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Resumo

O hipotálamo é uma estrutura cerebral composta por vários subnúcleos que contŸm

os corpos celulares de múltiplos subtipos de neurônios. Apesar de suas pequenas

dimensões, o hipotálamo desempenha um papel signicativo no controle do sono,

da temperatura corporal, do apetite e das emoções, entre outras funções. Sua

disfunção tem sido implicada em vários distúrbios neurológicos, como demŸncia

frontotemporal comportamental, esclerose lateral amiotróca e doença de Alzhei-

mer.

Embora a ressonância magnética (RM) seja amplamente utilizada para estudar

o hipotálamo, sua segmentação manual é suscetível a alta variabilidade inter e

intra-observador devido ao seu pequeno tamanho e baixo contraste com os tecidos

vizinhos. No início deste projeto, não havia nenhum método automatizado para

segmentação do hipotálamo disponível na literatura. Mesmo após a proposição de

novos métodos, os métodos automatizados existentes eram limitados a sequŸncias

e resoluções especícas de RM, restringindo o potencial de pesquisa.

Este projeto visa resolver essas limitações fornecendo dois conjuntos de dados pú-

blicos: MiLI (MICLab-LNI Initiative), que foca na estrutura completa em imagens

T1 ponderadas com 1mm isotrópico, e HELM (Mapas de Rótulos ex vivo do Hipo-

tálamo - do inglŸs "Hypothalamus ex vivo label maps), que contém a segmentação

manual do hipotálamo e suas sub-regiões. Além disso, desenvolvemos dois métodos

automatizados de segmentação: HypAST, focado em imagens T1 ponderadas, e H-

SynEx, um método capaz de acomodar diversas sequŸncias e resoluções de RM,

facilitando assim uma pesquisa mais ampla sobre o hipotálamo. Por m, aplica-

mos o H-SynEx em pacientes com trŸs diferentes tipos de doenças (ataxias, lúpus

e esclerose lateral amiotróca) e encontramos diferenças signicativas na maioria

dos grupos quando comparados com imagens de controle.

Palavras-chaves: Hipotálamo, Método de Segmentação, Dataset, Doenças neu-

rodegenerativas, Ressonância Magnética (RM), Aprendizado Profundo



Abstract

The hypothalamus is a brain structure composed of various subnuclei contain-

ing the cell bodies of multiple neuron subtypes. Despite its small dimensions, the

hypothalamus plays a signicant role in controlling sleep, body temperature, ap-

petite, and emotions, among other functions. Its dysfunction has been implicated

in various neurological disorders such as behavioral frontotemporal dementia, amy-

otrophic lateral sclerosis, and Alzheimer’s disease.

Although magnetic resonance (MR) imaging is widely used to study the hypotha-

lamus, its manual segmentation is prone to high inter- and intra-rater variability

due to its small size and low contrast with neighboring tissues. At the start of this

project, no automated method for hypothalamus segmentation was available in

the literature. Even after new methods were proposed, existing automated meth-

ods were limited to specic MRI sequences and resolutions, restricting research

potential.

This project aims to address these limitations by providing two public datasets:

MiLI (MICLab-LNI Initiative), which focuses on the whole structure in T1-weighted

1mm isotropic images, and HELM (Hypothalamus Ex Vivo Label Maps), which

contains manual segmentation of the hypothalamus and its subregions. Addition-

ally, we developed two automated segmentation methods: HypAST, focused on

T1-weighted images, and H-SynEx, a method capable of accommodating diverse

MRI sequences and resolutions, thereby facilitating broader research on the hy-

pothalamus. Finally, we applied H-SynEx to patients with three dierent diseases

(ataxias, lupus, and amyotrophic lateral sclerosis) and found signicant dierences

in most of the groups when compared to control images.

Keywords: Hypothalamus, Segmentation Method, Dataset, Neurodegenerative

Diseases, Magnetic Resonance Imaging (MRI), Deep Learning
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1 An introduction to the Hypothalamus

The hypothalamus is a gray matter brain structure composed of sev-

eral subnuclei, being part of the limbic system (WOLFF et al., 2018). It works

analogously to a signal transmitter, connecting the central nervous system to

its periphery, and has important functions in controlling sleep, and regulating

body temperature, appetite, and emotions (VERCRUYSSE et al., 2018). Al-

though it is believed that its average volume in adults was approximately 43,

more recent studies have already demonstrated that it does not reach half this

value (SCHÖNKNECHT et al., 2013). In the literature, several studies estab-

lish a connection between the whole hypothalamus and neurodegenerative dis-

eases such as Alzheimer’s disease (PIYUSH; RAMAKRISHNAN, 2014), Hunting-

ton’s disease (GABERY et al., 2015; BARTLETT et al., 2019), Behavioral Variant

Frontotemporal Dementia (bvFTD) (BOCCHETTA et al., 2015; PIGUET et al.,

2011), Amyotrophic Lateral Sclerosis (ALS) (GORGES et al., 2017; AHMED et

al., 2021a), among others (SEONG et al., 2019; MODI et al., 2019; WOLFE et al.,

2015; GUTIERREZ et al., 1998), with some studies suggesting a dierential in-

volvement of the hypothalamic subregions across conditions (BOCCHETTA et al.,

2015).To better understand the role of the hypothalamus, several studies use dier-

ent magnetic resonance images (MRI) sequencies (GORGES et al., 2017; SEONG

et al., 2019; WOLFE et al., 2015; PIYUSH; RAMAKRISHNAN, 2014; SCHUR et

al., 2015). However, these studies are limited to select sites and require specialists

with neuroanatomical knowledge to perform manual annotation.

Despite many studies in the literature use hypothalamus segmentation

to analyze the volume variation, in many cases, the segmentation is still done

manually and susceptible to human mistakes and dierent protocol approaches,

which may include or exclude other structures (Table 1.1).

Besides, for being a small region and hard to visualize in MRI (Fig-

ure 1.1), it is dicult to determine the hypothalamus’ morphological landmarks
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Table 1.1 – Divergence of manual segmentation protocols in the literature

Mammillary Bodies Fornix
(SCHINDLER et al., 2013) included excluded
(TOGNIN et al., 2012) excluded included

(TERLEVIC et al., 2013) excluded included
(MAKRIS et al., 2013) included included

(SCHÖNKNECHT et al., 2013; GABERY et al., 2015). For example, two dier-

ent studies on schizophrenia have been published reporting contradictory results:

while Goldstein et al. (GOLDSTEIN; SEIDMAN, 2007) found increased volume

in the hypothalamus of patients, Klomp et al. (KLOMP et al., 2012), on the other

hand, reported preserved volumes. In the case of Huntington’s disease, Gabery et

al. (GABERY et al., 2015) found no dierence between the volume of the hypotha-

lamus of patients and control subjects, whereas Bartlett et al. (BARTLETT et al.,

2019) found a reduction in the gray matter of the hypothalamus in patients.

Figure 1.1 – Hypothalamus on the adult brain on a T1w MR image. Highlighted
on the left, we have the region where the hypothalamus is located. On
the right, we can see more clearly the structure through the manual
segmentation

Analyzing some studies applied on dierent databases (Table 1.2), we

can see that the hypothalamic volume for the control group varies about 57%

from the smaller (910mm3, including mammillary bodies, excluding fornix) to

the greater(1455mm3, counting both sides, including both mammillary bodies and

fornix).



Chapter 1. An introduction to the Hypothalamus 26

Table 1.2 – Divergence of the hypothalamus volume in the literature

Author Database Volume(mean/std)
Tognin et al. (TOGNIN et al., 2012) 26 healthy controls 910 ±10mm3

26 with schizophrenia for controls
Schindler et al. (SCHINDLER et al., 2013) 10 healthy subjects 1130.64±103.48 mm3

Boccheta et al. (BOCCHETTA et al., 2015) 18 patients with bvFTD 944±73 mm3

18 controls for control group.
703± 53 to 732 ± 63 mm3

23 healthy controls for the right hypothalamus
Wol et al. (WOLFF et al., 2018) 20 with bipolar depression 719± 75 to 752± 54 mm3

41 with major depression for the left hypothalamus
for control group

Also, hypothalamus manual segmentation is time-consuming. Accord-

ing to Schindler et al. (SCHINDLER et al., 2013), each volume takes up to 3

hours to be segmented, which may become a bottleneck for researchers using

large datasets. To reduce this time, many authors use semi-automated methods

(WOLFF et al., 2018; MAKRIS et al., 2013; SCHINDLER et al., 2013). Yet Wol

et al. (WOLFF et al., 2018), for instance, developed a semi-automated method

for which each evaluator needed to be trained for three to four weeks, ve to six

hours per day. Each hypothalamus segmentation took around 20-40 minutes to be

generated.
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2 Literature Review

In this chapter, we will discuss some concepts of automated segmenta-

tion found in the literature, as well as the deep learning architectures used through-

out this work. We will also cover the literature on automated segmentation with

a focus on the hypothalamus.

2.1 Deep Learning for Medical Imaging Segmentation

To reduce the time and subjectivity of medical segmentations in gen-

eral, consequently improving reliability, many researchers are using automatic seg-

mentation methods, based on deep convolutional neural networks (CNNs) (RON-

NEBERGER et al., 2015; WACHINGER et al., 2018; CHEN et al., 2018). In lit-

erature, we can nd methods of automatic brain segmentation developed either to

target specic structures, such as the hippocampus (ATALOGLOU et al., 2019)

and corpus callosum (PARK et al., 2018), or studies aiming at several structures

at the same time, such as the work of Wachinger et al. (WACHINGER et al.,

2018).

While large-scale brain imaging studies using MRI have great potential

to enhance our understanding of the human brain in both health and disease

conditions, these studies are often limited by the need for manual annotation.

Automated segmentation methods have been developed to circumvent this problem

and allow for a greater quantity of data to be utilized. Existing methods include

classical atlas-based approaches (IGLESIAS; SABUNCU, 2015; CABEZAS et al.,

2011) and more recent deep learning networks (WANG et al., 2022; ROMÁN et

al., 2020).

Also, the use of semi-supervised models on medical images enhances the

generalization of networks without necessarily increasing the quantity of annotated

data (FAYJIE et al., 2022; BORTSOVA et al., 2019). However, most of these
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models work only in one type of MRI sequence and usually need retraining to

adapt to dierent sequences. Currently, the use of synthetic images has also been

a constant subject of study in the eld since it allows the construction of training

datasets and awless ground truths (THAMBAWITA et al., 2022; BILLOT et al.,

2023) and the development of methods capable of generalizing in across dierent

MRI sequences (IGLESIAS, 2023; BILLOT et al., 2023). Besides the synthetic

approach, the usage of ultra-high resolution ex vivo MRI has proven to be benecial

in the segmentation of small structures such as the hippocampus, amygdala, and

thalamus (IGLESIAS et al., 2015; SAYGIN et al., 2017; IGLESIAS et al., 2018),

as it permits a better visualization of their anatomical boundaries, leading to more

accurate manual annotation.

2.2 Deep Learning Architectures

During the development of this project, we mostly explored two CNN

architectures: U-Net (RONNEBERGER et al., 2015) and EcientNet (MINGX-

ING; QUOC, 2019).

The U-Net (RONNEBERGER et al., 2015) is a segmentation architec-

ture developed for medical imaging segmentation. For being simple and eective,

it is widely explored in the literature (DO et al., 2019; JUAREZ A. GARCIA,

2019; CARMO; SILVA, 2021). The U-Net has two paths: a contracting path, to

capture context, and an extension path, for precise location. The main idea of U-

Net is to replace pooling operators with upsampling operators on extension paths,

which will increase output resolution. For location purposes, upsampled output is

combined with high-resolution features from the contracting path.

The EcientNet (MINGXING; QUOC, 2019), on the other hand, is the

state of the art for natural image classication. The authors proposed a compound

scaling method in order to scale the network depth, width, and resolution in a xed

ratio. Their baseline, EcientNet-B0 has 5.3M parameters and is scaled up until

EcientNet-B7, with 66M parameters. Despite the primary goal of the network

diers from ours, we can see in the literature that the use of EcientNet as an
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encoder has been explored for medical imaging segmentation (MATHEWS et al.,

2020; NGUYEN et al., 2020). In this project, we use the EcientNet-B4.

2.3 Hypothalamus Segmentation

At the time this project started, one could not nd any automated

segmentation method for the hypothalamus on the literature. There were, though,

a few semi-automated methods and manual segmentation protocols published. For

instance, in 2018, (WOLFF et al., 2018) proposed a semi-automatic segmentation

method by overlapping MRI images and obtained intraclass correlation (ICC) of

0.78 and 0.82 between three raters. However, each rater had to be trained for three

to four weeks, ve to six hours a day, and each volumetry took about 20-40min to

be generated.

The rst automated method for hypothalamus segmentation was de-

veloped by the candidate (RODRIGUES et al., 2020). The proposed method used

three modied 2D U-Nets, creating a consensus from the axial, sagittal, and coro-

nal views. It reported a Dice coecient of 0.77. The dataset was composed of 205

images, divided into 70%/15%/15% images for training, validation, and testing,

resulting in approximately 30 images for the test set.

At the beginning of this work, there were no fully automated segmen-

tation methods of the hypothalamus. Even today, besides the aforementioned

method (RODRIGUES et al., 2020), we can only nd ve options for hypotha-

lamus automated segmentation in the literature, being two of them developed by

the candidate and better explained throughout this thesis.

• (RODRIGUES et al., 2022): This study, developed by the candidate, uses a

teacher-student-based architecture containing two blocks: segmentation and

correction, where the second corrects the imperfections of the rst block. The

method used over 1300 images for training/validation. It is focused on 1mm

isotropic T1w images and it is openly available.
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• (BILLOT et al., 2020): The authors used a 3D U-Net-based architecture

to segment the hypothalamus and its subunits. The authors used aggressive

data augmentation and 37 volumes for training. Finally, their test set had a

Dice coecient of 0.84. However, the authors predicted 675 images from the

public ADNI dataset to better analyze their method. A specialist qualita-

tively evaluated the segmentations and assessed whether they could be part

of a neuroimaging study. Only six images were rejected.

• (GREVE et al., 2021): The authors trained a U-Net model to automatically

segment multiple subcortical limbic structures, including the hypothalamus.

The training utilized 39 manually labeled T1w MRI datasets, employing

spatial, intensity, contrast, and noise augmentation techniques. The method

is focused on 1mm isotropic T1w images.

• (ESTRADA et al., 2023): Dierent from the previous studies, HypVINN is

capable to work on T1w and T2w images with resolutions from 0.8 to 1mm

isotropic. The authors integrated VINN (HENSCHEL et al., 2022)) into their

network design, based on FastSurferCNN (HENSCHEL et al., 2020). Both

methods utilize a 2.5D approach with three 2D F-CNNs per anatomical view.

They used images from Rhineland Study (RS)(BRETELER et al., 2014) and

the UK Biobank (UKB) (ALFARO-ALMAGRO et al., 2018).

• (RODRIGUES et al., 2024): H-SynEx (better explained on Part III) is an

automated segmentation approach for hypothalamic subregions, capable of

generalizing across various MRI sequences and resolutions without necessi-

tating retraining. It was trained using synthetic images generated from label

maps constructed from ultra-high-resolution ex vivo MRI scans, enabling

more detailed manual segmentation compared to standard 1 mm isotropic in

vivo images.
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Table 2.1 – Hypothalamus fully automated segmentation methods

Author
Segmentation

Target
MRI

Sequence
Voxel

resolution
(RODRIGUES et al., 2020) whole structure T1w 1 isotropic

(BILLOT et al., 2020)
whole structure
and subregions T1w 1 isotropic

(RODRIGUES et al., 2020) whole structure T1w 1 isotropic
(GREVE et al., 2021) whole structure T1w 1 isotropic

(ESTRADA et al., 2023)
whole structure
and subregions

T1w
and T2w

0.8 isotropic
1 isotropic

(RODRIGUES et al., 2024)
whole structure
and subregions

Multiple
sequences

Multiple
resolution
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3 Motivations, Objectives, Challenges,

and Hypotheses

In this section, we will explore the primary motivations behind the

work and outline its main and secondary objectives. Furthermore, we will identify

the major challenges faced during the execution of the project and present the

hypotheses developed to overcome them.

3.1 Motivations

When analyzing patients with bvFTD and ALS, the literature points to

atrophy of the hypothalamus (AHMED et al., 2021a; PIGUET et al., 2011) and for

ALS, some studies have found hypothalamic atrophy even in pre-symptomatic gene

carriers compared with a control group (AHMED et al., 2021a). In Huntington’s

disease, some studies have indicated the volumetric alteration of the hypothalamus

in patients (BARTLETT et al., 2019) while others showed no volume dierence

between patients and the control group (GABERY et al., 2015). However, even

the latter indicate that variations can occur in specic nuclei of the hypothalamus,

being lost when analyzing the structure as a whole (GABERY et al., 2015).

Currently, the diagnosis time for rare neurodegenerative diseases is long,

delaying treatment in the early phase of the symptoms. For example, in ALS,

HD, and bvFTD, the diagnosis is based on clinical signs, and in the exclusion

of other motor dysfunctions (HARDIMAN et al., 2011; JOHNEN; BERTOUX,

2019). For bvFTD, patients are often mistaken for having Alzheimer’s disease

(AD) once there are no biological markers for diagnosis (JOHNEN; BERTOUX,

2019; BEBER; CHAVES, 2013). Patients with ALS usually take 9–15 months to

be correctly diagnosed after the onset of symptoms (HARDIMAN et al., 2011).

Early diagnosis of these diseases could lead to more research on possible treatments
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and earlier treatment, improving patient quality of life (CHO; SHUKLA, 2020).

For instance, moderate exercise may prolong the early stages of ALS (OLIVEIRA;

PEREIRA, 2009).

In this scenario, it is evident that proper morphological evaluation

of the hypothalamus in vivo images might be relevant to understanding normal

human physiology and multiple disease states. MRI of the brain, mainly using

high-resolution acquisition, may assist with this task. However, this approach is

challenging. As highlighted before, identifying morphological landmarks of the hy-

pothalamus is often dicult, making segmentation and volumetric analyses chal-

lenging. The reproducibility of the results and the available means to study the

hypothalamus remains a critical issue.

3.2 Objectives

To improve the study of the hypothalamus, it is essential to reduce the

time and subjectivity of medical manual segmentations, consequently improving

reliability. Additionally, there is a need for the development of fully automated

methods capable of generalizing across various MRI sequences and resolutions.

However, to foster ongoing investigation into this structure, it’s equally vital to

furnish resources, namely, a publicly accessible dataset for use by other researchers.

With this in mind, our primary objective is :

Help to expand the study of the hypothalamus by developing

segmentation methods and distributing datasets specically tailored to

this structure and its subregions

From the main objective we can derive the following specic objectives:

• Create and publish a dataset focused on hypothalamus segmentation on T1w

images;

• Develop a method for feasibility study, focused on generalizing on dierent

T1w datasets;
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• Create a second dataset, based on ultra-high-resolution ex vivo images, which

may be generalized to dierent structures;

• Taking advantage of the expanded dataset and ultra-high-resolution data,

develop a new version of the hypothalamus subnuclei segmentation method,

capable of working across MR sequences and resolutions;

• Develop a pipeline for volume and texture analysis of hypothalamus subnuclei

on MR images of dierent conditions and neurodegenerative diseases.

3.3 Challenges

During the development of the project, we dealt with six main chal-

lenges:

1. Small size of the structure: The hypothalamus is a small structure, with a

total volume of less than 4 3. In terms of pixels, this means that some

slices of the MR volume may contain only 10 pixels or fewer representing the

structure (Figure 3.1).

2. Low contrast with neighboring tissues: The hypothalamus lacks clear, dis-

tinct borders. Instead, its edges are often indistinguishable from surrounding

tissues.

3. Protocol variations: Manual segmentations were conducted by dierent spe-

cialists following distinct protocols. As a result, labels may include or exclude

the fornix.

4. Noisy labels: Due to the aforementioned challenges, manual segmentation is

prone to errors. Additionally, it lacks smoothness and continuity, appearing

pixelated and disrupted, particularly along borders (Figure 3.1).

5. Partial volume eect: Partial volume occurs when information from two or

more types of tissues is represented in the same voxel, making it dicult to

discern the boundaries of the structure (BILLOT et al., 2023) (Figure 3.2).
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6. Lack of publicly available data: At the beginning of this project, there were

no openly accessible datasets specically focused on the hypothalamus.

Figure 3.1 – On the left, an example of manual segmentation containing only 5
pixels is shown. In the center and right, examples of disrupted and
pixelated manual segmentation are depicted. Highlighted in red is the
region where the hypothalamus is located.

Figure 3.2 – Example of partial volume eect: On the left, a brain slice is depicted.
Highlighted on the right is a border of the hypothalamus exhibiting
varying shades of gray, posing diculty in distinguishing between
hypothalamic voxels and adjacent tissues.
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3.4 Hypotheses

The aforementioned challenges gave rise to eight hypotheses regarding

the training of a deep learning model to achieve the segmentation task.

a. When segmenting small structures, it is better to use an architecture with

fewer downsampling layers.

b. Annotation noise often accumulates at the borders of the structure.

c. Training with a combination of automated and manual segmentation, rather

than solely relying on manual segmentation, could decrease noise and allevi-

ate the impact of varying protocols.

d. To minimize noise, it is essential to utilize more data, even if the labels are

not manually annotated.

e. Designing an architecture capable of learning from its own segmentation can

eectively reduce noise.

f. Ultra-high resolution images can be leveraged to precisely delineate the mor-

phological borders of small structures.

g. Training with synthetic images allows for training a network with minimal

original images, taking advantage of label augmentation.

h. Models trained with synthetic images can generalize across dierent se-

quences and resolutions without the need for retraining.

Finally, we conducted two main steps, to validate our hypotheses:

I. Hypothalamus Segmentation on T1w Images: In this step, we focused on

the deep learning architecture and on developing a dataset focused on T1w

images that could be used for training.
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II. Hypothalamus Segmentation across dierent sequences and resolution: In

this second step, we leverage the information acquired in the rst step, but

now we focus more on data and how can we use it to address our challenges.

The relation between challenges, experiments and the hypotheses are

summarized in Figure3.3.

Figure 3.3 – Fluxogram illustrating schematic for experiments based on challenges
and raised hypotheses
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4 Main Contributions

At the beginning of this project, we could not nd any automated

method or public dataset focused on hypothalamus segmentation. Therefore, the

main contribution of this work was to help lling this gap in the literature and

provide tools for hypothalamus study in dierent neurodegenerative diseases and

other conditions.

4.1 Datasets

Focusing on expanding the study on hypothalamus segmentation, we

published two openly available datasets:

• MiLI: The MICLab-LNI Initiative is a dataset focused on the segmentation

of the whole hypothalamus, with no subdivision, in T1w 1 isotropic im-

ages. It has over 1300 images from 4 dierent datasets and the labels come

from manual and automated segmentations.

• HELM: The Hypothalamus ex vivo Label Maps contains label maps derived

from 10 ex vivo images focusing on the hypothalamus and its subdivisions.

This dataset is intended to be used on models trained with synthetic im-

ages, that are generated using the label maps. The label maps have also the

potential to be used in other structures.

4.2 Methods

The rst automated segmentation method for hypothalamus segmenta-

tion was developed and published by the author of this thesis (RODRIGUES et al.,

2020). However, for being a feasibility study, it was trained on images from a sin-
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gle dataset and was not capable of generalizing in images from dierent datasets.

Given that, two other methods were developed:

• HypAST: The Hypothalamus Automated Segmentation Tool is a segmenta-

tion method trained using MiLI and capable of generalizing on T1w images

from dierent scanners. When we compare HypAST with other methods

from the literature using datasets that were not involved in the training of

any method, HypAST delivers superior results across all metrics.

• H-SynEx: Finally, aiming to ll the gap in the hypothalamus segmenta-

tion in dierent sequences, we developed H-SynEx, a method trained with

synthetic images derived from HELM. H-SynEx is capable of working across

dierent sequences and resolutions, including 5 spacing FLAIR images.

4.3 Applications

Finally, we use H-SynEx to run a study group on three dierent con-

ditions: Ataxias, Lupus and ALS. The study groups analyzed volume and texture

attributes of the hypothalamus subregions and could nd signicant dierence in

most of the cases.
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5 Thesis Structure

This thesis is divided into ve parts:

• Part I: An Introduction to the hypothalamus, literature review, objectives,

motivations, challenges, and main contributions;

• Part II: Explains the rst part of the project, focused on Hypothalamus

Segmentation on T1w Images. In this part, we introduce the hypothala-

mus automated segmentation tool (HypAST) and the MICLab-LNI Initiative

(MiLI) dataset, both focused on T1w 1mm isotropic images;

• Part III: This part focus on the Hypothalamus Segmentation across

dierent sequences and resolution. In this part, we introduce the hy-

pothalamus segmentation method based on synthetic images from ex vivo im-

ages (H-SynEx) and the Hypothalamus ex vivo label maps (HELM) dataset,

both for images from dierent MRI sequences and resolutions;

• Part IV: In this part, we focus on the method Applications, applying H-

SynEx in dierent diseases, such as ataxias, lupus, and ALS. We conduct

volumetric and texture analysis comparing control and patient groups.

• Part V: In the Conclusions, we explore our considerations, papers pub-

lished during the author‘s PhD, and future works.
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6 Introduction

Aiming to support further development of hypothalamus segmentation

models, we present here the rst public hypothalamus segmentation dataset along

with an automated segmentation method. The dataset consists of diverse T1w

MRI datasets comprising 1381 subjects from IXI 1, CC359 (SOUZA et al., 2018),

OASIS (LAMONTAGNE et al., 2019), and MiLI (the latter created specically

for this benchmark). All data are provided with automatically generated hypotha-

lamus masks and a subset containing manually annotated masks. For the method,

we present a teacher-student-based model for fully automated segmentation of

the hypothalamus on T1w MRI, and a comprehensive framework for reproducing

the method and supporting further development of hypothalamus segmentation

models.

Given that, this chapter is composed of three main parts:

• MiLI: the MICLab-LNI Initiative: Given that at the beginning of this

project we could not nd any openly available dataset for hypothalamus

segmentation, our rst step was to create this dataset. For that, we used a

combination of openly available MRI data and in-house acquisitions, made at

the Unicamp Hospital. This stage aids in addressing Challenge 1 and serves

to validate Hypotheses c and d.

• Model development: Using the created dataset, we developed the rst

version of the segmentation method, focusing only on T1w images and the

segmentation of the whole structure. The method was developed based on

Hypothesis a and e.

• Tool development: Aiming to facilitate the use of our method, we de-

veloped a graphic user interface tool, in which the user could analyze the

volumetry and texture attributes of the hypothalamus.
1 <https://brain-development.org/ixi-dataset/>
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7 MiLI: the MICLab-LNI Initiative

At the beginning of this project, no dataset specically focused on hy-

pothalamus segmentation was available. Therefore, the rst step of this project is

to create a publicly accessible dataset to support the development of models with

strong generalization capabilities on T1w images.

7.1 Datasets

For the development of MiLI, we used images from four datasets in this

project:

• MiLI: The MICLab-LNI Initiative comprises 452 T1w MR image subjects,

including 317 controls and 135 patients with inherited ataxias and motor

neuron diseases that aect hypothalamus morphology. The average age of

the subjects was 36.14 years, 212 male and 240 female. Images were acquired

at the Hospital of the University of Campinas. All subjects underwent an MR

imaging scan on a 3T Philips Achieva scanner (Philips, Best, The Nether-

lands) using standard 8-channel head coils. To segment the hypothalamus,

we acquired 3D high-resolution T1 volumetric images of the brain in sagit-

tal orientation. Voxel matrix 240×240×180, voxel size 1×1×1mm3, TR/TE

7/3.201 ms, and ip angle 8°. MiLI was specically created for this project.

• CC359 (SOUZA et al., 2018): The Calgary-Campinas dataset is a public

dataset of 359 T1w MR healthy brain images from three dierent vendors

(i.e., GE, Philips, and Siemens) and at two magnetic eld strengths (i.e., 1.5

T and 3 T).

• IXI 1: Public dataset of 581 T1w MR healthy brain images.
1 <https://brain-development.org/ixi-dataset/>
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• OASIS (LAMONTAGNE et al., 2019): Public dataset of T1w MR images.

We used 21 images from OASIS only for testing. Unlike other datasets, this

dataset was not used for training.

• Kirby 21 (LANDMAN et al., 2011): Composed of 42 acquisitions from

21 dierent subjects. This dataset was used only for test-retest analysis.

Therefore, manual segmentation was not required.

7.2 Labels

According to Karimi et al. (KARIMI et al., 2020), labels can contain

three main sources of noise: Inter-rater observability, annotation error, and error

in computed-generated labels. In the case of segmentation tasks, especially in chal-

lenging structures such as the hypothalamus, “annotation error” means that some

pixels of the image can be wrongly segmented by the specialist. The same logic

is applied to “computed-generated errors”, however here the mistake is done by

an automated tool. The annotation of the data varied according to the dataset

(Table 7.1).

Table 7.1 – Datasets and respective types of label used on the model development
and testing

Dataset
Total
Used

Inexperienced
Annotation

Expert
Annotation

Consensus STAPLE

MiLI 452 407 45 × 407
CC359 359 × 18 341 ×
IXI 560 × 22 538 ×

OASIS 10 × 10 × ×
Total 1381 407 95 879 407

Some images from IXI were excluded from the experiments since the automated methods were
not able to segment the hypothalamus

Because manual annotation is time-consuming, most of our training

data were segmented using only automated methods. To deal with dierent types

of segmentation and reduce label noise, we used label-cleaning strategies such as
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STAPLE and majority voting. Souza et al. (SOUZA et al., 2018) dened this as the

silver standard labels (Figure 7.1) We chose to not visually inspect the automated

segmentations. Instead, we used the mentioned techniques to minimize label noise

and segmentation errors of the automated methods, because we wanted to analyze

whether the network could learn from them (Hypothesis d).

Figure 7.1 – Dierent annotations used on model training and testing: axial 2D
view (rst row) and volumetric rendering (second row)

• Specialist manual annotation: Segmentation was performed by a spe-

cialist, following the segmentation protocol established for the study, as ex-

plained in Section 7.4.

• Inexperienced rater manual annotation: Segmentation is performed by

an inexperienced rater. This segmentation followed the same protocol de-

scribed in Section 7.4, but it was performed by a rater with no expertise in

MR images and neuroanatomy. However, this increases the amount of data

available for the training.

• Automated annotation: Segmentation is performed using available au-

tomated tools (BILLOT et al., 2020; RODRIGUES et al., 2020), and the
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method developed by Billot et al. (BILLOT et al., 2020) segments the sub-

units of the hypothalamus, including mammillary bodies (MB). Once our

manual protocol did not include MBs, we excluded the labels referring to

them.

Aiming to reduce label noise and improve the generalization of the

network, we combined the previously mentioned annotations:

• STAPLE: Simultaneous truth and performance level estimation (WARFIELD

et al., 2004). STAPLE is an expectation-maximization algorithm that ana-

lyzes dierent segmentations and calculates a probabilistic estimation of the

real segmentation. Here, it was applied to cases where we had three types

of segmentations: experienced rater manual annotation and two automated

annotations (RODRIGUES et al., 2020; BILLOT et al., 2020).

• Consensus: In cases where manual segmentation was not performed, the

consensus was created using the intersection of the two automated segmen-

tation methods.

A specialist manually annotated the images from MiLI, IXI, CC59,

and OASIS, leading to a total of 95 manually segmented volumes: 18 from CC359,

22 from IXI, 45 from MiLI (30 controls, and 15 patients), and 21 from OASIS

(Figure 7.2).

7.3 Ethics Committee Approval

All data from MiLI used in preparation for this study were approved by

the local ethical committee and fully anonymized (CEP/Conep, number 3435027).

All participants were duly informed and signed a consent form agreeing to partic-

ipate in the study. The use of public datasets (OASIS, IXI, CC359, and Kirby 21)

is based on their respective licenses.
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Figure 7.2 – Samples from datasets used on model training/testing depicting the
high variability between them: axial slices highlighting the hypothala-
mus location (rst row); Zoom of the highlighted region (second row).
From left to right: OASIS, IXI, MiLI and CC359 samples

7.4 Manual Segmentation Protocol

The segmentation of the hypothalamus follows the anatomical land-

marks proposed by pathological studies and has been validated for MRI-based

studies (GABERY et al., 2015; GORGES et al., 2017; CARDOZO-HERNÁNDEZ

et al., 2020). In summary, the hypothalamus surrounds the third ventricle and is

laterally delimited by the optic tract and hypothalamic sulcus. The longitudinal

axis was delimited by the anterior commissure in more cranial slices and mam-

millary bodies in more caudal slices. Fornix, mammillary bodies, and optic tracts

were excluded from the study area.

7.5 Dataset Availability

The MiLI (MICLab-LNI Initiative) dataset and the manual and au-

tomated annotations used in this project for IXI, OASIS, CC359, and MiLI are

publicly available2.

2 <https://sites.google.com/view/calgary-campinas-dataset/hypothalamus-benchmarking>
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8 Hypothalamus Automated Segmenta-

tion Method

By using MiLI, we developed an automated segmentation method for

the hypothalamus focused on T1w 1 isotropic images.

8.1 Method

Notations: Dening an MRI volume as V [Dv × Hv × Wv], the input

patch I [3 × H × W] is formed by three consecutive slices of V, and we are

interested in the segmentation of the central slice. The manual segmentation of V

is M [Dv × Hv × Wv], and the label used for minimizing the network is L[1 × H×

W], referring to the central slice of I. The output of the network can be nally

dened as O[1 × H× W]. The nal automated segmentation of the volume V is

A[Dv × Hv × Wv].

Three architectures were used during the development of the nal method,

as listed as follows.

8.1.1 EcientSeg

In this work, we decided to use the EcientNet-B4 (Figure 8.1), since it

has the best balance between a number of parameters and computational cost (MATH-

EWS et al., 2020). It was developed to deal with input images I [3×224×224] or

superior, ending with a feature map of shape [1792×7×7] before the dense layer. To

adapt it for segmentation, we removed the stem block composed of one 2D convolu-

tion of stride 2 and replaced it with a 2D convolution of stride 1. Also, we removed

the nal dense layers from the original EcientNet-B4 and added four transposed

convolutions (Figure 8.2). The nal architecture has input I [3×112×112] and out-

put O[1×112×112].
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Figure 8.1 – EcientNet-B4 architecture, based on an image from Agar-
wal (AGARWAL, ). Despite being originally a classication archi-
tecture, it was altered for segmentation purposes in this project. In
red, blocks are used for EcientSeg. In blue, the blocks used for Mod-
ied E-UNet.

Figure 8.2 – EcientSeg architecture

8.1.2 Modied E-UNet

Based on Baheti et al. (BAHETI et al., 2020), we implemented a U-

Net-based architecture with EcientNet-B4 as the encoder (Figure 8.3). However,

once we dealt with a small structure, we used fewer down-sampling layers (Hy-

pothesis a). The architecture starts with input I [3×112×112] and has output
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O[1×112×112]. At the end of the contraction path, the feature map has shape

[160×14×14]. This is the base of our nal architecture.

Figure 8.3 – Modied E-UNet architecture: it uses an EcientNet-B4 as encoder
of a U-Net

8.1.3 Correct2Seg

Using the Modied E-Unet, we implemented Correct2Seg, a Teacher-

Student-based model (Figure 8.4), inspired by Yu et al. (YU et al., 2019). We used

two modules: segmentation and correction. Both modules were composed of Modi-

ed E-UNet architectures. The segmentation module has an input Is[3×112×112]

and outputO[1×112×112], whereas the Correction module has input Ic[2×112×112]

and output O[1×112×112]. Ic is composed of the concatenation of O and the cen-

tral slice of Is. The intuition behind the method is that the correction module

will improve the output of the segmentation module based on the original image

(Is). The minimization of both modules was performed simultaneously. Once the

correction module is used to improve the segmentation module (Hypothesis e), its

output is only used during training. During inference, it is ignored, that is, only

the output of the segmentation module is considered.

 = WCE((s)˓ ) + BCE((c)˓ ) (8.1)

being Is the input of the Segmentation module S, Ic the input of the Correction

module C and L, the label. WCE represents the Weighted Cross Entropy, used
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on the segmentation module, and BCE the Binary Cross Entropy, used on the

Correction module. We have run experiments using Dice Loss, however, the results

using Cross Entropy were better. Therefore, all experiments in Section 8.3 were

performed using the loss function presented in Equation (8.1). For the prediction,

we use the output of the Segmentation module and ignore the Correction module.

Figure 8.4 – Correct2Seg scheme proposed composed of two modules, Segmenta-
tion and Correction, trained together. The nal prediction is the out-
put of the segmentation module.

8.2 Evaluation Metrics

During the development of the methods, we used four dierent metrics

to qualitatively analyze the results: the Dice coecient (DC), average Hausdor

distance (AVD), Hausdor distance (HD), and volume similarity (VS). Our choices

were based on the hypothalamic characteristics (small structure with low contrast)

and literature usage of the metrics.

• Dice Coecient:

The DC is an overlap measure dened as follows:

 =
2 * | ∩ |

| |+ ||
(8.2)
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With  being the manual annotation, and  the automated segmentation.

The DC is sensitive to small segmentation and does not identify boundary

errors. However, it can be used as a measure of reproducibility and is widely

used for medical imaging segmentation analysis, being the most used metric

in the medical imaging segmentation eld (TAHA; HANBURY, 2015). DC

results must be in the [0,1] range, where 1 is a perfect DC.

• Hausdor Distance:

The HD measures the distance between two sets of points.

(˓) = (ℎ(˓)˓ ℎ(˓)) (8.3)

where:

ℎ(˓) = max
퐀

min
퐀

‖−‖ (8.4)

With ‖−‖ being a norm such as Euclidean distance. Unlike DC, it can

nd boundary errors, which can occur owing to low contrast, and it is more

robust for small structures, such as the hypothalamus. However, it is sensitive

to outliers (TAHA; HANBURY, 2015). The smaller the HD between manual

and automated segmentation, the better the automated segmentation.

• Average Hausdor Distance:

As the name suggests, AVD is the averaged Hausdor Distance over all

points.

(˓) = ((˓)˓ (˓)) (8.5)

where:

(˓) =
1



∑
퐀

min
퐀

‖−‖ (8.6)

Similar to HD, it is also a spatial distance metric that is robust to small struc-

tures. However, on average, it is less sensitive to outliers (TAHA; HANBURY,

2015). The smaller the AVD between manual and automated segmentation,

the better the automated segmentation.
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• Volume Similarity:

Finally, the VS calculates the similarity between the two samples.

  = 1−
|||− | ||

||+ | |
(8.7)

With || being the module of X. Although it ignores borders and overlap, VS

is a good metric for analyzing the segmentation volume when determining

the volume of the structure is the main goal (TAHA; HANBURY, 2015). VS

results must be in a [0,1] range, where 1 is a perfect VS.

8.3 Experiments

In our experiments, we addressed Hypotheses a,c,d and e. At rst, we

compared EcientSeg and Modied E-UNet, since the rst has more pooling

layers than the latter. Then, we analyzed Correct2Seg, studying the impact of

noisy labels on our results. For so, we checked the quantitative metrics from the

same dataset we have trained on and then we used dierent datasets to assess the

generalization. Therefore, we sometimes used STAPLE, which decreases noise, and

other times, manual annotation from an inexperienced rater. Finally, we conducted

a two-step training experiment, where we pretrained the network using noisy labels

and trained it using manually labeled data. In total, we performed ve dierent

experiments using Correct2Seg (Table 8.1).

8.3.1 Choosing Correct2Seg modules

As explained in Section 8.1.3, the Correct2Seg architecture consists of

two E-UNet modules. We conducted an experiment to determine the best archi-

tecture for these modules. Hypothesis a addresses the size of the last feature map

in the contraction path. Given the small size of the hypothalamus, networks with

more pooling layers might impair border detection. Consequently, we employed the

Modied E-UNet (Section 8.1.2), a U-Net-based architecture with fewer down-

samplings than EcientSeg. The nal dice score on the test set was 0.739±0.06

for E-UNet, compared to 0.729±0.06 for EcientSeg.
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Table 8.1 – Summary of all conducted experiments on Correct2Seg. While developing
the model, ve models were trained using dierent data/annotations. For
assessing model reliability, three experiments were conducted.

Experiment Objective
Training Set

Data Quantity Label

M
o
d
e
l

D
e
v
e
lo
p
m
e
n
t

Model I Pre-training using
noisy labels

IXI/CC359 879 Consensus
MiLI 407 Manual

Model II Pre-training dealing
with noisy labels

IXI, CC359 879 Consensus
MiLI 407 STAPLE

Model III Train using
Model I weights

IXI, CC359 27
SpecialistMiLI 31

Model IV Train using
Model II weights

IXI, CC359 27 Manual
AnnotationMiLI 31

Model V One Step
Training

IXI, CC359 27
MiLI 31

Experiment Objective
Test Set

Data Quantity

M
o
d
e
l

R
e
li
a
b
il
it
y

Test-
Retest

Analyze model
imprecision

Kirby 21 42

Inter-Raters
Metrics

Compare manual segmentation
performed by two dierent specialists

MiLI
(patients)

5

Generalization
Test

Assess metrics on a dierent dataset,
not used on training

OASIS 10

Some images from IXI were excluded from the experiments because the automated methods
could not segment the hypothalamus returning only a few voxels or even a blank image. This
happened on images with the poorest contrast and resolution. Inexperienced rater manual an-
notation

Our results showed improvement over EcientSeg. However, the com-

parison is not entirely direct since we also made additional modications to the

network, including adding convolutional layers and skip connections in the decoder.

8.3.2 Correct2Seg Model development

During the model development, we used Correct2Seg, presented in Sec-

tion 8.1.3. To increase data variability during training, we used random crop,

random rotation (from -10° to 10°), and elastic transformations as data augmenta-

tion in a batch size of 128. Our network was optimized using Adam and a learning
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rate of 5 × 10− 3. For all experiments, we used the same hyperparameters, and as

pre-processing, input images were normalized on a range [-1,1]. Images were not

registered in a standard space. As a pre-processing step, we reoriented all images

to the LPS (Left-Posterior-Superior) orientation to ensure that all inputs were in

the same view. We also used a post-processing step to remove the prediction’s

noise. After segmenting all slices of volume V, the post-processing step selects the

largest 3D connected component (CC).

8.3.2.1 Pre-training

According to hypothesis c, by increasing the amount of training data,

part of the noise present dissipates, even if the label is not manual. Therefore, the

goal of the rst experiment was to analyze the ability of the network to learn using

a large amount of data annotated with noisy labels. We trained two models ( I

and II) using dierent labels (Table 8.1):

• Manual on MiLI: MiLI labels are manual annotation by inexperienced raters,

therefore we are using the noise labels;

• Staple on MiLI: MiLI labels are STAPLE’s, created according to Section 7.2,

therefore we are dealing with the noise labels, by trying to reduce the noise.

In both cases, IXI and CC359 labels are consensuses from automated segmenta-

tions, according to Section 7.2.

8.3.2.2 Training

This experiment analyzes the general improvement that two-step train-

ing brings when using dierent labels. We used the pre-trained models from pre-

vious experiments (Section 8.3.2.1) as the starting point. From each model, we

trained two dierent models (Models III and IV) using specialist manual annota-

tion.
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8.3.2.3 One-Step training

In this experiment, we performed one-step training to obtain Model V

and analyzed the impact of using fewer images annotated with high-quality labels.

We used the same dataset used in Experiment 8.3.2.2, but without the network

pre-training.

8.3.3 Model Reliability

8.3.3.1 Inter-Rater Metrics

In addition to being time-consuming, manual hypothalamus segmenta-

tion may have high variability among raters for small structures that are dicult

to see on MRI. This experiment compared the variability between two manual

annotations from dierent specialists and our automated segmentation.

8.3.3.2 Test-retest

We performed a test-retest to assess the model’s reproducibility. Re-

producibility can be dened as the agreement of model results when it is applied

uniformly and repeatedly to invariant objects (MENG, 2020). We used the Kirby

21 dataset, which contained 21 healthy subjects scanned twice on the same day.

When the acquisition interval is short, the segmentation results for the same sub-

jects should be similar. Therefore, a great dierence may imply method impreci-

sion.

8.3.3.3 Generalization Test

As our method is openly available, it is essential to check its ability to

generalize to dierent datasets not seen by the network during training. In this

experiment, we used 21 images from the OASIS dataset, manually segmented by

a specialist following the protocol explained in Section 7.4.
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8.4 Results

8.4.1 Model Development

We quantitatively analyzed our models using the metrics presented in

Section 8.2. Because the training process is non-deterministic, results presented

here are an average of three runs for each model. This analysis was performed to

improve the condence level of the results (Figures 8.5 and 8.6, Table 8.2).

Table 8.2 – Results for Model Development and Generalization Experiments. DC
= Dice Coecient; VS = Volume Similarity; AVD = Average Haus-
dor Distance. Average values and standard deviations were measured
among the metrics of three dierent runs. Results of Billot et al. are
from their inference on OASIS dataset.

Experiment Dataset DC VS AVD Hausdo

Model I
IXI/CC359/MiLI 0.63 ± 0.02 0.76±0.01 0.58±0.06 5.43±0.78

OASIS 0.58±0.02 0.84±0.01 0.79±0.29 5.50±1.63
All 0.61±0.02 0.80±0.02 0.67±0.12 5.55±0.36

Model II
IXI/CC359/MiLI 0.65 ± 0.01 0.77±0.03 0.47±0.01 4.23±0.14

OASIS 0.54±0.03 0.76±0.04 0.68±0.08 4.80±0.30
All 0.60±0.01 0.80±0.03 0.56±0.04 4.47±0.22

Model III
IXI/CC359/MiLI 0.82 ± 0.01 0.93±0.02 0.24±0.03 2.82±0.64

OASIS 0.65±0.04 0.86±0.02 0.45±0.10 3.41±0.66
All 0.74±0.02 0.91±0.01 0.32±0.04 3.03±0.4

Model IV
IXI/CC359/MiLI 0.830 ± 0.001 0.950±0.001 0.190±0.001 2.23±0.08

OASIS 0.74±0.01 0.91±0.01 0.32±0.05 3.31±1.07
All 0.79±0.01 0.940±0.001 0.24±0.01 2.69±0.51

Model V
IXI/CC359/MiLI 0.81 ± 0.01 0.94±0.01 0.30±0.08 4.10±1.78

OASIS 0.63±0.02 0.71±0.08 0.81±0.37 4.90±1.33
All 0.73±0.01 0.90±0.01 0.40±0.04 4.07±0.98

Billot et al. (2020) OASIS 0.63 0.91 0.50 4.19

8.4.2 Model Reliability

8.4.2.1 Inter-Rater Metrics

To directly compare our best method with manual segmentation, we

asked a second expert to manually segment the MiLI images. We used 14 im-

ages from our test set (5 patients and 9 controls). The results were quantitatively

(Table 8.3) and qualitatively compared (Figure 8.7).
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Figure 8.5 – Quantitative results of our best Correct2Seg model (Model IV), re-
ported by dataset and comparative with Billot method.

Table 8.3 – Inter-Rater Metrics computed for 5 images from test set

Comparative DC VS AVD HD

Rater1 VS Rater2 0.71±0.04 0.86±0.09 0.31±0.04 2.93±0.51
Automated Segmentation

VS Rater 1
0.85±0.03 0.95±0.03 0.15±0.03 1.96±0.50

Automated Segmentation
VS Rater 2

0.73±0.04 0.86±0.08 0.27±0.04 2.67±0.66

8.4.2.2 Test-retest

The Kirby 21 Dataset is composed of 42 images, 21 subjects scanned

twice on the same day. Since each pair is composed by dierent acquisitions, the

positioning of the subjects is dierent. To run the test-retest analysis, we rst

registered the images. The second acquisition of each patient was brought to the

space of the rst acquisition. Then, we ran Correc2Seg and Billot’s method on

the images (Table 8.4). Both methods presented similar metrics with no statistical

dierence among them (p-value>0.05 for all metrics).
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Figure 8.6 – Automated versus Manual segmentation. Qualitative results from
our best-trained model (Model IV)

8.4.2.3 Generalization Test

To analyze network generalization, we tested our models on the OASIS

dataset and compared our generalization capability to other methods in the liter-

ature. The OASIS dataset was not used for training by either method.(Table 8.2

and Figure 8.8).
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Figure 8.7 – 3D and 2D (axial) views from automated and manual specialist an-
notations. The automated segmentation can properly divide the right
and left hypothalamus, while manual segmentation may join both
sides. This may happen once the images do not have enough contrast
for the human eye while the CNN model can better recognize the
nuances.

Table 8.4 – Test-Retest metrics on Kirby21 dataset. The values correspond to
the mean and standard deviation among the 21 pairs of acquisition.
For Correct2Seg method, we used one of the three models trained on
Model V experiments.

Method DC VS AVD Hausdor
Correct2Seg 0.88±0.06 0.97±0.03 0.13±0.07 1.47±0.61

Billot et al. (2020) 0.87±0.06 0.97±0.02 0.14±0.07 1.64±0.58

Figure 8.8 – Real VS predicted volumes on OASIS dataset. Volumes are measured
in mm3. Left: Correct2Seg (Model IV). Right: Billot et al. (2020)
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8.5 Discussion

During our experiments, by comparing results from EcientSeg and

Modied E-UNet, we observed that using fewer downsampling layers yielded

better results, supporting Hypothesis a. This improvement is likely due to the

hypothalamus being a small structure. However, it is important to note that in

this experiment, we also added skip connections between the encoder and decoder,

which may have inuenced the results.

In the model development experiments, we found that more data did

not necessarily imply better metrics, not being able to conrm Hypothesis c. When

we analyzed our Pre-training experiments (Table 8.2), both Models I and II could

not achieve similar metrics as our one-step experiment (Model V), although the

latter had almost 21× less elements in its training data compared to the datasets

of the rst two. The same can be veried using a generalization test. Model V

generalized better on the OASIS, although it was trained with less data. This

performance can be explained by the quality of the labels and protocols used

for the training set annotation. In addition, in the pre-training experiments, we

observed that STAPLE annotation improved the metrics. However, this occurred

more prominently for the MiLI/IXI/CC359 datasets.

Analyzing the training experiments (Models III and IV), after a sec-

ond step, we could improve our metrics compared to Model V. Here, we could

use both plans in our favor: pre-training with a signicant amount of data and

training the network using good quality annotation. In addition, our best model

(Model IV) was pretrained using STAPLE on the MiLI dataset, achieving the

best results on the OASIS dataset. This rearms the importance of dealing with

the noise presented on the labels. Once again, by analyzing the OASIS results,

we compared our nal metrics with other automated methods in the literature.

Our model achieved a Dice coecient of 0.83 on IXI/CC359/MiLI test images.

Billot et al. (BILLOT et al., 2020) reported a Dice coecient of 0.84 on their

test set. However, the comparison is not straightforward because their training

and testing data are not the same as ours. When we predict images from OASIS,
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a neutral dataset that is not used during the training of either of the two ana-

lyzed methods, both methods have a considerable performance loss. Our method

reported a Dice coecient of 0.74, and Billot et al. (BILLOT et al., 2020) reported

a Dice coecient of 0.63. This performance dierence was assessed with the use of

the Wilcoxon paired test (p-value<0.01), which indicated statistical signicance.

Despite the loss in both methods, our network managed to maintain better gen-

eralization. Analysing predicted VS real volumes on OASIS dataset (Figure 8.8),

we can see that both Correct2Seg (Model IV) and Billot et al. (2020) have similar

behaviors. In both methods, the distribution returns a signicant oset, that is,

the predicted hypothalamus usually presents a larger volume than the manually

segmented. This eect is possibly due to three factors: large use of data augmen-

tation (also conducted by Billot et al. (BILLOT et al., 2020)), data coming from

dierent datasets in training, and label aggregation using STAPLE, which helps

reduce noise.

Generalization loss may also occur because of OASIS’s lower resolution.

We used 21 isometric samples from the rst and second discs of OASIS, which are

composed of 1.5T images (MARCUS et al., 2007). Hence, with lower contrast, it

is more challenging to identify the hypothalamus (Figure 7.2). This may also have

inuenced the nal results of both methods. The boxplots (Figure 8.5) support this

fact. We can verify on DC and AVD boxplots that MiLI, the only dataset solely

composed of 3T images, presented the best results among the MiLI/CC359/IXI

test set. On the other hand, half of IXI’s test set was composed of 1.5T images,

making this dataset present the worst metrics among MiLI/CC359/IXI. By ana-

lyzing the boxplots, our method could segment patient and control cases for the

MiLI dataset, maintaining a similar quality level: DC and AVD averages were

the best among all groups, while Hausdor distance and VS were comparable to

controls in IXI and CC359.

Examining the qualitative results (Figure 8.6), we can observe that

we need to evaluate our method using multiple metrics once the hypothalamus

is a small structure. Subject 01 returned the best DC and AVD (0.89 and 0.12

respectively) of our best model (Model IV). In this case, the predicted volume was
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593mm3, and the manually segmented volume was 577mm3, indicating an error of

2.8%. Subject 02 presented a DC and AVD of 0.82 and 0.19, respectively. Despite

the worse DC, Subject 02 presented the best VS of our test set, with a predicted

volume of 526mm3 and a manually segmented volume of 530mm3, an error of

0.75%. We chose our best model during training based on the best DC for the

validation set. However, it is interesting to analyze the nal goal of the study to

set the base metric. If the shape of the structure is essential (e.g., morphological

studies), DC or AVD are applicable. However, if the nal study focuses solely on

volume variation, VS may be more interesting.

Besides generalization, we could assert our model’s reliability by cal-

culating inter-rater metrics and test-retest. First, for inter-rater metrics, we no-

ticed a higher variability between the two specialists than when comparing our

method and manual segmentation. For test-retest, our method achieved high DC

and VS and low AVD which assesses the reproducibility of our method. Billot et

al. achieved similar metrics on Kirby during tets-retest and the Wilcoxon paired

test showed no statistically signicant dierence among both methods’ metrics.

One of the main challenges of hypothalamus segmentation is its low

contrast when compared with surrounding tissues. The objective of this step is

related to the generalization capability of the method and its use by physicians

in neurological studies in 1.5T and 3T MR images, as they are, so far, the most

widely used. However, the main limitation is that the method does not work across

dierent MR sequences, requiring re-training and, consequently, more data. Also,

so far, the method has focused on the whole structure, ignoring the segmentation

of the hypothalamus subregions. Both limitations are addressed in the next step

of the project.
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9 Graphic User Interface Tool

Finally, to facilitate the use of the segmentation method, we developed

a graphic user interface, HypAST1, the Hypothalamus Automated Segmentation

Tool (Figure 9.1). Besides returning the automated segmentation of the hypotha-

lamus, some of the tool functionalities are:

• Volume Information: A spreadsheet with the volume (in 3) of all hy-

pothalamus segmented.

• Volume Analysis: The user has access to a dispersion graph and boxplot,

where possible outliers can be analyzed.

• Texture Information: A spreadsheet with histogram texture information

of all hypothalamus segmented. The mean provides the average grayscale

value of the image. Variance quanties the deviation of gray pixel values from

the mean. Skewness examines the symmetry of the histogram, determining

whether there is a prevalence of light or dark pixels compared to the mean.

A positive skewness implies an abundance of pixels with values below the

mean, whereas a negative skewness indicates an abundance of pixels with

values above the mean. Lastly, kurtosis measures the uniformity of pixel

distribution relative to a normal distribution. Negative values denote a at

distribution, whereas positive values indicate a peaked distribution. Finally,

the entropy measures the randomness of the gray level distribution (MILES

et al., 2013; PHARWAHA; SINGH, 2009).

• Visualization Tool: A window shows all original images masked with their

respective segmentation.

The tool was developed with a focus on ease of use, catering to groups

with diverse backgrounds such as computer scientists and physicians. No instal-
1 <https://github.com/MICLab-Unicamp/HypAST>
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lation is required. HypAST-GUI features three main buttons: "Open File," "Run

Code," and "Save Segmentation."

• Click the "Open File" button to select .nii or .nii.gz les. A label will indicate

the number of les opened.

• Click the "Run Code" button to generate the segmentation. Using a CPU (i5

8th gen), each volume will take approximately 6.5 seconds to process (the

rst segmentation may take slightly longer).

• Use the "Save Files" button to save the generated segmentation and attribute

les.

Figure 9.1 – Top Row: HypAST, the Hypothalamus automated segmentation tool.
Bottom row: The tool oers volumetric analysis and returns his-
togram texture attributes of the hypothalamus
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10 Considerations

The rst stage of this project addressed Hypothesis a, c, d and e. Our

results were able to conrm Hypothesis a,c,e and refute Hypothesis d.

During our experiments, we ended up with our nal Correct2Seg model,

which despite functioning only on T1w images, is capable of generalizing across

datasets from dierent scanners.

In this stage, we also addressed Challenge 1, which concerns the lack

of publicly available hypothalamus segmentation dataset. For that, we published

MiLI, a dataset containing a total of 1381 hypothalamus segmentations (including

both automated and manual) from four dierent databases (OASIS, IXI, CC359,

MiLI), comprising isotropic and anisotropic images, as well as control and patient

subjects.

Finally, we released HypAST, a tool that embedded Correct2Seg and

that generates texture attribute values and volume of the hypothalamus, aiding

studies across dierent groups.

Although this initial stage is crucial to assist in the study of hypotha-

lamic images and understanding its role in neurodegenerative diseases, some gaps

in the literature still exist. Initially, until the completion of this work, only one

method was publicly available, and although it segmented the subregions of the

hypothalamus, it was focused on only one type of MR sequence (T1w images).

Therefore, the next stage of the project aims to develop a method that can be

used across various MR sequences and resolutions without the need for retraining.
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11 Introduction

During the rst stage of this project, we published the rst publicly

available dataset for hypothalamus segmentation (MiLI) and developed a method

for T1w 1mm isotropic images, known as HypAST. However, upon reviewing the

literature, we identied several gaps that still needed to be addressed. Initially, the

public dataset encompassed the entire hypothalamus structure, but it is also crucial

to study its sub-regions. Although T1w images provide good anatomical details of

the structure, analyzing the hypothalamus in dierent sequences is also important.

For instance, T2w images can be used to analyze gliosis in the structure, while Dif-

fusion Tensor Imaging (DTI) and metrics such as Fractional Anisotropy (FA) can

help study the microstructure of the hypothalamus and potential diusion alter-

ations of the tissue. By leveraging these dierent MRI sequences, researchers can

gain comprehensive insights into the hypothalamus, ranging from macrostructural

anatomy and volume to microstructural integrity and connectivity.

However, by the time we started this step of the project, there was no

existing method capable of functioning with MRI sequences other than T1w and

T2w. Therefore, the goal of this step was to ll the existing gap in hypothalamus

segmentation in dierent sequences and MR resolutions. However, until then, the

only publicly available dataset for hypothalamus segmentation was the MiLI, and

due to the high cost of time and specialized labor, it would be unfeasible to create

a dataset with manual segmentations in images of various sequences and resolu-

tions. To solve this challenge, we developed the expansion part of the segmentation

method, which consists of the development of:

• HELM: Hypothalamus ex vivo Label Maps is a dataset composed of label

maps built from publicly available ultra-high resolution ex vivo MRI from

10 whole hemispheres, which can be used to develop segmentation methods

using synthetic data. The label maps are obtained with a combination of

manual labels for the hypothalamic regions and automated segmentations
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for the rest of the brain, and mirrored to simulate entire brains (Hypothesis

b, f and g).

• H-SynEx: A method for automated segmentation of hypothalamus subre-

gions informed by ultra-high resolution ex vivo MRI, which generalizes across

MRI sequences and resolutions without retraining (Hypothesis g and h).

The details of dataset creation and method development are in the next

sections.
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12 HELM - Hypothalamus ex vivo Label

Maps

In this section, we describe the creation of HELM - Hypothalamus ex

vivo Label Maps, a dataset composed of label maps derived from ex vivo images,

used to train H-SynEx.

12.1 Materials

HELM is derived from 10 post mortem ultra-high MRI acquisitions of

brains provided by the DANDI Archive 1. The post mortem images are openly

available 2 and comply with all relevant ethical regulations (COSTANTINI et al.,

2023).

The MRI of the ex vivo brain hemispheres was obtained using multi-

echo fast low-angle shot (ME FLASH or MEF) on a 7 T Siemens MR scanner

with Repetition Time (TR) of 34 ms, time to echo (TE) of 5.65, 11.95, 18.25, and

24.55 ms, and eld of view (FOV) of 192 mm by 81.3 mm. Before the MRI, the

specimens were xed in 10% formalin for a minimum of 90 days and packed in a 2%

buered paraformaldehyde solution. The images present an equal distribution of

5 male and 5 female control specimens who died of natural causes with no clinical

diagnoses or neuropathology. As the images come from post mortem brains, the

acquisition is free from motion artifacts and has a high resolution, ranging from 120

to 150m isotropic, which improves the visualization of hypothalamic boundaries.

Further details on the specimens and MRI acquisition can be found in the original

publication (COSTANTINI et al., 2023).

The age at the time of death ranges from 54 to 79 years, with an
1 <https://dandiarchive.org>
2 <https://dandiarchive.org/dandiset/000026/draft/les?location=>
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average of 66.4 ± 8.46 years and they include only a single hemisphere of the

brain. Although both halves of the hypothalamus exhibit symmetric tissue archi-

tecture (KISS et al., 2020), the dataset includes four right-sided hemispheres and

six left-sided hemispheres. Despite the limited size of the dataset, which is inherent

to ex vivo images, this characteristic is compensated by the enhanced resolution of

the data. For instance, it is possible to nd in the literature other studies that use

ex vivo MR images from only one hemisphere of the brain to generate segmenta-

tion of in vivo hippocampus and thalamus (IGLESIAS et al., 2015; IGLESIAS et

al., 2018).

Using these MRI images as a starting point, we performed data pre-

processing and generated automated whole-brain segmentation using unsupervised

clustering. Unlike the hypothalamic labels, these automated segmentations are

used only for image synthesis purposes and not as segmentation targets. Therefore,

they can be noisy and not correspond directly to brain structures – so unsupervised

clustering suces. Our focus is on capturing context around the hypothalamus to

produce synthetic intensities. Subsequently, we mirrored the hemispheres to create

label maps that would serve as synthetic images for the input of the deep neural

network without having to segment scans into hemispheres during testing.

12.2 Methods

12.2.1 Pre-processing of ex vivo scans

The rst step of the method was the pre-processing of the images.

The primary objective at this stage is to standardize the dataset and remove any

background elements that could interfere with the subsequent steps (Figure 12.1).

• Orientation: Given that the primary objective of the dataset is to facilitate

the development of automated segmentation methods, it was essential to

ensure that all images were uniformly oriented. We decided to use the positive

RAS (right-anterior-superior) standard. While our dataset includes images
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Figure 12.1 – Examples of original ex vivo images (up) and images after the pre-
processing steps (down). First, we re-orient the images to positive
RAS standard and remove non-cerebral elements from the back-
ground. Then, we resample the images voxels to 0◁3× 0◁3× 0◁3

isotropic and perform bias eld correction.

of both hemispheres, we ipped all right-sided hemispheres to the left side

to ensure consistency and simplify subsequent preprocessing steps, resulting

in a total of 10 left-sided hemispheres

• Background segmentation: The ex vivo brains were packaged in a bag for

scanning, which is discernible in the images and undesirable in our model. To

address this issue, we employed a Bayesian automated image segmentation

approach adaptive to contrast (PUONTI et al., 2016) to create a mask, which

was then utilized to eliminate non-cerebral elements that were not related to

brain structures.

• Voxel resampling: The original images have a voxel resolution ranging
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from 0.1 to 0.153. While this resolution assists in distinguishing struc-

tures during manual segmentation, it signicantly prolongs image processing,

particularly when the ultimate goal is to employ them in deep learning net-

works. Therefore, we adjusted the voxel resolution to a constant resolution

equal to 0◁3× 0◁3× 0◁3 isotropic, which provides a compromise between

a high level of details and being storage- and processing-friendly

• Bias Field Correction: Finally, the last step in image pre-processing is

the bias eld correction (PUONTI et al., 2016). This step is essential, as in

the generation of the whole brain segmentation, we utilize an unsupervised

clustering method that can be directly aected by the bias eld.

12.2.2 Segmentation

In the second stage, we generated the label maps for the hypothalamus,

its subregions, and the whole brain:

• Hypothalamus manual segmentation: All images were traced by one

non-specialist. For manual segmentation, we relied on protocols focused on in

vivo images as described in the literature. In particular, we followed the crite-

ria described in Rodrigues et al. (RODRIGUES et al., 2022) (whole hypotha-

lamus) and Bocchetta et al. (BOCCHETTA et al., 2015) (for the subregions).

At 0.3 isotropic resolution, approximately 40-50 coronal slices include the

hypothalamus.

– Whole structure: The segmentation of the whole hypothalamus oc-

curs on coronal view. To ensure the correct delineation of the landmarks,

we also simultaneously inspected the sagittal and axial views. In in vivo

images, the hypothalamus lies around the third ventricle. However, In

the case of the ex vivo images, it is not always possible to distinguish the

third ventricle, since we only have one hemisphere of the brain. There-

fore, on the coronal view, we use the recess dorsal to the hypothalamus

to dene its most superior boundary (Figure 12.2).
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Figure 12.2 – Recess of the hypothalamus used for the delineation of superior
boundary. Tub_sup = Tuberal Superior subregion; Tub_inf = Tu-
beral inferior subregion

Ventrally, the hypothalamus is dened by the optic tract and the hy-

pothalamic sulcus in the most rostral slices. The most anterior coronal

slice is dened as the one where the anterior commissure is visible,

while the most caudal coronal slice is where the mammillary bodies

(MB) are no longer visible. The mammillary bodies were included in

the segmentation, while the fornix and optical tract were excluded from

the segmentation.

– Subregions: We subdivided the hypothalamus into 5 subregions: An-

terior inferior, Anterior Superior, Tuberal inferior, Tuberal Superior,

and Posterior. While the manual segmentation of the whole hypotha-

lamus was performed using the structure borders, the division of the

subregions was done geometrically, using specic landmarks based on

Bochetta et al. (BOCCHETTA et al., 2015) to nd the division between

them (Table 12.1). An exception is the posterior subregion, which was

segmented using the mammillary body morphological borders. As we

only have one hemisphere for each brain, we could not segment both

hypothalami for each subject. The most rostral slice of the anterior sub-

region coincides with the most rostral slice of the hypothalamus when

looking at the coronal plane. On in vivo images, the anterior subregion

is included from the most rostral coronal slice of the hypothalamus to
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the most rostral part of the infundibulum. However, for ex vivo im-

ages we used the anterior commissure visible from the sagittal view

as a landmark to delineate the most caudal part of the anterior re-

gions (Figure 12.3(a)). The tuberal subregions begin posteriorly to the

coronal slice where the anterior regions are visible (as dened by the an-

terior commissure sagitally) and extend to the most rostral slice where

the MB are visible, which are included in the posterior subregion (Fig-

ure 12.3(b)). To delineate the superior and inferior portions of both the

anterior and tuberal subregions, we drew a horizontal line on the coro-

nal slice connecting the most medial to the most lateral point of the

hypothalamus (Figure 12.3(c,d)).

Table 12.1 – Landmarks used for hypothalamus division into subregions

Anterior Tuberal
Most rostral Most rostral slice of the Posterior to last coronal slice
landmarks hypothalamus on coronal view where anterior is visible
Most caudal Dened by the anterior Most rostral slice where
landmarks commissure on sagittal view (Figure 12.3(a,b)) mammillary bodies are visible
Superior/ Horizontal line on the coronal slice connecting the most
Inferior medial to the most lateral point of the hypothalamus (Figure 12.3(c,d)).

• Whole brain segmentation: Unlike the hypothalamic subregions, seman-

tic meaning is not necessary for the whole brain labels. That means we do not

need to correctly delineate the morphological borders of the other structures.

We just need to establish context around the hypothalamus to generate the

synthetic images. We decided to use k-means, a non-supervised clustering

method, to model the non-hypothalamic tissue based on grayscale levels of

the pre-processed images. Seeking to increase data variability, we ran this

step for values of k ranging from 4 to 9. As a result, for each of the 10

images, we have 6 dierent maps, totaling 60 label maps (Figure 12.4)

• Segmentation merge: Finally, it is necessary to merge both segmentations.

In this stage, we needed to ensure that there would be no discrepancy during

the overlay process. To achieve this, we employed mathematical morphol-
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Figure 12.3 – Segmentation protocol: (a) Subregions delineation: Anterior supe-
rior (pink), anterior inferior (red), tuberal superior (yellow), tuberal
inferior (blue) and posterior (green) (b) Sagittal landmarks for sub-
region delineation (AC = Anterior Comissure and MB=mamillary
body) (c) Coronal View of superior and inferior tuberal subregions
(d) Coronal landmark for superior/inferior division

ogy closing to approximate delineation of the fornix and erosion to eliminate

false positive voxels in the third ventricle area (Figure 12.5).

12.2.3 Hemisphere mirroring

The ex vivo images were acquired from single brain hemispheres. Given

that the hypothalamus is situated in the most medial part of the brain, a model

covering a single hemisphere lacks contextual information regarding its surround-

ings. To address this concern, we mirrored the images to generate a complete brain.
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Figure 12.4 – Examples of three dierent label maps derived from the same image.
From left to right:  = 4,  = 6,  = 8

Figure 12.5 – (a) Whole brain segmentation: example with k=4 (b) Manual seg-
mentation simply overlapping the whole brain segmentation. We can
see that there are a few inconsistent voxels, that should be labeled
either as hypothalamus or background that have dierent labels. (c)
To x these inconsistencies, a mathematical morphology-based algo-
rithm is applied.

In the mirroring process, two major concerns needed to be addressed: the origi-

nal and mirrored hemispheres should not overlap, and they should be as close as

possible to each other (Figure 12.6).

To tackle this issue, we encode the two constraints into softened versions

and combine them into a weighted cost function that is optimized with respect to
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a rigid transformation T:

̂ = 

∑
∈Ω

팀[(; ) > 0](; )− 퀀
∑
∈Ω

(; ) (12.1)

where Ω is the brain mask, (; ) is the  real-world coordinate after rigid trans-

formation with  , 팀 is Kronecker’s delta, and 퀀 a trade-o value that changes

according to the image.

The rationale behind the cost function is that we want positive values of

x to be penalized (Figure 12.6 (a)), so the images do not overlay (Figure 12.6 (d)).

However, the image should not be too distant from the x=0 axis (Figure 12.6 (b))

to not create an unrealistic gap between both hemispheres (Figure 12.6 (e)). There-

fore, the larger the values of the absolute x, the more the function is penalized. For

the latter, we added a trade-o value, which penalizes overlaps more heavily than

gaps. For the last step, we mirror the transformed hemisphere and mesh both the

right and left hemispheres into one image, ending up with 10 subregions, since we

now have both right and left sides of the brain (Figure 12.6(f)).

12.3 Manual segmentation quality assessment

To test the intra-rater reliability of the manual segmentations, one non-

specialist manually segmented 5 out of the 10 images twice, using the protocol

described in Section 12.2.2. The images were randomly selected from the total

sample and were re-segmented blindly, with the same software and computer set-

tings, after four months from the rst manual segmentation. For evaluation, we

used the Dice Coecient and Average Hausdor Distance (Table 12.2).

The small size of the structure and the minimal contrast between adja-

cent tissues contribute to generally low intra-rater metrics for the hypothalamus.

For example, Estrada et al. (ESTRADA et al., 2023) found an intra-rater Dice co-

ecient of 0.82 for the entire structure based on in vivo images with a resolution

of 0.8mm3. Similarly, Billot et al. (BILLOT et al., 2020) reported a global Dice

coecient of 0.89 using in vivo images with a resolution of 1mm3. In both studies,
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the authors highlighted the challenges associated with manual delineation due to

the small size and low contrast of the hypothalamus.

Table 12.2 – Intra-rater metrics (median) for 5 subjects.

Dice Coecient Average Hausdor Distance
Whole 0.82 0.37
Anterior 0.73 0.63
Tuberal 0.78 0.37
Posterior 0.78 0.31

12.4 Data Usage and Availability

The label maps described here could be employed for training dierent

networks dedicated to the hypothalamus or dierent brain structures. To achieve

this, three steps need to be followed:

• Manual segmentation: Manually segment the target structure. Given that

there are only 10 images, the manual segmentation will not demand as much

eort as the ones typically used in supervised learning.

• Merge with whole brain segmentation: Merge the manual segmentation

with the provided whole brain segmentation.

• Mirroring: Run the provided mirroring codes to generate the nal label

maps.

We also encourage the usage of this dataset in tasks other than seg-

mentation. For instance, we can nd in the literature the use of synthetic images

applied to registration (IGLESIAS, 2023) and conversion of dierent MRIs into

high-resolution T1w scans (IGLESIAS et al., 2021). HELM is openly available for

download 3.

3 <https://www.nitrc.org/projects/hsynex_data/>
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Figure 12.6 – Label map creation: Following the segmentation step, a half-brain la-
bel map is generated (a). However, given the hypothalamus’s central
location within the brain, mirroring is essential to provide contex-
tual information. For the mirroring process, translation and rotation
are applied to the RAS coordinates. This involves moving the brain
in close proximity to the x=0 axis from the negative side, without
surpassing into the positive side. Essentially, a nal cost function
is computed, penalizing positive values of x (b) and high negative
values. Finally, we prevent the overlap between brain hemispheres
(d) and also prevent them from ending up at unnaturally distant
positions (e).
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13 H-SynEx

Here, we describe the development of H-SynEx, a method for hypotha-

lamus segmentation that is capable of working across dierent MR sequences and

resolutions.

13.1 Materials

Here we describe the datasets used for the development of the method

and those used for the experiments.

13.1.1 Training Data

The data used for training H-SynEx comprises synthetic images derived

from HELM. By using a label map derived from ultra-high resolution data, we

intend to increase the nal automated segmentation quality when comparing with

in vivo-based models, especially on the structure borders, that suer more with

partial volume in in vivo images (Hypothesis b and f ). Details on the synthetic

image generation are detailed in Section 13.2.1.

13.1.2 Test Data

The method evaluation relies on in vivo images from 6 dierent datasets

(Table 13.1):

• FreeSurfer Maintenaince Dataset(FSM) (GREVE et al., 2021): Com-

posed of 29 subjects from which 7 were used for validation and 22 for testing.

For each subject, we have T1w, T2w, PD, FA, and qT1 acquisitions (Fig-

ure 13.1). FSM contains manual labeling for the whole hypothalamus and its

subregions. This dataset was approved by the Massachusetts General Hos-

pital Internal Review Board for the protection of human subjects and all
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subjects gave written informed consent. All other datasets used for training

and inference are openly available.

• MiLI (RODRIGUES et al., 2022): Explained in Section 7, The MICLab-

LNI Initiative comprises manual and automated segmentations of the entire

hypothalamus conducted on T1w images. However, it lacks segmentations

for hypothalamic subregions. It includes subjects from various open datasets

such as MiLI, OASIS (LAMONTAGNE et al., 2019), and IXI 1. We only

used the manually segmented images, totaling 55 from MiLI (30 controls

and 25 ataxia patients), 23 from OASIS, and 19 from IXI. For the latter

dataset, as it also encompasses T2w and proton density (PD) acquisitions,

we incorporated these modalities in our experiments.

• ADNI (MUELLER et al., 2005): We used a total of 572 controls (280 male

and 292 female with average age of 75◁5± 6◁4 and 73◁6± 6◁01, respectively)

and 271 Alzheimer’s disease (AD) patients (143 male and 98 female with

average age of 75◁34 ± 7◁6 and 73◁8 ± 7◁6, respectively) for both T1w and

uid attenuated inversion recovery (FLAIR) modalities. The ADNI dataset

does not have manual segmentation of the hypothalamus.

• NIFD 2: From the Neuroimaging in Frontotemporal Dementia dataset, we

used 111 controls (49 male and 62 female with average age of 61◁8 ± 7◁4

and 63◁4 ± 7◁8, respectively) against 74 behavioral variant frontotemporal

dementia (bvFTD) patients (51 male and 23 female with average age of

61◁16 ± 5◁8 and 62◁4 ± 7◁7, respectively). The NIFD dataset does not have

manual segmentation of the hypothalamus.

1 <https://brain-development.org/ixi-dataset/>
2 <https://ida.loni.usc.edu/collaboration/access/appLicense.jsp>
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Figure 13.1 – Example of dierent modalities (FSM dataset)

Table 13.1 – Datasets used for model validation and testing; WS: Whole Struc-
ture, SR: Subregion

Dataset
Name

Sequence
type

Number of
Acquis.

Number of
Subjects

Manual
Segmentation

Content

Segmentation
Protocol

Validation FSM
T1w, T2w, PD

35 7 Controls WS/SR
WS:ScLimbic (GREVE et al., 2021)

Testing

FA, qT1 SR:Bocchetta et al. (BOCCHETTA et al., 2015)

FSM
T1w, T2w PD,

110 22 Controls WS/SR
WS:ScLimbic (GREVE et al., 2021)

FA, qT1 SR:Bocchetta et al. (BOCCHETTA et al., 2015)

MiLI T1 55
30 Controls

WS WS:Rodrigues et al. (RODRIGUES et al., 2022)
25 Patients

MiLI-OASIS T1 23 23 Controls
MiLI-IXI T1w, T2w, PD 57 19 Controls

ADNI T1w, FLAIR 1686
572 Controls

—
271 AD Patients No manual

NIFD T1 185
111 Controls segmentation

74 bvFTD patients

13.2 Methods

13.2.1 Data Preprocessing

The training data comprises synthetic images generated from HELM.

Despite the image synthesis being conducted during the model training, several

steps are undertaken before training to create the nal training images:

• Creation of label maps: The process of creating HELM, as described in

Chapter 12.

• Find MNI coordinates: Using the label maps  [ × × ], from

HELM, we generate a Gaussian image  [ × × ] that simulates a T1w

MRI. Subsequently, we register  to the MNI space using NiftiReg and ob-

tain the MNI coordinates  [3× × × ] of the registered image.  will
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be used during training to assist the network in locating the hypothalamus.

It is important to emphasize that during training,  remains unregistered.

• Crop: We crop  and  around the hypothalamus, resulting in two stan-

dardized arrays, crop [200× 200× 200] and crop [3× 200× 200× 200], which

corresponds to a eld of view of 60× 60× 60.

• One-hot array: We convert crop into a one-hot array one [ × 200× 200× 200],

with  being the number of labels presented on crop.  varies according to

the  labels employed at the whole brain segmentation.

13.2.2 Training

Synthetic Images Generation The synthetic image generation is

performed on the y, during training (Figure 13.2). At each iteration, one of the

training label maps, one, is randomly selected. Then, we apply aggressive geo-

metric augmentation that encompasses random crop, rotation, and elastic trans-

formation on one and crop, ending up with trans [ × 160× 160× 160] and

trans [3× 160× 160× 160], respectively. Next, we use the generative model pro-

posed by SynthSeg (BILLOT et al., 2023) based on Gaussian Mixture Models

conditioned on , using randomized parameters for contrast and resolution

to create the nal synthetic images  [160× 160× 160] (Figure 13.3). The target

 [ × 160× 160× 160], derived from trans, is also created during this step. To

assist training, we use an Euclidean distance map, [ + 1 × 160 × 160 × 160]

derived from  , which has been proven to help locate boundary features during

segmentation tasks (LIU et al., 2022b).  will be part of the loss function and is

only employed during training, not being necessary during inference.

The nal input of the network,  [4× 160× 160× 160], is the concate-

nation of  and trans.

Training architecture Despite the good performance of Correct2Seg,

we decided at this stage of the project to use a 3D architecture to better lever-

age synthetic data. Given that a 3D Modied E-UNet would be computationally
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Figure 13.2 – Generation of synthetic images: The synthetic images S are gener-
ated using the label maps from the ex vivo images.

Figure 13.3 – Examples of coronal slices from 3D synthetic images used as input.
The images shown here came from the label maps cropped around
the hypothalamus. The use of aggressive data augmentation along
random contrast values on the generative model results in large vari-
ability in the appearance of the input images.

costly, we opted to use a 3D U-Net as the module instead. Two distinct sub-models

were trained separately, one for the entire hypothalamus (hyp) and another specif-

ically for its subregions () (Figure 13.4(b)).

Both hyp and  are 3D-UNets (WOLNY et al., 2020; ÇIÇEK et

al., 2016), however, in both cases, we added a skip connection between the in-

put channels referring to trans and the nal convolutional block to ensure that

the original positional encoding is readily available at full-resolution also in the
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decoder. hyp receives  and  as input and outputs hyp [2× 160× 160× 160].

The input of sub is dened as sub =  *sub.

While hyp is a 2-channel array representing the hypothalamus and its

background, sub [13× 160× 160× 160], the output of sub, is a 13-channel array

encompassing the subregions, right and left fornices and background.

Figure 13.4 – Training Flowchart: There are two training blocks, one focused on
the entire hypothalamus and another specialized in subregion seg-
mentation. The training of the two blocks is done subsequently. We
rst trained the whole structure segmentation model(ℎ), and
later, the model for the subregions segmentation(). However,
the output of ℎ is used to assist the input creation of  dur-
ing training.

Loss function and training details The loss function applied to

ℎ (Eq. 13.1) is a combination of Dice Loss () and Mean Square Error

(), while the loss function applied to  (Eq. 13.2) combines  and

Cross Entropy ():

hyp = 퀀 * (˓ pred) + (1− 퀀) *MSE (˓pred) (13.1)

sub = 퀀 * (˓ pred) + (1− 퀀) * CE (˓ pred) (13.2)

with E being the Euclidian Distance map, pred being the network output and

 the target. For both models, we used Adam optimizer with a learning rate of

5×10−5, a batch size of 32, and value of 퀀 as 0◁3. As stop criteria, we simply trained
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ℎ for approximately 40000 training steps and did not use any validation set.

However, on , we used 35 images from FSM (5 acquisitions from dierent

MRI sequences from 7 distinct subjects) as validation set (Table 13.1). We set an

early stop criteria based on the DC of the validation set. For this, we dened the

stopping criteria as 팀 = 0.001. The network trained for approximately 28000

steps and stopped.

Both 3D U-Net modules are composed of an encoder of 5 levels with

24, 48, 96, 192, and 384 feature maps. Each convolutional block is composed of

three layers: group normalization, convolution, and activation function (ReLU).

13.2.3 Inference and Post processing

The rst step of the inference (Figure 13.5) is preprocessing, in which

we nd the MNI coordinates (inf) of the input image, by using a fast deep learning

algorithm, EasyReg (IGLESIAS, 2023). For ℎ, the nal input inf is the con-

catenation of the cropped inference image (inf) and inf. The input for sub,

inf_sub, is formed by the product of inf, the output of ℎ, hyp_inf, and the

ventral diencephalon (VDC) label, which is derived from the whole brain segmen-

tation produced by EasyReg (IGLESIAS, 2023). The inclusion of the ventral-DC

label is justied as it helps reduce false positives within the anterior subregion.

The post-processing phase comprises two sequential steps: the rescaling of the -

nal segmentation to match the voxel size of inf, and the exclusion of voxels that

belong to the third ventricle by using the whole brain segmentation obtained from

EasyReg (IGLESIAS, 2023).

13.2.4 Statistical Analysis

The statistical analysis was done using the AVD and DC combined with

Wilcoxon signed-rank tests to assess the statistical signicance of dierences. We

also compared the ability of H-SynEx and competing methods to nd statistical

dierences in the volume of hypothalamus subregions of controls and patients (AD

and bvFTD). For this, we used Wilcoxon rank-sum test to assess the signicant
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Figure 13.5 – Inference owchart. The inference image inf goes through a prepro-
cessing step to nd the input array inf. inf is then applied to the
whole structure segmentation model(ℎ). Finally, using VDC (see
text), inf and the output of ℎ (hyp_inf), we create the input for
the subregion segmentation model () and nd the nal subre-
gions segmentation.

dierence in medians between groups and the area under the receiving operating

characteristic curve (AUROC) as a non-parametric version of eect sizes between

groups.

Finally, we used the DeLong test to compare AUROCs across meth-

ods operating on the same sample. All statistical tests were conducted with a

condence level of 95% (−  < 0◁05)

13.3 Experiments

As previously stated, our main hypothesis is that the use of synthetic

images derived from ultra-high resolution ex vivo MRI would reduce label noise and

lead us to a model capable of generalizing across various MRI sequences and reso-

lutions (Hypothesis b,f,g and h). Consequently, our experiments were structured to

assess the method’s applicability under diverse conditions (Table 13.2). Initially,

we conducted an inter-rater analysis to establish quantitative metric baselines.
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Subsequently, we validated the method’s performance across dierent modalities

using the FSM dataset (encompassing T1w, T2w, PD, FA, and qT1 sequences)

and the IXI dataset (consisting of T1w, T2w, and PD sequences). Following this,

we compared H-SynEx with other methods from the literature across multiple

datasets (MiLI, MiLI-OASIS, MiLI-IXI, FSM), including one comprising both pa-

tient and control subjects (MiLI). We then conducted an application analysis in

group studies involving patients with AD and bvFTD (using ADNI and NIFD

datasets, respectively). Finally, after conrming the method’s usability with im-

ages of dierent sequences, we assessed its performance across various resolutions

using FLAIR images from ADNI with a slicing of 5.

Table 13.2 – Summary of conducted experiments

Testing set
Experiment Objective

Dataset
Number of Acquisitions MRI

per MRI Sequence Sequence

Inter-Rater Metrics
To establish a baseline for

FSM 10 T1
evaluation metrics

Direct comparison with To assess whether the method
FSM 22 T1w, T2w, PD, FA, qT1

manual segmentation on is capable to segment
dierent sequences on dierent MRI sequences IXI 19 T1w,T2w,PD

Comparing H-SynEx MiLI 55

T1
Comparing against against other state-of-the-art MiLI-OASIS 23

state-of-the-art methods available methods MiLI-IXI 19
using only T1w images FSM 22

Application in Assess the method usability ADNI 843
T1

Group Studies in group studies NIFD 185
Resilience to large To assess usability

ADNI 843 T1w, FLAIR
slice spacing on diverse MRI resolutions

13.3.1 Inter-rater metrics

One of the primary challenges in analyzing the results of our experiment

is that each dataset used in testing has a distinct manual segmentation protocol

(Table 13.1), none of which aligns with the one employed in training H-SynEx due

to the dierence between in vivo and ex vivo brain morphology (Section 12.2.2).

Therefore, our initial experiment aims to establish a baseline by comparing inter-

rater metrics (AVD and DC) using distinct segmentation protocols performed on

T1w images. We compare manual segmentations in 10 FSM images delineated by
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two dierent raters: the rst uses the FSM protocol (Table 13.1) while the second

employs the protocol used during the label maps construction(Section 12.2.2).

13.3.2 Direct comparison with manual segmentation on dierent se-

quences

In this experiment, we aim to evaluate the ability of H-SynEx to prop-

erly segment the subregions of the hypothalamus in dierent MRI sequences. We

employed ve dierent sequences from FSM - T1w, T2w, PD, FA, and quantita-

tive T1 (qT1)- and three from IXI -T1w, T2w, and PD. As the openly available

methods exclusively operate on T1w images, a quantitative comparison of their

metrics with H-SynEx was not possible in this experiment.

13.3.3 Comparing against other state-of-the-art methods

To compare H-SynEx with other state-of-the-art models (BILLOT et

al., 2020; RODRIGUES et al., 2022; GREVE et al., 2021), we used T1w images

from MiLI and FSM datasets and analyzed the whole hypothalamus segmenta-

tion. It is worth noting that the MiLI segmentation protocol does not include the

mammillary bodies. Therefore, for this dataset, we excluded the posterior subre-

gion from the results before computing the metrics. Similarly, HypAST does not

segment the posterior subregion, therefore we excluded it from FSM in this case,

before running the metrics.

13.3.4 Application to group studies

In the literature, we can nd some studies that point to hypothalamic

atrophy in both AD and bvFTD patients (BOCCHETTA et al., 2015; TAO et al.,

2021). Therefore, to evaluate the group studies, we compared the hypothalamic

subregion volumes of patients and control groups from ADNI (AD subjects) and

NIFD (bvFTD subjects). We normalized the volumes by dividing them by the

total intracranial volume (TIV) provided by SynthSeg (BILLOT et al., 2023). For
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comparative purposes, we conducted the analysis using Billot et al.. and compared

with H-SynEx through DeLong test (DELONG et al., 1988).

13.3.5 Resilience to large slice spacing

In this experiment, we applied H-SynEx on FLAIR images from the

ADNI dataset acquired with a slice spacing (and thickness) of 5 in the axial

plane. Here, we want to evaluate our method’s capability to identify hypothalamic

atrophy with larger spacings, which are common in clinical MRI. Since no other

method in the literature works with FLAIR images, we just compared the results

from H-SynEx applied on FLAIR and T1w images.

13.4 Results

Here we present the nal results for each of the presented experiments.

13.4.1 Inter-rater metrics

When analyzing inter-rater metrics, we can see that for all subregions

the DC is lower or equal to 0.66 (Table 13.3). These low values are expected due to

the dierent segmentation protocols used and the small size of the hypothalamus

subregions.

Table 13.3 – Inter-rater metrics (median) for 10 subjects from FSM

Subregion
Metric

DC AVD

Anterior 0.63 0.41
Tuberal 0.66 0.43
Posterior 0.66 0.38
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13.4.2 Direct comparison with manual segmentation on dierent se-

quences

Analyzing H-SynEx metrics on dierent sequences, we can see that the

method presents a better performance on T1w images (Figure 13.6). Yet, it is

capable of segmenting the hypothalamus and its subregions in all the proposed

MRI sequences, as can be seen in Figure 13.7.

13.4.3 Comparing against other state-of-the-art methods

Given that Billot et al. (BILLOT et al., 2020), the only available method

for subregion segmentation works only on T1w images, we compared its results with

H-SynEx on 22 T1w images from FSM (Table 13.4). Finally, to compare H-SynEx

with ScLimbic (GREVE et al., 2021) and Rodrigues et al. (RODRIGUES et al.,

2022) we used the whole structure (Table 13.5).

Since the datasets have few subjects and we can not assess with high

signicance that the distribution is Gaussian, the statistical analyses were con-

ducted considering non-parametric distributions.

Table 13.4 – AVD and DC (median) for H-SynEx and Billot et al. on dierent
subregions for FSM dataset. †indicates statistical signicance on a
two-sided Wilcoxon rank-sum test using Bonferroni correction for  <
0◁05

.

Subregion
Model

H-SynEx Billot et al.

A
V
D

Anterior 0.54† 1.32
Tuberal 0.49† 0.66
Posterior 0.33† 0.52

D
IC

E Anterior 0.53† 0.33
Tuberal 0.59 0.58

H-Posterior 0.67† 0.55
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Figure 13.6 – Top row: IXI dataset, which only presents the segmentation of the
whole structure (excluding the mammillary bodies). Middle row:
FSM dataset, that contains the segmentation of the hypothalamus
and its subregions. Bottom row: H-SynEx and manual segmentation
(target) volumes for FSM dataset
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Figure 13.7 – Qualitative results in dierent datasets, sequences, and resolutions
for H-SynEx. Other methods, when applied to sequences dierent
from T1w, return no results
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Table 13.5 – AVD and DC (median) for H-SynEx, ScLimbic (GREVE et al., 2021)
and Billot et al. (BILLOT et al., 2020) on dierent datasets (MiLI,
IXI, OASIS, and FSM) for the entire hypothalamus (except MB).
The symbols indicate statistical signicance on a two-sided Wilcoxon
rank-sum test using Bonferroni correction for  < 0◁05: (*) Billot
vs H-SynEx; (†) ScLimbic vs H-SynEx; (‡) Billot vs ScLimbic. Since
ScLimbic was trained using the FSM dataset, we did not consider
these results. Similarly, since HypAST was trained using data from
MiLI, IXI and the same segmentation protocol as OASIS, we did not
consider these results

.

Model
Dataset

MiLI IXI OASIS FSM

A
V
D

Billot 0.46 0.61*‡ 0.47 0.40
HypAST - - - 0.41
ScLimbic 0.39†‡ 0.44 0.49 -
H-SynEx 0.45 0.45 0.5 0.43

D
IC

E Billot 0.66* 0.6 0.65*‡ 0.68
HypAST - - - 0.69
ScLimbic 0.67†‡ 0.64†‡ 0.59 -
H-SynEx 0.63 0.62 0.58 0.65

13.4.4 Application to group studies

Observing the applicability of the methods on group studies, H-SynEx

achieved statistical signicance ( < 0◁05) in the Wilcoxon rank-sum test in all hy-

pothalamic subregions when comparing AD vs. controls, while Billot et al. was un-

able to detect dierences in the tuberal-inferior region (Table 13.6). Additionally, in

some cases, we observed a higher AUROC in H-SynEx, along with a − < 0◁5

for the DeLong test, indicating the ability of H-SynEx to better discern dierences

between the two groups in this dataset. Regarding NIFD, the results were similar

for both models, except for the tuberal-inferior region.

13.4.5 Resilience to large slice spacing

Finally, we analyzed H-SynEx segmentations on 5 spacing FLAIR

images from the same subjects from the ADNI dataset used in Experiment 4.

When analyzing the volumes, H-SynEx returns statistically signicant results (Ta-
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ble 13.6) when comparing patient and control volumes normalized by TIV in all

subregions, except for the posterior subregion.

Figure 13.8 – Normalized volume correlation for FLAIRs vs T1w (ADNI Dataset)
using H-SynEx segmentation. Up: Control subjects; Down: AD pa-
tients. We can see that besides the posterior subregion, we can nd
a positive correlation between FLAIR and T1w normalized volumes.

13.5 Discussion

In this part of the project, we addressed Hypotheses b and f by using

ultra-high resolution ex vivo images to create more accurate segmentations, com-

pared to traditional in vivo image segmentations. Additionally, using only 10 ex

vivo images, we developed H-SynEx, a method capable of working across dierent

MRI sequences and resolutions, thereby conrming Hypotheses g and h.

While other studies have utilized synthetic images (BILLOT et al.,

2023) and ex vivo data (IGLESIAS et al., 2015) for developing segmentation meth-
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Table 13.6 – AUROC Values for patients vs. controls (hypothalamus volume) for
H-SynEx and Billot methods in ADNI and NIFD datasets. For ADNI
dataset, we also analyze our method when applied to FLAIR images
with spacing of 5. Stars indicate the level of statistical signicance
(two-sided Wilcoxon rank-sum test) between both cohorts (*  <

0◁05, **  < 0◁01). † indicates statistical signicance on the DeLong
test ( < 0◁05) between H-SynEx and Billot methods. ‡ indicates
statistical signicance on the DeLong test ( < 0◁05) between H-
SynEx applied on T1w and H-SynEx applied on FLAIRS.

Dataset ADNI NIFD

Subregion
Model H-SynEx

FLAIR
H-SynEx

T1w
Billot
T1w

H-SynEx
T1w

Billot
T1w

Whole 0.66**‡ 0.74** 0.65**† 0.79** 0.74**
a-sHyp 0.60**‡ 0.69** 0.72** 0.76** 0.75**
a-iHyp 0.60** 0.64** 0.55*† 0.72** 0.62**
supTub 0.68**‡ 0.60** 0.67**† 0.76** 0.76**
infTub 0.67**‡ 0.73** 0.52† 0.74** 0.59*†

postHyp 0.52‡ 0.72** 0.70** 0.7** 0.73**

ods applied to in vivo MRI, to the best of our knowledge, H-SynEx is the rst to

merge both techniques. Through this integration, we developed a method capable

of eectively segmenting small structures, such as hypothalamus subregions, across

various MRI sequences and resolutions, including FLAIRs with a spacing of 5.

Typically, when evaluating how well a developed segmentation method

generalizes, we compare it to others found in existing literature. To do this, it’s

common to use a dataset that none of the methods have seen during training. How-

ever, when these methods use training sets with dierent segmentation protocols,

this dierence can introduce bias, favoring the method trained under the same

protocol as the test images. By using ex vivo images to construct the training set,

the segmentation protocol used in training H-SynEx became dierent from any

other in vivo image set. Consequently, the main challenge in analyzing the results

lies in the dierence between the training and test protocols. Focusing on that, we

compared the manual segmentation of two raters who employed distinct protocols

on 10 T1w images from the FSM dataset and found inter-rater DC values lower or

equal to 0.66 and AVD higher or equal to 0.38. We use these values as a baseline
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for analyzing the metrics in the subsequent experiments.

In Experiment 2, we analyzed H-SynEx usability across dierent MRI

sequences. We could assess that T1w images presented the best results. However,

despite the lower DC and higher AVD values for the other sequences, it is impor-

tant to emphasize that the manual segmentations of the hypothalamus subregions

in both FSM and IXI were done in T1w images, not being inuenced by the dier-

ent contrasts of other sequences. Also, despite FSM images for each subject have

already been registered, the same is not true for IXI. Hence, the manual segmen-

tations were registered to be used on the dierent sequences acquisitions of the

same subject. Both registration and the use of a dierent sequence for manual

segmentation may compromise the nal results. Finally, we could notice a high

variability on both metrics, which may be explained by the small size of the hy-

pothalamus. This hypothesis is reassured by comparing the volumes delineated by

H-SynEx and manual segmentation in the FSM dataset (Figure 13.6). We can see

that both the posterior and anterior subregions, which show greater variability

in the DC and AVD, are relatively smaller than the tuberal subregion. Further-

more, the variability in volumes across sequences and subregions appears to be

less pronounced than the variability in the metrics. For instance, for the anterior

subregions we can see a large variability in the DC, which is less pronounced in

both AVD and the volumetric analysis. This may imply that the small size of the

anterior subregion may be interfering in the nal DC values. The same analysis is

valid for the posterior region.

When comparing H-SynEx with other state-of-the-art methods, we can

see that H-SynEx outperforms Billot et al. in almost every metric for subregion

segmentation (Table 13.4). Here, it is important to highlight that despite DC values

seeming to be low at rst glance, they are not far from the values observed in the

inter-rater analysis. The same is true for AVD. Observing AVD and DC for the

whole structure (Table 13.5), H-SynEx outperforms Billot et al. and returns similar

results to ScLimbic (GREVE et al., 2021) on the former, despite not achieving the

best performance on the latter. When comparing with HypAST, we can also nd

similar results on AVD and DC for FSM, but it is important to notice that since
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HypAST metrics were computed without the posterior subregion, this is not a

direct comparison. However, when dealing with small structures with complex

boundaries, distance metrics such as AVD, are more suitable to compare dierent

methods (TAHA; HANBURY, 2015). Also, it is important to emphasize that

all other methods were exclusively trained on in vivo T1w images, not having

to deal with domain gap. Therefore, even not presenting the best quantitative

results in T1w images, H-SynEx presents the best generalization ability across

MRI sequences.

When comparing volumes of the hypothalamus from patient and control

groups on T1w images, we have conrmed that our method exhibits a statistically

signicant dierence in all subregions in ADNI and NIFD datasets, with AUROCs

of 0.74 and 0.79 respectively, and  −  < 0◁05 for the Wilcoxon signed-rank

test in both cases. Notably, the AUROC values reported to NIFD are higher than

those found in ADNI. This behavior is expected since bvFTD patients tend to

exhibit more pronounced hypothalamic atrophy than AD patients (10-12% volume

loss in AD and 15-20% in bvFTD) (VERCRUYSSE et al., 2018). Additionally, we

determined that H-SynEx results dier statistically from Billot et al. for the entire

hypothalamus and in most subregions in the ADNI dataset, with a − < 0◁05

for the DeLong test.

Finally, we analyzed the same subjects from ADNI used in experiment

4, but using FLAIR images with a spacing of 5. It is possible to see that,

similarly to when analyzing T1w images, the method was able to dierentiate

between patients and controls in almost all subregions, except for the posterior.

This may be explained by the 5 spacing of the FLAIR images since it makes

many images lack the mammilary bodies, or limit it to just one slice of the image.

For this reason, the small AUROC values in this subregion are expected. Finally, we

plotted the correlation among T1w and FLAIR normalized volumes (Figure 13.8)

to investigate whether H-SynEx exhibits consistency among them. The anterior

subregion displays a moderate correlation (r=0.40 and r=0.50, respectively), and

tuberal subregions have strong correlations (r=0.79 and r=0.80, respectively), both

for controls and AD subjects. As expected, the posterior correlation is weak in both



Chapter 13. H-SynEx 100

cases (r=0.11 and r=0.22). These results support the hypothesis that the method

can be used in challenging resolutions and still detect dierences among groups.

A limitation of the project is the dierence in H-SynEx performance

between T1w images and other sequences and the high variability of the metrics.

However, besides the divergence in the manual segmentation protocols used for

training and testing, in both IXI and FSM, we only have one label per subject.

Therefore the manual segmentations were not inuenced by dierent contrasts.

Also, we could demonstrate that the smallest subregions (anterior and posterior)

had the biggest variability, especially in DC, an overlap measure known for being

sensitive to small structures (TAHA; HANBURY, 2015).
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14 Considerations

In the process of Method Expansion, we established HELM, a com-

prehensive collection of label maps generated from ultra-high-resolution ex vivo

MR images. Not only HELM enabled the development of H-SynEx, a state-of-

the-art hypothalamus segmentation technique, but it also oers versatility for ex-

tending its application to dierent brain structures with minimal eort. HELM is

openly available at https://www.nitrc.org/projects/hsynex_data/

Also, we developed, to the best of our knowledge, the rst automated

method for hypothalamic subregion segmentation capable of working across dif-

ferent in vivo MRI sequences and resolutions without retraining. By producing

reliable and consistent segmentations, H-SynEx facilitates the analysis of the hy-

pothalamus in various pre-existing datasets, whether in research or clinical set-

tings. This contributes to an improved understanding of the roles played by the

hypothalamus and its subregions in neurodegenerative diseases and other related

conditions.

Finally, we will apply H-SynEx to real case study groups, exploring

the role of the hypothalamus in three dierent conditions: Spinocerebellar ataxias,

amyotrophic lateral sclerosis, and systemic lupus erythematosus.
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15 Applying H-SynEx in Group Studies

Finally, we applied H-SynEx to real case studies, aiming to better un-

derstand the role of the hypothalamus in dierent conditions. Here, we study:

• Spinocerebellar Ataxias;

• Amyotrophic Lateral Sclerosis; and

• Systemic Lupus Erythematosus.

15.1 Materials

All data came from subjects that were scanned at the University of

Campinas hospital. The participants underwent an MR imaging scan utilizing a 3T

Philips Achieva scanner (Philips, Best, The Netherlands) with standard 8-channel

head coils. High-resolution 3D T1w volumetric images of the brain in sagittal

orientation were acquired, featuring a voxel matrix of 240×240×180, a voxel size of

1×1×13, a TR/TE of 7/3.201 ms, and a ip angle of 8°. The data used for these

studies received approval from the local ethical committee (CEP/Conep, number

3435027) and underwent complete anonymization. All participants were adequately

informed and provided their consent by signing a consent form to participate in

the study.

15.2 Methods

For each of the described conditions, we follow the same methodology,

focusing on volumetry and texture attributes analysis.
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15.2.1 Image Segmentation

The image processing procedures were executed employing H-SynEx.

SynthSeg (BILLOT et al., 2023), an advanced deep learning-based approach specif-

ically designed for whole-brain segmentation, was used to nd the total intracranial

volume (TIV) of each subject in this study.

15.2.2 Image Analysis

The analysis conducted here are based on the hypothalamus subregions

volumes and texture features extracted from the hypothalamus histogram.

The MR images are comprised of volumetric elements known as voxels.

Each voxel is characterized by a numerical value representing its grayscale inten-

sity. By examining the distribution of voxel values within a region of interest, the

texture of that region is analyzed. Despite T1w MR imaging does not provide

microscopic-level insights that can be visualized, certain pathologies may induce

histological alterations that manifest as changes in grayscale patterns within the

T1wMR images of the aected area. Such alterations can be discerned through tex-

ture analysis. One can nd in the literature numerous studies investigating texture

characteristics in MR images across dierent neurological conditions (CASTEL-

LANO et al., 2004). Here, a statistical texture analysis employing histogram-based

parameters was applied.

The volumetric analysis, on the other hand, aims to assess variations

in subregion volumes between patient and control groups. For this analysis, all

subregion volumes are initially normalized by the TIV of each subject, ensuring

a more accurate comparison by accounting for the individual variation in overall

brain size.

There is no signicant dierence in the distributions of age and sex

between the control and patient cohorts.
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15.2.3 Statistical Analysis

All statistical analyses were conducted using Python. The statistical dif-

ferences were assessed using Mann-Whitney U test with a condence level of 95%.

All tests were corrected for multiple comparisons (Bonferroni-corrected p<0.05).

Additionally, the eect sizes were calculated for all ndings, utilizing the area

under the receiver operating characteristic curve (AUROC).
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16 Spinocerebellar Ataxias

16.1 Description

Spinocerebellar ataxia (SCA) is an autosomal dominant degenerative

disorder with remarkable phenotypic and genotypic heterogeneity. This is typically

a late onset and very disabling condition. The unifying feature in all SCAs is the

presence of slowly progressive cerebellar ataxia either in isolation or combined with

other neurological manifestations (KLOCKGETHER et al., 2019). To date, there

are more than 40 genetic subtypes of SCAs; these are named sequentially in the

chronological order of loci discovery (from SCA1 up to SCA50) (COARELLI et al.,

2023). The most common subtypes worldwide are SCA1, 2, 3, and 6 (SCOTT et

al., 2020). So far, little is known about hypothalamic involvement in SCAs. There

is a single study that reported hypothalamic atrophy as well as positive correlation

between atrophy and body mass index in Chinese patients with SCA3 (GUO et

al., 2022).

16.2 Materials

The study included a total of 135 adult patients with molecular con-

rmation of SCA (31 SCA1, 12 SCA2, 92 SCA3, and 17 SCA6) (Table 16.1).

To match age and sex, two groups of healthy subjects were used as controls for

comparison purposes. The rst group included 100 subjects, and the second, 17

subjects. None of the control subjects had comorbid neurological and/or psychi-

atric disorders (Table 16.1).
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Table 16.1 – SCA patients and controls demopgraphics . SARA: scale for assess-
ment and rating of ataxia

Group
n

(male/female)
Age

(mean ±)
Mean
SARA

Mean time
of ataxia (years)

SCA1
31

(21M/10F) 44.55 ±8◁63 15 ±6◁75 8 ±6◁58

SCA2
12

(6M/6F) 40.5 ±20◁22 23.25 ±11◁38 9.6 ±5◁95

SCA3
92

(40M/52F) 48.33 ±12◁2 13.35±7◁9 13.39 ±7◁15

SCA6
17

(10M/7F) 67.88 ±7◁88 13.94 ±6◁34 14.13 ±6◁97
Control
(SCA6) 17(8M/9F) 65.35 ±3◁22 – –
Control

(SCA1, SCA2, SCA3) 100(50M/50F) 47.29 ±8◁63 – –

16.3 Results and Discussion

The volumetric analysis revealed a signicant dierence in the volume

of the hypothalamus across various subregions in patients with SCA1 and SCA3

when compared with the control group (Table 16.2). Atrophy was evident in the

entire anterior region (both superior and inferior) for both ataxias, while the tu-

beral inferior subregion remained unaected in all cases. There was no signicant

dierence in the subregion volume between controls and patients with SCA2 and

SCA6.

Texture analysis indicated statistical dierences in almost all hypotha-

lamic subregions between the control group and patients for SCA1 and SCA3.

Signicant correlations were observed between volume and texture attributes and

the scale for assessment and rating of ataxia (SARA) coecient for SCA1 and

SCA3. No signicant correlations were found for SCA2. When analyzing the cor-

relation between volume and texture attributes and the average time from ataxia

onset, signicant associations were observed for SCA1 and SCA3 (Figure 16.1).

This may suggest that alterations in the hypothalamus in these conditions may

initiate changes in tissue texture before progressing to atrophy, though further

studies are necessary to validate this hypothesis.

Finally, the pattern of abnormalities is distinct across groups: severe
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and widespread changes in SCA1 and SCA3, but not in SCA2 or SCA6.

Table 16.2 – Subregions that presented signicant dierence when comparing pa-
tient and control groups (Mann-Whitney test with condence level
of 95%)

Attribute SCA1 SCA2 SCA3 SCA6

Volume
ant_inf, ant_sup,

posterior –
ant_inf, ant_sup,

tub_sup –

Mean
all

subregions
all

subregions
all

subregions –

Variance
all

subregions
ant_sup, tub_inf,
tub_sup, posterior

all
subregions

tub_inf, tub_sup,
posterior

Skweness
ant_sup,
posterior

ant_sup,
tub_inf ant_sup

all
subregions

Kurtosis ant_sup –
tub_sup,
posterior ant_sup

Entropy
all

subregions
ant_inf, tub_inf,
tub_sup, posterior

all
subregions

tub_inf, tub_sup,
posterior
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Figure 16.1 – Correlation between SARA scores (top) and disease duration (bot-
tom) and hypothalamic imaging (subregion volumes and texture at-
tributes). Interpretation of Pearson’s r coecient applied to medicine
- analysis for asolute values (Akoglu, 2018): 0:None; 0.1-0.29:poor;
0.3-0.59:Fair; 0.6-0.79: Moderate; 0.8-0.99: Very Strong; 1: Perfect.
Gray blocks mean no signicant correlation.
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17 Amyotrophic Lateral Sclerosis

17.1 Description

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative

disorder that aects the corticospinal tract, brainstem, and anterior horn cells of

the spinal cord. The condition typically begins between the ages of 50 and 75,

involving both upper and lower motor neurons. About 65% of patients present

with limb involvement, 30% with bulbar muscle involvement, and 5% with res-

piratory muscle involvement. While ALS was initially thought to be conned to

motor decits, it is now increasingly recognized that patients experience signi-

cant changes in weight and eating behavior, which both result from and contribute

to the underlying neurodegenerative process. These changes include alterations in

metabolism, lipid levels, and insulin resistance (AHMED et al., 2021b).

The hypothalamus, the primary brain region regulating energy bal-

ance, controls food intake and energy expenditure through homeostatic mecha-

nisms. Given that energy expenditure and eating behavior are profoundly aected

in ALS, emerging research suggests that these alterations may be mediated by

changes in hypothalamic function. Notably, atrophy of the hypothalamus has been

observed in both ALS patients and presymptomatic individuals at genetic risk for

the disease (AHMED et al., 2021b; VERCRUYSSE et al., 2018).

17.2 Materials

This study involved 139 subjects, including 83 patients (49 male and

34 female, with an average age of 56.86 ± 12.31 years) and 56 controls (31 male

and 25 female, with an average age of 56.91 ± 7.67 years).
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17.3 Results and Discussion

Upon analyzing the dierences in volume and texture attributes be-

tween patient and control groups, we discovered signicant disparities in both the

tuberal inferior and posterior subregions. Conversely, no signicant dierences in

volume or texture were observed in the other subregions. When reviewing the lit-

erature, we can nd studies indicating hypothalamic atrophy in ALS (GORGES et

al., 2017; AHMED et al., 2021b; CHANG et al., 2023); however, few have exam-

ined subregions (LIU et al., 2022a), and none have analyzed texture. By assessing

both texture and volume and examining the subregions individually, we can gain

greater condence in identifying aected regions. The concurrent alterations in

texture and volume within the same regions suggest that the tuberal inferior and

posterior regions are indeed more aected in ALS patients.
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18 Systemic Lupus Erythematosus

18.1 Description

Systemic lupus erythematosus (SLE) is an autoimmune disease that

can aect people of dierent genders and ethnicities, despite being more prevalent

in black women. The disease can aect dierent organs such as the skin, central

nervous system, and kidneys (PISETSKY, 2008).

Several authors have shown alterations in the Hypothalamic–pituitary–adrenal

(HPA) axis in SLE patients when compared with controls (APPENZELLER et al.,

2007; MONTERO-LÓPEZ et al., 2017; GOES et al., 2010). Besides, the SLE may

aect the central nervous system (CNS), resulting in neuropsychiatric SLE (NSLE)

in 15-66% of SLE patients. The NSLE comprehends psychiatric and neurological

syndromes of SLE patients (OTA et al., 2022). One of the primary mechanisms is

the alteration of cytokine balance in the CNS, which may aect the hypothalamus.

Being a crucial part of the neuroendocrine system, some studies have

defended the need to further study the hypothalamus and HPA in autoimmune

and chronic rheumatic disease patients.

18.2 Materials

The study was divided into two subgroups: Juvenile SLE and Adult

SLE. Juvenile SLE encompasses patients who received an SLE diagnosis before

the age of 18 years, while adult SLE encompasses patients who received an SLE

diagnosis with or after the age of 18 years.

The juvenile SLE group included a total of 126 subjects, 92 patients

(12 male and 80 female with average age of 17◁71± 3◁84), and 34 controls (6 male

and 28 female with average age of 18◁76± 4◁56). The adult SLE group included a
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total of 325 subjects, 207 patients (12 male and 195 female with an average age

of 41◁16 ± 11◁88), and 97 controls (6 male and 81 female with an average age of

39◁80± 12◁14) (Table 18.1).

Table 18.1 – Adult and Juvenile lupus patients and control demographics

Group
n

(male/female)
Age

(mean ±)
Adult Lupus 207 (12M/195F) 41.16 ±11◁88

Juvenile Lupus 92 (12M/80F) 17.71±3◁84
Adult Lupus Control 118 (38M/80F) 39.80±12◁14

Juvenile Lupus Control 34 (6M/28F) 18.76 ±4◁56

18.3 Results and Discussion

When analyzing juvenile SLE, no signicant dierences are found in

the hypothalamus when considered as a whole. However, when examining the sub-

regions individually, a dierence in the volume of the posterior subregion becomes

apparent. Texture analysis also reveals dierences in all attributes for the posterior

subregion and in the variance of the tuberal superior subregion.

In adult SLE, dierences in hypothalamus volumetry can be detected

without subregion analysis. However, signicant dierences are observed in the

volumes of the anterior superior, tuberal inferior, and posterior subregions. Texture

analysis indicates signicant dierences in all attributes for the anterior superior,

tuberal superior, and posterior subregions.

These results suggest that the hypothalamus may be more aected by

the disease in cases of late-onset symptoms, as seen in adult lupus (Figure 18.1),

and reinforce the importance of analyzing the subregions individually.
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Figure 18.1 – Subregions where we could nd volume and/or texture dierences
between patients and controls. Left: Juvenile Lupus; Right: Adult
Lupus. Pink: anterior superior, red: tuberal superior, yellow: tuberal
inferior, and green: posterior
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19 Conclusions

The hypothalamus is a small brain structure that plays an essential

role in maintaining body homeostasis and is linked to neurodegenerative diseases.

Despite its importance, there was a gap in the literature regarding hypothalamus

segmentation, and no automated method existed at the beginning of this project.

In this thesis, we present two datasets focused on the hypothalamus (MiLI and

HELM) along with two segmentation methods (HypAST and H-SynEx).

MiLI is the rst public dataset for hypothalamus segmentation, com-

prising four distinct image groups: three public datasets (OASIS, IXI and CC-359)

and a newly created dataset specically for this benchmark. MiLI includes over

1300 acquisitions, with images from controls and ataxia patients. MiLI contains

both manual and automated labels of the hypothalamus. Using MiLI, we devel-

oped HypAST, a tool that embeds Correct2Seg, a method consisting of two CNN

blocks that can handle noise from dierent labels and segment small structures

such as the hypothalamus. HypAST provides access to hypothalamus volumes

and histogram texture attributes. Despite its good performance, returning better

dice scores compared to state-of-the-art methods, HypAST is limited to T1w 1

isotropic images. This limitation led us to the second part of this thesis.

In the second part, we introduced HELM and H-SynEx. HELM is a

dataset of label maps derived from 10 ex vivo images. The label maps were cre-

ated using both manual and automated segmentation: manual for delineating the

hypothalamus and its subregions, and automated for segmenting the rest of the

brain. H-SynEx is a segmentation method trained with synthetic images derived

from HELM, capable of segmenting the hypothalamus and its subregions.

Finally, we presented an analysis of three study groups consisting of pa-

tients with ataxias (SCA1, SCA2, SCA3, and SCA6), lupus (juvenile and adult),

and ALS. In all cases, we found signicant dierences in some hypothalamus sub-

regions between patient and control groups.
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To the best of our knowledge, we have presented the rst automated

method for hypothalamic segmentation of the literature (RODRIGUES et al.,

2020) and the rst method capable of segmenting the hypothalamus and its sub-

regions across dierent in vivo MRI sequences and resolutions without retraining.

By producing reliable and consistent segmentations, H-SynEx facilitates the anal-

ysis of the hypothalamus in various preexisting datasets, whether in research or

clinical settings. This contributes to an improved understanding of the roles played

by the hypothalamus and its individual subregions in neurodegenerative diseases

and other related conditions.
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20 Next Studies

Despite our work have helped ll a gap at the hypothalamus literature,

we can list some works that can be done to improve even more the studies on this

structure:

• Expand HELM and H-SynEx to Dierent Structures: Current meth-

ods such as SynthSeg have demonstrated the ability to generalize across

dierent MRI sequences, focusing primarily on the entire brain (BILLOT et

al., 2023). However, leveraging the ultra-high resolution of ex vivo images

could enhance the segmentation of smaller structures such as the nucleus

accumbens, amygdala, and pituitary gland.

• Analyze the Application in Neurodegenerative Diseases Across Other

Sequences: Recent studies indicate that obese patients exhibit higher T2w

relaxation times compared to control groups (SANDE-LEE et al., 2020).

A subsequent step for this project is to compare T2w images from control

groups with those from lupus patients, who often experience an increase in

body mass index due to medication intake (CHAIAMNUAY et al., 2007).

• Merge the Texture and Volume Analysis from HypAST with H-

SynEx: Integrating a graphical user interface with H-SynEx can streamline

the application of this method, making it more user-friendly and enhancing

its functionality by combining texture and volume analysis.
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21 Publications, Collaborations, Awards

21.1 Publications on the Hypothalamus

• Rodrigues, Livia, et al. "High-resolution segmentations of the hypothala-

mus and its subregions for training of segmentation models". Scientic Data

(2024) (Accepted)

• Rodrigues, Livia, et al. "H-SynEx: Using synthetic images and ultra-high

resolution ex vivo MRI for hypothalamus subregion segmentation." arXiv

preprint arXiv:2401.17104 (2024). Submitted to AI in Medicine

• Rodrigues, Livia, et al. "A benchmark for hypothalamus segmentation on

T1w MR images." NeuroImage 264 (2022): 119741.

• Rodrigues, Livia, et al. "Hypothalamus fully automatic segmentation from

MR images using a U-Net based architecture." 15th International Symposium

on Medical Information Processing and Analysis. Vol. 11330. SPIE, 2020.

• Rodrigues, Livia, et al. "Hypothalamus semi-automatic segmentation from

MR images using Convolutional Neural Networks. In Proceedings of Inter-

national Society for Magnetic Resonance in Medicine (ISMRM) 27th Annual

Meeting Exhibtion.

• Rodrigues, Livia, et al. "Hypothalamus Segmentation From MRI Using Con-

volutional Neural Networks." In: 6th Brainn Congress, 2019, Campinas. Jour-

nal of Epilepsy and Clinical Neurophysiology, 2019.

21.2 Publications on collaborative projects

• *Carmo, D., *Pinheiro, G., *Rodrigues, L., Abreu, T., Lotufo, R., Rittner,

L. (2023). Automated computed tomography and magnetic resonance imag-
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ing segmentation using deep learning: a beginner’s guide. arXiv preprint

arXiv:2304.05901.

• Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yi-

asemis, G., Rodrigues, L., ... Souza, R. (2022). Multi-coil MRI reconstruction

challenge—assessing brain MRI reconstruction models and their generaliz-

ability to varying coil congurations. Frontiers in Neuroscience, 16, 919186.

• Carmo, D., Campiotti, I., Fantini, I., Rodrigues, L., Rittner, L., Lotufo, R.

(2021, December). Multitasking segmentation of lung and COVID-19 nd-

ings in CT scans using modied EcientDet, UNet and MobileNetV3 mod-

els. In 17th International Symposium on Medical Information Processing and

Analysis (Vol. 12088, pp. 65-74). SPIE.

• Carmo, D., Campiotti, I., Rodrigues, L., Fantini, I., Pinheiro, G., Moraes,

D., ... Lotufo, R. (2021). Rapidly deploying a COVID-19 decision support

system in one of the largest Brazilian hospitals. Health Informatics Journal,

27(3), 14604582211033017.

• Phellan, R., Rodrigues, L., Pinheiro, G. R., Soto, A. Q., Rodrigues, I. D.,

Rittner, L., ... Bento, M. (2019). Automatic detection of age-and sex-related

dierences in human brain morphology. In Proceedings of International So-

ciety for Magnetic Resonance in Medicine (ISMRM) 27th Annual Meeting

Exhibition.

21.3 Colaborations

The following collaborations were essential for the development of this

project:

• LNI: The development of MiLI and HypAST was in collaboration with the

Laboratory of NeuroImage from the School of Medical Sciences (Faculdade

de CiŸncias Médicas - FCM), Unicamp, which provided us with images and

manual segmentations of public datasets.
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• University of Calgary: Currently, MiLI is hosted on the Calgary-Campinas

dataset, in a collaboration with the University of Calgary.

• Athinoula A. Martinos Center for Biomedical Imaging: The collabo-

ration with the Martinos Center (Massachussets General Hospital - MGH/Harvard)

made possible the development of H-SynEx and HELM.

21.4 Awards

During the PhD, the candidate received the following awards:

• SIPAIM Society Award: Best Paper on SIPAIM Conference, 2021

• MICCAI: MICCAI 2020 Startups Village Pitch Competition - COVID So-

lution, 2020

• IdeaGov (Brazilian Government Challenge): "How the use of articial

intelligence algorithms can assist radiologists in diagnosing Covid-19 through

Computed Tomography images and chest x-rays?" ,São Paulo-Alberta-BrainHack

2020

• São Paulo-Alberta-BrainHack: First place in the "Age classication based

on magnetic resonance images of the brain" challenge
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