
UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Engenharia Mecânica

RENATA RAFFAINE VILLEGAS

Dynamic object removal using
YOLO11 and ORB-SLAM3

Remoção de objetos dinâmicos usando
YOLO11 e ORB-SLAM3

CAMPINAS
2025

RENATA RAFFAINE VILLEGAS

Dynamic object removal using YOLO11 and ORB-SLAM3

Remoção de objetos dinâmicos usando YOLO11 e ORB-SLAM3

Dissertation presented to the School of
Mechanical Engineering of the University of
Campinas in partial fulfillment of the
requirements for the degree of Master in
Mechanical Engineer, in the area of
Mechatronics.

Dissertação apresentada à Faculdade de
Engenharia Mecânica da Universidade Estadual
de Campinas como parte dos requisitos para a
obtenção do título de Mestra em Engenharia
Mecânica, na Área de Mecatrônica.

Orientador: Prof. Dr. Ely Carneiro de Paiva

ESTE TRABALHO CORRESPONDE À
VERSÃO FINAL DA DISSERTAÇÃO
DEFENDIDA PELA ALUNA RENATA
RAFFAINE VILLEGAS E ORIENTADA
PELO PROF. DR. ELY CARNEIRO DE
PAIVA.

CAMPINAS
2025

Ficha catalográfica
Universidade Estadual de Campinas (UNICAMP)
Biblioteca da Área de Engenharia e Arquitetura

Rose Meire da Silva - CRB 8/5974

 Villegas, Renata Raffaine, 1996-
 V242d Dynamic object removal using YOLO11 and ORB-SLAM3 / Renata

Raffaine Villegas. – Campinas, SP : [s.n.], 2025.

 Orientador: Ely Carneiro de Paiva.
 Dissertação (mestrado) – Universidade Estadual de Campinas

(UNICAMP), Faculdade de Engenharia Mecânica.

1. Robótica. 2. Aprendizado profundo. 3. Mapeamento digital. 4. Robôs
autônomos . 5. Veículos autônomos. 6. Processamento de imagens. 7. Visão
computacional. I. Paiva, Ely Carneiro de, 1965-. II. Universidade Estadual de
Campinas (UNICAMP). Faculdade de Engenharia Mecânica. III. Título.

Informações complementares

Título em outro idioma: Remoção de objetos dinâmicos usando YOLO11 e ORB-
SLAM3
Palavras-chave em inglês:
Robotics
Deep learning
Digital mapping
Autonomous robots
Autonomous vehicles
Image processing
Computer vision
Área de concentração: Mecatrônica
Titulação: Mestra em Engenharia Mecânica
Banca examinadora:
Ely Carneiro de Paiva [Orientador]
Eric Fujiwara
Esther Luna Colombini
Data de defesa: 27-02-2025
Programa de Pós-Graduação: Engenharia Mecânica

Objetivos de Desenvolvimento Sustentável (ODS)
Não se aplica

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0009-0006-2875-7533
- Currículo Lattes do autor: https://wwws.cnpq.br/cvlattesweb/PKG_ME

Prof. Dr. Ely Carneiro de Paiva, Presidente
DSI/FEM/UNICAMP

Prof. Dr. Eric Fujiwara
DSI/FEM/UNICAMP

Profa. Dra. Esther Luna Colombini
DSI/IC/UNICAMP

A Ata de Defesa com as respectivas assinaturas dos membros encontra-se no SIGA/Sistema
de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Acknowledgments

I would like to thank my advisor, Ely Paiva, and Professor Daniel Fernando Tello Gamarra
from UFMG for their support and guidance throughout this research process. I extend a
special thanks to my family and friends, who have always supported and encouraged me
to pursue my dreams. This work would not have been possible without their constant
support and motivation. I would also like to thank the Eldorado Research Institute for
providing the infrastructure and support for my research.

Resumo

Recentemente, o interesse por robótica autônoma, como veículos autônomos, aumentou,
tornando a capacidade do robô de navegar pelo ambiente sem nenhum conhecimento pré-
vio uma tarefa importante. Simultaneous localization and Mapping (SLAM) é a área de
pesquisa que se concentra em fornecer os algoritmos para construir o mapa e determinar
a localização do robô dentro desse mapa. Com o SLAM, o robô pode encontrar o melhor
caminho a seguir e evitar obstáculos. Diversos sensores podem ser usados para fornecer
os dados que o sistema SLAM utiliza para construir seu mapa, como laser, radar, sonar
e câmeras. O Visual SLAM estuda o problema de localização e mapeamento simultâneo
usando câmeras. O ORB-SLAM3 é o algoritmo de última geração que ganhou atenção
devido à sua robustez e desempenho em tempo real. No entanto, ambientes dinâmicos
ainda representam um desafio para o ORB-SLAM3. Para abordar esse problema, métodos
de aprendizado profundo têm ganhado atenção, pois podem fornecer informações semân-
ticas sobre os objetos na cena. Este trabalho apresenta um estudo das principais técnicas
de SLAM e Visual SLAM e propõe um ambiente de simulação compatível com ROS2
para avaliar algoritmos de Visual SLAM e uma melhoria no algoritmo ORB-SLAM3 em
cenários dinâmicos, integrando a segmentação de instâncias do YOLO11 para detectar
possíveis características dinâmicas na cena e removê-las do processo de rastreamento do
ORB-SLAM3. O sistema, chamado de YOLO11-ORBSLAM3, foi projetado para suportar
câmeras estéreo e RGBD. Os datasets públicos TUM RGBD foram usados para validar
a solução proposta, e uma plataforma robótica real foi utilizada para validar o suporte a
câmeras estéreo. Os resultados mostram que o sistema superou o ORB-SLAM3 original,
mantendo a eficiência computacional.

Palavras Chave:Robótica, Aprendizado profundo, Mapeamento digital, Robôs autô-
nomos, Veículos autônomos, Processamento de imagens, Visão computacional.

Abstract

Recently, the interest in autonomous robotics, such as autonomous vehicles, has increased,
so the robot’s capacity to navigate through the environment without any prior knowledge
about it has been an important task. Simultaneous localization and Mapping (SLAM)
is the research area that focuses on providing the algorithms to build the map and give
the localization of the robot within this map. With SLAM, the robot can find the best
path to follow and avoid obstacles. Multiple sensors can be used to provide the data for
the SLAM system to construct its map, such as laser, radar, sonar, and cameras. Visual
SLAM studies the simultaneous localization and mapping problem using cameras. ORB-
SLAM3 is the state-of-the-art algorithm which has gained attention due to its robustness
and real-time performance. However, dynamic environments are still a challenge for ORB-
SLAM3. To address this problem, deep learning methods have gained attention as it can
provide semantic information about the objects in the scene. This work presents a ROS2
simulation workspace to evaluate Visual SLAM algorithms in different scenarios, a study of
the main SLAM and visual SLAM techniques and proposes an improvement to the ORB-
SLAM3 algorithm in dynamic scenarios by integrating Yolo V11 instance segmentation to
detect potential dynamic features in the scene and remove them from the ORB-SLAM3
tracking process. The system, called YOLO11-ORBSLAM3, was designed to support
stereo and RGBD cameras. The public TUM RGBD datasets were used to validate the
proposed solution, and a real robot platform was used to validate stereo support. The
results show that the system outperformed the original ORB-SLAM3 while maintaining
computational efficiency.

Key Words: Robotics, Deep learning, Digital mapping, Autonomous robots, Au-
tonomous vehicles, Image processing, Computer vision.

List of Figures

2.1 Overview of the SLAM general process. 17

3.1 Fast Keypoints description.(Gao and Zhang, 2021b) 26
3.2 Image scaling pyramid.(Gao and Zhang, 2021b) 27
3.3 ORB feature extraction. 28
3.4 Feature matching using brute force. 28
3.5 Feature matching using FLANN. 29
3.6 ORB-SLAM3 Framework. (Campos et al., 2021a) 30
3.7 Pinhole camera model. (Bouguet, 2019) . 37

4.1 YOLO11 network structure diagram. (Campos et al., 2021a) 41
4.2 Comparison of input image and output object detection. 42
4.3 Comparison of input image and output instance segmentation. 43

5.1 Robot model. 45
5.2 Ideal Scenario. 49
5.3 Low light scenario. 49
5.4 Low texture scenario. 50
5.5 Dynamic scenario. 50
5.6 Trajectory representation. 51
5.7 YOLO11-ORBSLAM3 ORB-SLAM3 framework. 53
5.8 YOLO Instance Segmentation Module. 55
5.9 Real robot platform. 57
5.10 Images captured in a real-world scenario. 58

6.1 Ideal scenario APE raw data and map. 60
6.2 Ideal scenario Relative Pose Error (RPE) translation part raw data and map. 60
6.3 Ideal scenario Relative Pose Error (RPE) rotation raw data and map. . . . 60
6.4 Ideal scenario Relative Pose Error (RPE) full raw data and map. 61
6.5 Low-light scenario APE raw data and map. 62
6.6 Low-light scenario Relative Pose Error (RPE) translation part raw data

and map. 62
6.7 Low-light scenario Relative Pose Error (RPE) rotation raw data and map. 62
6.8 Low-light scenario Relative Pose Error (RPE) full raw data and map. . . . 63
6.9 Lost trajectory on Low light scenario. 63
6.10 Low-texture scenario APE raw data and map. 64

6.11 Low-texture scenario Relative Pose Error (RPE) translation part raw data
and map. 64

6.12 Low-texture scenario Relative Pose Error (RPE) rotation raw data and map. 64
6.13 Low-texture scenario Relative Pose Error (RPE) full raw data and map. . . 65
6.14 Dynamic scenario APE raw data and map. 66
6.15 Dynamic scenario Relative Pose Error (RPE) translation part raw data and

map. 66
6.16 Dynamic scenario Relative Pose Error (RPE) rotation raw data and map. . 67
6.17 Dynamic scenario Relative Pose Error (RPE) full raw data and map. . . . 67
6.18 Lost trajectory on Low light scenario. 69
6.19 fr3-walking-xyz Absolute Pose Error (APE) raw data and map. 70
6.20 fr3-walking-xyz Relative Pose Error (RPE) translation part raw data and

map. 70
6.21 fr3-walking-xyz Relative Pose Error (RPE) rotation raw data and map. . . 71
6.22 fr3-walking-xyz Relative Pose Error (RPE) full raw data and map. 71
6.23 fr3-walking-halfsphere Absolute Pose Error (APE) raw data and map. . . . 72
6.24 fr3-walking-halfsphere Relative Pose Error (RPE) translation part raw data

and map. 72
6.25 fr3-walking-halfsphere Relative Pose Error (RPE) rotation raw data and

map. 73
6.26 fr3-walking-halfsphere Relative Pose Error (RPE) full raw data and map. . 73
6.27 fr2-desk-with-person Absolute Pose Error (APE) raw data and map. 74
6.28 fr2-desk-with-person Relative Pose Error (RPE) translation part raw data

and map. 74
6.29 fr2-desk-with-person Relative Pose Error (RPE) rotation raw data and map. 75
6.30 fr2-desk-with-person Relative Pose Error (RPE) full raw data and map. . . 75
6.31 Comparison of ATE, APE Translation, and APE Rotation in the f3-walking-

xyz dataset. 77
6.32 Comparison of APE, RPE Translation, and RPE Rotation in the f3-walking-

halfsphere dataset. 78
6.33 Comparison of APE, RPE Translation, and RPE Rotation in the f2-desk

dataset. 79
6.34 Comparison of trajectory, APE translation, and APE rotation for the real

robot dataset. 83

List of Tables

2.1 Sensors Comparison . 20
2.2 Camera comparison. 21

5.1 Robot’s dimension. 46
5.2 Monocular camera Parameters. 46
5.3 Parameters of the Stereo Camera. 47
5.4 Parameters of the RGBD Cameras . 47
5.5 Specifications of the IMU Sensor . 48
5.6 Specifications of the LIDAR Sensor. 48
5.7 ORB-SLAM3 output format . 51
5.8 YOLO Non-max suppression parameters. 55
5.9 Robot sensors description. 57

6.1 Error results on ideal scenario. 59
6.2 Error results on low-light scenario. 61
6.3 Error results on low-texture scenario. 63
6.4 Error results on the dynamic scenario. 65
6.5 Comparison between the ideal scenario and the challenging scenarios. . . . 68
6.6 Errors on f3-walking-xyz. 69
6.7 Errors on f3-walking-halfsphere. 72
6.8 Errors on f2-desk_with_person . 74
6.9 APE comparison with ORB-SLAM3 . 76
6.10 RPE translation comparison with ORB-SLAM3 76
6.11 RPE rotation comparison with ORB-SLAM3 80
6.12 Tracking time comparison with ORB-SLAM3 80
6.13 APE comparison with recent works . 81
6.14 Errors comparison with ORB-SLAM3 . 84
6.15 Tracking time comparison with ORB-SLAM3 84

Contents

1 INTRODUCTION 13
1.1 Objectives . 14
1.2 Research outline . 15

2 SIMULTANEOUS LOCALIZATION AND MAPPING 16
2.1 SLAM . 16

2.1.1 Features of SLAM . 17
2.1.2 SLAM Concerns . 18
2.1.3 SLAM Sensors . 20

2.2 Visual SLAM . 21
2.2.1 Direct methods. 22
2.2.2 Feature-based methods. 22
2.2.3 Semantic methods . 23

3 ORB-SLAM3 25
3.1 ORB feature . 25

3.1.1 Oriented-Fast Corners . 26
3.1.2 BRIEF Descriptors . 27
3.1.3 Feature Matching . 28
3.1.4 Camera pose estimation . 29

3.2 ORB-SLAM3 structure . 29
3.3 Dynamic problem . 30
3.4 ORB-SLAM3 Parameters . 36

3.4.1 Camera parameters . 36
3.4.2 ORB-SLAM3 Parameters . 38

4 YOLO 40
4.1 Architecture . 40
4.2 YOLO Tasks . 41

4.2.1 Object detection . 41
4.2.2 Instance Segmentation . 42

5 PROPOSED SOLUTION 44
5.1 Simulation workspace . 44

5.1.1 ROS2 and Gazebo environments . 44
5.1.2 Robot model . 45
5.1.3 Gazebo worlds . 48
5.1.4 Methodology . 50

5.2 Proposed solution . 52
5.2.1 Instance Segmentation Module . 53

5.3 Methodology . 55
5.3.1 Evaluation Criteria . 55
5.3.2 RGBD Camera . 56
5.3.3 Stereo Camera . 56

6 RESULTS 59
6.1 Simulated Scenario . 59

6.1.1 Ideal scenario . 59
6.1.2 Low-light scenario . 61
6.1.3 Low-texture scenario . 63
6.1.4 Dynamic scenario . 65
6.1.5 Performance analysis . 67

6.2 TUM Datasets . 69
6.2.1 f3-walking-xyz . 69
6.2.2 f3-walking-halfsphere . 71
6.2.3 f2-desk_with_person . 73

6.3 Comparison with ORB-SLAM3 . 76
6.4 Comparison with other works . 81
6.5 Stereo camera validation . 82

7 CONCLUSION 85

BIBLIOGRAPHY 87

13

1 INTRODUCTION

For the robot to complete its tasks, such as going from one point to another, a good
understanding of the environment and its position within it is needed. Simultaneous
Localization and Mapping is the area that aims to study the best way to create this map of
the environment and determine the location of the robot on this map. In addition, the map
must be continuously updated while the robot moves, so that an accurate understanding
of the environment can be maintained.

The data to construct this map can be provided by sensors coupled to the robot,
such as encoder, inertial measurement unit (IMU), radar, lidar, sonar and cameras. The
first sensor used in SLAM was a sonar sensor coupled to a robot (Leonard and Durrant-
Whyte, 1991). The data from this sensor pass through the Extended Kalman Filter
that uses the matches between geometric beacons to calculate the robot position into
the environment and its motion. Since then, other sensors have started to be used to
complete this task. Cameras have gained attention as they can provide rich information
about the environment with a relatively low cost and power consumption. Visual SLAM,
or V-SLAM, is the name of the technique that uses cameras to solve the SLAM problem.
Visual odometry (VO) is used to estimate the robot’s motion between one frame and
another.

Compared to other sensors, cameras can provide richer information for understanding
places. With the continuous development of computational processing, this sensor is also
capable of providing information in real time, which is a big advantage, for instance, on
autonomous vehicles. In these applications, robots not only need to know their position
on the map but also have good knowledge about the environment. However, cameras
depend on good lighting conditions, a high-textured environment, and static objects to
perform the VO and provide a precise localization and mapping.

ORB-SLAM3 is a state-of-the-art V-SLAM algorithm which uses the match between
features on consecutive frames to calculate the robot’s motion and build a map of the
environment based on these features. One big advantage of this algorithm is the real-time
performance, as well as the map reusing technique, which consists of saving the previous
map when the robot loses its localization so that this map can be merged to the actual
map when a correlation between them is found. However, ORB-SLAM3 does not perform
well when dynamic objects are in the scene. As in autonomous systems, the presence of
moving entities is unavoidable, there is a great interest in searching methods to improve
the algorithm performance in this context.

Deep learning can be used to address challenging dynamic scenarios for V-SLAM as
semantic information gives detailed information about which objects are being seen by

14

the robot and their position in relation to the camera. (Cong et al., 2024), (Kumar and
Muhammad, 2023), (Bescos et al., 2018), (Wang et al., 2024a), (Guo et al., 2024), (Cai
et al., 2024), (Wang and Du, 2024) have proposed Visual SLAM algorithms based on deep
learning and semantic information to help on these scenarios and improve the algorithm’s
performance. These works could improve the ORB-SLAM3 performance in dyanamic
scenes, but the real time performance is compromised.

Evaluating the SLAM algorithm involves isolating some characteristics to have a better
understanding and prediction of how the system will behave under certain circumstances.
In Visual SLAM, public datasets are a common approach to check the performance of the
algorithms. However, this approach may not be sufficient, as it is not feasible to cover all
possible scenarios and all camera configurations. Using simulation workspaces is a good
approach when these datasets cannot offer a full analysis since it offers a controlled envi-
ronment in which the characteristics can be changed depending on the need. Moreover,
it can be a good first step for prototyping. Gazebo is a common choice for simulations of
robotic systems, as it offers a good range of drivers and libraries that cover a wide range
of applications.

ROS2 (Robot Operating System 2) is a widely used framework to develop robotic sys-
tems. This framework is designed to support multiple platforms, from embedded systems
to cloud infrastructures. It is built upon the ROS (Robotic operating system), which is
a consolidated framework. Built as an evolution of the well-established ROS (Robot Op-
erating System), ROS2 enhances real-time performance, scalability, and flexibility. Many
existing libraries are being ported to ROS2, while newer ones are being developed specifi-
cally to take advantage of its improved architecture. With native integration into Gazebo
and other simulation tools, ROS2 is a robust choice for developing, testing, and validating
SLAM algorithms and autonomous robot control systems.

This work develops a simulation workspace using ROS2 and Gazebo to help evaluate
visual SLAM algorithms in challenging scenarios and proposes an improvement of the
ORB-SLAM3 localization in dynamic scenarios by using the latest YOLO11 instance
segmentation to remove potential dynamic objects in real-time.

1.1 Objectives

The objectives of this work are to develop a ROS2-compatible simulation workspace to
evaluate Visual SLAM methods in challenging scenarios, such as low light, low textured
and dynamic environments. In addition, it aims to improve the ORB-SLAM3 perfor-
mance by adding a semantic module using YOLO11 to remove dynamical objects in the
scene and maintain the performance compatible with a real-time performance and aligned
with recent works in this area. The system can be used on RGBD and stereo cameras.
Specifically, the contributions of this work are as follows:

• Creation of a simulation environment compatible with ROS2 using Gazebo to eval-
uate Visual SLAM algorithms.

The workspace is available on GitHub:

https://github.com/renatavillegas/Visual_SLAM_Gazebo

https://github.com/renatavillegas/Visual_SLAM_Gazebo

15

• Evaluation of the ORB-SLAM3 performance in different scenarios using the simu-
lated platform.

• Removal of dynamic objects to improve ORB-SLAM3 using the latest YOLO11
instance segmentation method, achieving 35.86 FPS in the best-case dataset and
23.08 FPS in the worst-case dataset.

The code is open to the community in the GitHub:

https://github.com/renatavillegas/ORBSLAM3_YOLO11

• Support for stereo and RGBD cameras, addressing the limitation that most of the
semantic methods currently support only RGBD cameras.

• Modification of the ROS2 wrapper to support to run the proposed change on ORB-
SLAM3.

The code used in this work is available on GitHub:

https://github.com/renatavillegas/ORB_SLAM3_ROS2

• Experimental results collected using public datasets to demonstrate that the pro-
posed method can be used for more accurate and efficient localization compared to
the original ORB-SLAM3 and other semantic methods.

• Experimental results collected using a real robot application to validate the im-
provement in localization in stereo camera.

1.2 Research outline

This dissertation is organized as follows.

• Chapter 2 introduces the Simultaneous Localization and Mapping problem and pro-
vides a comparison between the most common sensors to solve this problem. In
addition, an overview of the Visual SLAM techniques is presented.

• Chapter 3 shows the ORB-SLAM3 theoretical background and analyses the dynamic
problem on this algorithm.

• Chapter 4 provides an overview of the YOLO architecture and tasks.

• Chapter 5 presents the simulation workspace developed and the methodology for
evaluating ORB-SLAM3. In addition, it shows the proposed solution to improve
the ORB-SLAM3 and the methodology to evaluate this solution.

• Chapter 6 presents the results of the experiments using the simulated workspace,
the public datasets and the real robot platform.

• Chapter 7 concludes this work and presents an overview of potential future work.

https://github.com/renatavillegas/ORBSLAM3_YOLO11
https://github.com/renatavillegas/ORB_SLAM3_ROS2

16

2 SIMULTANEOUS LOCALIZATION
AND MAPPING

The objective of simultaneous localization and mapping (SLAM) is to find the best tech-
nique to make the robot capable to navigate through an environment without any prior
knowledge of this place. The interest in this area has increased with the development of
autonomous navigation. To achieve autonomous navigation, the robot must be able to
avoid obstacles and to go through unknown and challenging scenes. Furthermore, it needs
to create its own map for the place, and to localize itself in this map, being capable of
making decisions based on the environment data received.

In SLAM, the environment raw data are provided by the mobile robot hardware sen-
sors, such as laser, sonar, radar or camera. These data need to be interpreted to build a
map and locate the robot within this map.

This chapter provides a review of the SLAM state-of-the-art. First, the principal
characteristics of this technique are presented and then the major types of SLAM and its
advantages and limitations are discussed.

2.1 SLAM

As mentioned earlier, the main objective of the Simultaneous localization and Mapping
is to answer these two questions:

• Where am I?

• What does the environment look like?

Many approaches can be used to find the answers to these questions. For example, the
ambient can be prepared with guiding rails, or localization radars can be installed at the
place, or many QR codes pictures can be pasted in the environment to guide the robot,
or a GNSS receiver can be installed in the robot that goes to an outdoor environment.
This kind of approach gives the precise localization of the robot without the necessity of
further data processing, but it is limited to a previous preparation and a previous ambient
knowledge. (Gao and Zhang, 2021a)

Otherwise, the robot can use its internal sensors, such as: encoders to know the
robot wheel’s rotation angle; Inertial Measure Units (IMUs) to measure the robot angular
velocity and acceleration; cameras and lasers to observe the external environment. Notice
that these measures are indirect, so an algorithm is needed to process these data to

17

determine the robot position and to map the space. Also, with these sensor no previous
knowledge about the environment is required. For this reason, this is the most common
approach for solving the SLAM problem. Figure 2.1 shows an overview of the SLAM
process.

Figure 2.1: Overview of the SLAM general process.

2.1.1 Features of SLAM

The SLAM process can be divided into three main features (Khairuddin et al., 2015):

• Mapping: Prior knowledge of the ambient map is needed so the robot can start its
navigation in the environment, so the SLAM algorithms need to have an initiation
phase to collect the initial data from the environment. The mapping capability gives

18

the robot the ability to generate a map using the hardware sensors. From the sensor
data a map will be created and then it will be used by the robot to recognize its
own position and orientation in this map.

• Localization: This feature is used to calculate and estimate the position of the
landmark and the trajectory of the mobile robot based on the map generated from
the mapping process. The localization makes the robot able to recognize its own
localization, surrounding environment and avoid any nearby obstacles.

• Path planning: With knowledge of the map and localization, the robot can make an
appropriate path planning. The localization and mapping features are performed
recursively in order to keep these features updated.

2.1.2 SLAM Concerns

By applying the SLAM method, the developers need to have in mind some issues about
the localization and mapping algorithms, like uncertainty, correspondence, computational
cost, loop-closing, drift error and data association.

• Uncertainty:

In real-world application, it is needed to consider both hardware uncertainty and
localization uncertainty. The hardware uncertainty is related to the sensor noises
that makes the information inaccurate and this error can be propagated to the map.
The localization uncertainty refers to the capability of the mobile robot to handle
the multiple paths and choose the best route and recognize its actual position. One
approach to addressing the uncertainty problem in SLAM is to use probabilistic
methods, such as the Kalman filter or particle filter, which model the uncertainty
in the robot’s pose and map as a probability distribution (Eyvazpour et al., 2023).

• Correspondence:

This problem refers to the robot difficulty to differentiate landmarks. For instance,
if there are two buildings, A and B, and A is similar to B but a little bigger or has
different colors, for the human eye it is easy to recognize each of them, but it can
be hard for the robot as the landmark classification depends on the robot sensors.
The Visual-SLAM can be used to handle this problem, as it will be described in the
next chapter. (Lozano-Perez, 2012)

• Data Association:

The data association issue refers to the challenge of associating the new data with
correspondent landmarks in the map (Temeltas and Kayak, 2008). In other words, it
is the task of determining which previously detected features correspond to the same
features in the current observation. Overall, solving the data association problem
in SLAM requires a combination of careful sensor design, so feature extraction
and feature-based matching or probabilistic algorithms can be used to address this
problem.

19

• Time Complexity:

The time complexity indicates how fast the system is able to map and locate the
robot in the environment. This is an important concern as the real-time response
is a common requirement in robot applications. Using algorithms that require ex-
tensive data processing and refinement can improve map precision, but this raises
the issue of the time the robot needs to create the map. Algorithms optimization
and improvements are constantly being studied to find the best match between pre-
cision and computational cost. The complexity of SLAM algorithms can be further
impacted by the use of different data representations and sensor modalities. For
example, using a 3D point cloud from a lidar sensor may result in a higher time
complexity compared to using a 2D laser scan or a stereo camera (Yagfarov et al.,
2018).

• Drift error: One common challenge in SLAM is the accumulation of drift error over
time. Drift error is the difference between the estimated robot’s trajectory and the
actual trajectory due to errors in the sensor measurements and the assumptions
made by the SLAM algorithm. There are several factors that can contribute to
drift error in SLAM, including:

– Sensor uncertainty : The sensors used in SLAM, such as cameras, lidars, or
radar have inherent noise that can affect the accuracy of the measurements.

– Environment changes: Changes in the environment, such as moving objects or
dynamic lighting conditions, can affect the accuracy of the sensor measurements
and lead to drift error.

– Motion model errors: The motion model used by the SLAM algorithm to esti-
mate the robot’s trajectory may not accurately capture the robot’s movement,
leading to drift error.

• Loop closure: Loop-closing is a critical aspect of SLAM algorithms. It refers to the
process of detecting when a robot revisits a previously explored localization and
uses this information to refine the map and robot’s pose estimation(Tsintotas et al.,
2022). This point is challenging because it requires matching a current observation
of a previously visited localization to the corresponding localization in the map. The
challenge arises due to factors such as differences in lighting conditions, changes in
the environment, and sensor noise, which can lead to significant differences between
the two observations. One common approach to solving the loop-closing detection
problem is to use feature-based methods that extract distinctive visual or geometric
features from the environment and match them between current and past obser-
vations. Another approach is to use direct methods that compare the raw sensor
data between current and past observations. Notice that SLAM loop closing and
data association are related concepts, but they are not exactly the same. Data as-
sociation is the process of associating incoming sensor measurements with features
or landmarks in the map, while loop closing is a specific type of data association
problem that occurs when the robot revisits a previously explored location.

20

2.1.3 SLAM Sensors

The idea of the SLAM technique is constantly evolving. The firsts works were developed
in the 1990s by (Leonard and Durrant-Whyte, 1991), in which a sonar sensor was coupled
to the robot and the data from this sensor passes through the Extended Kalman Filter
that utilizes matches between observed geometric beacons and an a priori map of beacons
location. This method was capable to estimate the vehicle localization, but it still haves
the limitation of the a priori map knowledge. Since then many different approaches of
the SLAM problem were developed to handle the different possible applications and to
improve the method autonomy, precision, operational cost and sensor limitations.

Table 2.1 shows the main advantages and limitations of the most used sensors in
SLAM.

Table 2.1: Sensors Comparison

SLAM Type Limitations Advantages

Visual SLAM

- Susceptible to lighting changes
and occlusions. (Sahili et al., 2023)
- Requires sufficient texture
and distinct features. (Sahili et al., 2023)
- Sensitive to camera calibration
and distortion. (Chen et al., 2024)

- Rich visual information
for scene understanding. (Kazerouni et al., 2022)
- Low-cost cameras available. (Chen et al., 2024)
- Real-time processing capability. (Sahili et al., 2023)
- Can provide rich 3D map
representation (Kazerouni et al., 2022)

Radar SLAM

- Low resolution and
limited accuracy. (Zhou et al., 2020)
- Susceptible to interference
and clutter. (Zhou et al., 2020)

- Works well in low-light or adverse
weather conditions.(Holder et al., 2019)
- Longer sensing range
compared to other sensors.
(Louback da Silva Lubanco et al., 2022)
- Less affected by lighting changes
compared to vision (Louback da Silva Lubanco et al., 2022)

Lidar SLAM

- Limited performance in adverse weather
conditions.
- High cost and
power consumption. (Khairuddin et al., 2015)
- Suffers on loop closure. (Yagfarov et al., 2018)

- Works well in structured
environments (e.g., indoors). (Yagfarov et al., 2018)
- Less affected by lighting
changes compared to vision. (Khairuddin et al., 2015)

Sonar SLAM

- Limited range
and resolution. (Yap and Shelton, 2009)
- Susceptible to noise
and interference. (Yap and Shelton, 2009)

- Works well in underwater or
submerged environments.(Hamad et al., 2020)
- Has lower power consumption,
is smaller and lighter. (Yap and Shelton, 2009)
- Can provide omnidirectional
sensing.(de Backer et al., 2023)

Many researches are being conducted in the sensor fusion area. The idea is to overcome
the limitation of individual sensors by integrating multiple sensors into the SLAM system.
ORB-SLAM3 has integrated the IMU into its system and is an example of sensor fusion.
Integrating a camera and a laser is a suitable choice as the laser isn’t affected by low-
light environments, and the camera can provide more information about the environment
and a better loop-closure method. For instance, (An et al., 2024) integrates the laser
and camera into a deep visual-Lidar odometry model, uses a deep learning-based loop
closure detection module, and builds a 3D mapping module. (Lee et al., 2024) proposes
a method to switch between Visual SLAM and Lidar SLAM depending on the conditions
of the scene. (Liu et al., 2024) shows a multi-sensor fusion of a camera, Lidar and an
IMU. The system uses a time alignment module to align the data from all sensors. The
camera provides the static key points while a optical flow tracking is performed. The Lidar
constraint factor, IMU pre-integral constraint factor and visual constraint factor form an
error equation that is processed with a sliding window-based optimization module.

21

2.2 Visual SLAM

Visual SLAM uses cameras to create a map of an unknown environment and simultane-
ously determine the location of the camera within that map. There is increasing interest
in studying this approach, as it is based on a relatively low cost, it is a small sensor
system that can be used in real-time systems, and it provides rich information about
the place. For this reason, visual SLAM is used in a variety of applications, including
robotics, autonomous vehicles, augmented reality, and virtual reality. It enables these
systems to extract useful information from the environment, improving the navigation by
avoiding obstacles, for instance, and performing tasks with greater accuracy and efficiency.
(Kazerouni et al., 2022)

Monocular, stereo, and RGBD cameras are the most common camera sensors in visual
SLAM applications. To choose the best sensor, it is needed to consider cost, camera
latency, and environment where the SLAM system will operate, such as lighting, texture
richness, and required depth accuracy. Monocular cameras usually have low cost and
low latency, but they lack good depth estimation and require good lighting and texture
conditions. Stereo cameras, on the other hand, provide better depth estimation by using
two synchronized images to triangulate the scene, but they are more expensive compared
to monocular cameras. RGBD cameras are equipped with a depth sensor to provide
direct depth information, making them highly accurate for depth estimation and suitable
for most indoor applications. However, they tend to have a higher cost and a higher
latency. Table 2.2 summarizes the comparison between these types of camera.

Table 2.2: Camera comparison.

Parameter Monocular Stereo RGBD
Cost Low Medium High

Latency Low Moderate High
Depth

Estimation Less acurate Moderate High

Environment

Well defined
and

good light
conditions.

High
textured Indoor

In short, Visual SLAM (V-SLAM) can be divided into two components: the front-end
and the back-end. The front-end is responsible for getting the data as the robot moves
and estimating the local map and the robot’s position. The back-end optimizes the data
collected by the front-end and performs loop-closure detection.

Sahili et al. (Sahili et al., 2023) divide the Visual SLAM system into three types:
The direct or dense method, the feature-based method, and the semantic method. The
direct method uses pixel intensity information in the images to estimate the motion of the
cameras and build the map. On the other hand, the feature-based method extracts and
compares distinctive visual features, or keypoints, between consecutive frames to estimate
and build a 3D map. The semantic method uses semantic information, such as object

22

detection and semantic segmentation to improve the robustness of SLAM. In the next
subsections, each of these types will be explained.

2.2.1 Direct methods.

The direct method uses the information on pixel intensity to estimate the motion of the
camera . The brightness changes in the scene can be considered an edge or a corner or
an image gradient. For this reason, these methods depend on the brightness changes,
addressing the limitations in complex texture scenarios and the luminous change. Most
of the direct methods use the concept of optical flow to calculate the camera pose. Optical
flow uses the spatial and temporal gradients of the image intensity to describe the motion
of pixels in the image, and the direct method is accompanied by a camera motion model.

The first direct method was proposed in 2010 by Strasdat et al. (Strasdat et al.,
2010), in which a system based on the grayscale image brightness residual was proposed
for monocular cameras, assuming photometric consistency.

The direct method can be classified as sparse, semi-dense, or dense according to the
number of pixels used and the density of the reconstructed map (Gao and Zhang, 2021b).
Direct Sparse Odometry (DSO) (Engel et al., 2018) is a classic example of a sparse algo-
rithm, as it selects a set of independent points to optimize a photometric error defined
in the image. LSD-SLAM (Engel et al., 2014) is classified as semi-dense, as it processes
reliable image gradients, including corners and edges, to estimate camera movement and
build a semi-dense map. Dense Tracking and Mapping (DTAM) (Newcombe et al., 2011)
is classified as a dense algorithm. Although computationally expensive, it builds a de-
tailed textured depth map by using all pixels to estimate the 6DOF motion through image
alignment.

To improve the limitation of computational complexity in direct methods, semi-direct
methods combine the advantages of feature-based methods and direct methods. The
Semi-Direct Visual Odometry (SVO) (Forster et al., 2016) is a traditional algorithm that
integrates a sparse model-based image alignment with a re-projected 2D point refined by
the alignment of the corresponding features. In recent work, RWT-SLAM (Peng et al.,
2024) proposes a distinctive feature extraction from a detector-free network (LoFTR) to
improve weakly texture scenarios and integrates their new keypoint localization compo-
nent into the ORB-SLAM algorithm. With the same objective, SM-SLAM (Xie et al.,
2023) shows a semi-direct multi-map system which combines direct tracking and feature-
based map maintenance with point features and line segments to help in low-texture
scenarios.

2.2.2 Feature-based methods.

The feature-based methods extract distinct features, such as corners and edges, from an
image to find correspondences between frames. As the correspondences are identified, the
camera motion and the map can be estimated.

Each feature point is composed of a keypoint and a descriptor. Keypoints refer to
the 2D position of a feature point. The descriptor is usually a vector that contains

23

information about the pixels around the key point. Popular feature extraction techniques
include SIFT (Lowe, 2004), SURF (Bay et al., 2008) and ORB(Rublee et al., 2011).

SIFT (Scale-Invariant Feature Transform) is a feature extraction algorithm that de-
tects and describes keypoints in images, providing scale and rotation invariance. The
algorithm identifies potential keypoints by using a Difference of Gaussians (DoG) func-
tion to identify potential interest points that are invariant in scale and orientation. The
orientation based on the local gradient detection is estimated, and a 128-bit descriptor is
generated for each keypoint. The principal limitation of this method is its computational
cost, making it inappropriate for real-time applications.

SURF (Speeded-Up Robust Features) provides the feature description and the multi-
scale analysis by the convolution of the initial image with discrete kernels at several scales,
called box-filters. Although performance was improved with this method, this algorithm
still fails in low-textured scenarios and scenarios under high luminous changes.

ORB (Oriented FAST and Rotated BRIEF) uses the FAST detector and the BRIEF
descriptor to achieve scale and rotation invariance of the features and compute the
keypoints and descriptors. Compared to SIFT and SURF, ORB is computationally
lightweight. For this reason, the ORB-SLAM algorithm gained popularity among feature-
based algorithms.

ORB-SLAM3 (Campos et al., 2021b) is the latest version of ORB-SLAM and in-
troduces visual-inertial SLAM integration that uses the maximum a posteriori (MAP)
estimation even during IMU initialization, resulting in a more robust real-time operation.
Moreover, it brings up a new place recognition method, which when the tracking is lost,
a new map will be started and will be merged with the previous maps when they’re re-
visited. This means that it needs precise and reliable semantic information, which might
not be available everywhere and makes the system more complicated. Also, the dynamic
scenarios and the low-light and low-texture environments are still a challenge for this algo-
rithm. This work proposes an improvement of this algorithm by integrating the semantic
information of the environment and removing the potentially moving objects.

2.2.3 Semantic methods

Semantic Visual SLAM is a modern variant of SLAM that combines the capabilities of
traditional SLAM with semantic understanding of the environment. In Semantic Visual
SLAM, the system not only creates a map of the surroundings and estimates the position
of the device but also recognizes and understands the objects and features within the
scene. Deep learning plays an important role in Semantic Visual SLAM as it has shown
impressive capabilities in tasks like image recognition, semantic understanding, image
matching, and 3D reconstruction, significantly helping challenges faced by conventional
methods in computer vision, such as low-ligh, low-texture and dynamic scenarios(Mur-
Artal et al., 2015b).

Many recent works use ORB-SLAM3 coupled with a deep learning module to improve
the performance of this algorithm in complex environments. For example, (Xie et al.,
2023) introduces a semantic segmentation module to classify the features in the image,
and it adds weights to these features, so the dynamic elements can be removed. The system

24

performed well in reducing localization errors; however, it has a high computational cost.
(Cong et al., 2024) uses YOLO-V5 and semantic segmentation to extract potentially
dynamic objects. Moreover, it uses the depth information of the RGBD camera to build
a dense 3D map without the dynamic objects in the scene. Due to a large amount of
computation, the real-time performance could not be achieved. (Wang et al., 2024b) uses
the YOLO-V8 network to extract semantic information and uses the IMU to decide if the
feature points are static or dynamic. The motion method was estimated with previous
knowledge of the dataset, so the system needs to be adjusted to real-life applications.

This work focuses on improving the ORB-SLAM3 localization in dynamic scenarios
by using the latest YOLO11 instance segmentation to remove potential dynamic objects
in real-time. ORB-SLAM3 method will be detailed in Chapter 3, and an YOLO overview
is presented on 4, and the proposed solution is on 5.

25

3 ORB-SLAM3

ORB-SLAM, "Oriented FAST and Rotated BRIEF Simultaneous Localization and Map-
ping" operates by extracting features from the camera’s images and tracking their po-
sitions across frames. By comparing the visual information, it estimates the camera’s
motion and builds a 3D representation of the environment. The first version of the al-
gorithm was introduced by (Mur-Artal et al., 2015a) and since then, it has undergone
further enhancements and variations, with subsequent papers and updates improving its
performance and extending its capabilities. The proposed algorithm was developed for
monocular cameras, and it is divided in three major threads: map construction, trajec-
tory tracking, and mapping result. The acronym "ORB" refers to two key components
of the algorithm: Oriented FAST (Features from Accelerated Segment Test) and Rotated
BRIEF (Binary Robust Independent Elementary Features).

In 2017, (Mur-Artal and Tardós, 2017a) presents the ORB-SLAM2, which has support
for RGDB and stereo cameras. This algorithm also supports loop closure detection and
relocation with the reuse of real-time maps. As it is also based on ORB features, the
ORB-SLAM2 isn’t completely robust to dynamic and low-texture environments.

The ORB-SLAM3 version was proposed in 2021. (Campos et al., 2021a) The main
novelty of this algorithm is the visual-inertial SLAM integration that uses the maximum
a posteriori (MAP) estimation even during IMU initialization, resulting in a more robust
real-time operation. Moreover, the latest version brings up a new place recognition method
which when the tracking is lost, a new map will be started and will be merged with the
previous maps when they’re revisited.

In Section 3.1 the ORB basic concepts are detailed and the ORB-SLAM3 structure is
presented in Section 3.2. With this structure, the problem of dynamic objects is discussed
in Section 3.3. The ORB-SLAM3 parameters and how they can be set are presented in
Section 3.4.

3.1 ORB feature

ORB features can be divided into two parts: ORB keypoints and ORB descriptors. (Gao
and Zhang, 2021b) The algorithm for extracting ORB features can be described by the
following steps:

1. Find corners in the image using oriented-FAST corner extraction.

2. Use BRIEF descriptors to describe the surrounding image where the feature point
was extracted.

26

3. Uses a matching method to find the closest correspondences for each keypoint be-
tween two images.

4. With the corresponding keypoints, find the camera pose.

3.1.1 Oriented-Fast Corners

The FAST algorithm can be described as follows. Figure 3.1 shows the corner selection
procedure. In short, this algorithm works by comparing the intensity of a pixel with their
neighbors, so, if the change is high, which means, if the other pixels have values higher
than a defined threshold or lower than this threshold, it might be a corner.

• Select a pixel with intensity Ip.

• Define a threshold T .

• Identify the neighboring pixels {P1, P5, P9, P13}.

• Check the intensity of the neighboring pixels:

Count the number of neighboring pixels where: Pi > Ip + T or Pi < Ip − T.

If at least three neighboring pixels satisfy the condition above, mark the pixel as a
Keypoint. Otherwise, the pixel is not a keypoint.

Figure 3.1: Fast Keypoints description.(Gao and Zhang, 2021b)

Notice that the corners do not have direction information, and as the cycle has fixed
radius, it may also fail on scale. This means that some points that look like a corner from
a distance may not be a corner when the image is approximated. ORB uses an image
pyramid to solve the scale invariance and the intensity of the gray centroid to compute
the rotation of the features.

An example of image pyramid is found in Figure 3.2. The image is down-scaled with
a fixed ratio for each layer up to have images of different resolution. Small scales can
be considered when the scene is observed from a distance. The feature match algorithm
searches between the layers to find the best correspondence in the image. For example,

27

Figure 3.2: Image scaling pyramid.(Gao and Zhang, 2021b)

if the camera moves forward, the best match will be found in its upper layers, when
compared to the previous frame.

To determine the rotation of the features, the centroid is considered the gray value of
the image block, acting as the center of weight. The centroid,C, is computed by defining
the moment of the image block, mpq, as:

mpq =
∑
x,y∈B

xpyqI(x, y), p, q = {0, 1}. (3.1)

The centroid can be calculated using Equation 3.2. By connecting the geometric
center, O of the image, and the centroid, direction vector O⃗C can be defined with Equation
3.3.

C =

(
m10

m00

,
m01

m00

)
(3.2)

θ = arctan

(
m01

m10

)
(3.3)

3.1.2 BRIEF Descriptors

The ORB BRIEF descriptor is a binary descriptor which encodes the size relationship
between two random pixels near the keypoint. Given p and q, two random pixels near a
keypoint, the descriptor d[i] is defined as:

d[i] =

{
1 ,if I(p) > I(q)

0 ,otherwise
(3.4)

Figure 3.3 shows an example of ORB feature extraction using opencv. The image is
from the TUM public dataset.

28

Figure 3.3: ORB feature extraction.

3.1.3 Feature Matching

With the ORB features computed, it is needed to find the correspondence between these
features in consecutive frames. Many methods can be used to assign this problem. The
simpler one is the brute force matcher, which measures the distance between each pair of
features xm

t and xm
t+1, then sort the distance, and take the closest ones as matching points.

This method is not feasible when the number of feature points becomes too high. Figure
3.4 shows an example of this method. In this case, the ORB features were extracted and
the brute-force matching algorithm was executed using opencv.

Figure 3.4: Feature matching using brute force.

The Fast Approximate Nearest Neighbor (FLANN) algorithm is more suitable in the
case of multiple features, as it is based on balanced binary search trees (k-d trees). Each
node of the tree represents a descriptor and the tree is constructed based on distances.
It performs point matching by searching for the nearest neighbors in the k-d trees(Muja
and Lowe, 2009). Figure 3.5 shows an example of ORB extraction and feature matching
using FLANN.

The Hamming distance algorithm is used to match the ORB-SLAM3 binary descrip-
tors. In summary, this algorithm measures the number of positions in which the elements
of the vector are different. For binary vectors, this is done with an XOR operation. More
details about this algorithm can be found in Section 3.3, which describes the dynamic
object problem.

29

Figure 3.5: Feature matching using FLANN.

3.1.4 Camera pose estimation

With the keypoints matches, the next step is to estimate the camera motion based on
the matching. Generally, the VO methods are different depending on the information
available. When only the 2D pixel from the coordinates is known, the epipolar geometry
can be used to solve this problem, based on the camera parameters(Gao and Zhang,
2021b). In brief, epipolar geometry uses the pixel positions of the matched points, and
the camera’s intrinsic and extrinsic parameters to calculate essential matrix, E, defined
as:

E = t∧R, (3.5)

Where t and R are the rotation and translation matrix.
When 3D coordinates are used to calculate camera motion, methods such as Iterative

Closest Point (ICP) can be used(Besl and McKay, 1992). The ICP calculates the relative
transformation between two point clouds by iteratively minimizing the distance metric
between feature matches.

ICP computes the relative transformation between two point clouds by iteratively min-
imizing the distance metric between correspondences estimated according to the spatial
distance.

In case of ORB-SLAM3, the 3D and 2D coordinates are used, as it has the 3D points
and the 2D projection position on the camera. For this reason, the Perspective-n-Point
pose calculation can be performed. This method will be detailed further in Section 3.3,
which discusses the dynamic object problem.

3.2 ORB-SLAM3 structure

ORB-SLAM3 is built upon ORB-SLAM2 (Mur-Artal and Tardós, 2017a) and ORB-
SLAM-VI(Mur-Artal and Tardós, 2017b) . Figure 3.6 shows the framework overview.
This multisession and multimap algorithm is capable of working in both visual-only or
visual-inertial modes with monocular, stereo, or RGB-D cameras, using pin-hole and fish-
eye camera models.

The system is divided into three threads:

• Tracking: This thread determines whether the current frame will be a keyframe

30

Figure 3.6: ORB-SLAM3 Framework. (Campos et al., 2021a)

and estimates the frame’s pose relative to the active map, as well as estimates
the velocity, acceleration, and IMU biases. The tracking thread solves a simplified
version of the visual-inertial optimization, considering only the last two frames.

• Local Mapping: This thread adds the keyframes to the active map and initializes
the IMU parameters in the case of visual-inertial modes. In addition, it and refines
the map using visual or visual–inertial bundle adjustment (BA). Since full opti-
mization is computationally expensive, the mapping process uses a sliding window
of keyframes.

• Loop Closing and Map Merging: This thread detects common regions between the
active map and the maps present in the atlas at keyframe rate. If this area belongs
to the active map, it performs loop correction, otherwise, both maps are merged
into a single one, which becomes the active map. After loop correction, a full BA
is executed in an independent thread to refine the map without affecting real-time
performance.

Furthermore, the Atlas represents a multimap consisting of a set of disconnected maps.
It has one active map used by the tracking thread and non-active maps used by the
loop closing and map merging thread. The system builds a unique DBoW2 database of
keyframes used for loop closing, relocalization, and map merging.

3.3 Dynamic problem

Feature-based methods use the correspondence between keypoints to calculate the camera
pose and build the map. Specifically, ORB-SLAM3 uses Oriented FAST and Rotated
BRIEF (ORB) to detect and describe keypoints in images. When the track is lost, it uses

31

its modified MLPnPsolver (Maximum Likelihood PnP) to estimate the pose of the camera,
given a set of correspondences between 3D points and their 2D image observations (Urban
et al., 2016).

When dynamic objects are in the scene, feature matching and camera pose estimation
that are performed in the tracking thread are highly impacted. The loop-merging and the
local map thread will also be impacted, as it will propagate the error from the tracking
process. Moreover, the dynamic features impact the relocalization if they are in the map,
as they will have a different position and orientation. To understand this impact, the
tracking process will be further detailed below.

The tracking process can be divided into the following states:

• SYSTEM_NOT_READY;

• NO_IMAGES_YET;

• NOT_INITIALIZED;

• OK;

• RECENTLY_LOST;

• LOST.

SYSTEM_NOT_READY; NO_IMAGES_YET are the initial states used when the
system is starting, so the tracking does not run in these states.

Algorithm 1 presents the logic of the initialization state and the transition of states
in this phase. The tracking process and the transition to the RECENTLY_LOST and
LOST if the tracking fails are summarized in 2. Algorithms 3 and 4 present the ORB-
SLAM3 logic of relocalization and creation of new maps. The influence of the dynamic
objects is discussed in each state of the algorithm.

Algorithm 1 ORB-SLAM3 tracking process in NOT_INITIALIZED state
1: function Initialization
2: if Number of features in the current frame is sufficient then
3: Set the initial pose
4: Create a new KeyFrame
5: Create mapPoints and associate to the Keyframe
6: Create the map
7: state← OK
8: else
9: state← NOT_INITIALIZED

10: end if
11: end function

The initial pose is set as 0 during the map creation and will be optimized in the next
iterations. For this reason, when it is first initialized, the motion is estimated with this
initial Keyframe as a reference. In this state, the map points and keypoints will contain

32

Algorithm 2 ORB-SLAM3 tracking process in OK state
1: function Track
2: UpdateMapPoints()
3: ok ← TrackWithMotionModel()
4: if !ok then
5: if nKeyFrames < 10 then
6: state← RECENTLY _LOST
7: else
8: state← LOST
9: end if

10: else
11: UpdateLocalMap()
12: state← OK
13: UpdateDrawer()
14: UpdateMotionModel()
15: if Need new Key Frame then
16: AddNewKeyFrame()
17: end if
18: end if
19: end function
20: function TrackWithMotionModel
21: Initialize ORBMatcher
22: Update last frame pose according to its reference keyframe
23: Current pose estimation.
24: Matching search.
25: if matches < 20 then
26: return false
27: end if
28: Optimize frame pose with matches
29: Discard outliers
30: if matches < 20 then
31: return false
32: end if
33: return true
34: end function

33

dynamic objects, and as these are used in the next states, the algorithm will have more
difficulty in tracking.

In the OK state, the algorithm assumes a velocity motion model to estimate the
camera pose and performs a search of the map points observed in the last frame in
the current frame to validate the estimation. The pose is then optimized using the
Levenberg–Marquardt algorithm with the found correspondences. If there are sufficient
matches, the local map and the motion model are updated, and the system adds a new
keyframe if needed.

The motion model is defined as:

Pi = vi−1 · Pi−1 (3.6)

Where:

• Pi is the current pose estimation;

• vi−1 is the last frame velocity;

• Pi−1 is the last frame pose in relation to the KeyFrame.

To check the first estimation, the system performs a keypoint matching between the
last and current frame. This process can be defined by these steps:

1. Check the rotation consistence.

2. Calculate a translation vector describing the position of the current frame in the
coordinate system of the last frame.

3. Check if the z position is positive or negative. If it is positive, it means that the
camera moved forward. Otherwise, it means that the camera moved backyards in
relation to the last frame.

4. For all map points from the last frame, the projection into the current frame is
executed.

5. Get the 2D projection of the last frame and search for the features near this projec-
tion. Here, if the camera moves backyard, the search is performed in lower scales,
and if it is moving forward, it is likely that the projected map points will be find in
higher scales. In this step, it gets a vector of indices of keyPoints that are near the
projected point.

6. Find the best match between the last keyFrame into the vector of nearby KeyPoints.
It’s done by getting the Hamming distance between the descriptors of the last map
point and map points into the vector. The Hamming distance is defined by:

Considering two consecutive frames, Xm
t ,m = 1, 2, ...,M are the descriptors from

the map point in the image It, and Xm
t+1,m = 1, 2, ..., N are the descriptor of each

map point into the indices vector in It+1. The Hamming distance between these

34

two binary vectors is used to measure the similarities between the map point. The
objective is to find the smaller Hamming distance to find a better match.

Hamming(d1,d2) =
∑
i

(d1[i]⊕ d2[i]) (3.7)

7. If the smaller distance is lower than a threshold, it can be considered a match.

So, in the end of this process, it will have a vector of indices of matches between
the current and last frame. In dynamic environments, the Hamming distance between
the descriptors can be higher, reducing the number of valid matches. Moreover, moving
objects can cause incorrect matches because they will not correctly correspond between
frames.

The pose optimization, also called motion-only Bundle Adjustment (BA), uses the
Levenberg-Marquardt algorithm (Mur-Artal et al., 2015b). It optimizes the 3D location
Xw,j ∈ R3 and the pose of the keyframes Tw

i ∈ SE(3), where w represents the world
referential, minimizing the reprojection error with respect to the corresponding keypoints
xi,j ∈ R2. The error term for the observation of a map point j in a keyframe i is:

ei,j = xi,j − πi(T
w
i ,Xw,j), (3.8)

Where πi is the projection function:

πi(Tiw,Xw,j) =

[
fi,u

xi,j

zi,j
+ ci,u

fi,v
yi,j
zi,j

+ ci,vgit

]
(3.9)xi,j

yi,j
zi,j

 = RiwXw,j + tiw, (3.10)

Where:

• Rw
i ∈ SO(3) is the rotation part of the pose.

• twi ∈ R3 is the translation part of the pose.

• (fi,u, fi,v) is the focal length associated to camera i.

• (ci,u, ci,v) are the coordinates of the optical center associated to camera i.

The cost function to be minimized is defined by:

C =
∑
i,j

ρh
(
e⊤i,jΩ

−1
i,j ei,j

)
, (3.11)

(3.12)

, Where:

35

• Ωi,j = σ2
i,jI2×2 is the covariance matrix associated to the scale at which the keypoint

was detected;

• ρh is the Huber robust cost function;

In summary, the idea of the algorithm is to adjust the pose of the camera in respect
with the world coordinates (Tcw) so the error of the reprojection of the 3D map points
into the frame is minimum. Here, the influence of the dynamic objects is notable in the
reprojection error, as the error will be higher due to the potential inaccuracy in feature
matching. Moreover, the pose found in this case will be influenced by the relative motion
between the camera and the object, and cannot be directly related to the camera’s motion
relative to the world.

Algorithm 3 ORB-SLAM3 tracking process in RECENTLY_LOST state
1: function Track
2: ok ← Relocalization()
3: if ¬ok & time_lost > 3.0s then
4: state← LOST
5: else
6: state← OK
7: Update Local Map
8: state← OK
9: Update Drawer

10: Update Motion Model
11: if Need new Key Frame then
12: AddNewKeyFrame
13: end if
14: end if
15: end function

The relocalization process of ORB-SLAM3 uses the RANSAC algorithm on the PnP
solver to estimate the pose of the camera. This algorithm selects a subset of 2D-3D
matches and estimates the camera pose, then it validates the solution within the other
measurements, discarding the outliers that do not fit the model. The RANSAC error
analysis is given by the following equation:

E =
n∑

i=1

∥xi − x̂i∥2, (3.13)

Where:

• xi: observed 2D keypoint in the image,

• x̂i: projected 2D keypoint derived from the estimated pose and 3D point.

This collection, estimation, and validation of subsets is repeated multiple times. The
model that better fits, which means that has more inlier is chosen as the best.

36

The minimized cost function is given by the following equation:

min
R,t

∑
i

∥ui − π(RXi + t)∥2, (3.14)

Where:

• ui are the 2D observations of the 3D points Xi;

• π(RXi + t) is the projection of the transformed 3D points onto the image plane.

The goal is to minimize the difference between the 2D observations and the projections
of the transformed 3D points by adjusting R and t.

So, in a non-static environment, some 2D keypoints may incorrectly correspond to
an unrelated 3D point, as the relative move between the object and the camera is not
computed in the equation. In consequence, the reprojection error becomes significantly
larger, as xi and x̂i, from 3.13, do not match and x̂i deviates significantly from the true
2D position. For that reason, more outliers will be introduced, so the minimized cost
function, described by 3.14 becomes biased, and the estimation of R and t fails.

Algorithm 4 ORB-SLAM3 tracking process in LOST state
1: function Track
2: if nKeyFrames < 10 then
3: ResetActiveMap
4: state← NOT_INITIALIZED
5: else
6: CreateNewMapInAtlas
7: state← NOT_INITIALIZED
8: end if
9: end function

Here, the influence of the dynamic objects can trigger this state more often, increasing
the number of maps in the atlas, which leads to higher errors and poorer camera tracking.

3.4 ORB-SLAM3 Parameters

This algorithm uses a YAML file to define the camera parameters and the configuration
used on ORB. The camera parameters depend on the hardware and can be estimated
by camera calibration. The ORB parameters can be changed to improve the algorithm
performance depending on the scenario.

3.4.1 Camera parameters

Camera parameters define how the image is formed and how the real world 3D coordinates
can be transformed to the 2D pixel coordinates in the image. ORB-SLAM3 supports both
Pin-hole and Kannala-Brandt models. Images from the Pin-hole model used in this work

37

are formed by placing a barrier with a small hole between an object and a photographic
sensor. Figure 3.7 shows the construction of this camera model.

Figure 3.7: Pinhole camera model. (Bouguet, 2019)

For stereo cameras, the image is composed of the left image and the right image. Both
are considered pinhole cameras. So, the relationship between 3D world coordinates and
their projections can be defined as (Gao and Zhang, 2021b):

s

xl

yl
1

 = Kl

[
Rl tl

]

X

Y

Z

1

 , (3.15)

s

xr

yr
1

 = Kr

[
Rr tr

]

X

Y

Z

1

 , (3.16)

where:

• (X, Y, Z) are the 3D world coordinates.

• (xl, yl) and (xr, yr) are the 2D projections on the left and right image planes, re-
spectively.

• Kl and Kr are the intrinsic matrices of the left and right cameras.

• Rl, Rl, tr, and tr are the rotation and translation matrices that describe the cameras’
extrinsic.

• s is a scaling factor.

The disparity d = xl − xr is used to compute the depth Z as:

Z =
f · b
d

, (3.17)

where f is the focal length and b is the baseline distance between the two cameras.
For an RGB-D camera, the 3D world coordinates (X, Y, Z) can be computed from the

depth value Z and the 2D image coordinates (x, y) from the image as follows:

38

X =
(x− cx) · Z

fx
, (3.18)

Y =
(y − cy) · Z

fy
, (3.19)

Z = Z, (3.20)

where:

• x, y are the coordinates of the pixel in the image.

• Z is the depth value provided by the depth sensor.

• fx and fy are the focal lengths of the camera in the x and y directions, respectively.

• cx, cy are the coordinates of the optical center.

The transformation from 3D world coordinates to the 2D image plane is expressed as
follows:

s

xy
1

 = K

XY
Z

 , (3.21)

The intrinsic matrix, K, can be defined as:

K =

fx 0 cx
0 fy cy
0 0 1

 . (3.22)

Notice that these parameters depend on the camera’s hardware and on the camera
calibration, so all these parameters need to be defined on the YAML file. Moreover, the
camera resolution, and the frame rate need to be described in the configuration file.

3.4.2 ORB-SLAM3 Parameters

The ORB parameters are defined as:

• Number of Features (ORBextractor.nFeatures): Maximum number of features that
can be extracted per frame. By increasing this parameter, more details can be
extracted from the map, but it also increases the computational cost.

• Scale Factor (ORBextractor.scaleFactor): This parameter determines the ratio be-
tween the scales of consecutive levels in the image. In this work, the scale factor is
set to 1.2, which means that each level of the image pyramid is 1.2 times smaller
than the previous one. This parameter affects the system’s robustness to changes
of scales and viewpoints.

39

• Scale Levels (ORBextractor.nLevels): The nLevels parameter sets the number of
levels in the image pyramid. In this work, it was set to 8 as it gives a good coverage
in feature detection while keeping the computational cost acceptable.

• Ini Threshold (ORBextractor.iniThFAST): This parameter is used for corner detec-
tion in feature extraction. In other words, it determines the initial threshold used
in the FAST algorithm to determine if a pixel is a corner or not. Decreasing this
parameter can affect especially in low-texture scenarios, as it allows more pixels to
be identified as corners, but it also can be affected by noise.

• Min Threshold (ORBextractor.minThFAST): The minThFAST is the minimum
threshold that will be used by the FAST algorithm to identify corners of the image.
This value is used when the detected keypoints are less than the iniThFAST. As in
the iniThFast parameter, by decreasing this value, more pixels can be selected as
corners, but it also can introduce errors in the mapping.

40

4 YOLO

You only live once, YOLO is a state-of-the-art deep learning algorithm that is very popular
among image processing studies. The first version of this algorithm was proposed in 2015
(Redmon, 2016). The main novelty of this method is the division of the input image
into SxS grids. Each of these grids is responsible for detecting objects and providing
the confidence scores for their bounding box and the class of the detected objects. The
confidence score refers to how confident the model is that the box contains an object and
how accurate it thinks the predicted box is. Moreover, YOLO unifies the bounding boxes
and the prediction of class capabilities using a single neural network, allowing real-time
performance.

In this chapter, the YOLO architecture will be detailed, as well as the tasks supported
by this algorithm. Section 4.1 shows the main components of YOLO and the novelties
integrated into the new version. The most suitable tasks for Visual SLAM are detailed in
Section 4.2.

4.1 Architecture

The basic architecture of YOLO can be divided into three components (Ali and Zhang,
2024):

• Backbone: Extracts the features from the input data at multiple scales. It generates
multi-resolution feature maps by stacking convolutional layers and blocks.(Khanam
and Hussain, 2024)

• Neck: Responsible for processing and refining the feature maps from the backbone.
It upsamples and concatenates the feature map from different levels to ensure multi-
scale information.

• Head: Uses fused features from the neck to predict bounding boxes and class prob-
abilities. YOLO-V3 introduced multi-scale anchor boxes in Yolo’s head, improving
the object detection across different scales. (Jiang et al., 2022)

The usage of this algorithm increased rapidly and many improvements were imple-
mented in subsequent versions over the years. In its latest version, YOLO V11, its
architecture was improved by replacing the C2f block with the C3k2 block, which, in-
stead of employing one large convolution layer, it uses two smaller convolutions layers.
This is a more computationally efficient implementation of the Cross Stage Partial (CSP)

41

Bottleneck. In addition, it has a smaller kernel size, which contributes to faster image
processing. The head uses various C3k2 blocks to compute and refine the feature map.
The network of the latest version of YOLO is described in Figure 4.1.

Figure 4.1: YOLO11 network structure diagram. (Campos et al., 2021a)

A C2PSA block, which means Cross Stage Partial with Spatial Attention, was added
after the Spatial Pyramid Pooling - Fast (SPPF) block to enable YOLO11 to focus in
defined regions of interest, potentially improving detection for objects of diverse sizes and
positions.

The head of YOLO11 includes several CBS layers (Convolution-BatchNorm-Silu) fol-
lowing the C3k2 blocks. These layers further refine the feature maps by extracting rele-
vant features for precise object detection while stabilizing and normalizing the data flow
through batch normalization.

4.2 YOLO Tasks

Object detection and instance segmentation are the most suitable tasks to be integrated
into visual SLAM algorithms to improve semantic information. The object detection
output is a bounding box that contains the 2D coordinates of the most probable objects
in the image, and this information could be used to remove dynamic objects from the
scene, for example. However, since the bounding box does not give information about the
shape of the objects and can contain parts of other objects, integrating a simple object
detection to visual SLAM algorithms might be insufficient to improve its localization and
mapping processes. For this reason, the instance segmentation was chosen to be used in
this work to improve ORB-SLAM3 performance. The next subsections show an overview
of object detection, instance segmentation, and pose estimation using YOLO11.

4.2.1 Object detection

Object detection is an important task that works in detecting items of a certain class
in digital images. The major objective of this task is to answer these questions: "What
objects are there? And where are they?" (Zou et al., 2023). The goal is to achieve high
accuracy and speed. The YOLO11 pre-trained models include 80 classes, that are trained
on the MS-COCO dataset.

This task can be divided into the following steps:

42

1. At first, the input image passes through a Convolutional Neural Network (CNN) to
extract features.

2. The bounding boxes and class probabilities are predicted for each grid. Multiple
layers are used to handle the multi-scale detection.

3. The predictions are refined using non-maximum suppression (NMS) to remove du-
plicated or low-confident boxes.

Figures 4.2a and 4.2b show the image input and output of this process.

(a) Input image. (b) Output object detection.

Figure 4.2: Comparison of input image and output object detection.

4.2.2 Instance Segmentation

Beyond object detection, instance segmentation can operate at the image pixel level to
identify and separate individual objects. The output of an instance segmentation model
is a set of masks that separate each object in the image, providing its confidence scores
and classes.

The instance segmentation process will be further analyzed in Chapter 5. Figures 4.3a
and 4.3b show an example of input and output of this process. Notice that, unlike object
detection, the instance segmentation gives the shape information of the object.

43

(a) Input image. (b) Output instance segmentation.

Figure 4.3: Comparison of input image and output instance segmentation.

44

5 PROPOSED SOLUTION

This chapter shows the simulation environment, built on the Gazebo simulator, developed
to test Visual SLAM algorithms. In addition, the proposed solution based on the integra-
tion of a instance segmentation module using YOLO11 with ORB-SLAM3 is presented.

5.1 Simulation workspace

One of the objectives of this study is to develop a simulated platform to test visual SLAM
methods in different scenarios. Simulation can be useful for testing different approaches
to Visual SLAM as it provides a controlled and repeatable scene, without the risks, costs,
and unpredictability associated with real-world experiments.

As discussed in Chapter 2, poor lightning, low texture, and dynamic conditions are
still challenging for Visual SLAM methods. To help evaluate the impacts of each scenario,
three Gazebo robot models coupled with a monocular, a stereo, and an RGBD camera
were created. In addition, an indoor scenario was created. The setup of the test and
all robot models are described in Subsections 5.1.1 and 5.1.2, the simulated scenes are
described in 5.1.3. To test the environment, a performance evaluation of the ORB-SLAM3
algorithm was performed in monocular camera mode.

5.1.1 ROS2 and Gazebo environments

The Robot Operating System (ROS) is an open source middleware framework designed
to build robot applications. Since its creation, in 2007, the Robot Operating System has
been constantly improved. The ROS2 is the latest version of this framework. This work
uses the ROS2 humble version as it is capable of running on the Ubuntu Linux 22.04 OS,
and it provides libraries and tools to build the desired simulation.

The Gazebo Harmonic software is a stand-alone application that can be integrated
into ROS2 through some packages called gazebo_ros_pkgs. According to the Gazebo
documentation, the gazebo_ros_pkgs is a metapackage, which means that it is a package
that works as a container for other packages, such as:

• gazebo_dev: Have the cmake configuration for the default version of the ROS2
distributions.

• gazebo_msgs: Describes the necessary resources to interact with ROS2. This pack-
age provides the message and service data structures to interact with ROS2.

45

• gazebo_ros: Provide generally useful plugins and C++ classes and functions which
can be used by other plugins.

• gazebo_plugins: A collection of Gazebo plugins that make sensors and additional
functionalities accessible to ROS2. This work uses the gazebo_ros_diff_drive (Doc-
umentation, d) plugin to control a differential through ROS2, the libgazebo_ros_camera
(Documentation, a) plugin to simulate a generic camera and publish the image mes-
sages over ROS2, the libgazebo_ros_ray_sensor (Documentation, c) to publish the
messages of a laser scanner sensor and the libgazebo_ros_imu_sensor (Documen-
tation, b) to control and share the IMU sensor messages through ROS2.

One advantage in developing the simulation workspace is to allow for an easy proto-
typing, as the dimensions of the robot can be easily changed, the sensors can be modified
and placed in other places to achieve the best configuration, and the dynamic of the sys-
tem can be manipulated according to the necessity of the project. The Gazebo simulator
can also be integrated into the RVIZ package to develop and test autonomous navigation
algorithms, for example.

5.1.2 Robot model

The model used in this work, shown in Figure 5.1, is based on the robot developed by
(of Coders, 2020). This model was chosen due to its simplicity and support for the most
common sensors, like a camera, an IMU, and a Lidar sensor.

In the image, the camera sensor is represented by the red box, the Lidar is the black
box and the IMU is placed right bellow the Lidar, represented by the small yellow box.

Figure 5.1: Robot model.

Currently, there are three available configurations: the robot coupled with a monocular
camera, a stereo camera, or a RGB-D camera. All models are available to the community
on github: https://github.com/renatavillegas/Visual_SLAM_Gazebo

The dimensions of the robot are defined in Table 5.1.
Table 5.2 specifies the monocular camera parameters. The monocular camera is con-

sidered ideal, meaning that its distortion parameters are set to 0. The image size and
the FPS of the camera were chosen based on the computational cost of the simulation as
larger images make the processing more challenging and time consuming. The Camera
Horizontal Field of View (FOV) was chosen considering the simulation necessities and the

https://github.com/renatavillegas/Visual_SLAM_Gazebo

46

Table 5.1: Robot’s dimension.

Component Dimensions (m)
Chassis 0.4 x 0.2 x 0.1
Front Left Wheel 0.1 (radius) x 0.05 (length)
Rear Left Wheel 0.1 (radius) x 0.05 (length)
Front Right Wheel 0.1 (radius) x 0.05 (length)
Rear Right Wheel 0.1 (radius) x 0.05 (length)
Camera 0.05 x 0.05 x 0.05
Hokuyo 0.1 x 0.1 x 0.1
IMU 0.01 x 0.01 x 0.01

most commonly used values. A Gaussian noise of mean 0.0 and standard deviation 0.007
was added to the camera to make it more realistic.

Table 5.2: Monocular camera Parameters.

Name camera
Update Rate (FPS) 30.0 Hz
Horizontal FOV 1.02974 rad
Image Dimensions 540 x 540
Image Format R8G8B8

Fx

Fy

Cx

Cy

477.225
477.225
270.5
270.5

Clipping Planes Near: 0.01
Far: 500

Distortion

k1: 0.0
k2: 0.0
k3: 0.0
p1: 0.0
p2: 0.0

Plugin libgazebo_ros_camera.so

ROS2 topic gazebo_model/camera
gazebo_model/camera_info

The stereo camera consists of a binocular system in which both the left and right
cameras are considered ideal. In this case, two cameras equal to the monocular camera,
described by 5.2, were considered. Table 5.3 shows the camera parameters. Both camera
images can be accessed through the ROS2 topic mentioned in the table 5.3. The baseline
refers to the physical distance between the optical centers of the cameras. In this model,
7cm was chosen as the baseline. This value is used in the ORB-SLAM3 to calculate the
depth. It was considered that both cameras are aligned, so the rotation between them is
described by the identity matrix.

The RGBD camera consists of a RGB camera and a depth sensor. The RGB camera
is considered with the same parameters as the monocular camera. The RGBD camera

47

Table 5.3: Parameters of the Stereo Camera.

Specification Left Camera Right Camera
Name left right
Update Rate (FPS) 30.0 Hz 30.0 Hz
Horizontal FOV 1.02974 rad 1.02974 rad
Image Dimensions 540 x 540 540 x 540
Image Format R8G8B8 R8G8B8

Clipping Planes Near: 0.01
Far: 500

Near: 0.01
Far: 500

Intrinsic Parameters

Fx: 477.225
Fy: 477.225
Cx: 270.5
Cy: 270.5

Fx: 477.225
Fy: 477.225
Cx: 270.5
Cy: 270.5

Distortion

k1: 0.0
k2: 0.0
k3: 0.0
p1: 0.0
p2: 0.0

k1: 0.0
k2: 0.0
k3: 0.0
p1: 0.0
p2: 0.0

ROS2 Topics camera/left
camera/left/camera_info

camera/right
camera/right/camera_info

Baseline (distance) 0.07 m

Pose (R|t)

1 0 0 0.07
0 1 0 0
0 0 1 0

is described in Table 5.4. The depth camera parameters were considered based on the
necessities of the simulation.

Table 5.4: Parameters of the RGBD Cameras

Specification RGB Camera Depth Camera
Name camera_sensor depth_camera_sensor
Type RGB Camera Depth Camera
Update Rate 30.0 Hz 30.0 Hz
Horizontal FOV 1.047 rad 1.047 rad
Image Dimensions 540 x 540 540 x 540
Image Format R8G8B8 R8G8B8
Clipping Planes Near: 0.1, Far: 500 Near: 0.1, Far: 500

Distortion Coefficients

k1: 0.0,
k2: 0.0,
p1: 0.0,
p2: 0.0,
k3: 0.0

k1: 0.0,
k2: 0.0,
p1: 0.0,
p2: 0.0,
k3: 0.0

Plugin Filename libgazebo_ros_camera.so libgazebo_ros_camera.so

ROS2 Topics zed2i/zed_node/rgb/image_rect_color
zed2i/zed_node/rgb/image_raw zed2i/zed_node/depth_registered

Baseline (Distance) 0.07
Depth Range Min: 0.05 m, Max: 10.0 m

The IMU used is also considered ideal, which means that the Gaussian noise is set

48

to 0 and its update rate is 200 Hz. The Gaussian noise represents the characteristics of
the noise present in the sensor data. The standard deviation 0.1 was selected to simulate
realistic noise.

Table 5.5: Specifications of the IMU Sensor

Specification IMU Sensor
Name imu_sensor
Type IMU
Update Rate 200 Hz
Noise Properties Gaussian Noise: 0.1
Plugin Filename libgazebo_ros_imu_sensor.so
ROS2 Topic trunk_imu
Offsets XYZ: (0, 0, 0), RPY: (0, 0, 0)

Table 5.6: Specifications of the LIDAR Sensor.

Specification LIDAR Sensor (Hokuyo)
Name _hokuyo_sensor

Update Rate 40 Hz

Scan Properties

Horizontal Samples: 720
Resolution: 1

Min Angle: -1.5708 rad
Max Angle: 1.5708 rad

Range Properties
Min: 0.10 m
Max: 30.0 m

Resolution: 0.01 m

Noise Properties
Type: Gaussian

Mean: 0.0
Stddev: 0.01

Plugin Filename libgazebo_ros_ray_sensor.so
ROS2 Topic scan

The laser sensor was designed based on the specification of a Hokyo Laser that can
achieve a 300 m accuracy at range ≤ 10 m. This sensor operates at an update rate of 40
Hz. Its scan properties include 720 horizontal samples with a resolution of 1, covering a
horizontal field of view from -1.5708 radians (-90°) to 1.5708 radians (90°).

The stereo camera, the RGBD camera, the IMU and the Hokyo laser will be used in fu-
ture works. This sensors configuration will be useful to test a sensor fusion algorithm. All
sensor parameters were defined in the robot’s Unified Robot Description Format (URDF)
file.

5.1.3 Gazebo worlds

The Visual SLAM methods can be tested in an ideal scenario, a low light scenario, and a
low texture scenario to compare errors in each environment and discuss the challenges of

49

using the algorithm. This subsection presents all environments developed in the simula-
tion. ORB-SLAM3 will be tested using these scenarios.

Ideal Scenario
The world used in the ideal scenario employs the “iscas_museum" model provided

by Gazebo Software, as described in Figure 5.2. Additional objects were introduced to
enhance the overall texture of the environment.

Figure 5.2: Ideal Scenario.

Low light scenario
This environment utilizes the same “iscas_museum" model, but with the lighting

removed. The additional objects were retained to isolate only the lighting variable for
comparison. This scenario is illustrated in Figure 5.3 below.

Figure 5.3: Low light scenario.

Low texture scenario
The environment shown in Figure 5.4 is similar to the ideal scenario, but the additional

objects were removed. This adjustment ensures that the difference in texture in the walls
is less than in the ideal scenario. As demonstrated in Figure 5.4, the lighting conditions
were kept consistent with the ideal scenario to isolate only the texture parameter.

Dynamic scenario
For the dynamic scenario, the same world as presented in the ideal scenario was used,

with an additional robot added to the scene. In the simulation, the second robot moves
through the environment at different velocities within the first robot’s camera’s field of
view. This world is presented in Figure 5.5.

50

Figure 5.4: Low texture scenario.

Figure 5.5: Dynamic scenario.

5.1.4 Methodology

In this work, the environment will be used to evaluate the original ORB-SLAM3 in monoc-
ular mode. In this experiment, the robot traverses a predefined trajectory while the
camera images are sent to the ORB-SLAM3 algorithm. Robot odometry is used as the
reference trajectory for error analysis. Each of these simulation steps are explained in this
subsection.

• Trajectory definition

The robot is controlled using the teleop_twist_keyboard package provided by the
Gazebo library. With this package it is possible to send velocity command messages
to the robot and make it move through the simulation.

The primary objective of this simulation is to assess the algorithm’s performance
across diverse scenarios. To isolate the impact of path changes, the robot must
follow the exact trajectory in all conditions. To achieve this, the robot’s trajectory
is saved during a test in the ideal scenario using the ROS2 bag command. Further
information about this command is available in the ROS2 documentation (ros). The
trajectory used in this work is represented in the Figure 5.6. Once the trajectory is
saved, it can be played using the ROS2 bag play command in the other scenarios.

This route was selected considering some important aspects of the ORB-SLAM3
challenges, such as loop closure detection, maintaining tracking in sharp curves and
changes in the environment.

51

Figure 5.6: Trajectory representation.

• Orb Slam3 node

This work uses the ORB-SLAM3 ROS2 wrapper developed by (Zang, 2023). Basi-
cally, it creates a subscriber node to get the camera images and initializes a ORB-
SLAM3 system with the images received through the ROS2 camera topic. This node
allows real-time monitoring of the algorithm’s execution during the simulation. The
wrapper supports the monocular, stereo, and stereo-inertial modes of ORB-SLAM3.

• Reference data

To obtain the real robot’s position and orientation, the odometry data from the
Gazebo’s differential robot’s plugin, gazebo_ros_diff_drive, was utilized. The
data was saved using the echo command from ROS2 to be used as the reference
data for the ORB-SLAM3 algorithm evaluation. This information was stored in
YAML format and later parsed into a text format for result analysis.

• Error analysis

The output of the ORB-SLAM3 algorithm is a txt file named KeyframeTrajectory
that contains the keypoints’ timestamp, position and orientation in the format pre-
sented in the Table 5.7. It is important to save the timestamp of the acquired
keyframe to be possible to match with the timestamp of the reference data and do a
complete error analysis. As mentioned before, the reference trajectory was collected
using the ROS2 echo command, and the YAML file was parsed to save the data in
the same format as the KeyFrameTrajectory. The results presented in this work are
the median of five iterations of the algorithm.

Table 5.7: ORB-SLAM3 output format

timestamp x y z qx qy qz qw

To analyze errors, a Python package called "evo," available at (Grupp, 2017) was
used. This package provides a library for handling, evaluating and comparing the
trajectory output of odometry and SLAM algorithms. The evo_ape command was
used to evaluate the absolute pose errors (APE) in the robot’s trajectory, and the
evo_rpe command was used to get the relative pose error (RPE) for the translation,
rotation and full parts. In brief, this tool matches the timestamp between the

52

reference data (odometry, in this case) and the output from the ORB-SLAM3,
utilizing the Kabsch-Umeyama method (Lawrence et al., 2019) for calculating the
optimal rotation matrix that minimizes the RMSD (root mean squared deviation)
between two paired sets of points. As the robot’s simulation uses a monocular
camera, the scale factor of the ORB-SLAM3 is uncertain, so the scale correction,
provided by this tool, needed to be used.

The APE is defined as:

Ei = P−1
gt,iPest,i ∈ SE(3), (5.1)

Where:

– Pgt,i is the ground truth pose at timestamp i,

– Pest,i is the estimated pose at timestamp i,

– SE(3) represents the Special Euclidean group in 3D, which includes both rota-
tion and translation.

The RPE can be described by the following equation.

RPEt,i =
∣∣angle (logSO(3) (rot (Ei))

∣∣ , (8)

Where logSO(3) is the inverse of expSO(3).

5.2 Proposed solution

In the proposed solution, called YOLO11-ORBSLAM3 the latest YOLO11 instance seg-
mentation task is used to detect potential dynamic features and remove them from the
ORB-SLAM3 tracking process. The added modules are represented by the green boxes
in the framework overview in Figure 5.7. The algorithm is divided into three threads:

• Tracking: Performs the yolo instance segmentation detection, removes the potential
dynamic features, decides whether the current frame will become a keyframe and
estimates the pose of the frame relative to the active map, as well as the velocity,
the acceleration, and, in visual-inertial mode, the IMU bias. When tracking is lost,
this thread tries to relocalize the frame in all saved maps. If it is not possible, it
saves the map as in the Atlas and starts a new one.

• Local Mapping: Following the same logic of the original ORB-SLAM3, this thread
refines the map and adds points and keyframes in the active map using bundle
adjustment, operating in a window of keyframes close to the actual frame.

• Loop Closing and Map Merging: Detects overlapping regions between the active map
and the maps present in the atlas. The loop correction is executed when a common
region is found and this region belongs to the active map; otherwise, the maps are
merged to a single one, and this one becomes active. This thread also executes a
full bundle adjustment in an independent thread after the loop correction.

53

Figure 5.7: YOLO11-ORBSLAM3 ORB-SLAM3 framework.

5.2.1 Instance Segmentation Module

YOLO11 is a state-of-the-art model recognized for its high accuracy and real-time per-
formance. Its segmentation models are pre-trained on the COCO dataset. This dataset
supports 80 image classes, including potential dynamic classes such as cars, bicycles, peo-
ple, buses, and trains. The dynamic classes considered in this work contain only the
"People" class, but this parameter can be adjusted in the code. The pre-trained model
used in this work was yolo11n-seg.pt , as it is the lightest model ensuring robust per-
formance. This model was exported in Torch format to be integrated into ORB-SLAM3
using LibTorch.

This module works by following these steps:

• Model loading: First, the YOLO model is loaded with the torchscript format.

• Image pre-processing: The images are resized to the default 640x640 size, converted
into tensor and normalized.

• Inference execution: The tensors are moved to the GPU to execute the inference.
The output of this step is an vector containing the object detections and their
predicted segmentation mask.

• Non-max suppression: This post-processing method plays an important role in the
YOLO instance segmentation framework. As the output of the inference have all
bounding boxes, it is needed to select the best ones that represents the object,
besides selecting the most probable objects. This is achieved by selecting the IoU
(Intersection over Union) and the score thresholds.

The IoU evaluates the overlap between two bounding boxes. It is defined as the
area of overlap between the predicted bounding box and the ground truth bounding

54

box divided by the area of their union. Choosing a high IoU can result in multiple
detections for the same object, but it is useful when the scene has multiple objects
from the same class close to each other. By choosing a low IoU, the detection will
be more strict, but it can miss some valid detections.

The score refers to the confidence score predicted by the model, representing the
likelihood that the object detected in a bounding box belongs to a specific class. A
high score indicates that the model is more certain that the object belongs to its
class, but it can miss some objects when they’re partly occluded. A low score can
lead to false positives.

The non-max suppression works by sorting the boxes by their score, and select the
boxes with confidence higher than the score threshold. For each box that contains
a potential dynamic object, it decides if the box should be kept by checking if the
IoU is below the IoU threshold value.

• Mask generation: The final segmentation mask is obtained by following these steps:

1. The region of interest (ROI) is extracted from the detections. The ROI is
defined as the coordinates of the bouding boxes.

2. The ROI and the predicted segmentation mask matrices are multiplied to cal-
culate the final segmentation. The result of this multiplication is a tensor that
holds the intensity of trust on each pixel to contain the object inside each
bounding box. This intensity is expressed in form of logits.

finalseg = segrois × segpred (5.2)

3. Binary mask conversion: Until this step the segmentation map contain only
the non normalized intensity of trust on each pixel. This values need to be
converted to probabilities, so the sigmoid, expressed on equation 5.3 is applied.

σ(x) =
1

1 + e−x
(5.3)

The output of this operation is a matrix containing the probability of each
pixel contain the object. This matrix is converted to a binary matrix using a
fixed threshold, seg_tresh, so if the probability is higher than this threshold,
the pixel is marked as 255 (which contains the object), and 0 otherwise.

4. Mask resize: Lastly, the masks need to be resized to the original image size.

Figures 5.8b and 5.8a show an example of the semantic mask output from the semantic
module and the removal of dynamic objects from the ORB-SLAM3 frame, respectively.

Table 5.8 presents the parameters used in the validation tests. These values were
selected experimentally considering the performance and accuracy requirements.

55

(a) Original ORB-SLAM3 execution frame. (b) YOLO11 segmentation mask representing the
person standing.

Figure 5.8: YOLO Instance Segmentation Module.

Table 5.8: YOLO Non-max suppression parameters.

IoU 0.6
confidence

score 0.5

segmentation
threshold 0.5

5.3 Methodology

The experiments presented in this work uses a Ubuntu 22.0 laptop with ROS2 humble sup-
port. To optimize processing speed, all computations from this module were executed on
an NVIDIA GeForce GTX 1080 GPU with 8GB RAM (identified as NVIDIA Corporation
GP104 GeForce GTX 1080). The tests were subjected to five iterations, with the median
value chosen as the final result to ensure accuracy and consistency.

The evaluation criteria and the environment setup for the RGBD and stereo camera
experiments are detailed in the next subsections.

5.3.1 Evaluation Criteria

To analyze errors, the ”evo” was used. As mentioned before, this package provides a
library for handling, evaluating, and comparing the trajectory output of odometry and
SLAM algorithms. The results are presented considering the rotation and translation part
of the absolute pose error (APE) and the rotation and translation part of the relative pose
error (RPE).

The APE is calculated by directly comparing the corresponding poses between the
estimated and the reference. Then, statistics are calculated, such as the mean, median,

56

and RSME, for the whole trajectory. This is useful to test the global consistency of a
trajectory.

On the other hand, the RPE takes the relative pose error between steps. This metric
gives insights into the local accuracy, i.e. the drift. For instance, the translational or
rotational drift per meter can be evaluated.

5.3.2 RGBD Camera

The TUM dataset was used to assess the performance of the proposed RGB-D SLAM
method. This dataset is a popular resource that contains both RGB-D images and corre-
sponding ground truth data, specifically designed for evaluating visual SLAM techniques.
It covers a diverse range of scenes, including static and dynamic scenarios. Three pri-
mary sequences within the dataset were considered to evaluate the proposed solution:
f3-walking-xyz, f3-walking-halfsphere and f2-desk_with_person. Each set consists of a
sequence of images recorded at a frame rate of 30fps with a resolution of 640x480.

The f3-walking sequence represent highly dynamic scenarios that show two individuals
walking in an office environment. This selection allows for the evaluation of the robustness
and effectiveness of the proposed approach in highly dynamic real-world settings. In f3-
walking-xyz, the camera moves through the x, y, and z axis, while people walk in and out
of the office. In f3-walking-halfsphere the camera is rotated along the roll-pitch-yaw axes
at the same position.

The f2-desk_with_person features a mostly static office environment with a desk,
chairs, and other furniture, accompanied by a single moving person. This dataset is
commonly used to evaluate Visual SLAM algorithms in scenarios where dynamic elements
coexist with predominately static background.

All three sequences were subjected to five iterations, with the median value chosen as
the final result to ensure accuracy and consistency, and the same ORB parameters were
used. The results for each sequence were compared with the original ORB-SLAM3 using
APE and RPE metrics. The reference used was obtained with the dataset images. The
f3-walking-xyz was compared with the state-of-the-art semantic visual SLAM algorithms
taking the APE as reference, as this dataset is commonly found in the literature and this
metric shows the overall performance of the algorithms.

5.3.3 Stereo Camera

The real robot platform used in this work can be seen in Figure 5.10a. It has the Ack-
ermann steering geometry provided by the SAVAGE FLUX HP 1/8 mechanical platform
and it is equipped with a ZED2i stereo camera, a thermal camera, a Lidar, a GPS an
IMU, a velocity sensor and four ultrasonic sensors. The sensor description can be found
in Table 5.9.

This platform has four units control. A Raspberry PI 4 is responsible to control and to
get the data from the Lidar, the classic GPS, the ADR GPS, and the IMU. An NVIDIA
JETSON AGX ORIN processes the data from the cameras, controls the joystick, and
saves the information to external storage. An ESP32 carries the robot driver’s control

57

and gets the data from the velocity sensor. Finally, an STM32F401CC gets the data from
the ultrasonic sensors. All the sensor information can be accessed by ROS2.

Figure 5.9: Real robot platform.

Table 5.9: Robot sensors description.

Sensor Model
Thermal Image Camera FLIR ONE G3

Stereo Camera STEREOLABS ZED2i
IMU SPARKFUN RAZOR 9DOF

GPS ADR U-BLOX EVK-M8BL
GPS Classic U-BLOX NEO-M8N

Lidar Velodyne VLP-16
Joystick DUALSHOCK 4

Ultrassonic sensor HC-SR04
Velocity Sensor F249

The test was executed in a dynamic environment in which people walk near a parking
area and exit from a door. Figures 5.10a show a view from the area where the images
were taken and Figures 5.10b, 5.10c, 5.10d, show some parts of the dynamic persons in the
scene. The reference trajectory was considered as the stereo camera odometry provided by
the ZED’s framework. The robot follows a circular trajectory, passing through a parking
area and an enterprise’s door. The camera captures images of size 1280x720 at 10 FPS.
This camera operates in a low FPS due to its high internal processing. A ROS2 bag was
recorded so that the repeatability of the execution was ensured.

58

(a) Recording area. (Eldorado, 2025) (b) People walking near to a door.

(c) People walking near to a park. (d) People going out from a door.

Figure 5.10: Images captured in a real-world scenario.

59

6 RESULTS

In this chapter the results of the experiments with the developed simulation scenario,
the modified ORB-SLAM3 algorithm using RGBD and stereo cameras are presented. 6.1
shows the results of the ORB-SLAM3 evaluation using the monocular camera mode on
the developed scene. 6.2 shows the results of the test with the public TUM dataset. 6.3
shows the comparison of these results with the original ORB-SLAM3. Recent works on
Semantic Visual SLAM are compared in Section 6.4 and the results of Stereo camera
experiments are discussed in Section 6.5.

6.1 Simulated Scenario

Recalling the trajectory definition in Figure 5.6, this section shows the results of the
ORB-SLAM3 algorithm in all scenarios developed.

6.1.1 Ideal scenario

The trajectory output and error analysis of this test can be seen in Figure 6.1 and Table
6.1. The robot was able to complete the trajectory successfully , without losing tracking.

Table 6.1: Error results on ideal scenario.

Error
Metric APE (m) RPE

translation
RPE

rotation
RPE
Full

max 0.3870 0.2909 1.4765 1.4343
mean 0.1184 0.0359 0.1446 0.1552

median 0.0962 0.0135 0.0279 0.0535
min 0.0201 0.0001 0.0002 0.0008
rmse 0.1385 0.0656 0.2869 0.2921
sse 0.2510 0.5589 10.6456 11.2435
std 0.0721 0.0542 0.2458 0.2586

From the Absolute Pose Error values, it is possible to verify that the algorithm shows
good accuracy for this application, as its minimum error was 0.020 m , and the mean and
median errors were 0.11 m and 0.096 m, respectively.

It is possible to notice that this algorithm had more difficulty with the curves, showing
that sharp curves are a challenge for ORB-SLAM3. This is illustrated in Figure 6.3a,
which shows more error peaks and more data outside the standard deviation area. In

60

(a) APE raw data. (b) APE map.

Figure 6.1: Ideal scenario APE raw data and map.

(a) RPE translation part raw data. (b) RPE translation part map.

Figure 6.2: Ideal scenario Relative Pose Error (RPE) translation part raw data and map.

(a) RPE rotation part raw data. (b) RPE rotation part map.

Figure 6.3: Ideal scenario Relative Pose Error (RPE) rotation raw data and map.

the map shown in Figure 6.1b, it is possible to see that the higher errors occur in the
curves, where the line appears redder, signifying a greater error magnitude. This happens
because on curves the image changes faster, so it can be harder to find matches between

61

(a) RPE full raw data. (b) RPE full map.

Figure 6.4: Ideal scenario Relative Pose Error (RPE) full raw data and map.

frames.
The standard deviation value, 0.0721, also indicates that there is not much dispersion

in the values, confirming the consistency of the algorithm. This characteristic is evident in
Figure 6.1, where there are few points with higher errors (symbolized by the red points),
most of the points are in the dark blue area, where the errors are near the minimum.

6.1.2 Low-light scenario

From the results of the low light scenario, described in Figure 6.5 and Table 6.2, it is
possible to see that the algorithm was still capable of mapping the trajectory and keeping
the robot location despite the challenging scenario.

Table 6.2: Error results on low-light scenario.

Error
Metric

APE
(m)

RPE
translation

RPE
rotation

RPE
Full

max 0.8293 0.3684 1.4406 1.4540
mean 0.1936 0.0346 0.1286 0.1424

median 0.1645 0.0115 0.0405 0.0489
min 0.0436 0.0003 0.0005 0.0007
rmse 0.2339 0.0661 0.2524 0.2609
sse 7.9861 0.6344 9.2370 9.8714
std 0.1313 0.0564 0.2172 0.2187

In this simulation, the robot lost track for a while but was able to relocate itself. This
part is evident in Figure 6.5a by the high peak in the error and in Figure 6.5b by the
red region of the track, indicating its maximum error of 0.829 m, which occurred at this
time. In this part of the map, the robot performs a sharp curve in a region with relatively
low texture, as it passes through two columns. Figure 6.9 highlights the region of the
trajectory in which the robot loses its track.

62

(a) APE raw data. (b) APE map.

Figure 6.5: Low-light scenario APE raw data and map.

(a) RPE translation part raw data. (b) RPE translation part map.

Figure 6.6: Low-light scenario Relative Pose Error (RPE) translation part raw data and
map.

(a) RPE rotation part raw data. (b) RPE rotation part map.

Figure 6.7: Low-light scenario Relative Pose Error (RPE) rotation raw data and map.

Due to this loss, the SSE and RMSE were higher than in the ideal scenario. The
standard deviation shows that, despite this loss, the algorithm is still consistent, meaning
that the dispersion of the output values is still acceptable for this application.

63

(a) RPE full raw data. (b) RPE full map.

Figure 6.8: Low-light scenario Relative Pose Error (RPE) full raw data and map.

Figure 6.9: Lost trajectory on Low light scenario.

6.1.3 Low-texture scenario

The results of this simulation are described in Table 6.3. Figures 6.10, 6.12 and 6.11 show
the APE, the rotation part of RPE and the translation part of the RPE, respectively.

In this simulation, the algorithm lost track for some time, as shown in Figure 6.10b by
the red/yellow regions in the pose estimation. The algorithm demonstrated its robustness
through the tracking loss, as it was able to localize itself.

Table 6.3: Error results on low-texture scenario.

Error
Metric

APE
(m)

RPE
translation

RPE
rotation

RPE
Full

max 0.6346 0.3412 1.0105 1.0211
mean 0.2567 0.0290 0.1173 0.1282

median 0.2284 0.0098 0.0298 0.0370
min 0.0250 0.0004 0.0022 0.0006
rmse 0.2909 0.0583 0.2258 0.2332
sse 13.7067 0.0547 8.2092 8.7564
std 0.1367 0.0506 0.1930 0.1948

The robot loses track at the beginning of the trajectory, which it passes through an
empty wall, and in the curve highlighted on 6.9.

64

(a) APE raw data. (b) APE map.

Figure 6.10: Low-texture scenario APE raw data and map.

(a) RPE translation part raw data. (b) RPE translation part map.

Figure 6.11: Low-texture scenario Relative Pose Error (RPE) translation part raw data
and map.

(a) RPE rotation part raw data. (b) RPE rotation part map.

Figure 6.12: Low-texture scenario Relative Pose Error (RPE) rotation raw data and map.

65

(a) RPE full raw data. (b) RPE full map.

Figure 6.13: Low-texture scenario Relative Pose Error (RPE) full raw data and map.

The RMSE error on APE and RPE shows that, for this test, the rotational error
had a greater influence on the absolute error than the translation part, as the peaks
demonstrated in 6.11a and 6.12a are higher for the rotation part. The higher rotational
error can be explained because monocular cameras have more difficulty to estimate the
deth, which affects the orientation. Moreover, in the low-texture scenario, the keypoints
are concentrated in the same direction, so the orientation calculation is compromised.

6.1.4 Dynamic scenario

Table 6.4 shows the results of this experiment. Figures 6.14, 6.15, 6.16 and 6.17 show the
analysis of APE, the translation and rotation parts of RPE, and the full RPE.

Table 6.4: Error results on the dynamic scenario.

Error
Metric

APE
(m)

RPE
translation

RPE
rotation

RPE
Full

max 0.8937 0.2227 1.1350 1.1483
mean 0.2804 0.0257 0.0905 0.1007

median 0.1842 0.0118 0.0368 0.0436
min 0.0234 0.0004 0.0005 0.0054
rmse 0.3602 0.0437 0.1762 0.1816
sse 26.9850 0.3956 6.4295 6.8251
std 0.2260 0.0353 0.1512 0.1511

In this simulation, the robot lost track for a time but was able to relocate itself and
detect the loop closure. The robot lost track in the sharp curves, represented in Figure
6.9.

The influence of the dynamic robot in the scene is evidenced by the accumulation of
errors, demonstrated by the higher SSE value, 26.98. This happens because the other

66

(a) APE raw data. (b) APE map.

Figure 6.14: Dynamic scenario APE raw data and map.

(a) RPE translation part raw data. (b) RPE translation part map.

Figure 6.15: Dynamic scenario Relative Pose Error (RPE) translation part raw data and
map.

robot keeps moving alongside the robot, so the accuracy is lost over time, and the error
accumulates faster.

An important point is the high value of SSE (sum of squared errors), and RMSE,
which is highly influenced by the maximum error, in this case 0.894m, and by the regions
where the errors are high, as evidenced in Figure 6.14b by the considerable number of
yellow and red regions, which represent areas of the highest errors, which impact this
metric.

The RMSE is also represented by the peaks in the RPE raw data graphs. Figure 6.17a
represents the full RPE analysis. In this graph, it is possible to notice multiple peaks,
demonstrating that in dynamic scenarios the algorithm has greater difficulty keeping
accuracy, accumulating more errors in the execution.

67

(a) RPE rotation part raw data. (b) RPE rotation part map.

Figure 6.16: Dynamic scenario Relative Pose Error (RPE) rotation raw data and map.

(a) RPE full raw data. (b) RPE full map.

Figure 6.17: Dynamic scenario Relative Pose Error (RPE) full raw data and map.

6.1.5 Performance analysis

After presenting the errors in each scenario, this subsection shows the comparison of the
ideal to each of the challenging scenarios and the comparison of each challenging scene to
highlight some important aspects of the ORB-SLAM3 algorithm that could be observed
using this workspace.

Table 6.5 shows the comparison of the ideal scenario with the low-light, low-textured,
and dynamic scenes, and Figure 6.18 shows the comparison of the error in each scenario.
From this comparison, the following points can be noticed:

• As expected, the ideal scenario has the lowest errors in general.

• The dynamic scene exhibited higher errors in most cases. This behavior can be
attributed to the presence of dynamic objects, which may introduce new features or

68

modify existing ones by occluding them, for example. This interference can impact
the algorithm’s performance and introduce additional errors.

• The SSE values exhibit significant variance. For instance, in the dynamic scenario,
the SSE was 107.52 times higher than in the ideal scenario. This variation is related
to the calculation method, where SSE represents the sum of squared differences
between each observed and predicted value. Consequently, a rapid increase in this
value occurs when there is a larger maximum error or when the algorithm loses its
track, as the higher errors tend to occur while the robot is relocating.

• The dynamic scenario was the only one that had a lower standard deviation value
compared to the ideal scenario. In other words, in this simulation, the errors tended
to be close to the mean, which means that the error was close to 0.280 during most
of the test. This fact is evidenced by the prevalence of regions in light blue tones
in Figure 6.14b, which shows the trajectory map, indicating areas where the error
remained close to the mean.

• Between the low-light and low-textured scenarios, the error analysis shows that the
algorithm had more difficult in the low-texture scenario. This is evidenced by the
comparison of the error map presented in Figures 6.5 and 6.10. In the low-textured
map, it is possible to see more red and light blue regions, which means regions where
the errors were higher. This fact can be explained by the ORB algorithm, as it uses
differences in pixel values to determine the features. In a low-textured scenario, the
difference in the pixel values is too low, so it is harder to identify the features and
keep the track, while in a low-light scenario, even if the pixels have lower values
(near to 0 for RGB), the difference between the textures still exists.

• The higher errors and lost tracking happened when the robot was navigating sharp
curves. This happens because the scenario changes a lot, and so the features also
change. One way to mitigate this error is to navigate these curves more slowly, so
that the frames are less distinct from each other, and the system can maintain the
track.

Table 6.5: Comparison between the ideal scenario and the challenging scenarios.

APE Low light / Ideal Low texture / Ideal Dynamic / Ideal
max 2.182 1,700 2.351
mean 1.638 2.172 2.374

median 1.713 2.379 1;919
min 2,104 1.200 1.123
rsme 1.689 2.101 2.602
sse 31.815 54.613 107.518
std 1.820 1.896 0.313

These results show that the workspace used to test the ORB-SLAM3 was important to
highlight some aspects that are observed in the literature. With simulation, it is possible

69

Figure 6.18: Lost trajectory on Low light scenario.

to manipulate and isolate variables to give an initial insight about the advantages and
limitations of visual SLAM, as well as to identify potential areas for further research.

6.2 TUM Datasets

6.2.1 f3-walking-xyz

The median of results obtained in the tests with the f3-walking-xyz on each iteration can
be found in Table 6.6.

Table 6.6: Errors on f3-walking-xyz.

Error
Metric

APE
(m)

RPE
translation

RPE
rotation

RPE
Full

max 0.0587 0.0614 0.0468 0.0659
mean 0.0145 0.0128 0.0089 0.0163

median 0.0137 0.0108 0.0076 0.0136
min 0.0019 0.0016 0.0011 0.0034
rmse 0.0174 0.0154 0.0108 0.0188
sse 0.0840 0.0689 0.0330 0.1000
std 0.0091 0.0085 0.0056 0.0092

The raw data for the absolute trajectory error and the comparison between the refer-
ence trajectory and the algorithm trajectory are in Figures 6.19. Figures 6.20, 6.21, 6.22
present the RPE for translation, rotation, and full parts. The full part considers both the
rotation and the translation elements to compute the error between the steps.

From the results on this dataset, it is possible to see that the modified version success-
fully executed the whole sequence without losing the track. It is evident in Figure 6.19,
which shows a trajectory very close to the ground truth trajectory.

70

(a) APE raw data. (b) APE map.

Figure 6.19: fr3-walking-xyz Absolute Pose Error (APE) raw data and map.

(a) RPE translation part raw data. (b) RPE translation part map.

Figure 6.20: fr3-walking-xyz Relative Pose Error (RPE) translation part raw data and
map.

The spikes in the relative pose error illustrated in Figures 6.20a, 6.21a, and 6.22a
represent the moments when the largest errors occur. These errors are evidenced on the
map figures, where the line is redder. In the map represented in Figure 6.22, it is possible
to see that the biggest errors occur in the movement through the z-axis.

This is expressed by the red color of the map in the area. At this moment of execution,
there are two people walking in the scene, so some features are constantly occluded by
the mask. The algorithm mask occludes some static features that were observed before,
so, the relative error between one step and the next will be higher, but even with this,
the pose and the trajectory error remained close to or below the standard error during
the most part of the timestamp.

71

(a) RPE rotation part raw data. (b) RPE rotation part map.

Figure 6.21: fr3-walking-xyz Relative Pose Error (RPE) rotation raw data and map.

(a) RPE full raw data. (b) RPE full map.

Figure 6.22: fr3-walking-xyz Relative Pose Error (RPE) full raw data and map.

6.2.2 f3-walking-halfsphere

Table 6.7 presents the APE and RPE errors results. The absolute pose error analysis is
presented in 6.23a and 6.23b.Figures 6.24 show the translation part of the RPE error,
while 6.25 show the rotation part. Finally, the full relative pose error and the absolute
trajectory error are illustrated in 6.26.

In this execution, the modified system successfully completed the entire sequence with-
out losing track. This dataset is challenging because the camera performs almost purely
rotational movements, as evidenced by the APE graph in Figure 6.23b.

In the results, it is possible to notice the high SSE value, 7.2303 m in the APE. This
value can be explained by the accumulation of errors at the end of the execution. This is
evident in Figure 6.23a, which shows an ascending error line.

72

Table 6.7: Errors on f3-walking-halfsphere.

Error
Metric

APE
(m)

RPE
translation

RPE
rotation

RPE
Full

max 0.2214 0.0798 0.0532 0.0959
mean 0.0962 0.0127 0.0102 0.0163

median 0.0892 0.0100 0.0090 0.0138
min 0.0380 0.0012 0.0009 0.0029
rmse 0.1355 0.0159 0.0120 0.0199
sse 7.2303 0.0852 0.0559 0.0754
std 0.0421 0.0093 0.0071 0.0105

(a) APE raw data. (b) APE map.

Figure 6.23: fr3-walking-halfsphere Absolute Pose Error (APE) raw data and map.

(a) RPE translation part raw data. (b) RPE translation part map.

Figure 6.24: fr3-walking-halfsphere Relative Pose Error (RPE) translation part raw data
and map.

The SSE represents the sum of the squares of the difference between the estimated
values and the real values. Thus, this value accumulates all the errors in the trajectory.

The ORB-SLAM3 adjustment can be affected by occlusion of static features during

73

(a) RPE rotation part raw data. (b) RPE rotation part map.

Figure 6.25: fr3-walking-halfsphere Relative Pose Error (RPE) rotation raw data and
map.

(a) RPE full raw data. (b) RPE full map.

Figure 6.26: fr3-walking-halfsphere Relative Pose Error (RPE) full raw data and map.

execution. Moreover, it is possible to notice that, even with the accumulation of APE
error, the system performed well in the RPE, showing that this method can mitigate the
influence of the dynamic objects in the scene.

The rotational part of the RPE shows multiple peaks at the end of the execution.
Although the values are not too high, they contribute to the high SSE. The RMSE takes
into account the number of samples. Since the error per step is low, the average error per
sample remains small.

6.2.3 f2-desk_with_person

Table 6.8 shows the results of this dataset. Figures 6.27a and 6.27b show the analysis of
the absolute pose error. The translational and rotational relative pose errors are exposed
in Figures 6.28, 6.29. The full relative pose error is represented by 6.30.

This experiment presented lower APE errors compared to the other datasets. This
happens because this dataset is static during almost all its execution. The idea of choosing

74

Table 6.8: Errors on f2-desk_with_person

Error
Metric

APE
(m)

RPE
translation

RPE
rotation

RPE
Full

max 0.0621 0.0671 0.1553 0.1664
mean 0.0049 0.0036 0.0073 0.0083

median 0.0042 0.0028 0.0051 0.0066
min 0.0006 0.0003 0.0009 0.0020
rmse 0.0069 0.0073 0.0171 0.0156
sse 0.0089 0.0104 0.0548 0.0659
std 0.0048 0.0064 0.0155 0.0162

(a) APE raw data. (b) APE map.

Figure 6.27: fr2-desk-with-person Absolute Pose Error (APE) raw data and map.

(a) RPE translation part raw data. (b) RPE translation part map.

Figure 6.28: fr2-desk-with-person Relative Pose Error (RPE) translation part raw data
and map.

75

(a) RPE rotation part raw data. (b) RPE rotation part map.

Figure 6.29: fr2-desk-with-person Relative Pose Error (RPE) rotation raw data and map.

(a) RPE full raw data. (b) RPE full map.

Figure 6.30: fr2-desk-with-person Relative Pose Error (RPE) full raw data and map.

this dataset is to check the robustness of the system in scenarios where the original ORB-
SLAM3 can perform well.

In both APE and RPE graphs, it is possible to notice a high peak at the end of the
execution. This peak happens when the dynamic person in the scene takes the objects
from an office desk and moves them.

In addition to the movement of considered static objects, in this part of the scene, the
person covers almost the entire camera view, so the mask occludes a great part of the
available features, contributing with the increase of the relative error between the steps.

Even with this limitation, the system successfully completed the task without los-
ing tacking and kept a low APE. This is evidenced by the low RPE during almost all
executions and the presence of few peaks.

76

6.3 Comparison with ORB-SLAM3

Table 6.9 shows the absolute pose error (APE) and 6.10, 6.11 present the relative pose error
(RPE) analysis for both translation and rotation compared to the original ORB-SLAM3.
The same ORB parameters were used in both the original and modified algorithms. Table
6.12 shows a comparison between the tracking time on the YOLO11-ORBSLAM3 version
and the original ORB-SLAM3.

APE represents the difference between the estimated trajectory and the ground-truth
trajectory, while RPE measures the difference between the estimated pose and the ground-
truth pose at each time step. Therefore, APE gives an overall measure of how accurately
the estimated trajectory matches the actual path taken, and RPE represents the accuracy
of individual pose estimation throughout the trajectory, showing the global consistency
of a trajectory. Figures 6.31, 6.32 and 6.33 show the trajectory and the RPE errors for
each dataset.

Table 6.9: APE comparison with ORB-SLAM3

Dataset APE
(m) YOLO11-ORBSLAM3 ORB-SLAM3 Improvement

(%)

f3-walking
-xyz

mean 0.0145 0.2415 1562.7
median 0.0137 0.2256 1543.1
rmse 0.0174 0.273 1465.0

f3-walking-
halfsphere

mean 0.0962 0.2367 146.0
median 0.0892 0.199 123.2
rmse 0.1355 0.2503 84.8

f2-desk
mean 0.0049 0.0129 163.5

median 0.0042 0.0122 188.8
rmse 0.0069 0.0139 102.4

Table 6.10: RPE translation comparison with ORB-SLAM3

Dataset
RPE

Translation
(m)

YOLO11-ORBSLAM3 ORB-SLAM3 Improvement
(%)

f3-walking
-xyz

mean 0.0128 0.0139 8.9
median 0.0108 0.0112 4.1
rmse 0.0154 0.0168 8.9

f3-walking-
halfsphere

mean 0.0127 0.0162 28.0
median 0.0100 0.0107 7.4
rmse 0.0159 0.0245 54.5

f2-desk
mean 0.0036 0.0053 46.2

median 0.0028 0.0043 54.3
rmse 0.0073 0.0066 -9.6

The results on APE show that the modified ORB-SLAM3 algorithm outperformed in
all datasets. The most significant improvement was observed on the f3-walking-xyz, as it

77

(a) APE Trajectory comparison in f3-walking-xyz.

(b) RPE Translation in f3-walking-xyz.

(c) RPE Rotation in f3-walking-xyz.

Figure 6.31: Comparison of ATE, APE Translation, and APE Rotation in the f3-walking-
xyz dataset.

78

(a) APE Trajectory comparison in f3-walking-halfsphere.

(b) RPE Translation in f3-walking-halfsphere.

(c) RPE Rotation in f3-walking-halfsphere.

Figure 6.32: Comparison of APE, RPE Translation, and RPE Rotation in the f3-walking-
halfsphere dataset.

79

(a) APE Trajectory comparison in f2-desk.

(b) RPE Translation in f2-desk.

(c) RPE Rotation in f2-desk.

Figure 6.33: Comparison of APE, RPE Translation, and RPE Rotation in the f2-desk
dataset.

80

Table 6.11: RPE rotation comparison with ORB-SLAM3

Dataset RPE
Rotation YOLO11-ORBSLAM3 ORB-SLAM3 Improvement

(%)

f3-walking
-xyz

mean 0.0089 0.0144 61.9
median 0.0076 0.0104 36.8
rmse 0.0108 0.0191 77.2

f3-walking-
halfsphere

mean 0.0102 0.0143 39.9
median 0.0090 0.0104 15.1
rmse 0.0120 0.0193 61.0

f2-desk
mean 0.0073 0.0085 24.8

median 0.0051 0.0069 37.4
rmse 0.0171 0.0101 -33.9

represents a high-dynamic scenario where both the camera and the people in the scene are
significantly moving. The proposed method also outperformed in f3-walking-halfsphere,
showing an improvement of 84.8% in the ATE metric. It is also possible to notice that the
horizontal line on the ORB-SLAM3 APE translation and rotation graphs represents the
moment that the algorithm lost the track. In this case, the timestamp of the Keyframes
does not match, so the graph shows this line.

On the f2-desk_with_person dataset, the modified version had better mean and me-
dian track errors, but the Root Mean Squared Error (RMSE) was 9, 6% worse compared
to the original algorithm on the translation part and 33, 9% in the rotation part. This
happens because some static objects are managed by the dynamic person in the scene,
and these objects are not considered dynamic at first. Furthermore, the person in this
dataset covers the object in the scene, so the number of features become limited in some
cases. This is evident on the peak of rotation and translation error on Figures 6.33c and
6.33b. In this part of the scene, the camera is passing behind the person and this person
is moving the objects in the desk from one side to another, so there are not many matches
in the images as the object is moving and the person is masked. But, even with this
limitation, the algorithm still outperformed in the absolute trajectory errors, showing a
robustness even in this limitation.

Table 6.12: Tracking time comparison with ORB-SLAM3

Dataset Tracking
Time (ms) YOLO11-ORBSLAM3 ORB-SLAM3

f3-walking
-xyz

mean 39.5558 24.3574
median 43,3208 25,7024

f3-walking-
halfsphere

mean 33.3335 21.8129
median 36.6412 25.7498

f2-desk mean 27.8885 23.1087
median 29.8398 22.8783

The results show that even with an increase on the tracking time, the system was still
capable to achieve real-time performance in most of cases, considering a 30FPS camera
as reference. The f3-walking-xyz had the higher computation time, as expected, as this is

81

the most dynamic dataset, so the instance segmentation and the object removal routine is
always executed. F2-desk dataset had the best tracking time, showing the robustness of
the latest YOLO11 version, as this was the dataset with more objects in the scene, such
as books, chairs, keyboards, mouse and monitors.

6.4 Comparison with other works

The interest in dynamic scenes has increased with the improvement of SLAM methods,
as dynamic environments cannot be avoided in robotic applications such as autonomous
vehicles, and SLAM systems must be robust in such scenarios. In this section, the results
obtained with the segmentation module presented using YOLO11 are compared with
other recent research in this area. The absolute pose error of f3-walking-xyz was used for
comparison, as it is the most commonly used dataset to test dynamic scenarios, and the
APE provides a comprehensive evaluation of the algorithms.

Table 6.13: APE comparison with recent works

SLAM method APE - RSME (m)
CS-SLAM(Guo et al., 2024) 0.0140

SEG-SLAM(Cong et al., 2024) 0.0141
DynaSLAM (Bescos et al., 2018) 0.0150
DFT-VSLAM (Cai et al., 2024) 0.0164

YOLO11-ORBSLAM3 0.0174
DSSLAM(Yu et al., 2018) 0.0247

USD-SLAM(Wang et al., 2024a) 0.0350
YoloV5(Wang and Du, 2024) 0.0530

CS-SLAM, which had the best result, uses the Cross-SegNet semantic segmentation
network to remove dynamic feature points and adds an auxiliary mask to save the mask
from the previous frame and compare it to the current mask to improve dynamic object
removal, but the work is not open source and does not include an analysis of tracking
time.

SEG-SLAM uses YOLOV5 to construct a fusion module for target detection and
semantic segmentation to identify and extract prior information for obviously and poten-
tially dynamic objects, and, despite its good ATE performance, the system cannot be
applied in real time.

DynaSLAM, which integrates ORB-SLAM2’s structure with dynamic object detection
modules using Mask R-CNN, has good accuracy performance, but this system lacks real-
time capability.

DFT-VSLAM uses YOLOV8 and an optical flow mask to identify and eliminate dy-
namic points, and the results show similar performance to the proposed method.

DS-SLAM adds a SegNet-based semantic segmentation to remove significant moving
objects in the scene, has a higher error in ATE analysis compared to this work, and
it lacks real-time performance. The method proposed in this work also outperformed
USD-SLAM and YOLOV5 fused with ORB-SLAM3. USD-SLAM uses the SegGPT seg-

82

mentation model to exclude moving object regions from tracking. YOLOV5 uses semantic
segmentation to remove dynamic objects in the scene.

With this comparison, the proposed work proves to be in agreement with recent re-
search and shows good tracking time performance.

6.5 Stereo camera validation

Table 6.14 shows the absolute pose error and the absolute trajectory error obtained in the
test with the real-world robot. Figures 6.34, 6.34b and 6.34c represent the trajectory com-
parison, the APE related to the translation and rotation, respectively. Table 6.15 provides
the comparison between the tracking time of the original and modified algorithms.

From the results, the translation and rotation parts of the absolute error had 60.1% of
improvement on the rotation part and 53.9% in the translation, nevertheless, the absolute
trajectory error was 15.5% higher than the original ORB-SLAM3.

This is explained because when dynamic objects are removed, the overall environment
has low texture, so the feature matching is worse, and the robot loses tracking. This loss
of tracking causes a significant error, which can be found in the peaks of RPE translation
and RPE rotation. These peaks increase the RMSE and the mean trajectory error.

In all tests, both original and modified, the robot loses the tracking for some time,
but all were capable of performing loop closure and complete the track. For the original
ORB-SLAM3, the robot loses its track in the beginning of the movement, as the ambient
has low texture and the robot does an abrupt movement, and in the end of the movement,
as it passes by a mirrored door and it performs a sharp curve. This is evident in the high
initial values on the ORB-SLAM3 RPE. The modified version had more problems in sharp
curves and in some object removals, as the environment has low texture.

It is possible to notice the dynamic people’s influence on the original ORB-SLAM3
by the peaks on the rotation and translation errors, that happens when the people walk
alongside with the robot. The better RPE performance of the modified method shows
that the system has a better local estimation of the position and rotation, as the RPE
measures the accuracy of the pose step by step, but the peaks of errors made the overall
trajectory accuracy reduce.

Another important consideration is that the errors were computed based on the inertial
visual odometry provided by the ZED framework, which can also contain inaccuracies.
One way to reduce this uncertainty would be to prepare a known trajectory by measuring
all the distances and orientations of the path that the robot will follow. This ground
truth trajectory would allow a more precise evaluation of the algorithm’s performance,
minimizing the influence of external errors.

Regarding the tracking time, presented in Table 6.15, it is possible to see that, although
the modified version increased the tracking time, the system was still capable of following
the camera movements, since this camera operates at a low frame rate. The modification
proposed in this work was capable of performing tracking at a rate of 19.38 FPS, while the
original performed tracking at 25.32 FPS. The increase in the time is expected because a
segmentation module was added to remove the dynamic features to improve the system’s

83

(a) Trajectory comparison.

(b) APE Translation comparison.

(c) APE Rotation comparison.

Figure 6.34: Comparison of trajectory, APE translation, and APE rotation for the real
robot dataset.

84

Table 6.14: Errors comparison with ORB-SLAM3

Error
metric YOLO11-ORBSLAM3 ORB-SLAM3 Improvement

(%)

RPE
Rotation

mean 0.0662 0.1080 63.1
median 0.0444 0.0706 60.1
rmse 0.1056 0.1584 49.6

RPE
Translaction

(m)

mean 0.1211 0.2162 78.4
median 0.0857 0.1317 53.9
rmse 0.1848 0.2959 60.2

APE
(m)

mean 0.4278 0.4101 -4.2
median 0.4602 0.3892 -15.5
rmse 0.4664 0.4449 -4.6

Table 6.15: Tracking time comparison with ORB-SLAM3

Tracking time (s) YOLO11-ORBSLAM3 ORB-SLAM3
mean 0.0563 0.0403

median 0.0516 0.0395

robustness in dynamic environments.

85

7 CONCLUSION

This work demonstrates an efficient approach to handling dynamic scenarios in Visual
SLAM systems by integrating YOLO11 instance segmentation into ORB-SLAM3. The
validation of the proposed solution in real environments and public datasets, in both
RGBD and stereo camera support, indicates significant improvements in trajectory accu-
racy and pose estimation compared to the original ORB-SLAM3 and other methods in
the literature. Furthermore, the solution maintained computational efficiency, achieving
real-time performance in various cases.

On RGBD mode, the experiments showed that the proposed solution could improve
the ORB-SLAM3 APE error in the f3-walking-xyz1465 dataset in 1465.0%. The results
were also expressive on the f3-walking-halfsphere and f2-desk dataset, which shows an
improvement of 84.8% and 102, 4% on the APE, respectively.

The comparison with recent works proves that the proposed solution is aligned with
recent works in this area. The modified version was better than DS-SLAM (Yu et al.,
2018), USD-SLAM (Wang et al., 2024a) and YOLOV5 fused with ORB-SLAM3 (Wang
and Du, 2024) . CS-SLAM (Guo et al., 2024), SEG-SLAM (Cong et al., 2024) and
DynaSLAM (Bescos et al., 2018) had better error results, but they cannot achieve real-
time performance.

The dataset with the best tracking time was the f2-desk, which performed at a speed of
29.84 ms per frame. This shows good performance of the YOLO11 segmentation module,
as this dataset contains more objects in the scene than the others.

In stereo mode, the experiment with the real robot platform shows that the system
could improve the RPE error in 53.9%. The absolute pose error was a little higher for the
modification because the trajectory was short and the dynamic object masks decreased
the overall texture of the scene. But even with this limitation, the system was able to
perform on real time.

In summary, the results prove the potential of using segmentation methods, such as
YOLO11 instance segmentation, to remove dynamic objects to enhance the robustness of
SLAM in complex scenarios. Despite the achieved improvements, challenges remain, such
as maintaining performance in scenes containing static and dynamic objects, as well as
the potential dynamic objects that are static.

For future work, comparison with other YOLO versions can be performed to verify
the performance improvements of this version. In addition, integration of IMU data is
planned to improve stability in low-texture scenarios and the system can also be extended
to support the monocular mode of ORB-SLAM3.

Optical flow methods can be integrated to determine which objects are moving and

86

remove them from the ORB-SLAM3 tracking. The major problem with these optical flow
methods is the high computation time.

Also, the semantic information provided by the instance segmentation can be used
to build a complete semantic map with the static objects’ position and shape. Dynamic
objects can be tracked using the YOLO object tracking module (Alif, 2024) to update
the map. This approach is particularly interesting for autonomous navigation systems to
avoid obstacles, for example.

In addition, this work also provides a ROS2 workspace to test Visual SLAM algorithms.
By evaluating this workspace using ORB-SLAM3, it is possible to check that the observed
behavior was aligned with the expected behavior on the literature review. The worst
scenario was the dynamic, and the best was the ideal, as expected.

It is possible to see that the SSE values had significant variance between the simulation
scenarios. This variance happened due to the SSE calculation, as it represents the sum
of squared differences between the expected and measured values. For this reason, when
the algorithm loses its track, the SSE error grows rapidly.

Between low-light and low-textured scenarios, the error analysis shows that the low
texture scenario had the higher errors. This is explained by the ORB feature detection
algorithm, as it is based on the differences in pixels values, which are lower in this scenario.

In future works, the model can be improved to handle more sensors and the gazebo
world can also be improved to test specific scenarios. Another branch of work involves
developing digital twins of robots to run realistic tests on autonomous navigation using
ROS2.

87

BIBLIOGRAPHY

Ros 2 bag command documentation. https://docs.ros.org/en/humble/
Tutorials/Beginner-CLI-Tools/Recording-And-Playing-Back-Data/
Recording-And-Playing-Back-Data.html.

Momina Liaqat Ali and Zhou Zhang. The yolo framework: A comprehensive review of
evolution, applications, and benchmarks in object detection. Computers, 13(12), 2024.
ISSN 2073-431X. doi: 10.3390/computers13120336. URL https://www.mdpi.com/
2073-431X/13/12/336.

Mujadded Al Rabbani Alif. Yolov11 for vehicle detection: Advancements, performance,
and applications in intelligent transportation systems. arXiv preprint arXiv:2410.22898,
2024.

Yi An, Zhuo Sun, Chao Zhang, Haifeng Yue, Yan Zhi, and Hongliang Xu. Visual-lidar slam
based on supervised hierarchical deep neural networks. In 2024 39th Youth Academic
Annual Conference of Chinese Association of Automation (YAC), pages 1371–1378.
IEEE, 2024.

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up ro-
bust features (surf). Computer Vision and Image Understanding, 110(3):346–359,
2008. ISSN 1077-3142. doi: https://doi.org/10.1016/j.cviu.2007.09.014. URL https:
//www.sciencedirect.com/science/article/pii/S1077314207001555. Similarity
Matching in Computer Vision and Multimedia.

Berta Bescos, José M Fácil, Javier Civera, and José Neira. Dynaslam: Tracking, mapping,
and inpainting in dynamic scenes. IEEE Robotics and Automation Letters, 3(4):4076–
4083, 2018.

P.J. Besl and Neil D. McKay. A method for registration of 3-d shapes. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992. doi: 10.1109/34.
121791.

Jean-Yves Bouguet. Cs231a: Computer vision, from 3d reconstruction to recognition -
camera models. Course Notes, 2019. Available online: https://web.stanford.edu/
class/cs231a/course_notes/01-camera-models.pdf.

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Recording-And-Playing-Back-Data/Recording-And-Playing-Back-Data.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Recording-And-Playing-Back-Data/Recording-And-Playing-Back-Data.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Recording-And-Playing-Back-Data/Recording-And-Playing-Back-Data.html
https://www.mdpi.com/2073-431X/13/12/336
https://www.mdpi.com/2073-431X/13/12/336
https://www.sciencedirect.com/science/article/pii/S1077314207001555
https://www.sciencedirect.com/science/article/pii/S1077314207001555
https://web.stanford.edu/class/cs231a/course_notes/01-camera-models.pdf
https://web.stanford.edu/class/cs231a/course_notes/01-camera-models.pdf

88

Dupeng Cai, Shijiang Li, Wenlu Qi, Kunkun Ding, Junlin Lu, Guangfeng Liu, and Zhuhua
Hu. Dft-vslam: A dynamic optical flow tracking vslam method. Journal of Intelligent
& Robotic Systems, 110(3):1–17, 2024.

Carlos Campos, Richard Elvira, Juan J Gómez Rodríguez, José MM Montiel, and Juan D
Tardós. Orb-slam3: An accurate open-source library for visual, visual–inertial, and
multimap slam. IEEE Transactions on Robotics, 37(6):1874–1890, 2021a.

Carlos Campos, Richard Elvira, Juan J Gómez Rodríguez, José MM Montiel, and Juan D
Tardós. Orb-slam3: An accurate open-source library for visual, visual–inertial, and
multimap slam. IEEE Transactions on Robotics, 37(6):1874–1890, 2021b.

Lu Chen, Gun Li, Weisi Xie, Jie Tan, Yang Li, Junfeng Pu, Lizhu Chen, Decheng Gan,
and Weimin Shi. A survey of computer vision detection, visual slam algorithms, and
their applications in energy-efficient autonomous systems. Energies (19961073), 17(20),
2024.

Peichao Cong, Jiaxing Li, Junjie Liu, Yixuan Xiao, and Xin Zhang. Seg-slam: Dynamic
indoor rgb-d visual slam integrating geometric and yolov5-based semantic information.
Sensors, 24(7), 2024. ISSN 1424-8220. doi: 10.3390/s24072102. URL https://www.
mdpi.com/1424-8220/24/7/2102.

Maarten de Backer, Wouter Jansen, Dennis Laurijssen, Ralph Simon, Walter Daems, and
Jan Steckel. Detecting and classifying bio-inspired artificial landmarks using in-air 3d
sonar. arXiv preprint arXiv:2308.05504, 2023.

ROS 2 Gazebo Plugins Documentation. Gazeboroscamera class. https:
//docs.ros.org/en/diamondback/api/gazebo_plugins/html/classgazebo_1_
1GazeboRosCamera.html, a.

ROS 2 Gazebo Plugins Documentation. Gazeborosimusensor class. https:
//docs.ros.org/en/ros2_packages/rolling/api/gazebo_plugins/generated/
classgazebo__plugins_1_1GazeboRosImuSensor.html, b.

ROS 2 Gazebo Plugins Documentation. Gazeboroslaser class. https://docs.ros.org/
en/diamondback/api/gazebo_plugins/html/group__GazeboRosLaser.html, c.

ROS 2 Gazebo Plugins Documentation. Gazeborosdiffdrive class. https:
//docs.ros.org/en/ros2_packages/rolling/api/gazebo_plugins/generated/
classgazebo__plugins_1_1GazeboRosDiffDrive.html, d.

Instituto Eldorado. Banner-home, 2025. URL https://example.com/Banner-home.png.

Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct monoc-
ular slam. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors,
Computer Vision – ECCV 2014, pages 834–849, Cham, 2014. Springer International
Publishing. ISBN 978-3-319-10605-2.

https://www.mdpi.com/1424-8220/24/7/2102
https://www.mdpi.com/1424-8220/24/7/2102
https://docs.ros.org/en/diamondback/api/gazebo_plugins/html/classgazebo_1_1GazeboRosCamera.html
https://docs.ros.org/en/diamondback/api/gazebo_plugins/html/classgazebo_1_1GazeboRosCamera.html
https://docs.ros.org/en/diamondback/api/gazebo_plugins/html/classgazebo_1_1GazeboRosCamera.html
https://docs.ros.org/en/ros2_packages/rolling/api/gazebo_plugins/generated/classgazebo__plugins_1_1GazeboRosImuSensor.html
https://docs.ros.org/en/ros2_packages/rolling/api/gazebo_plugins/generated/classgazebo__plugins_1_1GazeboRosImuSensor.html
https://docs.ros.org/en/ros2_packages/rolling/api/gazebo_plugins/generated/classgazebo__plugins_1_1GazeboRosImuSensor.html
https://docs.ros.org/en/diamondback/api/gazebo_plugins/html/group__GazeboRosLaser.html
https://docs.ros.org/en/diamondback/api/gazebo_plugins/html/group__GazeboRosLaser.html
https://docs.ros.org/en/ros2_packages/rolling/api/gazebo_plugins/generated/classgazebo__plugins_1_1GazeboRosDiffDrive.html
https://docs.ros.org/en/ros2_packages/rolling/api/gazebo_plugins/generated/classgazebo__plugins_1_1GazeboRosDiffDrive.html
https://docs.ros.org/en/ros2_packages/rolling/api/gazebo_plugins/generated/classgazebo__plugins_1_1GazeboRosDiffDrive.html
https://example.com/Banner-home.png

89

Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 40(3):611–625, 2018. doi:
10.1109/TPAMI.2017.2658577.

Reza Eyvazpour, Maryam Shoaran, and Ghader Karimian. Hardware implementa-
tion of SLAM algorithms: a survey on implementation approaches and platforms.
Artificial Intelligence Review, 56(7):6187–6239, July 2023. ISSN 1573-7462. doi:
10.1007/s10462-022-10310-5. URL https://doi.org/10.1007/s10462-022-10310-5.

Christian Forster, Zichao Zhang, Michael Gassner, Manuel Werlberger, and Davide Scara-
muzza. Svo: Semidirect visual odometry for monocular and multicamera systems. IEEE
Transactions on Robotics, 33(2):249–265, 2016.

X. Gao and T. Zhang. Introduction to slam. In Introduction to Visual SLAM: From
Theory to Practice. Springer Nature Singapore, 2021a.

Xiang Gao and Tao Zhang. Introduction to visual SLAM: from theory to practice. Springer
Nature, 2021b.

Michael Grupp. evo: Python package for the evaluation of odometry and slam. https:
//github.com/MichaelGrupp/evo, 2017.

Zhendong Guo, Na Dong, Zehui Zhang, Xiaoming Mai, and Donghui Li. Cs-slam: A
lightweight semantic slam method for dynamic scenarios. IEEE Transactions on Cog-
nitive and Developmental Systems, 2024.

S Hamad, Y H Ali, and S H Shaker. A survey of localization systems in the sea based on
new categories. Journal of Physics: Conference Series, 1530(1):012064, may 2020. doi:
10.1088/1742-6596/1530/1/012064. URL https://dx.doi.org/10.1088/1742-6596/
1530/1/012064.

Martin Holder, Sven Hellwig, and Hermann Winner. Real-time pose graph slam based
on radar. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages 1145–1151, 2019.
doi: 10.1109/IVS.2019.8813841.

Peiyuan Jiang, Daji Ergu, Fangyao Liu, Ying Cai, and Bo Ma. A review of yolo algorithm
developments. Procedia computer science, 199:1066–1073, 2022.

Iman Abaspur Kazerouni, Luke Fitzgerald, Gerard Dooly, and Daniel Toal. A survey of
state-of-the-art on visual slam. Expert Systems with Applications, 205:117734, 2022.

Alif Ridzuan Khairuddin, Mohamad Shukor Talib, and Habibollah Haron. Review on
simultaneous localization and mapping (slam). In 2015 IEEE International Conference
on Control System, Computing and Engineering (ICCSCE), pages 85–90, 2015. doi:
10.1109/ICCSCE.2015.7482163.

Rahima Khanam and Muhammad Hussain. Yolov11: An overview of the key architectural
enhancements. arXiv preprint arXiv:2410.17725, 2024.

https://doi.org/10.1007/s10462-022-10310-5
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo
https://dx.doi.org/10.1088/1742-6596/1530/1/012064
https://dx.doi.org/10.1088/1742-6596/1530/1/012064

90

Debasis Kumar and Naveed Muhammad. Object detection in adverse weather for au-
tonomous driving through data merging and yolov8. Sensors, 23(20):8471, 2023.

Jim Lawrence, Javier Bernal, and Christoph Witzgall. A purely algebraic justification
of the kabsch-umeyama algorithm. Journal of research of the National Institute of
Standards and Technology, 124:1, 2019.

Junwoon Lee, Ren Komatsu, Mitsuru Shinozaki, Toshihiro Kitajima, Hajime Asama,
Qi An, and Atsushi Yamashita. Switch-slam: Switching-based lidar-inertial-visual slam
for degenerate environments. IEEE Robotics and Automation Letters, 2024.

J.J. Leonard and H.F. Durrant-Whyte. Mobile robot localization by tracking geometric
beacons. IEEE Transactions on Robotics and Automation, 7(3):376–382, 1991. doi:
10.1109/70.88147.

Zhenbin Liu, Zengke Li, Ao Liu, Kefan Shao, Qiang Guo, and Chuanhao Wang. Lvi-fusion:
A robust lidar-visual-inertial slam scheme. Remote Sensing, 16(9):1524, 2024.

Daniel Louback da Silva Lubanco, Thomas Schlechter, Markus Pichler-Scheder, and Chris-
tian Kastl. Survey on radar odometry. In International Conference on Computer Aided
Systems Theory, pages 619–625. Springer, 2022.

David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60:91–110, 2004.

Tomás Lozano-Perez. Navigation (position and course estimation). In Autonomous robot
vehicles. Springer Science & Business Media, 2012.

Marius Muja and David G Lowe. Fast approximate nearest neighbors with automatic
algorithm configuration. VISAPP (1), 2(331-340):2, 2009.

Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam system for monoc-
ular, stereo, and rgb-d cameras. IEEE transactions on robotics, 33(5):1255–1262, 2017a.

Raúl Mur-Artal and Juan D Tardós. Visual-inertial monocular slam with map reuse.
IEEE Robotics and Automation Letters, 2(2):796–803, 2017b.

Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a versatile
and accurate monocular slam system. IEEE transactions on robotics, 31(5):1147–1163,
2015a.

Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a versatile
and accurate monocular slam system. IEEE transactions on robotics, 31(5):1147–1163,
2015b.

Richard A. Newcombe, Steven J. Lovegrove, and Andrew J. Davison. Dtam: Dense
tracking and mapping in real-time. In 2011 International Conference on Computer
Vision, pages 2320–2327, 2011. doi: 10.1109/ICCV.2011.6126513.

91

Bunch of Coders. basic bocbot: A simple robot implementation. https://github.com/
bunchofcoders/basic_bocbot, 2020. GitHub repository.

Qihao Peng, Xijun Zhao, Ruina Dang, and Zhiyu Xiang. Rwt-slam: Robust visual slam
for weakly textured environments. In 2024 IEEE Intelligent Vehicles Symposium (IV),
pages 913–919, 2024. doi: 10.1109/IV55156.2024.10588822.

J Redmon. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient
alternative to sift or surf. In 2011 International conference on computer vision, pages
2564–2571. Ieee, 2011.

Ali Rida Sahili, Saifeldin Hassan, Saber Muawiyah Sakhrieh, Jinane Mounsef, Noel
Maalouf, Bilal Arain, and Tarek Taha. A survey of visual slam methods. IEEE Access,
11:139643–139677, 2023. doi: 10.1109/ACCESS.2023.3341489.

Hauke Strasdat, JMM Montiel, and Andrew J Davison. Scale drift-aware large scale
monocular slam. In Robotics: Science and Systems, volume 2, page 5, 2010.

Hakan Temeltas and Demiz Kayak. Slam for robot navigation. IEEE Aerospace and
Electronic Systems Magazine, 23(12):16–19, 2008. doi: 10.1109/MAES.2008.4694832.

Konstantinos A. Tsintotas, Loukas Bampis, and Antonios Gasteratos. The revisiting
problem in simultaneous localization and mapping: A survey on visual loop closure
detection. IEEE Transactions on Intelligent Transportation Systems, 23(11):19929–
19953, 2022. doi: 10.1109/TITS.2022.3175656.

Steffen Urban, Jens Leitloff, and Stefan Hinz. Mlpnp - A real-time maximum likelihood
solution to the perspective-n-point problem. CoRR, abs/1607.08112, 2016. URL http:
//arxiv.org/abs/1607.08112.

Huibai Wang and Jingpeng Du. Orb-slam3 dynamic scene reconstruction based on fused
yolov5. In 2024 IEEE 7th Advanced Information Technology, Electronic and Automation
Control Conference (IAEAC), volume 7, pages 512–516. IEEE, 2024.

Jingwei Wang, Yizhang Ren, Zhiwei Li, Xiaoming Xie, Zilong Chen, Tianyu Shen, Huap-
ing Liu, and Kunfeng Wang. Usd-slam: A universal visual slam based on large seg-
mentation model in dynamic environments. IEEE Robotics and Automation Letters,
2024a.

Yinglong Wang, Xiaoxiong Liu, Minkun Zhao, and Xinlong Xu. Vis-slam: A real-time
dynamic slam algorithm based on the fusion of visual, inertial, and semantic informa-
tion. ISPRS International Journal of Geo-Information, 13(5), 2024b. ISSN 2220-9964.
doi: 10.3390/ijgi13050163. URL https://www.mdpi.com/2220-9964/13/5/163.

https://github.com/bunchofcoders/basic_bocbot
https://github.com/bunchofcoders/basic_bocbot
http://arxiv.org/abs/1607.08112
http://arxiv.org/abs/1607.08112
https://www.mdpi.com/2220-9964/13/5/163

92

Hongyu Xie, Dong Zhang, Jun Wang, MengChu Zhou, Zhengcai Cao, Xiaobo Hu, and
Abdullah Abusorrah. Semi-direct multimap slam system for real-time sparse 3-d map
reconstruction. IEEE Transactions on Instrumentation and Measurement, 72:1–13,
2023. doi: 10.1109/TIM.2023.3240206.

Rauf Yagfarov, Mikhail Ivanou, and Ilya Afanasyev. Map comparison of lidar-based 2d
slam algorithms using precise ground truth. In 2018 15th International Conference on
Control, Automation, Robotics and Vision (ICARCV), pages 1979–1983, 2018. doi:
10.1109/ICARCV.2018.8581131.

Teddy N. Yap and Christian R. Shelton. Slam in large indoor environments with low-
cost, noisy, and sparse sonars. In 2009 IEEE International Conference on Robotics and
Automation, pages 1395–1401, 2009. doi: 10.1109/ROBOT.2009.5152192.

Chao Yu, Zuxin Liu, Xin-Jun Liu, Fugui Xie, Yi Yang, Qi Wei, and Qiao Fei. Ds-slam: A
semantic visual slam towards dynamic environments. In 2018 IEEE/RSJ international
conference on intelligent robots and systems (IROS), pages 1168–1174. IEEE, 2018.

Rui Zang. Orb_slam3_ros2. https://github.com/zang09/ORB_SLAM3_ROS2, 2023.

Taohua Zhou, Mengmeng Yang, Kun Jiang, Henry Wong, and Diange Yang. Mmw radar-
based technologies in autonomous driving: A review. Sensors, 20(24):7283, 2020.

Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection
in 20 years: A survey. Proceedings of the IEEE, 111(3):257–276, 2023.

https://github.com/zang09/ORB_SLAM3_ROS2

	INTRODUCTION
	Objectives
	Research outline

	SIMULTANEOUS LOCALIZATION AND MAPPING
	SLAM
	Features of SLAM
	SLAM Concerns
	SLAM Sensors

	Visual SLAM
	Direct methods.
	Feature-based methods.
	Semantic methods

	ORB-SLAM3
	ORB feature
	Oriented-Fast Corners
	BRIEF Descriptors
	Feature Matching
	Camera pose estimation

	ORB-SLAM3 structure
	Dynamic problem
	ORB-SLAM3 Parameters
	Camera parameters
	ORB-SLAM3 Parameters

	YOLO
	Architecture
	YOLO Tasks
	Object detection
	Instance Segmentation

	PROPOSED SOLUTION
	Simulation workspace
	ROS2 and Gazebo environments
	Robot model
	Gazebo worlds
	Methodology

	Proposed solution
	Instance Segmentation Module

	Methodology
	Evaluation Criteria
	RGBD Camera
	Stereo Camera

	RESULTS
	Simulated Scenario
	Ideal scenario
	Low-light scenario
	Low-texture scenario
	Dynamic scenario
	Performance analysis

	TUM Datasets
	f3-walking-xyz
	f3-walking-halfsphere
	f2-desk_with_person

	Comparison with ORB-SLAM3
	Comparison with other works
	Stereo camera validation

	CONCLUSION
	BIBLIOGRAPHY

