AWZ UNIVERSIDADE ESTADUAL DE CAMPINAS
5

UNICAMP

Faculdade de Engenharia Elétrica e de Computacao

Eduardo Rocha de Andrade

Segmentacao Semantica Sob

Desbalanceamento Extremo por Imagens Vazias

Semantic Segmentation Under Extreme

Imbalance Towards Full-background Images

Campinas
2021

Eduardo Rocha de Andrade

Semantic Segmentation Under Extreme Imbalance

Towards Full-background Images

Segmentacao Semantica Sob Desbalanceamento

Extremo por Imagens Vazias

Dissertagao apresentada a Faculdade de
Engenharia Elétrica e Computagao (FEEC)
da Universidade Estadual de Campinas
(UNICAMP) como parte dos requisitos
para a obtencao do titulo de Mestre em
Engenharia Elétrica, na Area da Engenharia
da Computagao.

Dissertation presented to the School of
Electrical and Computer Engineering of the
University of Campinas in partial fulfillment
of the requirements for the degree of Master
in Electrical Engineering, in the area of
Computer Engineering.

Supervisor: Levy Boccato

ESTE TRABALHO CORRESPONDE A VERSAO FINAL
DA DISSERTAGAO DEFENDIDA PELO ALUNO ED-
UARDO ROCHA DE ANDRADE, E ORIENTADA PELO
PROF. DR. LEVY BOCCATO

Campinas

2021

Ficha catalografica
Universidade Estadual de Campinas
Biblioteca da Area de Engenharia e Arquitetura
Rose Meire da Silva - CRB 8/5974

Rocha de Andrade, Eduardo, 1992-
An24s Semantic segmentation under extreme imbalance towards full-background
images / Eduardo Rocha de Andrade. — Campinas, SP : [s.n.], 2021.

Orientador: Levy Boccato.
Dissertacao (mestrado) — Universidade Estadual de Campinas, Faculdade
de Engenharia Elétrica e de Computacgéo.

1. Aprendizado de maquina. 2. Segmentacao de imagens. 3. Segmentacao
de multiplos objetos. 4. Aprendizado profundo. I. Boccato, Levy, 1986-. II.
Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de
Computacao. Ill. Titulo.

Informacdes para Biblioteca Digital

Titulo em outro idioma: Segmentagdo semantica sob desbalanceamento extremo por
imagens vazias

Palavras-chave em inglés:

Machine learning

Image segmentation

Multi-object segmentation

Deep learning

Area de concentragdo: Engenharia de Computagéo
Titulagao: Mestre em Engenharia Elétrica

Banca examinadora:

Levy Boccato [Orientador]

Hélio Pedrini

Tiago Fernandes Tavares

Data de defesa: 20-12-2021

Programa de Pés-Graduagao: Engenharia Elétrica

Identificagao e informagoes académicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0001-7544-6822
- Curriculo Lattes do autor: http:/lattes.cnpq.br/0565655408463869

COMISSAO JULGADORA - DISSERTAGAO DE MESTRADO

Candidato: Eduardo Rocha de Andrade RA: 208913
Data da Defesa: 20 de dezembro de 2021

Titulo da Tese: "Semantic Segmentation Under Extreme Imbalance Towards
Full-background Images.”.

Prof. Dr. Levy Boccato
Prof. Dr. Hélio Pedrini
Prof. Dr. Tiago Fernandes Tavares

A ata de defesa, com as respectivas assinaturas dos membros da Comissao Julgadora,
encontra-se no SIGA (Sistema de Fluxo de Dissertagdo/Tese) e na Secretaria de
Po6s-Graduacao da Faculdade de Engenharia Elétrica e de Computacao.

To my parents

Acknowledgements

This work certainly represents a chapter in my life and it would never be
possible without the help and support of so many people. To all of them, which would be

too exhaustive to list, I would like to deeply express my appreciation.

To some, who provided especial support, I would like to especially express my

gratitude:

To my parents, Fernando Rocha de Andrade and Ligia Rocha de Andrade, for

raising me and providing me with the required education to get here.

To my companion and friend, Cinthia Kleiner, for all the love and support and

for having the patience to listen to my ideas.

To my professor, Levy Boccato, for accepting to be my supervisor in this work

and for providing the guidance I needed throughout all this time.

“The tmpediment to action advances action. What stands in the way becomes the way.”

— Marcus Aurelius

Resumo

O panorama de visao computacional mudou significativamente com o advento das redes
neurais convolucionais e técnicas de aprendizado profundo. Estas poderosas ferramentas
nao apenas aprimoraram tarefas tradicionais como classificacao de imagem, segmentacao
semantica e deteccao de objeto, mas também possibilitaram novas aplicagoes de visao
computacional, principalmente na area generativa, como, por exemplo, na geracao de im-
agens sintéticas e transferéncia de estilo. Entretanto, em aplicages reais, as condig¢oes de
contorno podem divergir significativamente daquelas mais vistas na literatura. Especifica-
mente para segmentacao semantica, imagens que nao contém nenhum objeto de interesse,
denotadas como imagens vazias, podem corresponder a uma porcao grande da base de da-
dos, resultando em um severo desbalanceamento de classe. Esse cenario particular é o tema
deste trabalho, no qual analisamos as duas abordagens mais comuns: segmentacao em um
Unico estagio e classificagdo-segmentagao em dois estagios. Como principal contribuicao,
noés propomos uma nova modificacdo na arquitetura de redes neurais de formato encoder-
decoder. Tal modificacao, apesar de pequena, é capaz de utilizar contexto semi-global e
mecanismos de atencao para melhorar a eficicia de redes de segmentagao de estagio tinico
em condig¢oes extremamente desbalanceadas a favor de imagens vazias. Adicionalmente,
propomos uma funcao custo auxiliar para imagens de foreground que, além de estabilizar
o processo de treinamento, permite que a rede se concentre em objetos pequenos mesmo
na presenca de um grande nimero de imagens vazias. Ambas as propostas foram avaliadas
em duas bases de dados de distintas caracteristicas e demonstraram ganhos em IoU de 15 e
25% contra os melhores competidores de um e dois estagios, respectivamente. Finalmente,
a fim de melhor compreender os mecanismos internos de nossa arquitetura, estudos de

ablagao foram realizados, demonstrando forte concordancia com nossas suposigoes iniciais.

Palavras-chaves: Segmentacao Semantica; Aprendizado Profundo; Aprendizado de Maquina;

Inteligéncia Artificial; Reconhecimento de Padroes

Abstract

The landscape of computer vision tasks has been significantly changed in the past decade
with the advent of convolution neural networks and deep learning techniques. Such pow-
erful tools not only improved traditional tasks such as image classification, semantic seg-
mentation and object detection, but also unlocked new computer vision applications al-
together, specially in the generative field, such as image generation and style transfer.
Nonetheless, in real applications, boundary conditions might diverge significantly from
those found in the literature. Specifically for semantic segmentation, images with no
object of interest — namely empty images — may comprise a big part of the dataset,
resulting in a stark class imbalance. This particular, yet common, scenario is the sub-
ject of this work, where we analyze both the single-stage segmentation and two-stage
classification-segmentation pipelines — the two most common deep learning approaches
to tackle this problem. We propose a novel modification for encoder-decoder segmenta-
tion networks as our main contribution. This relatively simple yet powerful layer takes
advantage of semi-global context and attention mechanisms to improve the efficacy of
single-stage encoder-decoder segmentation models in extremely unbalanced conditions.
Additionally, we propose an auxiliary segmentation loss for foreground images, which sta-
bilizes the training process and allows the network to focus on small objects even under
strong imbalance towards the background class. Both proposals are evaluated on two dif-
ferent datasets, showing IoU gains of up to 15 and 25% against its strongest single- and
two-stage competitors, respectively. Finally, in order to better comprehend the underlying
mechanisms of our architecture, ablation studies were performed, which showed a strong

agreement with our initial assumptions.

Keywords: Semantic Segmentation; Deep Learning; Machine Learning; Artificial Intel-

ligence; Pattern Recognition.

Figure 1.1 -
Figure 1.2 -

Figure 2.1 -

Figure 3.1 -
Figure 3.2 -

Figure 3.3 -

Figure 3.4 -

Figure 3.5 -

Figure 3.6 —

List of Figures

Dense prediction tasks in CV.
Single- and two-stage approaches for segmentation with empty
images. In a), the single-stage approach is shown where a single seg-
mentation network is trained for segmenting both empty and non-empty
images. In this case, the network performs the task of image-level fore-
ground classification implicitly. Alternatively, in b), a classification net-
work is first used to filter out the empty images and only foreground
images proceed to the segmentation network.
Examples of some predictions of the DeepLabV3+ model on the Pascal-
VOC 2012 dataset. Figure from (CHEN et al., 2018).
Summary of the main activation functions for hidden layers.
Comparison between ReLU and its variants. The Parametric
ReLU (HE et al., 2015) is a special case of the Leaky-ReLU (MAAS et
al., 2013) when the parameter « is learned by the network and, thus,
is not displayed in this figure. L.
1D Convolution Operation: Example of a 1D convolution with se-
quence and kernel with size of 5 and 3 units, respectively. This figure
uses padding equals to 1, which yields the SAME convolution format.
Figure inspired in (GOODFELLOW et al., 2016).
Matrix Multiplication vs. Convolution: Number of connections
and parameters for the dense or fully-connected layer increase linearly
with the number of units, whereas for the convolution it is fixed and
equals to the kernel size, in this case 3. Dashed circles show units that
only exist when padding is used. Figure inspired in (GOODFELLOW
et al., 2016).
Vertical Edge Detector Example: In this image, a simple hand-

designed convolutional kernel was employed to detect vertical edges

across the entire image. Image inspired in (GOODFELLOW et al., 2016).

Convolution’s Receptive Field: Deeper convolutional layers natu-
rally increase their receptive field, which is usually useful to capture
long-range dependencies and more complex features. Dashed circles
show units that only exist when padding is used. Figure inspired in
(GOODFELLOW et al., 2016).

22

29

40

42

Figure 3.7 — The Convolutional Layer. Each output channel is generated using

all input and kernel channels. 45
Figure 4.1 — Depth comparison. Comparison between a 20- and 56-layers net-

works trained on CIFAR-10 (KRIZHEVSKY et al., 2009) for image

classification task. Image extracted from (HE et al., 2016). 49
Figure 4.2 — The residual connection. The input of the convolutional block is

directly added to its output, providing a shortcut. Image extracted from

(HE et al., 2016). 49
Figure 4.3 — The residual blocks. Left: the basic residual block, where two 3x3

convolutions are used without dimensional reduction. Right: The bot-

tleneck residual block, two 1x1 convolutions are used to reduce and

expand the number of the channels, before and after the 3x3 convolu-

tion, respectively. In both blocks, a 1x1 convolution may be employed

to the shortcut connection in order to match the number of channels if

required. Image extracted from (HE et al., 2016). 51
Figure 4.4 - Comparison between a plain and residual 34-layer networks.

Right: the dashed arrow represents a 1x1 convolution employed to the

shortcut connection in order to match the number of channels. Image

adapted from (HE et al., 2016). 52
Figure 4.5 — Squeeze-and-Excitation Block: The original feature map X is sub-

ject to a self-attention transformation based on its own content, which

allows it to reduce feature redundancy and to focus on most sensitive

information along the channel dimension. ReLLU activation function be-

tween f; and fo is omitted. Figure inspired in (HU et al., 2018). 54
Figure 4.6 - Comparison between the residual block and SE-augmented

residual block. Image extracted from (HU et al., 2018). 55
Figure 4.7 - MBConv Block variant used in EfficientNet. Figure inspired in

(TAN; LE, 2019). o oo 57

Figure 5.1 - Hypercolumn concept. The hypercolumn layer first adapts each fea-
ture map’s resolution and number of channels with bi-linear upsampling
and 1x1 convolutions, respectively. Then, the feature maps are fused,
either by concatenation or element-wise sum, into a common represen-
tation, which is the input of the pixel-wise classifier. Figure inspired by
Hariharan et al. (2014a). oL 60
Figure 5.2 - Importance of context and semi-global information. This ex-
ample evinces how context and semi-global image information can be

important semantic cues for pixel classification. 61

Figure 5.3 -

Figure 5.4 -

Figure 5.5 -

Figure 5.6 -

Figure 5.7 -

Figure 5.8 -

Figure 5.9 -

Figure 5.10—

Figure 5.11-

Figure 5.12—

Fully convolutional network. When the final pooling and fully-
connected layers of a) are replaced by convolutions, the network is able
to output a heatmap, as in b), enabling end-to-end dense training by
averaging the loss at every output pixel. Figure inspired in (LONG et
al., 2014). . . L
The slender decoder of FCNet. The encoder’s output feature map
is upsampled by 2x steps. In each step, the encoder’s feature map of
corresponding resolution is used as skip-connection to recover high-
frequency information. Figure extracted from (LONG et al., 2014).
Intermediate segmentation results of FCNet. Each image shows
the corresponding segmentation result for each stride of Figure 5.4.
Figure extracted from (LONG et al., 2014).
U-Net Architecture. U-Net modified FCNet (LONG et al., 2014) by
adding more convolutions and increasing the number of channels in the
decoder network, improving the network’s capacity to fuse feature maps
and, ultimately, enhancing the reconstruction of fine-grained details in
the upsampling path. Figure extracted from (RONNEBERGER et al.,

Decoder comparison. Sub-figure a) shows the top-down FPN (LIN
et al., 2016) approach, whereas b) represents the bi-directional con-
nections of PAN (LIU et al., 2018). Finally, c) represents the BiFPN
(TAN et al., 2019) evincing its modifications upon the PAN design.
Solid green arrows represent outputs used both in object detection and
semantic segmentation tasks, whereas dashed arrows of the same color
correspond to outputs used only in object detectors. Figure inspired in
(TAN et al., 2019).
Complete EfficientDet architecture for object detection. Figure
extracted from (TAN et al.,2019).
FaPN overview and comparison with FPN. Figure extracted from
(HUANG et al,,2021). o oo
Overview of the Feature Alignment Module. Figure extracted
from (HUANG et al.,2021).
Overview of the Feature Selection Module. Figure extracted from
(HUANG et al,,2021). oo
Focal loss effect on different values. Figure extracted from (LIN
et al., 2017). . . . L

63

66

Figure 6.1 - Hypercolumns applied to the decoder network. The transforma-
tion ¢(-) converts each feature map into a common dimension, enabling
the fusion by either channel concatenation or element-wise summation.

Figure 6.2 - Complete Architecture Diagram. Dashed, green and blue arrows
denote skip-connections, down- and up-sampling operations, whereas
the feature map’s color represents its semantic content. Final segmen-
tation classifier is added on top of the Multi-level Fuse block’s output.
Best viewed in color.

Figure 6.3 — Multi-level Fuse Block. The Hypercolumns’ output feature map
X first undergoes a channel-wise transform v; to reduce the impact
of semantically bad and possibly co-occurring features. Then, a set
of three 3x3 convolutions, followed by Batch Normalization (IOFFE;
SZEGEDY, 2015) and ReLU are applied to also merge the features
spatially, resulting in the feature map Z. Finally, another channel-wise
transform v, is applied to re-calibrate the channels. Our segmentation
classifier is applied on top of Z'.

Figure 8.1 — Some results on the SIIM-ACR dataset. The first column shows
the three random images used as input for the segmentation mod-
els, whilst the second, third and forth columns show the segmenta-
tion masks resultant from the U-Net (RONNEBERGER et al., 2015),
Hypercolumns (HARTHARAN et al., 2014a) and the proposed model,
respectively. The ground-truth segmentation masks are shown in the
fiftth column.

Figure 8.2 — Ablation study on the auxiliary loss. Although all metrics benefit
from the additional loss, clearly the mloU is the most sensitive since it

suffers most from the class imbalance problem.

76

List of Tables

Table 4.1 — EfficientNet-B0O (TAN; LE, 2019) Architecture 58
Table 4.2 — EfficientNet (TAN; LE, 2019) model family 58
Table 7.1 — Class Statistics for the SIIM-ACR Pneumothorax Dataset 81
Table 7.2 — Class Statistics for the COCO-BikeCar Dataset 82
Table 8.1 — Batch Sampling Study 86
Table 8.2 — Results on the SIIM-ACR Pneumothorax Dataset 87
Table 8.3 — Results on the MS-COCQO: BikeCar Dataset 89
Table 8.4 — Results on the SIIM-ACR Pneumothorax Dataset Using EfficientDet

and FaPN as Baseline 89

Table 8.5 — Ablation on Multi-level Fuse Block 91

List of Symbols

General

CNN Convolutional Neural Network

CPU Central Processing Unit

CV Computer Vision

FLOPs Floating Point Operations

GPU Graphics Processing Unit

MRI Magnetic Resonance Imaging

OS Operational System

RAM Random-access Memory

RBG Red, Green and Blue Image Channels
SS Semantic Segmentation

SSEI Semantic Segmentation with Empty Images
Layers

BiFPN Bidirectional Feature Pyramid Network
BN Batch Normalization

DWConv Depth-wise Convolution

ELU Exponential Linear Unit

FAM Feature Alignment Module

FC Fully-connected Layer

FCNet Fully Convolutional Network

FPN Feature Pyramid Network Layer
FSM Feature Selection Module

GN Group Normalization

HC Hypercolumns Layer

IN Instance Normalization

LN Layer Normalization

MBConv Mobile Inverted Residual Convolutional Block
MLF Multi-level Fuse Block

MLP Multi-layer Perceptron

PAN Pyramid Attention Network

PReLU Parametric Rectified Linear Unit

ReLU Rectified Linear Unit

SE Squeeze-and-Excitation

Metrics

FN False Negatives

FP False Positives

N Negatives Samples

P Positives Samples

TN True Negatives

TP 'True Positives

CE Cross-entropy Loss

IoU Intersection Over Union

mloU Mean Intersection Over Union of Each Class
Networks

FaPN Feature-aligned Pyramid Network

OCRNet Object Contextual Representitaion Network
PANet Pyramid Attention Network

PSPNet Pyramid Scene Parsing Network

ResNet Residual Neural Network
SENet Squeeze-and-Excitation Network

VGG Visual Geometry Group Network

1

Contents

Introduction e e e e e e 21
1.1 Problem Characterization, 21
1.2 Problem Motivation 23
1.3 Objectives and Contributions 24
1.4 Research Questions 25
1.5 Text Structure. 25
Problem Definition o e 27
2.1 TImage Classification 27
2.2 Semantic Segmentationo Lo 28
2.3 Segmentation with Empty Images 29
2.4 Class Imbalance 31
2.4.1 Sampling Techniques L. 32
Elementary Operationsin CNNs 34
3.1 Multi-layer Perceptron oo 34
3.2 Activation Function 34
3.2.1 Sigmoid 35
3.2.2 Hyperbolic Tangent 0. 36
323 ReLU 36
3.24 ReLU Variants 37
3.24.1 Leaky-ReLU o 37

3242 PReLU 37

3243 ELU 37

3.25 Swish 38

3.3 Convolution 39
3.3.1 Sparse Connectivity oo 40
3.3.2 Parameter Sharing oL 41
3.3.3 Translation Equivariance L. 42
3.3.4 Receptive Fieldo o 43
3.3.5 Convolutions in CNNs: The Conv Layer 43

3.4 Pooling 45
3.5 Batch Normalization, 46
Convolutional Neural Networks for Image Classification 48
4.1 Residual Neural Networks (ResNets) 48

4.1.1 The Residual Connection 48

4.1.2 The Residual Blockso 49

4.1.2.1 The Basic Block 49

4.1.2.2 The Bottleneck Block 50

4.1.3 Network Architecture 50

4.2 Squeeze-and-Excitation Networks 51

4.2.1 Squeeze 53

4.2.2 Excitationo 53

4.2.3 SENet Architecture 54

4.3 EfficientNet 54

4.3.1 Compound Scaling 55

4.3.2 MBConv Block 26

4.3.3 Network Architecture 56

Convolutional Neural Networks for Semantic Segmentation 59

5.1 Hypercolumnso 29

5.1.1 The Hypercolumn Layer 60

5.2 Fully Convolutional Network 60

5.2.1 From Dense Layers to Convolutions 62

5.2.2 Decoder 62

5.3 U-Net 63

5.3.1 Bigger Decoder 64

5.4 TImproved Decoder Designs: FPN and PAN 65

5.5 EfficientDet 65

5.6 Feature-aligned Pyramid Network (FaPN) 67

5.6.1 Feature Alignment Module (FAM) 67

5.6.2 Feature Selection Module (FSM) 68

5.7 Loss Functions and Metrics 69

5. 7.1 Metricso 69

57.1.1 Jaccard Index 70

5.7.1.2 Dice Score 70

5.7.2 Loss Functions 70

5.7.2.1 Cross-Entropy Loss 70

5722 Focal Loss 71

5.7.2.3 Soft-dice Loss L 71

5.8 Final Remarks. 72
Proposed Method for Segmentation Under Extreme Imbalance Towards

Full-background Images i i e 74

6.1 Architecture 75

6.1.1 Decoder s 75

6.1.2 Inverted Hypercolumns 75

6.1.3 Multi-level Fuse Block 76

6.2 Losseso 7
6.2.1 Main Segmentation Loss L. 78

6.2.2 Auxiliary Foreground Segmentation Loss 78

7 Experiments e e e e e e e e e e e e e e e e e 80
7.1 Datasets e 80
7.1.1 SIIM-ACR Pneumothorax 80

7.1.2 MS-COCO: BikeCar 81

7.2 Evaluation Metrics 81
7.3 Implementation Details 82
7.3.1 Network 82

7.3.2 Optimizer 83

7.3.3 LoSs 83

7.3.4 Training Settingso Lo 83

8 Results. e e e e e e e 85
8.1 Data Sampling and Batch Formulation 85
8.2 SIIM-ACR Pneumothorax Dataset 85
8.3 MS-COCO: BikeCar 88
8.4 Combining the Proposed Model with Modern Architectures 88
8.5 Ablation Studies 90
8.5.1 Multi-level Fuse Block 90

8.5.2 Auxiliary Foreground Segmentation Loss 91

9 Conclusion e e e e e e e e e e e 93
9.1 Research Questions 94
9.2 Future Research 95

Bibliography 96

21

1 Introduction

In this chapter, we begin by briefly explaining the target problem of this work.
In the sequence, we address the motivations behind its investigation and present the
objectives and contributions of this work. Finally, the main research questions we aim
to answer are introduced and the organization of this document is explained with the

purpose of providing the reader with further clarity.

1.1 Problem Characterization

The advent of convolutional neural networks (CNNs) (LECUN et al., 1989) has
definitively changed the landscape of computer vision (CV) applications. Initially, most
deep learning techniques were applied to the traditional task of image classification, which
consists in classifying an entire image into one of a set of pre-defined classes. Naturally,
with the breakthroughs observed in popular CV benchmarks such as ImageNet (RUS-
SAKOVSKY et al., 2015), studies quickly started to adapt deep classification models to
dense prediction tasks. Among those, object detection — which aims to provide localiza-
tion (as boxes) for instances of each class in the image — semantic segmentation — which
consists in classifying every individual pixel of the input images as belonging to one of
a set of predefined classes — and instance segmentation — that further extends semantic
segmentation results to also distinguishing between instances of the same class — were the
ones that experienced major improvements due to the emergence of such models. Figure

1.1 overviews the traditional dense prediction tasks in CV.

Nonetheless, real-world applications present themselves with several peculiar-
ities, which, in some cases, diverge significantly from the canonical scenarios that are
mostly studied in the literature. Semantic segmentation with empty images (SSEI)

is one of such cases and constitutes the main scope of this work.

Empty images can be defined as images that have no object of interest and,
consequently, all their pixels belong to the background class®. Although in semantic seg-
mentation the background class is intrinsically handled, when empty images are present
they usually account for a high percentage of the dataset, which leads to dire class im-
balance between background and foreground pixels, which, ultimately, hinders the CNN’s

performance.

L' Due to a lack of better terminology, we refer to them as empty, negative or background images.

Correspondingly, images that have at least one pixel belonging to a foreground class are referred to
as foreground, positive or non-empty images.

Chapter 1. Introduction 22

Object detection Semantic Segmentation

®
<G

catl

cat 3

catl cat 2

z I

cat3

Instance Segmentation

Figure 1.1 — Dense prediction tasks in CV.

A possible strategy to address this task involves a two-stage scheme. First,
a classifier is used to predict the presence of one of the foreground classes at image-
level; then, a semantic segmentation model is used to classify the positive images at
pixel-level. Nevertheless, such approach presents some limitations of its own such as error
propagation, bigger memory footprint and may be prohibitive in applications that demand
better explainability, such as medical imaging, given the first classifier’s coarse prediction.
An overview of the two most common approaches to address the problem of semantic

segmentation with empty images is given in Figure 1.2.

Chapter 1. Introduction 23

Dataset with

N Predictions
empty images
ﬂ » Segmentation
a) Network
Empty mask

Yes »

| Classification
b) - Network

No
Segmentation
Network

Figure 1.2 — Single- and two-stage approaches for segmentation with empty im-
ages. In a), the single-stage approach is shown where a single segmentation
network is trained for segmenting both empty and non-empty images. In this
case, the network performs the task of image-level foreground classification
implicitly. Alternatively, in b), a classification network is first used to filter
out the empty images and only foreground images proceed to the segmenta-
tion network.

——>_is empty?

1.2 Problem Motivation

The motivations that encourage us to investigate the problem of semantic
segmentation with empty images essentially are the observed lack of coverage in the

literature and its common presence in practical applications.

We hypothesize that the first reason mainly stems from the fact that one of
the major factors that have driven the growth of the machine learning field in the past
years is the standardisation of databases. By using the same publicly available datasets,
reproducibility is facilitated and authors are able to easily compare their results and, con-
sequently, build upon previous works. Nonetheless, as a side effect, new works start to get
specifically tailored for the major databases and, in some cases, may not be representative

of the general task. Particularly pertinent to the scope of this work, popular datasets for

Chapter 1. Introduction 24

semantic segmentation, such as PASCAL-VOC (EVERINGHAM et al., 2010), CityScapes
(CORDTS et al., 2016) and MS-COCO (LIN et al., 2015), are all majorly designed in a
way that all their images have at least one of the foreground classes, disregarding empty
images that are often found in practical applications. Additionally, SSEI is naturally han-
dled by the background class and given the simplicity of two-stage pipelines, the task does
not attract as much academic interest for researchers as the standard semantic segmenta-
tion. We argue, however, that the default approaches to the problem are sub-optimal and
can be significantly improved upon scrutiny and by adopting more refined and especially-

tailored strategies.

No less important, the high-frequency of empty images in real-world applica-
tions is our second motivation. In medicine, for example, many diseases, such as pneu-
monia, pneumothorax, tumors, carcinoma and melanoma, can be detected by analyzing
X-rays and CT-scans images. Nevertheless, the occurrence of the disease in the exam may
be quite scarce when compared to the cases of healthy patients, which can generate in-
trinsic class imbalance towards empty or healthy images in medical datasets. Similarly, in
industrial processes, the event of interest may be related to rare anomalies or defects in a
production line that must be detected. Empty images are also often present in large-scale
sensor data such as satellite images and seismic imaging. Given its frequent and impor-
tant occurrence in practical applications and its absence in the deep learning literature,
the particular case of semantic segmentation with unbalanced data towards empty images

was chosen as the topic of this work.

1.3 Objectives and Contributions

In this work, we propose to study and compare common single- and two-stages
approaches on the problem of semantic segmentation with empty images, which despite
being very common in real applications is seldom explored in the literature. Furthermore,
we propose a new network architecture that employs attention mechanisms to incorporate
global and semi-global context, which enhances its image- and pixel-level predictions. In
addition, an auxiliary segmentation loss based on the Dice coefficient (SORENSEN, 1948)
is proposed for foreground images, which aims to reduce the class imbalance problem
at batch level. Finally, we perform a series of ablation experiments to investigate our
proposed architecture and loss, providing empirical evidence to support our understanding

of such layers.

Accordingly, the main contributions can be summarized as follows:

1. Proposal of architectural modifications that can be applied to modern encoder-

Chapter 1. Introduction 25

decoder networks to specially tackle the problem of semantic segmentation with

empty images.

2. Investigation on the role of simple image-level batch formulation schemes, which are

seldom used in segmentation, when background images are also taken into account.

3. Proposal of an auxiliary scale-invariant segmentation loss function to be used along
image-level batch sampling schemes to cope with the class imbalance in single-stage

approaches.

4. Investigation and comparison of the two most common approaches to solve the
problem — single- and two-stage — providing important insights for data science

practitioners.

1.4 Research Questions

In this section, we list the main questions that drive our investigation and

research:

1. What are the difficulties particularly imposed by the presence of empty images in
the dataset?

2. Considering class imbalance, how single-stage approaches fare against their more

complex two-stage counterparts?

3. Is it possible to employ “smart” image-level batch sampling schemes, commonly used
in image classification tasks, to mitigate class imbalance in semantic segmentation

with empty images?

4. Can a especially-tailored architecture for the task at hand improve the results when

compared to the default approaches?

1.5 Text Structure

The remainder of this dissertation is aimed to provide the reader with a good
introduction to the problem at hand and its corresponding theoretical basis. Then, the
proposed contributions are presented along with the experimental setup and the method-
ology used throughout this work. Finally, the results are presented and discussed followed

by the conclusion and future works.

More objectively, the document is structured as follows:

Chapter 1. Introduction 26

Chapter 2 presents a formal and more in-depth introduction to the tasks covered in

this dissertation.

Chapter 3 overviews the most common operations and layers used in CNNs, such
as the multi-layer perceptron, the convolution, activation functions and the batch

normalization, providing the foundation for the following chapters.

Chapters 4 and 5 provide a bibliographic review of the most famous and relevant
neural networks for image classification and semantic segmentation, respectively.
Also, in Chapter 5, we briefly overview popular evaluation metrics and loss functions

used to train segmentation networks.

Chapter 6 introduces the proposed framework and other contributions proposed by

this work.

Chapter 7 explains the experimental procedure and methodology utilized in the

performed experiments.
Chapter 8 presents and discusses the experimental results and their implications.

Chapter 9 concludes this document by summarizing its most important findings and

enumerating possible future works.

27

2 Problem Definition

We start this chapter by briefly introducing the computer vision tasks of Image
(Classification and Semantic Segmentation under a deep learning perspective. Then, the
target topic of this work — semantic segmentation with empty images — is presented along
with a section focused on class imbalance, which often occurs when empty images are

introduced.

2.1 Image Classification

Image classification is a classical tasks in computer vision. It consists in de-
termining which class ¢ among a predefined set of classes C an input image belongs to.
Formally, for an input RGB image X € R#*W>3 of height H and width W, the classifica-
tion model is expected to produce a function f : RE*W>3 — Le) ¢y ... ¢} mapping it to a
categorical output ¢ € C. In practice, the image classes are encoded as a strictly increasing
sequence of natural numbers, i.e., {1,2,3,...,c} € N* which are denoted as ground-truth
labels y. The model’s class estimate, on the other hand, is denoted by § = f(X).

The applications for image classification are very wide ranging from satellite
imagery to medical imaging. Particularly for the latter, Rajpurkar et al. (2017) utilized
chest X-rays to train a CNN capable to detect 14 lung diseases such as Pneumonia,
Pneumothorax, Edema, Fibrosis and Hernia, and reports F1-score performance exceeding
that of an average radiologist. Another example is (HOSSEINI-ASL et al., 2016), which
uses a 3D-CNN to diagnose Alzheimer’s disease in MRI scans reporting state-of-the-art
accuracy over 99%. The paper also reports a pre-training in an autoencoder fashion to
first learn generic brain structure features and, then, fine-tunes the model using deep-
supervision to detect the Alzheimer’s disease. Pratt et al. (2016) reported an accuracy
metric of 75% when detecting diabetic retinophaty using a 13 layers CNN trained on
90,000 digital images of the fundus of the eye.

Aside from medical applications, Pritt and Chern (2017) used an ensemble of
CNNss to classify 63 classes of facilities, such as hospital, airport, park and zoo, in satellite
imagery. The paper reports overall accuracy over 83% and, for some specific classes (15

among the 63 available), over 95%.

ImageNet (RUSSAKOVSKY et al., 2015) — one of the most important datasets
and challenges in computer vision — comprises over 1 million images and over 1000 different

classes, from several dog and cat breeds to general objects and vehicles. Notably, prior to

Chapter 2. Problem Definition 28

CNNs, the best scoring solution was (SANCHEZ; PERRONNIN, 2011) achieving 50.9%
top-1 accuracy. Currently, modern deep convolutional networks such as (HE et al., 2016;
XIE et al., 2017; PHAM et al., 2020a; HU et al., 2018; TAN; LE, 2019) can easily surpass
the 80% accuracy milestone and, recently, (PHAM et al., 2020b) achieved the 90% mark.

2.2 Semantic Segmentation

Along with image classification and object detection, semantic segmentation
is one of the most common tasks in computer vision. Similarly to image classification,
a sample must be assigned to one of ¢, € C predefined classed. However, instead of
classifying the entire image, in semantic segmentation the prediction occurs at pixel-level.
Thus, all pixels are expected to be individually assigned to one of the ¢ foreground classes
or a background class B.

Formally, the segmentation model implements a function f : R#*W>3 — ¢

RIXWX3 into a segmentation mask

B}1*W capable of mapping an input image X €
Y € {C U B}!*W whose pixels have integer values corresponding to their class encoding,

which includes the background class B.

As for its applications, the joint classification and localization capabilities of
semantic segmentation models make such class of algorithms very useful, enabling their
widespread adoption in several areas. In diagnostic medicine, for example, Pereira et al.
(2016) designed a 11-layered CNN able to segment tumors on brain MRI scans, which
obtained the first place in the BRATS 2013 challenge!. Brain tumor segmentation is
very important since, by providing precise boarders for the brain and tumor regions, it
guides the brain surgeon on the removal of the cancerigenous mass, avoiding eliminating
excessive eloquent brain tissue, which can cause limb weakness, numbness and cognitive
impairment according to Ker et al. (2018). In 2019, The Society for Imaging Informatics
in Medicine (SIIM) and the American College of Radiology (ACR) hosted a semantic
segmentation competition on Kaggle? to predict Pneumothorax® on lung X-ray images.
The competition* had more than 1,400 participating teams and the top solutions achieved
Dice coefficient (SORENSEN, 1948) greater than 86%. Apart from medical applications,
AirBus® hosted a competition to segment ships in satellite imagery. Severstal® offered

$120,000 in prizes for contestants to segment defects in images of steel sheets, claiming

L More information at: <https://www.smir.ch/BRATS/Start2013>

2 Popular website that promotes several Artificial Intelligence (AI) competitions with prizes.
Pneumothorax is a pathology caused by the presence of air in the pleural cavity of the lung, which
may be life-threatening and requires drainage.

More information at: <https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation/overview>
More information at: <https://www.kaggle.com/c/airbus-ship-detection>

More information at: <https://www.kaggle.com/c/severstal-steel-defect-detection/overview>

https://www.smir.ch/BRATS/Start2013
https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation/overview
https://www.kaggle.com/c/airbus-ship-detection
https://www.kaggle.com/c/severstal-steel-defect-detection/overview

Chapter 2. Problem Definition 29

a good algorithm could help them improve their production quality. TGS also prized a
total of $100,000 to the top-4 solutions to correctly predict salt deposits in sonar images.
Chen et al. (2018) proposed to use dilated convolutions (YU; KOLTUN, 2015) along with
a thin decoder, allowing their model to better handle high-frequency information and
granting the state of the art in the 2012 Pascal-VOC (EVERINGHAM et al., 2010) image
segmentation challenge with almost 90% mean Intersection Over Union (mloU) without
any post-processing. Some examples of the results offered by such powerful algorithm are

displayed in Figure 2.1.

T
|

i} it

Figure 2.1 — Examples of some predictions of the DeepLabV3+ model on the Pascal-VOC
2012 dataset. Figure from (CHEN et al., 2018).

2.3 Segmentation with Empty Images

Ever since the deep learning technology was disseminated into the field of
semantic segmentation, many novel network architectures and loss functions have been
consistently proposed in an incredible fast pace, allowing solutions with ever-growing
quality. Part of such success is due to the good quality and availability of recent image
databases such as MS-COCO (LIN et al., 2015), Pascal-VOC (EVERINGHAM et al.,
2010) and Cityscapes (CORDTS et al., 2016), which allow public access to a high num-
ber of labeled data and enables researchers to benchmark and compare their solutions
on a common basis. Nevertheless, as a consequence, many models and innovations are
exclusively designed to work on problems with a set of characteristics similar to those of
the aforementioned datasets and, consequently, many particularities of semantic segmen-
tation that are often found in real applications are neglected or do not receive sufficient
attention. As an illustration of the given point, it is not rare to find top solutions on

the benchmarks that perform poorer than expected in unusual domains and, in many

T More information at: <https://www.kaggle.com/c/tgs-salt-identification-challenge/overview>

https://www.kaggle.com/c/tgs-salt-identification-challenge/overview

Chapter 2. Problem Definition 30

cases, simple architectures can perform equally well with much less parameters. Both
SIIM-ACR Pneumothorax® and Severstal: Steel Defect Detection® competitions, for ex-
ample, had winner solutions based on simple encoder-decoder architectures, such as U-Net
(RONNEBERGER et al., 2015) and FPN (LIN et al., 2016), whereas networks based on
dilated convolutions (YU; KOLTUN, 2015) — that were the state-of-the-art solutions for
the aforementioned benchmarks at the time — achieved significantly lower scores. In this
particular example, we hypothesize that while dilated convolutions may be very suited for
natural images where objects’ borders are well defined, they bring no gain on data whose

objects’ contours are more subtle or defined by texture, such as X-ray or seismic imaging.

In this section, we introduce the problem of semantic segmentation with empty
images. In contrast to the aforementioned datasets from the literature, many real applica-
tions have considerably less samples to train deep learning models. Furthermore, it is also
common that many of such samples are completely empty, i.e., all of their pixels belong
to the background class. Consequently, such tasks usually present higher levels of class
imbalance towards the background class and, thus, require a careful approach. Considering
the importance of class imbalance in the scope of our work, we dedicate Section 2.4 for

the analysis of such property.

Although the problem of segmentation with empty images represents a par-
ticular instance of the general semantic segmentation, it can also be interpreted as the
combination of two separate tasks. First, a binary classification is set to classify im-
ages as either foreground or background. Then, a conventional semantic segmentation
problem is defined only for the foreground images, i.e., images that have at least one
of their pixels belonging to a foreground class. In this case, the overall model is ex-
pected to produce a classification function f : RE*XW>3 — B F1 and a segmentation
function g : RE>XWx3 — [1 . c}#*W. The function f is responsible for first deter-
mining whether the input image X € R7*W>3 helongs to the foreground class F or the
background class B. If the label F is assigned, then the image is used as input to the
segmentation function g, which is responsible for assigning a class ¢ € C for each pixel,
producing a segmentation mask Y € {B,1, ..., c}*W. Otherwise, an empty segmentation
mask Y? € B#*W is assigned to the image. The contrast between single- and two-stage

approaches to solve the task of SSEI was illustrated in Figure 1.2 in the previous chapter.

8
9

<https:/ /www.kaggle.com/c/siim-acr-pneumothorax-segmentation /overview>
<https:/ /www.kaggle.com/c/severstal-steel-defect-detection/overview >

https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation/overview
https://www.kaggle.com/c/severstal-steel-defect-detection/overview

Chapter 2. Problem Definition 31

2.4 Class Imbalance

For essentially all deep learning applications, data quality is of utmost im-
portance. Although some characteristics are very task specific, there are several others
that could be generically desired for a training set. Particularly for computer vision, the

following can be listed:

o Size: the number of samples (images) in the dataset. In general, deep neural net-
works are very data intensive and dataset size is very important to avoid overfitting.
Such dependency is specially true for deeper models with high number of learnable
parameters. Interesting enough, some recent works such as (XIE et al., 2020) and
(DOSOVITSKIY et al., 2020) have shown that even datasets with more than 1
million images such as ImageNet (RUSSAKOVSKY et al., 2015) are not enough to
exploit the full capability of big models.

o Diversity: this characteristic is related to the training dataset’s distribution. In
CNNs, invariance to scale, rotation, pose, style, brightness and other photometric
effects are learned through data. Hence, a diverse dataset is very important and,
consequently, data augmentation techniques can be an important asset to ensure

the network receives relevant variations of the samples.

o Class balancing: this property accounts for the difference in the number of samples
of each class. Ideally, a training dataset is expected to be well balanced between its
classes. Otherwise, given a disproportional signal feedback at the learning phase, a
deep learning model may bias its predictions towards the majority class. Unfortu-

nately, unbalanced datasets are reasonably common in real-world applications.

Even though all the aforementioned items are inter-connected, the latter, in
particular, is very important to the scope of this work due to the significant growth in
the number of samples for the background class when empty images are incorporated as
part of the training set. Thus, a thorough examination of such dataset property is of great

interest to our work.

For a binary classification problem, the images are divided into two categories
or classes. In such scenario, class imbalance occurs when one class, namely minority class,
has considerably less samples than the other (majority). Such phenomenon is very common
in real applications and its causes can be either classified as intrinsic or extrinsic. The
former category is related to the natural distribution/frequency of the data; for instance,
in medical imaging is frequent to have considerably less X-rays or MRI images of a certain

disease than those associated with healthy patients. Other examples include rare events

Chapter 2. Problem Definition 32

such as manufacturing defects, natural disasters and security violations. The latter, on the
other hand, is usually associated to data collection or other external factors, e.g., privacy
or economical reasons (JOHNSON; KHOSHGOFTAAR, 2019). In addition, the minority
class usually stands as the one that capture most of the application’s interest, e.g disease
or rare event. Thus, being able to correctly handle these categories is paramount in some
contexts. Analogously, the definition can be extended to a multi-class form through class

decomposition (Wang; Yao, 2012).

Early in the 1990’s, Anand et al. (1993) studied how the backpropagation al-
gorithm (RUMELHART et al., 1986) performed under class imbalance situations. It was
found that, in such scenarios, the net gradient for the minority class was significantly
lower than that of its majority counterpart. Consequently, since the gradients are directly
used to update the network’s weights, the algorithm could easily learn features from the
dominant class while the minority class would converge in a much slower pace and with
higher associated error. Furthermore, as aforementioned, CNNs are very data intensive.
Thus, having a category under-represented in the dataset often results in sub-optimal size
and diversity for that category, which may hinder the network’s capacity to learn repre-
sentative and diverse features to correctly classify images of the dominated class. Even
in Big Data, the recent works (Bauder et al., 2018) and (BAUDER; KHOSHGOFTAAR,
2018) show that working with rare classes can be very difficult and require deliberate

handling.

Finally, not only class imbalance can degenerate the model’s performance, but
one must be careful when selecting the performance metrics for a problem with unbalanced
dataset since some metrics can be easily skewed towards the dominant class, occluding the
analysis of the dominated categories and, ultimately, hampering an unbiased evaluation

of the algorithm.

In the sequence, we present the under- and over-sampling techniques (BRANCO
et al., 2015; HE; MA, 2013; JOHNSON; KHOSHGOFTAAR, 2019), which are commonly
used to tackle the class imbalance issue in classification tasks. These two simple techniques

are very important to our work since we propose to adapt them for the SSEI context.

2.4.1 Sampling Techniques

Considering a binary classification scenario for a training set of Ny sSamples
with a minority class ratio r,,, i.e., the number of images belonging to the minority
class N,,;, divided by the total number of samples Ny, Where 7,,;, << 50%, a single
training epoch would contain significantly more samples from the majority class Maj.

The under-sampling technique simply consists in modifying the dataset exploited in an

Chapter 2. Problem Definition 33

epoch to provide a more balanced data representation.

From a practical perspective, at the beginning of each epoch, one would ran-
domly select N,,;, examples from the majority class so that the training set for that epoch
would be comprised of 2 - N,,;, samples (all the images from the minority class plus the
same number of randomly selected samples from the majority class). Since most deep
learning models train over multiple epochs, the majority class is exploited in its entirety
whilst providing a balanced representation for the network. If desired, one can take a
more careful approach and make sure that the batches provided to the network are also

balanced.

On the opposite direction, the over-sampling technique randomly selects with
replacement a total of Np,.; = Nitar — Nmin samples from the minority class so that
the epoch training set is balanced (and, as consequence, bigger than the original training
set). Especially when applying sampling techniques, data augmentation is an important

asset to increase the diversity of the examples.

In semantic segmentation, on the other hand, since the annotations are pro-
vided at pixel-level, a single image is usually comprised of pixels from more than one class,
making it difficult to apply sampling techniques. Therefore, such methods are avoided and

modifications to the loss function, such as Focal Loss (LIN et al., 2017), are used instead.

Particularly in the SSEI context, since most of the imbalance occurs between
the background class and the set of all others classes, we can divide the images in the
training set as background, where all pixels belong to the background class, and foreground,
where at least one pixel belongs to one of the non-background classes. By doing so, we
propose to mitigate the class imbalance towards empty images by applying one of the
sampling techniques previously described. In Chapter 8, we provide a better description

of this application and perform some experiments to evaluate its usefulness.

34

3 Elementary Operations in CNNs

This chapter brings a short introduction on the basic operations used in con-
volutional neural networks, which are the building blocks for almost any modern CNN

discussed in the next chapters.

3.1 Multi-layer Perceptron

The Multi-layer Perceptron (MLP), also known as feedforward network, is
one of the most emblematic models in deep learning. Its main goal is to approximate
a function f and is usually used to classify samples or perform regression to a target
numeric value. The MLP is comprised by one or more hidden layers and a final output
layer, generally a linear or logistic regression, depending on the task (GOODFELLOW et
al., 2016).

The hidden layer is usually a linear transformation followed by a non-linear
activation function ¢. The complete transformation f(x;W,b) = z = ¢(x - WT + b),

CoutxCin and a bias vector b, maps an input

parameterized by a weight matrix W € R
vector of size Cj,, which can be either the actual input features x" or the output from a
previous hidden layer z'~', to a non-linear representation z* where the superscript i rep-
resents the layer number. The final network, then, corresponds to the sequence of layers
from the input to the output. For a four-layer network, for instance, the overall trans-
formation is represented by f(x) = FA(f3(f2(f1(z))))) and is expected to approximate f
given the optimization algorithm finds suitable values for the parameters W’ b i € [1,4]

(GOODFELLOW et al., 2016).

In the context of CNNs, the hidden layer is also known as dense or fully-
connected layer — in contrast to the convolutional layer that has sparse connections — and
is commonly used at the final portion of the model in classification tasks. In the next
section, we explain in detail the non-linear activation functions ¢ that are most used in

deep convolutional networks.

3.2 Activation Function

The non-linear activation functions are a essential tool in deep neural net-
works. Without them, MLPs and CNN would not be able to capture non-linear interac-

tions between data. Even simple non-trainable non-linear functions as the ReLU (NAIR;

Chapter 3. Elementary Operations in CNNs 35

HINTON, 2010) when applied on top of linear dense layers can lead to powerful descrip-
tors, modeling complex data while remaining conceptually simple at its essence. In this
section, we introduce the most common activation functions for hidden layers. A summary

of these functions is presented in Figure 3.1.

Sigmoid o Hyperbolic Tangent

10 100

075

08
0.50

025
06

0.00

n4 -0.25

—0.50
02

-0.75

oo -1.00

RelU Swish

-4 -2 0 2 4 -4 -2 0 2 4

Figure 3.1 — Summary of the main activation functions for hidden layers.

3.2.1 Sigmoid

The sigmoid function, defined by Equation (3.1), is very important in the
context of deep learning since it is commonly used to convert the final network activation

or logits into a probability distribution for binary classification problems.

B 1
14w

o(x) (3.1)

It has also been used in the past as activation for the hidden layers. However,

since it saturates for both low and high values of x, the first derivative converges to zero

Chapter 3. Elementary Operations in CNNs 36

at these regions, which impacts the gradient’s flow and, ultimately, hinders the network
training. Also, the sigmoid function is not centered at zero, i.e., 0(0) = 1/2, which skews

the activations’ distribution as it propagates through the network.

3.2.2 Hyperbolic Tangent

The hyperbolic tangent, defined in Equation (3.2), has a similar behavior to
that of the sigmoid function. In fact, they are related by tanh(z) = 2-0(2z) —1 (GOOD-
FELLOW et al., 2016).

e — 1

tal’lh(a:) = m

(3.2)

The hyperbolic tangent was used as an activation function for hidden layers
as an alternative for the sigmoid since it is centered at zero, i.e., tanh(0) = 0, which
maintains the activations’ distribution throughout the network. Nevertheless, similarly to
the sigmoid function, it also saturates for extreme values of x, consequently, restricting
the unit’s operating region around —3 < z < 3. Thus, its usage has been deprecated in

modern CNN architectures.

3.2.3 RelLU

The rectified linear unit (ReLU) (NAIR; HINTON, 2010) is a simple piece-
wise linear function that restricts activations to positive values. It is simply defined by
g(x) = maz(x,0). Albeit simple, it should be noted that its first-order derivative is 1 for
all non-negative values, which avoids saturation and enables the gradient flow whenever
the unit is active. Also, its second derivative is 0 almost everywhere, which avoids second-

order effects. It has replaced the sigmoid and hyperbolic tangent as the main activation
function for hidden layers in modern network architectures (GOODFELLOW et al., 2016).

Despite the fact that its derivatives are not defined for x = 0, the ReLLU
function does not preclude optimization via gradient-based learning algorithms. Computer
methods are usually subject of numerical errors, which means that, in most cases, the value
never actually reaches 0; instead, it remains as a very small number avoiding the critical
point of x = 0 for the derivatives. Additionally, the ReLU function has its derivatives
defined for both the positive and negative parts of its domain, which allows, in practice,

software implementations to simply assign the derivate of = 0 numerically equal to one
of its well defined sides (GOODFELLOW et al., 2016).

Chapter 3. Elementary Operations in CNNs 37

3.2.4 RelLU Variants

A well known drawback of the ReLLU function is that for negative values its
gradient is always zero, which means that, if a hidden unit falls into a bad optimization
region!, it can get stuck into that point indefinitely since it will operate on the left side of
the curve for most input samples and, consequently, there will be no gradients to update

its parameters. Hence, the unit will be deemed “dead” — a problem known as dead neuron.

In order to alleviate this problem, some variations of the ReLLU function have

been proposed, which are explained in the sequence.

3.24.1 Leaky-RelLU

The main idea behind the Leaky-ReLU (MAAS et al., 2013) function is to
replace the flat negative side of the curve by a small negative slope, which prevents the
dead neuron problem. Equation (3.3) demonstrates how a small parameter v can be used
to create a non-zero slope for the negative side of the curve. In practical applications, «

is chosen as a small number such as 0.01.

x, if x>0
g(x) = (3.3)

«a-x, otherwise

3.242 PReLU

The Parametric ReLU (HE et al., 2015) is very similar to the Leaky-ReLU
(MAAS et al., 2013) in the sense that it adds negative slope to the left side of the
function’s domain. However, the PReLU proposes that the parameter a of Equation (3.3)
should be learned by the network instead of receiving a fixed pre-determined value prior

to training.

3243 ELU

The Exponential Linear Unit (CLEVERT et al., 2016) adds a log curve to the

negative side of the ReLLU’s domain as given by:

x, ifx>0
g(x) = (3.4)
a- (e —1), otherwise

where, similarly to the Leaky-ReLU, « is a fixed hyperparameter.

L This issue is usually caused by either a very large learning rate or a bad initialization, e.g., a large

negative value for the bias term.

Chapter 3. Elementary Operations in CNNs 38

The advantages of the ELU against the Leaky-ReLLU and PReLU is that it

provides a noisy-robust deactivate state for the unit.

Figure 3.2 shows a comparison between the ReLU and its variants. In partic-

ular, Figure 3.2(b) focuses on the negative side of these functions, where the differences

appear.
RelU and variants
10
— Rell
—— Leaky-Rell): a=0.01
081 — |eaky-RelU: a=0.05
Leaky-Relll: @ =010
06 | = EL:a=010
04 a)
02
00
-1.00 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 100
RelU and variants - Negative side
0.00
-0.02
-0.04
-0.06
— Rell
— Leaky-Rell: a=0.01
-0.08 — Leaky-Rell: a=0.05
Leaky-Rell: @ =0.10
~0.10 — EW:a=0.10

-1.0 -0.8 —0.6 -0.4 -0.2 0.0

Figure 3.2 - Comparison between ReLU and its variants. The Parametric ReLU
(HE et al., 2015) is a special case of the Leaky-ReLU (MAAS et al., 2013)
when the parameter « is learned by the network and, thus, is not displayed
in this figure.

3.2.5 Swish

Even though the ReLLU variants propose ideas to fix the function’s main issues,
their results are inconsistent and may vary from dataset to dataset. The Swish function
(RAMACHANDRAN et al., 2017a; RAMACHANDRAN et al., 2017b) was proposed in
2017 as an attempt to definitively replace for the ReLLU function. It is defined by g(x) =
x-o(z) and closely resembles the ReLU curve as can be observed in Figure 3.1. Nonetheless,
it is non-monotonic and bounded in the left side of its domain, which, consequently,
alleviates the dead neuron problem whilst being self-gated by the sigmoid function of the
input value. The authors claim consistent improvements over the ReLLU and its variants

across several deep learning tasks.

Chapter 3. Elementary Operations in CNNs 39

3.3 Convolution

As the name suggests, the convolution operation is the main foundation of the
CNNs. The convolution is a function that operates on two real-valued sequences producing
another sequence as output. Essentially, it can be interpreted, for a single time-step or
index t, as the integral or summation of all the products between a fixed sequence = and
a second sequence w, usually of smaller size than x and commonly named kernel, that
is evaluated at time-step t but offset from —oo to co. The convolution formulation in
its continuous form, which is denoted by s(t) = (x * w)(t), is shown in Equation (3.5)

(GOODFELLOW et al., 2016).

s(t) = /x(a) ~w(t —a)-da (3.5)

In most fields of knowledge such as physics, however, data cannot be acquired continu-
ously. Alternatively, as occurs in digital images and time-series, data is usually sampled
at constant intervals in a discrete fashion (GOODFELLOW et al., 2016). Consequently,

Equation (3.5) can be altered to obtain the discrete convolution:

e}

s(t)y= > z(a) w(t—a) (3.6)

Nevertheless, in real applications, the sequences are finite and the summation

of Equation (3.6) cannot go on indefinitely. Therefore, in practice, the operations occur
only in the valid positions where the input sequence is defined, which is known as the
VALID convolution format. Alternatively, one can also pad the edges of the input vector
with 0 or any other value in order to forcefully get an output sequence of the same size
as the input, which is known as the SAME format and is commonly used in modern
CNN architectures (DUMOULIN; VISIN, 2018). Figure 3.3 shows an example of an uni-
dimensional convolution operation, in the SAMFE format, i.e., zero-padding of size 1 for
kernel size equals 3, between an input sequence x and a kernel w. The sequence x remains
fixed as the kernel slides across. For each position, the output unit is computed as the

summation over all products between input’s units and their corresponding kernel’s units.

Convolution can also be extended to a N-D multidimensional form by sliding
the kernel across all dimensions, as described for a 2-D image I and kernel K by Equation
(3.7) (GOODFELLOW et al., 2016). Particularly, the 2-D convolution is very useful for
images and audio spectrograms, whereas 3-D convolution can be used on other types of
data such as point-clouds and MRIs (Magnetic Resonance Imaging), which are composed

of volume elements (voxels), the 3-D counterparts of the pixels.

S(i,4) = (I % K)(i,7) = X " Im,n) - K(i = m, j — n) (3.7)

Chapter 3. Elementary Operations in CNNs 40

— & ky 7 > Kernel

s) w | [=) o Input

D000 -

ki -z + ki xz3 + ky -z +
ky -z3+ ky-my At ky oz
k3 - x4 k3 - x5

Figure 3.3 — 1D Convolution Operation: Example of a 1D convolution with sequence
and kernel with size of 5 and 3 units, respectively. This figure uses padding
equals to 1, which yields the SAME convolution format. Figure inspired in
(GOODFELLOW et al., 2016).

There are many reasons why convolutions have become the standard opera-
tion used in Machine Learning algorithms for computer vision tasks, but certainly the
most important are sparse connectivity, parameter sharing and equivariance to

translation (GOODFELLOW et al., 2016).

3.3.1 Sparse Connectivity

Unlike dense matrix multiplications, which are the basis for traditional neu-
ral network layers (dense/ fully-connected layer), convolution only uses spatially-local re-
sponses to compute an output unit. Consequently, for each input unit, the number of
interactions is constant and strictly defined by the kernel size k, which is usually orders
of magnitude smaller than the image’s resolution (typical values are 1%, 3, 5 and 7). Hence,
convolutions has O(n x k) runtime, where n is the number of input units. The matrix
multiplication of fully-connected layers, on the other hand, have complexity of O(n x m)
since each input unit is connected to all of the output nodes m. As an example, for im-
ages of resolutions as low as 256 x 256, dense matrix multiplication have more than 4B
connections and, consequently, its usage easily become prohibitive (GOODFELLOW et
al., 2016). Figure 3.4 provides visual intuition on how the number of connections grow in

both matrix multiplications and convolutions.

2 In deep learning applications, convolutions with kernel size 1x1 are typically used to adapt the number

of channels of a feature map.

Chapter 3. Elementary Operations in CNNs 41

hy hy h3 hy hs

b)

N\ VRN VRN / - > < >
N N N4 . o

Figure 3.4 — Matrix Multiplication vs. Convolution: Number of connections and
parameters for the dense or fully-connected layer increase linearly with the
number of units, whereas for the convolution it is fixed and equals to the
kernel size, in this case 3. Dashed circles show units that only exist when
padding is used. Figure inspired in (GOODFELLOW et al., 2016).

3.3.2 Parameter Sharing

In dense layers, the number of parameters is equal to the number of connec-
tions, meaning that every interaction is unique and no weight w; ; € w is ever reused. On
the contrary, in convolutions the parameters (kernel values) are shared across all image
positions, even though we have n x k interactions. Therefore, the total number of param-
eters is only equal to k. For images or other types of data where patterns are sometimes
repetitive, sharing parameters leads to memory and statistical efficiency. For instance,
convolutional kernels that capture textures or edges are not specific to a single image
region, instead they can easily be useful in many different image parts as shown in Figure
3.5, where a simple kernel k = [—1, 1] is used to detect vertical edges in the entire image.
In this example, the input image (left) has resolution of 280 x 320 pixels. Therefore, a
total of 280 x 319 x 3 = 267,960° floating point operations are required to compute the
operation, but only 2 parameters are required for the whole image (GOODFELLOW et

3 Here we use 319 in the calculation instead of 320 because we are neglecting the borders. Also 3

operations, two multiplications and one addition, are required per output pixel.

Chapter 3. Elementary Operations in CNNs 42

Figure 3.5 — Vertical Edge Detector Example: In this image, a simple hand-designed
convolutional kernel was employed to detect vertical edges across the entire
image. Image inspired in (GOODFELLOW et al., 2016).

al., 2016).

3.3.3 Translation Equivariance

The property of equivariance means that if the input is affected by a transfor-
mation, the output will be affected by the exact transformation. Particularly, the equivari-
ance of a function f(z) to a transformation g occurs if f(g(z)) = g(f(x)). For convolutions,
the equivariance is present when g is a translation transformation, e.g., horizontal and/or
vertical shifts of the input image (GOODFELLOW et al., 2016). For example, considering
a synthetic image X € R3*® and a vertical edge detector kernel K € R3*2 their VALID

convolution is given by:

01 100
X=101 100 (3.8a)
01 100
-1 1
K=|-11 (3.8b)
-1 1
10 -1 0
(X*K)(6,7)=[1 0 -1 0 (3.8¢)
10 -1 0
If we translate the image X horizontally by 1 pixel, we have:
00110
X' =IX)=10 011 0 (3.9a)
00110

Chapter 3. Elementary Operations in CNNs 43

so that

010 —1
(X'«K)(i,j)=10 1 0 —1], (3.9b)
010 —1

which is essentially the same as translating the result of Equation (3.8¢) by 1 horizontal
pixel, i.e., (I(X) «K)(4,7) = (X x K)(1,).

3.3.4 Receptive Field

It is well known that convolution is a powerful tool in computer vision due to
its core inductive bias that, for a pixel (i, j), the most important information are present
in the neighbourhood of such pixel, N; ;. Nonetheless, considering such ability of only
attending to a small field spatially located around the kernel, it is natural to expect that
convolutions are not able to capture long range dependencies when using small kernel
sizes. This limitation, however, can be overcome by stacking multiple convolutions on top
of each other as depicted in Figure 3.6, considering the simple scenario of two layers with

kernel size equals 3.

By using multiple convolutions operating on the output of its predecessor,
each new unit indirectly increases its receptive field, i.e., the area of the original image
that is “perceived” by an unit (or, in other words, the area that affects the output of an
unit), and, consequently, is able to also capture more complex features and long range

dependencies.

3.3.5 Convolutions in CNNs: The Conv Layer

The convolutional layer — the main building block of CNNs — is, as the name
suggests, based on the convolution operation. In traditional computer vision applications,
the kernel values are fixed and designed depending on the application at hand. For exam-
ple, the Sobel filter (FELDMAN et al., 1969) can be used to detect borders in the image.
In CNNs, however, the kernel values are not previously fixed. Instead, they are initialized
pseudo-randomly and learned by the network via gradient-based optimization algorithms
during the training phase. Thus, ideally, the network learns — through data — the best
values for each convolution filter (GOODFELLOW et al., 2016).

Another substantial difference from the traditional application is that the conv
layer operates simultaneously on multiple input channels, i.e., sub-images. This means
that for a RGB image X € R#*W>3 3 3x3 convolutional kernel is extrapolated to have

the same number of channels as the input image X, i.e., K € R33*3, For each channel,

Chapter 3. Elementary Operations in CNNs 44

hi hy hy hy hy
‘ G G h w

Figure 3.6 — Convolution’s Receptive Field: Deeper convolutional layers naturally in-
crease their receptive field, which is usually useful to capture long-range de-

pendencies and more complex features. Dashed circles show units that only
exist when padding is used. Figure inspired in (GOODFELLOW et al., 2016).

the operation proceeds exactly as presented in Section 3.3 and the final result is obtained
by summing each channel’s individual result. The complete equation for a single output

channel can be described as follows:

(X« K)(i,7, k) :%:ZZI(m,n,k:)-K(i—m,j—n,k) (3.10)

Additionally, the convolutional layer can have multiple output channels, which
are computed independently, one for each kernel of the convolutional layer. Thus, the
number of learned parameters in a single layer can be expressed by ¢ X h X w X o, where
1, h,w and o are the number of channels in the input image, the height and width of the
convolution kernel and the number of output channels, respectively. Figure 3.7 shows the

operation for an output composed of two channels.

In practice, in modern deep CNNs, the convolutional layer is usually followed
by an activation function and a normalization layer, which comprises a convolution block.
Also, after a certain number of blocks, CNNs usually reduce the feature map’s spatial
dimension, which is commonly implemented via pooling. Those concepts are better ex-

plained in the sequence.

Chapter 3. Elementary Operations in CNNs 45

Figure 3.7 — The Convolutional Layer. Fach output channel is generated using all
input and kernel channels.

3.4 Pooling

Even for input resolutions as small as 224x224 pixels, the computational cost
of using several convolutional layers is large. Also, since small kernel sizes are typically
used to ease the computational burden, a large number of convolutional layers is required
in order to increase the network’s receptive field enough to capture global class-sensitive
information. Consequently, the pooling layer was designed to reduce the feature map
dimension throughout the network’s forward propagation. By doing so, each convolution
after the pooling layer operate on a smaller input feature map, which addresses both the

aforementioned issues.

Similarly to the convolution, the pooling operation utilizes a sliding window
algorithm that sweeps across the input feature map and, for each position, outputs the
result of a kernel or function that operates on the local input values. The sub-sample
ratio r can be determined as a function of the padding p, kernel size k and stride s used
in the operation. For the PyTorch library (PASZKE et al., 2017), the output size is given

as follows:

(3.11)

H,, +2p—k
Hout:f<k757p) = \‘—i_p—i_lJ

s
where H,,; and H;, are the output and input height, respectively, and the operator ||
represents the mathematical flooring or rounding to the closest smaller integer. The width

component can be determined analogously.

The two most common pooling layers are the max pooling and average pooling.
As the name suggests, the former uses a kernel that returns the maximum value, whereas

the latter performs the average of its input values.

Alternatively to pooling layers, some CNN architectures, such as the ResNet

(HE et al., 2016) family, resort to strided convolutions — where the kernel displacement

Chapter 3. Elementary Operations in CNNs 46

between consecutive positions during convolution can be greater than one — to reduce the
input dimensions. Small differences aside, the result of adding a stride greater than 1 to
a convolution is similar to adding an average pooling layer with the same stride prior to

the convolution.

3.5 Batch Normalization

As neural networks grow deeper, many gradient-related issues may arise. As
presented in Section 3.4, many non-linear activation functions, e.g., hyperbolic tangent
and sigmoid function, saturate for extreme values of x. Consequently, the gradients tend
to be close to zero, which especially affects deep networks, since the chain-rule is used to
estimate the derivatives, and, thus, the gradients from layer to layer are multiplied and di-
minish exponentially, a problem known as the vanishing gradient, which, ultimately, slows
down the training procedure and damages the model’s performance (IOFFE; SZEGEDY,
2015).

A possible solution to the aforementioned problem would be to use non-
saturating activation functions such as the ReLU (NAIR; HINTON, 2010) and Swish
(RAMACHANDRAN et al., 2017a; RAMACHANDRAN et al., 2017b) along with careful
initialization algorithms (GLOROT; BENGIO, 2010). Nonetheless, these functions are
neither symmetric nor centered at x = 0, which skews the activation’s distribution as
data propagates throughout the network, and, eventually, can lead to numerical instabili-
ties. Hence, small learning rate values are also required for stability (IOFFE; SZEGEDY,
2015).

The batch normalization layer (IOFFE; SZEGEDY, 2015) addresses those is-
sues by performing standardization within a batch of samples, i.e., normalizing to zero
mean and unit standard deviation. Also, after normalization, the layer applies an affine
transformation defined by a learned set of parameters to, possibly, revert the normalizing
operation. In CNNs, the normalization layer is usually added after each convolution in

order to prevent the activation’s norm of growing too much, which can lead to instabilities.
Formally, for a channel k, the standardization can be computed as follows:

o ot — B[z
Var[z*]| ’ (3.12)

where the expectation E and variance Var are computed on the mini-batch of images B.

Given the standardized input Z, the affine transformation is also performed by channel:

gt ="k B (3.13)

Chapter 3. Elementary Operations in CNNs 47

where 7% € R and % € R are parameters learned by the network and K is the total

number of channels in the layer.

A major drawback of this approach is that the model’s output is directly
coupled with the mini-batch statistics, which is not desired at test time or inference.
In order to solve this, loffe and Szegedy (2015) proposed to accumulate the mini-batch
statistics — average and standard deviation — during training by means of exponential
moving averages. Then, during inference, the acconlineumulated averages, which can be
perceived as a good estimation of the training set’s statistics, are used in Equation (3.12),

which eliminates the cross-dependency between mini-batch samples.

Notoriously, the usage of batch normalization layers after convolutions smoothens
the loss landscape (SANTURKAR et al., 2019) and allows for larger mini-batch sizes and
learning rates (DE; SMITH, 2020; BJORCK et al., 2018), significantly reducing the train-
ing time (IOFFE; SZEGEDY, 2015). Additionally, since the expectation and variance of
a mini-batch are not an exact representation of the entire training set’s statistics, batch
normalization layers provide a stochastic noise effect, which can be helpful to prevent
overfitting (HOFFER et al., 2017; LUO et al., 2019). On the other hand, if a small mini-
batch size is employed, its statistics can be non-representative of the whole training set,

which can severely impact the model’s performance (WU; HE, 2018).
Following (IOFFE; SZEGEDY, 2015), several different normalization layers

have been proposed to alleviate the mini-batch dependency, such as Layer Normaliza-
tion (BA et al., 2016), Instance Normalization (ULYANOV et al., 2016), Batch Re-
normalization (IOFFE, 2017) and Group Normalization (WU; HE, 2018). Even networks
specifically designed to not require normalization layers while retaining their advantages
have been recently proposed (BROCK et al., 2021). Nevertheless, since most of mod-
ern convolution neural networks still rely on the batch normalization layer (IOFFE;
SZEGEDY, 2015), these variants are not the main focus of this work and, thus, are

not covered in this material.

48

4 Convolutional Neural Networks for Image

Classification

In the last decade, CNNs (LECUN et al., 1989) have been one of the standard
tools present in almost every computer vision engineer’s repertoire. This chapter is aimed
to discuss the most relevant image classification CNN architectures to the scope of this

work.

4.1 Residual Neural Networks (ResNets)

As aforementioned, most CNNs are created based on convolutional blocks that
are usually comprised by a convolution, followed by a normalization layer and an activation
function. The blocks are commonly stacked on top of each other forming a layer®, which
are interleaved by pooling layers to reduce the computational cost whilst increasing the
network’s receptive field allowing for more complex features to be captured. Nevertheless,
even with intermediate normalization layers and good parameter initialization, gradient-
vanishing problems still may occur for very deep networks hampering their performance.
Figure 4.1 shows that a 56-layer network may present a higher associated test error than a
20-layer one. Contrary to what one might suspect, the issue is not caused by overfitting as
the same phenomenon occurs for the train error (Figure 4.1, left-side graph), suggesting

an optimization cause (HE et al., 2016).

4.1.1 The Residual Connection

The core intuition of ResNet (HE et al., 2016) lies on the fact that, since the
weights are learned through data, a deeper network should always provide a superior or,
at least, equal associated train error to that of a shallow network. Nonetheless, as observed
in Figure 4.1, this does not always occur, which suggests that regressing to an identity

mapping function via training is not trivial for the common non-linear convolutional
blocks (HE et al., 2016).

Accordingly, the main contribution of Residual Neural Network (ResNet) (HE
et al., 2016) was to propose a new convolutional block that can easily perform the identity
mapping if required. In practice, this is easily implemented by providing a residual con-

nection between input and output of the block via element-wise summation, as depicted

L In this case, the convolutional layer that we refer is not a single convolution operation but rather a

collection of stacked convolutional blocks.

Chapter 4. Convolutional Neural Networks for Image Classification 49

56-layer

-
e <

5 T

D 10 g 10 20-13.}/61‘
=)

£ S56-layer =

£ 3

= k2]

=]

20-layer

°

6 0 1 5 6

2 3 3 2 3 3
iter. (1e4) iter. (1e4)

Figure 4.1 — Depth comparison. Comparison between a 20- and 56-layers networks
trained on CIFAR-10 (KRIZHEVSKY et al., 2009) for image classification
task. Image extracted from (HE et al., 2016).

X
weight layer
]—"(x) l relu <
weight layer identity

Figure 4.2 — The residual connection. The input of the convolutional block is directly
added to its output, providing a shortcut. Image extracted from (HE et al.,
2016).

in Figure 4.2. This “shortcut” not only acts as an identity function but also provides an

unobstructed path for the gradients, which also ease the optimization (HE et al., 2016).

4.1.2 The Residual Blocks

There are two types of convolutional blocks used in residual networks: the
basic and bottleneck blocks. The former is used in the two most shallow designs of the
ResNet family — ResNet-18 and 34 —, whereas the second is used in the deeper and wider
designs, such as ResNet-50, 101 and 152. We start by first introducing the basic block and
elucidating its intrinsic limitations on wider networks, which is also the key motivation
behind the bottleneck block.

4.1.2.1 The Basic Block

The basic block is comprised by two 3x3 convolutional layers followed by batch
normalization (IOFFE; SZEGEDY, 2015) and ReLU (NAIR; HINTON, 2010) stacked

Chapter 4. Convolutional Neural Networks for Image Classification 50

on top of each other. Additionally, the shortcut connection is employed by performing
element-wise summation between the block’s input and output as depicted in the left side
of Figure 4.3. Since, in the basic block, the 3x3 convolutional layers do not modify the
number of channels, the total number of parameters in the block is given by the product of

the number of convolutions, the kernel width and height and input and output channels?.

Particularly for two basic block with 512 and 2048 channels® we have 2 - 32 -
5122 ~ 4.7M and 2 - 3% - 20482 ~ 75.5M parameters, respectively. It is easy to notice
that the quadratic dependency on the number of channels is a limiting factor for wider

networks, which are usually advised for datasets with a large number of classes such as

ImageNet (1000 classes) (RUSSAKOVSKY et al., 2015).

4.1.2.2 The Bottleneck Block

The bottleneck block was proposed to mitigate the parameter growth issue by
temporally reducing the number of channels. Such aspect is accomplished by using a 1x1
convolution to reduce the number of channels by a ratio r prior to its more demanding 3x3
counterpart. After the features are extracted by the spatial 3x3 kernel, another pointwise

1x1 convolution is used to expand the number of channels again by the same factor r.

By employing a ratio r = 4, for example, the total number of parameters for the
same 2048 channels layer is now given by 12-:2048-2048 /4+32-(2048 /4)*+12-2048 /4-2048 ~
4.5M parameters, which is almost 17 times smaller than the 75.5M parameters required
by a basic block of the same width. The bottleneck block is depicted in the right-side of
Figure 4.3.

4.1.3 Network Architecture

The ResNet (HE et al., 2016) family is comprised by a stem block, the main

layers and a final global pooling and fully connected layer.

The stem block is a simple 7x7 convolution with stride 2 followed by batch
normalization (IOFFE; SZEGEDY, 2015), ReLU (NAIR; HINTON;, 2010) and a 3x3 max
pooling also with stride 2. The block aims to extract the initial 64 feature maps from the

input image whilst reducing its dimension by a factor of 4 at the same time.

Following, four convolutional layers are applied where the first convolution of
each layer usually doubles the number of channels and halves the feature map’s dimension.

More specifically, each convolutional layer is comprised of a number [; of residual blocks

2 In this case we disregard the batch normalizations’ (IOFFE; SZEGEDY, 2015) parameters since they
are order of magnitudes lower than that of the convolutions.
3 512 and 2048 channels are, respectively, the width of the last layer of ResNet-34 and 50.

Chapter 4. Convolutional Neural Networks for Image Classification 51

64-d 256-d

A

A
| 1x1, 64

l relu

| 3x3, 64

l relu

| 1x1, 256

Figure 4.3 — The residual blocks. Left: the basic residual block, where two 3x3 convolu-
tions are used without dimensional reduction. Right: The bottleneck residual
block, two 1x1 convolutions are used to reduce and expand the number of the
channels, before and after the 3x3 convolution, respectively. In both blocks,
a 1x1 convolution may be employed to the shortcut connection in order to
match the number of channels if required. Image extracted from (HE et al.,
2016).

where the number of blocks used and their type varies for each specific network in the
family. The same occurs for the number of channels in the layer. In general, ResNets-18
and 34 use the basic residual block and have their width w; = {64,128, 256,512} for
each layer i respectively. On the other hand, ResNets-50, 101 and 152 use the bottleneck
residual block and have their width per layer configuration as w; = {256, 512, 1024, 2048}.
Notably, as the number of channels doubles at each convolutional layer transition, a
pointwise convolution is used in the shortcut connection in order to adapt the width of
the block’s input.

Finally, a global average pooling is applied to reduce the 2D feature maps into
a unidimensional vector, which is feed to a dense layer to match the number of classes in
the classification task. The complete architecture for the ResNet-34 and a plain 34-layer

network is shown in Figure 4.4.

4.2 Squeeze-and-Excitation Networks

Since the pioneer work of LeNet-5 (Lecun et al., 1998), many different ap-
proaches to improve the CNNs’ performance have been attempted, either by simply re-
placing some operators such as the activation functions or pooling layer, or by converting
the common convolution-activation-pooling sequence into specially-tailored designs, e.g.,
(SZEGEDY et al., 2015; TAN; LE, 2019). Nonetheless, improving channel representativity
and reducing redundant features maps was only first explored in 2018 by the Squeeze-
and-Excitation Network (SENet) (HU et al., 2018).

Chapter 4. Convolutional Neural Networks for Image Classification 52

34-layer plain 34-layer residual
image image
7x7 conv, 64, /2 | 7x7 conv, 64, /2 |
pool, /2 pool, /2
\ 4
| 3x3 conv, 64 | | 3x3 conv, 64 |
v Z
| 3x3 conv, 64 | | 3x3 conv, 64
v
| 3x3 conv, 64 | | 3x3 conv, 64 |
v v
[3x3conv, 64 | [3x3conv, 64
\ 4
| 33conv,64 | [3x3cony 64

[33conv,64 | [3x3cony, 64

| 3x3conv,128,/2 | [Bowusz |
L 2 v vy

| 3a3conv,128 | | 33cony,128 | .

[3x3 conv, 128 | | 3x3 conv, 128
v v
| 33conv,128 | | 3x3conv, 128
v
| 3x3 conv, 128 | | 3x3conv, 128 |
\ 4 \ 4
[3x3conv,128 | [3x3cony, 128
Y
| 33conv,128 | | 3x3cony,128 |

[33cony,128 | | 3x3cony, 128
L 2

| 3x3conv,256,/2 | | »3conv,256,2 | T,
2 v Y

[33conv,256 | [3x3cony, 256 L
e

[33conv,256 | | 3x3cony, 256

 J v
| 33conv,256 | | 3x3cony, 256

v

[33conv,256 | | 3x3cony,256 |
\ J v

| 3a3conv,256 | | 3x3conv, 256
2

| 33conv,2% | [3x3conv, 256 |

\ 2 v
[33cnv,25% | [33conv,256 |
L2
| 33conv,256 | | 33cony, 256 |
v v
[33conv,256 | [33cony,256 |
v
| 33cnv,25 | | 3x3cony, 256 |
v
[33cnv286 | [3x3conv, 256
Y e
| 33con,512,/2 | [33conv512,2 | T
v v
[33cony,512 | [3x3conv, 512 o
i
[33cony,512 | [3x3cony, 512

[33cony,512 | | 3x3cony, 512

¥
| 33cony,512 | | 3x3cony, 512

v v
| 33conv,512 | | 3x3cony,512 |

—
avg pool avg pool

| fc 1000] | fc 1000]

Figure 4.4 — Comparison between a plain and residual 34-layer networks. Right:
the dashed arrow represents a 1x1 convolution employed to the shortcut
connection in order to match the number of channels. Image adapted from
(HE et al., 2016).

Chapter 4. Convolutional Neural Networks for Image Classification 53

Hu et al. (2018) proposed a new block called Squeeze-and-Excitation (SEBlock)
responsible for enhancing the channel’s representativity of feature maps by capturing the
inter-channel dependencies, reducing redundant features and enabling the network to
focus on more sensitive information. The SEBlock can be interpreted as a self-attention
block, which helps the network to better allocate resources towards more informative
components of the input signal (HU et al., 2018). The block is comprised of two stages:

squeeze and excitation.

4.2.1 Squeeze

The goal of the squeeze stage is to create a vector # € R® containing a single
scalar representation for each of the 2D feature maps X € R¥*W*C This is accomplished
by applying a global pooling operation p, which is defined for a single channel ¢ € C'
according to Equation (4.1). The squeezed vector x is a useful global representation of the
features that each channel attempts to capture and it can be perceived as the channel-wise

statistics of the feature map X.

HX) = g S LX) (@)

=1 j=1

4.2.2 Excitation

Once a statistical representation for each channel is attained, the excitation
stage of the SEBlock is utilized to map the inter-channel dependencies and re-calibrate
the original feature map X accordingly. The correlation between channels can be easily
captured by a fully-connected layer or an 1x1 convolution f. However, such operations are
only able to capture linear dependencies. Thus, a non-linear activation function such as
ReLU (NAIR; HINTON, 2010) and a second 1x1 convolution are also used. In practice, in
order to reduce the number of parameters, a bottleneck layer with ratio r similar to that
of ResNet (HE et al., 2016) is used, i.e., the first 1x1 convolution f; reduces the number
of channels from C' to C'/r , which is, then, increased back to C' in the second convolution
fo. Finally, a sigmoid activation function o, defined by Equation (3.1), is applied to the
result, bounding its range between 0 and 1, which is, then, multiplied by the original

feature map X in order to re-calibrate its channels.

Formally, the excitation transformation F,., is defined as follows:
Fex(ff:,Wl,Wg) = O'(WQ . (S(Wl . Q*?)), (42)

where W, € R¥*C and W, € RO*S are the f1 and fy convolutions’ weights, respectively,
and 0 represents the ReLLU (NAIR; HINTON, 2010) activation function. The complete

Chapter 4. Convolutional Neural Networks for Image Classification 54

o fi: fa:
global pooling 1x1 conv 1x1 conv
o111 » 1111 >» [(|
1x1xC 1x1xC/r 1x1xC
X o' sigmoid)(I

>

mul

\ 4

C

Figure 4.5 — Squeeze-and-Excitation Block: The original feature map X is subject
to a self-attention transformation based on its own content, which allows
it to reduce feature redundancy and to focus on most sensitive information
along the channel dimension. ReLLU activation function between f; and f; is
omitted. Figure inspired in (HU et al., 2018).

SFEBlock operation can be written as:
X' = Fp(X) = X © Foo(1(X)), (4.3)

where © stands for the Hadamard product. The whole operation is depicted in Figure
4.5.

4.2.3 SENet Architecture

The SENet architecture is designed based on the ResNet (HE et al., 2016)
family. In fact, even the depth configuration is the same, i.e., SENet-50, 101, 152. The
main difference between ResNet (HE et al., 2016) and SENet (HU et al., 2018) is that
the latter employs a Squeeze-and-Excitation block at the end of each bottleneck residual

block as evinced in Figure 4.6.

4.3 EfficientNet

Prior to EfficientNet (TAN; LE, 2019), most works scaled the network’s pa-
rameters arbitrarily and independently. The ResNet (HE et al., 2016) model family, for
example, generally doubles the network depth while keeping the width and input resolu-
tion constant. Nonetheless, this approach can be sub-optimal since the design parameters
are interdependent. For example, by increasing the input resolution, one should also con-
sider scaling up width and depth. The increased width or number of channels per layer
allows the network to capture more fine grained features, better exploiting the higher level
of detail from bigger input sizes. Additionally, with high resolutions, the apparent size of
objects in the image increase, requiring a higher receptive field, which can be attained by

increasing the depth of the network.

Chapter 4. Convolutional Neural Networks for Image Classification

X /-] X
Residual Residual Hx Wx C
Globalfoolmg Ix1xC
X ;
FC I1xX1x—
ResNet Module L r
Rel.U 1x1xS
1 r
FC 1x1xC
i
Sigmoid 1X1XC
Scale
HxWxcC
HXWxC
X

SE-ResNet Module

Figure 4.6 — Comparison between the residual block and SE-augmented residual
block. Image extracted from (HU et al., 2018).

In the remainder of this section we present the compound scaling system in-
troduced by EfficientNet (TAN; LE, 2019), its basic convolutional block and the final

network architecture.

4.3.1 Compound Scaling

Tan and Le (2019) proposed to use a compound scaling system, which scales

network’s depth, width and input resolution together according to:

depth: d = o?
width: w = ¢

resolution: s = +*

where ¢ is a user defined parameter that controls the overall scale of the network and «,
[and v are constants that control along with ¢ the depth, width and resolution growth,

respectively.

Chapter 4. Convolutional Neural Networks for Image Classification 56

Considering that the computational cost of convolutions in CNNs usually dom-
inate that of other layers, by using the compound scaling, the FLOPs is expected to in-
crease proportionally to (a-32-42)? (TAN; LE, 2019). Accordingly, the authors restrained
a - 3% -~? =~ 2 so that the FLOPs increase would be 2¢. By fixing ¢ = 1 and performing
grid-search on the baseline model EfficientNet-B0O (TAN; LE, 2019), the best values of
a =12 =11 and v = 1.15 were found. The following models, from B1 to B7, were
created accordingly by scaling up the value of ¢.

Remarkably, despite not included in the compound scaling formulation, the
authors also scale the dropout (SRIVASTAVA et al., 2014) probability since regularization

should also increase for higher model capacities.

4.32 MBConv Block

The compound scaling system is paramount when scaling up networks. Nonethe-

less, having a good convolutional block as the main network’s building block is also critical.

Inspired on MobileNetV2 (SANDLER et al., 2018), the EfficientNet’s main
block is based on the mobile inverted residual block (MBConv) (SANDLER et al., 2018;
TAN et al., 2019), which is similar to the residual block of the ResNet (HE et al., 2016)
family, but inverts the channel bottleneck. The residual bottleneck block (HE et al.,
2016) reduces the number of channels by a ratio r in the first convolution (1x1), allowing
a second convolution (3x3) to operate on a reduced width, which is, then, expanded back
by the third convolution (1x1). Conversely, the inverted residual block (SANDLER et
al., 2018) operates on a lower default width, which is increased for the 3x3 convolution.
Additionally, it replaces the 3x3 convolution by its depthwise separable (VANHOUCKE,
2014; CHOLLET, 2017) counterpart, thus significantly reducing the number of parameters
learned by the network.

EfficientNet (TAN; LE, 2019) further extends the MBConv by adding attention
with the SE block (HU et al., 2018) and using Swish (RAMACHANDRAN et al., 2017a;
RAMACHANDRAN et al., 2017b) as activation function. The adapted MBConv block is
displayed in Figure 4.7.

4.3.3 Network Architecture

From the MBConv block of Figure 4.7, the baseline network architecture,
EfficientNet-BO (TAN; LE, 2019), was designed via neural-architecture search methods
(TAN et al., 2019). The complete EfficientNet-B0 architecture is presented in Table 4.1.

The subsequent models, B1 to B7, can be derived from Table 4.1 by changing

the resolution s, width w and depth d as a consequence of increasing ¢. The characteristics

Chapter 4. Convolutional Neural Networks for Image Classification

o7

\ 4

Convix1

Batch Norm

Swish

\ 4

Depthwise Sep.
Conv 3x3 or 5x5

Batch Norm

Swish

SE Block

Conv1ix1

Batch Norm

Nah
N

H><W><g

Expand

HxWxC

Reduce

H><W><g

Figure 4.7 — MBConv Block variant used in EfficientNet. Figure inspired in (TAN;

LE, 2019).

Chapter 4. Convolutional Neural Networks for Image Classification 58
Table 4.1 — EfficientNet-B0 (TAN; LE, 2019) Architecture
Stage Operator Kernel Expa{lsmn Resolution # Channels # Layers

Ratio r s w d
1 Conv 3x3 - 2242 32 1
2 MBConv 3x3 1 1122 16 1
3 MBConv 3x3 6 1122 24 2
4 MBConv 5x5 6 562 40 2
5 MBConv 3x3 6 282 80 3
6 MBConv 5x5H 6 282 112 3
7 MBConv 5x5 6 142 192 4
8 MBConv 3x3 6 72 320 1
9 Conv & Pooling & FC 1x1 - 7 1280 1

Table 4.2 — EfficientNet (TAN; LE, 2019) model family

Model Multiplier Dropout
Width Depth Resolution prob.
w d S
BO 1.0 1.0 1.00 0.2
B1 1.0 1.1 1.07 0.2
B2 1.1 1.2 1.16 0.3
B3 1.2 1.4 1.34 0.3
B4 1.4 1.8 1.70 0.4
B5 1.6 2.2 2.04 0.4
B6 1.8 2.6 2.36 0.5
B7 2.0 3.1 2.68 0.5

of the complete EfficientNet (TAN; LE, 2019) family are summarized in Table 4.2.

In this chapter, we covered the most relevant deep networks used in image

classification tasks and the rationale behind their designs. Those architectures are also

the foundation for many downstream tasks in computer vision such as segmentation,

object detection and keypoint estimation. In the sequence, we show how these different

types of encoders can be employed to tackle the task of semantic segmentation.

59

5 Convolutional Neural Networks for Seman-

tic Segmentation

Given the great results achieved by CNNs in image classification tasks in the
last decade, especially in famous computer vision benchmark challenges such as ImageNet
(RUSSAKOVSKY et al., 2015), it was only a matter of time for this technology to be
adopted to many other computer vision tasks such as semantic segmentation and object
detection. Particularly for segmentation, many approaches were designed to adapt the

coarse prediction of CNNs to denser regions, ultimately progressing to pixel-wise inference.

In this chapter, a few segmentation architectures that are most relevant for our
work are listed and explained. Additionally, we briefly introduce a few popular evaluation

metrics and loss functions employed in segmentation models.

5.1 Hypercolumns

Hypercolumns (HARIHARAN et al., 2014a) is one of the first efforts to adapt
image classification architectures for the purpose of object segmentation and other denser
prediction tasks. Although this work appeared in the same period as fully convolutional
networks (LONG et al., 2014), the scope proposed by Hariharan et al. (2014a) is restricted
to predicting the segmentation mask only for pre-selected regions with high likelihood of
having an object. Thus, an input image must first be pre-processed by a region proposal
algorithm and, only then, each region patch extracted from the original image can be
segmented by Hariharan et al. (2014a). Even with such limitation, Hypercolumns is quite
important to the development of our work since part of our solution is based on its

architecture design and rationale.

The idea behind Hypercolumns consists in realizing that, unlike image clas-
sification, semantic segmentation tasks heavily rely on precise feature localization and
high-frequency information. Common CNNs’ architectures for image classification are
comprised of alternating layers of convolutional blocks' and pooling operations. Conse-
quently, feature maps’ resolution is usually halved at each new layer, reducing the com-
putational cost for subsequent convolutions and increasing their receptive fields at the

expense of sacrificing high-frequency information and precise feature localization.

L We used the term convolutional block to refer to a series of convolutions, activation functions and,

optionally, batch normalization layers stacked on top of each other.

Chapter 5. Convolutional Neural Networks for Semantic Segmentation 60

5.1.1 The Hypercolumn Layer

In order to preserve the precise localization of features throughout the net-
work’s forward pass, Hariharan et al. (2014a) propose to concatenate, for each pixel x¥
at spatial position ¢ of the last layer L, the activations of all feature maps at the same
position for all? layers above L creating a hypercolumn® at pixel i. Unlike regular CNN
architectures for which only the last/deepest layer is used for classification, Hypercolumns
allows the network to also incorporate intermediate activations, which are richer in high-

frequency content, into the classifier layer.

In practice, since each intermediate feature map has a different spatial reso-
lution, defining a hypercolumn with respect to each pixel position 7 is ambiguous. Thus,
to solve this issue, a bi-linear upsampling layer is applied to each feature map prior to
concatenation in order to match the resolution. If desired, a 1x1 convolution can also be
applied in order to change the number of channels of each feature map, which also allows a
summation merge strategy to be used instead of concatenation. The hypercolumn concept

can be better understood with the aid of Figure 5.1.

Input image

Encoder Layer 1 ¢1:1x1 conv R 7

(H, W, Cy) > Feat. 1 (H,W, C')

l Concatenation

Encoder Layer 2 ¢o: Upsample 2x + 1x1 conv N or
(H/2, W72, Cy) > Feat.2(H, W, C) \ Element-wise sum
Encoder Layer 3 ¢3: Upsample 4x + 1x1 conv N ,
(H/4, W/4, C3) » Feat.3(H,W, C")
Encoder Layer 4 ¢4 : Upsample 8x +1x1 conv R ,
(H/8, W/8, Cy) » Feat. 4 (H, W, C") '—/

Figure 5.1 - Hypercolumn concept. The hypercolumn layer first adapts each feature
map’s resolution and number of channels with bi-linear upsampling and 1x1
convolutions, respectively. Then, the feature maps are fused, either by con-
catenation or element-wise sum, into a common representation, which is the
input of the pixel-wise classifier. Figure inspired by Hariharan et al. (2014a).

5.2 Fully Convolutional Network

In the three-year period that succeeded 2012, several works were published

proposing different methods to bridge the gap between coarse and dense predictions

2 In practice, not all layers are considered. The first convolutional layer is usually discarded since it has

very low semantic content.
The name hypercolumn comes from neuroscience where it is used to described a set of V1 neurons
forming a column, which are sensitive to edges at multiple frequencies and orientations.

Chapter 5. Convolutional Neural Networks for Semantic Segmentation 61

(PINHEIRO; COLLOBERT, 2013; GANIN; LEMPITSKY, 2014; CIREsAN et al., 2012;
Farabet et al., 2013; HARIHARAN et al., 2014b; HARIHARAN et al., 2014a). Among
them, the fully convolutional network (FCNet) (LONG et al., 2014) is worth mentioning
given its capacity of producing a segmentation mask for an entire image of any resolution

at once without the need of any extra complicated pre- or post-processing.

Contemporary to FCNet, many works employed local classifiers (Farabet et
al., 2013; HARTHARAN et al., 2014b) or patchwise classification (GANIN; LEMPITSKY,
2014; Feng Ning et al., 2005; CIRESAN et al., 2012; PINHEIRO; COLLOBERT, 2013)
to perform segmentation on regions extracted from the input image. Nonetheless, such
approaches suffer significantly from the trade-off between context and precise localization
— as the patch size diminishes, the local classifiers are able to predict more complex and
precise borders and edges at the expense of lacking context and semi-global information,
which are important semantic cues for classification. Figure 5.2 depicts an example of
how context can be helpful for classification, where a) shows the entire image of a marina
with cars and boats, while in b) two regions — depicting a boat and a car — are extracted
from the original image. Without additional context, it is really challenging to classify

the vehicles in the patches, whereas in ¢), with extra context, it is clearly easier.

Figure 5.2 — Importance of context and semi-global information. This example
evinces how context and semi-global image information can be important
semantic cues for pixel classification.

Chapter 5. Convolutional Neural Networks for Semantic Segmentation 62

5.2.1 From Dense Layers to Convolutions

The key concept behind FCNet simply consists in removing the global pooling
layer and replacing the last dense layers of common image classification architectures by
convolutions?. By performing such modifications, the network is able to predict a heatmap
H € R5*5C for each class ¢ € C instead of a distribution as depicted in Figure 5.3.
Although the output heatmap has a resolution smaller than the original image by a stride

factor of S due to pooling operations, it can be upsampled back via bi-linear interpolation.

The network, then, can be trained end-to-end with dense supervision, which
is simply accomplished by computing the loss function at each individual pixel position
of the output heatmap. The result is then averaged and backpropagated (RUMELHART
et al., 1986) similarly to any other CNN training process.

Global "Cat"
Average
Pooling

Dense
Layer

1x1

o . @ ‘l} @ Upsample

Figure 5.3 — Fully convolutional network. When the final pooling and fully-connected
layers of a) are replaced by convolutions, the network is able to output a
heatmap, as in b), enabling end-to-end dense training by averaging the loss
at every output pixel. Figure inspired in (LONG et al., 2014).

5.2.2 Decoder

Another prominent structural modification proposed by Long et al. (2014) was
the addition of a decoder network to upsample the encoder’s output heatmap in a step-
wise fashion. Furthermore, Long et al. (2014) realized that bi-linear upsampling could
be generalized by convolutions with fractional stride 1/f, i.e., transposed convolutions
(DUMOULIN; VISIN, 2018), where the weights of the neighbourhood N; of a pixel i could
also be learned via backpropagation (RUMELHART et al., 1986). Such approach is able

4

Usually a 1x1 kernel is employed since the goal is to obtain a channel-wise linear combination for each
spatial position, reducing the number of channels to the number of segmentation classes.

Chapter 5. Convolutional Neural Networks for Semantic Segmentation 63

to preserve more fine-grained details when compared to a simple bi-linear interpolation

with high factor S.

Additionally, after every upsample step, the result is added to the correspond-
ing encoder’s feature map of same resolution. Such connection is commonly denoted as
skip-connection and helps to recover some fine-grained details, such as borders and edges,
that are lost during pooling operations. The FCNet’s simple decoder is depicted in Figure
5.4, whilst its intermediate results are shown in Figure 5.5 evincing the step-wise detail

reconstruction.

32x upsampled 2x upsampled 16x upsampled 2x upsampled 8x upsampled
icti ON-32s) prediction predicti -16s) prediction predicti ON-8s)

pr

I
[.
pooll pool2 pool3 poold pools i poold b pool3 ‘Z
/ prediction 4 prediction 4
/

Figure 5.4 — The slender decoder of FCNet. The encoder’s output feature map is up-
sampled by 2x steps. In each step, the encoder’s feature map of corresponding
resolution is used as skip-connection to recover high-frequency information.
Figure extracted from (LONG et al., 2014).

FCN-32s FCN-16s FCN-8s Ground truth

L

i)

'F

Figure 5.5 — Intermediate segmentation results of FCNet. Each image shows the
corresponding segmentation result for each stride of Figure 5.4. Figure ex-
tracted from (LONG et al., 2014).

5.3 U-Net

Following the breakthrough of fully convolutional networks for semantic seg-
mentation (LONG et al., 2014), many different types of decoder network were proposed.
One of the most prominent is U-Net (RONNEBERGER et al., 2015).

Chapter 5. Convolutional Neural Networks for Semantic Segmentation 64

5.3.1 Bigger Decoder

From the simple decoder of Figure 5.4, Ronneberger et al. (2015) increased
the number of up-sampling® steps and added two additional 3x3 convolutions followed by
ReLU activation functions after each skip-connection, providing a better merge between
encoder and decoder’s feature maps, as can be observed in Figure 5.6. Additionally, U-
Net (RONNEBERGER et al., 2015) increases the number of channels in the decoder’s
layers, which allows context information to be better propagated to the high-resolution
layers located at the end of the decoder, which, consequently, improves the network’s
classification capabilities. As a result, the encoder and decoder networks are more or less

symmetric and the network’s architecture is shaped as a letter "U’ — hence the name
U-Net.

1 64 64
128 64 64 2
input
imai.)ge > > > > output
tle i ~| segmentation
Sl 3 o83 ma|
(3]) o o™ p
] [I
ool ® ol of oof
5| 5| & 3l & & F
x| = x
o Of
~| ©
o) Te] WTy
’ 128 128
256 128
o PN IS R
3 1|r c
& B
' 256 256 512 256 t
3 -: > ¥ I";I'tl =» conv 3x3, ReLU
=1 Rl N == copy and crop
512 512 1024 512
(gl‘:.,,}. 2 -:.-,:- ¥ max pool 2x2
€ D¢ Loo4 43 B 4 up-conv 2x2
< - -
D % =» conv 1x1

Figure 5.6 — U-Net Architecture. U-Net modified FCNet (LONG et al., 2014) by
adding more convolutions and increasing the number of channels in the de-
coder network, improving the network’s capacity to fuse feature maps and,
ultimately, enhancing the reconstruction of fine-grained details in the up-
sampling path. Figure extracted from (RONNEBERGER et al., 2015)

Although there are other minor architectural changes proposed by U-Net, such
as the usage of VALID convolutions and feature concatenation in the skip-connections,

these are of lesser importance and, therefore, will not be covered in detail in this work.

5

U-Net originally employed transposed convolutions (DUMOULIN; VISIN, 2018) as the up-sampling
operation. Nonetheless, recent works (LIN et al., 2016; LI et al., 2018; CHEN et al., 2018) moved
towards parameter-free operations, such as nearest neighbour and bi-linear interpolation, given their
similar performance whilst being conceptually simpler.

Chapter 5. Convolutional Neural Networks for Semantic Segmentation 65

5.4 Improved Decoder Designs: FPN and PAN

Following U-Net (RONNEBERGER et al., 2015), several alternate decoder
designs have been proposed. Similarly to U-Net (RONNEBERGER et al., 2015), Feature
Pyramid Network (FPN) (LIN et al., 2016) proposed a top-down fusing strategy. How-
ever, instead of a symmetrical decoder design, the latter employed a light-weight decoder
based on a single convolution followed by an element-wise summation as merging strat-
egy. Consequently, by using summation instead of concatenation, FPN successfully avoid
doubling the network’s width at each decoder layer. Formally, for an encoder feature map
E € REXWXC of an arbitrary layer i € [1,7], the corresponding ith decoder layer’s output
is given by:

i ~ i+l iy
i _ Conv(E' + Resize(D'™)), ifi<7 | (5.1)

Conv(E), otherwise

where Resize is an up-sample operation such as bi-linear interpolation.

PANet (LIU et al., 2018) further extends FPN by adding a bottom-up path,
which allows for information to also flow from high-resolution decoder layers to their
low-resolution counterparts. Even though such design does not provide gains for semantic
segmentation models given that only the highest-resolution layer of the decoder is used
for prediction, PANet is useful for object detectors and top-down instance segmentation®
approaches, which may use the output of all decoder layers selected based on the object
size. The general idea of the FPN and PAN decoders, for a 7 layered” encoder backbone,
is displayed in Figure 5.7 a) and b), respectively.

5.5 EfficientDet

EfficientDet (TAN et al., 2019) was proposed in 2020 by the same authors as
EfficientNet (TAN; LE, 2019). Accordingly, EfficientDet (TAN et al., 2019) employs its
precursor work as encoder network and applies the same compound scale factor to scale-
up the decoder design. Additionally, the PAN decoder design is scrutinized and optimized
for performance and efficiency. From Figure 5.7 b), the BiFPN decoder — sub-figure ¢) —

is obtained by following four principles:

e Nodes connected to a single input edge are eliminated given that they do not con-
tribute to feature fusing. Particularly, this is the case for the first D7 and last decoder

layers D? of Figure 5.7.

6 Top-down instance segmentation approaches, i.e., first detect the instances and, then, perform seg-

mentation, usually employ the same design as two-stage objector detectors.
T This encoder design with increased stride is based on the EfficientDet (TAN et al., 2019) architecture.

Chapter 5. Convolutional Neural Networks for Semantic Segmentation 66

——» Convandadd ———3> Object detection and segmentation output
———> Upsample and add = = = » Object detection output only
——> Downsample and add

Repeated

oloNoNoNe
— T}

a) FPN b) PAN ¢) BiFPN

Figure 5.7 — Decoder comparison. Sub-figure a) shows the top-down FPN (LIN et al.,
2016) approach, whereas b) represents the bi-directional connections of PAN
(LIU et al., 2018). Finally, c) represents the BiFPN (TAN et al., 2019) evinc-
ing its modifications upon the PAN design. Solid green arrows represent out-
puts used both in object detection and semantic segmentation tasks, whereas
dashed arrows of the same color correspond to outputs used only in object
detectors. Figure inspired in (TAN et al., 2019).

« Convolutional layers are replaced by depthwise separable convolutions (VANHOUCKE,
2014; CHOLLET, 2017) to improve both FLOPs and parameter efficiencies.

» Residual connections (HE et al., 2016) from input to output are added, enabling the

decoder block to perform identity mapping and allowing for a better gradient flow.

» Instead of a single block, the whole decoder structure can be stacked multiple times
depending on the encoder size. The compounding scale factor (TAN; LE, 2019) is

employed to determine the number of blocks.

Additionally, based on the assumption that not all layers should contribute
equally at each node, instead of performing an uniform element-wise summation, Effi-
cientDet (TAN et al., 2019) adds a weight parameter to each term, which is learned by
the network via the optimization algorithm. Notably, to avoid numeric instabilities with
unbounded learned parameters as weights, weighted-BiFPN adopts a weight normaliza-
tion for each node as follows:

i g(w;)

D' = Z P ST I, (5.2)
where the function g(-) is the ReLU (NAIR; HINTON, 2010) activation function to guar-
antee that the weights w are non-negative, € is a small value employed for numeric stability
purposes and the inputs [; can be either direct values of the same decoder level or product

of Resize operations from different layers, as represented in Figure 5.7 c).

Chapter 5. Convolutional Neural Networks for Semantic Segmentation 67

The complete EfficientDet (TAN et al., 2019) architecture for object detection
is displayed in Figure 5.8. Particularly, for semantic segmentation, the class and box
prediction sub-networks are dropped and only the decoder layer with highest-resolution

(pathway depicted in red in Figure 5.8) is used to predict the segmentation map.

Psl 64 —=
¢ 2
Ps/32 |=‘

P/ 16 oo

P3/8
Y
Pol4 BiFPN Layer
[

Pi/2
Input

EfficientNet backbone

Figure 5.8 — Complete EfficientDet architecture for object detection. Figure ex-
tracted from (TAN et al., 2019).

5.6 Feature-aligned Pyramid Network (FaPN)

In 2021, a novel decoder design was proposed to improve even further the

recovery of high-frequency information lost throughout the encoder’s pooling layers.

Feature-aligned Pyramid Network (FaPN) (HUANG et al., 2021) extends FPN
by introducing two additional blocks: Feature Alignment Module (FAM) and Feature
Selection Module (FSM). The first is responsible for aligning the low-resolution feature
maps, whereas the second is responsible for calibrating via attention mechanisms the skip
connections before the feature fusion. An overview of FaPN and its main differences from
FPN are depicted in Figure 5.9.

5.6.1 Feature Alignment Module (FAM)

In most deep learning architectures, the input image is donwsampled several
times throughout the network. By the end of the encoder, feature maps are usually 32
to 64 times smaller than the original input. Huang et al. (2021) argued that, during this
process, spatial misalignment may occur and the naive fusion between skip connection
and the upsampled feature map, as performed in FPN (LIN et al., 2016), may harm the

prediction for fine borders.

In order to fix that, Huang et al. (2021) proposed to apply deformable con-
volutions (DAI et al., 2017; ZHU et al., 2019) after the upsampling of low-resolution

Chapter 5. Convolutional Neural Networks for Semantic Segmentation 68

Bottom-Up

-,

u,

M
--A-:--..h

o FaPN

P 2Xup
:_.:1 ______________________________________ _'.’f u
i FPN i : R :
2% up : FAM
: B4 A%
—{ 1x1 conv —C)-GD i —> FSM 7 +

1 ! i

1 ' P{ E Pl H

Figure 5.9 - FaPN overview and comparison with FPN. Figure extracted from
(HUANG et al., 2021).

feature maps. This special family of convolution enables the model to learn offset fields
for each pixel in the convolution kernel, allowing the layer to perform its computation on
a non-rigid grid, which is able to fix possible misalignments caused by the downsample

operations. The FAM block can be visualized in Figure 5.10.

5.6.2 Feature Selection Module (FSM)

Inspired by attention mechanisms, Huang et al. (2021) proposed to apply a
variation of the SE block (HU et al., 2018) to the skip connection before the fusion in the
feature pyramid. By doing so, the network is able to suppress channels of low semantic
content, making sure that the reduction in channels for the fusion does not discard useful

information.

The block is comprised by a global average pooling followed by a 1x1 convolu-
tion to extract the global statistics for each channel. In the sequence, a sigmoid function
is applied to scale the results, which are, then, multiplied to the original feature map.
Finally, similarly to a residual connection, the original feature map is added to the result.

The complete block is shown in Figure 5.11.

Chapter 5. Convolutional Neural Networks for Semantic Segmentation 69

=)

VN[>

. [

————————————

Figure 5.10 — Overview of the Feature Alignment Module. Figure extracted from
(HUANG et al., 2021).

>3 —>

Ci

Figure 5.11 — Overview of the Feature Selection Module. Figure extracted from
(HUANG et al., 2021).

5.7 Loss Functions and Metrics

In this section, we briefly present the common loss functions used during the
training phase of segmentation models, as well as the metrics used to evaluate their

performance.

5.7.1 Metrics

An ideal metric for semantic segmentation should be able to correctly capture
how well a prediction overlaps with the ground-truth object. However, at the same time,
such metric should also be able to penalize excessive predictions lying outside the ground-
truth area. Finally, invariance to scale is also paramount so that it is able to evaluate
equally well objects of different sizes. The two most common metrics that satisfy these

properties are explained in the sequence.

Chapter 5. Convolutional Neural Networks for Semantic Segmentation 70

5.7.1.1 Jaccard Index

The Jaccard Index, also known as intersection over union (IoU), can be de-

scribed for two discrete sets of points A and B as:

ANB| |AN B
A'B , 5.3
JAB) = 0B T AT B— AN B (5:3)
where the operator |- | denotes the size of the set.

Alternatively, the Jaccard Index can be described in terms of true-positives

(T'P), false-positives (FP) and false-negatives (F'N) for binary-classification setups as:

TP
— 4
J TP+ FN + FP’ (5-4)

Equation (5.4) can be easily extended for multi-class setups by applying the
over-versus-rest strategy, where, for each class ¢ € C, a binary problem is set against all

other classes and the final is result is taken as the average of all binary metrics.

5.7.1.2 Dice Score

The Dice score, also known as Sgrensen—Dice coefficient, can be described as:
|AN B|

DA, B)=2. 2L
A B) =2 L)

(5.5)

Note that, despite very similar to the Jaccard Index, the Dice score uses the
sum of the sizes in the denominator, which also includes |A N B|. Hence, a factor of 2 is
used in the numerator to normalize the metric between 0 and 1. The Jaccard index and

Dice score can be related by the expression J = D/(2 — D).

5.7.2 Loss Functions

Differently from evaluation metrics, the loss functions used during the training
phase of deep learning models must be differentiable. For semantic segmentation, such

functions can be grouped into two categories: pixel-wise and IoU-based.

5.7.2.1 Cross-Entropy Loss

The cross-entropy loss is one of the most common options used in machine
learning. Its application can be easily adapted to semantic segmentation by treating each
pixel as an individual sample. As defined by Equation (5.6), it can be computed for an

image N € R¥*W and a set of classes C:

Leo(D,9) = |/\/| Do i - log(Die), (5.6)

ceCieN

Chapter 5. Convolutional Neural Networks for Semantic Segmentation 71

where, for the pixel i € A and class ¢ € C, the network’s prediction and the ground-
truth label are represented by 9;. € [0,1] and y; . € {0, 1}, respectively. Additionally, the

number of elements of a set is denoted by the operator | - |.

5.7.2.2 Focal Loss

The Focal Loss (LIN et al., 2017) is an extension of the cross-entropy loss,
which was originally proposed to tackle the severe class imbalance experienced by single-
stage object detection by reducing the weights of well classified samples. Similarly to the
cross-entropy, it can also be applied at pixel-level for semantic segmentation tasks. Its

binary form for a single sample can be described as follows:

FLp) =1 " (1—p)7-log(p) y=1 | (5.7)

—(1 —a)p” -log(1l —p) otherwise
where 7 is a hyperparameter controlling the reduction effect on well classified samples, «
is another hyperparameter that directly controls the weights for the positive and negative
classes and p € [0,1] and y € {0,1} are the model prediction and ground-truth label,

respectively.

If no class weights are set, i.e., & = 0.5, Equation (5.7) can be simplified to:

FL(p:) = —(1 —p;)" - log(py), (5.8)

where p; is given by:

p y=1
Dt = (5.9)
1 —p otherwise
Figure 5.12 shows the loss effect on well classified samples for different values

of .

5.7.2.3 Soft-dice Loss

Even though the Cross-entropy and Focal Loss usually provide a good alter-
native to train semantic segmentation models, these cost functions optimize the model in
a pixel-wise fashion, which diverge from how semantic segmentation metrics are usually
computed (based on IoU). Thus, in an attempt to bring the optimization and evaluation
of segmentation models closer, the soft-dice score (SUDRE et al., 2017) was proposed as

follows:

A X _ o 2

ceC

Ye © Jel|
24+ 19e1*

(5.10)

Ye

Chapter 5. Convolutional Neural Networks for Semantic Segmentation 72

5
CE(p:) = ~ log(p) —-0
— = 0.
4 FI(PJ::‘*(l‘*PJTIOg@%) y=1
— = 2
3- =5
wn
()]
S
2 L
well-classified
examples
1k A
_—\
0 ¥
0 0.2 0.4 0.6 0.8 1

probability of ground truth class

Figure 5.12 — Focal loss effect on different v values. Figure extracted from (LIN et
al., 2017).

where the image vectors . € RF*W and g, € R¥*W represent the ground-truth label
and the model’s prediction for a class ¢ € C. Additionally, the operators || - || and ®, re-
spectively, refer to the Ly-norm and the Hadamard product (element-wise multiplication).
Without any loss of performance, Equation (5.10) can be simplified by replacing the Lo

norm by a simple summation and dropping the square factors:

o 2 Y Ye © e
L(9,9)=1— d 2 5.11
(6:9) IC!—lc;ZchrZyc (5.11)

5.8 Final Remarks

In this chapter, we reviewed the first works on semantic segmentation in the
context of deep learning and how image classification architectures can be modified in
order to perform pixel-level predictions. Additionally, the most notorious follow-up de-
signs of the precursor work of Long et al. (2014) were shown and discussed, highlighting
the major improvements. Finally, we presented some novel architectures that are better
able to reconstruct high-frequency details from the small resolution feature maps and
we concluded the chapter by discussing common loss functions and metrics for semantic

segmentation.

It should be noticed that despite the improvements achieved by the architec-
tures presented so far, none of them were especially designed to cope with empty images
nor very unbalanced datasets. Thus, the direct application of such models to the SSEI

scenario may yield sub-optimal results, which, consequently, motivates us to address the

Chapter 5. Convolutional Neural Networks for Semantic Segmentation 73

issue by proposing context-specific modifications to current encoder-decoder architectures,

better adapting them for SSEI applications.

74

6 Proposed Method for Segmentation Un-
der Extreme Imbalance Towards Full-

background Images

In this chapter, we introduce a novel network architecture for semantic seg-
mentation tasks, whose main focus is to deal with scenarios of severe imbalance towards
full-background images. Such architecture is heavily based on: (1) Hypercolumns (HAR-
IHARAN et al., 2014a) to better incorporate context, essential to avoid predicting small
false positive artifacts; and (2) attention mechanisms (HU et al., 2018), which are help-
ful to mitigate the discrepancies in semantic content when merging feature maps from

different layers.

Originally, the Hypercolumn block (HARIHARAN et al., 2014a) was intended
for networks without any decoder in their architecture. Thus, the representations of the
shallow and intermediate layers injected by Hypercolumns into the classifier are helpful
given their high-frequency information, such as precise localization, sharp edges, pose,
illumination, etc. Here, we invert the original rationale and propose to utilize it along
with a decoder network. Precisely, in our case, the Hypercolumns block operates on the
outputs from the decoder block. In this context, it provides semantically rich feature maps
from the low-resolution decoder layers to their high-resolution counterparts, incorporating

semi-global context into the final network’s representation.

Additionally, we extend the Hypercolumns block by adding a multi-level fuse
block, whose goal is to improve the merging between feature maps originated from different
network layers. As evinced by Li et al. (2018), such layers usually encode features of
very different characteristics — both in terms of semantic content and high-frequency
information — which can lead to sub-optimal results when naively combined together.
In Chapter 8, we empirically demonstrate with ablation studies that our dedicated fuse
module allows encoder-decoder networks to extract more gains from the context-enriched

representation provided by Hypercolumns.

Aiming to mitigate imbalance issues, we also propose a novel auxiliary scale
invariant segmentation loss based on the soft-dice score (SUDRE et al., 2017) for non-
empty images, on top of which we use a “smart” batch sampling scheme to reduce the

discrepancy between classes and stabilize the training process.

Chapter 6. Proposed Method for Segmentation Under Extreme Imbalance Towards Full-background
Images 75

6.1 Architecture

The architecture of our model is comprised of an encoder, which usually is
the convolutional section of common image classification networks such as VGGs (SI-
MONYAN; ZISSERMAN;, 2015), ResNets (HE et al., 2016), SENets (HU et al., 2018)
and EfficientNets (TAN; LE, 2019); a U-Net-like decoder responsible for upsampling the
encoder’s output and reconstructing high-frequency information lost during pooling op-
erations; the inverted hypercolumn block, whose objective is to enrich the high-resolution
decoder’s feature maps with additional context from layers that have larger receptive field;
and a multi-level fuse block that mitigates the issue of combining feature maps of different
semantic contents, improving the image’s representation prior to the final segmentation

classifier layer.

6.1.1 Decoder

For the decoder network design, U-Net (RONNEBERGER et al., 2015) is
adopted as main reference, upon which we make some modifications. Firstly, the trans-
posed convolutions (DUMOULIN; VISIN, 2018) used originally for upsampling are re-
placed by common bi-linear upsampling kernels, as suggested by (ODENA et al., 2016), to
avoid generating checkerboard artifacts and reducing the number of parameters. Secondly,
instead of concatenating the features in the skip-connections, we employ element-wise
summation, which avoids doubling the number of channels at every connection, reducing

the number of parameters and floating point operations without any loss of performance,
as verified by recent works (LI et al., 2018; LIN et al., 2016; TAN et al., 2019).

6.1.2 Inverted Hypercolumns

As already stated, we propose to utilize Hypercolumns at the end of the de-
coder network, which inverts its original rationale. At the low-resolution layers of the
decoder, the descriptors are context- and semantically rich albeit lacking high-frequency
information. As the decoder progressively increases its feature maps’ resolution, precise lo-
calization is recovered, but the receptive field of the subsequent convolutions start getting
smaller, which may undermine the network’s capacity to propagate global and semi-global
representation to the final classifier. Thus, by employing Hypercolumns, we assure that
the final descriptor prior to classification contains representations not only from the last
layer but also from all the intermediate ones, providing all levels of semantic content
and high-frequency information. An overview of the proposed inverted Hypercolumns is

depicted in Figure 6.1.

Chapter 6. Proposed Method for Segmentation Under Extreme Imbalance Towards Full-background
Images 76

RCZXHZXWZ

Formally, considering a feature map F; € of a decoder layer i €

[1, L], the combined Hypercolumn representation X € R *W can be described by
Equation (6.1):
L
X =3 oi(Fy), (6.1)
i=1

where the transformation ¢(-) comprises an upsampling kernel! and a 1x1 convolution, in
order to first upsample the intermediate input and, then, adapt its number of channels to
a common dimension C, enabling the element-wise summation of feature maps from all

decoder layers.

Decoder Layer 3 3 Upsample 2x + 1x1 conv N ,
) (H/2, W/2, C3) "1 Feat.3 (H, W, C") Concatenation
or
Element-wise sum
Encoder Decoder Layer 2 o Upsample 4x + 1x1 conv ()
> (H/4, W/4, Cs) » Feat.2 (H, W, C')
Decoder Layer 1 1 : Upsample 8x +1x1 conv
——> s Wi Oy) > Feat 1 (H,W,C')

Figure 6.1 — Hypercolumns applied to the decoder network. The transformation
¢(+) converts each feature map into a common dimension, enabling the fusion
by either channel concatenation or element-wise summation.

6.1.3 Multi-level Fuse Block

As evinced by Li et al. (2018), skip-connections have to merge feature maps
with different characteristics: the upsampled descriptor from the decoder presents high
semantic content, whereas the incoming skip-connection from the encoder carries fine-
grained details but lower semantic context. Consequently, naively fusing these descriptors
may lead to sub-optimal results. This phenomenon is further aggravated in the Hyper-
colums block where descriptors from several different layers are combined together. The
color code in Figure 6.2 can aid in understanding such concept as it shows how feature
maps of different natures are combined throughout the network. Thus, in order to max-
imize the joint representation of Hypercolumns we propose a multi-level fuse layer that
relies on convolutions augmented with attention mechanisms to better combine descrip-

tors of different characteristics both in channel and spatial dimensions.

Accordingly, the first step is to channel-wise calibrate the Hypercolumns de-
scriptors X via the self-attention Squeeze-Excitation Block (HU et al., 2018) ;. Then,

a block F comprised of three 3x3 convolutions accompanied by Batch Normalization

1 Both nearest neighbour and bi-linear interpolations could be used. We observe that the latter yields

better upsampling results at the expense of higher computational cost.

Chapter 6. Proposed Method for Segmentation Under Extreme Imbalance Towards Full-background
Images 7

ResNet50 Encoder

4 I

Conv1
i Decoder
Layer1 R BT /) Layer3
| { :
<
°
(]
Layer2 R EEEEEE TR - > Layer2 > 8 Multi-level Fuse
c
3
=]
(7]

Y

Layer3 R Rttt - -)‘ Layer1
A
Layer4 Donwlample UpsaTmpIe Skip-connection

- / NS J >

\4

Semantic content

Figure 6.2 - Complete Architecture Diagram. Dashed, green and blue arrows denote
skip-connections, down- and up-sampling operations, whereas the feature
map’s color represents its semantic content. Final segmentation classifier is
added on top of the Multi-level Fuse block’s output. Best viewed in color.

(IOFFE; SZEGEDY, 2015) and ReLU, whose receptive field is equivalent to a 7x7 con-
volution, is used to spatially fuse the common representation. Finally, the intermediate
feature map Z undergoes a second SE Block 15 to create the final calibrated representa-

tion.

Formally, the Multi-level Fuse Block G can be defined by Equation (6.2). Al-
ternatively, such transformation can be interpreted as a non-linear mapping between an
uncalibrated descriptor X € RE*#*W and its calibrated counterpart. Figure 6.3 provides

an overview on how Equation (6.2) can be translated into neural network’s layers.

Z' = G(X) = ¢o(F(¢1(X))) (6.2)

Finally, Figure 6.2 depicts the complete architecture, where down- and up-
sampling layers are denoted by green and blue arrows, respectively, and the color code
represents the expected semantic content of each intermediate feature map. Notably, Fig-
ure 6.2 evinces how the Hypercolumns block has to merge descriptors of different charac-

teristics, which is the intuition behind the Muli-level Fuse block.

6.2 Losses

In this section, we briefly introduce the main segmentation loss used to clas-

sify all images at pixel level. Additionally, the auxiliary segmentation loss employed for

Chapter 6. Proposed Method for Segmentation Under Extreme Imbalance Towards Full-background
Images 78

X 7'

— —

11 : Squeeze Excitation 13 : Squeeze Excitation
Block In Block Out

A A—

X/ F': 3x3 conv Z

Block

Figure 6.3 — Multi-level Fuse Block. The Hypercolumns’ output feature map X first
undergoes a channel-wise transform 1, to reduce the impact of semantically
bad and possibly co-occurring features. Then, a set of three 3x3 convolutions,
followed by Batch Normalization (IOFFE; SZEGEDY, 2015) and ReLU are
applied to also merge the features spatially, resulting in the feature map
Z. Finally, another channel-wise transform 1, is applied to re-calibrate the
channels. Our segmentation classifier is applied on top of Z'.

foreground images is also presented. Finally, we introduce the strategy used to combine

both losses.

6.2.1 Main Segmentation Loss

As commonly adopted for semantic segmentation tasks, we employ a 1x1 con-
volution as final spatial classifier in order to convert the number of channels of the output
descriptor to the total number of classes C. Then, we employ the pixel-wise cross-entropy

loss as defined in Equation (5.6).

6.2.2 Auxiliary Foreground Segmentation Loss

In addition to the main cross-entropy loss, an auxiliary segmentation loss based
on the soft-dice score (SUDRE et al., 2017), defined in Equation (5.11), is employed.

The rationale behind the adoption of such auxiliary loss lies on its properties
of invariance to scale and class imbalance, which can be decisive to reduce the ambiguity

between small objects and full-background images — very important cases given the scope

Chapter 6. Proposed Method for Segmentation Under Extreme Imbalance Towards Full-background
Images 79

of this work. Nonetheless, in case of a correct prediction for empty images, the condition
> Ye + > 9. — 0 can be easily met and, consequently, Equation (5.11) is not defined or
can lead to inconsistencies. Although the convention of setting 0/0 := 1 is a commonly
used workaround, we argue that it should be avoided as it biases the learning towards
false negatives since the loss incurred by correctly estimating an empty image is always 0,
whereas by accurately predicting object pixels the loss is proportional to the IoU, which

is usually significantly greater then 0 even for a reasonably good prediction.

In order to avoid such conundrum, we employ the auxiliary segmentation loss
Ly only for foreground images, i.e., samples of the training set that have at least one
pixel belonging to one of the foreground classes ¢ € C, ¢ # B. When used in conjunction
with batch sampling schemes, e.g., over- and under-sampling, such approach assures that
the denominator of Equation (5.11) is always greater than 0. Thus, conveniently, this loss
is able to strictly focus on the semantic segmentation task without suffering of pixel-level
class imbalance. The modified soft-dice loss for foreground images can be described as

follows:

2 > Ye © Yo
>

_ Y Obe 6.3
ICl -1 ccConn 2 Ye T 2 Te (©.3)

Lsy(9,9) =1

In practice, the two losses — cross-entropy L., which is computed on all im-

ages, and the auxiliary segmentation loss L4, applied only on foreground images — are lin-

early combined, as defined in Equation (6.4), and the resultant tensor is back-propagated
(RUMELHART et al., 1986) to determine the network’s gradients.

L=CLeta- Ly, (6.4)

The constant « is an hyperparameter responsible for controlling the weight of the fore-

ground segmentation loss.

80

[/ Experiments

Four types of experiments are performed in this work. Firstly, using a baseline
single-stage CNN for semantic segmentation, we evaluate how “smart” image-level sam-
pling schemes can be used to tackle the class imbalance problem. Secondly, some CNN
architectures are trained for the problem of semantic segmentation with extreme imbal-
ance towards empty images and their performances are compared. Additionally, two-stage
pipelines, where an image classification network first filters the empty images and, then,
another CNN segments the foreground images, are also benchmarked against their single-
stage counterpart. Thirdly, we evaluate the compatibility of the proposed architecture and
loss function with other pixel-wise class imbalance techniques, such as Focal Loss (LIN
et al., 2017), and modern encoder-decoder architectures, e.g., EfficientDet (TAN et al.,
2019) and Feature-aligned Pyramid Network (FaPN) (HUANG et al., 2021). Lastly, ab-
lation studies are performed in order to determine how each part of the proposed model,
described in Section 6.1, contributes to the final result and, ultimately, to aid in com-
prehending the underlying mechanisms of the proposed method. In the remainder of this
chapter, the chosen dataset and the methodology are presented, whilst the results are

exhibited and discussed in detail in Chapter 8.

7.1 Datasets

In order to evaluate the performance of the proposed architecture, two datasets
of distinct nature were chosen. The first, SIIM-ACR Pneumothorax!, is related to a real-
world application and represents a binary segmentation problem, whereas, the second, a
MS-COCO (LIN et al., 2015) subset, represents a multi-class setup of a famous dataset

in the object detection and segmentation literature.

7.1.1 SIIM-ACR Pneumothorax

As one of our datasets to evaluate the models throughout this work, we chose
the SIIM-ACR Pneumothorax Segmentation dataset, which comprises 10,675 lung X-ray
images that are annotated at pixel-level for a binary classification setup. The positive
class represents Pneumothorax, a lung pathology characterized by anomalous accretion
of gases in the pulmonary pleural space, whose origin is usually attributed to trauma,

spontaneous formation or byproduct of another pulmonary disease. Fast and accurate

L https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation

https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation

Chapter 7. Experiments 81

automatic diagnosis is of paramount importance as it should be treated immediately either
by decompression or drainage since it can be a life-threatening condition (Ni Fhlatharta;
EATON, 2020; WEISSBERG; REFAELY, 2000; YARMUS; FELLER-KOPMAN, 2012).

This dataset is particularly pertinent to the scope of this work given that only
24.5% of the X-ray images have the pathology, i.e., 75.5% of images are empty, as can be
observed in Table 7.1. Furthermore, when pixel-level imbalance is regarded, 99.68% of all
dataset’s pixels belong to the background (healthy) class. Finally, the original dataset is
randomly divided — whilst respecting class stratification — into training, validation and
test sets containing 8647 (81%), 961 (9%) and 1067 (10%) samples, respectively.

Table 7.1 — Class Statistics for the SIIM-ACR Pneumothorax Dataset

Image-level % Pixel-level %

Pneumothorax 24.25 0.32

Background 100 99.68

The columns show the representativity of each class in the dataset both on image- and pixel-level. The
image-level statistics may add up to more than 100% since images usually contain pizels of more than

one class.

7.1.2 MS-COCO: BikeCar

As a second dataset to evaluate our models and with reproducibility in mind,
we opted for a dataset commonly used in the literature. It is important to remark, however,
that almost all segmentation datasets, such as MS-COCO (LIN et al., 2015), CityScapes
(CORDTS et al., 2016) and Pascal-VOC (EVERINGHAM et al., 2010), do not have
empty images in their composition, i.e., all the images in those datasets have at least one
pixel belonging to one of the foreground classes. Thus, they are not directly compatible
to the spirit of this work. With that in mind, we decided to adapt the MS-COCO(LIN et
al., 2015) dataset by using only a subset of classes whilst keeping all the images. By doing
this, it is possible to control the percentage of empty images in the dataset based on the
number of classes selected as foreground. Particularly, only the Car and Bicycle classes
were selected yielding a multi-class dataset almost twice as unbalanced as the SIIM-ACR
dataset. The statistics for MS-COCO: BikeCar are displayed in Table 7.2.

7.2 Evaluation Metrics

Following the literature, as semantic segmentation metric, the loU (intersection

over union) is employed. However, considering that the background class is usually much

Chapter 7. Experiments 82

Table 7.2 — Class Statistics for the COCO-BikeCar Dataset

Image-level % Pixel-level %

Bicycle 2.98 0.183
Car 10.70 0.617
Background 100 99.20

The columns show the representativity of each class in the dataset both on image- and pizel-level. Again,
the image-level statistics may add up to more than 100% since images usually contain pizels of more than

one class.

easier to estimate, we opted to compute and average only the IoU for the foreground

classes in order to avoid biasing the evaluation process.

Additionally, an image-wise classification evaluation is performed according
to the following criteria: if a single foreground pixel is predicted by the network, then,
the sample is deemed as positive. Conversely, if all pixels of the segmentation mask are
estimated as background, then, a negative prediction is regarded. For the image-wise
classification task, the balanced accuracy metric (BRODERSEN et al., 2010), defined in

Equation (7.1), is used as it is most suited for unbalanced scenarios.

! (TP TN) | (7.1)

ACChu =5 (5 +

where the true-positives, positives, true-negatives and negatives are denoted by TP, P,

TN and N, respectively.

7.3 Implementation Details

In this section, the settings and parameters used to train image classification
and semantic segmentation models throughout this work are presented. The following can
be regarded as the default setup for all models. When a model uses a setting or parameter

different from those herein specified, it shall be elucidated in that model’s own section.

7.3.1 Network

Given its good balance between size and performance, the ResNet-50 (HE et
al., 2016) is used as backbone in most experiments. Particularly, the backbone is initialized
using the ImageNet (RUSSAKOVSKY et al., 2015) pre-trained weights. As for semantic
segmentation tasks, the decoder networks are based on U-Net (RONNEBERGER et al.,
2015) and follows the architecture presented in Section 6.1.1, even though the proposed

Chapter 7. Experiments 83

modifications of this work can be applied to any other modern decoder-based architecture,
such as those from (LI et al., 2018; CHEN et al., 2018; PENG et al., 2017). Additionally,
as can be verified in Section 8.4, we also evaluate the elements of our proposal applied
to modern segmentation architectures — EfficientDet-D2 (TAN et al., 2019) and FaPN
(HUANG et al., 2021).

7.3.2 Optimizer

In all experiments, the RAdam (LIU et al., 2019) optimizer, with default values
of /1 = 0.9 and 5y = 0.999, is used along with a Cosine annealing (LOSHCHILOV;
HUTTER, 2016) learning rate scheduler, whose start and end values are set to 107 and

1079, respectively. Additionally, in order to avoid overfitting, 10~ is used as weight decay
(GOODFELLOW et al., 2016).

7.3.3 Loss

The cross-entropy (GOODFELLOW et al., 2016) loss function is used for all
image classification models. Also, its pixel-wise version is employed in segmentation tasks,
unless otherwise specified?. Notably, the auxiliary foreground segmentation loss of Equa-
tion (6.3) is an exception and is only used in the proposed model, whose parameter « is

set to 0.1, which was found empirically through grid-search.

7.3.4 Training Settings

All experiments were executed on a machine with the following specifications:

e OS: Arch Linux
o CPU: Intel i7-6800k, 3.4ghz,15mb, Hexa-core

RAM: 32Gb

GPU: Gigabyte Windforce NVIDIA RTX 2080ti

The PyTorch (PASZKE et al., 2017) library with mixed-precision mode (NARANG et
al., 2018) was used to train the image classification and segmentation networks, for 30
and 37 epochs, for the SIIM-ACR and COCQO: BikeCar datasets, respectively, which was

found through grid-searching to be enough for full convergence.

2 In some experiments we evaluate how Focal Loss (LIN et al., 2017) can be used to mitigate the class

imbalance. In such experiments, we explicitly mention the loss function used.

Chapter 7. Experiments 84

For the classification tasks, a batch size of 32 256 x 256 images was adopted.
On the other hand, as bigger input sizes are helpful for segmentation models, the batch
size is comprised of 16 512 x 512 images in such tasks. Notably, the batch size is halved
due to memory constraints. Furthermore, the under-sampling (BRANCO et al., 2015; He;
Garcia, 2009; HE; MA, 2013) batch sampling strategy was adopted in order to reduce the
image-level class imbalance between foreground and background classes. Finally, a simple
horizontal flip was used as data augmentation in all experiments. Even though more
elaborate augmentation schemes could result in better evaluation metrics, these image
transformations are, in most cases, task- and dataset-specific and, thus, were avoided in

this work.

85

8 Results

In this chapter, the computational experiments outlined in Chapter 7 are fur-

ther explained and the obtained results are presented and analyzed.

8.1 Data Sampling and Batch Formulation

Before evaluating the results of the proposed architecture, we investigated if
the batch sampling schemes described in Chapter 2, which are commonly used in image
classifications tasks, can be useful for semantic segmentation with empty images. Such
techniques are usually not employed for semantic segmentation since, in traditional seg-
mentation datasets, at least one of the foreground classes is always present and the object
size may vary widely from class to class, thus, making it very difficult to balance the
dataset using image-level sampling strategies. However, in the scope of this work, those
techniques can be employed to ensure that each batch is comprised of 50% of foreground

images, reducing the overall class imbalance also at pixel-level.

For this experiment, a ResNetb0-UNet segmentation network was trained in
the SIIM-ACR dataset using the different batch sampling schemes. We compared the
traditional random sampling against under- and over-sampling strategies, both targeting

50% foreground images in the training mini-batch. The results are displayed in Table 8.1.

It is possible to notice that the naive random sampling leads to significantly
inferior results (-16% IoU), while under- and over-sampling yield the same IoU, but with
a slight improvement in terms of image-level accuracy for the under-sampling strategy.
Moreover, we observed during training that the under-sampling technique provides much
more stable results over the training epochs. Therefore, for all the subsequent experiments,
we adopted the under-sampling technique as the standard approach when building the

training batches.

8.2 SIIM-ACR Pneumothorax Dataset

In this section, the semantic segmentation task under extreme imbalance to-
wards full-background images is explored in the context of the SIIM-ACR Pneumothorax
dataset. Accordingly, two types of pipelines, which are commonly found in practical ap-

plications, are investigated: single- and two-stages.

In the former, a single standalone network trained on all images is used to

Chapter 8. Results 86

Table 8.1 — Batch Sampling Study

Image-level
IoU Balanced
Accuracy

Non-Empty only

Random 0.352 0.794
Under-sampling 0.418 0.835
Over-sampling 0.418 0.818

The results for a simple U-Net on the SIIM-ACR dataset is shown for different image-level batch sampling
schemes. Under-sampling not only performs best but we also observed significant improvements in stability

during training.

predict segmentation masks on the entire testset. In this case, the model is expected to
cope with empty images by only predicting the background class for all pixels in their
segmentation mask. On the other hand, the latter is comprised of an image classification
model, trained on all images and responsible for filtering out empty (healthy) samples,
and a semantic segmentation network, which can either be trained only on foreground
images or on the entire training set, should produce a segmentation mask for the sick

patients as determined by the classifier.

The experimental results concerning the evaluation metrics of Section 7.2 — IoU
and image-level balanced accuracy — for both single- and two-stage models are displayed
in Table 8.2. As we can observe, the single-stage methods, in general, present considerably
better results than two-stage pipelines. Additionally, for two-stage pipelines, we observe
better results when the second stage, i.e., the segmentation model, is trained only on
foreground images. On the other hand, if it is trained on all images similarly to a single-
stage method, it tends to overcompensate towards the background class as both stages

can amount to the false negatives count.

Table 8.2 also evinces that Hypercolumns (HARIHARAN et al., 2014a) by
itself does not improve the results. More specifically, when compared to U-Net (RON-
NEBERGER et al., 2015), it achieves the same IoU but falls short on image-level accuracy
by approximately 2%. We argue that, as similarly observed in (LI et al., 2018), the simple
merge strategy of the Hypercolumns block does not allow the network to fully exploit the
descriptors from different layers. In fact, naively merging feature maps with low semantic
content directly into the final representation, which is expected to be class-sensitive, can
even be harmful as it may add too much class-agnostic features and, consequently, disrupt

the pixel classification.

Chapter 8. Results 87

Table 8.2 — Results on the SIIM-ACR Pneumothorax Dataset

Segmentation IoU
Image-level
. . Train on Non-empty
Classification Framework Loss Balanced
Empty Images Images
Accuracy
Two-stage Approaches
Yes U-Net No Cross-Entropy 0.383 0.781
Yes U-Net Yes Cross-Entropy 0.336 0.760
Single-stage Approaches
No U-Net Yes Cross-Entropy 0.418 0.835
No Hypercolumns Yes Cross-Entropy 0.418 0.82
No Proposed Yes Cross-Entropy 0.481 0.84
No U-Net Yes Focal Loss 0.463 0.818

The first two rows show the results for the two-stage pipeline where a foreground classifier is first used
to filter out empty images and, then, a segmentation network is used to segment the non-empty images.

The remaining rows are single-stage pipelines and the segmentation network performs both tasks directly.

Alternatively, by employing the multi-level fuse block, our method is able to
take better advantage of the joint representation from Hypercolumns, which directly ac-

counts to a 15% improvement in IoU and 2.4% in balanced accuracy.

Another conclusion that can be drawn from Table 8.2 is that the proposed
model not only tackles the class imbalance problem but goes beyond that. By exchanging
the pixel-wise cross-entropy (HEATON, 2018) by Focal Loss (LIN et al., 2017) as the
loss function, the U-Net baseline model improves its IoU by 10.7% while experiencing
a small drop of 0.6% in image-level accuracy. Nevertheless, even with Focal Loss, the
U-Net still is significantly outperformed by the proposed model, which suggests that the
proposed elements not only handle the class imbalance but also bring additional benefits
to the segmentation model. In fact, by exploring the Focal Loss during the training of the
proposed model, the results do not change significantly evincing its intrinsic capability of

dealing with unbalanced datasets.

Finally, the predicted segmentation masks for three random images from the
SIIM-ACR dataset, which were generated by the single-stage methods of Table 8.2, are
exhibited in Figure 8.1. Notably, it can be observed how the proposed method is able
to detect pneumothoraces instances in two X-ray images that were mostly missed by the

other models.

Chapter 8. Results 88

A. Image B. U-Net C. Hypercolumns D. Proposed Method E. Ground-truth

Figure 8.1 — Some results on the SIIM-ACR dataset. The first column shows the
three random images used as input for the segmentation models, whilst the
second, third and forth columns show the segmentation masks resultant from
the U-Net (RONNEBERGER et al., 2015), Hypercolumns (HARIHARAN et
al., 2014a) and the proposed model, respectively. The ground-truth segmen-
tation masks are shown in the fifth column.

8.3 MS-COCO: BikeCar

Similarly to the experiments with SIIM-ACR Penumothorax Dataset, in this
section the models and pipelines are evaluated in the MS-COCO: BikeCar dataset.

The results, which are displayed in Table 8.3, are in agreement with those of
Table 8.2. Firstly, the single-stage pipelines outperform their two-stage counterparts. Sec-
ondly and, most importantly, the proposed model presents +13.3, 1.8 and 2% improvement
in mloU, multi-class and foreground accuracies, respectively, against its best competitors.
Additionally, even with almost twice imbalance than the SIIM-ACR dataset, by itself, the
original Hypercolumns is not sufficient to improve the results, which is consistent with

the observation and rationale of Section 8.2.

8.4 Combining the Proposed Model with Modern Architectures

Given its simplicity and widespread adoption, U-Net (RONNEBERGER et
al., 2015) is definitively a well suited candidate to be used as baseline for this work’s

experiments. Nonetheless, due to the rapid growth of deep convolutional networks in

Chapter 8. Results 89

Table 8.3 — Results on the MS-COCO: BikeCar Dataset

Segmentation mloU
Image-level
. . Train on Non-empty = Multi-class
Classification Framework Balanced
Empty Images Images Accuracy
Accuracy
Two-stage Approaches
Yes U-Net No 0.385 0.578 0.790
Yes U-Net Yes 0.397 0.572 0.785
Single-stage Approaches
No U-Net Yes 0.456 0.619 0.836
No Hypercolumns Yes 0.448 0.622 0.848
No Proposed Yes 0.517 0.630 0.853

The first two rows show the results for the two-stage pipeline where a foreground classifier is first used
to filter out empty images and, then, a segmentation network is used to segment the non-empty images.

The remaining rows are single-stage pipelines and the segmentation network performs both tasks directly.

Table 8.4 — Results on the SIIM-ACR Pneumothorax Dataset Using EfficientDet and
FaPN as Baseline

IoU
Image-level
Non-empty
i Balanced
images
Accuracy
EfficientDet-D2 0.489 0.838
EfficientDet-D2 + Proposed Method 0.506 0.851
ResNetb0-FaPN 0.471 0.850
ResNet50-FaPN + Proposed Method 0.496 0.841

In this experiment, EfficientDet-D2 (TAN et al., 2019) and ResNet50-FaPN (HUANG et al., 2021)
models were used as baseline to validate the add-in improvements of the proposed model on modern
architectures. The experiment was performed using the SIIM-ACR Pneumothorax Dataset.

computer vision tasks, its performance has been long surpassed by several recent works,
such as PSPNet (ZHAO et al., 2017), DeepLab variants (CHEN et al., 2016; CHEN et
al., 2017, CHEN et al., 2018), OCRNet (YUAN et al., 2019), PANet (LI et al., 2018),
EfficientDet (TAN et al., 2019) and Feature-aligned Pyramid Network (FaPN) (HUANG
et al., 2021). Thus, in this section, we incorporate the proposed method to the last two
models (EfficientDet and FaPN) in order to analyze the impacts of such changes on more

modern and stronger architectures.

Particularly, in the first experiment, the reference model employs EfficientNet-
B2 (TAN; LE, 2019) and weighted-BiFPN (TAN et al., 2019) as encoder and decoder,

Chapter 8. Results 90

respectively, whereas, in the second experiment, a ResNet-50 (HE et al., 2016) was used as
encoder for the recent Feature-aligned Pyramid Network (HUANG et al., 2021) decoder.

The proposed modifications were applied according to the description in Sec-
tion 6.1 and Figure 6.2. The sole difference, specifically for EfficientDet, is that we use
the output of the last 5 decoder layers as inputs to the Hypercolumns block since the

network has two extra pooling layers, leading to an increased output stride.

The results on the SIIM-ACR Pneumothorax dataset can be observed in Table
8.4. For EfficientDet, it is clear that the proposed modifications provide significative gains
in both IoU (43.5%) and balanced accuracy (1.5%), proving its versatility and usefulness
even on top of a modern and very strong baseline. For FaPN, despite the small reduction
of 1% in balanced accuracy, the IoU improved significantly (5%), which would justify its

adoption in most applications.

8.5 Ablation Studies

In order to better comprehend the underlying mechanisms behind the im-
provements achieved by the proposed architecture, as observed in Tables 8.2, 8.3 and 8.4,
we perform a series of ablation studies on the Multi-level Fuse block and the auxiliary

foreground segmentation loss.

8.5.1 Multi-level Fuse Block

The proposed multi-level fuse block is comprised of three transformations: a
convolution block F, an input attention layer v¢; and a final attention v operating at
the output descriptor. Accordingly, the ablation process is performed by training sev-
eral models on the SIIM-ACR dataset while incrementally adding each component to a
base network. Naturally, the ResNet-50 (HE et al., 2016) with modified U-Net (RON-
NEBERGER et al., 2015) decoder and Hypercolumns (HARIHARAN et al., 2014a) block
— as specified in Section 6.1 — is a suitable candidate for such purpose and, therefore, was

employed.

Table 8.5 displays the IoU and image-level balanced accuracy results obtained
in the ablation studies. Even though, by itself, the spatial component F improved the
IoU and accuracy by 2.1 and 1.5%, respectively, most gains occurred when the channel di-
mension was calibrated by the self-attention blocks v, and 1),. Furthermore, a remarkable
IoU improvement of 12.1% was attained when 1); calibrates the feature maps’ channels
prior to the spatial transformation F, suggesting that the attention layers exploit global

information to focus on certain previously disregarded channels, which likely contain small

Chapter 8. Results 91

objects, improving the segmentation quality. Finally, the second attention block)5 op-
erating at the output is able to further improve classification by 2.4% and IoU by 0.4%,
which suggests that attention mechanisms not only can emphasize certain channels but
also suppress less useful ones, reducing false positives — usually associated with small

artifacts in empty images.

Table 8.5 — Ablation on Multi-level Fuse Block

Image-level
IoU Balanced
Accuracy

Non-Empty only

Hypercolumns 0.418 0.82
+ ConvFuse (F) 0.427 0.833
+ SE Block In (1) 0.479 0.819
+ SE Block Out (1)2) 0.481 0.84

The results for different MLF blocks on the SIIM-ACR Pneumothoraz dataset are shown. The baseline,
when only Hypercolumns is used, is displayed in the first row. For the next rows, the increments are added

upon the previous rows until we have the complete architecture in the last row.

8.5.2 Auxiliary Foreground Segmentation Loss

The impacts of the auxiliary foreground segmentation loss of Equation (6.3) in
the perceived gains of Table 8.3 were also investigated. This was achieved by studying the
influence of the loss by modulating the hyperparameter « of Equation (6.4). The results
for the MS-COCO: BikeCar dataset are displayed in the graph of Figure 8.2, where it is
possible to observe that by increasing «;, i.e., the auxiliary loss influence, the mIoU metric
is significantly improved, saturating only around « = 0.3. The accuracies, on the other
hand, quickly reach their peak at a = 0.1. Considering the trade-off between the metrics,

we decided to use 0.1 as the default value for the a.

Surprisingly, for the SIIM-ACR Pneumothorax dataset, it was found that the
usage of the auxiliary loss function does not significantly improve the results. It should be
highlighted, however, that the aforementioned dataset is almost two times more balanced
than the MS-COCO subset. Hence, considering that one of the main ideas behind the
auxiliary loss is to tackle class imbalance, it is expected that its benefits should diminish

as the dataset becomes more balanced.

Chapter 8. Results 92

—o— mloU =%~ Multi-class Accuracy oo ForegroundAccuracyﬂ
1.00 ®
<
£
o 0.96
>
o
Q.
£
o 094
=2
©
e
0.92
0.90 5
./
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Aux. loss weight (a)

Figure 8.2 — Ablation study on the auxiliary loss. Although all metrics benefit from
the additional loss, clearly the mloU is the most sensitive since it suffers
most from the class imbalance problem.

93

9 Conclusion

In this work, a careful study was performed to determine effective approaches
to deal with semantic segmentation tasks with full background images. The two most
common pipelines used in production — single- and two-stage — were presented and com-
pared. Also, image-level batch sampling schemes often used in image classification tasks
and that are neglected in semantic segmentation were studied. Interestingly, we verified
that, in the context of empty images, such methods can be powerful allies to tackle the

class imbalance towards empty images.

As our main contribution, a novel CNN extension for encoder-decoder archi-
tectures was presented for the context of semantic segmentation under extreme imbalance
towards full-background images. The extension mainly relies on (1) a inverted version of
Hypercolumns (HARIHARAN et al., 2014a) to fuse the decoder’s feature maps, aiming
to exploit different levels of high-frequency information and semantic content; (2) a cal-
ibration layer based on the SE attention block (HU et al., 2018); (3) an auxiliary loss

function used to refine the segmentation quality on foreground images.

The proposed modifications achieved promising results, significantly outper-
forming its competitors in two different datasets. The first, SIIM-ACR Pneumothorax
dataset, presents a challenging real-world application in the context of medical imaging.
The second, on the other hand, is comprised by natural images and is built by modifying
MS-COCO (LIN et al., 2015) — a famous dataset in the literature — to adapt it to this
work’s context. The positive results of our method on both datasets evinces its general
capability to improve encoder-decoder architectures when a significant number of empty
images are present in the application context. Notoriously, by also applying our changes to
two state-of-the-art models, namely EfficientDet (TAN et al., 2019) and FaPN (HUANG
et al., 2021), we showed that our proposed extension is flexible and can provide gains even

to strong modern segmentation architectures.

Additionally, enlightening ablation studies were performed on the Multi-level
Fuse block and auxiliary foreground segmentation loss function in order to better com-
prehend the internal mechanisms of the proposed method. The first evinced that each
element of the MLF block adds useful information for the semantic segmentation, whilst
the input SE block 1, brings most gains in terms of IoU. The latter has shown how the
weight for the auxiliary loss « controls the trade-off between IoU and image-level accu-
racy. Additionally, it demonstrated that, for a well calibrated value of «, the auxiliary

loss function brings significant gains both in [oU and accuracy.

Chapter 9. Conclusion 94

0.1 Research Questions

In Section 1.4, the main questions that drove our investigation and research

were presented. Now, we provide the clarification that emerged from our research.

1. What are the difficulties particularly imposed by the presence of empty images in
the dataset?

o Naturally, when a dataset is comprised by a large number of empty images,
its class distribution gets skewed. This is specially true in semantic segmen-
tation tasks where foreground images usually also have a significant number
of background pixels. Thus, class imbalance is the main difficulty that must
be addressed in the empty image context. Additionally, the detection of small
objects also gets impaired when empty images are present, often mistaken by
an empty mask. Hence, scale invariant loss functions and metrics are advised

in this context.

2. Considering class imbalance, how single-stage approaches fare against their more

complex two-stage counterparts?

« [t was observed that despite single-stage approaches having to deal with greater
class imbalance, such class of models can exploit techniques to address the issue,
e.g., Focal Loss (LIN et al., 2017) and undersampling (BRANCO et al., 2015;
HE; MA, 2013), which tends to yield better performance than its two-stage

counterpart.

3. Isit possible to employ “smart” image-level batch sampling schemes, commonly used
in image classification tasks, to mitigate class imbalance in semantic segmentation

with empty images?

o It was found that batch sampling techniques not only can be employed with
empty images but also yield significant improvements for single-stage approaches.
When tested in the SIIM-ACR Pneumothorax dataset, improvements of over

18% in IoU and 5% in global accuracy were observed.

4. Can a especially-tailored architecture for the task at hand improve the results when

compared to the default approaches?

» By proposing an extension to encoder-decoder architectures carefully designed
for the context at hand, we confirmed that specificity to the task can be a
powerful aid when working with empty images. With simple modifications over
the baseline, the proposed model is able to provide significant gains on both
SIIM-ACR and MS-COCQO: BikeCar datasets.

Chapter 9. Conclusion 95

9.2 Future Research

At this point, we hope to have successfully managed to bring the — common,
yet often overlooked — topic of SSEI to the spotlight. With that in mind and aiming to pave
the way for further research on the theme, in this section we present some perspectives

for future works.

o Parametrized evaluation: One possible follow-up experiment for this research
would be to create a dataset where the amount of imbalance towards empty image
is parametrized. In this setup, one should be able to evaluate the benefits of the

proposed method as the imbalance gradually increases.

» Application on networks without decoders: Even though many state-of-the-art
semantic segmentation networks still use decoders, e.g., (TAN et al., 2019; HUANG
et al., 2021), others, like (CHEN et al., 2018; YUAN et al., 2019), decided to only
remove pooling operations in the encoder and apply dilation to the last convolutional
layers. Thus, under minor adaptations, one should be able to apply the proposed

model on such network family.

o Different attention mechanisms: As observed in the ablation study of Chapter
8, the attention layer in the Multi-level Fuse Block plays a key role in the proposed
method. However, in this work, only the pioneer and most famous Squeeze-and-
Excitation (HU et al., 2018) block was explored. Further research may try to employ
different types of attention mechanisms such as CBAM (WOO et al., 2018), scSE
(ROY et al., 2018) and ECA (WANG et al., 2019).

96

Bibliography

Anand, R.; Mehrotra, K. G.; Mohan, C. K.; Ranka, S. An improved algorithm for
neural network classification of imbalanced training sets. IEFE Transactions on Neural
Networks, v. 4, n. 6, p. 962-969, 1993. Cited on page 32.

BA, J. L.; KIROS, J. R.; HINTON, G. E. Layer normalization. arXiv preprint
arXiw:1607.06450, 2016. Cited on page 47.

BAUDER, R.; KHOSHGOFTAAR, T. The effects of varying class distribution on learner
behavior for medicare fraud detection with imbalanced big data. Health Information
Science and Systems, v. 6, 12 2018. Cited on page 32.

Bauder, R. A.; Khoshgoftaar, T. M.; Hasanin, T. An empirical study on class rarity
in big data. In: 2018 17th IEEE International Conference on Machine Learning and
Applications (ICMLA). [S.1.: s.n.], 2018. p. 785-790. Cited on page 32.

BJORCK, J.; GOMES, C.; SELMAN, B.; WEINBERGER, K. Q. Understanding Batch
Normalization. 2018. Cited on page 47.

BRANCO, P.; TORGO, L.; RIBEIRO, R. A Survey of Predictive Modelling under
Imbalanced Distributions. 2015. Cited 3 times on pages 32, 84, and 94.

BROCK, A.; DE, S.; SMITH, S. L.; SIMONYAN, K. High-performance large-scale image
recognition without normalization. arXiv preprint arXiv:2102.06171, 2021. Cited on
page 47.

BRODERSEN, K. H.; ONG, C. S.; STEPHAN, K. E.; BUHMANN, J. M. The balanced
accuracy and its posterior distribution. In: Proceedings - International Conference

on Pattern Recognition. [S.1.: s.n.], 2010. p. 3121-3124. ISBN 9780769541099. ISSN
10514651. Cited on page 82.

CHEN, L.; PAPANDREOU, G.; KOKKINOS, I.; MURPHY, K.; YUILLE, A. L.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. CoRR, abs/1606.00915, 2016. Disponivel em:
<http://arxiv.org/abs/1606.00915>. Cited on page 89.

CHEN, L.-C.; PAPANDREOU, G.; SCHROFF, F.; ADAM, H. Rethinking Atrous
Convolution for Semantic Image Segmentation. 2017. Cited on page 89.

CHEN, L.-C.; ZHU, Y.; PAPANDREOU, G.; SCHROFF, F.; ADAM, H. Encoder-
Decoder with Atrous Separable Convolution for Semantic Image Segmentation. feb 2018.
Disponivel em: <http://arxiv.org/abs/1802.02611>. Cited 6 times on pages 9, 29, 64,
83, 89, and 95.

CHOLLET, F. Xception: Deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. [S.1.:
s.n.], 2017. p. 1251-1258. Cited 2 times on pages 56 and 66.

http://arxiv.org/abs/1606.00915
http://arxiv.org/abs/1802.02611

Bibliography 97

CIREsAN, D. C.; GIUSTI, A.; GAMBARDELLA, L. M.; SCHMIDHUBER, J. Deep
neural networks segment neuronal membranes in electron microscopy images. In:
Proceedings of the 25th International Conference on Neural Information Processing
Systems - Volume 2. Red Hook, NY, USA: Curran Associates Inc., 2012. (NIPS’12), p.
2843-2851. Cited on page 61.

CLEVERT, D.-A.; UNTERTHINER, T.; HOCHREITER, S. Fast and accurate deep
network learning by exponential linear units (elus). arXiv: Learning, 2016. Cited on
page 37.

CORDTS, M.; OMRAN, M.; RAMOS, S.; REHFELD, T.; ENZWEILER, M.;
BENENSON, R.; FRANKE, U.; ROTH, S.; SCHIELE, B.; R&D, D. A.; DARMSTADT,
T. U. The Cityscapes Dataset for Semantic Urban Scene Understanding. [S.l.], 2016.
Disponivel em: <www.cityscapes-dataset.net>. Cited 3 times on pages 24, 29, and 81.

DAI J.; QI, H.; XIONG, Y.; LI, Y.; ZHANG, G.; HU, H.; WEI, Y. Deformable
convolutional networks. In: Proceedings of the IEEE international conference on
computer vision. [S.1.: s.n.], 2017. p. 764-773. Cited on page 67.

DE, S.; SMITH, S. L. Batch Normalization Biases Residual Blocks Towards the Identity
Function in Deep Networks. 2020. Cited on page 47.

DOSOVITSKIY, A.; BEYER, L.; KOLESNIKOV, A.; WEISSENBORN, D.; ZHAI, X,;
UNTERTHINER, T.; DEHGHANI, M.; MINDERER, M.; HEIGOLD, G.; GELLY, S.;
USZKOREIT, J.; HOULSBY, N. An Image is Worth 16x16 Words: Transformers for

Image Recognition at Scale. 2020. Cited on page 31.

DUMOULIN, V.; VISIN, F. A guide to convolution arithmetic for deep learning. 2018.
Cited 4 times on pages 39, 62, 64, and 75.

EVERINGHAM, M.; Van Gool, L.; T Williams, C. K.. WINN, J.: ZISSERMAN,

A.; EVERINGHAM, M.; Van Gool Leuven, L. K.; CKI Williams, B.; WINN, J.;
ZISSERMAN, A. The PASCAL Visual Object Classes (VOC) Challenge. Int J Comput
Vis, v. 88, p. 303-338, 2010. Disponivel em: <http://www.flickr.com/>. Cited 3 times
on pages 24, 29, and 81.

Farabet, C.; Couprie, C.; Najman, L.; LeCun, Y. Learning hierarchical features for scene
labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 35, n. 8,
p- 1915-1929, 2013. Cited on page 61.

FELDMAN, J. A.; FELDMAN, G. M.; FALK, G.; GRAPE, G.; PEARLMAN, J.;
SOBEL, I.; TENENBAUM, J. M. The stanford hand-eye project. In: WALKER, D. E.;
NORTON, L. M. (Ed.). Proceedings of the 1st International Joint Conference on
Artificial Intelligence, Washington, DC, USA, May 7-9, 1969. William Kaufmann, 1969.
p. 521-526. Disponivel em: <http://ijcai.org/Proceedings/69/Papers/046A.pdf>. Cited
on page 43.

Feng Ning; Delhomme, D.; LeCun, Y.; Piano, F.; Bottou, L.; Barbano, P. E. Toward
automatic phenotyping of developing embryos from videos. IEEE Transactions on Image
Processing, v. 14, n. 9, p. 1360-1371, 2005. Cited on page 61.

GANIN, Y.; LEMPITSKY, V. N*-Fields: Neural Network Nearest Neighbor Fields for
Image Transforms. 2014. Cited on page 61.

www.cityscapes-dataset.net
http://www.flickr.com/
http://ijcai.org/Proceedings/69/Papers/046A.pdf

Bibliography 98

GLOROT, X.; BENGIO, Y. Understanding the difficulty of training deep feedforward
neural networks. In: JMLR WORKSHOP AND CONFERENCE PROCEEDINGS.
Proceedings of the thirteenth international conference on artificial intelligence and
statistics. [S.1.], 2010. p. 249-256. Cited on page 46.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.1.]: MIT Press,
2016. <http://www.deeplearningbook.org>. Cited 10 times on pages 9, 34, 36, 39, 40,
41, 42, 43, 44, and 83,

HARIHARAN, B.; ARBELAEZ, P.; GIRSHICK, R.; MALIK, J. Hypercolumns

for Object Segmentation and Fine-grained Localization. Proceedings of the IEEFE
Computer Society Conference on Computer Vision and Pattern Recognition, IEEE
Computer Society, v. 07-12-June-2015, p. 447-456, nov 2014. Disponivel em:
<http://arxiv.org/abs/1411.5752>. Cited 10 times on pages 10, 12, 59, 60, 61, 74, 86,
88, 90, and 93.

HARIHARAN, B.; ARBELAEZ, P.; GIRSHICK, R.; MALIK, J. Simultaneous Detection
and Segmentation. 2014. Cited on page 61.

He, H.; Garcia, E. A. Learning from imbalanced data. IEEE Transactions on Knowledge
and Data Engineering, v. 21, n. 9, p. 1263-1284, 2009. Cited on page 84.

HE, H.; MA, Y. Imbalanced learning: foundations, algorithms, and applications. [S.1.]:
John Wiley & Sons, 2013. Cited 3 times on pages 32, 84, and 94.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In: Proceedings of the IEEFE
international conference on computer vision. [S.l.: s.n.], 2015. p. 1026-1034. Cited 3
times on pages 9, 37, and 38.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Deep residual learning for image recognition. In:
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. [S.1.]: IEEE Computer Society, 2016. v. 2016-December, p. 770-778. ISBN

9781467388504. ISSN 10636919. Cited 15 times on pages 10, 28, 45, 48, 49, 50, 51, 52,

53, 54, 56, 66, 75, 82, and 90.

HEATON, J. lan Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning.
Genetic Programming and Fvolvable Machines, Springer Nature, v. 19, n. 1-2, p. 305-307,
jun 2018. ISSN 1389-2576. Cited on page 87.

HOFFER, E.; HUBARA, I.; SOUDRY, D. Train longer, generalize better: closing the
generalization gap in large batch training of neural networks. 05 2017. Cited on page 47.

HOSSEINI-ASL, E.; GIMEL'’FARB, G. L.; EL-BAZ, A. Alzheimer’s disease diagnostics
by a deeply supervised adaptable 3d convolutional network. CoRR, abs/1607.00556,
2016. Disponivel em: <http://arxiv.org/abs/1607.00556>. Cited on page 27.

HU, J.; SHEN, L.; SUN, G. Squeeze-and-Excitation Networks. In: Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE
Computer Society, 2018. p. 7132-7141. ISBN 9781538664209. ISSN 10636919. Disponivel
em: <http://arxiv.org/abs/1709.01507>. Cited 13 times on pages 10, 28, 51, 53, 54, 55,
56, 68, 74, 75, 76, 93, and 95.

http://www.deeplearningbook.org
http://arxiv.org/abs/1411.5752
http://arxiv.org/abs/1607.00556
http://arxiv.org/abs/1709.01507

Bibliography 99

HUANG, S.; LU, Z.; CHENG, R.; HE, C. FaPN: Feature-aligned pyramid network for
dense image prediction. In: International Conference on Computer Vision (ICCV). [S.1.:
s.n.], 2021. Cited 10 times on pages 11, 67, 68, 69, 80, 83, 89, 90, 93, and 95.

IOFFE, S. Batch renormalization: Towards reducing minibatch dependence in
batch-normalized models. arXiv preprint arXiv:1702.03275, 2017. Cited on page 47.

IOFFE, S.; SZEGEDY, C. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In: 32nd International Conference on Machine
Learning, ICML 2015. International Machine Learning Society (IMLS), 2015. v. 1, p.
448-456. ISBN 9781510810587. Disponivel em: <https://arxiv.org/abs/1502.03167v3>.
Cited 7 times on pages 12, 46, 47, 49, 50, 77, and 78.

JOHNSON, J. M.; KHOSHGOFTAAR, T. M. Survey on deep learning with class
imbalance. Journal of Big Data, SpringerOpen, v. 6, n. 1, dec 2019. ISSN 21961115.
Cited on page 32.

Ker, J.; Wang, L.; Rao, J.; Lim, T. Deep learning applications in medical image analysis.
IEEFE Access, v. 6, p. 9375-9389, 2018. Cited on page 28.

KRIZHEVSKY, A.; HINTON, G. et al. Learning multiple layers of features from tiny
images. Citeseer, 2009. Cited 2 times on pages 10 and 49.

LECUN, Y.: BOSER, B.; DENKER, J. S.. HENDERSON, D.; HOWARD, R. E..
HUBBARD, W.; JACKEL, L. D. Backpropagation Applied to Handwritten Zip Code
Recognition. Neural Computation, v. 1, n. 4, p. 541-551, 1989. ISSN 0899-7667.
Disponivel em: <https://doi.org/10.1162/nec0.1989.1.4.541>. Cited 2 times on pages
21 and 48.

Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, v. 86, n. 11, p. 22782324, 1998. Cited
on page H1.

LI, H.; XIONG, P.; AN, J.; WANG, L. Pyramid Attention Network for Semantic
Segmentation. may 2018. Disponivel em: <http://arxiv.org/abs/1805.10180>. Cited 7
times on pages 64, 74, 75, 76, 83, 86, and 89.

LIN, T-Y.; DOLLAR, P.; GIRSHICK, R.; HE, K.; HARIHARAN, B.;: BELONGIE,
S. Feature Pyramid Networks for Object Detection. dec 2016. Disponivel em:
<http://arxiv.org/abs/1612.03144>. Cited 7 times on pages 11, 30, 64, 65, 66, 67,
and 75.

LIN, T.-Y.; GOYAL, P.; GIRSHICK, R.; HE, K.; DOLLAR, P. Focal Loss for Dense
Object Detection. aug 2017. Disponivel em: <http://arxiv.org/abs/1708.02002>. Cited
8 times on pages 11, 33, 71, 72, 80, 83, 87, and 94.

LIN, T.-Y.; MAIRE, M.; BELONGIE, S.; BOURDEV, L.; GIRSHICK, R.; HAYS, J.;
PERONA, P.; RAMANAN, D.; ZITNICK, C. L.; DOLI, P. Microsoft COCO: Common
Objects in Contezt. [S.1.], 2015. Cited 5 times on pages 24, 29, 80, 81, and 93.

LIU, L.; JIANG, H.; HE, P.; CHEN, W.; LIU, X.; GAO, J.; HAN, J. On the
Variance of the Adaptive Learning Rate and Beyond. aug 2019. Disponivel em:
<http://arxiv.org/abs/1908.03265>. Cited on page 83.

https://arxiv.org/abs/1502.03167v3
https://doi.org/10.1162/neco.1989.1.4.541
http://arxiv.org/abs/1805.10180
http://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1908.03265

Bibliography 100

LIU, S.; QI, L.; QIN, H.; SHI, J.; JIA, J. Path aggregation network for instance
segmentation. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. [S.1.: s.m.], 2018. p. 8759-8768. Cited 3 times on pages 11, 65, and 66.

LONG, J.; SHELHAMER, E.; DARRELL, T. Fully Convolutional Networks for
Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, IEEE Computer Society, v. 39, n. 4, p. 640-651, nov 2014. Disponivel em:
<http://arxiv.org/abs/1411.4038>. Cited 7 times on pages 11, 59, 61, 62, 63, 64,
and 72.

LOSHCHILOV, 1.; HUTTER, F. SGDR: Stochastic Gradient Descent with Warm
Restarts. 5th International Conference on Learning Representations, ICLR 2017 -
Conference Track Proceedings, International Conference on Learning Representations,
ICLR, aug 2016. Disponivel em: <http://arxiv.org/abs/1608.03983>. Cited on page 83.

LUO, P.; WANG, X.; SHAO, W.; PENG, Z. Towards understanding regularization in
batch normalization. ArXiv, abs/1809.00846, 2019. Cited on page 47.

MAAS, A. L.; HANNUN, A. Y.; NG, A. Y. Rectifier nonlinearities improve neural
network acoustic models. In: CITESEER. Proc. icml. [S.1.], 2013. v. 30, n. 1, p. 3. Cited
3 times on pages 9, 37, and 38.

NAIR, V.; HINTON, G. E. Rectified linear units improve restricted boltzmann machines.
In: Jeml. [S.1.: s.n.], 2010. Cited 7 times on pages 35, 36, 46, 49, 50, 53, and 66.

NARANG, S.; DIAMOS, G.; ELSEN, E.; MICIKEVICIUS, P.; ALBEN, J.; GARCIA,
D.; GINSBURG, B.; HOUSTON, M.; KUCHAIEV, O.; VENKATESH, G.; WU, H.
Mixed precision training. In: 6th International Conference on Learning Representations,
ICLR 2018 - Conference Track Proceedings. [S.1.]: International Conference on Learning
Representations, ICLR, 2018. Cited on page 83.

Ni Fhlatharta, M.; EATON, D. A. Pneumothorax and chest drain insertion. Surgery
(Ozford), Elsevier Ltd, v. 38, n. 5, p. 275-279, may 2020. ISSN 02639319. Disponivel em:
<https://linkinghub.elsevier.com /retrieve /pii/S0263931920300454>. Cited on page 81.

ODENA, A.; DUMOULIN, V.; OLAH, C. Deconvolution and checkerboard artifacts.
Distill, v. 1, n. 10, p. e3, 2016. Cited on page 75.

PASZKE, A.; GROSS, S.; CHINTALA, S.; CHANAN, G.; YANG, E.; FACEBOOK,
Z. D.; RESEARCH, A. I.; LIN, Z.; DESMAISON, A.; ANTIGA, L.; SRL, O.; LERER,
A. Automatic differentiation in PyTorch. [S.1.], 2017. Cited 2 times on pages 45 and 83.

PENG, C.; ZHANG, X.; YU, G.; LUO, G.; SUN, J. Large kernel matters — improve
semantic segmentation by global convolutional network. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), IEEE, Jul 2017. Disponivel em:
<http://dx.doi.org/10.1109/CVPR.2017.189>. Cited on page 83.

Pereira, S.; Pinto, A.; Alves, V.; Silva, C. A. Brain tumor segmentation using
convolutional neural networks in mri images. IEEE Transactions on Medical Imaging,
v. 35, n. 5, p. 1240-1251, 2016. Cited on page 28.

PHAM, H.; XIE, Q.; DAI, Z.; LE, Q. V. Meta Pseudo Labels. mar 2020. Disponivel em:
<http://arxiv.org/abs/2003.10580>. Cited on page 28.

http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1608.03983
https://linkinghub.elsevier.com/retrieve/pii/S0263931920300454
http://dx.doi.org/10.1109/CVPR.2017.189
http://arxiv.org/abs/2003.10580

Bibliography 101

PHAM, H.; XIE, Q.; DAL, Z.; LE, Q. V. Meta Pseudo Labels. mar 2020. Disponivel em:
<http://arxiv.org/abs/2003.10580>. Cited on page 28.

PINHEIRO, P. H. O.; COLLOBERT, R. Recurrent Convolutional Neural Networks for
Scene Parsing. 2013. Cited on page 61.

PRATT, H.; COENEN, F.; BROADBENT, D. M.; HARDING, S. P.; ZHENG, Y.
Convolutional Neural Networks for Diabetic Retinopathy. In: Procedia Computer
Science. Elsevier B.V., 2016. v. 90, p. 200-205. ISSN 18770509. Disponivel em:
<www.sciencedirect.com>. Cited on page 27.

RAJPURKAR, P.; IRVIN, J.; ZHU, K.; YANG, B.; MEHTA, H.; DUAN, T.; DING,
D. Y.; BAGUL, A.; LANGLOTZ, C.; SHPANSKAYA, K. S.; LUNGREN, M. P.; NG,
A.Y. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning.
CoRR, abs/1711.05225, 2017. Disponivel em: <http://arxiv.org/abs/1711.05225>.
Cited on page 27.

RAMACHANDRAN, P.; ZOPH, B.; LE, Q. Swish: a self-gated activation function. 10
2017. Cited 3 times on pages 38, 46, and 56.

RAMACHANDRAN, P.; ZOPH, B.; LE, Q. V. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017. Cited 3 times on pages 38, 46, and 56.

RONNEBERGER, O.; FISCHER, P.; BROX, T. U-net: Convolutional networks for
biomedical image segmentation. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
[S.L.]: Springer Verlag, 2015. v. 9351, p. 234-241. ISBN 9783319245737. ISSN 16113349.
Cited 11 times on pages 11, 12, 30, 63, 64, 65, 75, 82, 86, 88, and 90.

ROY, A. G.; NAVAB, N.; WACHINGER, C. Concurrent spatial and channel ‘squeeze &
excitation’in fully convolutional networks. In: SPRINGER. International conference on
medical image computing and computer-assisted intervention. [S.1.], 2018. p. 421-429.
Cited on page 95.

RUMELHART, D.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by
back-propagating errors. Nature, v. 323, p. 533-536, 1986. Cited 3 times on pages 32,
62, and 79.

RUSSAKOVSKY, O.; DENG, J.; SU, H.; KRAUSE, J.; SATHEESH, S.; MA, S.;
HUANG, Z.; KARPATHY, A.; KHOSLA, A.; BERNSTEIN, M.; AL. et. Imagenet large
scale visual recognition challenge. International Journal of Computer Vision, Springer
Science and Business Media LLC, v. 115, n. 3, p. 211-252, Apr 2015. ISSN 1573-1405.
Disponivel em: <http://dx.doi.org/10.1007/s11263-015-0816-y>. Cited 6 times on
pages 21, 27, 31, 50, 59, and 82.

SANCHEZ, J.; PERRONNIN, F. High-dimensional signature compression for large-scale
image classification. In: . [S.1.: s.n.], 2011. p. 1665-1672. Cited on page 28.

SANDLER, M.; HOWARD, A.; ZHU, M.; ZHMOGINOV, A.; CHEN, L.-C. Mobilenetv2:
Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. [S.1.: s.n.], 2018. p. 4510-4520. Cited on page
56.

http://arxiv.org/abs/2003.10580
www.sciencedirect.com
http://arxiv.org/abs/1711.05225
http://dx.doi.org/10.1007/s11263-015-0816-y

Bibliography 102

SANTURKAR, S.; TSIPRAS, D.; ILYAS, A.; MADRY, A. How Does Batch
Normalization Help Optimization? 2019. Cited on page 47.

SIMONYAN, K.; ZISSERMAN, A. Very Deep Convolutional Networks for Large-Scale
Image Recognition. 2015. Cited on page 75.

SORENSEN, T. J. A method of establishing groups of equal amplitude in plant sociology
based on similarity of species content and its application to analyses of the vegetation on
Danish commons. [S.1.]: I kommission hos E. Munksgaard, 1948. Cited 2 times on pages
24 and 28.

SRIVASTAVA, N.; HINTON, G.; KRIZHEVSKY, A.; SUTSKEVER, I.; SALAKHUT-
DINOV, R. Dropout: a simple way to prevent neural networks from overfitting. The
journal of machine learning research, JMLR. org, v. 15, n. 1, p. 1929-1958, 2014. Cited
on page 50.

SUDRE, C. H.; LI, W.; VERCAUTEREN, T.; OURSELIN, S.; CARDOSO, M. J.
Generalised dice overlap as a deep learning loss function for highly unbalanced
segmentations. In: Deep learning in medical image analysis and multimodal learning for
clinical decision support. [S.1.]: Springer, 2017. p. 240-248. Cited 3 times on pages 71,
74, and 78.

SZEGEDY, C.; VANHOUCKE, V.; IOFFE, S.; SHLENS, J.; WOJNA, Z. Rethinking the
Inception Architecture for Computer Vision. 2015. Cited on page 51.

TAN, M.; CHEN, B.; PANG, R.; VASUDEVAN, V.; SANDLER, M.; HOWARD, A.; LE,
Q. V. Mnasnet: Platform-aware neural architecture search for mobile. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S.1.: s.n.],
2019. p. 2820-2828. Cited on page 56.

TAN, M.; LE, Q. V. EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks. may 2019. Disponivel em: <http://arxiv.org/abs/1905.11946>. Cited 13
times on pages 10, 13, 28, 51, 54, 55, 56, 57, 58, 65, 66, 75, and 89.

TAN, M.; PANG, R.; LE, Q. V. EfficientDet: Scalable and Efficient Object Detection.
nov 2019. Disponivel em: <http://arxiv.org/abs/1911.09070>. Cited 10 times on pages
11, 65, 66, 67, 75, 80, 83, 89, 93, and 95.

ULYANOV, D.; VEDALDI, A.; LEMPITSKY, V. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016. Cited on page 47.

VANHOUCKE, V. Learning visual representations at scale. ICLR invited talk, v. 1, p. 2,
2014. Cited 2 times on pages 56 and 66.

WANG, Q.; WU, B.; ZHU, P.; LI, P.; ZUO, W.; HU, Q. Eca-net: Efficient channel
attention for deep convolutional neural networks. CoRR, abs/1910.03151, 2019.
Disponivel em: <http://arxiv.org/abs/1910.03151>. Cited on page 95.

Wang, S.; Yao, X. Multiclass imbalance problems: Analysis and potential solutions.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), v. 42, n. 4,
p. 1119-1130, 2012. Cited on page 32.

http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1911.09070
http://arxiv.org/abs/1910.03151

Bibliography 103

WEISSBERG, D.; REFAELY, Y. Pneumothorax: Experience with 1,199 patients.
Chest, American College of Chest Physicians, v. 117, n. 5, p. 1279-1285, may
2000. ISSN 00123692. Disponivel em: <https://linkinghub.elsevier.com/retrieve/pii/
50012369215350856>. Cited on page 81.

WOO, S.; PARK, J.; LEE, J.-Y.; KWEON, I. S. Cbam: Convolutional block attention
module. In: Proceedings of the Furopean conference on computer vision (ECCV). [S.L.:
s.n.], 2018. p. 3-19. Cited on page 95.

WU, Y.; HE, K. Group normalization. In: Proceedings of the Furopean conference on
computer vision (ECCV). [S.1.: s.n.], 2018. p. 3-19. Cited on page 47.

XIE, Q.; LUONG, M.-T.; HOVY, E.; LE, Q. V. Self-training with Noisy Student
improves ImageNet classification. 2020. Cited on page 31.

XIE, S.; GIRSHICK, R.; DOLLA4R, P.; TU, Z.; HE, K. Aggregated Residual
Transformations for Deep Neural Networks. 2017. Cited on page 28.

YARMUS, L.; FELLER-KOPMAN, D. Pneumothorax in the critically ill patient. Chest,
American College of Chest Physicians, v. 141, n. 4, p. 1098-1105, apr 2012. ISSN
19313543. Cited on page 81.

YU, F.; KOLTUN, V. Multi-scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122, 2015. Cited 2 times on pages 29 and 30.

YUAN, Y.; CHEN, X.; WANG, J. Object-Contextual Representations for Semantic
Segmentation. sep 2019. Disponivel em: <http://arxiv.org/abs/1909.11065>. Cited 2
times on pages 89 and 95.

ZHAO, H.; SHI, J.; QI, X.; WANG, X.; JIA, J. PSPNet. Proceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, v. 2017-Janua,
p. 6230-6239, dec 2017. Cited on page 89.

ZHU, X.; HU, H.; LIN, S.; DAI, J. Deformable convnets v2: More deformable, better
results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. [S.1.: s.n.], 2019. p. 9308-9316. Cited on page 67.

https://linkinghub.elsevier.com/retrieve/pii/S0012369215350856
https://linkinghub.elsevier.com/retrieve/pii/S0012369215350856
http://arxiv.org/abs/1909.11065

	Title page
	Dedication
	Acknowledgements
	Epigraph
	List of Figures
	List of Tables
	List of Symbols
	Contents
	Introduction
	Problem Characterization
	Problem Motivation
	Objectives and Contributions
	Research Questions
	Text Structure

	Problem Definition
	Image Classification
	Semantic Segmentation
	Segmentation with Empty Images
	Class Imbalance
	Sampling Techniques

	Elementary Operations in CNNs
	Multi-layer Perceptron
	Activation Function
	Sigmoid
	Hyperbolic Tangent
	ReLU
	ReLU Variants
	Leaky-ReLU
	PReLU
	ELU

	Swish

	Convolution
	Sparse Connectivity
	Parameter Sharing
	Translation Equivariance
	Receptive Field
	Convolutions in CNNs: The Conv Layer

	Pooling
	Batch Normalization

	Convolutional Neural Networks for Image Classification
	Residual Neural Networks (ResNets)
	The Residual Connection
	The Residual Blocks
	The Basic Block
	The Bottleneck Block

	Network Architecture

	Squeeze-and-Excitation Networks
	Squeeze
	Excitation
	SENet Architecture

	EfficientNet
	Compound Scaling
	MBConv Block
	Network Architecture

	Convolutional Neural Networks for Semantic Segmentation
	Hypercolumns
	The Hypercolumn Layer

	Fully Convolutional Network
	From Dense Layers to Convolutions
	Decoder

	U-Net
	Bigger Decoder

	Improved Decoder Designs: FPN and PAN
	EfficientDet
	Feature-aligned Pyramid Network (FaPN)
	Feature Alignment Module (FAM)
	Feature Selection Module (FSM)

	Loss Functions and Metrics
	Metrics
	Jaccard Index
	Dice Score

	Loss Functions
	Cross-Entropy Loss
	Focal Loss
	Soft-dice Loss

	Final Remarks

	Proposed Method for Segmentation Under Extreme Imbalance Towards Full-background Images
	Architecture
	Decoder
	Inverted Hypercolumns
	Multi-level Fuse Block

	Losses
	Main Segmentation Loss
	Auxiliary Foreground Segmentation Loss

	Experiments
	Datasets
	SIIM-ACR Pneumothorax
	MS-COCO: BikeCar

	Evaluation Metrics
	Implementation Details
	Network
	Optimizer
	Loss
	Training Settings

	Results
	Data Sampling and Batch Formulation
	SIIM-ACR Pneumothorax Dataset
	MS-COCO: BikeCar
	Combining the Proposed Model with Modern Architectures
	Ablation Studies
	Multi-level Fuse Block
	Auxiliary Foreground Segmentation Loss

	Conclusion
	Research Questions
	Future Research

	Bibliography

