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Resumo

Esta dissertação apresenta dois trabalhos realizados durante o meu mestrado. Em primeiro

lugar, é apresentado um sistema de monitoramento de distanciamento social baseado na

tecnologia Ultra Wideband (UWB) e, em segundo lugar, uma análise de desempenho

do detector Cell Average Constant False Alarm Rate (CA-CFAR) sobre clutter do tipo

Weibull.

O sistema de monitoramento do distanciamento social surge devido à pandemia Covid-19

e é executado em conjunto com o Instituto de Pesquisas Eldorado. Os principais elementos

que compõem o sistema são tags e um gateway. As tags são dispositivos móveis carregados

por pessoas como crachás de identificação. O gateway é um dispositivo fixo que coleta os

dados gerados pelos usuários do tag. O sistema visa medir com alta precisão, ≤ 10 cm,

distâncias entre pessoas. Ele registra informações de contato quando a distância entre duas

ou mais pessoas é menor do que o permitido (ex. ≤ 1,50 m) e aciona um alerta sonoro

para alertar as pessoas quando elas não estão respeitando o distanciamento social. Este

sistema de monitoramento de distanciamento foi validado em um cenário real mostrando

que o alerta sonoro aumenta a adesão a uma política de distanciamento social para 33 %.

A segunda contribuição está relacionada aos sistemas de radar e apresenta uma análise de

desempenho do detector CA-CFAR sobre clutter do tipo Weibull. Para isso, são obtidas

expressões novas e exatas para a probabilidade de detecção (PD) e a probabilidade de falso

alarme (PFA). Ao contrário de trabalhos anteriores, as formulações propostas permitem

que o parâmetro de forma assuma valores maiores ou iguais a um. Os resultados numéricos

demonstram a importância de se considerar o valor correto do parâmetro de forma, uma

vez que a detecção do radar melhora à medida que o parâmetro de forma aumenta.

Palavras-chaves: Distanciamento social; UWB; Detecção de radar; CA-CFAR.



Abstract

This dissertation presents two works carried out during my Master’s. Firstly, it introduces

a social distancing monitoring system based on Ultra Wideband (UWB), and secondly, a

Cell Average Constant False Alarm Rate (CA-CFAR) detector performance analysis over

Weibull distributed clutter.

The social distancing monitoring system arises due to the Covid-19 pandemic and is jointly

executed with Research Institute Eldorado. The main elements composing the system

are tags and a gateway. The tags are mobile devices carried by people as ID badges. The

gateway is a fixed device that collects the data generated by the tag’s users. The system

aims to measure with high accuracy (≤ 10 cm) distance between people. It records contact

information when the distance between two or more people is less than allowed (ex.≤ 1.50

m) and triggers an audible alert to warn people when they are not respecting the social

distancing. This distancing monitoring system was validated in a real scenario showing

that the audible alert increases the adherence to a social distancing policy to 33 %.

The second contribution is related to Radar systems and presents a CA-CFAR detector

performance analysis over Weibull distributed clutter. To do so, novel and exact expressions

for the probability of detection (PD) and probability of false alarm (PFA) are obtained.

Unlike previous works, the proposed formulations allow the shape parameter to take values

greater or equal than one. Numerical results demonstrate the importance of considering the

right value of the shape parameter since radar detection improves as the shape parameter

increase.

Keywords: Social-Distancing; UWB; Radar-Detection; CA-CFAR..
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1 UWB Social Distancing Monitoring System

This chapter is based on the paper below:

• Jimenez L., de Lima E.R., Fraidenraich G. 2022 Social Distancing Experiment Based

on UWB Monitoring System. In: Ahram T., Taiar R. (eds) Human Interaction, Emerg-

ing Technologies and Future Systems V. IHIET 2021. Lecture Notes in Networks and

Systems, vol 319. Springer, Cham. https://doi.org/10.1007/978-3-030-85540-6_131
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1.1 Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic

caught the world off guard. It is difficult to quantify the real impact that the pandemic

had both on society and the global economy. Studies showed, in terms of statistics, the

devastating impact of the pandemic. For example, [1] confirms that for the first time, since

1990, global poverty could increase, and [2] affirms that 25 million jobs could be lost as a

result of Covid-19. In [3], authors present a complete study about the pandemic impact

in fields such as the petroleum industry, education, manufacturing industry and travel

industry. It reveals that in March 2020 the petroleum industry registered the lowest value

for an oil barrel in the last 30 years. Another field that was ravaged is education. It is

estimated that 900 million students worldwide were affected for different reasons due to

the pandemic.

Likewise, due to the pandemic, the manufacturing industry and sectors, where

remote work is not viable, have experienced many challenges, two of these were: to

increase sanitation measures to guarantee the employee’s well-being in workplaces that

are typically dense and, to control possible outbreaks of Covid-19 in case anyone gets

infected. The World Health Organization published a list of recommendations to help

contain the spread of the virus [4]. Among them, we have the mandatory use of masks,

the periodic cleaning of hands with alcohol or soap and water, the periodic sanitation of

workplaces, to maintain at least a 1-meter distance between people, daily temperature

checks and, people’s self-isolation if symptoms are present. In addition, the Center for

Disease Control and Prevention recommends interactions between people don’t exceed a

maximum cumulative time duration of 15 minutes [5]. In this context, we propose in this

chapter a social distancing monitoring system to help avoid and contain possible outbreaks.

The system aims to measure with high precision the distance between people, to warn the

users with a real-time audible or visible alert when they break the social distancing policy,

and to record the events when the users break the social distancing policy.

This chapter also analyzes the behavior of a group of people using an UWB-

based social distancing monitoring system. This social experiment shows that despite the

implementation of protection measures and the proper signaling to keep social distance,

people tend to disrespect social distancing. The main contributions of this chapter are:

1. The deployment of an UWB-based social distancing monitoring system in an indus-

trial scenario, taking real measurements of people’s behavior.

2. The implementation of a four-stage methodology in the experiment to quantify the

real impact of the monitoring system. In each stage, the volunteers receive a certain

level of information starting with a zero-knowledge about the experiment and ending

with a personal real-time warning when the social distancing policy is broken.
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3. The correct processing of the collected data to generate a log of contact between

people. This allows generating an early and fast people isolation protocol in case of

infection based on real data.

The remainder of this chapter is organized as follows. Section 1.2 gives a com-

parison with related works. Section 1.3 introduces main concepts about UWB technology.

Section 1.4 presents the elements and features of the social distancing monitoring system.

Section 1.5 describes the experiment that was carried out including the obtained results.

Finally, in section 1.6 a general conclusion is presented.

1.2 Related works

As soon as the virus spread began around the world, many fields of science got

involved in different studies to create mechanisms that will help contain it [6, 7, 8, 9, 10, 11].

As for technological solutions related to proximity monitoring, numerous alternatives were

proposed. For example, in [12] the authors present a solution based on computational

vision and machine learning. To obtain high precision distance measurements a camera

is used. The downside of this approach is that the precision of the measured distance

(between people) is inversely proportional to the distance between the persons and the

camera. The system’s lack of portability is another disadvantage since it is limited to cover

the fixated area where the camera is deployed. Likewise, authors in [13] benefits from

computational vision to develop a system that counts the number of people and measures

the distance between them using face recognition. The system triggers an alert via SMS

if/when the capacity of an area is exceeded. As in [12], the same weakness is observed.

Further related works make use of wireless technologies such as: Bluetooth,

GPS, Wi-Fi, and UWB. For example, [14] proposes a wearable device that uses Bluetooth

and Wifi. The work introduces a system that uses color LEDs to signal people. The colors

green, yellow and red state for safe, mildly suspicious, and highly suspect respectively. At

first, for all users, the wearable device indicates green and could later change if they had

contact (for a certain period of time) with a suspect or a confirmed case. The distance

measure between users is done via Bluetooth. The report of new cases and color variations

is done via Wi-Fi to a server. The downside of this system is the low precision in distance

measurement that Bluetooth offers in addition to employing an extra Wi-Fi module that

derives into a battery-hungry device. In [15] authors propose a mobile app using Bluetooth

to measure social distancing. In this case, a push notification is emitted if two people

don’t follow the social distance policy. The main disadvantage here is the need for special

permissions to link multiple mobile devices via Bluetooth, which can risk the personal

data of each user. In [16] an UWB device is presented. The wearable device measures,

with high precision, social distancing. The device generates an audible and visible alert to
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warn people when they are not adhering to the distancing policies. Although the system is

innovative, it does not have a subsystem that generates a contact trace log between people

which, can become handy when tracing interactions between people in case of a possible

infection. Finally, in [17, 18] the authors presented a complete overview of technologies

and techniques used for indoor localization and social distancing where parameters such

as accuracy, energy efficiency, and latency are compared.

1.3 UWB technology - Brief description

UWB wireless communication technology is characterized by a high bandwidth

(≥ 500 MHz) [19]. The standard for UWB communications was published in the IEEE

802.15.4a release (i) where the UWB physical layer was added [20]. UWB communications

have by far the largest allocation of bandwidth, see Figure 1.1. For example, the US Federal

communication Commission (FCC) allocates 7.5 GHz of band between 3.1 [GHz] and 10.6

[GHz] with a restriction power available to a transmitter, near to 0.5 [mW] [21]. In 2008

the European Computer Manufacturers Association (ECMA) specifies in its ECMA-368 a

multiband-OFDM system that divides the frequency spectrum into 14 bands and 6 band

groups as shown in Figure 1.2. Each one has 528 [MHz] of bandwidth [22].

Figure 1.1 – UWB spectrum vs other wireless technologies.

UWB is classified as a pulse modulation technique. This pulse can directly

propagate in the radio channel without the need of an additional carrier modulation. The

carrier-less architecture of the impulse radio UWB facilitates the development of low-power

transmitters and receivers [21]. Other important features of UWB are:

(i) Have a noise-like signal spectrum;
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Figure 1.2 – UWB frequency bands.

(ii) To be resistant to severe multipath and jamming;

(iii) Have a good time-domain resolution allowing for positioning and proximity applica-

tions.

The ranging applications in UWB are based on the two-way ranging (TWR)

protocol. The TWR protocol is a handshake that collects distance information by estimating

the round-trip time of signals in the free space [20]. Figure 1.3. gives a better understanding

of how the protocol works. There are two devices, the transmitter (Tx) and the receiver

(Rx), in a ranging process. The Tx begins sending a range request packet to the Rx. Then

Rx sends back a confirmation link packet. The distance between Tx and Rx can be easily

calculated by the product between the velocity of light and the time spent in the packets

exchange. If the distance between Rx and Tx is of interest an extra packet from Tx must

be sent [21]. To guarantee the well functioning of a system based on this protocol, the

number of tags must be lower than 20. If the number of tags is greater, a protocol to avoid

packets collision must be implemented.

1.4 System overview

The social distance monitoring system is composed of two main devices: the

tags and the gateway. The tags are mobile devices that create a mesh-type network where

each device communicates via UWB with the other tags. The gateway is a fixed element

that fulfills the function of a data collector. Figure 1.4 gives a general view of the system´s

architecture. A detailed description of each element is described below.
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Figure 1.3 – Two-way ranging protocol.

Figure 1.4 – Distancing monitoring system topology.

1.4.1 Tags

A tag is an electronic device worn by users as an ID badge, as shown in

Figure 1.5. The device is an UWB radio based on a DW1001c chip. It has a 700 [mAh]

battery that guarantees five operating hours. It runs an UWB multi-range software,

developed by our project partners RTLOC, that allows distance measurement from 1 up

to 20 devices simultaneously. Other features of this gadget are:

(i) Its dimensions are 12 cm x 6 cm x 2.5 cm;

(ii) Contains an adapted buzzer to emit an audible alert;

(iii) Posses a unique alphanumeric ID;
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Figure 1.5 – Tag worn by a participant.

(iv) Stores the ID, the time-lapse, and the date of the event. An event occurs when the

distance between two or more devices is less than 1.5 [m];

(v) Downloads the stored data to the gateway via UWB.

The tag operation is described as follows: First, each tag continuously transmits

a pulse. Between transmissions, the tag listens for UWB pulses emitted by other tags.

When an incoming pulse is detected, the distance between the devices is calculated by a

package exchange based on the TWR protocol. If the calculated distance is less than the

allowed, two concurrent processes start in the device. The first one is an audible and/or

visible alert that the tag emits to warn the user about the proximity with another person.

The second is storing the following parameters: ID, time-lapse, and timestamp when an

event occurs. Both processes finalize when the devices move apart into a “safe” distance.

Finally, the tag downloads the stored data when passing near the gateway.

1.4.2 Gateway

The gateway is a fixed element configured as a listener, i.e., it does not emit

any kind of response, it is limited to collecting data from the tags. It is possible to get the

tag´s data via Bluetooth or via UWB. The main difference between these two approaches

is the download speed. A test performed with a Bluetooth gateway showed a download

speed of an event per second while, with an UWB gateway, the download speed was 10

events per second. Due to the huge difference in the download speed, only the UWB

gateway was considered.

The UWB gateway’s connection is presented in Figure 1.6. The gateway

communicates via UWB with the tags and via Ethernet to a local area network (LAN)

where a computer is listening and saving the data of each tag.
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Figure 1.6 – Gateway connection diagram.

The collected data is stored in a text file. The text file contains the tag’s events,

and each event is represented in two frames. The structure of the frames is shown in

Table 1.1. The first parameter corresponds to the number of the event (NE). The second

indicates the type of frame (I/O). Type 1 represents the entry of the tag to a non-safe

zone and type 2 is the exit of the tag to a safe zone. The third (ID1) is the tag’s ID and

the fourth parameter (ID2) is the ID with whom the tag had contact. The fifth parameter

(AD) is the allowed set distance. MD represents the minimum distance between the tags

during the event. TD is the time duration, in seconds, of the event. The last parameter

(DATE) indicates the date (year, month, day, hour, minute, and second) in epoch format

of when the event occurred.

Table 1.1 – Event data frames structure.

NE: I/O: ID1: ID2: AD: MD: TD: DATE:
25 1 23967 39211 150 0 0 11259050792912869
26 2 23967 39211 150 118 13 12947900653176805

Once all the events are stored in the PC, an algorithm is executed to generate

statistics about the users’ behavior during the day. The algorithm follows the flowchart

presented in Figure 1.7. The raw data and the participants’ list are the entries of the

algorithm. The participants list is a file that relates the ID of each tag with the name and

e-mail of each participant. The raw data is filtered by date to bound the events for a day,

then is cleaned and ordered. After that, the total number of events is calculated. Then

the events are joined in terms of interactions. An interaction means the time duration

cumulative sum of different events with the same participant, i.e., is possible to have many

events with the same person but at the end of the day, all the events with that person

are summed and represented as an interaction. Once the data is in terms of interactions,

some interesting statistics such as the percentage of not adherence to the distancing
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policy and the distribution according to the time duration of the interactions are obtained.

The algorithm ends by sending via e-mail the statistics to all the participants and, if an

interaction of any of the participants had registered a cumulative time duration greater

than 15 minutes during the day a personal e-mail notification to the participant is sent.

1.5 The experiment

In order to quantify the impact of the distancing monitoring system on people’s

behavior, an experiment was performed. The experiment was carried out for 4 days, one

stage per day. The participants belong to one of the departments of a company. The place

was well signposted to warn about social distancing. Also, self-care tips were posted in

common areas and the use of the mask was mandatory.

The experiment consisted of analyzing the behavior of 15 people employing a

UWB monitoring system with a specific tag configuration in each stage. The experiment

measured the number of times the individuals broke the social distance policy which

consisted of standing near another person at a distance of fewer than 1.5 meters for more

than 20 seconds. Each day, when the users register their entry in the morning, a tag was

given to them. After they finish their working day, the tag was given back. Also, it is

important to mention that during this experiment, no group nor personal e-mails were sent.

Further details and the different tag configurations used on each day of the experiment

are described below.

1.5.1 Day 1: No feedback

On the first day the tags were configured in silence mode, i.e, the devices do

not emit any kind of alert if an event occurs. The only instruction that was given to the

users was always to carry the tag with them. The data generated in the 15 tags was later

collected by the gateway and processed to obtain the first results.

1.5.2 Day 2: It is an experiment due to SARS-CoV-2

On the second day, the tag was again configured in silence mode. Unlike day 1,

it was explained to volunteers that the devices (tags) are part of an experiment that aims

to measure their proximity with their coworkers due to the SARS-CoV-2 pandemic. At the

end of the working day, the tags were returned, and all the collected data was processed.

1.5.3 Day 3: Look how you are behaving

The data obtained from day 2 was presented to the users as visual feedback.

It consisted of two pie charts that showed them the adherence percentage of the social
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Figure 1.7 – Data processing flow chart.



Chapter 1. UWB Social Distancing Monitoring System 27

Figure 1.8 – Adherence percentage on the third day.

Figure 1.9 – Time-lapse of the events on the third day.

distancing policy and the distribution of the events according to the time-lapse, see

Figure 1.8 and Figure 1.9. This was done in order to observe their responses (conduct

during the day), having prior knowledge of their general behavior. The tags were also

configured in silence mode and the data was collected in the same way.

1.5.4 Day 4: A personal feedback

As in day 3, the results of the previous day were presented in a pie chart in

order to provide a feedback to the persons. The tags were not configured in silence mode,

the adapted buzzers of the devices were to emit an audible alert in case of occurrence

of an infraction of the policy. The volume of the audible alert was regulated so it would

not disturb the people. The results of this day were collected and processed for further

analysis.
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1.5.5 Results of the experiment

After performing a careful analysis of the acquired data, the following results

were obtained. Figure 1.10 shows the adherence and non-adherence percentage to the social

distancing policy presented by the users per day. In days 1, 2, and 3 the non-adherence

percentage is much more significant (having values that are greater than 80%), meaning

that the social distance policy was not followed at all. On the fourth day, the non-adherence

percentage dropped to 67% which can be attributed to the audible alert and represents a

slight improvement. However, even though the volunteers had the knowledge (from day

2) that the experiment consisted of social distancing and even with audible alerts, the

percentage of non-adherence is quite high (more than 50%).

Figure 1.10 – Adherence percentage of social distancing policy per day.

Another relevant information obtained through the collected data is the number

of events per day, i.e. how many times the social distancing policy was broken. This behavior

is illustrated in Figure 1.11. In the first two days we encountered a similar number of

infringements. Considering that 15 people are part of the experiment we can infer that

80% of the users broke the social distance policy at least once. As for the third day, there

is a significant increase in the number of events. Considering that, at the time, the users

already known their role in the experiment and taking into account the feedback that was

given to them, it was expected that the number of events would at least be maintained if

not diminished. The number of events during the third day suggests a further analysis

of the data. Activities that were not contemplated, such as a department meeting, could

demand a group interaction and may justify the number of events. On the fourth day, the

number of events drastically dropped to 15. As mentioned before, this could be attributed

to the audible alert people hear whenever an event occurs.

As mentioned earlier, the system could be useful to help implement isolation

protocols in case of an infection. To exemplify this feature, suppose the subject “06A”
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Figure 1.11 – Number of events per day.

Figure 1.12 – Tracking example of supposed SARS-CoV-2 case.

has tested positive for SARS-CoV-2. The data collected by the tags allows to track every

contact the person has had with his/her coworkers during the past days. As shown in

Figure 1.12, the user “06AC” interacted with users “9234” and “5B35” for a period of 260

[s] and 425 [s] respectively. Similarly, the interaction of users “9234” and “5B35” can be

tracked down. This allows for rapid response as well as for isolation protocols and, thereby

prevents the increase of infectious cases.
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1.6 Conclusion

A functional distancing monitoring system was implemented and validated in

a real scenario experiment. The data obtained during the experiment showed how the

adherence percentage of the social distancing policy does not increase much even if the

place has the proper signaling, indirect warn messages like self-care posters are showed,

and direct warning messages like statistics about their behavior are presented. It is also

showed that personal real-time feedback (the buzzer) helps to increase the adherence

percentage of the social distancing policy by 20% in the experiment. Finally, the system is

useful to control a possible outbreak due to the implemented contact data matrix.
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2 CA-CFAR Performance Analysis for

Weibull-Distributed Clutter Environments

This chapter is based on the paper below:

• L. Jimenez, F. D. A. García, M. C. Luna, E. R. de Lima and G. Fraidenraich, “A Gen-

eral CA-CFAR Performance Analysis for Weibull-Distributed Clutter Environments,”

IEEE Geosci. Remote Sens. Lett, under review, 2021.
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Note: The following chapter is related with radar detection theory. The text

presented below is totally independent of chapter 1.

2.1 Introduction

Due to the random characteristics of noise and interference, radar performance

is evaluated in terms of probabilities, namely, probability of detection (PD) and probability

of false alarm (PFA). A detection is declared whenever the received signal surpasses a

fixed threshold [1, 2, 3]. In scenarios where the interference is too strong (common in

practice), using a fixed threshold will contribute to an increase in the false alarm rate.

In such scenarios, constant false alarm rate (CFAR) detectors are often used. In general,

CFAR detectors seek to maintain a fixed rate of false alarms by adaptively modifying their

detection thresholds [4].

Different CFAR detectors have been introduced in the literature. Among the

most common, we highlight the cell-averaging CFAR (CA-CFAR), the smallest-of CFAR

(SOCA-CFAR), the greatest-of CFAR (GOCA-CFAR), the ordered statistic CFAR (OS-

CFAR), and the maximum-likelihood CFAR (ML-CFAR) [5, 6, 7, 8]. The main difference

between CFAR detectors is how they built the statistical functions of their systems. For

instance, CA-CFAR detectors set the threshold by averaging the interference samples

within the CFAR window [1, 9].

Clutter is one of the interfering signals that most degrades a radar system. Due

to its nature, clutter is commonly characterized by its probability density function (PDF)

or cumulative distribution function (CDF). The most used statistical models to describe

clutter’s behavior are the ones that exhibit longer tails such as Log-Normal, Gamma,

Weibull, and K distributions [10, 11, 12]. Notably, the Weibull distribution has proved

to be an excellent fit to model both ground and sea clutter [13, 14, 15]. Therefore, it is

imperative to analyze radar performance under this type of clutter interference.

It is well known that when dealing with Weibull clutter in CFAR detectors the

mathematical development is complex, starting from: i) the sum statistics of the clutter

samples contained in the CFAR window, up to ii) the sum statistics for the target-plus-

clutter samples within the cell under test (CUT). To simply the cumbersome maths, most

works fix the value of the Weibull’s distribution shape parameter to one or two resulting in

exponentially or Rayleigh-distributed clutter, respectively [14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24]. For instance, in [20] the authors analyzed the performance of a CA-CFAR detector

by deriving an accurate approximation for the PD and an exact solution for PFA. To do

so, they considered arbitrary values for the shape parameter of the clutter samples within

the CUT. Nonetheless, the shape parameter of the clutter samples contained in the CFAR

window was set to two (i.e., Rayleigh clutter). Recently, in [21], considering arbitrary
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values for the shape parameter of the Weibull interference, the authors obtained the exact

sum statistics for the target-plus-clutter sample within the CUT and then derived the

corresponding performance metrics (i.e., PD and PFA). However, no CA-CFAR analysis

was carried out in that work. To the best of the author’s knowledge, there are no exact

performance analyses for a CA-CFAR detector considering arbitrary values for the shape

parameter in both the CUT and the CFAR window.

In this chapter, capitalizing on [25] and proposing alternative exact solutions

for the CUT’s statistics, we derive the corresponding performance metrics for a CA-CFAR

detector working over homogeneous Weibull-distributed clutter. For the analysis, we allow

the shape parameter of the Weibull clutter to take values greater than or equal to one

(regime of paramount importance in many practical applications) in both the CUT and

the CFAR window.

It is worth mentioning that the proposed methodology can also be used to

analyze the general performance of more robust CFAR detectors, such as SOCA-CFAR,

GOCA-CFAR, and ML-CFAR.

The remainder of this chapter is organized as follows. Section 2.2 presents basic

concepts related to Radar theory. Section 2.3.2 introduces the system model as well as the

statistics for the CUT and CFAR window. Section 2.3.3 derives the generalized expressions

for PFA and PD of a CA-CFAR detector. Section 2.3.4 presents the numerical results and

validates the obtained expressions. Finally, Section 2.4 summarizes the main conclusions.

In what follows, f(·)(·), denotes PDF; F(·)(·), CDF; Γ(·), the gamma function [26,

eq. (6.1.1)]; γ(· , ·), the lower incomplete gamma function [26, eq. (6.5.2)]; Γ(· , ·), the

upper incomplete gamma function [26, eq. (6.5.3)]; E [·], expectation; and |·|, absolute

value.

2.2 Theoretical Background

In this section important concepts that give a better understanding of this

chapter are presented.

2.2.1 Radar concepts

A basic radar can be defined as a device that emits radio waves to detect an

object and determine its position [27]. The word radar is derived from radio detection and

ranging and was first introduced by the US Army in 1940. Nowadays, besides detection

and location purposes, modern radar can identify, classify, track and image targets while

suppressing undesirable echoes from the environment, also named clutter [1]. A simple radar,

one that only measures range, can be explained as follows: when a pulse is transmitted
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the radar clock is triggered to begin counting. The radio pulse travels at the speed of light

until it is scattered from a target and goes back to the radar. The distance to the target is

calculated by the time delay times the velocity of the light divided by two [2, 27, 9].

There are many applications in different fields where radars are indispensable,

and not necessarily the army. For instance, in applications such as weather forecasting,

navigation, collision avoidance, academic research, etc. Table 2.1 exhibits some applications

for radars in different scenarios.

Table 2.1 – Applications of radar [27].

Civil:

Ground-based Air traffic control
Sea traffic control
Weather forecasting
Speed traps
Intruder alarms
Radar astronomy
Ground probing
Industrial measurement

Sea-borne Navigation
Collision avoidance

Air-borne Altimeters
Navigation
Weather

Space-borne Studying Earth resources
Sea sensing

Manipulating spacecraft

Mapping planets and minor bodies

Military:

Detection of own forces or enemy forces

Tracking of air, sea, land, or space targets

Guidance of own weapons systems

Since all radars use radio-frequency waves, there is a specific part of the radio-

electric spectrum for these systems. Normally radars operate over the range of 3 MHz

to 300 GHz. Along this wide range exist dedicated frequency ranges for radar systems
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authorized by the International Telecommunications Union (ITU) [1, 27, 9]. Table 2.2

shows the range frequency of each band.

Table 2.2 – Frequencies for radar systems [1].

Band ITU Radar Frequency
VHF (30–300 MHz) 138–144 MHz
UHF (0.3–1 GHz) 420–450 MHz

890–942 MHz
L (1–2 GHz) 1.215–1.400 GHz
S (2–4 GHz) 2.3–2.5 GHz

2.7–3.7 GHz
C (4–8 GHz) 5.250–5.925 GHz
X (8–12 GHz) 8.5–10.68 GHz
Ku (“under” K-band) (12–18 GHz) 13.4–14.0 GHz

15.7–17.7 GHz
K (18–27 GHz) 24.05–24.25 GHz

24.65–24.75 GHz
Ka (“above” K-band) (27–40 GHz) 33.4–36.0 GHz
V (40–75) GHz 59.0–64.0 GHz
W (75–110) GHz 76.0–81.0 GHz

92.0–100.0 GHz
mm (100–300 GHz) 126.0–142.0 GHz

144.0–149.0 GHz
231.0–235.0 GHz
238.0–248.0 GHz

2.2.2 Radar Cross Section

The Radar Cross Section (RCS), also named the echo area, is a measure of

the reflective strength of a target usually represented by the letter σ [28]. Depending on

the target’s geometrical form two approaches can be taken to describe the σ parameter.

Firstly, for simple geometrical bodies (e.g., regular polygons), the σ value can be easily

obtained by deterministic expressions that already exist in the literature. On the other

hand, when complex geometrical bodies are studied (e.g., aircraft), a stochastic approach

must be taken [9]. This chapter focuses on the second approach.

2.2.2.1 Fluctuating targets

When a complex geometrical body changes the aspect angle due to its motion

is named fluctuating target. As it was mentioned, these cases are better described by

a PDF. A typical classification of fluctuating targets is done by Swerling models. The

Swerling models are a set of PDFs where each PDF describes a certain fluctuating target

type. Swerling models can be divided into two branches according to the fluctuations

rate type. The first one is scan to scan fluctuation rate and the second is pulse to pulse
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fluctuation rate. Generally, the slowly fluctuating targets are described as scan-to-scan

fluctuation rate types. Also in modern radar systems, the term scan-to-scan is usually

replaced by dwell to dwell fluctuation rate. The main two PDFs of the Swerling models

are the Rayleigh and the fourth degree Chi-Squared distribution [1]. Table 2.3 summarizes

the aforementioned.

Table 2.3 – Swerling models.

Case: Distribution: Fluctuation Rate:
Swerling I Rayleigh Scan to scan
Swerling II Rayleigh Pulse to pulse
Swerling III Chi-Squared, degree 4 Scan to scan
Swerling IV Chi-Squared, degree 4 Pulse to pulse

As mentioned earlier, some types of clutter (e.g. sea and ground clutter) are

not well described by Swerling models. For instance, field measurements have proved that

these types of clutter are better fit by long-tail distributions (e.g. Weibull distribution).

Figure 2.1 and Figure 2.2 illustrate how Weibull and Rayleigh distributions shapes differ.

The red and blue vertical dashed lines represent the threshold, a key parameter in the

detection process, calculated for each distribution. As noted, for the same value of PFA

(area under the curve after the threshold) the computed threshold is not the same (see

Figure 2.2) and a lower threshold could result in unwanted false alarms; hence, it is

essential to work with a distribution that better describes the clutter. [1, 29].
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Figure 2.1 – Weibull distribution vs Rayleigh distribution.
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Figure 2.2 – Difference between threshold values for Weibull and Rayleigh distributions.

2.2.3 Radar Detection

A received radar echo signal is composed of clutter return and may, or may

not contain a target echo signal. Since clutter and target signals are modeled as random

processes the decision concerning the presence or absence target is statistical in nature. In

problems where we need to infer something based on random phenomena we make use of

the statistical decision theory [2]. The main elements of a statistical decision problem are:

• A set of hypothesis that describe all possible events.

• Data related to the established hypothesis from which we want to infer the true

phenomena.

• A decision rule that evaluates the data to determine which hypothesis fulfilled.

• A criterion of optimally that reflects the cost of correct and incorrect decisions.

In Radar systems, the detection process can be explained with the aid of

Figure 2.3. In the first stage, the signal that reaches a radar is filtered at its intermediate

frequency. Then, the signal passes through a linear or square envelope detector. Next, the

output of the envelope detector is compared with a predetermined threshold. Finally, the

decision is made based one of two possible outcomes: presence or absence of a target. If

the envelope detector’s output surpasses the known threshold the presence of a target is

declared, otherwise, the signal is assumed to contain clutter returns only [1, 9].
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Figure 2.3 – Basic Radar Detector.

Given the importance of the threshold’s value in the detection process, there

are many approaches to determine it. Among the most important we have: Neyman-

Person (NP) criterion and the CFAR technique [1]. The NP method fixes a PFA and then

maximizes the PD for a given signal-to-noise ratio (SNR). The downside of this approach

is that the threshold is set without considering any clutter variation leading to high false

alarm rates [30]. To counteract this while considering a more realistic scenario where the

clutter is fluctuating, the CFAR technique arises.

2.2.3.1 CFAR technique

G G
C 
U 
T

G G LEADINGGGLAGGING
Square Law  
Rectifier [.]2

CFAR Window

1 - - n/22 n/2+1 - - n

X
CFAR Constant

Data Window

Figure 2.4 – General CFAR scheme.



Chapter 2. CA-CFAR Performance Analysis for Weibull-Distributed Clutter Environments 41

A general CFAR scheme is shown in Fig 2.4. The baseband signals Ic and Qc

after the square law rectifier are represented by a single signal S. The S signal is then

stored as a vector of size M , known as the data window. The CFAR window is composed

of a subset of data window samples that are distributed between the lagging and leading

windows, the guard cells, and the cell under test (CUT). The samples in the lagging and

leading windows enter in a function z to obtain a statistic about the samples. In the case of

the CA-CFAR detector, the function z calculates the average between leading and lagging

samples. The z value times the CFAR constant τ is then compared with the CUT to make

a decision for the presence or absence of a target. Notice that the CA-CFAR detector is

not an optimum detector, but is widely used due to its low complexity [1].

2.2.4 Sum of Random Variables

Since the sum of random variables (RVs) is indispensable in the CFAR technique,

a brief overview of this topic is presented below.

The probability theory establishes that the sum of a number of real RVs is

another real RV. Assuming that the RVs are i.i.d. the sum PDF can be obtained by

convoluting their PDFs [31, 32]. To exemplify, let Z denote the sum of N RVs, Xi.

Z =
N
∑

i=1

Xi. (2.1)

For N = 2 we have

fZ(z) =
∫ z

0
p(x) × p(z − x) dx. (2.2)

Now, extending the definition for N RVs we have

fZ(z) = p(x1) ∗ p(x2) ∗ p(x3) ∗ ..... ∗ p(xN). (2.3)

When following the convolution approach is quite difficult to obtain general

expressions for the sum of N RVs. For this, an approach based on the characteristic

functions of RVs is more useful [31, 32]. The characteristic function of a RV that follows a

certain distribution p(x) is defined as

CX(ω) =
∫

∞

−∞

exp(jωx) p(x) dx. (2.4)

Since the characteristic function is related to the Fourier transform, the sum of N random

variables can be obtained as

CZ(ω) =
N
∏

i=1

CX(ω), (2.5)

where for i.i.d. RVs, (2.5) is reduced to

CZ(ω) = [CX(ω)]N . (2.6)
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The inverse function fZ(z) can then be obtained with the inverse Fourier

transform

fZ(z) =
1

2π

∫

∞

−∞

CZ(ω) exp(−jωz) dω. (2.7)

2.2.4.1 Sum of N i.i.d. Weibull RVs

Formulations for the PDF and CDF of the sum of N i.i.d Weibull RVs were re-

cently introduced in [25]. To do so, the authors derived and used the following characteristic

function of the Weibull distribution

CZ(s) = k
(

1

sλ

)k ∞
∑

i=0

s−kiΓ(ik + k)
(

−
(

1
λ

)k
)i

i!
. (2.8)

Advanced mathematical techniques such as residues theorem and formal power series were

employed to derive the PDF and CDF that are respectively given by

fZ(z) = z−1kN

(

z

λ

)kN ∞
∑

i=0

zikδi

Γ(ik + kN)
(2.9)

FZ(z) = kN

(

z

λ

)kN ∞
∑

i=0

zikδi

Γ(ik + kN + 1)
, (2.10)

where k and λ are the shape and scale parameters of the Weibull distribution, N is the

number of RVs and δi are recursive coefficients given by

δ0 = Γ(k)N (2.11)

δi =
1

iΓ(k)

i
∑

l=1

δi−l(−i+ lN + l)Γ(lk + k)
(

−
(

1
λ

)k
)l

l!
. (2.12)

Expressions (2.9) and (2.10) were validated via MC simulations as shown in

Figure 2.5 and Figure 2.6. Figures were taken from [25].
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Figure 2.5 – PDF of the sum of Weibull variates considering k = 1.5, λ = 0.5, and different
values of N .
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Figure 2.6 – CDF of the sum of Weibull variates considering k = 1.5, λ = 0.5, and different
values of N .

2.3 Main Contributions

In this section, we introduce the main contributions of this chapter. First, we

analyze the sum of N i.i.d Weibull variates. Then, we characterize the CUT’s statistics,

and finally, we present the derivation of the novel formulations for PD and PFA.
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2.3.1 Analysing the sum of N i.i.d Weibull variates

Since (2.9) is the basis of this work, further analysis of the expression is done.

As we note (2.9) is in terms of an infinite sum that cannot be expressed in closed form. In

computationally terms it is not possible to execute the infinite sum, thus the expression

must be bounded. When an upper limit of summation is set, the function diverges to

infinity at a given value of z as illustrated in Figure 2.7. As depicted, for upper limit

values of 100, 200, and 300, the function diverges at z =10, 13.5, and 16.2, respectively.

To counteract the expression’s divergence effects when computing the PFA and PD for

a CA-CFAR detector, definite integrals with interval [0, b] are used; where b denotes the

bound before the equation begins to diverge. More details of this analysis are presented in

subsection 2.3.3.

Upper limit=100

Upper limit=200

Upper limit=300

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

0.25

0.30

z

f Z
(z
)

Figure 2.7 – Eq. (2.9) considering k = 2, λ = 1.5, N = 5 and different values of upper
limit.

2.3.2 System Model

In this subsection, we introduce the system model and characterize the CUT

and CFAR window statistic..

For the analysis, we consider an homogeneous Weibull-distributed clutter A

and an exponentially distributed target B with PDFs given, respectively, by

fA(a) =
k

λ

(

a

λ

)k−1

exp

[

−
(

a

λ

)k
]

a ≥ 0 (2.13)

fB(b) = η exp [−η b] , b ≥ 0 (2.14)

where k > 0 and λ > 0 are the shape and scale parameters of the Weibull distribution,

respectively, and η is the rate parameter of the exponential distribution.
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In order to analyze the performance of a CA-CFAR detector, we consider that

the CUT is governed by the following binary hypothesis test [33, 34, 19]:

H0(clutter only) : T = A (2.15)

H1(target-plus-clutter) : T = B + A, (2.16)

where hypothesis H0 denotes the presence of the clutter signal only, whereas hypothesis

H1 denotes the presence of both target and clutter signals.

2.3.2.1 CUT’s Statistics

From (2.15), the PDF and CDF of T under hypothesis H0 are given respectively

by

fT (t|H0) =
k

λ

(

t

λ

)k−1

exp

[

−
(

t

λ

)k
]

, t ≥ 0 (2.17)

FT (t|H0) = 1 − exp

[

−
(

t

λ

)k
]

, t ≥ 0. (2.18)

The exact PDF and CDF of T given hypothesis H1 are derived in the upcoming

proposition.

Proposition. The PDF and CDF of T under hypothesis H1 are given, respectively, by

fT (t|H1) =η exp [−η t]
∞
∑

j=0

(η λ)j

j!
γ

(

j + k

k
,
(

t

λ

)k
)

(2.19)

FT (t|H1) =
∞
∑

j=0

(ηλ)j

j!

[

− exp [−η t] γ

(

j + k

k
,
(

t

λ

)k
)

+
∞
∑

m=0

(−ηλ)m

m!
γ

(

j + k +m

k
,
(

t

λ

)k
)]

. (2.20)

Proof. The sum PDF for (2.16) can be obtained by convoluting the marginal PDF of A

and B as follows [35]

fT (t|H1) ,
∫ t

0
fA (ν) fB (t− ν) dν. (2.21)

Replacing (2.13) and (2.14) into (2.21) and followed by some algebraic steps

with the aid of [26, eq. (4.2.1)], we obtain

fT (t|H1) =
k η

λ
exp [−η t]

∫ t

0
exp

[

−
(

ν

λ

)k
]

(

ν

λ

)k−1 ∞
∑

j=0

(η ν)j

j!
dν,

interchanging the order of integration by employing the Fubini’s theorem1 we have

fT (t|H1) =
k η

λ
exp [−η t]

∞
∑

j=0

(η)j

j!

∫ t

0
exp

[

−
(

ν

λ

)k
]

(

ν

λ

)k−1

(ν)j dν. (2.22)

1 Hereinafter, all interchanges in the order of integration will be carried guaranteeing that the Fubini’s
conditions are fulfilled.
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Evaluating the resultant integral, we obtain (2.19). From (2.19), the CDF of T

can be calculated as

FT (t|H1) ,
∫ t

0
fT (ν|H1)dν

=η
∫ t

0
exp [−ην]

∞
∑

j=0

(η λ)j

j!
γ

(

j + k

k
,
(

ν

λ

)k
)

dν. (2.23)

Finally, interchanging the order of integration in (2.23) and then integrating the

resulting expression by parts, we get (2.20), which completes the proof. Figs. 2.8 and 2.9

illustrate the analytical expressions (2.19) and (2.20) versus the Monte-Carlo simulation

for different values of k, λ and η. The plots show the agreement between analytical and

simulated hence validating the formulations. The expression (2.19) is also justified by

different fit tests. Table 2.4 shows the aforementioned. As depicted, all the P − values

for the different types of tests are greater than 0.9 demonstrating by this metric the huge

agreement between the simulated and analytical expression. For more details about the

tests see [36].

Table 2.4 – Distribution fit tests

Goodness of fit test: Statistic: P-value:

Anderson-Darling 0.272319 0.95739
Cramér-von Mises 0.0353659 0.955405
Kolmogorov-Smirnov 0.0126 0.953986
Kuiper 0.0218 0.928793

�

Analytical, Eq. (2.19)

Simulated
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Figure 2.8 – PDF of f(t|H1) for different values of k, λ, η and 100 as the upper limit of
the summation.
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Figure 2.9 – CDF of F (t|H1) for different values of k, λ, η and 100 as the upper limit of
the summation.

2.3.2.2 CFAR Window Statistics

In a CA-CFAR detector, the estimated interference power, Z, is computed by

averaging N i.i.d. clutter samples within the CFAR window. Thus, leveraging on (2.9) and

after a conventional transformation of variables, the PDF of Z can be written as

f̃Z(z) = z−1kN

(
zN

λ

)kN ∞∑

i=0

(zN)ikδi

Γ(ik + kN)
, (2.24)

where δi are the recursive coefficients that can be calculated from (2.11) and (2.12).

2.3.3 CA-CFAR Detection

In this section, we analyze the performance of a CA-CFAR detector working

over homogeneous Weibull-distributed clutter environments.

2.3.3.1 Probability of False Alarm

The probability of deciding that the received signal contains only noise defined

as the probability of false alarm [1]. Mathematically, the PFA of a CA-CFAR detector is

found by integrating from 0 to infinity the conditioned PFA, PFA, over all possible values

of the interference statistic fZ(z).

PFA =
∫

∞

0
PFA fZ(z) dz. (2.25)
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Because of the divergence of (2.9), the integral’s interval is going to be limited

to [0, b]. Therefore, we define P̂FA as high accurate approximation of (2.25) and is expressed

as

P̂FA =
∫ b

0
PFA fZ(z) dz, (2.26)

where b represents the bound before (2.9) begins to diverge. To guarantee that no "relevant

information" is lost when the bounded integral is calculated, the value of b must be found

equating (2.9) to a very low value Φ (e.g. ≤ 10−4). Mathematically b is calculated as

b−1kN

(
b

λ

)kN UL∑

i=0

(b)ikδi

Γ(ik + kN)
= Φ, (2.27)

where UL denotes the upper limit of the sum (e.g. 200) therefore (2.27) can be easily

solved by any math software.

The conditioned PFA, PFA, can be calculated from (2.18) as follows

PFA ,

∫
∞

τz

N

fT (t|H0) dt

=1 − FT

(
τz

N
|H0

)

= exp

[
−
(
τz

λN

)k
]
, (2.28)

where the lower bound of the integral, τz
N

, represent the CA-CFAR constant times z (in order

to get a result as function of the interference fZ(z)) and divided by the number of samples

N . The division by N in the bound is done because we are using the original expression,

(2.9), that is not yet normalized by the number of samples. When the normalized sum is

used, in this case (2.24), we do not need the division by N in the bound.

To illustrate the impact of not considering the divergence effect of (2.9), we

derive both expressions (2.25) and (2.26). Thus, replacing (2.9) and (2.28) into (2.25) and

(2.26), followed by a change in the order of integration along with several mathematical

manipulations, we obtain

PFA = k−1+N

(
N

τ

)kN ∞∑

i=0

(
λN

τ

)ik
Γ(i+N)

Γ(ik +Nk)
δi, (2.29)

P̂FA = k−1+N

(
N

τ

)kN UL∑

i=0

(
λN

τ

)ik γ
(
i+N,

(
b τ
λN

)k
)

Γ(ik +Nk)
δi. (2.30)

Note that when b and UL tend to infinity, (2.30) reduces to (2.29). Figure 2.10

illustrates the resultant PFA for different values of threshold τ where both (2.29) and

(2.30) were computed with UL = 500. As depicted, for τ ≤ 4.9 expression (2.29) diverges
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Eq. (2.29)

Eq. (2.30)
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Figure 2.11 – Replica of Figure 2.10 in log scale.

and the PFA value is infinite while expression (2.30) does indeed outputs PFA values that

are between 0 and 1 for any τ . Furthermore, Figure 2.11 shows, in log scale, how the PFA

values match between the two expressions for threshold values greater than 4.9.

Eq. (2.29)

Eq. (2.30)
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Figure 2.10 – Eq. (2.29) and eq.(2.30) for k = 2, λ = 1.5, N = 5, b = 13.5 and different
values of threshold τ .

Moreover, it is possible to show that (2.29) and (2.30) are independent of the

clutter power, λk, and can be rewritten respectively as

PFA = k−1+N

(
N

τ

)kN ∞∑

i=0

(
N

τ

)ik Γ(i+N)

Γ(ik +Nk)
ψi, (2.31)

P̂FA = k−1+N

(
N

τ

)kN UL∑

i=0

(
N

τ

)ik γ
(
i+N,

(
b τ
N

)k
)

Γ(ik +Nk)
ψi (2.32)
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where the coefficients ψi can be obtained recursively by

ψ0 =Γ(k)N (2.33)

ψi =
1

iΓ(k)

i∑

l=1

ψi−l(−i+ lN + l)Γ(lk + k) (−1)l

l!
. (2.34)

Appendix A proves the aforementioned for (2.29). Following a similar procedure,

it can be also demonstrated for (2.30). Furthermore, Appendix B shows that (2.31)

absolutely converge ∀k ≥ 1.

2.3.3.2 Probability of detection

The probability of detection seems the likelihood of detecting a target in a

received signal. Following a similar approach as in Section 2.3.3.1, the PD of a CA-CFAR

detector can be obtained with either

PD =
∫

∞

0
PD fZ(z) dz, (2.35)

or

P̂D =
∫ b

0
PD fZ(z) dz, (2.36)

in which PD corresponds to the conditioned PD.

From (2.19) and after some algebraic manipulations, the conditioned PD can

be calculated as

PD ,

∫
∞

τz

N

fT (t|H1) dt

=1 − FT

(
τz

N
|H1

)

=
∞∑

j=0

(ηλ)j

j!

[
exp

[
−
η τ z

N

]
γ

(
j + k

k
,
(
τ z

λN

)k
)

+
∞∑

m=0

(−ηλ)m

m!
Γ

(
j + k +m

k
,
(
τ z

λN

)k
)]

. (2.37)

Finally, substituting (2.37) and (2.9) into (2.35) and (2.36), and followed by a

change in the order of integration along with lengthy algebraic manipulations with the aid

of [26, eq. (6.5.3)] and [26, eq. (4.2.1)], we obtain

PD =kN

(
N

λτ

)kN ∞∑

j=0

∞∑

i=0

(ηλ)j

j!
Γ

(
j + k

k

)(
N

τ

)k i

δi

×


η−k(i+N) −

(λ)k(i+N)

Γ(k(i+N) + 1)

∞∑

m=0

(−ηλ)mΓ
(

j+m+k(i+N+1)
k

)

m! ((k(i+N) +m)


 , (2.38)
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and

P̂D =kN

(
1

λ

)kN UL∑

j=0

(ηλ)j

j!

UL∑

i=0

(
τ

N

)−k(i+N) δi

Γ(ik +Nk)
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
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 1
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k
,

(
b τ

N λ
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







. (2.39)

Following a similar procedure as in Appendix B, it can be shown that (2.38)

also converges absolutely ∀k ≥ 1. Eqs. (2.31), (2.32), (2.38) and (2.39) are the main

contributions of this chapter.

2.3.4 Numerical Results

In this section, we validate our derived expressions via Monte-Carlo simulations.

The receiver operating characteristic (ROC) curves are presented considering different

parameter settings. The number of Monte-Carlo trials was set to 107.
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Figure 2.12 – ROC curves for k = 1.5, λ = 1, η = 0.25, and different values of N .

Figure 2.12 illustrates PD versus PFA considering different values of N . Notice

how the PD improves as N grows, as expected. For instance, for a fixed PFA = 10−4 and
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N = 2, 4, 6, 8, 10, we obtain PD = 0.1, 0.3, 0.41, 0.45, 0.48, respectively.

Figure 2.13. illustrates PD versus PFA for different values of k. Notice how

radar detection increases as k increases as well, evidencing the relevance of this parameter

in radar performance analysis. For example, for PFA = 10−5 and k = 1, 1.4, 1.8, 2.0, 2.2,

we get PD = 0.07, 0.33, 0.54, 0.61, 0.66, respectively. To give a better understanding it is

important to mention that shape values, k, between 1.4 and 1.8 are usually used to model

the sea clutter [15]. Therefore, the exhibited results suggest the use of real k parameters

according to the type of clutter.
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Figure 2.13 – ROC curves for N = 6, λ=1, η = 0.1, and different values of k.
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Figure 2.14 – ROC curves for N = 4, k = 1.8, η = 0.1, and different values of λ.

Finally, Figure 2.14. shows ROC curves varying the scale parameter λ. The

curves exhibit that as the scale parameter increases the PD decreases as expected since

λ is directly related to the clutter power. For instance, we note that for PFA = 10−3 and

λ=1, 1.5, 2, 2.5, 3, the values of PD are 0.67, 0.56, 0.46, 0.39 and 0.33 respectively. In
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other words, all figures denote perfect agreement between our analytical expressions and

numerical simulations, thus validating our results.

2.4 Conclusion

In this chapter, we provided generalized expressions for the PD and PFA

of a CA-CFAR detector working over homogeneous Weibull-distributed clutter. These

expressions allow for arbitrary values for the shape parameter of the Weibull distribution.

Moreover, they are tractable and can be easily implemented in any mathematical software,

thus serving as useful analytical tools for radar designers and engineers. Radar performance

was quantified in terms of the PD versus PFA. All our expressions were validated via

Monte-Carlo simulations.
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APPENDIX A –

CA-CFAR’s property

To prove the non-dependence between λk and the PFA, we first expand the

series in (2.29), that is,

PFA = kN−1
(
N

τ

)kN



δ0Γ(N)

Γ(kN)
+
δ1Γ(N + 1)

(
λN
τ

)k

Γ(Nk + k)

+
δ2Γ(N + 2)

(
λN
τ

)2k

Γ(Nk + 2k)
+
δ3Γ(N + 3)

(
λN
τ

)3k

Γ(Nk + 3k)
+ R(i)


 , (A.1)

where R(i) represents the remainder terms of the series.

For convenience, we rewrite the coefficients δi (∀i ≥ 1) as follows

δi =
(−1)iN

(
1
λ

)ik
Γ(k)N−i

i!
F(i), (A.2)

where F(i) represents remainders factors that do not depend of λ.

Now, replacing (2.11) and (A.2) into (A.1), it yields

PFA = kN−1
(
N

τ

)kN
(

Γ(k)NΓ(N)

Γ(kN)

−
NΓ(k)N−1Γ(N + 1)

(
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)k (
1
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F(1)

+
2NΓ(k)N−2Γ(N + 2)

(
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)2k (
1
λ

)2k

2Γ(Nk + 2k)
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−
3NΓ(k)N−3Γ(N + 3)

(
λN
τ

)3k (
1
λ

)3k

6Γ(Nk + 3k)
F(3) + RF(i)


 , (A.3)

where RF(i) represents the remainder terms of the series considering the factors F(i).

Finally, from (A.3) it can be easily noticed that the factor λk vanishes completely, yielding

in (2.31). This completes the proof.
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APPENDIX B –

Absolute convergence of (2.31)

Herein, we present the proof of the absolute convergence of (2.31). Eq. (2.31)

is an absolutely convergent series if satisfies the following:

∞∑

i=0

(
N
τ

)ik
Γ(i+N)

Γ(ik +Nk)
|ψi| < ∞. (B.1)

The factor |ψi| can be bounded as

|ψi| ≤
1

iΓ(k)

i∑

l=1

|ψi−l| |−i+ lN + l| Γ(lk + k)

l!
. (B.2)

Since the relation Γ(lk + k)/l! in (B.2) can behave as an increasing function if

k ≥ 1, or as a decreasing function if 0 < k < 1, two bounds must be found for (2.31).

For the case of k ≥ 1, we employ the fact that 1/Γ(k) < 2 and that |−i+lN+l| ≤

iN , ∀1 ≤ l ≤ i. Thus, |ψi| can be further bounded as

|ψi| < 2N
i∑

l=1

|ψi−l| Γ(lk + k)

l!
. (B.3)

Notice that (B.3) is an increasing function. Then, after using the last term of

the sum and multiplying the resulting expression by i, it yields

|ψi| <
2Nψ0Γ(ik +Nk)

Γ(i)

=
2NΓ(k)NΓ(ik +Nk)

Γ(i)
. (B.4)

Now, employing the bound (B.4) in (B.1), and after separating the first term

of the sum, we have

∞∑

i=0

(
N
τ

)ik
Γ(i+N)

Γ(ik +Nk)
|ψi| =

Γ(N)Γ(k)N
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N
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)ik
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. (B.5)

Finally, solving the infinite sum in (B.5) with the aid of [37, eq. (5.2.3.1)] and

provided that |N/τ | < 1, one attains

∞∑

i=0

(
N
τ

)ik
Γ(i+N)

Γ(ik +Nk)
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.

(B.6)



APPENDIX B.

Absolute convergence of (2.31) 60

Notice that the upper bound for (B.1) exist and is finite. Consequently, (2.31) converges

absolutely for k ≥ 1.

For the case of 0 < k < 1, notice in (B.1) that as i increases, the gamma function

Γ(i+N) in the numerator increases much faster than Γ(i+N) in the denominator, then

it immediately follows that (B.1) diverges. Thus, (2.31) diverges for 0 < k < 1.
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