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Resumo

Neste trabalho, derivamos uma nova expressão exata para a probabilidade de falso alarme

(PFA) e uma solução aproximada de forma fechada para a probabilidade de detecção

(PD) do detector smallest of cell-averaging constant false alarm-rate (SOCA-CFAR),

operando sobre clutter do tipo Weibull. Para a análise, consideramos um alvo distribuído

exponencialmente e consideramos valores arbitrários para o parâmetro de forma do clutter.

Até onde sabemos, não existem avaliações de desempenho exatas nem aproximadas para

um detector SOCA-CFAR considerando valores arbitrários para o parâmetro de forma das

amostras de interferência Weibull (i.e., diferente de 1) contidas na janela CFAR. Portanto,

nossas derivações analíticas generalizam estudos anteriores de avaliação de desempenho e

dão um grande passo em direção a uma melhor compreensão de detectores SOCA-CFAR

mais realistas. Além disso, obtemos formulações exatas para a função de densidade de

probabilidade (PDF) e a função de distribuição cumulativa (CDF) para o mínimo de duas

somas de variáveis aleatórias Weibull independentes e identicamente distribuídas (i.i.d.).

Os resultados numéricos indicam que o desempenho do sistema melhora à medida que o

parâmetro de forma da interferência aumenta. A validade de todas as nossas expressões é

confirmada por meio de simulações de Monte Carlo.

Palavras-chaves: Smallest of cell-averaging constant false alarm-rate (SOCA-CFAR);

probabilidade de detecção (PD); probabilidade de falso alarme (PFA); clutter do tipo

Weibull.



Abstract

In this work, we derive a novel exact expression for the probability of false alarm (PFA)

and an approximate closed-form solution for the probability of detection (PD) of a smallest

of cell-averaging constant false alarm rate (SOCA-CFAR) detector operating over Weibull-

distributed clutter. For the analysis, we consider an exponentially distributed target and

allow arbitrary values for the shape parameter of the clutter interference. To the best

of our knowledge, there are no exact nor approximate performance evaluations for a

SOCA-CFAR detector considering arbitrary values for the shape parameter of the Weibull

interference samples (i.e., different from 1) contained within the CFAR window. Therefore,

our analytical derivations generalize previous performance evaluation studies and take a

considerable step towards a better understanding of more realistic SOCA-CFAR detectors.

Moreover, we obtain exact formulations for the probability density function (PDF) and

the cumulative distribution function (CDF) for the minimum of two sums of independent

and identically distributed (i.i.d.) Weibull random variables. Numerical results indicate

that the system performance improves as the shape parameter of the Weibull interference

increases. The validity of all our expressions is confirmed via Monte Carlo simulations.

Keywords: Smallest of cell-averaging constant false alarm-rate (SOCA-CFAR); probability

of detection (PD); probability of false alarm (PFA); Weibull-distributed clutter.
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1 Introduction

This dissertation presents novel contributions in the scope of modern radar

systems. More specifically we derive closed-form formulations that aid in the performance

analysis of a constant false alarm detector. Our analysis considers that the clutter follows

a Weibull distribution since many studies have demonstrated that it accurately describes

realistic sea and ground clutter.

Before engaging the contributions we briefly review indispensable theoretical

foundation on radar signal processing.

The remainder of this dissertation is organized as follows. Chapter 1 briefly

introduces the radar concept as well as probability theory that is used throughout the

work. Chapter 2 revisits essential notion regarding detection theory. Chapter 3 introduces

the statistical model of clutter and target signals. Chapter 4 presents the constant false

alarm rate (CFAR) concept as well as some of the primarily algorithms found in literature.

Chapter 5 derives new formulations for the performance metrics of a smallest-of cell

averaging constant false alarm rate (SOCA-CFAR) detector operating over Weibull clutter

in an exact manner for probability of false alarm (PFA) and approximated for probability

of detection (PD). Chapter 6 discusses the numerical results. Finally, conclusions and

future works are presented in Chapters 7 and 8.

1.1 Radar Basics

Originally the word radar stood for radio detection and ranging since in its

early developments radar systems were restricted to detection and range determination

of targets. Nowadays, radar functions have expanded to search, track and image targets

while suppressing undesired background interference. As well known, radars are electrical

systems that transmit radio-frequency (RF) electromagnetic (EM) waves to a specific

region to then receive the reflected signal and apply it to the receiver circuits. The major

subsystems composing a radar include transmitter, antenna, receiver and signal processor

(RICHARDS et al., 2010). A timeline of radar history and developments is shown in

Table 1.1 (SKOLNIK, 2001).

1886 • Hertz demonstrated that radio waves can be reflected by

metallic objects and refracted by a dielectric prism

1900 • Tesla conceptualize the detection and velocity

measurement of EM waves
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1904 • Hülsmeyer tested ship detection by radio wave

reflection

1922
• Taylor and Young of the U.S. Naval Research Laboratory

(NRL) proved ship detection by radar

• Marconi (pioneer of wireless radio) observed the radio detection of targets

1925 • The pulse radar technique was used by Briet and Tuve of the Carnegie

Institution in Washington D.C to measure the height of the ionosphere

1930 • The NRL first detected and aircraft by radar

1934
• The NRL research lead to a U.S. patent for continuous wave

(CW) radar

• The NRL began serious efforts of developing pulse radar systems

1936
• First successful demonstrations of the NRL pulse radar

• U.S Army Signal Corps begin active radar work

1938
• The first U.S. Army Signal Corps operational radar system, the

SCR-268 antiaircraft fire control system

• The operational shipboard radar Seetakt was installed by German

Navy ships making Germany be ahead in radar technology.

1939

• Second operational system the SCR-270, an early warning system

which detections where ignored at Pearl Harbor

• British build their first 200 MHz airborne interceptor radar

• German Air Force produce the 125 MHz Freya air search

and employed it as Ground Control of Intercept radar

1940
• The British made a significant advance in radar technology

by inventing the high-power microwave magnetron

• United States and Britain development of radars that

operate at microwave frequencies (that have predominated since)

Table 1.1 – Radar History Timeline

As mentioned in the timeline, nowadays, conventional radars operate in the

microwave region. The first radars operate in frequencies raging from 100 MHz to 36 GHz.

Operational high-frequency (HF) over-the-horizon radars operate at MHz frequencies. On
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the other hand, experimental millimeter wave radars operate at frequencies higher tan

240 GHz. During World War II (WWII), letters such as S, X L where use to designate

frequency bands for radar operation with the purpose to maintain military secrecy. Since

the shorthand designation was convenient for denoting the spectrum region in which the

radar operates it is still in use (SKOLNIK, 2001). Table 1.2 presents the nominal radar

frequency bands with its letter nomenclature.

During WWII radar technology grew rapidly and in the years that followed

the war radar capability has continue to advance. Here are listed some of the major

accomplishments of radar

• Usage of doppler effect in the moving target indication (MTI) pulse radar to separate

targets from ground echoes.

• High-power stable amplifiers to allow better application of the doppler effect and

much higher power than the obtained with the magnetron.

• Monopulse radar allow for highly accurate angle tracking of targets.

• The airborne synthetic aperture radar (SAR) to provide high resolution map-like

imaging of ground scenes.

• Phase array antennas offer rapid beam direction without any mechanical movement

of the antenna.

• Extracting information from the echo signal to provide target recognition.

• Radar has become an essential tool for meteorologist.

Table 1.2 – Nominal radar frequency bands (RICHARDS, 2014).

Band Frequency
HF 3-30 MHz
VHF 30-300 MHz
UHF 300 MHz-1 GHz
L 1-2 GHz
S 2-4 GHz
C 4-8 GHz
X 8-12 GHz
Ku 12-18 GHz
K 18-27 GHz
Ka 27-40 GHz
mm 40-300 GHz
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1.1.1 Radar Basic Functions

The bast majority of radars operate under three main functions which are:

search, track and image. Such functions are described bellow (RICHARDS et al., 2010).

• Search: A radar searches a given volume for targets without a priori knowledge about

targets’ presence or position. To do so, the radar points its antenna in a series of

beam positions transmitting one or more pulses. The received data is examined for

the presence of targets using threshold techniques (described in Section 2).

• Track: When a target is detected a measurement of its state is performed and includes:

azimuth and elevation angle, position in range. Then, all individual measurements

are combined to estimate a target track.

• Image: Imaging refers to a variety of methods used to obtain detail information of

broad-areas or discrete targets. The two processes involved in imaging are producing

high-resolution range and cross-range profile of the target.

1.1.2 Radar Applications

Even thought early radar advancement was driven by military necessity (surveil-

lance, navigation, weapon guidance), nowadays radar enjoys increasing civilian range of

applications (police traffic radar, color weather radar, meteorological radar, aviation, i.a.).

Table 1.3 shows some of the most common applications of radar technology (RICHARDS

et al., 2010).

Table 1.3 – Radar applications.

Military Applications

Air traffic control
Air defence systems
Over-the-horizon search radars
Ballistic missile defense radars
Artillery locating radars
Instrumentation test range radars
Tracking, fire control, and missile support radars

Civilian Applications

Process control radars
Airport surveillance radars
Weather radars
Navigation radars
Satellite mapping radars
Automotive collision avoidance radars
Radar altimeters
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1.2 Some Basic Probability Concepts

In this section we review some essential probability notion that will aid us

better comprehend the following dissertation work.

1.2.1 Continuous Random Variable

A continuous random variable (RV) X is define as function that maps an

outcome ς from an experimental sample space S to a numerical sample space SX , which is

a subset of the real line R. In contrast to a discrete RV the SX consists of an infinite and

uncountable number of outcomes. Therefore, the possible outcomes of the RV are intervals

that are uncountable infinite sets and thus the probabilities are assigned to intervals (KAY,

2006).

1.2.2 Cumulative Distribution Function

The cumulative distribution function (CDF) of a RV X is given by

FX(x) = P (X ≤ x), (1.1)

and is define as the probability that the RV X, evaluated at x, will take values that are

less than or equal to x. It is a continuous non-decreasing function (YATES; GOODMAN,

2014). The properties of the CDF are

1. FX(−∞) = 0

2. FX(∞) = 1

3. Pr[x1 < X ≤ x2] = FX(x2) − FX(x1)

1.2.3 Probability Density Function

As stated in (YATES; GOODMAN, 2014) the slope of the CDF at any point x

indicates the probability that X is near x. The slope of the CDF is what we refer to as

probability density function (PDF). The PDF of a RV X is given by

fX(x) =
dFX(x)

dx
. (1.2)

The properties of the PDF are

1. fX(x) ≥ 0 for all x

2. FX(x) =
∫ x

−∞

fX(u) du

3.
∫

∞

−∞

fX(x) dx = 1
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1.2.4 Expected Value

The expected value of a RV X, also called the first moment and denoted by

E[X] or µX , is the average value of the outcomes in a great number of experimental trials

which in the continuous case is define as the following integral (YATES; GOODMAN,

2014)

E[X] =
∫

∞

−∞

xfX(x)dx. (1.3)

The properties of the expected value are

1. E[X − µX ] = 0

2. E[aX − b] = aE[X] + b

where a and b are constants.

1.2.5 Variance and Standard Deviation

Both variance V[·] and standard deviation σ are measures of dispersion. The

variance describes the difference between a RV X and its expected value and its given by

(YATES; GOODMAN, 2014)

V[X] = E[(X − µX)2]. (1.4)

The standard deviation of X is the squared root of the variance and is denoted by

σX =
√

V[X]. (1.5)
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2 Detection Fundamentals

In this chapter we revisit essential notion that will be used throughout this

dissertation work.

2.1 Detection Theory

The simplest decision problem one could have is to determine whether a signal

is present or not, which is the case in radar systems. In radar we aim for determining the

presence or absence of a target. To do so, we transmit an EM pulse which if reflected

by the object, will indicate the presence of a target. Thus, the received waveform will

consist of the reflected pulse plus thermal noise present at the receiver’s circuits, conversely

only noise will be present (RICHARDS et al., 2010). An example of this is presented in

Figure 2.1 where the problem is the detection of an aircraft. This could be associated

with a binary hypothesis testing problem since we wish to decide between two possible

scenarios (KAY, 1998).

Detection and
Measurement 

Results

T / RTransmitter

Transmit Signal

Receiver
Protector

Switch

Local
Oscillator

Detector A/D Signal
Processor

Low Noise
Amplifier

IF
Amplifier

Mixer/Preamplifier

Receiver

Receiver
Signal

Target

Figure 2.1 – Major elements of a radar’s system.

To better illustrate the detection problem we exemplify the detection of a

DC level of amplitude A = 1 embedded in white Gaussian noise (WGN) w[n] using s

single sample as in (KAY, 1998). We wish to decide between two hypothesis: noise only

x[0] = w[0] and signal embedded in noise x[0] = 1 + w[0]. Since the noise is assumed

zero mean, for noise only E[x[0]] = 0 and for a signal embedded in noise E[x[0]] = 1, it is
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reasonable to presume that a signal is present if

x[0] >
1

2
(2.1)

or, that only noise is present if

x[0] <
1

2
. (2.2)

It is evident that although we can not always make the correct decision it is important

that most of the time we do. Hence, we wish to increase the signal-to-noise ratio (SNR),

namely, increase “distance” between the PDFs associated with each hypothesis. This will

lead to less incorrect decisions being made improving the detector’s performance (KAY,

1998). A formal modeling for the previous problem will be choosing between H0 which

refers to the noise only hypothesis and H1 which corresponds to the signal plus noise

hypothesis, symbolically

H0 : x[0] = w[0]

H1 : x[0] = 1 + w[0].
(2.3)

In practice detecting a signal is more complex than the previous presented scenario since,

generally, the signals we are interested in detecting are weak or have a small SNR. To

overcome this we use multiple data samples in which to base our decision so that we depend

on data record length (KAY, 1998). The previous DC problem will know be expressed as

H0 : x[n] = w[n] n = 0, 1, ..., N − 1

H1 : x[n] = A + w[n] n = 0, 1, ..., N − 1,
(2.4)

where w[n] is WGN with variance σ2. As in (2.1), in which we used a single sample, we

wish to define a rule for decision making. Therefore, it seems reasonable to first average

the samples to then compare the obtained value (M) with a threshold τ . Here (2.1) is a

special case with N = 1 and τ = 1/2. Hence, we will accept H1 as true if

M =
1

N

N−1
∑

n=0

x[n] > τ. (2.5)

To summarize the above, detection decisions are based on comparing reflected signals to a

threshold to then choose between two hypothesis. Measurements surpassing the threshold

are declare to contain echoes from targets embedded in interference and are related with

target-plus-interference hypothesis (H1). Conversely, measurements bellow the threshold

are declare to contain only energy of interfering sources and are related with the null

hypothesis (H0).

2.1.1 Neyman-Pearson Theorem

As mentioned, every radar measurement is examined for the presence of a

target and therefore one of two hypothesis can be presumed true:
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1. Measurement that contains interference only, H0.

2. Measurement containing echoes from a target embedded in interference, H1.

Therefore, we need a criterion that aids us choose the optimal hypothesis. In radar the

Neyman-Pearson (NP) theorem is the most commonly used approach for decision making.

As in (KAY, 1998), with the following example we will address this approach for signal

detection.

Assume we have an experiment in which we observe the realization of a RV

with a Gaussian PDF, denoted by N (µ, σ2), where the mean parameter is either µ = 0

or µ = 1 and σ2 = 1. For simplicity we are going to determine the value of µ based on

a single observation x[0]. Each possible value of µ can be thought as a hypothesis and

therefore we have the following binary hypothesis test

H0 : µ = 0

H1 : µ = 1,
(2.6)

where H0 is referred to as the null hypothesis and H1 as the alternative hypothesis. The

PDFs associated with each hypothesis are shown in Figure 2.2, and as depicted the

difference in means cause the PDF associated with H1 to be shifted to the right.

As mentioned in Section 2.1 a reasonable approach will be to decide H1 if

x[0] > 1/2 because the area under the curve to the right of the dotted black line placed

at 1/2 is greater for H1 than for H0 and therefore is more likely for H1 to be true. The

detector will then compare the data with 1/2 to which we refer as threshold. It is important

to note that with this scenario the following errors may arise

• Type I error: deciding for H1 when H0 is true.

• Type II error: deciding for H0 when H1 is true.

Figure 2.3 depicts these errors where the notation P (Hi|Hj) indicates the probability

of deciding Hi when in fact Hj is true. These errors are unavoidable and as shown in

Figure 2.4 we can only reduce one error at the expense of increasing the other by changing

the threshold value, therefore, it is not possible to reduce both error probabilities at the

same time.

In order to design an optimal detector it is a common approach to fix one

error probability while attempting to minimize the other. Typically, we restrict P (H1|H0),

which is referred to as probability of false alarm (PFA), to a fixed small value α (e.g. 10−4,

10−5, 10−6). Now we seek to minimize the other error P (H0|H1) or equivalently maximize

1 − P (H0|H1) which is the same as P (H1|H1) and in signal detection is called probability

of detection (PD). This approach is known as the NP criterion for signal detection.
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p(x[0] | H0)

p(x[0] | H1)
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Figure 2.2 – PDFs associated with H0 and H1.
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Figure 2.3 – Possible errors in hypothesis testing with their associated probabilities.

2.2 Radar Cross Section

Radar cross section (RCS) refers to the area θ of a target that reflects back

isotropically and would have cause the same power return as the original target. Note

that θ does not refer to a physical cross-section area of the target but to an equivalent

area used to relate incident (at the target) and reflected (at the receiver) power density.

It is intended to characterize the target and it is a function of several of its attributes

(RICHARDS et al., 2010; RICHARDS, 2014; LEVANON, 1988), specifically

• Targets’ geometry and material
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Figure 2.4 – Trading error by varying the threshold.

• Transmitter and receiver location relative to target

• Frequency of wavelength

• Transmitter and receiver polarization

2.3 Fluctuating Targets

The RCS of real targets can not be adequately modeled by a constant, generally,

it is a complex function of frequency, polarization and aspect angle. Since the received

power at the radar is proportional to the target’s RCS, fluctuations in RCS lead to received

target power fluctuations.

A fluctuating targets’ RCS varies severely with respect to aspect angle or

frequency. This behaviour is observed even in lessen complex targets leading to performance

analysis computations that are highly dependent on radar-target aspect angle and SNR.

Since it is difficult to know the RCS accurately enough the calculations become complex

and of limited utility. Thus, it is more useful to develop simpler models of target RCS

which leads to the use of RVs with a specified PDF to describe the composite RCS of the

scatterers.
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3 Radar Signal Modeling

The fundamental problem in radar systems relies in determining whether the

signal measured at the radar’s receiver represents echo from a target or noise only. It

is important to note that the noise is always present at the receiver and therefore the

received target signals is embedded in noise. The unwanted noise can occur as a result of

internal and external electronic noise, reflected EM waves from other objects called clutter

(e.g. surfaces on the ground or in the atmosphere), sources of electromagnetic interference

(EMI) or intentional jamming (RICHARDS et al., 2010).

The detection performance of a radar system depends on our knowledge of

signal and noise characteristics in terms of their PDFs (KAY, 1998). Therefore, it is

important that we have exact or at least accurate knowledge of the PDFs so the false

alarm rate would decrease. Thus, we need models that better describe the target, noise

and clutter.

Depending on the source the interference can be classified as noise or clutter,

both presenting a randomly varying voltage at the receiver’s output. The target also

presents a random varying voltage due to the multiple scatterers. Because of its different

origin nature, noise, clutter and target are modeled by different PDFs. The stochastic

nature of both the target-plus-clutter and clutter signals require the detection process of

a radar to be specified in terms of PD and PFA. The likelihood of detecting a target is

associated with PD, whereas PFA is understood as the fraction of detection test in which

a false alarm occurs (RICHARDS et al., 2010).

3.1 Noise and Clutter Modeling

As mentioned noise and clutter are modeled differently primarily because each

one exhibits specific properties. Table 3.1 summarizes the main differences between noise

and clutter returns.

As seen, the major differences that clutter presents with respect to noise are:

its power spectrum is not white (due to high correlation); and, since the clutter is an echo

from the transmitted signal, its received power is affected by environmental and radar

parameters (antenna gain, transmitted power, range from radar to terrain) making its

characterization far more complex. Conversely, noise is affected by the radar’s receiver

noise figure and bandwidth (RICHARDS, 2014).

In radars, in order to analytically determine the PFA for a given noise its

PDF ought to be known requiring knowledge of the noise statistics. For instance noise is
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said to follow Rayleigh (for a linear detector) or exponential distributions (for a square

law detector) while clutter is commonly modeled by Weibull (ground and sea clutter),

log-normal (sea and weather clutter) and K distributions (sea clutter) (RICHARDS et al.,

2010; SEKINE; MAO; MAO, 1990).

Table 3.1 – Clutter versus Noise (RICHARDS et al., 2010).

Noise Signal Clutter Signal
Amplitude is independent of the
transmitted radar signal

Amplitude is proportional to the
transmitted signal

Wide bandwidth Narrow bandwidth
Statistically independent between pulses May be highly correlated between pulses
Independent of transmitted frequency Varies with changing frequency

Independent of environmental parameters
Can vary with changing
environmental conditions

3.2 Target Modeling

Among the many models available for target modeling we have a set of four

statistical models, commonly refer to as Swerling models, that aids us describe different

fluctuating conditions of targets each one having an specific fluctuation rate, see Table 3.2.

A non-fluctuating target is termed as a Swerling 0 (SW0) (RICHARDS et al., 2010).

Table 3.2 – Swerling Models (RICHARDS et al., 2010).

Case PDF Fluctiation Period
SW1 Rayleigh Dwell-to-Dwell
SW2 Rayleigh Pulse-to-Pulse
SW3 Chi-square, degree 4 Dwell-to-Dwell
SW4 Chi-square, degree 4 Pulse-to-Pulse

3.3 Related Distributions

Here we briefly describe some of the distributions used for noise, clutter and

target modeling as well as some of their applications.

3.3.1 Exponential Distribution

The exponential distribution is a single parameter distribution, commonly

known as rate parameter (η). It describes the time between events in a Poisson process.
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Its PDF and CDF are given by (FORBES et al., 2011):

fX(x) = η exp(−η x) x ≥ 0 (3.1)

FX(x) = 1 − exp(−η x) x ≥ 0. (3.2)

Among the multiple applications of the exponential distribution we have: time to decay of

a radioactive atom, time to failure of components with constant failure rates and theory

of waiting lines (FORBES et al., 2011). Figure 3.1 shows (a) the PDF and (b) CDF of the

exponential distribution for multiple values of the rate parameter η.
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Figure 3.1 – The (a) PDF and (b) CDF of the exponential distribution for various values
of η.

3.3.2 Rayleigh Distribution

The Rayleigh distribution is a one parameter distribution known as the scale

parameter (ρ). If X follows a Rayleigh distribution, then X2 has an exponential distribution
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with rate parameter 2ρ2. Its PDF and CDF are given by (FORBES et al., 2011):

fX(x) =
x

ρ2
exp

(

− x2

2ρ2

)

x ≥ 0 (3.3)

FX(x) = 1 − exp

(

− x2

2ρ2

)

x ≥ 0. (3.4)

One of its applications is physical oceanography since wave heights are usually modeled by

a Rayleigh distribution (MACKAY, 2012). It is also used in the analysis of wind velocity

(da Rosa; ORDóñEZ, 2022). Figure 3.2 shows (a) the PDF and (b) CDF of the Rayleigh

distribution for multiple values of the scale parameter ρ.
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Figure 3.2 – The (a) PDF and (b) CDF of the Rayleigh distribution for multiple values of
ρ.
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3.3.3 Chi-square Distribution

It is the distribution of the sum of the squares of ν standard normal variates. It is

commonly used in goodness-of-fit tests between observed data and theoretical distributions.

Its PDF and CDF are given by (FORBES et al., 2011):

fX(x) =
x

ν

2
−1 exp

(

−x
2

)

2ν/2 Γ
(

ν
2

) x ≥ 0 (3.5)

FX(x) =
γ
(

ν
2
, x

2

)

Γ
(

ν
2

) x ≥ 0, (3.6)

where Γ(·) denotes the gamma function (ABRAMOWITZ; STEGUN, 1972, eq. (6.1.1)) and

γ(·, ·) the lower incomplete gamma function (OLVER et al., 2010, eq. (8.2.1)). Figure 3.3

shows (a) the PDF and (b) CDF of the Chi-squared distribution for multiple values of ν.

3.3.4 Weibull Distribution

It is a two parameter distribution with k and λ corresponding to shape and scale

parameters, respectively. It is related to several distributions including the exponential

(k = 1) and Rayleigh (k = 2 and λ =
√

2ρ) distributions. Its PDF and CDF are given by

(FORBES et al., 2011):

fX(x) =
k

x

(

x

λ

)k

exp

[

−
(

x

λ

)k
]

x ≥ 0 (3.7)

FX(x) = 1 − exp

[

−
(

x

λ

)k
]

x ≥ 0. (3.8)

Among the many applications of the Weibull distribution (failure analysis (MARTZ,

2003), extreme value theory (MCNELIS, 2005), weather forecasting, etc.) we highlight

its application in radar systems since many forms of clutter (sea, ground) can be better

approximated by the Weibull distribution (SEKINE; MAO; MAO, 1990). Figure 3.4 shows

the (a) PDF and (b) CDF of the Weibull distribution with scale parameter λ = 2 and

multiple values of the shape parameter k.

3.3.5 Log-normal Distribution

It is a continuous probability distribution of a RV whose logarithm is normally

distributed, i.e. if X is log-normally distributed then Y = ln(X) follows a normal dis-

tribution (MAYMON, 2018). Therefore a RV that follows a log-normal distribution is

constrained by zero resulting results in an asymmetrical and positively skewed distribution.
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Figure 3.3 – The (a) PDF and (b) CDF of the Chi-squared distribution for multiple values
of ν.

Its PDF and CDF are given by (FORBES et al., 2011):

fX(x) =
1

x σ
√

2π
exp

[

−(ln(x) − µ)2

2σ2

]

x ≥ 0 (3.9)

FX(x) =
1

2

[

1 + erf

(

ln(x) − µ√
2σ

)]

x ≥ 0, (3.10)

where erf (·) denotes the error function (OLVER et al., 2010, eq. (7.2.1)), µ and σ corre-

spond to the expected value and standard deviation respectively, of the variable’s natural

logarithm. The log-normal distribution is used to model: weight of adults, concentration of

mineral deposits, distribution of wealth, among others (FORBES et al., 2011). Figure 3.5

shows the (a) PDF and (b) CDF of the log-normal distribution for σ = 0.4 and multiple

values of µ.
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Figure 3.4 – The (a) PDF and (b) CDF of the Weibull distribution with λ = 2 for multiple
values of k.
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Figure 3.5 – The (a) PDF and (b) CDF of the log-normal distribution with σ = 0.4 and
for multiple values of µ.
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4 Constant False Alarm Rate

As described in Section 2.1.1 the NP criterion maximizes the PD given a desired

PFA. The NP detector is used assuming that the interference is independent and identically

distributed (i.i.d.) and that the parameters of the distribution are known (which generally

is not the case). In realistic scenarios this criterion leads to increasing false alarm rates

degrading the detector’s performance. Thus, it is imperative to employ a detector that uses

the measured data to estimate the distribution parameters and makes use of such estimate

to compute the detector’s threshold. A property of such detector will be the ability to

maintain a fixed PFA in the presence of heterogeneous interference. This detector is know

as a constant false alarm rate detector and its generic architecture is shown in Figure 4.1.
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U 
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G G LEADINGGGLAGGINGSquare Law  
Rectifier [.]2

CFAR Window

1 - - N/22 N/2+1 - - N

X
CFAR Constant

Data WindowInput Signal

Figure 4.1 – Generic architecture of a CFAR detector.

As depicted the samples at the rectifier’s output are stored as a one dimensional

vector called data window. The CFAR window resides within the data window and is

composed of leading and lagging windows (often called reference windows), each containing

the same number of cells (N/2). The reference window is defined outside the guard cell

region (denoted by “G”). The CFAR windows moves across the data windows one cell at

a time, therefore all available data is tested for the presence of a target. The current cell

under test (CUT) is compared against a threshold which is determined by the interference

statistic. The algorithm estimates the interference statistic from the samples residing in

reference window only since the guard cells may contain returns associated with the target
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in the CUT. As seen in Figure 4.1, some CFAR algorithms process the leading and lagging

windows separately computing individual statistics (f̂lag and f̂lead) to then combine them

resulting in a composite statistic y (RICHARDS et al., 2010).

Because of the uncertainties in the CFAR statistic the threshold needed for a

fixed PFA is greater than the one associated with the NP detector. This is equivalent to a

higher SNR which is interpreted as “loss”. Thus, the ratio between the SNR required by

the CFAR detector to that of the NP detector is termed as CFAR loss (RICHARDS et al.,

2010).

In heterogeneous environments, both changes in the background interference

and multiple targets degrade the CFAR performance. This conditions occur respectively

when: target returns that are present in the reference windows bias the threshold estimate

making the target in the CUT undetectable (target masking); and, localized sharp changes

in the interference power (clutter boundaries) that increase false alarms and masks targets

that are located near the boundary. In the following sections we address some of the most

popular CFAR algorithms that are design to work in either homogeneous or heterogeneous

environments (RICHARDS et al., 2010).

4.1 Cell Averaging CFAR

The cell averaging CFAR (CA-CFAR), proposed by (FINN, 1968), computes

the threshold (T ) by estimating the average interference power in the reference windows.

It is design to operate in homogeneous environments meaning that it is assumed that the

interference in the CUT and reference windows is i.i.d.; and, that leading and lagging

windows do not contain returns from targets when one is present at the CUT. It is

important to mention that CFAR detectors achieve a constant false alarm rate without

a priori knowledge of the interference power. This is know as the CFAR property and is

derived from the PFA being independent of the interference power. Also, references to the

PD and PFA in the performance of a CFAR detector denote average probability which is

obtained by integrating over all possible values of the interference statistic (RICHARDS

et al., 2010).

4.2 Greatest-of CA-CFAR

In order to reduce clutter edge false alarms the greatest-of CA-CFAR (GOCA-

CFAR) was introduce by (HANSEN; SAWYERS, 1980). The algorithm computes the

average interference power in the reference windows separately to then select the larger of

the two sample mean as the CFAR statistic. The GOCA-CFAR bias the threshold above

the clutter edge and therefore reduces the occurrence of false alarms. It exhibits degraded
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performance in the presence of interfering targets (RICHARDS et al., 2010).

4.3 Smallest-of CA-CFAR

The smallest-of CA-CFAR (SOCA-CFAR) was proposed by (TRUNK, 1978)

to address mutual target masking. It estimates the interference in leading and lagging

windows separately to then select the smaller of the two estimates as the CFAR statistic.

It suppress interfering targets that are present in either lagging or leading windows but

not both (RICHARDS et al., 2010).

4.4 Censored CFAR

The censored CFAR (CS-CFAR) was introduced by (RICKARD; DILLARD,

1977a; RITCEY, 1986a). It rank orders the measured samples in the leading and lagging

windows to then discard the largest NC samples. The CFAR statistic is then estimated by

averaging the remaining samples in the reference window. The NC samples are discarded

because they are believe to contain returns from interfering targets. Thus, the CS-CFAR

is capable of removing NC interfering targets that could bias the detector. It is important

to mention that the user is required to determine, a priori, the maximum number of

interference targets present at the reference window (RICHARDS et al., 2010).

4.5 Order Statistics CFAR

The order statistics CFAR (OS-CFAR) is design to suppress target masking

(ROHLING, 1983; ROHLING, 1985). To do so, the algorithm rank orders the N samples

in the reference window forming a new sequence. The k-th element of the ordered sequence

(known as the k-th order statistic) is selected as the CFAR statistic. For instance, the first

order statistic is the minimum, the N -th order statistic is the maximum and the N/2 -th

order statistic is the mean of the data. Thus, the interference is estimated based on one

data sample. Also, the algorithm is capable of rejecting N − k interfering targets and

suppressing clutter edge false alarms for k > N/2 (RICHARDS et al., 2010; RICHARDS,

2014).

It can therefore be deduced that the selection of a CFAR detector depends on

environmental characteristics in which the radar is to operate. Table 4.1 shows some of

the CFAR algorithms and the environments each one is design to operate in to further

summarize the previous sections.
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Table 4.1 – CFAR algorithms and the environment each one is design to operate in
(RICHARDS et al., 2010).

CFAR Homogeneous Heterogeneous
Interfering

Targets
Clutter

Boundaries
CA X
GOCA X X
SOCA X X
CS X X
OS X X X
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5 SOCA-CFAR Detector Performance in

Weibull-Distributed Clutter

This chapter is based on the paper bellow:

• M. C. Luna Alvarado, F. D. A. García, L. P. J. Jiménez, G. Fraidenraich and Y.

Iano,“Performance Evaluation of SOCA-CFAR Detectors in Weibull-Distributed

Clutter Environments,” in IEEE Geoscience and Remote Sensing Letters, vol. 19,

pp. 1-5, 2022, Art no. 4022505, doi: 10.1109/LGRS.2022.3152936.
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5.1 Preamble

As mentioned, in modern radar systems it is desirable to maintain a CFAR while

maximizing the PD. To achieve this the threshold adjust itself automatically based on the

local interference to maintain a fixed PFA. The first detector to address this approach was

the CA-CFAR but because of its limitations multiple CFAR detectors have been introduced

since. Such detectors deal with target masking and clutter boundaries at the cost of

increasing computation load, hardware complexity and CFAR loss (HANSEN; SAWYERS,

1980; TRUNK, 1978; ROHLING, 1983; ROHLING, 1985; KHALIGHI; BASTANI, 2000;

GANDHI; KASSAM, 1988; RICKARD; DILLARD, 1977b; RITCEY, 1986b). Among

them we highlight the SOCA-CFAR detector which circumvents one of the downsides of

the CA-CFAR that significantly degrades its performance.

Many authors have analyze the performance of SOCA-CFAR detectors by

deriving their performance metrics, PD and PFA, under the assumption that the inter-

ference background follows exponential, chi-squared, Pearson V and Pareto distributions

(GANDHI; KASSAM, 1988; El Mashade; Al Hussaini, 1994; MEZIANI; SOLTANI, 2006;

CHALABI et al., 2017). Even though data collected by high-frequency surface-wave radars

(HFSWR) systems have proved that reflections from the sea, low grazing angle terrain

and high resolution imagery are better modeled by Weibull distribution (WANG et al.,

2021a; SONG; XIUWEN, 2020; WANG et al., 2021b); no SOCA-CFAR detectors under

such clutter environments were carried out so far. Thus, the performance analysis of

SOCA-CFAR detectors under Weibull distributed clutter remains unknown.

It is well know that dealing with Weibull distributed clutter represents a

challenging task from the analytical viewpoint as well as in the signal processing treatment

(BUCCIARELLI, 1985; García et al., 2020). For instance, in (ZHANG et al., 2019) the

authors propose a new modified CFAR that operates in Weibull distributed interference

which performance analysis for homogeneous and heterogeneous clutter was made solely

via Monte-Carlo simulations. When working with CFAR detectors in Weibull clutter we

encounter the lack of exact, manageable, and close-form solutions for the PDF and CDF

of: i) the output of a square-law detector considering an exponential fluctuating target

embedded in Weibull distributed clutter within the CUT, and ii) the sum of i.i.d. Weibull

RVs. Despite solutions for the signal-plus-clutter statistics were derived in (GARCíA et

al., 2019; García et al., 2021), they are to intricate to work with. Thus, more tractable

and simpler solutions of this sum would be desired. Signal-plus-clutter statistics can be

approximated in a closed-form by using well-known parameter estimation methods such

as: method of moments (MM) (FILHO; YACOUB, 2006), generalized method of moments

(GMM) (CHENG; BEAULIEU, 2002), maximum-likelihood estimator (MLE) (CHENG;

BEAULIEU, 2001), truncated-maximum-likelihood estimator (TMLE) (AI et al., 2020),

among others (BOUANANI; COSTA, 2018; COSTA; YACOUB; FILHO, 2008).
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In this work capitalizing on (GARCíA et al., 2021) (which introduced novel

exact expressions for the sum of i.i.d Weibull RVs) and employing the MM with the versatile

α − µ distribution (YACOUB, 2007) (to provide tractable and closed-form expressions for

the signal-plus-clutter statistics), we will be able to evaluate the performance of SOCA-

CFAR detectors in an exact and generalized manner. The analysis presented in the following

sections made use of arbitrary values for the shape parameter of the Weibull interference

samples contained within the CFAR window. this is in contrast to the state-of-the-art

solutions that set the shape parameter value equal to one to simplify maths (GARCíA et

al., 2019; ABBADI et al., 2018). The contributions of our work are summarized as follows:

1. We obtain exact expressions for the PDF and CDF for the minimum of two sums of

i.i.d. Weibull RVs.

2. We provide a highly accurate closed-form approximation for the CUT’s statistics of

a square-law detector. To do so, we approximate the sum PDF of an exponential

target and a Weibull clutter by an α–µ distribution.

3. We derive an exact expression for the PFA and an accurate closed-form approximation

for the PD of a SOCA-CFAR detector operating in Weibull clutter, allowing arbitrary

values for the shape parameter of the Weibull interference.

The remainder of this chapter is organized as follows. Section 5.2 revises the sum of i.i.d.

Weibull RVs. Section 5.3 derives essential sum statistics that will be used throughout

this letter. Section 5.5 analyzes the performance of a SOCA-CFAR detector operating

over Weibull-distributed clutter. Section 6 examines significant numerical results. Finally,

Section 7 discuss the main conclusions of the work.

In this fashion, Pr[·] denotes probability; f(·)(·), PDF; F(·)(·), CDF; Γ(·), the

gamma function (ABRAMOWITZ; STEGUN, 1972, eq. (6.1.1)); Γ (·, ·), the upper incom-

plete gamma function (OLVER et al., 2010, eq. (8.2.2)); E [·], expectation; V [·], variance;

and |·|, absolute value.

5.2 Preliminaries

Here we revisit the sum of N i.i.d. Weibull RVs proposed by (GARCíA et al.,

2021) which aids us derive the essential statistics presented in Section 5.3.
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5.2.1 Sum of i.i.d. Weibull variates

Let Xn be a Weibull RV with PDF and CDF given, respectively, by

fXn
(xn) =

k

xn

(

xn

λ

)k

exp

[

−
(

xn

λ

)k
]

xn ≥ 0 (5.1)

FXn
(xn) =1 − exp

[

−
(

xn

λ

)k
]

, xn ≥ 0 (5.2)

where k > 0 and λ > 0 are shape and scale parameters, respectively.

Now, let Z be the sum of N i.i.d. Weibull RVs Xn, i.e.,

Z =
N
∑

n=1

Xn. (5.3)

The PDF and CDF for the sum in (5.3) are given, respectively, by (GARCíA et al., 2021)

fZ(z) =z−1kN
(

z

λ

)kN ∞
∑

i=0

δiz
ik

Γ(ik + kN)
(5.4)

FZ(z) =kNzkN
(

1

λ

)kN ∞
∑

i=0

δiz
ik

Γ(ik + Nk + 1)
, (5.5)

where δi are coefficients that can be obtained recursively by

δ0 =Γ(k)N (5.6a)

δi =
1

i Γ(k)

i
∑

l=1

δi−l (lN + l − i) Γ(lk + k)
(

−
(

1
λ

)k
)l

l!
. (5.6b)

Figures 5.1 and 5.2 show the PDF and CDF regarding the sum of N i.i.d. Weibull RVs

address in equations (5.4) and (5.5).

5.3 Some Important Statistics

In this section, capitalizing on (GARCíA et al., 2021), we obtain exact formu-

lations for the PDF and CDF of the minimum of two sums of N i.i.d. Weibull variates.

Also, we approximate the sum PDF of an exponential and a Weibull RV by the α − µ

distribution.

5.3.1 Minimum of Two Sums of i.i.d. Weibull variates

Proposition 1. Let Y be the minimum of two sums of N i.i.d. Weibull RVs, i.e.,

Y = min (Z1, Z2), (5.7)
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Figure 5.1 – PDF of Z for multiple values of N .
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Figure 5.2 – CDF of Z for multiple values of N .

in which

Z1 =
N
∑

n=1

An, Z2 =
N
∑

n=1

Bn, (5.8)

where An and Bn are i.i.d. Weibull RVs with PDF given by (5.1). Then, the PDF and

CDF of Y are given, respectively, by

fY (y) =
2kN

y

(

y

λ

)kN ∞
∑

i=0

yik

[

δi

Γ(ik + Nk)
− di kN

(

y

λ

)kN
]

(5.9)

FY (y) =
2kNykN

λkN

∞
∑

i=0

yik







δi

Γ(ik + kN + 1)
−

di kN
(

y
λ

)kN

k(i + 2N)





 , (5.10)
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where the coefficients di can be obtained recursively from

di =
i
∑

m=0

δm

Γ(km + kN)

δi−m

Γ(1 + k(i − m + N))
, i ≥ 0. (5.11)

Proof. As well known, the PDF and CDF for minimum of Z1 and Z2 can be written,

respectively, as (PAPOULIS; PILLAI, 2002)

fY (y) = fZ1(y) (1 − FZ2(y)) + fZ2(y) (1 − FZ1(y)) (5.12)

FY (y) = FZ1(y) + FZ2(y) − FZ1(y)FZ2(y). (5.13)

Since fZ1(y) = fZ2(y) and FZ1(y) = FZ2(y), (5.12) and (5.13) can be written as

fY (y) =2fZ1(y) − 2fZ1(y)FZ1(y) (5.14)

FY (y) =2FZ1(y) − FZ1(y)2. (5.15)

Substituting (5.4) and (5.5) into (5.14) we obtain

fY (y) =
2kN

y

(

y

λ

)kN
[

∞
∑

i=0

δi yik

Γ(ik + Nk)

−kN
(

y

λ

)kN
(

∞
∑

i=0

δiy
ik

Γ(ik + Nk)

)(

∞
∑

i=0

δiy
ik

Γ(ik + Nk + 1)

)]

. (5.16)

Now, employing Cauchy’s product of two infinite series we get

fY (y) =
2kN

y

(

y

λ

)kN
[

∞
∑

i=0

δi yik

Γ(ik + Nk)
− kN

(

y

λ

)kN ∞
∑

i=0

di yik

]

, (5.17)

and after further simplifications we yield in (5.9). Regarding FY (y), since we have fY (y)

we simply integrate (5.9) from 0 to y to obtain (5.10). �

5.3.2 Clutter-Plus-Target Statistics

Proposition 2. Let P and W be an exponential and a Weibull RV, respectively, with

PDFs given by

fP (p) = η̂ exp(−η̂ p) p ≥ 0 (5.18)

fW (w) =
k̂

w

(

w

λ̂

)k̂

exp

[

−
(

w

λ̂

)k̂
]

, w ≥ 0 (5.19)

where η̂ > 0 represents the rate parameter of the exponential distribution, whereas k̂ > 0

and λ̂ > 0 correspond to the shape and scale parameters of the Weibull distribution. Then,

the sum PDF and CDF of Φ = P + W can be accurately approximated by an α − µ

distribution (YACOUB, 2007) with PDF and CDF given, respectively, by

fΦ̂(φ̂) =
α µµφ̂αµ−1

ΩµΓ(µ)
exp



−µ φ̂α

Ω



 (5.20)

FΦ̂(φ̂) = 1 −
Γ
(

µ, µ φ̂α

Ω

)

Γ(µ)
, (5.21)
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where α > 0 is the shape parameter, Ω = E[Φ̂α] is the scale parameter, and µ =

E
2
[

Φ̂α
]

/V
[

Φ̂α
]

> 0 is the inverse of the normalized variance of Φ̂α.

Proof. To render a good approximation, we made use of the α − µ distribution as it is a

versatile and general statistical model that comprises the Rayleigh, Exponential, one-sided

Gaussian, and Weibull distributions.

To calculate the PDF parameters of the α − µ distribution, we employed a

moment-based approach. Specifically, the parameters µ, α, and Ω can be obtained by

solving the following set of equations

Γ2
(

µ + 1
α

)

Γ(µ)Γ
(

µ + 2
α

)

− Γ2
(

µ + 1
α

) =
E

2[Φ̂]

E

[

Φ̂2
]

− E2[Φ̂]
(5.22)

Γ2
(

µ + 2
α

)

Γ(µ)Γ
(

µ + 4
α

)

− Γ2
(

µ + 2
α

) =
E

2
[

Φ̂2
]

E

[

Φ̂4
]

− E2
[

Φ̂2
] (5.23)

Ω =





µ1/α Γ(µ)E[Φ̂]

Γ
(

µ + 1
α

)





α

, (5.24)

where the moments of Φ̂ can be computed through multinomial expansion as

E

[

Φ̂n
]

=
n
∑

m=0

(

n

m

)

E

[

P n−m
]

E [W m] , (5.25)

in which n is a positive integer. On the other hand, the moments for P and W can be

computed, respectively, by

E [P n] =
n!

η̂n
(5.26)

E [W n] =λ̂n Γ
(

1 +
n

k̂

)

. (5.27)

This completes the proof. �

5.4 The α − µ Distribution

The α−µ is a general fading distribution. It is very versatile and mathematically

tractable. It includes the Gamma, Weibull, Nakagami-m, exponential, one-sided Gaussian

and Rayleigh distributions. The Weibull distribution can be obtained by setting µ = 1.

Likewise, by setting µ = 1 and α = 2 and α = 1 the Rayleigh and exponential distributions

can be obtained, respectively. Also, by setting α = 2 and µ = 1/2 the one-sided Gaussian

distribution is obtained (YACOUB, 2007). Figures 5.3 and 5.3 show the PDF and CDF of

the α − µ distribution alongside the distributions that it includes.

The way in which the parameters of the α − µ distribution are related to the

distributions it includes is as follows: Weibull distribution k = α and λ = Ω1/α, exponential
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α-μ Dist., Eq. (2.20)
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Figure 5.3 – PDF of α − µ distribution for multiple values of α, µ and with Ω =
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µ/4.
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Figure 5.4 – CDF of α − µ distribution for multiple values of α, µ and with Ω =
√

µ/4.

distribution η = 1/Ω, Rayleigh distribution ρ =
√

Ω/2 and one-sided Gaussian distribution

σ =
√

Ω.

5.5 SOCA-CFAR Detection

In this section, we derive the PD and PFA of a SOCA-CFAR detector operating

over Weibull distributed clutter.
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5.5.1 SOCA-CFAR Performance Analysis

Let W be the sample power within the CUT containing only clutter returns

with PDF given by (5.19). Thus, the PFA of a SOCA-CFAR detector can be calculated

by (RICHARDS et al., 2010)

PFA ,

∫

∞

0
Pr

[

W >
β y

N

∣

∣

∣

∣

∣

Y = y

]

fY (y) dy

=
∫

∞

0

∫

∞

βy/N
fW (w)fY (y) dw dy, (5.28)

where β is the scaling factor selected to maintain a required probability of false alarm,

and Y is the minimum of two sum of N i.i.d. Weibull variates.

Replacing (5.9) and (5.19) into (5.28), solving the inner integral, and after

lengthy algebraic manipulations, the integral in (5.28) reduces to

PFA =
2 kN

k̂ λ2kN





λ̂N

β





kN
∞
∑

i=0















λ̂N

β





ik 



Γ
(

k(i + N)/k̂
)

Γ(k(i + N))

× δi λkN − di kN





λ̂N

β





kN

Γ

(

k(i + 2N)

k̂

)

















. (5.29)

It can be shown that (5.29) absolutely converges if k̂ = k which is address in Appendix A.

Thus, considering k̂ = k and assuming λ̂ = λ equation (5.29) reduces to

PFA =
2 kN

k

(

N

β

)kN
∞
∑

i=0







(

λN

β

)ik [
δi Γ(i + N)

Γ(k(i + N))

− di kN

(

N

β

)kN

Γ(i + 2N)











. (5.30)

Let Φ be the sample power within the CUT containing both clutter and target

returns with PDF given by (5.20). Thus, the PD of a SOCA-CFAR detector can be

calculated by (RICHARDS et al., 2010)

PD ,

∫

∞

0
Pr

[

Φ̂ >
β y

N

∣

∣

∣

∣

∣

Y = y

]

fY (y) dy

=
∫

∞

0

∫

∞

βy/N
fΦ̂(φ̂)fY (y) dφ̂ dy, (5.31)

where fΦ(φ) is PDF of Φ given in (5.20).

Replacing (5.9) and (5.20) into (5.31) and after evaluating the inner integral,

we get

PD =
1

Γ(µ)

∫

∞

0
Γ

(

µ,
µ

Ω

(

yβ

N

)α)

fY (y) dy. (5.32)
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Finally, after several mathematical manipulations, (5.32) reduces to

PD =
2 kN

Γ(µ) λkN

∞
∑

i=0















δiΓ
(

ik+Nk
α

+ µ
) ((

β
N

)α µ
Ω

)

−
k(i+N)

α

Γ(1 + ik + Nk)

−
dik

NΓ
(

ik+2Nk
α

+ µ
) ((

β
N

)α µ
Ω

)

−
k(i+2N)

α

λkN k(i + 2N)















. (5.33)

The absolute convergence of (5.33) is addressed in Appendix B. Eqs. (5.30) and (5.33) are

the main contributions of this letter.
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6 Results and Discussion

In this chapter, we validate our expressions through Monte-Carlo simulations

with the number of realizations set to 106.

6.1 Software

It is important to mention that we made use of the software MATHEMATICA

(Wolfram Research, Inc., 2021) throughout this work. It aid us derived the analytical

formulations and perform simulations to validate our findings.

6.2 Monte-Carlo Simulations

Monte-Carlo simulation is a mathematical technique used to estimate the

possible outcomes of an event. Generally speaking, is a technique that uses randomly

generated numbers to solve any problem (THOMOPOULOS, 2013; KROESE; TAIMRE;

BOTEV, 2013). For the particular case of detection, we generate a RV (which can be the

result of a mathematical operation between several RVs) that follow a certain probability

distribution and compare every sample of the RV to a numerical threshold (KAY, 1998).

6.3 Numerical Results

Figs. 6.1 and 6.2 respectively show both the analytical and simulated PDF

and CDF of Y for different values of N . Note the perfect agreement between our derived

expressions and the Monte-Carlo simulations where every analytical result matches perfectly

with the simulated values.

Now to objectively evaluate whether (5.20) provides a good approximation,

a goodness-of-fit test was performed using the function DistributionFitTest[data, dist]

implemented in MATHEMATICA. The function performs a goodness-of-fit test of choice

in which the null hypothesis (H0) is associated with the statement that data was drawn

from a population with distribution dist as opposed to the alternative hypothesis (Ha)

that it was not. Within the possible results reported by the test we highlight: test statistic,

which measures the difference between a sample of data and H0 (maximum “distance”);

p-value, denoted by p, that represents the probability of obtaining a test statistic at least

as extreme as the one we actually observed; and, significance level of the test denoted by

εj which allow us to reject H0 when εj > p (BIAU; JOLLES; PORCHER, 2010).
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Figure 6.1 – PDF of Y considering k = 1.3, λ = 0.7, and different values of N .
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Figure 6.2 – CDF of Y considering k = 1.3, λ = 0.7, and different values of N .

To evaluate (5.20) as a good approximation we used the Kolmogorov-Smirnov

test and its results are shown in Table 6.1. Since the p-value is greater than every level of

significance (εj < p), we are not allowed to reject the hypothesis H0 meaning that it is

likely that (5.20) was drawn from a population that follows the PDF of Φ. Moreover, since

p is between 0.1 and 0.9 there is no reason to suspect the tested hypothesis is incorrect

(FISHER, 1992). Therefore with p = 0.717637 we retain H0 and accept it as true. Also,

Fig. 6.3 illustrates the probability plot for the CDF Φ.1 Notice that the simulated data
1 A probability plot is a graphical tool for determining whether a data set follows a hypothesized

distribution or not. The data is plotted against the theoretical distribution in such way that if the
data points lie in a straight line is reasonable to assume that the samples come from the specified
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Table 6.1 – Kolmogorov-Smirnov goodness-of-fit test for (5.20).

Detail Result
Test Statistic 0.0502
P-value 0.717637
Test conclusion for ε1 = 0.05 Do not reject
Test conclusion for ε2 = 0.01 Do not reject
Test conclusion for ε3 = 0.001 Do not reject

for the CDF of Φ, FΦ(φ), closely follows the approximated CDF of Φ, FΦ̂(φ̂) – obtained

with (5.21) –. This occurs since the majority of points lie on the reference red line or in

its proximities, thereby corroborating the accuracy of (5.21). Moreover, Figure 6.4 shows

that the PDF in (5.20) is an excellent approximation for the sum PDF of Φ, showing an

almost perfect agreement with Monte-Carlo simulations for multiple parameter settings.
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Figure 6.3 – Probability plot of (5.21) versus the simulated CDF of Φ with distribution
parameters η̂ = 0.5, k̂ = 1.3, λ̂ = 0.7 and estimated parameters α = 0.70,
µ = 3.38, and Ω = 1.87.

Fig. 6.5 shows both the analytical and simulated PD as a function of the PFA

for different values of N . Notice that as the number of random variables N increases, so

does the PD as expected. Fig. 6.6 shows the analytical and simulated PD versus PFA but

considering different values of the shape parameter k. Observe that the system performance

improves as the shape parameter of the Weibull interference increases. Moreover, notice in

both figures that the proposed approximation accurately fits the CUT’s statistics.

distribution (FERRé, 2009).
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Figure 6.4 – Approximated PDF (5.20) versus simulated PDF of Φ for multiple values of
parameters η̂, k̂, and λ̂.
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multiple values of N .
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for different values of k.
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7 Conclusions

In this work, we derived an exact expression for the PFA and an approximate

closed-form solution for the PD of a SOCA-CFAR detector operating over Weibull-

distributed clutter environments. The expressions derived herein can aid in the design

and analysis of SOCA-CFAR detectors in more realistic clutter scenarios and, more

importantly, can be easily computed using well-known mathematical packages. Numerical

results indicate that the system performance improves as N or k increases. In addition,

we obtained exact expressions for the PDF and CDF of the minimum of two sums of

i.i.d. Weibull variates which aids us derive the performance metrics of the SOCA-CFAR

processor.

Our contributions, are a novelty to the academic field and can gain further

importance if used in field applications since the developed metrics account for Weibull

distributed environments. Being this the case of ground and sea clutter, applications such

as ship detection can benefit from the formulations we have obtained. This clearly leads

to the design of SOCA-CFAR detectors who’s performance metrics would be enhanced in

more realistic clutter scenarios.
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8 Future Works

Considering the outstanding results that were derived and further validated in

this dissertation we could expand our research in the following manner:

• Derive, in an exact fashion, the PDF and CDF for the sum in Φ, which in itself would

be a new and novel result in the literature, to then obtain the exact PD formulation

for a SOCA-CFAR detector operating in i.i.d. Weibull distributed clutter.

• Derive performance metrics, namely PD and PFA, for other CFAR algorithms such

as OS-CFAR, GOCA-CFAR, CS-CFAR.

• Derive performance metrics for the aforementioned CFAR algorithms when consid-

ering a non-i.i.d Weibull distributed clutter. This represents a challenge since first

we will need to derive the sum of N non-i.i.d. Weibull RVs to then apply it to our

analysis.
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APPENDIX A – Absolute convergence of

equation (2.29)

In this section, we verify that (5.29) converges absolutely. For simplicity, let us

define the following auxiliary functions:

ζ
(i)
PFA

=
1

Γ(k(i + N))





λ̂N

β





ki

(A.1)

ξ
(i)
PFA

=λkNΓ

(

k(i + N)

k̂

)

(A.2)

ϑ
(i)
PFA

=kN


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Nλ̂

β





kN

Γ(k(i + N)) Γ

(

k(i + 2N)

k̂

)

. (A.3)

If (5.29) converges absolutely, then the sum obtained by taking the absolute values of the

summands in (5.29) must converge, i.e., (KREYSZIG, 2010)
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< ∞. (A.4)

Due to the factor Γ(lk + l)/l!, δi and di can be either increasing (for k ≥ 1) or

decreasing (for 0 < k < 1) functions.

For k ≥ 1, |δi| (i ≥ 1) can be bound as

|δi| < 2N
i
∑

l=1

|δi−l| Γ(lk + k)
(

1
λ

)kl

l!
(A.5a)
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2 δ0N
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1
λ

)k i
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Γ(i)
, (A.5b)

whether |di| (i ≥ 1) can be bounded as

|di| <
[(i − m)Γ(km + kN)]−1

m Γ(1 + k (i − m + N))
4N2

×
m
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|di| =
2i δ2

0 N2 λ−ik

Γ(i − 1)
, (A.6b)
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where (A.5a) uses the fact that 1/Γ(k) < 2 and that | − i + l + lN | ≤ iN for 1 ≤ l ≤ i,

and (A.5b) uses the last term of the summation and multiplies it by i. Likewise, (A.6a)

follows the same procedure as in (A.5a) for the sums
∑m

l=1 and
∑i−m

l=1 . Then (A.6b) uses

Γ(km + k)/Γ(km + kN) ≤ 1 and Γ(k(i − m) + k)/Γ(1 + k((i − m) + N)) ≤ 1 for 1 ≤ m ≤ i

and k ≥ 1 to later solve the sum. Also, to develop (A.5b) and (A.6b), we used the fact |δi|
and |di| are decreasing functions with respect to i.

Now, using the bounds (A.5b) and (A.6b) and after several algebraic manipu-

lations we find an upper bound for (A.4) as follows
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Therefore, since the bound for (A.4) exists and is finite, then (5.29) converges absolutely

for k ≥ 1 provided that k̂ = k.

For 0 < k < 1, |δi| (i ≥ 1) can be bounded as

|δi| < N
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and |di| (i ≥ 1) can be bounded as
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To develop (A.8a) and (A.9a), we used the fact that | − i + lN + l| ≤ iN for 1 ≤ l ≤ i,

1/Γ(k) < 1 and Γ(lk + k)/l! < 1 for 0 < k < 1, and the fact |δi| and |di| are increasing

functions with respect to i to obtain (A.8b) and (A.9b).
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Even though the bounds for |δi| and |di| exist for 0 < k < 1, it is not possible to

obtain a bound for (A.4). Hence, for 0 < k < 1, the partial sums of (A.4) might converge

but in the limit (i → ∞) will diverge.
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APPENDIX B – Absolute convergence of

equation (2.33)

In this section, we verify that (5.33) converges absolutely. First, let us define

the following auxiliary functions:
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k
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If (5.33) converges absolutely, then the sum obtained by taking the absolute values of the

summands in (5.33) must converge, i.e., (KREYSZIG, 2010)
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Considering k ≥ 1 and using the bounds (A.5b) and (A.6b), we can find an

upper bound for (5.33) as follows
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where 2F1(·, ·; ·; ·) is the Gauss hypergeometric function (OLVER et al., 2010, Eq. (15.1.1)).

Hence, as the bound for (B.4) exists and is finite, then (5.33) converges abso-

lutely for k ≥ 1 provided that k ≤ α.

Considering 0 < k < 1 and using the bounds (A.8b) and (A.9b), we can find
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and upper bound for (5.33) as
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Therefore, as the bound for (B.4) exists and is finite, then (5.33) converges absolutely for

0 < k < 1 provided that k ≤ α.
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