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Abstract

Collective effects play an essential role in the stability of electrons in synchrotron
light sources, directly influencing the quality and reliability of the produced light. The
use of higher harmonic radiofrequency cavities has become a standard strategy in
fourth-generation synchrotrons to control these effects by modifying the longitudinal
potential-well that confines the electrons in bunches. This thesis focuses on the detailed
description of longitudinal collective effects in synchrotrons equipped with passive higher
harmonic cavities, where electromagnetic fields are driven by the electron beam itself.
Novel semi-analytical methods were developed to enable self-consistent calculations
of the longitudinal equilibrium state and the analysis of collective instabilities under
generic conditions. These methods were validated through macroparticle simulations,
comparisons with experimental data, and the reproduction of results from previous studies
as particular cases. The main motivation for this work was the Phase II of SIRIUS, the
fourth-generation synchrotron light source at the Brazilian Synchrotron Light Laboratory
(LNLS) in Campinas, Brazil. To achieve the nominal current of 350mA, the installation of
a higher harmonic cavity will be required to lengthen the electron bunches in the SIRIUS
storage ring. The theoretical and computational tools developed in this thesis supported
the studies of a third-harmonic superconducting cavity for SIRIUS. The results indicate
that the chosen harmonic cavity model will achieve the required bunch lengthening,
enabling stable operation of SIRIUS at 350mA, achieving the design parameters and
ensuring the high brightness of the synchrotron light.



Resumo

Efeitos coletivos desempenham um papel essencial na estabilidade dos elétrons
em fontes de luz síncrotron, influenciando diretamente a qualidade e a confiabilidade
da luz produzida. O uso de cavidades de harmônicos mais altos de radiofrequência
tornou-se uma estratégia padrão em síncrotrons de quarta geração para controlar
esses efeitos, alterando o poço de potencial longitudinal que confina os elétrons em
pacotes. Esta tese aborda a descrição detalhada de efeitos coletivos longitudinais em
síncrotrons equipados com cavidades passivas de harmônico mais alto, nas quais os
campos eletromagnéticos são gerados pelo próprio feixe de elétrons. Para isso, foram
desenvolvidos novos métodos semi-analíticos que permitem o cálculo auto-consistente
do estado de equilíbrio longitudinal e a análise de instabilidades coletivas em condições
genéricas. Esses métodos foram validados por meio de simulações de macropartículas,
comparativos com dados experimentais e obtenção de resultados de trabalhos precedentes
como casos particulares. A motivação central deste trabalho foi o estudo da Fase II do
SIRIUS, a fonte de luz síncrotron de quarta geração do Laboratório Nacional de Luz
Síncrotron (LNLS) em Campinas, Brasil. Para atingir a corrente nominal de 350mA,
será necessária a instalação de uma cavidade de harmônico mais alto para alongar os
pacotes de elétrons no anel de armazenamento do SIRIUS. As ferramentas teóricas e
computacionais desenvolvidas nesta tese forneceram suporte aos estudos de uma cavidade
supercondutora de terceiro harmônico para o SIRIUS. Os resultados obtidos indicam que
o modelo escolhido será capaz de alongar os pacotes de elétrons conforme necessário,
permitindo a operação estável do SIRIUS com 350mA, atingindo as especificações de
projeto e garantindo o alto brilho da luz síncrotron.



Glossary

ALBuMS Algorithms for Longitudinal MultiBunch Beam Stability.

3HC third-harmonic cavity.

BBR broadband resonator.

BPMs beam position monitors.

DFT discrete Fourier transform.

FD frequency-domain.

FFT fast Fourier transform.

FP flat potential.

HC harmonic cavity.

HHC higher harmonic cavity.

HOM higher order mode.

IBS intrabeam scattering.

ID Insertion device.

IDFT inverse discrete Fourier transform.

llrf low-level rf.

LMCI longitudinal mode-coupling instability.

LNLS Brazilian Synchrotron Light Laboratory.

MC main cavity.



NC normal-conducting.

NEG nonevaporable getter.

NFP near flat potential.

PI proportional-integral.

PTBL periodic transient beam loading.

SC superconducting.

SD space-domain.



Contents

Introduction 14

1 Fundamental concepts 19
1.1 Single-particle dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.1 Coordinates and equations of motion . . . . . . . . . . . . . . . . . 20
1.1.2 Action-angle variables . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.1.3 Single-rf system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 Wakes and impedances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2.1 Resonator model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3 Collective effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.1 Touschek effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.2 Vlasov equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3.3 Haïssinski equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.3.4 Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.3.5 Landau damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.4 Higher harmonic cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.4.1 Flat potential condition . . . . . . . . . . . . . . . . . . . . . . . . 42
1.4.2 Quartic potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2 Semi-analytical methods 50
2.1 Self-consistent calculation of equilibrium . . . . . . . . . . . . . . . . . . . 51
2.2 Instabilities with arbitrary rf potentials . . . . . . . . . . . . . . . . . . . . 52

3 Applications to SIRIUS 53
3.1 Basic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Harmonic cavity technology options . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Normal-conducting . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 Superconducting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Equilibrium parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 Collective stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



3.4.1 Harmonic cavity-induced instabilities . . . . . . . . . . . . . . . . . 64
3.4.2 Mitigation of instabilities . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Hybrid filling pattern and guard bunches . . . . . . . . . . . . . . . . . . . 66
3.6 Frequency detuning control . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.7 Mapping operation points . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Summary and conclusions 72

References 75

Appendices 86

A Article 1: Equilibrium with arbitrary impedances and filling patterns 88
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.2 Beam-induced voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.2.1 Space-domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.2.2 Frequency-domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.3 Active rf cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.3.1 Least squares minimization . . . . . . . . . . . . . . . . . . . . . . 98
A.3.2 Phasor compensation . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.3.3 Closed-loop impedance . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.4 Equilibrium bunch distributions . . . . . . . . . . . . . . . . . . . . . . . . 101
A.5 Applications for SIRIUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.5.1 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.5.2 Effect of llrf feedback . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.5.3 Broadband impedance . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.5.4 Touschek lifetime improvement with a 3HC . . . . . . . . . . . . . . 110

A.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.7 Limit case of uniform filling and passive narrowband resonator . . . . . . . 114

A.7.1 Frequency-domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.7.2 Space-domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B Article 2: Coupled-bunch instabilities with potential-well distortion 118
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
B.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.2.1 Venturini’s approach . . . . . . . . . . . . . . . . . . . . . . . . . . 124
B.2.2 Lebedev equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
B.2.3 Effective synchrotron frequency model . . . . . . . . . . . . . . . . 125
B.2.4 Gaussian longitudinal mode coupling . . . . . . . . . . . . . . . . . 126

B.3 The dispersion-relation for a narrowband resonator . . . . . . . . . . . . . 128



B.3.1 Dipole instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
B.3.2 Quadrupole instabilities . . . . . . . . . . . . . . . . . . . . . . . . 131

B.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
B.4.1 Robinson dipole-quadrupole mode coupling . . . . . . . . . . . . . . 133
B.4.2 PTBL/mode-1 instability . . . . . . . . . . . . . . . . . . . . . . . 134

B.5 Discussion on PTBL/mode-1 mechanism . . . . . . . . . . . . . . . . . . . 137
B.6 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
B.7 Effective impedance and wake function derivative . . . . . . . . . . . . . . 141
B.8 Approximate formulas for the PTBL/mode-1 threshold . . . . . . . . . . . 142

C Experiments: overstretched bunches at MAX IV 1.5GeV ring 145
C.1 Ring parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
C.2 Voltage calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

C.2.1 Main cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
C.2.2 Harmonic cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

C.3 Fitting harmonic voltages from streak-camera measurements . . . . . . . . 147
C.4 Lifetime optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
C.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Annex: List of Publications 152



14

Begin with an individual, and before you know it you find
that you have created a type; begin with a type, and you
find that you have created—nothing.

— F. Scott Fitzgerald, The Rich Boy

Introduction

Synchrotron storage rings

Relativistic charged particles radiate synchrotron light when subjected to centripetal
acceleration [1]. A synchrotron light source is a scientific facility that explores this
phenomenon to produce extremely bright light, which is used to study materials at
the atomic level. The wide range of multidisciplinary experimental techniques enabled
by synchrotron light makes it a powerful tool in various fields. In these facilities, an
ultrarelativistic electron beam is maintained under ultra-high vacuum conditions in a
stable orbit along a nearly circular storage ring, emitting synchrotron light that is directed
to experimental stations called beamlines.

In storage rings, magnetic fields are used to guide the electrons’ path, bending and
focusing their trajectory in the transverse directions—radial/horizontal and vertical. The
centripetal acceleration in the bending magnets and in the insertion devices (IDs) installed
in straight sections causes the electrons to emit synchrotron radiation, losing part of their
energy in each revolution. This energy loss is replenished by electric fields oscillating in
the radiofrequency (rf) range within resonant structures along the ring, called rf cavities.
The oscillating fields in rf cavities are synchronized with the electrons’ revolution around
the ring—hence the name synchrotron. The longitudinal electric fields, parallel to the
electrons’ path, also create a mechanism for longitudinal focusing, grouping the electrons
into bunches.

The current state-of-the-art synchrotron light sources employ 4th-generation storage
rings. With a multibend achromat magnetic lattice, these rings store electron beams with
ultralow emittances [2–4]. Low emittance corresponds to a beam with small transverse
dimensions and divergences—a highly focused and collimated light source. These properties
provide emitted photon beams with extremely high brightness and transverse coherence,
enabling researchers to explore light-matter interactions in the energy range from infrared
to hard X-rays to study a variety of materials [5–11]. Achieving ultralow emittance required
overcoming several challenges in accelerator physics and engineering [12–15].

In the accelerator physics field, the electromagnetic interactions between the electrons,
either by direct or environment-mediated mechanisms, are referred to as collective effects.
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Many aspects that allow 4th-generation storage rings to produce high-brightness synchrotron
light also make them prone to intense collective effects [16]. High-intensity electron beams
with small transverse dimensions and low energy spread, confined in vacuum chambers
with reduced transverse sections, require a detailed understanding of collective effects to
achieve the machine design parameters in practice. Uncontrolled collective effects can
degrade machine performance, for instance, leading to increased effective emittance and
energy spread, reduced beam lifetime, beam-induced heating of machine components,
limitations on maximum current, and other issues.

Collective effects are classified as incoherent or coherent, transverse or longitudinal,
and single-bunch or multibunch. Incoherent effects can be understood in terms of the
individual behavior of particles, such as intrabeam scattering (IBS) and the Touschek
effect, which are Coulomb scattering events between electrons within the same bunch,
therefore dependent on the bunch charge density. Coherent effects are mediated by
electromagnetic fields left behind as electrons pass through vacuum components. These
self-driven fields are called wakefields. Wakefields that decay within the bunch length
affect intrabunch behavior (single-bunch effects), while slow-decaying wakefields couple
the motion of multiple bunches (multibunch/coupled-bunch effects). These wakefields
can build up a positive feedback mechanism, leading to collective instabilities that may
deteriorate the quality of the produced synchrotron light or, more dramatically, lead to
beam losses.

Motivation for higher harmonic rf cavities

Bunches with high charge densities pose significant challenges for synchrotron light sources,
especially in 4th-generation storage rings. The bunch volume in phase space is determined
by the product of transverse emittances, energy spread, and bunch length. While reducing
charge density by lowering beam current or increasing transverse emittances would decrease
the photon beam brightness, increasing the bunch length is a more viable approach. Phase
modulation of the main rf system can achieve this [17,18], but it also increases the effective
energy spread, which negatively impacts the radiation from higher undulator harmonics.

An effective alternative is the use of higher harmonic cavities (HHCs), which operate
at a harmonic frequency of the main rf system [19–24]. By introducing an additional
rf voltage, HHCs modify the longitudinal rf potential, lengthening the bunches while
preserving transverse emittances and energy spread.

In a single-rf system, the longitudinal dynamics is approximately linear for small
amplitudes, with electrons executing harmonic oscillations around the equilibrium. The
HHCs in a double-rf system introduces nonlinearities, altering the longitudinal focusing.
This can result in either bunch shortening or bunch lengthening, depending on the
cavity setting. In hadron accelerators, HHCs have been used in both modes to enhance
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synchrotron frequency spread, aiming to stabilize the beam via the Landau damping
mechanism [25–30]. Consequently, HHCs have also been called Landau cavities [31, 32].

In synchrotron light sources, HHCs are used primarily for bunch lengthening to miti-
gate the issues of high bunch charge density1 while maintaining low emittance and energy
spread. Moreover, as for hadron machines, HHCs have been useful to cure instabilities in
synchrotron light sources [19, 21, 33].

The electromagnetic fields in HHCs can be excited by an external generator (active
mode), as is the case for main rf cavities, or by beam-induced wakefields (passive mode).
They can be constructed from either normal-conducting or superconducting materials. The
use of HHCs for bunch lengthening is now standard in 4th-generation storage rings [34],
ensuring that the design brightness, coherence, and beam lifetime can be achieved for high-
intensity, low-emittance beams. Recent efforts have explored active harmonic systems [35]
and alternative harmonic orders [36–39].

Outline of the thesis

SIRIUS is a 4th-generation synchrotron light source [40, 41], designed, built, and operated
by the Brazilian Synchrotron Light Laboratory (LNLS) in Campinas, Brazil. At the
time of writing of this thesis, SIRIUS is in Phase I of operation, delivering a 200mA

beam in top-up injection mode for beamline users since November 2024. Achieving this
current was only possible after upgrading the main rf system, replacing the temporary
normal-conducting cavity with two superconducting 500MHz rf cavities. To reach the
design current of 350mA and begin Phase II of operation, the installation of a HHC will
be necessary for bunch lengthening, mitigating impedance-induced heating in storage ring
components due to the higher beam intensity [42, 43].

The general goal of this PhD thesis is to study HHC-related collective effects, with
focus on the longitudinal plane and coupled-bunch instabilities. Throughout this process,
theoretical and semi-analytical computational methods were developed and applied to the
specific objective of studying and specifying a HHC for Phase II of the SIRIUS storage
ring. The two main contributions of the thesis involve semi-analytical methods to calculate
the equilibrium bunch distributions and longitudinal instabilities, which resulted in the
publications fully reproduced in the Appendices A and B.

This introduction chapter provided a brief overview of the research topics addressed
in the thesis. Below, the structure of the subsequent chapters is outlined.

Chapter 1. This chapter introduces the fundamental concepts relevant to the thesis.
It covers longitudinal single-particle dynamics in single-rf and double-rf systems, discusses

1Short bunches result in high charge densities, leading to increased intrabunch scattering, blown-up
equilibrium beam parameters, and reduced beam lifetime. Additionally, the power spectrum of short
bunches extends to high frequencies, which can couple to machine impedances, causing beam-induced
heating and collective instabilities. These topics are discussed in Chapter 1.



17

wake functions and impedances, and describe some incoherent and coherent collective
effects.

Chapter 2. This chapter provides a brief overview of the method for analyzing
collective effects with semi-analytical techniques, focusing on the study of equilibrium
and instabilities. The complete contributions were published as journal articles and are
reproduced in the Appendices A and B.

Chapter 3. This chapter presents the application of the developed framework to the
study of a passive HHC for the SIRIUS storage ring. The basic parameter requirements
for the HHC are discussed, including a comparison between normal and superconducting
cavities. Results for the specified third-harmonic passive HHC are presented, along with
specifications for amplitude and detuning stability control. An evaluation of longitudinal
instabilities is also included.

Chapter 4. The main contributions and conclusions of the thesis are summarized,
and future directions for research are addressed.

The relevant material published during the PhD period is included in the Appendices,
which are based on articles that compile the main contributions of this work. While this
structure allows each chapter to be read independently, it may result in some repetition
of topics. Each one of these appendices include introduction sections that present the
motivation for the study and relevant literature reviews, so certain details not covered in
this introduction are discussed later. The thesis is not intended to be self-contained and
references are provided for additional details where necessary.

Appendix A (published as Ref. [44]). This appendix presents a self-consistent
semi-analytical method for calculating the stationary beam-induced voltage in electron
storage rings, considering arbitrary filling patterns and impedance sources. The theory
is developed in both space and frequency domains, with benchmarking against SIRIUS
parameters and macroparticle tracking simulations. A new approach for simulating beam-
loading compensation in active rf cavities is explored in frequency domain, and the impact
of broadband impedance on longitudinal equilibrium is analyzed. Finally, a study on
Touschek lifetime improvement using a passive higher harmonic cavity is included.

Appendix B (submitted for publication as Ref. [45]). This appendix presents a
theoretical framework for analyzing longitudinal coupled-bunch instabilities in double-rf
systems with even filling patterns, incorporating potential-well distortion and multiple
azimuthal modes. The linearized Vlasov equation is solved in frequency domain, unifying
different formulations and recovering recent results as special cases. Applications to different
types of instability are discussed, with theoretical predictions matching experimental data.

Appendix C (conference proceeding published as Ref. [46]). In this appendix,
experiments carried out during the PhD are reported. Appendix C discusses the optimiza-
tion of Touschek lifetime with harmonic cavities (HCs) at the MAX IV 1.5GeV ring and
the benchmarking of the equilibrium solver developed in Appendix A (Ref. [44]) against
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experimental data.
For a comprehensive reading of this thesis, we recommend the following order:

Introduction, Chapter 1, Chapter 2, Appendix A, Appendix B, Chapter 3, and Chapter 4.
For comparisons with experimental results, we refer to Appendix C. The Annex includes a
list of publications produced during the PhD.

On AI-based writing tools

The use of AI-based writing tools in this thesis follows the guidelines of the American
Physical Society (APS), available at https://journals.aps.org/authors/ai-based-w
riting-tools.

During the preparation of this thesis, ChatGPT was used exclusively for language
refinement, grammar corrections, and fluency improvements. The scientific content, ideas,
analysis, code implementation, and conclusions presented in this work remain entirely the
author’s responsibility. Nevertheless, in accordance with recommended ethical guidelines,
the use of AI-based tools for textual improvements is acknowledged.

https://journals.aps.org/authors/ai-based-writing-tools
https://journals.aps.org/authors/ai-based-writing-tools
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At the heart of our problem—and I mean the problem of
the accelerator physicist—is the pernicious self-destructive
behavior of particle beams. What inherent flaw makes beams
destroy themselves?

— A. M. Sessler, Collective Phenomena in Accelerators [47]
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In this chapter we present the basic theoretical aspects that are necessary for the
next chapters. For in-depth discussions, the well-established references for accelerator
physics by M. Sands [48], H. Wiedemann [49], and collective effects by A. Chao [50] and
K. Ng [51] are recommended.

1.1 Single-particle dynamics

Consider a storage ring with nominal energy E0 and circumference C0. We assume
ultrarelativistic electrons, such that the Lorentz factor is γ = E0/m0c

2 ≫ 1 and β = v/c ≈
1, where c is the speed of light and m0 the electron rest mass. The relation between the
electrons’ energy and momentum is E0 ≈ p0c. We will denote the elementary charge as
e > 0. Electrons at the nominal energy complete a revolution within a period T0 = C0/c.
This period is related to the revolution frequency f0 = 1/T0 and ω0 = 2πf0.

The rf frequency in which the electric fields oscillate in the rf cavities is an integer
multiple of the revolution frequency, frf = hf0. The sinusoidal electric field integrated over
the transit time along the rf cavities results in an rf voltage, which is a function of the
electrons’ arrival time at the cavities. Consequently, the energy gain provided by the rf
cavities also depends on the arrival time. Consider an electron with the nominal energy E0

with zero net energy balance per turn: losing the energy U0 to synchrotron radiation and
gaining the same amount from the rf cavities. This electron is defined as the synchronous
particle.

In synchrotron light sources, it is standard to refer to the beam current circulating
in the storage ring instead of the number of electrons. The total beam current is given by
I0 = eNtotal/T0, where Ntotal is the total number of electrons.

1.1.1 Coordinates and equations of motion

The coordinate system in a storage ring is defined with respect to a reference orbit, defined
as the path followed by the synchronous particle in the perfect machine (without errors).
Figure 1.1 illustrates the reference system. The synchronous electron passing through
a bending magnet with constant magnetic field B⃗ = −B0ŷ will be deflected in a arc of
circle with radius given by ρ = E0

ecB0
. The quantity B0ρ = E0/ec is a property of the

electrons and called magnetic rigidity. The arc length s follows the trajectory of the
synchronous electron along the ring, which can be related to time by s = βct ≈ ct. The
transverse coordinates are defined by the horizontal x and vertical y deviations from
the reference orbit. We assume small deviations from the reference orbit, such that the
paraxial approximation can be made for the transverse momenta: px/p0 ≈ dx

ds
= x′ and

py/p0 ≈ dy
ds

= y′. The transverse dynamics is described in a four-dimensional space, with
the position-angle coordinates (x, x′, y, y′).
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Figure 1.1: Coordinate system for the storage ring. Adapted from [52].

The longitudinal coordinate z for an arbitrary electron is a dynamical variable defined
as the difference of its arc length relative to the one of the synchronous particle:

z(t) = ssync − s(t), (1.1)

where t is the wall-clock time. With this definition, for an electron behind the synchronous
particle the longitudinal coordinate is positive, z > 0. The coordinate can also be used in
time units simply by τ = z/c.

The other longitudinal coordinate conjugated to z is defined as the relative momentum
deviation with respect to the nominal momentum of the synchronous particle:

δ(t) =
p(t)− p0

p0
≈ E(t)− E0

E0

. (1.2)

The ultrarelativistic approximation E ≈ pc is considered for electron beams. In this way,
the variable δ is regarded as the relative energy deviation and this will be the meaning for
δ throughout the thesis. Therefore, the dynamical variables for the longitudinal dynamics
are defined by (z, δ).

Rigorously, the dynamics of electrons should be described in a six-dimensional space
(x, x′, y, y′, z, δ). In this thesis, we focus on the longitudinal plane. A common approach
is considering that what happens in the transverse plane has negligible impact on the
longitudinal, allowing the longitudinal motion to be described in the two-dimensional
space (z, δ). For the following analysis, the only relevant transverse-longitudinal coupling
is the dispersion function introduced by the bending magnets. Electrons with different
energies are deflected differently by the bending magnets, implying in different orbit lengths.
This dependence is captured by the momentum compaction factor α, a dimensionless
constant. Neglecting other transverse-longitudinal coupling mechanisms is justified in
general, since the longitudinal motion is related to energy oscillations of the electrons,
dependent on electric fields parallel to their motion, while the transverse motion depends
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on magnetic fields in the perpendicular directions that do not modify the electrons’ energy.
Moreover, the timescale of energy oscillations is orders of magnitude slower than transverse
oscillations.

We will now derive the equations of motion for the longitudinal plane. The relation
between the relative momentum deviation and the relative orbit length variation is [48, 49]:

∆C

C0

= α
∆p

p0
, (1.3)

where α is the momentum compaction factor. For the cases of interest here, α is a positive
number. The relativistic momentum is p = γm0βc, then the relation between the variations
in momentum ∆p and velocity ∆β is

∆β

β0
=

1

γ2
∆p

p0
. (1.4)

With the relation βc = C/T and the previous equations, we obtain

∆T

T0
=

(
α− 1

γ2

)
∆p

p0
. (1.5)

The term (α− 1/γ2) is called slip factor. For ultrarelativistic electrons, α ≫ 1/γ2 (above
transition energy) and the slip factor is approximately α. Consider a fixed s position in
the ring and an electron behind the synchronous particle with z > 0. For a positive energy
deviation, the orbit of this electron is lengthened, thus, after one turn, both its revolution
period ∆T > 0 and longitudinal position ∆z > 0 will increase. The two variations are
related by ∆T = ∆z/c.

The electrons only accumulate significant changes in energy after many turns in the
ring, thus we can assume the ∆z variation is infinitesimal within a revolution. This allows
the approximation ∆T

T0
= ∆z

C0
≈ dz

ds
. Altogether, these considerations applied to Eq. (1.5)

lead to the first equation of motion:

dz

ds
= αδ. (1.6)

The second equation of motion comes from the energy balance. The energy loss to
radiation depends on the electron energy. Over one turn, an electron radiates the energy
Urad(δ) and gains eV (z) from the rf cavity. Normalizing this balance by E0C0 and applying
the same consideration of infinitesimal variations, we get:

dδ

ds
=
eV (z)− Urad(δ)

E0C0

. (1.7)

Equations (1.6) and (1.7) are the two equations of motion for the longitudinal dynamics.
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The equations of motion combined with the scheme in Fig. (1.2) are helpful for
explaining the phase stability mechanism, a fundamental working principle for synchrotrons.
As an approximation, assume that Urad(δ) ≈ U0. The synchronous particle satisfies
eV (0) = U0. Consider a negative derivative of the rf voltage around the synchronous
particle1. Electrons with δ > 0 have a lengthened orbit, thus arriving later at the rf cavity
with z > 0. As the V (z) derivative is negative, this implies that eV (z) < U0: a negative
energy balance that reduces the excess of energy. The opposite occurs for electrons with
δ < 0, leading to a positive energy balance that also push electrons towards the δ = 0

condition. Therefore, the rf voltage derivative acts as a restoring force, focusing the
perturbed electrons to the equilibrium fixed-point defined by the synchronous particle.
From this analysis it is obvious that a positive derivative of the rf voltage works as a
defocusing mechanism.

RF

(a) Energy-dependent orbits. (b) Longitudinal focusing.

Figure 1.2: Phase stability mechanism in synchrotrons.

Under the assumption that Urad(δ) ≈ U0 (neglecting radiation damping), the equa-
tions of motions can be derived from the stationary Hamiltonian:

H =
αδ2

2
+ Φ(z), (1.8)

with the definition of rf potential:

Φ(z) = − 1

E0C0

∫ z

0

dz′ [eV (z′)− U0]. (1.9)

The rf voltage V (z) oscillates h times within a revolution period. Then, V (z+nλrf) =

V (z) for n = 0, . . . , h− 1, where λrf is the rf wavelength such that λrffrf = c. By the rf
periodicity, the condition eV (0) = U0 is satisfied 2h times for each turn, but the derivative
of V (z) is negative for only half of these points. This means the harmonic number h is the

1Recalling we refer to the α > 0 case and electrons above the transition energy. For α < 0 or particles
below the transition energy, all signs must be reversed in the argumentation.
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amount of synchronous stable regions (named rf buckets) along the ring where electrons
can be grouped in bunches. The total beam current I0 is the sum of the stored current in
each bunch.

It is possible to determine by the injection instant in which rf bucket the electrons
will be stored in the ring. If all buckets are filled with the same charge, this is referred to as
uniform filling pattern. Empty buckets (gaps) might be required to counter some instability
issues in the storage ring or to allow for time-resolved experiments in the beamlines.

1.1.2 Action-angle variables

The coordinates (z, δ) and (J, φ) are related by canonical transformation. The action
variable is a constant of motion, calculated by the momentum integrated in a phase space
cycle:

J =
1

2π

∮
dz δ(z). (1.10)

With Eq. (1.8), consider a fixed “energy” H0, in the sense of Hamiltonian dynamics,
such that H0 = αδ2/2 + Φ0(z). In general, we have

δ(z) = ±
√

2

α
[H0 − Φ0(z)]. (1.11)

Consider that the potential Φ0(z) has a single minimum, with two turning points (left zL
and right zR) corresponding to δ = 0, that can be obtained by finding the two roots of
H0 − Φ0(z) = 0. When δ > 0, the integration in Eq. (1.10) is from zL → zR and when
δ < 0 it is reversed zR → zL, thus the signal of the integral is always positive. Combining
this, the action is calculated as:

J =

√
2

απ2

∫ zR

zL

dz
√
H0 − Φ0(z). (1.12)

The equations of motion in action-angle coordinates are simply

dJ

ds
= −∂H0

∂φ
= 0, (1.13)

dφ

ds
=
∂H0

∂J
=
ωs(J)

c
. (1.14)

Since J is a constant of motion, then ∂H0

∂φ
= 0 and H0 depends only on the action.

The oscillation frequency ωs(J) is also action-dependent in general, a characteristic
of nonlinear dynamics. The frequency can be computed by ωs(J) = c∂H0

∂J
. Alternatively,
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the oscillation period can be calculated by

Ts(J) =

√
2

αc2

∫ zR

zL

dz√
H0(J)− Φ0(z)

, (1.15)

and then the frequency is ωs(J) = 2π/Ts(J).

1.1.3 Single-rf system

For small amplitudes, the rf voltage can be linearized around z = 0. Using eV (0) = U0, we
have eV (z) ≈ U0 + eV ′(0)z. Moreover, the dependence of the energy loss on the electron
energy can be linearized around the nominal energy δ = 0, obtaining Urad(δ) ≈ U0+U

′
rad(0)δ.

Applying these approximations to Eq. (1.7) and combining with Eq. (1.6), with s = ct, we
obtain the equation for a damped harmonic oscillator:

d2z

dt2
+ 2αz

dz

dt
+ ω2

s0z = 0, (1.16)

αz =
1

2E0T0

dUrad

dδ

∣∣∣∣
δ=0

, (1.17)

ω2
s0 = − αe

E0T0

dV

dz

∣∣∣∣
z=0

, (1.18)

where αz is the longitudinal radiation damping rate and ωs0 the single-rf synchrotron
frequency. Note that an oscillatory solution with ωs0 ∈ R is obtained only for V ′(0) < 0, in
accordance with the discussion from §1.1.1. The longitudinal motion is much slower than
the transverse. During one synchrotron cycle, the electrons complete hundreds of turns in
the ring. The synchrotron tune, defined as νs = ωs/ω0, is typically on the order of 10−3.

Under the small amplitude approximation and neglecting radiation damping, we
can show that the rf potential for a single-rf system is quadratic Φ(z) ≈ ω2

s0

αc2
z2

2
, and the

canonical transformation is given by:

z =

√
2αcJ

ωs0
cos(φ), (1.19)

δ = −
√

2ωs0J

αc
sin(φ). (1.20)

The longitudinal Hamiltonian is
H =

ωs0
c
J. (1.21)

This shows that, for small amplitudes, the longitudinal Hamiltonian is also invariant, with
the longitudinal motion drawing ellipses in the phase space (z, δ).

Note that the fundamental physical property that higher energy particles emit more
radiation, i.e., U ′

rad(0) > 0, is responsible for the term αz being positive, corresponding
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to a damping rate. When damping is considered, the Hamiltonian is no longer an
invariant and the motion is represented in the phase space by lines spiraling inwards to
the synchronous fixed-point. Additionally, the radiation emission is a stochastic event
that excites synchrotron oscillations [48, 49]. In the equilibrium state, the excitation and
damping rates are balanced, resulting in a distribution of electrons with finite energy
spread σδ and bunch length σz that we will address in §1.3.3.

For a storage ring with only main rf cavities, the rf voltage is modeled as:

V (z) = V̂rf sin(ωrfz/c+ ϕs), (1.22)

where V̂rf is the gap voltage, ωrf = hω0 the rf angular frequency and ϕs the synchronous
phase. From the synchronous particle condition, this phase is

ϕs = π − arcsin

(
U0

eV̂rf

)
, (1.23)

already considering the second quadrant, such that V ′(0) = (ωrf/c)V̂rf cos(ϕs) < 0. The
ratio

q =
eV̂rf
U0

, (1.24)

is known as overvoltage, which must be greater than one for stability.
With a sinusoidal rf voltage, the longitudinal dynamics is equivalent to the dynamics

of a simple pendulum. The region for confined motion is limited by a separatrix in the
phase space (z, δ), that defines the rf bucket. The maximum energy deviation δ within the
rf bucket is called rf energy acceptance, given by:

δrfacc =

[
eV̂rf

παhE0

F (q)

q

]1/2
, (1.25)

F (q) = 2
[√

q2 − 1− arccos(1/q)
]
. (1.26)

Thus, the overvoltage is determinant for the rf energy acceptance. Since F (q) ≈ 2q − π

for q ≫ 1, in the limit of large q the energy acceptance scales with the square root of the
rf voltage.

The rf energy acceptance is one contribution to the total energy acceptance. With
higher-order elements in the magnetic lattice, such as sextupoles, the transverse dynamics
is nonlinear. This implies that there is also a contribution of the magnetic lattice to the
energy acceptance, because the nonlinear dynamics might be unstable for electrons with
energy deviations above certain values. Therefore, total energy acceptance typically vary
along the storage ring and is determined by min

(
δrfacc, δ

lattice
acc

)
. Normally, the rf voltage

used in operation is high enough such that the lattice energy acceptance is the limiting
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factor for most of the relevant points in the ring. The rf and lattice energy acceptances for
one sector of SIRIUS storage ring is presented in Fig. 3.1(a) from Chapter 3.

For large oscillation amplitudes, the nonlinear contribution from the sinusoidal rf
voltage becomes important. Let zmax be the maximum longitudinal amplitude, and for
simplicity, we will write the maximum deviation as a phase with ϕmax = ωrfzmax/c. The
amplitude-dependent synchrotron frequency in a single-rf system is given by [51]:

ωs(ϕmax) =
π

2

ωs0

K
(
sin ϕmax

2

) , (1.27)

where K(k) is the complete elliptic integral of first kind:

K(k) =

∫ π/2

0

dθ√
1− k2 sin2(θ)

. (1.28)

For short-bunches sin(ϕmax/2) ≈ ϕmax/2 and K(k) ≈ π
2

(
1 + k2

4

)
for k ≪ 1, then:

ωs(ϕmax) ≈ ωs0

(
1− ϕ2

max

16

)
. (1.29)

With this we see that for short-bunches in a single-rf system, the synchrotron frequency
decreases with amplitude. Besides, the bunch area in the longitudinal phase space is often
much smaller than the rf bucket, so most of the electrons are executing small-amplitude
synchrotron oscillations and very few are sampling the nonlinear part of the rf voltage.
This implies that the intrabunch synchrotron frequency spread in single-rf systems is
typically small. As we will discuss soon, beam stabilization by Landau damping requires
sufficient incoherent frequency spread. To increase this spread, the nonlinearity of the
longitudinal potential must be enhanced, which can be achieved by introducing HHCs,
thus having a double-rf system.

Before discussing the modifications in the longitudinal dynamics due HHCs in a
double-rf system, it will be more convenient to introduce some important concepts for
collective effects.

1.2 Wakes and impedances

We briefly introduce the definitions and concepts of wake functions and impedances used
throughout this thesis. For derivations from first principles and thoughtful discussions
on this topic, we recommend the books [50, 51] and the thesis [43]. We will focus on the
longitudinal plane.

Consider an electron moving with velocity v ≈ c along the ring. Due to discontinuities
and the finite resistivity of the vacuum chamber, electrons leave electromagnetic fields
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(wakefields) behind their path. We refer to this electron as the source particle. A witness
electron moving behind the source particle from a distance z will experience the wakefields.
Two important approximations are made: (i) the beam is rigid such that source and witness
particles move along parallel straight lines with the same velocity and their distance z
is unchanged when the wakefields are excited; (ii) the wakefields change the momentum
of the witness particle as an impulse. These assumptions are typically called rigid beam
and impulse approximations, considerably simplifying the mathematical description of
wakefields effects.

The longitudinal wake function, denoted by W∥(z), is defined as the total longitudinal
momentum variation of a witness particle induced by wakefields from a source particle, both
with unity charge and separated by z. With the impulse approximation, the function can
be calculated by integrating the longitudinal electric field within the limits t ∈ (−∞,∞).
The assumption that particles travel at the speed of light implies there are no wakefields
ahead of the source particle, thus W∥(z) = 0 for z < 0. This is often referred to as
causality condition. W∥(z) is a real function, interpreted as the impulse response of the
beam surroundings. We can use z = cτ to write wake functions in terms of the time delay
between source and witness particles.

The wake function is a time-domain description of the interactions of particles in a
storage ring. A frequency-domain description can be done with the longitudinal impedance,
defined as the Fourier transform of the wake function:

Z∥(ω) =

∫ ∞

−∞
dz W∥(z)e

iωz/c. (1.30)

Naturally, the wake function is the inverse Fourier transform of the impedance:

W∥(z) =
1

2π

∫ ∞

−∞
dω Z∥(ω)e

−iωz/c. (1.31)

Z∥(ω) is a complex function, in general. Since W∥(z) is a real function, the impedance
must be Hermitian, Z∗

∥(ω) = Z∥(−ω). The impedance can be interpreted as the transfer
function from the beam current to the wake-induced voltage.

The total wake voltage induced by several electrons can be calculated as the sum
of the contributions of each electron, due to linearity. Considering the continuous limit
that the electrons within a bunch follow the longitudinal distribution λb(z) (normalized to
unity), the wake voltage induced by this bunch is given by:

Vwake(z;λ) = −IbT0
∫ ∞

−∞
dz′ λb(z

′)W∥(z − z′), (1.32)

where Ib = eNe/T0 is the current in the bunch, with Ne denoting the number of electrons.
The negative sign is to account for the wake voltage as an energy loss. Equation (1.32) is
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the wake voltage induced by a single bunch in one turn. It is the convolution of the bunch
distribution and the wake function. In §A.2, we will derive the general case for the wake
voltage for many turns and many bunches.

In the frequency-domain, Eq. (1.32) is

Vwake(ω; λ̂) = −Ibλ̂b(ω)Z∥(ω), (1.33)

where λ̂b(ω) is the Fourier transform of the bunch distribution λb(z). Since Eq. (1.33) has
the format of V = I · Z, referring to Z∥(ω) as impedance is justified.

1.2.1 Resonator model

Analytical models can be used to represent the impedance of some structures and compo-
nents of the storage ring. A very useful model is the resonator:

Z∥(ω) =
Rs

1 + iQ
(
ωr

ω
− ω

ωr

) , (1.34)

where Rs is the shunt impedance, Q is the quality factor and ωr is the resonant angular
frequency. At resonance, this impedance is purely real, Z∥(ωr) = Rs. The Q factor
determines the resonance bandwidth, which is ωr/Q. Therefore, high Q≫ 1 correspond to
resonators with a narrow bandwidth, referred to as narrowband resonators. A broadband
resonator is represented by low Q values, on the order of Q ≈ 1.

The longitudinal wake function for a resonator is given by:

W∥(z) =


2αrRse

−αrz/c
[
cos(ω̄Rz/c)− αr

ω̄R
sin(ω̄Rz/c)

]
for z > 0,

αrRs for z = 0,

0 for z < 0,

(1.35)

where αr = ωr/2Q is the resonator damping rate and ω̄R =
√
ω2
r − α2

r . Note that to have
ω̄R ∈ R, Q must be greater than 1/2.

With the time-domain description, we see that narrowband resonators correspond to
structures that maintain wakefields trapped for long periods, while in broadband resonators
the fields decay faster.

The resonator model will be sufficient for this thesis; however, many other analytical
impedance models exist and can be found in books [50, 51, 53, 54].
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1.3 Collective effects

In each bunch in a storage ring there are typically more than 109 particles. Describing the
individual motion of all particles is not only impractical but also unnecessary for obtaining
an accurate physical description of the collective behavior of the beam. Particle tracking
simulation is an approach used to analyze collective effects by studying the time evolution
of macroparticles, which represent many real particles. The effects of wakefields on the
dynamics of each macroparticle can be incorporated with relatively few approximations,
enabling the simulation of complex phenomena that might be analytically intractable.

However, since we are often interested in the long-term behavior of the beam, tracking
simulations can be a time-consuming approach, even with currently available computational
power. Additionally, interpreting the physical results from tracking simulations can be
challenging in some cases. Analytical and semi-analytical methods for modeling collective
effects are often more useful for developing a physical understanding of the phenomena.
Moreover, the computational load required to obtain results from these methods is much
lighter compared to tracking.

In this section, we will discuss some incoherent and coherent collective effects that
are relevant to this thesis.

1.3.1 Touschek effect

Electrons within the same bunch in a storage ring interact via Coulomb scattering. After
the scattering event, the momentum of the electrons can significantly change. A particularly
important effect is when two electrons are scattered and transverse momentum is transferred
to longitudinal momentum, therefore inducing energy deviations of opposite signs to both
particles. When the energy deviation is large enough2 to surpass the energy acceptance of
the ring, the scattered electrons are lost. This is the mechanism of the Touschek effect,
described by Bruno Touschek in 1963 [55]. The scattering between electrons and residual
gas molecules in the vacuum chamber also results in electron losses, by mechanisms that
will not be detailed here but can be studied in Ref. [49]. These electron losses imply that
the total beam current in a storage ring decrease over time even with a stable beam. The
inverse of the current loss rate normalized to current is called beam lifetime.

The Touschek effect is the dominant mechanism of beam lifetime in 4th-generation
synchrotron light sources. Its contribution is referred to as Touschek lifetime. The
combination of high bunch charge densities and ultra-high vacuum conditions achieved in
modern synchrotrons makes Touschek scattering events much more frequent and intense

2For ultrarelativistic electrons in a storage ring, the transverse momenta are much smaller than the
longitudinal momentum and the transverse velocities might not even be relativistic. Even so, when
transverse momentum variations are transferred to the longitudinal plane, where the electron is moving
close to the speed of the light, the variation is boosted by the γ factor, which may imply in a large energy
deviation.
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than electron-gas scattering.
There is also a probability that the momentum variation after Coulomb scattering is

insufficient for the particles to exceed the ring acceptance. Such scattering events might
occur several times, introducing a stochastic effect that excites the electrons’ oscillation
amplitudes in both transverse and longitudinal planes. The additional excitation leads
the bunches to a different equilibrium state, with increased transverse emittances, energy
spread and bunch length. This internal multiple collision process is called intrabeam
scattering (IBS), an effect that “heats” the beam equilibrium parameters, and it is also
dependent on the bunch charge density. Details on IBS theory will not be addressed in
this thesis; the review paper [56] is recommended for detailed derivations, discussions and
further references.

The Touschek effect and IBS are incoherent collective effects, not related to self-
driven wakefields of the beam, but dependent on the beam properties such as the bunch
charge density and the storage ring parameters such as the energy, optics functions and
acceptances.

The first theoretical calculations of the Touschek lifetime considered the particular
case such that, in the center of mass reference frame, the velocities of the two colliding
particles are non-relativistic. The theory was generalized for the relativistic case, arbitrary
energies and with the inclusion of the dispersion function. These theories considered a “flat
beam” in the transverse plane, only accounting for transference of horizontal momentum
to the longitudinal one, so the vertical momentum contribution was neglected. Another
limit case with round beam was derived, with full-coupling between horizontal and vertical
betatron oscillations.

A general theory was developed by Piwinski [57], dealing with the horizontal and
vertical planes on equal footing (dispersion functions included). Moreover, the theory
account for variations (derivatives) of linear optics functions. The calculation process
involves computing the number of collisions between two electrons in the center of mass
reference frame, using the Møller scattering cross-section3. The result is transformed to
the laboratory reference frame to evaluate momentum variations that exceed the energy
acceptance and lead to electron losses. Gaussian distributions are assumed for the six
coordinates (x, x′, y, y′, z, δ) to compute average values. All these steps can be found in
the detailed derivation of Piwinski’s work [57] and will not be reproduced here.

The calculations of Touschek lifetime using the “flat beam” approximation [61] and
with the generalized theory from Piwinski [57] were implemented in the open-source code
pyaccel [62]. The results from these lifetime calculations were compared with experimental

3Piwinski neglected the spin contribution to the Møller scattering cross-section, calculating the Touschek
lifetime for unpolarized electron beams. It is known that the electrons’ spin in a storage ring becomes
polarized by the Sokolov-Ternov effect [58] and that Touschek scattering rates are reduced for polarized
beams. The Touschek lifetime increase due to spin polarization can be significant and measurable, but
this effect will not be relevant for this thesis. For more details, see Refs. [59, 60] and their references.
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data from SIRIUS storage ring, reported in Ref. [63].
We will just briefly discuss important scaling dependence of the Touschek lifetime.

The loss rate due Touschek effect can be generally written as [23, 57]:

dNb

dt
= P

∫
V

dV Ψ2(V ) (1.36)

where P represents the probability of electrons being scattered beyond the energy accep-
tance, V is a six-dimensional volume of the coordinates (x, x′, y, y′, z, δ) and Ψ(V ) is the
volume charge distribution of the bunch. The Touschek lifetime is inversely proportional
to the loss rate: τ−1

Touschek ∝ dNb

dt
.

It is often a valid approximation to consider that the bunch distribution is separable,
so integrations of each volume component can be done independently [57]. This property
is useful to evaluate relative variations of the Touschek lifetime, specially when only few
parameters are modified. Moreover, the loss probability depends on the energy acceptance
of the ring as P ∝ 1/δ2acc.

In general terms, the Touschek lifetime increases with the energy acceptance and
decreases with the bunch charge density. For Gaussian bunches, a useful approximate
scaling law4 for the Touschek lifetime can be written as [59]:

τTouschek ∝ σzδ
3
acc

√
ϵxϵy

Ib
. (1.37)

As mentioned in the Introduction, for a synchrotron light source it is important
that the quantities ϵx, ϵy and Ib are maintained as close as possible to the design values,
since they directly affect the brightness and transverse coherence of the synchrotron
radiation. In most cases, the energy acceptance δacc is limited by the lattice acceptance,
which is often not so flexible to be increased in an operating machine (although some
heuristic optimizations can be performed, with parameters affecting brightness maintained
as constraints). Therefore, the longitudinal charge density (consequently the bunch length
σz) is the parameter chosen to be modified for Touschek lifetime improvement.

1.3.2 Vlasov equation

For conservative systems under the influence of electromagnetic fields, the time evolution
of the charge distribution in the phase space, Ψ, is governed by the Vlasov equation:

dΨ

ds
= 0. (1.38)

4The linear optics functions and energy acceptance are considered constant or having small variations
along the ring to obtain the scaling law in Eq. (1.37).
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The Vlasov equation follows from the collisionless Boltzmann equation for the transport
of distributions by electromagnetic fields. It states that the distribution behaves as an
incompressible fluid, conserving the phase space volume. In general, Ψ is a six-dimensional
distribution, but as already discussed, we will assume the longitudinal coordinates are
separable from the transverse. Then, we can focus on the two-dimension distribution,
Ψ = Ψ(z, δ), for the longitudinal plane.

Considering that the Hamiltonian H determines the longitudinal single-particle
dynamics (neglecting damping and excitation effects from radiation), the Vlasov equation
for the longitudinal distribution Ψ(z, δ; s) yields:

0 =
dΨ

ds
=
∂Ψ

∂s
+
∂Ψ

∂z

dz

ds
+
∂Ψ

∂δ

dδ

ds
(1.39)

0 =
∂Ψ

∂s
+ {Ψ,H} , (1.40)

where the Hamilton equations dz
ds

= ∂H
∂δ

and dδ
ds

= −∂H
∂z

were used, and the Poisson bracket
is defined as:

{Ψ,H} =
∂Ψ

∂z

∂H
∂δ

− ∂Ψ

∂δ

∂H
∂z

. (1.41)

The Vlasov equation is rigorously valid for conservative systems, which is not the
case for electrons in a storage ring due to the emission of synchrotron radiation. The
proper description of the time evolution of Ψ accounting for radiation effects is given by
the Fokker-Planck equation [49, 64]:

∂Ψ

∂s
+ {Ψ,H} =

2αz
c

(
Ψ+ δ

∂Ψ

∂δ

)
+Dz

∂2Ψ

∂δ2
, (1.42)

where αz is the radiation damping rate and Dz the diffusion term. Naturally, when the
radiation effects are neglected, αz = 0 and Dz = 0, the Fokker-Planck equation simplifies
to the Vlasov equation.

The Vlasov and the Fokker-Planck equations are powerful tools to calculate collective
instabilities in synchrotrons. Often the typical timescale for the amplitude growth of an
instability is shorter than the timescale related to the radiation damping and diffusion.
Under this “fast-growing instability” assumption (which is not too restrictive in practice),
the Vlasov equation can be used instead of the Fokker-Planck equation even if radiation
effects are present. The impact of radiation damping can be approximately included by
comparing the damping rate αz to the instability growth rate obtained from the Vlasov
equation. As will be shown in Appendix B, the Vlasov equation was sufficient to accurately
predict the instabilities of interest for this thesis.

In the stationary state, the distribution Ψ must be independent of s, then the Vlasov
equation reads

{Ψ,H} = 0, thus Ψ = f(H). (1.43)
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Hence, with the Vlasov equation we can only say that the distribution must be a function
of the Hamiltonian. The explicit expression for this function is obtained from the Fokker-
Planck equation. It can be shown that, when diffusion and damping effects are balanced,
the longitudinal distribution Ψ that solves the Fokker-Planck equation is the “thermal
Maxwell-Boltzmann” distribution:

Ψ(H) =
1

N exp

(
−H
µ

)
, (1.44)

where N is a normalization constant such that the integral of Ψ results in unity and µ is
a constant to be explicitly determined next.

For a single-rf system, neglecting damping and wakefields, we showed the Hamiltonian
for small amplitudes is approximately

H =
αδ2

2
+
ω2
s0

αc2
z2

2
. (1.45)

Therefore, the Ψ distribution is separable as the product of Gaussian distributions:

Ψ(z, δ) = ρ(δ)λ(z), (1.46)

ρ(δ) =
1√
2πσ2

δ

exp

(
− δ2

2σ2
δ

)
, (1.47)

λ(z) =
1√
2πσ2

z

exp

(
− z2

2σ2
z

)
. (1.48)

σδ is the energy spread and σz the bunch length. Writing Ψ(z, δ) as the product of
Gaussian distributions and using the Hamiltonian from Eq. (1.45) back to Eq. (1.44), we
can show that:

µ = ασ2
δ , (1.49)

N = 2πσzσδ, (1.50)

ωs0σz = αcσδ. (1.51)

Equation (1.51) is a matching condition, valid under the approximations of quadratic
potential and Gaussian distributions. In action-angle variables, with H = ωs0J/c and the
conditions above, the distribution takes the format of:

Ψ(J) =
1

2π⟨J⟩ exp
(
− J

⟨J⟩

)
with ⟨J⟩ = σzσδ. (1.52)
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1.3.3 Haïssinski equation

A stationary effect that can be derived from the Vlasov equation is the distortion in the
longitudinal potential due to the wakefields. By linearity, the beam-induced wake voltage
shown in Eq. (1.32) can be combined to the external voltage provided by rf cavities:

V (z) = Vext(z) + Vwake(z;λ). (1.53)

Hence, the wakefields also modify the longitudinal potential defined in Eq. (1.9). This is
the potential-well distortion effect. It changes the Hamiltonian to:

H =
αδ2

2
+ Φext(z) + Φwake(z;λ). (1.54)

Note that the wakefields only alter the z part of the Hamiltonian, while the δ part and
consequently the distribution ρ(δ) remains unaffected by stationary wakefields. The
distortion in the potential may introduce significant changes in the single-particle longi-
tudinal dynamics, for example, modifying the synchrotron frequency and bunch charge
distribution.

From Eq. (1.32), considering the induced wake voltage by a single-bunch, the effect
of the modified longitudinal potential in the bunch distribution is

λb(z) =
1

Nz

exp

[
−Φext(z)

ασ2
δ

+
eIb

E0αcσ2
δ

∫ z

0

dz′
∫ ∞

0

dz′′ λb(z
′′)W∥(z

′ − z′′)

]
. (1.55)

This integral equation for the bunch longitudinal distribution λb(z) is called Haïssinski
equation, developed and analytically solved for special cases for the first time by Jacques
Haïssinski in 1973 [65]. It is a self-consistent equation for λb(z), encoding the effect that
the bunch distribution excites wakefields, that act back on the particles changing their
distribution and so on, until some equilibrium state is achieved.

In general, a self-consistent solution for the Haïssinski equation must be obtained
numerically. The effects of multiturn and multibunch wakefields can also be accounted in
the beam-induced wake voltage to evaluate their impact on the bunch distribution, as will
be developed in Appendix A.

1.3.4 Instabilities

The description and calculation of some types of collective instabilities can be done with
simplified models that capture the essential physics. For example, the mechanism of the
so-called Robinson instability depends on the longitudinal motion of the center of charge
(bunch centroid) under the influence of longitudinal impedance [50, 51]. Such instability
is well-described by treating the bunches as point-charge macroparticles executing linear
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synchrotron oscillations. Depending on the different sampling of the synchrotron sidebands
on the impedance, the wakefields might introduce a defocusing mechanism such that
electrons with δ > 0 lose, on average, less energy to the impedance than electrons with
δ < 0, leading to an exponential growth of the oscillation amplitude, i.e., an instability.

The perturbation method applied to the Vlasov equation provides a general framework
to study collective instabilities [50]. The main idea is to evaluate the time evolution of
small variations with respect to an equilibrium condition.

In the accelerator field, the instability formalism was developed in the early 1970s
by F. J. Sacherer [66,67], for bunched beam instabilities in the transverse and longitudinal
planes. For the longitudinal, a linear single-particle dynamics is assumed (no potential-well
distortion) and the perturbation in the bunch distribution is decomposed in azimuthal
modes of oscillation: dipole (bunch centroid), quadrupole (bunch shape), etc. The
developed formalism results in an integral equation, where the unknowns are the coherent
frequency Ω and the perturbing distribution that depends on e−iΩt. This equation is
currently known as the Sacherer integral equation [50, 51].

In general, the coherent frequency Ω is a complex number. The perturbed distribution
follows e−iΩt, thus Re(Ω) represents the coherent oscillation frequency of the beam. Im(Ω)

is growth or damp rate of the amplitude. An instability is predicted if Im(Ω) > 0. The
effect of radiation can be approximately included in the Vlasov framework by comparing if
the instability growth rate exceeds the radiation damping rate. In many cases this approach
provides accurate results, but it is worth mentioning again that a rigorous description of
radiation effects requires a framework based upon the Fokker-Planck equation, such as
done in Refs. [64, 68, 69].

The longitudinal instabilities can be divided in single-bunch and multibunch. Typ-
ically, broadband impedance components may drive single-bunch instabilities, because
they generate short-range wakefields that decay within the bunch duration, and it can
only affect particles within the same bunch. These wakefields might alter many bunch
oscillation modes, potentially coupling/mixing their motion. For instance, this longitudinal
mode-coupling mechanism is the explanation of the microwave instability, that increases
the energy spread and bunch length [51]. The single-bunch instability thresholds depend
on the current per bunch.

Narrowband impedance structures may drive multibunch instabilities, because long-
range wakefields are generated. These fields keep resonating for long times, mediating the
interaction between different bunches and even between the source bunch with itself on later
turns. These wakefields couple the motion of bunches, an effect also commonly referred
to as coupled-bunch instabilities. It is often the case that coupled-bunch instabilities
affect mainly the dipole motion of the bunches and high order modes of oscillation can
be neglected. We will see in Appendix B that with the potential-well distortion effects
introduced by HHCs, multiple bunch oscillation modes can be relevant for coupled-bunch
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instabilities.
We will assume the longitudinal dynamics is parametrized by the action-angle

coordinates (J, φ) and use the property that the Poisson bracket is invariant under
canonical transformations. Consider that the beam distribution is

Ψ(J, φ; s) = Ψ0(J) + Ψ1(J, φ; s), (1.56)

where Ψ0(J) is the equilibrium distribution, known to be a function of J only, and
Ψ1(J, φ; s) a small perturbing distribution with zero net charge.

With wakefields, the longitudinal potential depend on the full distribution Ψ(J, φ; s).
Hence, the Hamiltonian is also perturbed:

H(J, φ; s) = H0(J) +H1(J, φ; s). (1.57)

Applying the perturbations to the Vlasov equation yields:

∂Ψ1

∂s
+ {Ψ0,H0}+ {Ψ0,H1}+ {Ψ1,H0}+ {Ψ1,H1} = 0. (1.58)

Assuming small perturbations, the Vlasov equation can be linearized, i.e., the second-
order term {Ψ1,H1} can be neglected. Moreover, Ψ0 is a function of H0, thus {Ψ0,H0} = 0.
With the results Ψ0 = Ψ0(J), H0 = H0(J), {Ψ,H} = ∂ψ

∂φ
∂H
∂J

− ∂ψ
∂J

∂H
∂φ

and ωs(J) = c∂H0

∂J
, we

obtain the linearized Vlasov equation:

∂Ψ1

∂s
+
ωs(J)

c

∂Ψ1

∂φ
− ∂Ψ0

∂J

∂H1

∂φ
= 0. (1.59)

The linearized Vlasov equation is the starting point to develop a theory of longitudinal
instabilities, accounting for the effects of potential-well distortion on the equilibrium
Hamiltonian H0 and multiturn, multibunch dynamical effects induced by impedances on
the perturbed Hamiltonian H1. The theory will be further developed on Appendix B.

The mode-approach was introduced by Sacherer to simplify the linearized Vlasov
equation. First, the linear single-particle dynamics is described in polar coordinates (r, θ).
Then, the perturbation distribution is expanded in azimuthal modes:

Ψ1(r, θ) =
∑
m̸=0

Rm(r)e
imθe−iΩs/c, (1.60)

where m = 0 is removed since it corresponds to a static term in the phase space. Including
this static and the equilibrium Ψ0(J) would violate charge conservation for the total
distribution Ψ(J, φ). The radial function Rm(J) encodes the radial dependence of the
perturbation in the phase space.

Each azimuthal mode m corresponds to a particular bunch motion in the longitudinal
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phase space. m = 1 is a dipolar motion, rigid oscillations of the center of charge. m = 2 is
a quadrupolar motion, oscillations of the bunch shape while the center of charge is fixed.
The motion of higher order m modes is more difficult to visualize.

Using the expansion from Eq. (1.60) to calculate the beam-induced voltage that
perturbs the Hamiltonian and applying the results in the linearized Vlasov equation, we
obtain the Sacherer integral equation:

(Ω−mωs0)Rm(r) = W (r)
∑
m′ ̸=0

∫ ∞

0

dr′ r′Rm′(r′)Gm,m′(r, r′), (1.61)

with the weight function

W (r) = −1

r

dΨ0

dr
, (1.62)

and the kernel

Gm,m′(r, r′) =
iαeIb
E0νs0

im−m′
m

∞∑
p=−∞

Z∥(ωp)

ωp
Jm′(ωpr

′)Jm(ωpr), (1.63)

where ωp = pω0 and Jm(x) is the Bessel function. The synchrotron frequency ωs0 is
constant (linear longitudinal dynamics), determined by the external rf voltage and the
effects of potential-well distortion. In the limit of zero current, the coherent frequencies
are Ω = mωs0, i.e., real coherent frequencies with zero growth rates (no instability).

The Sacherer integral equation can be analytically solved for some models of the
equilibrium bunch distribution. The approach is to expand R(r) in a basis of orthog-
onal functions, using the orthogonality to convert the integral equation Eq. (1.61) to
an eigenvalue-eigenvector equation. The weight function W (r), thus the equilibrium
distribution Ψ0(r), determines which type of orthogonal function must be used to solve
the problem. The Gaussian distribution Ψ0(r) ∝ e−r

2 is one particular case that Sacherer
integral equation can be solved using generalized Laguerre polynomials to expand R(r) [50].
In this case, the coherent frequency Ω can be computed as the eigenvalues of an interaction
matrix that contains information of beam, ring and impedance parameters.

For arbitrary rf potentials, the Sacherer integral equation must be generalized to
consider the nonlinear single-particle dynamics such that ωs0 → ωs(J) and the kernel
Gm,m′(J, J ′) must be modified. In general, it is not possible to find orthogonal functions
that simplify the generalized Sacherer equation to a linear problem, and nonlinear methods
are required to solve for the coherent frequency Ω.

1.3.5 Landau damping

Landau damping was originally predicted in 1946 by Landau as a collisionless damping
mechanism for collective oscillations in plasmas [70]. Landau showed that the distribution
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of velocities of the charged particles in the plasma is essential for this natural stabilization.
Almost 20 years later, in 1965, Landau damping theory was formulated for beams in
particle accelerators [71, 72].

For a didactic and more detailed discussion on Landau damping in accelerators we
recommend the books [50, 51] and the papers [28–30,73]. Here, we will only summarize
the main concepts and results that are relevant to the thesis. The understanding of the
Landau damping mechanism and its mathematical treatment are intricate, and historically,
the two have been closely connected. We will follow some derivations from Refs. [30, 50] to
introduce the topic. Although the analysis relies on significant approximations that are
not strictly valid for the cases studied in the thesis, it provides some interpretation of the
mechanism involved.

Consider an ensemble of harmonic oscillators (particles in a beam) characterized by
the displacement z and driven by an excitation f(t) = Ae−iΩt, that is absent for t < 0.
The equation of motion for a single-particle with frequency ω is

d2z

dt2
+ ω2z = Ae−iΩt, (1.64)

where only the real part is physically meaningful. We assume that the frequencies of the
ensemble follow the distribution ρ(ω), normalized to unity. At this point, we consider that
the distribution ρ(ω) is produced by an external focusing mechanism. We will be interested
in the long-term behavior (t→ ∞) of the average displacement, given by ⟨z⟩ =

∫
dωρ(ω)z.

Moreover, for simplicity, let us consider the case where the distribution is narrowband and
centered at the frequency ωs0. Furthermore, assume the excitation frequency is close to
the center frequency, i.e., Ω ≈ ωs0. Under these considerations and with the single-particle
solution to the equation of motion, we have:

⟨z⟩(t) = A

2ωs0
e−iΩt

∫ ∞

−∞
dω

ρ(ω)

ω − Ω
. (1.65)

See Refs. [30, 50, 51] for details.
Note that Eq. (1.65) has a singularity at ω = Ω, and the integral over ω can be

performed with complex analysis techniques. To evaluate the integral, we extend ω into the
complex plane and deform the integration contour to avoid the singularity. Equivalently,
the pole can be shifted infinitesimally from the real axis using Ω → Ω + iϵ, where ϵ→ 0,
while keeping the integration contour along the real line. For integrals as in Eq. (1.65), we
can apply the Sokhotski-Plemelj theorem to get:

⟨z⟩(t) = A

2ωs0
e−iΩt

[
P.V.

∫ ∞

−∞
dω

ρ(ω)

ω − Ω
+ iπρ(Ω)

]
, (1.66)

where P.V. denotes the Cauchy principal value. Note that the average amplitude ⟨z⟩ is
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bounded for t→ ∞.
The work done by the excitation force on the system is given by the product of

the driving force, f(t) = Ae−iΩt, and the average “velocity”, d⟨z⟩
dt

. Hence, we see that
the P.V. contribution is out-of-phase with the excitation and corresponds to a reactive
part, modifying the collective oscillation frequency (increasing or decreasing the frequency
depending on the sign of the integral). The pole contribution is in-phase with the excitation,
and since ρ(Ω) > 0, this means work is being done on the system by the external force.
This is a resistive part that absorbs energy and act as damping of the external excitation.
The in-phase resistive part comes from the proper treatment of the singularity, as pointed
out by Landau [70]. Therefore, the condition that the excitation frequency Ω lies within
the distribution of frequencies ρ(ω) is essential to have the Landau damping term.

Kinematic decoherence occurs when all particles in the ensemble are initially disturbed
with the same nonzero conditions and then execute free oscillations at different frequencies.
Each particle oscillates with a fixed amplitude, but due to the frequency spread, the
phases gradually become mixed, reducing the ensemble’s average amplitude. Over time,
the oscillations may be in-phase again, increasing the average amplitude and leading
to a beating process. In contrast, Landau damping can be understood as dynamic
decoherence [74], where the frequency spread prevents harmonic driving forces from
inducing coherent motion with unbounded amplitudes in the ensemble.

Assuming the initial conditions z(0) = 0 and dz
dt

= 0, we can eliminate kinematic
decoherence that is not the interest here. With these conditions and assuming Ω ≈ ωs0,
the single-particle solution of Eq. (1.64) and its squared amplitude are given by:

z(t) =
A

2ωs0
e−iΩt

(
1− e−i(ω−Ω)t

)
ω − Ω

(1.67)

|z(t)|2 =
A2

ω2
s0

sin2[(ω − Ω)t/2]

(ω − Ω)2
. (1.68)

The total oscillation energy of the ensemble depends on |z(t)|2 integrated over the distribu-
tion of frequencies ρ(ω). For t→ ∞, we can use the result limt→∞ sin2(xt/2)/x2 = πtδ(x)/2

on Eq. (1.68). This indicates that the energy of the system will be mostly concentrated on
resonant particles with ω ≈ Ω. Based on these results, we can show that the total energy
of the ensemble of N particles is

Eensemble = N
π

2

A2

ω2
s0

ρ(Ω)t, (1.69)

i.e., increases linearly with t. Initially, the particles absorb energy from the excitation, but
only those in resonance continue gaining energy as t→ ∞. Particles with a detuned fre-
quency ω−Ω get out-of-phase after the time t = π/(ω−Ω) and release the absorbed energy.
Although the total energy increases linearly with t, most of the energy is concentrated in
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the oscillation amplitude of the resonant particles with ω ≈ Ω. Furthermore, the resonant
condition is maintained within the period t such that t < 1/(ω − Ω). The argument for
having a bounded average ensemble amplitude is that the number of resonant particles
decreases linearly with t as (ω − Ω) ∼ 1/t, and it is mostly the energy of these particles
that increases as E ∼ t. Therefore, as t→ ∞, the increasing absorbed energy is contained
in a vanishing number of resonant particles, and the average oscillation amplitude keeps
bounded.

The relevant approximations involved in this analysis included the consideration
of harmonic oscillators, i.e., linear single-particle dynamics, and that the distribution
of frequencies ρ(ω) is given by external factors which do not depend on the particle’s
amplitude. Of course this is not valid if the single-particle dynamics is nonlinear. With
nonlinearities, the frequencies of the particles are action-dependent ω(J), and, considering
there is an action distribution in the ensemble, Ψ0(J), this leads to a frequency distribution.
When the spread in frequencies is produced by nonlinearities, the Vlasov equation should
be used to get the average displacement. It can be shown that Eq. (1.65) is modified to

⟨z⟩(t) = A

2ωs0
e−iΩt

∫ ∞

0

dJ
∂Ψ0

∂J

J

ω(J)− Ω
. (1.70)

See Refs. [30, 50, 73].
For collective instabilities in accelerators, the excitation f(t) is not external, but

instead self-driven. In a first-order approximation, this excitation depends on the bunch
center of mass and the first derivative of the wake function. Consider that the driving
force is f(t) = W⟨z⟩(t), where W is only a symbolic constant that depends on the wake
function and parameters such as beam current, energy and ring circumference. Additionally,
assuming the bunch centroid motion is ⟨z⟩(t) = Ae−iΩt implies that Eq. (1.70) must be
self-consistent for non-trivial solutions with A ̸= 0, which results in a dispersion relation.
A detailed derivation of the self-driven excitation by wakefields up to first order (dipole
motion) shows that the frequency shift caused by wakes, assuming linear single-particle
dynamics (no frequency spread), is ∆Ωlinear = (Ω− ωs0)linear =

W
2ωs0

. These self-consistent
considerations applied to Eq. (1.70) lead to the dispersion relation

1 = ∆Ωlinear

∫ ∞

0

dJ
∂Ψ0

∂J

J

ω(J)− Ω
, (1.71)

which must be solved for Ω.
In this format, the dispersion relation is the basis for the stability boundary diagrams.

Since the integral might yield complex values, the growth rate Im(∆Ωlinear) > 0 considering
the linear system might result in a stable condition Ω when nonlinearities are accounted.
The physical mechanism behind this is Landau damping. Again, the proper calculation of
singularities, in this case when ω(J) = Ω for some J , combined with the characteristics of
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the distribution Ψ0(J), is key for the integral yielding complex values (damping contribu-
tion). The example in Eq. (1.71) specifically applies to the dipole mode of the ensemble,
while other modes have different dispersion relations. The stability diagram analysis is
better suited for studying Landau damping of single modes of collective oscillations.

For a graphical representation of Landau damping, the stability boundary defined
by Im(Ω) = 0 can be drawn in the complex plane by scanning Re(Ω) from 0 to +∞. This
divides the complex plane in two regions, stable and unstable. The frequency shift for
the linear system, ∆Ωlinear, can be computed and included in the graphic. If it lies within
the stability boundary, it means that exists a stable solution for the dispersion relation
Eq. (1.71). Otherwise, Landau damping is insufficient to stabilize the mode.

In summary, for Landau damping to manifest, two conditions are required: (i) spread
in the incoherent frequencies of the particles, (ii) the frequency of the coherent excitation
must be within the range of incoherent frequencies. As remarked in Ref. [30], for the case
of particle beams in accelerators, Landau damping is not a dissipative damping, but rather
a stabilization mechanism. The spread of incoherent frequencies due to nonlinearities may
introduce a dynamical decoherence mechanism that prevents the particles in the beam
from organizing coherent motion and driving an instability that would otherwise occur in
the absence of frequency spread.

1.4 Higher harmonic cavities

Consider a double-rf system, with higher harmonic voltage with amplitude V̂HC and
phase ϕHC, with n denoting the rf frequency harmonic. By linearity, the total rf voltage
experienced by the beam is

V (z) = V̂rf sin(ωrfz/c+ ϕs) + V̂HC sin (nωrfz/c+ ϕHC) . (1.72)

1.4.1 Flat potential condition

The flat potential (FP) condition corresponds to zeroing the first and second derivative of
the rf voltage:

eV (z)

∣∣∣∣
z=0

= U0,
∂V

∂z

∣∣∣∣
z=0

= 0,
∂2V

∂z2

∣∣∣∣
z=0

= 0. (1.73)
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The harmonic amplitude and phase that produce the FP condition are

V̂HC

V̂rf
=

1

n

√
1− n2

n2 − 1

(
U0

eV̂rf

)2

(1.74)

tan(ϕHC) =
n U0

eV̂rf√
(n2 − 1)2 −

(
n U0

eV̂rf

)2 , (1.75)

and the synchronous phase should be modified to

sin(ϕs) =
n2

n2 − 1

U0

eV̂rf
=

n2

n2 − 1
sin(ϕs0), (1.76)

where ϕs0 is the single-rf synchronous phase.
This represents the idealized case of an active cavity where both amplitude and

phase can be controlled. The comparison of total voltage, longitudinal potential and bunch
charge distribution between the single-rf system and the double-rf system tuned to the FP
condition is presented in Fig. 1.3.
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Figure 1.3: Double-rf system at flat potential condition compared to single-rf system.

For passive HCs, which is the focus in this thesis, the beam-induced harmonic voltage
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for the uniform filling pattern is

VHC(z) = 2I0|F (nωrf)|Rs cos(ψ) cos[nωrfz/c+ ψ − ΦF (nωrf)]. (1.77)

A derivation of this expression is presented in the last section of Appendix A. The
electromagnetic fields in passive HCs are build up from the wakefields excited by the
beam, in a process known as beam-loading. The beam-loading voltage contribution is
also present in active cavities such as the main rf cavities. However, for active cavities
the generator amplitude and phase are adjusted to compensate the beam-loading and to
guarantee that the beam is accelerated by a reference rf voltage. Passive HCs can operate
with only the beam-loading voltage because the purpose of their additional voltage is to
modify the longitudinal potential, not to accelerate the electrons. An external power is
mandatory for the main rf cavities, since it is impossible for electrons to gain energy from
their self-driven wakefields.

The HC is modelled by a narrowband resonator, Eq. (1.34), with shunt impedance
Rs, quality factor Q and resonant frequency ωr. The detuning angle ψ is related to the
HC detuning frequency:

tan(ψ) = Q

(
ωr

nωrf

− nωrf

ωr

)
. (1.78)

For the HC slightly detuned from the nth rf harmonic, we can approximate the detuning
angle by tan(ψ) ≈ 2Q∆ω/nωrf , where ∆ω = ωr − nωrf . Hence, the detuning frequency
affects the phase of the harmonic voltage.

The bunch complex form factor is the Fourier transform of the longitudinal bunch
distribution λ(z):

F (ω) =

∫ ∞

−∞
dz λ(z)eiωz/c = |F (ω)|eiΦF (ω), (1.79)

which should be evaluated at nωrf . For asymmetric bunches, we have a non-zero phase
ΦF , which also contributes to the phase of the harmonic voltage. For Gaussian bunches
with zero average, the form factor is real, given by F (nωrf) = exp[−(nωrfσz/c)

2/2]. For
short-bunches, we have nωrfσz/c≪ 1, so F (nωrf) ≈ 1.

The resonant frequency ωr is the only control parameter of a passive HC. For each
beam current I0, the HC detuning determines both the harmonic amplitude and phase:

V̂HC = 2I0|F (nωrf)|Rs| cos(ψ)|, (1.80)

ϕHC = ψ − ΦF (nωrf)− π/2. (1.81)

For a given set of ring parameters (I0, V̂rf , U0), only a specific combination of Rs and
Q of the HC satisfies the FP condition. We can calculate the amplitude and phase for the
FP condition with Eqs. (1.74) and (1.75), then compute the optimum shunt impedance Rs

to satisfy Eq. (1.80). For typical ring parameters, the optimum Rs, combined with typical
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cavity geometries that determines the ratio (R/Q), makes the Q factor be on the order
of 104 to 105, common for normal-conducting cavities. Given a Q factor, the resonant
frequency can be adjusted to satisfy Eq. (1.81). Therefore, to produce the FP condition
with passive HCs, normal-conducting cavities are required. In this case, for fixed values of
V̂rf and U0, the FP condition can only be achieved for a specific beam current I0. However,
by adjusting the rf voltage V̂rf within feasible limits, it may still be possible to obtain near
flat potential (NFP) conditions over a range of beam currents I0 and energy losses U0.

For superconducting cavities, the Q factor is large, on the order of 108. By Eq. (1.78),
this implies that ψ ≈ π/2 and the harmonic voltage phase is essentially independent of
the HC detuning frequency. In this case, the detuning is adjusted to satisfy Eq. (1.80),
producing the optimum harmonic amplitude. Typically, by the cavity geometry (R/Q)

practical constraints, this implies that the shunt impedance Rs exceeds the optimum
value by much and the HC resonance must be considerably far from the nth rf harmonic.
Otherwise, the beam would sample an excessively large impedance Rs, inducing too much
wake voltage.

In practice, the exact FP condition is often difficult to achieve with passive HCs,
since two equations should be satisfied with one control parameter. The impact of 1%
relative error in the harmonic phase with respect to the FP phase is presented in Fig. 1.4.
Given (I0, V̂rf , U0), the FP can only be achieved with properly designed normal-conducting
HCs parameters. For superconducting HCs, it is still possible to achieve NFP conditions
with good performances, where the harmonic amplitude condition can be satisfied, but
not the phase.
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Figure 1.4: Impact of harmonic phase deviation.

For the uniform filling, Eq. (1.77) is a closed formula for the beam-induced voltage
in the passive HC. Considering an initial guess for the longitudinal distribution λ(z), the
harmonic voltage can be computed and, with the Haïssinski equation, used to obtain an
updated λ(z). The process can be iterated to get a self-consistent equilibrium solution.
For generic filling patterns, no closed formula can be obtained, but still semi-analytical
methods provide the self-consistent solution, where the equilibrium bunch distribution may
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vary depending on the bucket. Such methods will be developed in details on Appendix A.
It is possible to linearize the Haïssinski equation with respect to bunch complex form

factor variations, solving the fixed-point problem by approximating the Haïssinski map by
matrices [75–77]. However, for high beam currents or high harmonic voltages, when the
potential-well distortion is intense, the convergence of the iterative linear approach might
fail. Then, a more robust approach is required, finding the self-consistent solution with
fixed-point iteration methods, such as the Anderson acceleration algorithm employed by
Warnock [78] to solve the Haïssinski equation.

The harmonic voltage modifies the longitudinal potential, which in turn affects the
longitudinal distribution λ(z). An interesting feature of HCs is that their impact on the
distribution of energy and transverse positions and angles is negligible. Let us separate
the 6D distribution as Ψ(V ) = f(x, x′, y, y′, δ)λ(z). We will denote the longitudinal
distributions without the HC as λ0(z) and λHC(z) with the HC; while f(x, x′, y, y′, δ) is
assumed to be unaltered by the HC. With Eq. (1.36) and recalling that P ∝ 1/δ2acc, the
relative variation of the Touschek lifetime due the HC can be estimated by:

R =
τHC

τ0
=
δ2acc,HC

δ2acc,0

∫
dz λ20(z)∫
dz λ2HC(z)

, (1.82)

It is often a good approximation to also consider that HC do not change the energy
acceptance by much, so

δ2acc,HC

δ2acc,0
≈ 1. Figure 1.5 shows an example of separatrix with and

without HC, where the energy acceptance is only 3% lower with the HC than without it.
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Figure 1.5: rf bucket separatrix.

Note that, more important than lengthening the bunches (increasing the second
central moment of λ(z)), reducing the peak bunch current that is proportional to λ2(z)
is the key factor to enhance the Touschek lifetime. The optimum condition in terms of
maximizing the Touschek lifetime occurs with harmonic voltages slightly higher than the
FP value, producing double-hump bunch distributions with lower peak bunch current
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than the flat distribution. This case is commonly referred to as overstretched conditions5.
The use of overstretched conditions to optimize Touschek lifetime will be explored with
simulations on Appendix A and verified experimentally on Appendix C.

1.4.2 Quartic potential

The longitudinal dynamics can be analyzed for the FP condition, where the longitudinal
potential is approximately quartic. The following results can be found in [79–81].

Consider the total rf voltage in a double-rf system given by Eq. (1.72), with ϕ = krfz,
where krf = ωrf/c is the rf wave number. Assuming that the first and second derivatives of
the voltage vanish, the Taylor expansion of the total rf voltage and potential read [79, 80]

eV (ϕ) ≈ U0 + (n2 − 1)eV̂rf cos(ϕs)
ϕ3

6
, (1.83)

Φ(ϕ) = −(n2 − 1)

6

eV̂rf cos(ϕs)

E0C0krf

ϕ4

4
. (1.84)

Introducing the constant Λ, such that:

Φ(z) = αΛ
z4

4
, (1.85)

Λ = −(n2 − 1)

6

eV̂rf cos(ϕs)k
3
rf

E0C0α
, (1.86)

then the Hamiltonian is H0 = αδ2/2 + αΛz4/4.
Let z = r be the right turning point such that δ = 0, then the Hamiltonian can be

written as H0(r) = αΛr4/4. As the potential is symmetric, z = −r is the left turning
point. The action variable can be calculated by

J =

√
Λ

2π2

∫ r

−r
dz

√
r4 − z4 =

2K(1/
√
2)

3π

√
Λr3, (1.87)

where K(k) is the elliptic function defined in Eq. (1.28) and K(1/
√
2) ≈ 1.854. The follow-

ing identities K
(
1/
√
2
)
= Γ2(1/4)/4

√
π, Γ(1/4)Γ(3/4) = π

√
2 are useful for comparison

with results from literature [80–82].
With the relation Ψ0(J) = N−1e−H0(J)/ασ2

δ , and using J in terms of r, the longitudinal
5Although the overstretched case is interesting since it provides the maximum Touschek lifetime,

developing an instability theory for this condition is challenging. For instance, the overstretched case has
a double-well potential, with two local minima separated by a saddle point. The analysis of single-particle
dynamics must be separated for electrons oscillating with small amplitudes around each one of these
minima and also with large amplitudes passing through both minima. Then, Vlasov equations must be
solved for each one of these cases to get the coherent frequencies and combine them somehow to judge the
beam stability.
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bunch distribution is given by

Ψ0(r) =
23/4

Γ2(1/4)σzσδ
exp

[
− 2π2

Γ4(1/4)

r4

σ4
z

]
, (1.88)

where the bunch length is defined as

σ2
z =

2√
Λ

Γ(3/4)

Γ(1/4)
σδ. (1.89)

Note that considering that sin(ϕs) ≈ sin(ϕs0), i.e., approximating n2/(n2 − 1) ≈ 1,
then we can use the single-rf synchrotron frequency expression ω2

s0 = −αckrf
E0T0

eV̂rf cos(ϕs) to
rewrite Λ ≈ (n2 − 1)ω2

s0k
2
rf/6α

2c2. Moreover, with the matching condition ωs0σz0 = αcσδ,
Λ can be written in terms of the single-rf bunch length: Λ ≈ (n2 − 1)σ2

δk
2
rf/6σ

2
z0. Under

this approximation, from Eq. (1.89) we can estimate the theoretical bunch lengthening
factor as

σz
σz0

≈ 31/4

√
Γ(3/4)

Γ(1/4)

1√
krfσz0

≈ 0.765√
krfσz0

. (1.90)

Typical values for this theoretical bunch lengthening factor are in the range of 4 to 6.
The relation ωs(J) = c∂H0

∂J
can be used to obtain the amplitude-dependent syn-

chrotron frequency:
ωs(r) =

παc

2K(1/
√
2)

√
Λ r, (1.91)

and we see that for zero-amplitude ωs(0) = 0, corresponding to the harmonic voltage
flattening the first derivative of the rf voltage, and the synchrotron frequency increases
linearly with the amplitude of oscillation. This renders a significant frequency spread
within the bunch.

The average synchrotron frequency is computed as ⟨ωs⟩ = 2π
∫∞
0

dr ωs(r)Ψ0(r)
∂J
∂r

,
yielding:

⟨ωs⟩ =
2π23/4

Γ2(1/4)

αcσδ
σz

, (1.92)

and we see that the format of the matching condition is maintained for the average
frequency: ⟨ωs⟩σz = Nαcσδ, where for the quartic potential N = 2π23/4

Γ2(1/4)
≈ 0.803, while for

the quadratic potential, ⟨ωs⟩ = ωs0 and N = 1.
Applying the single-rf matching condition to Eq. (1.92), we get:

⟨ωs⟩
ωs0

=
2π23/4

Γ2(1/4)

σz0
σz

≈ 0.803
σz0
σz
, (1.93)

which shows that the bunch lengthening factor and the relative reduction in the average
synchrotron frequency are inversely proportional.

Finally, the longitudinal motion in terms of the amplitude r and angle φ, i.e., the
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Table 1.1: Comparison of the proportionality of relevant quantities for the longitudinal dynamics in
quadratic and quartic rf potentials. r is the turning point in phase space, that defines the oscillation
amplitude for the z coordinate.

Single-rf, Φ(z) ∝ z2 Double-rf, Φ(z) ∝ z4

Action variable J ∝ r2 r3

Hamiltonian H0(J) ∝ J J4/3

Bunch distribution Ψ0(r) ∝ e−r
2

e−r
4

Synchrotron frequency ωs(J) ∝ constant J1/3

Canonical transformation z(J, φ) ∝ J1/2 cos(φ) J1/3cn(φ; 1/2)

canonical transformation for the quartic potential is written in terms of cn(x; 1/2), the
Jacobi elliptic function with parameter 1/2:

z = r cn

(
2

π
K(1/

√
2)φ; 1/2

)
. (1.94)

The Fourier expansion of the Jacobi elliptic function is

z(r, φ) =
π
√
2

K(1/
√
2)
r

∞∑
p=0

cos[(2p+ 1)φ]

cosh[π
2
(2p+ 1)]

, (1.95)

exhibiting that in a quartic potential, the longitudinal motion contains all odd-order
harmonics. Nevertheless, the first term p = 0 associated to cos(φ) is the dominant
contribution, since 1/ cosh[π

2
(2p+ 1)] decreases exponentially with p:

z(r, φ) =
π
√
2

K(1/
√
2) cosh(π/2)

r [cos(φ) + 0.045 cos(3φ) + 0.0019 cos(5φ) + · · · ] , (1.96)

and the approximation z(r, φ) ≈ π
√
2

K(1/
√
2) cosh(π/2)

r cos(φ) can be often used for analytical
development of instability theory in quartic rf potentials [81, 82].

The main differences between the longitudinal dynamics in single-rf (quadratic
potential) and double-rf (quartic potential) are summarized in Table 1.1.
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Truth... is much too complicated to allow anything but
approximations.

— John von Neumann

2
Semi-analytical methods

The calculations of collective effects in accelerator physics relies on computational methods.
Semi-analytical approaches provide a balance between the interpretability of analytical
formulations and the efficiency of numerical implementations. The method of analysis
followed in this thesis is divided into two steps:

1. Determination of the equilibrium state. The first step involves solving for
the equilibrium state by determining the fixed-point solution of the Haïssinski equation,
accounting for both external and self-induced fields acting on the beam. This solution
provides the equilibrium wake voltages, longitudinal potentials, and bunch distributions.
However, obtaining the equilibrium solution numerically does not always imply that
this steady-state condition can be achieved in practice. Therefore, the stability of the
equilibrium under perturbations must be evaluated in a second step.

2. Analysis of collective dynamics. After the equilibrium state is obtained, the
next step is to analyze the collective dynamical behavior of the beam. By considering
small coherent perturbations with respect to the equilibrium distribution, the Vlasov
equation can be linearized to solve for the coherent frequency Ω, which is generally a
complex number. This analysis yields the coherent frequency of oscillation Re(Ω) and the
growth rate Im(Ω).

The following sections provide an overview of the thesis contributions, which employ
semi-analytical methods to study the equilibrium state and coupled-bunch instabilities,
highlighting the advantages and practical implications of this approach. These contributions
were written as journal articles and are fully reproduced in Appendices A and B.
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The semi-analytical methods were implemented in python3 and are available in the
open-source package pycolleff [83]. These methods were applied in studies for the higher
harmonic cavity choice for SIRIUS, with results reported in Chapter 3. Some of these
methods were also applied in the collaborative development of the open-source package
Algorithms for Longitudinal MultiBunch Beam Stability (ALBuMS) [84], also implemented
in python3.

2.1 Self-consistent calculation of equilibrium

The full content of this part is presented in Appendix A, published as Ref. [44]. Below, we
briefly outline its main contributions.

The first contribution of this thesis presents two approaches for computing the
equilibrium beam-induced voltage in electron storage rings with arbitrary filling patterns
and impedance sources. The space-domain method was formulated for resonator wake
functions. This part has a review aspect, as similar developments were reported in previous
publications referenced in the introduction of Appendix A. Nevertheless, we generalized
the method to consider the most generic resonator wake function, while previous works
assumed the approximate formula for a narrowband resonator. Moreover, we believe the
formulas presented are more compact, with direct physical interpretation, and accessible
for numerical implementation.

In contrast, the frequency-domain framework allowed for arbitrary impedance func-
tions and offered a straightforward calculation using discrete Fourier transforms (DFTs).
This method proved computationally efficient due to fast Fourier transform (FFT) algo-
rithms and was benchmarked against the space-domain calculations and macroparticle
tracking simulations, showing excellent agreement. The parameters of SIRIUS storage
ring were considered for this study.

Additionally, a different method for modeling beam-loading compensation in active rf
cavities was introduced using a closed-loop impedance concept, which is only suitable in the
frequency-domain approach. This method offers a more flexible and realistic description
of generic low-level rf system topologies. The frequency-domain framework also facilitated
the direct evaluation of the broadband impedance budget, avoiding intermediate fitting
steps or numerical convolutions required in the space-domain approach.

Finally, the impact of a passive superconducting harmonic cavity on Touschek
lifetime was analyzed, considering different detuning scenarios and the full impedance
model of SIRIUS, accounting for contributions from the main cavities and broadband
machine impedance. The study confirmed that an overstretched bunch profile provided
the best lifetime gain. While equilibrium calculations do not guarantee stability in real
machines, the developed framework served as a basis for analyzing longitudinal dynamics
and instabilities. The results demonstrated that the frequency-domain approach is more
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general, numerically stable, and computationally efficient, making it a useful tool for
storage ring design and impedance studies.

2.2 Instabilities with arbitrary rf potentials

The full content of this part is presented in Appendix B, submitted for publication as
Ref. [45]. Below, we briefly outline its main contributions.

This contribution develops a theoretical framework for analyzing longitudinal coupled-
bunch instabilities in double-rf systems with harmonic cavities, considering potential-well
distortion and multiple azimuthal modes. The approach is based on frequency-domain
perturbation theory, leading to the Lebedev equation for calculating coherent frequencies.
The theory extends recent publications, Refs. [81, 82, 85], recovering their results as
particular cases.

It is demonstrated that dispersion relations for any azimuthal mode can be directly
obtained from the Lebedev equation in the case of narrowband resonators and elliptic
orbits in the longitudinal phase space. Additionally, an approximated model considering a
constant effective synchrotron frequency (amplitude-independent) was derived from the
Lebedev equation. This model proved useful in comparing results for instability thresholds
computed with and without the contribution of the frequency spread, i.e., Landau damping.

The methods were applied to study Robinson dipole-quadrupole mode coupling
and the periodic transient beam loading (PTBL)/mode-1 instability, using parameters
from ALS-U, HALF, and MAX IV. The theoretical predictions for the mode-1 instability
threshold showed excellent agreement with experimental data from MAX IV, a novel result.
The analysis revealed that the PTBL instability is a zero-frequency effect for coupled-bunch
mode 1. The low-frequency feature makes this instability unaffected by Landau damping,
as numerically demonstrated by the equivalence between results obtained with the Lebedev
equation and the approximated effective frequency model. We showed that the essential
mechanism for accurate prediction of this instability is the interaction between multiple
azimuthal modes, an effect neglected in previous models.

Describing the PTBL as a zero-frequency instability helped in understanding the
dependence of instability thresholds on parameters such as the main rf voltage and the
harmonic cavity’s (R/Q). Moreover, the zero-frequency condition led to an approximate
formula for the threshold, whose scaling law agrees with previous studies. These new
findings suggest further studies on mitigation strategies, including tests with feedback
systems designed to prevent the coherent frequencies of coupled-bunch mode 1 from
reaching lower values as the longitudinal potential is flattened by the higher harmonic
cavity.
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Prediction is very difficult, especially if it’s about the future.

— Niels Bohr

3
Applications to SIRIUS
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This chapter investigates the implementation of a passive third-harmonic cavity (3HC)
in the SIRIUS storage ring to enhance bunch lengthening and improve beam stability
during the Phase II of operation at 350mA. To achieve this, we apply the frameworks
and tools developed in the Appendices A and B (Refs. [44] and [45]), to evaluate the
equilibrium solution and the growth rates of coupled-bunch instabilities. This approach
allows for the analysis of the benefits and challenges of implementing the 3HC in improving
beam quality under high current conditions.
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3.1 Basic parameters

The requirements for the HHC parameters depend on the storage ring parameters. The
relevant parameters of the storage ring and main rf system are presented in Table 3.1.

Table 3.1: Main parameters for SIRIUS storage ring and main rf system.

Parameter Symbol Value
Energy E0 3GeV
Nominal current It 350mA
Circumference C0 518.39m
Harmonic number h 864
Revolution frequency f0 578.32 kHz
Momentum compaction factor α 1.645× 10−4

Energy loss per turn (dipoles + IDs) U0 (475 + 200) keV
Relative energy spread σδ 8.436× 10−4

Longitudinal damping time τδ 12.9ms
Main rf frequency frf 499.667MHz
Number of main cavities (MCs) NMC 2
MCs max. total voltage NMCV̂MC 3.0MV
MC geometric factor (R/Q)MC 89Ω
MC unloaded quality factor Q0,MC 2× 109

External quality factor Qext 1.58× 105

Cavity coupling factor βc 12 657
MC detuning ∆fMC −4.9 kHz

Two quantities are essential to compute the FP condition: the rf voltage V̂rf and
the energy loss per turn U0. In 4th-generation storage rings, the IDs have a significant
contribution to U0. Therefore, the total U0 is variable, depending on the IDs state. The
overvoltage, q = eV̂rf/U0, determines the synchronous phase and the rf energy acceptance
of the ring. The total energy acceptance is defined by the minimum between the rf and
the lattice acceptance, which depends on the nonlinear transverse dynamics. The energy
acceptance for one sector of SIRIUS storage ring is shown in Fig. 3.1(a).

Whenever feasible, the overvoltage should be high enough such that the rf acceptance
is not the limiting factor for the total acceptance. For SIRIUS, the highest value for the
lattice energy acceptance is 4.8% in the straight sections. Recall the rf energy acceptance
expression:

δrfacc =

[
eV̂rf

παhE0

F (q)

q

]1/2
, (3.1)

F (q) = 2
[√

q2 − 1− arccos(1/q)
]
. (3.2)

Therefore, the rf voltage should result in δrfacc ≥ 4.8%, for the range of values of U0. Since
higher rf voltages means higher power consumption and shorter bunches, the best approach
is using the minimum rf voltage that satisfies the rf acceptance requirement.

The rf acceptance as a function of the rf voltage for two values of U0, only accounting
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Figure 3.1: Energy acceptance of SIRIUS lattice and rf acceptance for different rf voltages and energy
losses per turn to synchrotron radiation.

for dipoles and including the IDs contribution, is presented in Fig. 3.1(b). Note that
δrfacc = 4.8% is obtained for the rf voltage ranging from 2.2MV to 2.5MV.

In these conditions, the bunch length is about 3mm, which for the beam current of
350mA would provide unacceptable impedance-induced heating of some components of the
storage ring. Additionally, the Touschek lifetime at this current is about 5 h, which would
pose severe challenges for the SIRIUS injector system to maintain the top-up operation.

We will be focused on the passive 3HC case for bunch lengthening. The third rf
harmonic for SIRIUS corresponds to a 1.5GHz cavity. The ratio of harmonic voltage to
main rf voltage for the FP condition is:

V̂HC

V̂rf
=

1

3

√
1− 9

8

1

q2
, (3.3)

which only depends on the overvoltage q.
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Table 3.2: Parameters for flat-potential condition with passive 3HC.

Parameter U0 = 475 keV, V̂rf = 2.2MV U0 = 675 keV, V̂rf = 2.5MV
Overvoltage q 4.63 3.70

Single-rf synchrotron frequency fs0 2.32 kHz 2.45 kHz
Natural bunch length σz0 3.0mm 2.8mm

Single-rf synchronous phase ψs0 167.53◦ 164.34◦

Modified synchronous phase ψs,HC 165.94◦ 162.32◦

Harmonic voltage ratio V̂HC/V̂rf 0.3245 0.3194

Harmonic voltage V̂HC 713.8 kV 798.4 kV
Harmonic detuning phase ψHC 85.23◦ 83.93◦

Bunch form factor |F | 0.9191 0.9233
Optimum shunt impedance Rs,opt 13.3MΩ 11.7MΩ

3.2 Harmonic cavity technology options

The HC can be normal-conducting (NC) or superconducting (SC). SIRIUS already have a
cryogenic plant infrastructure for the main rf cavities, initially designed to support a SC
HC as well. Therefore, a SC HC is the more favorable choice for SIRIUS. Nevertheless, we
investigate the performance and impact of using NC HCs as an exploratory exercise.

3.2.1 Normal-conducting

According to the material available on models of NC HCs [35, 37, 86–89], the typical
quality factor is Q = 2× 104. Depending on the cavity geometry, the (R/Q) parameter
may significantly vary, but we can reasonably consider (R/Q) = 100Ω as a typical value.
Considering these conditions, each NC cavity will contribute to the shunt impedance of
Rs = 2MΩ. Therefore, according to Table 3.2, to reach the optimum shunt impedance
of Rs = 11.7MΩ, it would be necessary at least 6 passive NC cavities. This number of
cavities is already impractical due to the limited available space in SIRIUS storage ring,
where most straight sections are occupied or reserved for undulators serving the beamlines.
Moreover, 6 cavities would amount to a total (R/Q) = 600Ω. With the approximate
threshold formula for the PTBL/mode-1 instability (Appendix B, Ref. [45]):

[
I0

(
R

Q

)]
threshold

≈ T0σδ
n2στ

√
E0αV̂rf
2πeFnh3

, (3.4)

we can estimate the threshold for SIRIUS parameters with I0 = 350mA, bunch length
of σz = 12mm (bunch lengthening factor 4) and rf voltage of V̂rf = 2.2MV, that the
maximum total (R/Q) should be (R/Q)threshold ≈ 200Ω. Therefore, the requirement of
6 cavities to produce the FP condition cannot be met due to the large total (R/Q) that
would trigger the PTBL instability.

The unstable regime at FP conditions was confirmed with a macroparticle tracking
simulations. The uniform filling pattern was considered, but the bunch centroids and
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lengths did not converge to the same value for all bunches, rather presenting a transient
oscillating periodically. A snapshot of this transient is shown in Fig. 3.2. This is an
indication of the PTBL instability, also observed in tracking simulations for other rings,
for example, in Ref. [90].

(a) Bunch centroids. (b) Bunch lengths.

Figure 3.2: Snapshot of macroparticle tracking results displaying an instability with 6 NC HCs at flat
potential condition. Uniform filling, 200 macroparticles per bunch, 5× 105 turns. Horizontal dashed lines
indicate the expected equilibrium parameters in the FP condition.

We may consider the case of active NC HCs, where, in principle, the number of
cavities could be reduced since the voltage is provided by an external power source.
However, we observed that the PTBL instability would also limit the operating detuning
frequency of the HCs, as shown in Fig. 3.3. The growth rates were calculated using the
Gaussian longitudinal mode-coupling instability (LMCI) method described in Ref. [45].

(a) Bunch lengthening factor of 4. (b) Reduced bunch lengthening factor of 3.

Figure 3.3: Growth rates of coupled-bunch mode 1 with the HCs detuning frequency. Nominal parameters
for SIRIUS considered. The HC is assumed to be active, where the harmonic voltage (therefore the bunch
length and average synchrotron frequency) are independent of the detuning frequency.

Moreover, as the total harmonic voltage required for SIRIUS is about 800 kV, the
restriction of maximum voltage per cavity to avoid too much power dissipation limits
the minimum number of cavities. The typical value for the maximum voltage per cavity
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is about 200 kV. The existing cavities operate below this maximum voltage for safety.
Therefore, to provide the required voltage for SIRIUS, at least 4 active NC HCs would be
necessary. In Fig. 3.3 we see that with 4 cavities, the beam would be mode-1 unstable for
the full detuning range of the HCs when a bunch lengthening factor of 4 is considered.
Even if the bunch lengthening is reduced to 3 (which is the minimum requirement to avoid
impedance-induced heating for operation at 350mA at SIRIUS), with 4 cavities, the beam
would be mode-1 stable only for HC detunings lower than 100 kHz. Besides these small
region of stability which constraints the operation of the cavity, for small detunings the
beam-loading voltage becomes significant which may pose difficulties to the low-level rf
(llrf) control system.

With this analysis, we concluded that both active and passive NC HCs would likely
drive longitudinal instabilities in the SIRIUS storage ring. Mitigation strategies for the
PTBL/mode-1 instability are currently under study and generally focus on modifying the
driving source parameters (cavity impedance), as this instability has proven to be resistant
to direct resistive feedback loops [91]. As we will see next, the SC option would avoid
longitudinal instabilities and beam stability without the need for active feedback systems
is expected. Combining this with the existing cryogenic infrastructure at SIRIUS, the NC
option for the 3HC would be considerably more complicated to pursue than the SC option
for the double-rf system of SIRIUS.

3.2.2 Superconducting

There are essentially two designs of SC 1.5GHz cavities with the operation record as
harmonic cavities in synchrotron light sources: the Super-3HC and the SINAP-3HC models.
The Super-3HC cavity was developed in collaboration between the CEA, SLS (Swiss Light
Source, Paul Scherrer Institut) and ELETTRA (synchrotron light source in Trieste, Italy)
and it was used for bunch lengthening in both ELETTRA and SLS storage rings since
the early 2000s [92–94]. The SINAP-3HC model was developed by the SINAP (Shanghai
Institute of Applied Physics) and installed in 2021 in the SSRF (Shanghai Synchrotron
Radiation Facility) storage ring [95]. Both cavities have 2-cells. The Super-3HC operates
at the temperature of 4.5K and the SINAP-3HC at 4.2K.

The institutions LNLS and SINAP have a collaboration history. For instance,
SINAP developed, installed, and commissioned the 150MeV LINAC for SIRIUS, and also
manufactured two in-vacuum undulators currently installed in the SIRIUS storage ring.
With the recent success in the development and installation of the SC 3HC in the SSRF
ring, the option of acquiring one 3HC cryomodule from SINAP is interesting for LNLS.
Therefore, we studied the performance of the SINAP-3HC model for bunch lengthening in
SIRIUS storage ring. The main parameters for the SINAP-3HC are presented in Table 3.3.

The performance of the SINAP-3HC, including the full impedance model of SIRIUS,
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Table 3.3: Parameters of SINAP-3HC.

Geometric factor (R/Q) 87.5Ω
Quality factor Q 2× 108

Shunt impedance Rs 17.5GΩ

with main cavities and the broadband machine impedance budget, was reported in
Appendix A (Ref. [44]). For uniform filling, the bunch distribution obtained with the FP
voltage is shown in Fig. 3.4(a), compared with the theoretical bunch profile obtained with
a quartic potential. The bunch lengthening factor is 4.5 and a similar increase factor is
estimated for the Touschek lifetime. This condition was evaluated with tracking simulation,
obtaining a convergence to the same equilibrium distribution obtained with the Haïssinski
solver, as shown in Fig. 3.4(b). The detuning frequency of the SINAP-3HC to obtain the
FP condition is ∆f = 53.17 kHz for V̂rf = 2.5MV and ∆f = 59.15 kHz for V̂rf = 2.2MV.

(a) With theoretical flat distribution. (b) With tracking result.

Figure 3.4: Comparison of equilibrium bunch distribution obtained with the SINAP 3HC. The equilibrium
bunch centroid is ⟨z⟩ = −0.27mm and the bunch length is σz = 12.2mm.

The time evolution of the centroids and lengths for some bunches in the tracking
simulation is presented in Fig. 3.5, showing that the average values converges to the same
values obtained with the equilibrium solver. This demonstrates that the equilibrium at
FP condition is stable with the SINAP-3HC.

3.3 Equilibrium parameters

The detailed impact of the SINAP-3HC on longitudinal equilibrium parameters for SIRIUS
storage ring was evaluated. We considered the parameters of Table 3.1, with I0 = 350mA

in uniform filling pattern, U0 = 675 keV and V̂rf = 2.5MV. The equilibrium solution was
obtained self-consistently with the frequency-domain framework developed in Appendix A
(Ref. [44]). The longitudinal parameters for the single-rf system are shown in Fig. 3.6. The
single-particle dynamics is linear, with Gaussian bunch distribution, quadratic potential,
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(a) Bunch centroids. (b) Bunch lengths.

Figure 3.5: Convergence of bunch centroids and lengths with macroparticle tracking simulations. The
tracking setting was 1000 macroparticle per bunch and 5 × 105 turns. The black curves indicate the
average values over the bunches. Sudden variations in the average values corresponds to the strategy
employed to speed up the tracking simulation, where the number of macroparticles was increased in steps,
similarly as described in Ref. [44], where in the last 1× 105 turns, 1000 macroparticle per bunch were
tracked.

constant synchrotron frequency and elliptical orbits in the phase space. In this case, the
synchrotron frequency is 2.4 kHz.

The SINAP-3HC impedance was included with the parameters of Table 3.3 for
different detuning frequencies. The nonlinear relation between the HC detuning and the
induced HC voltage is shown in Fig. 3.7(a). Note that the voltage only considerably
increases for detunings below 150 kHz. However, even with the HC significantly detuned,
close to the first revolution harmonic at 578 kHz, the induced voltage can still reach 100 kV.
Nevertheless, compared to the main rf voltage of V̂rf > 2MV, this induced voltage is low
enough to not significantly modify the bunch distribution.

The bunch length and the Touschek lifetime improvement with the increment of HC
voltage is presented in Fig. 3.7(b) and (c). The bunch length is computed as the second
central moment of λ(z) and the lifetime improvement by the ratio τHC

τ0
=

∫
dzλ20(z)∫
dzλ2HC(z)

, where
τ0 is the lifetime for the single-rf system. The HC provides significant bunch lengthening
and lifetime improvement for voltages above 600 kV, i.e., about 75% of the FP voltage,
that is close to 800 kV.

Note that above 800 kV, the second moment σz continues to increase, while the
lifetime factor reaches a maximum at approximately 850 kV. This occurs because, above
the FP voltage, the bunches become overstretched, with a double-hump profile. In this
case, the second central moment of the distribution is not a meaningful measure of bunch
length, as the distribution is better represented by the combination of two Gaussian
functions. On the other hand, since the lifetime factor depends on the integrated squared
distribution, which is proportional to the bunch peak current, overstretched distributions
can enhance the lifetime, until the two peaks begin to increase again. This behavior was
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Figure 3.6: Longitudinal distribution, potential, synchrotron frequency and phase space for the single-rf
case with SIRIUS parameters. The flat-potential HC voltage is 798.4 kV. z0 is the position where the
potential is minimum.
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Figure 3.7: Relation between HC detuning and voltage, bunch length and Touschek lifetime improvement
factor dependence on HC voltage.

obtained with the semi-analytical method in Appendix A and experimentally verified at
MAX IV 1.5GeV ring, as reported in Appendix C.

The bunch distributions and amplitude-dependent synchrotron frequency for different
HC voltages are shown in Fig. 3.8. The average synchrotron frequency and the spread
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within the bunch were calculated with:

⟨fs⟩ = 2π

∫ ∞

0

dJfs(J)Ψ0(J), (3.5)

σ2
fs = 2π

∫ ∞

0

dJ (fs(J)− ⟨fs⟩)2 Ψ0(J). (3.6)

We see in Fig. 3.8 that, up to 500 kV, the longitudinal parameters are fairly similar to a
single-rf system, with Gaussian distributions, negligible frequency spread and the average
synchrotron frequency is reduced from 2.4 kHz to 1.5 kHz. At the FP voltage, the bunch
distribution become asymmetric, the synchrotron frequency dependence with action is
non-monotonic, the frequency spread is enhanced to 100Hz and the average frequency is
500Hz.
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Figure 3.8: Longitudinal distributions, amplitude-dependent synchrotron frequency with its average and
spread, for different HC voltages. z0 is the position where the potential is minimum.

The longitudinal parameters for the double-rf system at the FP settings are shown
in Fig. 3.9 with more details. It is interesting to compare Fig. 3.9 with the results of
single-rf system in Fig. 3.6. With the SINAP-3HC, the potential is asymmetric due to the
phase error of the HC voltage—a known feature of SC HCs. This asymmetry implies that
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the synchrotron frequency dependence with action is non-monotonic1. For small actions,
the frequency reduces with the amplitude of oscillation and only for higher actions the
frequency scales with fs(J) ∼ J1/3, as expected for the ideal quartic potential.
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Figure 3.9: Longitudinal distribution, potential, synchrotron frequency and phase space for the double-rf
case at flat-potential settings with SIRIUS parameters. z0 is the position where the potential is minimum.

With the equilibrium solution for general conditions of the SINAP-3HC in uniform
filling conditions, we have the bunch profiles, λ0(z), longitudinal potential Φ0(z) and
the canonical transformation z(J, φ). With this, we can compute the action-dependent
Hamiltonian H0(J) and action distribution Ψ0(J), from which we can derive the action-
dependent frequency fs(J). These are the main equilibrium parameters required as inputs
for the calculation of collective instabilities in generic longitudinal potentials [45].

1In some cases, the minimum dfs
dJ = 0 might be related to instability issues, since particles with actions

close to this minimum have similar frequencies and are susceptible to develop coherent motion. This issue
is discussed in Ref. [26] but will not be addressed here.
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3.4 Collective stability

3.4.1 Harmonic cavity-induced instabilities

Longitudinal coupled-bunch instabilities including the potential-well distortion effects
from the 3HC can be evaluated with the semi-analytical methods presented in Ref. [45].
Two main concerning instabilities in a double-rf system were evaluated: the Robinson
dipole-quadrupole mode-coupling and the PTBL/mode-1 instability. The results are
presented in Fig. 3.10. For both cases, stable coherent frequencies were obtained for all
the harmonic voltages. For details on each model, Lebedev, effective ωs(σz) and Gaussian
LMCI, see Appendix B (Ref. [45]).
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Figure 3.10: Coherent frequencies of coupled-bunch modes ℓ with the harmonic voltage. SIRIUS parameters
with U0 = 675 keV, V̂rf = 2.5MV. All conditions are stable, with growth rates Im(Ω) < 0.1Hz while the
longitudinal radiation damping rate is τ−1

δ = 77.5Hz.

For the coupled-bunch ℓ = 0, the quadrupole mode crosses with the dipole mode,
but they do not couple to drive an instability. For the coupled-bunch ℓ = 1, the coherent
shift with respect to the incoherent frequency reduction is essentially absent. Thus, the
coherent frequency is not shifted towards zero and the PTBL instability is not triggered.
As calculated previously, the PTBL threshold for SIRIUS is (R/Q)threshold ≈ 200Ω, thus
the (R/Q) = 87.5Ω of the SINAP-3HC is more than two times lower than the threshold.

3.4.2 Mitigation of instabilities

After the rf system upgrade with the installation of two SC main rf cavities on SIRIUS
storage ring, longitudinal coupled-bunch instabilities were observed, starting from the
total beam current of 90mA. The bunch-by-bunch feedback system was necessary to
accumulate a stable 200mA beam.

The growth rates of all coupled-bunch modes were measured below the instability
threshold, at 80mA, with the growth-damp functionality of the Dimtel bunch-by-bunch
system [96]. Many coupled-bunch modes, from 450 to 650, displayed high growth rates,
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with resonant peaks that could be distinguished. This feature indicates that this instability
might be related to several narrowband impedance contributions distributed over the ring.
According to previous simulations reported in Ref. [97], the gate valves could be the source
of such impedances, with the main eigenmode resonant frequency close to 8GHz. Based
on this, the shunt impedance and the quality factor of 13 resonators were fitted, using the
difference of the calculated growth rates to the measured ones as the penalty parameter for
optimization. For these calculations, we considered the methods available in pycolleff

for single-rf systems and Gaussian bunches [98]. The resonant frequencies of the resonators
were fixed by the frequency of 13 most prominent coupled-bunch modes, with the addition
of the closest rf harmonic to 8GHz. The fitted parameters were on the order of Rs ≈ 5 kΩ

and Q ≈ 1× 103. These values are compatible with electromagnetic simulations for the
gate valves [97]. The results are presented in Fig. 3.11(a).
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Figure 3.11: Coupled-bunch growth rates measured at SIRIUS and dependence with bunch lengthening.

The impact of bunch lengthening induced by the 3HC on this longitudinal instability
was estimated using a simplified model. We approximated the 3HC effect by increasing
the bunch length and reducing the average synchrotron frequency. Given the reasonable
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accuracy of the Gaussian LMCI model described in Ref. [45], this approximation is expected
to provide a sufficiently reliable estimate of growth rates for these instabilities. The relation
σzωs = αcσδ was used to link the bunch length and synchrotron frequency ωs, assuming
fixed values for α and σδ. As shown in Fig. 3.11(b), the growth rates decrease significantly
as the bunch length increases. This behavior results from the reduction of high-frequency
components in the beam spectral power as the bunch becomes longer. Consequently, this
reduces the beam-coupling to high-frequency impedances, such as the simulated gate valves
around 8GHz.

The threshold current dependence on the bunch length is presented in Fig. 3.11(c).
The results from the simplified Gaussian theory, where the bunch length σz is an input
parameter, are shown alongside those from the Lebedev equation. In this more general
approach, we selected the coupled-bunch mode with the highest growth rate (ℓ = 567) and
used the 3HC detuning frequency as an input parameter, thereby obtaining the equilibrium
parameters self-consistently. The difference between the dependencies obtained from each
calculation arises from the non-Gaussian bunches and the nonlinearities introduced by
the 3HC, which are included in the Lebedev equation but not captured by the simplified
theory. Nevertheless, the results indicate that a 10mm bunch length, provided by the
3HC, would enable stable operation at 350mA without longitudinal feedback.

3.5 Hybrid filling pattern and guard bunches

Some SIRIUS beamlines have a scientific interest in time-resolved experiments, where the
radiation from a single bunch must be isolated from the multibunch train. Running these
experiments in parallel with multibunch users requires a hybrid filling pattern. A review
of key timing-mode specifications in synchrotrons is provided in the thesis [99].

The bunch spacing for SIRIUS is 2 ns, and with the current technology, this timescale
is too short for a mechanical device (for example, a beam chopper) to allow the propagation
of the signal from just one bunch and block the radiation from the other bunches. It is
therefore necessary to have a gap between the isolated bunch and the multibunch train,
to allow sufficient time for the mechanism of the beamlines to block the radiation from
the multibunch train and rapidly stop the blockage to use the radiation from the isolated
bunch. However, with a passive HC, gaps in the filling pattern introduce inhomogeneous
beam loading, leading to significant variations in the bunch distributions and reduced
bunch lengthening performance.

We tested a hybrid filling pattern with 25 empty buckets before and after the isolated
bunch. This gap corresponds to 50 ns of dark time before and after the radiation pulse of
the isolated bunch. We considered that the isolated bunch have 2mA of current, which
corresponds to 3.5 pC of charge. The current of 348mA should be distributed on the other
814 buckets to keep the total current of 350mA. If this current is distributed evenly over
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the buckets, the inhomogeneous beam-loading reduces considerably the bunch lengthening
performance of the 3HC, as shown in Fig. 3.12(a). In this case, the effect of the gap is
not compensated. A strategy to mitigate the inhomogeneous beam loading caused by the

(a) No compensation. (b) Guard bunches compensation.

Figure 3.12: Inhomogeneous beam loading with 3HC at flat potential detuning, with and without
compensation with guard bunches.

gap is to populate nearby buckets with higher current, creating guard bunches [23, 76].
Figure 3.12(b) illustrates this compensation: instead of distributing the missing gap current
evenly across all 814 buckets, 25 buckets before and after the gaps were filled with twice
the current of the remaining 764 buckets. This approach localizes the bunch lengthening
degradation to the 50 guard bunches, while the bunch distributions in the multibunch
train remain nearly identical to those in a uniform filling pattern

Fine-tuning of the hybrid filling requirements and the corresponding guard bunch
compensation should be done along with discussions with the time-resolved beamlines, in
order to guarantee good bunch lengthening performance of the 3HC.

3.6 Frequency detuning control

In passive cavities, the voltage is controlled by the detuning frequency. Therefore, the
specifications for the stability of harmonic voltage relies on the stability of the frequency
tuning system. A convenient approximate relation between the peak harmonic voltage
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and the detuning frequency is given by:

V̂HC ≈ I0|F |(R/Q)
3frf
∆f

, (3.7)

where we considered the 3HC case, ∆f = fr − 3frf is the detuning frequency and |F |
the absolute value of the bunch-form factor evaluated at 3frf . Considering I0|F |(R/Q)
independent of the cavity detuning, the relative variations of harmonic voltage and
detuning are simply related by δ(V̂HC)/V̂HC ≈ −δ(∆f)/∆f . However, specially close
to the FP condition, the bunch-form factor changes significantly with the detuning
frequency. This implies that the relation between harmonic voltage and detuning frequency
becomes nonlinear. Figure 3.13(a) illustrate this dependence. For the case of SIRIUS, the
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Figure 3.13: The dependence of the bunch form factor and peak harmonic voltage with the detuning
frequency.

nonlinearity between the harmonic voltage and detuning frequency implies that, around
the FP condition, 1% of variation in the harmonic voltage corresponds to 2% of variation
in the detuning frequency and 6% of variations in the bunch length and Touschek lifetime.
To maintain the bunch length and lifetime controlled within 1%, we must specify that
the tuning frequency system should have a stability better than 0.4%, which in turn
would provide a voltage stability better than 0.2%. The variations of SIRIUS bunch
distributions for two different relative variations of the harmonic voltage are shown in
Fig. 3.14. Considering that the 3HC detuning frequency to provide the FP for SIRIUS
is close to 50 kHz, the relative stability requirement of 0.4% implies in absolute stability
within 100Hz. As reported in Refs. [100,101], the fine-tuning precision of the tuner system
for the SINAP-3HC is 10Hz, sufficient to meet the stability requirements for SIRIUS.
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Figure 3.14: Comparison of bunch distribution for different relative variations of harmonic voltage.
Uniform filling case.

3.7 Mapping operation points

In 2-cell cavities, two resonant modes, referred to as 0-mode and π-mode, have the highest
values of shunt impedance. The phase relation between the longitudinal electric fields for
each of these modes is represented in Fig. 3.15(a). The cavity is optimized for operation
in the π-mode. The high impedance of the 0-mode can be regarded as a higher order
mode (HOM) of the cavity that can potentially couple with the beam and drive some
longitudinal coupled-bunch instability.

The design of the SINAP 3HC was optimized so the (R/Q) of the 0-mode could be
minimized to (R/Q)0 = 0.1Ω, while the value for π-mode is (R/Q)π = 87.5Ω [100, 102].
Even so, as the cavity is superconducting and the Q value is high, the estimated shunt
impedance 0-mode would be above the threshold for longitudinal coupled-bunch instabilities
for SIRIUS, as shown in Fig. 3.15(b). The resonant frequencies of the two modes are
separated by fπ − f0 = 34.5MHz. Therefore, the possibility of the impedance 0-mode
matching with some coupled-bunch mode was a point of attention.

(a) Longitudinal electric fields phase
relation.

(b) Real impedance of the 0-mode and π-mode com-
pared with SIRIUS impedance threshold for longitu-
dinal coupled-bunch instabilities.

Figure 3.15: Electric fields relation and real impedance of two resonant modes in a 2-cell cavity.

Given their high quality factor, both 0-mode and π-mode impedances have a very
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narrow bandwidth. This implies that a small variation in the resonant frequency is
sufficient to significantly modify the impedance sampled by the beam. As the detuning
mechanism modifies the resonant frequency of the π-mode to control the induced harmonic
voltage, it is expected that the resonance of the 0-mode is modified by approximately the
same frequency shift. Thus, if for some detuning condition the 0-mode happens to drive
some instability, small changes in the detuning would be sufficient to shift the 0-mode
impedance and to modify its coupling with the beam. To support this strategy, the bunch
lengthening performance of the 3HC with different detunings should be evaluated.

The flattening of the rf voltage depends on the ratio between the harmonic and
main rf voltages. If the main rf voltage is modified, the harmonic voltage required to
produce the FP condition will be different as well. For passive cavities, assuming the same
beam current, different voltage means different detunings. Therefore, with this strategy
it is possible to obtain similar bunch distributions with different conditions of main rf
voltage, cavity detuning and harmonic voltage. The mapping of the performance on the
bunch-length and Touschek lifetime for different main rf voltages and 3HC conditions are
presented in Fig. 3.16. Obtaining this map in a fine grid with a negligible computational
time (∼ 1min) was only possible due to the low computational load of the semi-analytical
method developed to solve the equilibrium bunch distributions.

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
RF voltage (MV)

40

50

60

70

80

90

100

110

3H
C

d
et

u
n

e
(k

H
z)

7h

8h

9h

10h

12h

15h

20h

9mm

−25 0 25

z (mm)

MC: 2.10 MV
3HC: 658 kV, 62.3 kHz

3.1 mm → 13.0 mm
4.8 h → 20.7 h

2.8

4.0

5.2

6.4

7.6

8.8

10.0

11.2

12.4

13.6

B
u

n
ch

le
n

gt
h

[m
m

]

(a) Detuning frequency.

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
RF voltage (MV)

400

500

600

700

800

900

3H
C

vo
lt

ag
e

(k
V

)

7h

8h9h

10h

12h

15h

20h

9mm

−25 0 25

z (mm)

MC: 2.10 MV
3HC: 658 kV, 62.3 kHz

3.1 mm → 13.0 mm
4.8 h → 20.7 h

2.8

4.0

5.2

6.4

7.6

8.8

10.0

11.2

12.4

13.6

B
u

n
ch

le
n

gt
h

[m
m

]

(b) Harmonic voltage.

Figure 3.16: Mapping of bunch length and Touschek lifetime for different rf voltages, 3HC detunings and
corresponding harmonic voltage.

3.8 Conclusions

In this chapter, we explored the implementation of a 3HC in SIRIUS for bunch lengthening
and to improve beam stability for Phase II of operation at 350mA. An initial evaluation
of normal-conducting cavities revealed that, to provide the necessary harmonic voltage, a
larger number of cavities would be required, leading to a high total (R/Q) factor. This
poses a risk for coupled-bunch instabilities, challenging stable operation at high beam
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currents. In contrast, a superconducting cavity, such as the SINAP-3HC, offer a lower
(R/Q) factor, reducing the risk of instabilities while efficiently delivering the harmonic
voltage needed for bunch lengthening.

We investigated hybrid filling patterns for time-resolved experiments in parallel
with multibunch users. The inhomogeneous beam loading caused by gaps in the filling
pattern considerably reduces the bunch lengthening performance of the 3HC. However,
the use of guard bunches can effectively mitigate this effect, keeping the multibunch train
distributions similar to the one achieved with a uniform filling pattern. Fine-tuning of
this approach will require collaboration with the beamlines to meet their requirements
while achieving sufficient bunch lengthening performance with the 3HC.

We evaluated the sensitivity of the harmonic voltage to frequency detuning, particu-
larly near the FP condition. The nonlinear relation between detuning and voltage stability
was quantified, emphasizing the importance of precise frequency control to maintain
stable bunch length and lifetime. The analysis showed that frequency stability better
than 0.4% and voltage better than 0.2% are required to limit bunch length and lifetime
variations within 1%. The fine-tuning capabilities of the SINAP-3HC tuner system meet
this requirement.

Additionally, we investigated the potential instability induced by the unwanted
0-mode of the 2-cell cavity. While its peak shunt impedance is above the threshold for
instability, we propose that small detuning adjustments could mitigate the issue by shifting
the mode’s resonant frequency away from exciting coupled-bunch modes. A mapping of
bunch lengthening performance for different main rf voltages and 3HC conditions supported
the feasibility of this strategy. The computational speed provided by the semi-analytical
method developed in this work proved to be very helpful, since it enabled large parameter
scans with negligible computational time.

Implementing a passive 3HC for bunch lengthening will be necessary for operation
with 350mA in the Phase II of SIRIUS. The choice of the superconducting SINAP-3HC
model is well-supported by its better performance in providing stable bunch lengthening
while minimizing instability issues. The SIRIUS cryogenic infrastructure already supports
the superconducting 3HC. After the 3HC installation, experimental studies will be essential
to ensure reliable operation with higher beam currents in the Phase II of SIRIUS.
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The best that most of us can hope to achieve in physics is
simply to misunderstand at a deeper level.

— Wolfgang Pauli

4
Summary and conclusions

This thesis has presented advancements in the study of longitudinal collective effects
in synchrotron storage rings, with a particular focus on double-rf systems with passive
harmonic cavities. The main contributions addressed two key topics: calculating the self-
consistent equilibrium state of the electron beam and evaluating thresholds for collective
instabilities. The novel semi-analytical frameworks introduced in this thesis are detailed
in Appendices A (Ref. [44]) and B (Ref. [45]).

In Appendix A, two approaches were developed to calculate the beam-induced voltage
for arbitrary filling patterns: the space- and frequency-domain methods. The space-domain
approach, based on wake functions, extended previous works [76–78] by employing a
compact notation and a general resonator expression, beyond the high-Q approximation.
However, its dependence on a resonator model can limit its application to broadband
impedances. The frequency-domain approach, introduced as a novel contribution of this
thesis, overcomes this limitation by allowing for generic impedance models. This framework
efficiently handles both broadband and narrowband resonators and takes advantage of
FFT algorithms to significantly speed up some computation steps. Additionally, it enables
more general modeling of rf feedback systems in active cavities. The developed expressions
for the beam-induced voltage were used to solve the Haïssinski equation self-consistently
using a robust fixed-point algorithm. The equivalence of the space- and frequency-
domain methods was demonstrated using SIRIUS storage ring parameters and machine
impedance budget, including a model of a superconducting third harmonic cavity. The
advantages of the semi-analytical methods were further validated through comparisons with
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macroparticle simulations, achieving excellent agreement at a fraction of the computational
cost. Moreover, the equilibrium solver was successfully benchmarked against experimental
data from the MAX IV 1.5GeV ring, where measured and simulated bunch profiles were
compared under overstretched conditions with the goal of optimizing the Touschek lifetime.
These results are detailed in Appendix C (Ref. [46]).

As the next step to solving the equilibrium state as discussed in Appendix A, Ap-
pendix B focused on the dynamic coherent effects to assess beam stability. A general theory
for coupled-bunch longitudinal instabilities was developed, accounting for potential-well
distortion and multiple azimuthal modes. Starting from the linearized Vlasov equation,
the generalized Sacherer integral equation was derived, leading to the Lebedev equation.
The relationship between this framework and Venturini’s approach [82] was established,
highlighting the computational efficiency of the former. Dispersion relations for a narrow-
band resonator model, applicable to arbitrary rf potentials and azimuthal modes, were
derived from the Lebedev equation. These results recovered dipole [81] and quadrupole [85]
instabilities as specific cases. The developed framework was employed to compute coherent
frequencies and growth rates for the Robinson dipole-quadrupole instability, yielding good
agreement with measured coherent frequencies at the MAX IV 3.0GeV ring. Furthermore,
the measured thresholds for the PTBL/mode-1 instability at MAX IV were successfully
reproduced. A novel explanation for the mode-1 instability as a zero-frequency mechanism
was proposed, explaining its dependence on parameters such as rf voltage, cavity (R/Q),
and radiation damping. It was demonstrated that Landau damping has negligible influence
on this low-frequency instability, whereas contributions from multiple azimuthal modes
are key for accurate predictions of PTBL thresholds. An approximate formula for the
threshold was derived, showing its dependence on the product of the cavity (R/Q) and
beam current, consistent with scaling laws from previous studies.

In Chapter 3, the developed methods were applied to analyze the effects of a
superconducting third harmonic cavity on the SIRIUS storage ring. This study was
aimed at supporting the Phase II operation of SIRIUS, which targets a design current
of 350mA. By applying the semi-analytical frameworks for equilibrium and instability
analysis developed in this thesis, we evaluated the impact of the third harmonic cavity
on beam dynamics, including bunch lengthening performance and stability at high beam
currents. The methods allowed us to quantify the potential improvements in beam stability
and optimize the cavity’s design to achieve efficient bunch lengthening while minimizing
risks of coupled-bunch instabilities. The results from this analysis are expected to be
fundamental in supporting the commissioning of the third harmonic cavity, ensuring its
effective integration into the SIRIUS storage ring. Moreover, the insights gained from this
study are anticipated to facilitate various aspects of accelerator studies and operations
during Phase II of SIRIUS, helping to optimize beam quality for both time-resolved and
multibunch experiments. This work, still in progress, aims to refine operational strategies
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and provide experimental validation of the theoretical predictions made in the analysis.
In addition to theoretical developments, the computational tools were implemented

in the open-source package pycolleff [98]. Some functionalities of pycolleff were also
integrated in the open-source package ALBuMS [84]. These tools offer efficient methods
for evaluating equilibrium parameters and longitudinal instabilities in modern storage
ring designs with double-rf systems, contributing to the development of fourth-generation
synchrotrons. The contributions were directly applied to SIRIUS, MAX IV [46], and the
SOLEIL II project [103].

Despite these advancements, this thesis is still far from a complete description
of the effects of harmonic cavities on electron beam dynamics in synchrotrons. For
instance, the impact of harmonic cavities on transverse instabilities was not addressed.
Previous studies have investigated the influence of nonlinear longitudinal motion on
transverse dynamics [80, 104, 105], demonstrating that harmonic cavities can help to
stabilize transverse instabilities as well. Similarly, the impact of modified rf potentials on
single-bunch longitudinal instabilities, such as microwave instabilities, was not evaluated.
Nevertheless, it is generally understood that longer bunches have higher thresholds for such
high-frequency instabilities. The instability calculation framework based on the Lebedev
equation is quite general; however, evaluating the impact of broadband impedances,
which contribute with many harmonics, might be computationally challenging due to the
increased matrix size involved. Investigating methods to deal with these numerical issues
could be a subsequent research topic to further expand the applicability of the developed
framework. Regarding the PTBL/mode-1 instability, considering its zero-frequency nature
and the demonstrated ineffectiveness of resistive feedback systems, testing reactive feedback
systems may reveal an effective control strategy with current technology.

After the installation of the third harmonic cavity on SIRIUS storage ring, its
commissioning and accelerator studies will provide the opportunity to validate the developed
frameworks experimentally. In addition to SIRIUS, the methods developed in this thesis
can support future studies on double-rf systems in other synchrotron facilities.
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A. Article 1: Equilibrium with arbitrary impedances and filling patterns 89

A new self-consistent semi-analytical method for calculating the stationary beam-
induced voltage in the presence of arbitrary filling patterns and impedance
sources in electron storage rings is presented. The theory was developed in
space-domain with resonator wake-functions and in frequency-domain with
arbitrary impedance functions. The SIRIUS storage ring parameters were used
to benchmark the results, demonstrating good agreement between the two ap-
proaches and with macroparticle tracking simulations. Additionally, a different
approach to simulate the beam-loading compensation of active rf cavities was
investigated in frequency-domain, proving to be a more generic description than
the methods generally used. The impact of broadband impedance on the longi-
tudinal equilibrium was straightforwardly evaluated with the frequency-domain
framework, without intermediate steps such as fitting broadband resonators
or convolving short-range wakes with bunch distributions. Finally, a simple
study of Touschek lifetime improvement with a passive higher harmonic cavity
is presented.

A.1 Introduction

Many developments on semi-analytical methods have been made to calculate the equilibrium
longitudinal bunch distributions in electron storage rings as a faster alternative to tracking
codes. One of the early motivations was related to the equilibrium of a uniform filling in
a double-rf system, where the effect of a passive HHC was investigated. In this case the
beam-induced voltage has an analytical formula that can be added to the main voltage
and the bunch distribution can be obtained. However, the co-dependence between these
two quantities require the calculations to be iterated until convergence. The bunch profile
can be accounted on the calculation of the beam-induced voltage in passive HHCs with a
real [23] or complex [106] form-factor.

Synchrotron light sources often operate with nonuniform filling patterns for different
reasons, for example, to allow for time-resolved experiments and to mitigate ion and
coupled-bunch instabilities. Time-consuming macroparticle tracking simulations were
the first attempt to study the inhomogeneous beam-loading (also referred as transient
beam-loading) in the presence of passive HHCs. Simplified approaches considered each
bunch as a pointlike macroparticle [107–109] or as macroparticles with Gaussian real
form-factors [110]. Initially, semi-analytical methods were also non-self-consistent [111],
assuming pointlike bunches to iteratively calculate the induced voltage. A self-consistent
calculation of the inhomogeneous beam-loading was proposed in Ref. [75], with an iterative
matrix formulation based on the linearization of the energy balance equation in the presence
of a passive HHC modeled as a resonator. In this solution, complex form-factors were
assigned for each bunch.

The problem for arbitrary filling patterns was revisited in Ref. [76], with the develop-
ment of explicit formulas for the induced voltage of a narrowband resonator, resulting in a
system of coupled Haïssinski equations. Newton’s method was applied to iteratively solve
the problem. The theory was extended in Ref. [77] to include multiple resonators and an
algorithm for compensating the main rf cavity beam-loading was proposed. A discussion
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on the effect of cavities higher order modes and short-range wakefields was presented as
well. Some difficulties were reported in the convergence of the Newton iteration scheme
for higher currents, when beam-induced voltages are higher. In Ref. [112], phasor notation
was applied to describe the induced voltage by resonators and Newton’s iteration method
was also employed to solve the system of equations. In this case, convergence was improved
when, on each iteration, the distributions were updated based on a linear combination of
previous and present distributions, with a random coefficient as weight. The Jacobian-
based iterative solution method proposed in [76, 77] was reappraised in Ref. [78], where the
equations were formulated as a fixed-point problem. The Anderson’s acceleration method
was introduced to enhance convergence, proving to be a robust and fast algorithm for
calculating the equilibrium bunch distributions for general settings of filling patterns and
resonators wakefields.

In this chapter we present two semi-analytical approaches in space-domain (SD)
and frequency-domain (FD) to obtain the beam-induced voltage. The SD formulation
is similar in some aspects to the theory presented in Ref. [76]. The main difference is
the fact that we considered the most generic wake-function for a resonator, instead of
assuming the approximated formula for large Q factor. Additionally, we employed complex
variables to develop the equations in SD, resulting in compact expressions accessible
for numerical implementation and with simple interpretation. The main novelty of this
thesis lies in the calculation of the beam-induced voltage with a FD framework, which
allows for more general impedance models, not restricted to the resonator case. With
this framework, broadband impedance and higher-order modes of rf cavities can be easily
incorporated. The natural inclusion of broadband impedance sources is a very important
feature, since it allows the usage of impedance models obtained from analytical and
semi-analytical calculations, for which the wake-function is not available or difficult to be
obtained. Moreover, the usage of impedance functions helps to establish a more realistic
description of active rf cavities with a llrf feedback control and then evaluate its effects on
the beam equilibrium. We will address the question raised in Ref. [77] on whether the
proposed algorithm was an accurate model of the feedback mechanism, and discuss its
equivalence to a particular controller type.

The chapter is organized as follows: in §A.2 we present the theory to calculate
the beam-induced voltage with two approaches. Methods to model active rf cavities
and schemes of beam-loading compensation are discussed in §A.3. In §A.4, we briefly
review the Haïssinski equation to solve for the longitudinal bunch distributions given the
beam-induced voltage. §A.5 presents the application of the developed methods considering
the SIRIUS storage ring parameters. Macroparticle tracking was used to benchmark the
results for a nonuniform filling pattern. In the Appendix, the theory was applied to the
case of uniform filling and narrowband resonator to reproduce a well-known formula for
the beam-induced voltage.
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A.2 Beam-induced voltage

Throughout this chapter we will work with a set of global reference systems for the
longitudinal coordinate z of relativistic electrons in a storage ring, with origin at the
center1 of the corresponding rf bucket n on an arbitrary turn r, and z > 0 for trailing
particles. Besides, the bucket index is defined such that, if ℓ > n, then bucket ℓ trails
bucket n. In a particular coordinate system where n = 0 and r = 0, we can express the
beam distribution, which extends through the entire real line and is one-turn periodic, as:

λt(z) =
∞∑

k=−∞
λ(z + kC0), (A.1)

where C0 is the ring circumference and λ(z) is the one-turn distribution, given by

λ(z) =
1

It

h−1∑
ℓ=0

Iℓλℓ(z − ℓλrf), with It =
h−1∑
ℓ=0

Iℓ > 0, (A.2)

where h is the harmonic number of the ring, λrf = C0/h is the rf wavelength, Iℓ ≥ 0 is the
current of the ℓth bunch and λℓ(z) is its distribution, which is assumed to be non-zero2

only for z ∈ D ⊂ [−λrf/2, λrf/2] and normalized to unity, which implies the one-turn
distribution is also normalized to unity.

With this setup, the longitudinal voltage V (z) induced by this current distribution
under the influence of the longitudinal wake-function W ′

0(z) is [51]

V (z) = −ItT0
∫ ∞

−∞
dz′λt(z

′)W ′
0(z − z′), (A.3)

where T0 = C0/c is the revolution period and c is the speed of light. Substituting Eq. (A.1)
into Eq. (A.3) and assuming the integral converges, we can change the order of the
summation with the integral. Besides, since the choice of the turn used as origin of the
coordinate system is arbitrary, we can make the following change of the integration variable
z′ → z′ − kC0, which yields:

V (z) = −ItT0
∞∑

k=−∞

∫ ∞

−∞
dz′λ(z′)W ′

0(z − z′ + kC0). (A.4)

Inserting Eq. (A.2) in the equation above, changing the order of the summation with the
1The center of a rf bucket is the synchronous phase considering only the energy gain by the main rf

cavities and the energy loss by synchrotron radiation.
2The distributions are not exactly zero outside a rf period, but for electron beams it typically fall-off

exponentially for z sufficiently larger than the bunch length, justifying the assumption.
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integral and making the additional change of variables z′ → z′ + ℓλrf , we get

V (z) = −T0
∞∑

k=−∞

h−1∑
ℓ=0

∫ ∞

−∞
dz′Iℓλℓ(z

′)W ′
0(z − z′ + kC0 − ℓλrf). (A.5)

Since the choice of the reference bucket was arbitrary, we could get an equivalent
result using the center of the nth rf bucket as reference for the coordinate system. This is
performed with the change of variables z → z + nλrf in Eq. (A.5), which reads

Vn(z) = −T0
∞∑

k=−∞

h−1∑
ℓ=0

∫ ∞

−∞
dz′Iℓλℓ(z

′)W ′
0(z − z′ + kC0 − (ℓ− n)λrf), (A.6)

where we introduced the notation Vn(z) = V (z + nλrf) to denote that the beam-induced
voltage is calculated with the nth bunch as reference for the coordinate system.

A.2.1 Space-domain

The most generic longitudinal wake-function for a resonator is given by [51]:

W ′
0(z) = 2αRse

−αz/cH(z)

[
cos(ω̄Rz/c)−

α

ω̄R
sin(ω̄Rz/c)

]
, (A.7)

where H(z) is the Heaviside step function [113], α > 0 and ω̄R ≥ 0. When applied to a
cavity, these two parameters are related to the quality factor Q and resonant frequency
ωR by the expressions α = ωR/2Q and ω̄R =

√
ω2
R − α2, where we note that Q must be

larger than 1/2.
Let G(z) be a complex function defined as

G(z) = H(z)e−κz , κ = (α− iω̄R)/c, (A.8)

then the wake-function of Eq. (A.7) can be rewritten as

W ′
0(z) = 2αRs

{
Re [G(z)]− α

ω̄R
Im [G(z)]

}
. (A.9)

Substituting this resonator model into Eq. (A.6) we have

Vn(z) = −2αRsT0

∞∑
k=−∞

h−1∑
ℓ=0

∫ ∞

−∞
dz′Iℓλℓ(z

′)

{
Re [G(ζkℓn)]−

α

ω̄R
Im [G(ζkℓn)]

}
, (A.10)

where ζkℓn = z − z′ + kC0 − (ℓ− n)λrf was introduced.
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Since the distributions λℓ(z) are real, if we define the following complex function

Kn(z) =
∞∑

k=−∞

h−1∑
ℓ=0

∫ ∞

−∞
dz′Iℓλℓ(z

′)G(ζkℓn), (A.11)

then the beam-induced voltage for the nth bunch can be compactly written as

Vn(z) = −2αRsT0

{
Re [Kn(z)]−

α

ω̄R
Im [Kn(z)]

}
. (A.12)

The causality property of the wake-function is encoded in the function G(z) by means
of the Heaviside step function. Nevertheless, this property should be explicitly manifested
in the integration and summation limits to further simplify our expressions. This can be
done with the following arguments.

• The bunch distributions λℓ(z) are assumed to be zero outside the interval [−λrf/2, λrf/2],
so the limits of integration in Eq. (A.11) could be restricted to this range. With this
consideration, we note that ζkℓn < 0 for k < 0 and the summation over turns can be
reduced to non-negative values of k.

• For ℓ = n and k = 0, i.e., the self-induced voltage of a particular bunch in the present
turn, causality is obeyed when z′ ≤ z, limiting the integration domain to (−∞, z).

• Taking ℓ < n, which means the source bunch ℓ leads the trailing bunch n, then k = 0

should be considered in the summation. For ℓ > n only k > 0 should be accounted.

Applying these considerations into Eq. (A.11) results in

Kn(z) = e−κz
(
InSn(z) +

h−1∑
ℓ=0

MnℓAnℓIℓ

)
(A.13)

where Sn(z) is related to the effect of the bunch n on itself in the present turn (k = 0),
given by

Sn(z) :=

∫ z

−∞
dz′λn(z

′)eκz
′
, (A.14)

the terms Anℓ are given by

Anℓ :=
∞∑

k=
{
0, ℓ<n
1, ℓ≥n

νk =

 1
1−ν , ℓ < n

ν
1−ν , ℓ ≥ n

, (A.15)

where ν = e−κC0 , and Mnℓ is defined as

Mnℓ := eκ(ℓ−n)λrf
∫ +∞

−∞
dz′λℓ(z

′)eκz
′
, (A.16)
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which depends on the bilateral Laplace Transform [114] of the bunch distribution evaluated
at −κ, which in turn can be identified as Sℓ(z) in the limit that z tends to infinity.
Moreover, since λℓ(z) is zero outside the interval D ⊂ [−λrf/2, λrf/2], then the following is
valid:

lim
z→∞

Sℓ(z) = Sℓ(λrf/2).

Equation (A.13) has a straightforward numerical implementation when we consider
a uniformly discretized z domain for each bucket:

zj =
λrf
a

(
j

N
− 1

2

)
, j = 0, . . . , N − 1, (A.17)

where 1 ≤ a ∈ R and N ∈ N should be chosen appropriately, depending on the typical
bunch length, resonator frequency and damping rate.

Numerical problems related to floating-point overflow may arise in calculations when
high-frequency (ωR ≳ 100GHz) low-Q resonators are involved, due to the exponential
with positive real argument in Mnℓ when ℓ > n. In these cases it is recommended to use
the identity g(x)ex = elog(g(x))+x to avoid such problems, thus MnℓAnℓ = elog(Mnℓ)+log(Anℓ)

and the term −κC0 compensates κ(ℓ− n)λrf . For even higher frequencies, the calculation
of Sn(zj) may have similar issues and the same approach can be used for the integrand.
Besides, the integral can be suitably truncated once the integrand approaches zero, which
will generally be the case, given that the bunch distributions fall-off faster than the
exponential term eκz

′ .
It is also straightforward to include an arbitrary number of resonators in the calcula-

tions, since, by linearity, the induced voltages for each resonator can be added. However,
the calculation time grows linearly with the number of resonators, given that all quantities
from Eq. (A.12) and Eq. (A.13) must be re-evaluated as the resonator parameters change.

It is possible to further simplify3 Eq. (A.13) for a convenient interpretation of the
beam-induced voltage:

Kn(z) = e−κz
(
InSn(z) +

h∑
ℓ=1

νℓ/h

1− ν
Sn−ℓ(λrf/2)In−ℓ

)
. (A.18)

In this expression we note that the voltage acting on the nth bunch is the sum of its own
action on the current turn and the effect of previous passages of all bunches, including
itself, with an appropriate phase and decay factor. It also facilitates to check the continuity
of the voltage between adjacent buckets: Kn(λrf/2) = Kn+1(−λrf/2). Interestingly,

3The calculation steps are: (i) insert the explicit expressions for Mnℓ and Anℓ into Eq. (A.13); (ii)
rewrite ν = e−κC0 = e−κhλrf ; (iii) separate the terms ℓ < n and ℓ ≥ n in the summation; (iv) for the sum
with ℓ ≥ n, re-index the summation variable ℓ′ = ℓ−h; (v) use the property Iℓ±h = Iℓ and λℓ±h(z) = λℓ(z);
(vi) identify that both summands are equal and unify the sums; (vii) re-index the summation variable
ℓ′ = n− ℓ.
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Eq. (A.18) is free from the numerical issues related to positive arguments in exponential.

A.2.2 Frequency-domain

An arbitrary longitudinal wake-function W ′
0(z) is related to a longitudinal impedance Z(ω)

by the inverse Fourier transform [51]:

W ′
0(z) =

1

2π

∫ ∞

−∞
dωZ(ω)e−iωz/c. (A.19)

Inserting this relation into Eq. (A.4) reads

V (z) = −ItT0
2π

∞∑
k=−∞

∫ ∞

−∞
dz′
∫ ∞

−∞
dω λ(z′)Z(ω)e−iω(z−z

′+kC0)/c. (A.20)

Rearranging the exponential terms, we can apply the Poisson sum formula to the
summation over turns:

+∞∑
k=−∞

e−ikωT0 = ω0

+∞∑
p=−∞

δ(ω + pω0), (A.21)

where δ(·) is the Dirac delta distribution and ω0 = 2π/T0. With this change, the integral
over ω can be easily performed. The expression simplifies to

V (z) = −It
+∞∑
p=−∞

Z∗(pω0)e
ipω0z/c

∫ ∞

−∞
dz′λ(z′)e−ipω0z′/c, (A.22)

where we used the property Z(−ω) = Z∗(ω), with ∗ denoting the complex conjugate.
The numerical implementation of Eq. (A.22) requires truncation of the infinite sum

over harmonics p. Two alternative approaches will be presented to properly select the
harmonics. One is based on the DFT of the one-turn distribution, which considers all
harmonics up to a specific threshold. The other is based on a selection of the most relevant
harmonics, depending on the filling pattern and impedances under consideration. While the
first method is generally much faster, since it benefits from the use of the FFT algorithm,
the second one is better suited when the impedance is composed of a few narrowband
peaks.

A.2.2.1 Implementation with DFT

Consider the case of the discretized z-coordinate from Eq. (A.17) for each bucket with a = 1,
thus z covers one rf period with N points. This z-coordinate can be used for all h buckets
in one-turn, concatenating it h times to form a discretized coordinate with hN elements,
extending to the domain T = [−λrf/2, C0 − λrf/2] in which the one-turn distribution λ(z)
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is defined. For a sufficiently small spacing ∆z = λrf/N , we can approximate the integral
from Eq. (A.22) by quadrature to:

∫
T
dz′λ(z′)e−ipω0z′/c ≈ eπip/h∆z

hN−1∑
j=0

λ(zj)e
−2πi pj

hN . (A.23)

To establish notation, the DFT of a sequence of N real numbers x = [x0, x1, . . . , xN−1]

and the inverse discrete Fourier transform (IDFT) are defined as

Xk = F {x}k =
N−1∑
n=0

xne
−2πikn/N , ∀ k ∈ Z (A.24)

xn = F−1 {X}n =
1

N

⌊N/2⌋∑
k=−⌊(N−1)/2⌋

Xke
2πikn/N (A.25)

where ⌊·⌋ is the floor operation. Note that, even though the DFT is defined for all k ∈ Z,
only a sequence of N consecutive terms are needed to compute the IDFT.

With those definitions, the summation in Eq. (A.23) can be identified as the DFT of
the sequence [λ(zj)]. Hence∫

T
dz′λ(z′)e−ipω0z′/c ≈ eπip/h∆zF {λ(z)}p .

Applying this result to Eq. (A.22) for the discretized coordinate zn we obtain

V (zn) = −It∆z
∞∑

p=−∞
Z∗(pω0)F {λ(zj)}p e2πi

pn
hN , (A.26)

where the phase terms e±πip/h nicely canceled each other.
Considering that the grid spacing was properly chosen, the minimum and maximum

frequencies calculated by the DFT, −⌊(hN−1)/2⌋ω0 and ⌊hN/2⌋ω0, should be large enough
so the bunch distribution does not have any significant contribution from frequencies
outside this interval. With that in mind, we can truncate the infinite sum over p in
Eq. (A.26) to the limits of the IDFT, yielding

V (zn) = −ItC0F−1
{
Z∗(pω0)F {λ(zj)}p

}
n

(A.27)

where hN∆z = C0 was applied since ∆z = λrf/N .
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A.2.2.2 Relevant Harmonics Selection

Starting from Eq. (A.22) we can apply the definition of the one-turn distribution from
Eq. (A.2) and rearrange the exponential terms to get

Vn(z) = −
+∞∑
p=−∞

Z∗(pω0)e
ipω0(z+nλrf)/c

h−1∑
ℓ=0

∫ ∞

−∞
dz′Iℓλℓ(z

′)e−ipω0(z′+ℓλrf)/c. (A.28)

Observing that the terms in the sum over p become their conjugate for p→ −p and
considering that only a subset P ⊂ [0,∞) will be kept in the sum, Eq. (A.28) can be
transformed into:

Vn(z) = −2Re

[∑
p∈P

Z∗(pω0)e
ipω0z/ce2πipn/h

h−1∑
ℓ=0

Iℓλ̂
∗
ℓ(pω0)e

−2πipℓ/h

]
(A.29)

where

λ̂ℓ(ω) :=

∫ +∞

−∞
dz′λℓ(z)e

iωz′/c (A.30)

is the Fourier transform of the longitudinal distribution.
The determination of a subset P that keeps the truncation error small can be done

as follows: (i) calculate the DFT of the filling pattern Ib = [I0, I1, . . . , Ih−1], (ii) sample
the impedance at harmonics p ∈ Pmax = [0, 1, . . . , pmax], where pmax must be larger than
the maximum relevant frequency, depending on the distribution and impedance under
consideration, (iii) determine the subset

P = {p ∈ Pmax | ξ(p) ≥ ξmin} , (A.31)

where ξ(p) = |Z (pω0)F {Ib}p| and ξmin ∈ R is a minimum threshold. Including the filling
pattern frequency spectrum is important because for arbitrary fills the beam samples the
impedance at revolution harmonics and the most relevant modes might be non-trivial. The
threshold can be set as ξmin = max [ξ(Pmax)] ε, where ε can be made as small as needed so
that no considerable change is observed in the equilibrium solution.

One drawback of this implementation, compared to the DFT approach, is that the
Fourier transform of h bunch distributions for all p ∈ P must be evaluated via numerical
integration. This process has a time complexity of O(hN |P|), where |P| denotes the
cardinality of P , while the computation of the one-turn distribution DFT has a complexity
of O(hN log(hN)). On the other hand, the harmonics selection approach allows a free
choice of the discretization interval (any a ≥ 1 in Eq. (A.17)), which can improve accuracy
for some cases. Note that the calculations with the SD framework has a time complexity
of O(hNNR), where NR is the number of resonators4.

4Time complexity discussions are appropriate for the limit of large numbers. In this case, for large
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A.3 Active rf cavities

For active rf cavities the total voltage inside the cavity, Vt, is the sum of the generator
voltage, Vg, supplied by an external power source, and the beam-induced voltage, Vb,
commonly called beam-loading. In general, Vg is varied through the action of feedback
loops such that Vt is kept close to a constant reference value, Vr, in a narrow bandwidth
around the center frequency ωc. We will assume in the next steps that ωc is a multiple of
the revolution frequency, but not necessarily a multiple of the main rf frequency ωrf .

In tracking simulations it is common to simulate the beam-loading compensation
scheme with realistic models of the feedback system [115, 116]. However, in equilibrium
simulations the time-dependence of the system is neglected and very idealized models are
generally used, which do not take into account the system delays or the effect of the system
on neighboring revolution harmonics. In this section we will discuss some conventional
methods to simulate the beam-loading compensation and present an approach, with
straightforward implementation in the FD framework, that allows for realistic simulation
of llrf feedback systems that are typically used to control the voltage in active cavities.

A.3.1 Least squares minimization

A scheme to calculate the generator voltage parameters is to minimize the following
difference for each bucket

χ2
n =

∫ λrf/2

−λrf/2
dz[Vg,n(z) + Vb,n(z)− Vr,n(z)]

2, (A.32)

where Vb,n(z) is the beam-loading voltage for bucket n, which can be calculated using the
impedance or wake-function model for the cavity and the techniques presented in §A.2.
The reference and generator voltages are given by

Vr,n(z) = Re
[
V̂r e

iωc(z+nλrf)/c
]
,

Vg,n(z) = Re
[
V̂g e

iωc(z+nλrf)/c
]
,

where we made use of the notation introduced in Eq. (A.6) to take bucket n as reference.
Note that, if ωc is a multiple of ωrf , then both voltages have the same phase relation for
all buckets. The phasors are defined by the respective amplitudes and phases with:

V̂r = Vre
i(π/2−ϕr) and V̂g = Vge

i(π/2−ϕg), (A.33)

where ϕr is the reference phase.
The minimization of Eq. (A.32) with respect to the amplitude and phase of the

values of N , h, NR and |P|.
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generator voltage can be rewritten as a linear problem with

Vg,n(z) = A sin
(ωc

c
(z + nλrf)

)
+B cos

(ωc

c
(z + nλrf)

)
where A = Vg cos(ϕg) and B = Vg sin(ϕg) are free parameters. With this setup, the
minimization problem can be formally written as

(Ã, B̃) = argmin
(A,B)

h−1∑
ℓ=0

χ2
ℓ . (A.34)

The numerical implementation of this method is straightforward and will not be
presented here5.

A.3.2 Phasor compensation

The beam-loading voltage phasor at the center frequency ωc can be calculated as

V̂b(ωc) =
2

C0

h−1∑
ℓ=0

∫ λrf/2

−λrf/2
dzVb,ℓ(z)e

−iωcz/c, (A.35)

where we observe that the combination of the sum with the integral is equivalent to
an integration along the whole storage ring, which guarantees that only the harmonic
p = ωc/ω0 will influence the phasor. Note that the numerical implementation of Eq. (A.35),
as well as Eq. (A.32), requires a = 1 in the discretization defined by Eq. (A.17). In that
way, no other harmonic of the beam-loading influences the compensation scheme.

With the phasors for induced and reference voltages calculated, the generator voltage
phasor can be set as:

V̂g = V̂r − V̂b(ωc). (A.36)

It is possible to demonstrate that this method is equivalent to the least squares minimization
method presented previously.

A.3.3 Closed-loop impedance

While the two previous methods of calculating the beam-loading of active cavities can
be implemented either in SD or FD, the next one is particular for the FD approach. In
this framework, it is possible to set Vg = Vref and simulate the compensation by using
the effective impedance of the cavity seen by the beam in the presence of a llrf control

5An equivalent approach was used in Ref. [77], with the derivation of analytic expressions for the
Jacobian taking into account the beam response in front of the changing parameters of the generator. In
our implementations we noted that a simple numeric estimation of the Jacobian, without accounting for
the changes in Vb were enough to reach convergence.
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loop [116–118]:

Zcl(ω) =
Vt(ω)

Ib(ω)
=

Z(ω)

1 + T (ω)Z(ω)
, (A.37)

where Z(ω) is the open-loop impedance of the cavity, which can be modelled as the
impedance of an equivalent RLC circuit [51]

Z(ω) =
Rs

1 + iQ

(
ωR
ω

− ω

ωR

) , (A.38)

where Rs and Q are the cavity shunt impedance and quality factor. T (ω) is the rf plant
transfer function apart from the cavity impedance. Thus, the overall open-loop transfer
function is L(ω) = T (ω)Z(ω).

A simple model for Zcl(ω) is obtained by letting T (ω) → δ(ω − ωc), which assumes
perfect compensation of the beam-loading component at the control loop frequency, since
Zcl(ωc) = 0, and the loop is transparent for all other frequencies (Zcl(ω) = Z(ω), ∀ω ̸= ωc).
It can be shown that this model is equivalent to the methods presented previously if only
static beam-loading is considered6.

To simulate a more realistic feedback, one can consider the following model for the
rf plant transfer function:

T (ω) = C(ω)Ke−i(ωτd−ϕ), (A.39)

which consists of overall gain K and delay τd, a controller C(ω) and a phase ϕ that can be
adjusted such that ϕ = ωcτd, i.e., the overall phase is zero at the control frequency ωc.

Considering a purely proportional feedback, C(ω) = kp, it is possible to show that the
flat-response for the closed-loop system is obtained by setting the feedback gain to [119]:

1

kp,fK
=

2

π

(
R

Q

)
ωrfτd, (A.40)

which will result in Zcl(ωc) = 1/(kp,fK).
The proportional-integral (PI) controller is widely used in digital llrf systems. Gen-

erally these systems down-convert the rf signal and then adjust the generator voltage
amplitude and phase by applying the control law on the digitized quadrature components
of the signal in baseband. There are several techniques to accomplish this, whose detailed
modelling and description is beyond the scope of this chapter. However, a very simplified
model of this type of controller, that does not take into account nonlinear effects nor the

6Dynamic beam-loading will also contain frequencies that are not multiple of revolution harmonics,
such as multiples of the synchrotron frequency, which will contribute to the calculation of the cost function
defined in Eqs. (A.32) and (A.34) and the phasor of Eq. (A.35), since these components are not orthogonal
to the ωc component in the integration and summation domains. On the other hand, they would not
be accounted in the generator voltage in this closed-loop impedance method. This scenario, however, is
outside the scope of this chapter, since we are concerned only with the equilibrium state.
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analog-to-digital and digital-to-analog conversions, is presented below:

C(ω) = kp +
ki

i(ω − ωc)
, ω ≥ 0 (A.41)

where ki is another free parameter. The domain restriction to non-negative frequencies and
the term (ω − ωc) are related to the up-conversion of the integrator applied in baseband.
The relation C(−ω) = C∗(ω) must be used to evaluate the transfer function for negative
frequencies. This controller model also strongly suppress the beam-loading at the control
frequency, but, differently from the previous methods, it allows for the evaluation of the
control system impact on neighboring revolution harmonics. In practice this effect will
largely depend on the specificities of each system, such as the strength of kp and ki, the
filters that are used to limit the bandwidth of the controller or even other factors such
as the unmodeled dynamics. However, in principle it should be possible to improve the
model of the rf plant of interest and use the corresponding closed-loop impedance on the
FD framework to have a reasonable characterization of the effect of llrf control loop on
equilibrium parameters.

A.4 Equilibrium bunch distributions

The equilibrium longitudinal distribution of bunch n, λn(z), in an electron storage ring is
given by the Haïssinski equation [65]:

λn(z) = An exp

{(
−Φn(λ; z)

αcσ2
δ

)}
, with (A.42)

Φn(λ; z) = − 1

E0C0

∫ z

0

dz′ [eVt,n(λ; z
′)− U0], (A.43)

where λ = λ(z) is the equilibrium one-turn distribution, given by Eq. (A.2), σδ is the
equilibrium relative energy spread, An is a normalization constant, αc is the momentum
compaction factor, E0 is the ring nominal energy, e > 0 is the elementary charge, U0 is
the energy loss per turn from synchrotron radiation and

Vt,n(λ; z) = Vg,n(z) + Vb,n(λ; z)

is the total voltage, written in terms of the generator voltage and the beam-induced voltage
at the nth bunch, given by Eq. (A.6).

Equation (A.42) can be solved numerically by different methods, for example, calculat-
ing the self-consistent distribution with fixed-point algorithms [78] or with a Jacobian-based
algorithm as Newton’s method [76, 77,112]. In this thesis, we employed Anderson’s algo-
rithm to enhance fixed-point iterations, and we refer to Ref. [78] and its references for
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more information on this subject.
To determine the convergence of the iterative process, it is convenient to define a

functional ∆ : RhN × RhN → R (N is the number of points on the z grid) that measures
the difference of two one-turn distributions λ(z′) and η(z′) by:

∆(λ, η) = max
n

∆n (λn, ηn) , with (A.44)

∆n (λn, ηn) =

∫ λrf/2

−λrf/2
dz′|λn(z′)− ηn(z

′)|. (A.45)

The iterative process can be terminated at iteration k if the last two distributions are
sufficiently close, i.e., if ∆

(
λ(k), λ(k−1)

)
< ∆min is satisfied, where ∆min is a convergence

parameter.

A.5 Applications for SIRIUS

We will discuss in this section some interesting cases to benchmark the formulas presented
previously and also to highlight the advantages of using the FD over the SD approach. The
numerical implementation was carried out in python3 and the code is open to access [98].
The solution of the Haïssinski equation was computed with fixed-point iterations accelerated
by Anderson’s algorithm [78]. Gaussian distributions for all bunches were always taken
as the initial condition. The results from semi-analytical methods for a nonuniform
filling pattern were benchmarked against a macroparticle tracking code that was also
implemented in python3 [98]. The implementation is similar to the one described in
Ref. [111], computing the time evolution of the longitudinal dynamic variables of several
macroparticles in each rf bucket in the presence of resonator wakefields, with the effects of
radiation damping and quantum excitation taken into account. We followed the strategy
of tracking just a few macroparticles per bunch at the initial turns to speed up computing
time. Then the number was gradually increased by oversampling the existing particles
with a small random variation of their coordinates.

In all semi-analytical simulations reported in this chapter we used N = 2001 and
a = 1 in Eq. (A.17) to discretize the z coordinate. The relaxation parameter in Anderson’s
acceleration method was fixed at the value of 0.1 and provided fast convergence for all
evaluated cases. It was sufficient to consider a linear combination of three previous
distributions to update the distribution for the next iteration. In the notation established
in Ref. [78], we set m = 3 and βk = 0.1. It was checked that the convergence criteria of
∆min = 10−8 was a good trade-off to obtain a reliable fixed-point solution while reducing
the total number of iterations. Regarding the tracking simulations, we adhered to the
following schedule for increasing the number of particles: 100 particles per bunch in the
first 50 000 turns; then 1000 particles per bunch in the following 20 000 turns; and 10 000
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Table A.1: Main parameters for SIRIUS storage ring

Parameter Symbol Value
Energy E0 3GeV
Nominal current It 350mA
Circumference C0 518.39m
Harmonic number h 864
Momentum compaction factor α 1.645× 10−4

Energy loss per turn (with IDs) U0 870 keV
Relative energy spread σδ 8.436× 10−4

Natural rms bunch length σz,0 2.6mm
rf frequency frf 499.667MHz
Number of MCs NMC 2
MCs total voltage NMCVMC 3.0MV
MC geometric factor (R/Q)MC 89Ω
MC unloaded quality factor Q0,MC 2× 109

External quality factor Qext 1.58× 105

Cavity coupling factor βc 12 657
MC detuning7 ∆fMC −4.9 kHz
Number of HHCs NHC 1
HHC rf harmonic ωHC/ωrf 3
HHC geometric factor (R/Q)HC 87.5Ω
HHC quality factor Q0,HC 4× 108

HHC flat-potential voltage ratio VHC/NMCVMC 0.317
HHC detuning8 ∆fHC 45 kHz

particles per bunch in the final 10 000 turns. All calculations were performed on the same
personal computer with quite modest hardware configurations: an 8th generation Intel
Core i7 processor, 32GB of RAM memory and no graphics processing unit capabilities.

The SIRIUS storage ring, a fourth-generation synchrotron light source built and
operated by the LNLS in Campinas, Brazil [120], was used to exemplify the application of
the formulas developed in the previous sections. The main parameters for the machine
are described in Table A.1. We could not compare the presented simulated results
with experimental data since SIRIUS storage ring is operating with a temporary normal
conducting PETRA 7-cell rf cavity and the 3HC is not installed yet. The definitive rf
system for SIRIUS will have two superconducting CESR-B MCs and a superconducting
passive 3HC, according to the parameters presented in Table A.1.

A.5.1 Benchmarking

A.5.1.1 Uniform filling

First we simulated the case of nominal current in uniform filling with a superconducting
passive 3HC modeled as a resonator, following the parameters from Table A.1. Under
these conditions, all bunches are equivalent and there is an analytical formula for the
beam-induced voltage in the resonator, given by Eq. (A.55), which was used to benchmark
the calculations. We considered that formula in the fixed-point iteration to solve for the
corresponding longitudinal distribution, which we will denote as λA(z). The resulting
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distribution centroid is −0.23mm and the rms bunch length is 11.88mm, yielding a bunch
lengthening factor of 4.6 with respect to the natural bunch length. The main contribution
to the induced voltage in the 3HC comes from its impedance at the fundamental harmonic
3ωrf . The result computed with FD framework taking only the 3ωrf mode into account has
an agreement of ∆

(
λA, λ

3ωrf
FD

)
≈ 7× 10−12, which was expected given that both models are

very similar in terms of the approximations involved. For the result from implementation
with DFT, the agreement is ∆

(
λA, λ

DFT
FD

)
≈ 1.5× 10−3 and for the result from SD method

∆(λA, λSD) ≈ 1.7 × 10−3. The equivalence between all equilibrium bunch profiles for
uniform fill was confirmed in our results even though it was never assumed a priori.

A small systematic difference between the SD and FD frameworks was observed,
with value of ∆

(
λSD, λ

DFT
FD

)
≈ 3×10−4. In our tests, this difference seems to be insensitive

to the number of points considered in the z discretization and its origin is not clear.
Nevertheless, we believe that this level of disagreement between methods is too small to
have a considerable impact for practical purposes.

The computation time is also an important metric for the comparison of the several
approaches discussed here. Considering the hardware described previously, the evaluation
of the analytical formula for the induced voltage took 20ms/step. For the FD framework,
the method of selecting the most relevant harmonics (only one, in this case) was slightly
faster (70ms/step) than the implementation with DFT (100ms/step). The SD calculation
was also quite fast (130ms/step), since just one resonator was considered. The numerical
iterations of Anderson’s acceleration algorithm contributes to approximately 270ms/

step. The analytical implementation and the FD with mode selection converged after 56
iterations. The calculation with FD using DFT converged in 52 iterations and for the SD
framework convergence was achieved after 72 iterations. Overall, each simulation took less
than 30 s to run. It is worth mentioning that the implementation of FD approach with
DFT is independent of the number of impedance sources or on the filling pattern, while
the other methods are expected have a strong dependency of the computation time on
these factors.

A.5.1.2 Hybrid filling

The nonuniform filling pattern considered here9 consists of a high-charge bunch of 2mA at
bucket 432, two gaps of 50 buckets (100 ns gap) around it, and the remaining 763 buckets
evenly filled to add up to the total current of 350mA. In this example, the equilibrium
solution was calculated with the SD framework and three different conditions for the FD
approach: including 1, 10 and 100 modes in the summation of Eq. (A.29). The relevant
harmonics were selected by means of Eq. (A.31) as illustrated in Fig. A.1, where the
normalized spectrum, ξ(ω)/max [ξ(ω)], is shown. The 3HC remained adjusted to the

9This specific hybrid filling pattern is used only as a case study. It does not reflect any plan for
operation in SIRIUS storage ring.
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Figure A.1: Spectrum ξ(ω) = |Z (ω)F (Ib)| normalized by its maximum value for the hybrid filling pattern
and 3HC impedance. Horizontal dashed lines represent the thresholds for including 1, 10 and 100 modes.

detuning for flat-potential in uniform filling.
As more harmonics are included in the calculation of the beam-induced voltage

with the FD framework, it is expected that its results become more similar to the one
from the SD framework. This behavior was verified and it is shown in Fig. A.2. When
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Figure A.2: Equilibrium bunch distributions obtained for the hybrid filling pattern with macroparticle
tracking, SD and FD approaches for increasing number of modes in the FD framework. The 3HC detuning
was set to ∆f = 45 kHz. Empty buckets are omitted. Bunch centroids ⟨zn⟩ and bunch lengths σzn are
shown in the top plot. In the bottom plot, the profiles for three bunches (high-charge bunch in the middle)
are compared to tracking results (dots).
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only 1 mode is included, the beam-induced voltage contains only the contribution from
the impedance at 3ωrf and the distributions are analogous to the uniform filling case,
missing the inhomogeneous beam-loading features. Including 10 modes, all of which are
revolution harmonics still around 3ωrf , most of the inhomogeneous pattern is captured.
With 100 modes, the criteria defined in Eq. (A.31) indicates that other rf harmonics are
more relevant to the induced voltage than some revolution harmonics around 3ωrf . In
this case, the solution from the FD approach shows good agreement with the results
obtained from SD method and from tracking as well. The calculation in FD using the
DFT approach proved to have the same level of agreement but is not shown in Fig. A.2. In
terms of computing time, the macroparticle tracking simulation for this example took 3.6 h

to run. The calculations with SD framework and the FD approach using DFT reached the
equilibrium solution within 30 s, the same computing time reported for the uniform filling
case. The slowest semi-analytical calculation was with the FD framework considering 100
selected modes, which took 2min to reach the equilibrium solution.

A.5.2 Effect of llrf feedback

The beam-loading from MCs may have a substantial influence on the longitudinal equilib-
rium, specially for nonuniform fillings. We used the hybrid filling pattern described in the
previous section to illustrate this effect. The equilibrium distributions calculated consider-
ing only the passive 3HC were compared with the case where the MCs beam-loading is
included as well. Different compensation schemes were also tested. In the FD framework10

we used the model for the llrf feedback given by Eq. (A.39). For simplicity, we set the
overall gain to K = 1. The overall delay considered was τd = 1.9 µs, which is the measured
value for the current SIRIUS rf plant. In this scenario, two types of controllers were
investigated: one purely integral, with ki = 0.01Ω−1s−1 and other purely proportional,
with kp = kp,f , where kp,f = 2.96× 10−6 Ω−1 is the flat-response gain from Eq. (A.40) for
SIRIUS parameters. In the SD framework we applied the phasor compensation scheme. It
was verified that the least squares minimization method provided equivalent results, as
expected, with the disadvantage of being slower than the phasor method.

The absolute values for the MCs open-loop and closed-loop impedance for each llrf
feedback setting are shown in Fig. A.3. The integral (I) controller heavily suppresses
the impedance at the fundamental frequency and acts only on a very narrow bandwidth
around it, since a low integrator gain was chosen. The proportional (P) controller does
not compensate the beam-loading contribution from ωrf perfectly, but it does reduce the
absolute impedance in a considerably broad range of frequencies around ωrf . For the cases
presented here, neither controller has considerable influence at frequencies of neighboring
revolution harmonics. This is commonly the case when only digital llrf are used to control

10The implementation with DFT was used to obtain the results from FD framework that are reported
in the present and subsequent subsections.
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Figure A.3: Absolute value of impedance for the MCs in open-loop and closed-loop for two llrf settings,
integral (I) and proportional (P) controllers. Revolution harmonics are represented by vertical gray dashed
lines.

the generator voltage, due to the action of low-pass filters on the measured cavity signal.
However, when fast proportional analog feedbacks or more complex topologies are used,
the llrf system may impact the beam equilibrium and also the beam stability through its
influence on the impedance close to revolution harmonics [117–119].

Figure A.4 shows the results for equilibrium bunch centroids and rms bunch lengths
for all cases studied. It is clear the equivalence between the solution obtained with SD
framework and the one from FD approach using a purely integral controller. We also note
that, with the inclusion of MCs beam-loading, the bunch lengthening is systematically
reduced for all buckets. With a proportional gain on llrf feedback, the absolute value for
the MC closed-loop impedance at rf frequency is about 1MΩ. The residual real part of
this impedance causes an additional energy loss which induces a negative shift on all bunch
centroids and its imaginary part slightly changes the rms bunch length along buckets.

A.5.3 Broadband impedance

Figure A.5 shows the model of the longitudinal impedance budget of the SIRIUS storage
ring and a fitting done with several broadband resonators (BBRs), whose parameters are
listed in Table A.2 [43]. The bellows and beam position monitors (BPMs) are the main
contributors for the real part of the impedance and the second most relevant sources to the
imaginary part. The narrow peaks at frequencies close to 9GHz and 12GHz are related to
trapped modes in the bellows cavity and the broader peak around 18GHz is due to BPMs.
SIRIUS vacuum chamber is mostly composed of a copper cylindrical tube with 12mm of
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Table A.2: Fitted parameters to capture the main features of SIRIUS longitudinal impedance budget.

fR [GHz] Rs [kΩ] Q ωR/2Q [GHz]
716.2 30.0 0.7 3216.1
206.9 6.5 1.3 500.0
138.4 2.0 4.0 108.7
79.6 2.0 1.0 250.1
57.3 2.5 4.5 40.0
35.0 2.5 3.0 36.6
17.8 1.7 1.0 55.9
17.5 3.0 24 2.29
11.9 4.0 24 1.56
9.2 20.0 100 0.29
0.9 7.0 261 0.011
0.2 6.0 263 0.002

inner radius and coated with nonevaporable getter (NEG) [121]. The finite resistivity of
these chambers is responsible for most of the imaginary part of the impedance budget.
This feature is captured by the BBR fitting via the first two resonators from Table A.2,
which have a very high resonant frequency and low quality factor. Figure A.5 highlights
the contribution of these two resonators to the overall fitting.

The inclusion of a full broadband impedance model in the FD framework is straight-
forward. It is sufficient to get the impedance of each contribution at the revolution
harmonics, add them and use Eq. (A.29) to calculate the total beam-induced voltage.
Besides, the computational time in this case does not depend on the number of sources.
On the other hand, one possible way of achieving the same result for the SD formulation is
to use BBR models to fit the impedance, calculate the induced voltage for each one of them
using Eq. (A.12) and then sum the contributions. Drawbacks of this procedure include not
capturing the exact impedance budget, having a time complexity linear with the number
of BBRs and invoking non-physical constructions to represent a physical impedance source.
As an example, take the first two BBRs of Table A.2, which do reproduce the inductive
impedance of the resistive-wall wake at low frequencies, but have no physical connection
to the original impedance source. Besides, these high frequency resonators are somewhat
difficult to simulate due to the numerical problems discussed. Another method to include
the effect of broadband impedance in the SD framework is to directly convolve the total
wake-function with each bunch distribution [78, 112]. This approach, however, would not
be correct for wakes that span over a few buckets, such as the ones captured by the last
three BBRs of Table A.2. Even though a combination of the previous methods can be
employed, or even other well-known impedance models can be used to fit the budget (such
as a purely inductive wake), there is no elegant and simple way of including broadband
impedances when using the SD framework.

The effect of the SIRIUS broadband impedance on equilibrium is presented in Fig. A.6,
where we simulated the case for nominal current in uniform filling, in the presence of MCs
with beam-loading compensation by an integral controller. The 3HC will be essential for
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reaching the nominal current in the real machine due to components heating issues, but
we decided to not include it in this simulation to highlight the effect of the broadband
impedance on the beam. Considering the bunch length from Table A.1, the beam interacts
with the impedance up to approximately 40GHz. However, with a bunch lengthening
factor of 4 provided by the 3HC, the spectrum would have considerable power only up
to 10GHz. Therefore, it is expected that with a 3HC, the broadband impedance impact
on the equilibrium and even on time-dependent effects will be reduced.

For the simulations with the SD framework, we did not include the first two BBRs
from Table A.2. Their high resonant frequency would require a much finer discretization
of the z domain than the one we used throughout this section. Additionally, the absence
of these high frequency resonators helps to emphasize the advantages of the FD framework
over the SD approach and their effect on the bunch distribution. We note that the FD
simulation with all 12 BBRs is sufficient to reproduce the bunch profile obtained with
the full budget, which confirms that the fitting does capture the main features of the
impedance. This example indicates that at nominal current the SIRIUS impedance budget
would increase the natural bunch length by 18%, from 2.57mm to 3.04mm, cause a shift
of −0.74mm in the bunch centroid and make the bunch profile more asymmetric. This
rather small bunch lengthening would not sufficiently reduce the heating load at design
current, which justifies the need for a HHC.

A.5.4 Touschek lifetime improvement with a 3HC

In this last example, the bunch lengthening provided by the superconducting passive 3HC
that is planned to be installed in SIRIUS storage ring will be studied for some filling
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bunch profile for this condition is emphasized as a dashed red curve.

patterns. With the FD framework we obtained the longitudinal equilibrium for a beam
at nominal current, in the presence of the full broadband impedance budget, a passive
3HC and two active MCs. The beam-loading compensation was simulated with a llrf
feedback with PI controller. The proportional gain was set to the flat-response value
and the integrator gain was adjusted to ki = 0.01Ω−1s−1. Equilibrium distributions were
calculated for 21 sequentially decreasing 3HC detunings from 50 kHz to 30 kHz, taking
the solution from the previous detuning as the initial condition for the next one. All
calculations took about 10min to run and no convergence issues were experienced.

The Touschek loss rate is proportional to the integrated square of the longitudinal
bunch distribution. Hence, the relative difference in Touschek lifetimes for two distributions
λa(z) and λb(z) can be calculated as [23]:

τb
τa

≈
∫
dzλ2a(z)∫
dzλ2b(z)

, (A.46)

where it is assumed that other parameters that affect Touschek lifetime are the same for
the two cases.

Figure A.7 shows the bunch distributions on the left and the Touschek lifetime
increase with respect to the case without the 3HC on the right, for the simulated 3HC
detunings. It was observed that the MCs beam-loading have a negligible effect on the
equilibrium at uniform filling. This was expected due to the heavy suppression of the MCs
impedance at ωrf provided by the llrf feedback. Moreover, the influence of the broadband
impedance is also reduced in the presence of the 3HC, as discussed in the previous section.
With these considerations, the longitudinal bunch distribution is determined mostly by the
combination of the generator voltage and the 3HC beam-induced voltage. An interesting
result is that the maximum lifetime improvement of 5.3 happens at ∆f3hc = 38 kHz, while
at flat-potential condition, a factor 4 is expected. At this optimal condition for lifetime,
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the bunch is overstretched and the peak harmonic voltage is 1.03MV, which is 8% higher
than the flat-potential voltage.

Figure A.8 shows the equilibrium results for the hybrid filling pattern and the same
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Figure A.8: Bunch centroids and lifetime improvement factor for the hybrid filling pattern with the full
impedance model for SIRIUS. The colors indicate different 3HC detunings, following the frequency values
from Fig. A.7. Bunch profiles for three bunches are shown in the bottom plot.

set of 3HC detunings from Fig. A.7. The lifetime improvement factor11 was calculated
with respect to the case without the 3HC and the same filling pattern. Note that for lower
detunings the inhomogeneous beam-loading effects are more pronounced. The lifetime
ratio is better for bunches in the middle of the train (bucket indices 820 to 120). Large
bunch centroid shifts and degradation of bunch lengthening for bunches closer to the gaps
is observed. The lifetime improvement for the high-charge bunch in the center (index
432) showed a similar qualitative behavior with the reduction of the 3HC detuning, as
presented in the right plot of Fig. A.7. From these results it is clear that simply reducing
the 3HC detuning is an ineffective approach to improve the overall lifetime for hybrid
filling patterns and other strategies should be employed. A better solution can be the
introduction of guard bunches to compensate the inhomogeneous beam-loading caused by
gaps [75, 76, 108, 112].

11We plot the Touschek lifetime improvement factors in Fig. A.8 because the rms bunch length is not
an appropriated metric for overstretched distributions, since the bunch profile is a composition of two
shorter bunches.
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A.6 Conclusion

In this chapter, we derived two approaches to compute the equilibrium beam-induced
voltage in the presence of arbitrary filling patterns and impedance sources. The calculation
in SD framework is limited to resonator wake-functions. The theory found in the litera-
ture [75–78,112], was revisited, extended to consider the most general resonator model and
formulated in a compact equation, convenient for numerical implementation in a uniformly
discretized grid. A different approach, based on the FD analysis, allowed the generalization
upon arbitrary impedance sources and offered a straightforward process for computing the
beam-induced voltage in terms of DFTs. The low computational cost of the FD framework
is noteworthy, as it has the benefits from FFT algorithms and its time complexity is
constant besides the number of impedance elements. We benchmarked the results using
the parameters of SIRIUS storage ring, a fourth-generation synchrotron. For uniform
filling and narrowband resonators, it was analytically and numerically demonstrated that
the two proposed frameworks reduce to a well-known formula for the beam-induced voltage.
For nonuniform filling, the methods were benchmarked against macroparticle tracking and
the results exhibited excellent agreement.

The beam-loading compensation of active rf cavities was addressed with the concept
of closed-loop impedance. This approach can only be applied in the FD framework
and is conceptually different from other methods based on phasor compensation or least
square minimization. In the latter the parameters of the external voltage are adjusted
to compensate the beam-loading, while the former changes the impedance model of the
cavity so that the beam-induced voltage is intrinsically compensated. We observed that
the stationary beam-loading compensation methods as described in Ref. [77] are equivalent
to a closed-loop impedance of an integral controller with low gain. The proposed approach
allows more realistic simulations of active rf cavities and is flexible to model several llrf
system topologies.

Another advantage of the FD over the SD framework was illustrated with the
simulation of the SIRIUS broadband impedance budget. This was easily accomplished in
FD by taking the full impedance budget as a direct input for the calculations. In contrast,
in SD the inclusion of broadband impedance requires additional steps, such as fitting
BBRs or convolving short-range wake-function with longitudinal distributions [77, 78, 112].
These approaches, however, may introduce several numerical issues that must be handled
and typically require a case-by-case analysis to define how each impedance contribution
should be simulated.

We also studied the effect of different detunings of a passive superconducting 3HC on
Touschek lifetime, taking into account the complete impedance budget for SIRIUS storage
ring. For uniform filling, the maximum Touschek lifetime improvement was obtained
with an overstretched bunch profile, increasing it by a factor 5.2, while the flat-potential
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condition is expected to the increase lifetime by a factor of 4. The more involved case
of nonuniform filling pattern was briefly discussed only to illustrate the flexibility of the
tool. Further investigations and more accurate metrics should be considered to compare
performances in this case.

It is important to mention that the existence of equilibrium in simulation does not
imply stability in the real machine. The map for reaching the steady-state in simulations
is based on robust fixed-point algorithms, while the real dynamics depends on the intricate
balance between damping and coherent excitation. As an example, to provide bunch
lengthening, HHCs must operate at ac Robinson unstable detunings [51]. Fortunately,
MCs can often be adjusted to a Robinson stable detuning and provide enough damping.
However, for small HHC detunings as presented in this chapter, this balance should be
carefully checked. Other time-dependent effects introduced by HHCs that can limit the
achievable bunch lengthening may include, in particular, the recently predicted [82] and
observed [122] mode-1 instability and, more generally, some instability induced by the
reduction of the average incoherent synchrotron frequency as the longitudinal potential
is flattened. A complete study covering time-dependent effects was beyond the scope of
this chapter. Nevertheless, the developed framework can be useful in such studies for
computing the unperturbed bunch distributions, which are essential inputs for single-bunch
and multi-bunch instability thresholds calculation [81, 82, 85, 123].

In summary, the proposed FD methods proved to be more general, numerically stable
and faster than the SD framework. This makes it a helpful tool during the design phase of
a storage ring, when different specifications are being explored and the impact of machine
components impedance on beam parameters should be quantified.

A.7 Limit case of uniform filling and passive narrow-

band resonator

In this Appendix we will apply the equations derived in §A.2 to check its limit for a specific
scenario: uniform filling pattern and high-Q resonator.

Consider the case of h bunches in a ring evenly filled with the same current per
bunch Iℓ = It/h. In the equilibrium state, the longitudinal distributions and beam-induced
voltage will be equivalent for all bunches. Without loss of generality, we will take the rf
bucket 0 as reference for the derivation.
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A.7.1 Frequency-domain

Applying the uniform filling considerations to Eq. (A.29) reads

V0(z) = −2(It/h)Re

[
+∞∑
p=0

Z∗(pω0)e
ipω0z/cλ̂∗0(pω0)

h−1∑
ℓ=0

e−2πipℓ/h

]
. (A.47)

The geometric series sum over ℓ yields

h−1∑
ℓ=0

e−2πipℓ/h = hδp,qh for q ∈ N (A.48)

where δp,qh is the Kronecker delta. Thus, the beam samples the impedance only at rf
harmonics, which is expected from the symmetry of uniform filling.

Assuming a high-Q narrowband resonator impedance sharply peaked close to the
mth rf harmonic, the major contribution to the beam-induced voltage is related to the
term q = m. Applying Eq. (A.48) into Eq. (A.47) and retaining only the contribution
from ωm := mωrf :

V0(z) = −2ItRe
[
Z∗(ωm)λ̂

∗
0(ωm)e

iωmz/c
]
. (A.49)

A convenient parametrization for the Fourier transform of longitudinal bunch distri-
bution is

λ̂0(ω) = F0(ω)e
iΦ0(ω) (A.50)

where, to respect the property λ̂0(−ω) = λ̂∗0(ω), F0(ω) must be a real-valued even function
and Φ0(ω) a real-valued odd function. With this parametrization, Eq. (A.49) can be
arranged as

V0(z) = −2ItF0(ωm)Re
[
Z∗(ωm)e

i[ωmz/c−Φ0(ωm)]
]
. (A.51)

The model for resonator impedance is given by the RLC circuit impedance from
Eq. (A.38), rewritten as:

Z(ω) =
Rs

1 + 2iQδω
, (A.52)

with the resonator relative detuning defined as

δω :=
1

2

(
ωR
ω

− ω

ωR

)
.

For frequencies close to resonance ω ≈ ωR, the approximated formula δω = ∆ω/ωR

with ∆ω = ωR − ω is commonly used. The present analysis refers to ωm ≈ ωR.
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With the RLC impedance model, we are able to cast the wake voltage in the form:

V0(z) = −2ItRs
F0(ωm)

1 + 4Q2δ2ω
[cos θ0(z)− 2Qδω sin θ0(z)] , (A.53)

where θ0(z) = ωmz/c− Φ0(ωm).
Defining

tanψ := 2Qδω, (A.54)

then Eq. (A.53) can be further simplified to

V0(z) = −2ItF0(ωm)Rs cosψ cos [ωmz/c+ ψ − Φ0(ωm)] (A.55)

which is a well-known formula for the equilibrium beam-induced voltage in uniform
filling with a passive narrowband resonator, including the so-called complex bunch form-
factor [106].

A.7.2 Space-domain

For high-Q resonators, we shall consider that the I0S0(z) contribution in Eqs. (A.13)
and (A.18) is negligible as compared to the summation part, since S0(z) only accounts
for the self-induced voltage of a bunch on itself on the present turn. In this case and
considering uniform filling, Eq. (A.18) can be simplified to

K0(z) = (It/h)e
−κzS0(λrf/2)

1− ν

h∑
ℓ=1

νℓ/h (A.56)

We can approximate α/c≪ 1 for long-range wakefields and take e−αz/c ≈ 1. Moreover,
since α/ωR = 1/2Q ≪ 1, it follows that ω̄R ≈ ωR. Therefore, e±κz ≈ e∓iωRz/c. In this
scope, the Laplace transform can be replaced by the Fourier transform:

S0(λrf/2) =

∫ λrf/2

−λrf/2
dz′λ0(z

′)eκz
′ ≈ λ̂∗0(ωR).

The sum over bunches ℓ is the sum of h− 1 terms of a geometric series with common
ratio ν1/h, hence:

h∑
ℓ=1

νℓ/h = ν1/h
1− ν

1− ν1/h

Recall that ν1/h = e−κC0/h = e−κλrf . Applying those partial results into Eq. (A.56)
yields:

K0(z) = (It/h)e
iωRz/c

λ̂∗0(ωR)

eκλrf − 1
. (A.57)
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Following the method applied in Ref. [76], let (ρ, ψ) be polar variables in the complex
plane such that

1

eκλrf − 1
= ρeiψ. (A.58)

With λrf = 2πc/ωrf , then eκλrf = e2πα/ωrfe−2πiωR/ωrf . Considering that the resonant
frequency is close to the mth rf harmonic, the detuning is ∆ω = ωR − mωrf . From
this, e−2πiωR/ωrf = e−2πi∆ω/ωrf follows. Besides, assuming a small detuning such that
∆ω/ωrf ≪ 1, the exponential can be approximated in first order to:

eκλrf − 1 ≈ (1 + 2πα/ωrf) (1− 2πi∆ω/ωrf)− 1

≈ 1

frf
(α− i∆ω) ,

where the second order term proportional to α∆ω/ω2
rf was neglected. Therefore:

ρ =

∣∣∣∣ 1

eκλrf − 1

∣∣∣∣ ≈ frf√
α2 +∆ω2

, (A.59)

and the phase can be calculated with

ψ = arg

(
1

eκλrf − 1

)
= − arg

(
eκλrf − 1

)
= arctan (∆ω/α) . (A.60)

Note that tanψ = 2Q∆ω/ωR, which is the same relation between the detuning
phase ψ and resonator parameters defined in Eq. (A.54).

With those approximations and using Eq. (A.50) for the bunch spectrum, Eq. (A.57)
simplifies to

K0(z) =
(It/h)frf√
α2 +∆ω2

F0(ωR)e
i[ωRz/c+ψ−Φ0(ωR)] (A.61)

Applying this result to Eq. (A.12) reads, after some manipulations,

V0(z) = −2ItF0(ωR)Rs cosψ

[
cos γ0(z)−

α

ωR
sin γ0(z)

]
, (A.62)

where γ0(z) = ωRz/c+ ψ − Φ0(ωR).
The sine term in Eq. (A.62) can be neglected since α/ωR ≪ 1. Additionally,

approximating the resonant frequency to its closest rf harmonic ωR ≈ ωm, then Eq. (A.62)
is equivalent to the formula in Eq. (A.55).
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We present a theoretical framework for analyzing longitudinal coupled-bunch
instabilities in double-rf systems with even filling patterns, accounting for
potential-well distortion and multiple azimuthal modes. The linearized Vlasov
equation is solved in the frequency-domain for an arbitrary rf potential to
derive the Lebedev equation. We unified different formulations, obtaining
results from recent publications as particular cases. Applications to Robinson
dipole-quadrupole mode coupling and the periodic transient beam loading
(PTBL)/mode-1 instability are presented. Notably, for the first time, theoretical
predictions of the mode-1 thresholds show excellent agreement with experimental
data. The analysis reveals that the PTBL instability is triggered when coherent
focusing is lost for the dipole motion of the coupled-bunch mode 1. We also
confirm that this instability is dependent on azimuthal mode interactions and
resistant to Landau damping, providing new insights into its mechanism. The
methods are implemented in the open-source package pycolleff, offering a
useful semi-analytical tool for studying instabilities in electron storage rings
with harmonic cavities.

B.1 Introduction

Collective instabilities in double-rf systems with HCs have been a concern for synchrotrons
for many years [26, 124–126]. In modern synchrotron light sources, passive HCs are
employed in the bunch lengthening mode to reduce the bunch charge density, alleviating
collective effects such as intrabeam scattering, Touschek scattering and impedance-induced
heating of components. These effects have become critical issues for the 4th-generation
synchrotron light sources with ultralow transverse emittances [16, 127].

The theoretical description of instabilities in double-rf systems is significantly more
challenging than the theory for single-rf systems, for which a well-developed theory exists
in the literature [50, 51, 66]. In electron rings with single-rf systems, assuming linear
single-particle dynamics (harmonic rf potential) and Gaussian bunch distributions are
valid approximations for short-bunches. These approximations considerably simplify the
analytical description and calculations of instabilities. In contrast, the single-particle
motion in double-rf systems can be significantly modified by potential-well distortion
effects induced by the HCs, leading to highly nonlinear dynamics and non-Gaussian bunch
distributions [79–82,128]. The effects of HCs on beam stability can be twofold: they can
stabilize the beam by lengthening the bunches, reducing charge density and providing
Landau damping through the spread of incoherent synchrotron frequencies; or they can
degrade the stability by lowering the average synchrotron frequency and by introducing
additional impedance.

For longitudinal coupled-bunch instabilities in single-rf systems, a standard approach
is to ignore the interaction between azimuthal (synchrotron) modes. This simplification
assumes that the current per bunch is not too high and that multibunch instabilities are
typically driven by narrowband impedances (long-range wakefields) that do not significantly
affect intrabunch motion. Under these conditions, the azimuthal modes are sufficiently
separated, allowing each mode to be studied independently. However, for coupled-bunch



B. Article 2: Coupled-bunch instabilities with potential-well distortion 120

instabilities in double-rf systems, the situation may change. Even for low currents per
bunch, the azimuthal modes may interact due to the flattening of the rf potential. Therefore,
taking into account the potential-well distortion, which was normally required only to
study single-bunch instabilities [129–136], might also be important [81, 82].

This work develops a theoretical formulation in the frequency-domain to analyze
longitudinal instabilities in double-rf systems, accounting for the nonlinear effects of
potential-well distortion and interactions between multiple azimuthal modes. The theory
applies to both multibunch and single-bunch cases, assuming an even filling pattern
such that every filled bucket sees the same equilibrium potential and has the same bunch
distribution. Even though the cases discussed in this work are focused on double-rf systems,
the framework is also suited for instability studies involving generic narrowband resonators,
such as HOMs from rf cavities, while incorporating the impact of potential-well distortion
from the machine broadband impedance. We follow the step-by-step approach in Ref. [82]
to manipulate the Vlasov equation and show that the Lebedev matrix equation, originally
derived in Ref. [137], can be obtained. The formulation developed here is essentially
equivalent in generality to Lebedev’s work. For completeness, we derive the Lebedev
equation in detail using a modern notation as in Ref. [138], and demonstrate its connection
to recent developments [81, 82, 85].

The paper is structured as follows. The theoretical models are developed in §A.2. In
§B.3, generic dispersion-relations for narrowband resonators are derived from the Lebedev
equation, yielding the models from Refs. [81, 85] as particular cases. §B.4 applies the
theory to Robinson dipole-quadrupole mode coupling and PTBL/mode-1 instabilities,
benchmarking the predictions with MAX IV experimental data and achieving, for the
first time, excellent agreement with measured mode-1 thresholds. In §B.5, details of the
PTBL instability mechanism are discussed. §B.6 summarizes the findings and presents the
conclusions.

B.2 Theory

We will adopt the definition of the relative longitudinal coordinate z of relativistic particles
in a storage ring, whose origin is defined by the synchronous particle with nominal energy
E0. The sign convention z > 0 is adopted for trailing particles. All the following derivations
assume an even filling condition, i.e., all filled buckets with the same current and identical
equilibrium longitudinal bunch distributions λ0(z).

Consider that the longitudinal equilibrium is obtained as a self-consistent solution of
the Haïssinski equation considering potential-well distortion effects, for example with the
semi-analytical method presented in Ref. [44]. This calculation provides the equilibrium
wake voltage Vwake(z;λ0) that is added to the external rf voltage Vrf(z) to result in the
total equilibrium voltage V0(z) = Vrf(z) + Vwake(z;λ0). The equilibrium potential is then
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calculated as:
Φ0(z;λ0) = − 1

E0C0

∫ z

0

dz′ [eV0(z
′;λ0)− U0], (B.1)

with λ0(z) satisfying the Haïssinski equation:

λ0(z) =
1

Nz

exp

[
−Φ0(z;λ0)

ασ2
δ

]
, (B.2)

where the constant Nz normalizes λ0(z) to unity, σδ is the equilibrium relative energy
spread, α is the momentum compaction factor (assuming above transition, so the slip
factor is α− 1/γ2 ≈ α), E0 is the ring nominal energy, C0 the ring circumference, e > 0 is
the elementary charge and U0 is the energy loss per turn from synchrotron radiation.

Considering (z, δ) as canonical coordinates, where δ = (E − E0)/E0 is the relative
energy deviation, in this equilibrium potential the single-particle equations of motion
are [50]:

dz

ds
= αδ, (B.3)

dδ

ds
=
eV0(z;λ0)− U0

E0C0

, (B.4)

where the independent variable s is the longitudinal position of the synchronous particle
along the ring. The equations of motion are associated with the unperturbed Hamiltonian

H0 =
αδ2

2
+ Φ0(z;λ0). (B.5)

It is useful for the following instability analysis to perform a canonical transformation
to action-angle variables (z, δ) → (J, φ). The numerical determination of the canonical
transformation can be done, for instance, following the procedure described in the Appendix
C of Ref. [82]. With that procedure we obtain the transformation in a rectangular grid
zij = ζ(Ji, φj).

The two-dimensional distribution Ψ in the longitudinal phase-space satisfies the
Vlasov equation:

dΨ

ds
=
∂Ψ

∂s
+ {Ψ,H} = 0, (B.6)

with {Ψ,H} denoting the Poisson brackets.
We consider a small perturbation from the equilibrium that oscillates with a complex

coherent frequency Ω. The perturbed distribution will be associated to a perturbation in
the Hamiltonian:

Ψ(J, φ, s) = Ψ0(J) + Ψ1(J, φ)e
−iΩs/c, (B.7)

H(J, φ, s) = H0(J) + Φ1(J, φ)e
−iΩs/c, (B.8)
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where Ψ0(J) = (2πNJ)
−1e−H0(J)/ασ2

δ is the equilibrium distribution, also normalized to
unity.

Applying this perturbation to the Vlasov equation and linearizing it, leads to

−iΩΨ1 + ωs(J)
∂Ψ1

∂φ
− c

∂Ψ0

∂J

∂Φ1

∂φ
= 0, (B.9)

where ωs(J) = c∂H0

∂J
is the amplitude-dependent synchrotron frequency.

For the even filling case, in the equilibrium state all bunch profiles are identical.
However, when a coupled-bunch instability is driven, each bunch can have a different
profile and time evolution, governed by a system of coupled Vlasov equations. We will
assume there are M equidistant bunches in the ring, with 1 ≤ M ≤ h, where h is
the harmonic number. The perturbation distribution for the nth bunch is represented
as Ψ

(ℓ)
1,n(J, φ, s) = Ψ

(ℓ)
1 (J, φ, s)e2πinℓ/M with ℓ = 0, 1, . . . ,M − 1 referring to the coupled-

bunch mode number. Using the coupled-bunch mode basis, {ℓ}, instead of the bunch
index basis, {n}, decouples the system of Vlasov equations into M independent equations
for each coupled-bunch distribution Ψ

(ℓ)
1 (J, φ, s). For brevity, we will drop the reference

to the coupled-bunch index ℓ in the perturbation distribution. For the single-bunch case,
ℓ = 0 and there is only one Vlasov equation to be solved.

The wake voltage induced by the perturbation is

V1(z;λ1) = −I0
∞∑

p=−∞
λ̃1;p,ℓ(Ω)Zp,ℓ(Ω)e

−iωp,ℓz/c, (B.10)

where I0 is the total beam current, ωp,ℓ = (pM + ℓ)ω0, ω0 the revolution frequency. For
compactness, we introduced the notation λ̃1;p,ℓ(Ω) := λ̃1(ωp,ℓ+Ω) and Zp,ℓ(Ω) := Z(ωp,ℓ+Ω).
λ̃1(ω) is the Fourier transform of the perturbing bunch distribution

λ̃1(ω) =

∫ ∞

−∞
dz eiωz/cλ1(z)

=

∫ ∞

−∞
dz eiωz/c

∫ ∞

−∞
dδΨ1(z, δ)

=

∫ ∞

0

∫ 2π

0

dφ dJ eiωζ(J,φ)/cΨ1(J, φ). (B.11)

The approximation λ̃1;p,ℓ(Ω) ≈ λ̃1(ωp,ℓ) can generally be done in Eq. (B.10), because
λ̃1(ω) is a smooth function and Re(Ω) ≪ ωp,ℓ. As the impedance Z(ω) can be related to
narrowband resonators, it is important to keep the Ω dependence in its argument. Note
that the term e−iΩs/c has already been factored out in Eq. (B.8). Z(Ω) is well-defined
for complex Ω, given that the impedance function is analytic [51]. The corresponding
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perturbation of the wake potential and its derivative are:

Φ1(ζ) = −
∫ ζ

0

dζ ′
eV1(ζ

′;λ1)

E0C0

, (B.12)

∂Φ1

∂φ
=

eI0
E0C0

∞∑
p=−∞

λ̃1(ωp,ℓ)
Zp,ℓ(Ω)

−iωp,ℓ/c
∂

∂φ
e−iωp,ℓζ/c. (B.13)

Next, we use the azimuthal symmetry with respect to φ to expand the perturbation
in azimuthal modes m:

Ψ1(J, φ) =
∑
m̸=0

Rm(J)e
imφ, (B.14)

where Rm(J) are real-valued functions. The bunch spectrum from Eq. (B.11) is then
written as

λ̃1(ωp) = 2π
∑
m̸=0

∫ ∞

0

dJ Rm(J)Hm,p(J), (B.15)

Hm,p(J) :=
1

2π

∫ 2π

0

dφ eimφ+iωp,ℓζ(J,φ)/c. (B.16)

As remarked in Ref. [138], the functions Hm,p(J) were first introduced by Lebedev in
1968 [137]. The functions Hm,p(J) depend on the beam current and impedances as the
canonical transformation ζ(J, φ) is modified by the potential-well distortion.

Inserting all these results in the linearized Vlasov equation, multiplying by e−inφ and
integrating over φ (recall that

∫ 2π

0
dφ ei(m−n)φ = 2πδmn) results in

(Ω−mωs(J))Rm(J) + imκ
∂Ψ0

∂J

∞∑
p=−∞

Zp,ℓ(Ω)

ωp,ℓ
H∗
m,p(J)

∑
m′ ̸=0

∫ ∞

0

dJ Rm′(J)Hm′,p(J) = 0,

(B.17)

where we defined the intensity parameter:

κ =
2πeI0c

2

E0C0

, (B.18)

and used the result

1

2π

∫ 2π

0

dφ e−imφ
∂

∂φ
e−iωp,ℓζ/c = imH∗

m,p(J). (B.19)

Until this point, our derivation closely followed the notation and steps presented in
Venturini’s paper, e.g., compare Eq. (B.17) here with Eq. (17) in [82]. The goal now is to
further manipulate the integral equation (B.17) to obtain a dispersion-relation that must
be solved for the coherent frequency Ω.
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We will first, for completeness, reproduce Venturini’s approach. Then, we will present
an extension of Venturini’s results that leads to the Lebedev equation. From that, we will
introduce an effective model that neglects the Landau damping and present the Gaussian
LMCI model discussed in previous investigations [139, 140].

B.2.1 Venturini’s approach

Multiplying Eq. (B.17) by Hm,p′(J), dividing it by (Ω−mωs(J)) and integrating it over
J , we obtain:

Xm,p′ + imκ

∞∑
p=−∞

Zp,ℓ(Ω)

ωp,ℓ
Gm,pp′(Ω)

∑
m′ ̸=0

Xm′,p = 0, (B.20)

where

Xm,p =

∫ ∞

0

dJ Rm(J)Hm,p(J), (B.21)

Gm,pp′ =

∫ ∞

0

dJ
∂Ψ0

∂J

Hm,p′(J)H
∗
m,p(J)

Ω−mωs(J)
. (B.22)

Equation (B.20) can be rewritten as an infinite system of equations:

∞∑
p=−∞

∑
m′ ̸=0

Bmm′,pp′(Ω)Xm′,p = 0, (B.23)

Bmm′,pp′(Ω) = δmm′,pp′ + imκ
Zp,ℓ(Ω)

ωp,ℓ
Gm,pp′(Ω). (B.24)

As in the case of interest of Ref. [82], for a narrowband resonator, only a single harmonic
±p0 has a significant impedance contribution. Moreover, in practice, the problem is solved
by truncating the sum to ±mmax. In this way, Bmm′,pp′(Ω) becomes a finite 4mmax×4mmax

matrix. As we are interested in non-trivial solutions, Xm,p ̸= 0, the coherent frequency Ω

is computed as the root of the determinant of the B(Ω) matrix.

B.2.2 Lebedev equation

Equation (B.20) can be further simplified. Applying a summation over m and defining

Yp =
∑
m̸=0

Xm,p and Gpp′(Ω) =
∑
m̸=0

mGm,pp′(Ω), (B.25)

simplifies Eq. (B.20) to

Yp′ + iκ
∞∑

p=−∞

Zp,ℓ(Ω)

ωp,ℓ
Gpp′(Ω)Yp = 0. (B.26)
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The infinite system of equations is now

∞∑
p=−∞

Bpp′(Ω)Yp = 0, (B.27)

Bpp′(Ω) = δpp′ + iκ
Zp,ℓ(Ω)

ωp,ℓ
Gpp′(Ω). (B.28)

In this format, the system of equations is equivalent to the Lebedev equation [137] as
derived in Ref. [138], see Eqs. (33-36) from [138].

From Eq. (B.16) we can derive the property H−m,p(J) = Hm,p(J), using that ζ(J, φ)
is an even function and 2π-periodic with respect to φ. This symmetry simplifies the matrix
Gpp′(Ω), combining positive and negative azimuthal modes:

Gpp′(Ω) =

∫ ∞

0

dJ
∂Ψ0

∂J
gpp′(J,Ω), (B.29)

gpp′(J,Ω) =
∞∑
m=1

2m2ωs(J)
Hm,p′(J)H

∗
m,p(J)

Ω2 −m2ω2
s(J)

, (B.30)

where it was assumed that the integrand does not diverge so the sum over m can be
interchanged with the integral.

We introduced the auxiliary function gpp′(J,Ω). Equation (B.29) for Gpp′(Ω) is
quite convenient since the truncation of azimuthal modes can be controlled based on the
convergence of the function gpp′(J,Ω) at run-time for each iteration of the root finding
algorithm for Ω.

It is important to highlight that with the Lebedev equation, the dimensionality of the
matrix and the number of numerical integrations do not depend on the truncation mmax.
Hence, we showed that Venturini’s formulation is essentially equivalent to the Lebedev
equation with the disadvantage of having an avoidable computational complexity that
increases with mmax.

B.2.3 Effective synchrotron frequency model

What set the requirement of a nonlinear solution method for Ω in the integral equation in
Eq. (B.17) are the dependencies of the synchrotron frequency with action ωs(J) and the
impedance with Ω. With this observation, we will formulate a simplified linear problem
with minimal changes.

Suppose that ωs(J) is replaced by a constant effective synchrotron frequency ω̄s.
A possible choice for ω̄s will be presented in the next section. This change may impact
the results by neglecting the frequency spread and Landau damping. Additionally, if we
approximate Zp,ℓ(Ω) ≈ Zp,ℓ (mω̄s), then Eq. (B.17) can be simplified to an eigenvalue
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equation:

∞∑
p=−∞

∞∑
m′=−∞

Cmm′,pp′Xm′,p = ΩXm,p′ , (B.31)

Cmm′,pp′ = mω̄sδmm′,pp′ − imκ
Zp,ℓ (mω̄s)

ωp,ℓ
Fm,pp′ , (B.32)

Fm,pp′ =

∫ ∞

0

dJ
∂Ψ0

∂J
Hm,p′(J)H

∗
m,p(J), (B.33)

and Xm,p is the same as defined in Eq. (B.21). We can proceed by truncating the azimuthals
mmax and selecting the harmonics p to find the coherent frequencies Ω as the eigenvalues
of Cmm′,pp′ .

Note that the nonlinearities can still play a role in this model, not through Landau
damping as the frequency spread is neglected, but through the terms Hm,p(J) that encodes
the nonlinear dynamics in the phase of eiωp,ℓζ(J,φ)/c [141]. Besides, the bunch profile
distortions are accounted through the numerical solution of the Haïssinski equation, which
is used to compute ∂Ψ0

∂J
numerically instead of an analytical distribution, as done in the

next model we will present.

B.2.4 Gaussian longitudinal mode coupling

Multibunch instability thresholds can be computed by employing Suzuki’s frequency-
domain solution of Vlasov equation for longitudinal instabilities, which allows mode
coupling between different azimuthal and radial modes of the bunch motion [142]. The
theory assumes that the single-particle dynamics is linear and that the longitudinal bunch
distribution is Gaussian. This makes the theory suitable for studying instabilities in
single-rf systems, neglecting potential-well distortion. Nevertheless, in the past some
success was achieved in using a linear Gaussian theory to study the instabilities in HC
systems [143, 144].

Suzuki expanded the radial function R(J) in a basis of orthogonal functions to solve
Sacherer’s integral equation. With Gaussian bunch distributions, generalized Laguerre
polynomials were used as orthogonal functions. Suzuki’s solution yields the infinite matrix
equation [142]:

∞∑
m′=1

∞∑
k′=0

Amkm′k′b
(m′)
k′ =

(
Ω

ωs

)2

b
(m)
k , (B.34)

Amkm′k′ = m2δm′mδk′k + i
m2ec2αI0
πσ2

zω
2
sE0

Mmk
m′k′ , (B.35)

where (m,m′) and (k, k′) are indices for the azimuthal and radial modes, respectively. The
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coupling matrix depends on the longitudinal impedance Z(ω) and beam spectrum

Mmk
m′k′ =

∞∑
p=−∞

Z(ωp,ℓ + Ω)

ωp,ℓ
im

′−mIm′k′

(
ωp,ℓ + Ω

ω0

)
Imk

(
ωp,ℓ + Ω

ω0

)
. (B.36)

For Gaussian bunches, the functions Imk(p) have the analytic form:

Imk

(
ωp,ℓ
ω0

)
=

1√
(m+ k)!k!

(
ζp,ℓ
2

)m+2k

exp

(
−
ζ2p,ℓ
4

)
, (B.37)

where ζp,ℓ =
√
2σzωp,ℓ/c. To solve the matrix problem, the sums are truncated to mmax and

kmax. Moreover, the approximation Ω ≈ mωs
1 is applied to compute the finite coupling

matrix Mmk
m′k′ . The analysis can be specialized to each coupled bunch mode ℓ. Then, the

coherent frequencies Ω are obtained by diagonalization.
The LMCI theory can be applied to coupled-bunch instabilities in double-rf system,

requiring a minor yet important adaptation in the calculation process. The values for
bunch length and average incoherent synchrotron frequency can be obtained from the
self-consistent solution of the Haïssinski equation. With this adaptation, the potential-well
distortion caused by the HC is not fully neglected for the instability analysis. However,
it is important to note that this scheme also ignores the frequency spread, thus Landau
damping effects are neglected. We will refer to this approximate model as “Gaussian
LMCI”.

Such as in the effective synchrotron frequency model, in the Gaussian LMCI the
constant incoherent synchrotron frequency is a crucial input. Considering that the
approximation of Gaussian bunch is already made, a simple choice for the constant
frequency is to maintain the relation between synchrotron frequency and bunch length
that holds for harmonic single-rf systems (quadratic rf potential):

⟨ωs⟩quadratic =
αcσδ
σz

. (B.38)

The synchrotron frequency can be determined by the bunch length (assuming the
momentum compaction and energy spread are fixed). In this way, we will be evaluating
the instability in a fictitious equivalent quadratic system with the same bunch length as
produced by the HC. Such approach was suggested in Refs. [64, 81].

The Gaussian LMCI method has the advantage of being considerably faster than the
previous methods of solving the Lebedev equation and the effective synchrotron frequency
model, since its matrix elements are computed by analytical expressions, while the others
require additional calculations for the numerical canonical transformation and numerical

1The approximation Ω ≈ mωs with m = 1 for all elements was considered in the pycolleff implemen-
tation for computational speed, and it was verified that varying m from 0 to 10 did not affect the results
presented in this chapter.
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integrations. Equation (B.38) will also be the choice for ω̄s in the effective model from
§B.2.3 used throughout this chapter.

B.3 The dispersion-relation for a narrowband resonator

In this section we will present a theoretical result from our framework. We will demonstrate
that the dispersion-relation equations developed in previous works [81, 82, 85] can be
obtained from the Lebedev equation as special cases. With that we will prove the
equivalence of the two approaches under certain conditions.

For the particular case of a narrowband resonator, we can retain a single harmonic
±p0 and Gpp′(Ω) is a 2× 2 matrix. For this case, the Lebedev equation yields

0 = det

[
1 + iκM−p0−p0(Ω) iκM−p0p0(Ω)

iκMp0−p0(Ω) 1 + iκMp0p0(Ω)

]
≈ 1 + iκ (Mp0p0(Ω) +M−p0−p0(Ω)) , (B.39)

where Mpp′ =
Zp,ℓ(Ω)

ωp,ℓ
Gpp′(Ω). The approximation refers to M−p0p0Mp0−p0 ≈Mp0p0M−p0−p0 ,

which follows from the property Hm,−p(J) ≈ H∗
m,p(J) that can be checked from Eq. (B.16).

The approximation is better for p0h≫ ℓ.
We will assume symmetric elliptical orbits on the longitudinal phase-space, thus the

canonical transformation can be approximately factored as

ζ(J, φ) ≈ f(J) cos(φ). (B.40)

This form is exact for a quadratic (harmonic) potential and a good approximation
even for a quartic potential, as discussed in the Appendix B of Ref. [81]. With this form,
we have that

Hm,p(J) ≈
1

2π

∫ 2π

0

dφ eimφ+iωp,ℓf(J) cos(φ)/c

= imJm (ωp,ℓf(J)/c) , (B.41)

where Jm(x) is the Bessel function of the first kind.
We can use the approximation that the wakefield varies slowly over the length of the

bunch. In Refs. [81, 85], this justifies a Taylor expansion of the longitudinal wake function
keeping only low-order terms. In our framework, this limit corresponds to consider a
short-bunch, ωp0,ℓf(J)/c≪ 1, so we can use the approximation of the Bessel function for
small arguments:

Jm (x) ≈ im
(x/2)m

m!
. (B.42)
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From the relation between Ψ0(J) and H0(J), we can show that ∂Ψ0

∂J
= −ωs(J)

αcσ2
δ
Ψ0(J).

Then, in the short-bunch limit, the determinant Eq. (B.39) results in:

1 =
2iκ

αcσ2
δ

∑
p=±p0

Zp,ℓ(Ω)

ωp,ℓ

∫ ∞

0

dJ Ψ0(J)
∞∑
m=1

(ωp,ℓ/c)
2m

(m!)2
m2 [f(J)/2]2m

[Ω/ωs(J)]
2 −m2

. (B.43)

Let us define the normalized effective impedance of order n:

Z
(n)
eff,ℓ(Ω) =

∑
p=±p0

(σzωp,ℓ/c)
n Zp,ℓ(Ω). (B.44)

Note that the factor σzωp,ℓ/c is dimensionless, and it is worth mentioning that the bunch
length σz (in this work, always taken as the second central moment of λ0(z)) was not
fundamental, it was introduced only for the purpose of a convenient normalization. In
the SSB.7 we show that the normalized impedance of order n can be related to the nth
derivative of the wake function.

With κ given by Eq. (B.18), the dispersion-relation for all azimuthals m is:

1 = i
4πeI0σz
E0C0ασ2

δ

∫ ∞

0

dJ Ψ0(J)
∞∑
m=1

Z
(2m−1)
eff,ℓ (Ω)

(m!)2
m2 [f(J)/2σz]

2m

[Ω/ωs(J)]
2 −m2

. (B.45)

We define the Λ
(m)
ℓ (Ω) parameter as:

Λ
(m)
ℓ (Ω) = i

eI0
2E0T0σδ

Z
(2m−1)
eff,ℓ (Ω)

(m!)2
, (B.46)

and replacing this definition into Eq. (B.45) yields:

1 =
2σz
αcσδ

∞∑
m=1

Λ
(m)
ℓ (Ω)Dm(Ω), (B.47)

with the dispersion integral for the azimuthal mode m:

Dm(Ω) =

∫ ∞

0

dJ 4πΨ0(J)
m2 [f(J)/2σz]

2m

[Ω/ωs(J)]
2 −m2

. (B.48)

The result we have obtained in Eq. (B.47) allows the evaluation of instabilities for
arbitrary azimuthal modes independently or combined. The assumptions to achieve this
were: (i) elliptical symmetric orbits in the phase-space and (ii) the wakefield length is
much longer than the bunch length, i.e., the short-bunch limit.

The dispersion integral can be simplified to specific rf potentials, as done in Refs. [81,
82, 126].
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B.3.1 Dipole instabilities

A particularly important instability type regards the bunch centroid motion, referred to
as dipole instability. This can be studied by focusing on the m = 1 mode contribution for
the dispersion-relation.

As in Ref. [81], the canonical transformation can be expanded in Fourier series
ζ(J, φ) =

∑
ν e

iνφf̂ν(J) and the Fourier coefficients f̂ν(J) appear in the dispersion-relation
instead of the function f(J). For the case ζ(J, φ) = f(J) cos(φ), the only non-zero Fourier
coefficients are ν = ±1 and the result f̂±1(J) = f(J)/2 can be used. Since the canonical
transformation is real, f̂−1(J) = f̂1(J). Under these conditions, the dispersion-relation
Eq. (B.47) for m = 1 is:

1 =
2σz
αcσδ

Λ
(1)
ℓ (Ω)

∫ ∞

0

dJ 4πΨ0(J)

[
f̂1(J)/σz

]2
[Ω/ωs(J)]

2 − 1
. (B.49)

To connect with Lindberg’s approach presented in [81], we will first solve the
dispersion-relation for an equivalent harmonic problem, i.e., a quadratic potential Φ0(z) ∝
z2 producing the same bunch length σz related to the arbitrary potential of interest. In
this case, the following conditions apply:

ωs(J) = ωs0 = αcσδ/σz, (B.50)

H0(J) = ωs0J/c, (B.51)

Ψ0(J) =
e−J/⟨J⟩

2π⟨J⟩ with ⟨J⟩ = σzσδ, (B.52)

ζ(J, φ) = σz

√
2J

⟨J⟩ cos(φ). (B.53)

We can initially obtain the coherent frequency Ωlinear,ℓ related to the centroid motion
of the coupled-bunch mode ℓ with linear dynamics. Additionally, we will assume that we
can approximate Ω ≈ ⟨ωs(J)⟩ = ωs0 in the impedance’s argument [81]. Applying these
conditions we obtain:

D1(Ωlinear,ℓ) =
ω2
s0

Ω2
linear,ℓ − ω2

s0

, (B.54)

Λ
(1)
ℓ (ωs0) = i

eI0
2E0T0σδ

Z
(1)
eff,ℓ, (B.55)

=
−eI0σz
2E0σδM

+∞∑
k=0

eik(2πℓ+ωs0T0)/M
dW

dξ

∣∣∣∣
ξ=k

cT0
M

, (B.56)

where we used Eq. (B.63) to relate Z(1)
eff,ℓ with the first derivative of the wake function.

Note that eI0σz
2E0σδM

= e2σtNpart

2γmcT0σδ
(for definition of the parameters in the right, see [81]),
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then we can show that Eq. (B.56) is equivalent to the matrix elements in Eq. (19)
of [81], after diagonalization to the basis of coupled-bunch modes. Combining Eqs. (B.54)
and (B.55) in the dispersion-relation, the result for point-charge bunches in a single-rf
system is recovered:

Ωlinear,ℓ = ωs0

√
1 + 2Λ

(1)
ℓ (ωs0)/ωs0. (B.57)

For small detuning such that Λ
(1)
ℓ (ωs0)/ωs0 ≪ 1, we get Sacherer’s formula Ωlinear,ℓ ≈

ωs0 + Λ
(1)
ℓ (ωs0). Note that Λ

(1)
ℓ (ωs0) is actually the coherent frequency shift in a harmonic

potential.
For comparison with Eq. (B.49), see the dispersion-relation presented in Eq. (24)

of [81], where the integral contains a summation over m. There, λℓ is an eigenvalue of the
bunch centroids coupling matrix, Eq. (19) in [81]. These eigenvalues λℓ are identical to
the Λ

(1)
ℓ defined by Eq. (B.56), where the particularity to m = 1 is made explicit in the

notation. For m = 1, our framework reproduces the results from Ref. [81], considering that
all the studies cases of rf potentials in that work considered only the m = 1 contribution
as well.

To obtain Eq. (24) of Ref. [81] for arbitrary m from Eq. (B.47) of this chapter, we
would have to consider Ω ≈ ωs0 to evaluate Λ

(1)
ℓ (ωs0), which is a reasonable approximation,

in principle. Besides, we would also have to set Λ
(m)
ℓ = Λ

(1)
ℓ for all azimuthals m and

assume that [f(J)/2]2m = f̂ 2
m(J), which are considerations that I could not find arguments

to support. Therefore, for m > 1, it was not possible to establish an obvious connection
between our framework and the dispersion-relation in Ref. [81].

B.3.2 Quadrupole instabilities

We will briefly address another type of instability to illustrate how the generality of
the presented theory allows to straightforwardly obtain the dispersion-relation for any
azimuthal mode. For instance, quadrupolar instabilities were investigated in Ref. [85]. Let
us assume that Λ

(1)
ℓ = 0, meaning that the dipole coherent shift is fully suppressed. Then,

from Eq. (B.47), the next relevant contribution is from the quadrupole mode m = 2.
Taking the normalized effective impedance of third order in terms of the wake

function from Eq. (B.63), replacing f(J)/2 = f̂1(J) in the dispersion integral, and rewriting
Ψ0(J) = − αcσ2

δ

ωs(J)
∂Ψ0

∂J
, we get:

1 =
4πeI0
E0M

+∞∑
k=0

eik(2πℓ+ΩT0)/M
d3W

dξ3

∣∣∣∣
ξ=k

cT0
M

∫ ∞

0

dJ
1

ωs(J)

∂Ψ0

∂J

[
f̂1(J)

]4
[Ω/ωs(J)]

2 − 4
. (B.58)

This dispersion-relation is equivalent to Eq. (16) in Ref. [85], assuming an even filling
pattern and diagonalization to the coupled-bunch basis.
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Table B.1: Relevant parameters for the longitudinal instability analysis of different 4th-generation storage
rings.

Parameter Unit ALS-U [82] HALF [145] MAX IV [33, 146]
Energy E0 GeV 2.0 2.2 3.0
Beam current (uniform fill) I0 mA 500 350 200 to 400
Circumference C0 m 196.5 480.0 528.0
Harmonic number h 328 800 176
Momentum compaction factor α 2.11× 10−4 8.1× 10−5 3.06× 10−4

Energy loss per turn U0 keV 217 198.8 363.8
Relative energy spread σδ 9.43× 10−4 6.43× 10−4 7.69× 10−4

Natural std bunch length σz (στ ) mm (ps) 3.5 (11.8) 2.0 (6.8) 10.9 (36.4) to 12.1 (40.4)
Radiation damping time τδ ms 14.0 22.7 25.2
rf frequency frf MHz 500.417 499.654 99.931
Revolution frequency f0 kHz 1525.66 624.57 567.69

MCs total voltage V̂rf MV 0.6 0.85 1.0 to 1.2
HC technology NC SC NC
HC rf harmonic 3 3 3
Number of HCs 2 1 2 to 3
HC shunt impedance Rs = V 2/2P MΩ 1.7 45 2.75
HC quality factor Q 2.1× 104 5× 105 2.08× 104

HC geometric factor (R/Q) Ω 81 90 132

HC flat-potential voltage V̂HC MV 186.6 283.3 307.5 to 378.6
HC flat-potential detuning ∆fHC kHz 584 157.8 38.8 to 145.2

It is worth mentioning that derivations for dipole instabilities in [81], later also
adapted for quadrupole instabilities in [85], required the restriction to these cases as
initial assumptions for the theoretical development. This case-by-case approach may be
limited if one wants to study an instability related to an azimuthal mode m /∈ {1, 2}
or if multiple m modes are required to accurately compute the instability thresholds,
for instance mode-coupling instabilities. Moreover, the mathematical complexity of the
process increases with m, as evident from the comparison of Ref. [85] for m = 2 with
Ref. [81] for m = 1.

Interestingly, the connection between an mth-order instability and the derivatives
of odd orders 2m − 1 of the wake function naturally arises in our framework through
Eqs. (B.46) and (B.63). This aligns with the physical intuition that derivatives of even
orders of the wake function cannot drive instabilities due to their symmetric effects.

B.4 Applications

The developed theory will be applied to two instabilities of interest in recent publications,
specially to some 4th-generation storage rings with HCs, whose parameters are presented
in Table B.1. For the applications, we will benchmark the results from Lebedev equation,
effective synchrotron frequency model and Gaussian LMCI against each other and against
experimental data.
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B.4.1 Robinson dipole-quadrupole mode coupling

Robinson instabilities can be studied by focusing on the coupled-bunch mode ℓ = 0.
In particular, there is a Robinson instability caused by the coupling of the dipole and
quadrupole motion, driven by the HC impedance, that has been studied in simulations [103,
143] and observed experimentally at MAX IV [33, 146].

Figure B.1 shows the coherent frequencies calculated with different methods and
the measured values at MAX IV ring [33]. The low total current of 50mA allowed to
measure the coherent oscillation frequencies with a stable beam. The incoherent effective
synchrotron frequency calculated by Eq. (B.38) is also shown to indicate its reduction while
the HC voltage increases. In contrast, the coherent dipolar frequency for the ℓ = 0 mode
remains essentially constant and equal to the value of the single-rf system (for a physical
explanation, Ref. [51], pages 68 and 206). The coherent quadrupolar frequency follows the
reduction of the second harmonic of the incoherent frequency. Hence, at some HC voltage
the dipole and quadrupole modes will match. For low currents such as I0 = 50mA, the
modes actually only cross each other and do not couple to drive an instability. For higher
currents these modes typically couple, driving a fast instability that can prevent reaching
higher HC voltages, thus better bunch lengthening performance.
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Figure B.1: Robinson (ℓ = 0) dipole-quadrupole mode coupling for MAX IV parameters: I0 = 50mA,
V̂rf = 650 kV. The flat-potential harmonic voltage is 174.35 kV. Measured data from MAX IV taken from
Ref. [33]. All models predict no instability at this condition, in agreement with the experiment. mmax = 2
was used in all methods and kmax = 1 was used in Gaussian LMCI.

It is interesting to note that all models produced very similar results. In this condition,
solutions with Im(Ω) < 1/τδ, where τδ is the longitudinal radiation damping time, were
found for the Lebedev equation. Other solutions following the quadrupole frequencies
could also be found if the initial guess to solve the determinant root was chosen to be close
to the second harmonic of the incoherent frequency. In the case of instability, however,
an initial guess around the dipole frequency would be sufficient to correctly predict an



B. Article 2: Coupled-bunch instabilities with potential-well distortion 134

unstable solution.
The good agreement between all methods and the measured data indicates that the

contributions from a non-Gaussian bunch and nonlinearities in the double-rf system are
not important for determining the coherent frequencies. It was observed that this still
holds for predicting an unstable condition. Thus, only the effects in the bunch length
and synchrotron frequency as in an equivalent single-rf system proved to be sufficient to
study the Robinson mode coupling instability. This aligns with the observations from
previous investigations [33,143]. Benchmarking of the Gaussian LMCI model with tracking
simulations are reported elsewhere [103].

B.4.2 PTBL/mode-1 instability

The PTBL instability, also called by some authors as mode-1 instability, has been recently
investigated for 4th-generation storage rings with HCs [82,145,146]. In this chapter, PTBL
or mode-1 instability refer to the same effect. It was shown that during this instability, the
bunch centroids and profiles oscillate in a quasi-stationary motion. Some studies indicate
that the effect has different features from a standard coupled-bunch instability [38, 145],
yet some success was obtained in computing the thresholds by restricting the analysis to
the coupled-bunch mode ℓ = 1 as it is the dominant mode. This is the justification for the
“mode-1 instability” name.

In Ref. [145], the characteristics of PTBL were investigated in detail mainly through
tracking simulations, although discussions on the instability mechanism were not addressed.
In Ref. [146] the nature of this instability was further explored and the authors elaborated
on some conditions that should be met for the mode-1 instability be likely to appear. The
experimental data obtained at MAX IV 3GeV storage ring (see Fig. 11 in Ref. [146])
showed a significant disagreement when compared to results obtained by two theoretical
models: Krinsky dispersion-relation for a quartic potential, in the format presented in [81],
and T. He formula [147]. We will present the results obtained from the models developed
in this chapter, from which we could obtain new insights to understand what features are
important to predict PTBL and why previous theories were unsuccessful in some cases.

Figure B.2 shows the coherent frequencies of the mode-1 calculated by different
methods for different rings, with the unstable region indicated by the background red color.
We note that for ALS-U parameters using the “old” ALS HCs, the mode-1 is unstable for
all HC conditions, in accordance with the results presented in Ref. [82]. This motivated a
new design of HCs for ALS-U. For HALF parameters with 350mA, the mode-1 instability
is triggered when the HC voltage is 6% below the flat-potential voltage. This aligns
with the results from Ref. [145], reporting a PTBL threshold of 259mA when the HC is
at flat-potential. Finally, for MAX IV parameters with 300mA and 3 HCs, the mode-1
instability is driven 1% below the flat-potential voltage.
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(a) ALS-U.
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(b) HALF.
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Figure B.2: Coherent frequencies of coupled-bunch mode ℓ = 1 as a function of the HC voltage for different
storage ring parameters. The vertical gray dashed line indicates the flat-potential voltage. The unstable
area is determined by the condition Im(Ω) > 1/τδ with Ω being the solution of Lebedev equation. (a)
Unstable for all HC voltages. flat-potential 184.75 kV. (b) Threshold 266.58 kV. Flat-potential 283.35 kV.
(c) Threshold 304.48 kV. Flat-potential 307.62 kV. I0 = 300mA, V̂rf = 1.0MV, 3 HCs. mmax = 2 was
used in all methods and kmax = 1 was used in Gaussian LMCI.

The results from Fig. B.2 also reveal that, for the mode-1 instability, calculations
with a more complete theory (Lebedev equation) produce essentially the same values as
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calculations with theories that neglects the Landau damping effect (effective synchrotron
frequency and Gaussian LMCI). This is a strong evidence that Landau damping does
not play a role on the onset of the PTBL instability, contrary to the conclusions from
Ref. [146]. Another relevant observation from Fig. B.2 is that the low coherent frequency
feature of PTBL instability was reproduced. In fact, from HALF and MAX IV plots,
the coherent frequency is shifted to lower values more than the incoherent frequency,
eventually reaching zero. This indicates that the coherent focusing of the mode is lost,
and an instability can easily build up. With this picture, the mechanism of the instability
associated with the imaginary/reactive part of the impedance can be better understood,
because this term is responsible for real frequency shifts. In Fig. B.3 we benchmarked our
predictions with the coherent frequencies of mode-1 measured at MAX IV [146], displaying
very good agreement as well. The measurements were carried out at 90mA, when the
mode-1 instability is not triggered. We see that for such low current the coherent frequency
shift is negligible.
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Figure B.3: Coherent frequencies of coupled-bunch mode ℓ = 1 for MAX IV parameters with 2 HCs,
I0 = 90mA, V̂rf = 689 kV. The vertical gray dashed line indicates the flat-potential voltage. Comparison
between different calculation methods and experimental data (Fig. 15 from Ref. [146]).

An interesting feature, explored in simulations [145] and measured at MAX IV [146],
is the dependence of the threshold current with the main rf voltage, which shows a linear
trend with positive slope. In the experiments, the HC cavity was always tuned to produce
the flat-potential voltage for each current and rf voltage. We benchmarked our calculations
with the experimental data from MAX IV and results from other methods as reported in
Ref. [146]. The comparison is shown in Fig. B.4. The results obtained from the Lebedev
equation and the effective synchrotron frequency model are in excellent agreement with the
experimental data when mmax ≥ 2 azimuthal modes are accounted. The Gaussian LMCI
model systematically predicts a lower current threshold, but still much more accurate than
the Krinsky and T. He models. The agreement between the result from Lebedev equation



B. Article 2: Coupled-bunch instabilities with potential-well distortion 137

900 925 950 975 1000 1025 1050 1075 1100
rf voltage (kV)

0

50

100

150

200

250

300

350

400

450

500

550

T
h

re
sh

ol
d

cu
rr

en
t

(m
A

)

Lebedev equation

Effective ωs(σz)

Gaussian LMCI

Krinsky dispersion relation

T. He phase perturbation

MAX IV experimental data

mmax

1

2

10

mmax

1

2

10

Figure B.4: Threshold currents of the mode-1 instability for different main rf voltages. MAX IV parameters
with 2 HCs, tuned to provide the flat-potential voltage. Comparison between different calculation methods
and experimental data [146]. Krinsky and T. He curves were obtained from Fig. 11 in [146]. The truncation
of azimuthal modes mmax was varied to illustrate the relevance of multiple modes. kmax = 1 was used in
Gaussian LMCI.

and the effective synchrotron frequency reveals that the effects of Landau damping are
not necessary to accurately predict the PTBL/mode-1 instability threshold.

It was proven that the inclusion of the m = 2 mode is essential to reproduce the
measured thresholds. The calculations with only m = 1 predicts a higher threshold such
as in the Krinsky model (which only uses m = 1). A more detailed discussion about the
Landau damping and multiple azimuthal modes will be addressed in §B.5. Besides, the
effects of a non-Gaussian beam proved to be relevant because it is the main difference
between the effective frequency method and the Gaussian LMCI scheme, with the latter
underestimating the threshold. The inclusion of multiple azimuthal modes is one of the
main differences from our theoretical models to the models of Krinsky and T. He.

B.5 Discussion on PTBL/mode-1 mechanism

The results in §B.4 help to clarify the underlying mechanism of the PTBL instability. As
the HC voltage increases, ⟨ωs⟩ decreases from its single-rf value. For the ℓ = 0 coupled-
bunch mode, the coherent dipole frequency remains constant. However, this does not
generally hold for other coupled-bunch modes. Figure B.2 shows that, particularly for the
ℓ = 1 mode, the coherent frequencies represented by “Re(Ω) Lebedev” exhibit a negative
shift relative to ⟨ωs⟩. This is due to the reactive (imaginary) part of the HC impedance.
If the negative shift leads to Re(Ω) ≈ 0, the coherent focusing of mode ℓ = 1 is lost,
triggering an instability.
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In past works [129, 148], the microwave instability (a single-bunch effect) has been
explained using a similar “zero-frequency” argument, although the interpretation was
based on the mode-coupling of m = ±1 modes. Within our formulation of the Lebedev
equation, interactions between positive and negative m modes are accounted for, but this
contributions may be overlooked since these modes were combined due to their symmetry.
This suggests that the “zero-frequency” threshold for PTBL might also be interpreted as
the coupling of m = ±1 modes associated with the coupled-bunch mode ℓ = 1. However,
an important difference lies in the regime for the coherent frequency shift, or equivalently,
mode-coupling. For the microwave instability, large negative shifts occur due to high
current per bunch. In contrast, for the PTBL instability, ⟨ωs⟩ is significantly lowered by
the HC voltage, and even at lower currents per bunch, the coherent shift might still be
sufficient to couple the m = ±1 modes.

The “zero-frequency” condition can be used to derive an approximate formula for the
PTBL instability threshold (see SSB.8). The formula provides a critical (R/Q)I0 value and
a mode-1 instability is expected when this value is exceeded. This dependence aligns with
previous studies, which have shown that HCs with low (R/Q) are preferable for avoiding
the PTBL instability [80, 82, 103, 147, 147]. Within the proposed instability mechanism,
this behavior can be attributed to the lower (R/Q) values reducing the reactive effective
impedance for the ℓ = 1 mode, which in turn reduces the coherent dipole frequency shift.

The linear dependence of the PTBL threshold on the main rf voltage was predicted
by tracking simulations [145], verified experimentally [146], and reproduced with our
calculations in Fig. B.4. In Fig. B.5, we show the behavior of the incoherent and coherent
frequencies for two different main rf voltages, using the HALF parameters. For simplicity,
only the results from the Lebedev equation are presented. The result in red corresponds
to the condition shown in Fig. B.2b, with V̂rf = 0.85MV. This is compared with a
result obtained at twice the rf voltage, 1.70MV, where the single-rf synchrotron frequency
is expected to increase by approximately

√
2. At the higher rf voltage, the coherent

negative shift is reduced. This reduction occurs due to the lower HC detuning needed
to generate a higher harmonic voltage, which decreases the reactive effective impedance
for ℓ = 1. Combined with the higher incoherent frequency, this implies in an increase
in the PTBL threshold current. According to the approximate formula, Eq. (B.70), the
threshold depends on

√
V̂rf , while a linear behavior was observed in simulations [145] and

measurements [146]. We can argue that variations considerably larger than those made in
these investigations would be required to reveal a

√
V̂rf dependence.

For all cases studied here, the positive growth rates for PTBL are on the order of
hundreds of Hz or higher. Such large growth rates are typical of mode coupling instabilities,
for which radiation damping is known to be ineffective [50, 51, 142]. This observation
aligns with the findings in Ref. [145], where tracking simulations indicated that the PTBL
threshold is insensitive to changes in the radiation damping time. Additionally, recent
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Figure B.5: Coherent frequencies of ℓ = 1 coupled-bunch mode for HALF parameters with different
main rf voltages. The vertical gray dashed line represents the flat-potential condition. Harmonic
voltage/detuning at flat-potential for each rf voltage are (red): 283.35 kV/157.79 kHz; (blue): 566.68 kV/
80.17 kHz. mmax = 2 was used.

studies have showed that a resistive feedback is ineffective in mitigating the mode-1
instability [91]. Investigating the effect of reactive feedback to counteract the negative
coherent frequency shift of mode-1 could offer a potential solution to the PTBL issue.
Reactive feedback systems have previously been explored to increase the thresholds of
transverse mode coupling instabilities, achieving positive results [149–153].

In Refs. [103,139,140,146] it was remarked that, since the PTBL instability is known
to have a low coherent frequency, it may be resistant to Landau damping. In addition to the
presence of an incoherent frequency spread, Landau damping requires an overlap between
coherent and incoherent frequencies to manifest. The argument is that, although double-rf
systems significantly increase the frequency spread, the bandwidth may not extend to the
very low frequencies involved in the PTBL instability, limiting the effectiveness of Landau
damping. Our results provide quantitative support for this argument.

The Krinsky dispersion-relation used in Refs. [81, 146] assumes an ideal quartic
rf potential, Φ0(z) ∝ z4, resulting in an amplitude-dependent incoherent frequency,
ωs(J) ∝ J1/3, and isolates the m = 1 contribution [81, 82, 126]. However, achieving
in practice an exact quartic potential with a double-rf system is unlikely. Even small
mismatches in the rf voltage cancellation can significantly alter the potential (see Fig. 3
in Ref. [82], for example), leading to incoherent frequencies that may not reach zero to
interact with the coherent frequency. Consequently, the Krinsky model is expected to
overestimate Landau damping effects. Combined with the neglect of higher-order m modes,
this may explain the discrepancy with the measured mode-1 thresholds shown in Fig. B.4.
It is worth noting that the dispersion-relation applied in Refs. [81, 146] is a specific case of
the broader framework introduced in Krinsky’s original work [126], which is also general
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enough to include multiple azimuthal modes and arbitrary nonlinear rf potentials.
Finally, we present the m = 2 mode contribution to the PTBL instability prediction.

Figure B.6 illustrates how the number of azimuthal modes affects the coherent frequencies.
The calculations use MAX IV parameters with a beam current of 400mA, a main rf
voltage of 1.0MV, and two HCs, a condition known to be unstable (see Fig. B.4). For this
beam current, considering only m = 1 results in an insufficient coherent shift to push the
mode towards zero and drive the instability. Including m = 2 introduces an additional
negative shift, as if the quadrupole mode “repels” the dipole mode, which is enough to
drive the instability. Therefore, interaction of higher azimuthal modes also play a crucial
role in the PTBL instability.
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Figure B.6: Coherent frequencies of ℓ = 1 coupled-bunch mode for MAX IV parameters with 400mA,
main rf voltage 1.0MV and 2 HCs, considering two truncation values of azimuthal modes mmax. The
vertical gray dashed line indicates the flat-potential condition.

B.6 Summary and conclusions

We developed a theoretical framework for calculating coupled-bunch instabilities in double-
rf systems with HCs, considering nonlinear effects from potential-well distortion and cases
where multiple azimuthal modes are relevant. This framework is based on a frequency-
domain perturbation theory to solve the linearized Vlasov equation, resulting in the
Lebedev equation [137, 138], which provides the coherent frequencies of the beam. We
identified an equivalence between the Lebedev equation and the theory developed by
Venturini [82], noting that Venturini’s method has an avoidable computational complexity
that increases significantly with the number of azimuthal modes considered.

Additionally, we presented two approximate models: an effective synchrotron fre-
quency method, which neglects Landau damping but accounts for other effects of an
arbitrary rf potential, and a Gaussian LMCI scheme adapted for double-rf systems.
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Dispersion-relation equations based on Krinsky’s work [126], as presented in recent publi-
cations by Lindberg [81] and Cullinan [85], were derived as particular cases of the Lebedev
equation. Altogether, this demonstrates an unification of recent theories addressing
longitudinal instabilities in double-rf systems.

The framework was applied to study two types of instabilities in the presence of HCs:
Robinson dipole-quadrupole mode coupling and PTBL/mode-1. For these studies, we used
parameters from the storage rings ALS-U, HALF, and MAX IV. The theory provided
excellent agreement with experimental data from MAX IV, a novel result for the mode-1
instability. We drew three significant conclusions about the PTBL instability mechanism:
(i) it is triggered when coherent focusing is lost for the dipole motion of the coupled-bunch
mode ℓ = 1, (ii) Landau damping is irrelevant for determining instability thresholds and
(iii) the interaction of multiple azimuthal modes is the fundamental effect for accurate
threshold predictions. The new insights on the PTBL instability mechanism deepens our
understanding of its behavior and dependence on parameters such as the main rf voltage,
(R/Q) of the HC, reactive impedance, and longitudinal radiation damping time.

The Python implementation of the models is available in the open-source package
pycolleff [83], providing a useful semi-analytical tool for studying instabilities in electron
storage rings with HC systems.

Interesting directions for future research would be extending the framework to evaluate
instabilities with uneven filling patterns and broadband resonators with a reasonable
computational complexity, as well as investigating the use of reactive feedback to control
the negative coherent frequency shift of the coupled-bunch mode ℓ = 1 in double-rf systems,
aiming to increase the PTBL instability thresholds.

B.7 Effective impedance and wake function derivative

The longitudinal wake function is related to the longitudinal impedance by:

W (ξ) =
1

2π

∫ ∞

−∞
dω Z(ω)e−iωξ/c, (B.59)

and it is straightforward to compute the nth derivative of the wake function:

dnW

dξn
=

(−i)n
2πcn

∫ ∞

−∞
dω ωnZ(ω)e−iωξ/c. (B.60)

Considering M bunches evenly distributed, we will evaluate the wake function at
the harmonics kcT0/M . Then multiply it by eik(2πℓ+ΩT0)/M , where ℓ is the coupled-bunch
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mode. To apply the Poisson formula:

+∞∑
k=−∞

eikωT0/M =Mω0

+∞∑
p=−∞

δ(ω − pMω0), (B.61)

with ω0 = 2π/T0, we will assume the integrand in Eq. (B.60) does not diverge, allowing to
interchange the summation with the integral. This is a valid assumption for narrowband
resonators at low frequencies, when the impedance is well-represented by a single or few
harmonics p, and it can be neglected elsewhere [82, 154].

After these steps, we obtain:

+∞∑
k=−∞

eik(2πℓ+ΩT0)/M
dnW

dξn

∣∣∣∣
ξ=k

cT0
M

=
M(−i)n
cnT0

+∞∑
p=−∞

(ωp,ℓ + Ω)nZp,ℓ(Ω), (B.62)

with ωp,ℓ = (pM + ℓ)ω0. Typically, Re(Ω) ≪ ω0, so we can approximate (ωp,ℓ +Ω)n ≈ ωnp,ℓ.
Note that, for generality, the Ω dependence should be kept in the impedance’s argument.

Considering the impedance can be neglected except at the harmonic ±p0, the
definition of normalized effective impedance of order n from Eq. (B.44) can be applied
into Eq. (B.62) to get:

Z
(n)
eff,ℓ(Ω) = (iσz)

n T0
M

+∞∑
k=0

eik(2πℓ+ΩT0)/M
dnW

dξn

∣∣∣∣
ξ=k

cT0
M

, (B.63)

where the causality W (z < 0) = 0 was used to restrict the sum for k > 0.

B.8 Approximate formulas for the PTBL/mode-1 thresh-

old

We will assume an even filling pattern with all buckets filled, M = h. Consider the
longitudinal impedance resonator model:

Z(ω) =
Rs

1 + iQ
(
ωr

ω
− ω

ωr

) , (B.64)

where Rs is the shunt impedance, Q the quality factor and ωr the resonant frequency. For
narrowband resonators with high-Q, we can approximate the reactive impedance by:

Im [Z(ω)] ≈ −
(
R

Q

)(
ωr

ω
− ω

ωr

)−1

. (B.65)

We will assume that the resonator is detuned above the nth rf harmonic, ωr =
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nhω0 + ∆ω, representing the case of a nth-HC. From Eq. (B.46) for the dipole mode,
Re
[
Λ

(1)
ℓ (0)

]
∝ − Im

[
Z

(1)
eff,ℓ(0)

]
. We will be interested in the limit Ωℓ ≈ 0, so the Ωℓ

sampling on the impedance was neglected. Evaluating the reactive effective impedance
with p0 = n on Eq. (B.65), yields:

Im
[
Z

(1)
eff,ℓ(0)

]
≈ στ

(
R

Q

)
(nhω0)

2 ∆ω

(ℓω0)2 −∆ω2
. (B.66)

We considered nh ≫ ℓ and nhω0 ≫ ∆ω. HCs typically operate at small detunings,
0 < ∆ω < ω0 (see Table B.1), so, for ℓ ̸= 0, (ℓω0)

2 − ∆ω2 ≈ (ℓω0)
2 is often a valid

approximation for the flat-potential detuning. In this approximation, the bunch length,
στ , is treated as an independent parameter. Even so, the value of στ used in the formula
should be consistent with the equilibrium bunch distribution for each condition.

We can show that the HC peak voltage can be approximated by:

V̂HC ≈ I0|Fn|
(
R

Q

)
nhω0

∆ω
, (B.67)

where Fn is the bunch form factor, given by Fn =
∫∞
−∞ dz einωrfz/cλ0(z). For simplicity, we

assume symmetric bunches, so the phase of Fn is zero. Q≫ 1 was also assumed to obtain
Eq. (B.67). The HC amplitude to produce the flat-potential is [106]:

V̂HC,flat =
V̂rf
n

√
1− n2

n2 − 1

(
U0

eV̂rf

)2

≈ V̂rf
n
. (B.68)

Combining these results and applying to Eq. (B.46), yields:

Re
[
Λ

(1)
ℓ (0)

]
≈ −πeστ |Fn|n

4h3

E0T 2
0 σδV̂rfℓ

2

[
I0

(
R

Q

)]2
. (B.69)

Note that Re
[
Λ

(1)
ℓ

]
∝ −1/ℓ2, meaning the most significant negative shift occurs for

the ℓ = 1 mode. Depending on the parameters, ℓ > 1 modes can also have sufficient
coherent shifts to drive instabilities with multiple coupled-bunch modes. This may help
to understand the behavior of many coupled-bunch modes excited during the PTBL
instability [38].

For simplicity, we will use the approximate case of a dipole instability in an equivalent
quadratic potential with the same bunch length in a double-rf system at flat-potential,
such as presented in §B.3.1. For this case, the coherent shift is Ω2

linear,ℓ = ⟨ωs⟩2 + 2⟨ωs⟩Λ(1)
ℓ

with ⟨ωs⟩ = ασδ/στ . The condition for the mode ℓ = 1 instability threshold condition
will be set as Ω2

linear,ℓ=1 ≈ 0, implying Re
[
Λ

(1)
ℓ=1(0)

]
≈ −⟨ωs⟩/2. With that, we get the
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approximate threshold formula:

[
I0

(
R

Q

)]
threshold

≈ T0σδ
n2στ

√
E0αV̂rf

2πe|Fn|h3
. (B.70)

A mode-1 instability is expected for I0(R/Q) values above this threshold. A similar formula
was derived by Venturini (see slide 17 in Ref. [155]). Interestingly, both formulas exhibit

the scaling σδ
n2

√
E0αV̂rf/|Fn|. Venturini’s formula is based on a dispersion-relation in a

quartic rf potential for the dipole instability of the ℓ = 1 mode, obtained by calculating
the intersection of the effective impedance with the stability diagram boundary. Hence,
some differences from our formula are expected. Another formula was derived by T. He
(see Eq. (24) in Ref. [147]), which exhibits a different scaling: V̂rf/n2|Fn|. In Ref. [145], the
significant impact of α and σδ on the PTBL threshold was demonstrated, while T. He’s
threshold formula lacks an explicit dependence on σδ

√
E0α.

We do not expect that the formula Eq. (B.70) can provide accurate absolute threshold
values due to its various approximations. Nevertheless, it serves as an interesting result
for exploring the dependence on relevant parameters and may be useful for comparing
relative thresholds.
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Synchrotron light sources often use higher-harmonic rf cavities for bunch length-
ening to enhance Touschek lifetime. By adjusting the harmonic voltage, a
flat-potential condition for the longitudinal voltage can be achieved, typically
improving Touschek lifetime by 4 to 5 times. It is known that exceeding the
flat-potential voltage results in double-peaked bunch profiles, referred to as
overstretched conditions. Simulations suggest overstretched profiles can surpass
flat-potential improvements on lifetime. In this paper we report on experi-
mental results from the MAX IV 1.5GeV storage ring, demonstrating a longer
beam lifetime with a stable beam in overstretched conditions compared to the
flat-potential case. Additionally, a remarkable agreement between measured
bunch profiles using a streak camera and predictions from a semi-analytical
equilibrium solver was obtained for all tested harmonic voltages.
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C. Experiments: overstretched bunches at MAX IV 1.5GeV ring 146

C.1 Ring parameters

MAX IV is a synchrotron light source facility in Lund, Sweden. The complex has two
storage rings, one operating at 1.5GeV and the other is a fourth-generation ring operating
at 3.0GeV [156]. This work is focused on lifetime improvement with HCs in the 1.5GeV

ring, whose relevant parameters for these studies are presented in Table C.1. Two passive
normal-conducting HCs operating close to the third-harmonic of the rf frequency are
installed in the ring.

Table C.1: Main parameters for the MAX IV 1.5GeV ring.

Energy E0 1.5GeV
rf frequency frf 99.931MHz
Harmonic number h 32
Momentum compaction α 3.05× 10−3

Energy spread σδ 7.45× 10−4

Energy loss per turn U0 114.4 keV
HC shunt impedance (V 2/P ) Rs 5.5MΩ/cavity
HC quality factor Q 20 800

C.2 Voltage calibration

C.2.1 Main cavities

With a low-current single-bunch stored in the ring and the HCs parked (no HC fields),
the synchrotron frequency was measured as fs = 7.18 kHz. For a single-rf system, the
relation between synchrotron frequency and main rf voltage is well-known [48]. Given a
measured value of synchrotron frequency fs, the relation can be inverted to determine the
main voltage:

Vrf =

[(
fs
frf

)4(
α

2πhE0

)2

+ U2
0

]1/2
. (C.1)

For the parameters of Table C.1, the measured synchrotron frequency corresponds to a
main rf voltage of Vrf = 522.3 kV. This value was used throughout the analysis.

C.2.2 Harmonic cavities

For zero detuning and uniform fill, the peak HC voltage should be simply VHC = RsI0 [23],
where Rs is the HC shunt impedance and I0 is the stored beam current. To calibrate the
voltage of the HCs , 2.3mA was accumulated uniformly in the ring and the HCs were
tuned to resonance. This was achieved by maximizing the HC voltage readouts. The stored
current was then reduced in steps to 0.3mA using a beam scraper and the corresponding
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HC voltages were recorded for each current value. For each current, the HCs tuning was
adjusted to keep the cavities on resonance. A linear calibration curve was obtained from
the measured HC voltage in hardware units vs. expected voltage by RsI0.

C.3 Fitting harmonic voltages from streak-camera mea-

surements

The bunch profiles were measured with a streak-camera. The streak-camera provides
a 2d image with an axis corresponding to a fast scan, with a timescale within bunch
separations (ns) and an axis related to a slow scan, with a timescale within a revolution
period (µs) [157]. In Fig. C.1 an example streak-camera image is shown. The time axis
can be converted to the z-coordinate by τ = z/c, where c is the speed of light.
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Figure C.1: Example of streak-camera image acquired with 200mA in uniform fill. Left: the solid curve is
the average projection along the slow axis and the shaded region is the std variation over bunches.

The equilibrium bunch profiles in the presence of HC voltage can be calculated by
solving self-consistently the Haissinski equation [44]. Let λmeas(zi) be the measured bunch
profile along the axis zi and averaged over bunches. The goal was to find the HC voltage
that best reproduces the measured bunch profile. Two fitting parameters were used: the
HC voltage Vfit(z) (amplitude and phase determined by the HC detuning) and an offset
zfit to match the measured and simulated zi-axis. This offset was included as an optional
fitting parameter just to automatically account for the undetermined offsets between the
axis.

The HC voltages were obtained by solving the least-squares minimization problem:

χ2 =
∑
i

[λmeas(zi)− λ(zi − zfit, Vfit)]
2 , (C.2)
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where λ(z, Vfit) is the equilibrium bunch distribution calculated in the double-rf system.
We noted the same results were obtained when including beam-loading voltage from main
cavities and, for simplicity, only beam-loading from HCs was considered.

A comparison between measured and calculated bunch profiles is presented in
Fig. C.2. The HC voltages needed to match the calculated and measured bunch profiles are
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Figure C.2: Measured and calculated bunch profiles for 200mA. Dots represent the average and error
bars represent the variation of charge densities over bunches.

systematically lower than the measured voltages. A constant difference could be explained
by an error in the shunt impedance considered in the calibration, for example. However,
the discrepancy increases linearly with the total voltage1, as shown in Fig. C.3.
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Figure C.3: Ratio between calculated and measured HC voltages for fitting bunch profiles at different
beam currents.

Based on the difference between fit and measured voltages, the linear coefficient
of HC voltage calibration curve was readjusted by a factor 0.93. This makes the total
measured voltage of 180 kV match with the value that reproduces the measured bunch
profiles. However, a small discrepancy that increases with the voltage remains, reaching
an error of 0.915/0.93 = 0.98 for the highest measured voltage of 210 kV. The adjustment

1The calibration of HC voltages was measured at low currents, setting the cavities on resonance which
is impossible at higher currents. The discrepancy makes us question the validity of this linear calibration
curve for higher currents. Perhaps some nonlinearity in the voltage measurement device in the cavity
could explain a nonlinear calibration curve.
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of 0.93 could be interpreted as if the actual shunt impedance of the two HCs is 5.115MΩ,
i.e., 7% lower than the value of 5.5MΩ considered previously. This estimated error is
considerably larger than bench measurements indicate. Even so, for this study, the HC
voltage values were adjusted by the 0.93 factor.

C.4 Lifetime optimization

The increment in Touschek lifetime due to the bunch lengthening provided by the HCs
can be estimated by [23]:

τHC

τ0
=

∫
λ20(z)dz∫
λ2HC(z)dz

, (C.3)

where λ0(z), λHC(z) are the normalized bunch profiles without and with HC fields, respec-
tively. This calculation assumes that the effect of HCs on energy acceptance is small,
which is typically a good approximation.

It is known from simulations that profiles corresponding to HC voltages higher than
the flat potential case can be better for lifetime improvement [44, 158]. In this condition,
referred as overstretched, the bunch profiles have a double-peaked shape. To investigate
this experimentally, the HC voltage was adjusted above flat potential, while measuring
the bunch profiles and the beam lifetime as well. For the main rf voltage of 522.3 kV used
during the experiment, the flat potential HC voltage is 169.3 kV. The measurements were
carried out with three different values of stored currents in uniform fill.

In the first run with 200mA, we observed that for 185 kV (9% above the flat potential
voltage), a coupled-bunch mode-0 instability was excited, probably a Robinson instability
driven due the small detuning of the harmonic cavities (130 kHz in this case). The mode-0
instability limited the maximum value of HC voltage for the scan at 200mA. Figure C.4
show the results for the first sequence of measurements.

For the second run, the stored current was increased to 300mA. At higher currents
the same HC voltage is achieved with a larger detuning, thus the Robinson instability
could be avoided. However, for 188 kV, coupled-bunch instabilities were excited by HOMs
of the HCs. After temperature tuning of HCs , the HOMs’ frequencies shifted and the
instabilities were suppressed. At the new operating temperatures, it was possible to further
increase the HC voltage while keeping the beam stable. The results obtained at 300mA

are shown in Fig. C.5, where the negative impact of the coupled-bunch instabilities on
lifetime is evident at 188 kV.

A final set of measurements at 400mA was made. The temperature tuning that
cured the coupled-bunch instabilities at 300mA was maintained. Different from the other
two cases, the initial value of HC voltage was already set to flat potential voltage of 170 kV,
taking into account the identified calibration error. No instabilities were experienced in
this run and the results are shown in Fig. C.6.
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Figure C.4: Experimental results of the product lifetime × current, normalized by the same product
measured with HC voltage of 170 kV (flat potential). Measurement carried out with 200mA in the ring.
The normalization value is (τ × I)flat = 4604mAh, corresponding to a total lifetime of 23 h at 200mA.
The blue dashed curve is the calculated lifetime from Eq. (C.3) with the corresponding bunch profiles for
each HC voltage. The black dots and error bars represent the mean and variation of voltage measured in a
short period, respectively. The colored markers indicate the voltages in which bunch profile measurements
were taken. The sequence of measured and calculated profiles for each HC voltage is presented in the
bottom plots.
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Figure C.5: Same experiment as shown in Fig. C.4 with a higher current of 300mA. The normalization
value measured with HC voltage of 170 kV is (τ × I)flat = 5712mAh, corresponding to a lifetime of 19 h
at 300mA.

C.5 Discussion and conclusion

The results shown in Figs. C.4, C.5 and C.6 confirm that operating with HC voltages
beyond the flat potential can help to improve beam lifetime. Moreover, we were able
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Figure C.6: Same experiment as shown in Figs. C.4 and C.5 with a higher current of 400mA. The
normalization measured with 170 kV of HC voltage is (τ × I)flat = 4642mAh, corresponding to a lifetime
of 11.6 h at 400mA. The point close to z = 5 cm with large variation in intensity should be just an artifact
from the streak-camera acquisition.

to find in simulation the HC voltages that produced bunch profiles in close agreement
with streak-camera measurements. This fitting process has the potential to be useful as
a beam-based calibration of HC voltages at high current. Benchmarking against other
calibration methods is required for validation.

Experiments with stored beam currents of 200mA and 300mA were limited by
beam instabilities. The product (lifetime × current) was higher with 300mA compared to
200mA and 400mA, suggesting that other uncontrolled factors were affecting the lifetime
in this case. Interestingly, the beam remained stable at the highest current of 400mA,
allowing acquisitions with highly overstretched bunches.

Overall, the observed improvement in lifetime with HCs did not match the theoretical
expectation based on Eq. (C.3). The best HC voltage for lifetime was consistently higher
than expected and the range of voltages producing longer lifetimes in practice is broader
than predicted. This could be because Eq. (C.3) assumes that, except for the longitudinal
density, all parameters remain constant, while they may vary in reality. Additionally, the
formula only considers the impact of HCs on Touschek lifetime, while the total lifetime
was measured. Further studies are needed to investigate these differences.
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