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Abstract

Text-to-speech (TTS) systems have become important means of human-machine
interaction in various daily life applications, as seen in digital document readers, car
navigation systems, and intelligent personal assistants. Despite their widespread use,
many TTS systems still exhibit very monotonous speech, which can hinder effective
communication and reduce user acceptance. To tackle this issue, various attempts to
introduce aspects of human expressiveness into standard TTS have been increasingly
proposed on literature. A very adopted approach is to directly record expressive data in a
given speaking style and train a TTS model on the transcriptions. Although this technique
was shown to reasonably achieve expressive models, it is not scalable, since for every new
speaker, it must be entirely repeated. In this context, the cross-speaker style transfer task
arises as a possible solution to mitigate the issue. It consists in using already recorded
data by other (source) speakers in a given speaking style to build an expressive TTS
for other speaker (target) with fewer or non-existent expressive data. Several techniques
based on data augmentation were proposed to solve the task, but almost none consider
the challenging scenario when the speaking styles are highly expressive (e.g. emotions),
and with very different source and target speakers’ timbres. In this context, the use of a
pre-trained singing voice conversion (SVC) model is proposed as a means to convert the
highly expressive data into target speaker’s voice. In the conversion process, a fundamental
frequency (F0) matching technique is applied to mitigate tonal variances between speakers
with significant timbral differences. Also, a style classifier filter is employed to select only
the converted audios with adequate style for the TTS training. While other methods
require hours of neutral data of target speaker, the proposed approach is comparable to
start-of-the-art requiring only a few minutes. Experiments report improvements brought by
both the SVC and style filter in terms of naturalness and style intensity for the styles whose
perception relies more on vocal qualities than on prosodic parameters. Also, increased
speaker similarity is obtained with the F0 matching algorithm.

Keywords: Expressive Speech Synthesis; Style Transfer; Singing Voice Conver-
sion; Data Augmentation.



Resumo

Os sistemas de conversão de texto em fala (TTS) tornaram-se meios importantes
de interação homem-máquina em diversas aplicações da vida cotidiana, como por exemplo
em leitores de documentos digitais, sistemas de navegação automotiva e assistentes pessoais
inteligentes. Apesar da sua utilização difundida, muitos sistemas TTS ainda apresentam
uma fala muito monótona, o que pode dificultar a comunicação eficaz e reduzir sua
aceitação por pate do utilizador. A fim de mitigar esse problema, várias tentativas de
introduzir aspectos da expressividade humana nos sistemas TTS comuns têm sido cada
vez mais propostas na literatura. Uma abordagem muito adotada consiste em gravar
diretamente dados expressivos em um determinado estilo de fala e treinar um modelo TTS
nas transcrições. Embora essa técnica tenha demonstrado uma capacidade razoável de
gerar modelos expressivos, ela não é escalável, uma vez que para cada novo falante deve
ser inteiramente repetida. Neste contexto, a tarefa de transferência de estilo além-falante
surge como uma possível solução para mitigar esse problema. Essa tarefa consiste em
utilizar dados já gravados por outros falantes (apoio) em um determinado estilo de fala
para construir um TTS expressivo para outro falante (alvo) com nenhum ou poucos dados
expressivos. Várias técnicas baseadas no aumento de dados foram propostas para resolver
a tarefa, mas quase nenhuma considera o cenário desafiador de quando os estilos de
fala são altamente expressivos (por exemplo, emoções), e com falantes de apoio e alvo
contendo timbres muito diferentes. Neste contexto, o uso de um modelo pré-treinado de
conversão de voz cantada (SVC) é proposto, a fim de ser capaz de converter os dados
altamente expressivos para a voz do locutor alvo. No processo de conversão, uma técnica
de correspondência de frequência fundamental (F0) é aplicada para mitigar variações
tonais entre alto-falantes com diferenças de timbre significativas. Além disso, um filtro
classificador de estilos é utilizado para selecionar apenas os áudios convertidos com estilo
adequado para o treinamento do TTS. Enquanto outros métodos necessitam de horas
de dados neutros do falante alvo, a abordagem proposta é comparável ao estado da arte
necessitando de apenas alguns minutos. Experimentos relatam melhorias trazidas pelo
SVC e pelo filtro de estilo em termos de naturalidade e intensidade do estilo para os estilos
cuja percepção depende mais de qualidades vocais do que dos parâmetros prosódicos. Além
disso, um aumento da similaridade dos alto-falantes é obtido com o algoritmo proposto de
correspondência F0.

Palavras-chave: Síntese de Fala Expressiva; Transferência de Estilo; Conversão
de Fala Cantada; Aumento de Dados.
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Chapter 1

Introduction

1.1 Speech Synthesis

The synthesis of speech from text, also known as text-to-speech conversion, or

simply Text-to-Speech (TTS), is a technology whose main task is to transform a textual

input into a speech signal that utters the corresponding text. These systems are present

in various everyday applications, such as digital document readers, guide and reception

robots, cell phone and car navigation systems, and intelligent personal assistants. In these

scenarios, TTS systems characterize a component of the interface between users (humans)

and machines (HAYASHI et al., 2020). Since speech is seen as a more natural interface than

graphic design-based ones, it is becoming the primary form of communication between

humans and machines (ABDUL-KADER; WOODS, 2015). Thus, TTS systems have

become particularly indispensable in the design of human-machine interfaces, especially

when considering more complex interactive social agents, such as digital embodied avatars

and social robots.

For these systems to effectively be able to become a conversational entity with a

human-like way of communicating, they have to demonstrate expressiveness, which could

be heard through carefully designed modifications of speech’s intonation (BATLINER;

MÖBIUS, 2005). By speaking affectively, these systems could manifest mood, personality,

and social status, making them capable of vocalizing intimate thoughts, feelings, and

emotions, for example (TRIANTAFYLLOPOULOS et al., 2023).

Expressive speech is considered fundamental, for example, for the anthropomor-

phization of social robots. This aspect is crucial as it implies an increase in the accessibility

of robots for the people who interact with them (JAMES et al., 2018). Empathetic robots

controlled their users’ stress, sought more comfort, and obtained better performance in the

task for which they were intended (NICULESCU et al., 2013). Therefore, good modeling of

speech’s expressiveness is necessary to support and adapt the robot’s oral communication

to its affective state (JAMES et al., 2018).
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With the dissemination of deep learning techniques in different research areas,

TTS systems have reached a level of neutral speech synthesis quality with high naturalness

and intelligibility (ZHOU et al., 2022b). However, the limitation in terms of expressiveness

still characterizes an evident gap between synthesized speech and human recordings, with

which the models are trained. Thus, integrating expressiveness in synthesized speech is an

important research topic in industry and academia (LEI et al., 2022a).

Synthesizing speech expressively consists of capturing the diversity of prosodic,

temporal, and spectral characteristics (information beyond text, denominated paralin-

guistic) that occur naturally in speech. In this context, the problem of expressive speech

synthesis is characterized as a one-to-many problem because the exact input text can be

pronounced in different ways depending on several factors, including the context, emotion,

dialectics, and the speaker’s habitual speech patterns (LI et al., 2022).

One of the common approaches to modeling expressiveness in text-to-speech

systems is the modeling of styles of speech, which can be understood as “ways of speaking”,

each having a own defining prosodic pattern. For example, some speaking styles are based

on individual emotions (ADIGWE et al., 2018; ZHOU et al., 2021a): amused, angry, happy,

sad, surprise, sleepy and disgust. On the other hand, others are designed for interactions,

such as styles based on social attitudes (MOINE; OBIN, 2020): friendly, seductive,

dominant, and distant; or even designed towards customer interaction (MARQUES et al.,

2022): lively, welcoming, and harsh.

Expressiveness in speech can be unveiled with the presence of complex intricate

patterns on the utterance’s prosody (suprasegmental elements of speech such as intonation,

stress and rhythm). The most traditional approach to generate artificial expressive speech

consists in directly recording the desired speaking styles of the desired speaker then training

a neural network straightforwardly to learn these complex stylistic patterns by predicting

speech spectrograms, a visual representation of how the frequencies present on a speech

vary over time, from the text.

Nevertheless, recording one’s speech is not only time-demanding, often requires a

considerable volumetry (total duration of the audio files) of hours of recordings, and is

also costly if high quality is necessary. An additional issue when considering expressive

speech is that the speaker must be able to convey the desired expressiveness properly.

Otherwise, either the emotion or speaking style will be confused or ill-defined. Inserted in

this context, this work aims to make use of already existing expressive speech recorded

by another speaker to make speaker, that has only little neutral data record, to speak

expressively.
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1.2 Problem Definition

The traditional recording approach to obtain expressiveness is often impractical

and lacks scalability, as expressive speech would need to be re-recorded for every new

speaker in the dataset, and with the risk that the speaker may not perform effectively

in the required speaking style (RIBEIRO et al., 2022; PAN; HE, 2021). Moreover,

current State-of-the-Art (SOTA) TTS systems generally require a minimum of dozens of

hours of high-quality transcribed speech data to achieve satisfactory performance (LIAN

et al., 2023).

Cross-speaker style transfer involves transferring a speaking style from one speaker

(the “source”) to synthesized speech in another speaker’s (the “target”) voice (LIU et

al., 2022). This technique allows expressive attributes from high-resource speakers to be

transferred to low-resource speakers (HUYBRECHTS et al., 2021). Various approaches

have been proposed in the literature to perform style transfer, however, none based on

data augmentation dealt at the same time with highly expressive styles and speakers with

very different timbres, or with target speakers with very low neutral volumetry.

In this context, the present work aims to advance expressive text-speech synthesis

techniques for affective human-machine interactions by developing a method that, given

only a few neutral data of a desired speaker, produces an expressive TTS with its voice

by making use of expressive data from another speakers. In particular, this work aims to

develop a new data augmentation-based neural cross-speaker transfer technique.

With the use of a pre-trained Singing Voice Conversion (SVC) model, a system

that is able to change the voice of an utterance while keeping its intonation, to better

capture one’s expressive voice, open-source neutral and expressive speech datasets are

converted to the target speaker’s voice by adjusting the intonation in the case of sufficiently

different vocal timbres with an proposed F0 matching technique. Then, a TTS model

conditioned on prosodic parameters is trained on a filtered style-appropriate version of

this converted synthetic data. In the end, an expressive TTS model on target speaker’s

voice is obtained.

The problem can be defined as: given at least X minutes of neutral speech of a

speaker, denominated as target; at least N minutes of neutral speech, composed by any

combination of speakers; and at least E minutes of expressive speech on a given speaking

style, also composed by any combination of speakers, the goal is to develop a text-to-speech

model that generates speech with the given speaking style in target speaker’s voice for any

input text. The other speakers are all denominated as source speakers and compose the

source datasets, both neutral and expressive. In this work, the proposed technique allows

setting X, the most critical parameter of the task, to as low as five minutes.

Assumptions related to this work:

• An open source pre-trained model is used as the SVC. Since the model is already
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trained to perform conversion and has seen various voices, it is able to quickly adapt

to a new voice, which reduces the need for neutral target speaker volumetry.

• An open source neutral dataset is required, with volumetry enough to train a TTS

model on its own.

• An open source expressive dataset is required, with volumetry enough so that a TTS

can be fine-tuned upon.

• All source speech has to be annotated, in order to make it possible to train the

text-to-speech models.

1.3 Objectives

This work delves into the development of a multi-stage speaking style transfer

pipeline based on data augmented with an SVC model. It allows a speaker with no

expressive data to speak any given textual input expressively. The proposed method is

suited for a condition in which only its neutral data is available. This allows the reuse

of already recorded speech and reduces the burden of the costly and complex process of

recording expressive data with the desired speaker, which is not only time-demanding but

also requires the speaker to be able to precisely know how to articulate in the desired

speaking style properly. In this context, the main objectives of this work can be summarized

as follows:

• Develop an expressive text-to-speech model in target speaker’s voice.

• Allow the reuse of existing expressive speech data of another (source) speaker.

• Avoid speaker timbre leakage and glitches risen from the use of synthetic data.

• Eliminate the necessity to record expressive speech for all speakers ought to speak

expressively in a dataset.

1.4 Research Questions

This work is guided by the following research questions:

• Q.1: Can data augmentation-based techniques perform cross-speaker style transfer

of highly expressive speaking styles with only a few minutes of neutral data of target

speaker?
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• Q.2: Since singing voice includes richer emotional information compared to regular

speech (HUANG et al., 2021), is an SVC model (instead of a Voice Conversion (VC)),

more effective to preserve the speaking style when converting expressive speech to a

speaker with only neutral data?

• Q.3: Does filtering out the synthetic audios that do not maintain the same style

after being converted, judged by a style classifier trained on the original audios,

improves the style intensity of the TTS?

• Q.4: To what extent does the difference in timbre between a source speaker and a

target speaker impact the perceived similarity of the converted speech to the target

speaker, as measured by a speaker similarity metric?

• Q.5: How do current open-source cross-speaker style transfer approaches perform

on open-source data?

1.5 Contributions

The contributions of this work can be summarized as follows:

• We propose to augment data with an SVC model to capture better the expressiveness

of the source speakers for the cross-speaker style transfer task.

• We employed an F0 matching technique that mitigates timbral differences between

target and source speakers.

• A style classifier filter was designed to select the most expressive converted data to

perform the style finetuning.

• We propose using transfer learning and a base neutral dataset to reduce the amount

of the target speaker’s neutral data, lowering this value to only a few minutes.

• Only open-source data and models were used. All the generated models, code, and

audios are made available 1.

• We compared the proposed techniques with several other methods to perform cross-

speaker style transfer, providing a perceptual evaluation benchmark for the current

research state.

Other proposed approaches to perform style transfer of speaking styles for

expressive TTS exploited simultaneously were reported in the following publications:
1Audios available at <https://svcstytransfer.netlify.app/>
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• MARQUES, L. B. De M. M.; UEDA, L. H.; SIMÕES, F. O.; ULIANI NETO, M.;

RUNSTEIN, F. O.; NAGLE, E. J.; DAL BÓ, B.; COSTA, P. D. P. Diffusion-Based

Approach to Style Modeling in Expressive TTS. In: 11th Brazilian Conference on

Intelligent Systems, 2022, Campinas. Intelligent Systems. BRACIS 2022. Lecture

Notes in Computer Science, vol 13653. Springer, Cham. Available at: <https:

//link.springer.com/chapter/10.1007/978-3-031-21686-2_18>. Accessed: Set. 09,

2023.

• MARQUES, L. B. De M. M.; UEDA, L. H.; COSTA, P. D. P. Transferência de

Estilo para Síntese de Fala Expressiva. In: Décimo Quarto Encontro dos Alunos e

Docentes do Departamento de Engenharia de Computação e Automação Industrial,

2022, Campinas. Digital Proceedings. Campinas: FEEC: Unicamp, 2022. Avail-

able at: <https://www.dca.fee.unicamp.br/portugues/pesquisa/seminarios/2022/

manuscritos/papers/18.pdf>. Accessed: Set. 09, 2023.

1.6 Organization

This document is organized as follows:

• Chapter 2 presents a historical perspective of the diverse approaches to synthesize

human speech since the very first early attempts;

• Chapter 3 presents some basic concepts of neural text-to-speech and expressiveness

in speech, as well as the main related works involving style transfer and data

augmentation for expressive TTS.

• Chapter 4 describes the proposed method to achieve cross-speaker style transfer

via data augmentation. All the developed techniques to improve performance are

described: the use of singing voice, the F0 matching algorithm, and the style classifier

filter. Each step of the pipeline is detailed, alongside all used data and experimental

setup to perform the research.

• Chapter 5 details the perceptual assessment and objective metrics conducted to

analyse and compare the performance of the proposed approach against baseline

models and the results obtained.

• Chapter 6 contains the concluding remarks of this project and a brief discussion on

future work.

• Appendix A presents screenshots of the perceptual assessment conducted online.
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Chapter 2

Historical Perspective

The idea of synthesizing human speech has been going through the human mind

since the late 1800s. The famous mathematician, physicist, and engineer Leonhard Euler

wrote in 1761: “. . . All the skill of man has no hitherto been capable of producing a piece

of mechanism that could imitate [speech].” Additionally, he claimed: “The construction

of a machine capable of expressing sounds, with all the articulations, would no doubt

be a significant discovery.” He pictured this device possibly assisting those “whose voice

is either too weak or disagreeable.” Throughout engineering history, the attempts to

generate human speech can be broadly subdivided into three main eras: the mechanical

and electro-mechanical era, the electric and electronic era, and lastly, the digital and

computational era, which persists till the moment in which this work is written (STORY,

2019).

2.1 Mechanical and Eletro-mechanical era

The first ever attempt to synthesize human sounds successfully happened in the

late 1800s, and it is attributed to Christian Gottlieb Kratzenstein, a Professor of Physics

at the University of Copenhagen, and Wolfgang von Kempelen, a Hungarian Engineer,

industrialist, and government official. Kratzenstein, who shared an interest in the study

of physical aspects of speaking with Euler, submitted a detailed report in 1780 of the

design of five organ pipe-like resonators that were able to produce five vowels: {a,e, i,o,u},

when excited with the vibration of a reed. Only sustained sounds were possible with the

system and were not similar to the human way of producing speech (STORY, 2019). These

resonators are shown in Figure 2.1.

Simultaneously, Kempelen was working towards the same goal, since 1769. In

1783, on a tour across Europe, he presented his invention, the so-called “speaking machine”.

Differently from Kratzenstein’s pipes, which could only generate vowels, Kempelen’s

speaking machine was considered the first capable of generating entire words of human

speech. The original design of the machine was published in 1791 in a 450-page document
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Figure 2.1: Kratzenstein’s resonators. Source: Extracted from (BRACKHANE, 2015).

translated to “Mechanism of Human Speech and Language”, which not only described

precisely how to build it but also brought thorough examinations on the nature of speech,

its sounds, and the human speech organs (CULTURE, 2016). The speaking machine’s

original design is shown in Figure 2.2.

To some degree, the speaking machine can be considered a mechanical simulation

of human speech production (STORY, 2019), and it has to be played like a musical

instrument by a human operator. As Kempelen wrote, to produce speech, one has to rest

the right arm on the bellows (X on Figure 2.2) and pump it up and down so that the

speech is produced on a down motion since the air pressure generated causes the reed to

vibrate. The air passes to a wind-box that emulates a trachea and is outputted through a

rubber funnel that emulates the vocal tract. On the wooden wind box, the right-hand

fingers should operate the consonant port and lever controls (r, sch, n, m, and s, on the

figure), and the left hand should be placed palm inward before the opening “BC” of the

bell “C”. With this configuration, the vowels could be produced by first pumping the

bellows with the right elbow while the nostril-imitating tubes (m and n) are blocked with

the right hand. The left-hand position varies according to which vowel is desired. For

example, for the vowel “a”, the left hand should be kept distant from the mouth opening,

and for the vowel “e”, it should be hollowed slightly with the bottom edge against the

mouth and the top edge one inch away from it (DUDLEY; TARNOCZY, 1950).

Inspired by the work of Kempelen, some other attempts to perfect human speech

production also happened in the nineteenth century. A remarkable one was the later-named

“Euphonia” machine, constructed by the Austrian inventor Joseph Faber. The Euphonia

had much better control over Kempelen’s speaking machine: it featured a 7-key keyboard

that could meticulously control fine-grained airflow distinctions, thus better emulating

the human organs to produce speech. It was said to speak any word in any European

language and even sing the song “God Save the Queen” with a skilled operator (RAMSAY,

2019). The “Euphonia” is shown in Figure 2.3.

For the rest of the 19th century to the very beginning of 20th century, instead of

trying to emulate speech from the simulation of human organs, the attempts were more
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Figure 2.2: Original Design of Kempelen’s Speaking Machine. Source: Extracted
from (KEMPELEN, 1791).

focused on some form of spectral addition produced by electro-mechanical devices that

produced spectral components of speech waveforms. For example, Hermann Helmholtz, a

German scientist, developed an electromagnetic system in 1859 to maintain the vibration

of turning forks, each coupled to a resonating chamber. He showed that musical notes and

speech vowels resulted from combining different overtones (integer multiples of the funda-

mental frequency) and linked them to the resonances in the vocal tract (ROSENHOUSE,

2010). His studies led to the beginning of the field of psychoacoustics. In 1914, Dayton

Miller, an American scientist, described intricate machines able to add various sinusoidal

components and generate complex representations of waveforms. He dubbed this process

as “harmonic synthesis”. This was the first time the term “synthesis” in this context of

speech synthesis appeared in history (STORY, 2019).



26

Figure 2.3: Picture of Joseph Faber’s Euphonia. Source: Unknown.

2.2 Electric and Electronic era

In 1922, John Q. Stewart, a Physicist from Princeton, published an article named

“An Electrical Analogue of the Vocal Organs”. It reported an electrical circuit with two

resonanant branches. The device could vaguely simulate how the vocal tract worked solely

for specific vowels by adjusting the elements in the resonant branches of the circuit. It was

able to comprise the first two formants of speech. It did not work either for consonants or

connected utterances. This was the pioneering approach to synthesizing speech with only

electrical devices (ROSENHOUSE, 2010). The designed circuit is shown in Figure 2.4.

Figure 2.4: A Scheme of the Electrical Synthesizer designed by Stewart. Source: Extracted
from (STEWART, 1922).
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Also, Stewart reported that, due to the ease of making quick adjustments in

the circuit (turning knobs or moving sliders), diphthongs were also able to be repro-

duced (STEWART, 1922). Even though the title mentioned so, it did not emulate organs,

but rather the acoustic resonances it produced. Thus, it is considered the first electrical

formant synthesizer, even though he never referred to the system directly as a synthe-

sizer (STORY, 2019). In his paper, he also brought up the idea that rules on manipulating

the apparatus were the central core challenge of synthesizing speech with more naturalness,

rather than the physical devices that produced the sound (STEWART, 1922).

Following the development of the Voice Coder (VOCODER), a machine able to

codify the low-frequency speech articulators factors into a carrier and able to transmit it

through low-bandwidth wires, in 1936 by a communications engineer named Homer Dudley

working at the Bell Labs, a new speech synthesizer named Voice Operation Demonstrator

(VODER) derived directly from the VOCODER was invented. Instead of receiving speech as

an input and processing it to obtain its low-frequency modulating aspect, which happened

on the VOCODER, Dudley shifted to the use of manual controls to directly modulate a

carrier: a 10-key keyboard, which controlled the amplitude of the periodic or noise-like

sources; a wrist bar, which controlled a random noise source for the switch of unvoiced

segments; and a foot pedal, which controlled an oscillator to provide a periodic voice

source for the voiced parts of speech (STORY, 2019). The original VODER schematic,

demonstrating how it works (DUDLEY, 1940), and a picture of a demonstrator are shown

in Figure 2.5.

Remarkably, The VODER is an speech synthesis approach that was thoroughly

mathematically described: the periodic carrier wave signal to simulate voiced speech, Cv,

used by Dudley, is defined as (DUDLEY, 1940):

Cv =
n

∑

k=1

Ak cos [kF0t + ¹k] , (2.1)

in which n is the total number of harmonics and k is the specific harmonic considered in

the sum. Three message functions modulate the carrier. The first correspond to the effect

of starting and stopping the carrier, denoted by s(t). The second effect is the instantaneous

varying of F0, modulated by the inflecting factor p(t), and the third is the transmitting

factor r(w, t), to account for the effect of selective transmission. These factors alter the

carrier signal, Cv, resulting in the following modulated speech voiced signal:

Sv = s(t)
n

∑

k=1

r(É, t)Ak cos
[

kF0

∫

t

0

p(t)dt + ¹k

]

(2.2)

In this formulation, the unvoiced carrier is also contained as a degenerate case

of the voiced carrier. On unvoiced speech, F0 → 0, and n → ∞, thus, after some
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(a)

(b)

Figure 2.5: (a) Schematic of the VODER speech synthesizer. (b) Picture of Woman
demonstrating the VODER operation. Source: (a) Extracted from (DUDLEY, 1940). (b)
Source: Unknown.

manipulation, the unvoiced carrier is given by:

Cuv =
∫

ω2

ω1

A(É) cos [Ét + ¹(É)] dÉ, (2.3)

in which [É1, É2] is the output frequency range. The unvoiced speech signal, thus, did not

have an F0 inflecting factor, but had both the transmitting and start-stop effect, denoted

by the following equation:

Suv = s(t)
∫

ω

ω1

r(É, t)A(É) cos [Ét + ¹(É)] dÉ. (2.4)

Some years later, in 1945, on the paper named “Visible Patterns of Sound”, Ralph

Potter, also working at Bell Labs, reported the creation of the “sound spectrograph”, a

device that could graphically represent sounds in 2D visual representations, with time

in the X-axis and frequency in the Y-axis, the so-called spectrograms (POTTER, 1945).

Inspired by this machine, in 1951, the researchers Frank Cooper and Alvin Libermann



29

at the Haskins Labs reported the design of a new speech and sound synthesis machine:

the “Pattern Playback”. It is shown in Figure 2.6. This machine worked by literally

converting a drawn spectrogram into a sound wave. Its name was given since it could

reproduce either a modification or an existing spectrogram. It worked with a light source

that passed through a tone wheel with 50 sound tracks that modulated light into harmonic

frequencies of a given F0 (from 120-6000Hz). This light was then projected through an

acetate spectrogram in black and transparent that filtered out frequencies not present

on the spectrogram. The filtered-out signal was then converted to an electric signal via

a photocell, which was in the end sent to an amplifier and transformed into a sound

wave (STORY, 2019).

Figure 2.6: The Pattern Playback machine. Source: Extracted from (COOPER et al.,
1951).

The Pattern Playback was the first speech synthesizer to be experimented on a

large scale regarding speech structure. Its users became good at drawing spectrograms by

hand and started developing rules for speech production. Formally, rules for generating

utterances were described by Frances Ingmann in 1957. This was the first time explicit

rules for generating speech with a synthesizer were formally documented (INGEMANN,

1957).

Other types of synthesizers were also developed during this period. In 1953, an

English researcher, Walter Lawrence, introduced a speech synthesizer named Parametric

Artificial Talker (PAT). It consisted of an electrical circuit composed of a source generator

and three parallel frequency-controlled resonant branches. Also, Gunnar Fant, at the Royal

Institute of Technology (KTH) in Stockholm, experimented with placing the electrical

resonators in a cascade arrangement and named the synthesizer as Orator Verbis Electris

(OVE) I. It was a vowel synthesizer that featured a unique mechanical stylus moved in a 2D

plane for controlling the first two resonance frequencies and, thus, the two first formants.

Later, he developed OVE II, featuring more enhancements, such as the production of nasal,
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stops, and fricatives. These synthesizers belonged to a category of formant synthesizers

since they were basically devices to control formants seen in spectrograms (STORY, 2019).

Another type of synthesis that was simultaneously in development was synthesizers

that tried to emulate the shape of the vocal tract with electrical circuits. In 1950, H.

K. Dunn, another Bell Labs engineer, designed a circuit using electrical components

that emulated pharyngeal and oral air cavities within the vocal tract. The values of

capacitors, inductors, and resistors were similar to the cross-sectional area of the cavities.

However, this work and even more detailed emulations of the vocal tract proposed by

Fant were only based on static vocal tract configurations (STEVENS et al., 1953). Then,

in 1958, with a more complex circuit and switch, George Rosen, a doctoral student at

the Massachusetts Institute of Technology (MIT), proposed a new speech synthesizer,

known as Dynamic Analog of the Vocal Tract (DAVO), that could change vocal tract

configurations (ROSEN, 1958). Even though it did not produce sentences, it could

generate diphthongs and consonant-vowel sounds. Thus, for these parametric systems,

specifying the time-dependence of the vocal tract parameters to make them generate

speech was a problem (STORY, 2019). A Figure of DAVO is shown in Figure 2.7.

One other type of speech synthesizer was being developed at the same time. Due

to the advancement in recording audio technology, Cyril M. Harris designed a system

that synthesized pieced-together tape segments of vowels and consonants using selector

circuits. It was perceived as intelligible, but not natural, due to the discontinuities between

pieces (HARRIS, 1953). Later, other segmentation techniques were considered, using

instead of vowels and consonants, a unit called “dyad”, segments extending in time from

the steady-state location of one phoneme to the next, which preserved acoustic transition

dynamics between phonemes (STORY, 2019).

2.3 Digital and Computational era

With the advent of the computing age, the difficulty in controlling speech syn-

thesizers was mitigated. From that moment on, with the capability of digital computers,

commands inputted on a keyboard could be translated to parameter changes in the analog

electrical circuitry. This facilitated the concept of speech synthesis by rule. With a set of

predefined rules, symbols representing phonetic elements were converted into temporal vari-

ations of the parameters of a synthesizer. For example, specific initial and final values of a

given formant could be inputted, and, during a given period of transition, an interpolation

from one to another would happen, possibly independently of other formants (HOLMES et

al., 1964; KELLY, 1962). These models worked as a digital version of the DAVO synthesizer.

In some cases, even the perceived bad sound quality of the generated speech perceived

by the authors themselves was attributed to insufficient knowledge of the cross-sectional

vocal tract areas corresponding to the target of the phoneme inputs (STORY, 2019).
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Figure 2.7: DAVO Synthesizer. Source: Unknown.

With the improvement of X-ray cineradiography technology in the 1960s, the

articulatory movements of speech in a sagittal projection image could be better studied.

Thus, this boosted a new type of synthesis paradigm called articulatory synthesis. Several

speech synthesizers were developed during this period based on a computational model of

the human speech articulators. Positions of the tongue, lips, jaw, and larynx, represented

in the midsagittal plane, were specified and could be moving according to a given function

varying in time (LINDBLOM; SUNDBERG, 1971; HEINZ; STEVENS, 1964). An example

of the earliest articulatory synthesizer that was used in large-scale phonetic experiments

was the Articulatory Synthesizer (ASY), developed in the Haskins laboratory and enhanced

then to become the Configurable Articulatory Synthesizer (CASY) (Haskings Configurable

Articulatory Synthesizer), which provided more accurate representations of the vocal

track and flexibility in control (RUBIN et al., 1981; RUBIN et al., 1996). A figure of the

schematics of the ASY working, and an example speech is shown in figure 2.8.

Concurrently with the development of articulatory synthesizers, research also

aimed at enhancing the formant-based models. Dennis Klatt and colleagues started to

develop several rule-based formant synthesizers based on his research on digital resonators.

Some examples are the “Klattalk”, “MITalk”, “DecTalk”, and later “KLSYN88” (KLATT,

1982). These models became very well known because of the use of these synthesizers

voices by the British physicist Stephen Hawkings.

Also, other techniques of synthesizing speech were being developed in the digital

era. A method named “unit selection” or “concatenative speech synthesis” was developed.

It was the equivalent to a digital version of the tape-slicing technique used by Harris

(1953). It consisted of building speech signals from a database containing several hours of
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(a) (b)

Figure 2.8: a) Block Diagram of the ASY. Source: Extracted from (RUBIN et al., 1981).
b) ASY Synthesis Scheme. Source: Extracted from (RUBIN et al., 1981).

recordings using algorithms that could efficiently search the optimized segments (STORY,

2019). Two main different concatenative schemes were considered: Linear Predictive

Coefficients (LPC) (ATAL; HANAUER, 1971) and Pitch Synchronous OverLap Add

(PSOLA) (MOULINES; CHARPENTIER, 1990). The LPC method uses the LPC speech

codification algorithm to reduce the size occupied by the speech signal into time-varying

parameters related to a transfer function of the vocal tract. The synthesis is performed

through a decodification of the coefficients and concatenation process (ATAL; HANAUER,

1971). Since speaking occurs not simply by concatenating sources, the overall output speech

will suffer from artifacts in the concatenation points. To tackle this issue, the PSOLA

algorithm can adjust the prosody of the concatenated unit given the context. The

adjustment could be made in both the time and frequency domain to modify spectral

characteristics of speech (MOULINES; CHARPENTIER, 1990).

A different and more recent technique denominated parametric speech synthesis

was based on establishing parametric representations from spectral features of recordings

to reconstruct a speech segment (STORY, 2019). This technique uses digital signal

processing techniques to synthesize speech (NING et al., 2019a). It allowed improved

flexibility regarding voice characteristics and style but provided a lower general speech

quality (STORY, 2019). Statistical Parametric Speech Synthesis (SPSS) are parametric

techniques that are based on statistical models, such as Hidden Markov Models (HMM) or

Gaussian Mixture Models (GMM), to generate speech (ZEN et al., 2007). Usually, it is
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divided into two phases, shown in Figure 2.9: training, on which the statistical model is

trained on the extracted acoustic feature parameters as well as the text, and the synthesis

phase, on which the acoustic features are predicted based on the corpus learned statistics

guided by the input linguistic features (NING et al., 2019a).

Figure 2.9: A generic training scheme of HMM-based speech synthesis models. Source:
Extracted from (ZEN et al., 2007).

Speech synthesis’ methods based on HMM remained state-of-the-art and the most

widely adopted in the field until the mid 2010s (NGUYEN; PHUNG, 2017). With the

advent of improvements in neural networks’ algorithms and the upgrade in computational

hardware, training deep neural networks became more efficient (HINTON et al., 2012).

This allowed for neural networks, that even though were already exploited in the 1990s in

the field, to be “rediscovered” with more layers, computational resources, and training data,

and started to replace the HMMs, in the late 2010s, due to their higher capability of acoustic

modeling (WU et al., 2016). In fact, neural networks were already predicted by many

authors to completely replace HMM-based acoustic models in the early 2010s (HINTON

et al., 2012; ZEN, 2015). Currently, neural models have indeed not only replaced the

acoustic modeling module that was dominated before by the HMM, but also all other

modules in the entire traditional speech synthesis pipeline (RAO et al., 2015; OORD et

al., 2016). Furthermore, with the evolution of generative deep learning, powerful neural

network-based fully end-to-end speech synthesis models emerged. These networks are

capable of directly mapping input text to speech signals (SOTELO et al., 2017; JUNG;
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LEE, 2023).

2.4 Literature Summary

This chapter presented a historical perspective regarding the approaches to the

generation of synthetic speech. Discoveries and techniques developed into three different

societal technological eras were exposed. Table 2.1 presents a summary of some notable

events discussed in the previous section that occurred throughout the development of the

speech synthesis field. The milestone, year and the inventor are all listed.

Year(s) Milestone
1779 Resonators for vowel production (Christian Krantzenstein)
1791 Mechanical talking machine (W. Von Kempelen)
1857 Euphonia (J. Faber)
1862 Mechanical Fourier Analyzer (Helmhotz)
1922 Electronic speech synthesizer (J. Q. Stewart)
1936 VOCODER (Bell Labs)
1939 VODER (H. W. Dudley, Bell Labs)
1950 Static articulatory model (H.K.Dunn)
1951 Pattern playback synthesizer (F. Copper)
1953 OVE I (G. Fant), OVE II, PAT (W. Lawrence)
1958 DAVO (G. Rosen); Concatenate synthesis (Cyril M. Harris )
1967 LPC (B.S. Atal)
1981 Klattalk, Mitalk (Dennis Klatt); ASY (P.E. Rubin, Haskins Labs)
1985 PSOLA (E. Moulines, F. Charpentier)
1996 HMM-based Speech Synthesis (T. Masuko et. al)

Table 2.1: A summary of the principal techniques in speech synthesis’ history before neural
networks. Source: Adapted from (ROSENHOUSE, 2010).
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Chapter 3

Basic Concepts and Related Works

This chapter presents fundamental concepts and works related to speech synthesis,

highlighting the core works that aim to improve expressiveness.

Section 3.1 introduces concepts related to the more recent and successful speech

synthesis approaches based on neural networks. Section 3.2 presents a notion of how

expressiveness is addressed and perceived in speech; how it is introduced in TTS systems

and, more specifically, works with the objective of performing cross-speaker style transfer

from the perspectives of style disentanglement and data augmentation. Section 3.3 presents

the concluding remarks of the chapter.

3.1 Neural Speech Synthesis

The approaches used in speech synthesis encompass various fields such as acous-

tics, linguistics, digital signal processing, and statistics (NING et al., 2019b). This

multidisciplinary nature paved the way for the integration of neural models, which were

first employed in the 1990s through shallow neural networks (less than 4 hidden layers),

marking an early intersection between neural computation and speech synthesis technology.

These models were used as substitutes for the rule-based or concatenative systems on

phoneme-to-acoustic mapping task (KARAALI et al., 1996). Only in the 2010s, with

advancements in the performance of parallel computing hardware (Graphics Processing

Unit (GPU)), that Deep Neural Networks (DNN) could be efficiently trained (ZEN et al.,

2013). This development enabled deep neural models to achieve large improvements over

current state-of-the-art conventional approaches in various different tasks that involved

finding and modeling underlying complex patterns in data (KRIZHEVSKY et al., 2012).

Before applied in the synthesis of speech, DNN have been already exploited in other speech

domains, such as in Automatic Speech Recognition (ASR) (HINTON et al., 2012) and

acoustic-articulatory inversion mapping (URIA et al., 2012).

The first approaches to use DNN for speech synthesis was in the context of SPSS

models. Zen et al. (2013) propose the replacement of the current conventional approach of
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using decision trees to perform the mapping from linguistic contexts obtained from text to

probability densities of a set of speech-related parameters in HMM-based speech synthesis

with DNN. An improvement in performance was shown with objective and subjective

metrics, in which the preference scores almost double when compared to the HMM systems.

Due to the inherent different modalities between and the significant sequence

length mismatch between text and speech, the speech synthesis process is commonly divided

even before the advent of neural networks, into three main component models: a text

analysis module, an acoustic module, and a VOCODER. After being applied to SPSS, neural

modules started to be used in every other components in the TTS pipeline. The text analysis

module is responsible for converting input characters into linguistic features; the acoustic

model converts the linguistic features into acoustic features; and the VOCODER converts the

acoustic features into the output speech waveform. Also, models denominated End-to-end

(E2E) were proposed to generate waveforms directly from text or linguistic features (TAN

et al., 2021). A detailed graph representing these transformations, the various features

used, and the neural models developed is shown in Figure 3.1. In the following sections,

we discuss neural approaches adopted in the three main components of the TTS pipeline

and in E2E models.

Figure 3.1: Data transformation on a speech synthesis pipeline entirely based on neural
models. Source: Extracted from (TAN et al., 2021).
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3.1.1 Textual Analysis

Text analysis in speech synthesis consists in some practices that aim to transform

and extract rich linguistic features from text to facilitate the overall synthesis process.

Some typical tasks in the textual analysis process are (TAN et al., 2021):

• Text Normalization: It consists of normalizing non-standard words that appear in the

raw written text, facilitating the pronunciation of the synthesis process. For example,

the year “2001” would be converted into “two thousand and one”, elucidating how it

is pronounced for the model. Earlier works on text normalization approaches were

rule-based. Now, approaches based on neural networks also tackle this task.

• Word Segmentation: The process of detecting the word boundaries. Important to

other tasks that require the attribute label of features in a word-level granularity.

• Part-of-speech (POS) Tagging: Consists of labeling each word with its function, such

as noun, verb, preposition, etc.

• Prosody Prediction: The extraction of prosodic tags to label various prosodic items,

for example, pitch accents, phrase accents, and boundary tones.

• Grapheme-to-phoneme (G2P) Conversion: Consists in the conversion of characters

(grapheme) into units that represent pronunciation (phonemes). This process is

able to further explicit the relation between text and speech, by dealing with out-of-

vocabulary words or even for polyphone disambiguation, deciding the appropriate

pronunciation according to context.

3.1.2 Acoustic Models

In the standard speech synthesis pipeline, Acoustic models are responsible for

converting linguistic features into acoustic features. The use of DNN to perform this

function brought several advantages compared to SPSS. First, the neural models can

implicitly learn alignments between the linguistic and acoustic features through attention

or direct prediction. Also, with the great modeling capacity of neural networks, the

acoustic representations have evolved from compressed coefficients, to high-dimensional

mel-spectrograms, a visual representation of the variation on intensity of each frequency

in the mel scale (a frequency scale judged by human listeners that takes into account the

perceived spacing of frequencies) present on a signal over time, providing more overall

information and acoustic detail.

In the usual training scheme of the acoustic models, a pair data containing text

and the corresponding mel-spectrogram of speech are passed. A forward pass is realized

with the linguistic features and then the synthetic mel-spectrogram is compared with the
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real one through a loss function (usually Mean Squared Error (MSE) or Mean Absolute

Error (MAE)). The alignment can be either learned (BADLANI et al., 2022b; SHEN et al.,

2018) or predicted (ŁAŃCUCKI, 2021), when ground-truth alignments are available.

For these models, sequence-to-sequence type architectures used in the literature

are varied. There are text-to-speech models based on several deep learning structures,

such as Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN), and

Transformer (VASWANI et al., 2017) type architectures, based on the attention mechanism.

There are also text-to-speech systems that incorporate various generative models, such

as those based on Generative Adversarial Networks (GAN) (BIńKOWSKI et al., 2019),

Variational Auto-Encoder (VAE) (HSU et al., 2019), normalizing flows (KIM et al., 2020),

diffusion models (JEONG et al., 2021), and flow matching (KIM et al., 2024).

Another dimension of these acoustic neural models concerns their autoregressive-

ness. These systems use spectrogram frames generated in previous steps as context to

synthesize the current frame. Auto-regressive models were reported not only to be prone

to word skipping and repetition problems but also to have slow inference speed, due to its

sequential nature To mitigate these issues, non-autoregressive (parallel) models have been

proposed. These provided both faster parallel synthesis and greater robustness in relation

to that occurred in autoregressive ones (TAN et al., 2021). Some representative acoustic

models of diverse characteristics are shown in Table 3.1.

Table 3.1: Representative TTS acoustic models and their structure characteristics. “Ph”
means phonemes, “Ch” means characters, “AR/NAR” means autoregressive or not.

Model In → Out AR/NAR Structure Reference
Tacotron 2 Ch→ mel-spec. AR RNN Shen et al. (2018)

DeepVoice 3 Ch/Ph→ mel-spec. AR CNN Ping et al. (2018)
TransformerTTS Ph→ mel-spec. AR Self-Attention Li et al. (2019)

FastSpeech 2 Ph→ mel-spec. NAR Self-Attention Ren et al. (2021)
FastPitch Ph→ mel-spec. NAR Self-Attention ŁaŃcucki (2021)
Glow-TTS Ph→ mel-spec. NAR Hybrid/Self-Att/CNN Kim et al. (2020)
Diff-TTS Ph→ mel-spec. NAR1 Hybrid/CNN Jeong et al. (2021)

FastPitch

Fastpitch (ŁAŃCUCKI, 2021) is a non-autoregressive Transformer architecture-

based neural acoustic model. Due to its parallel synthesis, it has the ability to generate

spectrograms up to 911 times faster than real time (1 ms) on an NVIDIA A100 GPU,

while maintaining performance comparable to SOTA autoregressive TTS systems.

The Fastpitch architecture is shown in Figure 3.2. In the synthesis process, the

model receives as input a sequence of characters or phonemes that are encoded in an

1Although they are not exactly autoregressive, diffusion models contain iterative structures similar to

autoregressive ones that also induce delay in the synthesis process.
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embedding through a look-up table. Then, these embeddings are handled by an Feed

Forward Transformer (FFT) block, which consists of a sequence of several blocks identical

to the Transformer encoder (VASWANI et al., 2017), replacing only the two fully connected

layers of the original architecture, with two layers of 1D convolutions with Rectified Linear

Unit (ReLU) activation, since, in speech, locally close information is strongly related.

Figure 3.2: Fastpitch architecture. Source: Extracted from (ŁAŃCUCKI, 2021).

The intermediate representations generated by the FFT are used to make pre-

dictions regarding the F0 curve and duration for each input symbol. The F0 predictor is

composed of a CNN that receives the representations and then computes an MSE with the

real F0 curve extracted from the speech. Then, the F0 curve is projected to adjust to the

size of the hidden representations, to which they are added. During training, the real F0

curve is used, and in the inference process, the predicted one is used.

Similarly, intermediate representations are also used to predict the duration of

each input character. The actual durations are used during training and the predicted

ones in inference. From them, an up-sampling procedure is made on the representations

resulting from the output of the tone predictor. This process consists of aligning the

sequence of characters with the sequence of mel-spectrogram frames, repeating each symbol

representation according to its respective predicted duration.

Finally, another FFT block together with a projection layer are responsible

for transforming the aligned intermediate representations into a mel-spectrogram. The

complete training loss of the model is given by:

L = ∥ŷ − y∥2
2 + ³∥p̂ − p∥2

2 + µ∥d̂ − d∥2
2, (3.1)

in which y represents the mel-spectrogram, p the pitch, and d the duration. ³ and µ are
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hyperparameters. Due to this prosodic conditioning, direct control of speech intonation

on inference is made possible, allowing, for example, to lower or increase the tone and

duration for each phoneme separately. To obtain ground-truth durations, the authors use

a Tacotron 2 (SHEN et al., 2018) trained model.

It was shown that to extend a standard TTS scenario to a multi-speaker, each

speaker could be modeled with a global embedding across a look-up table of speakers (ARK

et al., 2017). A multi-speaker base is introduced into the training, such that at each step

the following inputs are used: text, the corresponding mel-spectrogram, and also a speaker

embedding that is added to each character embedding, introducing the timbre information

of the specific speaker (ŁAŃCUCKI, 2021) .

3.1.3 Vocoders

VOCODERs are models that convert acoustic representations of speech, such as

mel-cepstral coefficients, band aperiodicity, F0, or mel-spectrograms, into audio waveforms.

They can be roughly divided into VOCODERs used in SPSS (KAWAHARA, 2006; MORISE

et al., 2016) and then neural network-based ones. Similar to the acoustic models, there

exists a vast diversity of VOCODERs with varying types of architecture, types of input

feature and whether it is autorregressive or not. Notably, since speech waveforms are

sampled at very high rates, and thus are very long, autorregressive VOCODER models, such

as WaveNet (OORD et al., 2016), (which is considered to be the first modern, entire deep

neural network based speech synthesis model), tend to take too much inference time (TAN

et al., 2021).

BigVGAN

BigVGAN (LEE et al., 2023) is an open-source neural model that was proposed

to be a universal VOCODER model. It was designed to achieve high-fidelity waveforms on

various zero-shot, Out-of-Distribution (OOD), audio conditions, such as unseen speakers,

languages, recording environments, singing voices, music and even instrumental audio. A

base version of the BigVGAN, with 14M parameter was shown to outperform comparable

size SOTA models, and a large-scale version, with 112M parameter was shown to outperform

by a large margin SOTA vocoders by a large margin for both in-distribution and OOD

samples.

The model was trained on a standard GAN-based framework, very similar

to (KONG et al., 2020), with a generator that receives mel-spectrograms and outputs

waveforms, and several discriminators to detect if the generated waveform is real or syn-

thesized. Motivated by the intrinsic periodic nature of waveforms (can be represented as a

composition of periodic primitives), the authors replace usual activation functions, such as

LeakyReLU, with periodic activations, in the form of so-called “Snake” functions (ZIYIN et
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al., 2020), defined as fα(x) = x + sin2(³x)/³, in which ³ is a trainable parameter, into the

generator as means of inducing a strong periodic bias to audio synthesis. Since the Snake

activations can produce arbitrary high-frequency continuous-time signals that cannot be

represented by the discrete output of the network, aliasing (false lower frequencies in the

signal caused by sampling rates lower than twice the Nyquist frequency) can happen. To

mitigate this issue, before passing in the “Snake” activation, the authors up-sample the

signal by a factor of two, then, after the activation, they down-sample to the original rate

and use a low-pass filter to eliminate the high-frequency content.

Figure 3.3: Architectures of the generator (left) and both discriminator types (right) of
the BigVGan architecture. Source: Extracted from (LEE et al., 2023).

Thus, the training loss of the generator and the ensemble of discriminators is

given by:

LG =
K

∑

k=1

[Ladv(G; Dk) + ¼fmLfm(G; Dk)] + ¼melLmel(G), (3.2)

LD =
K

∑

k=1

[Ladv(Dk; G)] , (3.3)

in which G is the generator, Dk is the k-th discriminator module, and Ladv is the least-

square GAN loss, defined as:

Ladv(G; Dk) = Es

[

(Dk(G(s)) − 1)2
]

, (3.4)

Ladv(Dk; G) = E(x,s)

[

(Dk(x) − 1)2 + (Dk(G(s)))2
]

, (3.5)

where x is the ground-truth waveform, and s is the input mel-spectrogram. As in Kong et

al. (2020), a feature matching loss Lfm is used to minimize the difference in the features

of the discriminator between a generated and ground-truth sample. It is given as:
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Lfm(G; Dk) = E(x,s)

[

1

T

T
∑

i=1

1

N

∥

∥

∥Di
k(x) − Di

k(G(s))
∥

∥

∥

1

]

, (3.6)

in which T is the number of layers of the discriminator Dk. A simple mel-spectrogram ℓ1

loss is also added in the generator loss function, given by:

Lmel(G) = E(x,s) [∥ϕ(x) − ϕ(G(s))∥1] . (3.7)

The architecture of each component of the BigVGan (LEE et al., 2023) is shown

on Figure 3.3. Two types of discriminators are considered: an Multi-Period Discriminator

(MPD), and a Multi-Resolution Discriminator (MRD). The first converts the 1D signal into

2D representations to capture the multiple periodic structure with 2D convolutions. The

second operates on a 2D linear spectrogram of the output waveform. For each type, several

discriminators are considered, varying Short-Time Fourier Transform (STFT) parameers

for the MRD, and reshaping widths for the MPD.

3.1.4 End-to-end Models

Fully E2E neural models are able to generate waveforms directly from textual

representations (characters or phonemes). Some inherent advantages of these models

are: they require less feature engineering and annotation; avoid of error propagation

that can happen in cascaded models; and their overall procedure can reduce the training,

development and deployment costs (TAN et al., 2021). On the other hand, the training

of E2E models is rather difficult, since it has to directly learn the complex mapping between

speech and text, two sequences with a huge length mismatch (TAN et al., 2021).

With a greater flexibility on intermediate features engineering, E2E models are

reaching new paradigms. The VALL-E model, proposed by Wang et al. (2023) model is the

first to replace the traditional mel-spectrogram based approach with quantized neural audio

codec codes as intermediate representations, not using any acoustic signal representation.

Also, a speaker prompt is used to indicate the desired timbre, thus performing zero-shot

synthesis. For the first time, with this approach, the authors substitute the traditional mel

reconstruction loss with a language modeling based objective function and report SOTA

results for both naturalness and speaker similarity. On the other hand, Kim et al. (2024)

also proposed an approach based on a speech-prompt, which showed improvements over

the VALL-E, by training a flow matching based model on the usual mel-spectrogram

representations.

As a consequence of the rapid improvement of deep learning techniques, text-

to-speech systems began to obtain greater voice quality in terms of intelligibility and

naturalness, while requiring less manual pre-processing and feature engineering, when

compared to previous existing concatenative and SPSS SOTA techniques of synthesizing
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Table 3.2: Representative E2E models and their characteristics.

Model One-Stage AR/NAR Modeling Reference
Char2Wav N AR Seq2Seq Sotelo et al. (2017)

Fastspeech2s Y NAR GAN Ren et al. (2021)
VITS Y NAR VAE+Flow Kim et al. (2021)

VALL-E N AR+NAR CNN+RVQ Wang et al. (2023)
P-Flow Y NAR Flow Matching Kim et al. (2024)

speech. These models were even shown to exhibit performance compared to original human

speech recordings regarding naturalness and intelligibility (SHEN et al., 2018).

3.2 Expressiveness in Speech Synthesis

There are currently numerous interpretations of what the term “expressiveness”

means in literature. These vary according to the perspectives taken from the possible

different frameworks that could be considered to study the concept. Some examples

that reason about expressiveness are functional linguistics, rhetoric, poetics, lexicography,

semantics, etc. From the functional linguistic framework, an approach concerned with

relating language to the social in a motivated way (MARTIN, 2000), expressiveness is

opposed to neutrality and is considered a norm of deviation. This perspective is supported

by the notion that expressiveness is “perceived only where and when the conventional

ways of communication come to the fore”, these are the “features of figurative speech

which differentiate it from the conventional neutral speech and make it vivid, figurative

and emotive.” (APRESYAN, 2018).

The differentiation between expressiveness and emotion is many times overlooked

and nebulous when considering works on synthetic speech generation. Although there is no

consensus in the literature on a definition for emotion, various works have taken attempts

at providing such. Notably, Cabanac (2002) proposed a very broad definition of emotion

as “any mental experience with high intensity and high hedonicity”. The work argued that

emotions could thus be the byproduct of several factors, such as sensation, perception,

memory recall, reckoning, and imagination. Thus, in terms of speech, emotionality is

responsible to represent this psychological state in which the speaker finds himself in,

whereas expressiveness is “a means for the magnification of the communicative function of

the utterance” (APRESYAN, 2018).

Plainly, the tendency of humans to express emotions through the tone of voice,

posture, facial expression and actions can be referred simply to as emotional expressive-

ness (KNYAZEV et al., 2012). Consequently, as a type of reflection of the inner self, speech

could be used to diagnose the speaker’s condition, as clues of the emotional state of the

speaker can be obtained with an analysis of their speech. This knowledge can be helpful

in various situations, such as emergencies and health care related applications (YAK-
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OUMAKI, 2015). Additionally, with the increase adoption of personal digital assistants and

other socially interactive agents, expressive speech is also becoming a defining perceived

personality of the system in question.

In this context, Székely (2015) states that “expressive speech has the potential

to provide the user with the choice to select a nuanced tone of voice suited to their intent

and to the communicative setting” but that “in an interactive situation however, this does

not become a real possibility, until a functional interaction model is available to control

aspects of the expressive synthetic speech to ensure timely and effortless delivery”, drawing

the importance to the development of expressive synthetic speech systems.

3.2.1 Speaking Styles

Speaking style can be defined as a “differentiation in the way of speaking,

such that it constitutes a genre with common characteristics.” This vocal aspect that

differentiates speaking styles is related to changes in voice quality, speech rhythm, and

intonation (IRVINE, 2001; BARBOSA, 2022). Speaking styles are also associated with

specific communicative acts (BARBOSA et al., 2017). An example that reiterates that

speaking styles can be culturally distinguished from each other by the vocal aspects

mentioned above is a study conducted by Obin et al. (2011) that showed that four

speaking styles in French (sports commentary, religious sermon, political discourse and

broadcast news) could be identified in a forced-choice test by considering solely delexicalised

utterances. Thus, since speaking styles have to be recognizable with common characteristics

by a given group, they vary greatly from person to person and also from time period to

time period (LORENZO-TRUEBA et al., 2016).

3.2.2 Expressive TTS

Regarding the design of expressive speech synthesis machines, compared to

standard TTS models, Govind e Prasanna (2013) state: “in expressive speech synthesis,

along with the text, the desired expression also forms an additional input to the text

processing stage”. Thus, the question of what and how to insert in these models so

that they become expressive becomes extremely relevant. Some clues of which factors to

consider in the design of expressive TTS systems are provided in Aylett et al. (2021) and

are shown in Figure 3.4.

The authors divide the factors into cross-speaker features and within-speaker

features. The mentioned cross-speaker factors are language, accent, and dialect, which

could both be clues to the speaker’s socio-linguistic background, geographical origin, and

social identity; voice styles (or speaking styles), which support the intended interaction

contexts; and voice adaptation. As within-speaker, the following characteristics are

suggested: emotional state, since to be human-like, the model needs to be able to express
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Figure 3.4: Summary of factors proposed by Aylett et al. (2021) to consider when designing
an expressive speech synthesis model.

emotion accurately; emphasis and question intonation and conversational speech, aiming

to instead of focusing on text-reading style, develop systems based on the conversational

style, which is more appropriate for human interaction. Several factors to enrich the

conversational style could be considered, such as back channels (interject responses to the

speaker); disfluencies (speech errors and filled pauses); laughter, breathing and speech

noises; talking, holding and ceding the floor; and architecture.

With the rapid development of deep learning, the naturalness and intelligibility

of neural TTS models have become comparable to human’s (SHEN et al., 2018). From

then on, research focused on the expressive aspect of the generated synthetic speech. As

the expressiveness can be determined by a confluence of multiple prosodic (suprasegmental

elements of speech such as intonation, stress, and rhythm) characteristics, such as content,

timbre, prosody, emotion, and style (TAN et al., 2021), approaches started to deal with the

modeling, control and transfer of these attributes. This information often denominated as

expressive variation information, began to be added to acoustic models to induce expressive

speech.

This extra variation information that acts as a simpler approach to introducing

expression into the TTS training scheme is necessary to alleviate the speech’s one-to-many

characteristic: there exists multiple possible speech variations that correspond to the same

text. Modeling this mapping without enough extra expression variation information and

under current standard MSE or ℓ1 losses will cause over-smoothing of the mel-spectrograms
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predictions, that is, tend to an average of the prosodic distribution (TAN et al., 2021),

losing the expressive information present in each sentence, and leading to a less expressive

and more monotonous and neutral speech (HODARI et al., 2020).

Tan et al. (2021) provides some examples of how this expressive variation

information is introduced in many different approaches in the literature. This categorization

is shown in Table 3.3. The introduction of variant information can be given either explicitly

through the direct insertion of prosodic attributes, such as the F0 curve, duration, and

energy, or through style, speaker, or language labels. In contrast, variant information can

be modeled implicitly by using modules that receive a reference and extract information

from it. Reference Encoder (RE), VAE, other generative models are some examples. Also,

text pre-training can induce better representation by using word embeddings of transfer

learning. Another fundamental aspect that characterizes the variant information consists

of the granularity at which the information is inserted onto the main TTS model, which

can range from fine-grained information (duration, pitch, energy, etc.) found as finer levels

such as spectrogram frame, character, phoneme, syllable or word, to more coarse-grained

features (speaker timbre, noise, long-form reading, etc.) on more global levels, such as

utterance, paragraph, per speaker and also combinations of these (SUN et al., 2020).

Perspective Category Description

Information Type

Explicit
Language/Style/Speaker ID
Pitch/Duration/Energy

Implicit

Reference encoder
VAE
GAN/Flow/Diffusion
Text pre-training

Information
Granularity

Language/Speaker
Level

Multi-lingual/speaker TTS

Paragraph Level Long-form reading
Utterance Level Timbre/Prosody/Noise
Word/Syllable Level

Fine-grained information
Character/Phoneme
Level
Frame Level

Table 3.3: Some perspectives of modeling variation information for TTS. Source: Extracted
from (TAN et al., 2021).

There are several techniques that take this variant information into account to

synthesize expressive speech. Triantafyllopoulos et al. (2023) attempt to create a taxonomy

for the works focused on deep neural expressive speech synthesis. Their taxonomy is shown

in Figure 3.5. First, the authors categorize the works by the type of input and output

features into E2E, text-to-features, and feature-to-feature (in the case of Emotional Voice

Conversion (EVC)). Regarding the works that use mainly features as input, these could be

either spectral, prosodic, or both. Further, the data used to train these models can be
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categorized into parallel, when data is available in all the same conditions in different styles,

or non-parallel, when it is not available in all styles. In this case, the entanglement issue

arises: since data in a given style is only available on a given speaker’s voice, the model

will naturally correlate both factors as one thing. In this aspect, the other classification

category arises, whether the technique follows a disentanglement approach, aiming to

separate style from other factors so it can be independently used, or a transformation

approach so that enough data in the necessary conditions to train the model is obtained.

The expressive information can be introduced into the system through a reference-based

approach, or can be either inferred or inputted through categorical labels. The authors

also categorized the scale on which the expressive information is added, whether it is at

utterance level or at frame level.

Figure 3.5: Taxonomy of deep neural expressive synthetic speech works. Source: Extracted
from (TRIANTAFYLLOPOULOS et al., 2023).

3.2.3 Cross-Speaker Style Transfer

The current traditional approach to extend existing TTS voices to new speaking

styles is to directly record and transcribe speech data for the desired speaker, which is

not always feasible, in most cases (RIBEIRO et al., 2022). This process is not scalable,

given that for every new speaker in the dataset, it will have to be redone and can be

compromised due to the possibility that the desired speaker may not perform well in

the required speaking style (PAN; HE, 2021). Furthermore, current state-of-the-art TTS

systems usually require at least dozens of hours of high-quality transcribed speech data to

achieve a good performance (LIAN et al., 2023). Even though the amount of expressive
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data needed could be reduced to less than an hour with a transfer learning approach

consisting of finetuning a pre-trained neutral model (TITS et al., 2020), the burden of

the traditional data recording and transcription process is still required. In this context,

cross-speaker style transfer arises as a technique that is able to bypass the unscalable

laborious data collection process when trying to extend speaking style to new voices.

Cross-speaker style transfer, by definition, consists in the transfer of a speaking

style from a speaker (referred to as “source”) to synthesized speech in another speaker’s

(referred to as “target”) voice (LIU et al., 2022). This approach transfers expressive

knowledge acquired from high-resource speakers to low-resource speakers (HUYBRECHTS

et al., 2021). There are several approaches proposed in the literature to perform style

transfer. These can be broadly categorized into two main distinct groups regarding

expressive information granularity (SHANG et al., 2021):

1. Coarse-Grained Style Transfer (CST) (WANG et al., 2018; SKERRY-RYAN et al.,

2018a): These approaches focus on capturing and transferring global, sentence-level

features like speaking styles, emotions, etc. Usually, these features are implicitly or

explicitly modeled through a style, time-independent embedding. These can be thus

transferred across sentences of different text or length (non-parallel transfer). In this

work, to transfer speaking styles, we focus on techniques that perform CST.

2. Fine-Grained Style Transfer (FST) (KARLAPATI et al., 2020; LEE; KIM, 2019):

These approaches focus on capturing and transferring more local, fine-grained features

like rhythm, emphasis, melody, and loudness. Usually, these features are time-

dependent and modeled, either implicitly or explicitly, as latent representations

sampled at finer levels, such as word, phoneme, or frame level. These cannot

necessarily be transferred across sentences of different text or lengths and would

work better with sentences of the same text or length (parallel transfer).

The very first approaches to tackle prosody and style transfer on a neural end-to-

end model were proposed by Skerry-Ryan et al. (2018b) and Wang et al. (2018) simultane-

ously. The first corresponded to an augmentation of the standard Tacotron (WANG et

al., 2017) with a neural network module, denominated RE composed of six convolutional

layers with batch normalization followed by a Gated Recurrent Unit (GRU), a type of

recurrent neural network. The RE aimed to extract prosody embedding from a reference

spectrogram (the one supposed to capture the prosody from) and was trained unsupervised

through the standard mel-spectrogram Tacotron reconstruction loss.

The second, denominated Global Style Tokens (GST), consisted of a network

composed of a RE, an attention layer, and a bank of embeddings called tokens. The

attention layer computes the similarity of the embedding extracted from the reference with

each token. From there, the style embedding is generated by a sum of tokens weighted
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by the similarity score calculated by the attention layer. In this way, the architecture

could decompose the input mel-spectrogram into interpretable latent factors, which, when

combined, produce the reference style embedding.

Currently, in literature, there are several strategies to tackle the cross-speaker

style transfer task. Although several use the RE network as a basis, it alone does not

guarantee that all embeddings extracted from the space will be meaningful since they

may not be compact. The GST, similarly, despite having modeled well-defined factors

such as noise and environment, has as a disadvantage the fact that it does not control

exactly which factors will be modeled independently by tokens, and may even be either

untangled factors or aspects unrelated to expressiveness. Thus, the notion of disentangling

the speech style factors for the purpose of neural style transfer was proposed by (HSU

et al., 2019) to both obtain meaningful latent representations of style uncorrelated from

other representations. Following the ideas, most approaches present in the literature

currently can be either tackled by modeling global style information from speakers that

have expressive data and transferring it to speakers with very little or no expressive data

(disentanglement) or also by developing techniques to augment the scarce or non-existing

expressive data for target speaker.

Style Disentanglement

The style disentanglement approach is based on being able to capture the averaged

prosodic distribution of speech on a given style independently of other varying information

present on the representation used of the audios (can be mel-spectrograms, raw audios,

self-supervised representations, etc.), such as speaker identity, channel information (noise

and recording devices and condition), accent, and phonetic content. Various attempts

to use style information modeled it into a single vector representation, which ended up

containing too much interfering information, such that it became non-robust and non-

interpretable. This way, upon transference, all captured characteristics, including the

undesired ones, would be transferred (BIAN et al., 2019). In this context, with the ability

to separately model the style information, it could then be transferred to other speaker

timbres and input texts. An example of a factorization approach that receives audio and

creates four disentangled representations of prosody, content, acoustic detail, and speaker

timbre is shown in Figure 3.6.

With the presence of different variant information in the same input, disen-

tanglement is performed during or before model training to obtain a style-controllable

speech synthesis (TAN et al., 2021). There are several different techniques to induce the

disentanglement style information from other attributes of speech:

• Auxiliary Classifiers: These modules are either used to instruct the corresponding

representation which information it should contain, usually in a supervised man-
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Figure 3.6: Speech Attributes Disentanglment Module of NaturalSpeech3. Source: Ex-
tracted from (JU et al., 2024).

ner, or to highlight the discriminating aspects between different styles considered.

NaturalSpeech 3 (JU et al., 2024) uses a phoneme classifier on the representation

desired to model content, a speaker classifier on the representation desired to model

timbre, and an F0 classifier on the representation desired to model prosody. The

iEmoTTS (ZHANG et al., 2023a) model uses a supervised emotional intensity

classifier to induce this information, and also an emotion classifier to induce this

information on the emotional embedding, as well as to better discriminate between

styles. Style and speaker encoders with the same neural architecture and receiving

the same inputs are followed respectively by a style classifier and a speaker classifier

after the speaker encoder (LI et al., 2021). This way, even though both encoders

have the same architectures and receive the same inputs, the classifiers induce their

respective output embeddings to be more meaningful and capable of discriminating

between different aspects: styles or speakers.

• Domain Adversarial Training (GANIN et al., 2016): With the purpose of unlearning

specific information, a Gradient Reversal Layer (GRL) is employed. It consists in

swapping the sign of the weight update phase in the gradient descent process, as

shown in the following equation:

wi ← wi − ¸ · ¼ ·
∂L(w)

∂wi

, (3.8)

in which, wi is the weight to be updated, ¸ is the learning rate, L(w) is the loss

function. Usually ¼ = 1, however, when using a GRL, ¼ = −k, for any k ∈ N,

is set causing the weights to move away from local minima, instead of the usual

minimization process. With this technique, a set of weights far from the minima

can be obtained, making the model avoid learning the information. Therefore,

it mitigates the leakage (unnecessary modeling of specific unwanted information).

For example, Natural Speech 3 uses a phone-GRL on the prosody encoder, since
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this information is not desired on the prosody representation. On the content

representations, a F0-GRL is used; on the acoustic detail encoder, phone-GRL and F0-

GRL are employed, and a speaker-GRL is used on the sum of these representations to

remove speaker information. ZET-Speech (KANG et al., 2023) uses an emotion-GRL

to remove emotional information from the outputs of a speaker encoder, and report

the achievement of zero-shot speaker adaptative cross-speaker style transfer. The

iEmoTTS (ZHANG et al., 2022) uses a speaker-GRL to mitigate speaker information

on an emotion embedding.

• Information Compression: These techniques aim to reduce the amount of information

that enters (in the form of features) or passes (in the form of vector representations)

through the neural architecture. By compressing information, the network is induced

only to model the most fundamental aspects and ignore others. Compression is

exploited in literature mainly through bottlenecking, quantization, reduction and

normalization.

– Bottleneck: A prosody bottleneck sub-network is introduced into a text-to-

speech system (PAN; HE, 2021). It receives as input a representation that

is combination of content, style and speaker, and is trained to, with this

information, predict solely prosodic attributes: F0, voiced/unvoiced decisions,

duration of phonemes and energy. The network is than forced to disentangle

the desire prosodic information from all these entangled inputs.

– Quantization: A Vector-Quantized Variational Auto-Encoder (VQ-VAE) is used

to learn a discrete latent prosody space and is reported to achieve better dis-

entanglement performance and representation ability (WANG et al., 2022).

Discrete style representations are also obtained in Qiang et al. (2022) through

a Quantized Variational Auto Encoder (Q-VAE) based RE, which outputs con-

tinuous vector but in from a fixed number of classes (to distinguish from the

VQ-VAE).

– Reduction: A mel-spectrogram reduction technique is conducted by inputting

only the first 20 coefficients of the mel-spectrogram, to ease the disentan-

glement, since it was reported these coefficients contained almost complete

prosody, and much less timbre and content information when compared to

the full version (REN et al., 2022; JIANG et al., 2023). Another approach

was to only input a partial segment of reference speech, to avoid content-style

entanglement (CHEN; RUDNICKY, 2022).

– Normalization: A normalization of F0, used as input, is done to remove timbral

speaker information between speakers, leaving only frequency and rhythm in-

formation. Additionally, A random re-sampling process is also carried out, in
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which the inputs are divided into random lengths, which are either expanded or

compressed, functioning as a rhythm bottleneck (QIAN et al., 2020). Another

commonly used normalization to remove stationary factors, such as speaker

information is the instance normalization. Considering that the constant factor

along each of the channels is speaker identity (as opposed to content information

which varies), by normalizing each feature channel with its mean and standard

deviation, disentanglement from speaker factors can be induced (CHOU; LEE,

2019; KARLAPATI et al., 2020). Also, a batch-permuted latent style perturba-

tion, which enables the generation speaker-unpaired style embeddings during

training (JUNG; LEE, 2023).

• Information Perturbation: This approach consists in creating artificial variations

on a signal or vector on a specific speech factor while keeping the others constant.

Naturally, the model will only learn the constant pattern in data, so the perturbed

signals are ignored. Timbre perturbations is used to add or remove harmonic

components , while maintaining F0, and prosody perturbation flattens the complete

F0, keeping it constant, while preserving the timbre. These are applied to the

outputs of the style and speaker encoder to remove speaker and prosody information

respectively (CHOI et al., 2022b; LEI et al., 2022b).

• Optimization Objectives: These techniques approach disentanglement directly by

considering either new training schemes or by adding carefully designed new training

objectives. Cheon et al. (2022), Zhu et al. (2023) propose to use an estimate of a

mutual information as a new factor in the total objective of the TTS training goal.

This induces a minimization of the mutual information that is shared between the

speaker and style embedding, making them model different information. An approach

based on adversarial games is proposed by Ma et al. (2019). During training, two

spectrograms are synthesized: one with the reference audio corresponding to the text

and the other with a different audio. With this, a ternary neural discriminator is

trained to classify the spectrograms into either a real base audio, a paired fake audio,

or an unpaired fake audio. In this way, the separation between text content and style

is induced, since the objective of the training is to make the spectrogram generated

by the combination of text and audio (matched or unmatched) indistinguishable

both from each other and from the real audios of the database. discriminator’s

point of view. Bian et al. (2019) proposes a new training objective based on the

orthogonal loss. The idea is the by forcing the orthogonality between speaker and

style embeddings, the vectors will be, in terms of the vector space, as distant from

each other as possible.

Even though a lot of several different techniques that tackle the cross-speaker style

transfer problem, the TTS systems that theoretically induce or guarantee disentanglement
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still have one major drawback. Since, by the very own constraint of the cross-speaker style

transfer problem, these TTS models are trained to directly reconstruct only speech from

the pitch and phoneme alignment of the source speaker(s), since only its data in the given

style is available. Thus, no guarantee the the synthesized speech will sound either natural

or similar to target speaker’s when the input pitch and phoneme alignment come from a

different speaker (LI et al., 2023).

Data Augmentation

Given the success of techniques that exploit the use of high-quality synthetic

data to complement existing available data for TTS training (HWANG et al., 2021),

approaches with the goal of generating synthetic expressive data have been proposed in

literature to tackle the low-resource scenario projected onto the cross-speaker style transfer

task (HUYBRECHTS et al., 2021). These approaches mainly consider a multi-stage

pipeline that generically consists in first using various data augmentation techniques to

generate more expressive data in the voice of target speaker, then training a TTS with both

the original and synthetic data so enough volumetry is obtained to generate an expressive

TTS in the given style and in the voice of target speaker.

Huybrechts et al. (2021) proposed the first approach to use data augmentation

to synthesize more already available target speaker’s expressive data. It was also the very

first approach to use VC-created synthetic data to train TTS models. The authors aimed to

perform cross-speaker style transfer for speakers with low, yet available, expressive data in

the styles of “conversational” and “newscaster”. In this approach, the first step was to train

Copycat (KARLAPATI et al., 2020), a non-F0 conditioned prosody transfer VC model

on all available data, including all source and target speakers in all styles available for

each. Then, all available source speaker styled data is converted into target speaker’s voice,

augmenting its expressive volumetry. Then, a VAE-enhanced Tacotron (WANG et al., 2017)

based TTS model was trained on all synthetic and non-synthetic target speaker’s data.

Finally, the TTS is finetuned on the non-synthetic available target speaker’s styled data.

The authors proposed pipeline was shown to work with a trade-off with a requirement

of at least 15 minutes of target speaker’s expressive data along with 40 hours of neutral

data combined from both source and target speaker, achieving a style adequacy of 64%,

compared to 78.1%, the high anchor evaluated directly with the recordings. A strict

neutral model (low anchor) achieved a style adequacy score of 60.7%. Plus, their style

were very close to neutral.

Shah et al. (2021) published an improvement of the technique above-detailed,

with the replacement of the autoregressive for a parallel TTS, a Tacotron 2 (SHEN et al.,

2018) based model one with an external duration model, an extra VC finetuning step on

target speaker’s voice, and an additional Conditional Generative Adversarial Networks

(cGAN) based finetuning step. The authors report the use of “highly expressive” data,
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measuring expressiveness as the variation along the three axes of the mean and variation

of F0, power and phoneme duration. They also were able to report results using as low as

15 minutes of target speaker’s expressive data.

Chung e Mak (2021) proposed an on-the-fly data augmentation technique. Instead

of using a VC model to convert already existing source expressive speech into target speaker’s

voice, the authors induce, on training, the target speaker to imitate expressive speech

of other source speaker by forcing their TTS alignment matrices to be similar. Using

a GST-enhanced Tacotron 2 (STANTON et al., 2018; WANG et al., 2018) augmented

with a speaker look-up embedding, a training scheme composed of two forward encoder

passes, and one decoder pass is conducted. The first pass receives a text, source speaker

embedding, and style embedding outputted from a Text-Predicted Global Style Tokens

(TPGST) module. The other pass receives the same text and style embedding, but with

the target speaker’s embedding. The two resultant alignment matrices are the forced to

be the close. The main TTS loss is given by the original MSE and Binary Cross Entropy

(BCE) composite Tacotron 2 (SHEN et al., 2018) loss:

LT aco =
∥

∥

∥Mel − M̃el
∥

∥

∥

2
+ BCE(Stop, ˜Stop), (3.9)

in which Stop and ˜Stop are the true and predicted autoregressive stop token, respectively.

The TPGST loss, to remove the audio input dependency on inference is given by:

LT P GST = ∥TPGST (text, style_label)−GST (audio)∥1 , (3.10)

and the alignment matrices loss is given by:

Lalign = ∥Asrc − Atgt∥F
, (3.11)

in which A is the alignment matrix. Thus, the complete training objective is given by:

L = LT aco + LT P GST + Lalign. (3.12)

Their approach is based on the hypothesis that the alignment matrix encapsulate

useful rhythmic information that capture a speaking style. Thus, by matching the matrix

of the target speaker with the source speaker’s matrices, target speaker would then be

able to speaker expressively that particular style. They experimented with “newscasting”,

“public speaking” and “storytelling” styles, with the at least 2 hours of data from the style

with least volumetry. Roughly 11 hours of target speaker’s neutral data was used. They

evaluated naturalness and intelligibility for each one of the styles. Also, given the style for

the rater, they conducted an ABX preference study to evaluate if the raters preferred the

styled data on target speaker’s voice or its neutral data regarding each scenario. A mean

preference of 67% of the proposed approach was obtained, compared to around 26% of the
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neutral model, and 7% had no preference.

Ribeiro et al. (2022) proposed the first approach to perform cross-speaker style

transfer using data augmentation techniques, assuming no expressive data was available

for target speaker, only neutral. Similarly to the previous approaches mentioned, by using

supporting expressive speakers, high-quality synthetic expressive data on target speaker’s

voice is generated using a VC model. Then, a multi-style single-speaker TTS model is

trained on both neutral and synthetic expressive data of target speaker. A CopyCat VC

model, extended with a log-F0 conditioning on source utterance is trained to convert the

source speaker into target speaker’s voice. Thus, after converting the supporting expressive

data into target speaker’s voice, a VAE-enhanced Tacotron 2 (SHEN et al., 2018).

They used expressive data in a “conversational” speaking style, and ten hours

of neutral data from the target speaker was considered. Multiple Stimuli with Hidden

Reference and Anchor (MUSHRA) Experiments are performed varying the number of

supporting speakers, from 1 to 8, while keeping 8 hours of supporting volumetry constant,

and also varying the amount of supporting expressive data, from 1 hour to 8 hours while

keeping 4 supporting speakers. Naturalness, style similarity and speaker similarity are the

three criteria evaluated. No significant statistical gain is obtained in both experiments.

For the system requiring less data (greater constraints of 1 hour of supporting data and ),

a style similarity of 55.41 is reported, while the TTS trained directly on conversational

data in a supporting speaker’s voice (high anchor) obtains 73.69. Speaker similarity results

of the system are reported as 69.25, while neutral original recordings of target speaker

(high anchor) obtained 72.32.

Terashima et al. (2022) proposed the first cross-speaker style transfer approach

for highly expressive styles (emotions) using data augmentation. They used a Pitch-

Shift (PS) data augmentation technique along with the V C-based one. They proposed a

PS technique applied directly on the neutral spectrograms from both source and target

speakers. This PS-augmented along with the original neutral data are used to train a VC

model. They report that since now the VC covers a greater variety of pitch dynamics,

the training process becomes more stable. They use the Scyclone (KANAGAKI et al.,

2020) VC model, trained to predict the log-mel-spectrogram, and the additional features

of logF0, and voice/unvoiced flags, which they report is essential to create emotional TTS

models that include F0-dependent neural vocoders. In addition to the usual losses of the

Scyclone (KANAGAKI et al., 2020), they also adapt a regularization term to avoid the

unnatural conversion of the prosodic features, that approximates the STFT magnitudes

for the predicted and extracted F0 sequences. By considering only the higher frequency

bins, the authors are able to regularize the essential fine, high-frequency components of F0.

Then, all source data (expressive and neutral) are converted into target speaker’s voice.

All this converted data, along with the original neutral recordings of target speaker are

used to train an emotional TTS. The authors used the FastSpeech 2 (REN et al., 2021)
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model extend with an input of the emotion embeddings. Two female Japanese professional

speakers were considered, one for source speaker, containing three speaking styles: neutral,

happy, and sad, whereas the target speaker contained only the neutral style. 1000 neutral

utterances of target speaker were used, together with 5000, 2500, and 2500 utterances for

the neutral, happy, and sad style on source speaker’s voice. The authors analyzed results

of naturalness, speaker similarity and emotional similarity. The data-augmentation based

approaches achieved either similar or better results than the models trained directly on

original data on all three aspects. The complete system pipeline of the approach is shown

on Figure 3.7.

(a) (b)

(c)

Figure 3.7: a) PS augmentation step. Source: Extracted from: (TERASHIMA et al., 2022).
b) VC training and augmentation step. Source: Extracted from: (TERASHIMA et al.,
2022). c) TTS and Vocoder training steps. Source: Extracted from: (TERASHIMA et al.,
2022).

Zhang et al. (2023b) propose an approach based on curriculum learning (WANG

et al., 2022) and data augmentation. Curriculum learning consists in a training process

that trains a model sequentially considering first easier data, than scaling to harder data in

every next stage (WANG et al., 2022). The cross-speaker style transfer task is divided into

two steps: parallel, and non-parallel transfer. The first step was defined as synthesizing

the expressive source dataset in the voice of the target speaker, which can be seen as a

data augmentation process. For this, an approach similar to Hua et al. (2022)is used.
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The second step consists in using the augmented data to train a GST (WANG et al.,

2018)-augmented Fastpitch (ŁAŃCUCKI, 2021) TTS model. The authors consider three

styles in the experiment stage: a 50-hour female speaker dataset in neutral style as the

target speaker; a 37 minute male speaker documentation-style; a 15 minute chat-style

female speaker; and a game-style 1.4 hours female speaker. Also, a 50 hours neutral-style is

used to add robustness to the TTS training. Results showed that the pipeline proposed with

curriculum learning and data augmentation achieved better results in all styles, compared

to the model trained only on available data.

All the works that attempt to tackle cross-speaker style transfer via a data

augmentation approach are summarized in Table 3.4. The amount of required data, both

neutral and styled, for the source and target speakers is shown on the Table. The best

values for each combination is highlighted.

This work is also placed for comparison. Even though the amount of data used

on the source speakers voices is slightly greater than other existing approaches in literature,

the objective of this work is to focus on a faster adaptation of existing expressive dataset to

new voices. In this context, priority is given to use less target speaker data. For this, the

use of pre-trained models that reduce the amount of neutral data required from the target

speaker for as low as 5 minutes, the lowest volumetry ever used in the data augmentation

approaches.

3.3 Concluding Remarks

In this Chapter, some basic concepts related to the most recent synthetic speech

methods that use deep neural networks were explained: advances in the deep learning field

together with the creation of large speech datasets allowed a better modeling of speech and

thus enabled these systems to achieve human-like levels of naturalness and intelligibility.

Nevertheless, the complexity of augmenting these systems with human expression is

brought up: considering expressiveness is challenging since most of the approaches always

converge to an average of the prosody distribution of the dataset, filtering out important

and more prominent prosodic variations. An additional challenge is when considering

more expressive or emotional speaking styles, when the prosodic variation is even greater

than the standard neutral speech. Also, some works that focused on transferring speaking

styles from data-available speakers to a speaker with only neutral data were presented.

Finally, the approach of this work, and how it relates to the mentioned approaches is

briefly introduced. The method considered is detailed in the next Chapter.

In Chapter 4, we detail the complete developed pipeline that proposed the use of

an SVC model to account for highly expressive styles, as well as the integration of a style

classifier filter and an F0 matching technique to account for speakers with very different

vocal registers.
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Reference
Augmentation
Technique

TTS

Structure

Lowest
Source Spk
Volumetry

Lowest
Target Spk
Volumetry

Speaking
Styles

Huybrechts
et al. (2021)

Copycat
(KARLAP-
ATI et al.,

2020)

VAE+
Tacotron

(WANG et
al., 2017)

Neutral:
20h

Styled:
4h

Neutral:
20h

Styled:
15min

Conversational,
Newscaster

Shah et al.
(2021)

Copycat
(KARLAP-
ATI et al.,

2020)

VAE+
Tacotron2
(SHEN et
al., 2018)

Neutral:
N/A

Styled:
4.5h

Neutral:
N/A

Styled:
15min

Conversational

Chung e
Mak (2021)

Alignment
Matrix Loss

TPGST-
Tacotron2

(STANTON
et al., 2018)

Neutral:
0h

Styled:
2.1h

Neutral:
11.7h
Styled:
0min

Newscaster,
Storytelling,

Public
Speaking

Ribeiro et
al. (2022)

Copycat+F0

(KARLAP-
ATI et al.,

2020)

VAE+
Tacotron2
(SHEN et
al., 2018)

Neutral:
N/A

Styled:
1h

Neutral:
10h

Styled:
0min

Conversational

Terashima
et al. (2022)

PS+Scyclone
(KANA-

GAKI et al.,
2020)

FastSpeech2
(REN et al.,

2021)

Neutral:
7h1

Styled:
3h1

Neutral:
1.4h1

Styled:
0min

Happy, Sad

Zhang et al.
(2023b)

(HUA et
al., 2022)

GST+
FastPitch

(ŁAŃCUCKI,
2021)

Neutral:
50h

Styled:
15min

Neutral:
12h

Styled:
0min

Documentation,
Game, Chat

This work
SO-VITS-

SVC

FastPitch
(ŁAŃCUCKI,

2021)

Neutral:
44h

Styled:
3h

Neutral:
15min
Styled:
0min

Angry,
Happy, Sad,
Surprised

Table 3.4: Summary of cross-speaker style transfer based on data augmentation techniques
presented in Section 3.2.3. (1) Approximated with the number of utterances multiplied by
the medium utterance duration.
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Chapter 4

Method

This chapter describes the proposed method of cross-speaker style transfer based

on data augmentation, which is illustrated in Figure 4.1. As shown in the figure, the

training pipeline processes as inputs:

• a neutral speech dataset of non-target speakers (Source Neutral Data);

• a neutral speech dataset of the target speaker (Target Neutral Data);

• an expressive speech dataset of non-target speakers with the desired style (Source

Expressive Data).

The training process results in a specialized Stylized TTS for the target speaker’s

voice. Given a few hours of public neutral and expressive datasets, the proposed method

can train specialized models for new target speakers with only five minutes of Target

Neutral Data.

The first step is fine-tuning a pre-trained SVC model on the Target Neutral Data

to learn the target speaker’s voice and the source expressive data to understand expressive

data conversion. This step is detailed in Section 4.1.

The conversion process consists of taking the fine-tuned SVC from the last step

and converting the Source datasets (Neutral and Expressive) into the target speaker’s

voice. An F0 matched conversion algorithm is used to mitigate unrealistic results caused

by a very different F0 register between any source speaker and the target. This process is

described in Section 4.2.

Then, a style-based filtering process is conducted to select the most stylistic

appropriate converted data from the last step to be used in the subsequent stages. A

neural style classifier filter filters out all the converted audios whose inferred style labels

changed after conversion. This step is detailed in Section 4.3.

After both expressive and neutral data are in the voice of the target speaker,

a neutral TTS pre-training step is performed, which receives the F0 matched converted

neutral dataset obtained from the second step and outputs a neutral TTS in the target
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speaker’s voice. Finally, an expressive fine-tuning step is conducted, fine-tuning the pre-

trained neutral TTS model obtained from the last step on the expressive, F0 matched,

filtered converted data. All TTS related steps are detailed in Section 4.4.

Figure 4.1: Overview of the proposed pipeline to build a TTS model with target speaker’s
voice and source speaker’s style.
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The last two sections present the datasets used in each step of the method (Section

4.5), as well as the experimental setup in which the pipeline was conducted (Section 4.6).

4.1 Singing Voice Conversion

This section describes the SVC finetuning step. It consists of using a pre-trained

model on a multi-speaker speech and multi-speaker singing voice corpus and then fine-

tuning with the target speaker’s neutral and source expressive data. The output is an SVC

model that converts any speech audio into the target speaker’s voice.

As the SVC model, we used So-VITS-SVC 1, a SOTA, open-source, conditioned-on-

F0 model. This model combines four different audio encoders that extract representations

with different meanings. A pre-trained timbre encoder based on (WAN et al., 2018) is used

to extract speaker representations, a Whisper (RADFORD et al., 2023) encoder is used to

extract content information, a soft version (NIEKERK et al., 2022) of the HuBERT (HSU

et al., 2021), which model to extract prosody representation, and a CREPE (KIM et

al., 2018) model to obtain the F0. Similar to Variational Inference with Adversarial

learning for end-to-end Text-to-Speech (VITS) (KIM et al., 2021), these are consumed

by a normalizing flows-based decoder that generates the output audio. The model is

also trained with a speaker classifier with a gradient reversal layer to achieve speaker

disentanglement. The model’s architecture is shown in Figure 4.2.

Figure 4.2: Architecture of the SO-VITS-SVC pipeline. Green highlights the inputs. Blue
modules are used only during training.

The model receives as input the target speaker representation, the source speaker

1Available at <https://github.com/PlayVoice/whisper-vits-svc>
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audio, and extracts the Whisper Phonetic Posteriorgrams (PPG), the soft Hubert (NIEK-

ERK et al., 2022) representation, and the F0 curve. During training, the soft Hubert

and PPG representations are perturbed with random Gaussian noise to improve noise im-

munity and remove global timbre information. Also, the speaker embedding is normalized.

The F0 curve is transformed into a coarser curve by mapping it to a Mel scale, min-max

normalizing within 50Hz and 1100Hz, re-scaling the normalized values with multiplication

by 254, and then clamping the values to integers between 1 and 255. The PPG and soft

Hubert representations are processed by a prior encoder that starts with a convolutional

layer and then sums together both with the sequence of embeddings extracted from a

look-up table indexed by the coarse F0 curve. These representations combined are passed

through a Transformer encoder (VASWANI et al., 2017) for context and then projected

with a convolutional layer. The output value is split to produce the mean and variance

used to construct the prior distribution. The sampled vector goes through a normalizing

flow conditioned on the speaker representation and consists of four volume-preserving

affine coupling layers. Each layer consists of four WaveNet (OORD et al., 2016) residual

blocks. The output representation is sliced into smaller chunks and then consumed by a

BigVGan (LEE et al., 2023) vocoder to generate speech.

The model is trained with several losses, including a discriminator-based GAN loss;

an ell1 mel loss between the synthesis and ground-truth; loss of multi-resolution STFT (YA-

MAMOTO et al., 2020); a GRL loss applied with the cosine distance of a classifier that

receives the contextual content and prosodic representations; and the Speaker-Normalized

Affine Coupling Layer (SNAC) flow-related losses (CHOI et al., 2022a).

The pre-trained SVC that is used on this work was already trained on the source

neutral and singing voice datasets. The pre-training ensured that the model had already

learned various voice timbres and the conversion of richer phonation modes that occur in

singing voice. With this, the taken model could already (1) perform a quick adaptation to

any new voice and (2) maintaining the source speech’s expressiveness when converting

since it was also pre-trained on the highly expressive singing voice data.

In the fine-tuning step conducted, the used pre-trained SVC model is trained on

the target speaker’s neutral data and the source expressive dataset. From the pre-training

step, this process becomes quicker because we already have information on how to convert

voices. Also, it has the benefit of demanding less data (as little as 5 minutes from the

target speaker. Additionally, by simultaneously training on the source expressive dataset,

the model can learn the patterns of the desired styles to be converted.

At the end of the SVC fine-tuning process, a model is obtained that not only to

transforms any source speech audio into the target speaker’s voice but also with improved

expressiveness, hypothesized with the use of singing voice. Also, it can preserve F0,

prosody, expressiveness, and content information.
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4.2 F0 Matched Conversion

From the previous step, the obtained SVC model is trained to copy the input

audio wave’s F0 into the output wave on the target speaker’s voice. Thus, when converting

speech from a speaker with a very different F0 register than the target, a mismatch of the

F0 range occurs and causes unrealistic converted speech. This factor is more prominently

shown when considering different genders since vocal folds become longer and thicker in

male speakers, leading to lower values of F0 (PÉPIOT, 2014). Also, given that the average

length of the male vocal tract is longer than the average length of the females, an increase

in lower resonant frequencies is expected (PÉPIOT, 2014).

During the pipeline’s conversion steps, an F0 matching algorithm is proposed to

mitigate this issue. This algorithm aims to reduce the mismatch in F0 between the source

and target speakers. First, a semitonal distance is calculated between each source and

the target speaker. Then, during neutral and expressive conversion steps, the input pitch

curve to the SVC is transposed according to the previously calculated semitonal distance

between the source speaker being converted to the target speaker’s voice.

For each audio in all three input datasets, a mean value of F0 was computed

using the voiced segments with the Harvest estimator (MORISE, 2017). Then, for each

speaker, a mean of the per audio F0 mean was calculated, obtaining an average value of

F0 in which each speaker speaks most of the time. Next, a distance in the interval of

semitones was computed from the target speaker’s average F0 value to each source speaker.

With this, during the conversion steps, both neutral to target and expressive to target, the

F0 was transposed by the calculated semitonal distance between the input source speaker

and target speaker’s audios, ensuring that all converted speech is in a range adequate

for the target speaker’s voice. This stage is shown on Figure 4.3, and detailed on the

Algorithm 1.

Figure 4.3: Processing pipeline to generate the semitonal distances.

After the semitonal distances are computed, the input pitch curve is transposed

according to each source speaker that is being converted. This pitch shift is given by:

F
′

0 = F0 · 2
∆st
12 , (4.1)

in which ∆st is the semitonal distance between the source and target speaker’s voices.



64

Algorithm 1 F0 Matching Algorithm

1: Input: Source dataset consisting of J audios, Sj, j ∈ [0, J ], partitioned into M subsets
Sm of source speakers, S =

⋃M
m=1 Sm, naturally disjoint, Sa ∩ Sb = ∅, ∀a ̸= b.

2: Input: Target dataset consisting of L audios, Tl, l ∈ [0, L] in target speaker’s voice,
named tgt.

3: Output: Semi-tonal distances between target and each source speaker: ∆st(m),
m ∈ [0, M ].

4: for l in {0, 1, ..., L} do
5: Calculate F0 curves for each audio l of target speaker.

F0l
[k] = Harvest(Tl, voiced)

6: Compute the mean of F0 for each audio.

F0l
=

1

|F0l
|

|F0l
|

∑

k=1

F0l
[k]

7: end for
8: Compute target speaker F0 mean across all speaker F0 audio means.

F tgt
0 =

1

L

L
∑

l=1

F0l

9: for m in {0, 1, ..., M} do
10: for j in {0, 1, ..., |Sm|} do
11: Calculate F0 curves for each audios j for each source speaker m.

F m
0j

[k] = Harvest(Sm
j, voiced)

12: Compute the mean of F0 for each audio j of each source speaker m.

F m
0j

=
1

|F m
0j

|

|F m
0j

|
∑

k=1

F m
0j

[k]

13: end for
14: Compute a speaker F0 mean across all speaker F0 audio means for each source

speaker m.

F m
0 =

1

|Sm|

|Sm|
∑

j=1

F m
0j

15: end for
16: for m in {0, 1, ..., M} do
17: Compute semitonal distances from source speaker m to target:

∆st(m) = 12 · log2

(

F tgt
0

F m
0

)

18: end for
19: Return: ∆st
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4.3 Style Filtering

It has been reported that many SOTA VC models can achieve conversion with

high intelligibility and naturalness in real-time but fail to adequately preserve the emotions

of the source speaker, especially in scenarios of highly varying pitch and when considering

diverse emotions (GHOSH et al., 2023). To mitigate this issue, besides the replacement

of the VC with an SVC model, a style filtering step was proposed to filter out possible

synthetic converted data whose output style had not been maintained the same as the

input source utterance’s style. The block diagram representing this step is shown in

Figure 4.4.

Figure 4.4: Block diagram of the style filtering process.

In this step, a style classifier model was trained to predict the emotion labels of the

source expressive dataset until convergence. The same architecture of the RE (SKERRY-

RYAN et al., 2018a) is employed, shown on Figure 4.5, which receives an input mel-

spectrogram, as processes it with 6 layers of 2D convolutions with batch normalization,

and a GRU and with a linear layer on top, to predict the probability of each given emotion.

The model is trained under a usual cross-entropy loss. If the number of speakers on the

source expressive dataset is sufficiently large, then the classifier can classify each style of

the dataset robustly such that it is independent of the speaker timbre. So, it was trained
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on the source expressive dataset and used to reason about the styles of converted synthetic

audios on the target speaker’s voice.

Figure 4.5: Architecture of the Style Classifier Filter RE. Source: Extracted from (SKERRY-
RYAN et al., 2018b).

With the F0 matched conversions, the audio was filtered out for each audio on

the synthetic expressive dataset if the style classifier inferred that it has any style other

than the same style as the input. This way, using the classifications by the style classifier,

only audios whose style was kept constant after conversion are used for finetuning. The

process of the style filtering step is detailed on the Algorithm 2.

Algorithm 2 Style Classifier-based Filtering Process

1: Input: Source expressive dataset Dsrc

2: Input: Target synthetic expressive dataset Dtgt

3: Input: Neural classifier model, C
4: Output: Filtered target synthetic expressive dataset Dtgt,filt ¢ Dtgt

5: Step 1: Train Style Classifier
6: Train style classifier model C on Dsrc until convergence
7: Step 2: Filter Audio
8: Initialize empty filtered target synthetic expressive dataset Dtgt,filt = ∅
9: for each audio a with style S ∈ Dtgt do

10: Infer style on target speaker’s voice: Ŝ = C(a)
11: if Ŝ ̸= S then
12: continue
13: else
14: Dtgt,filt = Dtgt,filt ∪ {a}
15: end if
16: end for
17: Return Dtgt,filt
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4.4 Text-to-Speech

A TTS model is trained on the synthetic converted data to generalize the stylistic

speech for any given input text. The TTS training procedure was divided into two main

steps: neutral pre-training and style finetuning. It receives both the neutral synthetic

converted and expressive synthetic converted and filtered datasets and outputs the final

model of the pipeline, a TTS in target style in the target speaker’s voice.

In the neutral pre-training stage, only the neutral data is used to train the model.

This is done since neutral data provides a more stable TTS training than stylistic data since

there is less prosodic variation. The neutral source dataset required enough volumetry to

train a TTS model from scratch, which alleviated the need for a large volumetry of both

source expressive data and the target speaker’s neutral speech. With this, the expressive

source data must have been enough only to perform a style finetuning. As our TTS

model, we used FastPitch (ŁAŃCUCKI, 2021) with explicit duration, pitch, and energy

predictors due to its fast and high-quality TTS capability (see Section 3.1.2 on Chapter 3).

The alignment between text and mel-spectrogram frames is learned during training in an

unsupervised manner as proposed in (BADLANI et al., 2022a). The technique is used to

loose the constraints of requiring alignments for any datasets.

After obtaining a neutral TTS on target speaker’s voice, a style finetuning step is

performed to adapt the neutral to each desired target speaking style. The same alignment

technique is used in the finetuning.

4.5 Data

This section presents in detail all the datasets considered in each step of the

training pipeline: the singing data used for pre-training the SVC; the expressive dataset

composed by the source expressive speakers; the neutral data in target speaker’s voice;

and the source neutral dataset used to pre-train the TTS model composed by the source

neutral speakers.

To ensure reproducible results, only open-source datasets were used in this work.

To pre-train the SVC model, we use the OpenSingerChinese (HUANG et al., 2021) dataset

together with the Voice Cloning Toolkit (VCTK) (VEAUX et al., 2017) dataset, which is

also used as the neutral source dataset. As our target speaker dataset, due to its known

voice across TTS research, we used the Linda Johnson (LJ) speech (ITO; JOHNSON,

2017) dataset. Lastly, as the source expressive dataset, we used the English portion of

the Emotional Speech Dataset (ESD) due to its highly expressive emotions.

Table 4.1 provides a summary of the datasets used in this work, including

information about each one and its function in the training pipeline.



68

4.5.1 OpenSinger Dataset

OpenSinger2 (HUANG et al., 2021) is a Chinese high-quality large-scale open-

source multi-singer singing voice dataset. It is composed of audio of various pop songs,

summing up to 50 hours of recordings in total. These are divided into 30 hours from 41

female singers and 20 hours from 25 males. All audios are provided in wav format with a

sampling rate of 24kHz and quantized in 16 bits. A professional annotation team labeled

these with the lyrics, song name, singer, and phonemes. The files were trimmed with

a Voice Activity Detection (VAD) model to remove silences, then cut into chunks of 0 to 11

seconds to better fit in limited-memory GPU scenarios. Lastly, time alignment between

audios and phonemes is provided and calculated with the Montreal Forced Aligner (MFA)

tool3.

This OpenSinger singing voice was used in the pre-training of the SVC model

that is used in this work. As discussed in Chapter 1 Section 1.4, question Q.2, since

this dataset of singing voice contains richer emotional information, diversified across

singing expression and style and also elevated high-frequency (HUANG et al., 2021), when

compared to a speech dataset, the substitution of the VC on the cross-speaker style transfer

data augmentation-based pipeline on data with the SVC, is hypothesized to improve the

conversion of expressive data.

4.5.2 Emotional Speech Dataset

The ESD4 (ZHOU et al., 2021b) is a multi-lingual and multi-speaker dataset

designed for voice conversion and speech synthesis research and available for non-commercial

purposes. It comprises 350 parallel utterances spoken by 10 native English speakers and 10

native Chinese speakers. For each language, 5 male and 5 female speakers are present. For

each speaker, the 350 utterances are spoken in a neutral speech and 4 emotions: “happy”,

“angry”, “sad”, and “surprised”. It sums up to approximately 29 hours of speech data

recorded. Speech data is available in 16kHz and quantized into 16 bits. Transcriptions are

also made available.

This work uses the English partition of the ESD as the source expressive dataset.

It is chosen mainly due to three factors: it is multi-speaker, which allows the evaluate the

conversion of different timbres to target speaker; because it comprises highly expressive

styles and emotions, which makes it possible to evaluate the purpose of using the SVC; and

also because there is enough volumetry in all styles to finetune a pre-trained TTS model.

2Available at <https://multi-singer.github.io/>
3Available at <https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner>
4Available at <https://github.com/HLTSingapore/Emotional-Speech-Data>
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4.5.3 VCTK Dataset

The VCTK Corpus5 (VEAUX et al., 2017) is a high-quality multi-speaker multi-

accent English speech dataset designed to build HMM-based TTS models and available for

non-commercial purposes. It contains 109 native English speakers with several different

accents worldwide. Aiming to maximize phonetic coverage, each speaker read about 400

sentences taken from newspaper texts. The corresponding transcriptions and speaker

information, such as accent, gender, and age, are provided. All speech data is recorded in

48kHz, with a bit depth of 16 bits.

The corpus is used as the neutral source dataset in the proposed pipeline. It

was selected not only because it contains sufficient data to train an English TTS model

from scratch but also to highlight the effectiveness of the F0 matching algorithm when

converting 109 possibly very different speakers to target, with various timbres and genders,

which naturally challenges the usual conversion step.

4.5.4 LJSpeech Dataset

The LJspeech6 is a public domain English dataset from a single female speaker

containing 13100 utterances taken from reading sessions of 7 non-fiction books, along with

its normalized transcriptions. These vary in length from 1 to 10 seconds and sum up to 24

hours. All are provided in a sample rate 22.05kHz and quantized in 16 bit.

The LJspeech is selected mainly due to its known voice across speech synthesis

research, being familiar to many and is used in the pipeline as the neutral target speaker

data. Thus, only segments of speech summing up to 5 minutes are used in the pipeline.

4.6 Experimental Setup

This Section details how the experimentation with the proposed pipeline is

approached. To compare the stylized TTS models, we consider other denominated baselines

models, detailed in subsection 4.6.1, which are SOTA style transfer models implemented

from literature. For this, the Daft-Exprt (ZAïDI et al., 2022) is considered in two different

approaches to synthesis. Also, experimentation concerning the effectiveness of some

individual steps of the pipeline is conducted. For this, an ablation study, detailed in

Section 4.6.2, is performed by replacing the SVC model with a VC, and also an experiment

removing the filtering step. The training configuration is shown on Section 4.6.3. All these

models are evaluated with a perceptual assessment and with some objective metrics.

5Available at <https://datashare.ed.ac.uk/handle/10283/3443>
6Available at <https://keithito.com/LJ-Speech-Dataset/>
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Dataset Volumetry # Speakers Styles
Rate/Bit

Depth
Pipeline
Function

OpenSinger
[CN]

Huang et al.
(2021)

50h
41 (F)
25 (M)

Singing
Voice

24kHz
16bit

SVC

pre-training

ESD

[EN]
Zhou et al.

(2021b)

29h
5 (F)
5 (M)

Angry,
Happy,
Neutral,

Sad,
Surprise

16kHz
16bit

Source
Expressive

VCTK

[EN]
Veaux et al.

(2017)

44h
62 (F)
47 (M)

Reading
48kHz
16bit

SVC

pre-training,
Source
Neutral

LJSpeech
[EN]
Ito e

Johnson
(2017)

24h 1 (F) Reading
22.05kHz

16bit
Target
Neutral

Table 4.1: Summary of the datasets used in the pipeline.

4.6.1 Baselines

The proposed method was compared to Daft-Exprt (ZAïDI et al., 2022), an open-

source state-of-the-art cross-speaker prosody transfer model, designed to capture both

low-level prosodic features such as pitch, duration, and energy; and high-level speaking

style information, which is encoded in a learned latent space. Instead of using a data

augmentation approach to cross-speaker style transfer, the authors attempt to disentangle

prosodic from speaker information through adversarial training with a GRL.

The model comprises a core acoustic model that generates mel-spectrograms

from text. The acoustic model is conditioned on prosody information obtained from a

reference utterance passed to a prosody encoder module. Energy, pitch, and the reference

mel-spectrogram are input features to the prosody encoder. Convolutional layers process

these features, then summed and passed on a sequence of FFT blocks and pooled by

average. The intermediate representations go through a speaker classifier with a GRL to

remove speaker information. Then, a speaker id, representing the output voice timbre

along with the learned disentangled prosodic information, is used to predict the scaling

and bias parameters (´ and µ) of a conditioning FiLM layer (PEREZ et al., 2018).

These parameters are all used to condition the phoneme encoder, the low-

level prosody predictor, and the decoder. The phoneme encoder processes the phoneme

representations conditioned on the prosodic and speaker representations, consumed by

the low-level prosody predictor module, which, for each phoneme, predicts the duration,
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energy, and pitch. Then, the Gaussian up-sampling module adjusts the length of the input

phoneme sequence to the output frame sequence. The decoder uses these to generate the

output mel-spectrogram containing the input text, the prosody of the reference utterance,

and the speaker voice given by the speaker id. The model’s architecture is shown in

Figure 4.6. Each component block’s structure is further detailed in Figure 4.7.

Figure 4.6: Daft-Exprt architecture. Source: Extracted from (ZAïDI et al., 2022).

Figure 4.7: Main components of the Daft-Exprt. Source: Extracted from (ZAïDI et al.,
2022).

In this work, the Daft-Exprt is trained on the full LJ Speech as the target neutral

dataset and the source expressive dataset, ESD. On inference, two methods to synthesize

were considered. First, we used the ground truth audio with the exact text as a reference

to perform the style transfer. On the second, we used a technique proposed in Kwon et al.

(2019) of computing the prosody embeddings for all training audios of the ESD passed as

references and then performing the inference of a given style by taking the centroid of all

training prosody embeddings of that particular style.
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4.6.2 Ablations

Two ablations are performed to evaluate the impact of some individual components

on the complete training scheme: a substitution of the SVC with the usual VC model and

a removal of the style filtering step.

An experiment replacing the SVC model with a VC model, the FreeVC (LI et

al., 2023), and running the entire pipeline with the same conditions is conducted. This

ablation is used to individually evaluate the impact of using the SVC to convert expressive

speech. The FreeVC is a model specifically designed for voice conversion, and, in the

pipeline, it was also trained solely on speech data. The FreeVC architecture is based

on the VITS (KIM et al., 2021) spectrogram reconstruction framework and can learn to

disentanglement content information from speaker information with the need of using

annotated textual information, named text-free approach.

The architecture comprises a prior encoder, a posterior encoder, a decoder, and a

speaker encoder. The prior encoder obtains content and speaker information as a normal

distribution N (z′; µθ, Ã2
θ). It receives the original waveform passed on the WavLM (CHEN

et al., 2022) Self-Supervised Learning (SSL) model. Through a bottleneck layer, the

WavLM output is projected to a much lower dimension, forcing the representation to

discard speaker and noise information, a technique discussed in the Chapter 3 Section 3.2.3.

Then, it is projected to two vectors representing the mean and variance of the content

distribution. The speaker representation is obtained by passing a mel-spectrogram on the

speaker encoder. In the same way on VITS, a normalizing flow is used composed with affine

coupling layers and conditioned on the speaker embedding to improve the complexity of

the prior distribution. A linear spectrogram is passed to the posterior encoder, also the

same used on VITS. This representation is passed to a decoder with the same architecture

as on VITS and converted in the raw output waveform. The raw waveform is finally passed

to a discriminator that judges it as authentic or fake.

On inference, the reverse flow process passes the desired content as the input

waveform and the mel-spectrogram of the desired timbre. By disentangling content from

the speaker and using a pre-trained speaker encoder, the VC model can receive independent

inputs and generate any given content from any given voice. These procedures are shown

in Figure 4.8.

The other ablation conducted was the removal of the style classifier filter from

the pipeline. In this case, instead of using only the filtered data to perform the finetuning,

all converted styled data is used. This ablation is conducted to validate whether finetuning

only on the data that is judged to maintain the same style as judged by a classifier after

conversion is efficient to boost the style intensity of the TTS.
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(a)

(b)

Figure 4.8: (a) Training procedure of FreeVC. Source: Extracted from (LI et al., 2023).
(b) Inference procedure of the FreeVC. Source: Extracted from (LI et al., 2023).

4.6.3 Training Setup

All the baseline models, proposed pipelines and ablations were trained on a

machine running a UBUNTU 22.04.3 LTS operating system, equipped with 72 Intel(R)

Xeon(R) Gold 5220 2.20GHz Central Processing Unit (CPU)s and 5 NVIDIA Quadro

RTX 5000 GPUs, each with 48GB of memory. No distributed multiprocessing training

framework was implemented, only one GPU was used in the experiments.

Hyperparameters were used as default in each original implementation7. Given

that each dataset is available only at different audio sampling rates, a resampling step

using the open-source Librosa8 tool is performed whenever required. For example, to

compute the HuBERT representations used in the SO-VITS-SVC, the model requires an

input wave sampled at 16kHz. In the VC/ SVC finetuning step, the models were trained for

100 epochs, with a learning rate set to a tenth of the original. All base TTS models were

trained for 600k steps from scratch, and the style fine-tunings were performed for 100k

7SO-VITS-SVC available at <https://github.com/PlayVoice/so-vits-svc-5.0>,
Daft-Exprt available at <https://github.com/ubisoft/ubisoft-laforge-daft-exprt>,
FreeVC available at <https://github.com/OlaWod/FreeVC>,
FastPitch available at <https://github.com/AI-Unicamp/TTS>

8Librosa available at <https://librosa.org/>
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steps with a tenth of the original learning rate. The style filter was trained on the ESD until

convergence and achieved an accuracy of 84% on a validation set. To equally convert the

generated mel-spectrograms into audio, we used the BigVGan vocoder, the model detailed

in Chapter 3 Section 3.1.3, pre-trained on the VCTK, LJSpeech, and LibriTTS (ZEN et al.,

2019) datasets with a batch size of 32 for 5M steps. The baseline Daft-Exprt model was

trained for 500 epochs and took around 5 day to complete the training. The time taken to

perform each step as well as the total time for pipeline completion is shown on Table 4.2.

Pipeline Step Duration
SVC fine-tuning 27h

Style classifier training 2h
F0 neutral semitone distances 0.5h

F0 expressive semitone distances 0.2h
F0 neutral matched conversion 4h

F0 expressive matched conversion 3h
Neutral TTS 100h

Style fine-tuning TTS 20h
Total ∼ 6.5 days

Table 4.2: Time taken to process each step of the proposed pipeline.

4.7 Concluding Remarks

In this Chapter, the proposed pipeline to perform cross-speaker style transfer

based on data augmentation was thoroughly described. All steps were detailed, as well as

which datasets were used. Also, experimentation aspects, regarding which models were

compared to, which ablations were performed and the computational training setup that

was used were presented. The next Chapter presents how the perceptual assessment was

conducted to rate all obtained models described previously.
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Chapter 5

Evaluation

This chapter presents the procedure and results of a perceptual evaluation

conducted to assess the synthetic expressive speech audios generated by the implemented

cross-speaker style transfer method. Some objective metrics used in earlier development

stages of the proposed method are also exploited.

To fully exhibit a human-like way of communicating, the synthesized expressive

speech audios should simultaneously present high levels of expressiveness, sound natural,

and ensure the target speaker’s timbre (goal of the cross-speaker tasks).

Several objective metrics can quickly provide insights into crucial aspects of

speech, such as:

• Naturalness: UTokyo-SaruLab MOS Prediction System (UTMOS) (SAEKI et al.,

2022), a popular SOTA system trained to automatically predict Mean Opinion Score

(MOS) based on an ensemble of strong and weak learners.

• Intelligibility: Character Error Rate (CER) and Word Error Rate (WER), which

consist in transcribing the synthesized audios with an ASR model, then calculating

the percentage of wrong characters/words compared to the original transcriptions,

meaning how much an ASR system could “understand” the synthesis; Short-Time

Objective Intelligibility Measure (STOI) (TAAL et al., 2011), a metric developed to

measure intelligibility in denoised speech;

• Speaker Similarity: cosine distance between speaker embeddings (DEHAK et al.,

2010), which is based on extract meaningful representations of speaker timbre then

measuring the distance between them.

• Similarity to Ground-Truth: Mel Cepstral Distortion (MCD), the distance between

sequences of mel cepstral coefficients; Voicing Decision Error (VDE), a proportion

of frames of the synthesized speech whose voicing is different from the ground-

truth; Gross Pitch Error (GPE), which consists in measuring the percentage of frames

from the synthesized speech whose pitch differs from the ground-truth above a
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predefined threshold; F0 Frame Error (FFE), defined as the percentage of frames who

either contain a voicing error or a pitch error (above a certain predefined threshold).

Even though these metrics are very practical, they are very limited in that they

either only focus on a single individual aspect while ignoring all others, or do not have

a transparent computation method; that is, they are not sufficiently interpretable. As a

matter of fact, no objective metric can fully encompass accurate human perception.

Subjective experiments, on the other hand, are specifically designed to assess the

perception of a population regarding the presented stimuli. Regarding speech synthesis,

perceptual evaluations can be adequately used to reason about speech audios’ expressive-

ness, since these are designed to emulate expressions that ought to be rightfully perceived

by humans themselves. Although these assessments are, most of the time, expensive and

time-demanding, they end up being the most adequate way to evaluate systems designed

for human interaction.

The studies on data augmentation for the cross-speaker style transfer task, as

discussed in Chapter 3, opted to evaluate with human subjects, with varying numbers of

participants and different protocols and stimuli. Besides being the most straightforward and

adequate way to assess emotions in speech, no target data is available for the cross-speaker

task since it is assumed there is only neutral data available for the target speaker, which

make various objective metrics unsuited. Following the same approach, we conducted

a perceptual evaluation to assess the proposed method’s performance contribution in

crucial aspects of speech, such as naturalness, expressiveness, and speaker similarity. Also,

to quickly rate the speaker similarity capability of the model in several different model

configurations, an objective metric based on speaker embedding similarity is evaluated.

The following stimuli were considered: (1) high and low anchors (when available),

which are audios that are representatives of highest and lowest achievable ratings of the

aspect being evaluated, to relativize the ratings of the other stimuli; (2) the synthesized

expressive audios of the complete pipeline this work proposed, with some ablations to

analyze the effectiveness of each introduced module, and (3) audios from baseline models,

to compare the proposed method with models that focus on the same challenge.

In this scenario, the participants were asked to evaluate all types of audio on

Likert scales, from one to five, providing a direct comparison of the proposed method

against both the perfect and worst scenarios possible, provided by the anchors, and also

against the re-implemented state-of-the-art models from literature as well as ablations.

This chapter is organized as follows: Section 5.1 presents the evaluation protocol

adopted, the test population selection criteria, and the tools used to conduct the assessment.

Section 5.2 describes the distribution of the stimuli used in the evaluation, as well as

anchors, the proposed model, ablations, and baseline models. Section 5.3 details all the

results acquired from the test and discusses how they relate to each evaluated speech

aspect.
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5.1 Perceptual Protocol

The evaluation platform was built and designed upon the webMUSHRA (SCHOEF-

FLER et al., 2018) evaluation platform. This platform is an open-source MUSHRA compliant

web audio API-based experiment software, written in JavaScript and PHP, that is used to

create perceptual experiments to assess the audio quality of audio samples with various

experiment configurations, such as MUSHRA, A/B comparison, and Likert scale. The

application was designed and tested locally, then deployed online with the Hostinger1

platform, a provider of web hosting solutions. Through Prolific, an online crowd-sourcing

platform, thirty-two native English test takers were recruited to participate in the assess-

ment. This quantity was set based on literature, budget and since experiments conducted

previously shown a convergence of scores after the twenty-fifth participant. After the test,

the results were saved in a file in .csv format and stored on cloud servers, following the

format defined in the standard webMUSHRA (SCHOEFFLER et al., 2018) tool. This

study was conducted with the approval of the UNICAMP Ethical Review Board, under

project number (CAAE) 59536022.8.0000.5404.

Each audio page considered is presented in the Appendix A. Before the start of

the assessment, the raters were instructed to leave and not carry on with the test if one of

the following conditions was not attended:

1. The participants did not have headphones,

2. The participant’s environment has compromising background noise,

3. The participant had any type of hearing impairment,

4. For some reason, the participant could not hear the audio samples.

The rater was asked to adjust the volume level and proceed if all conditions were met.

Before the experiment’s instructions, the raters were warned of the hidden attention checks

throughout the assessment. These attention checks were carefully designed to ensure the

takers actively listened to the audio content. In the attention checks, disguised as a regular

experiment page, one of the audios would state: “Please rate all the audios on this page

with a score of four”. If the taker does not follow these instructions, then disqualification

will happen. Two test takers’ entries were rejected due to unmatched attention checks.

The test takers would start the experiments after being informed about the

attention checks. For each experiment, the instructions pages were shown first to tell the

participants what they would listen to, what aspects of the audio they were supposed to

rate, and then the audio pages themselves to be ranked.

The audio pages were composed of several rows, each with audio controls to

play and pause the stimuli, an audio progress bar, and then buttons from one to five

1Available at: <https://www.hostinger.com/>
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corresponding to the audio rating. The subjects were free to play and pause the audio

as many times as necessary; no time limit was enforced. The rating buttons were only

unlocked to rate after the corresponding audio was played to ensure listening. Also, the

rater could only advance to the next page after rating all the audio. On all pages, a

progress bar showing the percentage of the completed assessment was always displayed for

the test takers.

In the assessment, three experiments were performed: a style intensity test

to quantify how much of each emotion of the dataset was present in the synthesis, a

naturalness test to measure how human-sounding the generated audios were, and a speaker

similarity test to analyze how close to target speaker’s voice the synthetic audios were. A

MOS-based metric was employed on all tests: the mean of all given scores. All audio rows

and pages within the same emotion are randomized in this experiment.

Firstly, the participants underwent the style intensity test. In this task, the raters

first were shown, for each emotion, actual samples of the ESD dataset to understand what

the perfect case for each emotion sounds, and then were asked to rate how much of each

emotion the audios sounded in a 5-point intensity scale with the corresponding associated

labels: (1) Not at All Happy; (2) Very Little Happy; (3) Somewhat Happy; (4) Notably

Happy; and (5) Very Much Happy.

Then, in the naturalness experiment, the raters were asked how naturally each

audio sounded. They were instructed to interpret the question as: “How likely could

this be a real person speaking?”. Also, a five-point scale with corresponding labels was

used: (1) Very Artificial; (2) Somewhat Artificial; (3) Neither Artificial nor Natural; (4)

Somewhat Natural; and (5) Very Natural.

Finally, to end the assessment, a speaker similarity test was conducted. In this

experiment, the reference audio of the target speaker (LJ) was also made available to the

participants, and they were asked to rate all the audios on the page based on how much

they resembled the voice of the reference speaker. For this, the following 5-point rating

scale was used: (1) Definitely Not the Reference Speaker; (2) Probably Not the Reference

Speaker; (3) Possibly the Reference Speaker; (4) Probably the Reference Speaker; and (5)

Definitely the Reference Speaker.

Upon conclusion, to perform a simple population profiling, some basic participant

information, such as age and sex, was extracted. Out of the thirty participants that

completed the assessment, twenty-one identified as Female and nine as Male. The age

profile ranged from eighteen to fifty-eight years, with a mean age of thirty-five and a

median of thirty-three years. The median time to complete the assessment was twenty-five

minutes and six seconds. The time taken to answer each audio page was also captured.

The fastest answered page (part of the naturalness test) was done in seventeen seconds,

and the slowest (part of the speaker similarity test) took a participant four hundred and

six seconds. The overall time spent on an audio page was approximately forty-two seconds.
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5.2 Stimuli

The test set consisted of selecting text-audio pairs from the ESD and LJSpeech

datasets. These text-audio pairs were not used in the development phase of the proposed

method for neither training nor validating the models and were used solely for the perceptual

evaluation, as either examples of input texts or high anchor ground-truth audios. For

all models evaluated (baselines, ablations, and proposed), the text transcriptions of

corresponding selected audios were used as inputs to generate the synthetic audios used in

the evaluation. All audios extracted from the original datasets were re-synthesized with

the BigVGan (LEE et al., 2023) vocoder so that possible vocoding artifacts introduced

on the synthetisized audios also appeared on the original audios, and were not taken into

account by the raters to differentiate between the original and synthesized audios.

Table 5.1 presents a distribution of the text-audio pairs used as the test set. In

total, forty-one pairs of samples were selected. Apart from the LJ and the Speaker 13 of

the ESD dataset, the test samples were drawn uniformly across style, speaker, and audio

duration factors. These extra audios were used as input references of high and low anchors

for the speaker similarity experiment, explained in the next paragraph.

Speaker
Style 11 12 13 14 15 16 17 18 19 20 LJ Total
Angry 1 1 0 0 0 1 1 0 1 0 0 5
Happy 1 0 1 1 0 1 0 1 0 0 0 5
Neutral 0 0 9 1 1 1 0 0 0 1 16 29

Sad 0 1 0 1 2 0 0 0 0 1 0 5
Surprise 1 1 0 0 0 0 1 1 1 0 0 5
Total 3 3 10 3 3 3 2 2 2 2 16 49

Table 5.1: Distributions of the text-audio pairs selected for perceptual evaluation.

To validate the contribution of the style filter, we conducted an ablation study in

which the pipeline is executed without the style classifier filtering step, that is, the whole

converted ESD is used on the fine-tuning, and also the latter plus the replacement of SVC

by an open source state-of-the-art VC model, FreeVC (LI et al., 2023), pre-trained on the

VCTK. High anchors (directly drawn from the test set) and low anchors are adjusted to

each type of experiment to calibrate the rating scale with performance boundaries.

The proposed method was compared to Daft-Exprt, an open-source state-of-the-

art cross-speaker prosody transfer model designed to capture high and low-level prosodic

features such as pitch, duration, and energy. Instead of using data augmentation, the

authors attempt to disentangle speaker information from the prosodic information through

adversarial training with a gradient reversal layer. The model was trained on the full

LJSpeech dataset and the expressive dataset (ESD). On synthesis, two methods were

considered. First, we used the ground truth audios with the exact text as a reference
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to perform the style transfer, named Daft-Exprt (Reference). On the second, we used a

technique of computing the prosody embeddings for all training audios of the ESD passed

as references and then performing the inference of a given style by taking the centroid of

all training prosody embeddings of that particular style, named Daft-Exprt (Centroid).

For the style intensity experiment, the participants evaluated a total of 84 stimuli,

7 per experiment page. As a high anchor, we used a ground-truth audio from the ESD,

and as a low anchor of emotion, a neutral audio is synthesized with the neutral base LJ

model with the same text used. Also, the same text from these utterances was used as

input for both Daft-Exprt-based baselines, the proposed model, and its ablations. Three

text/audio pairs from each of the four emotions were used.

In the naturalness experiment, a total of 30 stimuli were evaluated.A ground-truth

neutral audio from the ESD dataset was used as a high anchor. In this experiment, no

low anchor is used. The exact text of the high anchor is passed as input to both baseline,

proposed, and ablation models. Thus, five neutral text/audio pairs from the ESD are used.

Finally, the speaker similarity experiment consists of eight pages of audio, two

per emotion. Apart from the audios to be rated, a ground truth audio from the LJ dataset

is used as a reference speaker on each page. On each page, seven stimuli are considered.

As a high anchor, we use another audio also from the LJ dataset, and as a low anchor, we

use audio from the Speaker 13 of the ESD. This speaker was considered as low anchor due

to having the lowest similarity out of all ESD speakers with respect to LJ, as measured by

a cosine distance between speaker embeddings obtained with the Resemblyzer (WAN et

al., 2018) model. Two text samples for each emotion were used as input for the proposed

baseline and ablation models to generate the audio. In total, sixteen audios from the LJ

speech, eight audios from the Speaker 13, and two texts from each of the emotions were

used in this experiment.

5.3 Results

5.3.1 Naturalness

Naturalness results are shown in Table 5.2. The GT model obtained the best

score, reiterating its high anchor position. It received a naturalness value of 4.05 ± 0.18,

and thus, this value limits the value of the other models since it is the rating of the neutral

audios taken directly from the ESD dataset. The Daft-Exprt-based models obtained

the lowest scores, of 2.01 ± 0.18 and 2.21 ± 0.20, with the reference and centroid-based

techniques, respectively. Regarding this difference, we found that, when compared to the

centroid technique, the reference-based Daft-Exprt ended up being much more sensitive

to the input audio in a way that, when trying to forcefully copy the prosody to texts of

possibly different lengths from the reference, ended up generating unrealistic speech.
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Table 5.2: Naturalness MOS with 95% confidence intervals.

Model MOS

GT (High Anchor) 4.05 ± 0.18
Daft-Exprt (Reference) 2.01 ± 0.18
Daft-Exprt (Centroid) 2.21 ± 0.20

VC 3.02 ± 0.20
SVC (This work) 3.57 ± 0.20

After the high anchor, the highest naturalness scores were obtained with the

models based on data augmentation. The model based on the FreeVC (LI et al., 2023)

obtained a naturalness of 3.02 ± 0.20, and the proposed model, based on SVC, obtained

a naturalness MOS of 3.57 ± 0.20. Thus, it is seen that the proposedSVC-based pipeline

significantly improved the naturalness of the synthetic audios by a significant margin when

compared to both baselines and ablation.

5.3.2 Style Intensity

Style Intensity results are shown in Figure 5.1, and summarized on Table 5.3.

In a similar fashion to the naturalness experiments, the score obtained by the selected

anchors also reiterated their appropriate choice. The high anchors (audios from the ESD

dataset) received the best style intensity scores in all four emotions of the ESD. This also

reiterates how the emotions on the ESD are compatible with how our test takers perceive

them. The low anchors scored worse than all models for all four emotions.

Table 5.3: Style Intensity Mean Opinion Scores MOS with 95% confidence intervals.

MOS

Model Angry Happy Sad Surprise

GT-Res (High Anchor) 3.85 ± 0.24 4.22 ± 0.22 4.26 ± 0.23 4.66 ± 0.13
Neutral-Res (Low Anchor) 1.81 ± 0.19 1.86 ± 0.19 1.78 ± 0.21 1.34 ± 0.12

Daft-Exprt (Reference) 1.97 ± 0.26 2.43 ± 0.25 3.28 ± 0.30 2.72 ± 0.25
Daft-Exprt (Centroid) 2.16 ± 0.27 2.00 ± 0.18 3.19 ± 0.27 2.40 ± 0.19

VC 2.29 ± 0.23 3.53 ± 0.25 2.61 ± 0.24 4.32 ± 0.19

SVC (This work) 1.94 ± 0.21 3.06 ± 0.21 2.61 ± 0.24 2.76 ± 0.22
SVC + Filtering (This work) 2.69 ± 0.29 2.00 ± 0.20 2.79 ± 0.24 3.13 ± 0.26

Analyzing the scoring of the models by emotion, for the “angry” style, the SVC

+ Filtering model (proposed) performed better (MOS score of 2.69 ± 0.29) than all its

counterparts by a large margin. This behavior is attributed to the fact that, due to having

already seen different phonation modes presented on the pre-training of the SVC, the

proposed pipeline was able to capture better the phonation modes. This was due since out

of all the emotions present on the ESD dataset, the “angry” style was the only shown to
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Figure 5.1: Style Intensity MOS results for each style and each stimulus with 95% confidence
intervals.

require a specific phonation mode (pressed) by Birkholz et al. (2015) for correct perception

while the other emotions’ perception could rely primarily on other prosodic parameters.

On the “happy” and “surprise” styles, however, the VC-based pipeline outper-

formed both the proposed models and baselines, with MOS scores of 3.53 ± 0.25, and

4.32 ± 0.19, respectively. We hypothesize that these are styles that are characterized

by having more significant and faster variations of F0 that are not present in singing

voices which are characterized by longer continuous pronunciations (HUANG et al., 2021).

Specifically, a pattern of quickly rising tone in the final syllable is observed in most of the

sentences of the “surprise” emotion. The proposed model achieved the second-best MOS

score on the “surprise” style, and the ablation model scored the second-best MOS on the

“happy” emotion, beating baseline models in both cases.

In the Sad case, the Daft-Exprt baseline models outperformed all data augmentation-

based methods, especially when considering the reference-based synthesis, which scored

the best MOS (3.28 ± 0.30). This fact was likely due to the model’s ability to copy the

duration aspect, which is crucial for this style and is characterized by slower speaking

rates, even though the data-augmentation methods were perceived to have better captured

the phonation aspect of the style.

Further, in this experiment, we see the effectiveness of the style classifier filter,
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once that, for all styles but the “happy”, these models (SVC + Filtering) boosted the

intensity MOS when compared to the SVC without the filter (ablation). A possible

explanation, to be further investigated, is that the loss in MOS on the “happy” can be

attributed to the very low volumetry of the filtered “happy” style (seventy-seven audios),

possibly not being enough to learn its defining patterns during the style finetuning. Future

experiments to analyze how the MOS varies as a function of the amount of finetuning style

data will be conducted.

Style Filtering

Confusion matrices of the classifier style filter trained on the source expressive

dataset were obtained. On Figure 5.2 it can be seen that, on the validation set of the real

audios, it obtained a good performance with very few mistakes compared to the number

of correct predictions (main diagonal of the matrix).

Figure 5.2: Confusion matrix of the style classifier filter on the validation set.

When applied to the synthetic audios, the confusion matrix shown on Figure 5.3,

571 converted “angry” files were rightfully labeled, an thus selected for the next fine-tuning

step; 74 for the “happy” style; 2230 audios for the “sad” style; and 99 audios for the

“surprise” style.

Notably, a tendency to classify the synthetic audios as “sad” is observed. This

can be attributed to a possible loss in expressiveness caused by the conversion together

leading various expressive audios to a “neutral” style combined with a confusion of the

style classifier between the original “neutral” and “sad” styles.
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Figure 5.3: Confusion matrix of the style classifier filter applied on synthetic converted
expressive dataset.

5.3.3 Speaker Similarity

Subjective results of the perceptual experiments for speaker similarity are shown

on Figure 5.4 and on Table 5.4. Similarly to the other experiments, the anchors’ choice

was also appropriate. The high anchor (re-synthesized audios of the original LJ dataset)

received the highest similarity MOS scores for all emotions, and the low anchor (Speaker

13 of the ESD dataset, named “Other-Res”) received the lowest scores in all cases.

Table 5.4: Speaker Similarity MOS with 95% confidence intervals.

MOS

Model Angry Happy Sad Surprise

LJ-Res (High Anchor) 3.90 ± 0.30 4.47 ± 0.22 4.28 ± 0.28 4.40 ± 0.27
Other-Res (Low Anchor) 1.22 ± 0.23 1.13 ± 0.19 1.00 ± 0.00 1.00 ± 0.00
Daft-Exprt (Reference) 2.23 ± 0.32 2.55 ± 0.33 2.23 ± 0.30 2.26 ± 0.32
Daft-Exprt (Centroid) 2.33 ± 0.34 2.63 ± 0.33 2.05 ± 0.30 2.67 ± 0.36

VC 1.58 ± 0.25 1.48 ± 0.24 1.62 ± 0.23 1.43 ± 0.18
SVC (This work) 1.68 ± 0.24 1.71 ± 0.25 1.50 ± 0.18 1.53 ± 0.23

SVC + Filtering (This work) 1.82 ± 0.30 1.67 ± 0.28 1.47 ± 0.16 1.43 ± 0.23

The baseline models performed better in this experiment than the analyzed data

augmentation methods in all styles. However, our proposed data-augmentation-based

models achieved competitive results even though they used only five minutes of the

target speaker’s voice during training. In contrast, the Daft-Exprt used almost the entire

LJSpeech dataset (approximately twenty-four hours of data), accounting for the audios

removed for testing. Additionally, we discovered that even lower amounts of target speaker

data also worked, albeit with a trade-off in decreased speaker similarity.
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Figure 5.4: Speaker Similarity MOS results for each style and each stimulus with 95%
confidence intervals.

Speaker Embedding Similarity

During the early development stages, a speaker similarity objective metric was

used to assess how the proposed method performed quickly. Speaker embeddings were

calculated using test and real LJ utterances. Then, a cosine similarity, that is, how similar

the orientation of two vectors is, regardless of their magnitude, is calculated. This metric

is used to quantify how close both speaker embeddings are in the speaker embedding space

created with the Resemblyzer2, from 0 to 1. (WAN et al., 2018). Intuitively, it means how

much their timbres are alike. It is calculated according to the following equation:

similarity(u, v) = cos (∠(u, v)) =
u · v

∥u∥∥v∥
(5.1)

After the pipeline was fully developed, objective speaker similarity results were

calculated with the obtained cross-speaker style transfer method. These are shown in

Figure 5.5. Each dot in the Figure represents the similarity between an utterance with the

original LJ voice and a test utterance obtained from a conversion of a VCTK speaker to

LJ’s voice. These are drawn from the pipeline’s neutral-to-LJ conversion step, with and

without F0 matching.

2Available at: <https://github.com/resemble-ai/Resemblyzer>
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Figure 5.5: Similarity for each converted speaker.

The similarity scores are plotted with the speakers in the x-axis being arranged

in ascending order according to their semitonal distance to the LJ (as calculated in

the F0 matching conversion step). This plot shows a decline in speaker similarity as

the semitonal difference between LJ and the speaker increased. However, when the F0

matching algorithm is applied to the conversion, the similarity levels remain unaffected

by the timbral difference between the speakers, demonstrating the effectiveness of the

proposed F0 matching technique.

5.4 Concluding Remarks

This chapter described the adopted subjective evaluation protocol to assess the

synthetic expressive audios generated by the proposed cross-speaker style transfer pipeline.

Audios were either ground-truth, that is, re-synthesized from the original datasets, to serve

as either anchors or speaker references, or generated with the evaluated models taken from

the text of the test set. Thirty-two native English speakers (with two failing the attention

checks) were recruited to judge three aspects of the audio: naturalness, style intensity,

and speaker similarity. All three factors were ranked in a MOS-like scale from one to five.

On all pages, when available, the stimuli used were high and low anchors to relativize the

scores, two versions of a baseline model, two ablations, and the proposed model itself.

Also, this chapter went through an objective speaker similarity metric calculated

to perform speaker evaluation in both early stages of the development and to compare a

large quantity of audio. Specifically, converted neutral audios from VCTK to LJ’s voice

were compared both when using or not the F0 matching algorithm. From the result
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analyses, the proposed pipeline outperformed all other ablations and baseline models

regarding naturalness. Concerning style intensity, the pipeline obtained the best score for

the “angry” style and the second-best score for all styles. Regarding speaker similarity,

even though it used only five minutes of target speaker’s data, the pipeline could still

obtain competitive results compared to the baseline models, which used twenty-four hours

of target speaker training. Also, the F0 matching technique improved speaker similarity

when considering the critical cases: when the target and source speaker’s voices are more

different regarding the fundamental frequency register.
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Chapter 6

Conclusions

This work focused on developing an expressive TTS model for a speaker that

is assumed to have only a few minutes of neutral data available. Data augmentation

techniques were used to take advantage of existing expressive data from other speakers

to create synthetic expressive data for the target speaker. In this context, a perceptual

evaluation and several experiments were carried out to compare the models considered

and to tackle the research questions introduced in Chapter 1 Section 1.4.

A novel pipeline to perform cross-speaker style transfer was presented. Aiming

to improve the performance of the technique when considering highly expressive styles,

such as emotion, an SVC model was introduced as part of the pipeline, replacing the VC in

standard SOTA data augmentation-based methods. The SVC model was first pre-trained

on a dataset with various voices to quickly learn the target speaker’s voice, reducing

the required volumetry to only a few minutes. A style classifier filter trained on the

original expressive data was proposed to filter out all audios that changed style after

being converted to the target speaker’s voice so that only data that matches the original

style was used. Additionally, a technique to reduce the tonal mismatch between speakers

with different vocal frequency ranges were proposed, enabling adequate generation of the

synthetic expressive data recorded in any speaker’s voice.

The models were trained on the ESD (ZHOU et al., 2022a) dataset as the source

expressive speakers and using the LJ speech dataset (ITO; JOHNSON, 2017) as the target

speaker. The proposed pipeline was evaluated against another open-source SOTA baseline

for cross-speaker style transfer, Daft-Exprt (ZAïDI et al., 2022). Two inference methods

were considered: one using the centroid of each style as the style embedding and the other

extracting the style of a reference speech for style. Also, ablations of the removal of the

style filtering and the replacement of the SVC with a VC model were considered in the

experiments.

A perceptual evaluation with over 30 native English participants was conducted

using subjective measures of naturalness, style intensity, and speaker similarity based

on MOS. Also, an objective metric for speaker similarity based on embedding cosine
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similarity was computed.

The findings detailed in Chapter 5 revealed that the proposed pipeline ameliorated

several aspects of the cross-speaker style transfer task, such as naturalness and style

intensity, especially when considering highly expressive scenarios while using a volumetry

of neutral data of target speaker as low as five minutes and enabling the conversions with

very different speakers in terms of timbre.

Finally, this work is concluded by answering the research questions proposed

based on the results obtained from the experiments performed:

• Q.1) Can data augmentation-based techniques perform cross-speaker style

transfer of highly expressive speaking styles with only a few minutes of

neutral data of target speaker? Comparing the style intensity scores obtained by

the models (Figure 5.1), it can be seen that approaches based on data augmentation

through the use of a pre-trained SVC or VC model (conditions VC, SVC, and

SVC+Filtering), indeed allowed the development of an expressive TTS on target

speaker’s voice with the use of only five minutes of its neutral data, as for at least one

condition out of the three, a score whose the lower limit of the confidence interval is

greater than the upper limit of the neutral condition, demonstrating that emotion

was perceived by the listeners to some extent.

• Q.2) Since singing voice includes richer emotional information compared

to regular speech (HUANG et al., 2021), is an SVC model (instead of a VC),

more effective to preserve the speaking style when converting expressive

speech to a speaker with only neutral data? The style classifier confusion

matrix Figures 5.2 and 5.3 showed that even though most of the conversions to target

speaker’s voice are mapped to the “sad” style, several audios still preserved the

style after conversion. However, the style intensity MOS scores shown on Figure 5.1

revealed that, the the inclusion of the SVC+Filtering, performed statistically better

only on the angry style (highest vocal effort), as it was the only case in which no

intersection between its confidence interval and all other compared models occurs.

Still, in the other three styles, the SVC-based models achieved at least the second

greatest mean MOS value.

• Q.3) Does filtering out the synthetic audios that do not maintain the

same style after being converted, judged by a style classifier trained on

the original audios, improves the style intensity of the TTS? The style

intensity experiment, presented on Figure 5.1 showed that the model finetuned only

on filtered converted data had a difference in mean MOS of +0.75 for the angry style,

−1.06 on the happy style, +0.18 on the sad style and +0.37 on the surprise style, in
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comparison to the model trained on all converted data. However, when considering

the confindence intervals, the only significant difference was found on the angry case.

• Q.4) To what extent does the difference in timbre between a source speaker

and a target speaker impact the perceived similarity of the converted

speech to the target speaker, as measured by a speaker similarity metric?

Objective metrics calculated directly on the conversions showed that with as the

semitonal distance from the source speaker to target increases, the speaker similarity

of the conversion with regards to original recordings can decrease up to around 23%

when compared to the matched conversion, as shown in Figure 5.5 which preserved

the speaker similarity for any source speaker.

• Q.5) How do current open-source cross-speaker style transfer approaches

perform on open-source data? The experiments showed the current open-

source SOTA method Daft-Exprt (ZAïDI et al., 2022) obtained a performance below

than expected in terms of naturalness according to the original paper. The Daft-

Exprt model obtained a naturalness of 74% the value of the ground-truth recordings

when using an internal dataset, whereas our evaluation that used the same model

implementation obtained 55% of the high anchor recordings.

6.1 Limitations and Future Work

While satisfying results were obtained with the proposed SVC-based pipeline, to

achieve production-level cross-speaker style transfer capabilities, it still require enhance-

ments in several directions.

The first limitation in the proposed pipeline consists in its inherent complexity.

To be assembled, the pipeline relied on a considerable amount of deep learning models (e.g.

HuBERT, So-VITS-SVC, BigVGAN, Fastpitch, Whisper, CREPE) hosted at different

repositories, as presented on Section 4.6.3. This complicates its computational implemen-

tation, as each model demands its own particular set of python libraries, CUDA drivers,

memory requirements, audio sampling rates, and hyperparameter configurations.

Another limitation regarding style modeling is the use of TTS models which were

not specifically designed specifically for stylistic speech, such as the considered Fastpitch

model. Even though it is able to better model prosodic content than other counterparts,

with the main loss function that it is trained upon, the MSE, the model ends up over-

smoothing the expressive content, converging to an average of the style distribution present

on the training data. This way, the richest stylistic variations present on the data end up

not being accounted.

Also, a common issue in expressive speech synthesis in the open research setting is
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the lack of data available to train and test the models. Most of the datasets available either

have a low volumetry per speaker or lack style diversity. Incorporating datasets with more

diversified styles and more accurately designed for realistic human interaction scenarios

could further enhance its applications and generalization capability. Future efforts should

focus on curating and utilizing large-scale, high-quality datasets encompassing a broader

spectrum of vocal characteristics and expressive styles rather than only basic emotions.

Even though the proposed pipeline has shown competitive performance with only

5 minutes of neutral speech in the target speaker’s voice, further advancements are still

needed to lower this value to the few-shot or even zero-shot scenarios. Techniques based

on vector representation quantization or an increase in the number of voices viewed during

the pre-training phase are some perspectives that could tackle this issue.

In addition, developing real-time processing capabilities for the obtained TTS

model, the cross-speaker style transfer pipeline product, would significantly expand its

practical applications. Real-time processing is particularly relevant for interactive systems

such as virtual assistants, live dubbing, and teleconferencing tools. Achieving low-latency

speech synthesis requires optimizing the computational efficiency of the TTS models.

Exploring techniques such as model compression, quantization, and more efficient neural

network architectures could be the key to achieving this goal.

Refining the evaluation protocols is also an important area for future research.

While objective metrics provide a quick yet shallow analysis of model performance, and

current subjective metrics, provide more reliable results, yet with not well-defined concepts,

developing more transparent, easier-to-understand, and effective subjective evaluation met-

rics could lead to a better understanding of the strengths and limitations of different style

transfer approaches. This could include creating more detailed and thorough perceptual

tests with more test takers, more detailed instructions, and a new test to evaluate each

aspect of expressive synthetic speech separately. Improved evaluation methods will enable

more precise tuning of model parameters and better assessment of progress in the field.

By pursuing these future research directions, cross-speaker style transfer could

provide expressive TTS faster, generalizable, easily adaptable, and more reliable systems.

Consequently, the insights gained from these efforts will enhance the technical capabilities

of expressive speech synthesis systems and contribute to their integration into various

real-world applications.
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Appendix A

Perceptual Assessment

An online perceptual assessment was conducted to rate all the stimuli generated

by the proposed pipeline, its ablations, baseline models, and also the re-synthesized

ground-truth audios. Three aspects of speech were analysed: naturalness, style intensity

and speaker similarity. For each aspect, the participants were instructed on which speech

factors to look for while rating, and which factors not to take into account. Since being

a speech expert was not a requirement to take the assessment, the instructions played

a crucial role in the results, as the test participants’ answers were entirely reflected on

how they understood the problem. The following images show all the pages types, such

as welcoming page, instructions, rating pages, etc, that were present in the perceptual

assessment in sequential order.

Figure A.1: Welcome and requirements page.
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Figure A.2: Instructions concerning attention checks.

Figure A.3: Instructions for the style intensity experiment.
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Figure A.4: Page elucidating the “angry” speaking style with sample audios. Repeated for
all styles considered.
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Figure A.5: Sample page of the style intensity experiment for the “angry” style. Repeated
for all styles considered.
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Figure A.6: Instructions for the naturalness experiment.

Figure A.7: Sample page of the naturalness experiment.
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Figure A.8: Instructions for the speaker similarity experiment.
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Figure A.9: Sample page of the speaker similarity experiment. Repeated for all styles
considered.
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Figure A.10: Participant ID, age and gender profiling page.

Figure A.11: Sample page showing the results for the participant at the end of the
experiment.
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