devices that can be connected to a network. Next, we detail how the topology

is configured within the P7 environment and its features, such as user code and network

forwarding.

Figure 4.3 illustrates a high-level overview of a network configuration emulated

with P7. In this example, there is a set of interconnected switches (i.e., SW1 to SW5)

with different link characteristics (i.e., L1 to L8). Additionally, physical hosts (i.e., H1 to

H4) are attached to the switch ports. Custom traffic is sent from a host and passes over

the emulated links and switches. Further, Figure 4.4 describes the data plane approach to

achieve the network topology mentioned above in the Tofino switch. In P7, link charac-

teristics are implemented in the P7 P4 code. The P4 tables in this pipe define the routing

logic and connection to the switches. Recirculations and pipe changes are used to define

the routing rules in the P4 code according to the desired topology. We leverage the avail-

able physical ports to connect external devices to the switches to forward the traffic to

the corresponding link. The user also has the flexibility to customize the P4 code that can
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Figure 4.3 – P7 example network topology.

be “emulated” in each internal switch together with the table configuration, thus allowing

greater customization of the data plane forwarding logic at each point in the network.
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Figure 4.4 – P7 network topology.

4.4 Experimental Evaluation

To evaluate the proposed metrics (shown in Table 4.1), we can use custom

network topology, for instance, the one represented in Figure 4.3. End-to-end latency and

jitter can be obtained by running a ping command between two hosts, such as H1 and

H2. Packet loss can be measured either by ping or a traffic generator tool by setting

independent loss probabilities for each link. Traffic rate and available bandwidth can be

estimated by using a traffic generator tool, such as T-Rex, to send data between two hosts

at a pre-defined bandwidth.

We conducted a series of experiments to evaluate the performance of the pro-

posed metrics, and we can confirm that the experiments are working as expected. We used

the topology illustrated in Figure 4.3 and ran various tests to measure the end-to-end la-
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tency, jitter, packet loss, and available bandwidth. We used standard tools like ping and

T-Rex to generate traffic and measure the network parameters.

The results obtained from these experiments can be viewed in the demo pa-

pers and materials published at (RODRIGUEZ et al., 2022)(CESEN et al., 2023)(RO-

DRIGUEZ et al., 2023), and were consistent with our expectations and matched the

theoretical values we calculated. We verified that the proposed metrics accurately reflect

the network performance and can be used to diagnose and optimize it.

4.5 Summary

This chapter highlights the significance of P7 in affordable 100G experimental

platforms. P7 is a user-friendly and cost-effective network emulator that caters to tradi-

tional networking, advanced programmable networking research, and teaching purposes.

Additionally, it supports scenarios where metric variation is necessary for tests. As a pro-

grammable high-fidelity testbed, P7 offers the advantage of facilitating repeatable and

reproducible research. Overall, with our experiments, we are confident that we provide

reliable and accurate network performance measurements. The proposed metrics can be

used to evaluate and improve the performance of real-world networks.
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5 Evaluation

In this chapter, we describe the results found in our evaluations. We divided the

results in our two use cases, the microburst detection, and the QoE estimation (described

in the Sections 3.1 and 3.3). and evaluate its overhead in the control and data plane. For

both use cases, we evaluate aspects such as their impact on the data plane (in terms of

resource utilization), and their accuracy in doing what they are intended to do. We also

separate in a different section the experiments performed using our P7 emulation tool.

Then, after the evaluations, we also held a discussion of the results obtained, highlighting

the main points.

5.1 Microburst Detection

In this section, we present our results related to the microburst detection use

case. Firstly, we describe the environment we used to perform the experiments, empha-

sizing the settings relevant to the experiment. In sequence, we demonstrate the use of

resources in our strategy, comparing it with the use of resources in state-of-the-art strate-

gies. Then, we present the results that demonstrate the accuracy of our strategy, also

buying with other state-of-the-art strategies. Finally, we discuss the obtained results,

highlighting the benefits and limitations of our strategy.

5.1.1 Experimental Environment

Here we describe the environment where we have performed the experiments.

Our environment contains a Barefoot Tofino Switch 1 (Edgecore Wedge 100BF-32X)

and four servers (Intel Xeon E5-2620v2, dual-port 10G Intel X540-AT2 Network Interface

Card (NIC), and 64GB of memory running Ubuntu 20.04) connected via 10G Small Form

Pluggable (SFP)+ interfaces. Figure 5.1 shows the organization of the environment used.

In the environment, the Tofino switch runs our P4 code strategy (described in Section 3.1)

and connects to the 4 servers. We use servers for the following functions:

• Sender: Our sender is used to send "normal" traffic, maintaining the link utilization

at 10%, as described in (ZHANG et al., 2017).

• Burster: Our burster sends bursts at a rate of 3 Gbps to a link with a capacity of

1GB, following the burst data distribution available in (ZHANG et al., 2017).
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• Receiver: Our receiver is responsible for receiving all this traffic, both normal traffic

and bursts.

• Monitoring server: The monitoring server is the server that receives reports when

a burst is detected, being warned about the burst and the contributing flows.

Tofino Switch

3Gbps Burster (TRex) 
Monitoring Server 

1Gbps Interface 
Receiver 100Mbps Sender 

Figure 5.1 – Experimental environment for the microburst detection use case

5.1.2 Resource Utilization

In this section, we present the data plane overhead included by the IPGNET

microburst detection algorithm. In this case, the data plane overhead is measured re-

garding resource utilization of our P4 code compiled for the Tofino switch (NETWORKS,

2018) using the SDE version 9.9. This information is acquired with the P4i tool and shows

the utilization of the main resources in the Tofino switch.

Table 5.1 compares the resource utilization of IPGNET with the switch.p4 (CON-

SORTIUM, 2018) (a baseline P4 program for a switch), and BurstRadar (JOSHI et al.,

2018), the state-of-the-art in microbursts detection in the data plane. In the table, we

consider the BurstRadar with a ring buffer1 size of 1k entries, while IPGNET is comput-

ing the top-2k flows. Besides that, in the case of IPGNET and BurstRadar, we consider

the cost of strategies added to the switch.p4 cost. So, we can see that our proposal uses

fewer hardware resources than BurstRadar in all the analyzed resources. Additionally, we

can observe that our strategy does not include a huge increase in Switch.p4 resources,

with a maximum increase of 3.4%.
1 Data struct necessary in BurstRadar to report the burst packets
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Table 5.1 – Hardware resource utilization

Resource Switch.p4 BurstRadar IPGNET
Hash Bits 32.3% 37.2% 34.4%
SRAM 29.8% 33.9% 31.1%
TCAM 28.4% 29.2% 28.4%
VLIW Actions 34.6% 39.3% 38.0%
Stateful ALUs 15.6% 28.2% 15.6%

This low use of resources is important and allows other solutions to be imple-

mented along with ours. For example, if we have algorithms for detecting problems that

are not addressed in this work, it is possible that we will still implement them because

we have a considerable amount of resources available. In addition, we can also use these

resources to improve our own method, for example, increasing the number of stored flows

or even supporting new features.

5.1.3 Results

In this section, the idea is to present the evaluations carried out by purchasing

the proposed strategy with BurstRadar, the state-of-the-art of microburst detecting in

the data plane. The main idea here is not to evaluate the accuracy of burst detection, as

works like (JOSHI et al., 2018), (GAO et al., 2022), and (CHEN et al., 2018b) already

have accurate results in this regard, and moreover, this depends on other factors (i.e.,

what level of queue occupancy is a burst in your scenario). So, in our experiments, we

evaluate how the strategies behave when they detect bursts and what data they report

to the control plane.

Carefully providing reports to the control plane provides benefits such as low

control plane overhead (in terms of data reports) and low processing overhead, as we

can process fewer packets on both the data plane and the control plane. Therefore, our

objective is to report to the control plane only the flows that contribute to the burst, so

that with this data the control plane can take actions to mitigate these bursts.

To evaluate this, we divided the traffic into burst flows (flows from our burst

sender following the burst distribution presented in (ZHANG et al., 2017)) and normal

flows, and then measured the reported percentage of those flows. For the queue occupancy

threshold (used to detect the bursts), we used the configuration that found the best results

in burst detection accuracy (5% of the RTT).

Figure 5.2 shows the number of flows reported for each strategy in a burst

scenario. A burst scenario is when the device has already detected the burst (queue

occupancy > threshold), and is now deciding which data to report to the control plane.
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Figure 5.2 – Number of flows reported in a burst scenario.

In the figure, we can see that both strategies report the same number of contributing

flows. However, the BurstRadar strategy reports 310 normal flows, while our proposal

just reports 29.

Table 5.2 presents the comparison of results on a percentage scale. Then, we

can see that both strategies report 100% of burst flows, but IPGNET only reports 9.03% of

the non-burst flows, while BurstRadar reports 100%. Even though it manages to report all

burst flows, IPGNET reports 50.63% fewer flows than BurstRadar, significantly reducing

the control plane overhead.

Table 5.2 – Flows reported to the controller in a burst

Flows BurstRadar IPGNET
Burst Flows Reported 100% 100%
Non Burst Flows Reported 100% 9.03%
Total Flows Reported 100% 49.37%

The impact of this reduction in the number of reported flows is significant for

the total amount of data reported. For example, assume that flows are reported using a

package clone. Also, consider that our reports contain a size of 64 bytes each (minimum

Ethernet frame size). So, the impact of this reduction on the number of reported flows

will depend on the number of packets per flow which can be seen below.

In Figure 5.3, we can see the total amount of data reported to the control

plane with the increase of flows reported and packets per-flow. As we can see, with the

reporting of 100 additional flows, we can have an increase of 62.5 KB to up to 6.25 MB of

data reported, depending on the number of packets per-flow (in this case, ranging from

10 to 1000). As in our experiment BurstRadar reported 310 flows more than necessary
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Figure 5.3 – Total amount of data reported with the increase of packets per flow.

(normal flows), and in general, IMIX(IMIX, 2021) uses small flows, with an average of 12

packets, BurstRadar reported approximately 19,4 KB more than necessary. On the other

hand, our strategy only reported 19 more flows than necessary, resulting in approximately

1KB of extra data reported.

5.1.4 Discussion

Based on the executed results, we can observe some interesting points about

the comparison between BurstRadar and our strategy. First, we can observe that our

strategy consumes fewer resources from the Tofino switch, which is interesting because it

opens up space for us to use other algorithms in conjunction with the proposed solution.

Nevertheless, BurstRadar can also be considered a low-cost strategy, even using more

hardware resources, as it does not use 40% of the available resources. Two factors that

may influence our use of fewer resources than BurstRadar are: (I) the compiler version

and (ii) the ring buffer in BurstRadar.

BurstRadar was implemented and compiled on an ancient version of the SDE

compiler, which may influence your resource allocation/usage. However, another factor

that influences is the composition of the ring buffer, which is the data structure used to

carry out the reports in BurstRadar, which indeed uses more resources than our data

structures for storing the IPG.

Regarding reporting contributing flows in burst situations, our algorithm and

BurstRadar successfully detect all contributing flows to microbursts. However, BurstRadar

reports many more packets to the control plane, which adds network overhead. This oc-

curs because BurstRadar is not concerned with reporting the flows that most contributed

to the burst but all the packets in the queue during the occurrence of a burst.

Nonetheless, despite our algorithm showcasing improved accuracy, we acknowl-
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edge the presence of false positives, as indicated by the evaluation results. These false

positives are likely influenced by factors previously discussed in Section 3.1.3.3.

5.2 Data Plane QoE Estimation

In this section, we present our evaluation of our second use case: the QoE

estimation entirely in the data plane. As discussed in Section 3.2, we seek to perform QoE

inference entirely in the data plane, and for that, our first implementation considers the

IPGw as QoE estimation. Then, in this section, we demonstrate the correlation between

the proposed estimate with QoE measured outside the data plane. The structure of the

section follows the same as the results on microburst detection, initially presenting the

environment and the resources utilization and moving on to the results and discussion.

5.2.1 Experimental Environment

Similarly to our microburst strategy, we evaluate the performance of QoEyes

using a Barefoot Tofino Switch (Edgecore Wedge 100BF-32X) and four servers (Intel Xeon

E5-2620v2, dual-port 10G Intel X540-AT2 NIC, and 64GB of memory running Ubuntu

20.04) connected via 10G SFP+ interfaces. However, in this case, we also use the P7

emulator running on the Tofino to simulate network metrics like bandwidth and latency.

Figure 5.4 illustrates the setup of our testbed. Then, in addition to our P4 code and P7

running on Tofino, in this case, despite using the same physical servers, they now assume

a different behavior. These new functions are described below:

• VR-EXP Player: This server runs the VR-EXP player (FILHO et al., 2019) to

request 360-degree video content. In addition to downloading the video in a tile-

based scheme, this player saves objective QoE metrics to calculate the QoE after

the end of the video session.

• Traffic generator: This traffic generator server generates multiple video session

requests in parallel as background traffic.

• Apache server: This server is equipped with an Apache server that hosts the VR

video content and responds to requests from clients in the network.

• Monitoring Server: The monitoring server is the server that receives the QoE

reports of the monitored flows (VR video sessions).

• P7 Emulator: Unlike the experiments carried out for detecting microbursts, in

these experiments, the Tofino switch, and running the P4 code of our strategy, also
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Figure 5.4 – Experimental environment for the QoE estimation.

runs the P7 emulator. This is done so that some network metrics (e.g., bandwidth

and latency) can be emulated.

Furthermore, in the experiments, we rely on the same traces used by Filho

et al.(FILHO et al., 2019). The publicly available traces comprise two 360-degree videos:

Google Spotlight and Freestyle Skiing (WU et al., 2017). Each VR video is encoded with

720p, 1080p, and 4K qualities. VR video sessions are initiated using a random user file

(also from (FILHO et al., 2019)), which contains a series of movements (described in axis

x, y, z) of user interactions with the VR.

5.2.2 Resource Utilization

In this section, we present the resource utilization of our algorithm compiled for

Tofino using the SDE version 9.9. Table 5.3 shows the resource utilization of the switch.p4

(baseline of p4 code for switching) and the cost of the extra logic QoEyes imposes on the

switch.p4 (i.e., the cost of QoEyes + switch.p4). Observe that QoEyes adds not much to

the switch’s overall physical resource utilization, with a maximum increase of 4.2% in

VLIW actions.

However, unlike what is done in the microburst detection results, we did not

compare the resources used by our strategy with any other method. This is because

QoEyes is the first step in QoE estimation entirely in the data plane. Note also that

our QoE estimation strategy working independently consumes fewer resources than the

microburst detection strategy. This is because to estimate QoE, we do not need some data

structures that are used for microburst detection (e.g., IPGw average).
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Table 5.3 – QoEyes hardware resource utilization

Resource Switch.p4 QoEyes
Hash Bits 32.3% 34.2%
SRAM 29.8% 30.6%
TCAM 28.4% 28.4%
VLIW Actions 34.6% 38.8%
Stateful ALUs 15.6% 15.6%

5.2.3 Results

First, we evaluate the relationship between the IPGw measured in the data

plane by QoEyes and the QoE measured by the user side. For the QoE user side model,

we use as a baseline the QoE model provided by Filho et al. (FILHO et al., 2019), which

utilizes the output provided by the VR-EXP player to calculate the MOS. In our case, we

consider for the calculation of the ideal MOS (MOS = 5), the case where we have only

one active video session with the maximum available link capacity. In all our experiments,

we varied the physical port capacity (with Tofino port shaping) of 10Gbps, 1Gbps, and

100Mbps. Also, we varied the number of active VR video sessions running on the network

from 100 to 2000. These parameters were applied in our testbed to have different network

conditions.

Table 5.4 – Number of tiles per zone received with 100 sessions in parallel

10Gb 1Gb 100Mb
z1 z2 z3 z1 z2 z3 z1 z2 z3

720p 1 12 1375 1 12 1375 1 12 1375
4K 59 468 5 59 468 5 59 468 5
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Figure 5.5 – IPGw with the increasing number of VR video sessions.

Figures 5.5 and 5.6 illustrate the IPGw and QoE measured in the experiment

by QoEyes. As observed in Figure 5.6, the QoE appears to decline with an increase in the
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Figure 5.6 – QoE (MOS) with the increasing number of VR video sessions..

number of concurrent active sessions or a decrease in transmission capacity. In Figure 5.5,

the IPG shows a similar behavior (but increasing) when the number of active sessions

increases, or the transmission capacity decreases. The only exception can be seen when

there are 100 sessions, where the IPG remains constant, but the QoE varies. It occurs

because with a small number of sessions, the traffic can be forwarded in the minimum

IPG time (less than 1 ms), and there is only a gap between the establishment and closing

of new TCP connections. However, the QoE model employed calculates the QoE based

on the bitrate and thus produces better results with higher transmission capacity, even if

all tiles arrive with the same quality (see Table 5.4).

In Figure 5.7, we can see the IPGw behavior over 2000 reports for a flow with

a measured QoE MOS greater than 4.5 (blue color) and another flow with a QoE MOS

less than 2.5 (red color). Note that most of the time, the flow with QoE below 2.5 has

a higher IPGw than the flow with good QoE. Furthermore, the IPGw of the flow with

lower QoE has higher peaks and a longer recovery time (time to return to a low IPG). In

both experiments (Figures 5.5, 5.6 and 5.7), we can observe a strong correlation between

the IPGw measured in the data plane and the QoE MOS measured on the user side.

Figure 5.8 shows the IPGw and MOS measured in a latency increase scenario.

The blue line represents the IPGw measured, while the green line is the QoE. Both are

measured with a latency increase between 0 and 20 ms. As we can see, the QoE decreases

from 5 to 4.12, while the IPG increases from 0.98 to 2.4. This reinforces IPGw’s correlation

with the measured QoE, where both present a similar behavior even in a scenario of

increased latency. Remember that using IPGw for QoE estimation is only a first step for

QoE estimation entirely in the data plane, but it already demonstrates exciting results.
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5.2.4 Discussion

Based on the experiments performed, we can get some insights about the

data plane QoE measurement. Firstly, we can conclude that it is possible to implement

methods/metrics that are used in the literature for QoE estimation, such as the use of

the IPGw proposed in (MUSTAFA; ROTHENBERG, 2022). Second, we can observe that

even using a simple method, we can have a reasonable estimate of the QoE for many cases

and thus take advantage of a QoE inference in the data plane. Third, we also observed that

using only the IPGw as a QoE estimate, despite presenting a good correlation, does not

necessarily reflect the QoE in all cases, presenting some limitations and, consequently,

the need to be extended. Finally, the results demonstrate that the proposal has great

potential, but there are still many challenges and limitations to be overcome and much

room for further research.
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6 Conclusions

6.1 Final Remarks

In conclusion, this research focused on addressing the challenges posed by the

rapid growth of network traffic and the increasing demands for network capacity, latency,

and quality of service. The study proposed the use of IPGNET as a low-cost autonomous

data plane solution for detecting network anomalies and improving the QoE in VR video

streaming.

The main contributions of this work include the development of a data plane

autonomous solution that operates without the need for intervention from the control

plane. The implementation of a microburst detection strategy was also presented, al-

lowing for the identification and reporting of contributing flows. Additionally, a design

for in-network QoE estimation in VR video streaming was provided, enabling targeted

optimizations to enhance latency, video quality, and overall user experience.

To evaluate the proposed techniques, high-fidelity experiments were conducted

using physical hardware, specifically the Tofino switch. However, due to limited physical

network infrastructure, the research also introduced P7 as an emulation tool capable

of simulating different events with high fidelity. This allowed for the evaluation of the

proposed strategies in various network scenarios.

The objectives of this research were successfully achieved, exploring the ca-

pabilities of IPG as a network metric, developing algorithms and methodologies for mi-

croburst detection, investigating the correlation between IPG metrics and QoE in VR

video streaming, and evaluating the performance and effectiveness of the proposed tech-

niques through extensive experimental simulations and real-world network deployments.

The open-source nature of the implemented solutions, including the use cases

and the P4-based network emulator, ensures that the findings and contributions of this

research can be further developed, extended, and adopted by the broader research commu-

nity. By addressing the challenges of network monitoring and performance optimization,

this study contributes to the ongoing efforts in enhancing network operations and deliv-

ering a satisfactory user experience in the face of evolving network demands.
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6.2 Future Work

As future works, researchers can continue exploring the capabilities of the IPG

metric, deriving it in other metrics, and applying it in different contexts. While this work

focused on microburst detection, there is potential for expanding the scope of anomaly

detection. Future research can explore the use of IPG and other network metrics to

identify and address additional network anomalies, such as Distributed Denial-of-Service

(DDoS) attacks, traffic congestion, and network faults.

In the QoE estimation side, future work can focus on adapting the QoE

estimation techniques for different network conditions, including varying network band-

width, latency, and congestion levels. For that, it is possible to extend our QoE estimation

method, considering other QoS metrics and even using more complex models (e.g., ML

algorithms). Additionally, research efforts can be devoted to intend to work on other parts

of QoE inference (described in Section 3.2.2), such as traffic classification and actions to

improve the bad QoE.

By pursuing these future directions, researchers and practitioners can continue

to enhance network performance, optimize resource utilization, and deliver exceptional

user experiences in the face of evolving network demands and challenges.
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