
Universidade Estadual de Campinas

Instituto de Computação

Ieremies Vieira da Fonseca Romero

A Branch-and-Price Algorithm for the Graph Coloring

Problem

Algoritmo de Branch-and-Price para o Problema de

Coloração de Grafos

CAMPINAS

2025



Ieremies Vieira da Fonseca Romero

A Branch-and-Price Algorithm for the Graph Coloring Problem

Algoritmo de Branch-and-Price para o Problema de Coloração de

Grafos

Dissertação apresentada ao Instituto de

Computação da Universidade Estadual de

Campinas como parte dos requisitos para a

obtenção do título de Mestre em Ciência da

Computação.

Dissertation presented to the Institute of

Computing of the University of Campinas in

partial ful昀椀llment of the requirements for the

degree of Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Rafael Crivellari Saliba Schouery

Este exemplar corresponde à versão 昀椀nal da

Dissertação defendida por Ieremies Vieira da

Fonseca Romero e orientada pelo Prof. Dr.

Rafael Crivellari Saliba Schouery.

CAMPINAS

2025



Ficha catalográfica
Universidade Estadual de Campinas (UNICAMP)

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

       
    Romero, Ieremies Vieira da Fonseca, 2000-  
  R664b A branch-and-price algorithm for the graph coloring problem / Ieremies

Vieira da Fonseca Romero. – Campinas, SP : [s.n.], 2025.  
       
    Orientador: Rafael Crivellari Saliba Schouery.  
    Dissertação (mestrado) – Universidade Estadual de Campinas

(UNICAMP), Instituto de Computação.  
     

   
1. Programação linear inteira. 2. Coloração de grafos. 3. Pesquisa

operacional. I. Schouery, Rafael Crivellari Saliba, 1986-. II. Universidade
Estadual de Campinas (UNICAMP). Instituto de Computação. III. Título.  

Informações complementares

Título em outro idioma: Algoritmo de branch-and-price para o problema de coloração
de grafos
Palavras-chave em inglês:
Integer linear programming
Graph coloring
Operational research
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Rafael Crivellari Saliba Schouery [Orientador]
Flávio Keidi Miyazawa
Teobaldo Leite Bulhões Júnior
Data de defesa: 24-03-2025
Programa de Pós-Graduação: Ciência da Computação

Objetivos de Desenvolvimento Sustentável (ODS)
ODS: 9. Inovação e infraestrutura

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-5801-3774
- Currículo Lattes do autor: https://lattes.cnpq.br/3216045598602403



• Prof. Dr. Rafael Crivellari Saliba Schouery

Instituto de Computação - UNICAMP

• Prof. Dr. Flávio Keidi Miyazawa

Instituto de Computação - UNICAMP

• Prof. Dr. Teobaldo Leite Bulhões Júnior

Centro de Informática - UFPB

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no SIGA/Sistema

de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.



Agradecimentos

Primeiramente, gostaria de agradecer a minha mãe Ana Cláudia, meu irmão Jeremias e meu
avô Milton. Por todo apoio incondicional a todos os desa昀椀os. Por todos os conselhos de vida
e pela educação que me deram, mas também por todas as vezes que voltaram pois eu havia
esquecido o uniforme de educação física. Vocês são a melhor família que eu poderia pedir.

À minha namorada, Jasmine, agradeço pelo amor, pelo carinho, por todos os bolos e bis-
coitos. Por todas as in昀椀ndáveis reclamações que escutou, mas também por ter me ajudado a
dar valor a todas as coisas que 昀椀z. Obrigado por sempre estar ao meu lado, por chorar e rir
comigo ao longo desta jornada. Minha vida não teria tantas cores sem sua presença.

Gostaria de agradecer também aos meus amigos mais próximos do dia a dia de pesquisa:
Carol, Elisa, João e Renan. Seja pelas inúmeras revisões deste e outros textos, seja pela fofoca
nossa de cada dia, esses últimos 2 anos não teriam sido nada sem vocês. Agradeço à Camila,
Giovanna, Gustavo e 吀栀ales, por todas as conversas intermináveis, discussões 昀椀losó昀椀cas e
fofocas. Obrigado por sempre estarem lá quando precisei.

Agradeço a todos os meus amigos de Fortaleza: Amorim, Arthur, Aloysio, Julio, Matheus,
Nishimura, Pedro, Perdigão, Renê, Zeca, Paulinho e Paulão. As piadas mais sem graça, as
discussões 昀椀losó昀椀cas e os servidores de Terraria foram fundamentais para preservar minha
sanidade ao longo destes anos.

Ao meu orientador, Prof. Rafael Schouery serei eternamente grato por, naquela aula de
MC202 em 2018, ter tomado o tempo de responder um garoto que, mal chegado na graduação,
nem sonhava em qual seria os passos para a docência universitária. Obrigado por ser um
orientador atencioso e acolhedor, por compreender meus momentos difíceis e me incentivar
na retomada. E, acima de tudo, por ser minha maior inspiração como professor e pesquisador.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pes-
soal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001. Além disso, este
trabalho recebeu apoio do Convênio entre a Universidade Estadual de Campinas e a Banco
Santander. As opiniões, hipóteses e conclusões ou recomendações expressas neste material
são de responsabilidade do autor e não necessariamente re昀氀etem a visão do Santander.



Resumo

Oproblema de coloração de vértices, um tema central da Teoria dosGrafos, consiste em atribuir

cores aos vértices de um grafo demodo que vértices adjacentes não compartilhem amesma cor,

minimizando o número de cores utilizadas. Amplamente aplicado em escalonamento, alocação

de recursos e otimização de redes, esse problema desempenha um papel crucial na modelagem

e resolução e昀椀ciente de cenários reais. Esta dissertação explora métodos para resolver o pro-

blema de coloração de vértices por meio de formulações existentes de Programação Linear

Inteira (PLI) e do método branch-and-price. Um algoritmo de branch-and-reduce é empregado

pela primeira vez no problema de preci昀椀cação correspondente, integrando regras de separação

e redução para simpli昀椀car a complexidade das instâncias, mantendo a integridade da solução.

Testamos a hipótese de que enumerar um maior número de colunas a cada etapa da aborda-

gem de geração de colunas pode resultar em ummenor tempo de execução total. Combinamos

essa estratégia com um conjunto de heurísticas para encontrar soluções viáveis, permitindo

interromper o processo de geração de colunas mais cedo. Além disso, os limites gerados por

estas abordagens são utilizados para realizar separações e reduções ainda mais e昀椀cientes no

problema original. Experimentos computacionais em conjuntos de dados de referência DI-

MACS e MATILDA validam os métodos propostos, demonstrando melhorias signi昀椀cativas em

e昀椀ciência.



Abstract

吀栀e vertex coloring problem, a cornerstone of Graph 吀栀eory, involves assigning colors to ver-

tices of a graph such that no two adjacent vertices share the same color, minimizing the number

of colors used. Widely applied in scheduling, resource allocation, and network optimization,

this problem plays a crucial role in modeling and solving real-world scenarios e昀케ciently. 吀栀is

dissertation explores methods for solving the vertex coloring problem through exisiting inte-

ger linear programming (ILP) formulations and the branch-and-price. A branch-and-reduce

framework is used for the 昀椀rst time on the corresponding pricing problem, integrating sep-

aration and reduction rules to streamline instance complexity while maintaining solution in-

tegrity. We test the hypothesis that enumerating a larger number of columns at each step of

the column generation approach might yield faster running time overall. 吀栀is strategy is com-

bined with a set of heuristics to 昀椀nd feasible solutions, which also allow the column generation

process to halt earlier. Additionally, the bounds generated by these approaches are integrated

to enhance the e昀昀ectiveness of separation and reduction rules for the original problem. Com-

putational experiments on benchmark datasets DIMACS and MATILDA validate the proposed

methods, demonstrating signi昀椀cant improvements in e昀케ciency.
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Chapter 1

Introduction

吀栀e vertex coloring problem, o昀琀en referred to as the graph coloring problem, is a classical
problem in graph theory that has fascinated researchers for decades. 吀栀e problem seeks to
assign colors to the vertices of a graph such that no two adjacent vertices share the same color,
while minimizing the total number of colors used. 吀栀is deceptively simple problem has a rich
history, tracing back to early studies in map coloring and the famous Four Color 吀栀eorem [2].

吀栀e problem of deciding whether a graph admits a coloring with : colors, for any : > 2,
is NP-complete, and its optimization version, i.e., 昀椀nding the minimum value of : for which
there is a coloring with : colors, is NP-hard [29]. Despite the continued progress in algorithm
design and computational resources, instances with as few as 100 vertices still pose signi昀椀cant
challenges for exact algorithms, underscoring the persistent complexity of the problem. 吀栀is
computational challenge emphasizes the need for robust and innovative approaches to tackle
both theoretical and practical aspects of the problem.

Understanding and solving the vertex coloring problem is not merely of theoretical inter-
est. It has naturally emerges across a wide range of domains, including scheduling, resource
allocation, frequency assignment, and register allocation in compilers [27, 90, 83, 8, 11, 84, 12,
75, 28]. For such applications, exact algorithms for vertex coloring is particularly compelling,
as these methods provide optimal solutions and deepen our understanding of the structural
properties of graphs. By leveraging insights from combinatorics, optimization, and computer
science, exact algorithms o昀昀er a powerful lens through which to study this problem, shedding
light on its complexities and pushing the boundaries of what is computationally achievable.

Recent advances in optimization methods, particularly in Branch-and-Price approaches for
the bin-packing and vehicle routing problems, have inspired new directions in tackling the
graph coloring problem. Innovations such as 昀氀ow-based formulations and the strategic addi-
tion of cu琀琀ing planes during the branching process demonstrates signi昀椀cant improvements
in solving complex combinatorial problems [74, 64]. 吀栀is progress motivated us to investigate
how these techniques could be adapted and applied to the graph coloring problem.

Many commonly employed techniques, including those involving 昀氀oating-point arithmetic
and complex linear programming solvers, are susceptible to rounding errors and precision is-
sues [3]. 吀栀ese errors can compromise the correctness of decisions made during the algorithm,
potentially leading to incorrect solutions or invalid proofs of optimality. 吀栀is concern high-
lights the importance of designing numerically safe algorithms that ensure robustness and
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accuracy throughout the optimization process, such as done by Baldacci et al. [3] and Held et
al. [33].

Furthermore, exact methods for solving the maximum weighted independent set problem
— the pricing subproblem in Branch-and-Price formulations for graph coloring — have also
seen remarkable developments in recent years [56, 82, 45, 87]. 吀栀ese advancements open new
possibilities for improving exact algorithms, both in terms of computational e昀케ciency and the
ability to handle challenging instances.

Building on these advances, we approach the vertex coloring problem through a Branch-
and-Price framework integrated with a Branch-and-Reduce strategy to solve the pricing prob-
lem. 吀栀e methodology incorporates numerically safe techniques to ensure reliability in opti-
mization processes. Furthermore, we investigate whether generating a larger pool of columns
during each column generation iteration improves computational e昀케ciency. Finally, we ex-
tensively employ heuristics to iteratively re昀椀ne the upper bound throughout the optimization
process.

吀栀e structure of this dissertation is as follows. In Chapter 2, we introduce pre-processing
techniqueswe employ to split and reduce the problem, aiming to simplify instances before solv-
ing them. In Chapter 3, we focus on solving the linear relaxations via the column generation
approach, with particular a琀琀ention to handling numerical instability. In Chapter 4, we present
our Branch-and-Reduce algorithm, inspired by Xiao et al. [87], which is applied to the pric-
ing problem. In Chapter 5, we demonstrate the e昀昀ectiveness of our overall approach through
computational experiments on commonly used benchmark instances. Finally, in Chapter 6,
we conclude the dissertation with a summary of our 昀椀ndings and a discussion of potential
directions for future research.

1.1 Applications
吀栀e graph coloring problem has many practical applications across various 昀椀elds. Its ability
to model constraints and con昀氀icts is instrumental in contexts such as Operational Research.

吀栀e problem characterization provides an e昀케cient framework for tackling discrete schedul-
ing problems, where tasks or events must be assigned to speci昀椀c time slots or resources with-
out leading to con昀氀icts. For example, in the airline industry, the problem has been applied
to optimize crew scheduling, ensuring that no crew member is double-booked or assigned
overlapping duties [27, 90].

Timetabling is another classic application of graph coloring, particularly in academic or or-
ganizational se琀琀ings. For instance, universities use graph coloring to create course schedules
that prevent clashes between classes requiring the same room or involving the same instructor.
Early foundational work in this area includes the work of Werra [83], with later re昀椀nements
by Burke et al. [8] .

Another application is train platforming problems, where trains must be assigned to plat-
forms in a way that avoids con昀氀icts and optimizes the usage of available infrastructure. For
instance, Caprara et al. [11] describes how graph-based models can streamline operations in
complex railway systems, reducing delays and improving passenger satisfaction.
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In compiler design, graph coloring is instrumental in register allocation, which is the as-
signment of variables to a limited number of CPU registers in order to minimize the movement
of information in and out of those registers. In the interference graph, where nodes represent
variables and edges denote simultaneous use, a color represents a register to be used by the cor-
responding set of variables [84, 12]. Similarly, the problem of frequency assignment in wireless
communication systems can be naturally modeled as a graph coloring problem. 吀栀e aim is to
assign frequencies to transmi琀琀ers while avoiding interference between adjacent transmi琀琀ers
and minimizing the usage of the electromagnetic spectrum. Studies such as those by Smith
et al. [75] and Gamst [28] demonstrate how graph coloring ensures e昀케cient spectrum utiliza-
tion and maintains communication quality. Additionally, in communication networks, graph
coloring is used to allocate resources like time slots or channels, optimizing the accessibility
of multi-access systems and preventing interference, as shown by Woo et al. [86].

吀栀ese examples endorse the relevance of investigating the Graph Coloring Problem and
its applicability to real-world challenges, where e昀케cient con昀氀ict avoidance and resource opti-
mization are critical.

1.2 Mathematical Model
In this section, we introduce notation used throughout this text.

Let � = (+ , �) be a simple undirected graph, such that � ⊆ + ×+ . We denote by = = |+ |

the number of vertices and by < = |� | the number of edges. Two vertices D and E are said
to be adjacent if there exists an edge {E,D} ∈ �. We say that the open neighborhood, denoted
#� (E), of a vertex E ∈ + in the graph � is the set of vertices adjacent to E , i.e., #� (E) =

{D ∈ + : {D, E} ∈ �}. 吀栀e closed neighborhood of E is #� [E] = #� (E) ∪ {E}. 吀栀e density of a
graph � , denoted by � (�), is the ratio 2<

=(=−1)
. We may omit � from those notations when it

is clear from context.
A proper coloring is a mapping of labels, which we call colors, to vertices, such that no two

adjacent vertices receive the same color. We refer to a proper coloring simply as a coloring.
On the other hand, a partial coloring is the assignment, according to the same rules, of colors
to only a subset of vertices. 吀栀e chromatic number of� , denoted j (�), is the least number of
colors that can constitute a proper coloring of � . Given a partial coloring, a color ℎ is valid
for vertex E if it has not been assigned to any vertex in the open neighborhood of E . We say
that the set of vertices colored by the same color is a color class. A :-coloring of� is a proper
coloring of � with : color classes. 吀栀roughout the text, we use several well-known results
concerning vertex-coloring of graphs. We refer the interested reader to Bondy1976 for an
overview.

For a graph� = (+ , �), a set ( ⊆ + is independent in� if and only if there are no edges in �
connecting two elements of ( . Notice that a color class is an independent set of� . 吀栀e indepen-
dence number U (�) is the maximum cardinality of any independent set of � . Let c : + → R

be a vertex weight function, we say that U (�, c) is the maximum weight of an independent set
(MWIS) of vertices on� . We might also omit� and c from the notation when it is clear from
context.

An induced subgraph � = (+� , �� ) of � = (+ , �) is a graph such that +� ⊆ + and �� =
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{{D, E} ∈ � : D, E ∈ +� }. In other words, � is a subgraph obtained by selecting a subset of the
vertices of � and including all edges between these vertices that are present in � . We denote
by � [+ ′] the subgraph induced by a set + ′ ⊆ + .

吀栀e complement of a graph � = (+ , �) is the graph � = (+ , �), such that

� = {{D, E} : {D, E} ∉ �, D, E ∈ + and E ≠ D}.

吀栀at is to say, two vertices are adjacent in � if and only if they are not adjacent in � .
A clique of graph � is a subset & ⊆ + of vertices such that all vertices in & are pairwise

adjacent in � . Note that an independent set in � is a clique in � .

1.3 Other methods
Before we dive into the techniques we use, we want to give a brief overview of di昀昀erent ap-
proaches employed to solve the problem.

Heuristics play a signi昀椀cant role in tackling the Graph Coloring Problem. Early work by
Hertz and De Werra [34] introduced the use of tabu search and other local search methods,
which were later extended [5, 16, 34, 35, 66]. For a comprehensive overviewwe refer the reader
to the work of Galinier and Hertz [25].

Population-based hybrid algorithms, as proposed by Galinier and Hao [24], generally o昀昀er
the best performance for the coloring problem [78]. Some other speci昀椀c heuristic techniques
include methods for extracting independent sets [32] or the use of simulated or quantum an-
nealing [80, 73].

When it comes to fast heuristics, those that prioritize quickly 昀椀nding a “good-enough”
solution over extensive optimization, such as DSATUR [7] and RLF [46], stand out. 吀栀ese
greedy algorithms are o昀琀en employed as initialization procedures for more complex methods
due to their simplicity and e昀케ciency.

吀栀e use of SAT-based methods for the Graph Coloring Problem has also been explored
in the literature. Van Gelder [81] introduces formulations based on propositional logic, while
Bouhmala and Granmo [6] applies learning automata and randomwalks to the problem. More
recently, Heule et al. [36] presents a hybrid approach combining SAT algorithms for maximum
clique solving which exchanges information with an exact graph coloring algorithm. Despite
these advancements, the applicability of SAT-based methods remains limited in certain scenar-
ios [15].

Other approaches to the problem, such as Dynamic Programming [9, 17], have gathered
theoretical interest but lack practical application. Enumeration algorithms, pioneered by Zykov
[91] and further developed by Brélaz [7], have been adapted and improved upon by researchers
like San Segundo [68], Sewel [71], and Furini et al. [23].

For a broader perspective on these and relatedmethods, see the surveys by Lima andCarmo
[49], Lewis [48], and Malaguti and Toth [54].
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1.4 Integer Linear Programming
Linear programming is an optimization technique used to model problems with linear equa-
tions and inequalities. In these models, a linear objective function is de昀椀ned and we seek to
minimize (or maximize) its value, subject to a set of linear constraints (including linear equal-
ities and inequalities) [13].

Given a matrix � ∈ R<×= dimensions, and vector 1 and 2 of dimensions< and = respec-
tively, we need to 昀椀nd a vector G ∈ R= , such that the following criteria are met:

(%) minimize 2⊤G

subject to �G ≥ 1

G ∈ R=+.

吀栀is way, 2⊤G is our objective function, while
{

� 9G ≥ 1 9 : 1 ≤ 9 ≤ <
}

is a set of constraints
that need to be abide to. A solution is an a琀琀ribution of values to G , and we denote it by G . A
solution G satis昀椀es constraint 9 if its corresponding inequality holds. Also, we say G is feasible
for a linear program if it satis昀椀es all constraints and is optimal if the value of 2⊤G is minimum
among all feasible solutions.

Several algorithms can be employed to 昀椀nd optimal solutions. 吀栀e simplex algorithm [14],
despite having exponential worst-case time complexity, solves linear programs e昀케ciently in
practice and has polynomial time complexity on average. Algorithms such as the interior-
point method [Diking67, 43, 63] and the ellipsoid method [30] can also solve linear programs
and have polynomial time complexity in the worst-case. However, in practice, the ellipsoid
method performs worse on average, while the simplex and interior-point methods are gener-
ally competitive.

For a primal minimization problem as stated previously in (%), its dual (�) is de昀椀ned as:

(�) maximize 1⊤~

subject to �⊤~ ≤ 2

~ ∈ R<+ .

An optimal solution G for (%) and a solution c for (�) are said to be corresponding solu-
tions if c is feasible for (�) and the solutions satisfy the Complementary Slackness 吀栀eorem.

吀栀eorem 1.1 (Complementary Slackness [85]). Let (%) be a linear program, and (�) its dual.
Suppose G and c are feasible solutions for (%) and (�), respectively. 吀栀en, G and c are optimal
if, and only if, for every 9 such that 1 ≤ 9 ≤ <:

• if c 9 > 0, then � 9G = 1 9 ;

• if � 9G < 1 9 , then c 9 = 0;

吀栀e dual problem provides a lower bound for the primal objective value, as stated in the
Weak Duality 吀栀eorem.
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吀栀eorem 1.2 (Weak Duality [85]). Let (%) be a linear program and (�) its dual. If G and c
are feasible solutions to (%) and (�), respectively, then 2⊤c ≤ 1⊤G .

Furthermore, under certain conditions, the primal and dual optimal values coincide, as
established by the Strong Duality 吀栀eorem.

吀栀eorem 1.3 (Strong Duality [85]). Let (%) be a linear program, and (�) its dual. 吀栀en:

1. If (%) is infeasible, then (�) is either infeasible or unbounded.

2. If (�) is infeasible, then (%) is either infeasible or unbounded.

3. If both (%) and (�) are feasible, then their optimal value are equal.

For some problems, such as graph coloring, solutions with non-integer values are not suit-
able because we cannot assign, for example, “half a color” to a vertex. To address this, variables
can be restricted to integer values, resulting in an Integer Linear Program (ILP). 吀栀ese restric-
tions are referred to as integrality constraints. If only a subset of the variables requires integer
values, the program is called a Mixed Integer Linear Program (MILP).

What might seem like a small change introduces signi昀椀cant computational challenges [67].
吀栀e previously mentioned algorithms are not su昀케cient to 昀椀nd optimal feasible solutions for
integer linear programs. Instead, techniques such as branch-and-bound are used.

Branch-and-bound (B&B) is a general optimization framework used to systematically ex-
plore and prune the solution space. 吀栀e algorithm builds a tree where each node represents
a subproblem, derived by “branching” on a decision (e.g., choosing a speci昀椀c independent set
to include or exclude) in the context of the graph coloring problem. At each node, bounds
are computed for the value of an optimal solution within the subproblem. If a subproblem’s
bound indicates it cannot outperform the best-known solution, the node is “pruned,” avoiding
unnecessary computation. 吀栀is method depends heavily on e昀케ciently computing bounds and
selecting branches, as it can otherwise degrade into an exhaustive search. For minimization
ILPs, any feasible solution can serve as an upper bound, while solutions to the linear relaxation
(the corresponding linear program without integrality constraints) provides a lower bound.

吀栀e reduced cost of a variable provides valuable insight into the optimization problem. For
a minimization problem, the reduced cost of a variable G8 is de昀椀ned as:

28 −

<
∑

9=1

~ 9�8 9 ,

where 28 is the coe昀케cient of G8 in the objective function, ~ 9 are the dual variables associated
with the constraints, and �8 9 represents the coe昀케cients of G 9 in the constraints.

吀栀e reduced cost indicates how much the objective value would decrease if the value of G 9
were increased by one unit, assuming all other variables remain constant. If the reduced cost
of a variable with value zero is negative, incrementing that variable’s value can improve the
objective value.
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1.5 Coloring Formulation
As proposed by Mehrotra and Trick [57], a way of seeing the graph coloring problem is to
imagine it as a Set Cover problem (SC), where the available sets are all the independent sets for
the graph.

As such, let S be the family of all independent sets of the graph� = (+ , �) that we want to
color. We use binary variables G( to indicate if set ( ∈ S is used or not. 吀栀is way, we formulate
the problem as:

(SC) minimize
∑

(∈S

G(

subject to
∑

(:E∈(

G( ≥ 1 ∀E ∈ +

G( ∈ {0, 1} ∀( ∈ S.

吀栀e 昀椀rst set of constraints, called cover constraints, guarantees all vertices are contained
in at least one chosen set. 吀栀e objective function aims to minimize the number of chosen sets
in the same way we want to use the least number of colors.

It is important to note the cover constraints are in itself a relaxation for the coloring prob-
lem since, this way, we could “use two colors” in a vertex. 吀栀is is easily solvable by the fact
that any subset of an independent set is also independent.

On the other side, the number of independent sets in a graph can be exponential compared
to the number of vertices, making it infeasible to enumerate them all. To avoid doing so, we can
start from a subset of variables S′ ⊆ S, solve the linear relaxation, and then 昀椀nd new variables
to add to the model such they improve the current solution. 吀栀e intuition comes from the same
process the simplex algorithm does in order to 昀椀nd columns to pivot, computing the reduced
cost and adding a column with minimum value of it to the basis.

A more intuitive way of looking at this circumstance is through the corresponding dual
problem1:

(dual-SC) maximize
∑

E∈+

cE

subject to
∑

E∈(

cE ≤ 1 ∀( ∈ S′

cE ≥ 0 ∀E ∈ +

c ∈ R= .

Since we did not enumerate all primal variables, the corresponding dual is still missing some
constraints. Because of that, those missing constraints could be violated making the corre-
sponding dual solution infeasible.

In other words, to 昀椀nd which constraints are needed, we need to 昀椀nd ( ∈ S such that
∑

E∈( cE > 1. 吀栀at is, an independent set with weight greater than 1, where the vertices’
1吀栀e corresponding dual problem referenced here comes from the the linear relaxation of the Set Cover (SC)

formulation, since an integer program does not have a corresponding dual directly.
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weights are the corresponding dual solution values. To prove that such a set does not exist,
we need to show that the weighted independence number U (�, c) is at most 1. Formally, we
need to 昀椀nd

U (�, c) = max

{

∑

E∈(

cE : ( ∈ S

}

(1.1)

which is an instance of the Maximum Weighted Independent Set problem.
Becausewe need towork on a reduced set of variables, using a branch-and-bound approach

would not su昀케ce. Branch-and-price (B&P), on the other hand, extends the B&B framework
by incorporating column generation, a strategy to handle problems with an exponential num-
ber of variables [19]. In this approach, the problem begins with a restricted problem using a
manageable subset of variables. 吀栀e algorithm alternates between solving this relaxation and
identifying new variables to add by solving a pricing problem (e.g., 昀椀nding an independent set
with reduced cost less than zero or, equivalently, dual weight greater than one).

吀栀e current state-of-the-art branch-and-price approach for graph coloring by Held et al.
[33] employs various methods to generate new columns. Before solving the problem exactly,
the authors 昀椀rst a琀琀empt to identify violated constraints using three greedy heuristics. If these
heuristics cannot 昀椀nd an independent set with a weight greater than 1, the method employs
either a clique enumeration approach or a branch-and-bound algorithm. While both are exact
algorithms for theMWIS problem, the former is applied to dense graphs (with density� > 0.8),
and the la琀琀er is used for sparser cases.

1.6 Other formulations
Besides the model that we show in the previous section, plenty of formulations for the problem
are present in the literature. We go over the most prominent ones.

Allocation Model Given an upper bound (D1) to the chromatic number (such as the max-
imum degree of a vertex or a heuristic solution), we de昀椀ne binary variables GEℎ if vertex E
is allocated to color ℎ and ~ℎ if color ℎ is used at least once. 吀栀is way, we can produce the
following formulation:

minimize
=

∑

ℎ=1

~ℎ

subject to
=

∑

ℎ=1

GEℎ = 1 ∀E ∈ +

GEℎ + GDℎ ≤ ~ℎ {D, E} ∈ �,ℎ = 1, . . . , D1

GEℎ ∈ {0, 1} ∀E ∈ +

~ℎ ∈ {0, 1} ℎ = 1, . . . , D1.

Although a simple formulation, this model sees li琀琀le interest nowadays. 吀栀is comes from
two major drawbacks:

1. It has many symmetries, since colors are indistinguishable from one another. A solution
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that uses : colors has :! permutations of what is e昀昀ectively the same solution.

2. 吀栀e linear relaxation is extremely weak, which means that solving it will land us far
from the optimal integer solution value.

Some have tried to improve its performance, such as the works from Méndez-Dıáz and
Zabala [59] and Méndez-Díaz and Zabala [58], which adds valid inequalities through a branch-
and-cut algorithm. In a branch-and-cut process, we follow the paradigm of branch-and-bound
but, at each linear relaxation solved, we try to strengthen it by adding valid inequalities. To
strengthen a linear relaxation is to cut out fractional solutions, while a valid inequality is one
that does not remove any integer solution from the set of feasible solutions of the relaxation.

Representatives Model Campêlo et al. [10] proposed a formulation where each color is
represented by a vertex. To achieve this, they introduced binary variables GDE for each pair of
non-adjacent vertices D, E ∈ + , where GDE indicates whether vertex E represents the color of
vertex D. Additionally, GEE is used to specify if E is its own representative. Let #̄ (E) denote the
set of non-adjacent vertices to E . 吀栀e formulation is wri琀琀en as:

minimize
∑

E∈+

GEE

subject to
∑

E∈#̄ (D)∪{D}

GDE = 1 ∀D ∈ + ,

GDE + GFE ≤ GEE E ∈ + ,∀{D,F} ∈ � [#̄ (E)]

GDE ∈ {0, 1} ∀D ∈ + , E ∈ #̄ (D).

吀栀e 昀椀rst set of constraints ensures that every vertex has exactly one representative among
all vertices that are not neighbors to it or itself. 吀栀e second set guarantees that two adjacent
vertices do not share the same representative.

吀栀is formulation, like the previous, su昀昀ers from multiple symmetries, as the choice of
which vertex acts as the representative does not a昀昀ect the composition of the color classes.
To address this, the authors proposed additional valid constraints to strengthen the model,
such as requiring the representative of a color class to be the vertex with the lowest index.
Computational experiments conducted by Jabrayilov and Mutzel [39] demonstrated that this
formulation is also competitive compared to the others, specially in dense instances.

Hybrid Partial Ordering Proposed by Jabrayilov and Mutzel [39] and later extended by
the same authors [40], this formulation uses a mix of allocation model and partial ordering.
To do so, they de昀椀ne a partial ordering of the union of vertex set + and ordered set of colors
(1, . . . , D1), where D1 is an upper bound for the chromatic number. We say vertex E is colored
by color ℎ if E ≻ ℎ and, in the case of ℎ > 1, E ⊁ ℎ − 1.

吀栀e mathematical formulation is quite convoluted and, since it is not be the focus of this
work, we limit ourselves to the example in Figure 1.1. On the bo琀琀om, we see an ordering
of vertices and colors. 吀栀e corresponding graph and coloring can be found on top of it. For
example, vertex 6 is colored by color 2 since 6 ≻ 2 and 1 ≻ 6. Note that the ordering of the
color is kept, so 1 ≻ 2 ≻ 3 . . . D1 − 1 ≻ D1.
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Figure 1.1: Example of coloring using partial ordering. On the top le昀琀, the graph we want to
color, and on the right, an example of such coloring. 吀栀e corresponding solution to the Hybrid
Partial Ordering formulation is represented bellow the graphs.

According to the authors and their computational experiments, this formulation is compet-
itive with the assignment and representatives formulations, specially in sparse graphs. 吀栀ey
were also able to close the instance abb313GPIA.

Decision Diagram. Recently, Hoeve [37] proposed the use of decision diagrams with
network 昀氀ow to solve the coloring problem. 吀栀e authors construct a decision diagram of
independent sets, where each decision arc corresponds to inserting or not a vertex to the set
and each node represents the vertices that can still be chosen for the independent set. In this
approach, each color class is a path along the decision diagram of independent sets and the
chromatic number is the least amount of paths that determine a partition of the graph.

Formally, for a problem % de昀椀ned by an ordered set of variables - = {G1, G2, . . . , G=}, a
decision diagram is constructed as a simple acyclic directed graph with = + 1 levels. 吀栀e 昀椀rst
level contains a single vertex, A , called the root, while the last level contains a single vertex, C .
Level 8 consists of a set of nodes associated with the variable G8 , each having arcs to nodes in
level 8 + 1. 吀栀ese arcs are labeled either 0 or 1, corresponding to the value of the associated
variable.

In Figure 1.2, we show an example. 吀栀e numbers inside the nodes represent the set of
available vertices (i.e., the state), while the dashed arcs correspond to 0-arcs (indicating that
the vertex is not included), and the solid arcs correspond to 1-arcs (indicating that the vertex
is included in the independent set). On the 昀椀rst level, we can still add any vertex we wish,
since none have been picked yet. 吀栀e corresponding variable, G0 , indicates whether we chose
to insert vertex 0 in our independent set. If we do, represented by the 1-arc, we will no longer
be able to chose vertex 2 , giving us the resulting state {1, 3}. On the other hand, if we chose
to not insert vertex 0, we are le昀琀 with all the others to chose from on the next levels.

Hoeve [37] applied this technique to the independent set formulation, where each variable
indicates whether or not a vertex is included in the set. If a decision diagram would be con-
structed to represent the coloring problem exactly, it could be solved using a 昀氀ow formulation.
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Figure 1.2: Example from Hoeve [37]. On the le昀琀, is the graph to be colored; on the right, is
the corresponding decision diagram.

In this formulation, each A, C-path would correspond to a color class, and, as demonstrated by
the authors, the objective function would yield the chromatic number. Unfortunately, such di-
agramsmay contain an exponential number of nodes, requiringmore sophisticated techniques
speci昀椀c to decision diagrams. Moreover, its minimum size for solving the graph coloring prob-
lem depends heavily on the chosen ordering, making it a critical parameter for the algorithm.

吀栀e authors report competitive results compared to other state-of-the-art methods by em-
ploying speci昀椀c decision diagram strategies to address the challenges mentioned above. In
summary, they were able to provide more lower bounds than other works, but the branch-
and-price approach of Held et al. [33] still managed to close more instances.
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Chapter 2

Separate and Reduce

A key strategy for signi昀椀cantly reducing computational e昀昀ort is to shrink the search space by
intelligently dividing the problem into smaller subproblems and re昀椀ning it using previously
obtained bounds. 吀栀ese methods can help us make hard instances more manageable, either
by decomposing them into smaller subproblems or by simplifying their structures without
losing essential properties. Separating and reducing instances is crucial for mitigating the
exponential growth in computational time inherent to NP-hard problems like graph coloring.

One idea that will become underlying in the next section is that, by (re)introducing some
vertices into the graph, the chromatic number cannot be reduced. 吀栀is means that, a lower
bound computed on an induced subgraph is still a valid lower bound on the original graph.
So, by this logic, by removing vertices, we can compute valid lower bounds for the chromatic
number in a smaller graph.

2.1 Separate
A simple observation is that the chromatic number of a graph � is equal to the maximum
chromatic number of each of its connected components, i.e.

j (�) = max{j (� ) : � is a connected component of �}.

吀栀is means we can separate the graph into its connected components, solve each one and
merge the solutions. As an example, if {ℎ1, ℎ2, . . . , ℎ:} and

{

ℎ′
1
, ℎ′

2
, . . . , ℎ′

;

}

are a proper coloring
of the two connected components � and � ′ of � , then

{

ℎ1 ∪ ℎ
′
1
, ℎ2 ∪ ℎ

′
2
, . . . , ℎmax{:,;} ∪ ℎ

′
max{:,;}

}

is a proper coloring of � .
A coloring constructed by spli琀琀ing a disconnected graph into its components is valid be-

cause no edges connect vertices in di昀昀erent components, so coloring each separately does not
violate the original graph’s constraints. Since each component must be colored with at least its
chromatic number, the overall chromatic number of the graph is at least the maximum chro-
matic number among its components. Moreover, as the chromatic number of any connected
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component serves as a valid lower bound for j (�), if a component � has a chromatic number
of : and another component � ′ already admits a :-coloring, then solving � ′ to optimality
becomes unnecessary even if its chromatic number is lower, thereby simplifying the problem.

吀栀is idea can be further explored by altering the order in which each connected component
is solved, with the goal of enhancing the e昀昀ectiveness of the reductions described below (see
Section 2.2). By prioritizing components with themost vertices, we aim to obtain lower bounds
that can simplify the resolution of smaller connected components. On the other hand, if we
start from the smallest connected component, we could obtain some lower bound, albeit less
than we would otherwise, but speed up the solution of bigger connected components, which
(usually) are the hardest. We put those ideas to the test later in our experiments

Another useful lemma comes from the connected components of the graph’s complement.

Lemma 2.1. Let� be a graph, and+ 1, ...,+ : be the connected components of� . 吀栀en, j (�) =
∑:
8=1 j (� [+ 8]).

吀栀is comes from the fact that, for any two connected components + 8 and + 9 from � , all
vertices E ∈ + 8 are adjacent to all vertices D ∈ + 9 in the original graph � . 吀栀erefore, no color
used in one connected component of � can be used in another connected component.

Figure 2.1: Illustration of how we can separate a graph in order to facilitate 昀椀nding an optimal
coloring. 吀栀e original graph, on the le昀琀, is split two times. First, since it is not connected, and
a second time, since its complement (represented in the cloud shape 昀椀gure) is disconnected.

Lastly, we note that those reductions can be applied multiple times: by separating the
graph because it is disconnected, we can still check for the condition in Lemma 2.1, and repeat
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this process until no more separations can be done. An example of such a recursive process
can be found in Figure 2.1. When converging back to the original graph, we need to apply the
correct rule to unite solutions from di昀昀erent parts based on the reason for separating.

2.2 Reduce
Another well-known fact about the chromatic number of a graph stated in Lemma 2.2 helps
us further simplify the problem by 昀椀nding subgraphs.

Lemma 2.2. Let � be a graph, and �′ a subgraph of � . 吀栀en j (�) ≥ j (�′).

Initially proposed by Seidman [70], the concept of :-core can be applied to reduce the
number of vertices considered when solving the coloring problem.

De昀椀nition 2.3. Let�′ be a subgraph resulting of iteratively removing vertices with a degree
less than : from graph � . Each connected component of �′ is called a :-core of � .

吀栀e concept of :-core relates to the degeneracy X∗(�) of a graph, which is the greatest
value of : such that � contains a non-empty :-core . We refer the reader to Malliaros et al.
[55] for a survey of algorithms that apply this idea.

It is important to note that, by this process, we might end up with multiple components
(:-cores), but since we would apply the separation rules explained earlier, we will consider it
as a connected subgraph.

Given a lower bound : to the chromatic number of � , we can 昀椀nd the :-core of � in
polynomial time. A useful property of such :-core is given by 吀栀eorem 2.4.

吀栀eorem 2.4. Let� be a graph and : a lower bound on j (�). A coloring to its :-core can be
extended to a valid coloring for the original graph with the same number of colors in polyno-
mial time.

It is possible to see this fact since, by iterating in the reverse order in which we removed
the vertices, we can guarantee that there will be an available color to assign to each vertex.
Because : is a lower bound on j (�), there are at least : colors, and if vertex E was removed,
it had less than : neighbors, so there must already exist a color valid for E .

吀栀e extent to which this reduction simpli昀椀es the graph is directly proportional to the close-
ness of the lower bound for the chromatic number. Because of that, now is a good time to
revisit the known lower bounds for the chromatic number of a graph � . 吀栀e 昀椀rst one comes
from the clique number (l (�)), the maximum size of a clique in the graph, since it must be
colored by l (�) colors. By 昀椀nding the independence number (U (�)), the maximum size of
an independent set in the graph, we can bound the chromatic number of a graph to be, at
least, =/U (�). Additionally, there is the Lovász number of the complementary graph o (�)
[50], which is also a lower bound to j (�). It can be approximated in polynomial time, using
semi-de昀椀nite programming and the ellipsoid method, but this would be outside of our scope.
Our last lower bound is the fractional chromatic number j5 (�), which comes from linear re-
laxation of the SC formulation to solve the coloring problem. 吀栀erefore,

⌈

j5 (�)
⌉

is a valid
lower bound and we will expand on that in Chapter 3.
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Regarding the strength of these bounds, it is known that =
U (�)
≤ j5 (�) [69], and l (�) ≤

j5 (�) ≤ j (�). 吀栀e fractional chromatic number approximates the chromatic number within
a logarithmic factor [51]

j (�)

1 + lnU (�)
≤ j5 (�) ≤ j (�) .

Moreover, by 吀栀e Lovász “sandwich theorem” [44], we also have that l (�) ≤ o (�) ≤ j (�).
Unfortunately, U , l , and j5 are NP-hard to compute. 吀栀erefore, we will use heuristics to

approximate the 昀椀rst two, while the third will be computed exactly. On the bright side, by
eliminating vertices, the graph, or its complement, might become disconnected, so we may
further separate using our separations rules, as explained in Section 2.1.

Lastly, there are two well-known reductions to our problem. First, when a vertex is uni-
versal, i.e., adjacent to all other vertices, it can be removed and later assigned to a new color.
Second, for a pair of non-adjacent vertices D, E , if # (D) ⊆ # (E), we say vertex E dominates
over D. When that happens, we can remove vertex D, and later color it with the same color E
has been assigned to.
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Chapter 3

Coloring

As we glossed over at Section 1.5, we base our work on the formulation proposed by Mehrotra
and Trick [57]. By considering each color class as an independent set of vertices and recogniz-
ing a valid coloring as a partition of the vertex set, we arrive at the set partitioning formulation.
Let S be the family of all independent sets of the graph� = (+ , �), we can model the coloring
problem as a set partition problem, where we aim to partition the set of vertices + into color
classes ( ∈ S. An integer linear programming formulation for such a problem can be wri琀琀en
as such:

(SP) minimize
∑

(∈S

G( (3.1)

subject to
∑

(∈S:E∈(

G( = 1 ∀E ∈ + (3.2)

G( ∈ {0, 1} ∀( ∈ S (3.3)

where G( is a binary decision variable that indicates whether the independent set ( is used. Our
objective function, Equation (3.1), aims to minimize the number of color classes used, given
that all vertices are in exactly one set, as required by Equation (3.2).

Such formulation can be relaxed into a set covering problem by relaxing Equation (3.2)
into Equation (3.4), while maintaining the rest of the formulation.

∑

(∈S:E∈(

G( ≥ 1 ∀E ∈ + . (3.4)

A solution of such can be transformed into a valid coloring by simply assigning one color to
each ( and choosing one of the colors used to cover vertex E . 吀栀is process can be accomplished
in linear time. Overall, this relaxation simpli昀椀es the model, making it more tractable to solve,
at the cost of a computationally e昀케cient post-processing step.

At this point, we still need to address two issues: 昀椀rst, wemay have an exponential number
of variables, which means it is prohibitive to enumerate them all; secondly, solving an ILP
model is NP-hard [29]. We address both challenges in this section, beginning with the second
one.

To address the la琀琀er, we implement a branch-and-bound algorithm, leveraging the linear
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relaxation of the model as a lower bound, alongside heuristics to generate feasible solutions
that serve as upper bounds. By relaxing Equation (3.3), we can arrive at the following model:

(LM) minimize
∑

(∈S

G(

subject to
∑

(∈S:E∈(

G( ≥ 1 ∀E ∈ +

G( ∈ R+ ∀( ∈ S.

Note that we do not need to restrict our real variables to be less than or equal to 1, since
we are minimizing the number of sets used, and there is no reason to use the same set more
than once. With a fractional optimal solution G with value ;1 for LM and an upper bound D1,
we can de昀椀ne the gap as gap = D1 − ⌈;1⌉. If the gap between the current lower and upper
bounds is not zero, we need to split the search space using what we call branching. We will
further explore this topic in Section 3.4.

By solving LM, we obtain the fractional chromatic number, the strongest known lower
bound for the chromatic number of a graph [69]. Together with upper bounds from primal
heuristics such as DSATUR, Relax-and-Fix, and Rounding, further explained in Section 3.3, we
can narrow our branch-and-bound search.

We are le昀琀 with the problem of the exponential number of variables. For that, we employ
the idea of using a restricted set of variables S′ in the Model LM, arriving at a model we call
restricted (RLM). A昀琀er solving it using general LP solvers, we need to check if there is any set
yet to be enumerated that could improve the solution.

To achieve this, we compute the reduced cost of a variable. If the reduced cost is negative, it
implies that including the variable in the restricted set of variables could lead to an improved
solution when re-optimized.

Another, more intuitive way of looking at this, is to observe the corresponding dual prob-
lem of Model RLM:

(dual-RLM) maximize
∑

E∈+

cE

subject to
∑

E∈(

cE ≤ 1 ∀( ∈ S′

cE ∈ R+ ∀E ∈ + .

Here, we need to maximize the summing of all vertex weights, subjected to the sum of weights
in each independent set is less than or equal to 1. Similarly to what we have done for the
primal problem, we will be working with a restricted subset of sets, which, in this case, will
correspond to constraints.

Given a pair of optimal solutions (G, c) for RLM and dual-RLM, by the Strong Duality
吀栀eorem 1.3, it is also a pair of optimal solutions for the constricted models if, and only if, c
is feasible for the dual of LM, as G is feasible for LM. 吀栀is corresponds to con昀椀rming that no
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constraint is violated, that is,
1 −

∑

E∈(

cE ≥ 0 ∀( ∈ S. (3.5)

If that is not the case, we need to add some of those violated constraints to our restricted model
and re-optimize. Note that the le昀琀-hand side of Equation (3.5) is exactly the reduced cost of a
variable associated with ( ∈ S.

吀栀e process of determining whether a dual constraint is violated is known as the pricing
problem. Solving the restricted linear model by starting with a restricted set of columns, S′, and
dynamically generating additional columns through the pricing problem is referred to as the
column generation technique. Consequently, branch-and-price algorithm is the combination of
a a branch-and-bound search tree with a linear relaxation solved using column generation.

吀栀e traditional branching scheme, referred to as variable branching by Malaguti and Toth
[54], introduces additional constraints, such as prohibiting the use of speci昀椀c variables. 吀栀ese
constraints modify the pricing problem, preventing certain variables from being included in
the model, even if their reduced costs would otherwise justify their selection. In our case, this
entails solving the maximum weighted independent set problem, which is itself NP-hard [4],
with the added restriction that the solution must exclude sets from such list of “prohibited”
subsets. 吀栀is modi昀椀ed pricing problem is referred to as the constrained pricing problem by
Morrison et al. [62], and we will avoid it by using the scheme proposed by Foster and Ryan
[21] (see Section 3.4).

吀栀ere is another challenge lurking around our computations: the imprecision of 昀氀oating
point arithmetic. Operating with variable precision may introduce cumulative error, poten-
tially causing premature termination of the process. Because of that, commercial solvers, such
as Gurobi [31], use a threshold of how much a constraint can be violated in order to speed
up computations. If no dual constraints are violated by more than the speci昀椀ed threshold, the
solver considers the solution feasible, which may lead to an inaccurate lower bound.

吀栀erefore, there are two moments we need to take such imprecision into account: when
retrieving the dual solution to solve Equation (3.5), and, a昀琀er solving the Model RLM, when
computing a numerically safe lower bound. To address that, we will have to compute a 昀椀xed-
point dual solution cfixed and, based on such solution, a lower bound we know it is valid,
;1safe.

In this chapter, we will dive into how we employ such branch-and-price, but we will leave
howwe prove that our solution satis昀椀es Equation (3.5) for the Chapter 4. A high-level overview
of our branch-and-price algorithm can be found in Algorithm 1.



29

Algorithm 1: Branch-and-Price algorithm.

Input :A graph � = (+ , �), and a global lower bound 6;>10;_;1 (based on
any pre-processing, see Chapter 2).

Output :An optimal valid coloring.

1 Add (�,6;>10;_;1) as a node to be explored in the branch tree
2 Let �′← ∅ be the set of all enumerated color classes. // All color classes

generated by the various methods during our algorithm will be added to this set.
3 D1 ← an initial upper bound by the DSATUR heuristic
4 while there are unexplored nodes in the search tree with lower bound < D1 do
5 Chose an unexplored node (�, ;1) and mark it as explored
77 repeat
8 Solve the Model RLM using � and �

′ via Gurobi [31]
9 Try to improve the upper bound by using the Rounding heuristic

// Section 3.3
10 Compute the 昀椀xed-point weights cfixed // Section 3.1
11 Generate new columns with the pricing algorithm",�( (�, cfixed)

// Chapter 4
12 until no new sets are generated or we can stop earlier // Section 3.2
13 Reapply reduction by :-core, if possible // Section 2.2
14 Compute a upper bound using heuristics and update D1 if possible

// Section 3.3
15 ;1safe ← numerically safe lower bound // Section 3.1
16 if ⌈;1safe⌉ < D1 then
17 Branch with ⌈;1safe⌉ as lower bound // Section 3.4
18 Add the created nodes to the list of unexplored nodes

19 return D1

3.1 Fixed Point Arithmetic
We start by addressing the problem of numerical errors. As we previously explained, commer-
cial linear program solvers use 昀氀oating-point arithmetic, which can build up error, and lead
us to a invalid lower bound.

For illustration, let’s exaggerate the numbers for simplicity: suppose we have an upper
bound of 5, and we are solving a node with a current value of 4.001. If the pricing algorithm
fails to 昀椀nd an independent set of weight greater than 1, we will wrongly conclude that we
have a feasible dual solution and, therefore, a lower bound, and, in this case, we close the gap
by rounding up. On the other hand, because of numerical errors, we could have missed a set
with weight 1.002, which in turn, could make us terminate the relaxation at 3.999 and miss
out on a potential 4-coloring.

Althoughwe cannot 昀椀nd an optimal dual solution because of those problems using 昀氀oating-
point arithmetic, any feasible dual solution is a lower bound, by theWeak Duality吀栀eorem 1.2.
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Some works have shown how to 昀椀nd such feasible dual solution, such as the work from Farley
[18], which has been used by Held et al. [33] to 昀椀nd a numerically safe lower bound for the
coloring problem, and extended by Baldacci et al. [3] to dual variables corresponding to valid
inequalities added for the primal model. 吀栀e idea is to convert the 昀氀oating-point dual solution
cfloat into a 昀椀xed-point dual solution cfixed by rounding and 昀椀nd an upper bound U (�, cfixed)
to the reduced cost of all variables. We can make the dual solution cfloat feasible based on that
bound, therefore obtaining a numerically safe lower bound ;1safe to our problem.

For the following generic primal problem, we can obtain the corresponding dual:

(primal) minimize 2⊤G

subject to �G ≥ 1

G ∈ R=+,

(dual) maximize 1⊤c

subject to �⊤c ≤ 2

c ∈ R<+ .

Given a dual solution c , not necessarily feasible, the process proposed by Farley [18] is to
昀椀nd by howmuch the constraints of the dual are violated and scale the corresponding solution
to make it feasible. In other words, as c, 2 ≥ 0, 昀椀nd

_ = max
8∈{1,2,...,=}

�⊤8 c

28
.

It is possible to see that, by dividing each value in c by _, the solution we arrive is feasible,
since no constraint could be violated. 吀栀us, 1⊤c/_ is a valid lower bound for the value of an
optimal primal solution G∗.

Since we do not have all the dual constraints laid out for us, if we manage to 昀椀nd an upper
bound for it, we can apply the same scaling. Byworkingwith 昀椀xed precision, we can guarantee
that no constraint is violated by a value greater than the precision used, making it the upper
bound we need to apply the aforementioned method. It remains to de昀椀ne howmuch precision
we will need to use.

It is possible to simulate 昀椀xed-point arithmetic by scaling our 昀氀oat-point values to integer
values. As done byHeld et al. [33], we can obtain integer values cfixed for theweight of vertices
from the 昀氀oating-point weight cfloat as cfixed(E) := ⌊ cfloat(E)⌋ where  is a large, carefully
chosen, integer. As such, we have

cfloat(E) −
1

 
≤ cfixed(E) ≤ cfloat(E),

which gives us an absolute =
 
-approximation of the sum of all vertices’ weights. We can then

solve the maximum weighted independent set in Equation (1.1) for those new weights. Held
et al. [33] chooses  := ⌊�max/=⌋, where �max is the maximum value we can store in an integer.
Note we have to divide the value by = to avoid over昀氀ow at any step of the algorithm.

If our pricing algorithm, described in Chapter 4, fails to 昀椀nd an independent set withweight
greater than 1, we can be certain that 1 +=/ is an upper bound to _, and the aforementioned
process of 昀椀nding a feasible primal solution can be applied. Choosing  this way, allows us to
solve the MWIS problem with precision =/ .

On the other hand, we need to take into consideration that a commercial solver, such as
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Gurobi [31], has a maximum precision it works with (in this case, 10−9, if set by the user). As
such, if we 昀椀nd a constraint that is violated, but by an amount lower than that, the solver will
fail to take it into consideration, which might result in endless loops. To avoid that, we limit
 to, at maximum, 109.

Another point Held et al. [33, section 4] makes is that we can reduce the value of the
weights without altering the strength of the lower bound. We can compute the maximum
value A we can reduce from the total weight of all vertices as such:

A = max

{

A ∈ N :

⌈

cfixed − A

 

⌉

=

⌈

cfixed

 

⌉}

= max

{

0,

(

∑

E∈+

cfixed(E)

)

mod  − 1
}

.

Two approaches are proposed by Held et al. [33] on how to distribute this value among
the vertices: one which uniformly distributes between all nodes and another which is based
on reducing only the neighborhood of one speci昀椀cally chosen vertex in the graph. 吀栀ey also
demonstrate that no strategy dominates the other, so we use the 昀椀rst one.

For instance, if our numerically stable lower bound at a certain point is 4.25, applying the
described vertex weight reduction technique might yield a new lower bound of 4.01. Despite
this reduction, the practical lower bound remains 5, as the solution must ultimately be an
integer. By employing this approach, we can terminate the column generation process earlier,
as it reduces the number of independent sets with weights exceeding 1 while preserving the
same e昀昀ective lower bound.

3.2 Early stop
It is possible to arrive at a valid lower bound at any moment of the column generation process
if we have an upper bound for how much the dual constraints are violated [18], in a process
similar to what Malaguti et al. [53, equation (15)] does. In our case, the most violated con-
straint will correspond to the maximum weighted independent set (MWIS) of� with weights
cfixed. Let Ū (�, cfixed) be an upper bound on the MWIS of � , we can obtain the lower bound
cfixed/Ū (�, cfixed) for the chromatic number.

Although the fractional chromatic number can be greater than such lower bound, the la琀琀er
can be obtainedmuch earlierwhile solving the linear relaxation. 吀栀is has twomain advantages:
we can devise a criteria that could stop the process of generating new columns, and apply the
:-core reduction, as explained in Section 2.2, further reducing our graph.

When we have an upper bound D1 and the current dual solution c , if

cfixed

Ū (�, cfixed)
> D1 − 1, (3.6)

we conclude that the current B&P node cannot improve the current upper bound, thus it can
be pruned.

Given a dual solution with 昀椀xed-point precision, we can compute the minimum value
Ū (�, cfixed) must be for the current B&P node to not be pruned. We will use this fact to also
guide our search in the pricing algorithm (Chapter 4).
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3.3 Heuristics
One of the most critical factors a昀昀ecting the performance of a branch-and-bound algorithm
is the e昀昀ectiveness of its primal heuristics, which directly in昀氀uence the number of explored
nodes. Additionally, any color class generated during the application of the following heuris-
tics is incorporated into the restricted set of variables S.

DSATUR-based greedy heuristic. 吀栀e more prominent heuristic for the graph coloring
problem is based on the saturation degree ordering, called DSATUR [7]. During such heuristic,
we assign to each vertex an available color with the least index, one that has not been used
in any of its neighbors. If none is available, we create a new color for it. We make those
decisions following a non-increasing ordering of saturation degree, the number of di昀昀erent
colors already used in the neighborhood of a vertex. When all vertices are colored, we have
arrived at a feasible coloring for the given graph.

Not only this heuristic is fast, but, in practice, it also has decent performance on the number
of colors used. We use it as a starting upper bound when initializing the algorithm, and for
completing the coloring when using the rounding heuristic.

Rounding heuristic. When we have a fractional coloring, we might apply the idea of
rounding up variables that are close to 1, using the intuition that those are the ones the model
has the “most certainty”. For that, we start from a fractional solution for the Model RLM, 昀椀nd
sets that have the corresponding variable value greater than 0.55, add those to the current
solution, and remove the vertices on those from the graph. With the remaining graph, we
use the DSATUR heuristic to complete the solution. Since all chosen and generated sets are
independent, and all vertices have to be colored by either stage, we arrive at a proper coloring.

As this heuristic can be applied to any valid fractional coloring (i.e., any solution for RLM),
we not only employ it a昀琀er 昀椀nding the optimal value for RLM, but also during each step of
solving the linear relaxation, before generating new columns. 吀栀is has been a great addition
to our algorithm when used with the early stop criteria described previously in Section 3.2.

Relax-and-Fix heuristic. Following a similar idea, we can arrive at our 昀椀nal heuristic.
Starting from a fractional optimal solution G for our Model RLM with value ;1 and an upper
bound D1, we can de昀椀ne the gap as gap = D1 − ⌈;1⌉. We know that we can only increase the
value of our variables by a total amount of gap−1, since otherwise, we would not improve the
current upper bound. Based on that, we round up, in non-increasing order, variables that have
its value in G greater than 0.55, while

∑

(∈' (1 − G( ) ≤ gap, where ' is the set of independent
sets which the corresponding variables were rounded up. A昀琀er that, we call for the column
generation procedure to re-optimize the model, disregarding those vertices that are already
covered, i.e., vertices E ∈

∪

(∈' ( . We repeat this process, alternating between rounding up and
re-optimizing until all vertices are in at least, one chosen set, and since all sets are independent,
we will terminate with a feasible coloring.

吀栀is heuristic is more computationally costly since we have to 昀椀nd the optimal 1 solution
for each residual graph while generating new columns. It is important to note that, since we
generate new sets through the branch-and-price process, improving the current upper bound

1Note that here we use optimal to refer to best numerically safe lower bound we are able to 昀椀nd by using the
methods of 昀椀xed precision we described. 吀栀is might di昀昀er from the actual optimal value of the formulation.
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may warrant re-running the heuristics in the hope of further enhancing it.

3.4 Branching
With our lower and upper bounds in hand, we still might not be able to prove a coloring to be
optimal if there is a gap between those bounds. In that case, we branch our search, spli琀琀ing
the search space into two problems. Traditionally, for a generic integer linear program with
binary variables, this is done by selecting a variable whose value is fractional in the current
optimal solution and creating two new problems: one where such variable has value 0, and
another where it has value 1. In other words, we check the possibility of it being in an optimal
solution or not, therefore covering all the original space of feasible solutions.

Malaguti et al. [53] calls this type of branching as variable branching, since we use the vari-
ables to dictate how we split the search space. Although intuitive and simple to implement,
this strategy has two major drawbacks. First, even though the branch where we set an inde-
pendent set to 1 generates a much simpler problem, since we can just disregard all the nodes
in that set, the other branch barely changes it, only one variable among what is, in many cases,
an exceedingly large number. Not only that, but on those branches, we would have to avoid
generating columns that are prohibited (set to 0), as those might come up in our pricing algo-
rithm. In that case, we have to solve what we call a constrained pricing problem, which greatly
increases the challenge.

Another possibility is to use the Ryan-Foster scheme [21], which has been used for binary
matrix models, such as bin-packing [74] and coloring [33]. On that scheme, when applied
to coloring, we split the search space by choosing two non-adjacent vertices in the graph and
creating two problems: one where both vertices are in the same color class, and another where
they are in di昀昀erent. We will call it contract the 昀椀rst operation , while the other, con昀氀ict.

吀栀e strength of such strategy comes from how to implement such decisions. For the con-
tract operation, we merge the chosen vertices into one adjacent to the union of the neighbor-
hoods of the vertices, meaning they will be in the same color class, while for the con昀氀ict, we
simply add an edge between them. 吀栀is allows for the two new problems to be themselves
coloring problems, without any additional constraints. Because of that, Malaguti et al. [53]
calls this strategy an edge branching.

吀栀ere are some important notes to take here. We store the instances on a stack to process
the branch tree in a depth-昀椀rst approach and to be琀琀er utilize the data structure de昀椀ned in ⁇.
Other orderings are not considered in our work, but the literature has given some thoughts
about that, without any clear advantages over the DFS one [62].

Also, we do not remove independent sets that become invalid by the branching. When
doing a contract operation, we substitute all occurrences of the chosen vertices in the sets of
S for the new vertex, and, while doing a con昀氀ict operation, for any independent set which
contains both, we create two new ones, removing one of the chosen vertices in each one.

What is le昀琀 is to decide which pair of vertices will be chosen at each node of our branch
tree. 吀栀ere are a plethora of rules for that in the literature, so we might as well test most of
them.
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1. Used by Held et al. [33], they de昀椀ne ? (E,F) as such:

? (E,F) :=

2
∑

(∈S:E,F∈(

G(

∑

(∈S:E∈(

G( +
∑

(∈S:F∈(

G(
.

吀栀ey chose the pair whose value is closest to 0.55.

2. Proposed by Mehrotra and Trick [57], the authors choose a vertex E on the most frac-
tional column (1, i.e., the column with corresponding variable closest to 0.5, select a
column (2 which covers E , and then select a vertexF ∈ ((1 \ (2) ∩ ((2 \ (1).

3. Similarly, as proposed by Foster and Ryan [21], it is possible to choose the vertices “at
most in doubt if they are in the same color class or not”. Silva and Schouery [74] repre-
sent it by the concept of a昀케nity, de昀椀ned by XE,D =

∑

(∈S:{D,E}⊆( G( . 吀栀ey choose to branch
on the pair whose a昀케nity is closest to 0.55.

With all those techniques combined, we can divide the problem as much as we want, in
search of be琀琀er bounds, until there is no gap between them.
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Chapter 4

Pricing

In Chapter 3, we discuss how we restrict the problem to a certain subset of variables since it
is not viable to enumerate them all. By not giving the full range of possible color classes, we
cannot guarantee that an optimal solution of RLM is also optimal for the linear relaxation of
the unrestricted one. Wemust instead prove that there are no new variables, across all possible
ones, that could be added and improve the current solution. If that is the case, then we have
proven the current solution optimal for the unrestricted problem.

To determine whether a variable can reduce the value of the objective function, we have
to compute its reduced cost for the current solution. If the value is negative, it means that
the corresponding dual constraint is violated, thus we could improve the primal solution by
making the primal variable available to the restricted model. Finding such variables is what
we call the pricing problem or column generation procedure.

In our case, the reduced cost of a variable can be computed as 1 minus the sum of the
weights of vertices in the corresponding set. 吀栀e weight of vertex E is given by the value of
the dual variable c (E) on a corresponding dual solution c . In other words, we must check
whether 1 −

∑

E∈( c (E) ≥ 0 for all ( ∈ S. One way to check is to 昀椀nd a maximum weighted
independent set (MWIS). If it has a weight at most 1, then no set could have a negative reduced
cost, and the current solution is proven optimal.

For simplicity, in this chapter, since we will be talking mostly about the MWIS problem, we
will refer to the weight function as c . Bear in mind that, in the context of our branch-and-price,
this will come from the value of our dual solutions c .

Let � = (+ , �) be a graph, and c : + → [0, 1] a weight function for each vertex. We can
extend this notation where ( is a vertex set to c (() =

∑

E∈( c (E). We de昀椀ne the maximum
weighted independent set value U (�, c) = max(∈S c ((), where S is the family of all indepen-
dent sets in� . When� and c are clear from the context, wemay omit it. For a general purpose
LP solver, such as Gurobi [31], we can obtain the weight of each vertex by asking for the dual
value of each constraint in our primal solution.

Plenty of times, more than one variable might have a negative reduced cost. Since most
of our computational cost is in the pricing algorithm, it would be unwise to ignore those
that might not be optimal, but correspond to violated dual constraints. One of our research
hypotheses, as described in Chapter 1, is that enumerating a larger number of variables in the
column generation process could yield faster solving time. Finding plenty of sets with negative
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reduced cost could greatly speed up our technique, since the reduced cost is proportional to
how much we could improve the solution by adding the variable.

Proving the optimality of a solution requires demonstrating that the upper bound Ū (�, c),
where c is the corresponding dual solution, is less than or equal to 1, but this process is time-
consuming. Sometimes, it is possible to skip this process by employing a fast heuristic to 昀椀nd
sets with negative reduced cost and return such columns to the model, for re-optimization.
吀栀is is employed bymanyworks in branch-and-price for the coloring problem [61, 53, 33]. 吀栀e
focus of this work on the bene昀椀ts of enumerating a larger number of sets with high weight,
we did not implement a heuristic for those, but it can be done in future works.

Lastly, not always we need to search for sets with weight greater than 1, as discussed in
Section 3.2. Because of the gap between the current upper bound and the current lower bound,
we can compute the needed weight and use this value instead (if greater than 1). For simplicity,
we will refer to the weight of 1 as the threshold for the remainder of this dissertation.

4.1 Branch-and-reduce
Held et al. [33] solved the MWIS problem using branch-and-bound. 吀栀ey check possible deci-
sions, such as taking (or not) a vertex in the set to be constructed, and prune branches that, by
some upper bound, would not surpass the current best solution. 吀栀e authors use a weighted
clique cover heuristic to obtain such bounds, the same one we use and explain in Section 4.3.
Although the authors add any set that has a negative reduced cost found while searching, their
technique focuses on 昀椀nding the optimal value. To compensate for that, Held et al. [33] use a
fast heuristic method for the 昀椀rst few seconds instead of an exact method.

While studying the literature about the MWIS problem, most exact methods have li琀琀le to
no care about 昀椀nding more sets with high weight on the way to the maximum. Recently, there
have been improvements in how to solve the MWIS problem ([56, 82, 45, 87]), but one of them
caught our a琀琀ention: the work by Xiao et al. [87]. 吀栀ey apply a technique similar to Held et
al. [33], called branch-and-reduce, which, in addition to taking similar steps of branching and
pruning based on bounds, also applies reduction rules to further narrow the search space. 吀栀is
is especially useful to us since, by reducing the graph to those “vertices that ma琀琀er the most”,
we could 昀椀nd not only the optimal value but also to be琀琀er invest our computational resource
to 昀椀nd plenty of sets with weight greater than 1.
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Algorithm 2: Branch and Reduce

Input :吀栀e remaining vertex-weighted graph � with weights c .
Output :A maximum weighted independent set and a family of sets

with weight greater than 1.

1 best ← ∅
2 new← ∅
3 stack← [{�, ∅}]
4 while stack is not empty do
5 (�, 2) ← pop stack
6 (�, 2) ← apply reduction rules to �
7 if � is “small enough” then
8 all← enumerate all possible independent sets of �
9 Add those sets in all that have weight greater than 1

10 best ← max solution in all and best in terms of weight
11 else
12 B ← 2 + Greedy(�)
13 if c (B) > 1 then
14 Add B to new

15 if c (B) > c (best) then
16 best ← B

17 D1 ← c (2) + CliqueCover(�)
18 if D1 > 1 and D1 > c (best) then
19 Find a con昀椀ned vertex E of maximum degree and its

con昀椀ning set (E
20 Add (� − # [(E ], 2 + (E ) and (� − E, 2) to stack

21 return (best, new)

Algorithm 2 provides a pseudocode for the branch-and-reduce algorithm used in our work.
We beginwith the best solution and the current solution being the empty set (withweight zero).
At each step, we might update the problem by either altering the graph and/or adding vertices
to the current solution. First, we apply our reduction rules, explained in detail in Section 4.2,
and then we try to expand the current solution to an insertion-wise maximal solution. If the
current graph is small enough, we can enumerate all possible independent sets, save those
that are heavier than 1, and return the best found among those (and the current best). 吀栀en,
we compute an upper bound for the MWIS (see Section 4.3); if this upper bound implies that
we cannot obtain a solution be琀琀er than the current best solution, we return the la琀琀er value.
Otherwise, we branch into two smaller subproblems, as it will be explained in Section 4.3, and
return the best solution found between those and the best so far.

Note that, while applying the algorithm, we save all independent sets with a weight greater
than 1 we come across, even if they are not optimal.
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4.2 Reduction rules
Aswe commented in the introduction of this chapter, wewant to reduce the number of vertices
without altering the MWIS value from the graph. Some reduction rules will only remove
vertices from the graph, while others may alter it, so we might need to do some “translations”
to recover the actual MWIS from the algorithm. We will note when we need to make them,
and also how they will work while discussing each rule.

Most of the rules work by proving that, for some subset of vertices in the graph, there
exists a maximum weighted independent set that either contains the whole subset or none of
it. By proving that, we can alter the graph in order to work with fewer vertices, easing up our
problem.

Lastly, unless explicitly mentioned, Xiao et al. [87] proposed all rules, lemmas, and de昀椀ni-
tions in this section.

Rule 1. (Lamm et al. [45]) Let E be a vertex such that c (E) ≥ c (# [E]). We can add E to the
solution and remove # [E] from the graph.

吀栀e 昀椀rst rule allows us to make a decision which would be made in any maximum weight
independent set, since adding E is always a be琀琀er or equivalent option than any subset of its
neighbors. More generally, we have the following rule.

Rule 2. Let E be a vertex such that c (E) ≥ U (� [# (E)], c), we can add E to the solution and
remove # (E) from the graph.

Since Rule 2 requires solving theMWIS for the subgraph, and this is a time-consuming task,
we only test this rule for vertices with a “small enough” neighborhood. In those cases, we sim-
ply enumerate all possible independent sets to 昀椀nd its MWIS. From our tests, a neighborhood
of 8 vertices is a good limit to apply Rule 2.

To further generalize Rules 1 and 2, it is possible to arrive at the de昀椀nition of heavy sets.
Such a set is a be琀琀er (or equal) decision than any other independent set that contains a neigh-
bor of such a heavy set.

De昀椀nition 4.1. A heavy set � is an independent set of vertices such that, for any independent
set � in the induced subgraph � [# (� )], c (� ) ≤ c (# (� ) ∩ � ) holds.

Following this de昀椀nition, it is possible to determine that at least one MWIS contains such
a set, which allows us to arrive at Lemma 4.2.

Lemma 4.2. For each heavy set there is at least one MWIS containing it. So we can add S to
our current solution.

Identifying those sets would be useful, but it is computationally expensive, so we will not
昀椀nd them all. We can restrict it to those which are somewhat easier to check, as Rule 3 does.

Rule 3. Let D and E be two non-adjacent vertices with at least one common neighbor. If the
number of their neighbors |# ({E,D}) | is at most 8, then we check whether {E,D} is a heavy
set.
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吀栀e literature o昀琀en uses the idea of one vertex dominating another [20, 1, 45, 72]. If# (D) ⊆
# (E), we say that vertex E dominates D, and, for weighted graphs, if it is also true that c (D) ≥
c (E), we can eliminate the dominated vertex. To generalize such an idea, Xiao and Nagamochi
[88] introduced the concept of uncon昀椀ned vertex, extended to the weighted variant by Xiao et
al. [87]. 吀栀e intuition is to assume that the vertex belongs to every MWIS and try to 昀椀nd
something that proves otherwise.

Figure 4.1: Two scenarios while solving the MWIS problem. In both cases, the color of the
vertices correspond to the neighborhood they are on, and c (D) ≥ c (E).

For an example, consider the con昀椀guration illustrated on the le昀琀 in Figure 4.1, where
c (D) ≥ c (E), vertex E has its neighborhood # (E) highlighted in blue, and one of its neigh-
bors, vertexD, has its neighborhood # (D) highlighted in green. Including E in an independent
set necessitates the exclusion of all vertices in # (E). Suppose the weight of D satis昀椀es the
inequality:

c (D) ≥ c (E) + c (# (D) \ # (E)) . (4.1)

吀栀is inequality implies that the weight of D alone is at least the combined weight of E and the
neighbors of D which are not neighbors of E . Consequently, selecting D instead of E allows the
inclusion of additional vertices from # (E) \ # (D), potentially yielding an independent set of
equal or greater total weight. 吀栀is creates a contradiction: if E were present in every MWIS,
replacing E with D and adjusting the remaining vertices would produce an alternative MWIS
excluding E . 吀栀erefore, the initial assumption that E is in every MWIS cannot hold under the
given condition.

Now, suppose that is not the case, i.e., for every D ∈ # (E), Equation (4.1) is false. Follow-
ing our previous reasoning, we cannot conclude anything about E . But could we expand our
analysis for a bigger set?

We now shi昀琀 our focus to the right side of Figure 4.1, where F is the only neighbor of
D that is not adjacent to E . By our supposition, E is in every MWIS. Assume that there is an
MWIS � which does not contain F . 吀栀us, we could swap E with D, and arrive at a set with
greater or equal weight, since c (D) ≥ c (E), which contradicts the fact that E is in every MWIS.
吀栀erefore, if our initial supposition is true,F must also be in every MWIS. We can now repeat
a similar reasoning, now considering E and F to be in every MWIS, which is the process we
formalize below.
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Lemma 4.3. If a vertex subset ( is contained in all MWIS, then it must hold that, for each
vertex D ∈ # ((), any MWIS � satis昀椀es that c (D) < c (� ∩ # (D)).

Proof. For some ( , suppose it exists a MWIS � such that c (D) ≥ c (� ∩ # (D)) for some D ∈
# ((). 吀栀en, we could obtain a new MWIS by adding D and removing ( ∩ # (D), which is a
contradiction to the supposed fact that ( is contained in all MWIS. □

It is worth de昀椀ning some concepts to help us be琀琀er write the following algorithm.

De昀椀nition 4.4. Let ( be a set of vertices. A vertex D ∈ # (() is called a child of ( if c (D) ≥
c (( ∩ # (D)). A child D is called an extending child if |# (D) \ # [(] | = 1 and c (D) < c (# (D) \

# (()). 吀栀e single vertex in # (D) \ # [(] is called a satellite of ( .

With that in mind, we can move into Algorithm 3. 吀栀e idea is to suppose that vertex E is
in every MWIS (( := {E}), and use De昀椀nition 4.4 to try to 昀椀nd an extending child to expand
the set. If, at any point, we 昀椀nd a contradiction, we can conclude that E is not in every MWIS,
and, therefore, can be removed from the graph. Note that a child is a vertex which makes the
condition of Lemma 4.3 false.

Algorithm 3: Determine whether a vertex is con昀椀ned or not.

Input :A vertex E
Output :Whether E is con昀椀ned or uncon昀椀ned

1 ( ← {E}

2 while there exists an extending child to ( do
3 Extend ( by including the corresponding satellite to (
4 if there exists a child D such that c (D) ≥ c (# (D) \ # (()) then
5 Halt and conclude E is uncon昀椀ned
6 else
7 Conclude that the set ( con昀椀nes E , making it con昀椀ned

吀栀e idea behind Algorithm 3 is to suppose the set ( := {E} is contained in all MWIS and,
using Lemma 4.3, expand it. If, at any point, we 昀椀nd a contradiction, is means that ( was never
contained in all MWIS in the 昀椀rst place, so we can remove it from the graph without altering
the MWIS’ value. Note that, by halting and calling the vertex con昀椀ned, we do not guarantee
that it is contained in all MWIS, but we will use the constructed con昀椀ning set to develop the
branch strategy in Section 4.3.

吀栀e Algorithm 3 is illustrated in Figure 4.2, which started on the vertex with weight 0.2.
吀栀e 昀椀rst graph represents a state where the set ( contains two elements, which is expanded
to (′ in the next iteration. If the algorithm halts with (′, we can conclude the initial vertex is
con昀椀ned by set (′. Suppose that the vertex with weight 0.4 was not present. In this case, we
would halt in the 昀椀rst graph, with ( , and conclude that the original vertex is uncon昀椀ned.
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Figure 4.2: Example of an application of Algorithm 3. 吀栀e number inside each vertex is their
corresponding weight, while the orange vertices are children, and the red one is a sa琀琀elite. On
the top, a state where the set ( contains two vertices, and, on the bo琀琀on, the next iteration of
the algorithm.

Rule 4. Let E be an uncon昀椀ned vertex, as determined by Algorithm 3. 吀栀en, we can remove
E it from the graph without altering the MWIS value.

吀栀ere are only two possibilities regarding its con昀椀ning set, as described in Lemma 4.5,
which will later be useful the de昀椀ne our branching rule (see Section 3.4).

Lemma 4.5. Let E be a con昀椀ned vertex as de昀椀ned by Algorithm 3. Either there is a MWIS that
does not contain E or all MWIS contain the set (E that con昀椀nes E .

Proof. By how we constructed (E , our initial supposition is that E is in every MWIS. If this is
false, and it can be removed from � without reducing U (�). Otherwise, by Lemma 4.3, each
satellite vertex must also be included, and, therefore, (E must be contained in every MWIS. □

吀栀e following two rules come from the de昀椀nition of a simultaneous set. Such a set is one
that any MWIS either contain all of its vertices or none of them. If we 昀椀nd one simultaneous
set, we can merge then into a single vertex, to simplify it.

De昀椀nition 4.6. To merge a set of vertices ( into a single vertex is to create a vertex E∗ such
that, # (E∗) = # ((), c (E∗) =

∑
D∈( c (D) and ( is removed from� .

When translating a solution, if E∗ is present, we need to substitute it to the corresponding
set it was merged from. Since E∗ had the same weight then the set it represents, there is no
need to change the weight of the set.
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Rule 5. Let ( be an independent set and all vertices on it have the same neighborhood, then
( is a simultaneous set.

In this case, one can see that, if a vertex in a set described by Rule 5 is contained in a MWIS,
no con昀氀ict would prevent the rest of the set from also being in the MWIS.

Rule 6. Let D and E be a pair of con昀椀ned vertices by (D and (E , respectively. If D ∈ (E and
E ∈ (D , then {D, E} is a simultaneous set.

By our de昀椀nition of con昀椀ning set (E of vertex E , either E is not in all MWIS or its con昀椀ning
set is. If D ∈ (E and E ∈ (D , means that they are both in all MWIS or none of them is.

吀栀e concept of an alternative set is similar to simultaneous set. We say that a set ( is an
alternative set if there is a MWIS which contains either ( or # (().

Rule 7. If ( is an alternative set, we can introduce a new vertex E∗ with # (E∗) = # (# (()),
remove all vertices in # [(], and set its weight as c (E∗) = c (# (()) − c (().

Proof. To prove that the rule is valid, we need to prove U (�′, c) = U (�, c) − c ((), where�′ is
the graph a昀琀er the proposed change, and c (E) ≥ 0 for every vertex E of � . Let E∗ be the new
vertex introduced in �′. Let � be a MWIS of � such that � contains either ( or # ((). If ( ⊆ � ,
then de昀椀ne � ′ = � \ ( . Note that � ′ is an independent set of �′, and its weight is

c (� ′) = c (� ) − c (() .

Otherwise, if # (() ⊆ � , de昀椀ne � ′ = (� \# (()) ∪ {E∗}. Set � ′ is an independent set of�′, and its
weight is

c (� ′) = c (� ) − c (# (()) + c (E∗).

Since c (E∗) = c (# (()) − c ((), it follows that c (� ′) = c (� ) − c ((). In both cases, we have
U (�′, c) ≥ U (�, c) − c (().

Now, we need to prove U (�) ≥ U (�′) + c ((). Let � ′ be a MWIS of �′. If E∗ ∈ � ′, de昀椀ne
� = (� ′ \ {E∗}) ∪ # ((). Note that � is an independent set of � , and its weight is

c (� ) = c (� ′) − c (E∗) + c (# (()) = c (� ′) + c (() .

Otherwise, if E∗ ∉ � ′, de昀椀ne � = � ′ ∪ ( . 吀栀is set � is an independent set of � , and its weight is

c (� ) = c (� ′) + c (().

In both cases, we have U (�) ≥ U (�′) + c ((). □

For Rule 7, we have the following translation rule: if E∗ is in the solution, add # ((), oth-
erwise, add ( . In both cases, the weight of the corresponding nodes is already in the solution.
To 昀椀nd such alternative sets, Xiao et al. [87] states the following lemmas.

Lemma4.7. Let E be a vertex such that# (E) is an independent set, andD ∈ # (E) be a neighbor
of E with minimum weight. If c (# (E)) − c (D) ≤ c (E) < c (# (E)), then {E} is an alternative
set.
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Proof. If there is a MWIS that contains either E or # (E), the lemma is ful昀椀lled. So we may
assume that there is MWIS � that t does not contain E or at least one neighbor of E . Because
of our hypothesis, even if the missing neighbor is the one with the least weight, we could still
remove # (E) from � and add E to arrive at a set heavier than � . So the set � ′ = (� \# (E)) ∪ {E}
is heavier than � , which is a contradiction. □

Xiao et al. [87] also propose two other ways of 昀椀nding alternative sets, as explained in the
Lemmas 4.8 and 4.9.

Lemma 4.8. Let (E1, E2, E3, E4) be a path such that 3 (E2) = 3 (E3) = 2. If c (E1) ≥ c (E2) ≥

c (E3) ≥ c (E4), then {E2} is an alternative set.

Proof. It is possible to see that, any MWIS contains at least one vertex in # [E2], so we assume
there is a MWIS � containing exactly one of # (E2). If E1 ∈ � and E3 ∉ � , then E4 ∈ � since one
of # [E3] must be contained in � . 吀栀erefore, we can replace E4 with E3 and arrive at another
MWIS which contains # (E2). If E1 ∉ � and E3 ∈ � , then we can replace E3 with E2 and arrive at
another MWIS, this time, with E2. 吀栀us, {E2} is an alternative set. □

Figure 4.3: An example of Lemma 4.8.

An example of a graph where Lemma 4.8 is applicable can be found in Figure 4.3. It is
possible to extend the Lemma 4.8 to arrive at the case where E1 and E4 are neighbors, making
it a cycle.

Lemma 4.9. Let (E1, E2, E3, E4, E1) be a cycle such that 3 (E2) = 3 (E3) = 2. If c (E1) ≥ c (E2) ≥

c (E3), then {E2} is an alternative set.

An example of a graph where Lemma 4.9 is applicable can be found in Figure 4.4. With all
that in mind, we can check for each of the Lemmas 4.7 to 4.9 to apply Rule 7.

Lastly, we need to investigate the case of isolated vertices, introduced by Lamm et al. [45].
A vertex is called isolated if the graph induced by its neighbors is a clique. To reduce such
cases, the authors proposed the following rule.

Rule 8. (Lamm et al. [45]) Let E be a vertex such that � [# (E)] is a clique, then

1. remove all D ∈ # (E) such that c (D) ≤ c (E);
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Figure 4.4: An example of Lemma 4.9.

2. for those remaining, if there are any, update c (D) := c (D) − c (E), and remove E from
the graph.

For Rule 8, it is important to track the vertices falling under the second case. If none of the
vertices removed by this rule are included in the solution, we must add E to the solution since
its weight has already been accounted for.

To apply such rules, we follow the ordering bellow [87]:

1. Rules 1 and 8 on vertices with degree 1.

2. Rules 7 and 8 on vertices with degree 2.

3. Rule 5.

4. Rule 2, Rule 7 with Lemma 4.7 and Rule 8.

5. Rules 4 and 6.

Steps 1, 2, and 4 keep a queue of vertices to be checked. On the initialization of the branch-
and-reduce algorithm, we add all vertices to all queues, but as they are consumed, they are only
re-added when their neighborhood changes. As of steps 3 and 5, they are computed when the
total size of the graph reduces by 10%. From our tests, Rule 3 is not worth our time for the
reductions it provides.

4.3 Branching and upper bounds
A昀琀er reducing the graph, we are le昀琀 with either a small enough graph or the need to branch
into two smaller subproblems. In the 昀椀rst case, we could list all possible independent sets, but
this approach would be computationally expensive. 吀栀erefore, it is crucial to carefully de昀椀ne
what constitutes a “small” graph. Since a maximum weight independent set (MWIS) can be
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found in polynomial time for any graph with a maximum degree of 2, we can enumerate all
combinations of vertices with higher degrees. As proposed by Xiao et al. [87], we do such
enumeration if the graph contains fewer than 9 vertices with a degree greater than 2.

For each possible combination of such high-degree vertices, the remaining graph consists
of paths or cycles, as only vertices with degrees less than 3 remain.

To solve the MWIS problem in a path graph, we can use a dynamic programming approach
in linear time. Let� be a path graph composed of vertices (E0, E1, E2, . . . , E=), with = − 1 edges
connecting consecutive vertices in this order and non-negative weights. We de昀椀ne dp[8] as
the maximum weight of an independent set considering the 昀椀rst 8 vertices of the path graph.

吀栀e DP recurrence can be de昀椀ned as follows:

dp[8] =




F (E0) if 8 = 0,

max{F (E0), F (E1)} if 8 = 1,

max{dp[8 − 1], dp[8 − 2] +F (E8)} if 8 ≥ 2.

(4.2)

As a base, we have the cases when 8 = 0 or 8 = 1. In the 昀椀rst, we have only one choice,
while in the la琀琀er, we can choose between the vertices E0 and E1. As for our recursion, at each
value of 8 , we need to decide what is greater: the weight of the MWIS up to vertex E8−1 or the
weight of the MWIS up to vertex E8−2 plus the weight of the 8Cℎ vertex. We can see that the
second case is a valid solution since the graph is a path and the 8Cℎ vertex is adjacent only to
the vertices E8−1 and E8+1, which was not considered yet.

As for cycles, we can break them into two problems by choosing one vertex on it. In one,
we add the chosen vertex to the solution and remove its two neighbors, while on the other, we
simply remove it. In both cases, we are le昀琀 with a path graph, which can have a MWIS found
by Equation (4.2).

On the other hand, if the graph was not small enough, we need to divide it into small
problems, spli琀琀ing the search space into two. As we had previously mentioned, Xiao et al.
[87] suggests a branching scheme based on Algorithm 3.

Lemma 4.5 gives us a way to branch our decisions: on one side, we can remove E from the
graph, while on the other, we can add (E to the current solution and remove # ((E ) from the
graph, creating two branch nodes.

An important remark here is that since using Rule 4 is very time-consuming, we avoid it
while checking for ways to reduce the graph. But as we do need to run Algorithm 3, we might
come across some uncon昀椀ned vertices while trying to branch, and, therefore, we can apply
the rule.

A con昀椀ned vertex with a larger neighborhoodwould be themost useful sincemore vertices
would be deleted by the branch that adds its con昀椀ning set to the solution. Because of that, we
test each vertex, in non-ascending order of degree, to see if it is a suitable one for branching.

We can prune branches that are unfruitful by an upper bound to the MWIS value. As our
reduction rules can make the decision to add some vertices to the current solution, we need
to determine an upper bound in the remaining graph. If it is lower than the weight of the
heaviest set found so far or lower than our target value, we do not need to further search into
this problem, and we can prune it away.
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As an upper bound, we can use the weighted clique cover heuristically generated by the
algorithm proposed by Lamm et al. [45]. Such a cover consists of a collection of cliques
�1,�2, . . . ,�: ⊆ + with associated weights F1,F2, . . . ,F: , satisfying �1 ∪ �2 ∪ · · · ∪ �: = +

and
∑

8:E∈�8
F8 ≥ c (E) for all vertices E . 吀栀e weight of the clique cover is de昀椀ned as the sum

of the weights of all cliques. 吀栀is value serves as an upper bound to the MWIS value because
the intersection of any clique and an independent set can contain at most one vertex. Since
the weight of every vertex E is less than the sum of the weights of the cliques containing E , the
total weight of any independent set cannot exceed the clique cover’s total weight.

To compute this bound, we employ the same method used by Lamm et al. [45]. 吀栀e al-
gorithm is initialized with an empty set of cliques � and iterates over vertices in descending
order of weight. For each vertex, the algorithm identi昀椀es the clique in � with the maximum
weight to which the vertex can be added while preserving the clique property. If no such
clique is found, a new clique containing only the vertex is created, with its weight set equal
to the vertex’s weight. 吀栀e 昀椀nal weighted clique cover value is the sum of the weights of all
cliques in � .
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Chapter 5

Experiments

吀栀is chapter presents a comprehensive analysis of the experimental results obtained from
evaluating our algorithm against the benchmark set by Held et al. [33], which is the only code
we had access to. We begin by examining a variety of instance sets commonly used in the
literature, called DIMACS [DIMACS], including random, geometric, and application-speci昀椀c
graphs, to assess the algorithm’s e昀昀ectiveness in diverse scenarios. Additionally, we explore
the broader instance space de昀椀ned by Smith-Miles and Bowly [76], called MATILDA, which
promises to provide amore systematic coverage of graph properties in昀氀uencing computational
di昀케culty.

By analyzing performance across these sets, we aim to o昀昀er insights into the strengths
and limitations of our algorithm, identifying the classes of instances where it excels and those
where improvements are needed. Where possible, we also draw comparisons with results
reported in the literature to provide a more holistic evaluation of our algorithm’s performance.
吀栀is chapter serves as a critical step in validating our contributions and situating them within
the current state-of-the-art.

All experiments were conducted on an Intel Xeon CPU E5-2630 v4 @ 2.20GHz processor
with 64 GB of RAM, running Ubuntu 22.04.3. 吀栀e code was wri琀琀en in C++17, compiled and
linked using GCC 11.4.0. As the general-purpose LP solver for both programs, we utilized
Gurobi 11.0.3 [31]. It is important to note that the original paper by Held et al. [33] employed
a signi昀椀cantly older version of the solver (version 3). Fortunately, no modi昀椀cations were re-
quired to adapt the code to the newer version. To ensure a fair comparison, all experiments
were executed using a single thread.

Traditionally, the literature on exact algorithms for the coloring problem has relied on
the DIMACS instance set [DIMACS], which contains 137 instances. More recently, Smith-
Miles and Bowly [76] proposed a signi昀椀cantly larger instance set comprising 8278 instances,
designed to be琀琀er cover the instance space of all possibilities, following the methodology out-
lined in Smith-Miles and Lopes [77]. By employing metrics such as density, algebraic connec-
tivity, and energy, this larger instance set provides a more comprehensive representation of
where each heuristics outperforms others, o昀昀ering a clearer picture of their relative perfor-
mance.

During this analysis, we will refer to instances as closed or solved by an algorithm when
it is able to obtain an optimal coloring of an instance. 吀栀e gap of an algorithm for an instance
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is the di昀昀erence between the upper and lower bound divided by the lower bound. As such, a
solved instance has gap of zero, while an instance with lower bound 10 and upper bound 15

has a gap of 50%. We might also refer to the gap as an interval, such as [lb, ub], where the
values represent the lower and upper bounds, respectively.

5.1 DIMACS’ instances
吀栀e DIMACS dataset comes from a series of initiatives aimed at promoting research on com-
putational methods for graph coloring problems, evaluating alternative approaches through
a shared testbed, and fostering discussions on current and future directions in computational
combinatorial optimization. 吀栀is instance set is the most widely used for the coloring problem
and serves as a benchmark for evaluating algorithms.

A comparison of the performance of our algorithm and Held et al. [33] implementation can
be found in Figure 5.1. It compares the accumulated amount of instances each algorithm was
able to solve by the time it took and, on the right side, the accumulated amount of instances
by the gap it le昀琀 at the end. As an example, in 10 seconds, our code was able to solve 35%

of instances. On the right side, we can see that Held et al. [33] code is able to obtain tighter
gaps, with more than 50% of instances with gap lower than 1. From this 昀椀gure we see that,
in this dataset, both algorithms are able to solve around the same number of instance up to
3000 seconds. On those 昀椀nal moments, Held et al. [33] is able to close some instances, which
guarantees it a higher place on the remainder of the curve.

On Figure 5.2 we see the accumulated distribution of time ratios on instances solved by
both. Values lower than 1 indicates that our algorithm was faster. It is possible to see that
our algorithm was able to solve 20% of instances in a third of the time it took Held et al. [33]
to solve the same instances. It is also possible to observe that we are able to solve 45% of
instances faster than Held et al. [33] can, with almost 10% being solved more than 10 times
faster.

Among the 55 instances that both algorithmswere able to solve, most of which were closed
faster by the algorithm from Held et al. [33]. Curiously, when we 昀椀lter to the 21 instances that
took one algorithm at least a second to solve, we see that our algorithm was able to be faster
in 11 of those. Across instances that the time di昀昀erence was greater than 10 times, 7 out of
15 Held et al. [33] is able to 昀椀nish in less than 0.025 with lower bound heuristics (e.g., clique
number), which we do not posses.

Additionally, we observed that our algorithm required signi昀椀cantly more time during
Gurobi’s environment initialization, despite both implementations using the same version of
the solver. While the reason for this discrepancy is yet to be determined, we believe it only
has a meaningful impact on instances with a runtime of less than 0.5 seconds.

Across this section, we present numerous tables with the result from di昀昀erent classes of
instances, but they all have the same set of columns. 吀栀e columns = and D correspond to
number of vertices and density of the instance, respectively. A昀琀er that,

⌈
j5
⌉
represents the

lower bound given by the fractional chromatic number, i.e., the 昀椀nal value when solving the
linear relaxation of the root node, before any branching. 吀栀e next two columns, marked by
“Known”, are the best known lower bounds across multiple publications we were able to 昀椀nd.
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Figure 5.1: Cumulative distribution of instances solved by time and their gap on the DIMACS’
instance set. In blue, the results of Held et al. [33] code, in green, our results.

Figure 5.2: Cumulative distribution of proportion of time of our algorithm in relation to what
Held et al. [33] algorithm took in each instance both solved.

Do note that some results on those columns might come from di昀昀erent sources [79, 22, 89, 37,
41, 60, 65, 26, 80, 35, 38, 61, 52, 53, 59, 5]. 吀栀e fact that we know the optimal coloring for an
instance does not mean an exact algorithm was able to 昀椀nd both the lower and upper bound,
some upper bounds were obtained by heuristics methods.

We then have a comparison between Held et al. [33] and ours results on the root node,
each with number of sets generated, iterations and time to solve the root. 吀栀ere are some
cases where our algorithm does not need to solve the linear relaxation in order to close the
instance. When an algorithm did not solve the root, we use a dash to represent so, in all of the
three corresponding columns. On those cases, only the separation and reduction rules with
the DSATUR heuristic are enough to close the gap, so we only report the time it took, without
the number of sets or iterations. 吀栀e last 6 columns correspond to the 昀椀nal result from both
Held et al. [33] and ours algorithm, with the lower and upper bounds found, and the total time
spent. If the time spent was the time limit of 1 hour, we represent it by using a dash.

Some instances stand out in terms of the time required to solve them, as highlighted in
Table 5.1. 吀栀ere are 11 instances which only one algorithm was able to solve, 9 of those Held
et al. [33] implementation was the one to do so. Most of this performance comes from the
fact we were unable to close the root node. We currently believe our lack of pricing heuristics
might be what is causing such di昀昀erences.

When looking at instances were the di昀昀erence in time to solve was more than 10 times
than the other algorithm, as shown in Table 5.2, we see 14 instances. 9 of them Held et al.
[33] was able to close faster, but 8 of those were in less than 0.02 seconds. In contrast, on the
remaining 5 instances that we are able to solve faster, we see running times well above the
6 seconds mark. It is possible to observe that there are still some work to do on those easy
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Known Held et al. Root Ours Root Held et al. Ours
Instance = D

⌈
j5
⌉

LB UB Sets It. Time Sets It. Time LB UB Time LB UB Time
2-Insertions_3 37 .108 3 4 4 107 69 .04 316 85 .25 4 4 502.03 3 4 -
DSJC125.1 125 .095 5 5 5 1041 438 3.00 80259 79 644.73 5 5 2790.85 5 6 -
昀氀at300_20_0 300 .477 20 20 20 1211 487 20.61 - - - 20 20 1114.11 18 20 -
昀氀at300_26_0 300 .482 26 26 26 2797 935 39.51 - - - 26 26 1732.85 24 26 -
queen10_10 100 .594 10 11 11 486 179 .60 10268 26 78.44 11 11 265.39 10 11 -
school1 385 .258 14 14 14 8259 2152 125.06 - - - 14 14 1609.64 13 15 -
school1_nsh 352 .237 14 14 14 4781 1204 60.27 - - - 14 14 3168.81 13 14 -
will199GPIA 701 .028 7 7 7 354 203 2.92 - - - 7 7 3.00 4 7 -
DSJR500.5 500 .472 122 122 122 763 245 65.49 3488 46 34.83 122 132 - 122 122 35.66
r1000.5 1000 .477 234 234 234 2184 555 831.72 27581 73 788.19 234 248 - 234 234 791.52

Table 5.1: Results for instances that only one algorithm is able to close, but not the other.

Known Held et al. Root Ours Root Held et al. Ours
Instance = D

⌈
j5
⌉

LB UB Sets It. Time Sets It. Time LB UB Time LB UB Time
1-FullIns_3 30 .230 4 4 4 22 19 .00 114 43 .08 4 4 .00 4 4 .47
2-FullIns_3 52 .152 5 5 5 26 22 .01 181 65 .11 5 5 .01 5 5 .55
3-FullIns_3 80 .109 6 6 6 31 25 .01 157 89 .09 6 6 .01 6 6 .15
4-FullIns_3 114 .084 7 7 7 32 26 .02 372 138 .31 7 7 .02 7 7 .33
5-FullIns_3 154 .067 8 8 8 33 26 .03 341 166 .29 8 8 .02 8 8 1.03
DSJC125.9 125 .898 43 44 44 402 354 .36 391 11 1.74 44 44 11.43 44 44 203.75
DSJR500.1 500 .028 12 12 12 176 150 .92 6888 214 5.07 12 12 524.29 12 12 6.03
DSJR500.1c 500 .972 85 85 85 6204 6118 21.18 2320 54 24.80 85 85 1213.20 85 85 26.34
r125.1 125 .027 5 5 5 13 10 .01 - - .48 5 5 .00 5 5 .48
r125.5 125 .495 36 36 36 132 71 .56 300 29 .39 36 36 23.31 36 36 .49
r250.1c 250 .971 64 64 64 360 297 .31 - - .50 64 64 61.13 64 64 .50
r250.5 250 .477 65 65 65 382 141 5.99 1175 40 3.53 65 65 322.83 65 65 4.04
jean 80 .080 10 10 10 20 12 .01 - - .46 10 10 .01 10 10 .46
miles250 128 .048 8 8 8 22 16 .02 - - .15 8 8 .01 8 8 .15

Table 5.2: Results for instances that the running time of the algorithms di昀昀er by a factor greater
than 10.
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Known Held et al. Root Ours Root Held et al. Ours
Instance = D

⌈
j5
⌉

LB UB Sets It. Time Sets It. Time LB UB Time LB UB Time
DSJC125.1 125 .095 5 5 5 1041 438 3.00 80259 79 644.73 5 5 2790.85 5 6 -
DSJC125.5 125 .502 16 17 17 552 207 .94 3197 20 38.90 16 18 - 16 18 -
DSJC125.9 125 .898 43 44 44 402 354 .36 391 11 1.74 44 44 11.43 44 44 203.75
DSJC250.1 250 .103 7 7 8 3096 1161 724.27 - - - 7 10 - 4 10 -
DSJC250.5 250 .503 26 26 28 1421 489 13.39 30828 18 2420.36 26 30 - 26 29 -
DSJC250.9 250 .896 71 72 72 1915 1827 6.08 1302 16 30.24 71 72 - 71 72 -
DSJC500.1 500 .100 - 9 12 - - - - - - - 16 - 4 16 -
DSJC500.5 500 .502 43 43 47 3859 1305 296.03 - - - 43 65 - 32 64 -
DSJC500.9 500 .901 123 123 126 5457 5296 63.98 4081 17 585.62 - - - 123 127 -
DSJR500.1 500 .028 12 12 12 176 150 .92 6888 214 5.07 12 12 524.29 12 12 6.03
DSJR500.1c 500 .972 85 85 85 6204 6118 21.18 2320 54 24.80 85 85 1213.20 85 85 26.34
DSJR500.5 500 .472 122 122 122 763 245 65.49 3488 46 34.83 122 132 - 122 122 35.66
DSJC1000.1 1000 .099 - 10 20 - - - - - - - 25 - 3 27 -
DSJC1000.5 1000 .500 - 73 82 - - - - - - - 114 - 19 115 -
DSJC1000.9 1000 .900 - 216 222 - - - - - - - 301 - 215 275 -

Table 5.3: Results for the DSJ instance set.

Known Held et al. Root Ours Root Held et al. Ours
Instance = D

⌈
j5
⌉

LB UB Sets It. Time Sets It. Time LB UB Time LB UB Time
r125.1 125 .027 5 5 5 13 10 .01 - - .48 5 5 .00 5 5 .48
r125.1c 125 .968 46 46 46 67 23 .02 - - .12 46 46 .02 46 46 .12
r125.5 125 .495 36 36 36 132 71 .56 300 29 .39 36 36 23.31 36 36 .49
r250.1 250 .028 8 8 8 42 36 .06 179 88 .24 8 8 .04 8 8 .24
r250.1c 250 .971 64 64 64 360 297 .31 - - .50 64 64 61.13 64 64 .50
r250.5 250 .477 65 65 65 382 141 5.99 1175 40 3.53 65 65 322.83 65 65 4.04
r1000.1 1000 .029 20 20 20 104 78 1.71 605 75 .87 20 20 1.62 20 20 1.41
r1000.1c 1000 .971 96 96 98 151716 151611 3323.50 11820 93 1920.82 96 107 - 96 98 -
r1000.5 1000 .477 234 234 234 2184 555 831.72 27581 73 788.19 234 248 - 234 234 791.52

Table 5.4: Results for the r instance set.

instances, but it is also clear that our approach is able to provide good results when looking
at those harder ones.

Lastly, we analyze each instance class from the DIMACS instance set.
DSJ. 吀栀e 昀椀rst set of instances originates from the work of Johnson et al. [42]. DSJC in-

stances are standard (=, ?) random graphs with = vertices, where each pair of vertices has a
probability ? of being adjacent. DSJR instances are geometric graphs, while DSJR.c instances
are complements of geometric graphs. 吀栀e results for this instance set are shown in Table 5.3.

Both algorithms are able to close 4 out of 15 instances. Held et al. [33] algorithm is able to
close DSJC125.1 using three fourths of the time limit, but our cannot lower the upper bound.
On the other hand, on DSJR500.5, our algorithm is able to close the instance in a tenth of
the time limit, while theirs cannot. Across the 3 instances solved by both, we are faster in 2

of them. Note that in plenty of instances, theirs is able to solve the root node faster than we
do while enumerating less sets, and running more iterations, but this does not translate into
faster total running time.
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Known Held et al. Root Ours Root Held et al. Ours
Instance = D

⌈
j5
⌉

LB UB Sets It. Time Sets It. Time LB UB Time LB UB Time
fpsol2.i.1 496 .095 65 65 65 90 25 .81 - - .85 65 65 .81 65 65 .85
fpsol2.i.2 451 .086 30 30 30 83 45 .87 - - .47 30 30 .80 30 30 .47
fpsol2.i.3 425 .096 30 30 30 71 37 .64 - - .48 30 30 .63 30 30 .48
inithx.i.1 864 .050 54 54 54 93 38 2.51 - - 3.01 54 54 2.56 54 54 3.01
inithx.i.2 645 .067 31 31 31 42 13 .58 - - .79 31 31 .53 31 31 .79
inithx.i.3 621 .073 31 31 31 45 16 .66 - - .80 31 31 .71 31 31 .80
mulsol.i.1 197 .203 49 49 49 96 49 .22 - - .50 49 49 .20 49 49 .50
mulsol.i.2 188 .221 31 31 31 41 11 .05 - - .19 31 31 .06 31 31 .19
mulsol.i.3 184 .233 31 31 31 47 16 .08 - - .16 31 31 .08 31 31 .16
mulsol.i.4 185 .232 31 31 31 47 18 .08 - - .18 31 31 .09 31 31 .18
mulsol.i.5 186 .231 31 31 31 44 15 .07 - - .14 31 31 .07 31 31 .14
zeroin.i.1 211 .185 49 49 49 73 26 .15 - - .14 49 49 .16 49 49 .14
zeroin.i.2 211 .160 30 30 30 39 11 .06 - - .19 30 30 .06 30 30 .19
zeroin.i.3 206 .168 30 30 30 40 12 .07 - - .17 30 30 .07 30 30 .17

Table 5.5: Results for the Register Allocation instance set.

Random. 吀栀is instance set is also random, with the 昀椀rst number representing the vertex
count and the second indicating the probability of two vertices being connected. 吀栀e results
for this instance set are shown in Table 5.4.

吀栀ere are notable di昀昀erences in performance across the instances. For r1000.1, r125.1,
r125.1c, and r250.1, the performances of both algorithms are similar. However, for r125.5,
r250.5, and r250.1c, our algorithm outperformedHeld et al. [33] by a largemargin. For r250.1c,
we achieved the same result as Held et al. [33] but in signi昀椀cantly less time, 0.50 seconds versus
61.13 seconds. In the case of r1000.5, only our algorithm was able to close the instance, and
for r1000.1c, while neither algorithm solved it, ours reached a be琀琀er upper bound.

Register Allocation. 吀栀is instance set is based on one of the applications mentioned in
Chapter 1: register allocation, and it is derived from real code compilation. 吀栀e results for this
instance set are shown in Table 5.5.

Here we want to remind the reader about the instances where no column generation was
necessary to solve the root node. In this set, no instance required us to even create the linear
model, our reduction and separation rules su昀케ced in order to close the root.

We observe that both algorithms solved all instances, most of the time in less than a second.
However, our performance on these very fast instances was somewhat a昀昀ected, as we only
solved 3 instances faster than Held et al. [33]. As previously mentioned, we hypothesize that
this under-performance is due to Gurobi’s environment initialization, despite both programs
using the same version of the solver.

Optical Network Design. 吀栀is instance set is derived from real-life optical network de-
sign problems, where each vertex represents a light-path in the network, and edges correspond
to intersecting paths. 吀栀e results for this instance set are shown in Table 5.6.

吀栀is instance set is highly sparse, which poses a challenge for formulations based on inde-
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Known Held et al. Root Ours Root Held et al. Ours
Instance = D

⌈
j5
⌉

LB UB Sets It. Time Sets It. Time LB UB Time LB UB Time
wap01a 2368 .040 - 41 41 - - - - - - - 47 - 7 47 -
wap02a 2464 .037 - 40 40 - - - - - - - 46 - 9 46 -
wap03a 4730 .026 - 40 43 - - - - - - - 57 - 5 56 -
wap04a 5231 .022 - 40 41 - - - - - - - 46 - 7 49 -
wap05a 905 .105 50 50 50 122 62 8.42 171 56 .73 50 50 8.56 50 50 1.19
wap06a 947 .097 40 40 40 1801 466 264.07 - - - 40 44 - 19 43 -
wap07a 1809 .063 - 40 41 - - - - - - - 47 - 9 46 -
wap08a 1870 .060 - 40 40 - - - - - - - 44 - 9 45 -

Table 5.6: Results for the Optical Network instance set.

Known Held et al. Root Ours Root Held et al. Ours
Instance = D

⌈
j5
⌉

LB UB Sets It. Time Sets It. Time LB UB Time LB UB Time
le450_5a 450 .057 5 5 5 32688 8799 1282.09 - - - 5 10 - 3 10 -
le450_5b 450 .057 5 5 5 28373 7713 1298.43 - - - 5 7 - 3 9 -
le450_5c 450 .097 5 5 5 55381 14813 1114.67 - - - 5 11 - 4 8 -
le450_5d 450 .097 5 5 5 23412 6257 513.76 - - - 5 11 - 4 11 -
le450_15a 450 .081 15 15 15 929 274 24.72 - - - 15 17 - 6 17 -
le450_15b 450 .081 15 15 15 856 249 22.92 - - - 15 17 - 8 16 -
le450_15c 450 .165 15 15 15 16334 4145 725.33 - - - 15 24 - 6 23 -
le450_15d 450 .166 15 15 15 18020 4769 853.12 - - - 15 24 - 6 24 -
le450_25a 450 .082 25 25 25 147 69 2.62 1149 63 2.49 25 25 2.59 25 25 3.72
le450_25b 450 .082 25 25 25 186 82 4.21 960 42 1.45 25 25 4.13 25 25 .63
le450_25c 450 .172 25 25 25 1311 351 37.52 - - - 25 28 - 9 28 -
le450_25d 450 .172 25 25 25 1218 322 31.68 - - - 25 29 - 8 28 -

Table 5.7: Results for the Leighton instance set.

pendent sets, as the number of possible sets increases exponentially. With only one instance
solved by both algorithms, we found that our approach was faster in closing that instance. Ad-
ditionally, we observed that in 3 instances, we were able to 昀椀nd a be琀琀er upper bound among
the tested algorithms, while Held et al. [33] achieved a be琀琀er upper bound on 2 instances.

Leighton. 吀栀is instance set consists of Leighton graphs, each with a known optimal solu-
tion. Such graphs are related to Leighton’s 吀栀eorem [47], which states that if a pair of 昀椀nite
graphs have a common covering space, then they have a common 昀椀nite covering. 吀栀e results
for this instance set are shown in Table 5.7.

Like the previous instance sets, this is a set of sparse instances. However, in this case, the
fractional chromatic number provides a tight lower bound for the chromatic number of the
graph. We observe that Held et al. [33] algorithm is able to solve the root node for all instances,
whereas our algorithm can only do so for the instances theirs was able to close. Despite this,
our algorithm consistently produces be琀琀er or equal upper bounds compared to Held et al. [33].

Almost 3. 吀栀is instance set consists of graphs that are almost 3-colorable but contain a
“hard-to-昀椀nd” four-clique embedded. 吀栀e results for this instance set are shown in Table 5.8.
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Known Held et al. Root Ours Root Held et al. Ours
Instance = D

⌈
j5
⌉

LB UB Sets It. Time Sets It. Time LB UB Time LB UB Time
mug88_1 88 .038 4 4 4 351 320 .73 6918 183 4.26 4 4 .63 4 4 4.97
mug88_25 88 .038 4 4 4 381 340 .63 6606 195 4.60 4 4 .65 4 4 5.02
mug100_1 100 .034 4 4 4 487 443 1.14 11103 218 8.40 4 4 1.16 4 4 11.14
mug100_25 100 .034 4 4 4 434 385 1.10 15772 227 11.28 4 4 1.01 4 4 10.03

Table 5.8: Results for the Almost 3 instance set.

Known Held et al. Root Ours Root Held et al. Ours
Instance = D

⌈
j5
⌉

LB UB Sets It. Time Sets It. Time LB UB Time LB UB Time
myciel3 11 .364 3 4 4 11 9 .00 25 16 .08 4 4 .02 4 4 .04
myciel4 23 .281 4 5 5 33 24 .01 79 31 .10 5 5 11.51 5 5 61.82
myciel5 47 .218 4 6 6 85 51 .02 323 55 .48 4 6 - 4 6 -
myciel6 95 .169 4 7 7 149 76 .12 1979 105 11.65 4 7 - 4 7 -
myciel7 191 .130 5 8 8 334 200 2.42 12634 221 288.31 5 8 - 5 8 -

Table 5.9: Results for the Mycielski instance set.

Although the set is composed of “easy” instances, our algorithm does not perform particularly
well here, being, on average, an order of magnitude slower than the other algorithm.

Mycielski. 吀栀ese instances are based on the Mycielski transformation. 吀栀e graphs are
challenging to solve because they are triangle-free, yet their chromatic number increases as
the problem size grows. 吀栀e results for this instance set are shown in Table 5.9.

In this set, we observe a very similar performance in terms of bounds, with a notable
di昀昀erence in the time to solve the myciel4 instance.

Insertion. k-Insertion graphs and Full Insertion graphs are generalizations of Mycielski
graphs, with additional inserted nodes that increase the graph size without signi昀椀cantly in-
creasing its density. 吀栀e results for this instance set are shown in Table 5.10.

吀栀is is a more challenging set of instances, with most of them not being solved within the
time limit. Held et al. [33] was able to solve one more instance than our algorithm, and for
the instances that both algorithms closed, Held et al. [33]’s approach was considerably faster.
吀栀is di昀昀erence is primarily due to Held et al. [33] closing the instances at the root relaxation
much faster than our algorithm, likely due to more e昀昀ective pricing heuristics.

Latin Squares. 吀栀is instance set is derived from the Latin square problem. A Latin square
is an =×= array 昀椀lled with symbols, where each symbol appears exactly once in each row and
exactly once in each column. 吀栀e results for this instance set are shown in Table 5.11.

吀栀is set includes some challenging instances, where neither algorithmwas able to solve the
problem. We also observe that, in these cases, our algorithm resulted in worse upper bounds
compared to the other approach.

School. 吀栀is instance set is based on class scheduling graphs, both with and without study
halls (_nsh), another practical case highlighted in Chapter 1. 吀栀e results for this instance set
are shown in Table 5.12. We observe that these are challenging instances; however, Held et al.
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Known Held et al. Root Ours Root Held et al. Ours
Instance = D

⌈
j5
⌉

LB UB Sets It. Time Sets It. Time LB UB Time LB UB Time
1-FullIns_3 30 .230 4 4 4 22 19 .00 114 43 .08 4 4 .00 4 4 .47
1-FullIns_4 93 .139 4 5 5 48 29 .02 1961 120 2.36 4 5 - 4 5 -
1-FullIns_5 282 .082 4 6 6 150 73 .49 70395 251 526.56 4 6 - 4 6 -
2-FullIns_3 52 .152 5 5 5 26 22 .01 181 65 .11 5 5 .01 5 5 .55
2-FullIns_4 212 .072 5 6 7 82 47 .13 9147 185 22.29 5 6 - 5 6 -
2-FullIns_5 852 .034 5 7 7 187 106 1.59 - - - 5 7 - 4 7 -
3-FullIns_3 80 .109 6 6 6 31 25 .01 157 89 .09 6 6 .01 6 6 .15
3-FullIns_4 405 .043 6 7 7 63 48 .14 8271 424 44.00 6 7 - 6 7 -
3-FullIns_5 2030 .016 6 8 8 200 107 5.38 - - - 6 8 - 4 8 -
4-FullIns_3 114 .084 7 7 7 32 26 .02 372 138 .31 7 7 .02 7 7 .33
4-FullIns_4 690 .028 7 7 8 75 55 .33 465550 606 2030.02 7 8 - 7 8 -
4-FullIns_5 4146 .009 7 9 9 200 114 32.33 - - - 7 9 - 5 9 -
5-FullIns_3 154 .067 8 8 8 33 26 .03 341 166 .29 8 8 .02 8 8 1.03
5-FullIns_4 1085 .019 8 9 9 90 56 .73 23785 1129 622.86 8 9 - 6 9 -
1-Insertions_4 67 .105 3 5 5 224 101 .12 1429 98 1.87 3 5 - 3 5 -
1-Insertions_5 202 .060 3 6 6 1216 378 5.02 101561 240 2209.24 3 6 - 3 6 -
1-Insertions_6 607 .034 4 4 7 21765 18622 2088.64 - - - 4 7 - 3 7 -
2-Insertions_3 37 .108 3 4 4 107 69 .04 316 85 .25 4 4 502.03 3 4 -
2-Insertions_4 149 .049 3 5 5 924 547 2.98 33132 194 162.03 3 5 - 3 5 -
2-Insertions_5 597 .022 3 6 6 3281 1728 210.93 - - - 3 6 - 3 6 -
3-Insertions_3 56 .071 3 4 4 210 106 .09 852 151 1.01 3 4 - 3 4 -
3-Insertions_4 281 .027 3 5 5 1701 978 30.23 - - - 3 5 - 3 5 -
3-Insertions_5 1406 .010 - 4 6 - - - - - - 3 6 - 2 6 -
4-Insertions_3 79 .051 3 4 4 388 180 .33 2304 205 3.67 3 4 - 3 4 -
4-Insertions_4 475 .016 3 5 5 3740 2077 296.63 - - - 3 5 - 2 5 -

Table 5.10: Results for the Insertion instance set.

Known Held et al. Root Ours Root Held et al. Ours
Instance = D

⌈
j5
⌉

LB UB Sets It. Time Sets It. Time LB UB Time LB UB Time
latin_square_10 900 .760 90 90 97 894 220 57.37 - - - 90 129 - 90 126 -
qg.order30 900 .065 30 30 32 877 307 166.04 - - - 30 32 - 6 36 -
qg.order40 1600 .049 40 40 40 1500 740 972.68 - - - 40 42 - 9 45 -
qg.order60 3600 .033 - 60 60 - - - - - - - 63 - 12 68 -
qg.order100 10000 .020 - 100 100 - - - - - - - 106 - 15 115 -

Table 5.11: Results for the Latin instance set.

Known Held et al. Root Ours Root Held et al. Ours
Instance = D

⌈
j5
⌉

LB UB Sets It. Time Sets It. Time LB UB Time LB UB Time
school1 385 .258 14 14 14 8259 2152 125.06 - - - 14 14 1609.64 13 15 -
school1_nsh 352 .237 14 14 14 4781 1204 60.27 - - - 14 14 3168.81 13 14 -

Table 5.12: Results for the School instance set.
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Known Held et al. Root Ours Root Held et al. Ours
Instance = D

⌈
j5
⌉

LB UB Sets It. Time Sets It. Time LB UB Time LB UB Time
anna 138 .052 11 11 11 17 8 .01 - - .04 11 11 .02 11 11 .08
david 87 .109 11 11 11 17 8 .00 19 14 .03 11 11 .01 11 11 .08
huck 74 .111 11 11 11 23 14 .01 - - .05 11 11 .01 11 11 .05
jean 80 .080 10 10 10 20 12 .01 - - .46 10 10 .01 10 10 .46

Table 5.13: Results for the Games and Books instance set.

Known Held et al. Root Ours Root Held et al. Ours
Instance = D

⌈
j5
⌉

LB UB Sets It. Time Sets It. Time LB UB Time LB UB Time
miles250 128 .048 8 8 8 22 16 .02 - - .15 8 8 .01 8 8 .15
miles500 128 .144 20 20 20 37 19 .03 70 21 .04 20 20 .03 20 20 .10
miles750 128 .260 31 31 31 51 22 .07 63 20 .04 31 31 .07 31 31 .07
miles1000 128 .396 42 42 42 76 36 .19 85 21 .07 42 42 .18 42 42 .28
miles1500 128 .640 73 73 73 96 24 .21 84 18 .13 73 73 .24 73 73 .11

Table 5.14: Results for the Miles instance set.

[33]’s algorithm was able to solve them.
Games and Books. 吀栀e graphs in this instance set are derived from Donald Knuth’s

Stanford GraphBase. For a given work of literature, a graph is constructed where each node
represents a character, and two nodes are connected by an edge if the corresponding characters
interact in the book. 吀栀e results for this instance set are shown in Table 5.13.

Knuth generated graphs for 昀椀ve classic works: Tolstoy’s Anna Karenina (anna), Dickens’
David Copper昀椀eld (david), Homer’s Iliad (homer), Twain’sHuckleberry Finn (huck), andHugo’s
Les Misérables (jean).

吀栀e games120 graph represents the games played in a college football season. In this graph,
nodes correspond to college teams, and an edge connects two nodes if the respective teams
played against each other during the season. Knuth provides this graph for the 1990 college
football season.

Two noteworthy observations can be made regarding this set: for the instances homer
and jean, our algorithm took signi昀椀cantly more time to close these instances compared to the
other algorithm.

Miles. 吀栀e graphs in this instance set are derived from Donald Knuth’s Stanford Graph-
Base. Similar to geometric graphs, nodes in these graphs are placed in space, with two nodes
connected if they are su昀케ciently close. 吀栀e nodes represent a set of United States cities, and
the distances between them are given by road mileage from 1947. 吀栀e results for this instance
set are shown in Table 5.14.

吀栀ere is li琀琀le di昀昀erence in performance between the compared algorithms for this instance
set, as both were able to close all instances in less than half a second.

儀甀een. 吀栀e graphs in this instance set are derived from Donald Knuth’s Stanford Graph-
Base. For an @ × @ chessboard, a queen graph is constructed where each node represents a
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Known Held et al. Root Ours Root Held et al. Ours
Instance = D

⌈
j5
⌉

LB UB Sets It. Time Sets It. Time LB UB Time LB UB Time
queen5_5 25 .533 5 5 5 5 2 .00 5 1 .02 5 5 .01 5 5 .02
queen6_6 36 .460 7 7 7 59 35 .02 204 20 .09 7 7 .50 7 7 .12
queen7_7 49 .405 7 7 7 99 45 .04 477 20 .40 7 7 1.21 7 7 .48
queen8_8 64 .361 9 9 9 186 80 .10 1133 23 2.39 9 9 8.84 9 9 2.41
queen8_12 96 .300 12 12 12 111 53 .12 2979 24 3.17 12 12 12.06 12 12 8.34
queen9_9 81 .652 9 10 10 405 151 .30 3023 21 11.34 10 10 18.85 10 10 190.88
queen10_10 100 .594 10 11 11 486 179 .60 10268 26 78.44 11 11 265.39 10 11 -
queen11_11 121 .545 11 11 11 569 203 1.05 39703 27 141.79 11 12 - 11 12 -
queen12_12 144 .504 12 12 12 698 231 1.60 107982 31 504.37 12 13 - 12 13 -
queen13_13 169 .469 13 13 13 724 254 2.61 639886 36 2425.43 13 15 - 13 14 -
queen14_14 196 .438 14 14 14 938 293 4.51 - - - 14 16 - 11 19 -
queen15_15 225 .411 15 15 15 971 297 7.86 - - - 15 17 - 9 20 -
queen16_16 256 .387 16 16 17 1136 360 11.87 - - - 16 21 - 8 21 -

Table 5.15: Results for the 儀甀een instance set.

Known Held et al. Root Ours Root Held et al. Ours
Instance = D

⌈
j5
⌉

LB UB Sets It. Time Sets It. Time LB UB Time LB UB Time
昀氀at300_20_0 300 .477 20 20 20 1211 487 20.61 - - - 20 20 1114.11 18 20 -
昀氀at300_26_0 300 .482 26 26 26 2797 935 39.51 - - - 26 26 1732.85 24 26 -
昀氀at300_28_0 300 .484 28 28 28 1886 642 24.70 - - - 28 33 - 27 41 -
昀氀at1000_50_0 1000 .490 - 50 50 - - - - - - 50 113 - 17 110 -
昀氀at1000_60_0 1000 .492 - 60 60 - - - - - - - 112 - 16 113 -
昀氀at1000_76_0 1000 .494 - 72 81 - - - - - - - 115 - 18 115 -

Table 5.16: Results for the Flat instance set.

square on the board. Two nodes are connected by an edge if their corresponding squares lie
in the same row, column, or diagonal.

Unlike some other graphs, the coloring problem on this graph has a natural interpretation:
given such a chessboard, is it possible to place @ sets of @ queens on the board so that no
two queens from the same set share the same row, column, or diagonal? 吀栀e answer is yes if,
and only if, the graph’s chromatic number is @. 吀栀e results for this instance set are shown in
Table 5.15.

For this instance set, the performance of both algorithms is quite similar for smaller in-
stances. Although we solve instances queen8_8 and queen8_12 faster, the algorithm by Held
et al. [33] solves queen9_9 much faster and is the only one capable of solving queen10_10.

For instances not solved by either algorithm, we observe mixed results: our algorithm pro-
duced a be琀琀er upper bound in one case but failed to match Held et al. [33]’s upper bound in
three others. Overall, for unsolved instances, their algorithm demonstrated superior perfor-
mance.

Flat. A given graph � is called 昀氀at if each edge of � belongs to at most two triangles
of � . 吀栀e results for this instance set are shown in Table 5.16. Here we are able to see once
more our algorithm has some trouble raising the lower bound in instance 昀氀at_300_20_0 and
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Known Held et al. Root Ours Root Held et al. Ours
Instance = D

⌈
j5
⌉

LB UB Sets It. Time Sets It. Time LB UB Time LB UB Time
abb313GPIA 1557 .044 8 9 9 15743 7192 2828.20 - - - 8 10 - - - -
ash331GPIA 662 .019 4 4 4 286 187 5.30 - - - 4 6 - 3 6 -
ash608GPIA 1216 .011 4 4 4 2013 1163 1843.92 - - - 4 6 - 2 5 -
ash958GPIA 1916 .007 - 4 4 - - - - - - - 6 - 2 6 -
will199GPIA 701 .028 7 7 7 354 203 2.92 - - - 7 7 3.00 4 7 -

Table 5.17: Results for the Matrix Partitioning instance set.

昀氀at_300_26_0, even if we are able to provide a be琀琀er upper bound to instance 昀氀at1000_50_0
than Held et al. [33] could.

Matrix Paritioning. Graphs obtained from a matrix partitioning problem in the seg-
mented columns approach to determine sparse Jacobian matrices. 吀栀e results for this instance
set are shown in Table 5.17. It is possible to observe a di昀椀culty for Held et al. [33] algorithm
to 昀椀nd be琀琀er upper bounds, while ours was able to get similar or be琀琀er upper bounds. Inter-
estingly, on instance will199GPIA, even though Held et al. [33] took 3 seconds, ours was not
able to raise the lower bound.

5.2 MATILDA’s Instances
While it could be argued that the DIMACS instances are su昀케cient to demonstrate the e昀昀ec-
tiveness of an algorithm for solving the graph coloring problem—given that they cover some
of the most important classes of instances—it became evident early in this research that these
instances alone do not provide a comprehensive evaluation, particularly in terms of algorith-
mic speed. With only 10% of instances solved requiring more than a second to be solved, the
rate at which algorithms achieve that is insu昀케cient to de昀椀nitively determine which performs
“faster”.

To enhance our analysis, we utilized a set of instances proposed by Smith-Miles and Bowly
[76], which is called the MATILDA dataset. 吀栀e authors employed a methodology to identify
the instance characteristics that most contribute to its “di昀케culty”. 吀栀eir 昀椀ndings revealed
that density, algebraic connectivity, and energy are the three primary properties in昀氀uencing
an instance’s hardness for the studied heuristics algorithms. 吀栀e algebraic connectivity of
graph � is the second-smallest eigenvalue of the Laplacian matrix of � and re昀氀ects how well
connected� is. 吀栀e energy of graph� is the sum of absolute values of the eigenvalues of the
adjacency matrix of � .

Using genetic algorithms, they generated a dataset comprising over 8000 instances, e昀昀ec-
tively spanning the space of possible instances based on these properties. To visualize this
space, the authors projected the three-dimensional feature space onto a plane using the fol-
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lowing formula:

[
E1

E2

]
=

[
0.559 0.614 0.557

−0.702 −0.007 0.712

] 

density
algebraic connectivity

energy



Figure 5.3: Distribution of MATILDA’s instances across the instance space. Each graph repre-
sents a projection of such space in a plane.

吀栀e coverage of the instance space is illustrated in Figure 5.3. However, there are some
drawbacks to these instances. Most notably, all instances contain exactly 100 vertices. Addi-
tionally, approximately 20% of them have chromatic numbers below 3, making them solvable
in polynomial time. To avoid clu琀琀ering our results with such trivial instances, we excluded
them from our tests, and we are le昀琀 with 6630 instances.

Figure 5.4 and Figure 5.5 illustrate the performance of our implementation compared to
the algorithm proposed by Held et al. [33].

As shown in Figure 5.4, around the 10-second mark, both algorithms close the same num-
ber of instances. However, Held et al. [33] solves more instances in the remaining time. Upon
examining the logs of instances solved by their algorithm but not by ours, we observe that in
many cases, our implementation could not su昀케ciently increase the lower bound to close the
instance. Conversely, there are only a few cases where we failed to achieve the same upper
bound.

In Figure 5.5, we observe that our algorithm solves 35% of instances faster than Held et al.
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Figure 5.4: Cumulative distribution of instances solved by time and their gap on the MATIDA
instance set. In blue, the results of Held et al. [33] code, in green, our results.

Figure 5.5: Cumulative distribution of proportion of time of our algorithm in relation to what
Held et al. [33] algorithm took in each instance both solved. In blue, the DIMACS instance set,
and in green, the MATILDA instance set.
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[33], with over 10% being solved ten times faster. 吀栀is performance di昀昀ers from our results
on the DIMACS instance set, where we solved 45% of instances faster, although with fewer
cases showing such a signi昀椀cant disparity.
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Chapter 6

Conclusions

Graph coloring, a foundational problem in combinatorial optimization, poses signi昀椀cant chal-
lenges owing to its computational complexity and broad applicability. 吀栀is dissertation ad-
dresses these challenges through an advanced Integer Linear Programming (ILP) approach,
integrating a branch-and-price framework with a branch-and-reduce methodology for its pric-
ing problem.

We investigate the impact of employing a novel method for solving themaximumweighted
stable set problem proposed by Xiao et al. [87] on the performance of graph coloring algo-
rithms. Our analysis reveals that certain rules and reductions from the original framework
are unnecessary or counterproductive in this context, as the pricing problems encountered
here are less complex than the general MWIS instances addressed by Xiao et al. [87].

Our work is benchmarked against existing literature, particularly the code from Held et al.
[33]. 吀栀e main challenges the current state of our work endures are:

1. Root Node Closure Di昀케culty: Our algorithm struggles to close the root node in many
cases, particularly where Held’s succeeds (e.g., 9/11 instances in Table 5.1). 吀栀is can
is a琀琀ributed to a lack of pricing heuristics, which Held’s implementation leverages to
tighten lower bounds e昀케ciently. 吀栀is leads to slower improvements in the lower bound,
which in turn a昀昀ects the overall performance on several instances. Implementing fast
heuristics with an e昀케cient local search, much like Held et al. [33] has done, can help us
conquer this weakness.

2. Initialization Overhead: Our approach incurs higher initialization costs with Gurobi,
impacting performance on very small instances (e.g., Register Allocation), even though
both use the same solver version. 吀栀is is an issue which will require some extensive
testing to pin down the reasons, but it also an important topic for future work for us.

3. Lower Bound Limitations: Most of the cases where our method fails to solve an in-
stance is due to its inability to raise lower bounds. 吀栀is shortfall leads to either longer
solution times or the inability to match Held’s 昀椀nal upper bounds in certain cases. We
believe works such as the one by Morrison et al. [62] can help us overcome this chal-
lenge.
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4. Performance on Easy Instances: Held’s algorithm dominates on instances solvable
via fast heuristics (e.g., clique-based lower bounds), solving 8/15 instances in Table 5.2
in less than 0.03 seconds, where our approach lags. We believe the addition of such
heuristics with our robust separation and reduction techniques can be of great value for
us.

吀栀at being said, it is our understaing that there are some important advantages to our
method:

1. Harder Instances: On computationally intensive instances (e.g., DSJR500.5, r1000.5),
our algorithm closes gaps faster or solves instances Held’s cannot. For example, it solves
r1000.5 exclusively and reduces runtime by 10 times on DSJR500.5 .

2. E昀昀ective Reduction Rules: For Register Allocation instances, our separation and re-
duction rules alone su昀케ce to close gaps without invoking the LP solver, demonstrating
robustness in structured, application-driven graphs.

3. Upper Bound 儀甀ality: Achieves be琀琀er upper bounds in several cases (e.g., Optical
Network Design instances), even when failing to close the instance. 吀栀is demonstrate
the importance of our heuristics.

4. Balanced Performance: While slower on trivial instances, our algorithm shows com-
petitive or be琀琀er results onmid-to-large instances requiringmore than 1 second runtime
(e.g., 11/21 such instances in DIMACS dataset were faster).

吀栀e identi昀椀ed challenges provide tangible directions for future enhancements. Once these
areas are addressed, the algorithm’s performance could improve even further and bridge the
performance gap.

In summary, this work advances the state-of-the-art in graph coloring by re昀椀ning and
extending Integer Linear Programming techniques. By integrating branch-and-price with
branch-and-reduce methodologies and critically adapting the MWIS framework of Xiao et al.
[87], we demonstrate a computationally e昀케cient and robust approach capable of solving in-
stances which other algorithms might struggle. While our results validate the competitiveness
of the proposed algorithm, the outlined future directions—such as heuristic enhancements and
tighter bounds for small-chromatic graphs—hold promise for an even be琀琀er result. 吀栀is dis-
sertation not only deepens the understanding of graph coloring and show how enumerating
more than one column at each iteration of process can be bene昀椀cial for such problem.
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