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Summary

The day-ahead problem of finding optimal dispatch and prices for the
Brazilian power system is modeled as a mixed-integer problem, with
nonconvexities related to fixed costs and minimal generation require-
ments for some thermal power plants. The computational tool DESSEM
is currently run by the independent system operator, to define the dis-
patch for the next day in the whole country. DESSEM also computes
marginal costs of operation that CCEE, the trading chamber, uses to
determine the hourly prices for energy commercialization. The respec-
tive models sometimes produces an infeasible output. This work ana-
lyzes theoretically those infeasibilities, and proposes a prioritization to
progressively resolve the constraint violation, in a manner that is sound
from the practical point of view. Pros and cons of different mathemati-
cal formulations are analyzed. Special attention is put on robustness of
the model, when the optimality requirements for the unit-commitment
problem vary..

1 Introduction and context

As a follow-up of the industrial problem dealt with in 2018 and 2019, on “Day-ahead pric-
ing mechanisms for hydro-thermal power systems”, in partnership with CCEE, CEPEL
and RADIX as industrial partners, in 2021 the study group focused on the dynamics of
hourly prices when industrial consumers are demand responsive under the coordination
of Juan Pablo Luna, Claudia Sagastizábal, and Paulo J. S. Silva.

Demand response is currently being tested by the Brazilian independent system oper-
ator, ONS, and by the trading chamber, CCEE, [1]. The program considers reductions of
consumptions of some registered clients as an alternative to dispatching thermal power
plants out of the merit order. The rationale is that when consumers with a flexible de-
mand adapt their load to the energy prices the reliability of the transmission system
increases and end consumers pay lower prices.

The day-ahead problem of finding optimal dispatch and prices for the Brazilian system
is modeled as a mixed-integer linear programming problem, with nonconvexities related
to fixed costs and minimal generation requirements for some thermal power plants [coin].
The computational tool DESSEM, developed by CEPEL [5], is currently run by ONS to
define the dispatch for the next day for the whole country. Having the optimal dispatch,
DESSEM computes marginal costs of operation that CCEE uses as a basis to determine
the hourly prices for energy commercialization. To fit the different needs of the each
involved party, the tool is developed in two variants. The model used by the operator,
ONS, details transmission lines and generating units. By contrast, the tool employed by
the commercialization chamber, CCEE, only models large lines that interchange energy
within macro areas. There is a disparity between the system seen by the model defin-
ing the dispatch and the model defining the price. From a mathematical optimization
viewpoint, those differences materialize as DESSEM providing an output that is not
feasible.
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The work, carried on using an academic version of DESSEM, analyzes theoretically
those infeasibilities, and proposes a prioritization to progressively resolve the constraint
violation, in a manner that is sound from the practical point of view. Pros and cons of
different mathematical formulations are analysed. Special attention is put on robustness
of the model, when the optimality requirements for the unit-commitment problem vary.

2 Mathematical Formulation of the UC problem solved by DESSEM

Selecting the time steps t = 1, . . . , T along the planning horizon, a set S that comprises
the thermal and hydro-power units, and the related parameters, the preliminary model
is given by

min
(pi,ui)i∈S

∑

i∈S

GCosti(pi, ui) + αFCF

s.t.
∑

i∈S

pti = Dt, t = 1, . . . , T

(pi, ui) ∈ Qi, i ∈ S

πFCFk

0

+

NH
∑

i=1

πFCF,vk

i

V T
i ≤ αFCF, k = 1, . . . ,NFCF

(2.1)

in which αFCF and the related constraints represent the future cost (of the water) function
and the i-th unit generation cost is

GCosti(pi, ui) :=

T
∑

t=1

(

Ci(p
t
i) + F+

i [ut
i − ut−1

i ]+ + F−
i [ut−1

i − ut
i]+

)

. (2.2)

The operational constraints are described by the set

Qi :=
{

(pi, ui) ∈ Pi : ui ∈ {0, 1}
T
}

, i ∈ S (2.3)

and, for i ∈ S, we have that

(pi, ui) ∈ Pi contains

{

pi,minu
t
i ≤ pti ≤ pi,maxu

t
i, t = 1, . . . , T

|pti − pt−1
i | ≤ ∆pi, t = 1, . . . , T.

(2.4)

Additionally, for t = 1, . . . , T , water balance and reservoir bound constraints are stated
as

V t
h − V t−1

h + ηhp
t
h = It, (2.5)

and

V min safe

h ≤ V t
h ≤ V max

h , (2.6)

with V min safe

h := max
(

V min
h , 0.20V max

h

)

.

3 Additional constraints related to the Brazilian electrical system

Many typical infeasibilities are a result of additional constraints that were not captured
in the toy model (2.1) above. In order to deal with more realistic examples we needed to
add more detail to the model such as:
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commitment u∗. There are two reasons for this: (i) we want to maintain the operator’s
decision about the plants in operation at each time step, since it involves operational
costs; (ii) we have a limited time budget to take a decision about infeasibilities. In the
last case, fixing u = u∗ leads to solve pure continuous linear programs instead of MIPs.

To simplify the exposition, we see (2.1) as a general LP model with only inequality
constraints, and fixing binary variables u at u∗:

min
p

cTp

s.t. Ap ≤ b.
(4.1)

Suppose that this problem is infeasible. We then add slack variables and penalize them,
resulting in the problem

min
p,s

cTp+M1
Ts

s.t. Ap− s ≤ b

s ≥ 0,

(4.2)

where M > 0 is the parameter of penalization and 1 is the vector of 1’s. Evidently, there
are other ways to penalize slacks; however, as the real instances have a huge size, the sum
of slacks is reasonable since it results in a linear model that can be handled efficiently by
standard solvers. Also, we assume that the penalization M is the same for all slacks. To
simplify, we suppose that fixing u leads to a feasible problem (4.2). Notice that
we consider being possible to eliminate all infeasibilities in a manner that is reasonable
in the real world, i.e, achieving feasibility with relatively small changes in b. This is an
important issue, but for simplicity we do assume such a compatibility (otherwise, we
probably should select some ui’s to be relaxed).

We want to choose what constraints ai
Tp − si ≤ bi have the major impact on the

reduction of global infeasibility, measured by the penalization term M1
Ts, when we

change bi.

5 Proposed strategy

We present a heuristic approach to reduce violated constraints that makes a system-
atic prioritization of constraints that are to be relaxed when infeasibility is detected by
DESSEM. Alternative methodologies, that were considered but not implemented, are
described in the Appendix A.

A natural approach to choose which constraints of (4.2) should be adjusted is to select
first those with the largest associated Lagrange multipliers. Unfortunately, we show next
that the Lagrange multipliers from a solution of (4.2) can not be of any help.

The optimality (KKT) conditions of (4.2) are

c+ATy = 0, (5.1a)

M1− y − z = 0, (5.1b)

Ap− s ≤ b, (5.1c)

s ≥ 0, y ≥ 0, z ≥ 0, (5.1d)

yT (Ap− s− b) = 0 (5.1e)
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zisi = 0, ∀i, (5.1f)

where y and z are the Lagrange multipliers vectors associated with constraints Ap−s−

b ≤ 0 and −s ≤ 0, respectively. Multiplying the i-th row in (5.1b) by si and using (5.1f),
we obtain, for each i,

siyi = Msi.

Thus, all multipliers yi associated with constraints ai
Tp − si ≤ bi equals to M if the

correspondent constraint is violated (si > 0). So, Lagrange multipliers do not reveal what
constraints we have to adjust. It is worth be mentioned that if we use a different penal-
ization parameter Mi for each slack variable, the associated yi equals to Mi whenever
si > 0. Again, Lagrange multipliers can not be used in this case either because they do
not carry relevant information; they only follow the pre-defined empirically chosen Mi’s.

One conclusion of the above discussion is that the choice of the violated constraint(s)
that should be adjusted are driven by Mi and s themselves. One possible strategy is
to choose the constraints with largest slacks. Another more sophisticated approach is to
choose a violated constraint that leads the maximal improvement on a criteria function
after re-optimizing (4.2) (or some other related problem). We address these two ideas.
In any case, changing the right-hand side of constraints in (4.2) may induce a solution
p very distant from the original p∗. We then must take into account this deterioration
when adjusting violated constraints.

In general, we can formulate the algorithmic framework as Algorithm 1.
In the implementation we make use of a penalization Mi for each slack si. This can

represent a specialist decision to order the constraints by its importance for the real world
problem. Also, Mi may encompass a scale factor in the following sense: if the constraint
ai

Tx ≤ bi has a large data (for example, |bi| ≫ 1), we can scale its slack aiming to reduce
the impact of a small relative change on bi by using M̃i = Mi/max{1, |bi|}.

6 Preliminary numerical tests

We tested the heuristic to reduce the number of violated constraints described in Algo-
rithm 1 using an alternative implementation of the unit commitment problem developed
by Kenny Vinente. The main advantage, with respect to using directly DESSEM, is that
it allow us to capture and manipulate the final MIP model, as required in the algorithm.

In our tests we used the Null displacement function F described in (F1), based on
the production cost. As for the expected reduction we opted for the (V2) alternative. It
selects at each step the slack that can be eliminated and results in minimal deterioration
of the production cost.

We started from the base instance described in Figure 1 and added extra constraints
to make it infeasible:

• The thermal-power units were turned off for t ≥ 12;
• Limited spillage for the hydro-power units;
• A subset of the power lines have limit flux capacity.

This case resulted in 19 positive slacks, that correspond to infeasibility. The heuristics
of Algorithm 1 was able to eliminate 7 of those slacks with a minimal impact on the
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Algorithm 1 Heuristics framework

Required: The initial (p∗,u∗) solution of the (infeasible) problem (2.1), the vector of
slacks s∗, the displacement function F (p) and its target value F , and reduction on the
global infeasibility V (s). Define the set of indexes of violated constraints as S = {i | s∗i >

0}.

Parameter: kmax > 0.

Initialization: Fix u = u∗, initialize k ← 0, s0 = s∗, the working set S ← ∅ and the
set of acceptable solutions B ← ∅. Define the problem

min
p,s

F (p) +
∑

i

Misi s.t. Ap− s ≤ b, s ≥ 0, si = 0, i ∈ S (P)

(si = 0 means that si can be eliminated from the model).

(1) If k > kmax or S = S, go to Step 7.

(2) Compute the expected reduction Vi on infeasibility for each slack ski > 0, i ∈ S\S.
If all Vi’s are equal to −∞, go to the Step 7.

(3) Add to S the index associated with the largest Vi’s computed in the previous step
(ties are broken randomly). Update model (P).

(4) Solve (P) if it has not yet been solved. If (P) is feasible, take its solution (pk, sk)

and continue. Otherwise, go to Step 7.

(5) If F (pk) ≤ F , update B ← B ∪ {(pk, sk)}.

(6) Take k ← k + 1 and go to Step 1.

(7) If B 6= ∅, stop and return the best candidate found, that is, the one with the
smallest number of slacks. In this case, adjust the right-hand side b accordingly.
Otherwise, stop declaring failure.

overall cost of problem (4.2) of only 0.03% that comes only from increasing the violation
of the remaining infeasibilities, increasing the respective slack values. The production
cost remained the same, while the slack component of the objective increase by only
5.40%.

Another test case was obtained allowing slacks only on the constraints associated to
transmission lines. In this case, the final number of infeasibilities increased to 22. The
heuristics succeeded on identifying 6 slacks that could be eliminated. Once more this was
achieved keeping the production cost intact and increasing the slack component by only
6.21%. This results in an overall increase of 0.03% of the original cost of problem (4.2).

Conclusions

To conclude, it is worth mentioning a few remarks that can be useful when implementing
the proposal in the real time process.

Depending on the specialist experience, it may be mandatory to maintain the feasibility
of the constraints that were already feasible in the “MIP phase”. In this case, slacks should
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not be added to these constraints. Otherwise, a previously feasible constraint may become
infeasible after solving the penalized problem.

Regarding the parameter kmax in Algorithm 1, we observe that

• Its choice should consider the total computational time budget available.
• Whenever the model (P) is modified, we do not need to re-optimize it from the scratch.

This must be reflected in the implementation. Once such a strategy is adopted, we
expect the computational time to be reduced, and consequently, kmax may be increased.

In Algorithm 1, we have to specify the displacement function F and how the expected
reductions Vi are computed. For F , we list some possible choices:

(F1) F based on the cost of production. We measure the displacement of p in
relation to p∗ indirectly by the original function of the problem (2.1), that is, F (p)

is exactly the objective function F1(p) of (2.1) with u = u∗. In this case the target
value can be F = τF1(p

∗) where τ > 1 is a parameter. This approach aims to
maintain the total energy production cost unaltered as much as possible;

(F2) F based on the plan of production. Here, we want to minimize the displace-
ment of p directly. To maintain the resulting model linear we choose

F (p) = F2(p) =
∑

i

|pi − p∗i | =
∑

i

pdi

by means of additional continuous variables pdi and constraints pdi ≥ pi − p∗i ,
pdi ≥ −pi + p∗i , pdi ≥ 0 for all i. Here, F represents a tolerance in the distance
between p and p∗;

(F3) Null F . The simplest choice is F ≡ 0. Here, we take into account only the infea-
sibilities. In this case, the inequality in Step 5 can be ignored.

For Vi, we list two possible options:

(V1) Simply take Vi = Misi for all i. This strategy aims to eliminate the most vio-
lated constraints that produces a “ local ” reduction on the infeasibilities, although
apparently there is no theory ensuring a global reduction on the weighted sum of
slacks;

(V2) For each i ∈ S\S, we try to solve (P) with si = 0. If the resulting model is feasible,
let us say with solution (p, s), we take Vi = 1/F (p). Otherwise, we define Vi = −∞.
This greedy strategy has a more comprehensive view of the effect on the reduction
of the infeasibilities. We can expect that each Vi is computed with few iterations
of dual simplex. Thus, we believe that computational cost is reasonable even for
real instances.

Finally, another possibility for identifying sets of violated constraints is to use the “con-
flict refiner” strategy implemented in the IBM© Cplex©package. Cplex is the package
currently used in DESSEM software to solve MIPs/LPs. This strategy aims to identify
a small set of mutually contradictory constraints. See https://www.ibm.com/support/

knowledgecenter/SSSA5P_latest/ilog.odms.cplex.help/CPLEX/UsrMan/topics/infeas

_unbd/conflict_refiner/01_ref_confl_title_synopsis.html for details.
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Appendix A Other possible approaches

For completeness, we list some alternative methodologies that were discussed during the
workshop, but not implemented.

A.1 Minimizing infeasibility using goal programming

Consider the problem (4.1), and suppose that this problem is infeasible. The problem of
infeasibility resolution can be formally modeled via multi-objective programming:

min {si, i = 1, 2, ...,m}

s.t. Ap− s ≤ b ,
(A 1)

where m is the number of slacks variable. One widely used method to find the efficient
solutions of multi-objective optimization problem is the weighted sum method that com-
bines all the functions into one scalar. The weighted goal program variant allows for
direct trade-offs between all unwanted slack variables by placing them in a weighted,
normalized single achievement function:

min
s≥0

∑

i
wisi
ki

s.t. Ap− s ≤ b
(A 2)

where
∑

i wi = 1, wi ≥ 0 and ki is the normalization constant associated with the i-th
goal. These constants are necessary in order to scale all the goals onto the same units of
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measurement. One possible choice to consider to ki is known as percentage normalization,
where each deviation is turned into a percentage value away from its target level, in this
case it is considered ki = bi.

Based on the empirical experience, experts may be able to establish that with high
probability, feasibility is achieved with no more than 5% of deterioration of the dis-
placement measure F (p). Thus, it is reasonable to expect that the goal programming
technique obtains an acceptable feasible p inserting the constraint F (p) ≤ (1 + τ)F (p∗)

on the goal problem. That is, we focus exclusively on the feasibility maintaining the max-
imum deterioration as a hard constraint. In this case, F must be easy (perhaps linear)
to be handled by solvers. So, option (F1) is indicated for this strategy.

A.2 Using Irreducibly Inconsistent Sets (IIS) and “conflict refiner”

algorithms

The identification of a minimal infeasible set of constraints is closely related to the
problem of eliminating infeasibilities. Actually, one can argue that the heuristics described
in Algorithm 1 is clearly inspired by the techniques described in this section.

There is an extensive literature in finding a Irreducibly Inconsistent System(IIS) [3, 4,
6]. It is a minimal constraint set that make the problem infeasible. This is set typically
not unique [8].

In [3], the authors propose some algorithms to find at least one IIS in a linear opti-
mization problem. The first idea is a brute force method that consists on eliminating
one constraint at a time and resolving the model. If the relaxed model is feasible, then
the constraint make it infeasible and must belong to an IIS. This idea is called Deletion

Filter. However, there is no guarantee that there is a single constraint that once removed
will make the model feasible and subsets of the constraints might need to be considered
making the method too expensive. When the problems have too many constraints, the
authors propose to look for an Irreducibly Inconsistent Set of Functional Constraints

that consist only on (functional) equalities constraints and ignore bounds. This can be
achieved using classical linear algebra techniques [8].

Another approach, from the same authors, is called Elastic Filter. It adds slack vari-
ables to all constrains, like done for problem (4.2), and solving the relaxed problem trying
to minimize the slacks. The constraints associated to positive slacks are saved in the out-
put set and removed from the model that is solved again in an iterative process until it
becomes feasible. This idea has the advantage of solving fewer problems as they try to
add a set of constraints to the IIS at each step.

The Additive Method [6] adds one constraint at a time and solves the resulting system
looking for infeasibility. The first constraint that induces an infeasible problem must
belong to an IIS, probably together with other constraints that were inserted before.
The method adds the constraints that it knows that belong to an IIS at the first steps
and trying to identify new IIS constraints. It keeps up with this process until it detects
infeasibility only with the constraints that were proved to belong to an IIS.

Such methods were extended to MIP in [4]. Moreover, there are different approaches
based on Model Predictive Control. The paper [7] uses ideas from Optimal Weight Design.
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This last work can use weights to pinpoint constraints that are more relevant than others.
A good general reference for infeasibility detection is [2].


