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Multiobjective Evolutionary Clustering m
to Enhance Fault Detection in a PV oo
System

Luciana Yamada, Priscila Rampazzo, Felipe Yamada, Luis Guimaries,
Armando Leitdo, and Flavia Barbosa

Abstract Data clustering combined with multiobjective optimization has become
attractive when the structure and the number of clusters in a dataset are unknown.
Data clustering is the main task of exploratory data mining and a standard statisti-
cal data analysis technique used in many fields, including machine learning, pattern
recognition, image analysis, information retrieval, and bioinformatics. This project
analyzes data to extract possible failure patterns in Solar Photovoltaic (PV) Panels.
When managing PV Panels, preventive maintenance procedures focus on identifying
and monitoring potential equipment problems. Failure patterns such as soiling, shad-
owing, and equipment damage can disturb the PV system from operating efficiently.
We propose a multiobjective evolutionary algorithm that uses different distance func-
tions to explore the conflicts between different perspectives of the problem. By the
end, we obtain a non-dominated set, where each solution carries out information
about a possible clustering structure. After that, we pursue a-posteriori analysis to
exploit the knowledge of non-dominated solutions and enhance the fault detection
process of PV panels.

Keywords Multiobjective * Clustering *+ Photovoltaic systems * Fault detection

1 Introduction

In the last years, the Paris Agreement has defined the necessary targets to limit global
warming using renewable energy. Despite decreasing solar panels’ costs, the panels’
efficiency is still reduced compared with other energy sources [1]. The industry
has been working to improve the overall performance of photovoltaic (PV) systems.
However, issues still need to be addressed concerning reliability, unforeseen outages,
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and high operation and maintenance (O&M) costs, hindering a lean integration in
the electrical grid.

A PV system comprises one or more solar panels, connected in series or parallel,
combined with an inverter, and a utility grid, among other components. PV panels
convert sunlight into electrical energy, and faults may affect performance. A PV
fault decreases the system’s performance (reduces the output) or interrupts the sys-
tem’s operation. Faults can occur by different factors such as errors in the Maximum
Power Point Tracking, shadowing, degradation, and electrical disconnection. Such
failures can reduce the instantaneous power generated by the PV plant or permanently
degrade the overall asset. In this sense, implementing advanced analytical tools to
diagnose failures is crucial in guaranteeing the asset’s reliability and performance.
In addition, detecting and diagnosing potential failures is also decisive to reduce the
costs associated with O&M and the system unavailability.

Although different techniques have been reported in the literature, the fault detec-
tion process must deal with some problems [2]. Regarding data availability, accu-
rately representing the electrical characteristics under different fault conditions is
challenging, and most fault diagnosis models require the precise division of the
fault samples. Fault detection methods based on classification models can effec-
tively reveal and categorize faults. However, specialized human knowledge or com-
plex and costly equipment are needed to establish the diagnostic model and fault
samples. Effective clustering of fault samples is a prerequisite for establishing an
efficient detection model, but the scarcity of fault samples in real operational data
makes this task difficult [3].

Considering as challenges of the fault detection problem in PV systems: (i) the
difficulty of categorizing faults and having data labeled according to their different
types, and (ii) the lack of information regarding the distribution of data in high-
dimension, this paper proposed a Multiobjective Evolutionary Clustering Algorithm
(MECA) to detect faults in PV systems through the following approach:

i Application of a multiobjective algorithm for the clustering task—to capture the
different clustering perspectives through different objective functions to over-
come the lack of knowledge about the data distribution format due to the diversity
of failures and high-dimensional spaces.

ii Proposal of a-posteriori analysis—associating data with known labels to the results
of the multiobjective algorithm for the clustering task; the aim is to obtain a
cluster-sharing matrix to enhance the task of attributing labels to initially unla-
beled data.

iii Validation of the method—use the multiobjective approach for clustering and
enhance the assignment of missing labels in databases with few known labels—
through the measurement of accuracy and confusion matrix.

The main contribution of this paper is the proposal of a-posteriori analysis that
demonstrated to be able to label data and explore complementary information for
data clustering.
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This paper is organized as follows. Section 2 gives a description of fault detection
techniques. Section 3 presents the Multiobjective Evolutionary Clustering algorithm.
Section4 reports the experimental results. Section5 summarizes the conclusion of
this work and future research.

2 Fault Detection

According to [4], fault detection techniques are divided into visual and thermal, and
electrical methods. Visual and thermal imaging methods help in situations where
faults are challenging to detect in the visual inspection process. These methods
analyze images collected by cameras that can detect temperature differences in the
PV module and recognize the failures’ exact location. The electrical methods use
the measurements of the electrical output such as the current and voltage of the PV
system, to diagnose the faults. Among the electrical methods, some of the techniques
found are statistical and signal processing approaches, current-voltage characteristics
analysis, power losses analysis, and artificial intelligence (AI) techniques [5]. In this
work, we will focus on Al techniques.

The Al techniques has shown significant advances and contributions to several
scientific areas. One of the main uses of fault detection is related to supervised
methods. In [6], a Monitoring System (MS) is presented to measure the electrical and
environmental variables to produce instantaneous and historical data. Integrated with
the MS, an Auto-Regressive with an Exogenous input model is used to detect faults
in the system, such as short-circuit, open-circuit, partial shadowing, and degradation.
Regarding the classification of the faults, different supervised models were compared.

Unsupervised methods, such as data clustering, are applied to group data with
similar characteristics, differentiating data with failures and data in regular operation.
In [7], the K-means algorithm is used to cluster thermal images to detect and localize
damage. Elbow method and mean silhouette method are used to define the best
number of clusters. K-means proved to detect faults in images and can be integrated
into the thermal drone system. In [8], an unsupervised method, density-based spatial
clustering of applications with noise algorithm, is used for clustering faults in a PV
system. The normalization proposed in [9] is used to avoid overlap of the clusters.
The approach identifies the faults of open-circuit and short-circuits.

In addition to the mentioned methods, semi-supervised approaches are applied in
the literature. The main objective of these algorithms is to combine many labeled
samples with a few unlabeled ones to develop more efficient models [10]. These
algorithms try to improve the performance of supervised or unsupervised learning
using a combination of methods and information generated by each other [11]. In
[9], a Graph-Based Semi-supervised Learning (GBSSL) method is proposed for fault
detection and classification in PV arrays. The normalization based on the panels’
standard test condition was proposed and proved to help avoiding overlap clusters
under normal and fault conditions. The GBSSL demonstrated that the faults could
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be correctly detected during weather changes or PV arrays degradation. In this work,
the authors consider the short and open-circuit faults.

The Fuzzy C-Means (FCM) [12] algorithm is a clustering algorithm based on the
fuzzy division of an objective function that groups samples of failures by the degree
of membership through the Euclidean distance between the sampling point and the
center of the corresponding cluster, which makes the algorithm limited to processing
datasets with spherical shapes. The authors of [3] propose the function of the Gaussian
kernel (GK) in the FCM algorithm to map data in the high-dimensional space and
transform the non-linear information of the original space into a linear problem,
indicating a significant improvement in the applicability and the algorithm clustering
accuracy. The GK-FCM algorithm performs unsupervised clustering and labeling
fault samples under typical fault conditions. The labeled fault samples serve as input
to a probabilistic neural network based model to facilitate intelligent diagnosis of
PV array faults.

Although works with similar intentions have been proposed in the literature, the
approach presented here is new: treating the fault detection PV system by analyzing
the results of a multiobjective clustering algorithm. Unlike the existing works, we
extract additional information from clustering in a-posterior analysis, considering
a few labeled samples, and use this information to classify the failure types for
unlabeled data.

3 Methodology

In this section, an overview of MECA is presented. Based on the algorithm presented
in [13], we propose an algorithm to cluster PV system data and find possible labels
to unlabeled data in a-posteriori analysis. Our algorithm has some changes from
the original algorithm regarding the initialization and the mutation operators. The
general framework of MECA is outlined in Algorithm 1.

The individual of MECA represents a way of grouping the status of a PV system
for a specific irradiance range. Each status can be associated with one type of fault or
a normal condition. Status with similar characteristics should be clustered together.
The individual was coded using a locus-based adjacency coding. The methods used
in initialization introduce individuals with characteristics explored in the two objec-
tive functions: Compactness and Connectivity. K-means aims to minimize the sum
of squared errors of each sample to the nearest centroid. The centroids represent the
average of the samples in each cluster. Therefore, this algorithm highlights structures
of compact clusters. Similarly, K-medoids prioritize compact clusters with less sen-
sitivity to outliers. Kruskal Algorithm introduces individuals with smaller distances
between the samples, highlighting the connectivity of the data.

Next, we use the NSGA-II [14] to sort and select individuals from the population
in the binary tournament to compose the parents population P,. The selected set of
parents go through crossover and mutation to create an offspring population Q. The
uniform crossover was used to combine genes from two parents. The mutation oper-
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ator proposed in this work emphasizes the characteristics of the objective functions.
Relying on the data distribution, one of the objective functions or a mix of the two
can better represent the data. For example, K-means and K-medoids can not create
a proper individual due to the spherical characteristic in data with the elongated or
connected format. In contrast, Kruskal Algorithm prioritizes connectivity, and it is
hard to deal with data with different types of distribution or even in compact or
spherical shapes. Therefore, the neighborhood mutation was developed to change
the assignment of a sample to the cluster of its nearest neighbor, exploring the con-
nection between samples. Similarly, the centroid mutation explores the characteristic
of compact clusters, changing a sample to another closest centroid. These designed
mutation operators help maintain the genetic diversity of the population. In our fault
detection problem, as we can not know the data distribution and consider different
irradiance ranges, the proposed objective function and mutation operators is a proper
choice to capture distinct patterns.

The combined population R, = P,_; U Qy, is sorted according to non-dominated
classification and crowding distance to choose exactly T P population members to
the next population P, [14].

After obtaining the non-dominated frontier, a-posteriori analysis is applied to
exploit the knowledge of the solutions and enhance the fault detection process of
PV panels. For this purpose, we combine the information obtained from the non-
dominated solutions with a small percentage of labeled samples.

More details of the implementations of the coding, evaluation, operators and a-
posteriori analysis are described in the following.

Algorithm 1: MECA

1 Initialize population Py with size TP = Q kmeans + O Kmedoids + OMST
2forg=1,..,Gdo

3 Select the sets of parents, p; and p;, through binary tournament

Create F, offsprings from p; and p; (uniform crossover)

Create F,, offsprings from p; and p> (centroid and neighborhood mutation)
Qg = F.UF, Create Ry = P;_1 UQ,

Evaluate R; in Compactness and Connectivity

Select T P individuals of R, through rank and crowding distance to form the next
population Py

9 end

10 Return the non-dominated solutions

X NN B

All the parameters were defined experimentally. The population size (T P) was
set to 100, and the number of generations (G) to 100. The initial population is gener-
ated using the following K-means [15], K-medoids [16], and the Kruskal Algorithm
[17]. We define the number of solutions of each method, Kruskal (Q /s7), K-means
(Qkmeans), and K-medoids (Q kmedoids), respectively to 24, 38 and 38. For each
method, an individual will be created considering the chosen range of the cluster
where [K,,;in, Kpnax] =12, 10].
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Fig. 1 Illustration of the locus-based adjacency coding and the decoding process

Coding

In our dataset, each observation corresponds to a status of a PV system, measured by
attributes related to weather conditions and electrical variables. The status indicates
whether the system operates in a normal condition or has any faults. Thus, each
individual in the population corresponds to a way of grouping the N observations
of the dataset. To represent the individual, we used locus-based adjacency coding
[13], where an individual is a vector [a;, az, ..., ay], wWhere a; is associated with
sample i-th and represents one of the nodes of the graph. The value of an element
a; = n indicates that sample i is linked to sample n. These links create the node’s
connection and, in the end, generate the final clusters in the decoding process. With
this representation, the number of clusters in individuals can be flexible during the
search process. In Fig. la, we represent an individual with locus-based adjacency
coding. For example, position one is associated with node and sample 1. The value 3
indicates that sample 1 has a link with sample 3, as we can see in the graph. In Fig. 1b,
the individual is decoded using one of the samples as the root (smallest value) to
group samples assigned to the same cluster. In the decoding process, the roots are 1,
2 and 4.

Solution Evaluation

To evaluate each individual (k = 1, ..., T P) of the population and express different
characteristics of the data, we use two objective functions based on the MOCK [13]:
Compactness and Connectivity. As an objective reflecting the cluster compactness
(1), we minimize the Euclidean distance 6 (i, 1 ;) between each sample 7 of the cluster
C; with its centroid p :



Multiobjective Evolutionary Clustering to Enhance Fault Detection in a PV System 233

Compactness = Z Z 8(i, pj). @))

C;jeCieCy

To represent the cluster connectivity (2), we apply a penalty factor that considers
the distance from the nearest neighbors. The nearest neighbors are calculated using
the euclidean distance between data points. In the objective function, nn; ; is the j-th
nearest neighbor of a sample i, L is the number of neighbors that are considered to
compute the metric, and N is the size of the samples in the dataset. For the parameter
L, we setit to 10, as suggested in [13]. This objective function should be minimized.

N L
Connectivity = Z Z Dinn ;- 2)

i=1 j=1

The penalty factor use the following rules:

5, if nn; ; does not belong to the same cluster of the sample i

Pinn;; = .
" 0, otherwise.

Non-dominated Sorting Genetic Algorithm II (NSGA-II)

As defined in [14], in NSGA-II each individual (k = 1, ..., T P) is associated with
two attributes: rank; and distance, (non-dominated classification and crowding
distance). If two solutions have different non-domination levels (different non-
dominated frontiers), we choose the solution k with the lower rank;. Otherwise,
if two k; and k, solutions belong to the same frontier (rank;; = ranky,), then we
prefer the solution that is located in a less crowded region (that is, higher distancey,)
[18]. The crowding distance represents the sum of the normalized distances of the
nearest neighbors of the solution along each objective. Large distance values are
assigned for the extreme solutions, and the crowding distance is calculated for the
rest. Formally, given a solution m, the distance d,, is defined as:

3)

L grm+1)—gp(m—1)
Z max mll’l

— 9

Where F is the number of objective functions, m + 1 and m — 1 are the nearest
neighbors of a solution m, g}”‘” and g}’”” the maximum and minimum values of each

function g, considering individuals from the same frontier (same rank).



234 L. Yamada et al.

Non-dominated classification and crowding distance are used in the binary tourna-
ment selection algorithm to create the parents’ population and to select the population
for the next generations.

Crossover and Mutation

A population of parents is built through a binary tournament. Pairs of parents from
this population are selected to generate pairs of offspring. To compose the offspring
population, we define the solutions generated by the crossover (F.) to 20 and by
the mutation (F,,) to 20. The uniform crossover is applied to each pair of selected
solutions, thus generating two offspring. The binary crossover mask with a uniform
distribution is created; each individual has a 50% chance to copy the gene from one
and 50% from the other.

The mutation process complements the crossover, allowing a more extensive
search space to be explored. In the literature, mutation, and crossover operators
for the clustering problem are presented in [19]. The mutation is based on the nearest
neighbors in the algorithms that use locus-based adjacency graph encoding. In the
present work, two types of mutation are proposed to emphasize the characteristics
of objective functions: centroid mutation and neighborhood mutation.

The centroid mutation aims to assign the selected sample to the cluster with the
nearest centroid. For each offspring:

1. Select randomly one sample i of the offspring.

2. Calculate the Euclidean distance between sample i and all the other centroids of
the offspring.

3. Assign the sample i to a new cluster, considering the nearest centroid.

The neighborhood mutation aims to assign the selected sample to the cluster of
the nearest neighbor. For each offspring:

1. Select randomly one sample i of the offspring.

2. Identify the L nearest neighbor of the sample i through the k-nearest neighbors
algorithm.

3. Assign the sample i to a new cluster, considering the nearest neighbor.

A-posteriori analysis

Following the MECA'’s execution, a-posteriori analysis examines the non-dominated
solutions to gather insights into the clustering process. This analysis aims to deter-
mine whether we can leverage the acquired information to identify potential labels for
unlabeled data. In the first step of a-posteriori analysis, we divide the non-dominated
frontier into three portions, as illustrated in Fig. 2.
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Fig. 2 Division of the A
non-dominated frontier into

three portions. The gray Y1
solutions represent the
extremes of the frontier, and
the blue solution represents
the Utopian solution

Connectivity

Yaq

g Ia T3 Iy

Compactness

From the extreme solutions of the frontier (P; and Py), we find the corresponding
Utopian solution (Pyopian) and determine the equation of a line through the two
extreme points. Then, we divide the frontier into three portions, finding lines that
intersect the Utopian solution and the points P, and P3. This division aims to group
similar data distribution in the non-dominated frontier. Portion 1 corresponds to
solutions with better values in Compactness, while Portion 3 corresponds to solutions
with better values in Connectivity. On the other hand, Portion 2 has solutions with a
mix of characteristics of the two objective functions. MECA creates individuals with
different numbers of clusters. As presented in [13], solutions with a minimum value
in Compactness result in solutions with a high number of clusters, while a minimum
value in Connectivity corresponds to solutions with a low number of clusters. The
idea of dividing the frontier is to maintain the distributions of each portion as much
as possible, not mixing the structure of a solution with a high number of clusters
with another with a low number of clusters. Furthermore, as we do not know the
data distribution of the fault detection problem, we want to know what portion better
represents our data.

Besides the information provided by the non-dominated solutions, we used a small
percentage of samples with known conditions (labeled data) to guide data labeling and
extract complementary information regarding the clustering. These samples could
be seen as faults and normal data identified by the specialists and can be used as a
reference to help the decision-maker in new unknown cases.

For each portion of the non-dominated frontier, we construct a cluster-sharing
matrix with dimension n x g, where n is the total number of samples in the dataset
and g are the labeled samples. The matrix elements c; ; represent the number of
times a determined sample i was allocated in the same cluster as the sample j. If
two samples are frequently grouped, they can be considered similar and in the same
cluster. From this cluster-sharing matrix (4), we can extract probability information
as the chance of a sample being assigned in the same cluster as a sample with a
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known condition. To find the probability that a sample n belongs to the same group
as a sample g, we divide each element of the cluster-sharing matrix by the total sum
of each row.

Cl,1 C1,2 C1,1
ch.q ch.q ch.q
MPg=| o o | )

Cn.1 Cn2 Cngq

Sg Xong Y cug

Accuracy (ACC) is used to measure the correct assignment of the labels for the
unlabeled data. In our experiments, part of the samples are considered unlabeled.
Thus, we use the actual label as a reference value to evaluate the performance of a-
posteriori analysis. To calculate the ACC, we consider the number of observations a-
posteriori analysis correctly assigned the labels (U,) to the total number of unlabeled
samples (7).

U.
ACC = =£. (5)

u

4 Experimental Results

In this section, we will present the photovoltaic fault dataset and the computation
results obtained from the experiments.

4.1 Photovoltaic Fault Dataset

We used areal-world dataset in these experiments, publicly available' [6]. The dataset
was generated from a PV plant simulator that describes the system behavior. The
data was collected and labeled, including faults (degradation, short-circuit, open-
circuit, and shadowing) and normal condition. In this work, we consider the Normal
data (No), Short-circuit (Sc), and Open-circuit faults (Oc). The Normal condition is
associated with data without any fault. Open-circuit fault generates an interruption
in the circulation of electric current due to a disconnection in the system [6]. Short-
circuit fault occurs when a low impedance path appears along the system [6]. In this
work, shadowing is not considered because it can cause bad data and lead to incorrect
fault detection [9].

The dataset contains six attributes: irradiance, PV module temperature, and volt-
age and current output for both PV strings. To analyze the applicability of a multiob-
jective evolutionary clustering algorithm to fault detection, we divide the irradiance
into six intervals between 801.116-936.475 W/m?. It is essential to mention that in

1 https://github.com/clayton-h-costa/pv_fault_dataset.
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Table 1 The number of data points for each irradiance range. “T” = total number of labeled or
unlabeled data, “No” = Normal data, “Sc” = Short-circuit faults, and “Oc” = Open-circuit faults

Range | Trradiance (W/m?) | Number of data points

922.624-929.616 | 300 58 35 207 1202|232 142 828
929.616-936.475 | 301 57 22 222 1200 | 228 85 887

Labeled Unlabeled

T No Sc Oc T No Sc Oc
1 801.116-858.668 | 301 146 118 37 1201 |583 473 145
2 858.668-893.252 | 301 202 15 84 1201 | 805 61 335
3 893.252-911.252 | 300 130 169 1 1201 | 519 679 3
4 911.252-922.624 | 301 101 196 4 1201 |403 782 16
5
6

this dataset, the short-circuit and open-circuit faults occurred at a high irradiance
level. In real situations, there is much more unlabeled data than labeled because
the labeling process requires specific technical knowledge, is time-consuming, and
can be costly [2]. A database was adapted to apply the a-posteriori analysis associ-
ated with data with known labels and evaluate the possibility of assigning labels to
unlabeled data through this proposal. We randomly selected 1500 samples for each
irradiance range and considered 80% of the samples unlabeled to test our data label-
ing approach. The labeled data is considered as the samples with known conditions,
whereas the condition of the unlabeled data will be determined through a-posteriori
analysis. Table 1 presents the number of data points for each irradiance range and
each condition.

4.2 Computation Results

Due to the genetic algorithm’s stochastic nature, each irradiance range’s dataset is
run ten times. Then, a-posteriori analysis was applied considering the non-dominated
frontier information and the samples with the known conditions (labeled samples),
which are records of the PV system with some fault or normal data. In a-posteriori
analysis, we identify the unknown operation condition based on the probability infor-
mation extracted from the cluster-sharing matrix.

In Table?2, we reported the average, the standard deviation, and the minimum
and maximum obtained accuracy values of the data labeling from 10 runs based on
a-posteriori analysis.

Since we had small deviations for all intervals, we selected two intervals to analyze
the non-dominated frontier, extraction of complementary information, data labeling,
and confusion matrix. To evaluate a-posteriori analysis, we calculate the accuracy
with Eq. (5), presented in Sect.3. We chose round 7 from range 3, with the lowest
accuracy of 0.8102. To represent the best accuracy, we chose round 7 from range 5
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Table 2 The average, standard deviation, minimum and maximum accuracy values from 10 runs

Range Accuracy (ACC)
Average Standard Minimum Maximum
deviation
1 0.9902 0.0017 0.9883 0.9925
2 1 0 1 1
3 0.9082 0.0429 0.8102 0.9484
4 0.9960 0.0012 0.9942 0.9983
5 0.9760 0.0163 0.9575 1
6 1 0 1 1
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(a) 893.252-911.252 W/m? (range 3).  (b) 922.624-929.616 W/m? (range 5).

Fig. 3 Non-dominated frontier of round 7 for the irradiance range 3 and 5

with a precision of 1. Although ranges 2 and 6 achieved the highest accuracy across
all 10 runs, we did not choose them to demonstrate the following results. These two
ranges obtained the same maximum probability value (p = 1) for all conditions in
the three portions, so we do not observe different probability information.

In Fig. 3, we present the non-dominated frontiers of round 7 for ranges 3 and 5.
We can see that the objective functions are conflicting, and the irradiance ranges can
reach different values in Compactness and Connectivity. We analyzed the correla-
tions between Compactness and Connectivity and observed a negative correlation
for almost all ranges. Only for interval 4 we observed a low correlation. Then, the
objective functions are not conflicting, and using a mono-objective algorithm for this
range would be enough.

Table 3 presents the additional information obtained for interval 3. We selected
only some samples to demonstrate the information obtained in a-posteriori analysis.
For each portion of the non-dominated frontier, we obtained different probability
information based on the distribution of solutions. The columns No, Sc, and Oc of
each portion correspond to the probability information of an unlabeled sample being
assigned to the same grouping of the labeled samples of one of these conditions. The
actual condition is the correct label for the samples. To analyze the performance of
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Table 3 Complementary information extracted from the three portions of non-dominated frontiers
about the irradiance range 3 (893.252-911.252 W/m?) for the samples A to F

Sample | Irradiance 893.252-911.252 Actual
Condition

Portion 1 Portion 2 Portion 3
No Sc Oc No Sc Oc No Sc Oc

A 1 0 0 0.923 1 0.077 |0 0.598 10402 |0 No

B 0.533 |0.460 |0.007 |0.355 |[0.635 |0.009 |0.4933|0.505 |0.002 | No

C 0.062 0938 |0 0.320 | 0.676 |0 0.290 |0.708 |0.002 | Sc

D 0.740 | 0.260 | O 0.364 |0.635 [0.001 |0.290 |0.708 |0.002 | Sc

E 0.223 |0.766 |0.011 | 0.355 [0.635 |0.009 |0.355 |0.635 |0.010 | Oc

F 0.671 [0.329 |0 0.718 1 0.282 |0 0.573 10.423 |0.004 | Oc

the algorithm in detecting failures, we considered as the final condition of the sample
the maximum probability value obtained in one of the three portions of the frontier.
In Table 3, for sample A, portion 1 indicates that the sample has a 100% chance of
belonging to the same cluster of samples under normal conditions. For samples A
and C, the condition suggested by a-posteriori analysis corresponds to the actual
condition, but not for samples B, D, E, and F. The approach could not detect the
faults for Open-circuit samples in this range. This difficulty may be associated with
the small number of unlabeled and labeled samples of this condition in range 3.

Table 4 presents complementary information obtained for range 5. In this range, all
unlabeled samples were correctly detected. Furthermore, for Open-circuit samples,
the three portions reached the maximum probability (p = 1), as we can see in samples
E and F of Table 4. We observed the same results for ranges 1 and 4 regarding Open-
circuit faults. All portions of the non-dominated frontier obtained homogeneous
results and efficiently detected Open-circuit faults.

To analyze the overall performance of data labeling, we used the Confusion
Matrix to understand the potential of the proposed approach in fault detection. In
the matrix, “True Label” corresponds to the actual condition of the record and “Pre-
dicted Label” to the label extracted from complementary information of a-posteriori
analysis. Figure4a presents the Confusion Matrix for irradiance range 3, with an
accuracy of 0.8102. For range 3, 166 normal data (13.822%), 59 Short-circuit faults
(4.913%), and 3 Open-circuit faults were mispredicted. As mentioned earlier, we had
a few unlabeled and labeled Open-circuit samples for this range. Figure 4b presents
the Confusion Matrix of range 5, with an accuracy of 1. In this case, all the unlabeled
samples were predicted correctly.
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Table 4 Complementary information extracted from the three portions of non-dominated frontiers
about the irradiance range 5 (922.624-929.616 W/m?) for the samples A to G

Sample | Irradiance 922.624-929.616 Actual
condition

Portion 1 Portion 2 Portion 3
No Sc Oc No Sc Oc No Sc Oc

A 0.535 |0.465 |0 0.560 |0.440 |0 0.858 | 0.142 |0 No

B 1 0 0 0.979 10.021 |0 0.858 |0.142 |0 No

C 0.312 | 0.688 |0 0.441 10.559 |0 0.314 1 0.686 |0 Sc

D 0.553 10.447 |0 0.560 |0.440 |0 0.334 | 0.666 |0 Sc

E 0 0 1 0 0 1 0 0 1 Oc

F 0 0 1 0 0 1 0 0 1 Oc
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(a) 893.252-911.252 W/m? (range 3). (b) 922.624-929.616 W/m? (range 5).

Fig. 4 Confusion Matrix for the irradiance range 3 and 5. The values in the matrix represent the
number of samples followed by the corresponding percentage of the total unlabeled data

5 Conclusion

This paper proposed MECA to capture the different clustering perspectives through
objective functions. We proposed a-posteriori analysis to label data from the infor-
mation of the non-dominated frontier. The frontier, divided into three portions, can
evaluate which perspectives a cluster may have, providing information when we do
not know the data distribution. Besides, a-posteriori analysis makes it possible to
infer whether a cluster has more than one perspective (by analyzing the probabilities
of the portions). The approach was applied in six irradiance ranges, and the results
were validated through the accuracy and confusion matrix. A-posteriori analysis
showed promising results regarding fault detection. In general, for all the irradiance
ranges, the approach could detect the conditions of faults and normal data correctly,
demonstrating a helpful approach to detecting and classifying faults in PV systems.
The results also highlight the benefits of using non-dominated solutions to explore
complementary information for data clustering. Relying on the irradiance range and



Multiobjective Evolutionary Clustering to Enhance Fault Detection in a PV System 241

the type of fault, we observed that each portion of the frontier could better represent
the data distribution, or we can have a homogeneous result between the three por-
tions. This result indicates that using the division of the frontier instead of the entire
non-dominated frontier could help better understand the data distribution. In future
work, we would like to extend the proposed method to other problems requiring data
labeling, such as semi-supervised learning problems.
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