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Resumo
Aplicações nativas para a nuvem, caracterizadas por sua escalabilidade,

resiliência e flexibilidade, adotam uma arquitetura de microsserviços para decompor

aplicações em serviços menores e independentes. Essa arquitetura, embora ofereça

benefícios significativos, introduz desafios na comunicação entre serviços, exigindo

o uso de frameworks avançados de orquestração e comunicação, como Kubernetes

e Istio, respectivamente. No entanto, a complexidade dessas tecnologias impõe

uma sobrecarga substancial na infraestrutura, que introduzem um maior caminho no

processamento dos pacotes.

Este trabalho identifica os gargalos de desempenho decorrentes do uso extensivo

de service meshes, destacando o problema crítico de sobrecarga da CPU devido a

tarefas relacionadas à rede. Para enfrentar esses desafios, propomos o eZtunnel, uma

técnica de offloading transparente para permitir comunicações eficientes em service

meshes. Esta proposta utiliza o filtro de pacotes estendido (do inglês, extended

Berkeley Packet Filter – eBPF) como tecnologia habilitadora para abordar e mitigar

o problema.

Os experimentos mostram que a solução proposta pode otimizar as métricas de

rede de comunicação intra-nó, tal como redução de Flow Completion Time (FCT)

em 41,2%, latência em 42,0%, e aumento de vazão em 68,5%. O consumo de

memória foi baixo, alcançando até 60,5 MB. O uso de CPU foi variável entre +29,2

e -23,2%. Através dessa abordagem, a pesquisa busca desbloquear o potencial das

aplicações nativas para a nuvem, garantindo que os avanços arquiteturais se traduzam

em benefícios significativos.

Palavras-chave Cloud Computing, Service Mesh, Kubernetes, eBPF, Computation

Offloading



Abstract
Cloud-native applications, characterized by their scalability, resilience, and

flexibility, adopt a microservices architecture to decompose applications into smaller,

independently manageable services. This architecture, while offering significant

benefits, introduces challenges in service-to-service communication, requiring the use

of advanced orchestration and communication frameworks such as Kubernetes and

Istio, respectively. However, the complexity of these technologies impose substantial

overhead on the underlying infrastructure, introducing longer packet processing paths.

This work identifies the performance bottlenecks arising from the extensive use

of service meshes, highlighting the critical issue of CPU overload due to networking-

related tasks. To address these challenges, we propose eZtunnel, a transparent

offloading technique to allow efficient communications in service meshes. This

proposal leverages extended Berkeley Packet Filter (eBPF) as the enabler technology

to address and mitigate the problem.

Experiments show that the proposed solution can improve intra-node networking

metrics, such as reduction in average Flow Completion Time (FCT) by 41.2%, latency

by 42.0%, and increase in throughput by 68.5%. Memory footprint was small, reaching

at most 60.5 MB. CPU usage was variable between +29.2% and -23.2%. Through this

approach, the research aims to unlock the full potential of cloud-native applications,

ensuring that the architectural advancements translate into relevant benefits.

Keywords Cloud Computing, Service Mesh, Kubernetes, eBPF, Computation

Offloading
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Chapter 1

Introduction

In the rapidly evolving landscape of cloud computing, the adoption of cloud-

native technologies represents a fundamental shift in how applications are developed,

deployed, and managed [1], [2]. These applications are commonly based on

microservices architectures to make the most of cloud environments’ scalability,

resilience, and flexibility.

To manage a large number of microservices, Kubernetes and a service mesh are

often used to, respectively, (i.) orchestrate containerized applications across diverse

environments [3] and (ii.) provide advanced inter-service communication features, such

as service discovery, load balancing, encryption, authorization, and observability [4].

Service meshes often implement the sidecar deployment mode, which injects a

proxy beside each service. This mode dramatically degrades performance, particularly

when the Kubernetes cluster orchestrates many services [5], [6]. To overcome this

problem, some service mesh proposals introduce the concept of a per-node shared

agent [7], which instead of a pod per sidecar, it supports a node per agent (a ‘sidecar’

equivalent), and therefore, multiple pods per agent.

However, both architectures introduce performance penalties due to the poor

usage of kernel capabilities and inefficiencies of the traditional kernel network stack,

which limit their ability to fully optimize performance at scale. This overhead may result

in lower throughput, higher latency, and ultimately a degradation in end users’ quality

of service [8], [9].

This leads us to the crux of the problem: while cloud-native technologies,

microservices, container orchestration tools, and service meshes have revolutionized

application development and deployment, they inadvertently introduce performance

bottlenecks [5].

The root cause of this issue is the excessive traversals of the regular packet

transmission path provided by the kernel network stack, resulting in inefficient resource

utilization and diminished application performance [6].
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Given that, it is clear that there is a need for an optimization strategy to

alleviate the burden on the host CPU, particularly networking tasks, using more

efficient mechanisms. Such an optimization strategy would optimize resource

utilization, enhance application performance, and unlock the full potential of cloud-

native technologies in microservices-based environments.

To this end, we propose eZtunnel1, a transparent offloading technique to enable

efficient communications in service meshes, independent of the proxy deployment

mode (sidecar or per-node shared agent). Our proposal leverages the extended

Berkeley Packet Filter (eBPF) as the key technology to address and mitigate the

problem. This approach involves deploying eBPF programs to intercept and redirect

packets at the kernel level, bypassing the kernel network stack.

Our experiments show that, among four different service mesh variations—no

service mesh, cilium, istio-ambient, and istio-sidecar—the proposal can improve

intra-node networking metrics, such as reduction in average Flow Completion Time

(FCT) by 41.2%, latency by 42.0%, and increase in throughput by 68.5%. Memory

footprint was small, reaching at most 60.5 MB, while CPU usage was variable between

+29.2% and -23.2%.

By addressing this fundamental problem, we contribute to create more efficient,

scalable, and performance-oriented cloud-native applications, ensuring that the

architectural innovations brought about by microservices and service meshes translate

into realistic benefits for organizations and their end-users.

1.1 Research Outline

Research Problem. Current cloud-native environments use a container

orchestration software (e.g., Kubernetes) and a service mesh (e.g., Istio) to add

more networking capabilities on top of the cluster. Service meshes can be deployed in

two modes, sidecar and a per-node shared agent. Both deployment modes present

increased overheads due to a longer communication path. Although the overhead

imposed by the sidecar deployment mode have been explored and a solution is

presented in Yang et al. [6], the per-node shared agent is still unsolved.

Objectives. The main objective of this work is to present an overview of how

service meshes work, their inherent overhead problem, and the implementation of a

transparent offloading mechanism to enable efficient networking in service meshes.

1eZtunnel = eBPF-based + ztunnel. Originally, eZtunnel aimed to improve ztunnel, an Istio
Ambient component. Later, it was discovered that the solution could also improve other service mesh
architectures, not only Istio Ambient. Then, the name no longer makes sense and is kept only for
historical reasons.
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Contributions. The contributions of this dissertation can be summarized as follows:

• Overview of cloud-native applications, including container orchestration and

service meshes, presenting their respective problems and alternatives;

• Investigation of the state-of-the-art service mesh offloading to find open gaps and

improvement opportunities;

• A transparent offloading method based on eBPF to improve microservice

communication in diverse service mesh environments;

• Experimental evaluation of our implementation on a testbed deployed with

Kubernetes and Istio to assess our approach’s potential to alleviate service mesh

overheads;

• Release of all source code and datasets to ensure reproducibility according to

open research practices.

Moreover, the following publication results were achieved:

• Arthur J Simas, Christian Esteve Rothenberg, Gergely Pongrácz, “eSeMeshA:

eBPF-based Service Mesh Acceleration for Cloud-Native Infrastructures,” in IEEE

11th International Conference on Network Softwarization (IEEE NetSoft), 2025.

• Arthur J Simas, Fabricio Rodriguez Cesen, Christian Esteve Rothenberg,

“eZtunnel: Leveraging eBPF to Transparently Offload Service Mesh Data Plane

Networking,” in IEEE 13th International Conference on Cloud Networking (IEEE

CloudNet), 2024.

• Arthur J Simas, Christian E Rothenberg, “Network Performance: Evaluating

Offloading Strategies in Modern Programmable Infrastructures,” in XV Encontro

dos Alunos e Docentes do Departamento de Engenharia de Computação e

Automação Industrial, 2023.

• Arthur Simas, William Melo, Leonardo Guimarães, Christian Rothenberg,

“PathsViewer: Uma Interface para Exploração de Dados Espaço-Temporais,”

in Anais Estendidos do XLI Simpósio Brasileiro de Redes de Computadores e

Sistemas Distribuídos, 2023.

Methodology. To accomplish the objectives, we reviewed the literature to identify

existing offloading techniques, both academic research and industry practices in

this field. Then, we implemented a prototype using the selected technology, setup

a benchmark testbed and assessed the prototype’s effectiveness in reducing the

overhead and improving the selected metrics [10]–[12].
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1.2 Organization

The remainder of this manuscript is organized as follows:

Background on Cloud-Native Environments (§2). Introduces Kubernetes

networking and service meshes, highlighting their limitations and the need for

optimization strategies.

Offloading Technologies Review (§3). Explores existing offloading techniques,

from software frameworks to hardware-based solutions, and positions the proposed

eZtunnel approach.

eZtunnel: Design and Implementation (§4). Details the eBPF-based solution to

improve intra-node networking, bypassing the Linux network stack to optimize network-

related metrics and improve resource utilization.

Experimental Evaluation (§5). Presents benchmarks on diverse workloads,

demonstrating significant performance gains across most metrics, with some areas

for refinement.

Conclusions and Future Work (§6). Summarizes findings, emphasizes the impact

of the optimization, and suggests directions for extending the work.
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Chapter 2

Background on Cloud-Native

Environments

As applications grow in scale and become more complex, traditional approaches

to manage their lifecycle are often insufficient. To address these challenges, modern

applications are designed using the cloud-native architecture to make the most of cloud

environments, such as scalability, resilience, and flexibility [1], [13], [14].

Cloud-native architecture is composed of these core pillars: Microservices,

represented in Figure 2.1, which decompose applications into smaller, loosely coupled

services, allowing for easier updates and adaptability; Containers and Orchestration,

where containers encapsulate those microservices for consistent deployment across

environments, while orchestrators manage their lifecycle; Development Operations

(DevOps), which encourages collaboration between development and operations

teams to automate infrastructure and software delivery, improving deployment speed

and reliability; and Continuous Integration and Continuous Delivery (CI/CD), which

streamlines automated testing, building, and deployment to ensure frequent releases.

Figure 2.1: Difference between a monolithic application (left) and microservices
architecture (right).



22

Among these pillars, orchestration is particularly special because it manages

the containerized microservices, ensuring they scale efficiently, recover from failures,

communicate reliably, and many other tasks. Effective orchestration addresses

challenges such as resource allocation, load balancing, and service discovery, which

are crucial for maintaining performance in distributed systems.

On top of that, cluster operators usually place an abstraction layer, the service

mesh, to extend the capabilities of the orchestrator to provide advanced networking

features. A service mesh abstracts the communication logic away from the application

code, offering traffic management, observability, and security. The service mesh

transparently handles tasks like load balancing, retries, circuit breaking, mutual

Transport Layer Security (mTLS), and monitoring.

In this chapter, we will present the core concepts of container orchestration using

Kubernetes, Kubernetes networking, service meshes, and optimization opportunities

within this context.

2.1 Container Orchestration with Kubernetes

Containers package an application and its dependencies into a single unit that can

run consistently across different computing environments. This abstraction ensures

that the application behaves the same independently of the environment it is running,

whether a developer’s laptop, a test environment, or in production. Containers are

lightweight, portable, and can be quickly created and destroyed, making them ideal for

microservices-based architectures [15].

Manually managing these containers, especially as applications scale, becomes

impractical over time. This is where container orchestration comes into play.

Orchestration automates tasks required to deploy, manage, and maintain containers

in a distributed environment, ensuring consistency, availability, and efficiency.

Container orchestration addresses the need for deployment automation, scaling,

and operation of containerized applications. It allows developers and operators to

manage the lifecycle of a large set of containers efficiently, ensuring that applications

remain resilient and adaptable to varying demands.

Container orchestration platforms perform several tasks to manage the

deployment and operation of containers. These tasks include1:

Service Discovery and Networking. In a microservices architecture, services need

to communicate with each other reliably. Orchestration platforms provide mechanisms

for service discovery, enabling containers to find and connect with other services

automatically, wether containers are placed within the same node and across nodes.

1https://kubernetes.io/docs/concepts/overview/



23

Scaling and Load Balancing. Modern applications often experience fluctuating

demand, requiring dynamic scaling of resources. Orchestrators handle horizontal

scaling by automatically increasing or decreasing the number of container instances

based on metrics such as CPU usage or request rates. With help of service discovery,

load can be balanced across multiple containers to optimize resource utilization and

prevent any single container from becoming a bottleneck.

Rolling Updates and Rollbacks. To minimize disruption during application updates,

orchestrators support rolling updates, where new versions of a container are gradually

deployed while the old versions are phased out. If issues are detected during the

update, orchestrators can perform rollbacks to revert to a previous stable state.

Automated Scheduling. Orchestrators simplify the deployment of containers by

automating the process of scheduling and launching containers on available nodes

within a cluster. This ensures that containers are deployed to appropriate hosts based

on resource availability and defined policies.

Resource Management. Efficient allocation of resources, such as CPU and

memory, is essential to maintaining performance and stability in distributed systems.

Orchestrators ensure that containers are assigned the necessary resources and that

these resources are best used across nodes in the cluster.

Health Management and Self-Healing. To ensure high availability, orchestration

platforms continuously monitor the health of containers. If a container fails, the

orchestrator can automatically restart the container, reschedule it on a different node,

or replace the container if necessary. This self-healing capability minimizes downtime

and improves the resilience of the application.

Configuration and Secret Management. Managing configuration data and secrets

(such as API keys or credentials) is simplified by orchestrators. They provide

mechanisms to inject configuration data and secrets into containers securely, ensuring

that sensitive information is not hard-coded into application images.

Several platforms are available for container orchestration, each offering a set of

features to manage containerized workloads. The most widely adopted orchestration

platform is Kubernetes, an open-source software initially developed by Google and

now maintained by the Cloud Native Computing Foundation (CNCF). Kubernetes has

become the de facto standard for container orchestration due to its robust feature set,

large ecosystem, and strong community support [1], [16].
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Kubernetes can be deployed in two ways: managed and unmanaged. In the

unmanaged Kubernetes setup, operators are responsible for installing, configuring,

and maintaining the Kubernetes control plane and worker nodes. This approach

provides full control and customization but requires significant operational effort and

expertise. In contrast, managed Kubernetes offerings simplify this process by

outsourcing the management of the Kubernetes control plane to cloud providers.

Examples of managed Kubernetes include Amazon Elastic Kubernetes Service (EKS),

Azure Kubernetes Service (AKS), Google Kubernetes Engine (GKE), and Oracle

Container Engine for Kubernetes (OKE).

Aside from Kubernetes, other orchestration platforms include:

• Red Hat OpenShift is a Kubernetes-based platform that provides additional

enterprise features such as integrated CI/CD pipelines, developer tools, and

enhanced security;

• Docker Swarm is an orchestration tool developed by Docker. It is easier to set up

compared to Kubernetes, but offers fewer features and is better suited for small

deployments;

• Apache Mesos is designed for managing large-scale distributed systems and

complex scheduling needs. When used with Marathon—a container orchestration

framework for Mesos—, it can manage container deployments effectively;

• Developed by HashiCorp, Nomad is a lightweight and flexible orchestrator that

supports both containers and non-containerized workloads. It is designed for

simplicity and can be deployed in a single binary;

• Proprietary container orchestration services, such as Amazon Elastic

Container Service (ECS), and Azure Container Instances (ACI), offer

managed environments for running containers without relying on Kubernetes.

These services integrate tightly with their respective cloud ecosystems and

simplify container management by abstracting the complexities of orchestration,

almost similar to managed Kubernetes offerings.

In cloud-native environments, where applications are built to take advantage

of the scalability and flexibility of the cloud, container orchestration simplifies the

management and automation of these workloads. Orchestration ensures that

containerized applications are deployed consistently across different cloud providers,

on-premises data centers, and hybrid cloud environments. It provides the automation

needed to manage the complexity of distributed systems, enabling applications to scale

seamlessly, recover from failures, and adapt to changing traffic.
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Furthermore, container orchestration platforms integrate with other cloud-native

tools and practices, such as CI/CD pipelines, monitoring systems, and service meshes.

This integration enables developers and operators to implement modern software

delivery practices, such as continuous deployment, automated testing, and real-time

observability, enhancing the overall efficiency and reliability of applications.

This piece of software is a foundational technology in cloud-native environments.

It addresses the challenges of deploying and managing containerized applications at

scale, ensuring that these applications remain resilient, scalable, and adaptable. As

the adoption of cloud-native architectures continues to grow, effective orchestrators

will remain essential for delivering reliable and efficient software systems.

2.2 Kubernetes Networking

Building on the concepts of container orchestration, Kubernetes networking is a set

of components to facilitate the communication between containerized applications part

of a Kubernetes cluster. It ensures that applications running in containers can interact

within the cluster and with external services. The networking model in Kubernetes is

designed to address the challenges of managing distributed applications by providing

a flexible yet consistent communication mechanism.

Kubernetes supports different networking paths for handling communication within

and outside the cluster2:

• Container-to-container: Direct communication between containers within the

same pod, provided by the localhost networking;

• Pod-to-pod: Direct communication between pods within the cluster, facilitated by

the Container Network Interface (CNI) plugin;

• Pod-to-service: Communication between pods and services, enabled by the

Service abstraction and kube-proxy;

• External-to-internal: External users accessing services through NodePort,

LoadBalancer, or Ingress.

Within a Kubernetes cluster, pod-to-pod communication can be classified into two

types: inter-node and intra-node, each having unique implications for network design,

routing, and pod placement. As illustrated in Figure 2.2, inter-node communication

occurs when pods reside on different nodes. In this case, communication between

Pod 1 on Node A and Pod 2 on Node B is an example of inter-node communication.

2https://kubernetes.io/docs/concepts/cluster-administration/networking/
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This exchange involves network traffic that must traverse the underlying network

infrastructure between the nodes. In contrast, intra-node communication takes place

between pods on the same node. For example, the communication between Pod 2

and 3, which are both hosted on Node B, is an example of intra-node communication.

This type of communication typically benefits from lower latency and higher throughput

since the data exchange remains within the same physical or virtual machine.

Figure 2.2: Diagram of a Kubernetes cluster consisting of two nodes. Node A contains
Pod 1, while Node B hosts Pods 2 and 3. Communication between Pods 1 and 2 is
classified as inter-node, while communication between Pods 2 and 3 is intra-node.

Additionally, the Kubernetes defines a networking model with several fundamental

principles to simplify the communication between containers, pods, and services3:

• Every pod has a unique IP address: Each pod in a Kubernetes cluster is

assigned a unique IP address. This allows for direct communication between

pods without the need for Network Address Translation (NAT);

• Flat network structure: All pods within a cluster can communicate with each

other directly, as if they are on a single, flat network. This simplifies service-to-

service communication and reduces the complexity of network management;

• Container-to-container communication: Containers within the same pod share

the same network namespace and IP address. They can communicate with each

other through localhost using different port numbers;

• Service abstraction: Kubernetes uses services to provide stable endpoints for

accessing applications. Services abstract the underlying pods and load balance

traffic among them, allowing for seamless scaling and failover.

3https://kubernetes.io/docs/concepts/services-networking/
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Kubernetes does not come with a built-in network implementation, instead, it relies

on Container Network Interface (CNI)4 plugins to provide networking capabilities.

These plugins allow Kubernetes to make use of the networking model described above.

Some popular CNI plugins include Calico, Flannel, and Cilium. The choice of CNI

plugin depends on the specific requirements of the cluster, such as performance,

security, and ease of use.

Aside from the networking model, Kubernetes networking uses some key

components to manage communication within the cluster. These components include

the CNI plugin, pods, services, endpoints, ingress, and network policies.

A pod5 is the smallest deployable unit in Kubernetes. It encapsulates one or more

containers. Each pod has its own IP address, which allows containers inside them to

communicate directly with other pods in the cluster. Containers within the same pod

share the pod’s IP address and can communicate using localhost.

A service6 in Kubernetes is an abstraction that defines a logical set of pods and a

policy for accessing them. Services enable consistent and reliable communication by

providing a stable IP address and DNS name, even when the set of pods behind the

service changes (e.g., in the case pods are scaled up, down or replaced). There are

several types of services in Kubernetes:

• ClusterIP: The default service type, which provides an internal IP address for

communication within the cluster;

• NodePort: Exposes the service on a specific port of each node, making it

accessible externally;

• LoadBalancer: Integrates with cloud provider load balancers to expose the

service to external traffic;

• ExternalName: Maps a service to an external DNS name, allowing pods to

connect to services outside the cluster scope.

Endpoints track the IP addresses of the pods associated with a service. When

a service is created, Kubernetes generates an endpoint object that maps to the pods

selected by the service, allowing the service to direct traffic to the appropriate pods.

Kube-proxy is a network proxy that runs on each node in the cluster to implement

services. It manages the network rules that enable communication between services

and pods. Kube-proxy can operate in different modes, such as iptables or IPVS, to

handle load balancing and routing efficiently. This component can be freely replaced

by another implementation as desired.

4https://github.com/containernetworking/cni
5https://kubernetes.io/docs/concepts/workloads/pods/
6https://kubernetes.io/docs/concepts/services-networking/service/
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The built-in DNS service7 facilitates name resolution within the cluster. Each

service in Kubernetes is assigned a DNS name, allowing pods to refer to services

by their DNS names rather than IP addresses. The DNS service is typically provided

by the cluster add-on CoreDNS. For example, a service named my-service in the

default namespace can be accessed by my-service.default.svc.cluster.local.

An Ingress8 is an API object that manages external access to services within a

cluster. It provides HTTP and HTTPS routing, allowing the operator to define rules for

routing traffic to different services based on hostnames or paths.

Network policies9 define rules for controlling the communication between pods.

They allow the operator to specify which pods are allowed to communicate with each

other, providing a mechanism for securing the cluster’s network traffic. For example,

the operator can whitelist namespaces allowed to access an application.

The concepts of Kubernetes networking are important to manage containerized

applications. It provides the mechanisms to enable communication between internal

services and external APIs. The flexibility offered by the components of Kubernetes

networking enables the platform to support a wide range of networking requirements

in modern cloud-native environments.

2.3 Service Mesh

While Kubernetes networking ensures that pods and services can communicate,

it does not natively provide all the needed features for large-scale, distributed

applications. There is provided basic support for service discovery, load balancing,

and networking features through its core components like Services, Endpoints, and

Ingress. As the number of microservices increases, managing service communication

becomes more challenging, such as10:

• Fine-grained traffic control: Routing traffic dynamically based on versioning,

latency, or other factors;

• Resilience mechanisms: Implementing retries, timeouts, and circuit breakers to

handle failures gracefully;

• Security: Ensuring encrypted communication and implementing authentication

and authorization between services;

• Observability: Gaining visibility into service communication, including metrics,

logs, and distributed tracing.
7https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
8https://kubernetes.io/docs/concepts/services-networking/ingress/
9https://kubernetes.io/docs/concepts/services-networking/network-policies/

10https://glossary.cncf.io/service-mesh/
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These requirements are difficult to achieve solely with raw Kubernetes networking

features. In this scenario, service meshes extends Kubernetes capabilities to address

these needs of managing microservices communication.

A service mesh is a dedicated infrastructure layer that manages communication

between services in a microservices architecture, as exemplified in Figure 2.3 using

the Online Boutique [17] application. It abstracts the network-related details from the

application code and provides a consistent way to handle common networking tasks,

such as load balancing, traffic routing, retries, circuit breaking, security (e.g., mTLS),

and observability (e.g., metrics and tracing).

Figure 2.3: Online Boutique [17] application deployed in a service mesh environment.

Instead of embedding these tasks directly into the application, the service mesh

shifts these responsibilities to the infrastructure layer. This separation of concerns

allows developers to focus on writing application logic, while the service mesh handles

the complexities of service-to-service communication. Service meshes offer a range of

features that enhance the management of service-to-service communication:

• Policy enforcement: Defining and enforcing rules for network traffic, such as

restricting which services can communicate with each other;

• Traffic management: Advanced routing capabilities, such as blue/green

deployments, canary releases, and traffic splitting;

• Resilience: Automatic retries, timeouts, circuit breaking, and rate limiting to

improve the reliability of services;

• Security: mTLS for encrypted communication, along with authentication and

authorization mechanisms;

• Observability: Metrics, logs, and distributed tracing to provide deep insights into

service performance and health.
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At a high level, a service mesh works by intercepting the communication between

services and applying policies and custom behaviors defined by operators. This

interception is typically done using middleware proxies somewhere in between the

networking path to handle the network traffic. The control plane of the service mesh

manages these proxies, providing a central place to define and enforce networking

policies and behaviors. In essence, a typical service mesh architecture consists of two

main components:

• The data plane handles the actual traffic between services. The data plane

consists of the middleware proxies;

• The control plane provides a centralized way to configure and manage the

proxies in the data plane. It defines policies for traffic routing, security, and

observability, and pushes these configurations to the data plane.

Service meshes can be categorized based on how they implement traffic

interception and management. The two main types of service meshes are sidecar-

based and sidecar-less architectures.

In a sidecar-based service mesh, each service instance has a dedicated proxy

running as a sidecar container, as shown in Figure 2.4. This proxy intercepts and

manages all incoming and outgoing network traffic for that service. The sidecar

approach is popular because it is straightforward to implement in Kubernetes, where

each pod can include the sidecar proxy as an additional container. Examples of

sidecar-based service meshes include Istio, Linkerd, Consul.

Figure 2.4: Sidecar-based service mesh architecture.

A sidecar-less service mesh takes a different approach by avoiding sidecar

proxies. Instead, traffic interception and control are handled by agents running on

the host node, exemplified in Figure 2.5, or by integrating directly with the kernel

(e.g., using eBPF). Examples of sidecar-less service meshes include Cilium, which

uses eBPF to provide its features; and Istio’s Ambient Mesh mode, which eliminates

the need for sidecars by using a per-node shared proxy to intercept traffic, reducing

resource consumption while maintaining service mesh capabilities.
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Figure 2.5: Per-node shared agent service mesh architecture.

The sidecar-less approach can simplify deployments and reduce resource

overhead, since it eliminates the need to run a dedicated proxy for each service

instance. Instead of multiple sidecar proxies consuming memory and CPU in each

pod (1 pod : 1 sidecar), a single agent or kernel-level integration can manage traffic

for the entire node (1 node : 1 sidecar ∴ n pod : 1 sidecar). This reduces the

overall resource consumption and makes the deployment architecture cleaner and

more efficient, especially in deployments with a high number of pods.

Service meshes extend Kubernetes networking by providing advanced capabilities

for managing service-to-service communication in distributed systems. By abstracting

the complexities of traffic management, security, and observability, service meshes

enable developers and operators to build resilient, secure, and observable applications.

Whether using a sidecar-based or sidecar-less architecture, service meshes improve

the developer experience in the cloud-native ecosystem, providing the needed features

of modern microservices deployments.

2.4 Performance Analysis

Performance is important in cloud-native environments, especially when dealing

with container orchestration, Kubernetes networking, and service meshes. Each

of these components introduces layers of abstraction that can impact the overall

performance of applications. A thorough understanding of performance aspects is

essential for advancing research in computer networks and cloud networking, enabling

the development of more efficient, responsive, and scalable systems.

Kubernetes networking provides the basic mechanisms for communication

between pods, services, and external endpoints. While Kubernetes offers flexibility and

scalability, implementations of its networking model can introduce latency and resource

overhead. The performance of Kubernetes networking is significantly impacted by the

network plugin used.
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The comprehensive benchmark study, Ducastel [18], evaluated several popular

CNI plugins over a 40 Gbps network. The tested plugins included Antrea, Calico,

Canal, Cilium, Flannel, Kube-OVN, and Kube-router, each with different configurations,

such as default settings, eBPF integration, and encryption mechanisms like WireGuard

and IPsec, totaling 21 different variations.

The benchmark utilized three Supermicro bare-metal servers connected via a

40 Gbps network switch (Figure 2.6), with jumbo frames enabled (MTU 9000).

Kubernetes v1.26.12 was deployed using the RKE211 distribution on Ubuntu 22.04.

The study aimed to reflect real-world conditions avoiding system tuning, aside from

necessary adjustments like WireGuard installation and jumbo frame setup.

Figure 2.6: Benchmark architecture to evaluate Kubernetes network plugins
performance [18].

The results revealed notable performance differences among the CNI plugins:

• Antrea: Performed well and is rapidly evolving, incorporating many appealing

features. It is considered a strong alternative in the CNI landscape;

• Calico: Showed competitive performance, especially in its eBPF mode. However,

certain advanced features were limited to its paid commercial product (Tigera),

potentially affecting its suitability for some deployments;

• Canal: Offers a balance between Flannel and Calico. Provides network policies,

but may not match the performance and feature set of more specialized CNIs;

• Cilium: Demonstrated strong performance across various configurations,

particularly when utilizing eBPF for kube-proxy replacement. This plugin reduced

latency and improved throughput, although increased memory usage due to

aggressive eBPF maps pre-allocation;

11https://docs.rke2.io/
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• Flannel: While emphasizing operational simplicity, Flannel’s performance was

generally lower compared to other CNIs and lacks some of the more advanced

features like network policies;

• Kube-OVN: The plugin is memory and CPU-intensive. Offers advanced features

thanks to Open vSwitch (OVS) but may require more resources compared to

other CNIs;

• Kube-router: Exceptionally lightweight and efficient, performing well across all

tested scenarios. Provides network policies out-of-the-box and supports a wide

range of architectures, making it suitable for low-resource clusters like edge

environments. The only concern is the currently small maintainers team.

In summary, the study concluded that for standard clusters, the recommended

choices among the evaluated CNI plugins are Cilium, followed by Calico and Antrea.

For low-resource environments, such as edge computing, the recommendation is

primarily Kube-router, next to Flannel and Canal.

Besides of the network plugin, the service mesh is used to enhance Kubernetes

networking by adding advanced features, however, it introduces performance penalties

and increases resource consumption.

The study Zhu et al. [5] offers a comprehensive analysis of the performance costs

associated with service mesh. The researchers developed a tool called MeshInsight

to quantify these overheads in various deployment scenarios. The experiments were

executed on Cloudlab machines and the software environment included Ubuntu 20.04

LTS (Linux kernel v5.4.0) with Kubernetes v1.12.5, Istio v1.13.0, and Envoy v1.21.0.

Their findings indicate that service meshes can substantially impact performance,

with a 61% latency increase and a 92% CPU usage increase in benchmark applications

operating in TCP mode, while using the Google Remote Procedure Calls (gRPC)

protocol mode, the overhead is higher, with latency increases of up to 269% and CPU

usage of up to 163% higher, as shown in Figure 2.7.

(a) Latency (b) CPU usage

Figure 2.7: Measurements of latency and CPU overheads resulting from the usage of
service meshes in the Hotel Reservation [19] and Online Boutique [17] benchmark
applications for three different queries, compared to a baseline scenario where
applications run without a service mesh [5].
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The higher gRPC overhead is primarily due to Envoy’s packet manipulation

processing that adds extra headers and increases the response packet size. Another

contributing factor is protocol parsing, which is responsible for 63∼77% of the total

overhead.

2.5 Summary

This chapter presented the core concepts related to container orchestration,

Kubernetes networking, and service meshes in cloud-native environments. We

explored the role of Kubernetes in managing containerized applications, its networking

capabilities, and the limitations it faces when scaling microservices.

We also examined the importance of service meshes in addressing the advanced

networking needs of microservices. Service meshes provide features like traffic

management, security, and observability, but they come with performance penalties,

such as increased latency and resource consumption. The addition of service mesh

layers often leads to substantial overhead, particularly in sidecar-based architectures.

Performance analysis highlighted the impact of Kubernetes networking plugins

and service meshes on Kubernetes environments. While some networking plugins

show improved performance, such as Cilium, Calico, and Antrea, service meshes in

general can lead to significant latency and CPU overhead. Despite these challenges,

the service mesh approach remains an important part for complex microservices

architectures.

In general, the chapter covered the necessary understanding of Kubernetes and

the involved challenges in Kubernetes networking and service mesh implementations,

providing a foundation for exploring optimization techniques, such as eBPF offloading,

which can help mitigate these overheads.
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Chapter 3

Offloading Technologies Review

In the context of network functions offloading, several technologies can be

employed for optimization and acceleration. These technologies aim to improve

network performance, reduce latency, and offload certain processing tasks to more

efficient mechanisms within the kernel or user space. Some other techniques go

further, offloading certain tasks from the host CPU to accelerators or specialized

hardware. These technologies and their benefits are discussed below.

3.1 Frameworks and Programming Languages

The utilization of frameworks and specialized programming languages plays a

relevant role in optimization and acceleration efforts. These software-based methods

are focused on enhancing the resource usage of the underlying hardware, improving

related metrics, and offloading specific processing tasks to more optimized routines.

3.1.1 eBPF and XDP

The extended Berkeley Packet Filter (eBPF) enables a safe and efficient execution

of custom programs within the Linux kernel, extending its capabilities without requiring

to recompile the kernel source code or load kernel modules [20]–[22].

eBPF programs are event-driven and can be attached to various pre-defined hooks

within the kernel, including system calls, function entry or exit, kernel tracepoints,

network events, and custom hook points. Figure 3.1 exemplifies some predefined hook

points in the network path.

There are different eBPF program types available, each acting on different

aspects of the Linux kernel. The eXpress Data Path (XDP) is the main type for

networking-specific use cases. XDP leverages the eBPF framework to enable high-

performance packet processing at the earliest possible stage of the Linux networking
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stack. It allows direct packet processing at the network interface driver level before the

kernel processes the packet. XDP programs can further improve network processing

when hardware-offloaded to a networking device, such as a SmartNIC. By doing

so, XDP can bypass the networking stack, achieving extremely low latency and high

throughput [22]–[24].

Figure 3.1: eBPF network hook points [21].

This flexibility enables diverse use cases, such as in networking. It can be used to

perform packet filtering, monitoring, and manipulation of network traffic, allowing real-

time, low-latency processing of network packets without having to pass them through

user-space processes.

In a Kubernetes environment, eBPF can be used to implement advanced

network security [25], load balancing [26], traffic shaping [27], and optimized packet

transmission path [6], which can significantly improve network performance and reduce

the waste of CPU resources to switch context between kernel and user space.

The study Yang et al. [6] proposes a novel approach using eBPF to address

latency issues in service mesh architectures. The research intelligently reduces packet

transmission times by avoiding the traditional kernel network stack. Their work shows

that the non-intrusive solution can significantly reduce request latency by up to 21%,

while also slightly reducing CPU and memory usage. This contribution not only adds

to the ongoing discussion about network function optimization, but it also highlights the
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versatility of eBPF in improving the efficiency of cloud-native systems. The findings

from Yang et al. [6] shows eBPF’s potential to change the way we offload network

functions, enriching the spectrum of solutions aimed at overcoming the challenges

posed by the increasing complexity of modern networking environments.

3.1.2 P4

With Programming Protocol-independent Packet Processors (P4), network

engineers can customize the switch’s packet processing logic to suit their requirements.

This includes defining custom packet parsers, match-action tables, and actions,

allowing the switch to efficiently process and forward network traffic according to the

desired rules [28].

The flexibility of the language ensures portability across both hardware

(e.g., Tofino Switches, and Data Processing Units (DPUs) [29]) and software targets

(e.g., DPDK [30], [31]), releasing the potential of the infrastructure components.

The P4 programming language has gained attention as a tool for network packet

processing. In the context of Kubernetes offloading, the work Jain et al. [32]

discusses the utility of P4 in creating a Kubernetes load balancer and associated

network functions tailored to meet the demands of scalability, security, and network

performance. P4 demonstrates remarkable versatility across diverse deployment

scenarios, from edge computing to data centers, including per-node load distributions.

3.1.3 DPDK

Developed by Intel, the Data Plane Development Kit (DPDK) is a set of libraries

and drivers that allows applications to bypass the Linux kernel’s networking stack

and communicate directly with the underlying hardware. By doing so, DPDK

significantly reduces the overhead added by the kernel, resulting in improved data

plane performance and reduced latency [33].

In Kubernetes, DPDK can be used to accelerate networking functions and

container networking, especially in scenarios where ultra-low latency and high

throughput are required, such as in Network Function Virtualization (NFV) use

cases [34].

In this sense, the field of programmable network devices is shifting towards

customizable packet processing within the data plane. The work Alfredsson

[35] investigates offloading strategies for multipath QUIC, evaluating frameworks,

programming languages, and hardware devices for offloading cryptographic functions.

It’s a demonstration of the DPDK framework, in conjunction with P4, employed to

design and implement packet processing offloading prototypes, showcasing their

efficiency on a Nvidia BlueField-2.
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3.1.4 IPDK

The Infrastructure Programmer Development Kit (IPDK) is an open-source and

vendor-neutral framework of drivers and APIs designed for the purpose of infrastructure

offload and management. At its core, IPDK provides a common platform for

enhancing performance, resource optimization, and the security of the underlying

infrastructure. IPDK uses a collection of well-established tools, namely Storage

Performance Development Kit (SPDK), DPDK, and P4, that run on a range of hardware

components, including CPUs, DPUs, and switches. These tools facilitate the realization

of various functionalities such as network virtualization, storage virtualization, workload

provisioning, root-of-trust establishment, and offload capabilities found in the given

platform [36], [37].

A use case for IPDK in Kubernetes involves the transparent offloading of

networking rules from the Calico CNI plugin to a P4-programmable target device [38].

While DPDK is a well-established framework for offloading, there remains a gap in

exploring the capabilities and potential advantages of the IPDK framework, which offers

infrastructure offload for a range of devices and services, including CPUs, DPUs, and

switches. As of late 2024, it lacks community traction and published papers, warranting

further investigation into its capabilities and potential contributions to the domain of

network offloading [35].

3.2 Programmable Networking Hardware

Hardware-based methods for offloading involve the use of specialized hardware

components to offload from the CPU certain networking tasks, such as encryption,

decryption, compression, or packet processing. These hardware are designed to

perform specific tasks faster and more efficiently than general-purpose CPUs.

3.2.1 Tofino Switch

Tofino is a family of programmable network switch Application-Specific Integrated

Circuits (ASICs) developed by Barefoot Networks, acquired by Intel. These ASICs

are switch protocol independent and allow network operators to implement custom

forwarding behaviors using the P4 language, enabling highly efficient and flexible

packet processing within the network switch hardware [39]–[41].

The usage of Tofino switches in Kubernetes clusters can lead to improved network

performance [42], enhanced load balancing [43], advanced network management and

observability [44], all of which contribute to a more efficient and optimized container

orchestration environment.
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The usage of P4-Programmable Tofino Switches is exemplified in Zha et

al. [42], which presents a novel approach called EZPath, designed to enhance

container networking traffic performance within data centers. This proposal leverages

the programmable capabilities of Top-of-Rack Switches (ToR Switches), offering a

seamless solution to expedite container traffic. By directly offloading traffic from

containers to ToR Switches, it mitigates network bottlenecks, ensuring improved

application performance without requiring changes to user applications, kernel

modifications, or additional hardware support, while also demonstrating a substantial

35% throughput increase and a 42% reduction in tail latency, highlighting the

effectiveness of using programmable switches for offloading in container environments.

In spite of these performance improvements, Intel has recently shifted its focus

from the development of new Tofino Switch ASICs to concentrating on Infrastructure

Processing Units (IPUs). Within the broader context of Tofino-based research, future

usage of these programmable switches warrants careful consideration given the

potential implications of this business decision change.

3.2.2 DPU or IPU

A Data Processing Unit (DPU) or Infrastructure Processing Unit (IPU)1—Intel’s

DPU—is a specialized hardware unit designed to accelerate infrastructure-related

tasks in data centers. These tasks may include network functions, storage operations,

security tasks, or other virtualized infrastructure workloads [45]–[48].

Incorporating DPUs in Kubernetes deployments can provide benefits in

improved efficiency, enhanced security, faster network processing, and resource

optimization [29].

Following the decision to stop the development of Tofino Switch ASICs, Intel is

pushing the industry towards IPUs as a key component in network offloading strategies.

A case in point is the collaborative effort between Intel and Google Cloud [49], [50].

This partnership has led to the introduction of the Intel IPU E2000, previously known

as Mount Evans, which is a groundbreaking ASIC-based IPU designed to enhance

high-performance computing and data-intensive workloads. As the industry seeks

versatile and high-performance hardware solutions, IPUs such as the E2000 represent

a significant development in the pursuit of efficient offloading capabilities for next-

generation programmable infrastructures.

1Throughout this manuscript, IPU is used when referring specifically to Intel’s DPU.
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3.2.3 SmartNIC

A SmartNIC is a special Network Interface Card (NIC) capable of additional

processing beyond traditional NICs. It is equipped with a programmable processor

(e.g., Field Programmable Gate Array (FPGA) or ASIC) and memory, allowing it to

offload various network-related functions out of the host CPU. SmartNICs can handle

tasks such as packet processing, security, and virtualization, reducing the load on the

host CPU and improving network performance [51]–[54].

In Kubernetes, SmartNICs can improve container networking, security, and overall

cluster performance by offloading tasks to specialized hardware [55].

In this realm, SmartNICs have also played an important role as valuable hardware

components for offloading. The work Kato et al. [51] introduces a solution for optimizing

Kubernetes microservice architecture. This approach leverages Nvidia BlueField

SmartNICs to achieve full offloading of OVS, resulting in significantly reduced latency

and alleviating the load on the host processor. The full offload, integrated into the

Antrea OVS-based CNI plug-in, yields latency reductions of up to 55% for intra-node

communications and up to 57% for inter-node communications. SmartNICs, with

their offloading capabilities, demonstrate their potential for addressing latency and

communication challenges within containerized environments.

Recent publications demonstrate some new approaches in the offloading

landscape. The paper Brunella et al. [24] proposes the solution hXDP, which runs

eBPF-based packet processing tasks on NetFPGA-SUME SmartNICs [56], specifically

targeting Linux XDP. Remarkably, hXDP optimizes FPGA resources and matches the

performance of high-end CPUs while significantly reducing packet forwarding latency.

In this sense, Pacífico et al. [27] proposes eBPFlow, an optimized implementation

of eBPF in FPGA, offering a throughput 2.59 Gbps higher. These researches

underscores the potential of a hybrid approach, harnessing the strengths of FPGAs,

eBPF, and XDP, to tailor offloading strategies to the unique requirements of each

network processing scenario, thereby optimizing both performance and resource

utilization.

3.3 Related Work

The landscape of network offloading is rapidly evolving, driven by the need to

enhance the performance, security, and scalability of Kubernetes and other cloud

environments. Within this context, various innovative approaches have been explored

to optimize network packet processing. Related to our work, we found X-IO [57],

SPRIGHT [58], Cilium [59], and Yang et al. [6].
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X-IO [57], a high-performance I/O interface, aims to eliminate kernel networking

overheads and contention of microservices using shared memory processing.

Although it offers a 2.8∼4.1× latency improvement, it requires changes to the

application code and is unable to run alongside a service mesh, lacking many benefits

provided by it.

Another proposal, SPRIGHT [58], a serverless framework, makes use of shared

memory and eBPF to improve the scalability of the data plane. It exhibits competitive

performance results of 5× throughput improvement, 53× latency reduction and 27×

CPU usage savings compared to Knative. Despite that, it also suffers from the lack of

service mesh features.

As an alternative, Cilium [59], a sidecar-less service mesh, heavily uses eBPF to

implement its features. The downside is that it requires the usage of its own CNI. In

this sense, clusters deployed with other CNIs cannot use Cilium.

Finally, Yang et al. [6] presents a network optimization based on eBPF to bypass

the kernel network processing. The work improves request latency by up to 21% for

90% of requests. Still, it only works for Istio in sidecar mode.

Compared to related work, eZtunnel, our proposal, offers a better approach to

optimize service mesh data plane networking. It works with the newest service mesh

proposals, like ambient mesh, offloads the network transparently, and does not require

redeployment of the cluster. Table 3.1 summarizes the findings of related work.

Work Technique Advantages Limitations

X-IO [57] Shared memory
I/O

Eliminates kernel overheads;
achieves 2.8∼4.1× latency
improvement

Requires application code
modifications; cannot coexist
with service meshes

SPRIGHT [58] Serverless
framework

Uses shared memory and
eBPF; achieves 5× throughput,
53× latency reduction, and 27×
CPU savings

Lacks features provided by
service meshes

Cilium [59] eBPF sidecar-
less mesh

Implements features without
sidecar proxies

Requires use of its own
CNI, incompatible with other
CNIs; requires eBPF support

Yang et al. [6] eBPF-based
optimization

Reduces request latency by up
to 21%; reduces CPU/memory
usage

Limited to Istio in sidecar
mode; IPv4-only

eZtunnel
(Our Work)

eBPF-based
offloading

Transparent offloading;
increases intra-node throughput
by 68.5%, reduces latency
by 42.0%, and FCT by
41.2%; integrates with ambient
mesh; no cluster redeployment
required; supports both IPv4
and IPv6

Requires eBPF support;
not fully tested with other
service meshes; memory
usage increased by at most
60.5 MB; no support for
Docker-based deployments
(e.g., kind, minikube)

Table 3.1: Comparison of the most important related works.
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3.4 Summary

This chapter explored the diverse landscape of offloading techniques that aim

to address the challenges of network optimization, including in modern cloud-native

environments. These techniques span software-based frameworks, programmable

hardware, and hybrid approaches, each with its advantages and trade-offs.

Software frameworks like eBPF and XDP showcase the potential for high-

performance packet processing within the kernel, bypassing traditional networking

stacks to deliver low latency and high throughput. Similarly, programming tools like

P4 enable precise control over network behavior, particularly when combined with

advanced hardware solutions like Tofino switches or DPUs. Additionally, frameworks

such as DPDK and IPDK highlight the flexibility and power of user-space packet

processing and infrastructure management for Kubernetes clusters.

Hardware-based approaches, including SmartNICs, programmable switches, and

DPUs, offer unparalleled efficiency by offloading resource-intensive tasks directly to

specialized components. These techniques significantly reduce latency and CPU

usage while enhancing the scalability and security of network infrastructures.

The related work reviewed in this chapter illustrates the breadth of solutions

available, from the latency reductions achieved by sidecar-free service meshes to the

throughput gains enabled by hardware-based offloading. Each approach provides

valuable insights into overcoming the complexities of Kubernetes networking and

service mesh architectures, yet limitations persist in terms of compatibility, deployment

flexibility, and hardware requirements.

In this context, our proposed solution, eZtunnel, emerges as a promising approach

to address these challenges. By leveraging eBPF for transparent offloading in

service mesh environments, eZtunnel reduces intra-node latency, minimizes jitter, and

integrates seamlessly with modern service mesh designs like ambient mesh. Unlike

other techniques, it requires no cluster redeployment, ensuring a smooth and efficient

optimization process without significant overhead.
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Chapter 4

eZtunnel: Design and Implementation

Current cloud-native environments face challenges with networking overhead due

to container orchestration platforms like Kubernetes and networking enhancement

layers such as service meshes like Istio. Both sidecar-based and sidecar-less service

mesh deployment modes introduce a longer communication path and increased

performance overhead. The performance of applications as a whole can be affected by

the costly networking stack traversals required to handle microservices communication.

While solutions addressing the inefficiencies of sidecar deployment mode have

been proposed, the performance drawbacks associated with the sidecar-less mode

remain unresolved. Our proposal seeks to avoid long networking stack traversals by

employing eBPF as a software optimization mechanism to bypass the Linux kernel

network processing.

This chapter explores and describes eZtunnel, the proposed eBPF-based

transparent traffic acceleration mechanism to reduce the associated overhead of intra-

node networking in cloud-native infrastructures.

4.1 Guidelines

To develop an effective offloading strategy for next-generation programmable

infrastructures, we aimed to come up with a solution that ensures compatibility with

Kubernetes and service mesh deployments, allowing seamless integration without

requiring environment modifications. It needed to support both deployment modes,

sidecar-based and sidecar-less service mesh configurations, and be transparent to

avoid requiring modifications to applications or infrastructure components.

Additionally, the solution had to address key performance aspects, such as

reducing intra-node networking overhead, optimizing the communication path to

alleviate costly traversals through the Linux network stack, and reducing latency by

bypassing unnecessary kernel processing.
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Moreover, the solution needed to be resource-efficient, minimizing computational

and memory usage to support scalability while maintaining performance. It also aimed

to be cost-effective, avoiding reliance on specialized hardware and ensuring feasibility

within commodity cloud environments. By using mature and evolving technologies

and toolsets, the strategy can provide robust functionality while benefiting from strong

community support, leading to better maintainability.

4.2 Technology Selection for Offloading

Taking the discussed requirements and guidelines into consideration, we analyzed

the offloading technologies explored in the literature review (§3) to identify a suitable

key technology for building the project, ensuring alignment with outlined ideas.

P4 offers highly efficient programmable packet processing, but relies on

specialized hardware, which limits its applicability in commodity cloud environments.

Although promising, IPDK’s ecosystem and toolset remain immature, making it

less suitable for immediate deployment. In contrast, although Tofino Switch ASICs

are mature, relying on them poses risks due to Intel’s decision to discontinue their

development.

DPDK, despite its high performance, operates in user space and requires

application modifications, which reduces transparency and increases intrusiveness.

DPDK is primarily effective for optimizing inter-node traffic, such as DPUs and

SmartNICs, not offering benefits for intra-node communication.

As opposed to the aforementioned technologies, eBPF stands out as a highly

flexible and efficient solution that addresses many of these limitations. Unlike P4, eBPF

does not require specialized hardware, making it suitable for deployment in commodity

cloud environments where cost and accessibility are taken into consideration. Its

integration with the Linux kernel ensures compatibility with existing infrastructures,

eliminating the need for specialized or proprietary equipment.

While IPDK and Tofino Switch ASICs face challenges related to maturity and future

development risks, eBPF benefits from an active and rapidly evolving ecosystem. This

ensures continuous improvements, widespread community support, and a reduced

risk of obsolescence. Additionally, eBPF’s maturity as a technology enables it to be

readily deployed without requiring infrastructure upgrade, as almost every modern

Linux system since version 3.15 supports it [60].

Compared to DPDK, eBPF operates directly within the kernel, bypassing the

overhead of context switching between user-space and kernel-space. This in-kernel

operation not only reduces latency but also provides a more transparent and less

intrusive mechanism for optimizing network functions.
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Due to these features, eBPF is the most reasonable choice for an offloading

strategy in this scenario. The ability to operate with minimal performance overhead

while providing broad observability and control over system behavior makes eBPF a

standout choice for next-generation programmable infrastructures.

4.3 General Overview of the Solution

In the context of service meshes, intra-node networking can become a burden due

to the high volume of traffic between containers. Efficient management of this traffic is

critical to optimizing application performance and resource utilization at node-level.

Figure 4.1a depicts the packet’s path from a client to a server process in a sidecar-

less service mesh environment. Initially, a message is written to socket (1). It traverses

the network stack down to the network interface, where a virtual bridge forwards the

packet to the respective interface of the agent’s pod. It then traverses again the network

stack, and socket (2) delivers the message to the process. The same process is

repeated from socket (3) to socket (4) to forward the message to the target server,

and also to send the response back from the server to the client.

Our design to shorten the packet’s path involves a socket redirection mechanism

based on eBPF, as illustrated in Figure 4.1b. Instead of traversing the network

stack, network interfaces, and virtual bridges, as the packet is written to the socket,

it is directly redirected to the other socket’s end and delivered to the process,

entirely bypassing the intermediary kernel network processing. This mechanism works

regardless of the service mesh deployment mode (e.g., sidecar-based or sidecar-less).

(a) Default packet path (b) Packet path of our proposed solution

Figure 4.1: Packet path of a sidecar-less service mesh with and without our proposed
solution.

Considering that in a service mesh architecture packets always need to travel

through the middleware proxy first, this improvement is useful even in cases where

the packet destination is outside the node.
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4.4 Design

To route messages between sockets and skip the Linux network stack, sockets

must first be captured, stored, and monitored for messages.

A SockOps program is attached to a control group (cgroup), which responds

to events in sockets (e.g., socket established) of processes in the attached cgroup

hierarchy. It allows us to change socket parameters and opportunistically store them in

eBPF Maps [61]. Linux provides a variety of eBPF Maps, including SockHash, which

is used to store sockets in a hash table with a user-defined key, and HashMap, which

both key and value can be used-defined.

Once sockets are captured and stored in SockHash and HashMap via the

SockOps program, the next phase involves defining how messages traverse these

sockets without invoking the kernel’s default packet path.

A SkMsg program is attached to SockHash to handle messages sent through the

stored sockets, i.e. when ‘sendmsg’ and ‘sendfile’ syscalls are executed on sockets

that are part of the Map the SkMsg program is attached to.

As arriving messages are detected, the redirection mechanism involves the

query of HashMap to obtain the respective destination of the message. Then,

messages are redirected to the other end of the socket using the helper function

bpf_msg_redirect_hash.

Figure 4.2 details the socket redirection workflow. 1 When the server socket

is created, it is captured by SockOps program. The captured socket is 3 stored in

SockHash and 4 the reverse mapping is calculated and stored in HashMap. 2 The

client socket is also captured and 3 stored in the SockHash and 4 HashMap.

5 When a message is written to the socket, the SkMsg program is triggered,

6 HashMap is queried to obtain the mapping of the other side of the socket and

7 8 redirects it to the obtained socket, 9 delivering it to the server process.

Figure 4.2: Socket redirection workflow using eBPF.
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4.5 Implementation

The implementation is composed by the user-space code and eBPF programs,

where the user-space code handles loading the eBPF programs into the kernel.

The implementation relies on a modern toolchain that simplifies the development,

deployment, and management of eBPF programs. Central to this toolchain is the

Aya library [62], a Rust library designed for eBPF programming. Aya provides a

robust framework for writing, compiling, and loading eBPF programs while maintaining

portability and minimizing dependencies on external tools.

This library was chosen for its features as an eBPF library fully implemented

in Rust with bindings to eBPF helpers in C. Unlike other eBPF libraries that often

depend on C-based frameworks or C code, Aya offers a Rust-native solution. This

brings several advantages of the Rust language, including improved memory safety

without garbage collection, type safety, better integration with Rust-based projects, and

a simplified development workflow. Aya supports a “compile-once, run-everywhere”

approach, which ensures that the eBPF program can operate across various Linux

distributions and kernel versions without requiring per-environment recompilation.

The eBPF programs are written in Rust and compiled into eBPF bytecode using

the Rust toolchain. The compilation process relies on cargo, Rust’s package manager

and build system, along with two crates1:

• bpf-linker: A crate that facilitates the process of statically link eBPF

objects, ensuring compatibility with kernel requirements and generating optimized

bytecode;

• bindgen-cli: This tool generates Rust bindings to C headers, allowing the eBPF

programs to interface seamlessly with kernel structures and APIs.

Additionally, the Aya library provides utilities for managing the lifecycle of eBPF

programs from user-space. When the user-space code is executed, it loads the

precompiled eBPF bytecode into the kernel. This step is handled programmatically,

without the need for external tools like bpftool or custom loaders.

4.5.1 User-space program

The eBPF programs are precompiled into bytecode and included in the compiled

binary. The macro include_bytes_aligned ensures that the bytecode is included

as a compile-time constant, avoiding runtime dependency on external files, and

Ebpf::load() handles parsing and loading the eBPF program into memory. This

procedure is shown in Listing 4.1.
1In Rust, a ‘crate’ is similar to ‘library’ or ‘package’ in other languages.
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1 l e t mut bpf = Ebpf : : load ( inc lude_by tes_a l igned ! (

2 " path / to / compiled / ebpf / program "

3 ) ) ? ;

Listing 4.1: Loading the eBPF program bytecode into memory.

The SockOps program monitors socket lifecycle events and must be attached to a

cgroup. The directory of the cgroup can be provided via a command-line argument or a

default value is used, as defined in Listing 4.2. Then, in Listing 4.3, the corresponding

file descriptor of the given cgroup is obtained.

1 #[ der i ve ( Debug , Parser ) ]

2 s t r u c t Opt {

3 # [ c lap ( shor t , long , de fau l t _va lue = " / sys / f s / cgroup / " ) ]

4 cgroup : S t r ing ,

5 }

Listing 4.2: Declaration of the userspace program options.

1 l e t opt = Opt : : parse ( ) ;

2 l e t c g r o u p _ f i l e = F i l e : : open ( opt . cgroup ) ? ;

3 l e t cgroup_fd = c g r o u p _ f i l e . as_fd ( ) ;

Listing 4.3: Obtaining the file descriptor of the provided cgroup directory.

Once the file descriptor of the cgroup is available, the SockOps program can be

attached to it. In Listing 4.4, the intercept_active_sockets program is retrieved

(.program_mut()) from the loaded eBPF object, loaded into the kernel (.load()) and

attached to the specified cgroup (.attach()).

1 l e t program_name = " i n te r cep t_ac t i ve_socke t s " ;

2 l e t i n t e r cep t_ac t i ve_socke t s : &mut SockOps =

3 bpf . program_mut ( program_name ) . unwrap ( ) . t r y _ i n t o ( ) ? ;

4 i n t e r cep t_ac t i ve_socke t s . load ( ) ? ;

5 i n t e r cep t_ac t i ve_socke t s . a t tach ( cgroup_fd , CgroupAttachMode : : d e f a u l t ( ) )

6 . con tex t ( format ! ( " f a i l e d to a t tach SockOps program ‘ { program_name } ‘ " ) ) ? ;

Listing 4.4: Attaching the SockOps program to the cgroup file descriptor.

When the SockOps program detects new sockets, they are captured and stored

in a specialized eBPF Map called SockHash. This Map allows the SockOps program

to store references to active sockets. In Listing 4.5, the Map is configured and the

respective file descriptor is obtained.

1 l e t sockets : SockHash<_ , [ u8 ; mem: : s i ze_o f : : < SockId >( ) ] > =

2 bpf .map ( "SOCKETS" ) . unwrap ( ) . t r y _ i n t o ( ) ? ;

3 l e t sockets_fd = sockets . fd ( ) . t r y_c lone ( ) ? ;

Listing 4.5: Setting up the SockHash Map and obtain its file descriptor.
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The SkMsg program is responsible for redirecting messages between sockets.

It operates on sockets stored in the SockHash Map. Similarly to the previous

eBPF program, in Listing 4.6, the redirect_between_sockets program is retrieved

(.program_mut()) and loaded (.load()), then it is attached to the SockHash Map

referenced by its file descriptor (.attach()). This ensures that the SkMsg program

is triggered when data is sent through any socket stored in the Map.

1 l e t program_name = " red i rect_between_sockets " ;

2 l e t red i rect_between_sockets : &mut SkMsg =

3 bpf . program_mut ( program_name ) . unwrap ( ) . t r y _ i n t o ( ) ? ;

4 red i rect_between_sockets . load ( ) ? ;

5 red i rect_between_sockets . a t tach (& sockets_fd )

6 . con tex t ( format ! ( " f a i l e d to a t tach SkMsg program ‘ { program_name } ‘ " ) ) ? ;

Listing 4.6: Attaching the SkMsg program to the SockHash Map file descriptor.

4.5.2 Kernel-space program

The user-space code does not directly interfere with the socket handling

mechanism, on the other hand, the eBPF programs perform this role entirely. The

first step is to obtain the sockets and manage Maps using the SockOps program. The

#[sock_ops] attribute macro defines the program type of the function, which gets a

parameter of type SockOpsContext, as seen in the function signature in Listing 4.7.

1 #[ sock_ops ]

2 fn i n te r cep t_ac t i ve_socke t s ( c t x : SockOpsContext ) −> u32 { / * . . . * / }

Listing 4.7: Function signature of the intercept_active_sockets eBPF program.

The internals of this function follow the logic depicted in Figure 4.3. When a

socket event is triggered, first the IP address is normalized, i.e. IPv4 addresses are

mapped to IPv6. Then, it checks if the socket operation is active (i.e. the client socket

initiating the connection) or passive (i.e. server receiving the connection). Finally,

the socket is stored in the SOCKETS<key: SockId, value: socket> eBPF Map using

a special hash key, and the reverse side of the socket is calculated and stored in

SOCKETS_REVERSED<key: SockPairTuple, value: SockId> eBPF Map.

IPv4 addresses are mapped to the IPv6 address space using the prefix

::FFFF:x.y.z.w , where x.y.z.w represents the original IPv4 address, as specified

by RFC 42912. Address collision is mitigated as the RFC reserves this IPv6 prefix

exclusively for IPv4-mapped IPv6 addresses. In this way, the program is able to handle

both AF_INET and AF_INET6 sockets. This process is executed in the same way to

normalize the value of both local_ip and remote_ip, as exemplified in Listing 4.8.

2https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.2
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Figure 4.3: Flowchart of the intercept_active_sockets eBPF program.

1 l e t l o c a l _ i p = i f f a m i l y == IpAddrKind : : V4 as u8 {

2 [0 , 0 , 0 x f f f f , ops . l o c a l _ i p 4 . swap_bytes ( ) ]

3 } e lse {

4 ops . l o c a l _ i p 6

5 } ;

Listing 4.8: IPv4 to IPv6 mapping, according to RFC 4291.

The SOCKETS<key: SockId, value: socket> Map is indexed by SockId

(Listing 4.9), derived from the socket’s 4-tuple {source IP-port, destination IP-

port}. If the socket operation is active (i.e. client-side), the local IP and port are

used to identify the connection because the server IP and port are common to all

connections. Else, the socket operation is passive (i.e. server-side), then the remote

IP and port are used, which represent the client. This procedure is in Listing 4.10.

1 #[ repr (C, packed ) ]

2 # [ der i ve ( Copy , Clone ) ]

3 pub s t r u c t SockId {

4 pub s ide : SockSide ,

5 pub i p : [ u32 ; 4us ize ] ,

6 pub po r t : u16 ,

7 }

Listing 4.9: SockId struct definition.
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1 l e t mut sock_id = i f ops . op == BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB {

2 SockId {

3 s ide : SockSide : : C l i en t ,

4 i p : l o c a l _ i p ,

5 po r t : l o ca l _po r t ,

6 }

7 } e lse {

8 SockId {

9 s ide : SockSide : : Server ,

10 i p : remote_ip ,

11 po r t : remote_port ,

12 }

13 } ;

Listing 4.10: SOCKETS Map index key, defined by sock_id.

To calculate the reversed side of the socket identified by SockPairTuple (the Map

key, Listing 4.11), sock_id is reused and the side is flipped (the respective Map value).

The key-value is stored in SOCKETS_REVERSED<key: SockPairTuple, value: SockId>

eBPF Map. This is shown in Listing 4.12.

1 #[ repr (C, packed ) ]

2 # [ der i ve ( Copy , Clone ) ]

3 pub s t r u c t SockPairTuple {

4 pub l o c a l _ i p : [ u32 ; 4us ize ] ,

5 pub l o c a l _ p o r t : u16 ,

6

7 pub remote_ip : [ u32 ; 4us ize ] ,

8 pub remote_port : u16 ,

9 }

Listing 4.11: SockPairTuple struct definition.

1 l e t sock_pa i r_ tup le = SockPairTuple {

2 l o c a l _ i p ,

3 l oca l _po r t ,

4 remote_ip ,

5 remote_port ,

6 } ;

7

8 sock_id . s ide = i f sock_id . s ide == SockSide : : C l i e n t {

9 SockSide : : Server

10 } e lse {

11 SockSide : : C l i e n t

12 } ;

Listing 4.12: Calculation of the SOCKETS_REVERSED value.
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Following the SockOps program, the second step is the SkMsg program to perform

the actual redirection of messages between sockets. The #[sk_msg] attribute macro is

used to define eBPF program type of the function, which gets a parameter of the type

SkMsgContext, as defined in the function signature in Listing 4.13.

1 #[ sk_msg ]

2 fn red i rect_between_sockets ( c t x : SkMsgContext ) −> u32 { / * . . . * / }

Listing 4.13: Function signature of the redirect_between_sockets eBPF program.

The functioning of redirect_between_sockets is shown in Figure 4.4. Using the

populated Maps by intercept_active_sockets, the remaining part is the redirection

mechanism. When a stored socket in the SOCKETS Map triggers a message event, IPv4

addresses are once again time mapped to IPv6. Then, the key to obtain the reversed

socket stored in SOCKETS_REVERSED is constructed, in the same way sock_pair_tuple

is. The returned value from the Map is used as the key to get the corresponding socket,

to which the message is redirected to.

Figure 4.4: Flowchart of the redirect_between_sockets eBPF program.
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4.6 Deployment Considerations

The eBPF programs and their support user-space component can be deployed in

different ways. The simplest deployment method is to manually download the binary

from the GitHub repository to the Kubernetes node (e.g., using curl or wget) then

execute it with root privileges. This is useful for a quick and easy test of the solution.

Another alternative method is to package it into a container image and deploy as

a DaemonSet. Each node’s DaemonSet should have access to the node filesystem

then attach the SockOps and SkMsg programs to the top level cgroup of the node

and initialize the necessary eBPF Maps. Using Kubernetes primitives for deployment

guarantees that the prototype is active on all nodes within the cluster and ensures a

more robust deployment.

To facilitate testing and debugging, it is always recommended to deploy the

prototype in a spare Kubernetes cluster, not used for production workloads. After the

initial testing, it can be gradually deployed to a production cluster, selectively picking

nodes using Kubernetes’ node selector. This allows the implementation to be evaluated

in a controlled environment before being rolled out cluster-wide.

4.7 Summary

This chapter presented an eBPF-based offloading strategy to optimize intra-node

networking in Kubernetes environments with service meshes. Given the identified

performance overhead associated with traditional networking stacks, we adhered to a

set of guidelines for the project and proposed an offloading solution based on eBPF to

bypass kernel processing, aiming to improve network metrics and resource utilization.

The solution was tested in various scenarios and the results are presented in the

following chapter.

By using the eBPF programs SockOps and SkMsg, our approach captures socket

events, stores socket references in SockHash and HashMap eBPF Maps, and redirects

messages directly between sockets, avoiding unnecessary traversals of the Linux

network stack. This solution is intended to work transparently in both sidecar-based

and sidecar-less service mesh configurations. The implementation was built using Aya,

a Rust library, which enabled efficient development and deployment of eBPF programs.

In conclusion, the proposed eBPF offloading strategy provides a flexible, cost-

effective, and high-performance solution for reducing the overhead of intra-node

networking in Kubernetes environments, making it suitable for modern cloud-native

architectures.
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Chapter 5

Experimental Evaluation

This chapter evaluates the proposed offloading strategy by analyzing its

performance in practical scenarios. The focus is on measuring how the eBPF-

based optimization enhances networking and system performance across selected

workloads. Key network and system metrics such as latency, throughput, and resource

utilization are assessed using benchmarks designed to represent both real-world use

cases and commonly used scenarios. The chapter outlines the workloads, metrics,

testbed setup, benchmark results, and the discussion of the outcomes.

5.1 Guidelines

The selection and evaluation of workloads in this experiment follow some

guidelines to ensure that the results are reproducible, meaningful, and representative

of real-world use cases in cloud-native environments. The guidelines outline the key

principles for the design and evaluation of workloads.

Reproducibility. Workloads should be designed to be reproducible, with consistent

configurations and clear metrics. This allows for reliable comparisons across different

experimental setups and ensures that performance improvements can be attributed to

the offloading strategy.

Diversity of Scenarios. A range of network scenarios should be covered, from low-

latency, high-frequency interactions to high-concurrency, data-intensive operations.

This ensures that the evaluation addresses various service mesh performance

bottlenecks across different application requirements.

Representativeness. The chosen workloads should reflect the common network

patterns found in cloud-native applications. These patterns include basic request-
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response communication as well as more complex and data-intensive interactions

typical of microservice-based architectures.

Following these guidelines, the workloads chosen for this evaluation provide an

overview of the service mesh performance optimization assessment.

5.2 Workloads

The workloads selected for this evaluation aim to assess the impact of the

offloading strategy on network performance and system usage, focusing on common

networking tasks in cloud-native environments. These workloads are designed to

test the effect of the optimization across different communication patterns and system

loads.

file-transfer. It consists of a server transferring a large synthetic file (1,000 MiB)

to a client over TCP using ncat utility1. The workload simulates a high-throughput

scenario commonly encountered in data-intensive applications, such as file sharing,

media streaming, or backup operations. It evaluates the system’s ability to efficiently

handle bulk data transfers under controlled conditions.

ping-echo. The ping-echo workload consists of a ping client and an echo server,

both implemented in Python. The client sends a small packet (24 bytes) over TCP

containing a timestamp to the server, which responds with the same packet. This

request-response cycle pattern is typical of many microservices interactions; also, it

was helpful to understand the interaction between eZtunnel and service mesh. This

workload evaluates low-latency, high-frequency communication, which is common in

microservices environments where services frequently exchange small amounts of

data.

redis. This workload uses a real Redis2 instance with the Memtier Benchmark3 tool

to generate high-concurrency, data-intensive operations. It offers a broad range of

configuration parameters, such as total runs, amount of threads, clients per thread,

requests per client, and others. The workload is designed to simulate the type of load

encountered in caching or session management services.

1https://nmap.org/ncat/
2https://redis.io/docs/latest/get-started/
3https://github.com/RedisLabs/memtier_benchmark
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5.3 Metrics

The following metrics were used to evaluate the performance of the eBPF-based

offloading strategy in the selected workloads. These metrics provide insight into

how the system’s networking and resource usage are impacted by the offloading

mechanism. Network-related metrics are collected by the client process itself, while

resource usage-related metrics are monitored by statexec4.

Latency. Latency, also called ‘Round Trip Time latency’ (RTT latency), refers to the

time it takes for a packet to travel from the client to the server and back. This metric

is capable of evaluating the responsiveness of microservices, particularly in real-time

applications. Lower latency translates to faster communication between microservices.

Jitter. Jitter measures the variation in packet delay over time, indicating the

consistency of latency. It is critical for applications requiring stable and predictable

communication, such as real-time systems and streaming services. Reducing jitter

ensures smoother interactions and a better end-user experience. This metric is derived

from the network latency. It is defined by the average deviation from the network mean

latency, as described in the formula:

σ =

√

1

N

∑

(xi − x)2 (5.1)

Where:

• σ: population standard deviation

• xi: each value from the population

• x: population mean

• N : size of the population

Flow Completion Time (FCT). Unlike single-packet latency, FCT accounts for the

complete transfer of multiple packets that constitute a flow, making it particularly

relevant for applications involving bulk data transfers or file exchanges. Lower FCT

indicates more efficient handling of end-to-end communication. FCT is essential for

evaluating the performance of services that depend on large data transmissions, such

as database replication, video streaming, and file transfer operations.

4https://github.com/blackswifthosting/statexec
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Throughput. Throughput is the measurement of the rate at which data can be

transmitted between services. It is used to understand how much data the system

can handle under different loads. Throughput is typically measured in terms of requests

(Requests per Second (RPS)), operations (Operations per Second (OPS)) or amount of

data (e.g., megabytes per second (MBps)). It can be derived from latency as following:

RPS = OPS =
1

l
bps =

s

l
(5.2)

Where:

• l: latency (in seconds)

• s: size of each request

CPU Usage. This metric measures the percentage of CPU resources consumed by

the whole system. High CPU usage can indicate inefficient processing, especially in

network-related tasks. A reduction in CPU usage would demonstrate the effectiveness

of the offloading strategy in optimizing resource consumption.

Memory Usage. It refers to the amount of system memory used during the execution

of workloads. High memory usage may lead to system instability, including crashes or

the invocation of out-of-memory (OOM) killers, disrupting service availability.

5.4 Testbed Setup

The testbed for evaluation was designed to ensure reproducibility and consistency,

minimizing variability caused by external factors while still providing a realistic

environment for testing the proposed optimization.

Server Specifications. A single physical machine was used for the experiments,

featuring the following configuration:

• CPU: Intel Xeon E5-2630 v4, base clock 2.2 GHz, boost clock up to 3.1 GHz,

10 cores, 20 threads;

• RAM: 2x 16 GB, DDR4, 3200 MHz;

• Swap Memory: 8 GB;

• Storage: SSD NVMe 1 TB;

• Operational System: Fedora Server 40;

• Kernel: Linux v6.8.5, cgroup2 enabled;

• Network Interface: Integrated Gigabit Ethernet.
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Virtualization. To emulate a Kubernetes environment, LXD5 was used to create

lightweight Virtual Machines (VMs). LXD offers near-native performance and resource

isolation, making it suitable for testing networking and workload scenarios. The

setup of the instance is carried out by cloud-init6 to allow consistent and reproducible

installations. Each instance was configured as type ‘vm’ with dedicated resources:

• Number of VMs: 1;

• Allocated Resources per VM: 4 vCPUs, 8 GB memory;

• Image: ubuntu:24.04;

• Kernel: Linux v6.8.0-49-generic, cgroup2 enabled.

Instances can be accessed with the command lxc shell <instance id>.

Kubernetes Cluster. A single-node Kubernetes cluster was deployed using the

RKE2 distribution in the VM provisioned by LXD. The single node will handle the control

plane and worker pods. The cluster, as presented in Figure 5.1, was configured as

follows:

• Container Orchestrator: Kubernetes v1.31.4-rke2r1;

• Container Runtime: containerd v1.7.23-k3s2;

• Network Plugin: Cilium v1.16.4 for Cilium Service Mesh, else Calico v3.29.1.

Figure 5.1: Benchmark architecture of the experimental evaluation.

5https://canonical.com/lxd
6https://documentation.ubuntu.com/lxd/en/latest/cloud-init/
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Service Mesh. The experimental environment included four distinct service mesh

setups for evaluation:

• none: no service mesh;

• cilium: Cilium v1.16.4;

• istio-ambient: Istio v1.24.2 in Ambient mode;

• istio-sidecar: Istio v1.24.2, in the default sidecar mode.

Optimization Setup. To deploy the proposed eBPF-based optimization strategy,

precompiled release binaries were built to simplify installation and execution. The setup

process is outlined in chapter Artifacts.

Workload Execution. To deploy workloads in the Kubernetes cluster, preconfigured

Kubernetes manifests were utilized. These manifests contain the deployment

specification, service, and configuration details required for each workload. The

procedure for each workload is presented in chapter Artifacts.

5.5 Benchmark Results

This section presents the results of the experimental evaluation, emphasizing the

impact of the proposed eBPF-based offloading strategy across various workloads and

configurations. The benchmarks were designed to evaluate the system’s networking

performance and resource utilization under diverse conditions.

The evaluation involves three workloads—file-transfer, ping-echo, and redis—

executed under four distinct service mesh configurations: no service mesh, cilium,

istio-ambient, and istio-sidecar.

For each configuration, it was tested both with the eZtunnel optimization disabled

(baseline) and enabled. This setup results in a total of 24 unique benchmark scenarios.

Each workload was executed five times per scenario, totaling 120 executions.

Data collection includes six metrics (latency, jitter, FCT, throughput, CPU usage,

and memory usage). To facilitate further exploration, the complete dataset—

including raw measurements, data processing routines, and all visualizations—is

openly available in the repository found in chapter Artifacts.

5.5.1 Latency and Jitter

The latency data from the ping-echo workload demonstrates significant

improvements when using the eZtunnel offloading strategy across different service

meshes, as observed in Figure 5.2 and Table 5.1. In the absence of a service
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mesh (none), eZtunnel reduces latency by 38.0% at the 25th percentile (p25), 39.4%

at the median (p50), 34.8% on average, and 38.2% at the 75th percentile (p75).

Similar reductions are observed in other service mesh configurations, with eZtunnel

achieving latency improvements of 26.6% to 41.9% at p25, 27.6% to 42.0% at p50,

22.9% to 41.9% on average, and 27.5% to 41.6% at p75 for the service mesh

configurations cilium, istio-ambient, and istio-sidecar. Notably, istio-sidecar

exhibits the highest baseline latencies, but eZtunnel still delivers substantial reductions

of approximately 42% across all percentiles.

Figure 5.2: Latency of ping-echo workload.

Latency (µs)
Service Mesh Mode p25 p50 average p75

none Baseline 97.7 121.4 139.8 157.8
eZtunnel 60.6 (-38.0%) 73.5 (-39.4%) 91.2 (-34.8%) 97.5 (-38.2%)

cilium Baseline 83.0 102.0 118.5 134.3
eZtunnel 60.9 (-26.6%) 73.8 (-27.6%) 91.4 (-22.9%) 97.3 (-27.5%)

istio-ambient Baseline 98.8 122.0 140.5 158.6
eZtunnel 59.8 (-39.5%) 72.4 (-40.6%) 91.1 (-35.2%) 96.3 (-39.3%)

istio-sidecar Baseline 406.5 495.6 551.5 615.3
eZtunnel 236.1 (-41.9%) 287.4 (-42.0%) 320.4 (-41.9%) 359.5 (-41.6%)

Table 5.1: Latency of ping-echo workload.

The jitter results for the ping-echo workload, highlighted in Figure 5.3 and

Table 5.2, presents varying effects of the eZtunnel offloading strategy across service

mesh configurations. In the none service mesh configuration, eZtunnel achieves

modest reductions in jitter, with decreases of 3.1% at p25 and 1.4% on average,

while p50 remains nearly unchanged (0.2%) and p75 sees a slight increase of 0.7%.

However, in cilium, eZtunnel leads to higher jitter, increasing p50 to 10.8%. Similarly,
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in istio-ambient, p50 jitter rises by 1.5%. The most significant improvements occur in

istio-sidecar, where eZtunnel reduces jitter by 35.6% at p50, addressing the higher

baseline jitter in this configuration.

Figure 5.3: Jitter of ping-echo workload.

Jitter (µs)
Service Mesh Mode p25 p50 average p75

none Baseline 95.2 96.0 96.1 96.6
eZtunnel 92.3 (-3.1%) 95.8 (-0.2%) 94.7 (-1.4%) 97.3 (0.7%)

cilium Baseline 87.6 87.9 87.9 89.2
eZtunnel 96.0 (9.6%) 97.4 (10.8%) 101.3 (15.2%) 99.4 (11.5%)

istio-ambient Baseline 99.8 102.3 101.6 103.3
eZtunnel 94.7 (-5.1%) 103.9 (1.5%) 110.9 (9.1%) 104.5 (1.1%)

istio-sidecar Baseline 276.7 278.3 278.5 279.3
eZtunnel 171.8 (-37.9%) 179.1 (-35.6%) 178.8 (-35.8%) 180.0 (-35.6%)

Table 5.2: Jitter of ping-echo workload.

The impact of eZtunnel in latency for the redis workload are illustrated in Figure 5.4

and Table 5.3. Without a service mesh (none), eZtunnel significantly reduces latency,

with improvements of 31.7% at p25, 32.2% at p50, 31.5% on average, and 31.2% at

p75. For the service mesh cilium, the baseline latencies are already low, and eZtunnel

maintains similar performance, with minor reductions of 1.4% across all percentiles to

1.6% on average. In istio-ambient, eZtunnel also achieves notable latency reductions

of approximately 27.8% to 28.5% across p25, p50, average, and p75. However, in

istio-sidecar, eZtunnel has minimal impact, with slight increase in latency ranging

from 0.9% at p25 to 2.1% at p75.
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Figure 5.4: Latency of redis workload.

Latency (ms)
Service Mesh Mode p25 p50 average p75

none Baseline 2.0 2.1 2.1 2.1
eZtunnel 1.4 (-31.7%) 1.4 (-32.2%) 1.4 (-31.5%) 1.4 (-31.2%)

cilium Baseline 1.4 1.4 1.4 1.4
eZtunnel 1.4 (-1.4%) 1.4 (-1.4%) 1.4 (-1.6%) 1.4 (-1.4%)

istio-ambient Baseline 2.0 2.1 2.0 2.1
eZtunnel 1.5 (-27.8%) 1.5 (-28.5%) 1.5 (-27.9%) 1.5 (-28.5%)

istio-sidecar Baseline 5.7 5.7 5.7 5.7
eZtunnel 5.7 (0.9%) 5.8 (1.7%) 5.8 (1.4%) 5.8 (2.1%)

Table 5.3: Latency of redis workload.

Jitter is not available for the redis workload, and both latency and jitter data are

unavailable for the file-transfer workload. This limitation arises because network-

related metrics are collected by the client process itself, as outlined in the metrics

description (section 5.3).

5.5.2 Flow Completion Time

FCT results for the file-transfer workload, depicted in Figure 5.5 and Table 5.4,

reveal the impact of the eBPF-based offloading strategy across different service mesh

configurations. In the service mesh configuration none, eZtunnel reduces FCT by

21.2% at p25, 21.0% at p50 and on average, and 21.1% at p75. Similarly, in the

istio-ambient configuration, FCT improvements range from 19.3% at p25 to 20.4%

at p75. For the cilium configuration, eZtunnel achieves reductions of 10.8% at p25,

11.7% at p50, 11.3% on average, and 12.2% at p75. However, in the istio-sidecar

configuration, eZtunnel increases FCT by 20.8% at p25, 20.0% at p50, 21.2% on
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average, and 23.5% at p75. Although it shown a negative impact in the istio-sidecar

setup, where baseline values are already lower, FCT values with eZtunnel are within

the range of 8.2s to 8.5s for all service mesh setups.

Figure 5.5: Flow Completion Time (FCT) of file-transfer workload.

FCT (s)
Service Mesh Mode p25 p50 average p75

none Baseline 10.5 10.5 10.6 10.7
eZtunnel 8.3 (-21.2%) 8.3 (-21.0%) 8.4 (-21.0%) 8.4 (-21.1%)

cilium Baseline 9.3 9.5 9.5 9.6
eZtunnel 8.3 (-10.8%) 8.4 (-11.7%) 8.4 (-11.3%) 8.4 (-12.2%)

istio-ambient Baseline 10.4 10.6 10.6 10.7
eZtunnel 8.4 (-19.3%) 8.5 (-20.1%) 8.4 (-20.2%) 8.5 (-20.4%)

istio-sidecar Baseline 6.8 6.9 6.9 6.9
eZtunnel 8.2 (20.8%) 8.3 (20.0%) 8.4 (21.2%) 8.5 (23.5%)

Table 5.4: Flow Completion Time (FCT) of file-transfer workload.

The FCT results for the ping-echo workload, illustrated in Figure 5.6 and Table 5.5,

followed a consistent down trend with the usage of the optimization. In the none

configuration, eZtunnel reduces FCT by 34.2% at p25, 34.7% at p50, 34.4% on

average, and 34.7% at p75. Similarly, in the istio-ambient configuration, FCT

improvements range from 34.7% at p75 to 35.1% at p25. For the cilium configuration,

it achieves reductions of 22.0% at p25, 22.7% at p50 and on average, and 23.6%

at p75. The most significant improvements are observed in the istio-sidecar

configuration, where eZtunnel reduces FCT by 41.2% at p50. For the configurations

none, cilium, and istio-ambient, FCT values kept stable around 9.5s and 9.7s across

all the percentiles.
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Figure 5.6: Flow Completion Time (FCT) of ping-echo workload.

FCT (s)
Service Mesh Mode p25 p50 average p75

none Baseline 14.5 14.8 14.6 14.8
eZtunnel 9.5 (-34.2%) 9.7 (-34.7%) 9.6 (-34.4%) 9.7 (-34.7%)

cilium Baseline 12.3 12.4 12.5 12.6
eZtunnel 9.6 (-22.0%) 9.6 (-22.7%) 9.6 (-22.7%) 9.7 (-23.6%)

istio-ambient Baseline 14.7 14.7 14.8 14.8
eZtunnel 9.5 (-35.1%) 9.6 (-34.9%) 9.6 (-34.9%) 9.6 (-34.7%)

istio-sidecar Baseline 55.2 56.1 56.3 57.8
eZtunnel 32.8 (-40.7%) 33.0 (-41.2%) 32.9 (-41.5%) 33.1 (-42.9%)

Table 5.5: Flow Completion Time (FCT) of ping-echo workload.

The FCT values for the redis workload, presented in Figure 5.7 and Table 5.6,

show varying impacts offloading strategy across service mesh setups. In the none

configuration, eZtunnel reduces FCT by 30% at p25, p50, and p75, and by 31.7%

on average. Similarly, in the istio-ambient configuration, FCT improvements are

consistent, with reductions of 30% at p25, p50, and p75, and 29.3% on average. For

the cilium configuration, Baseline values are already lower than the other setups.

However, eZtunnel still achieves modest reductions of 7.1% at p25 and 1.4% on

average, while p50 and p75 remain unchanged. In contrast, the istio-sidecar

configuration sees a slight increase in FCT, with eZtunnel adding 1.3% at p25 and

on average, and 1.8% at p50 and p75. Similar to the ping-echo workload, the FCT

values of the redis workload for configurations none, cilium, and istio-ambient,

varied between 13s and 14s across the percentiles.
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Figure 5.7: Flow Completion Time (FCT) of redis workload.

FCT (s)
Service Mesh Mode p25 p50 average p75

none Baseline 20 20 20.2 20
eZtunnel 14 (-30%) 14 (-30%) 13.8 (-31.7%) 14 (-30%)

cilium Baseline 14 14 13.8 14
eZtunnel 13 (-7.1%) 14 (0%) 13.6 (-1.4%) 14 (0%)

istio-ambient Baseline 20 20 19.8 20
eZtunnel 14 (-30%) 14 (-30%) 14 (-29.3%) 14 (-30%)

istio-sidecar Baseline 56 56.5 56.5 57
eZtunnel 56.8 (1.3%) 57.5 (1.8%) 57.2 (1.3%) 58 (1.8%)

Table 5.6: Flow Completion Time (FCT) of redis workload.

5.5.3 Throughput

We observed an upward trend with optimization enabled for the throughput

performance. Values (in RPS) for the ping-echo workload, shown in Figure 5.8

and Table 5.7, demonstrate substantial performance improvements. In the none

configuration, the optimization increases RPS by 65.1% at p50, and 60.1% on average.

Likewise, in the istio-ambient configuration, RPS improvements are in the order of

68.5% at p50 and 62.4% on average. For the cilium configuration, eZtunnel achieves

increases of 38.1% at p50 and 34.8% on average. The most dramatic improvements

occur in the istio-sidecar configuration, where the offloading optimization boosts

RPS by 72.4% at p50 and 70.9% on average. The optimized scenarios consistently

outperformed their baseline counterparts.
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Figure 5.8: Requests per Second (RPS) of ping-echo workload.

RPS
Service Mesh Mode p25 p50 average p75

none Baseline 6338.0 8238.7 8186.1 10240.6
eZtunnel 10260.2 (61.9%) 13600.8 (65.1%) 13104.6 (60.1%) 16514.2 (61.3%)

cilium Baseline 7447.3 9803.7 9685.2 12055.0
eZtunnel 10275.5 (38.0%) 13541.5 (38.1%) 13058.0 (34.8%) 16422.5 (36.2%)

istio-ambient Baseline 6303.4 8196.4 8172.3 10124.0
eZtunnel 10385.2 (64.8%) 13808.1 (68.5%) 13274.4 (62.4%) 16728.0 (65.2%)

istio-sidecar Baseline 1625.3 2017.9 2049.1 2459.8
eZtunnel 2781.4 (71.1%) 3479.5 (72.4%) 3502.1 (70.9%) 4235.2 (72.2%)

Table 5.7: Requests per Second (RPS) of ping-echo workload.

Throughput (measured in OPS) for the redis workload, depicted in Figure 5.9 and

Table 5.8, reveal varying impacts of the offloading strategy. In the none configuration,

eZtunnel increases OPS by 45.3% at p25, 47.4% at p50, 45.8% on average, and 46.3%

at p75. OPS was also improved in the istio-ambient configuration, ranging from

38.5% at p75 to 39.3% at p25 and p50. For the cilium configuration, it achieves

OPS
Service Mesh Mode p25 p50 average p75

none Baseline 47902 48005 48248.8 48594
eZtunnel 69583 (45.3%) 70765 (47.4%) 70342.8 (45.8%) 71096 (46.3%)

cilium Baseline 69571 70428 70332.6 70701
eZtunnel 70866 (1.9%) 71332 (1.3%) 71566.4 (1.8%) 71756 (1.5%)

istio-ambient Baseline 48279 48314 48737.2 48781
eZtunnel 67252 (39.3%) 67290 (39.3%) 67553.6 (38.6%) 67577 (38.5%)

istio-sidecar Baseline 17450 17528.5 17542.5 17621
eZtunnel 17072.8 (-2.2%) 17232 (-1.7%) 17305.2 (-1.4%) 17464.5 (-0.9%)

Table 5.8: Operations per Second (OPS) of redis workload.
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Figure 5.9: Operations per Second (OPS) of redis workload.

small gains of 1.3% at p50 and 1.8% on average. In contrast, in the istio-sidecar

configuration, eZtunnel results in slight decreases in OPS, with reductions of 2.2% at

p25, 1.7% at p50, 1.4% on average, and 0.9% at p75.

Throughput values are not available for the file-transfer workload, as the ncat client

does not measure it.

5.5.4 CPU Usage

The CPU usage results reveal varying impacts of the offloading strategy. The first

result, the file-transfer workload, as shown in Figure 5.10 and Table 5.9, presents

mostly decreased values for CPU usage. For the istio-ambient configuration,

eZtunnel achieves a more significant reduction of 12.5%. In the none configuration,

eZtunnel reduces CPU usage by 5.8%, while in the cilium configuration, the reduction

is minimal at 0.7%. However, in the istio-sidecar configuration, CPU usage

increases by 13.7% with eZtunnel.

Service Mesh Mode CPU Usage (s)

none Baseline 86.4
eZtunnel 81.4 (-5.8%)

cilium Baseline 83.4
eZtunnel 82.8 (-0.7%)

istio-ambient Baseline 103.0
eZtunnel 90.1 (-12.5%)

istio-sidecar Baseline 100.7
eZtunnel 114.5 (13.7%)

Table 5.9: CPU usage of file-transfer workload.
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Figure 5.10: CPU usage of file-transfer workload.

For the ping-echo workload, illustrated in Figure 5.11 and Table 5.10, eZtunnel

consistently reduces CPU usage across all service mesh configurations. The istio-

sidecar configuration sees a substantial reduction of 23.2%, and the istio-ambient

configuration achieves a 21.9% decrease in CPU usage. In the none configuration,

CPU usage decreases by 16.2%. The smallest reduction, but still significative, is in the

cilium configuration, with a 12.1% decrease.

Figure 5.11: CPU usage of ping-echo workload.
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Service Mesh Mode CPU Usage (s)

none Baseline 110.5
eZtunnel 92.6 (-16.2%)

cilium Baseline 104.9
eZtunnel 92.3 (-12.1%)

istio-ambient Baseline 132.2
eZtunnel 103.2 (-21.9%)

istio-sidecar Baseline 357.8
eZtunnel 274.7 (-23.2%)

Table 5.10: CPU usage of ping-echo workload.

The CPU usage results for the redis workload, depicted in Figure 5.12 and

Table 5.11, show consistently increased usage. In the none configuration, eZtunnel

increases CPU usage by 8.1%, The increase is more pronounced in the cilium

configuration, with 29.2% increase, followed by 21.7% for the istio-sidecar. The

smallest increase in CPU usage is the istio-ambient configuration, with CPU usage

rise of 3.0%.

Figure 5.12: CPU usage of redis workload.

Service Mesh Mode CPU Usage (s)

none Baseline 204.4
eZtunnel 220.9 (8.1%)

cilium Baseline 167.9
eZtunnel 216.9 (29.2%)

istio-ambient Baseline 219.7
eZtunnel 226.4 (3.0%)

istio-sidecar Baseline 586.4
eZtunnel 713.9 (21.7%)

Table 5.11: CPU usage of redis workload.
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5.5.5 Memory Usage

Memory usage of eZtunnel was light across all workloads and service mesh

variations. The results for the file-transfer workload, presented in Figure 5.13 and

Table 5.12, in the istio-ambient configuration, memory usage increases by 11.6 MB

at p50—the smallest impact among the configurations. In the none configuration,

memory usage rises by 24.8 MB at p50. For istio-sidecar, increases are more

pronounced, with memory usage rising by 33.7 MB at p50. The cilium configuration

sees the highest increase, with memory usage growing by 41.4 MB at p50.

Figure 5.13: Memory usage of file-transfer workload.

Memory Usage (MB)
Service Mesh Mode p25 p50 average p75

none Baseline 1354.9 1368.1 1368.0 1379.7
eZtunnel 1381.6 (+26.7) 1392.9 (+24.8) 1392.0 (+24.1) 1401.6 (+21.9)

cilium Baseline 1283.2 1291.1 1292.7 1302.4
eZtunnel 1327.3 (+44.1) 1332.5 (+41.4) 1332.5 (+39.8) 1337.0 (+34.6)

istio-ambient Baseline 1632.2 1647.5 1644.8 1656.8
eZtunnel 1650.8 (+18.5) 1659.0 (+11.6) 1660.2 (+15.4) 1669.3 (+12.5)

istio-sidecar Baseline 1614.2 1626.5 1625.4 1637.5
eZtunnel 1648.9 (+34.6) 1660.2 (+33.7) 1668.6 (+43.2) 1689.6 (+52.2)

Table 5.12: Memory usage of file-transfer workload.

For the ping-echo workload, as illustrated in Figure 5.14 and Table 5.13, the istio-

ambient configuration exhibits a smaller increase in memory usage of 16.8 MB at p50.

Similarly, the istio-sidecar configuration experiences increases of 20.0 MB at p50.

The cilium configuration exhibits 25.8 MB of additional memory usage at p50. In the

none configuration, memory usage increases by 31.8 MB at p50—the biggest increase.
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Figure 5.14: Memory usage of ping-echo workload.

Memory Usage (MB)
Service Mesh Mode p25 p50 average p75

none Baseline 1373.6 1382.6 1380.2 1387.6
eZtunnel 1404.5 (+30.9) 1414.5 (+31.8) 1411.4 (+31.2) 1422.1 (+34.5)

cilium Baseline 1316.8 1325.1 1325.7 1334.6
eZtunnel 1345.5 (+28.7) 1350.9 (+25.8) 1352.4 (+26.7) 1360.6 (+26.0)

istio-ambient Baseline 1652.2 1662.5 1660.7 1673.6
eZtunnel 1670.0 (+17.8) 1679.3 (+16.8) 1677.7 (+17.0) 1689.7 (+16.1)

istio-sidecar Baseline 1636.2 1650.7 1645.7 1661.6
eZtunnel 1663.0 (+26.7) 1670.7 (+20.0) 1667.6 (+21.8) 1678.0 (+16.4)

Table 5.13: Memory usage of ping-echo workload.

In the redis workload, shown in Figure 5.15 and Table 5.14, the none configuration

sees the largest increase, with memory usage growing by 61.3 MB at p50, next to

istio-ambient with 60.5 MB of increase at p50. For the cilium configuration, memory

usage increases by 48.6 MB at p50. In the istio-sidecar configuration, memory

usage rises by 47.7 MB at p50.

Memory Usage (MB)
Service Mesh Mode p25 p50 average p75

none Baseline 1393.1 1464.2 1442.0 1479.4
eZtunnel 1466.1 (+73.0) 1525.5 (+61.3) 1503.4 (+61.4) 1537.9 (+58.5)

cilium Baseline 1333.3 1428.9 1392.9 1434.9
eZtunnel 1414.9 (+81.6) 1477.6 (+48.6) 1452.4 (+59.5) 1485.8 (+50.9)

istio-ambient Baseline 1637.8 1742.0 1705.2 1759.7
eZtunnel 1738.9 (+101.1) 1802.5 (+60.5) 1773.6 (+68.5) 1813.3 (+53.6)

istio-sidecar Baseline 1765.3 1788.3 1769.7 1813.9
eZtunnel 1813.4 (+48.1) 1836.1 (+47.7) 1816.5 (+46.8) 1860.8 (+46.9)

Table 5.14: Memory usage of redis workload.
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Figure 5.15: Memory usage of redis workload.

5.6 Discussion of Results

The benchmark results highlight the diverse impacts of optimization across

various workloads and metrics, demonstrating significant performance improvements

alongside some limitations. Key observations include:

Latency and Jitter. The eBPF-based optimization strategy significantly reduces

latency across all workloads, with the most notable improvements in high-frequency,

low-latency workloads like ping-echo and redis. In the ping-echo workload, latency

reductions ranged from 27.6% to 42% at p50 across service mesh configurations,

with the largest gains in istio-sidecar. Jitter improvements were more variable, with

significant reductions in istio-sidecar (35.6% at p50) but slight increases in cilium

and istio-ambient. For redis, latency improvements were substantial in none and

istio-ambient (up to 32%) but minimal in istio-sidecar. These results highlight

eZtunnel’s effectiveness in reducing latency in general.

FCT. eZtunnel consistently reduces FCT for low-latency and bulk data transfer

workloads. In the file-transfer workload, FCT improvements ranged from 11.7% to 21%

at p50 in none, cilium, and istio-ambient, but increased by 20% in istio-sidecar.

For the ping-echo workload, FCT reductions were consistent across configurations,

with the largest improvement in istio-sidecar (41.2% at p50). In the redis workload,

FCT improved by up to 30% in none and istio-ambient but saw slight increases in

istio-sidecar. These findings suggest that eZtunnel is highly effective in reducing

FCT, except in sidecar-based service meshes.
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Throughput. eZtunnel significantly improves throughput for high-frequency

workloads. In the ping-echo workload, RPS increased by up to 72.4% in istio-

sidecar, with consistent improvements across all configurations. For the redis

workload, OPS improved by up to 47.4% in none and istio-ambient, but saw

slight decreases in istio-sidecar. These results demonstrate eZtunnel’s ability to

enhance request transferring rates, particularly in environments with high-frequency

communication.

CPU Usage. The impact of eZtunnel on CPU usage varies by workload and service

mesh configuration. For the ping-echo workload, CPU usage decreased by up to

23.2% in istio-sidecar, indicating reduced overhead for high-frequency workloads.

However, in the redis workload, CPU usage increased by up to 29.2% in cilium,

suggesting additional overhead for data-intensive operations. In the file-transfer

workload, CPU usage decreased in none and istio-ambient but increased in istio-

sidecar. These results highlight a trade-off between performance improvements and

CPU resource utilization.

Memory Usage. eZtunnel introduces modest memory footprint across all workloads

and configurations. The largest increases were observed in the redis workload (up to

61.3 MB in none) and the file-transfer workload (up to 41.4 MB in cilium). For the

ping-echo workload, memory usage increased by up to 31.8 MB in none. While these

increases are relatively small, they represent a consistent trade-off for the performance

gains achieved by eZtunnel.

5.7 Summary

Throughout this chapter, we examined the benchmarking scenario, focusing on

the impact of the proposed eBPF-based optimization on network performance and

resource usage in a controlled environment. The primary aim was to assess the

effectiveness of the optimization in enhancing intra-node communication performance

in cloud-native applications.

The experimental setup adhered to well-defined guidelines to ensure that the

results were meaningful, reproducible, and representative of real-world use cases. The

selected workloads were designed to reflect common network patterns in cloud-native

environments, covering diverse scenarios and enabling reliable comparisons. The use

of free and open-source software reinforces the reproducibility of the findings.

Three distinct workloads were evaluated to capture diverse networking behaviors.

The file-transfer workload simulates high-throughput scenarios typical of data-intensive

applications, such as file sharing and media streaming; ping-echo represents
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low-latency, high-frequency request-response patterns common in microservice

interactions; and redis emulates high-concurrency, data-intensive operations often

encountered in caching or session management services. These workloads offered

a comprehensive view of service mesh performance under varied conditions,

showcasing both the strengths and limitations of the optimization.

The evaluation utilized metrics that reflect critical aspects of networking

performance and resource efficiency, including latency, jitter, FCT, throughput, CPU

and memory usage. These metrics provided a complete overview of the system’s

behavior under optimized and unoptimized scenarios.

The optimization delivered substantial improvements across most scenarios.

Significant reductions were observed for FCT. File-transfer achieved FCT

improvements of 21% at most; ping-echo 41.2%; and redis 30%.

The optimization reduced latency in nearly all configurations, especially in the

ping-echo workload, where istio-sidecar saw dramatic improvements, a reduction of

42.0%. Redis workload was also improved by 32.2%. Jitter improvement of ping-echo

workload was of 35.6%.

Gains in throughput were evident in all workloads, with the ping-echo workload

achieving up to 68.5% in the istio-ambient configuration and redis improving by up

to 47.4% in the no service mesh configuration.

CPU usage was variable across workloads and service mesh setups. In the file-

transfer workload, the CPU usage of eZtunnel ranged between +13.7% and -12.5%.

In contrast, CPU usage in the ping-echo workload was consistently lowered by at most

23.2%, while in redis it was negatively increased by at most 29.2%.

While memory usage increased between 11.6 MB∼60.5 MB due to the eBPF

programs leveraging eBPF maps, the improvements in networking metrics outweighed

this overhead in most scenarios.

The results validate the efficacy of the eBPF-based optimization in enhancing

network performance in microservice architectures. The diversity of workloads

demonstrated the optimization’s broad applicability and robustness, while also

highlighting areas for refinement, such as isolated scenarios where improvements were

limited. By achieving consistent performance gains across various metrics, this work

presents a practical and scalable approach to optimizing modern distributed systems.
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Chapter 6

Conclusions and Future Work

This study presents a comprehensive exploration of the potential for eBPF-based

optimizations to enhance networking performance in cloud-native environments. By

addressing the inherent challenges of Kubernetes networking and service mesh

overheads, the presented approach leverages eBPF’s capabilities to improve intra-

node communication latency, jitter, FCT, and throughput while maintaining compatibility

with modern service mesh designs.

Through the analysis of background concepts, we highlighted the significant

overhead introduced by traditional service meshes, particularly in sidecar-based

architectures. These findings set the stage for the development of our proposal,

eZtunnel, an offloading strategy that integrates seamlessly into both sidecar-based

and sidecar-less service mesh configurations without requiring cluster redeployment.

By employing eBPF programs such as SockOps and SkMsg, eZtunnel bypasses the

traditional kernel networking stack, leading to measurable performance gains across a

range of metrics.

Our experimental evaluation demonstrated the effectiveness of this optimization

in real-world scenarios. The proposed optimization strategy consistently delivered

improvements across diverse workloads—including file-transfer, ping-echo, and

redis—and service mesh configurations—no service mesh, cilium, istio-ambient,

and istio-sidecar. While these results underscore the robustness of our approach,

we also identified specific cases where the optimization’s impact was limited, pointing

to opportunities for further refinement.

Despite the increased memory usage inherent to eBPF Maps, the benefits in

terms of networking performance far outweigh the trade-offs, positioning eZtunnel as

a cost-effective and scalable solution for Kubernetes-based environments. This work

provides a foundation for the adoption of eBPF as a tool for optimizing microservices

architectures.
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While the results of this study are promising, they also open paths for further

exploration and enhancement:

Addressing Optimization Limitations. Certain scenarios, such as FCT

improvements in specific service mesh configurations (e.g., istio-sidecar), revealed

areas where the optimization’s impact was constrained. Future work can focus on

refining eBPF program logic or exploring complementary techniques to address these

limitations.

Comprehensive Resource Management. While memory overheads were deemed

acceptable in this study, future efforts could aim to further optimize resource

usage, potentially exploring alternative eBPF Map configurations or dynamic memory

allocation strategies.

Scaling to Multi-Node Clusters. The current implementation focuses on intra-node

optimization. Extending this approach to optimize inter-node communication in multi-

node Kubernetes clusters could provide even greater performance benefits.

Hardware Offloading. Exploring hardware offloading solutions, such as using

SmartNICs, represents a promising direction. By delegating inter-node communication

tasks to specialized hardware, it may be possible to achieve even lower latency and

higher throughput while reducing CPU utilization. This approach could complement

eBPF-based optimizations, leveraging the advanced capabilities of SmartNICs to

further enhance performance in high-demand cloud-native environments.

Expanded Benchmarking. Incorporating additional workloads and scenarios—such

as machine learning pipelines, real-time analytics, IoT applications, or 5G Core [63]—

would provide a more comprehensive understanding of the optimization’s applicability

across diverse use cases.

Security Enhancements. Investigating the security implications of eBPF-based

optimizations and developing mechanisms to safeguard against potential vulnerabilities

would enhance the robustness of the proposed approach.

By building on the foundations presented in this study, future research can further

explore the potential of eBPF and related offloading technologies to address the

complex demands of modern distributed systems. This work not only demonstrates the

feasibility of eBPF-based optimization but also paves the way for its broader adoption

in cloud-native infrastructures.
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Artifacts
• Git Repository: https://github.com/arthursimas1/mesh-fastpath

• Research Data Repository: https://doi.org/10.25824/redu/JVJ0BP
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[2] R. Vaño, I. Lacalle, P. Sowiński, R. S-Julián, and C. E. Palau, “Cloud-native workload

orchestration at the edge: A deployment review and future directions,” Sensors, vol. 23, no. 4,

2023, ISSN: 1424-8220. DOI: 10.3390/s23042215.

[3] “Kubernetes website,” Kubernetes. (), [Online]. Available: https://kubernetes.io.

[4] “Istio,” Istio Authors. (), [Online]. Available: https://istio.io/.

[5] X. Zhu, G. She, B. Xue, Y. Zhang, Y. Zhang, X. K. Zou, X. Duan, P. He, A. Krishnamurthy,

M. Lentz, D. Zhuo, and R. Mahajan, “Dissecting overheads of service mesh sidecars,” in

Proceedings of the 2023 ACM Symposium on Cloud Computing, ser. SoCC ’23, Santa Cruz,

CA, USA: Association for Computing Machinery, 2023, pp. 142–157, ISBN: 9798400703874. DOI:

10.1145/3620678.3624652.

[6] W. Yang, P. Chen, G. Yu, H. Zhang, and H. Zhang, “Network shortcut in data plane of service

mesh with ebpf,” Journal of Network and Computer Applications, vol. 222, Feb. 2024, ISSN: 1084-

8045. DOI: 10.1016/j.jnca.2023.103805.

[7] J. Howard, E. J. Jackson, Y. Kohavi, I. Levine, J. Pettit, and L. Sun. “Introducing ambient mesh:

A new dataplane mode for istio without sidecars,” Istio Authors. (Sep. 2022), [Online]. Available:

https://istio.io/latest/blog/2022/introducing-ambient-mesh/.

[8] A. Sriraman, A. Dhanotia, and T. F. Wenisch, “SoftSKU: Optimizing Server Architectures

for Microservice Diversity @Scale,” in Proceedings of the 46th International Symposium on

Computer Architecture, ser. ISCA ’19, Phoenix, Arizona: Association for Computing Machinery,

2019, pp. 513–526, ISBN: 9781450366694. DOI: 10.1145/3307650.3322227.

[9] A. Sriraman and A. Dhanotia, “Accelerometer: Understanding Acceleration Opportunities for Data

Center Overheads at Hyperscale,” in Proceedings of the Twenty-Fifth International Conference

on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS

’20, Lausanne, Switzerland: Association for Computing Machinery, 2020, pp. 733–750, ISBN:

9781450371025. DOI: 10.1145/3373376.3378450.

[10] G. Aceto, A. Botta, W. de Donato, and A. Pescapè, “Cloud monitoring: A survey,” Computer

Networks, vol. 57, no. 9, pp. 2093–2115, 2013, ISSN: 1389-1286. DOI: 10.1016/j.comnet.2013.

04.001.

[11] B. Chen and Z. M. Jiang, “A Survey of Software Log Instrumentation,” ACM Comput. Surv.,

vol. 54, no. 4, May 2021, ISSN: 0360-0300. DOI: 10.1145/3448976.

[12] K. Rodrigues, G. Bruno, K. Cardoso, S. Corrêa, and C. Both, “Uma Investigação Empírica sobre

Observabilidade em Sistemas 5G Nativos de Nuvem,” in Anais do XL Simpósio Brasileiro de

Redes de Computadores e Sistemas Distribuídos, Fortaleza: SBC, 2022, pp. 252–265. DOI: 10.

5753/sbrc.2022.222304.

[13] “What is cloud native?” Oracle. (), [Online]. Available: https://www.oracle.com/cloud/cloud-

native/what-is-cloud-native/.



79

[14] “What is cloud native?” Google. (), [Online]. Available: https://cloud.google.com/learn/what-

is-cloud-native.

[15] “What is kubernetes?” IBM. (), [Online]. Available: https://www.ibm.com/topics/kubernetes.

[16] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg, omega, and kubernetes,”

ACM Queue, vol. 14, pp. 70–93, 2016. [Online]. Available: http://queue.acm.org/detail.cfm?

id=2898444.

[17] “Microservices-demo: Sample cloud-first application with 10 microservices showcasing

kubernetes, istio, and grpc,” Google. (), [Online]. Available: https : / / github . com /

GoogleCloudPlatform/microservices-demo.

[18] A. Ducastel. “Benchmark results of kubernetes network plugins (cni) over 40gbit/s network

[2024].” (2024), [Online]. Available: https://itnext.io/benchmark-results-of-kubernetes-

network-plugins-cni-over-40gbit-s-network-2024-156f085a5e4e.

[19] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu, B. Ritchken,

B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen, F. Wen, C. Leung, S. Wang,

L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An open-source

benchmark suite for microservices and their hardware-software implications for cloud & edge

systems,” in Proceedings of the Twenty-Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems, ser. ASPLOS ’19, Providence, RI, USA:

Association for Computing Machinery, 2019, pp. 3–18, ISBN: 9781450362405. DOI: 10.1145/

3297858.3304013.

[20] BPF Documentation, Kernel Developers. [Online]. Available: https://docs.kernel.org/bpf/.

[21] “eBPF,” eBPF Foundation. (), [Online]. Available: https://ebpf.io/.

[22] M. A. M. Vieira, M. S. Castanho, R. D. G. Pacífico, E. R. S. Santos, E. P. M. C. Júnior, and

L. F. M. Vieira, “Fast Packet Processing with eBPF and XDP: Concepts, Code, Challenges, and

Applications,” ACM Comput. Surv., vol. 53, no. 1, Feb. 2020, ISSN: 0360-0300. DOI: 10.1145/

3371038.

[23] Program Types, Cilium. [Online]. Available: https : / / docs . cilium . io / en / stable / bpf /

progtypes/.

[24] M. S. Brunella, G. Belocchi, M. Bonola, S. Pontarelli, G. Siracusano, G. Bianchi, A. Cammarano,

A. Palumbo, L. Petrucci, and R. Bifulco, “hXDP: Efficient Software Packet Processing on FPGA

NICs,” Commun. ACM, vol. 65, no. 8, pp. 92–100, Jul. 2022, ISSN: 0001-0782. DOI: 10.1145/

3543668.

[25] A. Sadiq, H. J. Syed, A. A. Ansari, A. O. Ibrahim, M. Alohaly, and M. Elsadig, “Detection of

denial of service attack in cloud based kubernetes using eBPF,” Appl. Sci. (Basel), vol. 13, no. 8,

p. 4700, Apr. 2023. DOI: 10.3390/app13084700.

[26] J.-B. Lee, T.-H. Yoo, E.-H. Lee, B.-H. Hwang, S.-W. Ahn, and C.-H. Cho, “High-performance

software load balancer for cloud-native architecture,” IEEE Access, vol. 9, pp. 123 704–123 716,

2021. DOI: 10.1109/ACCESS.2021.3108801.

[27] R. D. G. Pacífico, L. F. S. Duarte, L. F. M. Vieira, B. Raghavan, J. A. M. Nacif, and M. A. M. Vieira,

“eBPFlow: A Hardware/Software Platform to Seamlessly Offload Network Functions Leveraging

eBPF,” IEEE/ACM Transactions on Networking, pp. 1–14, 2023. DOI: 10.1109/TNET.2023.

3318251.

[28] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,

A. Vahdat, G. Varghese, and D. Walker, “P4: Programming protocol-independent packet

processors,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014, ISSN: 0146-

4833. DOI: 10.1145/2656877.2656890.



80

[29] R. Stoyanov, W. Armour, and N. Zilberman, “Network-accelerated cluster scheduler,” in

Proceedings of the SIGCOMM ’22 Poster and Demo Sessions, ser. SIGCOMM ’22, Amsterdam,

Netherlands: Association for Computing Machinery, 2022, pp. 16–18, ISBN: 9781450394345. DOI:

10.1145/3546037.3546050.

[30] P. Vörös, D. Horpácsi, R. Kitlei, D. Leskó, M. Tejfel, and S. Laki, “T4P4S: A Target-independent

Compiler for Protocol-independent Packet Processors,” in 2018 IEEE 19th International

Conference on High Performance Switching and Routing (HPSR), 2018, pp. 1–8. DOI: 10.1109/

HPSR.2018.8850752.

[31] “p4-dpdk-target: P4 driver SW for P4 DPDK target,” Open Networking Foundation (ONF). (),

[Online]. Available: https://github.com/p4lang/p4-dpdk-target.

[32] N. Jain, V. K. C. Mohan, A. Singhai, D. Chatterjee, and D. Daly, “Kubernetes Load-Balancing

and Related Network Functions Using P4,” in Proceedings of the Symposium on Architectures

for Networking and Communications Systems, ser. ANCS ’21, Layfette, IN, USA: Association

for Computing Machinery, 2022, pp. 133–135, ISBN: 9781450391689. DOI: 10.1145/3493425.

3502768.

[33] A. Belkhiri, M. Pepin, M. Bly, and M. Dagenais, “Performance analysis of dpdk-based applications

through tracing,” Journal of Parallel and Distributed Computing, vol. 173, pp. 1–19, 2023, ISSN:

0743-7315. DOI: 10.1016/j.jpdc.2022.10.012.

[34] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen, W. Khan, M. Fargano, C.

Cui, H. Deng, J. Benitez, U. Michel, H. Damker, K. Ogaki, T. Matsuzaki, M. Fukui, K. Shimano,

D. Delisle, Q. Loudier, C. Kolias, I. Guardini, E. Demaria, A. M. Roberto Minerva, D. López,

F. J. R. Salguero, F. Ruhl, and P. Sen, “Network Functions Virtualisation: An Introduction, Benefits,

Enablers, Challenges & Call for Action,” Darmstadt, Germany, Tech. Rep., Oct. 2012. [Online].

Available: https://portal.etsi.org/NFV/NFV_White_Paper.pdf.

[35] R. Alfredsson, “Multipath Transport Protocol Offloading,” M.S. thesis, Karlstad University,

Department of Mathematics and Computer Science, 2022, p. 61.

[36] T. Geier and S. Rieger, “Improving the deployment of multi-tenant containerized network function

acceleration,” in 2022 5th International Conference on Advanced Communication Technologies

and Networking (CommNet), 2022, pp. 1–7. DOI: 10.1109/CommNet56067.2022.9993962.

[37] “Infrastructure Programmer Development Kit (IPDK),” Intel. (), [Online]. Available: https://ipdk.

io/.

[38] “K8s-infra-offload: Kubernetes infrastructure offload recipe,” Intel. (), [Online]. Available: https:

//github.com/ipdk-io/k8s-infra-offload.

[39] “Intel© Intelligent Fabric Processors,” Intel. (), [Online]. Available: https://www.intel.com/

content/www/us/en/products/network-io/programmable-ethernet-switch.html.

[40] A. AlSabeh, E. Kfoury, J. Crichigno, and E. Bou-Harb, “Leveraging SONiC Functionalities

in Disaggregated Network Switches,” in 2020 43rd International Conference on

Telecommunications and Signal Processing (TSP), 2020, pp. 457–460. DOI: 10 . 1109 /

TSP49548.2020.9163508.

[41] D. Kim, J. Nelson, D. R. K. Ports, V. Sekar, and S. Seshan, “Redplane: Enabling fault-

tolerant stateful in-switch applications,” in Proceedings of the 2021 ACM SIGCOMM 2021

Conference, ser. SIGCOMM ’21, Virtual Event, USA: Association for Computing Machinery, 2021,

pp. 223–244, ISBN: 9781450383837. DOI: 10.1145/3452296.3472905.

[42] Z. Zha, A. Wang, Y. Guo, Q. Li, K. Sun, and S. Chen, “EZPath: Expediting Container Network

Traffic via Programmable Switches,” in 2022 IFIP Networking Conference (IFIP Networking),

2022, pp. 1–8. DOI: 10.23919/IFIPNetworking55013.2022.9829818.



81

[43] M. M. Iordache-Sica, T. Kraiser, and O. Komolafe, “Seamless hardware-accelerated kubernetes

networking,” in Proceedings of the 2nd ACM SIGCOMM Workshop on Future of Internet Routing

& Addressing, ser. FIRA ’23, New York, NY, USA: Association for Computing Machinery, 2023,

pp. 23–28, ISBN: 9798400702761. DOI: 10.1145/3607504.3609292.

[44] D. Scano, A. Giorgetti, F. Paolucci, A. Sgambelluri, J. Chammanara, J. Rothman, M. Al-Bado,

E. Marx, S. Ahearne, and F. Cugini, “Enabling p4 network telemetry in edge micro data centers

with kubernetes orchestration,” IEEE Access, vol. 11, pp. 22 637–22 653, 2023. DOI: 10.1109/

ACCESS.2023.3249105.

[45] “Intel© Infrastructure Processing Unit (Intel© IPU),” Intel. (), [Online]. Available: https://www.

intel.com/content/www/us/en/products/details/network-io/ipu.html.

[46] A. Moore and J. Henrys, “IPU Based Cloud Infrastructure: The Fulcrum for Digital Business,”

Tech. Rep., 2023. [Online]. Available: https://www.intel.com/content/www/us/en/products/

docs/programmable/ipu-based-cloud-infrastructure-white-paper.html.

[47] R. Lal, J. B. Anderson, and A. Jackson, “Data processing unit’s entry into confidential computing,”

in Proceedings of the 12th International Workshop on Hardware and Architectural Support for

Security and Privacy, ser. HASP ’23, New York, NY, USA: Association for Computing Machinery,

2023, pp. 56–63, ISBN: 9798400716232. DOI: 10.1145/3623652.3623670.

[48] T. Groves, D. Hazen, G. Lockwood, and N. J. Wright, “Use it or lose it: Cheap compute

everywhere,” in Driving Scientific and Engineering Discoveries Through the Integration of

Experiment, Big Data, and Modeling and Simulation, J. Nichols, A. ‘B. Maccabe, J. Nutaro,

S. Pophale, P. Devineni, T. Ahearn, and B. Verastegui, Eds., Cham: Springer International

Publishing, 2022, pp. 280–298, ISBN: 978-3-030-96498-6.

[49] P. Kummrow. “Intel© IPU E2000: A collaborative achievement with Google Cloud,” Intel. (Jan.

2023), [Online]. Available: https : / / medium . com / intel - tech / intel - ipu - e2000 - a -

collaborative-achievement-with-google-cloud-eb1dda8c0177.

[50] N. Mehta. “The next wave of Google Cloud infrastructure innovation: New C3 VM and Hyperdisk,”

Google. (Oct. 2022), [Online]. Available: https://cloud.google.com/blog/products/compute/

introducing-c3-machines-with-googles-custom-intel-ipu.

[51] J. Kato, M. Sonoda, O. Shiraki, S. Gokita, and M. Hamaminato, “OVS Full Offload on Kubernetes

for Low Latency,” Fujitsu Limited, Tech. Rep. 3, Jul. 2021.

[52] Y. Qiu, Q. Kang, M. Liu, and A. Chen, “Clara: Performance clarity for smartnic offloading,” in

Proceedings of the 19th ACM Workshop on Hot Topics in Networks, ser. HotNets ’20, Virtual

Event, USA: Association for Computing Machinery, 2020, pp. 16–22, ISBN: 9781450381451. DOI:

10.1145/3422604.3425929.

[53] B. Sukhwani, M. Kapur, A. Ohmacht, L. Schour, M. Ohmacht, C. Ward, C. Haymes, and S. Asaad,

“Janus: An experimental reconfigurable smartnic with p4 programmability and sdn isolation,” in

Proceedings of the 2023 ACM/SIGDA International Symposium on Field Programmable Gate

Arrays, ser. FPGA ’23, New York, NY, USA: Association for Computing Machinery, 2023, p. 230,

ISBN: 9781450394178. DOI: 10.1145/3543622.3573158.

[54] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári, D. Rossi, T. Zinner, R. Bifulco, M.

Jarschel, and G. Bianchi, “Survey of performance acceleration techniques for network function

virtualization,” Proceedings of the IEEE, vol. 107, no. 4, pp. 746–764, 2019. DOI: 10.1109/JPROC.

2019.2896848.

[55] T. Nagendra and R. Hemavathy, “Unlocking kubernetes networking efficiency: Exploring data

processing units for offloading and enhancing container network interfaces,” in 2023 4th IEEE

Global Conference for Advancement in Technology (GCAT), 2023, pp. 1–7. DOI: 10 . 1109 /

GCAT59970.2023.10353542.



82

[56] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore, “NetFPGA SUME: Toward 100

Gbps as Research Commodity,” IEEE Micro, vol. 34, no. 5, pp. 32–41, 2014. DOI: 10.1109/MM.

2014.61.

[57] S. Qi, H.-S. Tsai, Y.-S. Liu, K. K. Ramakrishnan, and J.-C. Chen, “X-io: A high-performance

unified i/o interface using lock-free shared memory processing,” in 2023 IEEE 9th International

Conference on Network Softwarization (NetSoft), 2023, pp. 107–115. DOI: 10 . 1109 /

NetSoft57336.2023.10175428.

[58] S. Qi, L. Monis, Z. Zeng, I.-c. Wang, and K. K. Ramakrishnan, “Spright: Extracting the server from

serverless computing! high-performance ebpf-based event-driven, shared-memory processing,”

in Proceedings of the ACM SIGCOMM 2022 Conference, ser. SIGCOMM ’22, Amsterdam,

Netherlands: Association for Computing Machinery, 2022, pp. 780–794, ISBN: 9781450394208.

DOI: 10.1145/3544216.3544259.

[59] T. Graf. “Cilium service mesh – everything you need to know,” Isovalent. (Jul. 2022), [Online].

Available: https://isovalent.com/blog/post/cilium-service-mesh/.

[60] BPF Features by Linux Kernel Version, BCC-Docs Authors. [Online]. Available: https://github.

com/iovisor/bcc/blob/master/docs/kernel-versions.md.

[61] eBPF-Docs, eBPF-Docs Authors. [Online]. Available: https://ebpf-docs.dylanreimerink.nl/

linux.

[62] Aya – eBPF library for the Rust programming language, The Aya Contributors. [Online]. Available:

https://aya-rs.dev/.

[63] A. Khichane, I. Fajjari, N. Aitsaadi, and M. Gueroui, “Cloud Native 5G: an Efficient Orchestration

of Cloud Native 5G System,” in NOMS 2022-2022 IEEE/IFIP Network Operations and

Management Symposium, 2022, pp. 1–9. DOI: 10.1109/NOMS54207.2022.9789856.


	Introduction
	Research Outline
	Organization

	Background on Cloud-Native Environments
	Container Orchestration with Kubernetes
	Kubernetes Networking
	Service Mesh
	Performance Analysis
	Summary

	Offloading Technologies Review
	Frameworks and Programming Languages
	eBPF and XDP
	P4
	DPDK
	IPDK

	Programmable Networking Hardware
	Tofino Switch
	DPU or IPU
	SmartNIC

	Related Work
	Summary

	eZtunnel: Design and Implementation
	Guidelines
	Technology Selection for Offloading
	General Overview of the Solution
	Design
	Implementation
	User-space program
	Kernel-space program

	Deployment Considerations
	Summary

	Experimental Evaluation
	Guidelines
	Workloads
	Metrics
	Testbed Setup
	Benchmark Results
	Latency and Jitter
	Flow Completion Time
	Throughput
	CPU Usage
	Memory Usage

	Discussion of Results
	Summary

	Conclusions and Future Work
	Artifacts

