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Resumo

Construir agentes robóticos complexos capazes de desenvolver habilidades motoras de
forma autônoma, a partir da própria experiência sensorial e sem depender de instru-
ções explícitas ou recompensas pré-definidas, continua sendo um problema em aberto
na robótica. Embora o aprendizado supervisionado e o aprendizado por reforço tenham
avançado, ainda enfrentam limitações, como a dependência de grandes volumes de dados
rotulados ou de funções de recompensa projetadas manualmente. Além disso, agentes
treinados de forma tradicional tendem a desenvolver políticas altamente especializadas,
dificultando sua generalização e adaptação a novos cenários. Nesse contexto, propomos o
DreamerRL, um framework voltado à criação de agentes humanoides mais adaptáveis e
autônomos. Inspirado por teorias de modelos de mundo, o DreamerRL não otimiza políti-
cas específicas para tarefas isoladas, mas promove o aprendizado de um modelo do mundo.
Ao aprender a prever como o mundo funciona, o agente desenvolve políticas versáteis, ca-
pazes de sustentar o desenvolvimento de habilidades motoras em resposta à exploração
de estados que ainda não consegue prever. Em nosso framework, demonstramos a im-
portância da personificação, das estruturas neurais inspiradas no circuito neocortical e da
motivação intrínseca no aprendizado do modelo de mundo. Nossos experimentos com o
robô humanoide NAO evidenciam que esses elementos, quando combinados em um sis-
tema unificado para aprender um modelo de mundo, favorecem o surgimento espontâneo
de comportamentos motores complexos e a transferência eficaz de habilidades para no-
vas tarefas. Inicialmente, o agente foi treinado apenas para prever a próxima observação
visual do ambiente, recebendo recompensas de motivação intrínseca que o instigavam a
buscar estados novos e desafiadores. Progressivamente, liberamos modalidades sensoriais
adicionais para previsão, ativamos a mobilidade do pescoço e incorporamos a curiosi-
dade multimodal como forma de recompensa intrínseca, ampliando a riqueza da interação
sensório-motora e a complexidade das previsões sobre o mundo. Essa evolução possibili-
tou o surgimento autônomo de habilidades motoras e cognitivas sofisticadas, semelhantes
às observadas no desenvolvimento infantil — como a melhora da destreza e da precisão
dos movimentos das mãos, ações manipulativas mais complexas (como arrastar e levantar
objetos), além do desenvolvimento da atenção visual e da sinergia sensório-motora vol-
tada à satisfação de objetivos internos. Posteriormente, o agente foi capaz de transferir
essas habilidades para uma tarefa específica e desafiadora, sem a necessidade de retrei-
namento substancial. O desempenho superior do nosso agente em relação a um agente
clássico treinado via aprendizado por reforço confirma a eficácia do nosso framework em
promover representações internas generalizáveis e adaptativas, oferecendo avanços para o
desenvolvimento de agentes robóticos complexos verdadeiramente autônomos.



Abstract

Building complex robotic agents capable of autonomously developing motor skills from
their own sensory experience without relying on explicit instructions or predefined rewards
remains an open challenge in robotics. While supervised learning and reinforcement learn-
ing have achieved significant progress, they still face limitations, such as dependence on
large amounts of labeled data or manually designed reward functions. Moreover, tradi-
tionally trained agents tend to develop highly specialized policies, which hinders their
ability to generalize and adapt to new scenarios. In this context, we propose Dream-
erRL, a framework to enable more adaptable and autonomous humanoid agents. Inspired
by world model theories, DreamerRL does not optimize task-specific policies; instead, it
promotes learning a predictive model of the world. By learning to anticipate how the world
works, the agent acquires versatile policies that support the progressive development of
motor skills by exploring states it has not yet learned to predict. In our framework, we
highlight the importance of embodiment, neural structures inspired by the neocortical cir-
cuit, and intrinsic motivation in the learning of world models. Our experiments with the
NAO humanoid robot demonstrate that when combined in a unified system to predict the
world, these elements facilitate the spontaneous emergence of complex motor behaviors
and the effective transfer of skills to novel tasks. Initially, the agent was trained solely
to predict the next visual observation of the environment, receiving intrinsic motivation
rewards that encouraged the exploration of novel and challenging states. Over time, we
progressively enabled additional sensory modalities for prediction, activated neck mobil-
ity, and incorporated multimodal curiosity as an intrinsic reward signal, enriching the
agent’s sensorimotor experience and increasing the complexity of its predictive model.
This gradual evolution led to the autonomous emergence of sophisticated motor and cog-
nitive skills resembling those observed in children’s development — such as improvements
in hand dexterity and precision, more complex object manipulation (e.g., dragging and
lifting), the development of sustained visual attention and sensorimotor synergy to sat-
isfy internal goals. Eventually, the agent could transfer these previously acquired skills
to a specific, challenging downstream task without requiring substantial retraining. The
agent’s superior performance compared to a classical reinforcement learning agent con-
firms the effectiveness of our framework in promoting generalizable and adaptive internal
representations, offering progress toward the development of truly autonomous robotic
agents.
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Chapter 1

Introduction

Building complex robotic agents capable of autonomously developing motor skills from
their own sensory experience without relying on explicit instructions or predefined re-
wards remains an open challenge in robotics. In the last twenty years, most of these
robots have been trained using supervised learning protocols, which rely on vast amounts
of labeled data to learn specific tasks [5]. However, supervised learning has notable lim-
itations due to its dependence on large and accurately labeled datasets. Creating these
datasets is labor-intensive and time-consuming, requiring expert knowledge, particularly
in specialized domains. The vast diversity and complexity of real-world environments ex-
acerbate this challenge, making it impractical and often infeasible to gather labeled data
that covers all possible scenarios and tasks.

An alternative to the lack of labeled data is reinforcement learning (RL) [73], where
an agent learns by interacting with the environment through trial and error to maximize
a reward function that defines the desired behavior in that environment. This training
protocol allows the agent to independently discover optimal strategies for achieving its
objectives without needing a large volume of labeled data. However, this approach also
has its limitations. For an agent to learn even a simple task, it must interact with the
environment through an extremely high number of training steps, which is computation-
ally expensive and time-consuming. Furthermore, the RL process is highly dependent on
the design of the reward function, which must be carefully crafted to ensure the desired
behavior is learned. Adapting this knowledge to different environments or slightly altered
conditions is challenging once the agent learns to perform a task in a specific environment.
This difficulty arises because the agent tends to develop highly specialized action poli-
cies tailored to the conditions of the original training, making it challenging to transfer
training knowledge to new contexts [144].

In this scenario, transfer learning techniques have been proposed to mitigate issues in
the adaptability of reinforcement learning [131]. This technique involves using represen-
tations that have been pre-trained in a specific context and applying them to a new task
context to facilitate and accelerate the RL agent’s learning process. While transfer learn-
ing is currently a promising approach in supervised learning, many challenges in RL still
need to be overcome to provide better adaptation and generalization. The primary issue
lies in the domain discrepancy between the pre-training context and the new task domain.
The pre-trained model may have learned characteristics and patterns that are irrelevant or
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unsuitable for the new environment. For instance, a model pre-trained to identify objects
in static images of indoor environments may not transfer well to an outdoor exploration
setting when used by a robotic agent. This difficulty arises due to differences in object
types, lighting, and scenery, as well as the fact that these representations were trained
without considering the sensory and motor aspects of the robot.

These approaches often produce highly inflexible representations that cannot be easily
applied to new situations. This inflexibility arises mainly because the representations
are developed during training to be highly specific to the task [62]. As a result, al-
though agents may achieve superhuman performance in certain activities, they fail to
adapt quickly to new situations or tasks. This limitation stems from the fact that these
representations are not designed to understand the fundamental principles of how the
world works but rather to be effective in performing a specific task. In contrast, humans
spend a significant portion of their lives, especially during childhood, exploring the world
and learning how it works, developing a broader and more flexible understanding that
enables them to adapt to a wide range of new and unforeseen situations [109].

Numerous theories aim to explain how humans learn to represent the world in a flexible
and broader way [110, 149, 147, 9]. Several research supported by psychological [20],
neuroscientific [55], and biological evidence [40] argue that our brain is predictive and
builds an internal model of the world as we explore the environment. This research
emphasizes that we learn to represent the external world from the dynamic interaction
between the body and the environment, and our knowledge is shaped by the body’s
physical structure, sensory capabilities, and how it moves through and manipulates its
surroundings. We are embodied agents with intricate sensorimotor integration, where
sensory inputs and motor actions are continuously coordinated and interconnected. This
integration allows the body to interpret sensory stimuli, adjust actions, and adapt to
new contexts, forming the basis for developing a coherent internal representation of the
world. Together, the predictive nature of the brain and sensorimotor integration drive
the lifelong construction and refinement of our world model, often guided by intrinsic and
task-independent goals fueled by our desire to understand how the world works. As we
acquire new information and interact with the environment, we continuously build and
refine our internal world model to represent the structure and dynamics of the surrounding
world. Throughout life, this model is constantly updated based on our experiences and
perceptions, enabling us to anticipate events, make informed decisions, and adjust our
behavior according to changing circumstances [84, 55, 85, 117].

The flexibility of our world model is enabled by the highly adaptable structure of the
neocortex, which is organized hierarchically, modularly, and sparsely. This organization
allows information to be processed at varying levels of complexity, from basic sensory
features to the most abstract and sophisticated concepts. Within the neocortical struc-
ture, groups of neurons specialize in processing specific sensory or cognitive information
types, forming semi-independent modules that interact through bottom-up and top-down
connections. As new sensory stimuli are received, only a small fraction of neurons is
activated to represent the incoming information, reflecting the efficiency and selectivity
of our neural architecture. Moreover, this structure optimizes energy costs and neural
processing and enhances the brain’s capacity for generalization and adaptation to novel
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challenges and environments [56].
In this context, we propose DreamerRL, a framework designed to advance the de-

velopment of truly autonomous and adaptable humanoid agents. Addressing a central
limitation in contemporary robotics — the reliance on learning task-specific policies and
handcrafted rewards — DreamerRL draws inspiration from world model theories and
centers the learning process on constructing a predictive internal model of the environ-
ment. By learning to anticipate how the world works, the agent is intrinsically driven
to explore unfamiliar regions of the environment, progressively acquiring a repertoire of
general-purpose motor strategies. Our approach emphasizes the critical role of three
foundational elements often overlooked in prior work and essential for building effective
world models: intrinsic motivation as a mechanism for self-directed exploration, neural
structures inspired by neocortical circuits to support hierarchical knowledge organization,
and embodiment as a key factor in shaping perceptual input and grounding cognition.
We demonstrate that integrating these components into a unified predictive world model
system leads to the autonomous emergence of complex motor and cognitive behaviors
and robust skill transfer to novel tasks, offering a promising path toward developing truly
autonomous robots.

To implement the embodiment, we utilize the humanoid robot NAO, which possesses
sensors and a body structure similar to humans [132]. We employ intrinsically motivated
rewards in reinforcement learning to guide the learning process. We chose curiosity among
various intrinsic reward mechanisms, as it drives exploratory behavior, facilitating world
discovery, which is a trait commonly observed in children during early cognitive devel-
opment [110, 109]. Finally, we introduce neocortex-inspired structures, such as artificial
neural networks, modularity, sparsity, and hierarchical biases. This design supports the
creation of an efficient and adaptive representation structure, mirroring key functional
aspects of the human neocortex [55]. Initially, all elements are introduced in a primitive
way and are enriched during work development.

We selected an object manipulation environment to validate our framework because of
its complexity and relevance to evaluating our approach. This environment presents sig-
nificant learning and adaptation challenges, as manipulating objects with a complex robot
like NAO requires executing precise, intricate, and highly coordinated movements involv-
ing multiple joints simultaneously; such a skill is challenging to acquire solely through
supervised learning or even traditional reinforcement learning setups. In this environ-
ment, we aim to validate whether our approach maximizes autonomous development and
adaptation challenges in complex robotic agents. Our framework, based on building a
world model, can address this limitation by enabling a complex robot to develop au-
tonomously during training, thereby acquiring task-independent skills that are inherently
more adaptive. We hypothesize that how the robot constructs its internal representation
will promote greater flexibility and adaptability, empowering the agent to handle new
situations and tasks without requiring extensive retraining.
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1.1 Objectives
The main objective of this work is to develop the DreamerRL framework based on the
core elements of world model theories, such as embodiment, a neocortex-like structure,
and self-supervision guided by intrinsic motivation. Also, we will investigate how the
proposed framework contributes to the autonomous development and adaptability of a
complex humanoid robotic agent.

To achieve the main objective, the following specific objectives are proposed:

1. Conducting a literature review on neocortical circuit theories, world models, rein-
forcement learning, embodied cognition, intrinsic motivation methods, representa-
tion learning for robots, and the latest advances in Deep Learning models;

2. Implementing the world model theories elements for autonomous development and
adaptability of the robotic agent. The elements include embodied cognition, along
with cognitive biases of sparsity, modularity, hierarchy, and intrinsic motivation;

3. Discussing autonomous robot development as these elements become increasingly
enriched and complex;

4. Evaluating the quality of the DreamerRL results regarding the robot’s adaptation
to new tasks and environments;

5. Discussing and comparing our task adaptation results with extrinsic RL agents.

1.2 Hypotheses
Based on the specified objectives, the following research hypotheses are raised:

1. H1: A complex robotic agent, trained to model the world in an object manipulation
environment, can accurately predict both the dynamics of the external environment
and its behavior;

2. H2: A complex robotic agent autonomously develops structured object manipula-
tion behaviors driven solely by the motivation to predict the world;

3. H3: Increasing embodiment enables the agent’s complete immersion in the environ-
ment, promoting the autonomous development of more complex object manipulation
skills;

4. H4: The world model learned through sensorimotor experiences enables the robotic
agent to learn abstract concepts about how the world functions, allowing it to imag-
ine and simulate novel situations not encountered during training;

5. H5: The behaviors learned during world exploration are task-independent, making
the agent more adaptive and capable of quickly applying the acquired exploration
skills to accelerate the adaptation to a new extrinsic task;

6. H6: Incorporating sparsity, modularity, and hierarchical biases enhances intrinsic
policy adaptation to a new extrinsic task.
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1.3 Contributions
The main contributions of this work are:

1. Development of an approach that enables a complex humanoid robot to autonomously
acquire motor skills for use in object manipulation environments that require ad-
vanced motor coordination abilities;

2. Design of a multimodal curiosity-driven embodied agent capable of imagining and
generalizing how the world works;

3. Implementation of intrinsic curiosity policies that improve humanoid robots’ au-
tonomous development and task adaptation;

4. Empirical analysis of cognitive biases in intrinsic learning, demonstrating that at-
tentional sparsity, modular network structures, and hierarchical processing improve-
ment task adaptation;

5. Development of a methodology for assessing the autonomous developmental trajec-
tory of a complex humanoid agent, drawing parallels with stages of human infant
development;

6. Development of an approach to improve the flexibility and adaptability of complex
robotic agents trained through reinforcement learning;

7. Publication of two surveys on attention mechanisms in Deep Learning, covering
architectural designs, cognitive inspirations, and applications in vision, language,
and multimodal domains.

1.4 Publications
The following papers were directly produced in the context of this doctoral thesis:

1. Santana, A., & Colombini, E. L. (2022). Attention, please! A survey of neural
attention models in deep learning. Artificial Intelligence Review, 55(8), 6037-6124.
Impact factor: 12.0.

2. Santana, A., & Colombini, E. (2021). Neural attention models in deep learning:
Survey and taxonomy. arXiv preprint arXiv:2112.05909.

3. Santana, A., Costa, P. P., & Colombini, E. L. (2025). Learning To Explore With Pre-
dictive World Model Via Self-Supervised Learning. arXiv preprint arXiv:2502.13200.

The following papers were produced in collaboration and are related to the subjects
studied during the development of this thesis:
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1. Santana, A., Cleveston, I., dos Santos, V. B., Avila, S., & Colombini, E. L. (2021).
An attentional model for earthquake prediction using seismic data. In Highlights
in Practical Applications of Agents, Multi-Agent Systems, and Social Good. The
PAAMS Collection: International Workshops of PAAMS 2021, Salamanca, Spain,
October 6–9, 2021, Proceedings 19 (pp. 53-64). Springer International Publishing.

2. Cleveston, I., Santana, A. C., Costa, P. D., Gudwin, R. R., Simões, A. S., & Colom-
bini, E. L. (2025). InstructRobot: A Model-Free Framework for Mapping Natural
Language Instructions into Robot Motion. arXiv preprint arXiv:2502.12861.

1.5 Text Structure
This thesis is structured in six chapters to provide the reader with the necessary funda-
ments for understanding the proposed work and the results achieved.

Chapter 1 introduced the problem we intend to solve and indicated our motivations
and objectives with this work. Then, hypotheses were raised to guide our investigation.
We also presented the contributions this work generated to the scientific community.

In Chapter 2, we will address the theoretical basis for our work, such as the world
model theories, embodied cognition, neocortical circuit, and intrinsic motivation learning.
This knowledge will be the foundation for comprehending this work and its results.

Chapter 3 presents the literature review, which includes other works related to our
research. We analyze works in frameworks and cognitive architectures for world models,
intrinsic motivation for learning agents, and task adaptation in robot manipulation.

Chapter 4 contains the materials used to construct our proposed model, such as en-
vironments for training models, metrics for evaluation, and software and hardware tech-
nologies. We will also describe in detail the development methodology.

Chapter 5 details the DreamerRL framework’s construction, the experiments’ discus-
sion, and the results achieved.

Finally, Chapter 6 concludes this thesis by summarizing our results, benefits for the
community, and future works.
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Chapter 2

Theoretical Background

This chapter presents the theoretical background necessary to understand our work. Sec-
tion 2.1 provides a theoretical overview of world models theory. The following sections
delve deeper into each pillar of the theory used in our work to build the DreamerRL
framework and the computational tools we used to implement these pillars. Specifically,
Section 2.2 offers an overview of the main theories on embodied cognition and their rel-
evance in constructing human world representation. Section 2.3 discusses neocortical
circuit theories, detailing how these structures contribute to information processing. Fi-
nally, Section 2.4 explores the role of intrinsic motivation, focusing on curiosity and how
it drives the agent’s continuous and adaptive learning. Finally, Section 2.5 synthesizes all
the elements and describes how they are linked for constructing our agent.

2.1 World Model Theories
Theories concerning world models trace back to the epoch of Immanuel Kant, whose
transcendental philosophy initiated some of the earliest inquiries into the fundamental
assumptions underlying how we come to know the world. He sought to balance empiri-
cism (which holds that all knowledge originates from sensory experience) and rationalism
(which asserts that reason alone can produce all valid knowledge). According to Kant [76],
neither empiricism nor rationalism alone adequately explains how knowledge is formed in
the human mind. For him, there is no knowledge without experience. However, experi-
ence is never neutral, as it is shaped by the a priori forms of sensibility and understanding,
which are innate characteristics of human cognition. In other words, knowledge emerges
from the interaction between the subject and the object. However, it is structured by these
innate frameworks, which make experience possible and infuse perception with meaning.

For Kant, space and time are the fundamental forms of sensibility, existing indepen-
dently of sensory experience. They function solely within the human mind as “frameworks”
that allow us to perceive phenomena. Meanwhile, the categories of understanding are a
priori concepts — innate structures of thought — that enable the mind to organize and
interpret sensory data even before any actual experience takes place. Kant identifies
twelve categories of understating distributed between four main groups: quantity, qual-
ity, relation, and modality. The quantity addresses the numerical aspects of experience,
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including the categories of unity (singular instances), plurality (multiple instances), and
totality (a complete set or whole). The quality is focused on the nature of experiences;
this group includes the categories of reality (what exists), negation (what does not exist),
and limitation (the boundaries of existence). The relation concerned with how elements
of experience are connected; this group comprises the categories of substance and acci-
dent (the inherent and dependent properties of objects), causality (cause and effect), and
community (interaction between substances). Finally, modality addresses the status of
experiences in terms of possibility (what could be), existence (what is), and necessity
(what must be).

Sensibility forms and categories of understanding work together to structure the world
in our minds as we know it. For Kant, we structure the world always in the phenomena
domain, which is the reality as it appears seen by our senses and is organized by our
mind, but never access the noumenon (i.e., “the thing itself”), which is the world how
it is, because we not resources for this. Kant’s vision is that we cannot access the real
world; we only project it with our senses. Posteriorly, some philosophers who disagree
with this vision argue that the real world does not exist and that the world exists only
through observation, and innate categories do not exist, asserting instead that all knowl-
edge is acquired through experience. Despite theoretical divergences, these philosophical
discussions laid a foundational framework for subsequent theories on how we represent the
world. By asserting that the human mind actively structures the experience of the world,
these ideas positioned the subject as an active participant in knowledge construction.
This perspective inspired numerous subsequent theories and research endeavors aimed at
elaborating and complementing this concept, such as constructivist theories of perception.

The constructivist perception theory [87, 99, 46, 108] suggests that the brain faces
significant challenges rendering the world without having direct access to it and, therefore,
imposes a priori restrictions to model the sensorial experience. The brain receives only
sensorial codifications, not reality itself. It transforms these codifications, preventing
different sensorial modalities, into a world comprehension of how we know. Even though
it seems simple because our perception is continuous and fluid, this task is extremely
complex because the brain only receives the effects the physical world imposes on the
sensors, not the causes themselves (the elements of the world that originate perception).
Consequently, to represent the world, the brain must infer the causes from effects, a
process called the inverse problem of perception [111, 142].

The inverse problem of perception is exacerbated by the fact that there are infinitely
many possible solutions, and sensorial information is ambiguous and noisy. For example,
during visual perception, the brain receives information about the spatial distribution of
intensity and length of incident light. From this information, the brain must infer the
spatial disposition of objects (causes) that gave rise to the perceived image. This process
is highly complex because different object sets, arranged in distinct manners and under
different lighting conditions, can generate the same image in the retina. However, the
brain makes this task appear simple, given that we have a continuous understanding of
the world.

The brain solves the inverse problem, showing a stable solution when imposing a priori
restrictions based on an internal world model molded by previous knowledge, experience,
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and context. This model defines what is plausible, possible, and impossible. According to
Ballard et al. [117], the world model is not only a cognitive abstraction but is embedded
in neocortical structure as an integral part of brain functioning. For him, the brain is
a structure with hierarchical and modular circuits that communicate using bottom-up
and top-down signals. The top-down signals represent the brain’s expectations about
the following sensorial inputs, while bottom-up signals indicate incompatibility between
neural real activity and the expected, generating a prevision error. This error corrects
iteratively expectations in high layers, allowing the brain to make more accurate inferences
about the world and learn from mistakes as we continually interact in the external world.

When discrepancies arise between actual and predicted signals, neurons adjust them-
selves to enhance their predictive accuracy, sustaining a continuous process of adaptation
and learning. When predictions align with sensory input, the internal model is well-
calibrated for that specific phenomenon. Accurate prediction implies that the brain can
already simulate and infer the causes underlying the sensory stimulus, effectively repre-
senting the phenomenon that generated it. This inference is possible because the internal
model incorporates representations of the laws or patterns governing the external world,
meaning that predictive accuracy directly reflects the individual’s knowledge of specific
real-world situations. This knowledge is implicitly encoded in the top-down processing
flow’s neuronal activation and deactivation dynamics [93].

Several scientific validations and experiments support the hypothesis that the human
neocortex, particularly in the prefrontal area, learns a predictive model of the world in a
hierarchical form [27, 32, 40, 37, 117]. From a neuroscience perspective, this world model
operates as a simulator, generating sensory predictions based on motor actions. In this
line, Friston et al. [37] conceptualize the brain as a hierarchical inference machine. They
proposed that the brain organizes the world as a hierarchy or cascade of systems encoding
causal sensory relationships. They developed equations that model the neuronal dynamics
within this hierarchical framework, enabling the recognition and prediction of sensory
trajectories. According to the authors, predictive signals in the brain flow hierarchically
in a top-down and bottom-up manner. When discrepancies arise between these signals,
the brain employs the principle of free-energy minimization to reduce the differences
between its internal model and the perceived input, either by adjusting neuronal structures
or performing actions in the real world to align sensory perceptions with predictions.
Similarly, Reilly et al. [101] investigated the brain’s predictive function by suggesting that
it has several models of specific aspects of the world embedded in different regions. This
model encodes the possible causes of sensory inputs, such as a generative model, whose
focus is to understand the trajectory of sensory representations.

The initial discoveries related to the brain’s structure emerged from experiments con-
ducted by David Hubel and Torsten Wiesel on the visual cortex. They inserted electrodes
into mammals’ visual cortex to record neurons’ electrical activity while presenting differ-
ent visual stimuli. They introduced a variety of visual stimuli, such as points of light and
bars of light in various orientations. Upon analyzing the neuronal responses, they discov-
ered that specific neurons in the primary visual cortex responded preferentially to edges
or lines with particular orientations; these were termed simple neurons. In contrast, other
neurons responded to more complex patterns, such as the movement of edges in a specific
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direction, and these were termed complex neurons. Subsequent experiments showed that
simple cells relay their information to complex cells, which in turn relay information to
even more complex cells, demonstrating the hierarchy of the visual system [155, 39].

Subsequent discoveries have shown that the hierarchical structure of the neocortex is
not limited to the visual cortex but extends throughout the entire neocortex. Vernon
Mountcastle demonstrated that the human neocortex is organized horizontally into ap-
proximately six layers and vertically into cortical minicolumns. The cortical minicolumn is
the smallest unit of a mature neocortex, composed of a column of neurons interconnected
vertically across the horizontal layers. A set of cortical minicolumns linked by short-range
horizontal connections, sharing the same static, dynamic, and physiological properties,
forms a cortical column, also known as a module. Furthermore, Mountcastle observed the
relationship between sensory perception and cortical columns, identifying specific columns
for each sensory modality. He discovered that lesions in particular columns affected only
specific sensory areas of the body, demonstrating the modular division of sensory signals.
Thus, the neurons within a column handle responses from a small part of a specific sensory
modality of the body [96].

Several theories and experimental studies have proved that the brain predicts the
world by treating expected stimuli differently from unexpected ones. Press et al. [40,
112] published an opinion article emphasizing the importance of the receptive paradox
in learning processes. In support of this, Gillon et al. [40] demonstrated experimental
evidence from the visual cortex of rats, validating the hypothesis that the brain functions
as a hierarchical predictive system, refining its internal models over time by distinguishing
between expected and unexpected stimuli. Furthermore, Jeff Hawkins [53] proposed the
Thousand Brains Theory, a framework derived from computational principles observed in
the human neocortex through reverse engineering. This theory highlights the neocortex’s
ability to independently learn predictive models of the world based on an abstract system
of expectations intrinsically tied to sensory perception. It also emphasizes the hierarchical,
modular, and sparse structure that supports these predictive capabilities.

For some authors, the neocortex is the sparse coding of sensory inputs [100]. When we
are subjected to sensory stimuli from the environment, only a few neurons are activated,
with most neurons remaining inactive or showing low activity [119]. This evolutionary
strategy has provided the neocortex many advantages, such as reducing complex infor-
mation to a simple signal with few active neurons, which can be quickly processed in the
hierarchy with low energy cost. Furthermore, this strategy significantly enhances the ca-
pacity for representation and memory association. According to Graham and Field [44],
sparse coding has even more profound and more significant origins beyond the evolu-
tionary advantage of energy efficiency, as it represents an efficient adaptation for better
representing the world, given that the world itself is sparse. For example, most trees and
vegetation form a constant and predictable background in natural scenes such as a dense
forest. However, animals or fruits crucial for survival are rarer and less predictable.

The hierarchical organization of the neocortex works synergistically with sparse cod-
ing to facilitate modularity, enabling the brain to prioritize relevant and critical sensory
information. Sparse coding, activating only a small subset of neurons, allows for the
efficient representation of sensory inputs. This selective activation complements the hier-
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archical processing structure, which aids in recognizing patterns, identifying objects, and
predicting environmental interactions. Through continuous sensorimotor integration, the
neocortex refines its internal models of the world, adapting to its sparse and complex
conditions and improving its predictive capabilities [90, 161, 32].

In addition to the neuroscientific foundations that explain the functioning of the brain’s
predictive structure, psychology has also played a crucial role in understanding how our
internal world model facilitates the development of intelligence and adaptation. In 1943,
philosopher and psychologist Kenneth Craik was the first to formalize the term mental
world model to explain that we understand the world by constructing a world model in
our minds. Just as Kant argued that the human mind actively structures experience
through innate categories, Craik expanded this notion by proposing that the brain builds
a dynamic and functional representation of reality, enabling us to predict, interpret, and
interact with the external world. Craik proposed that the human brain works as a machine
capable of modeling real-world events to anticipate and guide their actions. He argued
that this capacity is an evolutionary and essential trait for humans, primarily because it
enables explanations of external events, the anticipation of future occurrences, and the
adaptation of behaviors to solve problems [20].

Craik posits that through our mental model, we can simulate various alternatives to
a given situation and identify the best course of action, thereby avoiding problems before
they arise. He proposed that constructing such a model involves three stages following the
observation of reality: first, translating the observation into words; second, deducing an
assertion, which entails formulating a logical conclusion based on premises deemed true
or false; and finally, connecting this assertion to the external world. In his formulation,
emphasizing the importance of sensory experience in the real world, as without it, the
subsequent three steps do not occur. By defining deduction as a key step in the process,
he concluded that every mental world model represents an individual’s assumption about
reality. In other words, the mental model is not an exact replication of the world but rather
an interpretation shaped by the individual’s sensory experiences, perceptions, and prior
knowledge. Consequently, these models are subject to errors and revisions. Nonetheless,
they serve as a crucial adaptive tool, enabling humans to navigate the complexities of the
real world effectively [20].

Subsequently, while studying the dynamics of complex systems, Jay Forrester [36] re-
inforced this theory by asserting that humans exist within a complex system (the external
world) governed by principles not fully understood. He emphasized that, due to our cog-
nitive limitations, we create simplified representations of reality through mental models
to make it more comprehensible. Furthermore, he argued that the construction of these
models is influenced by our sensory constraints, subjective perceptions, and individual
experiences, which determine what is filtered and used to represent reality. Perception
highlights certain aspects of the environment while disregarding others, rendering each
mental model subjective and unique to the individual. Forrester also contended that
what we manage to abstract from the real world is what we carry within these mental
models. In other words, these models do not fully reflect reality but instead consist of
selected concepts and their relationships. According to him, no one can fully conceptual-
ize the complexity of the world, a government, or a nation. We rely on these simplified
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representations to interpret and interact with the real system.
Similarly, Wind et al. [18] argue that the world model is a mental construct through

which individuals form perceptions and guide their actions about various aspects of their
existence. In their theory, they emphasize the role of selective perception in constructing
this model, explaining how it underlies our flawed understanding of certain aspects of
reality, often leading to errors in identifying actual threats and opportunities. They
highlight that the human mind tends to disregard most sensory stimuli, focusing only on
those aligned with internal beliefs and expectations. Subsequently, Michael Shermer [135]
expanded on this notion of perceptual selectivity through belief-dependent realism (BDR),
which posits that our beliefs shape our perceptions of reality. According to Shermer,
these beliefs are formed for various subjective, personal, emotional, and psychological
reasons within environments shaped by family, friends, colleagues, culture, and society.
Once established, individuals defend, justify, and rationalize these beliefs using intellectual
reasoning, compelling arguments, and rational explanations. Shermer asserts that while
reality exists independently of the human mind, our understanding of it is modulated by
our beliefs, which guide perception and lead us to construct a world model that aligns
with our internal convictions.

Recently, Matsuo et al. [89] presented a theoretical framework with an overview of how
the world model is constructed, modified, and used throughout our lives to improve our
intelligence. The framework has two main systems, as illustrated by Figure 2.1: the low-
level sensorimotor system responsible for processing concrete patterns of the real world
and the high-level symbolic system, which represents world model abstract information
through imagination, thought, and language. They highlight the fundamental role of
sensory experience through active exploration of the world to build our initial model and
the role of the symbolic system to represent this model and change it later. Furthermore,
the symbolic system facilitates the creation of abstract concepts derived from physical
experiences in the world model and enables complex planning.

In this framework, the authors demonstrated that in addition to sensory perception,
language also acts as a fundamental component both to represent the world model and
to change it. It can influence our belief system, perception, and world model. When
we communicate, we share parts of our internal representation with others, structure our
thoughts, and convey emotions and abstract concepts through narratives that organize
our experiences and reflect our perception of reality. Moreover, since our world model is
inherently fuzzy and incomplete, language helps to organize abstract concepts in a manner
that can be systematically understood by the external world and structured in thought.
During a conversation, we interact with individuals with world models different from
our own, which linguistically emerge, influence, and modify our model. Each participant
employs a distinct mental model to interpret the topic under discussion in a conversation.
As the dialogue progresses, these models may evolve, even if the subject matter remains
unchanged.

Thought is profoundly dependent on our world model. Through it, we manipulate our
world model to imagine situations and test potential solutions without experimenting with
all possibilities in the real world. Reasoning, for example, relies on these imaginations
to arrive at the best conclusions. Johnson-Laird [72] were among the first researchers to
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Figure 2.1: The Theoretical World Models Framework for humans [89]. A priori, the world
model is constructed through sensorimotor interactions with the environment, also called
a low-level system. This system generates the world model that emerges through symbolic
elements of cognition, which are imagination, thought and language. The symbolic system
in turn also has the capacity to alter the world model through language.

suggest that reasoning (a form of conscious thought) involves the manipulation of mental
models to explore alternatives, predict outcomes, and evaluate consequences. He argues
that different forms of reasoning, such as logical, deductive, and inductive, are based on
inferences made from manipulations of the world model. According to him, reasoning
errors occur because there are gaps in the world model being used. Peirce [107] also
emphasized the importance of the world model in deductive reasoning. According to him,
we construct a premises diagram, identify implicit relationships, and validate or refute
these relationships through mental simulations with the world model, which we permit to
extract conclusions.

Similarly, Lecun [84] asserts that reasoning relies on a world model because it is highly
adaptable. According to him, we do not have multiple world models but rather one highly
configurable and flexible model that is shared across different tasks, enabling reasoning
by analogy. Furthermore, we are equipped with pre-programmed basic behaviors and
intrinsic goals to update this world model while satisfying basic survival needs. Once
we know how the world works, we learn new complex tasks, predict the consequences
of our actions, plan and foresee the outcomes of successful actions, and avoid dangerous
situations. For instance, in a soccer game, a player only has milliseconds to decide the
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best course of action, which is less time than it takes for visual signals to reach the brain.
However, they act swiftly due to their internal world model, which predicts where the
ball will be in the next instant, allowing for preemptive positioning. Similarly, if a car
brakes suddenly while driving on a busy highway, the driver reacts almost instantly, even
before consciously processing all the details, because their world model assumes that cars
maintain a steady speed or decelerate gradually. An unexpected sudden brake violates
this expectation, triggering an immediate alert and enabling the driver to brake or swerve
to avoid a collision.

Lecun highlights that in addition to the neocortical structure and learning based on
unexpected events, the body, and intrinsic goals play a crucial role in constructing the
world model. They enable continuous environment exploration, providing neocortical
circuits with a constant flow of new and diverse information. Constant exploration, com-
bined with the predictive structure of the brain, allows us to learn fundamental concepts
about the world in the first days, weeks, and months of life. In a short time, we acquire
spatial notions and understand that the world is three-dimensional and that objects and
sounds have relative distances from us. By developing the notion of depth, we recognize
the existence and occlusion of objects and categorize them based on their appearance
and behavior. We also learned that objects have a dynamic movement and do not appear
spontaneously, disappear, or change shape but rather move through space, occupying only
one place at a time. These concepts allow the development of intuitive physics, includ-
ing notions such as stability, gravity, and inertia, and enable the understanding of the
effects of objects and our actions in the world. From that point, we infer cause-and-effect
relationships that are the basis for acquiring linguistic and social knowledge.

The construction of the world model involves many elements, from sensory experi-
ences and emotions to language and social interaction. Given the vast existing theory,
we considered some of its main concepts in implementing our framework: sensory
experience, intrinsic motivation, and the structural and predictive aspects of
the neocortical circuit. There is a consensus among philosophers and researchers that
the world model, a priori, is constructed through continuously exploring the body in the
environment. The body plays an essential role in this process, as its senses filter, encode,
and send the information received to the neocortex. The actuators execute actions in the
environment guided by primitive intrinsic objectives, especially at the beginning of life,
allowing various experiences. We, therefore, focus on integrating these pillars to develop
a sensorimotor world model in our agent without the influence of symbolic elements. We
also highlight the importance of the neocortical structure, which provides flexibility and
adaptability to the model. In the following sections, we present each of these pillars in-
dividually with some important theoretical foundations and the computational tools that
support the implementation of each pillar in our computational framework.

2.2 Embodied Cognition
Embodied Cognition is an approach in cognitive science that emphasizes that the body
(e.g., sensations and bodily experiences) is essential to understanding the world, construct-
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ing conceptual knowledge, and forming meaning. According to this perspective, cognition
cannot be comprehended solely as an internal brain process; instead, it should be viewed
as an activity distributed among the brain, the body, and the external world [153]. In this
view, the body inherently constrains, regulates, and shapes the nature of mental activity,
which is an integral part of cognitive processing. Furthermore, instead of being centralized
and distinct from low-level sensorimotor functions, mental activity is profoundly grounded
in these functions [34, 134].

The embodiment thesis challenges three main principles defended by traditional ap-
proaches. First, the information conveyed by a mental representation has no modality-
specific features. In this sense, representations are autonomous from the sensorimotor
system and its operational details. Second, knowledge is represented propositionally,
meaning emerges from the relations among the constituent symbols. Finally, internal rep-
resentations instruct the motor system, which is essentially separate and independent of
cognition, and so cognitive processing is not significantly limited, constrained, or shaped
by bodily actions [34].

Experiments provide evidence for the role of bodily experiences in the mental recon-
struction of events. Sensorimotor regions are activated even without direct sensory stimuli
or behavioral responses, such as during processes of imagination, planning, or recollection,
suggesting that, even when disconnected from the environment, knowledge processing and
representation continue to be supported by patterns of sensorimotor experiences [134]. In
this line, Barsalou [10] shows that during perceptual experience, association areas in the
brain capture bottom-up activation patterns in sensory-motor areas. Subsequently, in a
top-down manner, these association areas partially reactivate sensory-motor regions to
implement perceptual symbols. For example, when we think about a lake, we activate
sensory-motor areas of the brain that were engaged during previous encounters with real
lakes. A lake-related thought reactivates areas of the visual cortex that respond to visual
information corresponding to lakes, areas of the auditory cortex that respond to audi-
tory information related to lakes, and areas of the motor cortex corresponding to actions
typically associated with lakes. However, this activation is suppressed to not result in
actual movement. The result is a lake concept reflecting the types of sensory and motor
activities unique to the human body and its sensory systems. A lake signifies something
like to “a thing that looks like this, sounds like this, smells like this, allows me to swim in
it like this.”

For many years, behaviors such as gesturing, our bodily movements to visualize the
environment, the use of mirror neurons in social understanding, and the externalization
of cognitive processes through the body have been extensively observed in studies [34].
Behavioral research indicates that gesturing, body postures, and facial expressions serve
as strategies to simplify mental processing, alleviating cognitive load and rendering tasks
more manageable. For instance, using fingers for counting enhances the representation
and understanding of mathematical concepts, facilitating arithmetic learning and reducing
the cognitive load involved in calculations [134]. Furthermore, behaviors involving head
and limb control reveal that our perception is influenced by the actions we undertake to
perceive, demonstrating that perception is not a passive process but an active one guided
by various cognitive elements. The role of mirror neurons in understanding the actions
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of others has also been a focal point of analysis. These neurons activate when we observe
someone acting and carry out the same action ourselves. This simultaneous activation
suggests that our ability to comprehend the intentions and mental states of others is
deeply rooted in our own motor experiences. Therefore, our understanding of one another
presupposes our motor system [134, 34].

Foglia et al. [34] argue that the body plays two distinct yet interconnected roles in
cognition. The first role pertains to how the body can function as a cognitive constraint;
for example, in color perception, sound localization, categorization, and spatial metaphor.
Concepts and experiences of colors reflect the properties of the retinal cells and the fea-
tures of the visual apparatus; sound detection owes its peculiarity to the distance between
the ears and spatial metaphors are rooted in sensorimotor experiences. In this line, Lakoff
et al. [82, 81] argue that conceptualization, thought, and language are deeply rooted in
bodily experiences, asserting that the nature of our bodies shapes our possibilities for con-
ceptualizing and categorizing objects in the external world. They contend that many basic
concepts we possess are acquired through direct physical experience and subsequently used
to learn more abstract concepts through metaphors.

For instance, the basic concepts of forward and backward emerge from having only
two eyes and a frontal side, toward which we direct our vision and actions, and a rear
side that we cannot see directly. This leads us to create abstract concepts, metaphorically
associating them with physical experiences, such as linking the future to something that
lies ahead and the past to something that has been left behind, or when we express
emotions, as when saying, today I feel very down, associating the abstract concept of
sadness with a basic spatial concept related to being crouched. This perspective implies
that different types of bodies would lead to different ways of conceptualizing the world;
for example, an organism with radial symmetry, such as a jellyfish, may not have a clear
distinction between front and back, resulting in a categorization of space that is entirely
different from our own. Metaphors, therefore, make communication more captivating and
reflect our embodied experience as exploring beings [81].

The second role occurs when the body distributes cognition, spreads cognitive tasks
between neural and non-neural structures, and partially realizes mental phenomena. Ex-
amples are during gestures in oral communication. Although traditionally considered
solely as communication tools, gestures significantly impact cognitive development, es-
pecially language and vocabulary acquisition. Research indicates that gesturing while
speaking makes it easier for the listener to understand the message and contributes to vo-
cabulary enrichment and language learning for the speaker [121, 122]. Studies have shown
that children who use gestures during communication have more robust linguistic devel-
opment and more ability to express and understand complex concepts. Similarly, studies
show that practicing motor activities such as squeezing a sponge for three consecutive
weeks improves hand and wrist performance tests and presents a significant expansion
of the primary motor cortex and somatosensory cortex, reinforcing how the body shapes
cognitive processes [61].

The integration of multiple sensory modalities is another central aspect of embodied
cognition. The human neocortex merges information from different senses, such as vi-
sion, hearing, touch, smell, and taste, allowing a unified and coherent perception of the
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environment. This capacity for sensory integration is fundamental for the formation of
concepts and the execution of coordinated actions, reflecting the deeply interconnected
nature of cognitive and bodily processes. Neuroimaging studies corroborate this inter-
dependence, showing that sensorimotor areas are activated during conceptual tasks, in-
dicating that cognition is distributed across several brain regions associated with bodily
experiences [10].

In the context of artificial agents, embodied cognition has significant implications for
the design and functionality of these systems. For embodied artificial agents to interact
effectively in complex and dynamic environments, they need to constantly engage in
environment integrating multiple sensory modalities and be able to adapt their behaviors
based on bodily feedback, suggesting that consideration should be given not only to the
use of complex learning algorithms but also the incorporation of physical structures and
sensors that allow for rich, contextualized interaction with the real world.

2.2.1 Humanoid Robots

Humanoid robots are essential for the experimentation of fundamental concepts of em-
bodied cognition, such as active perception, sensorimotor learning, multimodal learning,
adaptation, and world representation based on bodily experience, approaching the prin-
ciples of biological intelligence. A humanoid robot is a robotic system designed with a
body structure that resembles that of a human, as illustrated in Figure 2.2. These robots
possess a head, torso, arms, and legs articulated in an anthropomorphic shape, allowing
them to navigate and interact within unstructured environments. Their legs, equipped
with complex motors and actuators, facilitate locomotion across uneven terrains and en-
able the ascent and descent of stairs. Furthermore, they have various sensors that ensure
advanced sensory perception, including stereo vision, LiDAR, tactile, and pressure sen-
sors. They also possess auditory and voice sensors, enabling them to capture ambient
sounds and interact with humans. These robots have highly sophisticated low-level con-
trollers that continuously monitor and adjust variables such as force, torque, and joint

(a) Atlas Robot (b) Valkyre Robot (c) NAO Robot (d) iCub Robot

Figure 2.2: Examples of different humanoid robots. In (a), we have the humanoid robot
Atlas developed by Boston Dynamics for industrial tasks. In (b), we have the humanoid
robot Valkyrie, developed by NASA for space exploration and disaster rescue. In (c) and
(d), we have the NAO and iCub robots for research and education.
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position, ensuring smooth, precise, and stable movements.
Depending on their daily use, humanoid robots can be designed with different sensory

and structural configurations, categorized according to their application. For instance,
industrial humanoid robots are characterized by a robust body structure and high pre-
cision for assembly, welding, and material handling tasks. Similarly, humanoid robots
designed for space exploration and disaster response exhibit a sturdy body structure,
are tall, and possess autonomous capabilities, as NASA’s Valkyrie robot exemplifies. In
contrast, humanoid robots for research and education are smaller, more versatile, and
programmable, with body structures resembling a child’s. They are primarily focused
on studying human-robot interaction and technological advancements in robotics. These
robots are distinguished by their diverse tactile and auditory sensors, enabling them to
feel, communicate with humans, and hear their surrounding environment. Notable exam-
ples in this category include NAO and iCub.

2.2.2 Reinforcement Learning

Reinforcement Learning (RL) consists of machine learning paradigms that allow artifi-
cial agents to continuously engage in sensorimotor experiences, providing a more suitable
learning method for embodied agents. RL consists of an agent who explores the envi-
ronment by choosing actions to maximize the cumulative reward. Initially inspired by
human behavior and control theory, RL is now applied to economics, game theory, and
information theory. Also, RL is not only limited to classification or regression tasks, but it
is also a framework for decision-making, knowledge representation, planning, and reacting
to new and unknown elements [144]. This paradigm is of utmost importance when no la-
beled data is available or when the dynamics are not differentiable; in such circumstances,
the model can still learn from the reward signals given by the environment.

Environment

Agent
State (st)

Reward (rt) Action (at)

Figure 2.3: Reinforcement learning paradigm. The agent executes a policy ⇡(a|s) by
choosing an action at in state st, then, the agent receives a reward rt and a new state
st+1. Adapted from [144]

.

The RL structure consists of various components that interact, including the environ-
ment, actions, and rewards, as shown in Figure 2.3. At each time step t, the agent follows
a policy ⇡(a|s) to choose an action at based on the current state st. After executing the
action, the agent receives a reward rt and transitions to a new state st+1. The policy is
a crucial element of reinforcement learning, as it determines the action a that the agent
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takes in each state s. In this context, learning refers to the process of discovering the
optimal policy, with the agent’s goal being to maximize the cumulative reward over time.

Markov Decision Process (MDP) is a discrete-time stochastic control process ordinar-
ily used to represent the environment in a reinforcement learning setup. MDP gives a
framework for decision-making in which the conditional probability distribution of future
states depends only upon the current state. This property is also called the Markov
property, meaning that the sequence of previous states does not add new information.
The MDP description is defined as a tuple M = (S,A, P,R), where S is a discrete and
finite set of states that model the environment, A is a finite set of actions, P

�
s
0 |s, a

�
is a

probabilistic transition function that describes the effects of choosing an action a 2 A in
a state s 2 S and ending in a state s

0 2 S. R (s, a) is the reward earned by executing an
action a 2 A in a state s 2 S. Solving the MDP requires maximizing the total expected
reward Gt, feasible only for small environments. Normally, a discount factor � is used to
prevent infinite accumulated values in non-episodic MDPs, with 0  � < 1. Therefore,
after t steps, the reward is discounted by �

t. The total expected discounted return is

Gt =
1X

k=0

�
t
Rt+k+1. (2.1)

The policy ⇡ : S ! A is the solution for an MDP; and it defines the action a = ⇡(s) to
be chosen in each state s. A policy can be either stationary or non-stationary concerning
its evolution over time. Considering the state-action relation, the policy can also be
deterministic or stochastic. In stationary policies, the best choice in the state s is always
the same, despite the time. In non-stationary policies, the action depends on state-action
information. In deterministic policies, each state s 2 S is always mapped into a single
action; in stochastic policies, states are mapped into a probability distribution of actions;
accordingly, each action has a probability of being picked. Amongst all policies able to
solve an MDP, we want to determine the optimal policy ⇡⇤ that maximizes the expected
total return. This can be done with a Value Iteration or Policy Iteration algorithm
implemented with dynamic programming.

Policy Iteration. The Policy iteration algorithms find the optimal policy ⇡⇤ by
iteratively evaluating and improving a random initial policy ⇡0 until convergence, which
means no more improvement is possible. For these methods, the policy is evaluated
numerous times in order to approximate the state-value function v⇡ by

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

P (s0|s, a)
h
r + �vk (s

0)
i
. (2.2)

After the state-value is updated, the policy is also updated by

⇡k+1(s) = argmax
X

s0,r

P (s0|s, a)
h
r + �vk (s

0)
i
. (2.3)

where s denotes the current state, s
0 is the possible next state after taking action a,

a is the action selected given state s, r represents the immediate reward received after
executing action a in state s, ⇡(a|s) is the probability of selecting action a given state s
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under the current policy ⇡, P (s0 | s, a) is the transition probability to state s0 given state
s and action a, vk(s0) denotes the estimated expected value of being in state s

0, and � is
the discount factor between 0 and 1 that weights future rewards.

Value Iteration. The Value iteration algorithms learn the state-value v⇤ for each
state s 2 S. They can be viewed as an improvement over the Policy Iteration because
the state-value function does not need improvement. Thus, from an arbitrary v0, this
approach performs updates in all states of S as follows

vk+1(s) = max
a2A

X

s0,r

P (s0|s, a)
h
r + �vk (s

0)
i
. (2.4)

In the convergence, the state-value function vk are equal to v⇤, that is limt!1 |vk (s)�
vk�1 (s) | = 0; and the optimal policy ⇡⇤ can be extracted directly from v⇤.

Dynamic programming methods based on policy iteration or value iteration become
unfeasible when the environment’s dynamics are unknown or difficult to compute. In such
cases, different methods are required, such as Monte Carlo (MC) or Temporal Difference
(TD). MC methods require only samples of states, actions, and rewards from the inter-
actions with the environment either in simulation or online. These methods aim to solve
the learning problem by averaging the sampled returns; MC methods compute the return
Gt from only complete episodes S1, A1, R1, ..., ST ; which is also its main weakness when
the MDP is non-episodic. The state-value update rule is defined as

V (St)  V (St) + ↵[Gt � V (St)]. (2.5)

On the other hand, TD methods update the expected value function V (St) for state
St after n-steps by visiting and storing the next n-steps before the update. Popular TD
methods are SARSA [123] and Q-learning [23]. For the particular case of TD(0), the
update is executed immediately after a visit to St+1 as

V (St)  V (St) + ↵[Rt+1 + �V (St+1)� V (St)], (2.6)

where Rt+1 is the reward for the next state, ↵ is the learning rate, and Rt+1 + �V (St+1)

is the target for this update. TD methods are called bootstrapped since they rely on
state-value estimates of future states, and not only in the current one.

2.2.3 Policy Gradient Methods

Policy gradient methods improve the policy directly by learning a function approximator
parameterized by the weights ✓. Therefore, this class of methods does not need to compute
each state’s value before determining the actions, although it might be interesting to
increase the training speed and lower the variance as seen in actor-critic versions. The
policy is defined as

⇡(a|s,✓) = Pr{At = a|St = s,✓t = ✓}, (2.7)

which expresses the probability of action a be chosen at time t regarding the environment
is in state s at time t with parameters ✓. The learning process uses the gradient ascent
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to update the weights and maximize performance through

✓t+1 = ✓t + ↵rJ(✓t), (2.8)

where rJ(✓t) is the stochastic estimate whose expectation approximates the gradient
in respect to ✓, ↵ is the learning rate, which determines the step magnitude. J(✓) is
regularly defined using the value function for the initial state as v⇡✓

(s0). Then, the policy
gradient theorem asserts that

rJ(✓) =
X

s

d⇡(s)
X

a

q⇡(s, a)r✓⇡(a|s,✓), (2.9)

where d⇡✓(s) is stationary distribution of the Markov chain using ⇡✓.
The parameters ✓ are commonly represented by the weights between neurons in an

artificial neural network. The configuration of the weights can be made in any way
since the policy is differentiable regarding its parameters. The methods that follow this
rule for updating the weights are policy gradients, despite using a value function. An
indispensable point of these methods is their need for exploration; for this reason, the
policy cannot become deterministic during training. Besides, the policy gradient theorem
ensures convergence for this class of methods compared to value-based methods with
non-linear function approximators.

The Proximal Policy Optimization (PPO) algorithm. PPO [129] is based on
the policy gradient theorem and serves as an enhanced version of the TRPO [127] algo-
rithm. Its primary objective is to minimize a surrogate function, which helps control the
magnitude of policy updates. While TRPO employs the Kullback–Leibler (KL) diver-
gence to assess the difference between the current and previous policies, PPO simplifies
this by calculating the probability ratio and ensuring a consistent policy improvement.
Essentially, the aim is to adjust the policy parameters within reliable regions, and to
achieve this, the objective function is defined as

J(✓) = Et

h
⇡✓(a|s)
⇡✓old

(a|s)At

i
, (2.10)

where At is the advantage function and ✓old are the old policy’s parameters. The use of
probability ratios is known as importance sampling, allowing unbiased estimates for the
policy’s samples. However, importance sampling is unbounded and often causes overes-
timation and underestimation. One way to solve this is to use the surrogate function,
defined as

J(✓) = Et [min (r(✓), clip (r(✓), 1� ✏, 1 + ✏))At] , (2.11)

assuming the probability ratio r(✓) = ⇡✓(at,st)
⇡✓old

(at,st)
, and ✏ as a hyperparameter commonly

defined as 0.2. With this surrogate function, only the overestimation problem is corrected.
The underestimation is considered harmless and favors the objective function’s concavity.
The complete PPO algorithm is described in Algorithm 1.
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Algorithm 1 Proximal Policy Optimization [129].
Input: initial policy parameters ✓0, initial value function parameters �0;
for k = 0, 1, 2, ... do

Collect set of trajectoriesDk = {⌧i} by running policy ⇡k = ⇡ (✓k) in the environment;

Compute rewards-to-go bRt;
Compute advantage estimates, bAt (using any method of advantage estimation) based
on the current value function V�k

;
Update the policy by maximizing the PPO-Clip objective:

✓k+1 = argmax✓
1

|Dk|T
P

⌧2Dk

PT
t=0min

⇣
⇡✓(at|st)
⇡✓k

(at|st)A
⇡✓k (st, at) , g (✏, A

⇡✓k (st, at))
⌘
typi-

cally via stochastic gradient ascent with Adam;
Fit value function by regression on mean-squared error:

�k+1 = argmin✓
1

|Dk|T
P

⌧2Dk

PT
t=0

⇣
V� (st)� R̂t

⌘2

, typically via some gradient descent
algorithm;

end

2.3 Neo-cortical Circuit
The neocortex is structurally organized into six laminar layers (I to VI), primarily com-
posed of pyramidal neurons and complex interlaminar connections, as illustrated in Fig-
ure 2.4. These layers are arranged into vertical cortical columns, forming a hierarchical,
modular, and sparse architecture [96]. This organization enables the neocortex to effi-
ciently process and integrate sensory and motor information across multiple levels of ab-
straction. Modularity allows different cortical regions — or microcircuits — to specialize
in processing distinct types of information while maintaining a degree of independence,
enhancing robustness and reusability across tasks. Hierarchy supports the progressive
transformation of low-level sensory inputs into increasingly abstract and semantically
rich representations, which are fundamental for higher cognitive processes such as plan-
ning, reasoning, and generalization [55, 62]. Sparse connectivity — where only a subset
of neurons are active at a given time — improves neural coding efficiency, reduces re-
dundancy, and supports pattern separation, making it easier for the brain to distinguish
between similar inputs and adapt to novel situations.

Various theories propose mechanisms to explain the neocortex efficiency, highlighting
how the brain dynamically and adaptively integrates information. One important theory
is predictive coding, which suggests that the neocortex constructs internal world models
and continuously updates these representations based on new sensory stimuli [93]. This
theoretical framework posits that the brain does not merely react passively to external
stimuli but actively anticipates future events by comparing internal predictions with in-
coming sensory information. Predictive coding implies that neural activity is governed
by a continuous cycle of prediction and prediction error, where discrepancies between
expectations and reality lead to adjustments in internal representations. This process
occurs across different hierarchical levels, enabling the formation of increasingly abstract
and generalizable representations. Such a mechanism accounts for phenomena like the
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Figure 2.4: The cerebral neocortex has six laminar layers, identified from I to VI, each
with specific characteristics. The thickness of each layer may vary depending on the
region of the neocortex. On the left side of the illustration, the individual cell profiles are
represented as they would be visualized in a Golgi stain. On the right side, populations
of cell bodies are observed as they appear on Nissl staining. The layers are classified
as: I = molecular layer; II = external granular layer; III = external pyramidal layer; IV
= internal granular layer; V = inner pyramidal layer; VI = multiform layer. Adapted
from [116].

rapid and efficient perception of environmental patterns, decision-making under incom-
plete information, and even lifelong learning. Other theories complement this perspective,
suggesting that the organization of the neocortical circuit can also be explained by princi-
ples such as energy efficiency [37]. These theories emphasize the brain’s ability to optimize
computational resources while maintaining high processing accuracy.

In recent years, deep neural networks have increasingly incorporated fundamental
principles of the neocortex through attention mechanisms, which simulate aspects of the
hierarchical and selective processing of the human brain. Inspired by how the neocortex
efficiently allocates neural resources, these networks have been designed to focus their
processing capacity on specific regions of the input data or neural layers, enabling more
efficient distribution of computational resources and improving learning dynamics. By
selectively weighting different parts of the input, attention mechanisms allow neural net-
works to prioritize relevant features while filtering out less informative elements. This ca-
pability has proven particularly effective in domains such as natural language processing,
computer vision, and reinforcement learning, where contextual awareness and adaptive
information processing are crucial.
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2.3.1 Attentional Neural Networks

Neural attention mechanisms have significantly transformed deep learning architectures,
enabling models to process and prioritize information more effectively. These mechanisms
dynamically assign different weights to parts of the input and neurons, allowing networks
to focus on the most relevant features while ignoring less informative elements. This
process closely resembles how the neocortex integrates and prioritizes sensory inputs, en-
hancing cognitive efficiency. By selectively allocating computational resources, attention
mechanisms improve the scalability and adaptability of deep neural networks.

In deep learning, attention is a system composed of one or multiple modules, which
allocate structural or temporal resources, select or modulate signals to perform a task.
Each module consists of a function or multiple non-linear functions trained in conjunction
with the neural network. Specifically, each module outputs a selective or modulating mask
for an input signal. The structural resources allocated are elements of the architecture
(e.g., number of neurons, number of layers), time resources refer to computation per step,
number of time steps, processing time in modules of the architectures or frameworks. The
task is the goal application (e.g., classification, regression, segmentation, object recogni-
tion, control, among others), and signals are given at any abstraction level (e.g., features,
visual information, audio, text, memories, latent space vectors) [19].

An attentional neural network contains a set of attentional subsystems to allocate
resources for processes, even in a recursive manner. An attentional subsystem, at each
time step t, receives as input a, a contextual input ct, a focus target ⌧t, and inner state
it�1. And produces as output a current inner state it, and current focus output at, as
shown Figure 2.5 and 2.6. The focused output is the main element of the subsystem
because it assigns targets an importance score. Together, several attentional subsystems
always perform actions to provide selection capabilities. The subsystem profile depends
on the data structure and the desired output.

Different attention mechanisms have been developed, such as soft, hard, global, and lo-
cal attention, each offering trade-offs between computational efficiency and interpretabil-
ity [19]. Among these, self-attention is crucial in modern architectures, enabling long-
range dependencies to be captured without sequential constraints. Additionally, attention
mechanisms enhance efficient resource allocation, similar to how the brain dynamically
modulates neural activity based on cognitive demands. When integrated into recurrent
and memory-augmented networks, attention improves learning efficiency, adaptability,
and long-term information retention.

Among the most recent attention-based neural networks, Recurrent Independent Mech-
anisms (RIMs) stand out for their similarity to the neocortical circuit, as they pioneered
the introduction of attention in dynamic connections within a modular and sparse archi-
tecture for recurrent processing [42]. Unlike traditional recurrent models, RIMs employ
self-attention to selectively activate independent modules based on the characteristics of
the input. This modular structure aligns with the neocortical organization, where mod-
ules flexibly engage depending on sensory and cognitive demands. By combining attention
with modularity, RIMs enhance generalization, adaptability, and long-term memory, mak-
ing them well-suited for out-of-distribution generalization.
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Figure 2.5: Illustration of attention in deep neural networks, in which several attentional
subsystems are coupled in the neural networks sequentially or recurrently. Each subsystem
has a different profile based on the input data’s structure and sensory modality. A single
subsystem receives as the primary input the focus target (i.e., the stimulus to be filtered),
and sometimes auxiliary inputs (e.g., contextual information and subsystem’s previous
internal state) to help the mechanism guide the focus in time. Adapted from [19]

.
Symbol Description

Context

k Sensory modality index.

C Contextual input set, C = {ct�1, . . . , ct}, C 2 R, (e.g., hidden states, memory data, sensory data).

ct Contextual input at time t, ct = {c1t , . . . , c
k
t }, ct 2 C.

ckt
Contextual input from sensory modality k at time t, ckt = {ckt,1, . . . , c

k
t,nck

}, ckt,j 2 RFc , where Fc is

amount of features.

Focus target

T Focus target set, T = {⌧t�1, . . . , ⌧t}, T 2 R.
⌧t Focus target at time t, ⌧t = {⌧1

t , . . . , ⌧k
t }, ⌧t 2 T .

⌧k
t

Focus target from sensory modality k

Features for n⌧k elements, if ⌧k
t is a data, Hyperparameters or index, if ⌧k

t is a program.

⌧k
t = {⌧k

t,1, . . . , ⌧
k
t,n⌧k

}, ⌧k
t,j 2 RF⌧k , where F⌧k is amount of features.

Inner state

I Inner state set, I = {it�1, . . . , it}, I 2 R.
it Inner state at time t, ◆t 2 I.

it � 1 Past inner state at time t � 1, ◆t�1 2 I.
Focus output

A Focus output set, A = {at�1, . . . , at}, A = {x 2 R : 0 < x < 1} or A = {x 2 Z : 0  x  1}.
at Focus output at time t, at = {a1

t , . . . , a
k
t } 2 A.

ak
t

Focus output from sensory modality k at time t, ak
t = {ak

t,1, . . . , a
k
t,n⌧k

} are attention scores,

ak
t,j 2 RF⌧k or ak

t,j 2 R, ak
t 2 Rn⌧k⇥F⌧k or ak

t 2 Rn⌧k .

Figure 2.6: Notation for unified attention model. Note the notation supports recurrence
and multimodality. Adapted from [19].

These modules are highly configurable, allowing for different structural organizations.
Madan et al. [4] integrated different sources of knowledge into the modules, such as senti-
ment analysis and syntactic analysis data, and observed that the modules interact effec-
tively, significantly reducing parameter space and resources. They also identified differ-
entiated activation patterns, indicating that the modules are activated according to the
relevance of the inputs to the target task. Finally, Mittal et al. [94] explored the hier-
archical organization of the recurrent independent modules with bidirectional bottom-up
and top-down connections and demonstrated how this change improved model learning
and generalization. This work is particularly interested in the organizational structure
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proposed by Mittal et al. [94], which closely resembles the three key structural principles
of the neocortex: modularity, sparsity, and hierarchy with bidirectional communication.

Bidirectional Recurrent Independent Mechanisms (BRIMs)

The Bidirectional Recurrent Independent Mechanisms (BRIMs) [94] is explicitly built
to route the flow of bottom-up and top-down information between modules, promoting
selection iteration between the two levels of stimuli, as shown in Figure 2.7. BRIMs have
received much attention from the scientific community for presenting results surpassing
the state-of-the-art OOD generalization. When the distribution of the test set changes
in a minimal aspect, the classic models fail significantly, including some fully attentional
neural networks, such as Neural Transformers [148]. In contrast, BRIMs perform state-
of-the-art results in OOD generalization [94].

BRIMs mainly use self-attention to link identical LSTM modules, generating a very
sparse and modular architecture with only a small portion of modules actives at time t.
The approach separates the hidden state into several modules so that upward interac-
tions between bottom-up and top-down signals can be appropriately focused. The layer
structure has concurrent modules so that each hierarchical layer can send information
in the bottom-up and top-down directions. Bottom-up attentional subsystems commu-
nicate between modules of the same layer, as well as the composition of hidden states

AttentionAttention

Attention

Pixel 1
Encoder

Attention

Time

Layers

AttentionAttention

Attention

Pixel N 
Encoder 

Decoder

Attention

output

...

...

...

Activated Module

Deactivated Module

Null

Recurrent Connection

Attention

Attention

Self-Attention

Self-Attention

Bottom-up or
Top-down flow

Figure 2.7: The BRIMs architecture is composed of several layers of recurrent indepen-
dent mechanisms (RIMs) that enable the information flow between activated modules
in a top-down and bottom-up manner. BRIMs provides better generalization results for
out-of-distribution problems due to mainly the introduced sparsity between modules via
attention.
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Algorithm 2 Single recurrent step for an L layered BRIM model [94].
Result: RNN Cell forward for L layered BRIMs
z: Input hl: Hidden state of layer l represented as flat vector hl[k]: Hidden state of kth

module of layer l nl: Number of modules in layer l ml: Number of modules kept active
in layer l �: Null vector
All Query, Key, Value networks are fully connected neural networks Q,K,V,AS,AR

denotes matrices
Note: Unless specified, all indexing start with 1
Function BRIMsCell(x, h_l, ..., h){

h_0 = x
for l = 1 to L do

for k = 1 to nl do
Q[k] = Input Query_l,k(h_l[k])

end

K[0],V[0] = Null Key Value_l(�)
K[1],V[1] = Input Key Value_l(h_l-1)
K[2],V[2] = Top-Down Key Value_l(h_l+1)
AS = Softmax(QKT

/
p
datt)

AR = SV

Sort AS[:, 0] and take lowest ml as active for k s.t. module k is active do
hl[k] = RNN_l,k(AR[k], hl[k])

end

for k = 1 to nl do
Q[k] = Communication Query_l,k(hl[k])
K[k] = Communication Key_l,k(hl[k])
V[k] = Communication Value_l,k(hl[k])

end

AR = Softmax(QKT
/
p
datt)V

for k s.t. module k is active do
hl[k] += AR[k];

end
end
return h;

in initial layers using the entry xt as the target, and via top-down attention modules in
different layers communicate with each other requesting information about hidden states
of previous and posterior layers to compose the current hidden state. Next, we present
Algorithm 2 for the L layered BRIMs and a detailed explanation for the entire BRIMs
construction.

Multi-layer Stacked Recurrent Networks. Most multi-layer recurrent networks
are configured to operate feed-forward and bottom-up, meaning that higher layers are fed
with information processed by inferior layers. In this sense, the traditional stacked RNN
for L levels is defined as
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yt = D(hL
t ), (2.12)

hl
t = F

l(hl�1
t ,hl

t�1), (2.13)

h0
t = E(xt), (2.14)

where l = 0, 1, ..., L. For a specific time step t, yt refers to the prediction, xt to the input,
and hl

t to the hidden state at layer l. D defines the decoder, E is the encoder, and F
l

represents the recurrent dynamic at layer l (e.g., LSTM, GRU).
Recurrent Independent Mechanisms (RIMs). Proposed by Goyal et al. [42],

RIM is a single-layered recurrent architecture consisting of hidden state ht decomposed
into n modules. The main property introduced in this model is that only a small subset of
modules is activated on a specific time step. In this sense, the hidden states are updated
following these steps: a) a subset of modules is activated depending on their relevance
to the input; b) the activated modules independently process the information; c) the
activated modules have contextual information from the other modules and update their
hidden state to store such information.

Key-Value Attention. The Key-Value Attention, also called the Scaled Dot Prod-
uct, is responsible for the updates in RIM. This attentional mechanism is also employed in
the self-attention modules and is widely used in Transformer architectures. The attention
score AS and an attention modulated result AR are computed as

AS = Softmax

✓
QKT

p
d

◆
, (2.15)

AR = ASV, (2.16)

where Q is the set of queries, K are the keys with d dimensions and V are the values.
Selective Activation. The selective activation is employed by defining that each

module creates queries Q̄ = Qinp(ht�1) which are then combined with the keys K̄ =

Kinp(�, xt) and values V̄ = Vinp(�, xt) obtained from the input xt and zero vectors �

to get both the attention score ĀS and attention modulated input ĀR. Based on this
attention score, a fixed number of modulesm are activated for which the input information
is most relevant. In this sense, the null module provides no new information and has a
low attention score. The activated set per time step is St.

Independent Dynamics. After the input is modulated by attention, each activated
module has its own hidden-state update procedure, as

h̄t,k =

⇢
Fk(ĀRk

,ht�1,k) k 2 St

ht�1,k k /2 St,
(2.17)

where Fk is any recurrent update procedure (e.g., GRU, LSTM).
Communication. Each module consolidates the information from all the other mod-

ules for every independent update step. The attention mechanism is utilized to consolidate
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this information in a similar way as in selective activation. The active modules create
queries Q̂ = Qcom(ht) which act with the keys K̂ = Kcom(ht) and values V̂ = Vcom(ht)

generated by all modules and the result of attention ÂR is combined to the state in time
step t as

ht,k =

(
h̄t,k + ÂRk

k 2 St

h̄t,k k /2 St.
(2.18)

Composition of Modules. The original hidden state hl
t found in RIM is decomposed

into separate modules for each layer l and time t. Therefore, instead of representing the
state as just a fixed dimensional vector hl

t, the representation is defined as {((hl
t,k)

nl
k=1,S l

t)}
where nl denotes the number of modules in layer l and S

l
t is the set of active modules at

time t in layer l. |S l
t| = ml, where ml is a hyperparameter defining the number of modules

active in each layer l at any time; layers may have different active modules. Setting ml

to be half of nl provided good performance.
Communication Between Layers. The communication links are defined between

multiple layers using key-value attention. Traditional RNNs build a strictly bottom-up
multi-layer dependency; in BRIMs, instead, the multi-layer dependency considers queries
Q̄ = Qlay(hl

t�1) from modules in layer l and keys K̄ = Klay(�,h
l�1
t ,hl+1

t�1) and values
V̄ = Vlay(�,h

l�1
t ,hl+1

t�1) from all the modules in the lower and higher layers. Thus, the
attention mechanism acts in three directions and generates the attention score Āl

S and
output ĀR. The attention-receiving information from the higher layer is given by the
same layer in the previous time step; the same layer in the current time step also gives
the attention-receiving information from the lower layer. Only the lower layer is used for
the deepest layer, and for the first layer, the input’s embedded state serves as the lower
layer [94].

Sparse Activation. The set S
l
t is built based on the attention score Āl

S, which
contains modules for which null information has little importance. Every activated module
gets a separate input version, which is obtained via the attention output Āl

R. In practice,
for each activated module, the representation is defined as

h̄l
t,k = F

l
k(Ā

l
Rk
,hl

t�1,k) k 2 S l
t, (2.19)

where F
l
k represents the recurrent update unit.

Communication Within Layers. The communication is made between the different
modules within each layer using the key-value attention. This communication between
modules within a layer permits the modules to share information through the attention
bottleneck. In the same way, queries are generated Q̂ = Qcom(h̄l

t) from active modules
and keys K̂ = Kcom(h̄l

t) and values V̂ = Vcom(h̄l
t) from all the modules to obtain the final

update to the module state through residual attention Âl
R. The state update rule is

hl
t,k =

⇢
h̄l
t,k + Āl

Rk
k 2 S l

t

h̄l
t�1,k k /2 S l

t.
(2.20)
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2.4 Intrinsic Motivation
Intrinsic motivation (IM) is defined as doing an activity for its inherent satisfactions
rather than for some separable consequence. When intrinsically motivated, a person is
moved to act for the fun or challenge rather than because of external prods, pressures,
or rewards [124]. Intrinsic motivation was initially identified in experimental studies on
animal behavior, where researchers observed that many organisms engage in exploratory
behaviors, play, and act driven by curiosity, even without external reinforcements or
rewards [152]. These behaviors occur spontaneously and provide adaptive advantages to
the organism, exercising and extending one’s capacities.

According to Ryan et al. [124, 102], the central characteristic that distinguishes intrin-
sic from extrinsic motivation is instrumentalization. In motivation, instrumentalization
occurs when an activity is performed not for its inherent value or pleasure but because
it leads to other benefits. For example, the activity is instrumentalized when a child
completes their homework solely to avoid parental punishment or because they believe it
will secure a good job in the future. In contrast, intrinsic motivation is at play if children
do their homework because the task is enjoyable and engaging, to the point that it is as
pleasurable as playing a video game. In everyday life, motivations for various actions are
often mixed, with intrinsic and extrinsic goals being weighed simultaneously. However,
intrinsic motivations are more easily identifiable in young children, particularly in the
early stages of life. It is much easier to observe children engaging in activities such as
grasping objects, playing, biting, running, and shouting without a specific goal, simply
for the inherent satisfaction these activities provide.

With the emergence of the concept of intrinsic motivation, several distinct theories
have been proposed to explain which characteristics of activities enable intrinsic motiva-
tion. In the 1950s, intrinsic motivation was initially explained through drive theory, which
posited that it was a homeostatic mechanism arising in organisms to reduce physiological
deficits [64]. Later, White [152] and Berlyne [13] criticized this theory, demonstrating that
animals and humans engage in activities out of sheer interest and pleasure, contradicting
the idea that biological deficits solely drive intrinsic motivation. Instead, they argued
that intrinsic motivation emerges as an autonomous engagement process with the envi-
ronment. Many intrinsically motivated behaviors, such as play, exploration, and learning,
occur even without a physiological need to be supplied. Subsequently, Festinger [33] intro-
duced cognitive dissonance theory, suggesting that intrinsic motivation might be related
to reducing inconsistencies between internal cognitive structures and perceived informa-
tion from the environment. Expanding on this idea, Kagan [74] proposed that human
intrinsic motivation is driven by the desire to reduce uncertainty. However, this perspec-
tive was also criticized, as many human behaviors actively seek to increase uncertainty in
a controlled manner.

Subsequently, Hunt [92] proposed the optimal incongruity theory, asserting that chil-
dren and adults seek an optimal level of discrepancy between perceived stimuli and inter-
nal patterns, making certain stimuli more engaging. Dember et al. [13] expanded on this
perspective by suggesting that the most rewarding situations are those with a moderate
level of novelty, neither entirely familiar nor completely unknown. Other approaches have
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Figure 2.8: The Intrinsically Motivated Reinforcement Learning paradigm. The organism
is composed of the agent and its internal environment. The organism acts in the external
environment by choosing actions from its internal space while receiving sensations from
the external. All rewards are internal in this paradigm, which favors the construction of
organisms independent of the task and the ability to utilize high-level skills. Adapted
from [140].

argued that intrinsic motivation is linked to the degree of control one has over the envi-
ronment. White [152] introduced the concept of effectance motivation, while Charms [24]
proposed the notion of personal causation, emphasizing the fundamental need to perceive
oneself as the agent of one own actions.

In the 1970s and 1980s, Deci et al. [26] developed the self-determination theory with
different aspects from previous approaches. Instead of highlighting the physiological as-
pects of being, they highlighted the importance of satisfying psychological aspects in the
task so that intrinsic motivation arises. They highlighted that individuals become more
intrinsically motivated when the needs for autonomy, competence, and relatedness are
satisfied. Autonomy refers to the desire to feel in control of one’s actions and decisions.
Competence refers to the need to feel effective in one’s activities. Moreover, relatedness
involves the need to feel connected to others. When these needs are satisfied, individuals
tend to be more intrinsically motivated. More recently, a more psychological line has
been followed. Csikszentmihalyi [21] introduced the concept of flow and the elements
that provide it, facilitating the emergence of intrinsic motivation.

Currently, there is no consensus on which of these theories most accurately explains
the origin of intrinsic motivation in humans. However, each theory highlights valuable
aspects that contribute to a broader understanding of how intrinsic motivation emerges.

Intrinsic Motivation in RL. Computationally, intrinsic motivation has been inte-
grated into reinforcement learning systems. In this context, intrinsic motivation drives an
agent to exhibit specific behaviors without relying on direct feedback from the environ-
ment. This leads to constructing a more complex organism, as shown in Figure 2.8. The
intrinsically motivated organism contains the agent as a decision-maker and its internal
environment, which is influenced by such decisions. In this new paradigm, the agent is
only responsible for making decisions that affect the current internal state; in this pro-
cess, the agent is rewarded and receives the next state. Once the internal environment
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Figure 2.9: Intrinsic motivation in reinforcement learning is categorized into a knowledge-
based and competence-based approach. Our work follows the knowledge-based branch,
where the agent aims to predict novelty or reduce uncertainty.

changes, the organism acts in the external environment and receives new sensations. In
the intrinsic motivated RL approach, all rewards are internal, which means the agent only
makes decisions that affect its internal environment, and then such decisions are reflected
in the external environment by actions [11].

Traditionally, approaches to intrinsic motivation in reinforcement learning are catego-
rized into knowledge-based and competence-based approaches [102], as illustrated in Fig-
ure 2.9. Knowledge-based approaches stimulate the agent to acquire new knowledge about
its environment. This approach relies on measures of dissonance or resonance between the
situations experienced by an agent and the knowledge and expectations the agent holds
regarding those situations. In this context, a situation refers to both a passive observa-
tion activity in which the agent does not perform actions in the environment but focuses
its attention on a particular aspect of the environment, as well as active activities in
which the agent executes actions and compares the actual outcomes of those actions with
its knowledge and expectations. Intrinsic rewards commonly used in these approaches
include curiosity, novelty, surprise, and empowerment. In contrast, competence-based ap-
proaches pertain to the agent’s performance on self-generated goals. Competence-based
approaches are less developed computationally and draw inspiration from the theories of
effectance, self-determination, and flow. Our work is a knowledge-based approach based
on curiosity reward.

2.5 Considerations
This chapter presented the foundational concepts for understanding DreamerRL, a
framework for learning world models. Our framework employs an embodied humanoid
robotic agent to explore its environment through intrinsic curiosity, using a reinforcement
learning protocol. This process enables the agent to interact actively with its surround-
ings, exploring possibilities and adjusting its behavior based on proprioceptive feedback.
To enhance embodiment, we integrate multimodality and active visual perception, fos-
tering greater immersion in the environment and allowing the agent to combine sensory
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information from multiple sources. This approach strengthens the robot’s environmental
awareness and facilitates the discovery of novel interaction patterns in an object manip-
ulation setting, promoting a richer and more context-aware world representation. Fur-
thermore, we aim to model the agent’s world representation by drawing inspiration from
the organizational structure of the human neocortex. To achieve this, we incorporate ar-
tificial neural networks and introduce structural biases such as sparsity, modularity, and
hierarchy, which contribute to developing flexible and adaptive representations.

Our main objective is to investigate whether constructing a world model using these
three mechanisms enables the agent to develop autonomously, acquiring skills that are
not solely dependent on a specific task but can be adapted to other tasks or scenar-
ios. We hypothesize that DreamerRL intrinsic exploration can provide the robot with a
cognitive foundation that facilitates adaptation to new situations without requiring ex-
tensive retraining. This capability is crucial for robotic agents operating in dynamic and
unstructured environments, where the unpredictability of interactions demands more ver-
satile agents capable of handling complex challenges and interacting with the world more
naturally and adaptively.
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Chapter 3

Related Work

This chapter presents the most relevant literature related to our work across different
dimensions. In Section 3.1, we review frameworks and architectures that incorporate world
model concepts and share theoretical foundations with our approach. Section 3.2 discusses
works related to curiosity in intrinsic motivation for learning agents, while Section 3.3
covers key studies in robotic manipulation focused on task adaptation.

3.1 Frameworks and Architectures for World Models
Various frameworks and architectures have been proposed to enable agents to build in-
ternal representations of their environment. One of the earliest biologically inspired
approaches to world modeling is Hierarchical Temporal Memory (HTM) [57]. HTM is
grounded in the neocortical theory of prediction, leveraging sparse distributed represen-
tations (SDRs) and temporal pooling to learn spatiotemporal patterns in an unsupervised
manner. This framework primarily models the brain’s modular, sparse, and hierarchical
organization and employs a local and continuous learning strategy to predict the world.
It comprises regions of computational pyramidal neurons, as illustrated in Figure 3.1 (a),
which serve as a computational replica of the biological pyramidal neurons, the most
abundant type in the neocortex human. These regions are further organized into vertical
cortical columns, in Figure 3.1 (b), each exhibiting a uniform laminar structure composed
of six horizontal layers stacked on top of one another. Within these layers, mini-columns
of neurons are formed, establishing intricate connections across multiple layers. Notably,
each mini-column can span several layers, and all cortical columns operate under a shared
learning principle known as the common cortical algorithm [54, 56].

HTM neurons process sparse inputs through three distinct dendritic zones: the Apical
Zone, which receives top-down feedback; the Basal Zone, which is responsible for lat-
eral connections; and the Proximal Zone, which directly processes feedforward inputs. In
neurons in layer 0, these inputs are encoded sensorial data. Each dendritic segment in-
dependently identifies patterns, with proximal dendrites specializing in input recognition,
while basal and apical dendrites modulate neuronal activation. Neurons can exist in ac-
tive, predictive, or inactive states, with their learning dynamics governed by permanence
values, which adjust synaptic strength over time [56]. To model raw input sensorial data,
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Figure 3.1: Hierarchical Temporal Memory framework. a) Pyramidal neurons. Pyramidal
neurons have apical, basal, and feedforward zones. b) Hierarchical Temporal Memory with
cortical connections. Arrows represent documented pathways. L4 is the input layer, L2/3
is the output layer. Green arrows (TC) are feedforward pathways, from thalamocortical
(TC) relay cells, to L4, to L2/3, to L6a, and L5. Blue arrows are lateral and feedback
connections. L2/3 is the inference/output layer, L4 is the input layer, L5 is the motor
layer, L6a/6b are attention layers. This illustration has six macro columns and five
minicolumns in each macro column.

HTM employs Sparse Distributed Representations (SDRs) [113] to encode sensory data
biologically inspiredly, where a small percentage of active bits capture semantic meaning.
SDRs ensure robustness to noise and redundancy, mirroring biological encoding mecha-
nisms. Effective SDR design must preserve semantic similarity, maintain deterministic
encoding, enforce a fixed dimensionality, and ensure sparsity across different inputs. In
HTM, SDRs relied on rule-based hashing techniques. However, recent approaches inte-
grate pre-trained CNNs with quantization strategies to encode more complex inputs [83].

HTM enables cortical columns to build independent object models at various hier-
archy levels, with the final layer integrating these representations into a coherent and
robust model. Each column processes sensory inputs independently, later combining their
predictions through lateral connections. For instance, in a configuration where two macro-
columns receive touch inputs from separate sensory sub-matrices, one column may initially
classify an object as a mug. At the same time, the other identifies it as an apple. However,
after multiple interactions and integration at the inference layer, the system converges on
the most probable representation, correctly recognizing the object as a mug, as shown
in Figure 3.2. This process illustrates HTM’s biologically plausible support for sensory
multimodality, allowing different cortical regions to construct models later refined through
cross-column communication.
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macro column 1 macro column 2

Figure 3.2: Example of the independence of cortical columns. Column 1 predicts the
object as a mug, and column 2 independently predicts the object as an apple; then,
through lateral communication between the columns, the model finally concludes it is a
mug.

HTM neurons learn locally whenever a neuron’s expected state does not align with
its current activation. In other words, when sensory input violates a neuron’s prediction,
synaptic permanence values are adjusted accordingly. This mechanism continuously re-
fines neural expectations to match real activation states, enhancing the ability to predict
sensory patterns. As HTM is a framework derived from the reverse engineering of the
brain’s learning circuits, it becomes evident that the concept of a predictive world model
is deeply embedded in neural structures. HTM further demonstrates that even a single
neuron can generate minimal predictions about environmental stimuli, underscoring the
fundamental role of this mechanism in learning [56, 58, 54].

Similarly, Lee et al. [85] proposed a sparse and hierarchical neural network, which
learns via predictive coding strategy model scenes with occlusion. The SNN-PC model
uses spiking neurons with asynchronous communication and adopts a hierarchical or-
ganization with Hebbian learning to generate representations in a biologically plausible
manner. The model separates positive and negative error signals, contributing to greater
biological plausibility, and integrates an exponential adaptive neuronal behavior. The
information processing occurs in both feedforward (generating more abstract representa-
tions) and feedback (adjusting lower-level representations based on predictions made in
higher layers) directions. The main aim of SNN-PC was to demonstrate that structural
principles of neocortical circuits to learn a model of the world are fundamental to image
task generalization. The results demonstrate that the network could reconstruct images
using only 8.5% of the MNIST data and has robustness to noise and partial occlusions,
maintaining accuracy in image reconstruction even under adverse conditions. In partic-
ular, the SNN-PC maintained stable reconstruction performance even with high levels of
Gaussian noise, ranging from 0% to 200%. Even with up to 200% noise, the network
could denoise the images, preserving the integrity of visual information and maintain-
ing essential features of the images. Additionally, the model demonstrated a remarkable
ability to generate hierarchical internal representations of the digits, enabling accurate
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reconstruction of unseen images and the completion of missing parts in partially occluded
images.

Dora et al. [29] proposed a hierarchical neural network trained through the predictive
coding strategy to mimic the feedforward and feedback connectivity of the human neocor-
tex, with the primary objective of investigating whether the created neuronal structure
can replicate properties of biological neural responses when exposed to visual inputs. The
study specifically focused on recognizing behaviors such as orientation and object selec-
tivity without imposing explicit constraints on the training and the network design. The
neurons were interconnected by receptive and projective fields, facilitating communication
between different hierarchical levels and mimicking the visual processing of the biological
system. The model was tested with images of airplanes and cars, and its generalization
ability was evaluated on unseen classes. The results indicated that the reconstruction
quality slightly decreased when starting the process from higher layers. However, the
model could still capture natural image statistics and perform reconstructions that sug-
gest a good generalization ability for unseen categories.

Recently, Yann LeCun [84] proposed a theoretical cognitive architecture model based
on fundamental principles of human brain function. The architecture comprises six in-
terconnected modules that enable continuous learning and adaptation to various environ-
ments and tasks, namely: configurator, perception, world model, actor, critic, cost, and
short-term memory, as shown in Figure 3.3. The configurator acts as a central executive,
responsible for setting the parameters and directing the attention of all modules, adjusting
them to achieve predefined objectives. The perception module processes sensory inputs
and generates a representation of the world’s current state, prioritizing the most relevant
information for the task at hand through an attention mechanism. At the architecture’s
core lies the world model, which learns to represent the environment, estimates missing
information about the external world, and predicts future states analogous to an internal

Figure 3.3: A system architecture for autonomous intelligence by Lecun [84]. The ar-
chitecture comprises the world model, cost, perception, actor, short-term memory, and
configurator modules.
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simulator. This model is hierarchical and modular, learning to construct representations
at multiple levels of abstraction through primarily self-supervised learning.

The critic monitors and evaluates the agent’s behavior, helping to adjust decisions and
actions based on past states and associated costs. The actor receives the current state
generated by the perception module and proposes a sequence of actions to be executed
in the environment, guided by configured goals and feedback from the cost module. The
short-term memory module stores relevant information about past and present states, as
well as the associated costs of these states, facilitating the learning and decision-making
process by providing temporal data for the world model. The cost module measures the
agent’s level of discomfort, considering both predefined costs (hard-coded), such as hunger
or pain, and costs learned over time. The agent aims to minimize these costs, adapting
its behavior based on information from the perception, critic, and world model modules.

The architecture operates in two distinct modes. In Mode-1 or the reactive mode, the
agent interacts with the environment based on current perceptions and executes actions
without explicit reasoning or planning. Sensorimotor interactions continuously update the
world model, with incoming information primarily driving this mode. In contrast, Mode-2,
or the reasoning and planning mode, leverages the predicted states of the world model to
learn about new situations and tasks, enabling greater flexibility and adaptation in more
complex contexts. In this mode, the agent can plan its actions based on future predictions
and explore different solutions to achieve its objectives. The architecture also allows for
integrating or alternating these two modes, enhancing its completeness. One of the most
significant contributions of this approach is how it articulates the construction of the world
model alongside sensorimotor integration. This relationship had been largely unexplored
in the literature. Lecun further emphasizes that the world model is highly flexible due to
its modular and hierarchical structure, allowing its knowledge to be effectively utilized in
reasoning, planning, and adapting to new tasks.

Albus et al. [2] proposed the RCS, a cognitive architecture designed for multi-agent
systems. This architecture features modularity and integrates a world model to enable
agents to perceive, plan, and act in a coordinated manner within complex environments.
A distinctive aspect of RCS is its direct connection between the agent’s constructed world
model and symbolic representations, an area that remains underexplored in existing liter-
ature. This linkage is achieved through attention processes that direct sensors toward rel-
evant regions of the environment and segmentation processes that apply context-sensitive
grouping hypotheses to sensory inputs. These groupings are linked to symbolic data struc-
tures representing hypothesized entities and events. Geometric and temporal attributes of
these groups are computed, and relationships between entities and events are established
and maintained. Finally, entities and events are classified and recognized by comparing
observed attributes with prototypes stored in the world model. This iterative comparison
between world model expectations and sensory observations provides symbolic grounding
for agents, ensuring that symbolic representations are anchored to real-world entities and
events.

McCall et al. [91] proposed incorporating the concept of predictive coding from the
brain into the LIDA cognitive architecture, enabling a more accurate representation of
real-world dynamics. This approach utilizes predictive coding to adjust internal repre-
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sentations of sensory stimuli, thereby minimizing prediction errors and facilitating the
system’s learning and adaptation. Such a methodology offers a robust foundation for
developing more advanced cognitive systems to process information more efficiently and
adaptively. The research emphasizes the importance of integrating cortical learning mech-
anisms with predictive coding models to understand cognitive functions better and en-
hance cognitive architectures’ performance in complex tasks. The results suggest that
combining these methods could significantly advance the creation of cognitive systems
that closely resemble human capabilities.

Some approaches construct world models that predict the next state of the environ-
ment; however, they do not focus on the theoretical foundations or resemble how humans
build these models. These models are developed with an emphasis on predicting future
states of the environment, prioritizing the practical application of predictions to solve
real-world problems across various domains without exploring advanced theoretical as-
pects in the model-building process. We observe that these models exhibit only the
predictive characteristic of the brain; however, they are constructed separately from the
agent’s policy or through random actions executed by the agent, and they do not take
into account aspects of sensorimotor integration, and neocortical biases, as well as sym-
bolic aspects that are theoretically emphasized as necessary for constructing a human-like
world model. In this regard, Wang et al. [150] propose a world model capable of predicting
the next state in driving environments to create a robust platform for the development
and testing of driving policies in simulated environments that accurately reflect the com-
plexities of the real world. Similarly, Wu et al. [154] apply a world model to enable the
simulation of agents within this virtual environment, minimizing contact with real-world
environments in training scenarios where agent-environment interaction is costly. Hafner
et al. [49] constructed a world model using only the visual sensory modality, separate
from the agent’s policy. Bruce et al. [14] introduced Genie, a foundational world model
trained unsupervised using unlabelled Internet videos. This model can generate various
action-controllable virtual worlds based on textual prompts. UniSim is also a unified sim-
ulation platform that integrates world models created from extensive training with video
sequences to allow the simulation of agents in these virtual environments [158].

Similarly, Ge et al. [38] developed WorldGPT, a world model that acquires an un-
derstanding of world dynamics by analyzing millions of videos across various domains.
To enhance its capabilities in specialized scenarios and long-term tasks, WorldGPT is
integrated into a new cognitive architecture that combines memory offloading, knowledge
retrieval, and contextual reflection. This architecture allows WorldGPT to utilize multi-
modal information, memory, and knowledge retrieval modules to create realistic virtual
environments, thereby facilitating the training of virtual agents. To evaluate the perfor-
mance of WorldGPT, WorldNet was developed, a multimodal state transition prediction
benchmark encompassing diverse real-world scenarios. The results demonstrated that
WorldGPT can accurately model state transition patterns, confirming its effectiveness in
understanding and predicting the dynamics of complex scenarios. Moreover, WorldGPT
has shown emerging potential as a world simulator, assisting multimodal agents in gen-
eralizing to unknown domains through the efficient synthesis of multimodal instruction
instances, which have proven to be as reliable as authentic data for fine-tuning purposes.
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This capability expands the applications of WorldGPT across various fields, including the
training of virtual agents, the simulation of complex scenarios, and the development of
more robust and adaptable artificial intelligence systems.

In this section, we highlight our main contribution: building a world model through
the agent’s sensorimotor integration, where an embodied agent actively guides
the learning process. Most current approaches focus primarily on the structural as-
pects of the neocortex and its predictive mechanisms, which operate through error sig-
nals propagated by discrepancies between bottom-up and top-down information. These
models often remain detached from the agent’s corporeal nature and lack exploratory
mechanisms, treating world learning as a passive mapping process. However, the body
is fundamental, as we are embodied agents that use the body to filter and select the
information received from the environment. Additionally, many of the most influential
works adopt a more theoretical perspective, with architectures not exposed to real train-
ing scenarios or realistic environments. A notable example is LeCun’s proposed cognitive
architecture [84], which shares several similarities with our approach but remains a the-
oretical model whose all components have yet to be implemented and validated through
practical experimentation.

3.2 Intrinsic Motivation for Learning Agents
Intrinsic motivation is a very studied topic in the reinforcement learning field, and a
good summary is presented by Barto et al. [11], Aubret et al. [3], Singh et al. [140], and
Hao et al. [52]. Initially, intrinsic motivation in reinforcement learning was framed using
concepts drawn from various psychological theories, such as emotion, surprise, empow-
erment, entropy, and information gain, to create effective intrinsic rewards. These ideas
reflect the innate drive for exploration and learning within agents that do not rely solely
on external rewards. Sequeira et al. [130] explored the hypothesis that affective states
encode vital information influencing an agent’s learning decision-making process. They
proposed that emotional responses can be a form of internal feedback, guiding the agent’s
learning behavior and helping it focus on tasks that could yield valuable information.
This was one of the first attempts to integrate emotion into learning agents, emphasizing
the role of affective states in steering decisions and promoting efficient exploration of the
environment.

Achiam et al. [1] focused on surprise as an intrinsic motivator. They introduced a
novel approach where the agent concurrently learns a probability transition model of
a Markov Decision Process (MDP) and its policy. This approach generates intrinsic
rewards by measuring the agent’s surprise, which is quantified through the Kullback-
Leibler (KL) divergence between the agent’s learned model of state transitions and the true
environment dynamics. Surprise, in this context, indicates how much the agent’s current
model deviates from reality, thus motivating the agent to explore and correct inaccuracies
in its understanding of the environment. The surprise-based model enabled agents to
improve their internal world’s representations continuously, driving their learning process
toward more accurate and efficient predictions.
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Similarly, Mohamed et al. [95] expanded computational intrinsic motivation by incor-
porating empowerment, which is the ability of an agent to control its environment. Their
work combined empowerment with variational autoencoders and convolutional neural net-
works, providing a stochastic optimization framework directly from image pixels. This
method allows agents to maximize their control over the environment by predicting the
outcomes of their actions, making empowerment an effective intrinsic motivator for agents
tasked with complex and dynamic environments. By equipping agents with the capac-
ity to “empower” themselves, the framework encourages agents to explore actions that
increase their ability to influence future states.

Expanding on empowerment, Klyubin et al. [79] proposed a formulation of intrinsic
rewards grounded in entropy. They viewed empowerment as gaining information from the
entropy of actions in a given state. The higher the entropy, the more an agent can influence
its environment, promoting the exploration of actions that maximize this influence. Their
work formalized the relationship between entropy and empowerment, illustrating how an
agent’s intrinsic motivation can be driven by a desire to increase its informational control
over the environment. This theory highlights how entropy and the potential for self-
determined action are potent motivators in an agent’s exploration process, enabling it to
seek out novel situations where it can expand its control over the environment.

Currently, approaches based on prediction error in the feature space have been exten-
sively explored in the literature. Stadie et al. [143] started their research using the feature
space of an autoencoder to measure interesting states to explore. Pathak et al. [105]
proposed an approach based on an inverse dynamics model capable of scaling to high-
dimensional continuous spaces and minimizing the difficulties of predicting directly in
pixels, in addition to ignoring aspects of the environment that do not affect the agent.
The approach showed that making predictions directly from the raw sensory space is un-
feasible because it is challenging to predict pixels directly. Furthermore, some sensory
spaces may be irrelevant to the agent’s task. Agents trained with purely intrinsic rewards
were able to learn task-relevant cognitive behaviors, demonstrating promising results in
sparse environments. Similarly, Taylor et al. [145] proposed an inverse dynamics model
to assess the role of sensory space composition in the performance of an intrinsically mo-
tivated robotic arm that should manipulate objects on a table. Results showed that the
approach works like an “inside-out” curriculum learning. The agent begins to explore
its own body first, and only after acquiring knowledge does it explore its surroundings
more frequently. Such results explain early motor behavior in infants and reinforce the
hypothesis that discovering new patterns drives behavior.

Burda et al. [15] investigated, in various Atari games, how curious agents and different
feature spaces alter the results and performance of intrinsic agents. The results showed
that: 1) generating the intrinsic reward from prediction error directly from the pixel space
is challenging in high-dimensional environments; 2) variational autoencoders (VAEs) are
a good summary of the observation but may contain many irrelevant details; 3) random
features are fixed and insufficient in several scenarios; and 4) prediction error from inverse
dynamic features is currently the best option to guarantee that the learned features contain
essential aspects for the agent. Recently, Pathak et al. [106] presented an approach to
deal with the challenge of stochasticity of environments. The authors used ideas from
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active learning to formulate an approach based on ensemble models.
Houthooft et al. [63] proposed VIME, a curiosity-driven reinforcement learning frame-

work that encourages agents to select actions that maximize information gain regarding
the environment’s dynamics. This approach is grounded in maximizing the information
acquired about the agent’s beliefs concerning the environmental dynamics, employing vari-
ational inference in Bayesian neural networks to implement this strategy. Experimental
results showed that VIME outperformed traditional heuristic-based exploration methods
across continuous control tasks, including those with sparse rewards. VIME successfully
achieved most of the objectives in environments with sparse rewards, demonstrating that
curiosity drove the agent to efficiently explore the environment to obtain sparse rewards,
an endeavor that naive exploration failed to accomplish. The results also indicated that
even in environments with dense rewards, VIME, when combined with the TRPO algo-
rithm, could avoid premature convergence to suboptimal policies. The authors analyzed
the distribution of states visited by naive exploration and exploration utilizing VIME,
revealing that naive exploration resulted in a more condensed visitation pattern. In con-
trast, VIME facilitated broader and more efficient exploration, enabling the agent to reach
its objectives more efficiently.

Dean et al. [25] propose a novel form of curiosity in reinforcement learning agents
inspired by human exploration through multiple senses. Instead of relying on prediction
novelty to guide the agent’s exploration within a single modality, they leverage unprece-
dented multimodal associations to direct the exploratory policy. The authors employ
a discriminator trained to differentiate between true audio-visual pairs and misaligned
pairs. During training, the agent collects trajectories consisting of visual and auditory
feature pairs sequences. The discriminator receives these pairs and learns to predict the
likelihood of alignment between them. Correctly aligned pairs are considered positive,
while misaligned pairs are negative. The agent receives intrinsic rewards based on the
discriminator’s uncertainty regarding true aligned pairs. Suppose the discriminator is un-
certain about the veracity of a pair. In that case, this indicates a novel association that
the agent is unaware of, resulting in a high reward for the agent and encouraging it to
explore states that yield audio-visual associations that it has not yet encountered. Exper-
iments conducted in the Atari [12] and Habitat [126] environments demonstrate that this
method outperforms traditional curiosity approaches in standard tasks and is an effective
strategy to enhance the exploration of reinforcement learning agents.

Kim et al. [77] proposed a curiosity signal called �-Progress to direct better the agent’s
exploration towards complex learnable dynamic activities, preventing the curious agent
from falling into the “white noise” problem when exploring states that cannot be learned.
When using �-Progress, the agent is encouraged to explore areas of the environment that
present significant challenges but are understandable and learnable. The agent builds a
world model through the �-Progress curiosity signal while exploring a room with noisy
agents and static and dynamic objects across the floor. The agent’s observations are
processed by an oracle encoder, which generates a representation oriented to the position
of external agents, objects, and the agent’s orientation. The results showed that �-
Progress significantly improved the curious agent’s sensitivity to noisy elements in the
environment. In an experiment with a room containing noisy agents, �-Progress was the



57

only agent compared to others that did not get stuck exploring the behavior of these
agents during training.

Haber et al. [48] demonstrated that the intrinsically motivated agent exploring the
environment to build a world model learned non-trivial behaviors in navigation explo-
ration. They introduced one ball as a simple agent in a maze. They observed that the
agent initiated random behaviors in training and posteriorly developed a controlled mo-
tion navigating to make more coordinated iterations with objects. The model presents two
neural networks, the world-model which learns to predict the dynamic consequences of the
agent’s actions, while the self-model learns to predict errors in the agent’s world model.
The agent then uses the self-model to choose actions that it believes will adversely chal-
lenge the current state of its world-model. This learning occurs through a self-supervised
emergent process in which new abilities emerge in developmental milestones, as in human
babies. In addition, the agent also learns improved visual encodings in specific tasks, such
as detection, location, object recognition, and the prediction of physical dynamics better
than other state-of-the-art approaches.

Forestier et al. [35] proposed a competence-based approach to skill learning through
agent self-generated goals. This approach is explored in the Intrinsically Motivated Goal
Exploration Processes (IMGEP) architecture, where the agent selects its goals as param-
eterized fitness functions to achieve its objectives. Goals are chosen based on intrinsic
rewards that reflect learning progress, and knowledge acquired from one goal can be
reused to enhance the agent’s performance on others. This approach is an automatic cur-
riculum generator, allowing the agent to discover and refine its skills autonomously. The
experiments demonstrated that a humanoid robot could explore multiple goal spaces with
hundreds of continuous dimensions and distractions. Without specific target goals, the
agent independently auto-determines various goals that are stepping stones for learning
more complex skills, such as nested tool use.

Jaques et al. [68] investigate using social influence as an intrinsic motivation reward
to enhance learning in multi-agent scenarios. They model social influence as a measure of
an agent’s empowerment over another, defining a reward function for each agent that is
weighted by both the environmental task and the influence one agent exerts on the actions
of the other. This approach ensures that agents take action to complete their designated
tasks and are encouraged to select actions that significantly impact their counterparts’
behavior. As a result, collaborative behaviors naturally emerge without the need for
explicit external rewards. Experimental results demonstrate that this approach leads to
more efficient learning and the emergence of collective behaviors. The agents develop more
collaborative strategies that maximize exploration and task-solving efficiency in shared
environments, compared to traditional multi-agent reinforcement learning methods.

In this section, our core distinction lies in the design of a curious, multimodal, and
embodied agent — a combination still rarely explored in the literature. Our approach
is one of the few to explore multimodal curiosity as a mechanism for guiding the agent
toward informative states across three sensory modalities. This capability enables the
agent to engage in a richer and more diverse exploration, allowing us to draw
parallels between its behavior and the learning processes observed in children. Infant
curiosity is inherently multimodal, as babies and young children explore the world by
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actively integrating vision, touch, hearing, and proprioception. However, most intrinsi-
cally motivated agents in the literature still operate in an unimodal fashion, limiting their
exploration to discrete action spaces in simplified and unrealistic environments. In this
context, experiments with an embodied agent are particularly relevant to the field, as the
agent’s physical structure directly influences how curiosity emerges and evolves.

3.3 Task Adaptation in Robot Manipulation
Research on task adaptation in manipulation robotics can be categorized into three main
approaches: (1) utilizing pre-trained representations to enhance the robot’s ability to
adapt to new tasks or domains; (2) utilizing language to facilitate the learning of abstract
concepts and improve the agent’s adaptation to novel contexts, and (3) utilizing data
augmentation techniques. Many works simultaneously explore more than one of these
dimensions, and a limited number of works investigate alternative approaches, such as
multi-task learning and the role of sensory perception in robot adaptation and general-
ization.

Pre-Trained Representations. One of the most significant works on pre-trained
representations was proposed by Nair et al. [98], who investigated whether visual rep-
resentations derived from human videos could be effectively repurposed for robotic ma-
nipulation tasks. They noted that many methods to improve robotic representation rely
solely on domain-specific datasets, while tests are conducted with out-of-domain data.
Believing that training with pre-trained representations from out-of-robotic-domain data
could enhance performance and generalization, they developed R3M, a pre-trained visual
representation using the Ego4D [45] dataset comprising human videos. R3M achieved
a generic representation combining temporal contrastive learning, video-language align-
ment, and an L1 penalty to encourage sparse and compact representations. The resulting
representation was then employed as a frozen perception module for subsequent policy
learning. Tests were conducted across 12 robotic manipulation environments, revealing
that R3M improves task success by approximately 20% comparing training from scratch
and by 10% compared to state-of-the-art visual representations generated by CLIP [114]
and MoCo [104, 59].

The R3M framework enabled the Franka Emika Panda robotic arm to learn manip-
ulation tasks in a real and cluttered apartment setting using only 20 demonstrations,
amounting to approximately 10 minutes of demonstration data. All experiments aimed
to simulate a graduate student performing household tasks in an apartment, such as plac-
ing lettuce in a pot in the kitchen, pushing a mug to a target position on a dining table,
closing a drawer, placing objects in a drawer, and folding a towel. Concurrently, Xiao
et al. [156] investigated using human interaction data to pre-train visual representations
for robotic control. However, their learned representation relied solely on video static
frames and did not incorporate temporal or semantic information. The main contribu-
tion of their approach was demonstrating that using real-world images, such as those
from YouTube videos or egocentric recordings, yields better results than using images
from ImageNet. Singh et al. [141] proposed a similar image pretraining scheme to learn
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representations focusing on semantic and low-level objects’ features. To achieve this,
they utilized VirTex [28], a pretraining method where an image encoder inputs an im-
age captioning decoder. As this task is semantically rich, the encoder can enhance its
visual understanding of the scene by capturing semantic information that can facilitate
subsequent robotic tasks.

Shah et al. [131] proposed RRL to explore how features learned by a pre-trained
ResNet on a large amount of vision data could effectively enhance the performance of RL
agents in control tasks. Instead of training a new network from scratch, RRL harnesses
the capabilities of a ResNet trained on an image classification dataset like ImageNet and
adapts them for the RL task by replacing the last fully connected layer of the ResNet
with a new layer corresponding to the number of possible actions in the RL environment.
Subsequently, the RL agent is trained using the representation encoded by the ResNet as
input to learn the optimal action policy.

Results demonstrated that RRL offers a promising approach by leveraging powerful
pre-trained visual representations and tailoring them to specific control tasks, potentially
leading to significant advancements in reinforcement learning. Tests conducted on the
ADROIT manipulation suite [115] involving complex manipulation tasks such as object
relocation, in-hand manipulation (e.g., pen repositioning), tool use (e.g., hammering a
nail), interacting with human-centric environments (e.g., opening a door), showcased the
strength of this approach. However, the authors believe that one crucial limitation of this
approach is that real-world datasets used to train ResNet features are from human-centric
environments. Although we desire robots to operate in similar environments, there are
still differences in their morphology and modes of operation. Furthermore, ResNet and
similar models acquire features from data primarily composed of static scenes. In contrast,
embodied agents require rich features of dynamic and interactive movements.

Pari et al. [103] introduced a framework for visual imitation that distinctly separates
representation learning from behavioral learning. Initially, the pre-trained ResNet was
tuned offline with data from demonstrations of robotic tasks in order to build the repre-
sentation vector for the states of the environment. Subsequently, the encoder pre-trained
with the task data was used to generate a vector of embeddings for each input; the vec-
tor is then compared via nearest neighbors with embeddings from a broad set of robotic
manipulation demonstrations to find the demonstration more similar. Their algorithm
assumes that demonstrations similar to the system input embedding vector result in sim-
ilar actions. After the k -nearest neighbors are found, the next action is defined as the
weighted average of the actions associated with the k -nearest neighbors. The strength of
this approach is that the behavior learning stage is non-parametric and does not require
extensive training. However, it requires a database with very varied demonstrations. The
results demonstrated that the framework could learn the push, stacking, and door-opening
behaviors. Additionally, it was found that this approach is competitive with end-to-end
behavior cloning methods. Through a series of generalization experiments, this framework
achieved an 80% success rate on doors present in the demonstration dataset and 40% on
opening doors in novel scenes.

Chen et al. [16] explored mid-level image representations to create more invariant
representations. Instead of training directly with raw pixels, they first extracted repre-
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sentations driven by traditional computer vision objectives and used them as observation
inputs for RL. The networks performing this extraction of mid-level visual representations
are trained asynchronously, meaning they can be trained independently and on a different
schedule from RL training. This approach has shown promise in continuous control ma-
nipulation. The results indicated that mid-level visual representations provide a helpful
way to incorporate invariant features for hard tasks, compared to training from scratch.
These representations simplify the learning problem, opening up the possibility of suc-
cessfully training on more challenging problems that would otherwise fail. Additionally,
the representations improve robustness to distribution shifts, both from simulation to the
real world and within the simulation itself.

Ma et al. [86] proposed pre-training visual representations on out-of-domain natural
and human data as an effective solution to acquire a general visual representation for
robotic manipulation and address the challenge of reward specification in the real world.
The authors demonstrate that a general reward model can be derived from a pre-trained
visual representation by treating representation learning from diverse human video data
as an offline goal-conditioned reinforcement learning problem. They propose an innovative
approach called Value-Implicit Pre-training (VIP), which uses reinforcement learning itself
as a pre-training mechanism for reinforcement learning. VIP trains a dual value function
without actions in a self-supervised manner, effectively capturing long-range temporal
dependencies and injecting local temporal smoothness into the representations. Trained
on a large-scale human video dataset, VIP significantly outperforms previous pre-trained
representations in reward-based policy learning paradigms. It achieves success rates of
up to 40% in online visual RL. It enables offline RL with few samples in the real world
across various robot manipulation tasks with just 20 trajectories.

Given the extensive body of work leveraging pre-trained representations from non-
robotic domains to facilitate learning and generalization in subsequent robotic tasks,
Parisi et al. [104] investigated the impact of training methods for pre-trained backbones,
data augmentation, and feature hierarchies on the learning process. Various pre-trained
representations were evaluated, including supervised and self-supervised methods such as
Residual Network [60], Momentum Contrast (Moco) [59], Contrastive Language-Image
Pretraining (CLIP) [114], random features, and from scratch. The pre-trained backbone
models were integrated to represent the environment state. The method involved three
distinct and pre-trained convolutional network blocks, each processing a frame of the
scene, resulting in the representation of the state across three frames. The output vectors
of each convolutional backbone, termed pre-trained visual representations (PVRs), were
concatenated and used as input to the policy network. Subsequently, the policy network
was trained using the behavioral cloning algorithm based on optimal agent trajectories.
Through extensive evaluation across various control domains, including the challenging
DeepMind Control domain for object manipulation, the researchers observed that pre-
trained visual representations could be as competitive as or even superior to other tested
state representations, even when utilizing data outside the robot vision domain.

Despite these results, some authors question the effectiveness of using purely pre-
trained backbones from non-robotic environments as frozen representations. Huo et al. [65]
contend that using pre-trained self-supervised objectives is ineffective in constructing gen-
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eralizable representations for robotic behaviors. According to them, humans generalize
by mastering simple perceptual skills from the real world, such as spatial-temporal un-
derstanding and hand-object contact estimation, which are pivotal for various everyday
tasks [78]. In this way, they proposed a framework called Task Fusion Decoder to learn
robot representations guided human-inspired skills. Their framework incorporates cross-
attention and self-attention mechanisms to learn these simple perceptual skills from the
Ego4D [45] dataset using three representative tasks: object state change classification
(OSCC), point-of-no-return temporal localization (PNR), and state change object detec-
tion (SCOD). Their framework is a multitask learner designed to work with various vision
backbones, such as ResNet [60], ViT [30], R3M [98], and Transformer [148]. Initially, it is
trained jointly with one backbone to learn OSCC, PNR, and SCOD tasks simultaneously.
Posteriorly, one fine-tuning is realized using behavior cloning to robot manipulation tasks
with few demonstrations. The experimental results showed that this fine-tuning strategy
improved robotic performance in manipulation tasks from 2% to 15%, depending on the
task.

Yen-Chen et al. [159] investigated methods for transferring latent features from visual
to policy models. They observed that simply transferring these features results in poor
exploration, as the randomly initialized policy head still explores environments randomly.
To address this issue, they proposed a two-stage learning approach. First, the visual
backbone and a vision head are trained for primitive visual tasks such as edge detection,
object detection, background segmentation, and object center detection. Then, the system
is trained for tasks where the robot has active vision and can manipulate objects. This
approach was inspired by the idea that humans benefit from perceptual visual cues about
the world, such as object structure, to facilitate exploration and learning. The results
show an improvement of over 10% in agent generalization in grasping and suction tasks
when the system first learns any visual cue tasks through passive vision.

Language. Recently, some researchers have explored the integration of language as
a facilitator of robot agents’ adaptation, as it stimulates the learning of more abstract
concepts in the agent’s knowledge representation. Following this, Shridhar et al. [137]
propose the CLIPORT, a language-conditioned imitation learning framework for robot
visual manipulation tasks that blends manipulation skills with reasoning about abstract
concepts through language. The framework integrates the broad semantic understanding
of CLIP [114] with the spatial precision of the Transporter [162] to strengthen the robot
with semantic and spatial pathways for visual manipulation. The CLIPORT is a two-
stream end-to-end framework that can tackle various language-specified tasks on a flat
surface, from packing unknown objects to folding fabrics, without explicit representations
of object poses, instance segmentations, memory, symbolic states, or syntactic structures.
Experiments conducted in simulated and real-world settings demonstrate the efficiency
of the approach in data and few-shot settings, effectively generalizing to seen and unseen
semantic concepts. Furthermore, a multi-task policy is learned for ten simulated and nine
real-world tasks, showing superior or comparable performance to single-task policies.

Silva et al. [138] propose LACON-LEARN, an architecture to enable multi-task learn-
ing agents to understand and execute tasks specified through natural language commands
and attention. This approach uses natural language sequences into semantically task-
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relevant goal embeddings and attention to allow agents to attend to salient components
of language commands to activate task-relevant skills. This architecture learns a policy di-
rectly from task information and activates sub-components of the policy according to goal
embeddings. This model enables robots to learn from language commands and corrective
feedback through imitation learning, achieving significant improvements in zero-shot skill
transfer compared to baselines. The approach sets a new state-of-the-art for zero-shot
task success and few-shot knowledge transfer, showcasing its potential for enabling robots
to quickly adapt to new tasks in real-world scenarios.

Shao et al. [133] proposed Concept2Robot, a framework for learning by demonstration
that leverages large datasets of human videos performing manipulation actions. The
work distinguishes itself from previous research by not solely focusing on lexical concepts
corresponding to words in natural language but specifically addressing the acquisition
of manipulation concepts. The proposed framework involves learning single-task policies
through reinforcement learning. Subsequently, a multi-task policy is trained through
imitation learning to mimic all single-task policies. The framework takes as input a natural
language instruction describing the task along with an RGB image of the initial scene.
These inputs are processed by a semantic context network to merge natural language
information with the robot’s visual perception, resulting in a joint representation of the
desired task. Next, the task representation is fed into a policy network, synthesizing
the robot’s motion. Finally, the robot executes the trajectory using Operational Space
Control [80].

During the initial training phase, manipulation concepts are acquired from human
demonstrations by assessing the degree of similarity between a robot’s execution and that
of a human performing the same task. This evaluation employs an action classifier trained
on videos depicting human activities [43]. The classifier’s outputs serve as rewards for
reinforcement learning, which learns a policy for each task. Subsequently, the system un-
dergoes imitation learning to acquire a multi-task policy based on the single-task policies
learned through reinforcement learning. The outcome is a multi-task policy capable of
receiving a new natural language instruction and an environmental image and executing
the desired task by drawing upon the knowledge gained from previously learned 78 tasks.

Jiang et al. [69] introduced the VisuoMotor Attention (VIMA), a model to improve out-
of-distribution generalization through a concise multimodal representation. The model
utilizes a multimodal prompt to collect linguistic task instructions and frontal and top-
view images of the scene. To construct an object-centered representation, they employ
a pre-trained R-CNN mask to segment objects in the scene. Subsequently, all inputs
are tokenized to self-attention layers in Transformer encoder-decoder architecture. These
choices simplify and concisely represent the environment, facilitating generalization to new
tasks and scenarios. The robot controller is then conditioned on the input’s multimodal
elements and the history of previous iterations. Training is conducted using imitation
learning through the behavioral cloning algorithm, minimizing the negative log-likelihood
of predicted actions compared to actual actions observed in the dataset. To generate the
imitation training loss, they constructed an oracle that generates desired movements for
the robot to learn to imitate.

To assess VIMA’s generalization capability, researchers devised an evaluation protocol
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named VIMA-BENCH, scrutinizing the model’s performance across various generaliza-
tion levels, from random object placements to entirely novel tasks. The findings unveiled
that the imitation-learned policy proficiently extends to fresh scenarios and tasks, with
language playing a pivotal role in this accomplishment, enabling task disentanglement.
Multiple VIMA models were trained with diverse capacities ranging from 2M to 200M pa-
rameters, showcasing VIMA’s superiority over previous methods across all generalization
tiers, even with limited training data. Furthermore, simulation sets, training datasets,
algorithm implementation, and pre-trained model checkpoints were provided to foster
reproducibility and future advancements in the field.

Zhu et al. [164] introduced a novel language-conditioned robotic manipulation frame-
work, RFST, drawing inspiration from the human cognitive theory of fast and slow think-
ing [22]. The aim is to condition policy learning on language and proper switching between
two different systems for tasks involving reasoning in robotic manipulation. This frame-
work categorizes tasks and makes decisions in two systems, depending on the complexity
of user instructions. The RFST includes an instruction discriminator to determine which
system should be activated based on user instructions and a slow-thinking system com-
posed of a vision-language model and policy networks. This model enables the robot to
recognize user intent or perform reasoning tasks. The study involved the construction
of a dataset with real-world trajectories covering a range of actions, from spontaneous
impulses to tasks requiring deliberate contemplation. Experimental results in simula-
tions and real-world scenarios demonstrate that RFST effectively manages complex tasks
requiring intent recognition and reasoning.

Ghosh et al. [146] utilized Transformers and multimodal prompts to construct Octo,
a transformer-based diffusion policy pre-trained on 800 thousand robot trajectories from
the Open X-Embodiment dataset. Octo demonstrates high flexibility, supporting multiple
RGB camera inputs, diverse robot arms, and instructions through language commands or
goal images. The primary focus is enabling effective fine-tuning of Octo for new sensory
inputs, action spaces, and morphologies, using only a small dataset from the target domain
and accessible computational budgets. This effort aims to overcome the limitations of
existing generalist robot policies by providing open-access resources for training, using,
reproducing, and fine-tuning Octo models. The ultimate goal is transforming robotics
learning research, like the widespread adoption of large pre-trained language models in
natural language processing.

Recently, Kalithasan et al. [75] introduced a framework that employs LLMs to en-
hance neuro-symbolic learning, significantly improving the agent’s inductive knowledge
representation of the world. The approach consists of three main steps: sketch, plan, and
generalize. In sketch, a natural language instruction and its corresponding demonstration
are provided. The Task Generator module, composed of GPT-4, translates the instruc-
tion into a programmatic signature specifying the name and parameters of the concept
to be learned. For instance, if the demonstration involves violet cubes on a table, the
generated programmatic signature might resemble FILTER(magenta, cubes). In the plan,
the demonstration’s visual encoder, the programmatic signature, and a library of previous
programs are used via the Monte Carlo Tree Search algorithm to learn the new concept’s
representation. The result is a new program for action execution, which feeds into a neu-
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ral network responsible for generating the agent’s actions. The rewards obtained in the
environment are used as feedback to optimize the algorithm. Finally, in the generalizing
step, the created program is distilled to demonstrate a highly generalized program. These
three steps, facilitated by using an LLM, enable the learning of simple and increasingly
complex symbolic representations.

Multi-Task Learning. Singh et al. [139] introduced an approach for learning gen-
eralizable sensorimotor control policies through multitask learning. The method, named
Generalized Policy Learning with Attentional Classifier (GPLAC), integrates iterative
learning from task demonstrations with passive learning from weakly labeled data classi-
fication. GPLAC employs two models sharing parameters during training: a convolutional
model to predict agent actions and another to classify weakly labeled images into binary
classes. During training, the robot receives both demonstrations on how to grasp a mug
in a specific environment and a set of images collected during robotic interaction in other
environments, where the label indicates only the presence of a mug in the image. The
robot learns a sensorimotor policy applicable in new environments with this information.
A spatial attention layer is utilized to handle irrelevant distractors in the scene, facilitat-
ing generalization in the presence of domain shift. Experiments conducted in simulated
manipulation tasks and with a real robotic manipulator underscore the significance of the
spatial attention mechanism and multitask training with weakly labeled data to achieve
substantial generalization with minimal interaction.

Active Perception. Zaky et al. [160] focused on exploring active perception to en-
hance and refine the environment representations learned by the robot. They conducted
experiments in a robotic manipulation environment comprising two robots. The first
manipulator was tasked with physically manipulating objects arranged on a tray. In
contrast, the second manipulator, referred to as the head, was equipped with a camera
attached to its wrist, enabling it to adjust the camera’s viewpoint. This configuration
with two manipulators allowed the system to perform two tasks simultaneously: phys-
ically manipulating objects and capturing different scene perspectives. The researchers
adopted a multimodal system that combines images and proprioceptive inputs from both
robots into a single representation. The results revealed that when applying the proposed
model to a simulated grasping task with a 6-degree-of-freedom action space, the active
model outperformed its passive fixed-camera counterpart, achieving an 8% improvement
in performance. Additionally, the active model was four times more sample-efficient than
conventional deep Q-learning algorithms.

Data Augmentation. Xie et al. [157] conducted experiments to comprehend the
factors contributing to the generalization difficulty of vision-based robotic manipulators
trained through imitation learning. Utilizing a real robotic manipulator, they explored
over 20 test scenarios with diverse lighting conditions, distractor objects, backgrounds,
table textures, and camera positions. Additionally, they developed 19 simulated tasks
equipped with 11 additional configurable environmental factors. The findings revealed
that most pairs of factors did not exhibit a significant compounded effect on generaliza-
tion performance, indicating that it is not inherently more challenging to generalize to
new table textures and objects simultaneously than to new table textures alone. They
also observed that random crop augmentation is a lightweight approach to enhance a
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generalization across spatial factors (e.g., camera positions) and non-spatial factors (e.g.,
distractor objects and table textures). Furthermore, training the robot with visual data
from tasks outside the domain can dramatically enhance generalization. For instance,
training on tasks such as opening a refrigerator or operating a cereal dispenser can sig-
nificantly improve performance in object selection on a tabletop.

Jang et al. [67] investigated how data collection diversity can enhance a robotic sys-
tem’s ability to learn and generalize across a wide range of real-world tasks. They devel-
oped a flexible imitation learning system capable of learning from expert demonstrations
and interventions to correct the robot’s current policy. Data collection was conducted
using a teleoperation system connected to the robot’s onboard computer, enabling the
operator to control the robot with two manual controllers and real-time third-person vi-
sion. Tasks were performed in an environment containing a table with 6 to 15 household
objects in various random poses. Initially, expert demonstrations were collected for 100
pre-specified tasks, covering nine underlying skills, such as pushing and pick-and-place.
Sequentially, a multi-task policy was learned exclusively from expert data, consisting of
human videos and language commands of the tasks.

During the policy deployment, data collection continued in shared autonomy mode,
where the robot attempted tasks while supervised by a human. The human can intervene
using an override switch to correct the robot’s execution. The resulting dataset included
25,877 robot demonstrations, encompassing demonstrations solely by experts and those
collected during policy deployment iterations. Language commands and demonstration
videos were encoded into task embeddings using separate encoders in the training pro-
cess to train the model. A pre-trained multilingual sentence encoder was employed for
language commands, while a convolutional neural network based on ResNet-18 was used
for videos. These encoders were trained end-to-end with paired human video data and
corresponding robot demonstrations. An auxiliary language regression loss was also intro-
duced to enhance semantic alignment and task generalization. The results demonstrated
that the system could execute 24 unseen manipulation tasks with a success rate of 44%.

Hansen et al. [51] introduced Soft Data Augmentation (SODA), an approach to en-
hance the generalization capability of vision-based reinforcement learning methods. In
contrast to previous approaches that directly learn from augmented data, SODA decou-
ples the data augmentation step from the policy learning process. It exclusively utilizes
non-augmented data for policy learning while conducting auxiliary representation learn-
ing using augmented data. SODA aims to maximize the mutual information between
the latent representations of augmented and non-augmented data, thereby facilitating
generalization. Experimental results demonstrated significant improvements in sampling
efficiency, generalization, and training stability compared to state-of-the-art vision-based
RL methods. The findings underscore that SODA considerably outperforms previous ap-
proaches regarding generalization to visually diverse environments not observed during
training.

Zhan et al. [163] introduced the Framework for Efficient Robotic Manipulation (FERM),
which combines ideas from contrastive pre-training, data augmentation, and demonstra-
tions to enable robotic agents to learn skills directly from pixel inputs in a data-efficient
manner, requiring less than an hour of training. FERM leverages recent advances in un-
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supervised representation learning and data augmentation, which have proven effective in
simulated and video game robotic environments. The approach involves collecting just
ten demonstrations stored in a replay buffer. The convolutional encoder’s weights are
initialized with unsupervised contrastive pre-training on demonstration data. Finally, an
off-policy RL algorithm is trained with augmented images using online data collected
during training and the initial demonstrations. This methodology enabled learning opti-
mal policies in 6 diverse manipulation tasks in just 15-50 minutes of total training time
for each task. The approach also facilitated efficient training on real robotic hardware,
whereas previous related approaches successful in simulation failed to learn robust policies
on real robots.

Hansen et al. [50] identified that data augmentation in reinforcement learning induces
instability in off-policy algorithms. This instability arises primarily due to the indiscrim-
inate application of data augmentation, which results in high-variance Q-targets. More-
over, estimating Q-values exclusively from augmented data leads to over-regularization.
To address these issues, the authors proposed SVEA: Stabilized Q-Value Estimation un-
der Augmentation, a simple and effective framework for data augmentation in off-policy
RL that significantly enhances the stability of Q-value estimation. The method involves
applying data augmentation only to the Q-value estimation of the current state, formulat-
ing a modified Q-objective that optimizes Q-value estimation over both augmented and
unaugmented copies of observations, and optimizing the actor strictly on unaugmented
data. The authors perform an extensive empirical evaluation on several tasks, including
the DeepMind Control Suite and robotic manipulation tasks. The results show that the
proposed method significantly improves the Q-value estimation under a set of strong data
augmentations and achieves sampling efficiency, asymptotic performance, and competi-
tive generalization or better than previous methods in all tasks considered. Furthermore,
the method is scalable to RL with Vision Transformers (ViT), being especially effective
in avoiding overfitting in ViT-based architectures.

In this section, our key distinction lies in developing an agent for manipula-
tion tasks grounded in cutting-edge world model theories while integrating a
bioinspired perspective into the field. While most current approaches rely heavily on
imitation learning — resulting in limited interaction between robots and their physical
environments — our framework challenges this approach by emphasizing the vital need
for iterative engagement with the real world. Existing methods often demand massive
datasets of natural and human environments, which are data-intensive and fail to
address the robot’s embodied experience. Pre-trained encoders, in particular, have not
delivered significant improvements and are hindered by their inability to build effective
representations within the robot’s body. Similarly, data augmentation techniques in the
field are falling short. Moreover, most current research limits itself to simple robotic arms,
further underselling the potential for more sophisticated manipulative behaviors. In con-
trast, our framework embraces the complexity of humanoid robots, adapting
them to their inherent physical constraints while unlocking the full potential of complex,
real-world manipulation.
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Chapter 4

Materials and Methods

This chapter presents the materials and methods employed to develop this work. The
environments used to train our agents will be detailed, including the metrics to evaluate
the quality of the results. We specify the software and hardware technologies used in the
experiments. Also, we present the methodology employed to build our models and reach
our results.

4.1 Materials
This section describes the materials and resources that supported the development of
our experiments. We detail the robotic platform selected for the tasks, the simulation
environments designed for training and evaluation, and the technological infrastructure
utilized.

4.1.1 Simulator and NAO Robot

To validate our work, we chose the NAO humanoid robot [132], as shown in Figure 4.1,
because it mimics humans with similar sensory modalities and a highly articulated torso,
head, arms, and legs. The NAO robot was launched in 2006 by SoftBank Robotics to
interact with humans naturally using its body language, voice, and a wide array of sensors,
including touch, image, and sound. NAO is 58 cm tall, weighs 4.3 kg, and has 25 motorized
joints, providing a wide range of movements and expressions, including the ability to walk,
raise its arms, move its head, and tilt its torso. The joints are classified into four types:
shoulder, elbow, wrist, and hip joints. Each joint has one or more degrees of freedom
(Table 4.1), allowing the NAO to perform various movements precisely. The shoulder and
elbow joints have two degrees of freedom each, allowing it to move its arms in various
positions and orientations. The hip joints are also highly flexible, allowing it to walk
quickly and safely on different surfaces. These features make it ideal for testing in object
manipulation tasks. Moreover, this robot is programmable in various languages, such as
Python and C++, allowing developers to create customized applications and behaviors.

We use the NAO robot in the Coppelia Simulator v4.3 [118], which is a robotics simu-
lator to create and simulate 3D environments for robots, autonomous vehicles, and other
applications. It is based on a distributed control architecture, where each object can
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Figure 4.1: An overview of the NAO humanoid robot. It showcases highly articulated
limbs and torso, enabling natural interaction and movement emulation. Equipped with a
range of sensors, NAO is a versatile platform for research in human-robot interaction and
cognitive robotics.

be individually controlled via C/C++, Python, Java, and Lua. CoppeliaSim presents
an easy and intuitive graphical user interface, as shown in Figure 4.2, simplifying mod-
eling, programming, and simulating robotic applications. It also offers many resources,
including pre-existing robot model libraries, an integrated programming language, and
an external API. Furthermore, CoppeliaSim offers various functionalities that make the
robotic simulation even more realistic. For example, it is possible to simulate sensors
(i.e., cameras, force sensors, proximity sensors) and the behavior of actuators, such as
motors and pneumatic actuators. These features enable roboticists to test and validate
robotic systems before implementing them in physical hardware, saving time and money
in robotics project development. CoppeliaSim is one of the most versatile simulation tools
available today.

To interface between Coppeliasim and our models, we utilized PyRep1, a Python
toolkit developed in 2019 by researchers from the Robotics and Artificial Intelligence
Laboratory (RAIL) at Carnegie Mellon University. PyRep offers an accessible Python
interface tailored for controlling the CoppeliaSim simulation environment, thereby sim-
plifying the development of robot control algorithms. PyRep furnishes a straightforward
programming interface for CoppeliaSim control and interaction with simulated objects,
including robots, sensors, and actuators. Moreover, it facilitates distributed experiment
execution across multiple computers and provides visualization and debugging capabil-
ities. By integrating PyRep with CoppeliaSim, developers can craft highly customized
simulation environments and conduct large-scale robot simulation experiments, replicating
real-world conditions closely. PyRep boasts compatibility with diverse robots and sen-
sors, encompassing wheeled robots, robotic arms, drones, and image and depth sensors.
Furthermore, it supports creating and customizing simulation environments, empowering

1
https://github.com/stepjam/PyRep

https://github.com/stepjam/PyRep
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Figure 4.2: The NAO humanoid robot simulated within the CoppeliaSim environment.
CoppeliaSim provides a simple and friendly graphical interface for testing and develop-
ment, allowing researchers to explore various robotic behaviors and interactions in simu-
lated environments.

the modeling of real-world scenarios and the instantiation of specific robotic setups.
Since its initial release, PyRep has been widely adopted by robotics researchers and

engineers worldwide who appreciate the Python interface’s ease of use and flexibility.
The project is constantly evolving, with new features and improvements regularly added,
making it one of the best options for robotics simulation. In our work, the integration
of PyRep into CoppeliaSim favors agent training using the Pytorch packages provided
by Python to build machine learning models. It allows the parallelization of multiple
environments, facilitating the collection of trajectories for model training.

4.1.2 Experimental Environment

In our experiments, we built a robotic manipulation environment using the NAO hu-
manoid robot, seated on a chair facing a table with simple objects such as cubes, spheres,
and cylinders of varying colors and sizes, as shown in Figure 4.3. The NAO’s arms pos-
sess full access to the tabletop, and within the simulation, we retain the flexibility to
add, remove, or modify any object within the scene. The robot’s legs and torso are fixed
in a default position, while control is exerted over the arms, head, hands, and fingers,
corresponding to 28 joints. Each joint is bounded by maximum and minimum angular
amplitudes, detailed in Table 4.1. The NAO’s hand comprises three fingers, each capable
of movement across three joints, except the thumb, which operates across two joints.

In our experiments, we utilized a variety of sensory inputs to represent the state of
the environment. These inputs are scene images, detected collisions between the robot’s
fingers and objects, and proprioceptive feedback from the robot. The PyRep library
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Table 4.1: Joint limits of the NAO robot.

Joint name Type Motion Range (degrees)
HeadYaw Head joints Head joint twist (Z) -119.5 to 119.5
HeadPitch Head Joints Head joint front and back (Y) -38.5 to 29.5
LShoulderPitch Left Arm Left shoulder joint front and back (Y) -119.5 to 119.5
LShoulderRoll Left Arm Left shoulder joint right and left (Z) -18 to 76
LElbowYaw Left Arm Left shoulder joint twist (X) -119.5 to 119.5
LElbowRoll Left Arm Left elbow joint (Z) -88.5 to -2
LWristYaw Left Arm Left wrist joint (X) -104.5 to 104.5
LHand Left Arm Left hand Open and Close
RShoulderPitch Right Arm Right shoulder joint front and back (Y) -119.5 to 119.5
RShoulderRoll Right Arm Right shoulder joint right and left (Z) -76 to 18
RElbowYaw Right Arm Right shoulder joint twist (X) -119.5 to 119.5
RElbowRoll Right Arm Right elbow joint (Z) 2 to 88.5
RWristYaw Right Arm Right wrist joint (X) -104.5 to 104.5
RHand Right Arm Right hand Open and Close
LHipYawPitch Pelvis Left hip joint twist (Y-Z 45°) -65.62 to 42.44
RHipYawPitch Pelvis Right hip joint twist (Y-Z 45°) -65.62 to 42.44
LHipRoll Left leg Left hip joint right and left (X) -21.74 to 45.29
LHipPitch Left leg Left hip joint front and back (Y) -88.00 to 27.73
LKneePitch Left leg Left knee joint (Y) -5.29 to 121.04
LAnklePitch Left leg Left ankle joint front and back (Y) -68.15 to 52.86
LAnkleRoll Left leg Left ankle joint right and left (X) -22.79 to 44.06
RHipRoll Right leg Right hip joint right and left (X) -45.29 to 21.74
RHipPitch Right leg Right hip joint front and back (Y) -88.00 to 27.73
RKneePitch Right leg Right knee joint (Y) -5.90 to 121.47
RAnklePitch Right leg Right ankle joint front and back (Y) -67.97 to 53.40
RAnkleRoll Right leg Right ankle joint right and left (X) -44.06 to 22.80

facilitated the transmission of all sensory signals and actions to the robot’s joints at each
simulation step. The experimental setup enabled comprehensive training of the robot
for manipulation tasks spanning a wide range of complexities, including grabbing, lifting,
touching, grasping, and assembling.

Figure 4.3: Scene samples from the simulator with different objects, such as cubes, spheres,
and cylinders.
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4.1.3 Metrics

We evaluate our agent performance using the following metrics:

• Mean episodic return: The total accumulated reward obtained by an agent
throughout an episode, averaged across N episodes:

Mean episodic return =
1

N

NX

i=1

TiX

t=0

r
(i)
t (4.1)

where r
(i)
t is the reward at time t in episode i, and Ti is the length of episode i.

• Mean interaction intensity: The total accumulated of tactile interactions (e.g.,
fingertip-object touches) by agent throughout an episode, averaged acrossN episodes:

Mean interaction intensity =
1

N

NX

i=1

TiX

t=0

touch(i)
t (4.2)

where touch(i)
t is 1 if contact occurs at time t in episode i, and 0 otherwise.

• Qualitative metrics: These include visual inspection and human judgment of
emergent behaviors during both training and testing phases. Evaluators may ana-
lyze video frames that display motor coordination or object interactions throughout
the training and testing processes.

• The number of neural network parameters.

We evaluate the accuracy of the agent’s world model prediction using the following metrics:

• Mean Squared Error (MSE) [41]: This metric quantifies the average squared
difference between the predicted values and the ground truth. It emphasizes larger
errors more strongly and is widely used for measuring prediction accuracy in regres-
sion tasks:

MSE =
1

N

NX

i=1

(yi � ŷi)
2 (4.3)

where yi is the ground truth and ŷi is the prediction.

• Sum of Absolute Differences (SAD) [41]: This metric computes the total
absolute deviation between the predicted values and the ground truth. It provides
a direct measure of discrepancy that is less sensitive to outliers than MSE:

SAD =
NX

i=1

|yi � ŷi| (4.4)

where yi is the ground truth and ŷi is the prediction.
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• Structural Similarity Index (SSIM) [151]: This metric evaluates the percep-
tual similarity between two images by comparing local patterns of pixel intensities
normalized for luminance, contrast, and structure. It is beneficial for image predic-
tion tasks due to its alignment with human visual perception:

SSIM (x,y) = [l (x,y)]↵ · [c (x,y)]� · [s (x,y)]� , (4.5)

where l(·), c(·), and s(·) represent the luminance, contrast, and structure similarity
maps between the ground truth x and the prediction y, respectively. The positive
exponents ↵, �, and � control their relative importance in the final similarity score.

• L1 Distance [41]: This metric measures the average absolute difference between
predicted and true values. It is a robust alternative to MSE and is less influenced
by large outliers:

L1 Distance =
1

N

NX

i=1

|yi � ŷi| (4.6)

where yi is the ground truth and ŷi is the prediction.

4.1.4 Software and Libraries

The code was developed in the Python programming language. The main libraries used
are:

• Matplolib - for data ploting;

• Pandas - for data manipulate;

• Numpy - for matrix calculations;

• PyTorch 1.3.1 - for building neural networks;

• Scipy - for mathematical calculations;

• Scikit-Learn - for machine learning.

4.1.5 Hardware Specification

The hardware used for training the models has the following specifications:

• Motherboard: Asus Rog Strix Z790-A Gaming;

• CPU: Intel Core i7-13700KF @ 5.4GHz;

• RAM: Corsair DDR4 1x32 Gb @ 2666MHz;

• GPU: Nvidia RTX 4090 with 24Gb, and Cuda v12.2;

• Disk: Seagate Barracuda 2Tb;

• Operating System: Ubuntu v22.04.
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4.2 Methodology
The methodology adopted in this work is divided into three main stages: (i) simulator
and environment setup; (ii) development, training, and evaluation of the DreamerRL
framework to enable the autonomous development of the agent; and (iii) task adaptation
evaluation.

In the first stage, we defined and configured the training environments within Cop-
peliaSim. Several object manipulation environments were created manually and, in some
cases, using PyRep’s programming capabilities. All environments include an NAO hu-
manoid robot seated in front of a table with objects available for manipulation. The
types, arrangements, and positions of these objects vary depending on the objective of
each experiment, but all were placed within the reachable workspace of the robot’s arms.
We used a variety of objects — including cylinders, cones, cubes, and spheres — with
different colors, sizes, and quantities. The initial joint positions of the robot were set to
the same configuration in all environments to ensure consistency across experiments.

In the second stage, the focus was on developing the DreamerRL framework for creat-
ing a complex robotic agent capable of autonomously developing motor skills. Initially, all
the components of the framework were implemented using simple elements. These com-
ponents were gradually enriched as the experiments progressed to enhance the agent’s
autonomous development. In all experiments conducted in this stage, the agent was
trained using reinforcement learning, specifically employing PPO algorithm, to learn a
world model. In the first experiment, the agent’s task was to understand how the envi-
ronment functions by predicting only the next visual observation. In this case, curiosity
was single-modality, and the agent’s actions were driven solely by the goal of discovering
novel and challenging visual states. The architecture used to build the world model and
generate motor actions consisted of a monolithic and hierarchical structure based on clas-
sical artificial neural networks, such as convolutional neural networks (CNNs) and linear
layers.

In the subsequent experiments, the complexity of the framework components was
progressively increased. The agent’s predictions became multimodal, and the system
incorporated new sensors and actuators, allowing for greater environmental immersion.
Curiosity also evolved into a multimodal mechanism, increasing the complexity of the
policy to be learned. Next, we evaluated how multimodality and the increased sensorimo-
tor complexity influenced the agent’s ability to develop autonomously through qualitative
and quantitative comparisons between the current agent and the baseline agent from the
initial experiments. Furthermore, we drew parallels between the agent’s emergent be-
haviors and early childhood development, discussing observed similarities and differences
throughout training. Finally, following the training phase, we assessed the generalization
capability of the agent’s learned world model by exposing it to novel, previously unseen
environments and analyzing the quality of its predictions in these test environments.

In the final stage, we investigated the agent’s ability to transfer and adapt previously
acquired skills to a new task. This phase focused on testing how well an intrinsically
trained agent initially developed to learn a world model could be adapted to solve a
downstream task with an extrinsic objective. Specifically, we created the CapturingBall
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task, in which the agent had to intercept a moving ball using a predefined extrinsic reward
signal. To evaluate this, we froze the previously trained world model weights and fine-
tuned only a few layers of the policy network to adapt it to the new task. As a baseline
comparison, we trained a separate agent from scratch using a standard extrinsic reward-
driven reinforcement learning approach for the same task. The performance of both agents
was compared using the mean and standard deviation of the extrinsic rewards obtained,
allowing for a robust statistical analysis.

Subsequently, we enhanced the agent’s architecture in task adaptation by integrating
neocortical-inspired structural biases, such as modularity, sparsity, and hierarchical orga-
nization with bidirectional information flow. We first trained a new agent to learn a world
model using this enriched architecture and then transferred its policy to the Capturing-
Ball task through fine-tuning, as done previously. This setup allowed us to investigate
whether such biases could improve the agent’s ability to adapt. Finally, we conducted a
comparative analysis between the fine-tuned modular policy and the monolithic policy.
We evaluated their performance in the new task to assess whether incorporating structural
biases provided measurable benefits regarding adaptability and learning efficiency.

Finally, we discussed the broader implications of our findings in the context of au-
tonomous agent development and adaptability reporting main results.
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Chapter 5

DreamerRL

This chapter presents the DreamerRL, a framework to learn how the world works. The
initial sections present the construction and validation of our approach (Sections 5.1 to
5.2). We detail the initial construction of a baseline model, including the main components
and the integration of curiosity into the learning process. Subsequently, we assess the
impact of multimodality on curiosity and exploration, discussing how different modalities
enrich the curiosity-driven learning process (Section 5.3). Additionally, we incorporate
further sensing aspects to enhance embodiment and facilitate more complex and realistic
interactions with the environment. This evolution will demonstrate how various embodied
elements influence autonomous development and adaptability in our artificial robot agent
(Section 5.3).

Posteriorly, we analyzed if our approach constructed a world’s internal representation
that enabled the robotic agent to learn abstract concepts about how the world functions.
To this end, we conducted generalization tests in novel scenarios distinct from those
encountered during intrinsic training (Section 5.4). Finally, we conduct adaptation tests
by applying our intrinsic agent to a new extrinsic task and comparing its performance
with an identical agent trained exclusively through extrinsic rewards (Section 5.5). In
this point, we also examined modularity, hierarchy with bidirectional flow, and sparsity
biases in the adaptation’s quality.

5.1 The Framework Definition
In designing our framework, we developed a structure inspired by key research on the
theoretical aspects of world models and the elements that enhance their construction,
contributing to human intelligence development [55, 54, 57, 62, 6, 82, 71, 70, 136]. Our
framework is designed to enable autonomous development and task adaptation in robotic
agents through the integration of embodied perception, motivation (intrinsic and ex-
trinsic), neocortical circuit, and sensorimotor integration to construction and continuous
refinement of an internal model of the world world, which allows the agent to predict,
evaluate, and act based on internal representations rather than relying solely on external
supervision. The framework is composed of six interconnected modules (Figure 5.1):

1. Perception Module: The perception module processes raw sensory data from the
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external environment, transforming it into structured representations. An embod-
ied agent provides the raw sensory data with sensory modalities and a body that
is more similar to humans to demonstrate the importance of body restrictions in
building world models and autonomous development. These representations serve
as input for the internal environment, particularly the world model, extrinsic moti-
vation, intrinsic motivation, and critic.

2. Internal Environment (World Model): The internal environment is the cogni-
tive core of the agent and contains the world model, a predictive system responsible
for learning the latent dynamics of the environment and future predictions about
it. By observing sequences of actions and sensory states, the world model enables
the agent to simulate future states of the real world internally. The world model
allows the agent to act reactively and based on imagined consequences of actions.
Importantly, the world model can implement neocortical circuit-inspired structures,
including modularity, hierarchy, and sparsity, providing the architectural flexibility
necessary for adaptive internal representations.

3. Intrinsic Motivation: This module evaluates the agent’s internal states to gen-
erate intrinsic rewards that guide exploration. These rewards can be trainable or
hard-coded and are designed to capture internal drives. Our work focuses only
on curiosity-driven rewards derived from novelty and unpredictability in the world
model’s predictions mainly because these self-supervised signals encourage the agent
to attend to parts of the environment that are still uncertain or poorly understood,
supporting constructing a more complete world model. The curiosity signal is passed
to the actor, shaping general-purpose behaviors unrelated to specific extrinsic goals.
While we emphasize curiosity due to its direct link to discovery, the framework sup-
ports the integration of other intrinsic motivations, such as homeostatic regulation,
affective dynamics, and social drives, to guide behavior across varied contexts.

4. Extrinsic Motivation: In addition to internal motivation, the framework supports
extrinsic motivation through task-specific rewards. These are provided during goal-
directed training phases and are used to evaluate and refine the agent’s performance
in downstream tasks. These rewards influence the actor and the critic, enabling
reinforcement learning in classical RL setups when needed.

5. Actor: The actor is responsible for selecting actions based on latent state represen-
tations from the world model. It learns a policy that maximizes expected returns
from intrinsic and/or extrinsic rewards. In addition to receiving state represen-
tations, the actor sends its chosen actions back to the world model, allowing it
to anticipate future environmental states before real-world execution. The actor
can also incorporate neocortical-inspired circuits, where modular and hierarchical
structures support flexible and transferable policies across tasks.

Critic: The critic estimates how valuable a current state is for the agent’s intrinsic
or extrinsic goals, guiding the actor’s policy updates. Like the world model and
actor, the critic can be designed using neocortical circuit principles.
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Our framework is highly flexible, allowing for the integration and simultaneous use of
multiple intrinsic and extrinsic reward signals to train the agent. The actor and critic
components are trained via reinforcement learning. At the same time, the world model
consists of multiple neural networks, some of which are optimized jointly with the actor
and critic through RL, and others via self-supervised learning using real environmental
observations or internal signals as ground truth. In our implementation, the agent is
initially trained using only intrinsic motivation, specifically a curiosity-based reward. This
phase encourages exploration and leads the agent to develop task-agnostic motor and
cognitive skills while actively building a predictive model of the world. We also investigate
how embodiment and multimodality richness influence autonomous development during
this stage.

Subsequently, the skills acquired during intrinsically motivated exploration are trans-
ferred to downstream tasks that rely solely on extrinsic rewards. Our framework enables
this transfer straightforwardly and intuitively, bridging self-supervised exploration with
goal-directed behavior. Additionally, all trainable components of the system can be im-
plemented using neural architectures inspired by neocortical circuits, thereby enabling a
biologically grounded approximation of predictive coding principles found in the brain.

To implement our modules in a functional structure, we use two neural networks in the
world model, comprising a StateNet and the StatePredictor, as shown in Figure 5.2. At
each time step t, the StateNet processes the environment’s current state st and produces
a latent space representation ht, which is then provided to the actor. Based on this
representation, the actor chooses an action at, while the critic assesses the state value

External
Environment

DreamerRL

Extrinsic
Motivation

Critic**

Perception

Intrinsic
Motivation

World Model

Actor**

Internal Environment

**

** neocortical
circuit

actions

Figure 5.1: The framework consists of six main modules interconnected: (i) Perception,
responsible for processing raw sensory data; (ii) Internal Environment, which includes
the world model to predict future states of the environment and encode internal repre-
sentations; and (iii) Intrinsic Motivation, which computes intrinsic rewards; (iv) Actor,
which selects actions based on the current latent state representation; (v) Critic, which
estimates the value of the current state; and (vi) Extrinsic Motivation, which provides
task-specific rewards when available.
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V (st). Once the action at is selected along with the current state st, they both are
passed to the StatePredictor, which predicts the next environmental observation x̂t+1

before the agent interacts with the environment. The selected action is then executed in
the environment, yielding a new observation xt+1. This new observation, together with
the prediction x̂t+1 are used in the intrinsic motivation module to determine the intrinsic
reward rint and then to train the policy ⇡(a|s).

The StatePredictor generates future predictions, anticipating the next environment’s
observation based on the current state and the action to be executed by the agent. This
prediction generates an internal reward incentivizing the actor to explore new states.
The actor is encouraged to promote exploration and learning of new behaviors as the
StatePredictor is satisfied with its world predictions. This results in a continuous cycle of
discoveries, driving the agent to explore new states in search of knowledge of how the world
works. At the same time, StateNet assimilates a representation of all states observed by
the agent during exploration, which may be valuable in the future. We hypothesize that
this process establishes an iterative cycle of learning and adaptation, where exploration
driven by the agent’s internal objectives promotes the emergence of complex autonomous
behaviors in the environment and more robust and generalizable representations.

Our approach leverages multimodality to enhance sensorimotor integration. The
agent’s input is the state st, comprising a stack of past and present observations, which
may originate from a single modality or multiple modalities. All modules receive st,
processing it through their respective encoders to produce multimodal one-dimensional
feature vectors. The StatePredictor is equipped with multiple prediction modules, each
corresponding to a specific sensory modality and tasked with predicting the subsequent
environmental observation for that modality. The outputs from these modules are con-
catenated to generate the predicted next observation x̂t+1. In multimodal settings, the
cost function incorporates each modality’s predictions to compute the agent’s overall re-
ward. We employ a weighted composition strategy to combine the rewards across different
modalities, promoting a curious policy that prioritizes the relevance and accuracy of pre-
dictions across sensory inputs. This weighted approach to reward composition is designed
to encourage the agent to integrate information from multiple modalities effectively. The
intrinsic reward function is then given by

rint =
NX

i=1

wiLi

⇣
x̂i,t+1,xi,t+1

⌘
, (5.1)

where N is the number of predictor modules present in the StatePredictor, wi is the
weight associated with the i-th predictor module, reflecting its importance in the overall
reward such that

PN
i=1 wi = 1.0, Li is any measure of discrepancy between the prediction

and the actual observation for the i-th sensory modality, and x̂i,t+1 and xi,t+1 represent
the predicted next observation and the actual observation from the environment for the
i-th sensory modality, respectively. Throughout our experiments, we will assess whether
this reward function promotes richer learning from the environment.

Therefore, the intrinsic reward rint is used for learning the actor’s policy. The loss
function L for intrinsic reward is derived from the same loss metric used by the StatePre-
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Figure 5.2: Our framework implementation. The world model contains two neural net-
works: the StateNet and the StatePredictor. At each time step t, the StateNet receives
the current state st from the environment and generates a latent space vector ht, which
is passed to the actor. The actor then selects an action at, while the critic evaluates
the state value V (st) reached by the curiosity-driven policy. When the actor selects the
action at, it is sent along with the current state st to the StatePredictor, which generates
predictions x̂t+1 about the next environmental observation before the agent takes action.
Subsequently, the action is executed in the environment, resulting in a new observation
xt+1. This new observation xt+1, along with the prediction x̂t+1, is used to calculate the
intrinsic reward that adjusts the agent’s curiosity-driven policy. In this way, the predic-
tions made by the StatePredictor guide the agent’s curiosity. When the StatePredictor
makes accurate predictions, the agent’s intrinsic reward decreases, signaling that the en-
vironment is well understood. This process encourages the agent to explore new actions
that challenge the predictions of the StatePredictor, promoting continuous learning and
enhancing the agent’s understanding of the environment.

dictor. The intrinsic reward decreases as the StatePredictor improves its world prediction.
Simultaneously, the actor, critic, and StateNet are updated to maximize the intrinsic re-
ward gain. As the agent learns about the environment, the actor generates novel actions
to surprise the StatePredictor with unpredictable situations, increasing its intrinsic cu-
riosity. This process generates a cycle of discovering complex behaviors for the agent.
While the StatePredictor operates to make the best possible prediction of the next en-
vironmental observation, the actor adjusts to perform actions that maximize the given
intrinsic reward; consequently, our agent employs two types of losses. The StatePredic-
tor modules are parameterized by ✓SP and minimized in a self-supervised manner using
regression loss, as

LSP = min
✓SP

NX

i=1

Li

⇣
x̂i,t+1,xi,t+1

⌘
, (5.2)

where LSP measures the discrepancy between the predicted and actual observation of the
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environment. The objective of this loss is to enable the StatePredictor to learn the best
possible prediction before the agent takes the chosen action. This prediction encompasses
aspects of causality, dynamics, and visual aspects of the environment.

Meanwhile, the StateNet, actor, and critic are trained via reinforcement learning to
maximize the sum of the expected intrinsic rewards as

max
✓SN ,✓C ,✓A

E⇡(st;✓SN ,✓C ,✓A)

"
X

t

rint

#
, (5.3)

where ✓SN, ✓C, and ✓A are the parameters of the StateNet, critic, and actor, respectively.
And rint is the intrinsic reward.

To illustrate the DreamerRL functioning, we present the developed Algorithm 3. This
algorithm outlines the agent’s learning process using PPO. The process begins by initializ-
ing the parameters of the involved networks: StateNet, StatePredictor, Actor, and Critic.
At the beginning of each episode, the agent observes the environment’s initial state and,
at each time step, selects an action based on the policy learned by the actor network. This
action is executed in the environment, resulting in a new observation. Simultaneously,
the intrinsic reward is calculated based on the prediction error of the next observation by
the StatePredictor, reflecting the agent’s curiosity in unexpected situations. At the end of
each episode, state transitions and rewards are stored in a buffer, which is used to update
the policy. During this stage, the StatePredictor’s supervised loss and the policy’s loss
are minimized using PPO, adjusting the actor’s policy and updating the critic network
to improve the state evaluation.

Despite the agent’s being driven by curiosity, the proposed approach converges toward
learning stable policies, as predicted by reinforcement learning theory. This convergence
is feasible for several reasons. First, although the agent operates in a stochastic environ-
ment and follows a novelty-driven policy, the environment contains stationary and stable
elements that can be reliably learned, such as spatial regularities, fixed objects, physical
laws, and motor constraints that remain invariant over time. These components enable
the agent to rapidly construct compact and consistent representations of the environment
within the early training episodes, stabilizing key components of the value function and
the learned policy, and the curiosity signal transitions from acting as a purely exploratory
force to functioning as a selective mechanism, targeting only partially unknown regions of
the environment. As a result, exploratory behavior becomes increasingly focused and ef-
ficient. Additionally, a neural network trained in a self-supervised manner predicts future
environmental states. This neural network is not directly influenced by policy gradients,
being only indirectly shaped by the actions selected by the actor. This decoupling ensures
the stability of latent state learning, even in an adaptive exploratory policy.

5.2 The Intrinsic-motivated Agent
In this section, we conducted experiments in a controlled manipulation environment to
create and validate the intrinsic-motivated agent and experimental setup. The environ-
ment consists of a table with three differently colored cubes (i.e., red, green, and blue)
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Algorithm 3 The DreamerRL’s learning procedure
1: Initialize StateNet parameters ✓SN , StatePredictor parameters ✓SP , actor parameters

✓A, and critic parameters ✓C ;
2: Initialize environment and observation buffer B;
3: for each episode do
4: Reset environment, observe initial state s0;
5: for each time step t do
6: Sample action at from actor ⇡(at|st; ✓A);
7: Given action at, predict the next observation x̂t+1 from StatePredictor;
8: Execute action at, observe the next state st+1 = (xt�1,xt,xt+1) from the envi-

ronment;
9: Compute intrinsic reward rint using the intrinsic loss function LSP ;
10: Store (st, at, rint, st+1) in buffer B;
11: end for
12: Perform PPO update:
13: for each batch from buffer B do
14: Compute advantage estimates At using the Critic;
15: Update Actor by maximizing Lactor = Et

h
⇡(at|st;✓AC)

⇡old(at|st;✓AC)At

i
;

16: Update Critic by minimizing Lcritic = Et [(rint + �V (st+1; ✓C)� V (st; ✓C))2];
17: Update StatePredictor by minimizing LSP =

PN
i=1 Li(x̂i,t+1,xi,t+1);

18: Update ✓SN, ✓SP, ✓A and ✓C using gradient descent;
19: end for
20: end for

and the NAO robot seated in front of it. In this stage, the robot was allowed to freely
explore the objects, relying solely on intrinsic curiosity-based rewards to guide its actions.
Throughout the training process, the robot was driven by uncertainty and the desire to
minimize the gap between its internal predictions and the real-world observations made
during its interactions with the environment.

To track the curiosity level developed by the robot about the objects, we utilized the
average number of touches made by the fingertips across all episodes prior to the PPO
update, called mean interaction intensity. This parameter was essential for computing
the frequency of the robot’s interactions with the cubes, serving as an indirect metric
of its curiosity. As the robot engages more with the objects, this metric is expected to
increase, indicating a rise in the number of touches and manipulations, suggesting that
the robot is increasingly interested in exploring and understanding the properties of the
cubes in front of it. We expect that the robot will initially exhibit few interactions with
the objects, focusing on learning the static and structural aspects of the environment.
Once these aspects have been assimilated, we hypothesize that the robot will begin to
interact more frequently with the cubes on the table, as their dynamic nature has the
potential to stimulate curiosity.

Since our first experiment, DreamerRL has already contained all the theoretical ele-
ments, but they were implemented simply. We will enrich these elements and make them
more complex during the work. Therefore, we implement multimodality through vision
and proprioception signals, intrinsically motivated reinforcement learning with a curious
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reward function from only a single modality, and neocortical circuitry through monolithic
hierarchical artificial neural networks.

Observation and State Space. Our experiment utilizes a multi-modal observational
space composed of images and proprioception signals. Therefore, each observation xt is
given by

xt =
h
p, it, if

i
, (5.4)

and comprises the proprioception vector p, two RGB images of 512⇥ 256 pixels, one seen
from the tabletop at a 90-degree angle it and the other from the front at a 45-degree
angle if . All images are normalized before leaving the environment. We employed z-
normalization on the images by randomly sampling the states 500 times. The mean and
standard deviation were computed to normalize the images. For the joints, the joint space
was mapped to a range of �1 to 1.

From this perspective, the RL state st is composed of 3 consecutive observations of
the scene as

st = [xt,xt�1,xt�2], (5.5)

stacking observations to compose a state is mainly helpful in avoiding perceptual aliasing,
where multiple states may give rise to the same perception. We use skip-frame 1 to ensure
a better representation of the state.

Reward Function. We employed an intrinsic reward function, utilizing the normal-
ized mean squared error (MSE), which quantifies the average squared difference between
predicted and actual values while being minimally sensitive to outliers as

rint = 1� 1

1 +MSE(x̂t+1,xt)
, (5.6)

where rint is normalized between 0 and 1; when the reward is 0, the agent can accurately
predict the environment’s next observation. When it is 1, the agent cannot predict any-
thing correctly about the environment. This reward encourages the agent to strive to
learn all static and dynamic characteristics of the environment, thereby stimulating the
actor to generate actions that elicit increasingly novel and creative situations. In this
work, we normalize the reward between 0 and 1 to facilitate the comparison of different
intrinsic rewards and ensure that all rewards are on the same scale.

Action Space. At each time step t, the action at corresponds to 26 angular joint
values of the NAO robot. These joints pertain to the hands and arms, as the head is
fixed. At this stage, we decided to introduce the minimum possible embodiment and
sensorimotor integration in the agent, aiming to evaluate intrinsic learning in a more iso-
lated manner relative to other variables. Furthermore, including head movements at this
point would significantly increase the experiment’s complexity, complicating the analysis
of the results. This approach allows us to focus our investigation on the effects of curious
intrinsic reward on exploration.

Agent Architecture. In the StatePredictor, we employ a UNET encoder-decoder [120]
to generate predictions of the next frame, as shown in Figure 5.3. Specifically, we utilize
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Figure 5.3: The agent details. The agent uses a UNET encoder-decoder in the StatePre-
dictor to next frame prediction x̂t+1, employing convolutional layers for vision and linear
layers for proprioception and actions. The encoded information zt is passed through the
decoder, producing an image of 128 ⇥ 128 ⇥ 3 pixels. The StateNet utilizes the UNET
encoder and linear layers to process vision and proprioception, with distinct Actor and
Critic networks.

an Encoder_vision(st) with three layers of double convolutional operations with filter
sizes of 9⇥ 32, 32⇥ 64, and 64⇥ 128 to encode the stack of frames from the state st. A
linear layer with 512 units in Encoder_proprioception(st) encodes proprioception, while
another linear layer with 512 units in Encoder_action(at) encodes the action at chosen by
the agent. Subsequently, we concatenate all this information zt and pass it through the
Decoder(zt), which contains three double convolutional layers and two residual upsample
layers, ultimately generating the image of size 128⇥ 128⇥ 3 pixels x̂t+1.

In the StateNet, we employ a UNET encoder to process visual input, a linear layer
with 128 units to process proprioception, and a linear layer with 256 units to process
concatenated information from vision and proprioception. For the Actor, we utilize only
one linear layer with 128 units. Finally, for the Critic, we adopt a structure identical to
the StateNet. Hyperbolic tangent activation functions are employed between all linear
layers. The StateNet does not share parameters with the StatePredictor. The StateNet is
tuned based on iterations of the Actor using the reward derived from the intrinsic curiosity
reward, thus indirectly connecting them through the reward signal. Our agent consists of
4.94 million trainable parameters with a training time of approximately 72 hours.

Training. We trained the agent for 3 ⇥ 106 steps, collecting 12 rollouts with a tra-
jectory length of 32. Considering our moderately small batch size, we adopted a learning
rate of 1 ⇥ 10�4 for all trained networks. Additionally, we refined the policy every 20
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Table 5.1: Hyperparameters employed for training our agent.

Roll-outs 12

Trajectory Length 32

Learning Rate Internal Environment 1⇥ 10�4

Learning Rate Actor 1⇥ 10�4

Learning Rate Critic 1⇥ 10�4

Epochs 20

Discount Factor 0.99

PPO Clip 0.2

Policy Std 0.5

epochs but did not utilize the Generalized Advantage Estimation (GAE) [128] at this
stage. Reward normalization was also employed to reduce variance. Table 5.1 summa-
rizes the parameters used for training. We kept the policy standard deviation fixed during
training at a value of 0.5.

During training, we assessed the agent quantitatively and qualitatively. We evaluated
the behavior of the StatePredictor loss LSP to ensure that the agent is learning world
predictions as expected, as depicted in Figure 5.4 (a). To assess the degree of interaction
with objects, we also computed the mean interaction intensity given to any cube by the
robot’s fingertips. The result is the average sum of collisions with the fingers on all three
cubes, such that each collision between a phalange and a cube counts as one collision
point. If the robot perfectly grasps a cube with both hands, there is a potential to score
16 points, and if this occurs in all collected rollouts, we would have an average score
of 16 per episode. To qualitatively assess the behaviors explored by the agent and the
environmental aspects it learned, we saved a sequence of frames from randomly selected
rollouts at each training iteration. We sampled these rollouts at six distinct steps.

The loss LSP indicates convergence, and the mean interaction intensity, illustrated in
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(b) Mean interaction intensity

Figure 5.4: Our agent’s loss LSP and the mean interaction intensity. In (a), the LSP con-
verged, presenting only a small residual error at the end due to aspects of the environment
that could not be predicted. In (b), we use the mean interaction intensity to evaluate
the agent’s number of iterations with the objects during training. The mean interaction
intensity demonstrates that at the beginning of training, the agent iterated much more
with the objects, and after 1 million steps, these iterations became increasingly sparse.
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Figure 5.4 (b), shows that the agent interacted with objects through some touches but
did not engage in curiosity or much interaction with the objects as we had hypothesized.
From 1.5 million steps onward, the agent’s interactions with the objects became more
sparse. However, the loss LSP shows that the agent learned various aspects of the en-
vironment, especially in the early stages of training, where the loss decreases abruptly.
This behavior suggests that static aspects of the environment were rapidly assimilated,
with a slight remaining error, possibly corresponding to dynamic aspects, such as the
relationship between the robot, its joints, and the surrounding objects. At the begin-
ning of training, the agent perceives the environment as a static gray image, as shown
in Figure 5.5 (a). However, after only 4,000 steps, it learned to identify the shape and
location of static objects, with limited knowledge of the colors and dynamic objects. In
the first five hundred thousand steps, the focus shifts towards improving the perception
of object colors and understanding the dynamics of its arms and hands, which appear to
be incompletely learned, as shown in Figures 5.5 (b) and (c). By around 500,000 steps,
the robot is concentrated on understanding inverse kinematics and the dynamics of its
limbs to interact with dynamic elements of the scene, thereby enhancing prediction and
internal understanding of its own body, as evidenced in Figure 5.5 (d).

Later, towards the end of training, we observed the agent’s focus on understanding its
arms and how this influences scene prediction, still struggling to predict arm and hand
movements accurately. This results in a behavior where the robot moves its hands from
right to left until the end of training. The mean interation intensity plot, depicted in
Figure 5.4 (b), confirms this interpretation, revealing that the number of interactions of
the finger phalanges with objects on the table gradually decreases after approximately 1.5
million steps, as the robot focuses more on understanding how the movement of its arms
affects prediction, given that arm predictions in the upper frame have a more significant
impact on loss. The mean values of the number of touches also indicate that the robot
interacted more with objects at the beginning of training, resulting in learning the world’s
dynamic aspects. However, compared to the maximum possible values, the low interaction
values suggest that the robot has developed only simple interaction behaviors with objects,
such as touching with the fingertips, as illustrated in some frames in Figure 5.6.

The results indicate that the agent is learning a curiosity-driven policy, gradually
acquiring knowledge about various aspects of the environment, though with a progression
slightly different from what was expected. Initially, the agent learns static aspects and
quickly explores the objects’ dynamics, shape, and form. By the end of training, the
agent consistently focuses on investigating its hands and arms through the top camera.
This behavior suggests that once the agent fully learns to predict its body’s movements,
there is more interest in interacting with external objects. This outcome is particularly
intriguing as it mirrors the infants’ early developmental stages, where self-exploration,
especially with the hands, takes precedence over external engagement. Since the agent
has yet to complete the self-exploration phase, as evidenced by its inability to precisely
predict its arms and fingers’ movements, external objects have not become its primary
focus.

To further enhance the agent’s curiosity-driven learning and improve its ability to
complete the self-exploration phase, we hypothesize that modifying the LSP loss function
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from Mean Squared Error (MSE) to the Structural Similarity Index (SSIM) [151] could
lead to higher-quality visual predictions, particularly for the dynamic regions of hands and

(a) Step 0 (b) Step 4,608

(c) Step 468,096 (d) Step 468,121

(e) Step 2,000,000 (f) Step 2,000,028

Figure 5.5: Pairs of episode samples at different training steps demonstrate what the
agent has learned. In each case, the frame on the left represents the scene provided by
the external environment at time t + 1, while the frame on the right shows the agent’s
prediction for the scene at time t. The two frames should be identical when the learning
process is completed. In (a), we observe the agent at step 0 of learning, where it is
evident that the agent’s prediction of the environment is still unclear, leading to a gray
frame prediction. In (b), at step 4,068, the agent has learned the position and shape
of static elements in the scene but struggles to predict dynamic aspects, such as arm
movements correctly. In (c) and (d), the agent successfully differentiates the color of all
elements in the scene and begins interacting with the objects around it. In (d), the agent’s
learning of the effects of its fingers on the objects becomes noticeable, as shown through
its interactions with the green cube. In (e) and (f), the agent still faces challenges in
predicting the movements of its arms, which remains one of its most significant obstacles.
For more details, watch the video.

https://wandb.ai/intrinsic_motivation_rl/CubeSimpleInt/reports/video_intrinsic_pred-25-04-27-19-51-12---VmlldzoxMjUwMzc2Nw?accessToken=wz95qegc09v3gsmhfdmjkgi87487vzn8zfytiav7lunukb4cfkqip1l0rml4lll5
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(a) Step 181,632 (b) Step 1,088,256

(c) Step 1,088,257

Figure 5.6: Pairs of episode samples at different training steps demonstrate the agent
interacting with objects on the table. The agent can make subtle touches on the objects.

fingers. While MSE measures the average of the squared differences between predicted
and actual pixel values, it fails to capture more complex image structure aspects crucial
for accurate predictions in dynamic environments. In contrast, SSIM is more appropriate
for our agent as it evaluates image quality by considering factors beyond mere pixel values,
such as luminance, contrast, and structural details, which are essential for understanding
the overall composition of a scene. Moreover, SSIM has been widely used in contexts
involving high-resolution image prediction and visual odometry, making it a more robust
choice for tasks where preserving structural information is critical. By adopting SSIM,
we expect the agent to achieve more accurate predictions of its body, thus accelerating
its self-exploration learning and enabling it to progress to more advanced exploration in
the external environment.

5.2.1 Visual Predictions with Structural Similarity Index

The Structural Similarity Index (SSIM) [151] is a widely used metric for evaluating image
quality by measuring the perceptual similarity between two images. As an alternative to
the Mean Squared Error (MSE), which often poorly correlates with human perception,
SSIM compares three similarity maps: luminance, contrast, and structure. These maps
are generated from local regions of the input images and assessed using functions like
the Pearson correlation coefficient. The final SSIM metric is derived by combining the
luminance l(x,y), contrast c(x,y), and structure s(x,y) comparison functions, as follows
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l (x,y) =
2µxµy + C1

µ2
x + µ2

y + C1
, (5.7)

c (x,y) =
2�x�y + C2

�2
x + �2

y + C2
, (5.8)

s (x,y) =
�xy + C3

�x�y + C3
, (5.9)

SSIM (x,y) = [l (x,y)]↵ · [c (x,y)]� · [s (x,y)]� , (5.10)

where C1, C2, e C3 =
C2
2 are constants to ensure stability when the denominator becomes

0; µx and µy represents the mean of the given images x and y, respectively; � denotes
the standard deviation of the given images; ↵ > 0, � > 0, � > 0 denote the relative
importance of each of the metrics. We assume ↵ = � = � = 1 in our implementation.
The metric values were adjusted within the range [0, 1], where zero indicates that the two
images are entirely different, and one indicates that the two images are identical.

Since our intrinsic reward function is designed to encourage the agent to explore new
states when the current state is already known, rint is defined as

rint = 1� SSIM(x,y), (5.11)

when rint = 0, the agent can predict the next frame completely; this low reward encourages
the agent to explore new states. Conversely, when rint = 1, the agent has yet to learn the
current state and should persist until it is adequately learned.

For training, we maintained unchanged training parameters and agent configurations
to assess whether SSIM positively affects the agent’s predictions, adhering to the same set-
tings described in Section 5.2. The results shown in Figure 5.7 indicate that the StatePre-
dictor’s loss LSP decreases at a more consistent rate, reaching a residual error similar to
that of the agent using MSE. However, an evolution in the agent’s self-exploration is
noted, as evidenced in Figure 5.7 (b), where interactions with objects became more con-
sistent over time, indicating that the agent has learned to predict relevant aspects of its
body dynamics more efficiently, now being able to explore and discover new interactions
with the dynamic objects in the scene. This progress is analogous to the exploratory
behavior of infants, who, as they become familiar with the movements and limits of their
bodies, begin to interact with their environment more actively and continuously. Posteri-
orly, infants gradually develop motor and perceptual skills, allowing them to explore and
manipulate objects with increasing curiosity and intentionality.

The quantitative results are also qualitatively confirmed. In Figure 5.8 (a), both
agents are very similar. However, as the training progresses, in Figure 5.8 (b), at step
6,528, the SSIM-trained agent demonstrates some understanding of its arm’s movement,
something the MSE-trained agent still cannot predict with the same accuracy at this
time. In Figure 5.8 (c) and (d), the SSIM-trained agent can predict high-quality visual
images, demonstrating accuracy in both the objects’ dynamics and arm movement. In the
tabletop image, the agent precisely predicts the shape and position of its arms, accurately
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(a) MSE and SSIM losses
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(b) Mean interaction intensity

Figure 5.7: Training results of our agent, using the SSIM metric as the LSP loss and as
part of the reward function. In (a), we observe the losses using SSIM and MSE, which
converge with only a small residual error at the end, reflecting aspects of the environment
that could not be predicted. In (b), we see the curve of the agent’s interactions with the
objects on the table; it is evident that the agent using SSIM learned more easily about
various aspects of the environment and its body, resulting in more frequent interactions
with the objects.

estimating their speed. Even in the final training steps, in Figure 5.8 (e) and (f), the
agent maintains high-quality arm predictions, enhancing its ability to interact with the
objects. As a result, the agent reduces the need to frequently touch its arms to the
tabletop camera to understand the dynamics of its upper limbs, a behavior commonly
observed in the agent trained with MSE. Additionally, the agent concludes its training by
actively exploring and throwing the cubes into various positions, indicating an expanded
phase of curiosity compared to the MSE-trained agent. In this phase, it experiments with
new ways of manipulating objects, exploring the scene through more reactive actions,
such as striking the cubes with its hands more frequently and intentionally.

Despite the advances achieved using SSIM, the agent still encounters difficulties in
simultaneously predicting the dynamics and form of the arms in some frames, as shown in
Figure 5.8, (e) and (f). This observation led us to hypothesize that replacing the UNET
with an architecture more specialized for dynamic image generation could yield significant
improvements. The UNET encoder-decoder we implemented was initially designed to
segment and reconstruct static images; however, in our context, it may not be the most
suitable for predicting complex dynamics, such as the articulated motion of upper limbs.

To address this limitation, we propose using Generalized Divisive Normalization (GDN)
[7] between conventional convolutional layers. GDN is widely used in convolutional neural
networks to stabilize and enhance the quality of image generation. In similar tasks, such
as video enhancement and high-fidelity geometric image synthesis, architectures incorpo-
rating GDN have proven effective at capturing spatial details and reducing undesirable
artifacts during prediction [66]. Previous research also indicates that GDN helps regular-
ize neural networks, making them less sensitive to minor variations in input data, which
is an essential factor for improving training stability, image consistency, and generaliza-
tion [7]. We believe incorporating GDN between convolutional layers, alongside the SSIM
loss function already in use, will help stabilize the StatePredictor’s training and enhance
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(a) Step 2,304 (b) Step 6,528

(c) Step 468,096 (d) Step 468,121

(e) Step 2,000,000 (f) Step 2,000,028

Figure 5.8: Comparison of the agent’s predictions using MSE and SSIM across various
training steps. In each alternative, the first pair of images on the left refers to MSE-based
agent results, and the pair on the right refers to SSIM-based agent results. In (a), at
training step 2,304, both agents have already learned the objects’ shape, the grayscale
differences of the environment’s colors, and the shape of their bodies. However, they still
face difficulty in fully predicting the dynamic of their arms. In (b), at step 6,528, the
SSIM-based agent has begun learning the dynamics of the scene elements. The predicted
movement of the green cube still shows a slight shift compared to its actual position, but
the main challenge remains to predict the movements of the arms and hands. In (c) and
(d), the SSIM-based agent has almost perfectly learned some arm movements and provides
an accurate prediction of the objects’ movement on the table, something the MSE-based
agent has not yet achieved. In (e) and (f), the SSIM-based agent exhibits minor difficulties
predicting the fingers and arm shapes. It already provides a more accurate prediction of
the upper limbs compared to the MSE-based agent, which depicts the arms in multiple
movement positions within a single frame. Thus, the SSIM-based agent has improved the
quality of predictions for the image’s dynamic parts.

prediction accuracy, particularly in the regions of the agent’s hands and fingers.

5.2.2 Visual Predictions with Generalized Divisive Normalization

The primary idea behind Generalized Divisive Normalization (GDN) [7] is to transform the
input data such that its distribution becomes closer to a normal distribution or any other
desired distribution. This transformation is achieved by applying a series of operations,
including mean subtraction, division, and a nonlinear activation function, to normalize
the activations of intermediate convolutional layers. In summary, the GDN that we apply
between convolutional layers is

yi =
zi⇣

�i +
P

j �ij|zj|↵ij

⌘"i , (5.12)
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Actor
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StateNet StatePredictor

Conv_2D 9 x 192

Conv_2D 192 x 192

Conv_2D 192 x 192

Linear 78 x 512 Linear 26 x 512

Concatenate

Reshape to 1x32x32

GDN

GDN
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Conv_2D 192 x 64

Concatenate

GDN

Conv_Transp_2D 192 x 192 
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Conv_Transp_2D 192 x 3

Decoder

double_conv_1 3 x 12

double_conv_2 12 x 9

double_conv_3 9 x 3

maxpool

maxpool
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Linear 78 x 128

Tangh + Linear
256 x 128

Tangh + Linear
128 x 256

Concatenate

Conv_Transp_2D 72 x 192

Conv_Transp_2D 192 x 192 

GDN

Critic

Concatenate

Decoder

Figure 5.9: The agent implemented a convolutional encoder-decoder with GDNs in the
StatePredictor to predict the next observation x̂t+1. Then, the encoded information is
passed through the decoder, producing an image of 128⇥ 128⇥ 3 pixels.

where �i defines a normalization base value to ensure stability, �ij regulates the con-
tribution of each input to the normalization of each output, ↵ij adjusts the intensity
of each channel before normalization, and "i modulates the division’s intensity, thereby
controlling the compression of each channel’s response. We set " = 0.5, ↵ij = 2.0, and
�i ⇡ 1.0, while � is a diagonal matrix initialized as

p
�init · I + pedestal, with �init = 0.1,

pedestal = 1.45�11, and I as an identity matrix whose dimension depends on the num-
ber of input features. Both parameters, � and �, undergo reparameterization during the
forward pass, which ensures values remain within defined limits, preventing them from
becoming negative.

In this experiment, we trained the agent using the SSIM metric as the intrinsic reward
and the loss functions for the StatePredictor. We replaced the UNET encoder-decoder in
the StatePredictor with a classic convolutional encoder-decoder structure, composed of
four convolutional layers with GDN between them, using filters of sizes 9⇥192, 192⇥192,
192 ⇥ 192, and 192 ⇥ 64. In the decoder, we included four 2D transposed convolutional
layers, also with inverse GDN between them, with filters of sizes 72 ⇥ 192, 192 ⇥ 192,
192 ⇥ 192, and 192 ⇥ 3. The complete architecture is shown in Figure 5.9. We used
the same training parameters described in Section 5.2 and maintained approximately the
same number of trainable parameters, resulting in an agent with approximately 4.9 million
parameters. The training process takes approximately 72 hours to complete.

Our training results demonstrate that the agent modifications significantly improved
the prediction in dynamic regions such as the arms and hands. Beyond this, these en-



92

hancements also increased the agent’s level of engagement with objects in the scene. These
adjustments enabled more comprehensive self-exploration, allowing the agent’s curiosity
to expand from exploring its arms to interacting with dynamic external elements in the
environment, which are components that offer several opportunities for discoveries, un-
like the fixed table and background. As shown in Figure 5.10 (b), the mean interaction
intensity curve grew almost linearly over time, reflecting the agent’s increasing interest
in exploring objects in novel ways and resulting in extended interaction time with them
compared to previous agents.

The agent’s increased engagement with objects in the environment extends beyond a
simple rise in touch frequency or an improvement in self-exploration; it also signals a sig-
nificant advancement in the agent’s autonomous development. The agent progresses from
simple, random interactions to more intentional and coordinated behaviors (Figure 5.11).
In previous implementations, agents only performed brief, seemingly random touches on
objects. However, in the current agent, we observe a progression that begins with these
initial touches and gradually evolves into more complex actions, such as holding objects
for longer, lifting them, and throwing them upward or off the table in repetitive mo-
tions by the end of training (Figure 5.12). This progression of behaviors suggests that it
is exploring the environment more intentionally to understand the effects of its actions.
Additionally, we observe that the agent’s behavior of throwing objects upward is highly
repetitive, indicating the challenges it faces in imagining the trajectory of objects under
the influence of gravity. As shown in Figure 5.12 (b) and (c), the agent takes considerable
time to predict the details of object trajectories when thrown into the air, and even at
the end of the training, it has not yet perfected its ability to anticipate the trajectories of
all objects.

The current agent’s behavior of throwing cubes into the air and the progress of au-
tonomous development reveal a crucial insight: computational curiosity is a fundamen-
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(a) Intrinsic loss
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(b) Mean interaction intensity

Figure 5.10: Training results of our agent, using the GDN transform in the StatePredictor.
In (a), we observe the LSP loss using SSIM and MSE, which converge with only a small
residual error at the end, reflecting aspects of the environment that could not be predicted.
In (b), we see the curve of the agent’s interactions with the objects on the table; it is
evident that the agent using GDN and SSIM learned more easily about various aspects
of the environment and its body, resulting in more frequent interactions with the objects.
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Figure 5.11: Evolution of the agent’s behaviors over the course of training. We observed
a clear progression toward more intentional interactions. The agent exhibits seemingly
random touches on objects during the first million steps. From this point, between 1 and
2 million steps, the agent begins to lift objects, and between 2 and 3 million steps, it
progresses to throwing them upward. These behaviors suggest increasing complexity and
intentionality in the agent’s exploration of the environment.

tal driver in autonomous development. We have computationally demonstrated, albeit
rudimentary, a curious agent whose exploration cycle closely mirrors early childhood de-
velopment. Our agent evolves within the environment through a progressive curiosity,
intensifying over time and leading to more complex states. Furthermore, in all agents, at
a certain point during training, behavior tends to converge into repetitive motor actions.
In this case, the action of tossing cubes upward resembles exploratory behavior in children
between the ages of 1 and 3, who repeatedly throw objects to the ground, observing them
to investigate physical variables of the world, such as gravity. In this way, we observe that
the predictive accuracy of the StatePredictor limits the motor development potential of
the agent: the greater the ability of this network to accurately anticipate the world’s future
state, the higher the likelihood that the agent will exhibit more complex, goal-directed
manipulative behaviors, highlighting the critical role of imagination and curiosity in the
development of structured actions within the environment.

Our agent could have developed more complex behaviors if it had been able to predict
finger movement accurately. However, we were unable to improve this prediction solely
through architectural modifications. We attempted to adjust the configurations of the
convolutional networks to capture finer details, but unfortunately, this approach was
insufficient. In contrast, improving finger prediction may be linked to incorporating tactile
information into the observation prediction. In addition to predicting the next frame, the
agent could also begin to estimate tactile information, which would help improve the
accuracy of finger movement prediction. However, before proceeding with experiments
along this line, we will first compare all agents tested so far to establish our baseline.

5.2.3 Baseline Agent Selection

In this section, we compare the performance of all developed agents and include the
GDN+MSE agent to provide a comprehensive analysis covering all investigated parameter
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(a) Step 2,000,000 (b) Step 2,999,040

(c) Step 2,999,051

Figure 5.12: Sample pairs from episodes at different training steps of the GDN+SSIM
agent. In each pair, the left image represents the scene provided by the external environ-
ment at time t + 1, while the right image shows the agent’s prediction of this scene at
time t. Under ideal conditions, the two images would be identical. In (a), at the 2-million
steps, the agent has already learned the shapes of static and dynamic elements and the
objects’ colors in the environment. Besides, it can accurately predict its body movements,
including the arms and parts of the hands, which previously posed challenges. At this
stage, the agent focuses on interacting with objects in various ways. In (b) and (c), at the
2.9-million steps, the agent begins to throw objects upward and encounters some difficulty
in fully predicting the downward trajectories of the red and green cubes, suggesting that
the effect of gravity presents a more complex learning challenge. For more details, watch
the video.

combinations. To establish the baseline agent, we evaluated the learned predictions based
on criteria related to the accuracy of environment element predictions, the learning of
body movements and structure, and the emergence of object manipulation behaviors
during exploration. These elements were essential for demonstrating the agent’s motor
development and autonomy. In our analysis, we constructed Table 5.2, highlighting the
topics fully learned by the agents, those in which predictions consistently matched the real
environment across all frames of the last fifty training steps. We also classified partial
learning cases where predictions were only accurate in specific frames. Moreover, we
considered the entire training period for the behavior analysis, as the agent can develop
different behaviors over time.

We identified four primary dimensions as the most relevant for the agent’s learning
process: environmental aspects, including object color, shape, and dynamics; body-related
aspects, encompassing motor control and accurate perception of body shape in resting and

https://wandb.ai/intrinsic_motivation_rl/CubeSimpleInt/runs/CubeSimpleInt_2023_12_17_15_08_12/panel/8h5cpde11/panel/8h5cpde11?nw=nwuseralana
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moving states; and emergent behaviors observed during exploration. Regarding behaviors,
we analyzed the presence of six essentials for performing more complex tasks: touch, hold,
lift, drag, throw, and put. We define touch as any contact made by the agent using finger
phalanges in a single time step t. The hold behavior involves the agent touching the object
using finger phalanges for more than one time step t. The lift behavior involves lifting the
object from the table. Drag refers to transporting an object from one point to another
across the table surface after touching it and holding it for more than one time step t.
In the throw behavior, the agent throws object off the table. Finally, the put behavior
occurs when the agent touches the object, lifts it, keeps it suspended for a moment, and
then places it back at another point on the table.

Comparing the obtained results, we observed that the tested agents, rewards, and
loss functions significantly influenced the agent’s prediction capabilities and exploratory
behavior. As shown in Table 5.2, all agents fully learned object-related features such
as color and shape. Regarding object dynamics, all agents achieved complete learning
except for the GDN agents, whose learning was partial. This classification was not due
to a weaker understanding of dynamics compared to the other tested agents but rather
because these agents were the only ones to explore the z-axis. By throwing the cubes
upward, they occasionally failed to accurately predict the entire trajectory of all objects
during their descent. However, concerning the x and y axes, extensively explored by
the other agents, the GDN agents demonstrated even more precise dynamic trajectory
predictions. From this perspective, they can be considered more complete than the others.

Additionally, the GDN agents were the only ones who exhibited more behaviors dur-
ing exploration. It not only performed touches on the cubes but also lifted them off the
table using both hands and throwing them upward. In contrast, the UNET+MSE agent
was limited to making brief touches with their fingertips. The graph in Figure 5.13 (b)
confirms this behavior, showing that the GDN+SSIM agent displayed the highest level of
object engagement during training, with GDN+MSE in second place. We believe that the
GDN+SSIM agent could develop more complex behaviors and the highest mean interac-
tion intensity because it learned other aspects of the environment and its own body more
efficiently than other agents, suggesting that incorporating the GDN mechanism and the
SSIM metric benefited our approach in multiple ways. All agents faced challenges in pre-
dicting the shape and movement of their fingers. However, using GDN proved beneficial,
as only agents configured with GDN could partially predict the dynamics and shape of

Table 5.2: A summary of the main aspects learned by the agent throughout training
is organized into three primary categories: environmental elements (objects), internal
agent features (body movements and shapes), and exploratory behaviors observed during
object interactions. Items marked with a check (X) represent fully learned aspects, those
indicated with a circle (�) are considered partially learned, while empty items were not
learned during training.

Agent Objects Body Movements Body Shape Behaviors

Colors Shape Dynamics Arms Hands Head Torso Arms Hands Touch Hold Lift Drag Throw Put

UNET+MSE X X X � � X X X X
UNET+SSIM X X X X � X X � X X X
GDN+SSIM X X � X � X X X � X X X X X
GDN+MSE X X � X � X X � � X X X X X
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(a) Intrinsic loss
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(b) Mean interaction intensity

Figure 5.13: Training results of our agents, using the UNET, GDN in the StatePredictor
architecture; and MSE, SSIM in the loss function and reward. In (a), we observe the LSP

losses, which converge to a small residual error, reflecting aspects of the environment that
cannot be predicted. All losses converge to similar residual values. In (b), we see the
curve of the agent’s interactions with the objects on the table; it is evident that the agent
using GDN+SSIM learned more easily about various aspects of the environment and its
body, resulting in more frequent interactions with the objects.

finger phalanges. Conversely, employing the MSE loss, particularly when combined with
the UNET architecture, destabilized the agent’s body predictions. This configuration
tended to blur all images of the top-down view of the table, placing the agent’s arms in
multiple locations simultaneously.

The most frequent behavior exhibited by all agents was touching objects, indicating
that they developed simple environmental exploration skills but still need to acquire ad-
vanced motor manipulation skills. Behaviors such as lifting, throwing, or putting objects
on the table were absent in half of the agents. Only the GDN agents showed evidence of
learning the lift and throw behavior, suggesting an intriguing synergy between GDN and
different losses, providing more training stability and facilitated learning. The agent’s
interactions, as illustrated in Figure 5.13 (b), reveal that the GDN+SSIM agent achieved
the highest number of interactions, resulting in better prediction performance and higher-
quality generated images. However, despite this agent’s ability to develop the throwing
behavior, its execution remains primitive, as it can only perform the action when the cubes
are positioned at the center of the table and throws all cubes simultaneously, lacking the
ability to select a specific cube.

Based on the results obtained, we conclude that the GDN+SSIM agent is the most
suitable candidate for our baseline, making it beneficial to retain all its components in
subsequent sections of this work. Besides, the results confirmed our first hypothesis, which
proposes that a complex robotic agent trained to model the world in an object manipula-
tion environment can accurately predict both the dynamics of the external environment
and its behavior.
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5.3 Enriching the Agent’s World Model
Despite the promising baseline results, the agent was trapped in a local minimum. It
cannot completely predict the fingers’ movement and the objects’ trajectory on the z-axis.
As a result, it repeats the same movements for several steps, encouraged by the curious
reward function that keeps it exploring the same states repeatedly. Without being able
to learn the movements of its fingers properly, the agent spent the last 1 million steps of
training repeating the movement of throwing the cubes upwards and, even so, he reached
the end of the training without being able to completely predict all the effects that this
action cause on objects and its hands. This behavior prevents progress to states requiring
more complex motor coordination, as the curious reward function changes the agent’s
focus only when it can predict the current states appropriately.

The observed behavior suggests that, with the resources used so far, the agent has
reached the limit of its exploration. To check whether these difficulties were related to
the scenario’s complexity, we executed a new training on a scene containing just one cube
on the table. We hypothesized that by reducing the number of elements in the scene, finger
learning would be facilitated, as would object selection, as there would be fewer elements to
predict, allowing the agent to evolve towards more sophisticated manipulation behaviors.
Furthermore, to stimulate the agent’s curiosity regarding the object, we configured the
cube to appear randomly and assigned it one of the colors: red, green, or blue.

To evaluate whether changing the scene impacted the agent’s learning, we kept all
hyperparameters identical to those used in the baseline training. The results indicated
that, at the beginning of training, the agent interacted with the cube simply, making
rapid touches. Over time, it learned to predict the cube’s trajectory on the x and y axes.
However, after mastering these dynamics, the agent gradually lost interest in the object,
interacting with it less and less as training progressed, as shown in Figure 5.14. Despite
mastering the cube’s dynamics, the agent could not lift it to explore the z-axis due to a
lack of dexterity. This task was more manageable in the baseline scenario, where three
cubes on the table allowed the agent to bring them together and lift them using arm
support. Manipulating a single cube, however, required greater precision and dexterity in
hand movements, which the agent had not yet developed.

Simplifying the scene further emphasized the challenges associated with predicting
finger movements. Once the agent had learned the cube’s dynamics and shape, it lost
interest and shifted its focus to exploring its own hands. During the second half of the
training, the agent repeatedly raised their hands, prioritizing the refinement of finger
movement predictions while neglecting interactions with the cube. This behavior demon-
strated that the agent became trapped in a local minimum of curiosity, hindering its
ability to progress toward more complex behaviors. While this strategy led to a modest
improvement in the accuracy of finger movement predictions, it was insufficient for the
agent to develop enhanced hand dexterity or to perform more advanced manipulations
involving the cube.

As Section 5.2.2 mentioned, adjusting the parameters and layers of the model’s CNN
was insufficient to improve these predictions. Rather than the architecture itself, we
believe that using third-person vision and a single sensory modality significantly impacted
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(a) Step 102,528 (b) Step 748,416

(c) Step 1,499,136

Figure 5.14: Sample episode pairs at different training steps. In each pair, the left image
represents the scene provided by the external environment at time t + 1, while the right
image shows the agent’s prediction of this scene at t. Under ideal conditions, the two
images would be identical. In (a), the agent interacts with the cube and has already
learned the environment’s shapes, dynamics, and colors of static and dynamic elements.
However, it can not accurately predict its hands and fingers’ form and movements. In (b),
the agent stops interacting with the object and raises its hands to improve the prediction
of hands and fingers. The difference between the images in (b) and (c) shows that the
prediction quality improves; however, it is still insufficient for the agent to fully learn this
state and advance in exploring more challenging states.

intrinsic curiosity, leading to the observed results. Third-person vision caused the agent
to focus primarily on predicting its own body. However, humans do not learn about
themselves using third-person vision. Instead, they rely on first-person vision, are oriented
toward observing the external environment, and learn about themselves through direct
interactions with their surroundings, exploring how their movements affect the world
around them. Another factor is that with vision as the sole sensory modality, objects
occupy only a small portion of the image pixels compared to the arm movements, directing
curiosity toward other distracting elements.

Vision is an essential sensory modality, providing a broad range and variety of sensory
information for learning dynamics and spatial relationships among elements. However,
vision does not encourage more advanced manipulative actions. In the manipulation
objects scenario, tactile information plays a critical role, as tactile senses are intrinsically
tied to the interest in exploring objects. For example, during infancy, humans instinctively
touch various surfaces to learn to differentiate materials and textures. Incorporating
first-person vision, integrating tactile information, and redefining the reward function
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as a multimodal reward based on visual, tactile, and proprioceptive information could
significantly enhance our agent’s finger predictions and autonomous development. These
changes could enable the development of more sophisticated manipulation behaviors, as
they would make the agent more embodied and immersed in the physical environment.

5.3.1 Multimodal Curiosity

To implement the multimodal curiosity, we start by adding the collision information in
the observation xt as follows

xt =
h
p, c, it, if

i
. (5.13)

As a result, the agent’s observation space now consists of a 16-position collision vector c,
the proprioception vector p, and the top and frontal images it and if . The collision vector
is binary, and each position indicates the occurrence of a collision on one of the finger’s
phalanges. The state st remains represented by a stack of three observations, with one
simulation step skipped.

To decode the multimodal encoder into information for the proprioception and collision
decoders, we add two 1D convolutional layers of 72 ⇥ 12 channels and 12 ⇥ 1, then a
flattened layer, and two linear decoders, one for each sensory modality. The proprioception
decoder has a linear layer with 66 neurons at the input and 26 at the output. The
collision decoder has 66 neurons at the input and 16 at the output, followed by a sigmoidal
activation function that formats the output between continuous values from 0 to 1.

We also modified the intrinsic reward function, which is now a weighted function
composed of three types of rewards, each type corresponding to a sensory modality as

Ri = 1� SSIM(x̂i,t+1,xi,t+1), (5.14)

Rp = 1� 1

1 +MSE(x̂p,t+1,xp,t+1)
, (5.15)

Rc = 1� 1

1 + SAD(x̂c,t+1,xc,t+1)
, (5.16)

where Ri is the negated SSIM structural similarity metric, Rp is the normalized MSE error
between 0 and 1, and Rc is the normalized sum of absolute differences (SAD) between 0
and 1. Then, the intrinsic reward function rint is defined as

rint = wiRi + wpRp + wcRc, (5.17)

where wi, wp, and wc are weights for image, proprioception, and collision reward functions,
respectively. For wi and wp, we assigned 0.25; for wc, we assigned 0.5. We assigned greater
weight to the collision reward function to encourage the agent to explore objects more in-
tensely and reflect aspects of children’s natural curiosity that constantly rubs their tactile
senses on objects to learn about shape, hardness, and texture. Furthermore, we consider
collisions the most challenging modality to learn to predict correctly, as they are binary
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and change drastically between one step and another, making them instantaneous events
and difficult to predict. In addition, there are frequent occlusions, as some phalanges’
collisions are not entirely seen in the images. Regarding the loss functions, we continue
using SSIM for image prediction and employ MSE and L1 metrics for proprioception and
collision predictions, respectively. At this point, we are treating collision prediction as a
regression problem.

We trained the agent in the scene containing three cubes, as switching to a single-cube
scene did not improve the agent’s performance. The results demonstrated that adding
tactile information to the state significantly enhanced the visual prediction of finger shape
and movement, which had been a challenge for the agent in previous training sessions.
This improvement made the learning of the agent’s body elements more comprehensive.
Moreover, the agent could develop more precise and skillful actions with better hand and
finger movement predictions. For instance, it can now grasp an object with its hands and
explore it with its fingers over several steps rather than performing only reflexive touches.
Figure 5.15 illustrates how the agent accurately predicts the movements and shape of its
fingers and investigates objects with its fingers in various ways. We observed that the
agent extensively explores the three cubes individually and collectively. Individually, it
constantly rubs its fingers over the object and rotates it in various ways during manipu-
lation. When interacting with the cubes as a group, the agent moves them from one side
to the other, causing multiple collisions and displacing them across the table. However,
the agent has not yet developed sufficient motor coordination to perform more complex
actions but has acquired the precision and dexterity to grasp objects effectively.

The agent’s behavior during training demonstrated that incorporating multimodal cu-
riosity significantly enhanced its interaction with the cubes. The graph in Figure 5.16 (b)
highlights a marked increase in object exploration compared to the baseline results, which
relied on curiosity driven by a single sensory modality. Furthermore, the results indicate
that the chosen weighting for the reward functions was effective, as the agent continued to
learn both visual and dynamic aspects of the scene while developing a heightened curiosity
to explore the cubes. Integrating the three sensory modalities was crucial in stimulating
and intensifying this interest.

The graph in Figure 5.16 (a) also shows that, at the beginning of the training, the image
loss decreases, indicating that the agent is initially focused on learning to imagine the
visual aspects of the scene. As the training progresses, these visual aspects are assimilated,
and the proprioception and collision losses begin to rise, signaling that the agent is shifting
toward exploring new behaviors and interacting with objects differently. However, by
the end of the training, these two losses had not stabilized, suggesting that the agent
struggled to learn aspects related to these sensory modalities. Due to these challenges,
the agent could likely not lift the cubes or perform more complex behaviors. Instead,
it remained engaged in activities such as experimenting with hand-object collisions and
rotating the cubes, attempting to model the dynamics of collisions without achieving
complete success. At this point, including the first-person view can benefit the agent’s
immersion in the environment. The first-person view can help improve training stability
by reducing occlusions and improving the visualization of the table, objects, and hands.
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(a) Frame 4 (b) Frame 6

(c) Frame 8 (d) Frame 10

(e) Frame 12 (f) Frame 14

Figure 5.15: Sample pairs from the last episode of the agent’s training. In each pair, the
left image represents the scene provided by the external environment at time t+ 1, while
the right image shows the agent’s prediction of this scene at t. Under ideal conditions,
the two images would be identical. The sequence of images illustrates the agent’s ability
to accurately predict the movements and structure of its hands and fingers. Incorporating
the multimodal reward enhanced the dexterity of its movements, enabling the agent to
select a specific object and investigate it slowly with its fingers, handling it with precision.

5.3.2 First-Person Stereo Vision

We expanded the agent’s embodiment by combining multimodal curiosity with first-person
stereo vision. Instead of positioning one camera in front of the table and another above it,
we placed the cameras near the robot’s eyes, each with a 90-degree field of view, and angled
them downward to allow the robot to see the entire table without needing to move its
head. Figure 5.17 shows that each camera captures the same scene from slightly different
perspectives. For simplicity, we chose not to enable the robot’s neck movement, as this
would require controlling two additional actuators and would complicate isolating the
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(a) Decomposed intrinsic losses
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(b) Mean interaction intensity

Figure 5.16: Training results of our agent using the multimodal curiosity reward func-
tion. In (a), the decomposed losses for LSP are shown. The image loss converged to a
small residual error; however, the proprioception and collision losses did not converge as
expected. In (b), the agent’s interaction intensity with the objects on the table is shown.
The agent, guided by the multimodal curiosity reward, shows a higher interest level in
exploring objects.

specific impact of first-person vision on autonomous development and the proprioception
and collision losses.

To ensure a fair comparison between the agents, we maintained all the hyperparameters
used in training the multimodal agent. The results showed that the agent had no difficulty
predicting the first-person images. However, it exhibited a higher residual error than the
purely multimodal agent, as shown in Figure 5.19 (a). The agent successfully learned the
cubes’ dynamics, colors, and shapes, as well as its arms and hands (Figure 5.18). This
increased error is attributed to the slightly more blurred nature of the generated images
and the inherent differences between the images produced by the two agents, which makes
direct comparisons challenging. For instance, in the multimodal agent, the third-person
images contained many static elements, with only a few pixels changing between frames,
corresponding only to the robot’s arms, hands, and object movements. In contrast, the
first-person images in the current agent included a significantly higher number of pixels

(a) Left camera (b) Right camera

Figure 5.17: The robot’s stereo vision, with the neck fixed. Each camera captures the
same scene from slightly different angles. The cameras were adjusted to give the table
and arms a full view without moving the neck.
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changing between frames due to the movement of both the objects and the hands, making
the prediction task much more complex.

Regarding collisions, using first-person cameras proved highly beneficial in reducing
occlusion and enhancing the agent’s ability to predict them. At the beginning of the
exploration, the collision loss started to diverge, reflecting the moment when the agent
began interacting with the cubes more frequently and receiving new inputs, as shown in
Figure 5.19 (c). After approximately 200,000 training steps, the loss began to decrease,
indicating that the agent was learning the dynamics of collisions. This resulted in a
consistent reduction in the loss until it stabilized into a plateau for the remainder of the
training. During this plateau phase, the agent frequently rubbed its hands on the objects
to further minimize the loss. However, it was unsuccessful in maintaining this behavior
until the end of the training process.

During training, we observed that the agent maintained dexterity and precision in
object manipulation, skills previously achieved with the inclusion of multimodality. How-
ever, in this experiment, beyond intensively exploring the cubes with its fingers, the agent
occasionally attempted to explore the z-axis, achieving greater success than all previous
agents. In particular steps, the agent tried to lift one of the cubes but could not hold it
securely between its hands and keep it suspended in the air, causing the cube to slip and

(a) Frame 4 (b) Frame 6

(c) Frame 8

Figure 5.18: Sample pairs from the last episode of the agent’s training. In each pair, the
left image represents the scene provided by the external environment at time t+ 1, while
the right image shows the agent’s prediction of this scene at t. Under ideal conditions,
the two images would be identical. The sequence of images illustrates the agent’s ability
to accurately predict the movements and structure of its hands and fingers. The results
show that the agent accurately learns various aspects of the external environment using
first-person stereo vision.



104

� ���� ���� ���� ���� ���� 	���
�#� "

���

���

��	

��


���

��
��
��
��
""
�"


�!"#���!"�����"��������#�����������""�"��#�

�!"#���!"�����"��������#�����������""�%�!
�$�#�����������#�����������""�"��#�
�$�#�����������#�����������""�%�!

(a) Intrinsic image loss
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(b) Intrinsic proprioception loss
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(c) Intrinsic collisions loss

Figure 5.19: The decomposed losses of our intrinsic agent. In (a), the image loss converged
but exhibited a residual error more significant than the multimodal agent. In (b), the
proprioception loss demonstrates that both agents have similar losses. Finally, in (c),
the collision loss reveals that the first-person vision agent with multimodality experiences
divergent behavior at the beginning of training and then converges to a plateau. In
contrast, the purely multimodal agent shows only a divergent loss.

fall. The agent repeats its attempts without keeping the cube in its hands. We hypoth-
esize that the agent tried to observe the cube more closely to understand the collisions’
dynamics better. The motor coordination required for these attempts likely resulted from
the agent’s partial learning of collision dynamics at the beginning of training.

Regarding proprioception, we observed that the modification to first-person vision did
not significantly alter the proprioception loss. The model still diverges, as shown in Fig-
ure 5.19 (b). We believe this is due to using 1D convolutions to decode the encoder’s
information. The filter sizes were significantly reduced, and the proprioception and colli-
sion information, compared to the image information, are much smaller in scale and may
not be adequately captured during decoding. We hypothesize that adjusting the pro-
prioception and collision decoders could help improve the model’s stability and learning
performance.

Concerning the agent’s autonomous development, we observed significant progress
when transitioning from third-person to first-person vision. This experiment marked
the first instance where the agent attempted to lift the cubes off the table in a more
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structured form rather than relying on reflexive movements. Although the agent has not
yet performed this movement entirely due to the lack of integrated coordination between
its arms and hands, the fact that it partially learned the dynamics of collisions paves
the way for more advanced explorations in this area. Unlocking the neck actuators could
significantly enhance this development, allowing the robot to independently adjust its
vision and enabling a more precise focus on areas of interest in the environment.

Furthermore, increased movement freedom in the neck would directly impact the
agent’s intrinsic curiosity. With the ability to explore different angles and perspectives, the
diversity of visual information received would increase, allowing the agent to choose what
to observe in the environment while eliminating elements that do not capture its interest.
This capability could stimulate intrinsic curiosity, encouraging the agent to develop more
varied exploratory behaviors. As a result, this expansion in interaction capacity could
lead to more creative and strategic behaviors, enhancing the development of motor and
cognitive skills throughout the training process. However, unlocking the neck actuators
also adds complexity to the prediction problem and reinforcement learning, making the
control and training of the agent more challenging.

5.3.3 Active Stereo Vision in First-Person

Implementing active stereo vision required the robot’s neck release. This modification
increases the complexity of the reinforcement learning training as the state transitions
from being fully observable to partially observable. With the freedom to choose where
to look, the robot can no longer perceive the entire environment simultaneously. It only
observes a limited portion of the scene at any given moment. Also, it cannot fully see
its body, relying primarily on its environmental interactions to understand it. Besides,
the unrestricted neck introduces new challenges for the curiosity-driven policy, such as
determining where the agent should direct its gaze at each time step. Now, the agent
must decide where to orient its head and predict what it will see and feel based solely
on the current state and chosen action. This task is particularly challenging, as events
and actions can occur in the environment without the agent visually perceiving them.
These events can influence the agent’s imagined perception of the scene, even if they were
not directly observed. For instance, the agent might look at one part of the scene while
manipulating the cubes with its hands without seeing where the cubes end up. In the
next moment, upon shifting its focus, the cubes may be rolling into the newly observed
region. To accurately predict the scene, the agent must learn to integrate missing sensory
information across modalities and develop sensory synergy, allowing it to coordinate and
utilize its different sensors effectively within the environment.

Another important aspect is that the agent can engage more deeply in curiosity-driven
exploration of the environment. With limited visual perception, the agent perceives the
world from a perspective more like to that of humans, making world prediction more
challenging. Introducing first-person vision with a unrestricted neck creates a scenario
where the agent must handle constant perspective shifts. Even if it accurately predicts
the correct scene elements, any misalignment in rotation or perspective will result in
a significant residual error from the visual modality. This error translates into a high



106

curiosity reward, encouraging the agent to explore the environment further to understand
the relationship between its neck movements and their visual impact on the world. Mainly,
at the beginning of training, when the agent has no prior knowledge of the environment,
they will be even more surprised by frequent expectation violations. Each attempt to
predict its future observations based on partial sensory input will generate inconsistencies,
intensifying its curiosity-driven exploration. Motivated by high curiosity rewards, the
agent may eventually develop more sophisticated manipulation skills than those observed
thus far.

Also, observing the same scene from different perspectives significantly increases the
variety of samples the agent can obtain from the same environmental configuration. Com-
pared to third-person vision and first-person vision with a fixed neck, first-person vision
with a unrestricted neck provides a greater diversity of data, as the agent can observe
the same object or region of the environment from different distances and angles. This
increased diversity of sensory input can enhance the quality of the agent’s learned internal
representations, helping it acquire fundamental concepts about world functioning more
effectively.

To limit the agent’s field of view, we modified the cameras’ opening angle from 90
to 45 degrees, adjusting their configuration to restrict the visible area further. Although
the cameras’ positions were not changed, we tilted their orientations upwards, aiming to
replicate the ideal position that allows the agent to view the table in its entirety only if
it makes the intentional movement of lowering his head. Neck actuators allow two types
of independent movements. The first movement controls the lateral rotation of the head,
allowing it to rotate from right to left within a range that varies from angle -119.5 to angle
119.5 degrees. The second movement regulates the vertical tilt of the head, allowing it to
move upwards and downwards, also in an interval delimited by the angles from -38.5 to
29.5 degrees, encouraging it to make efficient use of its motor actions to explore and map
the surrounding space.

During the experiments, we retained the same hyperparameters as in previous agents,
as detailed in Section 5.2, ensuring a fair and direct comparison. This consistency allowed
observed differences in behavior and learning to be solely attributed to the new visual
constraints and the addition of the movable neck. Additionally, we preserved the baseline
architecture and decoders of the multimodal agent with first-person vision and a fixed
neck (Section 5.3.2). This decision isolated the effects of the movable neck and restricted
field of view on agent performance, enabling an analysis of their impact on environmental
engagement, visual exploration, and sensory integration.

The results obtained during training were quite impressive. Initially, the agent’s be-
havior was chaotic, with the neck actuators rapidly moving the head in random directions,
exploring all angles, while the arms scattered objects in various directions, indicating a
high lack of motor coordination, as shown in Figure 5.20 (a) and (b). Besides, as training
progressed, we observed that the agent began to predict the horizon line, establishing a
clear distinction between the black background and the gray floor (Figure 5.20 (g)). The
agent’s behavior gradually became more coordinated and calm with further training. It
began to focus its vision on specific points in the environment, shifting from randomly
exploring all regions to concentrating its visual resources on particular areas (Figure 5.20
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.20: Results of training the agent with first-person vision and a unrestricted neck.
In each item, the left image represents the scene provided by the external environment
at time t + 1, while the right image shows the agent’s prediction of this scene at time
t. Under ideal conditions, these two images would be identical. Images (a) to (e) show
the exploratory behaviors developed by the agent from step 0 to step 80,000, as observed
through external cameras. Images (f) to (j) show the agent’s visual perception and pre-
diction. At the beginning of training, in (a) and (b), the agent exhibits random and
uncoordinated behaviors, rapidly shifting its gaze across different parts of the environ-
ment in a disorganized manner. In this point, figures (f) and (g) show that the agent
begins to differentiate the floor from the background in its predictions. As training pro-
gresses from (c) to (e), the agent gradually reduces the speed of its head movements and
develops more coordinated motor patterns. It shifts its focus toward objects on the table
while simultaneously exploring them with its hands. As sustained attention emerges and
the agent’s environmental predictions diverge, as demonstrated in (h) to (j), the agent
predicts a white frame to represent your visual understanding of the world. Some images
have a lower resolution due to processing time during training.

(c) to (e)). Moreover, the movements of the head and upper limbs became more coop-
erative, with the arms and head operating in the same space in a coordinated manner.
This behavior indicated the emergence of sustained attention on the objects on the
table, accompanied by an increasing interest in touching and investigating these objects,
demonstrating improved motor coordination and sensory synergy not observed in previous
experiments.

The emergence of sustained attention on objects, coupled with the collaboration be-
tween sensors and actuators, represents a significant milestone in this training, as sus-
tained attention to objects is one of the earliest behaviors to emerge in infants, enabling
them to focus on objects or events in the external world for detailed and meaningful ex-
ploration. Sustained attention is a fundamental skill for lifelong human learning, and in
childhood, it provides the foundation for developing sophisticated motor skills, language,
and causal understanding. It allows children to comprehend causal relationships and un-
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derstand the world, as it enables them to focus on specific stimuli over time, which is
necessary for processing complex information. For instance, understanding that pressing
a button turns on a light requires focusing on the sequence of events over time. If a child
fails to pay attention to an object, they may lose the connection between their action
and the consequence, hindering their ability to create causal connections. Children who
do not develop sustained attention face challenges in motor, cognitive, and social devel-
opment, poor academic performance, and difficulty completing complex tasks [31]. The
emergence of this capability in our agent, entirely autonomously, demonstrates the po-
tential of our framework to replicate essential aspects of human intelligence development
computationally.

The agent’s development of sustained attention and motor coordination to simultane-
ously investigate objects represents a significant milestone, as it indicates that the agent
is learning to identify and prioritize areas of the environment with more significant uncer-
tainty or relevance for interaction. This ability enhances the agent’s adaptability, allowing
it to operate in dynamic and complex contexts. The absence of an extrinsic reward sys-
tem to model attention suggests that curiosity and the drive to reduce uncertainty can
be sufficient for the autonomous development of a complex robotic agent. This behav-
ior parallels what is observed in infant development, where curiosity and the desire for
exploration are key drivers in constructing knowledge and skills. Thus, our framework
facilitates the natural development of complex competencies, drawing closer to human-
like adaptive and creative capacities. It enables the agent to autonomously explore and
interpret its environment, generating behaviors that reflect fundamental aspects of our
cognition.

However, throughout the training, we observed that the agent failed to imagine the
next frame correctly. Instead, it generated white frames representing all the scenes it had
seen, as shown in Figure 5.20 (h) to (j). This behavior suggests a significant difficulty
in modeling the objects in the environment, prompting us to formulate hypotheses to
understand the causes of this behavior and its relationship with attention development.
First, we considered the possibility that the neck movement caused the difficulty in learn-
ing. We questioned whether the development of attention was a strategy employed by
the agent to cope with the complexity of predicting the next frame, which may have led
to a reduction in the speed of neck movements and a focus on the objects on the table
as an attempt to improve its predictions. If this hypothesis is correct, the question arises
whether this attentional behavior would be maintained once the agent learns to predict
the next frame correctly.

Another hypothesis is that the difficulty in prediction may be related to the non-
stationary target distribution. The dynamic environment, now more complex due to the
neck movement, may have resulted in rapid changes in the distributions the model needs
to predict, making it more challenging for the agent to keep up with these variations. We
also considered the possibility that the issue lies in the normalization. Since it was based
on an initial random sampling, it may not have adequately captured the training statistics
with the moving neck. Finally, we hypothesized that the agent’s embodiment might not
be fully optimized. Configurations such as the camera’s field of view and observation
skipping may have interfered with the quality of perception, affecting the agent’s ability
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to accurately model the world’s behavior.
We first tested whether the normalization was functioning correctly to validate our

hypotheses. To do this, we replaced the image generated by the agent with a real image
of the environment, normalized it, and passed it through our denormalizer to reconstruct
the original scene received from the environment. The result perfectly reproduces the
original image, indicating that the statistics used in the normalization and denormaliza-
tion processes were appropriate. Thus, we ruled out the hypothesis that the model or the
normalization was not handling the distribution changes correctly.

Next, we investigated whether the camera aperture settings and the use of frame
skipping were affecting the agent’s perception. We examined the camera aperture and
found the robot had a very limited field of view. Even when it lowered its head to look at
the table, it could not see the sides of its shoulders or torso, which could have hindered its
understanding of the events occurring in the environment. Furthermore, when reviewing
the impact of frame skipping, we observed that this technique was no longer necessary,
with the neck movement unrestrained. With the frame skipping active, the agent lost
track of arm movements. For example, when moving a cube, even if it looked around,
it could no longer see the tips of its hands, creating the impression that the cubes were
moving randomly without the agent’s intervention. This issue was more pronounced at
the beginning of the training, when the neck speed was very high, causing frame skipping
to lead to a loss of causality between the agent’s movements and the changes in the
environment. By removing frame skipping, this information became available, allowing
the agent to perceive its influence on the world when looking around. We also adjusted
the camera aperture, increasing the robot’s viewing area. However, it still had to lower its
head to see the entire table, which caused it to lose sight of the horizon line. Although its
vision remained limited, moving its neck sideways or lowering its head could now see part
of its torso, arms, and shoulders, making its visual perception more like to a human’s.

After implementing these modifications, we retrained the agent, which was then able
to model world events accurately, predicting the shape, color, and dynamics of both ob-
jects and their arms and hands, as well as correctly reproducing the static elements of
the environment, as depicted in Figure 5.21. This result demonstrated that the predic-
tion issue was related to embodiment constraints rather than other previously considered
factors. At the beginning of training, the agent still faced difficulties, generating gray
frames while rapidly exploring all possible angles with its head and arms. As training
progressed, it gradually reduced the speed of its movements and began to distinguish
the separation between the floor and the black background. From this point onward,
it started rendering the objects on the table and its hands, refining this process. After
100,000 steps, its predictions became more precise. By 1 million steps, it could reason-
ably model events involving the cubes, their interactions with the agent, and the static
elements of the environment (Figure 5.21 (c)).

One of the most striking results of this training was the re-emergence of sustained
attention around 100,000 steps, which persisted throughout the entire training process,
even after the agent had learned to predict the images accurately. This result invalidates
the hypothesis that attention emerged solely as a compensatory strategy to overcome
difficulties in modeling scene elements. Instead, it demonstrates that attention arose
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(a) Step 1,000 (b) Step 100,000

(c) Step 1M

Figure 5.21: Results of our second training with the agent in first-person vision and a
unrestricted neck. In each item, the left image represents the scene provided by the
external environment at time t + 1, while the right image shows the agent’s prediction
of this scene at time t. Under ideal conditions, these two images would be identical. In
(a) is a sample of the agent’s prediction at step 1,000 of the training. In (b) is a sample
of the agent’s prediction at step 100,000 of training. In (c) is a sample of the agent’s
prediction after one million training steps. The three figures show the evolution of the
agent’s learning about the environment to perfectly model all the events that occur at the
end of the training. For more details, watch the video.

spontaneously from training, highlighting a fundamental aspect of our approach. The
fact that the agent maintained this attentional behavior throughout the learning process
suggests that our framework naturally promotes the emergence of essential cognitive ele-
ments for autonomous development. More importantly, it indicates that we successfully
replicated, in computational terms, one of the pillars of infant development, which is sus-
tained attention as the foundation for exploration and active learning of the environment.

In human development, sustained attention shapes perceptual and motor skills. In-
fants do not merely look at objects; they track them with their eyes, manipulate them
in various ways, and integrate them into their motor interactions, learning about their
physical properties and spatial relationships. Our agent exhibited an analogous behavior
by developing sustained attention toward objects, accompanied by synergistic coordina-
tion of its different body parts to explore objects’ properties, as illustrated in Figure 5.22.
This integration between perception and action is essential for any agent operating au-
tonomously. The successful computational replication of this phenomenon reinforces the
relevance of our framework. It opens new possibilities for a deeper investigation of the fun-
damental mechanisms underlying cognition and autonomous learning in artificial agents.

https://wandb.ai/intrinsic_motivation_rl/CubeSimpleInt/runs/CubeSimpleInt_2023_12_17_15_08_12/panel/8h5cpde11/panel/8h5cpde11?nw=nwuseralana
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(a) Trajectory A (b) Trajectory B (c) Trajectory C (d) Trajectory D

Figure 5.22: The trajectory of coordinated exploratory behaviors developed by our agent
during training. In (a), the agent investigates objects with its hands, consistently focusing
on them before manipulating and tracking their movement when a green cube escapes
from the hands and falls on the table. In (b), the agent explores its position on the
chair by slowly moving its head from side to side, examining the relationship between its
body and the environment while recognizing its arms and shoulders as active interaction
components. In (c), the agent refines its object manipulation skills, using its elbows as
pivot points on the table to precisely stabilize and inspect a cube. In (d), the agent
lifts cubes by supporting them against its own body while visually tracking them, a
behavior reminiscent of how infants explore objects by bringing them closer to their faces
for detailed examination. For more details, watch the video.

Another important aspect is that, as this agent successfully learned to predict the world
alongside the development of sustained attention, it exhibited greater motor coordination
than all previously tested agents. Through the use of attention, the agent was able to de-

https://wandb.ai/intrinsic_motivation_rl/CubeSimpleInt/runs/CubeSimpleInt_2023_12_17_15_08_12/panel/8h5cpde11/panel/8h5cpde11?nw=nwuseralana
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velop richer and more spontaneously coordinated exploratory actions. The most notable
behaviors observed included visually tracking moving objects, investigating the relation-
ship between the body and the environment, executing well-structured and coordinated
object manipulation actions, and engaging in creative play with objects. After developing
attention, the agent began investigating objects with its hands and consistently looking
at them, then proceeded to manipulate and track them as they moved (Figure 5.22 (a)).
Subsequently, it started slowly moving its head from side to side to explore its position on
the chair, examining the relationship between its body and the surrounding environment
while also directing its gaze toward its arms and shoulders, recognizing them as active
components of the interaction, as shown in Figure 5.22 (b). An even more intriguing
discovery occurred when the agent became aware of the hole in the chair; from that mo-
ment, it began engaging in creative interactions, pushing cubes into the hole and then
closely observing their movement. This behavior suggests an exploratory curiosity like
how infants repeatedly drop objects to observe their fall.

Also, a significant advancement was observed in the quality of object manipulation.
The agent developed several highly coordinated lifting and holding strategies, using its
elbows as pivot points on the table to precisely stabilize and inspect a cube (Figure 5.22
(c)). This type of postural adjustment is crucial for accurate manipulation and demon-
strates motor refinement that emerged without any explicit reward. Additionally, the
agent began attempting to lift cubes by supporting them against its own body while
tracking them visually to observe them up close, a behavior strikingly similar to how in-
fants explore objects by bringing them closer to their faces to examine them from different
angles (Figure 5.22 (d)). This level of coordination between visual perception and ma-
nipulation suggests that the model successfully learned essential elements of autonomous
learning.

From the point of view of embodied cognition theories, the fact that our agent has
developed autonomous head control and can direct its gaze to regions that facilitate the
execution of its tactile actions is a fundamental result. The embodied cognition litera-
ture has always studied the coordination between vision and action, as it reinforces the
hypothesis that the body influences and actively participates in cognitive processes. In
humans, coordination between vision and action is essential in reducing cognitive load,
allowing the brain to avoid excessive processing of disordered sensory information. Thus,
the body organizes and filters information from the environment, delivering aligned mul-
timodal information to avoid brain overload. Similarly, our agent removes the overhead of
internal processing from neural networks by spontaneously using its body as an adaptive
filter that aligns sensory inputs to facilitate predictions about the world. In this process,
the development of more complex manipulation skills emerges.

However, upon analyzing these agent losses, we observed that the StatePredictor still
struggles to predict proprioception information accurately, and the collision loss reaches a
plateau during training and does not fully converge (Figure 5.23 (b) and (c), in red). This
convergence issue may be related to using 1D convolutions with reduced filter sizes. To
test this hypothesis, we replaced the 1D convolutions in the collision and proprioception
decoders with two linear layers of 2,560 neurons, one for each decoder. This modification
significantly improved the stability of proprioception but did not lead to any noticeable
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improvement in learning the collision dynamics, as illustrated by Figure 5.23 (b) and (c),
in blue.

We hypothesized that replacing the regression loss with a classification loss could
lead to more stable collision predictions, as the regressor typically produces intermediate
values, such as 0.7 and 0.8 to indicate collisions, and lower values, between 0.1 and
0.3, to represent the absence of collisions, rarely generating exact binary values, which
results in higher residual errors. Initially, we transformed the collision prediction into
16 binary classifiers using the cross-entropy loss, but the model’s convergence was even
worse than with a regressor (Figure 5.23 (b) and (c), in green). Investigating the cause of
this outcome, we found that collision prediction is an imbalanced classification problem,
as there are more negative (no collision) than positive (collision) examples. Even when
the robot grasps the cubes, not all phalanges make contact; some may remain slightly
distant from the cubes without triggering a collision, which explains why the maximum
values observed in our contact curves always range between 6 and 8 points. To mitigate
the imbalance issue, we tested weighted cross-entropy loss, assigning a weight of 0.7 to
collisions, and focal loss, a variant of cross-entropy designed to handle highly imbalanced
classes. However, the results were very similar across approaches. In all cases, the loss
proved even more unstable than when using a regressor to model collisions, as shown in
Figure 5.23 (b) and (c), in yellow and purple.

A viable alternative would be the introduction of more advanced tactile sensing in
the fingers, such as pressure sensors, reducing the residual error associated with binary
prediction. Furthermore, upon deeper investigation, we identified that occlusion remains
a significant issue, even with the first-person camera and the agent bringing the cubes
closer to its eyes. In many situations, accurately determining which phalanx collided with
the cube is challenging, as the fingers can be positioned beneath the cubes, making them
difficult to observe from the cameras. We observed that the agent could correctly estimate
which hand experienced the collision and, in some cases, even identify the specific finger
involved. However, it struggles to determine the exact phalanx, often predicting that the
collision occurred across the entire hand or finger.

In response to this issue, we reduced the granularity of the collision information by
grouping collisions at the finger level. Specifically, we modified the collision vector from
16 positions to 6, where each position corresponds to a collision occurring in any phalanx
of a given finger. Additionally, we reverted to treating the problem as a regression task.
Despite this modification, the loss performance remained divergent as the agent continued
to confuse collisions between different fingers. This led us to consider modeling collisions at
the hand level to facilitate convergence. However, such a simplification could compromise
the agent’s dexterity, potentially reducing its ability to explore objects in detail and
execute precise movements.

Despite the encountered challenges, we observed that, regardless of the problem formu-
lation (regression or classification), the agent’s autonomous development remained consis-
tent, demonstrating sustained attention and well-coordinated manipulative actions over
the objects in all experiments. Since our main objective is to foster the agent’s autonomous
development, and this objective has been achieved, we decided to postpone the imple-
mentation of more advanced tactile sensors for future experiments. Our hypothesis H2:
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(a) Intrinsic image losses
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(b) Intrinsic proprioception losses
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(c) Intrinsic collisions losses

Figure 5.23: The training results of our agent using different decoders and collision loss
functions. In (a), the LSP image losses are displayed. All losses converged but exhibited a
residual error. In (b), the LSP proprioception losses are shown, where only one alternative
demonstrates convergence. Finally, in (c), the LSP collision losses reveal that our agent
with linear decoders is a better alternative.

“A complex robotic agent autonomously develops structured object manipulation behaviors
driven solely by the motivation to predict the world.”, was partially confirmed, as we ob-
served that the agent developed structured manipulation behaviors exclusively through
intrinsic motivation generated by curiosity, including actions such as touching, holding,
lifting and holding, throwing and dragging, with intense visual attention and highly coor-
dinated behaviors. We consider the hypothesis only partially confirmed because the agent
could not develop even more complex behaviors, such as putting and stacking objects,
among other more structured behaviors. However, it was able to develop valuable skills
for any task, such as head control, sensory alignment between different modalities, and
dexterity and precision in the movements performed.

Additionally, we confirmed the hypothesis H3: The embodiment enables the agent’s
complete immersion in the environment, promoting the autonomous development of more
complex object manipulation skills. The results show that the agent’s full immersion in the
environment was essential for the autonomous development of more sophisticated object
manipulation skills, such as holding and dragging with two hands and lifting and holding
with two hands, interesting games of throwing cubes through the hole in the table to
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observe their behavior, and interesting games with its body. The next step is to investigate
whether, after this immersion, the agent developed generalizable representations of the
environment, allowing it to transfer this knowledge to scenarios distinct from the training
environment.

5.4 Evaluating the World Model Generalization
In this section, we present the results of the generalization tests applied to the world
model learned by the agent. For this test, we used the agent described in Section 5.3.3,
as it demonstrated the most advanced autonomous development in object manipulation.
This agent reached a higher level of varied and enriching interactions with the objects
during training, making it the most suitable for evaluating the generalization compared
to the other agents developed in this work.

Our generalization tests aim to assess whether, during curiosity-driven exploration,
the agent developed a latent representation in its world model based on general patterns
and rules governing the environment or if it merely memorized specific experiences from
the training environment. To this end, we employed the intrinsically trained agent with
collision regression loss and decoder with linear layers described in Section 5.3.3 and
subjected it to novel test scenarios. In these scenarios, we introduced modifications to
the scenes observed by the agent and evaluated its predictions for each sensory modality,
including visual frames, collision vectors with objects, and proprioceptive vectors imagined
by the agent for subsequent time steps. This approach allowed us to investigate how much
the agent can leverage the representation learned in its world model to accurately imagine
new situations, such as interactions with objects featuring colors, shapes, and positions
different from those encountered during training.

Our objective is not for the agent to perfectly predict what will occur in each sensory
modality. While accurate predictions may indicate a deep understanding of environmental
patterns and a high level of generalization, our primary focus is on assessing whether the
agent has abstracted fundamental principles about the environment’s functioning. Specif-
ically, we aim to observe whether, during testing, the agent can make plausible predictions
about central aspects such as the general direction of movement of a new object, the effect
of gravity, the reaction to touching an unfamiliar object, and whether its predicted body
movements and collisions are reasonable. We mainly evaluate whether the agent produces
hallucinations in its predictions, such as imagining three objects when there is only one in
the scene, predicting nonexistent collisions, placing its arms in completely incorrect posi-
tions or angles, or inserting elements absent from the scene. Such hallucinations suggest
that the agent might be merely memorizing the conditions of the training environment
rather than learning generalizable concepts about its operation.

We subjected the agent to five distinct test scenarios (Figure 5.24), organized into
two experimental configurations: one with real-environment feedback, referred to as real-
feedback experiments, and another without this feedback, called autofeedback experiments.
In the real-feedback configuration, the agent receives, at each step, real-environment in-
puts to predict the future environment observation. This configuration aims to assess the
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agent’s short-term generalization capability. In contrast, in the autofeedback configura-
tion, the agent receives real-environment data only during the first five test steps, after
which, from the sixth step, it uses its own predictions to generate future environment state
predictions. This experimental configuration is more challenging than the real-feedback
setup, as the agent relies solely on its internal state to imagine future states of the environ-
ment over medium to long-term intervals. Additionally, it may need to manage potential
distortions from imperfect predictions, where small errors can accumulate over time.

For each configuration, we designed five test cases to evaluate whether the agent is
not merely memorizing the training scene but has learned the fundamental principles
underlying the interactions experienced during intrinsic training, enabling it to generalize
to new scenarios. For instance, if the agent understands that a cube moves when pushed,
it should be able to apply this knowledge to cubes of different colors or other objects with
similar properties. In this context, we developed the following test cases:

• Test 1 (Single Blue Cube): In this test, we created a scene with only one blue
cube on the table, a color familiar to the agent from training. This test aims to
evaluate whether the agent has grasped the concepts related to the dynamics and
outcomes of its interactions with each object independently or whether its ability to
make accurate predictions depends on the presence of other cubes that were part of
the training environment. This assessment will help determine whether the agent
has developed an individualized understanding of each object or if its predictions
will hallucinate the presence of absent objects.

• Test 2 (Single Orange Cube): In this test, the scene contains only one orange
cube, a color the agent previously observed during training, but only on parts of its
arms, never on objects. This test aims to evaluate whether the agent can decouple
the information about color from the behavior of objects. We aim to determine
whether the agent will treat the orange cube in its predictions as part of its own body
or if it will correctly predict the cube’s dynamics as an external object. Another
possibility we examine is whether, upon recognizing the orange cube, the agent
attempts to assign colors previously associated with cubes during training, as the
red cube encountered during training has a color somewhat closer to the orange
cube seen during testing. It is also possible that the agent hallucinates the presence
of all three cubes initially observed in the training scene.

• Test 3 (Multiple Cubes): In this test, the scenes contain more than three cubes,
ranging from four to ten, arranged in a row on the table. All colors used correspond
to those previously encountered by the agent during training and are randomly
assigned for each test configuration. This experiment evaluates the agent’s ability
to extrapolate its environment representation to scenarios with more significant
visual and interactive complexity. With an increased number of cubes, the agent
faces the challenge of predicting interactions among multiple objects, adapting its
world model to a more dynamic scenario with potential additional collisions and
new movement dynamics arising from the presence of more objects.
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• Test 4 (Different Object Shapes): This test evaluates the agent’s adaptation to
familiar objects with slightly different shapes, challenging its understanding of ge-
ometry and interactions. The objective is to assess the flexibility of the agent’s world
model in handling minor variations in object geometry. The presence of slightly al-
tered shapes tests whether the agent understands physical properties, such as the
effect of gravity or the impact of touch, even when objects do not conform precisely
to the geometry seen during training. Suppose the agent can correctly predict inter-
actions with objects of new shapes. In that case, it demonstrates a strong capacity
for abstraction and generalization regarding object structure, indicating that it has
internalized general rules about the environment’s functioning.

• Test 5 (No Objects): In this test, the agent is exposed to a scene identical
to the training environment but without any objects on the table. This test is
particularly insightful as it aims to determine whether the agent anticipates the
presence of objects in the scene or can adapt its predictions to an empty scenario. If
the agent hallucinates the presence of objects in an environment where none exist,
it suggests a direct dependence on the context of the training environment. In an
object-free scenario, any movement the agent imagines should be based exclusively
on its dynamics and proprioception, allowing us to evaluate whether it can predict
its movements without external influences. Moreover, this situation is especially
relevant because, in an empty environment, a human would unlikely imagine the
presence of nonexistent objects, as this would contradict the rules of reality and
common sense.

The quantitative results of all the tests are presented in Table 5.3. Tests 1 and 2
were executed 100 times each, with the cube’s position randomly altered on the table for
each iteration. For Test 3, involving multiple cubes, we also conducted 100 iterations,
incrementally adding one cube to the table every 10 executions. Within each group of
10 iterations with the same number of cubes, the colors were randomly assigned while
maintaining the same spatial positions. In Test 4, we performed 100 iterations as well,
randomly placing three different objects on the table for each run. The object types were
selected randomly, including cylinders, cones, spheres, and cuboids of fixed dimensions.
For Test 5, we replicated the same training scene without any objects on the table,
executing it 100 times. We perform 100 iterations for all tests to ensure a robust and
statistically significant evaluation of the agent’s performance. Many iterations provide

(a) Test 1 (b) Test 2 (c) Test 3 (d) Test 4 (e) Test 5

Figure 5.24: Test scenarios for the intrinsic agent.



118

a more reliable estimate of the agent’s generalization ability. To quantitatively evaluate
generalization, we employed L1 distance, MSE, and SSIM to measure hallucinations in the
collision vector, proprioception, and vision, respectively. To understand the performance
drop in generalization, we conducted the same five tests in the training environment,
collecting the same metrics and thus enabling a direct comparison between the training
and testing scenarios.

The results presented in Table 5.3 show that, in all experiments with the real-feedback
configuration, there was little discrepancy between the errors observed in the training and
test environments. This fact highlights the model’s ability to generalize well in the short
term, even in scenarios that deviate significantly from the training distribution, as seen in
Tests 3 and 4, which involve multiple objects and objects with different shapes. Another
clear result of generalization is observed in the collision errors of Tests 1 and 2, where
the agent exhibited lower values than those recorded in the training environment, demon-
strating that predicting collisions resulting from a single object was simpler than dealing
with three objects, simultaneously, meaning the model was able to decouple collision pre-
dictions, clearly understanding the dynamics of a single object when the others were not
present. Furthermore, in Tests 3 and 4, the agent had to handle many objects and objects
with different shapes. However, the collision errors presented were not higher than those
obtained in the training environment, revealing an implicit understanding by the agent of
the physical concept of collision, in which touching an external object changes the state
of its finger joints.

We observe that vision was the most impacted sensory modality in all test cases
under the real-feedback configuration, achieving the lowest similarity in Test 1 (0.51 ±
0.03). Indeed, vision is the most complex sensory modality, as it accurately predicts
many visual elements in the scene, such as the position of all objects, their shape, color,
and dynamics. In our analysis, we found that in the training environment, the agent’s

Table 5.3: The generalization results for each test type in real-feedback and autofeed-
back configurations. The reported errors are the mean ± standard deviation calculated
over 100 test executions. Test 0 is conducted in the same training environment without
modifications to the initial positions of the cubes across all 100 test executions. Test 1
involves scenes with a single blue cube on the table, with the cube’s position randomly
initialized for each test execution. Test 2 follows the same procedure as Test 1 but uses an
orange cube instead of a blue one. Test 3 involves multiple cubes on the table, up to 10
cubes. Test 4 incorporates objects of different shapes, such as rectangular objects similar
to cubes, cones, cylinders, and spheres. Finally, the results from Test 5 correspond to
scenes without any objects on the table.

Real-feedback (mean ± std) Autofeedback (mean ± std)
Test Image error Col. error Prop. error Image error Col. error Prop. error
0 0.69 ± 0.03 0.22 ± 0.12 0.15 ± 0.03 0.51 ± 0.03 0.12 ± 0.10 0.79 ± 0.05
1 0.51 ± 0.03 0.03 ± 0.07 0.16 ± 0.04 0.48 ± 0.02 0.24 ± 0.13 0.81 ± 0.09
2 0.63 ± 0.02 0.03 ± 0.07 0.16 ± 0.04 0.49 ± 0.02 0.26 ± 0.12 0.78 ± 0.09
3 0.53 ± 0.05 0.22 ± 0.11 0.16 ± 0.04 0.38 ± 0.05 0.29 ± 0.15 0.90 ± 0.11
4 0.65 ± 0.02 0.23 ± 0.13 0.15 ± 0.03 0.47 ± 0.02 0.36 ± 0.18 0.82 ± 0.09
5 0.60 ± 0.00 0.00 ± 0.00 0.12 ± 0.00 0.46 ± 0.00 0.25 ± 0.01 0.79 ± 0.02
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prediction is nearly perfect and free from hallucinations, as shown in Figure 5.25 (a),
yet the similarity attributed is 0.69, primarily because the imagined image quality is
slightly lower. The imagined image is blurrier, with fewer high-frequency elements, and
some shapes are blurred, but there are no hallucinations in the images, which is the
most important aspect. In the other tests, no hallucinations occurred either, and the
drop in similarity between the images is mainly due to the agent’s difficulty in accurately
rendering the shape of the arms in certain situations, such as in frame 0 of all tests, where
the arms are drawn in a blurry manner.

In the real-feedback configuration, the agent had little difficulty drawing shapes accu-
rately in the test, even cones, spheres, and cylinders, which are slightly different shapes
from those seen during training. When these objects were stationary in the scene, the
agent could render them almost perfectly, and when the objects were in motion, some sub-
tle deformations occurred, making them appear more cube-like. However, the deformation
did not occur with every movement, only with very abrupt movements, as evidenced in
Figure 5.25 (e). Moreover, the most noticeable deformations primarily occurred with ob-
jects very different from those in the training set, such as spheres and cones. In these
cases, although the agent drew the objects slightly inaccurately, it retained its learning
about collisions, and it was able to reasonably predict the dynamic trajectories of these
objects, showing significant correspondence with their actual trajectories, even without
perfectly preserving the shape.

Another significant result shown in Figure 5.25 is the preservation of the learned
stereoscopy, meaning that the generated images adhered to the correct camera angles.
This behavior indicates that the agent not only generalized to different situations but also
adapted its understanding of perspectives and depth when exposed to new scenarios, which
is crucial for creating a consistent visual representation of the environment. Furthermore,
the generalization of stereoscopy suggests a robust learning of the spatial relationships
between objects and the agent, an essential element for tasks involving manipulation,
navigation, and refined spatial perception.

The results presented in Table 5.3 also revealed significant differences in the agent’s
performance between the real-feedback and autofeedback configurations, highlighting a
greater difficulty for the agent to generalize in the autofeedback configuration. Collisions
were not significantly impacted, suggesting that this sensory modality exhibits greater
robustness and generalization capacity under challenging conditions. However, vision and
proprioception showed greater sensitivity. Proprioception was the most affected, with the
error increasing from (0.15 ± 0.03) to (0.79 ± 0.05), even in Test 0. Meanwhile, the
similarity in the images decreased from (0.69 ± 0.03) to (0.51 ± 0.03), indicating that
the autofeedback configuration also negatively impacted visual generalization, though to
a lesser extent.

We observed notable differences when visually comparing the images generated under
the autofeedback configuration (Figure 5.27) with those generated under the real-feedback
configuration (Figure 5.25). The images produced with autofeedback exhibited a higher
degree of distortion in the arms and hands, particularly in the final frames of the sequence,
where accumulated errors were more pronounced. Furthermore, the agent struggled to
accurately imagine the arms and head angles (Figure 5.27 (a), (b), and (c)), especially
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(a) Test 0 (b) Test 1 (c) Test 2 (d) Test 3 (e) Test 4 (f) Test 5

Figure 5.25: Qualitative results of generalization for the visual sensory modality using
the real-feedback configuration. The tests carried out are presented in columns. For each
test, we present three rows: the first row corresponds to frame 0, the second to frame 6,
and the third to frame 14. In each row, the first frame corresponds to the environment’s
real frame, and below it is the frame generated by the agent (under ideal conditions, both
frames would be identical). The results are quite promising, with good predictions from
the agent, even in the last frame of the sequence. However, it is observed that the agent
struggles to imagine finer image details, such as the finger region, and tends to generate
blurrier images with fewer high-frequency details, resembling images that have undergone
Gaussian filtering. This factor contributes to the similarity between the real and imagined
environment not exceeding 0.69.

in the later frames of the sequence. This issue appears to be directly linked to the
significantly larger errors observed in the proprioception modality. Since this modality
does not accurately reflect reality, its errors conflict with the more reliable information
provided by other sensory modalities, thereby compromising the generation of precise
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(a) Sample 1 (b) Sample 2 (c) Sample 3

Figure 5.26: Agent hallucinations’ samples obtained in Test 1 under the autofeedback
configuration. All hallucinations were collected from the last frames of the tests.

images, particularly in aspects related to the agent’s body positioning.
Regarding other types of hallucinations, such as including non-existent objects in the

scene or misinterpreting objects as part of the agent’s body, we analyzed all images gen-
erated with autofeedback in Test 1. We observed that in approximately 40% of cases,
the agent tended to subtly include green or red patches in the scene, varying in size as
if attempting to incorporate elements seen during training (Figure 5.26). This behavior
occurred exclusively under the autofeedback configuration and was more frequent when
the blue cube raised in positions significantly distant from those in which cubes were
placed during training. Since such errors were not observed in the real-feedback con-
figuration, we hypothesize that these hallucinations may be triggered by feedback loops
involving inaccurate predictions, highlighting a vulnerability of the model when handling
accumulated errors. This fragility likely stems from the agent being exclusively trained
with highly precise environmental information.

In Test 2, we observed fewer hallucinations, and those that occurred generally involved
attempts to color the orange cube with shades of red in the prediction’s final frames or to
paint parts of the robot’s torso red instead of orange. In rare cases, the agent attempted
to insert cubes of other colors into the scene. In Tests 3 and 4, hallucinations were almost
nonexistent, with the main issues being deformations in the shapes of objects, particularly
during collisions. Finally, in Test 5, no hallucinations of this type were detected; however,
the agent experienced difficulties in accurately rendering the arms and hands, likely due
to the high errors in the proprioception modality.

Overall, the agent demonstrated good generalization, even in configurations involving
autofeedback. Through its predictions, the agent understood fundamental concepts about
the environment’s dynamics, such as the concept of collisions, which was captured by both
the tactile sensory modality and vision. It also showed an ability to comprehend dynamic
events, such as the impact generated when pushing one object against another with its
hands. For instance, in Figure 5.27 (d) and (e), the agent interacts with multiple cubes
and objects of different shapes. During these interactions, it accurately predicts the
final positions of the objects despite the accumulated error inherent to the autofeedback
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(a) Test 0 (b) Test 1 (c) Test 2 (d) Test 3 (e) Test 4 (f) Test 5

Figure 5.27: Qualitative results of generalization for the vision sensory modality, using
the autofeedback configuration. The tests carried out are presented in columns. For
each test, we present three rows: the first row corresponds to frame 0, the second to
frame 6, and the third to frame 14. In each row, the first frame corresponds to the
environment’s real frame, and below it is the frame generated by the agent (under ideal
conditions, both frames would be identical). The results indicate more difficulty for the
agent in predicting long-term frames, such as frame 14 in the sequences. In particular, the
agent faces challenges in correctly imagining the arms and head position and accurately
representing the arms and hands. This performance is related to the significantly higher
errors in proprioception modality within the autofeedback configuration. These errors
affect the latent space, making more confused and imprecise visual predictions.

configuration. This behavior suggests that the agent internalized the essence of some
fundamental object properties, such as the general trajectory shapes and the effects of
applied forces. However, particularly in scenarios with numerous objects, the agent tends
to overlook predicting the behavior of some of them. For example, in Figure 5.27 (d), it
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failed to position a red and blue cube, making it appear that the scene contained fewer
objects than it did.

Based on the results obtained, the generalization capability of our agent to unseen
situations is promising. However, we identified aspects that can be improved to enhance its
performance in the test cases, particularly in the autofeedback configuration, where errors
were more pronounced and consistent across all five tests. Notably, hallucinations occurred
exclusively in this configuration, suggesting a weakness in the model when dealing with
accumulated predictions. To mitigate this issue, we propose training the agent with a
subset of frames from its own world model. This approach could better prepare the agent
to handle noisy or inconsistent inputs during testing, thereby reducing the occurrence of
hallucinations. Another critical aspect is the proprioception generalization, particularly
in the autofeedback configuration. To address this limitation, we propose diversifying the
cubes’ initial positions within the environment and incorporating more varied scenarios
to encourage the agent to explore its workspace more effectively. Additionally, enriching
the training environment with a wider variety of shapes, colors, quantities, and object
dynamics could enhance the agent’s ability to generalize to more complex situations,
benefiting all sensory modalities.

5.4.1 Enhancing Generalization Through Imagined Feedback

In this section, we refine the training protocol to introduce variability in samples to which
the agent is exposed. We randomly assign initial positions to all objects on the table,
including scenarios where one object may be stacked on top of another. Additionally,
we introduce new object colors, such as yellow, magenta, cyan, black, dark olive green,
white, light red, grayish blue, light green, light yellow, grayish purple, medium gray, light
pink, aqua green, and light brown, to promote the decoupling of color information. We
also incorporate training episodes where no objects are present on the table, allowing the
agent to focus on learning its body dynamics. The number of objects varies from none
to up to four, randomly selected from spheres and cubes, as shown in Figure 5.28. Each
scenario is generated before the start of each rollout, determining the number of objects,
their positions, and whether stacking occurs, all through randomization. We discretize
the table space to prevent overlaps so that each object occupies a unique position. With
this strategy, we generate a total of 15,120 distinct scene configurations. With the modifi-
cations, Tests 1 and 5 are no longer entirely out of distribution but represent classes seen
during training, albeit infrequently. These tests still exhibit a slight distribution shift but
are better aligned with the training data. In contrast, Tests 2, 3, and 4 remain signifi-
cantly out of distribution, as they contain samples never encountered during training and
deviate further from the original training distribution.

Due to the long training time, we did not introduce scene variability from the be-
ginning. Instead, we performed fine-tuning on an agent previously trained in the fixed
environment, whose generalization results were already presented in Section 5.4. Addi-
tionally, we considered restarting training from scratch unnecessary, as the agent had
already demonstrated significant generalization capabilities, exhibiting more difficulty in
the autofeedback configuration. Therefore, we used the training checkpoint at 2.5 million
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(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4 (e) Sample 5

Figure 5.28: Samples of randomly generated scenes during training. In each rollout,
objects of either cube or sphere type are randomly selected, with up to 18 possible colors,
and are placed in random positions on the table.

steps and continued training until reaching 3 million steps, ensuring that the new condi-
tions represented only a tiny fraction of the total training. We observed that the agent
had not fully assimilated the new information during these steps. For this reason, we
extended the training to 3.7 million steps. At that point, we observed that the losses had
stabilized again and that the agent had successfully incorporated the newly introduced
information.

In addition to modifications in the training protocol, we also incorporated imagined
information generated by the agent to represent the state st. During trajectory collection,
we randomly selected steps in which the state st was complemented with data imagined by
the agent itself. As a result, the sensory information was not entirely accurate. Instead,
it is influenced by the agent’s world model, similar to how the interplay between sensory
input and internal predictive models shapes human perception [84]. This strategy enables
the agent to learn how to handle imperfect inputs while refining key errors in its world
model through new information. Specifically, in each rollout, we randomly selected a step
in which the sensory input was not entirely derived from the environment but comple-
mented by the agent’s world model. When a step was chosen, we removed the most recent
information from the observation stack and replaced it with data generated by the world
model. This procedure was applied across all sensory modalities. The process continued
for two additional consecutive steps, ensuring that, in at least one step, the agent had
to select an action and predict the next observation based exclusively on self-generated
data.

We obtained promising results with the modifications, demonstrating a significant im-
provement in predictions across most test cases, particularly in the sensory modalities of
vision and collision, as shown in Table 5.4. All values highlighted in bold in this table
correspond to performance metrics that surpass those of the previous agent, whose results
were discussed in Section 5.4. We observed the most notable improvements in the aut-
ofeedback configuration, where all test cases exhibited significantly better performance
in both vision and collision tasks. We attribute this enhancement primarily to comple-
menting the state representation with information generated by the world model. This
approach allowed the agent to handle imperfect sensory inputs better, reducing reliance
on purely noise-free data.

Furthermore, the implemented modifications significantly reduced overfitting across
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Table 5.4: The generalization results for our agent with imagined feedback and new
training protocol. The reported errors are the mean ± standard deviation calculated
over 100 test executions. Test 0 is conducted in the same training environment without
modifications to the cubes’ initial positions across all 100 test executions. Test 1 involves
scenes with a single blue cube on the table, with the cube’s position randomly initialized
for each test execution. Test 2 follows the same procedure as Test 1 but uses an orange
cube instead of a blue one. Test 3 adds multiple cubes on the table, up to 10 cubes.
Test 4 incorporates objects of different shapes, such as rectangular objects more similar
to cubes and cones, cylinders, and spheres. Finally, the results from Test 5 correspond
to scenes without any objects on the table. All values highlighted in bold in this table
correspond to performance metrics that surpass those of the previous agent, whose results
were discussed in Section 5.4.

Real-feedback (mean ± std) Autofeedback (mean ± std)
Test Image error Col. error Prop. error Image error Col. error Prop. error
0 0.55 ± 0.00 0.18 ± 0.08 0.13 ± 0.02 0.55 ± 0.03 0.02 ± 0.03 0.94 ± 0.10
1 0.69 ± 0.04 0.04 ± 0.08 0.13 ± 0.03 0.56 ± 0.02 0.01 ± 0.05 0.84 ± 0.06
2 0.65 ± 0.02 0.08 ± 0.01 0.13 ± 0.04 0.59 ± 0.02 0.04 ± 0.09 0.85 ± 0.10
3 0.53 ± 0.04 0.13 ± 0.11 0.16 ± 0.06 0.51 ± 0.04 0.07 ± 0.11 0.90 ± 0.11
4 0.59 ± 0.02 0.12 ± 0.10 0.14 ± 0.04 0.59 ± 0.04 0.02 ± 0.06 0.86 ± 0.09
5 0.73 ± 0.00 0.00 ± 0.00 0.08 ± 0.00 0.70 ± 0.00 0.00 ± 0.01 0.83 ± 0.03

different tests and the high discrepancies between the real-feedback and autofeedback
configurations. The increased sample variability also played a crucial role in this improve-
ment, as it exposed the agent to a broader range of situations, with objects appearing in
different positions, thereby fostering a higher level of abstraction and positively impacting
collision learning, a sensory modality in which the agent exhibited a substantial reduction
in errors. The Test 5 results further support our observations, demonstrating that the
agent maintained consistent performance across both configurations, with a similarity of
70% in autofeedback and 73% in real-feedback in the visual modality, suggesting that the
agent became less sensitive to noisy samples generated by itself, enhancing its ability to
adapt to different input conditions. One area for improvement identified in this agent
is that the implemented modifications did not enhance proprioception prediction, which
prevented us from achieving even better results.

5.5 Adapting Intrinsic Skills to Extrinsic Tasks
To evaluate whether the motor skills acquired by the intrinsic agent during curiosity-
driven exploration are transferable to other tasks, we propose a training environment
featuring an extrinsic task. In this environment, a ball appears in random positions and
moves across the table, requiring the agent to capture it with both hands. The capturing-
ball task was deliberately chosen because it demands that the agent utilize and adapt
skills already developed during intrinsic training to complete it successfully. Capturing
the moving ball requires the agent to demonstrate manual dexterity, track its trajectory
with gaze, anticipate its future position, and adjust hand placement to intercept it at
the right moment. This process requires sustained attention to the ball, coordinated arm
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movements to grasp it, and a firm grip to maintain possession once captured. The agent
has already developed some of these skills, either fully or partially, through its intrinsic
environment exploration. It has learned to maintain visual attention on the table and
moving objects, align perception and action with directing gaze toward hand contact
areas, and precisely coordinate arm and head movements to lift objects and keep them in
hand for multiple steps. The challenge is effectively repurposing these skills by adapting
them to the current task’s demands.

In intrinsic training, the agent developed generalizable motor skills as a foundation for
solving complex tasks. Similarly, to catch a moving ball or place an object inside a bowl,
children must first develop basic motor and perceptual skills that serve as a foundation
for more sophisticated actions. Over time, these skills are reused and refined, allowing the
child to adapt previously acquired coordination, such as manipulating tools, or opening
doors without relearning basic coordination from scratch. In the same way, we argue that
during curiosity-driven exploration, the agent constructed an internal representation that
encodes fundamental motor strategies, making its skills more flexible and transferable.
This enables the agent to adjust only specific components of the learned policy to adapt
to new tasks, significantly accelerating its adaptation to different contexts and challenges.
In contrast, an extrinsically trained agent, learning from scratch, must acquire all these
skills solely through the task-specific reward function. This process can make learning
more difficult, as the agent relies entirely on extrinsic reinforcement to develop attention,
coordination, precision, and motor control.

We fine-tuned the intrinsic agent from Section 5.4.1 to validate our hypothesis. Then,
we compared its performance on the task with that of an extrinsic agent trained from
scratch using only simple extrinsic rewards. Both agents were trained with first-person
stereo vision and had unrestricted neck actuators, allowing them to choose where to look.
The extrinsic agent was given more training steps than the intrinsic agent, compensating
for the time spent on purely intrinsic training and ensuring that both had the same
number of environment interactions. Additionally, we maintained similar model capacity
for both agents, ensuring that the number of parameters remained comparable.

Also, we removed the StatePredictor in the intrinsic agent and the curiosity reward
from training, retaining only the actor, critic, and StateNet. We made only the last layer
of the StateNet, half of the critic’s layers, and the sole layer of the actor available for policy
adaptation. We aimed to remove the curiosity reward and the StatePredictor and freeze
part of the weights to ensure a more robust evaluation of the skills learned during intrinsic
training. We aimed to prevent the agent from developing a new form of curiosity-driven
exploration associated with the task, which could make it more challenging to determine
whether the skills acquired purely through intrinsic training were genuinely being trans-
ferred and refined or if the agent was merely developing new exploratory strategies by
leveraging the curiosity reward in combination with the task reward.

Therefore, for the capturing-ball task, we designed a scenario where the robot is posi-
tioned in front of a confined table containing a red ball, as illustrated in Figure 5.29. The
walls surrounding the table were added to reduce the frequency with which the ball exits
the environment. At the beginning of each rollout, the ball spawns at a random position
on the table and moves in a randomly selected direction. Its trajectory may change upon
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colliding with the walls, the robot’s hands, or, with a 10% probability, upon being as-
signed a new randomly sampled direction. The task’s primary objective is to encourage
the agent to capture and retain the moving ball in its hands. However, this is not a trivial
task, as the ball may spawn in locations that are difficult to reach, requiring the agent to
extend or retract its arms of different forms to retrieve it from the table’s corners. The
target distribution constantly shifts, requiring the robot to observe the table attentively
to capture the ball.

The successful execution of this task requires the agent to develop a range of motor
and perceptual skills. It must learn to closely observe the ball and predict its trajectory
based on its velocity and direction, as it is constantly in motion. Additionally, the agent
must be capable of executing rapid and reflexive manipulative actions to capture the ball
when it is within reach, as it does not move slowly, exhibiting a positional update rate
of 0.05 centimeters per frame. After capture, another essential skill is grip stability, as
the ball easily slips through the agent’s fingers, making retention an additional challenge.
Furthermore, since the ball can spawn in different locations and its movement is random,
the policy must generalize effectively across various configurations, ensuring that the robot
can capture it regardless of its point of origin.

The extrinsic reward function rext considers one point for each touch made by the
phalanges on the ball, thereby encouraging the agent to keep the ball in its hands, as
following

rext =
MX

i=1

ci, (5.18)

where ci is a binary value, with 1 indicating a collision and 0 indicating no collision, and
M is the number of phalanges.

We trained both agents with the same parameters to ensure a fair comparison; in
terms of model complexity, both have 330,631 trainable parameters. However, in the
intrinsic agent, a large portion of the weights is frozen, leaving only 69,533 parameters for
fine-tuning. The intrinsic agent was adapted to the task for 2 million steps, whereas the
extrinsic agent was trained for 5.7 million steps. This number was chosen to compensate
for the 3.7 million steps of prior intrinsic training, ensuring that both agents explore

(a) Sample 0 (b) Sample 1 (c) Sample 2 (d) Sample 3 (e) Sample 4

Figure 5.29: Sequence of samples from the capturing-ball environment. In (a), we have
the first frame of the sequence, in which the ball is born randomly on the table. In (b) to
(e), we have frames demonstrating moments in which the ball moves across the table in
random directions while the agent moves its arms.
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the environment for the same number of steps. We believe that, with only the task-
specific reward, the purely extrinsic agent will struggle to develop all the necessary skills
to complete the task successfully. In contrast, the intrinsic agent is expected to adapt
more efficiently by leveraging the skills acquired during intrinsic training.

At the beginning of the adaptation phase, the intrinsic agent starts training with
behaviors inherited from the curiosity-driven policy and, within 300,000 steps in the en-
vironment, already exhibits a significant adjustment of its policy to improve the rewards
obtained in the current task. The agent resumes from the point where it left off in in-
trinsic training, primarily exploring the right side of the environment, as it had already
learned the dynamics and objects present in the scene, which no longer elicited as much
interest, as shown in Figure 5.30 (a) and (b). However, upon starting extrinsic training,
the agent eventually made contact with the ball using its fingertips and received a reward,
which led to a policy adaptation. This feedback prompted the agent to adjust its body
movements, redirecting its attention to the table and tracking the ball with its head, since
without this adjustment, maximizing the obtained rewards would have been significantly
more challenging (Figure 5.30 (c), (d), and (e)). This behavior is quickly adopted, as the
agent has mastered his neck movement and understands its impact on visual perception.
Upon receiving the reward, it promptly associates that it should reuse this movement to
optimize its task performance.

From a million adaptation steps, the agent began tracking the ball’s movement with
its eyes, observing its dynamics on the table, as shown in Figure 5.31 (a). It developed
sophisticated exploratory strategies to maximize rewards, such as orienting its entire body
to follow the ball and delicately touching it with its fingertips. These behaviors indicate
that the agent could transfer and adapt the exploratory strategies acquired during intrinsic
training, efficiently coordinating its limbs to optimize reward acquisition. This process
suggests that the initial policy was not discarded but refined to align with the new reward
function. In Figure 5.31 (b), the agent refined its motor control, slowing down its hands
and fingers to gently touch the moving ball. It adjusted movement intensity to maximize

(a) Sample 0 (b) Sample 1 (c) Sample 2 (d) Sample 3 (e) Sample 4

Figure 5.30: Sequence of samples from the early stages of the intrinsic agent’s adaptation.
In (a) and (b), two frames taken within the first 384 adaptation steps show that the
agent starts from where its curious exploration ended, looking toward the right side of
the environment. In (c), (d), and (e), frames illustrate the agent’s behavior from 300,000
adaptation steps. At this stage, the agent associates that redirecting its attention to the
table enhances its perception, allowing it to achieve higher rewards by reusing previously
learned behaviors.
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the frequency of successful interactions. This adaptation indicates that the agent learned
to track the ball visually and improved motor control to optimize reward acquisition.
Later, as shown in Figure 5.31 (c), the agent attempted to grasp the ball with its fingers,
even when it appeared in more distant positions, using small taps to move it into more
accessible regions. These exploratory strategies reflect the development of two distinct
types of behaviors: deliberative, where the agent observes the ball and waits for the right
moment to touch it, and reactive, where the agent quickly acts to capture the ball before
it escapes.

In contrast, the extrinsic agent, even after 1 million steps, still failed to develop this
association, consistently keeping its head turned away from the table and its arms ex-
tended for most steps, as shown in Figure 5.31 (d). This behavior suggests that the agent
could not establish a connection between visual perception and task execution, limiting
its ability to explore the environment effectively. We acknowledge that the extrinsic agent
starts from scratch and needs to learn how to control its body. However, when initial-
ized under the same conditions during purely intrinsic training, the intrinsic agent had
already developed motor control across all limbs and visual attention only into one hun-
dred steps. The extrinsic agent’s difficulty acquiring these skills solely through task-based
rewards, even though they were not highly sparse, highlights the importance of intrinsic
mechanisms in fostering more sophisticated exploratory behaviors and building internal
representations that facilitate adaptation to new challenges.

The reward curve for task training of both agents is illustrated in Figure 5.32. It
demonstrates that the intrinsic agent adapted satisfactorily to the task, achieving a max-
imum reward of 2.68 points at the end of training. In contrast, the purely extrinsic agent,
trained from scratch, struggled to reach the same level of success, exhibiting a signifi-
cantly lower reward curve, even after spending more time on the task to compensate for
the intrinsic agent’s exploration time. The extrinsic agent remained random until about
2 million steps, with disorganized actions in the environment. After this point, it began
to learn a task policy, but with reward gains much lower than those of the intrinsic agent,
which, despite spending less time on the task, had already developed key skills that facil-
itated its learning. In contrast, the extrinsic agent was unable to develop the necessary
skills to maximize its reward gain using only the reward function we had defined.

At the end of training, the reward curve for the intrinsic agent exhibited an upward
trend, suggesting that continued learning could further enhance its performance. In con-
trast, the reward curve for the extrinsic agent remained constant, indicating no potential
for further improvement, even with additional training steps. We evaluate the policies
learned by both agents executing 100 test cases in which the ball appeared in random
positions with random movement. We computed the mean and standard deviation of the
extrinsic rewards obtained. The intrinsic agent was rewarded 1.35 ± 1.26, with 12% of
test cases in which the agent failed to touch the ball with any phalanx. In comparison,
the extrinsic agent obtained a reward of 0.84 ± 0.82, with 21% of test cases in which it
failed to touch the ball. These results highlight the superior performance of the intrinsic
agent in completing the task. However, both agents exhibited high standard deviations
due to the inherent difficulty of the task. Their performance varied significantly across
test cases, leading to substantial fluctuations in the standard deviation.
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(a) Trajectory A

(b) Trajectory B

(c) Trajectory C

(d) Trajectory D

Figure 5.31: Trajectory samples of the agent’s adaptation process from a million adap-
tation steps. In (a), the intrinsic agent begins tracking the ball’s movement with eyes,
observing its dynamics on the table. In (b), the intrinsic agent further refines its motor
control, adjusting the speed and intensity of hand and finger movements to gently touch
the moving ball, aiming to optimize the frequency of successful interactions. In (c), the
intrinsic agent attempts to capture the ball even when it appears in distant positions,
using rapid movements to direct it toward more accessible regions. These strategies re-
flect two distinct types of behavior: deliberative, in which the agent observes the ball and
waits for the optimal moment to touch it, and reactive, in which the agent acts quickly to
capture the ball before it escapes. In (d), we have samples of an extrinsic agent’s rollout
from a million adaptation steps, where it fails to fix its vision on the table and coordinates
its arms to touch the ball.

Our results emphasize that curiosity-driven multimodal learning and the agent’s im-
mersion in the environment are crucial for developing fundamental motor skills to solve
complex tasks. Moreover, our approach facilitates the construction of a representation
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Figure 5.32: Mean episodic return of intrinsic and extrinsic agents. The blue curve
represents the mean reward of extrinsic agent, while the red curve corresponds to the
mean reward of intrinsic agent. Both agents were trained for 5.7 million steps. However,
the intrinsic agent spent the first 3.7 million steps using the curiosity-driven reward to
predict the next environmental observation, followed by 2 million steps of task-specific
adaptation. The curve represents only the reward obtained during the task adaptation
phase. In contrast, the extrinsic agent was trained exclusively with the task reward for
the entire 5.7 million steps.

that preserves transferable motor skills, which are essential for embodied agents to acquire
new tasks successfully. Figure 5.33 illustrates examples of the intrinsic agent’s policy be-
havior compared to the policy learned by the extrinsic agent in the test environments.
In Figure 5.33 (b) and (d), we observe that the intrinsic agent maintains an attentional
focus on the table and objects, allowing it to track the ball’s movement and adjust its arm
positioning accordingly for effective capture. Conversely, in Figure 5.33 (a), the extrinsic
agent struggles to maintain visual focus on the table and the ball’s trajectory, frequently
looking away and exhibiting significant difficulty in bending its arms and positioning them
along the ball’s path. We hypothesize that these challenges stem from its limited visual
coordination; since it frequently looks backward, it fails to infer the ball’s motion and
adjust its arm movements accordingly. The simple reward function, which only reinforces
finger contact with the ball, was insufficient for developing the coordination between vi-
sion and arm movements, suggesting that a more complex reward structure is required
for the extrinsic agent.

Even though the extrinsic agent achieved an average reward of 0.84, its method of
touching the ball remains less human-like than the intrinsic agent, as shown in Fig-
ure 5.33 (c). In some test cases where the intrinsic agent does not achieve high rewards,
it can still capture the ball and keep it pressed against the table wall to prevent it from
escaping, even if it fails to maintain finger contact at every step, as observed in Fig-
ure 5.33 (b). Sometimes, the ball slips from its grasp, but the intrinsic agent continues to
attempt recovery. In contrast, the extrinsic agent often fails to even attempt capturing
the ball, primarily due to its tendency to look away from the scene. These qualitative re-
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(a) Test 2 - Ext.

(b) Test 2 - Int.

(c) Test 8 - Ext.

(d) Test 8 - Int.

Figure 5.33: Trajectory samples of the policy learned by the extrinsic and intrinsic agents
in different test cases. In figure, Int. indicate intrinsic agent, and Ext. indicate extrin-
sic agent. In (a) and (b), we observe the agents’ behavior for Test 2, while in (c) and
(d), we analyze their behaviors for Test 8. In both scenarios, the intrinsic agent demon-
strates superior performance, even without consistently touching the ball using its fingers.
Nevertheless, it successfully captures and maintains control of the ball, as highlighted in
(b) and (d). In contrast, the extrinsic agent exhibits more difficulty coordinating its
movements, frequently shifting its gaze to the sides, impairs its perception of the events
occurring on the table. In each test, the frames captured from the agents are not tempo-
rally aligned, as our goal was to highlight moments when the agents performed the most
relevant movements for the task, which do not always occur at the same time steps within
each trajectory.

sults demonstrate that the extrinsic agent could not learn complex motor skills using only
our task reward function, as the necessary elements for solving the task are challenging
to acquire through simplistic reward designs.
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5.5.1 Testing Cognitive Biases

Until now, we have achieved highly significant results in our capturing-ball task. This task
has highlighted circumstances in which our approach outperforms purely extrinsically
motivated agents and demonstrated how acquiring skills through intrinsic training can be
crucial for enhancing the flexibility of complex agents. To evaluate whether the results
of our task adaptation experiment can be enriched, such as increasing adaptation speed,
improving reward gains, or enhancing policy generalization across different situations
encountered in the capturing-ball task, we introduce, in this section, additional cognitive
biases into the neural architecture that support the agent’s internal environment.

We hypothesize that policy adaptation in monolithic architectures is far more limited
than in sparse, modular, and bidirectional hierarchical architectures. There is evidence
in other contexts and applications that these biases improve generalization, provide more
flexible structures, and better capture the compositional structure of the world [94, 42,
88] providing more flexible and generalizable models. Using these architectures in our
framework to build a modular and hierarchical curious policy can enable the localized
and efficient adaptation of specific parts of the curious policy during task adaptation,
resulting in a more fluid and effective agent adaptation.

To test our hypothesis, we replaced some monolithic and unidirectional hierarchal
layers in the StateNet, Actor, and Critic to independent recurrent modules organized
hierarchically with bidirectional flow, as illustrated in Figure 5.34. We preserved isolated
encoders to process each sensory modality separately and delegated the fusion of these
signals to the recurrent modules in the first hierarchical layer. In the Critic, the linear
layer (256 ⇥ 128) responsible for fusing multiple sensory inputs was replaced with two
layers of independent recurrent modules, each containing four modules of 32 neurons,
with an attentional bottleneck restricting simultaneous activation to only two modules at
a time. Similarly, the StateNet replaced the 256 ⇥ 128 linear layer with a layer comprising
four modules of 32 neurons each, with only two actives at any given time. In the Actor, we
removed two linear layers and introduced a modular layer with four modules of 32 neurons
each, enforcing the same constraint of activating only two modules simultaneously.

We incorporated an intermediate self-attention mechanism between the StateNet and
the Actor to facilitate the hierarchical transition of information from sensory fusion in
the StateNet to the motor action region in the Actor, enabling an adaptive flow between
perception and control, as illustrated in Figure 5.34. At the end of the Actor, we added
a linear decoder with 64 neurons, responsible for transforming modular information into
a 28-dimensional vector corresponding to the agent’s actions. At each time step, only
the data from the two active modules are passed to the decoder, ensuring that only the
modules containing essential knowledge for maximizing the reward at that moment are
utilized. During learning, the gradient flows to adjust the weights only of the active
modules, leaving the weights of inactive modules unchanged.

We trained this agent intrinsically and did not observe significant changes in the agent’s
autonomous development compared to the previous version. The agent acquired the
same previously identified skills, such as lifting objects for closer examination, developing
attention around 100,000 steps, and improving finger movement precision and dexterity.
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Figure 5.34: Our agent’s Independent Recurrent Modules for task adaptation. This figure
illustrates the hierarchical organization of independent recurrent modules in the extrinsic
agent, used to replace monolithic layers in the StateNet, Actor, and Critic. Each sensory
modality is processed separately by isolated encoders, and sensory fusion occurs in the
first hierarchical layer of recurrent modules. The Critic and StateNet incorporate four
recurrent modules of 32 neurons each, with an attentional bottleneck allowing only two
to be active at a time. Similarly, the Actor includes a modular layer with the same
structure, ensuring selective activation of relevant modules. An intermediate self-attention
mechanism facilitates hierarchical information flow between the StateNet and the Actor,
enabling adaptive transitions between perception and action. At the final stage of the
Actor, a linear decoder transforms modular information into a 28-dimensional action
vector, ensuring that only the most relevant modules influence decision-making. During
learning, the gradient only updates the active modules while the remaining inactive ones
remain unchanged. Attention mechanisms facilitating communication between a layer’s
input and its modules are marked with yellow “A”, while attention mechanisms enabling
interaction between modules within the same layer are indicated by purple “A”.

The agent’s body coordination during movements also remained highly similar, as did the
losses and prediction quality across the three sensory modalities. This result was expected,
as we did not modify the StatePredictor, which was directly responsible for the agent’s
future predictions. To ensure a fair comparison between agents, we trained the current
agent purely intrinsically up to 3.7 million steps, initially using a fixed scenario with three
cubes for 2.5 million steps. From that point onward, we introduced more diverse scenarios
and the agent’s imagined feedback until the end of training. We adjusted the model’s
capacity to approximately 4.8 million parameters to maintain equivalence with the prior
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(a) Trajectory A

(b) Trajectory B

Figure 5.35: Samples of different strategies used by the agent with various cognitive biases
to capture the ball during task adaptation. In (a), the agent observes the direction the
ball is moving and lowers its right arm to a specific point on the table where it anticipates
the ball will pass. It then waits with its hand and fingers open, positioned to catch the
ball. In (b), the agent employs a different strategy by reaching directly for the ball since
it is closer to its arm. It then pushes the ball toward the nearest wall, trapping it between
its arms while keeping its fingers lightly touching the ball.

agent. To preserve the hierarchy among the modules and the attentional communication,
we removed two convolutional layers and one GDN layer from the StatePredictor, ensuring
that both agents had the same capacity. However, we did not observe any impact from
this removal on the quality of the agent’s visual predictions.

During the agent’s adaptation task, we followed the same adaptation protocol, remov-
ing the intrinsic reward, deactivating the StatePredictor, and freezing all weights of the
StateNet, along with half of the weights of the Critic. Only the modular layer of the Actor,
the decoder, and the self-attention mechanism responsible for bidirectional information
transmission between the StateNet and the Actor remained trainable for fine-tuning. We
deliberately kept the self-attention weights adjustable, as we believe this mechanism plays
a crucial role in retrieving task-relevant knowledge, thereby facilitating the agent’s adapta-
tion. As a result, the model contained 330,631 trainable parameters, a number minimized
by restricting the recurrent modules to only 32 neurons each. This compression reduced
the latent space vector, used for predicting both the state value in the Critic and the
joint actions in the Actor, to 64 neurons, half the previous size when using linear layers.
However, the modular architecture requires self-attention mechanisms for efficient com-
munication between modules within the same layer and across hierarchical layers. Despite
optimization efforts to minimize parameter count, these mechanisms inevitably add extra
parameters. Since our primary interest lies in evaluating the interaction between these
biases, we opted to maintain the model with this parameter count.

During the agent’s adaptation to the task, we once again observed the refinement of
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Figure 5.36: Mean episodic return of the intrinsic agent with a modular, sparse, and
bidirectional hierarchical policy and the intrinsic agent with a monolithic policy. The
curves indicate that both agents exhibited similar performance regarding reward gain and
adaptation speed.

previously learned skills and the exploration of novel and effective strategies for capturing
the ball, as illustrated in Figure 5.35. In (a), the agent analyzes the ball’s trajectory and
anticipates the point on the table where it is most likely to pass. Then, it positions its
right arm by lowering it to the table surface while keeping its hand open, with fingers
prepared to securely grasp the ball as soon as it reaches the expected location. The agent
then waits for several steps, adjusting the posture of its fingers to maximize the chances of
a successful capture. In (b), the agent adopts a more active behavior. Instead of waiting
for the ball to reach a predefined position, it swiftly moves its arm toward the object.
Upon reaching the ball, the agent applies light pressure and directs it toward the nearest
wall, leveraging the wall as an auxiliary element to restrict movement. To ensure the
ball remains under control, the agent positions both arms around it, maintaining slight
contact with its fingers to secure the ball and receive the extrinsic reward. These distinct
yet highly advanced strategies for a robot of this complexity demonstrate the agent’s
efficient adaptation, enabling it to exploit environmental opportunities to explore diverse
capture techniques.

Our results showed that the intrinsic agent’s mean episodic return with more cognitive
biases, compared to the intrinsic agent with a monolithic architecture, did not significantly
improve adaptation speed or reward gain. The two curves display similar characteristics,
as shown in Figure 5.36. However, quantitative tests indicate that the current agent’s
policy achieved an average extrinsic reward of 1.16 ± 0.97, while the agent with a mono-
lithic policy obtained 1.36 ± 1.26. By adding more cognitive biases, we achieved a 23%
improvement in the task’s standard deviation. Although the monolithic agent’s mean
episodic return was higher, the standard deviation was lower in this agent. This reduc-
tion in standard deviation suggests that this agent’s performance was more consistent
across episodes. In contrast, the monolithic agent exhibited more significant variability,
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(a) BRIMs

(b) Monolithic

Figure 5.37: Samples of the agents’ policy behavior in Test 13. In (a), we have the agent
with a BRIMs policy that performs well in the test case, successfully capturing the ball.
In (b), we have the behavior of the monolithic policy. In this test, this agent fails to keep
the cube in its pose because when the ball slips out of its hands, instead of capturing it,
it starts to look back.

indicating that the additional biases promote a more stable adaptation process, reduc-
ing extreme learning oscillations and making the policy less susceptible to fluctuations
between successful and unsuccessful attempts.

We believe that the 23% improvement in the standard deviation, resulting in a more
stable policy for the tested scenarios, is related to the fact that the introduced biases assist
the agent in combining different strategies more efficiently, allowing for a more balanced
adaptation to the various testing conditions. Upon analyzing the accumulated rewards
for each test case and the behaviors exhibited by the agent, we confirm that the agent
with the monolithic policy is more sensitive to the different test cases. In some tests, the
accumulated rewards achieved are higher than those of the agent using the BRIMs policy;
however, in other cases, the rewards are significantly lower, indicating that the agent with
the BRIMs policy is less sensitive to the variations observed among each test case, as
illustrated in Figure 5.37. Based on these results, the BRIMs policy maintained greater
consistency across the different cases, demonstrating superior adaptability potential.
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Chapter 6

Conclusion and Future Works

In this chapter, we discuss the key results achieved in our work (Section 6.1). Also, we
analyze the hypotheses (Section 6.2) raised in the first chapter. Finally, in Section 6.3,
we conclude by outlining the limitations of our work and key directions for future devel-
opments in this field.

6.1 Key Results
This work proposes DreamerRL, a framework to enable more adaptable and autonomous
humanoid robots through predictive world model construction. Grounded in world model
theories, DreamerRL focuses on constructing an internal predictive world model of the
environment instead of optimizing policies for specific tasks. Through this predictive
learning, the robot gains adaptable policies and acquires different and general motor
skills by actively exploring unfamiliar states. Our approach underscores the critical role
of embodiment, biologically inspired neural architectures based on neocortical circuity,
and intrinsic motivation in forming and refining internal world models. Additionally,
this work advances the development of more autonomous and cognitively flexible robotic
agents capable of learning from their own experience without reliance on imitation or
manually engineered supervision.

We evaluate our proposed framework with experiments in a robotic manipulation en-
vironment. In the first experiment, the agent began learning to model the environment
using intrinsic motivation driven solely by third-person visual perception. The results
demonstrated a limited capacity for exploration and skill emergence. However, in the
following experiments, when we introduced multimodal curiosity integrating propriocep-
tion, tactile, and first-person vision, the agent exhibited a remarkable leap in behavioral
complexity and autonomously developed more complex skills. Notably, when we enabled
neck mobility, allowing the agent to direct its gaze freely, we observed the spontaneous
emergence of sustained visual attention aligned with upper-limb actions. The sus-
tained attention and alignment between vision and upper-limb motor behavior represent
a significant milestone in autonomous robotic learning. Remarkably, these be-
haviors emerged without external supervision and mirror key developmental observed in
human infants, suggesting that our approach can computationally replicate foundational
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aspects of child development within a complex robotic system. These findings validate
our framework’s embodied, intrinsically motivated approach and open new research av-
enues for building truly autonomous, self-supervised complex agents capable of developing
sophisticated behaviors using only interaction with the world without human supervision.

Finally, we validated the effectiveness of internal representations in a downstream task,
CaptureBall, which demanded real-time coordination, attention, and goal-directed behav-
ior. DreamerRL adapted to this novel extrinsic task with minimal retraining
and outperformed a baseline agent trained purely with extrinsic rewards. These
results prove that our approach is essential for adaptable representations. Our findings un-
derscore the transformative potential of grounding representation learning in the agent’s
own sensorimotor experience, ultimately enabling the development of robotic agents that
are more flexible, adaptive, and capable of complex generalization. Furthermore, the
introduction of modularity and hierarchical processing—architectural principles inspired
by the neocortical circuit—significantly enhanced the stability and generalization of the
learned policies. Our model exhibited greater policy robustness and improved
transfer capabilities compared to agents trained without such structures.

6.2 Hypotheses Evaluation
The hypotheses raised by this work were essential in guiding the development of the
experiments. Therefore, their respective answers following the experiments are presented:

1. H1: A complex robotic agent, trained to model the world in an object manipulation
environment, can accurately predict both the dynamics of the external environment
and its behavior.

Answer: This hypothesis was confirmed through experiments conducted with
the baseline agent, as described in Section 5.2. The results indicated that the
agent successfully predicted its own body’s dynamics, accurately anticipating its
general movements. However, some limitations were observed in predicting finger
movements, which exhibited lower accuracy than other body parts. Furthermore,
the agent demonstrated excellent predictions of the visual characteristics of objects
in the environment, precisely identifying both the shape and color of static and
dynamic objects. More importantly, it could predict the effects of its actions on
these objects, correctly anticipating the outcomes of its interactions. This includes
the direct impact of its actions on the manipulated objects and the interactions
between different objects within the environment.

2. H2: A complex robotic agent autonomously develops structured object manipula-
tion behaviors driven solely by the motivation to predict the world.

Answer: This hypothesis was partially confirmed through the experiments de-
scribed in Sections 5.2 and 5.3. The results demonstrated that the agent developed
structured manipulation behaviors exclusively through intrinsic motivation gener-
ated by curiosity, including actions such as touching, holding, lifting and holding,
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throwing and dragging, with intense visual attention and highly coordinated behav-
iors. We consider the hypothesis only partially confirmed because the agent could
not develop even more complex behaviors, such as putting and stacking objects,
among other more structured behaviors. However, it was able to develop valu-
able skills for any task, such as head control, sensory alignment between different
modalities, and dexterity and precision in the movements performed.

3. H3: Increasing embodiment enables the agent’s complete immersion in the environ-
ment, promoting the autonomous development of more complex object manipulation
skills.

Answer: This hypothesis was confirmed by the experiments described in Sec-
tion 5.3, which demonstrated a direct relationship between the progressive use of
sensors and actuators and the agent’s engagement with the environment. As its
sensorimotor capabilities expanded, the agent exhibited more active interactions
with the environment and acquired more refined object manipulation skills. The
results also indicated that a more complete immersion of the agent is essential for
effective object manipulation. The agent’s exploratory curiosity was significantly
limited when operating with restrictions, such as a fixed neck and third-person
vision, leading to more superficial and reflexive interactions with objects without
robust autonomous development. These findings highlight the importance of the
synergy between intrinsic curiosity, sensory perception, and motor control. They
demonstrate that a higher degree of embodiment enhances a more autonomous,
adaptive, and structured learning process in manipulation tasks.

4. H4: The world model learned through sensorimotor experiences enables the robotic
agent to learn abstract concepts about how the world functions, allowing it to imag-
ine and simulate novel situations not encountered during training.

Answer: This hypothesis was partially confirmed by the experiments described
in Section 5.4, which demonstrated that the agent generalizes very well in the real
feedback configuration, where the agent is required to predict only a single frame, its
performance was very significant, showing a strong ability to anticipate future states.
However, its performance deteriorates when the agent must recursively predict mul-
tiple frames, using its own imagined data as input for subsequent predictions. This
decline is primarily associated with residual errors, particularly in the proprioception
modality, accumulating over iterations. Additionally, hallucinations were observed
in arm movements and object interactions, especially in collision scenarios, indicat-
ing that the model still has limitations in this setting. These findings suggest that
while the agent demonstrates a strong short-term imagination capability, there are
necessary improvements when extending the simulation over multiple steps.

5. H5: The behaviors learned during world exploration are task-independent, making
the agent more adaptive and capable of quickly applying the acquired exploration
skills to accelerate the adaptation to a new extrinsic task.

Answer: This hypothesis was confirmed through the capturing ball experiment
described in Section 5.5, where our agent, with frozen weights, was exposed to the
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task adaptation of capturing a randomly moving ball on the table. Our agent was
able to reuse the skills previously acquired during the curious exploration phase and
adapt them into more sophisticated behaviors, enabling it to achieve its goals in
just a few steps. In contrast, a purely extrinsic agent, trained from scratch to learn
the same task, failed to optimize its reward gain as effectively as the intrinsic agent
(Figure 5.32). Even by the end of the training, the extrinsic agent failed to develop
essential skills, such as motor coordination, dexterity, hand stability, visual attention
on the table, and the ball’s movement. These skills are fundamental for the agent to
successfully solve the task and maximize its reward gain more efficiently. This result
underscores the importance of our approach in developing foundational skills, which
proved crucial when the agent is exposed to manipulation tasks requiring complex
perceptual-motor synergy.

6. H6: Incorporating sparsity, modularity, and hierarchical biases enhances intrinsic
policy adaptation to a new extrinsic task.

Answer: This hypothesis was confirmed by the experiment described in Sec-
tion 5.5, which demonstrated that incorporating sparsity, modularity, and bidirec-
tional hierarchy biases into the intrinsic policy improves the agent’s adaptability in
scenarios where the target distribution is constantly changing. In the adaptation ex-
periment for the ball-catching task, we observed that when the ball’s speed remained
constant across all rollouts, the monolithic and BRIMs policy agents exhibited sim-
ilar performance regarding rewards obtained and adaptation speed. However, the
23% improvement in the standard deviation of the tests indicates that the intro-
duced biases enhanced the generalization of the policy to the various test cases
presented. In contrast, the agent with the monolithic policy exhibited more ex-
treme behaviors across different cases, resulting in very low rewards in some tests
and significantly high rewards in others, which reflects a more inflexible policy in
handling the variability of situations encountered. Meanwhile, the BRIMs policy
was able to maintain greater consistency across the different cases, demonstrating
superior adaptability potential.

6.3 Limitations and Future Works
Our work presents significant advances in autonomous robotics development, leaving room
for further improvements. Although we demonstrated the importance of sensorimotor in-
tegration and intrinsic motivation in constructing world models, the agent still operates
within simulated environments that impose physical and perceptual constraints distinct
from those encountered in the real world. The transition of our framework to real-world
robotic scenarios requires further investigation, particularly regarding the robustness of
internal representations in the presence of sensory noise, latency, and uncontrolled dis-
turbances. Another limitation concerns the scope of sensory modalities employed. While
first-person vision and proprioception have proven effective, other modalities, such as
more detailed tactile sensing, audition, or interoception, remain unexplored, reducing the
diversity of sensory experiences available to the agent.
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Additionally, we faced challenges related to the complexity of the training process. In-
tegrating multiple sensory modalities and novelty-driven intrinsic motivation can lead the
agent to suboptimal or unstable behaviors during the early stages of learning, particularly
in environments with high unpredictability in sensory inputs, which may result in slower
learning, greater performance variance, and a tendency for the agent to become trapped
in local minima. Furthermore, the intrinsic motivation system employed, while effective
in promoting exploration and the emergence of skills, relies on relatively simple metrics
of novelty or prediction error. We believe that more sophisticated motivational systems
could further enhance autonomous development and construct more robust world models.
Furthermore, there are opportunities to expand the methods employed and explore their
applicability in diverse scenarios.

Adaptation Tasks. In this work, we tested the agent’s adaptation to two challenging
tasks, demonstrating its ability to learn in novel scenarios. However, there remains a vast
field for exploration, including adaptation to different domains, new task categories, and
more complex environmental variations. Additionally, investigating which agent feature
facilitates or hinders this adaptation compared to extrinsically trained agents could foster
new and relevant discussions. Further studies could focus on adaptation tests using in-
dependent recurrent modules and evaluate the agent in environments with unpredictable
dynamics, such as abrupt changes in the scene or object distribution, to assess whether
its internal representation provides the flexibility required for efficient adaptation.

Multiple-step Prediction. Our agent was trained solely to predict a single step.
While this approach was sufficient to validate our hypotheses, it would be valuable to
investigate whether predicting multiple future steps could lead to more complex behaviors.
If the agent can anticipate future events, it may avoid redundant actions and develop long-
term strategies, resulting in more structured and efficient behavior.

Embodiment is Essential. Our experiments demonstrated that increasing the
agent’s immersion in the environment through additional sensors and actuators resulted
in more autonomous and robust development. This finding reinforces the importance
of embodiment and sensory perception in motor and cognitive learning, as the agent
interacts with the environment more richly and develops more refined motor skills by
exploring its action space. A promising direction for future research would be to examine
the influence of embodiment in more challenging scenarios, such as a complex domestic
environment with doors, furniture, unstructured object distributions, and dynamic ob-
stacles. The agent could be allowed to explore freely, relying solely on our multimodal
curiosity reward based on next-observation prediction, enabling an assessment of whether
a higher level of environmental immersion is sufficient for the agent to autonomously
learn to balance itself, navigate the environment to investigate objects, and even interact
with elements such as opening a door to access a new room. Furthermore, evaluating the
agent’s memory capacity in this setting would be crucial to understanding whether it can
retain information about object locations, recall previously traversed paths, and optimize
its exploratory strategies over time [48].

Novel Intrinsic Rewards. In this work, the agent was trained using curiosity as
its sole intrinsic reward. However, other types of intrinsic signals, such as pain, hunger,
fatigue, emotions (e.g., anger, sadness, joy), and even energy balance, play fundamental
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roles in regulating behavior in biological systems. It would be valuable to test these reward
signals individually and with curiosity to assess their impact on the agent’s exploration,
motor development, and adaptability. A particularly relevant experiment would involve
modeling artificial physiological states, simulating an agent that must manage its energy
levels to avoid exhaustion, and ensuring that a need for self-preservation balances its drive
for knowledge. Furthermore, investigating how different reward combinations influence
the construction of the agent’s internal representation and whether the resulting emergent
behaviors resemble evolutionary strategies found in biological organisms would provide
valuable insights into intrinsic motivation in artificial agents.

Learning from Imagination. Given that our agent demonstrated the ability to
predict the next multimodal observation and exhibited good generalization performance,
a relevant investigation would be to explore the extent to which it can learn extrinsic
tasks using only its internal world model as a simulation environment. This approach
would enable training the agent without direct interaction with the real environment,
a critical factor for applications where access to the physical environment is limited or
costly. For such training to be viable, the world model must be sufficiently generalizable
to handle previously unseen situations. One of the key challenges would be enhancing
the fidelity of the internal model, ensuring that it accurately represents environmental
dynamics without excessive bias toward previously encountered states. If the agent can
successfully conduct training internally, this approach could drastically reduce the need for
constant physical interactions with the environment, making reinforcement learning more
efficient and practical for real-world applications where data collection can be expensive
or time-consuming [47].

Curiosity and Attention. In the experiments presented in Section 2.2, we observed
a synergistic relationship between multimodal curiosity-driven reward and the emergence
of visual attention toward objects in the environment. A deeper investigation into this in-
teraction would be highly valuable, particularly in contexts involving richer visual scenes.
One possible direction would be to compare the behavior of the curious agent with hu-
man visual tracking data, assessing the extent to which the agent’s emergent attention
resembles human patterns of fixation and visual exploration. Furthermore, it would be
interesting to test whether manipulating the curiosity reward influences how the agent
allocates its attention over time, potentially leading to different exploration patterns.

Language. We believe incorporating language into the agent’s world model could en-
hance generalization and structure internal representation. Expressing abstract concepts
through language may help the agent better organize their predictions and structure
their exploration. It would be interesting to test different approaches to integrating lan-
guage, such as associating textual descriptions with environmental states, allowing the
agent to develop an internal vocabulary to represent its experiences. Moreover, language
could serve as a mechanism for planning and reasoning, enabling the agent to make more
informed decisions by anticipating the consequences of its actions based on verbal descrip-
tions. Investigating this relationship could contribute to developing more interpretable
agents and advances in embodiment, integrating vision, proprioception, and language to
construct a more structured understanding of the world [97] [17].

Reasoning and Planning. As the agent develops a world model, its predictions
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could later facilitate tasks requiring reasoning and planning. A potential direction for
future research would be to test whether the agent can use its predictions to construct
more complex action sequences, anticipating consequences and adjusting its strategies
based on future expectations. If the agent has predictions for multiple steps ahead, it
could use them to develop planning strategies, avoiding actions that do not lead to the
maximization of its reward. This mechanism may be crucial in enabling agents to perform
highly complex tasks [125].

Social Domains. Social interaction influences all the elements used in this work,
which presents an opportunity to expand the investigation into social domains. An inter-
esting direction would be integrating multiple agents within the same scene, conducting
experiments where two agents interact, such as playing with cubes while attempting to
model the world. This setup could give rise to new and unexpected behaviors distinct from
those observed in single-agent scenarios. In particular, the social interaction between the
two agents could reveal collaborative or competitive behavior patterns, providing fertile
ground for analyzing social phenomena. Such an approach would allow for an in-depth
exploration of emerging social dynamics, with valuable implications for the developmen-
tal robotics field, as it investigates how agent interactions influence the development of
cognitive and social skills while also opening new perspectives on artificial agent learning
in social contexts [68].

Other Domains. Our approach is not confined to complex robotic agents but rather
represents a self-supervised learning framework through reinforcement learning. It would
be valuable to explore whether this approach, when applied to other tasks such as image
classification, gesture recognition, and sentiment analysis, among others, yields interest-
ing outcomes. Furthermore, comparing the results of an encoder pre-trained with this
approach and traditional self-supervised learning would be insightful. Such a compari-
son would allow us to identify the strengths and weaknesses of our approach in terms of
adaptation to new tasks, providing a deeper understanding of its potential across different
domains [8].
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