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Resumo

O hipotalamo é uma estrutura cerebral composta por varios subntcleos que contém
os corpos celulares de multiplos subtipos de neuronios. Apesar de suas pequenas
dimensoes, o hipotalamo desempenha um papel significativo no controle do sono,
da temperatura corporal, do apetite e das emocoes, entre outras funcoes. Sua
disfuncao tem sido implicada em varios disturbios neurolégicos, como deméncia
frontotemporal comportamental, esclerose lateral amiotréfica e doenca de Alzhei-

mer.

Embora a ressonancia magnética (RM) seja amplamente utilizada para estudar
o hipotalamo, sua segmentacdo manual é suscetivel a alta variabilidade inter e
intra-observador devido ao seu pequeno tamanho e baixo contraste com os tecidos
vizinhos. No inicio deste projeto, nao havia nenhum método automatizado para
segmentacao do hipotalamo disponivel na literatura. Mesmo apods a proposicao de
novos métodos, os métodos automatizados existentes eram limitados a sequéncias

e resolugoes especificas de RM, restringindo o potencial de pesquisa.

Este projeto visa resolver essas limitagoes fornecendo dois conjuntos de dados pt-
blicos: MiLI (MICLab-LNT Initiative), que foca na estrutura completa em imagens
T1 ponderadas com 1mm isotrépico, e HELM (Mapas de Roétulos ex vivo do Hipo-
talamo - do inglés "Hypothalamus ex vivo label maps), que contém a segmentagao
manual do hipotalamo e suas sub-regioes. Além disso, desenvolvemos dois métodos
automatizados de segmentacao: HypAST, focado em imagens T1 ponderadas, e H-
SynEx, um método capaz de acomodar diversas sequéncias e resolucoes de RM,
facilitando assim uma pesquisa mais ampla sobre o hipotalamo. Por fim, aplica-
mos o H-SynEx em pacientes com trés diferentes tipos de doengas (ataxias, lipus
e esclerose lateral amiotréfica) e encontramos diferengas significativas na maioria

dos grupos quando comparados com imagens de controle.

Palavras-chaves: Hipotalamo, Método de Segmentacao, Dataset, Doencas neu-

rodegenerativas, Ressondncia Magnética (RM), Aprendizado Profundo



Abstract

The hypothalamus is a brain structure composed of various subnuclei contain-
ing the cell bodies of multiple neuron subtypes. Despite its small dimensions, the
hypothalamus plays a significant role in controlling sleep, body temperature, ap-
petite, and emotions, among other functions. Its dysfunction has been implicated
in various neurological disorders such as behavioral frontotemporal dementia, amy-

otrophic lateral sclerosis, and Alzheimer’s disease.

Although magnetic resonance (MR) imaging is widely used to study the hypotha-
lamus, its manual segmentation is prone to high inter- and intra-rater variability
due to its small size and low contrast with neighboring tissues. At the start of this
project, no automated method for hypothalamus segmentation was available in
the literature. Even after new methods were proposed, existing automated meth-
ods were limited to specific MRI sequences and resolutions, restricting research

potential.

This project aims to address these limitations by providing two public datasets:
MiLI (MICLab-LNI Initiative), which focuses on the whole structure in T1-weighted
Imm isotropic images, and HELM (Hypothalamus Ex Vivo Label Maps), which
contains manual segmentation of the hypothalamus and its subregions. Addition-
ally, we developed two automated segmentation methods: HypAST, focused on
T1-weighted images, and H-SynEx, a method capable of accommodating diverse
MRI sequences and resolutions, thereby facilitating broader research on the hy-
pothalamus. Finally, we applied H-SynEx to patients with three different diseases
(ataxias, lupus, and amyotrophic lateral sclerosis) and found significant differences

in most of the groups when compared to control images.

Keywords: Hypothalamus, Segmentation Method, Dataset, Neurodegenerative

Diseases, Magnetic Resonance Imaging (MRI), Deep Learning
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1 An introduction to the Hypothalamus

The hypothalamus is a gray matter brain structure composed of sev-
eral subnuclei, being part of the limbic system (WOLFF et al., 2018). It works
analogously to a signal transmitter, connecting the central nervous system to
its periphery, and has important functions in controlling sleep, and regulating
body temperature, appetite, and emotions (VERCRUYSSE et al., 2018). Al-
though it is believed that its average volume in adults was approximately 4cm?,
more recent studies have already demonstrated that it does not reach half this
value (SCHONKNECHT et al., 2013). In the literature, several studies estab-
lish a connection between the whole hypothalamus and neurodegenerative dis-
eases such as Alzheimer’s disease (PIYUSH; RAMAKRISHNAN;, 2014), Hunting-
ton’s disease (GABERY et al., 2015; BARTLETT et al., 2019), Behavioral Variant
Frontotemporal Dementia (bvFTD) (BOCCHETTA et al., 2015; PIGUET et al.,
2011), Amyotrophic Lateral Sclerosis (ALS) (GORGES et al., 2017; AHMED et
al., 2021a), among others (SEONG et al., 2019; MODI et al., 2019; WOLFE et al.,
2015; GUTIERREZ et al., 1998), with some studies suggesting a differential in-
volvement of the hypothalamic subregions across conditions (BOCCHETTA et al.,
2015).To better understand the role of the hypothalamus, several studies use differ-
ent magnetic resonance images (MRI) sequencies (GORGES et al., 2017; SEONG
et al., 2019; WOLFE et al., 2015; PIYUSH; RAMAKRISHNAN, 2014; SCHUR et
al., 2015). However, these studies are limited to select sites and require specialists

with neuroanatomical knowledge to perform manual annotation.

Despite many studies in the literature use hypothalamus segmentation
to analyze the volume variation, in many cases, the segmentation is still done
manually and susceptible to human mistakes and different protocol approaches,

which may include or exclude other structures (Table 1.1).

Besides, for being a small region and hard to visualize in MRI (Fig-

ure 1.1), it is difficult to determine the hypothalamus’ morphological landmarks
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Table 1.1 — Divergence of manual segmentation protocols in the literature

Mammillary Bodies | Fornix

(SCHINDLER et al., 2013) included excluded
(TOGNIN et al., 2012) excluded included
(TERLEVIC et al., 2013) excluded included
(MAKRIS et al., 2013) included included

(SCHONKNECHT et al., 2013; GABERY et al., 2015). For example, two differ-
ent studies on schizophrenia have been published reporting contradictory results:
while Goldstein et al. (GOLDSTEIN; SEIDMAN, 2007) found increased volume
in the hypothalamus of patients, Klomp et al. (KLOMP et al., 2012), on the other
hand, reported preserved volumes. In the case of Huntington’s disease, Gabery et
al. (GABERY et al., 2015) found no difference between the volume of the hypotha-
lamus of patients and control subjects, whereas Bartlett et al. (BARTLETT et al.,
2019) found a reduction in the gray matter of the hypothalamus in patients.

Figure 1.1 — Hypothalamus on the adult brain on a T1lw MR image. Highlighted
on the left, we have the region where the hypothalamus is located. On
the right, we can see more clearly the structure through the manual
segmentation

Analyzing some studies applied on different databases (Table 1.2), we
can see that the hypothalamic volume for the control group varies about 57%
from the smaller (910mm?, including mammillary bodies, excluding fornix) to
the greater(1455mm?, counting both sides, including both mammillary bodies and

fornix).
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Table 1.2 — Divergence of the hypothalamus volume in the literature

Author Database Volume(mean/std)
Tognin et al. (TOGNIN et al., 2012) 26 healthy controls 910 +10mm?
26 with schizophrenia for controls
Schindler et al. (SCHINDLER et al., 2013) 10 healthy subjects 1130.64+103.48 mm?
Boccheta et al. (BOCCHETTA et al., 2015) | 18 patients with bvFTD 944473 mm?
18 controls for control group.
703+ 53 to 732 £ 63 mm?
23 healthy controls for the right hypothalamus
Wolff et al. (WOLFF et al., 2018) 20 with bipolar depression | 719+ 75 to 752+ 54 mm?
41 with major depression | for the left hypothalamus
for control group

Also, hypothalamus manual segmentation is time-consuming. Accord-
ing to Schindler et al. (SCHINDLER et al., 2013), each volume takes up to 3
hours to be segmented, which may become a bottleneck for researchers using
large datasets. To reduce this time, many authors use semi-automated methods
(WOLFF et al., 2018; MAKRIS et al., 2013; SCHINDLER et al., 2013). Yet Wolff
et al. (WOLFF et al., 2018), for instance, developed a semi-automated method
for which each evaluator needed to be trained for three to four weeks, five to six
hours per day. Each hypothalamus segmentation took around 20-40 minutes to be

generated.
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2 Literature Review

In this chapter, we will discuss some concepts of automated segmenta-
tion found in the literature, as well as the deep learning architectures used through-
out this work. We will also cover the literature on automated segmentation with

a focus on the hypothalamus.

2.1 Deep Learning for Medical Imaging Segmentation

To reduce the time and subjectivity of medical segmentations in gen-
eral, consequently improving reliability, many researchers are using automatic seg-
mentation methods, based on deep convolutional neural networks (CNNs) (RON-
NEBERGER et al., 2015; WACHINGER et al., 2018; CHEN et al., 2018). In lit-
erature, we can find methods of automatic brain segmentation developed either to
target specific structures, such as the hippocampus (ATALOGLOU et al., 2019)
and corpus callosum (PARK et al., 2018), or studies aiming at several structures
at the same time, such as the work of Wachinger et al. (WACHINGER et al.,
2018).

While large-scale brain imaging studies using MRI have great potential
to enhance our understanding of the human brain in both health and disease
conditions, these studies are often limited by the need for manual annotation.
Automated segmentation methods have been developed to circumvent this problem
and allow for a greater quantity of data to be utilized. Existing methods include
classical atlas-based approaches (IGLESIAS; SABUNCU, 2015; CABEZAS et al.,
2011) and more recent deep learning networks (WANG et al., 2022; ROMAN et
al., 2020).

Also, the use of semi-supervised models on medical images enhances the
generalization of networks without necessarily increasing the quantity of annotated
data (FAYJIE et al., 2022; BORTSOVA et al., 2019). However, most of these
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models work only in one type of MRI sequence and usually need retraining to
adapt to different sequences. Currently, the use of synthetic images has also been
a constant subject of study in the field since it allows the construction of training
datasets and flawless ground truths (THAMBAWITA et al., 2022; BILLOT et al.,
2023) and the development of methods capable of generalizing in across different
MRI sequences (IGLESIAS, 2023; BILLOT et al., 2023). Besides the synthetic
approach, the usage of ultra-high resolution ez vivo MRI has proven to be beneficial
in the segmentation of small structures such as the hippocampus, amygdala, and
thalamus (IGLESIAS et al., 2015; SAYGIN et al., 2017; IGLESIAS et al., 2018),
as it permits a better visualization of their anatomical boundaries, leading to more

accurate manual annotation.

2.2 Deep Learning Architectures

During the development of this project, we mostly explored two CNN
architectures: U-Net (RONNEBERGER et al., 2015) and EfficientNet (MINGX-
ING; QUOC, 2019).

The U-Net (RONNEBERGER et al., 2015) is a segmentation architec-
ture developed for medical imaging segmentation. For being simple and effective,
it is widely explored in the literature (DO et al., 2019; JUAREZ A. GARCIA,
2019; CARMO; SILVA, 2021). The U-Net has two paths: a contracting path, to
capture context, and an extension path, for precise location. The main idea of U-
Net is to replace pooling operators with upsampling operators on extension paths,
which will increase output resolution. For location purposes, upsampled output is

combined with high-resolution features from the contracting path.

The EfficientNet (MINGXING; QUOC, 2019), on the other hand, is the
state of the art for natural image classification. The authors proposed a compound
scaling method in order to scale the network depth, width, and resolution in a fixed
ratio. Their baseline, EfficientNet-B0 has 5.3M parameters and is scaled up until
EfficientNet-B7, with 66M parameters. Despite the primary goal of the network

differs from ours, we can see in the literature that the use of EfficientNet as an
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encoder has been explored for medical imaging segmentation (MATHEWS et al.,
2020; NGUYEN et al., 2020). In this project, we use the EfficientNet-B4.

2.3 Hypothalamus Segmentation

At the time this project started, one could not find any automated
segmentation method for the hypothalamus on the literature. There were, though,
a few semi-automated methods and manual segmentation protocols published. For
instance, in 2018, (WOLFF et al., 2018) proposed a semi-automatic segmentation
method by overlapping MRI images and obtained intraclass correlation (ICC) of
0.78 and 0.82 between three raters. However, each rater had to be trained for three
to four weeks, five to six hours a day, and each volumetry took about 20-40min to

be generated.

The first automated method for hypothalamus segmentation was de-
veloped by the candidate (RODRIGUES et al., 2020). The proposed method used
three modified 2D U-Nets, creating a consensus from the axial, sagittal, and coro-
nal views. It reported a Dice coefficient of 0.77. The dataset was composed of 205
images, divided into 70%/15%/15% images for training, validation, and testing,

resulting in approximately 30 images for the test set.

At the beginning of this work, there were no fully automated segmen-
tation methods of the hypothalamus. Even today, besides the aforementioned
method (RODRIGUES et al., 2020), we can only find five options for hypotha-
lamus automated segmentation in the literature, being two of them developed by

the candidate and better explained throughout this thesis.

« (RODRIGUES et al., 2022): This study, developed by the candidate, uses a
teacher-student-based architecture containing two blocks: segmentation and
correction, where the second corrects the imperfections of the first block. The
method used over 1300 images for training/validation. It is focused on Imm

isotropic T1w images and it is openly available.
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(BILLOT et al., 2020): The authors used a 3D U-Net-based architecture
to segment the hypothalamus and its subunits. The authors used aggressive
data augmentation and 37 volumes for training. Finally, their test set had a
Dice coefficient of 0.84. However, the authors predicted 675 images from the
public ADNI dataset to better analyze their method. A specialist qualita-
tively evaluated the segmentations and assessed whether they could be part

of a neuroimaging study. Only six images were rejected.

(GREVE et al., 2021): The authors trained a U-Net model to automatically
segment multiple subcortical limbic structures, including the hypothalamus.
The training utilized 39 manually labeled T1w MRI datasets, employing
spatial, intensity, contrast, and noise augmentation techniques. The method

is focused on 1mm isotropic T1w images.

(ESTRADA et al., 2023): Different from the previous studies, HypVINN is
capable to work on T1lw and T2w images with resolutions from 0.8 to 1mm
isotropic. The authors integrated VINN (HENSCHEL et al., 2022)) into their
network design, based on FastSurferCNN (HENSCHEL et al., 2020). Both
methods utilize a 2.5D approach with three 2D F-CNNs per anatomical view.
They used images from Rhineland Study (RS)(BRETELER et al., 2014) and
the UK Biobank (UKB) (ALFARO-ALMAGRO et al., 2018).

(RODRIGUES et al., 2024): H-SynEx (better explained on Part III) is an
automated segmentation approach for hypothalamic subregions, capable of
generalizing across various MRI sequences and resolutions without necessi-
tating retraining. It was trained using synthetic images generated from label
maps constructed from ultra-high-resolution ex vivo MRI scans, enabling
more detailed manual segmentation compared to standard 1 mm isotropic in

VIvo images.
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Table 2.1 — Hypothalamus fully automated segmentation methods

Segmentation MRI Voxel
Author Target Sequence resolution
(RODRIGUES et al., 2020) | whole structure Tlw Imm isotropic
whole structure
(BILLOT et al., 2020) and subregions Tlw 1Imm isotropic
(RODRIGUES et al., 2020) | whole structure Tiw 1mm isotropic
(GREVE et al., 2021) whole structure Tlw Imm isotropic
whole structure Tlw 0.8mm isotropic
(ESTRADA et al., 2023) | and subregions | and T2w | lmm isotropic
whole structure | Multiple Multiple
(RODRIGUES et al., 2024) | and subregions | sequences resolution
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3 Motivations, Objectives, Challenges,
and Hypotheses

In this section, we will explore the primary motivations behind the
work and outline its main and secondary objectives. Furthermore, we will identify
the major challenges faced during the execution of the project and present the

hypotheses developed to overcome them.

3.1 Motivations

When analyzing patients with bvE'TD and ALS, the literature points to
atrophy of the hypothalamus (AHMED et al., 2021a; PIGUET et al., 2011) and for
ALS, some studies have found hypothalamic atrophy even in pre-symptomatic gene
carriers compared with a control group (AHMED et al., 2021a). In Huntington’s
disease, some studies have indicated the volumetric alteration of the hypothalamus
in patients (BARTLETT et al., 2019) while others showed no volume difference
between patients and the control group (GABERY et al., 2015). However, even
the latter indicate that variations can occur in specific nuclei of the hypothalamus,
being lost when analyzing the structure as a whole (GABERY et al., 2015).

Currently, the diagnosis time for rare neurodegenerative diseases is long,
delaying treatment in the early phase of the symptoms. For example, in ALS,
HD, and bvFTD, the diagnosis is based on clinical signs, and in the exclusion
of other motor dysfunctions (HARDIMAN et al., 2011; JOHNEN; BERTOUX,
2019). For bvFTD, patients are often mistaken for having Alzheimer’s disease
(AD) once there are no biological markers for diagnosis (JOHNEN; BERTOUX,
2019; BEBER; CHAVES, 2013). Patients with ALS usually take 9-15 months to
be correctly diagnosed after the onset of symptoms (HARDIMAN et al., 2011).

Early diagnosis of these diseases could lead to more research on possible treatments
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and earlier treatment, improving patient quality of life (CHO; SHUKLA, 2020).
For instance, moderate exercise may prolong the early stages of ALS (OLIVEIRA;
PEREIRA, 2009).

In this scenario, it is evident that proper morphological evaluation
of the hypothalamus in vivo images might be relevant to understanding normal
human physiology and multiple disease states. MRI of the brain, mainly using
high-resolution acquisition, may assist with this task. However, this approach is
challenging. As highlighted before, identifying morphological landmarks of the hy-
pothalamus is often difficult, making segmentation and volumetric analyses chal-
lenging. The reproducibility of the results and the available means to study the

hypothalamus remains a critical issue.

3.2 Objectives

To improve the study of the hypothalamus, it is essential to reduce the
time and subjectivity of medical manual segmentations, consequently improving
reliability. Additionally, there is a need for the development of fully automated
methods capable of generalizing across various MRI sequences and resolutions.
However, to foster ongoing investigation into this structure, it’s equally vital to
furnish resources, namely, a publicly accessible dataset for use by other researchers.

With this in mind, our primary objective is :

Help to expand the study of the hypothalamus by developing
segmentation methods and distributing datasets specifically tailored to

this structure and its subregions

From the main objective we can derive the following specific objectives:
o Create and publish a dataset focused on hypothalamus segmentation on T1w
images;

o Develop a method for feasibility study, focused on generalizing on different
T1lw datasets;
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o Create a second dataset, based on ultra-high-resolution ex vivo images, which

may be generalized to different structures;

o Taking advantage of the expanded dataset and ultra-high-resolution data,
develop a new version of the hypothalamus subnuclei segmentation method,

capable of working across MR sequences and resolutions;

o Develop a pipeline for volume and texture analysis of hypothalamus subnuclei

on MR images of different conditions and neurodegenerative diseases.

3.3 Challenges

During the development of the project, we dealt with six main chal-

lenges:

1. Small size of the structure: The hypothalamus is a small structure, with a
total volume of less than 4 ¢m?3. In terms of pixels, this means that some
slices of the MR volume may contain only 10 pixels or fewer representing the

structure (Figure 3.1).

2. Low contrast with neighboring tissues: The hypothalamus lacks clear, dis-
tinct borders. Instead, its edges are often indistinguishable from surrounding

tissues.

3. Protocol variations: Manual segmentations were conducted by different spe-
cialists following distinct protocols. As a result, labels may include or exclude

the fornix.

4. Noisy labels: Due to the aforementioned challenges, manual segmentation is
prone to errors. Additionally, it lacks smoothness and continuity, appearing

pixelated and disrupted, particularly along borders (Figure 3.1).

5. Partial volume effect: Partial volume occurs when information from two or
more types of tissues is represented in the same voxel, making it difficult to
discern the boundaries of the structure (BILLOT et al., 2023) (Figure 3.2).
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6. Lack of publicly available data: At the beginning of this project, there were

no openly accessible datasets specifically focused on the hypothalamus.

!
r

Figure 3.1 — On the left, an example of manual segmentation containing only 5
pixels is shown. In the center and right, examples of disrupted and
pixelated manual segmentation are depicted. Highlighted in red is the
region where the hypothalamus is located.

Figure 3.2 — Example of partial volume effect: On the left, a brain slice is depicted.
Highlighted on the right is a border of the hypothalamus exhibiting
varying shades of gray, posing difficulty in distinguishing between
hypothalamic voxels and adjacent tissues.
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3.4 Hypotheses

The aforementioned challenges gave rise to eight hypotheses regarding

the training of a deep learning model to achieve the segmentation task.
a. When segmenting small structures, it is better to use an architecture with
fewer downsampling layers.
b. Annotation noise often accumulates at the borders of the structure.

c. Training with a combination of automated and manual segmentation, rather
than solely relying on manual segmentation, could decrease noise and allevi-

ate the impact of varying protocols.

d. To minimize noise, it is essential to utilize more data, even if the labels are

not manually annotated.

e. Designing an architecture capable of learning from its own segmentation can

effectively reduce noise.

f. Ultra-high resolution images can be leveraged to precisely delineate the mor-

phological borders of small structures.

g. Training with synthetic images allows for training a network with minimal

original images, taking advantage of label augmentation.
h. Models trained with synthetic images can generalize across different se-

quences and resolutions without the need for retraining.

Finally, we conducted two main steps, to validate our hypotheses:

[. Hypothalamus Segmentation on T1w Images: In this step, we focused on
the deep learning architecture and on developing a dataset focused on T1w

images that could be used for training.
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II. Hypothalamus Segmentation across different sequences and resolution: In
this second step, we leverage the information acquired in the first step, but

now we focus more on data and how can we use it to address our challenges.

The relation between challenges, experiments and the hypotheses are

summarized in Figure3.3.

-
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Figure 3.3 — Fluxogram illustrating schematic for experiments based on challenges
and raised hypotheses
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4 Main Contributions

At the beginning of this project, we could not find any automated
method or public dataset focused on hypothalamus segmentation. Therefore, the
main contribution of this work was to help filling this gap in the literature and
provide tools for hypothalamus study in different neurodegenerative diseases and

other conditions.

4.1 Datasets

Focusing on expanding the study on hypothalamus segmentation, we

published two openly available datasets:

o MILI: The MICLab-LNI Initiative is a dataset focused on the segmentation
of the whole hypothalamus, with no subdivision, in T1w 1mm isotropic im-
ages. It has over 1300 images from 4 different datasets and the labels come

from manual and automated segmentations.

« HELM: The Hypothalamus ex vivo Label Maps contains label maps derived
from 10 ex vivo images focusing on the hypothalamus and its subdivisions.
This dataset is intended to be used on models trained with synthetic im-
ages, that are generated using the label maps. The label maps have also the

potential to be used in other structures.

4.2 Methods

The first automated segmentation method for hypothalamus segmenta-
tion was developed and published by the author of this thesis (RODRIGUES et al.,

2020). However, for being a feasibility study, it was trained on images from a sin-
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gle dataset and was not capable of generalizing in images from different datasets.

Given that, two other methods were developed:

o« HypAST: The Hypothalamus Automated Segmentation Tool is a segmenta-
tion method trained using MiLI and capable of generalizing on T1w images
from different scanners. When we compare HypAST with other methods
from the literature using datasets that were not involved in the training of

any method, HypAST delivers superior results across all metrics.

o H-SynEx: Finally, aiming to fill the gap in the hypothalamus segmenta-
tion in different sequences, we developed H-SynEx, a method trained with
synthetic images derived from HELM. H-SynEx is capable of working across

different sequences and resolutions, including 5mm spacing FLAIR images.

4.3 Applications

Finally, we use H-SynEx to run a study group on three different con-
ditions: Ataxias, Lupus and ALS. The study groups analyzed volume and texture
attributes of the hypothalamus subregions and could find significant difference in

most of the cases.
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Thesis Structure

This thesis is divided into five parts:

Part I: An Introduction to the hypothalamus, literature review, objectives,

motivations, challenges, and main contributions;

Part II: Explains the first part of the project, focused on Hypothalamus
Segmentation on T1w Images. In this part, we introduce the hypothala-
mus automated segmentation tool (HypAST) and the MICLab-LNI Initiative
(MiLI) dataset, both focused on T1w 1lmm isotropic images;

Part III: This part focus on the Hypothalamus Segmentation across
different sequences and resolution. In this part, we introduce the hy-
pothalamus segmentation method based on synthetic images from ex vivo im-
ages (H-SynEx) and the Hypothalamus ez vivo label maps (HELM) dataset,

both for images from different MRI sequences and resolutions;

Part IV: In this part, we focus on the method Applications, applying H-
SynEx in different diseases, such as ataxias, lupus, and ALS. We conduct

volumetric and texture analysis comparing control and patient groups.

Part V: In the Conclusions, we explore our considerations, papers pub-
lished during the author‘s PhD, and future works.
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Hypothalamus Segmentation on T1lw

Images
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6 Introduction

Aiming to support further development of hypothalamus segmentation
models, we present here the first public hypothalamus segmentation dataset along
with an automated segmentation method. The dataset consists of diverse T1w
MRI datasets comprising 1381 subjects from IXI ', CC359 (SOUZA et al., 2018),
OASIS (LAMONTAGNE et al., 2019), and MiLI (the latter created specifically
for this benchmark). All data are provided with automatically generated hypotha-
lamus masks and a subset containing manually annotated masks. For the method,
we present a teacher-student-based model for fully automated segmentation of
the hypothalamus on T1w MRI, and a comprehensive framework for reproducing
the method and supporting further development of hypothalamus segmentation

models.

Given that, this chapter is composed of three main parts:

e MiLI: the MICLab-LNI Initiative: Given that at the beginning of this
project we could not find any openly available dataset for hypothalamus
segmentation, our first step was to create this dataset. For that, we used a
combination of openly available MRI data and in-house acquisitions, made at
the Unicamp Hospital. This stage aids in addressing Challenge 1 and serves
to validate Hypotheses ¢ and d.

e« Model development: Using the created dataset, we developed the first
version of the segmentation method, focusing only on T1w images and the
segmentation of the whole structure. The method was developed based on

Hypothesis a and e.

o Tool development: Aiming to facilitate the use of our method, we de-
veloped a graphic user interface tool, in which the user could analyze the

volumetry and texture attributes of the hypothalamus.

1 <https://brain-development.org/ixi-dataset />
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7 MiLl: the MICLab-LNI Initiative

At the beginning of this project, no dataset specifically focused on hy-

pothalamus segmentation was available. Therefore, the first step of this project is

to create a publicly accessible dataset to support the development of models with

strong generalization capabilities on T1w images.

7.1 Datasets

For the development of MiLI, we used images from four datasets in this

project:

e MILI: The MICLab-LNI Initiative comprises 452 T1w MR image subjects,

including 317 controls and 135 patients with inherited ataxias and motor
neuron diseases that affect hypothalamus morphology. The average age of
the subjects was 36.14 years, 212 male and 240 female. Images were acquired
at the Hospital of the University of Campinas. All subjects underwent an MR
imaging scan on a 3T Philips Achieva scanner (Philips, Best, The Nether-
lands) using standard 8-channel head coils. To segment the hypothalamus,
we acquired 3D high-resolution T1 volumetric images of the brain in sagit-
tal orientation. Voxel matrix 240x240x 180, voxel size 1x1x1mm?, TR/TE
7/3.201 ms, and flip angle 8°. MiLI was specifically created for this project.

CC359 (SOUZA et al., 2018): The Calgary-Campinas dataset is a public
dataset of 359 T1lw MR healthy brain images from three different vendors
(i.e., GE, Philips, and Siemens) and at two magnetic field strengths (i.e., 1.5
T and 3 T).

o IXI !: Public dataset of 581 T1lw MR healthy brain images.

1

<https://brain-development.org/ixi-dataset/>
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« OASIS (LAMONTAGNE et al., 2019): Public dataset of T1lw MR images.
We used 21 images from OASIS only for testing. Unlike other datasets, this

dataset was not used for training.

« Kirby 21 (LANDMAN et al., 2011): Composed of 42 acquisitions from
21 different subjects. This dataset was used only for test-retest analysis.

Therefore, manual segmentation was not required.

7.2 Labels

According to Karimi et al. (KARIMI et al., 2020), labels can contain
three main sources of noise: Inter-rater observability, annotation error, and error
in computed-generated labels. In the case of segmentation tasks, especially in chal-
lenging structures such as the hypothalamus, “annotation error” means that some
pixels of the image can be wrongly segmented by the specialist. The same logic
is applied to “computed-generated errors”, however here the mistake is done by

an automated tool. The annotation of the data varied according to the dataset
(Table 7.1).

Table 7.1 — Datasets and respective types of label used on the model development
and testing

Total

Inexperienced

Expert

Dataset Used Annotation Annotation Consensus | STAPLE
MiLI 452 407 45 X 407

CC359 359 X 18 341 X
IXI? 560 X 22 538 X

OASIS 10 X 10 X X
Total 1381 407 95 879 407

Some images from IXI were excluded from the experiments since the automated methods were
not able to segment the hypothalamus

Because manual annotation is time-consuming, most of our training
data were segmented using only automated methods. To deal with different types

of segmentation and reduce label noise, we used label-cleaning strategies such as
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STAPLE and majority voting. Souza et al. (SOUZA et al., 2018) defined this as the
silver standard labels (Figure 7.1) We chose to not visually inspect the automated
segmentations. Instead, we used the mentioned techniques to minimize label noise
and segmentation errors of the automated methods, because we wanted to analyze

whether the network could learn from them (Hypothesis d).

Expert Inexp. Billot Rodrigues STAPLE | flonsenss
Segm. Segm. et al et al

> x P

A

™

> U 2

@) ;

™

Figure 7.1 — Different annotations used on model training and testing: axial 2D
view (first row) and volumetric rendering (second row)

e Specialist manual annotation: Segmentation was performed by a spe-
cialist, following the segmentation protocol established for the study, as ex-

plained in Section 7.4.

o Inexperienced rater manual annotation: Segmentation is performed by
an inexperienced rater. This segmentation followed the same protocol de-
scribed in Section 7.4, but it was performed by a rater with no expertise in
MR images and neuroanatomy. However, this increases the amount of data

available for the training.

o Automated annotation: Segmentation is performed using available au-
tomated tools (BILLOT et al., 2020; RODRIGUES et al., 2020), and the
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method developed by Billot et al. (BILLOT et al., 2020) segments the sub-
units of the hypothalamus, including mammillary bodies (MB). Once our
manual protocol did not include MBs, we excluded the labels referring to

them.

Aiming to reduce label noise and improve the generalization of the

network, we combined the previously mentioned annotations:

« STAPLE: Simultaneous truth and performance level estimation (WARFIELD
et al., 2004). STAPLE is an expectation-maximization algorithm that ana-
lyzes different segmentations and calculates a probabilistic estimation of the
real segmentation. Here, it was applied to cases where we had three types

of segmentations: experienced rater manual annotation and two automated
annotations (RODRIGUES et al., 2020; BILLOT et al., 2020).

o Consensus: In cases where manual segmentation was not performed, the
consensus was created using the intersection of the two automated segmen-

tation methods.

A specialist manually annotated the images from MiLI, IXI, CC59,
and OASIS, leading to a total of 95 manually segmented volumes: 18 from CC359,
22 from IXI, 45 from MiLI (30 controls, and 15 patients), and 21 from OASIS
(Figure 7.2).

7.3 Ethics Committee Approval

All data from MiLI used in preparation for this study were approved by
the local ethical committee and fully anonymized (CEP/Conep, number 3435027).
All participants were duly informed and signed a consent form agreeing to partic-
ipate in the study. The use of public datasets (OASIS, IXI, CC359, and Kirby 21)

is based on their respective licenses.
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Figure 7.2 — Samples from datasets used on model training/testing depicting the
high variability between them: axial slices highlighting the hypothala-
mus location (first row); Zoom of the highlighted region (second row).
From left to right: OASIS, IXI, MiLI and CC359 samples

7.4 Manual Segmentation Protocol

The segmentation of the hypothalamus follows the anatomical land-
marks proposed by pathological studies and has been validated for MRI-based
studies (GABERY et al., 2015; GORGES et al., 2017; CARDOZO-HERNANDEZ
et al., 2020). In summary, the hypothalamus surrounds the third ventricle and is
laterally delimited by the optic tract and hypothalamic sulcus. The longitudinal
axis was delimited by the anterior commissure in more cranial slices and mam-
millary bodies in more caudal slices. Fornix, mammillary bodies, and optic tracts

were excluded from the study area.

7.5 Dataset Availability

The MiLI (MICLab-LNI Initiative) dataset and the manual and au-
tomated annotations used in this project for IXI, OASIS, CC359, and MiLI are
publicly available?.

2 <https://sites.google.com /view/calgary-campinas-dataset /hypothalamus-benchmarking>
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8 Hypothalamus Automated Segmenta-
tion Method

By using MiLI, we developed an automated segmentation method for

the hypothalamus focused on T1w 1mm isotropic images.

8.1 Method

Notations: Defining an MRI volume as V[Dy x Hy x W], the input
patch I[3 x H x W] is formed by three consecutive slices of V, and we are
interested in the segmentation of the central slice. The manual segmentation of V'
is M[Dy x Hy x Wy, and the label used for minimizing the network is L[1 x Hx
W], referring to the central slice of I. The output of the network can be finally
defined as O[1 x Hx W]. The final automated segmentation of the volume V is
A[Dy x Hy x Wy].

Three architectures were used during the development of the final method,

as listed as follows.

8.1.1 EfficientSeg

In this work, we decided to use the EfficientNet-B4 (Figure 8.1), since it
has the best balance between a number of parameters and computational cost (MATH-
EWS et al., 2020). It was developed to deal with input images I[3x224x224] or
superior, ending with a feature map of shape [1792x7x 7] before the dense layer. To
adapt it for segmentation, we removed the stem block composed of one 2D convolu-
tion of stride 2 and replaced it with a 2D convolution of stride 1. Also, we removed
the final dense layers from the original EfficientNet-B4 and added four transposed
convolutions (Figure 8.2). The final architecture has input I[3x112x112] and out-
put O[1x112x112].
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Figure 8.1 — EfficientNet-B4 architecture, based on an image from Agar-
wal (AGARWAL, ). Despite being originally a classification archi-
tecture, it was altered for segmentation purposes in this project. In
red, blocks are used for EfficientSeg. In blue, the blocks used for Mod-

ified Eff-UNet.
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Figure 8.2 — EfficientSeg architecture

8.1.2 Modified Eff-UNet

Based on Baheti et al. (BAHETT et al., 2020), we implemented a U-
Net-based architecture with EfficientNet-B4 as the encoder (Figure 8.3). However,
once we dealt with a small structure, we used fewer down-sampling layers (Hy-

pothesis a). The architecture starts with input I[3x112x112] and has output
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O[1x112x112]. At the end of the contraction path, the feature map has shape
[160x14x14]. This is the base of our final architecture.

NN
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Figure 8.3 — Modified Eff-UNet architecture: it uses an EfficientNet-B4 as encoder
of a U-Net

8.1.3 Correct2Seg

Using the Modified Eff-Unet, we implemented Correct2Seg, a Teacher-
Student-based model (Figure 8.4), inspired by Yu et al. (YU et al., 2019). We used
two modules: segmentation and correction. Both modules were composed of Modi-
fied Eff-UNet architectures. The segmentation module has an input I4[3x112x112]
and output O[1x112x112], whereas the Correction module has input I.[2x112x112]
and output O[1x112x112]. I, is composed of the concatenation of O and the cen-
tral slice of Is. The intuition behind the method is that the correction module
will improve the output of the segmentation module based on the original image
(I5). The minimization of both modules was performed simultaneously. Once the
correction module is used to improve the segmentation module (Hypothesis e), its
output is only used during training. During inference, it is ignored, that is, only

the output of the segmentation module is considered.
loss = WCE(S(Is), L) + BCE(C(I.), L) (8.1)

being I the input of the Segmentation module S, I. the input of the Correction
module C' and L, the label. WCFE represents the Weighted Cross Entropy, used
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on the segmentation module, and BCE the Binary Cross Entropy, used on the
Correction module. We have run experiments using Dice Loss, however, the results
using Cross Entropy were better. Therefore, all experiments in Section 8.3 were
performed using the loss function presented in Equation (8.1). For the prediction,

we use the output of the Segmentation module and ignore the Correction module.

Segmentation

@ Concatenation

. Modified Eff-UNet module

Prediction Output

Figure 8.4 — Correct2Seg scheme proposed composed of two modules, Segmenta-
tion and Correction, trained together. The final prediction is the out-
put of the segmentation module.

8.2 Evaluation Metrics

During the development of the methods, we used four different metrics
to qualitatively analyze the results: the Dice coefficient (DC), average Hausdorff
distance (AVD), Hausdorff distance (HD), and volume similarity (VS). Our choices
were based on the hypothalamic characteristics (small structure with low contrast)

and literature usage of the metrics.

e Dice Coefficient:
The DC is an overlap measure defined as follows:

2% |[MNA|

DC = ——F——
[M] + |A]
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With M being the manual annotation, and A the automated segmentation.
The DC is sensitive to small segmentation and does not identify boundary
errors. However, it can be used as a measure of reproducibility and is widely
used for medical imaging segmentation analysis, being the most used metric
in the medical imaging segmentation field (TAHA; HANBURY, 2015). DC

results must be in the [0,1] range, where 1 is a perfect DC.

e Hausdorff Distance:

The HD measures the distance between two sets of points.

HD(A, M) = max(h(A, M), h(M, A)) (8.3)
where:
h(A, M) = max min [la —m|| (8.4)

With |ja — m|| being a norm such as Euclidean distance. Unlike DC, it can
find boundary errors, which can occur owing to low contrast, and it is more
robust for small structures, such as the hypothalamus. However, it is sensitive
to outliers (TAHA; HANBURY, 2015). The smaller the HD between manual

and automated segmentation, the better the automated segmentation.

o Average Hausdorff Distance:

As the name suggests, AVD is the averaged Hausdorff Distance over all

points.
AV D(A, M) = maz(d(A, M),d(M, A)) (8.5)
where: )
AN = S mig o — | (8.6)

Similar to HD, it is also a spatial distance metric that is robust to small struc-
tures. However, on average, it is less sensitive to outliers (TAHA; HANBURY,
2015). The smaller the AVD between manual and automated segmentation,

the better the automated segmentation.
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e Volume Similarity:

Finally, the VS calculates the similarity between the two samples.
|| A] — [M]]

VS=1
Al + |M]

(8.7)

With | X | being the module of X. Although it ignores borders and overlap, VS
is a good metric for analyzing the segmentation volume when determining
the volume of the structure is the main goal (TAHA; HANBURY, 2015). VS

results must be in a [0,1] range, where 1 is a perfect VS.

8.3 Experiments

In our experiments, we addressed Hypotheses a,c,d and e. At first, we
compared EfficientSeg and Modified Eff-UNet, since the first has more pooling
layers than the latter. Then, we analyzed Correct2Seg, studying the impact of
noisy labels on our results. For so, we checked the quantitative metrics from the
same dataset we have trained on and then we used different datasets to assess the
generalization. Therefore, we sometimes used STAPLE, which decreases noise, and
other times, manual annotation from an inexperienced rater. Finally, we conducted
a two-step training experiment, where we pretrained the network using noisy labels
and trained it using manually labeled data. In total, we performed five different

experiments using Correct2Seg (Table 8.1).

8.3.1 Choosing Correct2Seg modules

As explained in Section 8.1.3, the Correct2Seg architecture consists of
two Eff-UNet modules. We conducted an experiment to determine the best archi-
tecture for these modules. Hypothesis a addresses the size of the last feature map
in the contraction path. Given the small size of the hypothalamus, networks with
more pooling layers might impair border detection. Consequently, we employed the
Modified Eff-UNet (Section 8.1.2), a U-Net-based architecture with fewer down-
samplings than EfficientSeg. The final dice score on the test set was 0.739+0.06
for Eff-UNet, compared to 0.72940.06 for EfficientSeg.
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Table 8.1 — Summary of all conducted experiments on Correct2Seg. While developing
the model, five models were trained using different data/annotations. For
assessing model reliability, three experiments were conducted.

Experiment Objective Data Tragl:;i t?f; Label
Model 1 Pre-training using IXI/CC359 879 Consensus
noisy labels MiLI 407 Manual®
= Model 11 Pre-training dealing | IXI, CC359 879¢ Consensus
9 with noisy labels MiLI 407 STAPLE
3 g Model IIT Train using IXI, CC359 27
§ 2 Model I weights MiLI 31 Specialist
2 Model IV Train using IXI, CC359 27 Manual
A Model IT weights MiLI 31 Annotation
Model V One Step IXI, CC359 27
Training MiLI 31
Experiment Objective DataTest Zelianti ty
Test- Analyze model .
_ 42’ Retest imprecision Kirby 21 42
3 E Inter-Raters Compare manual segmentation MiLI 5
§ % Metrics performed by two different specialists | (patients)
o~ Generalization | Assess metrics on a dlffgrgnt dataset, OASIS 10
Test not used on training

2Some images from IXI were excluded from the experiments because the automated methods
could not segment the hypothalamus returning only a few voxels or even a blank image. This
happened on images with the poorest contrast and resolution. *Inexperienced rater manual an-
notation

Our results showed improvement over EfficientSeg. However, the com-
parison is not entirely direct since we also made additional modifications to the

network, including adding convolutional layers and skip connections in the decoder.

8.3.2 Correct2Seg Model development

During the model development, we used Correct2Seg, presented in Sec-
tion 8.1.3. To increase data variability during training, we used random crop,
random rotation (from -10° to 10°), and elastic transformations as data augmenta-

tion in a batch size of 128. Our network was optimized using Adam and a learning
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rate of 5 x 10~ 3. For all experiments, we used the same hyperparameters, and as
pre-processing, input images were normalized on a range [-1,1]. Images were not
registered in a standard space. As a pre-processing step, we reoriented all images
to the LPS (Left-Posterior-Superior) orientation to ensure that all inputs were in
the same view. We also used a post-processing step to remove the prediction’s
noise. After segmenting all slices of volume V| the post-processing step selects the

largest 3D connected component (CC).

8.3.2.1 Pre-training

According to hypothesis ¢, by increasing the amount of training data,
part of the noise present dissipates, even if the label is not manual. Therefore, the
goal of the first experiment was to analyze the ability of the network to learn using
a large amount of data annotated with noisy labels. We trained two models ( I
and II) using different labels (Table 8.1):

o Manual on MiLI: MiLI labels are manual annotation by inexperienced raters,

therefore we are using the noise labels;

o Staple on MiLI: MiLI labels are STAPLE’s, created according to Section 7.2,

therefore we are dealing with the noise labels, by trying to reduce the noise.

In both cases, IXI and CC359 labels are consensuses from automated segmenta-

tions, according to Section 7.2.

8.3.2.2 Training

This experiment analyzes the general improvement that two-step train-
ing brings when using different labels. We used the pre-trained models from pre-
vious experiments (Section 8.3.2.1) as the starting point. From each model, we
trained two different models (Models III and IV) using specialist manual annota-

tion.
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8.3.2.3 One-Step training

In this experiment, we performed one-step training to obtain Model V
and analyzed the impact of using fewer images annotated with high-quality labels.
We used the same dataset used in Experiment 8.3.2.2, but without the network

pre-training.

8.3.3 Model Reliability
8.3.3.1 Inter-Rater Metrics

In addition to being time-consuming, manual hypothalamus segmenta-
tion may have high variability among raters for small structures that are difficult
to see on MRI. This experiment compared the variability between two manual

annotations from different specialists and our automated segmentation.

8.3.3.2 Test-retest

We performed a test-retest to assess the model’s reproducibility. Re-
producibility can be defined as the agreement of model results when it is applied
uniformly and repeatedly to invariant objects (MENG, 2020). We used the Kirby
21 dataset, which contained 21 healthy subjects scanned twice on the same day.
When the acquisition interval is short, the segmentation results for the same sub-
jects should be similar. Therefore, a great difference may imply method impreci-

sion.

8.3.3.3 Generalization Test

As our method is openly available, it is essential to check its ability to
generalize to different datasets not seen by the network during training. In this
experiment, we used 21 images from the OASIS dataset, manually segmented by

a specialist following the protocol explained in Section 7.4.
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8.4 Results

8.4.1 Model Development

We quantitatively analyzed our models using the metrics presented in
Section 8.2. Because the training process is non-deterministic, results presented
here are an average of three runs for each model. This analysis was performed to

improve the confidence level of the results (Figures 8.5 and 8.6, Table 8.2).

Table 8.2 — Results for Model Development and Generalization Experiments. DC
= Dice Coefficient; VS = Volume Similarity; AVD = Average Haus-
dorff Distance. Average values and standard deviations were measured
among the metrics of three different runs. Results of Billot et al. are
from their inference on OASIS dataset.

Experiment Dataset DC VS AVD Hausdoff
Model I IXI/CC359/MiLI 0.63 = 0.02 0.76+0.01 0.58+0.06 5.434+0.78
OASIS 0.58£0.02 0.8440.01 0.7940.29 5.50+1.63

All 0.61+0.02 0.80+£0.02 0.67+0.12 5.55+0.36

Model II IXI/CC359/MiLI 0.65 £ 0.01 0.77+0.03 0.4740.01 4.23+0.14
OASIS 0.54+0.03 0.76£0.04 0.68+0.08 4.80+0.30

All 0.6040.01 0.80%0.03 0.56+0.04 4.4740.22

Model TII IXI/CC359/MiLI 0.82 £ 0.01 0.9310.02 0.2440.03 2.8240.64
OASIS 0.65£0.04 0.8640.02 0.4540.10 3.4140.66

All 0.7440.02 0.9140.01 0.3240.04 3.03+0.4
Model IV IXI/CC359/MiLI | 0.830 £+ 0.001 | 0.950+0.001 | 0.190+0.001 | 2.23+0.08
OASIS 0.74+0.01 0.914+0.01 0.3240.05 3.31+1.07
All 0.79+0.01 0.940+0.001 0.2440.01 2.691+0.51

Model V IXI/CC359/MiLI 0.81 £ 0.01 0.9440.01 0.30%0.08 4.1041.78
OASIS 0.63£0.02 0.71+£0.08 0.81+0.37 4.90+1.33

All 0.734+0.01 0.90£0.01 0.40+0.04 4.07+0.98

Billot et al. (2020) OASIS 0.63 0.91 0.50 4.19

8.4.2 Model Reliability
8.4.2.1 Inter-Rater Metrics

To directly compare our best method with manual segmentation, we
asked a second expert to manually segment the MiLI images. We used 14 im-
ages from our test set (5 patients and 9 controls). The results were quantitatively

(Table 8.3) and qualitatively compared (Figure 8.7).
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Figure 8.5 — Quantitative results of our best Correct2Seg model (Model 1V), re-
ported by dataset and comparative with Billot method.

Table 8.3 — Inter-Rater Metrics computed for 5 images from test set

Comparative DC VS AVD HD
Raterl VS Rater2 0.71£0.04 | 0.86L20.09 | 0.31£0.04 | 2.93+051
Automated Segmentation | ) o\ 03| (952003 | 0.1540.03 | 1.96:£0.50
VS Rater 1
Automated Segmentation | -0\ 0y | (862008 | 0.2740.04 | 2.67£0.66
VS Rater 2

8.4.2.2 Test-retest

The Kirby 21 Dataset is composed of 42 images, 21 subjects scanned
twice on the same day. Since each pair is composed by different acquisitions, the
positioning of the subjects is different. To run the test-retest analysis, we first
registered the images. The second acquisition of each patient was brought to the
space of the first acquisition. Then, we ran Correc2Seg and Billot’s method on
the images (Table 8.4). Both methods presented similar metrics with no statistical

difference among them (p-value>0.05 for all metrics).
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Figure 8.6 — Automated wersus Manual segmentation. Qualitative results from
our best-trained model (Model IV)

8.4.2.3 Generalization Test

To analyze network generalization, we tested our models on the OASIS
dataset and compared our generalization capability to other methods in the liter-
ature. The OASIS dataset was not used for training by either method.(Table 8.2
and Figure 8.8).
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Figure 8.7 — 3D and 2D (axial) views from automated and manual specialist an-

notations. The automated segmentation can properly divide the right
and left hypothalamus, while manual segmentation may join both
sides. This may happen once the images do not have enough contrast
for the human eye while the CNN model can better recognize the

nuances.

Table 8.4 — Test-Retest metrics on Kirby21 dataset. The values correspond to

the mean and standard deviation among the 21 pairs of acquisition.
For Correct2Seg method, we used one of the three models trained on

Model V experiments.

Method DC VS AVD Hausdorff

Correct2Seg 0.884+0.06 | 0.974+0.03 | 0.134+0.07 | 1.47+0.61

Billot et al. (2020) | 0.87+0.06 | 0.97+0.02 | 0.14+0.07 | 1.64+0.58
o ) . 650 &
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Figure 8.8 — Real VS predicted volumes on OASIS dataset. Volumes are measured

in mm?. Left: Correct2Seg (Model IV). Right: Billot et al. (2020)
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8.5 Discussion

During our experiments, by comparing results from EfficientSeg and
Modified Eff-UNet, we observed that using fewer downsampling layers yielded
better results, supporting Hypothesis a. This improvement is likely due to the
hypothalamus being a small structure. However, it is important to note that in
this experiment, we also added skip connections between the encoder and decoder,

which may have influenced the results.

In the model development experiments, we found that more data did
not necessarily imply better metrics, not being able to confirm Hypothesis ¢. When
we analyzed our Pre-training experiments (Table 8.2), both Models I and II could
not achieve similar metrics as our one-step experiment (Model V), although the
latter had almost 21 x less elements in its training data compared to the datasets
of the first two. The same can be verified using a generalization test. Model V
generalized better on the OASIS, although it was trained with less data. This
performance can be explained by the quality of the labels and protocols used
for the training set annotation. In addition, in the pre-training experiments, we
observed that STAPLE annotation improved the metrics. However, this occurred
more prominently for the MiLI/IXI/CC359 datasets.

Analyzing the training experiments (Models III and IV), after a sec-
ond step, we could improve our metrics compared to Model V. Here, we could
use both plans in our favor: pre-training with a significant amount of data and
training the network using good quality annotation. In addition, our best model
(Model 1V) was pretrained using STAPLE on the MiLI dataset, achieving the
best results on the OASIS dataset. This reaffirms the importance of dealing with
the noise presented on the labels. Once again, by analyzing the OASIS results,
we compared our final metrics with other automated methods in the literature.
Our model achieved a Dice coefficient of 0.83 on IXI/CC359/MiLI test images.
Billot et al. (BILLOT et al., 2020) reported a Dice coefficient of 0.84 on their
test set. However, the comparison is not straightforward because their training

and testing data are not the same as ours. When we predict images from OASIS,
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a neutral dataset that is not used during the training of either of the two ana-
lyzed methods, both methods have a considerable performance loss. Our method
reported a Dice coefficient of 0.74, and Billot et al. (BILLOT et al., 2020) reported
a Dice coefficient of 0.63. This performance difference was assessed with the use of
the Wilcoxon paired test (p-value<0.01), which indicated statistical significance.
Despite the loss in both methods, our network managed to maintain better gen-
eralization. Analysing predicted VS real volumes on OASIS dataset (Figure 8.8),
we can see that both Correct2Seg (Model IV) and Billot et al. (2020) have similar
behaviors. In both methods, the distribution returns a significant offset, that is,
the predicted hypothalamus usually presents a larger volume than the manually
segmented. This effect is possibly due to three factors: large use of data augmen-
tation (also conducted by Billot et al. (BILLOT et al., 2020)), data coming from
different datasets in training, and label aggregation using STAPLE, which helps

reduce noise.

Generalization loss may also occur because of OASIS’s lower resolution.
We used 21 isometric samples from the first and second discs of OASIS, which are
composed of 1.5T images (MARCUS et al., 2007). Hence, with lower contrast, it
is more challenging to identify the hypothalamus (Figure 7.2). This may also have
influenced the final results of both methods. The boxplots (Figure 8.5) support this
fact. We can verify on DC and AVD boxplots that MiLI, the only dataset solely
composed of 3T images, presented the best results among the MiLI/CC359/1XI
test set. On the other hand, half of IXI's test set was composed of 1.5T images,
making this dataset present the worst metrics among MiLI/CC359/IXI. By ana-
lyzing the boxplots, our method could segment patient and control cases for the
MiLI dataset, maintaining a similar quality level: DC and AVD averages were
the best among all groups, while Hausdorff distance and VS were comparable to
controls in IXI and CC359.

Examining the qualitative results (Figure 8.6), we can observe that
we need to evaluate our method using multiple metrics once the hypothalamus
is a small structure. Subject 01 returned the best DC and AVD (0.89 and 0.12

respectively) of our best model (Model IV). In this case, the predicted volume was
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593mm?, and the manually segmented volume was 577mm?, indicating an error of
2.8%. Subject 02 presented a DC and AVD of 0.82 and 0.19, respectively. Despite
the worse DC, Subject 02 presented the best VS of our test set, with a predicted
volume of 526mm?® and a manually segmented volume of 530mm?, an error of
0.75%. We chose our best model during training based on the best DC for the
validation set. However, it is interesting to analyze the final goal of the study to
set the base metric. If the shape of the structure is essential (e.g., morphological
studies), DC or AVD are applicable. However, if the final study focuses solely on

volume variation, VS may be more interesting.

Besides generalization, we could assert our model’s reliability by cal-
culating inter-rater metrics and test-retest. First, for inter-rater metrics, we no-
ticed a higher variability between the two specialists than when comparing our
method and manual segmentation. For test-retest, our method achieved high DC
and VS and low AVD which assesses the reproducibility of our method. Billot et
al. achieved similar metrics on Kirby during tets-retest and the Wilcoxon paired

test showed no statistically significant difference among both methods’ metrics.

One of the main challenges of hypothalamus segmentation is its low
contrast when compared with surrounding tissues. The objective of this step is
related to the generalization capability of the method and its use by physicians
in neurological studies in 1.5T and 3T MR images, as they are, so far, the most
widely used. However, the main limitation is that the method does not work across
different MR sequences, requiring re-training and, consequently, more data. Also,
so far, the method has focused on the whole structure, ignoring the segmentation
of the hypothalamus subregions. Both limitations are addressed in the next step

of the project.
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9 Graphic User Interface Tool

Finally, to facilitate the use of the segmentation method, we developed

a graphic user interface, HypAST!, the Hypothalamus Automated Segmentation

Tool (Figure 9.1). Besides returning the automated segmentation of the hypotha-

lamus, some of the tool functionalities are:

« Volume Information: A spreadsheet with the volume (in em?) of all hy-

pothalamus segmented.

Volume Analysis: The user has access to a dispersion graph and boxplot,

where possible outliers can be analyzed.

Texture Information: A spreadsheet with histogram texture information
of all hypothalamus segmented. The mean provides the average grayscale
value of the image. Variance quantifies the deviation of gray pixel values from
the mean. Skewness examines the symmetry of the histogram, determining
whether there is a prevalence of light or dark pixels compared to the mean.
A positive skewness implies an abundance of pixels with values below the
mean, whereas a negative skewness indicates an abundance of pixels with
values above the mean. Lastly, kurtosis measures the uniformity of pixel
distribution relative to a normal distribution. Negative values denote a flat
distribution, whereas positive values indicate a peaked distribution. Finally,
the entropy measures the randomness of the gray level distribution (MILES
et al., 2013; PHARWAHA; SINGH, 2009).

Visualization Tool: A window shows all original images masked with their

respective segmentation.

The tool was developed with a focus on ease of use, catering to groups

with diverse backgrounds such as computer scientists and physicians. No instal-

1

<https://github.com/MICLab-Unicamp/HypAST>
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lation is required. HypAST-GUI features three main buttons: "Open File," "Run

Code," and "Save Segmentation."

o Click the "Open File" button to select .nii or .nii.gz files. A label will indicate

the number of files opened.

 Click the "Run Code" button to generate the segmentation. Using a CPU (i5
8th gen), each volume will take approximately 6.5 seconds to process (the

first segmentation may take slightly longer).

o Use the "Save Files" button to save the generated segmentation and attribute
files.

i

HypAST

Hypothalamus Automatic Segmentation Tool

Open Files Run

# Qo B
aox

A€ Haz 8 ] P ——

Figure 9.1 — Top Row: HypAST, the Hypothalamus automated segmentation tool.
Bottom row: The tool offers volumetric analysis and returns his-
togram texture attributes of the hypothalamus
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10 Considerations

The first stage of this project addressed Hypothesis a, ¢, d and e. Our

results were able to confirm Hypothesis a,c,e and refute Hypothesis d.

During our experiments, we ended up with our final Correct2Seg model,
which despite functioning only on T1w images, is capable of generalizing across

datasets from different scanners.

In this stage, we also addressed Challenge 1, which concerns the lack
of publicly available hypothalamus segmentation dataset. For that, we published
MiLI, a dataset containing a total of 1381 hypothalamus segmentations (including
both automated and manual) from four different databases (OASIS, IXI, CC359,
MiLI), comprising isotropic and anisotropic images, as well as control and patient

subjects.

Finally, we released HypAST, a tool that embedded Correct2Seg and
that generates texture attribute values and volume of the hypothalamus, aiding

studies across different groups.

Although this initial stage is crucial to assist in the study of hypotha-
lamic images and understanding its role in neurodegenerative diseases, some gaps
in the literature still exist. Initially, until the completion of this work, only one
method was publicly available, and although it segmented the subregions of the
hypothalamus, it was focused on only one type of MR sequence (T1w images).
Therefore, the next stage of the project aims to develop a method that can be

used across various MR sequences and resolutions without the need for retraining.
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11 Introduction

During the first stage of this project, we published the first publicly
available dataset for hypothalamus segmentation (MiLI) and developed a method
for T1w 1lmm isotropic images, known as HypAST. However, upon reviewing the
literature, we identified several gaps that still needed to be addressed. Initially, the
public dataset encompassed the entire hypothalamus structure, but it is also crucial
to study its sub-regions. Although T1w images provide good anatomical details of
the structure, analyzing the hypothalamus in different sequences is also important.
For instance, T2w images can be used to analyze gliosis in the structure, while Dif-
fusion Tensor Imaging (DTT) and metrics such as Fractional Anisotropy (FA) can
help study the microstructure of the hypothalamus and potential diffusion alter-
ations of the tissue. By leveraging these different MRI sequences, researchers can
gain comprehensive insights into the hypothalamus, ranging from macrostructural

anatomy and volume to microstructural integrity and connectivity.

However, by the time we started this step of the project, there was no
existing method capable of functioning with MRI sequences other than T1w and
T2w. Therefore, the goal of this step was to fill the existing gap in hypothalamus
segmentation in different sequences and MR resolutions. However, until then, the
only publicly available dataset for hypothalamus segmentation was the MiLI, and
due to the high cost of time and specialized labor, it would be unfeasible to create
a dataset with manual segmentations in images of various sequences and resolu-
tions. To solve this challenge, we developed the expansion part of the segmentation

method, which consists of the development of:

« HELM: Hypothalamus ez vivo Label Maps is a dataset composed of label
maps built from publicly available ultra-high resolution ez vivo MRI from
10 whole hemispheres, which can be used to develop segmentation methods
using synthetic data. The label maps are obtained with a combination of

manual labels for the hypothalamic regions and automated segmentations
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for the rest of the brain, and mirrored to simulate entire brains (Hypothesis
b, f and g).

o« H-SynEx: A method for automated segmentation of hypothalamus subre-
gions informed by ultra-high resolution ex vivo MRI, which generalizes across

MRI sequences and resolutions without retraining (Hypothesis ¢ and h).

The details of dataset creation and method development are in the next

sections.
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12 HELM - Hypothalamus ex vivo Label
Maps

In this section, we describe the creation of HELM - Hypothalamus ex
vivo Label Maps, a dataset composed of label maps derived from ez vivo images,

used to train H-SynEx.

12.1 Materials

HELM is derived from 10 post mortem ultra-high MRI acquisitions of
brains provided by the DANDI Archive '. The post mortem images are openly
available 2 and comply with all relevant ethical regulations (COSTANTINI et al.,
2023).

The MRI of the ez vivo brain hemispheres was obtained using multi-
echo fast low-angle shot (ME FLASH or MEF) on a 7 T Siemens MR scanner
with Repetition Time (TR) of 34 ms, time to echo (TE) of 5.65, 11.95, 18.25, and
24.55 ms, and field of view (FOV) of 192 mm by 81.3 mm. Before the MRI, the
specimens were fixed in 10% formalin for a minimum of 90 days and packed in a 2%
buffered paraformaldehyde solution. The images present an equal distribution of
5 male and 5 female control specimens who died of natural causes with no clinical
diagnoses or neuropathology. As the images come from post mortem brains, the
acquisition is free from motion artifacts and has a high resolution, ranging from 120
to 150pum isotropic, which improves the visualization of hypothalamic boundaries.
Further details on the specimens and MRI acquisition can be found in the original
publication (COSTANTINTI et al., 2023).

The age at the time of death ranges from 54 to 79 years, with an

1 <https://dandiarchive.org>
2 <https://dandiarchive.org/dandiset /000026 /draft /files?location=>
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average of 66.4 + 8.46 years and they include only a single hemisphere of the
brain. Although both halves of the hypothalamus exhibit symmetric tissue archi-
tecture (KISS et al., 2020), the dataset includes four right-sided hemispheres and
six left-sided hemispheres. Despite the limited size of the dataset, which is inherent
to ex vivo images, this characteristic is compensated by the enhanced resolution of
the data. For instance, it is possible to find in the literature other studies that use
ex vivo MR images from only one hemisphere of the brain to generate segmenta-
tion of in vivo hippocampus and thalamus (IGLESIAS et al., 2015; IGLESIAS et
al., 2018).

Using these MRI images as a starting point, we performed data pre-
processing and generated automated whole-brain segmentation using unsupervised
clustering. Unlike the hypothalamic labels, these automated segmentations are
used only for image synthesis purposes and not as segmentation targets. Therefore,
they can be noisy and not correspond directly to brain structures — so unsupervised
clustering suffices. Our focus is on capturing context around the hypothalamus to
produce synthetic intensities. Subsequently, we mirrored the hemispheres to create
label maps that would serve as synthetic images for the input of the deep neural

network without having to segment scans into hemispheres during testing.

12.2 Methods

12.2.1 Pre-processing of ex vivo scans

The first step of the method was the pre-processing of the images.
The primary objective at this stage is to standardize the dataset and remove any

background elements that could interfere with the subsequent steps (Figure 12.1).

o Orientation: Given that the primary objective of the dataset is to facilitate
the development of automated segmentation methods, it was essential to
ensure that all images were uniformly oriented. We decided to use the positive

RAS (right-anterior-superior) standard. While our dataset includes images
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Figure 12.1 — Examples of original ez vivo images (up) and images after the pre-
processing steps (down). First, we re-orient the images to positive
RAS standard and remove non-cerebral elements from the back-
ground. Then, we resample the images voxels to 0.3 x 0.3 x 0.3mm
isotropic and perform bias field correction.

of both hemispheres, we flipped all right-sided hemispheres to the left side
to ensure consistency and simplify subsequent preprocessing steps, resulting

in a total of 10 left-sided hemispheres

o Background segmentation: The ex vivo brains were packaged in a bag for
scanning, which is discernible in the images and undesirable in our model. To
address this issue, we employed a Bayesian automated image segmentation
approach adaptive to contrast (PUONTI et al., 2016) to create a mask, which
was then utilized to eliminate non-cerebral elements that were not related to

brain structures.

e Voxel resampling: The original images have a voxel resolution ranging
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from 0.1 to 0.15mm3. While this resolution assists in distinguishing struc-
tures during manual segmentation, it significantly prolongs image processing,
particularly when the ultimate goal is to employ them in deep learning net-
works. Therefore, we adjusted the voxel resolution to a constant resolution
equal to 0.3 x 0.3 x 0.3mm isotropic, which provides a compromise between

a high level of details and being storage- and processing-friendly

o Bias Field Correction: Finally, the last step in image pre-processing is
the bias field correction (PUONTTI et al., 2016). This step is essential, as in
the generation of the whole brain segmentation, we utilize an unsupervised

clustering method that can be directly affected by the bias field.

12.2.2 Segmentation

In the second stage, we generated the label maps for the hypothalamus,

its subregions, and the whole brain:

o« Hypothalamus manual segmentation: All images were traced by one
non-specialist. For manual segmentation, we relied on protocols focused on in
vivo images as described in the literature. In particular, we followed the crite-
ria described in Rodrigues et al. (RODRIGUES et al., 2022) (whole hypotha-
lamus) and Bocchetta et al. (BOCCHETTA et al., 2015) (for the subregions).
At 0.3mm isotropic resolution, approximately 40-50 coronal slices include the

hypothalamus.

— Whole structure: The segmentation of the whole hypothalamus oc-
curs on coronal view. To ensure the correct delineation of the landmarks,
we also simultaneously inspected the sagittal and axial views. In in vivo
images, the hypothalamus lies around the third ventricle. However, In
the case of the ex vivo images, it is not always possible to distinguish the
third ventricle, since we only have one hemisphere of the brain. There-
fore, on the coronal view, we use the recess dorsal to the hypothalamus

to define its most superior boundary (Figure 12.2).
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Figure 12.2 — Recess of the hypothalamus used for the delineation of superior
boundary. Tub_sup = Tuberal Superior subregion; Tub_inf = Tu-
beral inferior subregion

Ventrally, the hypothalamus is defined by the optic tract and the hy-
pothalamic sulcus in the most rostral slices. The most anterior coronal
slice is defined as the one where the anterior commissure is visible,
while the most caudal coronal slice is where the mammillary bodies
(MB) are no longer visible. The mammillary bodies were included in
the segmentation, while the fornix and optical tract were excluded from

the segmentation.

— Subregions: We subdivided the hypothalamus into 5 subregions: An-
terior inferior, Anterior Superior, Tuberal inferior, Tuberal Superior,
and Posterior. While the manual segmentation of the whole hypotha-
lamus was performed using the structure borders, the division of the
subregions was done geometrically, using specific landmarks based on
Bochetta et al. (BOCCHETTA et al., 2015) to find the division between
them (Table 12.1). An exception is the posterior subregion, which was
segmented using the mammillary body morphological borders. As we
only have one hemisphere for each brain, we could not segment both
hypothalami for each subject. The most rostral slice of the anterior sub-
region coincides with the most rostral slice of the hypothalamus when
looking at the coronal plane. On in vivo images, the anterior subregion

is included from the most rostral coronal slice of the hypothalamus to
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the most rostral part of the infundibulum. However, for ex vivo im-
ages we used the anterior commissure visible from the sagittal view
as a landmark to delineate the most caudal part of the anterior re-
gions (Figure 12.3(a)). The tuberal subregions begin posteriorly to the
coronal slice where the anterior regions are visible (as defined by the an-
terior commissure sagitally) and extend to the most rostral slice where
the MB are visible, which are included in the posterior subregion (Fig-
ure 12.3(b)). To delineate the superior and inferior portions of both the
anterior and tuberal subregions, we drew a horizontal line on the coro-
nal slice connecting the most medial to the most lateral point of the
hypothalamus (Figure 12.3(c,d)).

Table 12.1 — Landmarks used for hypothalamus division into subregions

Anterior Tuberal
Most rostral Most rostral slice of the Posterior to last coronal slice
landmarks hypothalamus on coronal view where anterior is visible
Most caudal Defined by the anterior Most rostral slice where
landmarks | commissure on sagittal view (Figure 12.3(a,b)) | mammillary bodies are visible
Superior/ Horizontal line on the coronal slice connecting the most
Inferior medial to the most lateral point of the hypothalamus (Figure 12.3(c,d)).

« Whole brain segmentation: Unlike the hypothalamic subregions, seman-
tic meaning is not necessary for the whole brain labels. That means we do not
need to correctly delineate the morphological borders of the other structures.
We just need to establish context around the hypothalamus to generate the
synthetic images. We decided to use k-means, a non-supervised clustering
method, to model the non-hypothalamic tissue based on grayscale levels of
the pre-processed images. Seeking to increase data variability, we ran this
step for values of k ranging from 4 to 9. As a result, for each of the 10

images, we have 6 different maps, totaling 60 label maps (Figure 12.4)

o Segmentation merge: Finally, it is necessary to merge both segmentations.
In this stage, we needed to ensure that there would be no discrepancy during

the overlay process. To achieve this, we employed mathematical morphol-
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Figure 12.3 — Segmentation protocol: (a) Subregions delineation: Anterior supe-
rior (pink), anterior inferior (red), tuberal superior (yellow), tuberal
inferior (blue) and posterior (green) (b) Sagittal landmarks for sub-
region delineation (AC = Anterior Comissure and MB=mamillary
body) (c¢) Coronal View of superior and inferior tuberal subregions
(d) Coronal landmark for superior /inferior division

ogy closing to approximate delineation of the fornix and erosion to eliminate

false positive voxels in the third ventricle area (Figure 12.5).

12.2.3 Hemisphere mirroring

The ex vivo images were acquired from single brain hemispheres. Given
that the hypothalamus is situated in the most medial part of the brain, a model
covering a single hemisphere lacks contextual information regarding its surround-

ings. To address this concern, we mirrored the images to generate a complete brain.
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Figure 12.4 — Examples of three different label maps derived from the same image.
From left to right: k =4, k=6, k=8

(a) (b) ()

Figure 12.5 — (a) Whole brain segmentation: example with k=4 (b) Manual seg-
mentation simply overlapping the whole brain segmentation. We can
see that there are a few inconsistent voxels, that should be labeled
either as hypothalamus or background that have different labels. (c)
To fix these inconsistencies, a mathematical morphology-based algo-
rithm is applied.

In the mirroring process, two major concerns needed to be addressed: the origi-
nal and mirrored hemispheres should not overlap, and they should be as close as

possible to each other (Figure 12.6).

To tackle this issue, we encode the two constraints into softened versions

and combine them into a weighted cost function that is optimized with respect to
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a rigid transformation T:

T = argming > 0lx(vi; T) > 0z(v; T) —a > x(v; T) (12.1)

i€ ieQ
where (2 is the brain mask, z(v;; T) is the z real-world coordinate after rigid trans-
formation with 7', § is Kronecker’s delta, and « a trade-off value that changes

according to the image.

The rationale behind the cost function is that we want positive values of
x to be penalized (Figure 12.6 (a)), so the images do not overlay (Figure 12.6 (d)).
However, the image should not be too distant from the x=0 axis (Figure 12.6 (b))
to not create an unrealistic gap between both hemispheres (Figure 12.6 (e)). There-
fore, the larger the values of the absolute x, the more the function is penalized. For
the latter, we added a trade-off value, which penalizes overlaps more heavily than
gaps. For the last step, we mirror the transformed hemisphere and mesh both the
right and left hemispheres into one image, ending up with 10 subregions, since we
now have both right and left sides of the brain (Figure 12.6(f)).

12.3 Manual segmentation quality assessment

To test the intra-rater reliability of the manual segmentations, one non-
specialist manually segmented 5 out of the 10 images twice, using the protocol
described in Section 12.2.2. The images were randomly selected from the total
sample and were re-segmented blindly, with the same software and computer set-
tings, after four months from the first manual segmentation. For evaluation, we
used the Dice Coefficient and Average Hausdorff Distance (Table 12.2).

The small size of the structure and the minimal contrast between adja-
cent tissues contribute to generally low intra-rater metrics for the hypothalamus.
For example, Estrada et al. (ESTRADA et al., 2023) found an intra-rater Dice co-
efficient of 0.82 for the entire structure based on in vivo images with a resolution
of 0.8mm?. Similarly, Billot et al. (BILLOT et al., 2020) reported a global Dice

coefficient of 0.89 using in vivo images with a resolution of Imm?. In both studies,
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the authors highlighted the challenges associated with manual delineation due to

the small size and low contrast of the hypothalamus.

Table 12.2 — Intra-rater metrics (median) for 5 subjects.

Dice Coefficient | Average Hausdorff Distance
Whole 0.82 0.37
Anterior 0.73 0.63
Tuberal 0.78 0.37
Posterior 0.78 0.31

12.4 Data Usage and Availability

The label maps described here could be employed for training different
networks dedicated to the hypothalamus or different brain structures. To achieve

this, three steps need to be followed:

e Manual segmentation: Manually segment the target structure. Given that
there are only 10 images, the manual segmentation will not demand as much

effort as the ones typically used in supervised learning.

e Merge with whole brain segmentation: Merge the manual segmentation

with the provided whole brain segmentation.

e Mirroring: Run the provided mirroring codes to generate the final label

maps.

We also encourage the usage of this dataset in tasks other than seg-
mentation. For instance, we can find in the literature the use of synthetic images
applied to registration (IGLESIAS, 2023) and conversion of different MRIs into
high-resolution T1w scans (IGLESIAS et al., 2021). HELM is openly available for

download 3.

3 <https://www.nitrc.org/projects/hsynex_ data/>
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(d) (e)

Figure 12.6 — Label map creation: Following the segmentation step, a half-brain la-
bel map is generated (a). However, given the hypothalamus’s central
location within the brain, mirroring is essential to provide contex-
tual information. For the mirroring process, translation and rotation
are applied to the RAS coordinates. This involves moving the brain
in close proximity to the z=0 axis from the negative side, without
surpassing into the positive side. Essentially, a final cost function
is computed, penalizing positive values of z (b) and high negative
values. Finally, we prevent the overlap between brain hemispheres
(d) and also prevent them from ending up at unnaturally distant
positions (e).
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13 H-SynEx

Here, we describe the development of H-SynEx, a method for hypotha-
lamus segmentation that is capable of working across different MR sequences and

resolutions.

13.1 Materials

Here we describe the datasets used for the development of the method

and those used for the experiments.

13.1.1 Training Data

The data used for training H-SynEx comprises synthetic images derived
from HELM. By using a label map derived from ultra-high resolution data, we
intend to increase the final automated segmentation quality when comparing with
in vivo-based models, especially on the structure borders, that suffer more with
partial volume in in vivo images (Hypothesis b and f). Details on the synthetic

image generation are detailed in Section 13.2.1.

13.1.2 Test Data

The method evaluation relies on in vivo images from 6 different datasets
(Table 13.1):

« FreeSurfer Maintenaince Dataset(FSM) (GREVE et al., 2021): Com-
posed of 29 subjects from which 7 were used for validation and 22 for testing.
For each subject, we have T1w, T2w, PD, FA | and qT1 acquisitions (Fig-
ure 13.1). FSM contains manual labeling for the whole hypothalamus and its
subregions. This dataset was approved by the Massachusetts General Hos-

pital Internal Review Board for the protection of human subjects and all
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subjects gave written informed consent. All other datasets used for training

and inference are openly available.

MILI (RODRIGUES et al., 2022): Explained in Section 7, The MICLab-
LNI Initiative comprises manual and automated segmentations of the entire
hypothalamus conducted on T1w images. However, it lacks segmentations
for hypothalamic subregions. It includes subjects from various open datasets
such as MiLI, OASIS (LAMONTAGNE et al., 2019), and IXI *. We only
used the manually segmented images, totaling 55 from MiLI (30 controls
and 25 ataxia patients), 23 from OASIS, and 19 from IXI. For the latter
dataset, as it also encompasses T2w and proton density (PD) acquisitions,

we incorporated these modalities in our experiments.

ADNI (MUELLER et al., 2005): We used a total of 572 controls (280 male
and 292 female with average age of 75.5 + 6.4 and 73.6 + 6.01, respectively)
and 271 Alzheimer’s disease (AD) patients (143 male and 98 female with
average age of 75.34 + 7.6 and 73.8 £ 7.6, respectively) for both T1w and
fluid attenuated inversion recovery (FLAIR) modalities. The ADNI dataset

does not have manual segmentation of the hypothalamus.

NIFD 2: From the Neuroimaging in Frontotemporal Dementia dataset, we
used 111 controls (49 male and 62 female with average age of 61.8 + 7.4
and 63.4 + 7.8, respectively) against 74 behavioral variant frontotemporal
dementia (bvFTD) patients (51 male and 23 female with average age of
61.16 £ 5.8 and 62.4 4+ 7.7, respectively). The NIFD dataset does not have

manual segmentation of the hypothalamus.

1
2

<https://brain-development.org/ixi-dataset />
<https://ida.loni.usc.edu/collaboration/access/appLicense.jsp>
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Tiw T2w PD FA

qTl

Figure 13.1 — Example of different modalities (FSM dataset)

Table 13.1 — Datasets used for model validation and testing; WS: Whole Struc-
ture, SR: Subregion

Dataset Sequence Number of Number of Seglxl‘z:ll]tl:tlion Segmentation
Name type Acquis. Subjects Content Protocol
g g B) VE et al., 202
Validation | FsM | TLW, T2w. PD GREVE et al., 2021)

WS:ScLimbic
ax rq
FA, qT1 35 7 Controls WS/SR

SR:Bocchetta et al. (BOCCHETTA et al., 2015)

GREVE et al., 2021)

Tlw, T2w PD, . WS:ScLimbic
FA, qT1 110 22 Controls WS/SR SR:Bocchetta et al.

FSM

BOCCHETTA et al., 2015)
) MiLI I 55 o) Controls
Testing NLLOASES T 53 5 Controis WS WS:Rodrigues et al. (RODRIGUES et al., 2022)
MiLI-IXT Tlw, T2w, PD 57 19 Controls
ADNI Tlw, FLAIR 1686 27‘51712\301;13;11;% No manual
NIFD T1 185 111 Controls segmentation

74 bvFTD patients

13.2 Methods

13.2.1 Data Preprocessing

The training data comprises synthetic images generated from HELM.
Despite the image synthesis being conducted during the model training, several

steps are undertaken before training to create the final training images:

o Creation of label maps: The process of creating HELM, as described in
Chapter 12.

« Find MNI coordinates: Using the label maps L[D x H x W], from
HELM, we generate a Gaussian image G [D x H x W] that simulates a T1w
MRI. Subsequently, we register G to the MNI space using NiftiReg and ob-
tain the MNI coordinates C'[3 x D x H x W] of the registered image. C' will
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be used during training to assist the network in locating the hypothalamus.

It is important to emphasize that during training, L remains unregistered.

e Crop: We crop L and C' around the hypothalamus, resulting in two stan-
dardized arrays, Legop [200 X 200 x 200] and Ceyop [3 x 200 x 200 x 200], which

corresponds to a field of view of 60 x 60 x 60mm.

« One-hot array: We convert L, into a one-hot array Lone [V % 200 x 200 x 200],

with V' being the number of labels presented on Lc,p,. V' varies according to

the K labels employed at the whole brain segmentation.

13.2.2  Training

Synthetic Images Generation The synthetic image generation is
performed on the fly, during training (Figure 13.2). At each iteration, one of the
training label maps, Loye, is randomly selected. Then, we apply aggressive geo-
metric augmentation that encompasses random crop, rotation, and elastic trans-
formation on Loye and Cep, ending up with Lipans [V X 160 x 160 x 160] and
Clirans [3 X 160 x 160 x 160], respectively. Next, we use the generative model pro-
posed by SynthSeg (BILLOT et al., 2023) based on Gaussian Mixture Models
conditioned on L;.q,s, using randomized parameters for contrast and resolution
to create the final synthetic images S [160 x 160 x 160] (Figure 13.3). The target
T [V x 160 x 160 x 160], derived from Ly, is also created during this step. To
assist training, we use an Euclidean distance map, E[V + 1 x 160 x 160 x 160]
derived from T, which has been proven to help locate boundary features during
segmentation tasks (LIU et al., 2022b). E will be part of the loss function and is

only employed during training, not being necessary during inference.

The final input of the network, I'[4 x 160 x 160 x 160], is the concate-

nation of S and Clans.

Training architecture Despite the good performance of Correct2Seg,
we decided at this stage of the project to use a 3D architecture to better lever-
age synthetic data. Given that a 3D Modified Eff-UNet would be computationally
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Figure 13.2 — Generation of synthetic images: The synthetic images S are gener-
ated using the label maps from the ez vivo images.

Figure 13.3 — Examples of coronal slices from 3D synthetic images used as input.
The images shown here came from the label maps cropped around
the hypothalamus. The use of aggressive data augmentation along
random contrast values on the generative model results in large vari-
ability in the appearance of the input images.

costly, we opted to use a 3D U-Net as the module instead. Two distinct sub-models
were trained separately, one for the entire hypothalamus (M, ) and another specif-
ically for its subregions (My,,) (Figure 13.4(Db)).

Both My, and Mj,, are 3D-UNets (WOLNY et al., 2020; CICEK et
al., 2016), however, in both cases, we added a skip connection between the in-
put channels referring to Ci,.ns and the final convolutional block to ensure that

the original positional encoding is readily available at full-resolution also in the
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decoder. My, receives I and E as input and outputs Oyyp [2 x 160 x 160 x 160].
The input of Mgy, is defined as Iy, = I * Ogyp.

While Oy, is a 2-channel array representing the hypothalamus and its
background, Og,, [13 x 160 x 160 x 160], the output of Mgy, is a 13-channel array

encompassing the subregions, right and left fornices and background.
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Figure 13.4 — Training Flowchart: There are two training blocks, one focused on
the entire hypothalamus and another specialized in subregion seg-
mentation. The training of the two blocks is done subsequently. We
first trained the whole structure segmentation model(Mp,,), and
later, the model for the subregions segmentation(My,;,). However,
the output of My, is used to assist the input creation of M, dur-
ing training.

Loss function and training details The loss function applied to
My, (Eq. 13.1) is a combination of Dice Loss (DL) and Mean Square Error
(MSE), while the loss function applied to My, (Eq. 13.2) combines DL and
Cross Entropy (CE):

Ligp = @ % DL (T, Theq) + (1 — @) % MSE (E, Epreq) (13.1)
Lo, = % DL (T, Tored) + (1 — @) % CE (T, Tpyea) (13.2)

with E being the Euclidian Distance map, Tyreq being the network output and
T the target. For both models, we used Adam optimizer with a learning rate of

5x107°, a batch size of 32, and value of v as 0.3. As stop criteria, we simply trained
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My, for approximately 40000 training steps and did not use any validation set.
However, on Mg,,, we used 35 images from FSM (5 acquisitions from different
MRI sequences from 7 distinct subjects) as validation set (Table 13.1). We set an
early stop criteria based on the DC of the validation set. For this, we defined the
stopping criteria as d,,;, = 0.001. The network trained for approximately 28000
steps and stopped.

Both 3D U-Net modules are composed of an encoder of 5 levels with
24, 48, 96, 192, and 384 feature maps. Each convolutional block is composed of

three layers: group normalization, convolution, and activation function (ReLU).

13.2.3 Inference and Post processing

The first step of the inference (Figure 13.5) is preprocessing, in which
we find the MNI coordinates (Cjy) of the input image, by using a fast deep learning
algorithm, EasyReg (IGLESIAS, 2023). For M,,, the final input Ay, is the con-
catenation of the cropped inference image (Crli,) and Ciyy. The input for Mgy,
Aint sub, is formed by the product of Aj.¢, the output of My, Onyp inf, and the
ventral diencephalon (VDC) label, which is derived from the whole brain segmen-
tation produced by EasyReg (IGLESIAS, 2023). The inclusion of the ventral-DC
label is justified as it helps reduce false positives within the anterior subregion.
The post-processing phase comprises two sequential steps: the rescaling of the fi-
nal segmentation to match the voxel size of I, and the exclusion of voxels that
belong to the third ventricle by using the whole brain segmentation obtained from
EasyReg (IGLESIAS, 2023).

13.2.4 Statistical Analysis

The statistical analysis was done using the AVD and DC combined with
Wilcoxon signed-rank tests to assess the statistical significance of differences. We
also compared the ability of H-SynEx and competing methods to find statistical
differences in the volume of hypothalamus subregions of controls and patients (AD

and bvFTD). For this, we used Wilcoxon rank-sum test to assess the significant
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Figure 13.5 — Inference flowchart. The inference image I;,¢ goes through a prepro-
cessing step to find the input array Aj.s. Ajyr is then applied to the
whole structure segmentation model(My,,). Finally, using VDC (see
text), Aine and the output of My, (Onyp inf), We create the input for
the subregion segmentation model (Mj,;) and find the final subre-
gions segmentation.

difference in medians between groups and the area under the receiving operating
characteristic curve (AUROC) as a non-parametric version of effect sizes between

groups.

Finally, we used the DeLong test to compare AUROCs across meth-
ods operating on the same sample. All statistical tests were conducted with a
confidence level of 95% (p — value < 0.05)

13.3 Experiments

As previously stated, our main hypothesis is that the use of synthetic
images derived from ultra-high resolution ez vivo MRI would reduce label noise and
lead us to a model capable of generalizing across various MRI sequences and reso-
lutions (Hypothesis b,f,g and h). Consequently, our experiments were structured to
assess the method’s applicability under diverse conditions (Table 13.2). Initially,

we conducted an inter-rater analysis to establish quantitative metric baselines.
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Subsequently, we validated the method’s performance across different modalities
using the FSM dataset (encompassing T1w, T2w, PD, FA, and qT1 sequences)
and the IXI dataset (consisting of T1w, T2w, and PD sequences). Following this,
we compared H-SynEx with other methods from the literature across multiple
datasets (MiLI, MiLI-OASIS, MiLI-IXI, FSM), including one comprising both pa-
tient and control subjects (MiLI). We then conducted an application analysis in
group studies involving patients with AD and bvFTD (using ADNI and NIFD
datasets, respectively). Finally, after confirming the method’s usability with im-
ages of different sequences, we assessed its performance across various resolutions

using FLAIR images from ADNI with a slicing of 5mm.

Table 13.2 — Summary of conducted experiments

Testing set
Experiment Objective Number of Acquisitions MRI
Dataset
per MRI Sequence Sequence
Inter-Rater Metrics To establish & bascline for FSM 10 T1
evaluation metrics
Direct comparlson. with | To a§sess whether the method FSM 29 Tlw, T2w, PD, FA, qT1
manual segmentation on is capable to segment
different sequences on different MRI sequences IXT 19 Tlw,T2w,PD
Comparing H-SynEx MiLI 55
Comparing against against other state-of-the-art | MiLI-OASIS 23 T1
state-of-the-art methods available methods MiLI-IXT 19
using only T1w images FSM 22
Application in Assess the method usability ADNI 843 T1
Group Studies in group studies NIFD 185
Resﬂ.lence tol large To assess usablhty' ADNI 843 Tlw, FLAIR
slice spacing on diverse MRI resolutions

13.3.1 Inter-rater metrics

One of the primary challenges in analyzing the results of our experiment
is that each dataset used in testing has a distinct manual segmentation protocol
(Table 13.1), none of which aligns with the one employed in training H-SynEx due
to the difference between in vivo and ez vivo brain morphology (Section 12.2.2).
Therefore, our initial experiment aims to establish a baseline by comparing inter-
rater metrics (AVD and DC) using distinct segmentation protocols performed on

T1w images. We compare manual segmentations in 10 FSM images delineated by
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two different raters: the first uses the FSM protocol (Table 13.1) while the second

employs the protocol used during the label maps construction(Section 12.2.2).

13.3.2 Direct comparison with manual segmentation on different se-

quences

In this experiment, we aim to evaluate the ability of H-SynEx to prop-
erly segment the subregions of the hypothalamus in different MRI sequences. We
employed five different sequences from FSM - T1w, T2w, PD, FA, and quantita-
tive T1 (qT1)- and three from IXI -T1w, T2w, and PD. As the openly available
methods exclusively operate on T1lw images, a quantitative comparison of their

metrics with H-SynEx was not possible in this experiment.

13.3.3 Comparing against other state-of-the-art methods

To compare H-SynEx with other state-of-the-art models (BILLOT et
al., 2020; RODRIGUES et al., 2022; GREVE et al., 2021), we used T1w images
from MiLI and FSM datasets and analyzed the whole hypothalamus segmenta-
tion. It is worth noting that the MiLI segmentation protocol does not include the
mammillary bodies. Therefore, for this dataset, we excluded the posterior subre-
gion from the results before computing the metrics. Similarly, HypAST does not
segment the posterior subregion, therefore we excluded it from FSM in this case,

before running the metrics.

13.3.4 Application to group studies

In the literature, we can find some studies that point to hypothalamic
atrophy in both AD and bvFTD patients (BOCCHETTA et al., 2015; TAO et al.,
2021). Therefore, to evaluate the group studies, we compared the hypothalamic
subregion volumes of patients and control groups from ADNI (AD subjects) and
NIFD (bvFTD subjects). We normalized the volumes by dividing them by the
total intracranial volume (TIV) provided by SynthSeg (BILLOT et al., 2023). For



Chapter 13. H-SynFEzx 91

comparative purposes, we conducted the analysis using Billot et al.. and compared
with H-SynEx through DeLong test (DELONG et al., 1988).

13.3.5 Resilience to large slice spacing

In this experiment, we applied H-SynEx on FLAIR images from the
ADNI dataset acquired with a slice spacing (and thickness) of 5mm in the axial
plane. Here, we want to evaluate our method’s capability to identify hypothalamic
atrophy with larger spacings, which are common in clinical MRI. Since no other
method in the literature works with FLAIR images, we just compared the results

from H-SynEx applied on FLAIR and T1w images.

13.4 Results

Here we present the final results for each of the presented experiments.

13.4.1 Inter-rater metrics

When analyzing inter-rater metrics, we can see that for all subregions
the DC is lower or equal to 0.66 (Table 13.3). These low values are expected due to
the different segmentation protocols used and the small size of the hypothalamus

subregions.

Table 13.3 — Inter-rater metrics (median) for 10 subjects from FSM

__ Metric | o | Avp
Subregion
Anterior 0.63 | 0.41
Tuberal 0.66 | 0.43
Posterior 0.66 | 0.38
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13.4.2 Direct comparison with manual segmentation on different se-

quences

Analyzing H-SynEx metrics on different sequences, we can see that the
method presents a better performance on Tlw images (Figure 13.6). Yet, it is
capable of segmenting the hypothalamus and its subregions in all the proposed

MRI sequences, as can be seen in Figure 13.7.

13.4.3 Comparing against other state-of-the-art methods

Given that Billot et al. (BILLOT et al., 2020), the only available method
for subregion segmentation works only on T1w images, we compared its results with
H-SynEx on 22 T1w images from FSM (Table 13.4). Finally, to compare H-SynEx
with ScLimbic (GREVE et al., 2021) and Rodrigues et al. (RODRIGUES et al.,
2022) we used the whole structure (Table 13.5).

Since the datasets have few subjects and we can not assess with high
significance that the distribution is Gaussian, the statistical analyses were con-

ducted considering non-parametric distributions.

Table 13.4 — AVD and DC (median) for H-SynEx and Billot et al. on different
subregions for FSM dataset. tindicates statistical significance on a
two-sided Wilcoxon rank-sum test using Bonferroni correction for p <

0.05
Subregion Model H-SynEx | Billot et al.
a Anterior 0.547 1.32
> Tuberal 0.49¢% 0.66
< Posterior 0.337 0.52
= Anterior 0.53¢ 0.33
O Tuberal 0.59 0.58
A H-Posterior 0.677 0.55
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(target) volumes for FSM dataset



Chapter 13. H-SynFEzx 94

Mi LI Control

atients

KG M E’«H ML

1¥I-Tlw  MILIP

E.nfi-

1%l -'|'2w

s

I%1-PD

OASIS

?'
| p‘ b

|!-M

MARTIND'S gT1  MARTIND'S FA  MARTINO'S PO MARTIND'S T2w  MARTIND'S Tlw ADMNIFLAIR CM  ADNI Tlw AD ADNI FLAIRAD  ADMIT1w CN
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Table 13.5 — AVD and DC (median) for H-SynEx, ScLimbic (GREVE et al., 2021)
and Billot et al. (BILLOT et al., 2020) on different datasets (MiLlI,
IXI, OASIS, and FSM) for the entire hypothalamus (except MB).
The symbols indicate statistical significance on a two-sided Wilcoxon
rank-sum test using Bonferroni correction for p < 0.05: (*) Billot
vs H-SynEx; (1) ScLimbic vs H-SynEx; (*) Billot vs ScLimbic. Since
ScLimbic was trained using the FSM dataset, we did not consider
these results. Similarly, since HypAST was trained using data from
MiLI, IXT and the same segmentation protocol as OASIS, we did not
consider these results

" dlzftaset MiLI | IXI | OASIS | FSM

Billot 0.46 | 0.61%F | 0.47 | 0.40

A HypAST - - - 0.41
% ScLimbic | 0.397 | 0.44 | 0.49 | -

H-SynEx | 045 | 0.45 | 0.5 |0.43

& Billot 0.66* | 0.6 [0.65*% | 0.68

O HypAST - - - 0.69
A ScLimbic | 0.677F | 0.64™ | 0.59 -

H-SynEx | 063 | 062 | 053 |0.65

13.4.4 Application to group studies

Observing the applicability of the methods on group studies, H-Synkx
achieved statistical significance (p < 0.05) in the Wilcoxon rank-sum test in all hy-
pothalamic subregions when comparing AD vs. controls, while Billot et al. was un-
able to detect differences in the tuberal-inferior region (Table 13.6). Additionally, in
some cases, we observed a higher AUROC in H-SynEx, along with a p—value < 0.5
for the DeLong test, indicating the ability of H-SynEx to better discern differences
between the two groups in this dataset. Regarding NIFD, the results were similar

for both models, except for the tuberal-inferior region.

13.4.5 Resilience to large slice spacing

Finally, we analyzed H-SynEx segmentations on 5mm spacing FLAIR
images from the same subjects from the ADNI dataset used in Experiment 4.

When analyzing the volumes, H-SynEx returns statistically significant results (Ta-
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ble 13.6) when comparing patient and control volumes normalized by TIV in all

subregions, except for the posterior subregion.
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Figure 13.8 — Normalized volume correlation for FLAIRs vs T1w (ADNI Dataset)
using H-SynEx segmentation. Up: Control subjects; Down: AD pa-
tients. We can see that besides the posterior subregion, we can find
a positive correlation between FLAIR and T1w normalized volumes.

13.5 Discussion

In this part of the project, we addressed Hypotheses b and f by using

ultra-high resolution ex vivo images to create more accurate segmentations, com-

pared to traditional in vivo image segmentations. Additionally, using only 10 ez

vivo images, we developed H-SynEx, a method capable of working across different

MRI sequences and resolutions, thereby confirming Hypotheses ¢g and h.

While other studies have utilized synthetic images (BILLOT et al.,
2023) and ez vivo data (IGLESIAS et al., 2015) for developing segmentation meth-
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Table 13.6 — AUROC Values for patients vs. controls (hypothalamus volume) for

H-SynEx and Billot methods in ADNI and NIFD datasets. For ADNI
dataset, we also analyze our method when applied to FLAIR images
with spacing of 5mm. Stars indicate the level of statistical significance
(two-sided Wilcoxon rank-sum test) between both cohorts (* p <
0.05, ** p < 0.01). T indicates statistical significance on the DeLong
test (p < 0.05) between H-SynEx and Billot methods. * indicates
statistical significance on the DeLong test (p < 0.05) between H-
SynEx applied on T1w and H-SynEx applied on FLAIRS.

Dataset ADNI NIFD
Model H-SynEx H-SynEx Billot H-SynEx Billot
Subregion FLAIR Tlw Tlw Tiw Tiw
‘Whole 0.66** 0.74%* 0.65%*T 0.79%* 0.74%*
a-sHyp 0.60%*% 0.69%* 0.72%* 0.76** 0.75%*
a-iHyp 0.60%* 0.64** 0.55*F 0.72%* 0.62%*
supTub 0.68%* 0.60%* 0.67F* 0.76** 0.76**
infTub 0.67F* 0.73%* 0.52f 0.74%* 0.59*
postHyp 0.52* 0.72%* 0.70%* 0.7%* 0.73%*

ods applied to in vivo MRI, to the best of our knowledge, H-SynEx is the first to
merge both techniques. Through this integration, we developed a method capable
of effectively segmenting small structures, such as hypothalamus subregions, across

various MRI sequences and resolutions, including FLAIRs with a spacing of 5mm.

Typically, when evaluating how well a developed segmentation method
generalizes, we compare it to others found in existing literature. To do this, it’s
common to use a dataset that none of the methods have seen during training. How-
ever, when these methods use training sets with different segmentation protocols,
this difference can introduce bias, favoring the method trained under the same
protocol as the test images. By using ex vivo images to construct the training set,
the segmentation protocol used in training H-SynEx became different from any
other in vivo image set. Consequently, the main challenge in analyzing the results
lies in the difference between the training and test protocols. Focusing on that, we
compared the manual segmentation of two raters who employed distinct protocols
on 10 T1w images from the FSM dataset and found inter-rater DC values lower or

equal to 0.66 and AVD higher or equal to 0.38. We use these values as a baseline
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for analyzing the metrics in the subsequent experiments.

In Experiment 2, we analyzed H-SynEx usability across different MRI
sequences. We could assess that T1w images presented the best results. However,
despite the lower DC and higher AVD values for the other sequences, it is impor-
tant to emphasize that the manual segmentations of the hypothalamus subregions
in both FSM and IXI were done in T1w images, not being influenced by the differ-
ent contrasts of other sequences. Also, despite FSM images for each subject have
already been registered, the same is not true for IXI. Hence, the manual segmen-
tations were registered to be used on the different sequences acquisitions of the
same subject. Both registration and the use of a different sequence for manual
segmentation may compromise the final results. Finally, we could notice a high
variability on both metrics, which may be explained by the small size of the hy-
pothalamus. This hypothesis is reassured by comparing the volumes delineated by
H-SynEx and manual segmentation in the FSM dataset (Figure 13.6). We can see
that both the posterior and anterior subregions, which show greater variability
in the DC and AVD, are relatively smaller than the tuberal subregion. Further-
more, the variability in volumes across sequences and subregions appears to be
less pronounced than the variability in the metrics. For instance, for the anterior
subregions we can see a large variability in the DC, which is less pronounced in
both AVD and the volumetric analysis. This may imply that the small size of the
anterior subregion may be interfering in the final DC values. The same analysis is

valid for the posterior region.

When comparing H-SynEx with other state-of-the-art methods, we can
see that H-SynEx outperforms Billot et al. in almost every metric for subregion
segmentation (Table 13.4). Here, it is important to highlight that despite DC values
seeming to be low at first glance, they are not far from the values observed in the
inter-rater analysis. The same is true for AVD. Observing AVD and DC for the
whole structure (Table 13.5), H-SynEx outperforms Billot et al. and returns similar
results to ScLimbic (GREVE et al., 2021) on the former, despite not achieving the
best performance on the latter. When comparing with HypAST, we can also find
similar results on AVD and DC for FSM, but it is important to notice that since
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HypAST metrics were computed without the posterior subregion, this is not a
direct comparison. However, when dealing with small structures with complex
boundaries, distance metrics such as AVD, are more suitable to compare different
methods (TAHA; HANBURY, 2015). Also, it is important to emphasize that
all other methods were exclusively trained on in wvivo Tlw images, not having
to deal with domain gap. Therefore, even not presenting the best quantitative
results in T1lw images, H-SynEx presents the best generalization ability across

MRI sequences.

When comparing volumes of the hypothalamus from patient and control
groups on T1w images, we have confirmed that our method exhibits a statistically
significant difference in all subregions in ADNI and NIFD datasets, with AUROCs
of 0.74 and 0.79 respectively, and p — value < 0.05 for the Wilcoxon signed-rank
test in both cases. Notably, the AUROC values reported to NIFD are higher than
those found in ADNI. This behavior is expected since bvEF'TD patients tend to
exhibit more pronounced hypothalamic atrophy than AD patients (10-12% volume
loss in AD and 15-20% in bvFTD) (VERCRUYSSE et al., 2018). Additionally, we
determined that H-SynEx results differ statistically from Billot et al. for the entire
hypothalamus and in most subregions in the ADNI dataset, with a p—wvalue < 0.05
for the DeLong test.

Finally, we analyzed the same subjects from ADNI used in experiment
4, but using FLAIR images with a spacing of 5mm. It is possible to see that,
similarly to when analyzing T1w images, the method was able to differentiate
between patients and controls in almost all subregions, except for the posterior.
This may be explained by the 5mm spacing of the FLAIR images since it makes
many images lack the mammilary bodies, or limit it to just one slice of the image.
For this reason, the small AUROC values in this subregion are expected. Finally, we
plotted the correlation among T1w and FLAIR normalized volumes (Figure 13.8)
to investigate whether H-SynEx exhibits consistency among them. The anterior
subregion displays a moderate correlation (r=0.40 and r=0.50, respectively), and
tuberal subregions have strong correlations (r=0.79 and r=0.80, respectively), both

for controls and AD subjects. As expected, the posterior correlation is weak in both
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cases (r=0.11 and r=0.22). These results support the hypothesis that the method

can be used in challenging resolutions and still detect differences among groups.

A limitation of the project is the difference in H-SynEx performance
between T1w images and other sequences and the high variability of the metrics.
However, besides the divergence in the manual segmentation protocols used for
training and testing, in both IXI and FSM, we only have one label per subject.
Therefore the manual segmentations were not influenced by different contrasts.
Also, we could demonstrate that the smallest subregions (anterior and posterior)
had the biggest variability, especially in DC, an overlap measure known for being
sensitive to small structures (TAHA; HANBURY, 2015).
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14 Considerations

In the process of Method Expansion, we established HELM, a com-
prehensive collection of label maps generated from ultra-high-resolution ex wvivo
MR images. Not only HELM enabled the development of H-SynEx, a state-of-
the-art hypothalamus segmentation technique, but it also offers versatility for ex-
tending its application to different brain structures with minimal effort. HELM is

openly available at https://www.nitrc.org/projects/hsynex_data/

Also, we developed, to the best of our knowledge, the first automated
method for hypothalamic subregion segmentation capable of working across dif-
ferent in vivo MRI sequences and resolutions without retraining. By producing
reliable and consistent segmentations, H-SynEx facilitates the analysis of the hy-
pothalamus in various pre-existing datasets, whether in research or clinical set-
tings. This contributes to an improved understanding of the roles played by the
hypothalamus and its subregions in neurodegenerative diseases and other related

conditions.

Finally, we will apply H-SynEx to real case study groups, exploring
the role of the hypothalamus in three different conditions: Spinocerebellar ataxias,

amyotrophic lateral sclerosis, and systemic lupus erythematosus.
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15 Applying H-SynEx in Group Studies

Finally, we applied H-SynEx to real case studies, aiming to better un-

derstand the role of the hypothalamus in different conditions. Here, we study:

o Spinocerebellar Ataxias;
o Amyotrophic Lateral Sclerosis; and

o Systemic Lupus Erythematosus.

15.1 Materials

All data came from subjects that were scanned at the University of
Campinas hospital. The participants underwent an MR imaging scan utilizing a 3T
Philips Achieva scanner (Philips, Best, The Netherlands) with standard 8-channel
head coils. High-resolution 3D T1w volumetric images of the brain in sagittal
orientation were acquired, featuring a voxel matrix of 240x240x 180, a voxel size of
I1x1x1mm3, a TR/TE of 7/3.201 ms, and a flip angle of 8°. The data used for these
studies rec