
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Sadeeq Olalekan Bello

Cognitive Architecture-Driven Ensemble Learning for
Real-Time Churn Prediction

Aprendizado Ensemble Baseado em Arquitetura Cognitiva para
Previsão de Rotatividade em Tempo Real

CAMPINAS
2024

Sadeeq Olalekan Bello

Cognitive Architecture-Driven Ensemble Learning for Real-Time
Churn Prediction

Aprendizado Ensemble Baseado em Arquitetura Cognitiva para
Previsão de Rotatividade em Tempo Real

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Marcelo da Silva Reis
Co-supervisor/Coorientador: Prof. Dr. Julio Cesar dos Reis

Este exemplar corresponde à versão final da
Dissertação defendida por Sadeeq Olalekan
Bello e orientada pelo Prof. Dr. Marcelo da
Silva Reis.

CAMPINAS
2024

Ficha catalográfica
Universidade Estadual de Campinas (UNICAMP)

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Bello, Sadeeq Olalekan, 1991-
 B417c Cognitive architecture-driven ensemble learning for real-time churn

prediction / Sadeeq Olalekan Bello. – Campinas, SP : [s.n.], 2024.

 Orientador(es): Marcelo da Silva Reis.

Coorientador(es): Julio Cesar dos Reis.

 Dissertação (mestrado) – Universidade Estadual de Campinas
(UNICAMP), Instituto de Computação.

1. Arquitetura cognitiva. 2. Aprendizado de máquina. 3. Predição de
comportamento de cliente. I. Marcelo da Silva Reis, 1979-. II. Julio Cesar dos
Reis, 1987-. III. Universidade Estadual de Campinas (UNICAMP). Instituto
de Computação. IV. Título.

Informações complementares

Título em outro idioma: Aprendizado ensemble baseado em arquitetura cognitiva para
previsao de rotatividade em tempo real
Palavras-chave em inglês:
Cognitive architecture
Machine learning
Customer behavior prediction
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Marcelo da Silva Reis [Orientador]
Ricardo Ribeiro Gudwin
Fabricio Martins Lopes
Data de defesa: 19-12-2024
Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0009-0004-4743-9368
- Currículo Lattes do autor: http://lattes.cnpq.br/1115543769135241

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Sadeeq Olalekan Bello

Cognitive Architecture-Driven Ensemble Learning for Real-Time
Churn Prediction

Aprendizado Ensemble Baseado em Arquitetura Cognitiva para
Previsão de Rotatividade em Tempo Real

Banca Examinadora:

• Prof. Dr. Marcelo da Silva Reis
Instituto de Computação/UNICAMP

• Prof. Dr. Ricardo Ribeiro Gudwin
Faculdade de Engenharia Elétrica e de Computação/UNICAMP

• Prof. Dr. Fabrício Martins Lopes
Universidade Tecnológica Federal do Paraná

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 19 de dezembro de 2024

Vita brevis,
ars longa,
occasio praeceps,
experimentum periculosum,
iudicium difficile.

(Hippocrates)

Acknowledgements

The act of gratitude is one of the highest virtues, and I humbly take this opportunity to
express my deepest thanks to all who have contributed to the successful completion of my
dissertation. This work is not the result of my efforts alone but of the unwavering sup-
port, encouragement, and guidance I received from numerous individuals and organization
throughout this academic journey.

First and foremost, I am profoundly grateful to Almighty Allah, the beneficent and
most merciful, for His infinite blessings, guidance, and sustenance. It is through His
mercy that I have been able to navigate the challenges of this journey with strength,
perseverance, and clarity of purpose.

I owe immense gratitude to my advisor, Professor Marcelo da Silva Reis, for his un-
wavering guidance, expertise, and encouragement. His insightful feedback and tireless
commitment have been instrumental in shaping the direction and quality of this research.
I am equally indebted to my co-advisor, Professor Julio Cesar dos Reis, whose thoughtful
advice and intellectual contributions have enriched this dissertation. Their mentorship
has left an indelible mark on my academic and professional growth.

This research would not have been possible without the support of the Ministry of
Science, Technology and Innovation, with resources from Law No. 8,248, of October 23,
1991, within the scope of PPI-SOFTEX, coordinated by Softex and published in Cognitive
Architecture (Phase 3), DOU 01245.003479/2024-10.

To my siblings Taofeeq Bello, Ahmed Bello, and Sheriff Bello your steadfast support,
encouragement, and belief in my abilities have been a constant source of inspiration.
Thank you for always being there as pillars of strength and for understanding the de-
mands of this journey. To my beloved fiancée, Abdulah Zulayah, words cannot fully
capture the depth of my gratitude for your unwavering patience, love, and encourage-
ment. Your support has been the foundation upon which I stood, especially during the
most challenging moments.

I also extend my heartfelt appreciation to my friends and colleagues Fillipe San-
tos, Adebowale Tope, Akinmuda Olusegun, Moshood Kehinde, Seyed Haddadi, Patrick
Araujo, Gabriel Kakimoto, Yuji Sakabe, Gabriel Oliveira, Joao Victor, Arthur Hendricks,
Joao Cadenuto for their intellectual discussions, and words of encouragement that have
made this journey both rewarding and memorable. Your support, whether through pro-
fessional collaboration or personal motivation, has been invaluable.

To everyone whose paths I have crossed during this academic endeavor, your contribu-
tions, no matter how small they may seem, have left an imprint on my success. Whether
through kind words, shared experiences, or professional advice, I am forever grateful for
your presence in this chapter of my life.

Lastly, to those unmentioned but not forgotten, your support, prayers, and encour-
agement have meant the world to me. This work is as much yours as it is mine, and I
hope it stands as a testament to the collective effort that made it possible.

Resumo

A rotatividade de clientes continua sendo um problema urgente para empresas em serviços
baseados em assinatura, telecomunicações e mercados on-line, onde reter clientes é vital
para o sucesso a longo prazo. Prever a rotatividade, principalmente em tempo real, ap-
resenta desafios significativos devido à natureza dinâmica e complexa do comportamento
do cliente. Os modelos preditivos tradicionais geralmente dependem de dados estáticos
e regras fixas, o que limita sua capacidade de se adaptar aos padrões em constante mu-
dança das ações do consumidor. Essa limitação dificulta a identificação rápida e precisa
de clientes em risco. O principal desafio na previsão de rotatividade em tempo real está no
processamento de fluxos de dados contínuos e no ajuste dinâmico de modelos para levar em
conta as flutuações no comportamento do cliente, tudo isso mantendo alta precisão pred-
itiva. Esta dissertação de mestrado investiga e avalia um sistema de previsão adaptável
que pode processar efetivamente dados de clientes em tempo real e se ajustar dinamica-
mente às mudanças nos padrões de comportamento, mantendo alta precisão de previsão.
Esta pesquisa propõe e avalia uma arquitetura cognitiva que incorpora aprendizado de
conjunto dinâmico para previsão de rotatividade em tempo real. Nossa arquitetura, im-
plementada por meio do Cognitive Systems Toolkit (CST), combina vários modelos de
aprendizado de máquina cujas contribuições são ponderadas dinamicamente com base
no desempenho anterior. O sistema aproveita a modularidade e a adaptabilidade para
gerenciar grandes volumes de dados do cliente em tempo real, com codelets especializados
lidando com processamento de dados, treinamento de modelo e ajuste de peso de con-
junto. A avaliação conduzida implementa uma estrutura abrangente, testando o sistema
em conjuntos de dados balanceados e desbalanceados. Avaliamos seis modelos de apren-
dizado de máquina (KNN, Regressão Logística, Árvore de Decisão, Floresta Aleatória,
SVM e Naive Bayes) individualmente e em configurações de conjunto. A análise compara
abordagens de conjunto estáticas versus dinâmicas, emprega validação cruzada em várias
dobras de dados e valida os resultados por meio de testes estatísticos usando o teste de
classificação assinada de Wilcoxon. Nossas descobertas demonstram que a abordagem
de conjunto dinâmico da arquitetura cognitiva supera significativamente os modelos in-
dividuais e conjuntos estáticos, alcançando 95,92% de precisão em dados balanceados em
comparação com 82,93% em dados desbalanceados. A solução mostra força particular no
tratamento de padrões de dados dinâmicos, com significância estatística em melhorias de
precisão (p = 0, 0098) e recall (p = 0, 0020). A validação entre conjuntos de dados foi
conduzida em três conjuntos de dados de telecomunicações (IBM Telco, Churn-data-UCI
e Telco-Customer-Churn), confirmando a generalização e robustez da arquitetura dentro
do domínio das telecomunicações. Embora a avaliação tenha sido específica para conjun-
tos de dados de telecomunicações, o design modular da abordagem sugere aplicabilidade
potencial a outros setores, o que justifica uma investigação mais aprofundada. Nossas
descobertas destacam a eficácia da combinação de arquiteturas cognitivas com apren-
dizado de conjunto dinâmico para abordar as complexidades da previsão de rotatividade

de clientes em setores acelerados e orientados a dados.

Palavras-chave: Rotatividade de clientes; Arquitetura cognitiva; Aprendizado de
conjunto; Previsão em tempo real; Retenção de clientes; Kit de ferramentas do sistema
cognitivo

Abstract

Customer churn remains a pressing issue for businesses in subscription-based services,
telecommunications, and online marketplaces, where retaining customers is vital for long-
term success. Predicting churn, particularly in real-time, presents significant challenges
due to customer behavior’s dynamic and complex nature. Traditional predictive mod-
els often rely on static data and fixed rules, which limit their ability to adapt to the
ever-changing patterns of consumer actions. This limitation makes it difficult to identify
at-risk customers promptly and accurately. The core challenge in real-time churn pre-
diction lies in processing continuous data streams and dynamically adjusting models to
account for fluctuations in customer behavior, all while maintaining high predictive ac-
curacy. This M.Sc. dissertation investigates and evaluates an adaptive prediction system
that can effectively process real-time customer data and dynamically adjust to changing
behavior patterns while maintaining high prediction accuracy. This research proposes
and evaluates a cognitive architecture incorporating dynamic ensemble learning for real-
time churn prediction. Our architecture, implemented through the Cognitive Systems
Toolkit (CST), combines multiple machine learning models whose contributions are dy-
namically weighted based on previous performance. The system leverages modularity
and adaptability to manage large volumes of customer data in real-time, with specialized
codelets handling data processing, model training, and ensemble weight adjustment. The
conducted evaluation implements a comprehensive framework, testing the system across
both balanced and imbalanced datasets. We evaluate six machine learning models (KNN,
Logistic Regression, Decision Tree, Random Forest, SVM, and Naive Bayes) individually
and in ensemble configurations. The analysis compares static versus dynamic ensem-
ble approaches, employs cross-validation across multiple data folds, and validates results
through statistical testing using the Wilcoxon signed-rank test. Our findings demonstrate
that the cognitive architecture’s dynamic ensemble approach significantly outperforms in-
dividual models and static ensembles, achieving 95.92% accuracy on balanced data com-
pared to 82.93% on imbalanced data. The solution shows particular strength in handling
dynamic data patterns, with statistical significance in precision (p = 0.0098) and recall
(p = 0.0020) improvements. Cross-dataset validation was conducted on three telecommu-
nication datasets (IBM Telco, Churn-data-UCI, and Telco-Customer-Churn), confirming
the architecture’s generalizability and robustness within the telecommunication domain.
While the evaluation was specific to telecommunication datasets, the approach’s modular
design suggests potential applicability to other industries, which warrants further investi-
gation. Our findings highlight the effectiveness of combining cognitive architectures with
dynamic ensemble learning in addressing the complexities of customer churn prediction
in fast-paced, data-driven industries.

Keywords: Customer Churn; Cognitive Architecture; Ensemble Learning; Real-Time
Prediction; Customer Retention; Cognitive System Toolkit

List of Figures

2.1 Flowchart depicting our systematic review process following PRISMA guide-
lines. 25

2.2 The core of the CST architecture. Codelets (rectangular blocks) process in-
formation independently and interact with Memory Objects (yellow circles)
through input/output connections (LI, GI, and Out). The Raw Memory
stores Memory Objects which contain Information (I), Time Stamp (T),
and Evaluation (E) properties. Codelets are organized into Coalitions for
coordinated processing, managed by the Coderack scheduling system. . . . 33

3.1 The proposed cognitive architecture framework for real-time churn prediction. 41
3.2 Workflow of the proposed cognitive architecture methodology. 44

4.1 Systematic approach for assessing model and ensemble performance across
multiple datasets and scenarios. The framework implements incremental
data processing to evaluate both static performance metrics and dynamic
adaptation capabilities. 64

4.2 Model accuracy comparison between balanced and imbalanced datasets. . . 68
4.3 Model F1-Score comparison between balanced and imbalanced datasets. . . 69
4.4 Dynamic ensemble accuracy over time (balanced vs. imbalanced datasets). 70
4.5 Static ensemble accuracy over time (balanced vs. imbalanced datasets). . . 72
4.6 Model weights over time for the imbalanced dataset. 76
4.7 Model weights over time for the balanced dataset. 77
4.8 Accuracy across different folds, for the imbalanced (left) and balanced

(right) datasets. 78
4.9 Precision across different folds, for the imbalanced (left) and balanced

(right) datasets. 78
4.10 F1-Score across different folds, for the imbalanced (left) and balanced

(right) datasets. 79

List of Tables

2.1 Churn prediction studies reviewed in this dissertation. 29
2.2 Cognitive architecture studies reviewed in this dissertation. 31

3.1 Description of features in the Churn-in-Telecom Dataset. The features
represent various aspects of customer behavior and service usage patterns. 46

3.2 Dataset Characteristics Summary. The Class Distribution column shows
the number of churned customers versus non-churned customers (churn/not-
churn) for each dataset. 61

4.1 Performance metrics for imbalanced Churn-in-Telecom dataset, the evalu-
ation of individual models on the imbalanced version of the dataset. 66

4.2 Performance metrics for the balanced Churn-in-Telecom dataset, highlight-
ing the top two performing models across all evaluation metrics. 67

4.3 Performance metrics with various models removed from the ensemble. The
table highlights the significant drop in accuracy for both imbalanced and
balanced datasets when Decision Tree and Random Forest are removed. . . 74

4.4 Results of the performance measures using a significant threshold of 0.05. . 80
4.5 Results of the performance measures using a significant threshold of 0.05. . 81
4.6 Model performance comparison across different datasets (highlighted cells

indicate top two performing models by accuracy for each dataset). 83
4.7 Dynamic vs. static ensemble accuracy over time for IBM Telco dataset.

Values highlighted in green indicate where the dynamic ensemble achieved
higher accuracy compared to the static ensemble. 84

4.8 Dynamic vs. static ensemble accuracy over time for Churn-data-UCI dataset. 84
4.9 Accuracy comparison between the adaptive ensemble and the proposed

RTCP dynamic ensemble across different datasets. 85

Contents

Glossary 14

1 Introduction 15
1.1 Context and Motivation . 15
1.2 Importance of Real-Time Churn Prediction 17
1.3 Problem Characterization . 18
1.4 Objective and Justification . 19
1.5 Research Questions . 21
1.6 Significance of the Study . 21
1.7 Research Contributions . 22
1.8 Dissertation Organization . 23

2 Fundamental Concepts and Literature Review 24
2.1 Literature Review Process . 25
2.2 Customer Churn: Concepts and Importance 26
2.3 Traditional Churn Prediction Methods . 26
2.4 Real-Time Churn Prediction . 27
2.5 Cognitive Architectures: An Overview . 29
2.6 Ensemble Learning . 34
2.7 Findings and Identification of Research Gaps 37
2.8 Positioning and Discussion . 38
2.9 Final Remarks . 39

3 Methodology 41
3.1 Cognitive Architecture Implementation . 42
3.2 Workflow of the Proposed Methodology . 44
3.3 Data Processing and Analysis . 45

3.3.1 Dataset Structure and Features . 46
3.3.2 Data Preprocessing . 47
3.3.3 Model Evaluation Framework . 49
3.3.4 Evaluation Metrics . 49
3.3.5 Data Flow Management . 49

3.4 Implementation . 51
3.4.1 Memory Object Implementation . 51
3.4.2 Codelet System Implementation . 51
3.4.3 Integration and Execution Framework for Coordinating Ensemble

Learning Within the Cognitive Architecture 52
3.4.4 Execution Flow Implementation . 52

3.5 Dynamic Weight Management . 53

3.6 Experimental Setup . 56
3.7 Computational Environment . 58
3.8 Multi-Dataset Evaluation . 61
3.9 Comparative Framework . 61
3.10 Final Remarks . 62

4 Results and Discussion 64
4.1 Model Effectiveness . 65

4.1.1 Individual Model Performance . 65
4.1.2 Comparison of Models . 67

4.2 Ensemble Performance . 69
4.2.1 Dynamic Weight Application Over Time 74
4.2.2 Statistical Test Results . 79

4.3 Model Performance Across Datasets . 82
4.4 Comparison with Existing Adaptive Ensemble Methods 84
4.5 Final Remarks . 86

5 Conclusion 87
5.1 Answering Research Questions . 87
5.2 Key Findings . 88
5.3 Implications of Findings . 89
5.4 Broader Applications . 90
5.5 Limitations and Future Research Directions 90

5.5.1 Limitations . 90
5.5.2 Transitioning to a Fully Real-Time System 91
5.5.3 Expected Benefits . 92
5.5.4 Future Research Directions . 92

5.6 Final Thoughts . 93

Bibliography 94

14

Glossary

adaptability Adaptability is the capacity of the system to adjust dynamically to changes
in data patterns, operational requirements, or environmental conditions without
the need for manual intervention or frequent retraining. For the cognitive archi-
tecture framework, adaptability is achieved through mechanisms such as dynamic
weight management in ensemble learning, which allows the system to prioritize high-
performing models and respond in real time to shifts in customer behavior or data
distribution..

real-time Real-time refers to the system’s ability to process, analyze, and respond to
incoming data continuously and within a constrained timeframe, often as events
occur. In the context of churn prediction, real-time capability enables the system
to provide actionable predictions based on live or near-live customer data, allowing
for immediate interventions. Although the current implementation simulates real-
time functionality, it highlights the potential for handling continuous data streams
through dynamic model updates and incremental learning processes..

scalability Scalability refers to the ability of a system, process, or model to efficiently
handle increasing amounts of data, workload, or computational resources without
significant loss in performance or functionality. In the context of the proposed
framework, scalability is demonstrated by the cognitive architecture’s capacity to
integrate additional machine learning models, process larger datasets, or adapt to
increased data flow without requiring extensive redesigns or diminishing prediction..

15

Chapter 1

Introduction

1.1 Context and Motivation

Customer churn prediction is a vital aspect of customer relationship management, which
enables businesses to identify and retain at-risk customers. By leveraging advanced ma-
chine learning techniques and data analytics, companies can proactively address churn,
ultimately enhancing customer satisfaction and profitability [1]. As indicated by Aish-
warya et al. [2], companies may experience involuntary churn if their clients relocate to a
distant location, move to a long-term care facility, or pass away. Voluntary churn occurs
when a consumer migrates to another business or a service provider. In most applications,
analytical models omit the involuntary churn factors.

The current challenge in churn prediction is not simply about detecting patterns in
historical data, but about identifying them in real-time. As noted by Aishwarya et al. [2],
traditional machine learning models depend heavily on past customer interactions and
often overlook the dynamic nature of customer behavior. Moreover, the sheer volume of
data produced in today’s digital world compounds is difficult to predict, particularly when
models must adapt to rapidly shifting customer behaviors in real-time. The challenge is
magnified in telecommunications, for instance, where churn prediction is crucial because
of intense competition and the ease with which customers can switch providers.

The increasing complexity of churn prediction has prompted researchers to explore
more advanced machine learning methods, such as ensemble learning and deep learning,
which have been proven to enhance the prediction accuracy [2]. These methods allow
for the analysis of large volumes of data, including transaction history and customer
usage metrics, and offer significant improvements in prediction precision and efficiency.
However, the use of static datasets remains a limitation because customer behavior often
evolves in ways that static models cannot adequately address. For instance, Huang et
al. [3] highlighted how real-time churn prediction models are often undermined by the
inability to process and adapt to real-time shifts in customer behavior.

Real-time churn prediction introduces new possibilities for customer churn prediction,
enabling companies to address churn as it occurs [4]. This approach is essential for
industries such as telecommunications, online gaming, and e-commerce, where customers
expect rapid responses to their behavior. However, despite these advancements, real-time
churn prediction remains a significant challenge [5].

16

One of the most critical challenges is the processing and analysis of extensive, real-time
data. Real-time churn prediction models must efficiently process continuous data streams,
which requires substantial computational power [6]. Consequently, the models must bal-
ance the speed of data processing with the accuracy of predictions, treating real-time
data flux as folds for practical analysis and efficient handling. Real-time churn prediction
introduces complexities that traditional batch-processing models fail to manage, such as
rapidly shifting consumer preferences, external market pressures, and behavioral patterns
[7]. Arnab et al. [7] emphasized that real-time models must be dynamic and flexible to
handle unpredictable shifts in customer behavior.

In addition, models must be adaptable to new customer behavior patterns without
requiring frequent retraining. Aishwarya et al. [2] explained that many real-time models
struggle with the issue of data drift, where the underlying data distribution changes
over time, leading to inaccurate predictions if the models are not frequently updated.
The combination of data imbalance, where churn events are less frequent than non-churn
events, and the inability to dynamically adjust to new data further complicates real-time
churn predictions.

These challenges in real-time churn prediction require a solution that can handle con-
tinuous data processing while adapting to the evolving patterns. Cognitive architectures
address these challenges by processing and adjusting to dynamic data streams. As defined
by Christian et al. [8], a cognitive architecture is a computational framework that models
human cognition, providing systems that can efficiently process continuous data streams
and adapt their responses based on new information without complete system retraining.
These characteristics make cognitive architectures particularly suitable for real-time churn
prediction because they can handle the complex, multidimensional patterns that emerge
in customer behavior analysis while maintaining adaptability to new data patterns [8].

The increase in modern industrial technologies, including smart factories and large-
scale data analyses, has made accurate churn predictions more critical. These new meth-
ods provide more information about the use of products and services. As noted by Wol-
niak et al. [9], real-time analytics provides businesses with the means to promptly detect
churn trends and forecast which customers are likely to churn, thereby facilitating the
implementation of timely intervention plans.

Several studies have highlighted the effectiveness of real-time data analytics in im-
proving customer retention. Wolniak et al. [9] emphasized the relevance of real-time
data collection and analysis for identifying churn trends within Industry 4.0. This study
underscores the significance of adaptability in customer relationship management, as it
enables businesses to respond promptly to potential churn. Similarly, Gokulnath et al.
[10] employed Azure’s data analytics functionalities to showcase the capacity of real-time
data processing to manage substantial amounts of data, thereby facilitating timely and
well-informed decision making.

In summary, the rationale for Real-Time Churn Prediction (RTCP) is to address the
complexity of customer behavior. In the digital age, incorporating real-time analytics into
churn prediction models is a powerful method of enhancing customer retention.

Recent advancements in RTCP methodologies have introduced various machine learn-
ing approaches to address customer churn. Long Short-Term Memory (LSTM) networks

17

have shown promise for capturing temporal patterns in customer behavior [11]. In ad-
dition, deep-learning models and gradient-boosting algorithms have effectively processed
real-time customer data streams. These methods have improved the ability to detect early
warning signs of customer churn through the real-time analysis of customer interactions,
transaction patterns, and usage behaviors[10].

Despite these methodological advancements, significant obstacles remain in effectively
forecasting customer churns. The constantly shifting dynamics of customer actions and
complex characteristics of modern market environments pose challenges for industry prac-
titioners. These obstacles underscore the necessity of enhanced and adaptable approaches
to churn prediction. One significant challenge pertains to managing imbalanced data, in
which the number of churners is lower than that of non-churners, leading to potential
biases in prediction outcomes. Various approaches, such as cost-sensitive learning tech-
niques including focal loss and weighted loss, have demonstrated superior effectiveness to
conventional resampling methods in addressing this particular issue [12].

1.2 Importance of Real-Time Churn Prediction

The RTCP represents a significant shift in how businesses approach customer retention.
Unlike traditional models that react to churn after it occurs, RTCP allows companies to
detect potential churn in real time, enabling immediate interventions to prevent customer
loss and improve loyalty [12].

Hasan et al. [11] highlighted the effectiveness of using a Long Short-Term Memory
(LSTM) neural network in forecasting customer churn in real-time within commercial sec-
tors. Their findings demonstrated that these real-time models can provide more accurate
and prompt customer behavior analysis, enabling timely corrective actions.

Real-time prediction models can provide businesses with a means of maximizing re-
sources. According to Mallegowda et al. [13], parallel data-mining strategies expedite the
churn prediction process and enable near-real-time analysis. This capability is essential
for businesses that require swift responses to customer demand and market shifts.

In the e-commerce domain, Nalla et al. [14] highlighted the potential of real-time
predictive analytics to increase conversion rates and reduce churn by delivering person-
alized recommendations and prompt interventions. Similarly, Soni et al. [15] stress the
limitations of models that do not incorporate real-time data, thereby underscoring the
significance of real-time capabilities in bolstering customer retention efforts in the banking
sector.

The critical relevance of real-time churn prediction lies in its ability to transform
customer retention strategies from reactive to proactive ones. Real-time data digestion
and processing help businesses have a more transparent window into customer needs
as they emerge [15]. Companies can leverage real-time data processing to gain accurate
insights into customer preferences, thus enabling swift and effective responses. Integrating
real-time analytics into churn prediction models is not merely an enhancement, but an
essential requirement for businesses striving to succeed in highly competitive, data-driven
environments.

18

Given the significance of Real-Time Churn Prediction (RTCP) in today’s business
environment, this M.Sc. Dissertation introduces a novel approach that integrates cognitive
architectures modular systems inspired by human cognition into churn prediction models.
Cognitive architectures enable adaptive and dynamic processing, which is particularly
suited for handling the complexities of real-time data. By harnessing these capabilities,
our solution seeks to overcome the limitations of traditional methods while addressing
gaps observed in recent churn prediction strategies. This approach aims to provide more
accurate and actionable insights for enhancing customer retention strategies by building
on both established practices and emerging methodologies.

1.3 Problem Characterization

Despite significant advancements in churn prediction methods, accurately predicting when
customers might leave remains challenging. Traditional models, which often rely on static
historical data, struggle to capture the dynamic and fluid nature of customer interactions
in real-time. This limitation underscores the need for innovative approaches to process
and interpret continuous data streams, allowing for early detection of churn indicators
and timely interventions. Nguyen et al. [12] emphasized the relevance of incorporating
contemporary data into churn prediction models by investigating longitudinal and survival
data modeling. The authors argued that conventional prediction methods mainly use
static data and are inadequate for capturing dynamic customer behavior patterns over
time, shaped by various factors such as market trends, competitive moves, and individual
customer experiences.

A concrete example from the Security as a Service (SaaS) industry demonstrates the
practical advantages of real-time churn prediction over traditional methods. Chakraborty
et al. [7] implemented a real-time clickstream modeling framework for QuickBooks On-
line (QBO) that combines both current session data and historical user behavior to pre-
dict subscription cancellations. Their approach enabled CRM teams to design in-session
proactive interventions to retain users before they churn, demonstrating a clear advantage
over traditional models that only analyze historical data. This real-time approach allows
businesses to:

• Detect potential churn indicators during active user sessions;

• Combine both immediate and historical user behavior patterns for more accurate
predictions;

• Implement immediate intervention strategies.

Golkunath et al. [10] further emphasized the challenge of the vast amounts of data
generated in sectors such as telecommunications and e-commerce. Real-time data pro-
cessing is essential for managing this influx and for making prompt informed decisions.
However, the existing models cannot effectively handle these demands.

Given the obstacles to managing large quantities of data and the constraints of tra-
ditional forecasting approaches, real-time churn prediction is essential. Real-time models

19

process data quickly and continuously to analyze customer interactions, allowing for more
timely and context-aware predictions. This enables businesses to respond rapidly to re-
cent customer behavior as they progress, instead of relying solely on past data that may
no longer be relevant. The capacity to handle and evaluate data in real time presents a
promising solution to the complexities of consumer behavior [16].

1.4 Objective and Justification

This M.Sc. dissertation investigates and evaluates a cognitive architecture specifically
designed for real-time churn prediction, addressing the limitations identified in existing
approaches. Current methodologies often fail to adapt dynamically to real-time data
streams, lack modularity, or focus on domain-specific applications, such as telecommuni-
cations, without considering broader contexts. This work bridges these gaps by proposing
a solution that leverages cognitive architectures for adaptability and scalability across
different industries, with an initial focus on telecommunications. The primary objectives
of this study are threefold:

• Design a cognitive architecture that effectively processes real-time customer behav-
ior data;

• Implement dynamic ensemble learning within the cognitive framework to leverage
the strengths of multiple models while adapting to real-time data. This approach
aims to improve the flexibility and accuracy of churn prediction by dynamically
adjusting the model contributions based on their performance on recent data.

• Evaluate the system’s effectiveness in real-time churn prediction scenarios to assess
its potential to offer timely and accurate customer insights.

The justification for this research stems from the limitations identified in traditional
churn prediction models in managing real-time data streams. Traditional methods often
rely on batch processing, which significantly limits their ability to provide timely interven-
tions in dynamic environments [17, 18]. For instance, systems like RICON demonstrated
the potential of real-time prediction but faced computational scalability challenges when
handling large datasets [17]. Similarly, models like the two-dimensional segment analysis
proposed by Seo et al. [19] effectively reduced churn rates but required intensive data
processing, which hinders their real-time applicability.

Our research introduces a novel application of cognitive architectures in real-time churn
prediction (RTCP) using the Cognitive System Toolkit (CST) [20]. Cognitive architec-
tures, such as MECA and CogToM, have demonstrated their ability to handle dynamic
environments by integrating modularity and adaptive processes, as seen in applications
like urban traffic control and autism spectrum interaction modeling [21, 22]. However,
their integration with predictive analytics remains largely unexplored. This research gap
presents the following opportunities:

• Bridge the Divide Between Cognitive Computing and Predictive Analyt-
ics: Cognitive architectures like MECA and CogToM highlight the importance of

20

modularity and adaptability, which are essential for bridging cognitive computing
with predictive tasks. Recent works [23] underline how these architectures can en-
hance decision-making processes in dynamic contexts, presenting a clear pathway
for their application in churn prediction.

• Develop More Adaptive and Responsive Churn Prediction Systems: Adap-
tive ensemble frameworks, such as the work introduced by Shaikhsurab et al. [24],
achieved remarkable accuracy but exhibited computational constraints and lacked
generalizability across industries. Cognitive architectures provide an opportunity to
overcome these limitations by enabling adaptive responses to shifting data patterns
in real-time.

• Address the Real-Time Processing Challenges Identified in Current Meth-
ods: Systems like RICON and dynamic weighting approaches [17, 18] attempted to
address real-time processing challenges but often required significant computational
resources. Integrating ensemble learning within a cognitive architecture framework
could enhance computational efficiency and scalability.

The selection of cognitive architecture over traditional ensemble learning approaches
is motivated by several key factors:

• Dynamic Adaptability: Unlike static ensemble methods, cognitive architectures
can continuously adjust to changing data patterns through their memory object
system and codelet interactions.

• Modular Processing: The codelet-based architecture enables independent pro-
cessing units that can be activated or deactivated based on performance, providing
flexibility not available in traditional ensemble approaches.

• Real-time Processing Capability: The asynchronous nature of codelets and
memory objects facilitates real-time data processing and model adaptation, sur-
passing the batch-processing limitations of conventional ensemble methods.

Through this research, we aim to address these gaps by combining cognitive archi-
tectures with ensemble learning. This integration leverages the adaptability of cognitive
systems and the accuracy of ensemble methods, offering a robust and scalable solution
for real-time churn prediction. By contextualizing this approach within the existing lit-
erature, our study establishes its novelty and potential impact.

We aimed to enhance the accuracy and timeliness of churn predictions by integrating
ensemble learning with dynamic weighting within this cognitive framework. This approach
offers several advantages.

• Continuous learning and adjustment capabilities;

• Improved handling of dynamic customer behavior patterns;

• Enhanced prediction accuracy through ensemble methods;

• Real-time adaptation to changing data patterns;

21

1.5 Research Questions

This study assessed the effectiveness of integrating dynamic ensemble learning within a
cognitive architecture for real-time churn prediction. The following key research questions
(RQs) guided this investigation.

RQ-1 How does dynamic ensemble learning within the proposed cognitive architecture
improve prediction accuracy in real-time churn prediction?

RQ-2 How effectively does the proposed cognitive architecture adapt to real-time changes
in data patterns?

Having identified our primary research questions, we focus on the broader outcomes
and possible impacts of this study. By exploring these research questions, we aimed to
drive the field of RTCP using various approaches. Our discoveries possess the capacity
to increase our understanding of cognitive architecture frameworks in predictive analytics
and provide actionable insights for enterprises working to enhance their customer retention
strategies. The subsequent section outlines the key areas in which this study is expected
to contribute to the field of RTCP.

1.6 Significance of the Study

We believe that the results of this study are significant in the RTCP domain. A cognitive
architecture was developed to address the limitations of current prediction methods, and
this study’s importance lies in several areas.

The significance of this study lies in its potential to introduce a validated approach
for customer retention strategies through real-time churn predictions. By developing
a cognitive architecture that adapts dynamically to change in data pattern, this study
provides a flexible approach to churn prediction. To evaluate its robustness, the system
was tested on three diverse telecommunications datasets (IBM Telco, Churn-data-UCI,
and Telco-Customer-Churn), showcasing its adaptability across different contexts and
dynamic environments.

Key evaluation metrics, such as precision, recall, F1-score, were employed to quantify
"changing data pattern of customers." For example, precision and recall were used to
measure the system’s ability to correctly identify churners in different data folds while
adapting to changes in customer data patterns. These metrics underline the model’s
capacity to adjust dynamically, reflecting changes in customer behavior.

The modular architecture of our system facilitates the evaluation of the contributions
of the individual components to the overall prediction. By segregating functions, such
as data ingestion, model-specific predictions, and ensemble integration, we can system-
atically analyze the impact of each element on the final output. Furthermore, it allows
for more straightforward modification and better improvement of specific components
without affecting the entire system. This approach provides valuable insights into the
prediction process and facilitates ongoing refinement and adaptation of the system to
meet changing needs or incorporate new methodologies.

22

This study addresses the limitations of current prediction methods and offers broader
applicability. The proposed cognitive architecture framework can be adapted to vari-
ous domains that require dynamic real-time predictive systems, extending the potential
impact of this research beyond its initial focus on churn prediction.

1.7 Research Contributions

This study builds on existing work in supervised machine learning and churn prediction by
addressing the limitations of static ensemble methods through the integration of dynamic
ensemble learning within a cognitive architecture. The primary contributions of this
research are as follows:

1. Integration of Dynamic Ensemble Learning within a Modular Cognitive
Architecture:

• This study introduces a novel approach by integrating dynamic ensemble learn-
ing into a modular cognitive architecture tailored for real-time churn prediction.
While ensemble methods are widely used in machine learning, the proposed
framework employs dynamic weight adjustments that allow models to adapt
in real-time based on their performance. Unlike static weighting schemes com-
monly found in traditional methods, this dynamic mechanism ensures that the
ensemble remains responsive to evolving data patterns, thereby enhancing its
predictive accuracy and reliability in dynamic environments.

2. Explainability through Modular Design and Transparent Weight Man-
agement:

• The cognitive architecture is designed with modularity at its core, where each
machine-learning model operates as an independent component. This modular
structure not only facilitates scalability and flexibility but also enhances the
explainability of the system. By isolating the roles and contributions of in-
dividual models, users can clearly understand how each component influences
final predictions.

3. Scalability and Flexibility:

• By combining cognitive architecture with ensemble learning, this study presents
a scalable solution that can be extended to multiple domains beyond telecom-
munications. The modular design allows for the integration of additional ma-
chine learning models or datasets, ensuring broad applicability and ease of
customization.

4. Adaptation to Real-Time Data Streams:

• The proposed cognitive architecture leverages modularity to process real-time
customer data, enabling the system to adapt dynamically to changes in cus-
tomer data patterns in diferent folds of data. This contribution bridges the
gap between static data-driven models and the need for real-time adaptability.

23

1.8 Dissertation Organization

The remainder of this dissertation is organized as follows:

• Chapter 2 - Fundamental Concepts and Literature Review

– Covers the basics of customer churn prediction and its importance;

– Discusses real-time churn prediction (RTCP);

– Provides an overview of cognitive architectures;

– Reviews ensemble learning techniques;

– Presents systematic literature review methodology;

– Analyzes existing approaches and identifies research gaps;

– Positions current research within existing literature.

• Chapter 3 - Methodology

– Details the implementation of the cognitive architecture;

– Describes the workflow of the proposed methodology;

– Covers data processing and model evaluation frameworks;

– Discusses dynamic weight management and experimental setup.

• Chapter 4 - Results and Discussion

– Presents the effectiveness of the model and compares results;

– Analyzes ensemble performance and weight application over time;

– Reports statistical test results and addresses reproducibility;

– Answers the research questions and compares findings with existing adaptive
ensemble methods.

• Chapter 5 - Conclusion

– Summarizes key findings and discusses implications;

– Explores broader applications and limitations;

– Provides future research directions;

– Ends with final thoughts on the research.

24

Chapter 2

Fundamental Concepts and Literature
Review

This chapter provides an in-depth exploration of the key concepts essential for under-
standing this research. It addresses customer churn and its significance and then dis-
cusses traditional and real-time churn prediction methods. Subsequently, the chapter
delves into cognitive architectures and the Cognitive System Toolkit (CST) framework
(Subsection 2.5), which is crucial to the proposed approach. Finally, this chapter dis-
cusses ensemble learning and dynamic weighting, which are the integral components of
the cognitive architecture employed in this study.

Real-time churn prediction is becoming increasingly vital across multiple industries due
to the dynamic nature of customer behavior and the rapid pace of business operations [17].
Industries such as telecommunications, online gaming, and cloud-based services depend
heavily on their ability to anticipate and respond swiftly to customer activity. In these
sectors, where consumer preferences and behaviors shift frequently, conventional batch
processing methods have proven insufficient. Instead, real-time churn prediction enables
companies to act promptly, reducing the likelihood of customer loss and enhancing re-
tention strategies [25]. The growing demand for real-time analytics allows businesses to
deliver more timely interventions, optimize their service offerings, and better understand
evolving customer preferences [18].

This chapter is organized into ten main sections. Following this introduction, Sec-
tion 2.1 presents the literature review process and methodology. Section 2.2 explores
customer churn concepts and their business impact. Section 2.3 examines traditional
churn prediction methods, including classical machine learning and deep learning ap-
proaches. Section 2.4 investigates real-time churn prediction and its current challenges.
Section 2.5 provides an overview of cognitive architectures and their evolution, including
detailed examinations of ACT-R, Soar, ICARUS, and the Cognitive System Toolkit (CST)
in Section 2.5. Section 2.6 discusses ensemble learning methods and their applications,
including dynamic weighting approaches in Section 2.6. Section 2.7 identifies research
gaps in current literature. Section 2.8 positions this research within the existing body of
work, and Section 2.9 concludes with final remarks summarizing the chapter’s key points.

25

2.1 Literature Review Process

To ensure a comprehensive review, we followed the PRISMA guidelines, using a structured
approach to identify relevant literature. We employed Boolean expressions such as "real-
time churn prediction" AND "churn prediction" AND "machine learning" and "cognitive
architecture" AND "ensemble learning". The primary indexers used were ACM Digital
Library, IEEE Xplore, and Google Scholar, covering the period from 2015 to 2024. The
search yielded a total of 250 articles, of which 80 were selected for detailed analysis based
on their direct relevance to real-time prediction and cognitive architectures.

Figure 2.1: Flowchart depicting our systematic review process following PRISMA guide-
lines.

The selection process is depicted in a flow diagram (Figure 2.1), which clearly illus-
trates the systematic approach used to identify and select studies for this review. As a
result, a total of 12 papers were chosen for in-depth analysis and discussion.

26

2.2 Customer Churn: Concepts and Importance

Customer churn, a critical concept in customer relationship management, refers to the
process by which customers discontinue their relationship with a service provider. Lingling
et al. [26] defined this as the process of customers switching from one service provider
to another anonymously [27]. In the telecommunications and online service sectors,
churn often occurs when customers migrate from one provider to another, particularly in
saturated and highly competitive markets.

Impact of Churn on Businesses

The effect of customer churn on businesses, especially in service-oriented industries, is both
significant and complex. Studies have consistently shown that retaining existing customers
is significantly more cost-effective than acquiring new customers, with estimates ranging
from four to six times more expensive [26, 28]. In addition, long-term customers contribute
more to profitability and are less sensitive to competitive pressure, further emphasizing the
need for effective churn management, especially in highly competitive markets. In highly
competitive markets such as the Chinese mobile telecom sector, even a small improvement
in churn prediction and prevention can lead to substantial increases in profit [26]. Celik et
al. [29] also noted that the success of marketing strategies depends heavily on accurately
identifying potential churners in advance, which can result in significant profit growth for
companies.

Churn management’s importance extends beyond specific industries. For instance, in
the online gambling industry, customer retention is critical for a company’s long-term via-
bility [30]. This highlights the importance of churn prevention beyond specific industries,
and is a universal concern in business-to-consumer contexts. Furthermore, Mustafa et al.
[31] discussed several key factors influencing customer churn in the telecommunications
industry, primarily through an analysis of the Net Promoter Score (NPS) dataset. This
indicates that customers with low NPS are more likely to churn, suggesting that customer
satisfaction is a critical determinant of retention. Interestingly, some studies indicate that
traditional retention strategies such as attractive pricing plans can sometimes increase
rather than decrease churn [30]. This contradictory finding underscores the complexity
of the factors influencing customer churn, and the need for sophisticated prediction and
prevention strategies.

2.3 Traditional Churn Prediction Methods

Classical Machine Learning Approaches. The literature reveals a wide array of
machine learning approaches applied to the problem of churn prediction. These range
from traditional classification algorithms to more advanced ensemble and deep learning
methods.

Logistic Regression (LR) is cited as a common approach because of its interpretability
and relatively low computational requirements [32]. Support Vector Machines (SVM) are
also frequently used, likely because of their effectiveness in handling high-dimensional

27

data [29].
Decision Trees and their ensemble counterpart, Random Forests (RF), are highlighted

for their ability to handle non-linear relationships and high-dimensional feature space and
Random Forests, in particular, are praised for their low bias and low variance, making
them well-suited for the complex task of churn prediction [26].

More advanced techniques, such as Kernelized Extreme Learning Machine (KELM),
have been proposed to categorize customer churn patterns, particularly in the telecom
industry [28]. This approach combines the speed of extreme learning machines with the
power of the kernel methods.

Ensemble methods, including bagging, boosting, stacking, and voting, have shown
significant improvements in the prediction accuracy when applied to churn prediction
tasks [33]. These methods leverage the strength of multiple base learners to create more
robust and accurate predictions.

Deep Learning Approaches. Recently, deep learning methodologies have garnered
significant momentum within the realm of customer churn prediction. Convolutional Neu-
ral Networks (CNNs), typically associated with image-processing tasks, have been adapted
for churn prediction by transforming customer data into image-like representations [28].
This novel approach enables the leveraging of CNNs’ powerful feature extraction capabil-
ities of CNNs in the context of churn prediction.

Recurrent Neural Networks (RNNs), known for their proficiency with time-series data,
have displayed capabilities in tasks related to churn prediction. A diverse array of RNN
frameworks, including Long Short-Term Memory (LSTM) networks and Gated Recurrent
Units (GRU), have been employed in churn prediction endeavors, yielding a range of
success rates, as documented in the scholarly literature [30]. These specific architectures
are proficient in identifying and modeling the temporal dependencies inherent in customer
behavioral datasets.

Transformer-based architectures, which are then processed using a transformer model
for classification, transform the input features into radar-chart images. This unique trans-
formation of data aims to enhance the predictive accuracy, demonstrating its effectiveness
in the telecommunications sector [34].

Although these machine learning frameworks are vital for predicting churn, they of-
ten struggle in rapidly changing, real-time settings because they rely on static datasets.
This limitation highlights the need for more advanced methodologies capable of real-time
analysis and intervention, thereby establishing the stage for the integration of real-time
predictive models discussed in the following section.

2.4 Real-Time Churn Prediction

Real-time churn prediction (RTCP) is a critical area of study with practical applications
across various industries including telecommunications, digital gaming, social platforms,
and cloud service provision. Conventional methodologies for churn prediction frequently
depend on batch processing techniques, which affect their capacity to deliver prompt in-

28

tervention. Traditional churn prediction methods often rely on batch processing, which
limits their ability to deliver timely intervention [35]. For instance, RICON, a sophisti-
cated machine-learning system, was engineered to forecast customer churn probabilities in
real-time by utilizing clickstream data, enabling comprehensive retention initiatives with
timely product contextual assistance [17].

In the telecommunications sector, customer churn poses a significant challenge, leading
to the adoption of data mining methodologies to identify potential churners and imple-
ment proactive measures [36]. Nevertheless, numerous existing models encounter latency
issues and are unable to provide real-time insights, underscoring the need for real-time an-
alytics in the telecommunications industry to enhance customer satisfaction and retention
outcomes [35].

Real-time churn prediction is also essential in online gaming, as it helps operators
identify potential churners and implement strategies to maintain engagement. Predictive
features based on player in-game time have proven effective in this regard [17]. Similarly, in
social networks, predicting user behavior is crucial for applications ranging from marketing
to community management. A robust statistical model that uses graph attributes from a
user’s local community can accurately predict churn [6]. In cloud-based services, random
forest-based models have shown high accuracy in predicting churn and guiding providers
in recommending service adjustments to prevent customer loss [37].

In 2015, Castro et al. [38] examined feature representation methodologies for churn
prediction in online gaming, highlighting sophisticated data transformation techniques
but noting scalability limitations when applied to large datasets. The model struggled
with computational efficiency, a recurring challenge in the field.

In 2017, Bertens et al. [39] introduced a survival ensemble model for churn predic-
tion in mobile games, emphasizing robustness across different data distributions. While
their approach demonstrated high predictive accuracy, it was resource-intensive and faced
challenges in real-time adaptability. Similarly, Renjith et al. [40] developed a support vec-
tor machine-based model for e-commerce churn prediction, underscoring the importance
of personalized retention actions. However, the model’s dependency on static datasets
limited its adaptability to dynamic customer behavior.

Lalwani et al. [41] proposed a machine learning system for churn prediction in telecom-
munications. Their methodology incorporated feature selection using the Gravitational
Search Algorithm (GSA) and ensemble models like AdaBoost and XGBoost, achieving
an AUC score of 84%. This approach demonstrated the importance of feature selection
in improving prediction accuracy but was primarily designed for offline batch processing,
limiting its real-time application.

In 2020, Tamuka et al. [42] presented a dynamic framework for churn prediction in on-
line social platforms. By employing temporal graphs to model evolving user relationships,
their approach highlighted the importance of capturing dynamic interactions in improving
prediction performance. Random Forest achieved an F1 score of 87%, but computational
costs associated with temporal graph generation posed scalability challenges.

In 2021, Almeida et al. [43] introduced a machine learning framework for churn predic-
tion in cloud-based services. Their framework used SMOTE for addressing data imbalance
and Recursive Feature Elimination (RFE) for feature selection. Gradient Boosting Ma-

29

chines (GBM) emerged as the top performer with an F1 score of 89% and precision of
91%. A key contribution of their work was the implementation of a distributed comput-
ing framework using Apache Spark to enhance scalability and computational efficiency
for large-scale datasets.

In 2022, Arnab et al. [17] proposed RICON, a machine learning system for detecting
high-risk customers in real time using clickstream data. While RICON showcased strong
performance, its complex computational demands limited its scalability in larger datasets.

In 2023, Seo et al. [19] introduced a two-dimensional segment analysis model target-
ing high-risk churners. By combining segmentation with machine learning models such
as Gradient Boosting Machines (GBM) and Random Forests, their approach achieved
an AUC score of 91%. However, their segmentation-based method faced challenges in
scalability, particularly with large datasets.

Table 2.1: Churn prediction studies reviewed in this dissertation.

Year Author(s) Approach Key Findings Limitations
2015 Castro et al. [38] Feature represen-

tation
Effective for data
transformation

Limited scalabil-
ity

2017 Bertens et al. [39] Survival ensemble Robust across
distributions

High computa-
tional demand

2017 Renjith et al. [40] SVM-based Emphasized per-
sonalized actions

Static dataset de-
pendency

2022 Arnab et al. [17] RICON Strong perfor-
mance with
clickstream data

Scalability issues

2023 Seo et al. [19] 2D Segment
Analysis

Improved churn
rate reduction

Computational
efficiency limita-
tions

Despite these advancements, the implementation of real-time churn prediction remains
a challenge. A primary difficulty lies in the requirement for timely and reliable data
processing. Real-time systems must handle vast amounts of data rapidly, necessitating
substantial computational resources and sophisticated algorithms to process and analyze
data streams efficiently [44]. Furthermore, the dynamic nature of customer behavior
presents an additional challenge, demanding models that can adapt to emerging patterns
without significant delay [45].

2.5 Cognitive Architectures: An Overview

Cognitive architecture refers to a domain-generic computational model designed to sim-
ulate human cognition and behavior across various contexts and tasks [46, 47]. Unlike
traditional machine learning methods that focus on pattern recognition and predictive
tasks using statistical and computational techniques [47, 23], cognitive architectures aim
to emulate the underlying mechanisms of human cognition. These architectures go beyond
input-output mappings by modeling processes such as reasoning, learning, and memory

30

retrieval [46].
Popular cognitive architectures such as Adaptive Control of Thought-Rational (ACT-

R), Soar, and CLARION have been extensively applied to simulate a wide range of cog-
nitive tasks, demonstrating their versatility and depth [47]. For instance, while machine
learning models like neural networks excel in pattern recognition, cognitive architectures
incorporate explicit rules and symbolic reasoning to replicate human-like decision-making
processes [48].

Cognitive architectures have shown potential in managing complex, dynamic environ-
ments. In 2016, Paraense et al. [21]. Grassioto et al. [22] introduced a distributed cogni-
tive architecture for urban traffic control, demonstrating the value of Global Workspace
Theory for managing real-time data flow and decision-making. While the architecture was
specifically applied to traffic control scenarios, it showcased notable scalability and flexibil-
ity. However, concluding that CST has inherent scalability problems based solely on this
application is not justified. It is important to recognize that CST has been demonstrated
in other domains, including transportation robotics, highlighting its broader applicability.

In 2016, Paraense et al. [21] presented a highly scalable implementation of CST,
which demonstrated significant potential for applications beyond traffic control. The
study highlighted the system’s ability to adapt to various real-world scenarios, providing
a foundation for its use in diverse domains. Including [21] offers a broader view of CST’s
scalability and versatility, ensuring a balanced assessment of its potential.

In 2017, Gudwin et al. [49] presented the Multipurpose Enhanced Cognitive Architec-
ture (MECA), which combines elements of Dual Process Theory and Grounded Cognition.
MECA provided a versatile framework applicable to both traffic control and transporta-
tion robotics. However, its evaluation lacked comprehensiveness, particularly in exploring
its adaptability across diverse, real-world scenarios beyond these domains.

In 2022, Grassioto et al. [22] introduced CogToM, designed to mimic human cogni-
tion for autism spectrum interactions. Although effective in social interaction contexts,
CogToM faced challenges related to real-time adaptability and scalability, similar to other
cognitive architectures.

In 2016, Vallverdu et al. [23] merged the Lovheim Cube of Emotion with the Von
Neumann architecture to enhance emotional and computational integration in AI systems.
This work provided insights for human-like decision-making in AI, but issues related to
scalability and real-time implementation persisted.

The existing studies in cognitive architecture highlight their capability for dynamic
decision-making, making them a promising tool for real-time churn prediction. However,
the lack of research integrating cognitive architectures with ensemble learning in real-time
contexts represents a critical research gap.

31

Table 2.2: Cognitive architecture studies reviewed in this dissertation.

Year Author(s) Model Key Findings Limitations
2016 Paraense et al.

[21]
Distributed archi-
tecture

Improved
decision-making,
high scalability

Application bias
to traffic control

2016 Paraense et al.
[20]

Scalable CST im-
plementation

Adaptable to
diverse real-world
scenarios, scal-
able design

Lack of compre-
hensive evalua-
tion

2017 Gudwin et al. [49] MECA Versatile cogni-
tive modeling

Study focused on
specific use cases,
with potential for
exploration in ad-
ditional applica-
tion domains

2022 Grassioto et al.
[22]

CogToM Effective in social
interactions

Social interaction
scenarios focused

2016 Vallverdú et al.
[23]

Lovheim Cube +
Von Neumann

Enhanced emo-
tional integration

Scalability chal-
lenges

ACT-R (Adaptive Control of Thought-Rational)

ACT-R, developed by Anderson et al., has evolved through several iterations, with its
latest version, ACT-R 7.21.6, which focuses on modular organization. The architecture’s
modular approach, incorporating sensory, motor, intentional, and declarative modules,
reflects a commitment to domain-specific processing, aligning with theories of brain func-
tion specialization. A key strength of ACT-R lies in its integration of symbolic and
sub-symbolic processes. The use of base activation for declarative chunks and utility
calculations for production allows the model to simulate human memory retrieval and
decision-making processes with remarkable fidelity. However, this hybrid approach also
introduces complexity in parameter tuning, which potentially limits the generalisability
of the architecture across diverse cognitive tasks [50].

Soar

Soar, with its long developmental history, presented a unified theory of cognition based on
problem solving and learning. Its problem-space computational model provides a flexible
framework for representing and solving a wide range of cognitive tasks. The architecture’s
impasse mechanism for handling insufficient knowledge is noteworthy. This feature en-
ables dynamic problem-solving and learning, allowing Soar to adapt to novel situations.
However, reliance on impasse-driven learning may lead to brittleness in complex real-world
scenarios where clear impasses are not always identifiable [51].

32

ICARUS

ICARUS distinguishes itself from a clear separation of conceptual and procedural knowl-
edge. This distinction aligns with psychological theories of declarative and procedural
memory, potentially offering a more cognitively plausible model of knowledge representa-
tion. The hierarchical organization of concepts and skills in ICARUS provides a structured
approach to knowledge representation that facilitates reasoning at multiple levels of ab-
straction. This feature is particularly advantageous for modeling complex cognitive tasks
that require both high-level planning and low-level execution [52].

Cognitive System Toolkit (CST)

The Cognitive System Toolkit (CST), as defined by Paraense et al. [20] is a framework
designed to facilitate the development of cognitive systems that are capable of emulating
human-like cognitive functions. The CST provides a modular and flexible environment
that supports the creation of complex cognitive architectures by allowing the integration
of various cognitive models and components. One of CST’s primary goals is to enable
researchers and developers to construct cognitive systems that can perform a wide range
of tasks, from perception and reasoning to learning and decision-making [53].

CST modularity is the cornerstone, allowing for a fluid combination of distinct cogni-
tive models and elements. This modular framework is crucial for creating complex cog-
nitive systems because it enables the integration of diverse specialized components that
can collaborate to achieve a common objective. CST also emphasizes interoperability and
ensures effective communication and information-sharing between different modules [54].

Furthermore, CST supports various cognitive architectures and provides a blueprint
for the development of cognitive systems. This support allows researchers to experiment
with different approaches to cognitive system design, foster innovation, and explore new
ideas [53]. In summary, CST is a comprehensive platform that aids in constructing cog-
nitive systems and promoting innovation and experimentation in the field of cognitive
system development [54].

Key components in CST and their roles. The key components of CST include the
following as defined by Paraense et al. [20].

Codelet: Codelets are microagents that represent the fundamental processing units
within the Cognitive Systems Toolkit (CST) architecture. They perform specific tasks
independently and are designed to operate continuously and cyclically. In the figure, the
codelets are shown as rectangular blocks, illustrating how they interact with memory
objects and the coderack. Each codelet has input local input and global input (LI and
GI) connections that interact with memory objects, allowing it to access the required
information and store the new information generated during its execution. The proc()
label on the codelet represents its processing function that encapsulates the specific task
it performs within the architecture.

33

Figure 2.2: The core of the CST architecture. Codelets (rectangular blocks) process
information independently and interact with Memory Objects (yellow circles) through
input/output connections (LI, GI, and Out). The Raw Memory stores Memory Ob-
jects which contain Information (I), Time Stamp (T), and Evaluation (E) properties.
Codelets are organized into Coalitions for coordinated processing, managed by the Coder-
ack scheduling system.

Coderack: The coderack is a scheduling and coordination component that manages
the execution of codelets. It holds a "rack" of codelets, selecting and activating them
based on their importance, task order, and priority. The coderack groups codelets into
coalitions, in which several codelets collaborate to perform complex cognitive functions.
Coalition formation ensures that codelets work together in a coordinated manner, effec-
tively implementing the cognitive processes of the system.

Coalition: Coalitions are groups of codelets that work together to achieve specific cog-
nitive tasks. Within the CST core, coalitions are formed to enable more structured and
coordinated processing among codelets. A coalition structure is necessary because cer-
tain cognitive functions require interdependence among codelets, where outputs from one
codelet may serve as inputs for others.

Memory Object: Memory objects are the primary information holders in the CST
architecture, and are represented as circular yellow elements in the figure. They store
the information required by the codelets to perform their tasks and retain the results
produced by the codelets. Each memory object has three key properties:

• Information (I): Represents the main content of the memory object, which can
range from simple data to complex structures.

• Time Stamp (T): Indicates the last update time of the memory object, ensuring
that codelets operate on the most recent data.

• Evaluation (E): Serves as a meta-information marker that is used for various
purposes, such as assessing the relevance or accuracy of the stored information.

Raw Memory: Raw memory acts as a storage area for memory objects, maintaining
a pool of generic information that can be accessed and modified by the codelets. This
storage allows codelets to share information across different processing stages, thereby

34

supporting parallel and asynchronous operations in the CST core. The arrows between
the codelets and raw memory signify the flow of information, illustrating how codelets
retrieve and update data within memory objects to complete their cognitive function.

Compared to static environments like Python-based implementations, the cognitive
architecture approach offers several advantages:

• Dynamic Memory Management: Memory objects provide a structured ap-
proach to handling evolving data streams, unlike traditional static data structures.

• Adaptive Processing: Codelets can dynamically adjust their processing based on
real-time performance metrics, a feature not inherent in standard ensemble imple-
mentations.

• Parallel Processing: The coalition structure enables efficient parallel processing
of multiple models while maintaining coordination through the coderack system.

Summary: Figure 2.2 shows the core components of the CST architecture, emphasiz-
ing how codelets, coderacks, coalitions, and memory objects interact to form a parallel
asynchronous cognitive processing system.

2.6 Ensemble Learning

Ensemble learning is a machine learning strategy that integrates various models to im-
prove predictive success, stability, and generalization compared to standalone models.
This method employs multiple models to mitigate errors and increase accuracy [55]. As
highlighted by Kalita et al. [55], ensemble learning methods, including bagging, boosting,
and stacking, aim to reduce the limitations of singular models by merging their predic-
tions. For instance, bagging consists of training numerous models on distinct data subsets
and then averaging their outcomes, which contributes to decreasing the variance and re-
ducing overfitting. However, boosting focuses on sequential training models, in which
each new model attempts to correct the errors of its predecessor, thereby improving the
model’s bias and accuracy.

Stacking, another popular ensemble learning method, involves training multiple base
models (often diverse learners) and then combining their predictions using a meta-model.
The meta-model is trained on the outputs of the base models, effectively learning how to
best aggregate their predictions for improved accuracy. Stacking differs from bagging and
boosting by utilizing a hierarchical structure, where the meta-model is trained separately
to make decisions based on the collective outputs of the base models. This method has
been shown to work particularly well in heterogeneous ensembles by leveraging the unique
strengths of diverse models to enhance overall performance [55].

Sharma et al. [56] highlighted the application of ensemble learning in various domains,
emphasizing its effectiveness in complex problem-solving scenarios, noting that ensemble
methods are particularly beneficial for handling high-dimensional data and improving
the stability of predictions in dynamic environments. This adaptability makes ensemble

35

learning the preferred choice in fields such as finance, healthcare, and image processing,
where data complexity and variability are significant challenges.

Huang et al. [57] highlighted the essential theories behind ensemble learning, empha-
sizing that the success of these strategies is significantly reliant on the uniqueness and
independence of the contributing models. They argue that the more diverse the models,
the better the ensemble can capture different aspects of the data, leading to improved
performance. However, they also highlight that attaining the suitable balance between
diversity and accuracy is key, as an excess of diversity could lead to higher computational
expenses and complexities without substantial performance improvements. Gurram et
al. [58] explored the limitations and challenges associated with ensemble learning, such
as increased computational requirements and complexity of model selection and tuning.
They suggested that while ensemble methods can significantly enhance performance, they
require careful design and implementation to avoid pitfalls such as overfitting and model
redundancy. In summary, ensemble learning represents a strong strategy that boosts
model effectiveness through the integration of various models, utilizing their advantages
and addressing their limitations. Its effectiveness across various domains is well doc-
umented, although it requires careful consideration of model diversity, computational
costs, and implementation strategies to maximize its benefits [55, 56, 57, 58].

Ensemble learning methods can be effectively integrated into a cognitive architec-
ture framework to enhance the predictive accuracy and adaptability. By combining the
strengths of multiple models within the cognitive architecture, the system can leverage
diverse algorithms to address the prediction tasks. This integration allows the cognitive
architecture to adapt to varying data shifts and maintain robust performance in dynamic
environments, which is crucial for real-time churn prediction.

In 2024, Shaikhsurab et al. [24] introduced a novel adaptive ensemble framework
for customer churn prediction in telecommunications, achieving a 99.28% accuracy by
combining models like XGBoost, LightGBM, LSTM, MLP, and SVM through stacking.
It supports proactive retention strategies but has limitations, such as high computational
demands, potential performance variations on non-telecom datasets, and an emphasis on
accuracy over other crucial metrics like precision, recall, or F1-score.

In 2021, Wang et al. [18] proposed a novel VANet with cross-view label smoothing
regularization (CVLSR) and cross-view distance metric introduced to enhance vehicle
re-identification (Re-ID) performance across multiple viewpoints. It outperformed state-
of-the-art methods in feature extraction, achieving high rank-1 accuracy and mean av-
erage precision (mAP) on VeRi-776 and VehicleID datasets by capturing both low-level
and high-level semantics. However, potential limitations include the need for handling
diverse environmental conditions and reducing computational complexity for real-time
applications.

In 2017, Krawczyka et al. [25] provided a comprehensive survey of ensemble ap-
proaches for data stream analysis, addressing both classification and regression tasks.
The study introduced a taxonomy of ensemble algorithms for data stream mining and
explored concepts like imbalanced data streams and novelty detection, emphasizing the
need to consider context, such as seasonal effects in electricity data. However, it noted
the need for formal definitions of gradual drift and more research on handling incomplete

36

data in streaming contexts. The study also identified low diversity in ensemble methods,
suggesting further research is required to improve drift monitoring and handling.

In summary, ensemble learning is a significant approach for improving the predic-
tive analysis efficiency through a combination of multiple models. The synergy between
ensemble methods and cognitive architectures forms a core component of the proposed
framework for real-time churn prediction, providing a robust solution to the challenges
posed by dynamic data environments. Ensembles are often grouped into two types: het-
erogeneous and homogeneous. An ensemble is homogeneous if only a single type of learner
is used [59]. This study focuses on heterogeneous ensembles by combining different single
classifiers to construct an ensemble.

Heterogeneous Ensembles

The predictions produced by different classifier models employed in an ensemble must be
compiled into one ultimate result. Various techniques have been developed to accomplish
this. With voting, every classifier independently chooses a class for each instance, and
then a voting scheme is used to determine the class of each instance [60]. The ensemble has
three methods for assigning a class: (i) unanimous voting (when every classifier reaches
consensus), (ii) simple majority voting (when at least one supports it more than half), or
(iii) plurality voting or majority voting (MV) (when a class receives the greatest number
of votes) [61]. Majority voting in a classification task refers to the use of the mode as
a prediction of the ensemble. The main drawback of majority voting is the assumption
that classifiers are equally reliable.

When certain classifiers are believed to have a greater impact than others, employing
weighted majority voting (WV) may enhance performance, in contrast to standard ma-
jority voting. Here, the decisions of more qualified classifiers are assigned higher weights
that are proportional to the estimated future performance of the classifiers. This esti-
mation can be based on the classifier’s outcomes from a separate validation or training
dataset. The performance depends on the reliability of the estimated accuracies of the
classifiers [61]. The voting variants mentioned above are also known as hard voting. In
the case of soft voting (SV), the ultimate classification decision is derived from the av-
erage churn probabilities indicated by each classifier. Therefore, this method uses only
classifiers that can calculate the probability of churning [62].

Stacking ensemble learning, or stacked generalization, is a technique that combines
multiple classifiers. It was introduced by [63] and is very useful in the field of classification,
particularly when classifiers tend to be accurate only in specific areas of the dataset [64,
65]. Stacking consists of two phases. First, the base or single learners (Level 0) were
trained. The outputs of these models are collected in a new dataset, together with the
real value that it is supposed to predict. This new dataset is used as input for the
stacking model learner (level 1), also known as the meta-learner, which combines them
and provides the final output. the classification problem, which is also referred to as the
meta-classifier [61, 59]. Along with the selections that are necessary for algorithms and
parameters, numerous subtle modifications can be introduced to the ensemble. These
options result in a very versatile ensemble, but they make analyses and comparisons more

37

difficult because there is considerable variation in the application of the basic idea [66].

Dynamic Weighting in Ensemble Model

Dynamic weighting is an elaborate method in ensemble models designed to refine the
predictive accuracy of ensemble learning by adjusting the weights assigned to different
models based on their performance rates or additional criteria. This method differs from
static weighting because every model in the ensemble receives a constant weight, irrespec-
tive of its effectiveness. The work by [67] shows the integration of adaptive weighting in
climate modeling by employing ensemble frameworks to improve the accuracy of climate
forecasts.

This study underscores the necessity of dynamically modifying weights according to the
temporal and spatial effectiveness of individual models, potentially improving the accuracy
and dependability of climate forecasts. This technique facilitates collective adaptation to
changing situations and refines the ability to predict over time. Catto et al. [68] explored
dynamic weighting in the context of machine learning, particularly in reinforcement learn-
ing environments. They proposed a strategy that adjusts the weight of ensemble models
according to their recent results, which assists in addressing nonstationary environments
where the core data distribution can fluctuate over time.

This dynamic adjustment is crucial for maintaining the performance of the ensemble
and ensuring that it remains robust to changes in the data [68]. Zhang et al. [69] discussed
the application of dynamic weighting in financial forecasting models. They illustrated
that by adaptively modifying the weights of ensemble models according to their historical
performance, the ensemble can more effectively capture market dynamics and enhance
forecasting precision. This approach is particularly beneficial in financial markets where
conditions can change rapidly and unpredictably. Chen et al. [70] further supported the
use of dynamic weighting in ensemble models by showing its effectiveness in improving
model generalization and reducing overfitting.

As the methodology is outlined in detail, it is crucial to visualize the core structure
of the Cognitive Systems Toolkit (CST) architecture that we employ. Figure 2.2 shows a
schematic of this architecture. As shown in Figure 2.2, CST architecture is composed of
several interconnected components that process sensory data. The core components of the
CST architecture include codelets and memory objects. This architecture is constructed
to reflect human cognitive mechanisms, with all elements carrying out specific roles similar
to various cognitive operations in the human brain.

2.7 Findings and Identification of Research Gaps

Despite significant advancements in churn prediction models, several critical challenges
persist. Current real-time churn prediction models often face issues with computational
efficiency. Processing continuous, large-scale data streams in real-time demands substan-
tial computational resources, leading to delays that can hinder timely interventions [25].
temporal change presents another major obstacle. As models are required to adapt to
ever-increasing datasets, maintaining high accuracy while expanding their scope becomes

38

increasingly challenging. Additionally, adaptability remains a pressing concern. Many
existing models lack the flexibility to adjust to rapidly shifting customer behavior with-
out a significant drop in performance [18]. These challenges underscore the need for more
robust and scalable frameworks for real-time churn prediction.

Our literature review highlights several key insights across the domains of churn predic-
tion, cognitive architectures, and ensemble learning. Traditional churn prediction models,
though effective in static settings, often fail to meet the demands of real-time adapt-
ability [71]. These models typically rely on static datasets, which limits their ability to
react dynamically to customer behavior changes in real-time environments. Cognitive
architectures, in contrast, excel in handling complex, dynamic environments by simulat-
ing human-like decision-making processes. By leveraging stored experiences as instances,
these architectures enable decision-making that adapts to new patterns, mimicking the
cognitive flexibility of human behavior [72].

Furthermore, ensemble learning methods have been shown to outperform individual
models by combining their strengths. Extensive research has demonstrated that ensemble
techniques, such as bagging and boosting, effectively reduce variance and bias, leading
to more robust and accurate predictions compared to single models [73]. However, a
significant gap in the literature remains: the integration of cognitive architectures and
ensemble learning for real-time churn prediction is largely unexplored. While cognitive
architectures offer dynamic decision-making capabilities and ensemble learning improves
predictive accuracy, the synergy between these two approaches in a real-time context has
yet to be fully investigated. This gap represents a crucial opportunity to advance churn
prediction methodologies by combining the adaptability of cognitive systems with the
accuracy of ensemble learning.

2.8 Positioning and Discussion

The literature review has provided an overview of the current state of research in real-
time churn prediction and cognitive architectures. It has highlighted the strengths and
weaknesses of existing methodologies and the potential benefits of integrating cognitive
architectures into churn prediction models. The use of cognitive architectures in churn
prediction is a relatively unexplored area, offering significant innovation potential. With
their ability to mimic complex decision-making processes, cognitive architectures could
provide a more nuanced and accurate approach to predicting customer churn. How-
ever, implementing cognitive architectures in churn prediction models presents its own
challenges; these include the need for extensive data preprocessing, the complexity of
implementing self-learning models, and the difficulty of evaluating such models.

Cognitive architectures offer a potentially promising solution to these challenges, pro-
viding flexible and modular frameworks that adapt to changing data streams in real time.
However, integrating cognitive architectures with ensemble learning for churn prediction
remains an area that has yet to be fully explored, particularly in real-time contexts.

Our research aims to address these challenges by developing a churn prediction model
based on the Cognitive Systems Toolkit (CST). By leveraging the strengths of cognitive

39

architectures and addressing their limitations, our research seeks to advance the field of
churn prediction. We aim to demonstrate our model’s practical applicability and effec-
tiveness through real-world case studies, thereby contributing to the ongoing efforts to
improve customer retention strategies in different industries. Our research is positioned at
the intersection of churn prediction and cognitive architectures, offering a novel approach
to a complex and critical problem. Through our study, we aim to enhance the accuracy
of churn prediction models and contribute to the broader understanding of how cognitive
architectures can be applied to real-world problems.

This M.Sc. dissertation proposes an innovative theoretical framework integrating cog-
nitive architectures with ensemble learning for real-time churn prediction. This setup
leverages the modular traits of cognitive architecture to create a flexible real-time predic-
tion system. Within this cognitive structure, we propose implementing an ensemble of
machine learning models, each specialized for different aspects of churn prediction. The
cognitive architecture would serve as the comprehensive system, managing the flow of
information, and decision-making processes. The ensemble learning component would be
integrated within this structure, providing robust predictions based on multiple models.
This combination could potentially offer several advantages over the traditional ensemble
learning approaches.

• Real-time adaptability: The cognitive architecture’s ability to handle dynamic en-
vironments could enable the system to adapt to changing patterns in customer data
in real time;

• Improved accuracy: The ensemble learning component could provide more accurate
predictions by leveraging the strengths of multiple models;

• Explainability: The modular structure nature of cognitive architectures could offer
improved explainability of the prediction process;

• Scalability: The modular nature of both cognitive architectures and ensemble meth-
ods could allow for easy scalability and incorporation of new models or data sources.

2.9 Final Remarks

This chapter explored the key foundational concepts crucial to understanding the scope of
this study, including customer churn, traditional and real-time churn prediction methods,
cognitive architectures, and ensemble learning techniques and the works in the literature.
Each element forms the basis for developing an adaptive real-time customer churn pre-
diction model using cognitive architecture. While these foundational concepts lay the
groundwork, significant gaps exist in current research, particularly in the application of
cognitive architectures and ensemble methods to real-time churn prediction.

The related work analysis presented in this chapter has provided an overview of cur-
rent advancements in real-time churn prediction, cognitive architectures, and ensemble
learning. We discussed the critical role that churn prediction plays in industries where dy-
namic customer behavior necessitates real-time interventions. Despite the advancements

40

of traditional predictive methods, they often struggle with challenges such as real-time
adaptability, computational efficiency, and scalability.

The following chapter explores existing and related studies that address customer
churn prediction. It examines where current methods fall short, and identifies opportuni-
ties for the application of cognitive architectures in this domain. This review highlights
the rationale for our approach and positions this study within a broader context of the
field.

41

Chapter 3

Methodology

This chapter outlines the research methodology employed to achieve the study’s aims and
objectives. It details the study’s design, data collection and preprocessing processes, and
computational model implementation. The chosen methodology is driven by the need
for precision, replicability, and adaptability within the cognitive architecture framework,
ensuring robust and generalizable outcomes.

The research follows a quantitative approach, integrating machine learning models
within a cognitive architecture to develop a dynamic weighted ensemble of classifiers.
These classifiers adapt to data over time, enhancing their predictive accuracy. The meth-
ods employed include data collection from external sources, data preprocessing to prepare
the dataset for analysis, and the use of various computational models to evaluate perfor-
mance.

Figure 3.1: The proposed cognitive architecture framework for real-time churn prediction.

Figure 3.1 presents the cognitive architecture framework for real-time data processing
and analysis. The system architecture integrates memory objects for efficient data storage
with specialized codelets for processing tasks. This design facilitates continuous data
processing while enabling dynamic adjustment of model weights based on performance
metrics, ensuring adaptive response to changing patterns in customer behavior.

42

The methodology implements a systematic workflow comprising four interconnected
phases. The initial phase involves data ingestion and preprocessing through the Data
Reader Codelet, which prepares incoming data for analysis. The second phase encom-
passes model training and evaluation, where individual codelets process the prepared data
using specific machine-learning algorithms. The third phase involves dynamic weight ad-
justment, where the system evaluates and updates model weights based on continuous
performance assessment. The final phase consists of ensemble prediction aggregation,
where weighted predictions from all models are combined to generate the final output.

3.1 Cognitive Architecture Implementation

The cognitive architecture framework in this research is designed specifically for real-time
churn prediction and has been validated within the context of telecommunication datasets.
This approach enables adaptive learning through a modular and distributed architecture,
facilitating efficient data handling, real-time adaptability, and dynamic integration of in-
dividual model predictions. Figure 3.1 provides a comprehensive view of the architecture,
illustrating its modular components and their interactions.

Data Input and Preprocessing: The system begins by reading raw CSV data, in-
cluding training and testing datasets derived from the telecommunication industry. This
raw data undergoes ingestion and preprocessing to ensure consistency and reliability be-
fore entering the model pipeline, making the architecture applicable for real-time data
processing scenarios.

Memory Objects

Memory objects form the foundation of the system’s data management, providing a stan-
dardized structure accessible to all components in the cognitive architecture. They serve
three critical roles:

• Data Storage and Access: Memory objects manage the storage and retrieval of
input features and labels, ensuring that consistent and clean data is accessible to
all model codelets within the system.

• Model States and Predictions: They store the predictions and current states of
each model, enabling efficient monitoring and tracking of each component’s perfor-
mance.

• Dynamic Weight Storage: These memory objects maintain dynamically adjusted
weight values for the ensemble model, facilitating adaptive model combinations
based on real-time performance metrics.

Train and Test Data Memory Objects: The train and test data memory objects
store processed features and labels from the training and testing datasets. These mem-
ory objects ensure standardized data input across all models, enhancing consistency and
reliability within the framework.

43

Codelet Implementation

The architecture includes several specialized codelets, each responsible for different aspects
of the churn prediction process:

• Data Reader Codelet: This codelet is responsible for data ingestion and pre-
processing. It prepares raw data to ensure standardized input for model training
and testing. This preprocessing step ensures data consistency, improving model
accuracy and performance.

• Model Codelets: Six independent model codelets are implemented in this study,
specifically designed for this study to execute distinct machine learning algorithms.
These codelets were configured to leverage the following algorithms, ensuring mod-
ularity and flexibility:

– K-Nearest Neighbors: Utilizes instance-based learning.

– Logistic Regression: Manages probability-based classification.

– Decision Tree: Employs rule-based predictions to capture interpretable data
splits.

– Random Forest: Extends Decision Tree capabilities with an ensemble ap-
proach to improve robustness.

– Support Vector Machine: Uses margin-based classification for optimized
decision boundaries.

– Naive Bayes: Implements probability-based classification tasks, providing a
quick and effective prediction model.

Each model codelet independently processes data and outputs predictions stored
in shared memory objects for further evaluation and ensemble aggregation. This
independent processing allows each model to contribute unique insights based on its
algorithmic strengths.

• Evaluation Codelet: This codelet evaluates the predictions from each individual
model based on performance metrics, such as accuracy, precision, recall, and F1-
score. These evaluations inform the ensemble model’s weight adjustments, as the
performance of each model influences its contribution to the final prediction.

• Ensemble Memory: This memory object stores evaluation results from each
model, acting as a centralized data storage for dynamic weight adjustments. This
allows the ensemble model to access the latest performance evaluations and apply
real-time adjustments, improving adaptability.

• Dynamic/Static Ensemble Integration:

– Dynamic Ensemble: Adjusts model weights in real-time, based on the latest
performance evaluations, providing adaptive responses to evolving data pat-
terns.

44

– Static Ensemble: Uses fixed weights for model integration, serving as a sta-
ble baseline for comparison. By combining individual model outputs according
to their performance-based weights, the dynamic ensemble demonstrates a su-
perior capacity to respond to shifting data distributions compared to the static
approach.

• Weight Memory Object: This memory object maintains the dynamically ad-
justed weights for each model. By keeping track of recent performance, the archi-
tecture can dynamically allocate greater influence to models with higher predictive
accuracy, ensuring that the ensemble continuously optimizes its predictions.

Dynamic Weight Manager Codelet

The Dynamic Weight Manager Codelet plays a crucial role in the adaptive capa-
bilities of the cognitive architecture. It maintains a sliding window of recent instances
to monitor model performance, applying specific learning and forgetting rates to adjust
weights in response to changing data patterns. This codelet ensures that the system
remains sensitive to recent trends, making necessary weight adjustments that allow the
ensemble to adapt effectively over time.

3.2 Workflow of the Proposed Methodology

The research methodology follows a structured workflow, integrating the various com-
ponents of the cognitive architecture into a cohesive system for real-time churn predic-
tion. This workflow leverages cognitive architecture principles to enable dynamic ensem-
ble learning, ensuring adaptability and scalability in processing and decision-making. The
following workflow outlines the steps involved in data collection, preprocessing, model im-
plementation, and evaluation stages. Each step is interconnected to ensure the cognitive
architecture dynamically adapts to the data and produces accurate predictions.

Figure 3.2: Workflow of the proposed cognitive architecture methodology.

Figure 3.2 highlights the end-to-end process, starting from data collection through pre-
processing, model training, dynamic ensemble evaluation, and final comparative analysis.
The key phases are as follows:

45

• Data Collection: Gathering external data sources for customer churn prediction.

• Data Preprocessing: Preparing and transforming the raw data for the models,
including handling missing values, normalizing data, and encoding categorical vari-
ables.

• Feature Engineering and Data Imbalance Management: Creating relevant
features and addressing class imbalance issues (SMOTENN technique).

• Cognitive Architecture Framework + Machine Learning Models: Imple-
menting the cognitive architecture framework that includes six machine learning
models KNN, Logistic Regression, Decision Tree, Random Forest, SVM, and Naive
Bayes. A dynamic weight adjustment system, developed within this study, drives
the integration, enabling the framework to optimize predictions based on the per-
formance of individual models. This system ensures adaptability to evolving data
patterns, improving prediction reliability

• Dynamic Ensemble Model: Aggregating predictions from individual models and
continuously adjusting model weights dynamically based on recent performance met-
rics.

• Evaluation: Assessing model performance through accuracy, precision, recall, and
F1-Score metrics, comparing static and dynamic ensemble approaches.

• Statistical Analysis and Comparative Evaluation: Conducting statistical
analysis and comparing the dynamic ensemble with other approaches to assess the
cognitive architecture’s effectiveness.

This workflow emphasizes the proposed cognitive architecture’s adaptability and scal-
ability, ensuring that the system remains responsive to changing data conditions.

3.3 Data Processing and Analysis

This section presents the comprehensive data handling framework implemented in this
study, encompassing data collection, preprocessing, and exploratory analysis. The frame-
work ensures systematic data preparation and validation for the cognitive architecture’s
machine learning components.

Dataset Description and Collection

The main dataset utilized for this study is the Churn-in-Telecom Dataset, a well-
established benchmark specifically designed for customer churn prediction in the telecom-
munications industry [74]. This dataset was selected for three primary reasons:

1. Comprehensive Coverage of Customer Behavior Patterns: The dataset pro-
vides detailed insights into temporal factors such as account duration, interaction
metrics like customer service calls, and usage patterns including data consumption
and call volumes.

46

2. Established Use in Churn Prediction Research: Its frequent application in
related research ensures compatibility and comparability with existing works in the
field.

3. Relevance to Churn Prediction Studies: Although the dataset is static, its
diverse feature set and complexity enable robust evaluation of the proposed cognitive
architecture’s ability to adapt to simulated real-time prediction scenarios.

The dataset contains a total of 3,000 customer records, each described by 11
attributes. These attributes include customer-related features and service usage metrics,
making it suitable for analyzing diverse aspects of churn behavior. The problem addressed
is a binary classification task, with the following class distribution:

• Churn Customers (Label: 1): 400 instances

• Non-Churn Customers (Label: 0): 2,600 instances

This class distribution highlights an imbalance, which is typical in churn prediction
problems and adds complexity to the evaluation of machine learning models. By leveraging
this dataset, the study aims to test the efficiency of the proposed cognitive architecture in
accurately predicting churn while addressing class imbalance and adaptability to dynamic
prediction requirements in simulated environments.

3.3.1 Dataset Structure and Features

The Churn-in-Telecom Dataset structure reflects the complexity of customer behavior in
telecommunications services. Table 3.1 presents the primary features utilized in this study.
The target variable, Churn, indicates customer attrition through a binary classification
where 1 represents service cancellation and 0 represents retention. The remaining features
capture various dimensions of customer engagement and service utilization.

Index Feature Name Description

1 Churn (Target Label) 1 if customer cancelled service, 0 if not
2 Account Weeks Number of weeks customer has had active account
3 Contract Renewal 1 if customer recently renewed contract, 0 if not
4 Data Plan 1 if customer has data plan, 0 if not
5 Data Usage Gigabytes of monthly data usage
6 Cust Serv Calls Number of calls into customer service
7 Day Mins Average daytime minutes per month
8 Day Calls Average number of daytime calls
9 Monthly Charge Average monthly bill
10 Overage Fee Largest overage fee in the last 12 months
11 Roam Mins Average number of roaming minutes

Table 3.1: Description of features in the Churn-in-Telecom Dataset. The features repre-
sent various aspects of customer behavior and service usage patterns.

47

The features encompass three main categories. Service usage metrics include DayMins,
DayCalls, and DataUsage, providing quantitative measures of customer engagement. Cus-
tomer interaction indicators comprise CustServCalls and ContractRenewal, reflecting the
quality of customer relationships. Financial metrics such as MonthlyCharge and Over-
ageFee capture the economic aspects of customer behavior. This comprehensive feature
set enables detailed analysis of churn patterns while providing sufficient complexity to
evaluate the adaptive capabilities of the cognitive architecture.

3.3.2 Data Preprocessing

The preprocessing implements a systematic approach to prepare the dataset for the cogni-
tive architecture, ensuring data quality and consistency across all processing stages. This
framework addresses three critical aspects of data preparation: data cleaning, feature
scaling, and class balance adjustment.

Data Cleaning and Validation

The initial preprocessing phase focused on ensuring data integrity through systematic
cleaning procedures. Missing value analysis revealed minimal data gaps addressed through
statistical imputation methods appropriate to each feature’s distribution. Duplicate
record identification and removal prevented potential bias in model training. This clean-
ing process established a reliable foundation for subsequent analysis while maintaining
the dataset’s statistical properties.

Feature Scaling Implementation

Feature scaling formed a critical component of the preprocessing pipeline, particularly for
optimizing model performance. The implementation adopted standardization as the pri-
mary scaling method, transforming numerical features to a standard normal distribution
with zero mean and unit variance. This standardization approach notably enhanced the
performance of gradient-based algorithms within the cognitive architecture, including the
Logistic Regression and Support Vector Machine components.

The standardization process followed a protocol to prevent data leakage. Scaling pa-
rameters were computed from training data and applied to validation and test sets. This
approach maintained the integrity of the evaluation process by ensuring that test data
characteristics did not influence the scaling parameters. The standardization transforma-
tion is defined as:

z =
x− µ

σ
, (3.1)

where x represents the original feature value, µ is the mean, and σ is the standard deviation
of the training data for each feature.

Feature Engineering and Encoding

The feature engineering process implemented specific transformations for different dataset
types. Categorical features underwent binary encoding for two-level factors, converting

48

them to numerical representations suitable for model processing. The encoding scheme
mapped the churn status to binary values, with 0 representing Not-churn and 1 indicating
Churn. This systematic encoding approach ensured consistent interpretation across all
components of the cognitive architecture.

Class Imbalance Management

The dataset’s significant class imbalance necessitated a resampling approach. To ad-
dress this challenge, the implementation utilized SMOTENN (Synthetic Minority Over-
sampling Technique combined with Edited Nearest Neighbors). This technique combines
synthetic sample generation for the minority class with intelligent undersampling of the
majority class, producing a balanced dataset while maintaining the statistical significance
of the original data distribution.

SMOTENN: Addressing Class Imbalance

The SMOTENN (Synthetic Minority Oversampling Technique and Edited Nearest Neigh-
bors) method was chosen for this study due to its dual benefits of addressing class im-
balance and mitigating noise in the dataset. SMOTENN operates in two stages: first,
it synthesizes new samples for the minority class (churn customers) by interpolating be-
tween existing data points. This oversampling helps to balance the dataset by increasing
the representation of the minority class. Second, the Edited Nearest Neighbors (ENN)
algorithm is applied to the majority class to remove noisy or borderline examples, further
improving the dataset’s quality and representativeness.

The decision to use SMOTENN was motivated by its ability to balance datasets ef-
fectively while retaining critical decision boundaries between classes. Unlike basic over-
sampling or undersampling techniques, SMOTENN provides a nuanced approach by both
expanding the minority class and refining the majority class, making it particularly suit-
able for datasets with complex feature interactions like the Churn-in-Telecom Dataset.
The implementation of SMOTENN followed a careful validation process to ensure that
the synthetic samples and the cleaned majority class did not introduce bias.

Data Partitioning Strategy

The dataset was divided into training, validation, and test sets to ensure a robust evalu-
ation of the models:

• Training Set (70%): Used for training the individual machine learning models
within the cognitive architecture.

• Validation Set (15%): Used for hyperparameter tuning and model selection to
optimize model performance before final testing.

• Test Set (15%): Used to evaluate the generalization ability of the trained models
and the ensemble, providing an unbiased assessment of their predictive performance.

49

3.3.3 Model Evaluation Framework

The model evaluation framework implemented a comprehensive approach to assess the
cognitive architecture’s performance under various conditions. This framework incorpo-
rated both cross-validation during development and holdout validation for final perfor-
mance assessment.

Validation Strategy and Cross-Validation Implementation

The validation strategy combined a three-data partitioning approach with 5-fold cross-
validation to ensure reliable model evaluation and generalization. The dataset was divided
into a training set (70%), a validation set (15%), and a test set (15%). The training set
was used to develop the model and estimate parameters, such as weights and coefficients.
The validation set enabled the tuning of hyperparameters, including learning rates and
regularization strength, to improve model performance. Finally, the test set was reserved
for an unbiased evaluation of the model’s performance on unseen data, ensuring it could
generalize effectively.

In addition to this, 5-fold cross-validation was used during the training phase to further
assess model stability. This method divided the training data into five equal parts, or
folds. Each fold served as a validation set once, while the remaining folds formed the
training set. The results from all folds were averaged, providing a robust estimate of model
performance and reducing the impact of data variance. Unlike the dedicated validation
set, which was used for hyperparameter tuning, cross-validation focused on assessing
overall model stability and detecting issues like overfitting or underfitting.

By combining the partitioning strategy with cross-validation, the evaluation framework
ensured the model was both optimized and reliable for real-world applications.

3.3.4 Evaluation Metrics

The evaluation incorporated multiple metrics to provide a comprehensive assessment of
the cognitive architecture’s effectiveness. These metrics addressed various aspects of pre-
diction quality, including accuracy, precision, recall, and F1-score. The framework paid
particular attention to metrics relevant to imbalanced classification scenarios, ensuring
meaningful evaluation of the architecture’s performance in realistic churn prediction con-
texts.

3.3.5 Data Flow Management

The data flow design ensured proper isolation between the training, validation, and testing
phases. Feature scaling parameters derived solely from training data prevented informa-
tion leakage while maintaining consistent transformation across all dataset partitions.
This systematic approach to data management preserved the integrity of the evaluation
process while enabling reliable assessment of the cognitive architecture’s performance un-
der various operating conditions.

50

The preprocessing and evaluation frameworks established a robust foundation for as-
sessing the cognitive architecture’s effectiveness in real-time churn prediction. This com-
prehensive data preparation and validation approach ensured reliable evaluation of the
architecture’s performance while maintaining scientific rigor throughout the experimental
process.

The preprocessing pipeline is implemented within the Data Reader Codelet, which
reads the raw data from the external source, applies the necessary preprocessing steps,
and then stores the processed data in memory objects for further use by the model-specific
codelets. By ensuring that the data is clean, well-structured, balanced, and appropriately
scaled, the preprocessing step helps to enhance the accuracy, fairness, and reliability of
the machine learning models used within the cognitive architecture.

Model Configurations

Each of the six machine learning models implemented in the cognitive architecture was
configured to optimize performance on the selected dataset. The configurations included:

1. KNN (K-Nearest Neighbors):

• Hyperparameters: Hyperparameters: Number of neighbors (k), distance
metric (Euclidean).

2. Logistic Regression:

• Hyperparameters: Regularization strength (C), solver type.

3. Decision Tree:

• Hyperparameters: Hyperparameters: Maximum depth, minimum samples
split.

4. Random Forest:

• Hyperparameters: Number of trees, maximum depth, minimum samples
split.

5. SVM (Support Vector Machine):

• Hyperparameters: Kernel type (linear, RBF), regularization parameter (C),
gamma.

6. Naive Bayes:

With the data processing framework established, the following section details the
technical implementation of the cognitive architecture components, demonstrating how
they process and analyze the prepared data for real-time churn prediction.

51

3.4 Implementation

The implementation phase translated the theoretical framework into a functional cogni-
tive architecture system for real-time churn prediction. This section details the technical
implementation of the core architectural components, focusing on the memory object
structure, codelet functionality, and their integration within the cognitive framework de-
scribed in Figure 3.1.

3.4.1 Memory Object Implementation

The memory object system forms the foundation of data management within the cognitive
architecture. This implementation comprises three primary memory object types, each
serving specific functions in the architecture:

• The Data Memory Objects maintain the processed dataset, managing both features
and corresponding labels. This component implements efficient data access methods,
enabling rapid retrieval and update operations during model training and prediction
phases.

• The Model State Memory Object maintains the current states of all machine learn-
ing models within the architecture. This component stores model predictions and
performance metrics, facilitating dynamic adjustment of model weights and ensem-
ble behavior.

• The Evaluation Metrics Memory Object maintains the evaluation results of indi-
vidual models. It stores accuracy, precision, recall, and F1-score metrics, enabling
the architecture to assess model performance and provide feedback to the dynamic
weight adjustment process.

• The Prediction Memory Object manages individual model’s ongoing predictions
and performance metrics. Supporting the ensemble and dynamic weight adjustment
process while optimizing memory usage.

3.4.2 Codelet System Implementation

The codelet system implements the processing logic of the cognitive architecture through
specialized components, each handling specific aspects of the churn prediction process:

• The Data Reader Codelet implements the data ingestion pipeline, managing the
transformation of raw data into a structured format suitable for model processing.
This component handles proper data flow through the architecture.

• The Model Codelets implement six distinct machine learning algorithms: K-Nearest
Neighbors (KNN), Logistic Regression, Decision Tree, Random Forest, Support Vec-
tor Machine (SVM), and Naive Bayes. Each codelet operates independently, imple-
menting its respective algorithm’s training and prediction logic while maintaining
communication with the shared memory objects.

52

• The Evaluation Codelet evaluates model predictions. It receives the output from
the Model Codelets and conducts performance evaluations using metrics like accu-
racy, precision, recall, and F1-score. The Evaluation Codelet analyzes individual
model performance and updates the evaluation metrics in shared memory objects,
providing feedback for subsequent ensemble adjustments.

• The Ensemble Codelet implements the final prediction aggregation logic, combining
individual model predictions according to their dynamic weights. This component
manages the weighted voting process, producing the final churn predictions based
on the ensemble’s collective intelligence.

• The Dynamic Weight Manager Codelet implements the adaptive weight adjustment
system, monitoring model performance and updating ensemble weights. This com-
ponent utilizes a sliding window mechanism to track recent performance metrics,
implementing the weight adjustment algorithm detailed in the previous section.

3.4.3 Integration and Execution Framework for Coordinating En-
semble Learning Within the Cognitive Architecture

The integration framework implements the communication and coordination mechanisms
between system components. This framework ensures proper sequencing of operations,
from data preprocessing through model training to final prediction generation. The im-
plementation utilizes a message-passing architecture, enabling asynchronous operation of
codelets while maintaining data consistency through the memory object system.

3.4.4 Execution Flow Implementation

The execution flow implementation manages the sequential data processing through the
cognitive architecture. This implementation follows a structured approach:

1. The initial phase activates the Data Reader Codelet, triggering the preprocessing
pipeline and populating the Data Memory Object with processed features and labels.

2. The second phase initiates parallel execution of Model Codelets, each training its
respective algorithm on the preprocessed data and generating predictions stored in
the Prediction Memory Object.

3. The third phase activates the Evaluation Codelet, which receives predictions from
the Model Codelets and performs model evaluation using metrics such as accuracy,
precision, recall, and F1-score. The results are stored in the Evaluation Metrics
Memory Object, providing performance feedback for the subsequent ensemble phase.

4. The fourth phase executes the Ensemble Codelet, implementing the dynamic weighted
ensemble and static ensemble prediction aggregation process to generate final churn
predictions.

53

5. The final phase activates the Dynamic Weight Manager Codelet, implementing the
weight adjustment algorithm based on recent model performance metrics.

This modular and dynamic design allows the cognitive architecture to be adaptive,
scalable, and capable of handling various machine-learning tasks efficiently. Separating
each model into its codelet provides flexibility for further expansion and modification,
while the dynamic weight management system ensures that the architecture continuously
improves its decision-making process.

In summary, the cognitive architecture integrates multiple independent machine learn-
ing models into a cohesive ensemble system. The Dynamic Weight Manager Codelet plays
a crucial role in ensuring that the ensemble adapts to changing conditions by adjusting
the models’ weights based on their performance. This structure allows for modularity,
scalability, and robustness in processing and decision-making.

While the implementation framework establishes the system’s structure, the dynamic
weight management system provides its adaptive capabilities. The following section de-
tails this crucial component that enables real-time adaptation to changing prediction
patterns.

3.5 Dynamic Weight Management

The dynamic weight management system plays a crucial role in the adaptive capabilities
of the cognitive architecture’s ensemble model. This system is designed to adjust the in-
fluence of individual machine learning models in the ensemble based on their performance
over time. By continuously updating the weights assigned to each model, the dynamic
weight management system ensures that the ensemble remains responsive to shifts in data
patterns and model accuracy. This section explains the weight adjustment algorithm, the
process of tracking model performance, and the subsequent weight modifications that
enhance the ensemble’s adaptability.

Weight Adjustment Algorithm

The weight adjustment algorithm is based on the principle of adaptive weighting, where
the contribution of each model to the final ensemble prediction is adjusted according to
its recent performance. The algorithm operates using the following steps

1. Sliding Window Mechanism:

• Definition: Maintains a fixed-size window of recent predictions for each model.

• Function: As new predictions are made, the oldest predictions are removed
to keep the window size constant, ensuring that weight adjustments are based
on the most recent performance.

2. Weighted Prediction History:

• Recency Weighting: Assigns higher weights to more recent predictions within
the sliding window, gradually reducing the influence of older predictions based
on the forgetting rate.

54

• Purpose: Ensures that recent performance has a greater impact on weight
adjustments, allowing the ensemble to respond swiftly to changes in data pat-
terns.

3. Calculating Weighted Accuracy: It represents the proportion of correct predic-
tions within the sliding window, weighted by their recency, and is computed as:

Weighted Accuracy =

∑n
i=1 wi · Correcti∑n

i=1 wi

, (3.2)

where wi is the weight assigned to the ith prediction, and Correcti is 1 if the predic-
tion is correct, 0 otherwise.

4. Weight Update: The weight update formula calculates the new weight for each
model based on its performance:

Wnew = Wcurrent + Learning Rate × (Weighted Accuracy −Wcurrent), (3.3)

where Wnew is the updated weight, Wcurrent is the current weight, and Learning Rate
is a parameter controlling the speed of weight adjustment.

• Explanation: Adjusts the current weight towards the weighted accuracy. A
higher learning rate results in more significant weight changes.

• Learning Rate: Controls the speed at which weights are updated in response
to performance changes.

• Forgetting Rate:Determines how quickly the influence of older predictions
diminishes, ensuring adaptability.

5. Normalization of Weights:

• Process: After updating, weights are normalized so that the sum of all model
weights equals 1.

Wi =
Wi∑m
j=1 Wj

, for i = 1, . . . ,m, (3.4)

where Wi is the weight of the ith model, and m is the total number of models
in the ensemble.

• Purpose: Prevents any single model from disproportionately dominating the
ensemble, maintaining a balanced influence across all models.

Implementation Details

The dynamic weight management system is implemented within the Dynamic Weight
Manager Codelet. Key components and their functionalities include:

1. Sliding Window Mechanism:

55

• Data Structure: Utilizes a queue or circular buffer to efficiently manage the
sliding window of recent predictions.

• Operations: Enqueues new predictions and dequeues the oldest ones as new
data arrives.

2. Performance Tracking:

• Metric Calculation: Continuously calculates weighted accuracy for each
model within the sliding window.

• Historical Data: Maintains historical performance data to inform weight
adjustments.

3. Weight Adjustment Process:

• Update Execution: Applies the weight update formula after each batch of
predictions is processed.

• Adaptive Influence: Increases weights for models demonstrating improved
performance and decreases weights for underperforming models.

Parameter Justification

• Window Size (20): Balances responsiveness with stability, ensuring that recent
performance is adequately represented without being overly sensitive to fluctuations.

• Learning Rate (0.1): Provides a moderate speed of weight adjustment, allowing
the ensemble to adapt without drastic changes that could destabilize performance.

• Forgetting Rate (0.35): Ensures that older predictions gradually lose influence,
maintaining the focus on recent performance metrics.

• Minimum Weight (0.02) and Maximum Weight (1.0): Prevent any model
from being entirely excluded or from having excessive influence, maintaining a fair
balance within the ensemble.

Benefits of Dynamic Weight Management

• Adaptability: Enables the ensemble to respond to changes in data distribution
and model performance in real time.

• Enhanced Performance: By emphasizing well-performing models, the ensemble
achieves higher accuracy and reliability.

• Robustness: Mitigates the impact of underperforming models, ensuring that the
ensemble remains effective even as individual model performances fluctuate.

Having detailed the system’s components and adaptive mechanisms, the following sec-
tion presents the experimental framework designed to evaluate the cognitive architecture’s
effectiveness in real-time churn prediction scenarios.

56

3.6 Experimental Setup

The experimental setup for this research establishes the conditions under which the cog-
nitive architecture and its components were evaluated. The experiments were designed
to rigorously test the architecture’s performance and adaptability, focusing on its ability
to process data, train individual models, and dynamically adjust the ensemble based on
model performance. This section outlines the datasets used, model configurations, dy-
namic weight management settings, and evaluation procedures implemented to ensure a
comprehensive and reliable system assessment.

Dataset Selection

Two versions of a binary classification churn dataset were utilized to evaluate the cognitive
architecture under different class distribution scenarios:

1. Imbalanced Dataset:

• Description: The dataset contains 3,000 instances with 11 features. The class
distribution reflects the natural imbalance observed in real-world scenarios:
2,600 instances belong to the majority class (non-churn), while 400 instances
represent the minority class (churn).

• Purpose: To assess how the cognitive architecture performs in handling class
imbalance, particularly in real-world distributions, and its impact on the overall
model accuracy and recall for the minority class.

2. Balanced Dataset:

• Description: A balanced dataset was created from the imbalanced dataset
using the SMOTENN (Synthetic Minority Over-sampling Technique combined
with Edited Nearest Neighbors) technique. This process was applied only to
the training set to ensure equal representation of both classes while maintaining
an imbalanced test set to simulate real-world deployment scenarios.

• Purpose: To evaluate the impact of training on a balanced dataset while test-
ing on an imbalanced distribution. This approach mitigates biases introduced
by class imbalance during training without compromising the relevance of the
testing phase.

Dynamic Weight Management Configuration

The Dynamic Weight Manager Codelet was configured to dynamically adjust the influence
of each model in the ensemble based on their performance. The configuration was designed
to ensure that the ensemble remained responsive to changes in data patterns and model
accuracy. The parameters used were:

• Sliding Window Size: 20 instances, used to track recent model predictions;

57

• Learning Rate: 0.1, controlling the speed of weight adjustment based on model
performance;

• Forgetting Rate: 0.35, ensuring that older predictions have progressively less
influence on weight adjustments;

• Minimum Weight: 0.02, ensuring that no model is entirely excluded from the
ensemble;

• Maximum Weight: 1.0, capping the influence of any single model within the
ensemble.

These settings ensured that the dynamic weight management system could quickly
adapt to shifts in model performance, allowing the ensemble to maintain optimal decision-
making.

Evaluation Procedure

The cognitive architecture and its components were evaluated using a systematic proce-
dure to ensure an accurate and reliable assessment of model performance. The evaluation
procedure included the following steps:

1. Data Splitting:

• Training Set: 70% of the data, used to train the individual models;

• Validation Set: 15% of the data, is used to evaluate both individual models
and the ensemble;

• Test Set: 15% of the data, used to evaluate the generalization ability of the
trained models and the ensemble.

2. Cross-Validation:

• Approach: 5-fold cross-validation was applied during model training to ensure
that models generalized well across different subsets of the data, mitigating the
risk of overfitting.

3. Model Training and Prediction:

• Process: Each model-specific codelet trained its respective machine learning
model on the training set and generated predictions on the testing set;

• Storage: Trained models and predictions were stored in shared memory ob-
jects for aggregation.

4. Dynamic Weight Adjustment and Ensemble Evaluation:

• Process: The Dynamic Weight Manager Codelet dynamically adjusted the
weights of each model based on their performance within the sliding window;

58

• Ensemble Decision: The Ensemble Codelet aggregated predictions using the
updated weights to produce the final ensemble decision;

• Comparison: Ensemble performance was compared against individual model
performances and static ensemble methods.

5. Performance Metrics Calculation:

• Metrics Evaluated: Accuracy, Precision, Recall, F1-Score, ROC-AUC;

• Procedure:Metrics were calculated for each model, the dynamic ensemble,
and the static ensemble to assess effectiveness.

6. Statistical Analysis:

• Objective: Determine the statistical significance of performance differences
between dynamic and static ensembles;

• Method: Conducted a Wilcoxon signed-rank statistical test to validate find-
ings.

7. Model Combination Analysis:

• Objective: Identify optimal model combinations that yield the highest per-
formance metrics;

• Process: Evaluated all possible model combinations to determine which sub-
sets provided the best accuracy, precision, recall, and F1-Score

Implementing these experimental procedures requires specific computational resources
and configurations. The following section details the technical environment established
to ensure reliable and reproducible evaluation of the cognitive architecture.

3.7 Computational Environment

The experimental conditions are meticulously designed to ensure the study’s findings’
reliability, validity, and reproducibility. This section outlines the hardware specifications,
software environment, configurations, computational resources, libraries, tools, and repro-
ducibility measures employed during the experiments.

Hardware Specifications

The experiments were conducted on a high-performance computing system to accom-
modate the computational demands of training multiple machine-learning models and
managing dynamic ensemble processes. The detailed hardware specifications are as fol-
lows:

1. Processor (CPU)

• Model: Intel® Core™ i7-1165G7 (11th Generation);

59

• Cores: Quad-core (4 cores);

• Base Speed: 2.8 GHz;

• Maximum Turbo Speed: 4.7 GHz.

2. Memory (RAM)

• Capacity: 16 GB DDR4;

• Configuration: Dual Channel (8GB x 2);

• Speed: 2666 MHz.

3. Graphics Processing Unit (GPU)

• Model: Intel Iris Xe Graphics;

• Type: Integrated with shared memory.

4. Storage

• Type: PCIe NVMe M.2 SSD;

• Capacity: 256 GB.

Software Environment

The software environment is configured to provide a stable and efficient platform for
implementing the cognitive architecture and running machine learning experiments. The
specific software components and their versions are detailed below:

1. Operating System

• Distribution: Windows;

• Kernel Version: Windows 11 OS.

2. Programming Language

• Java: OpenJDK 11.

3. Machine Learning Libraries

• Weka: Version 3.8.6;

• Apache Commons Math: Version 3.6.1 (for additional mathematical computa-
tions);

• SMOTENN Implementation: In-house implementation integrated within the
preprocessing pipeline.

4. Development Tools

• Integrated Development Environment (IDE): IntelliJ IDEA Ultimate Edition
2023.1;

60

• Build Tools: Maven 3.8.6 for project dependency management and build au-
tomation.

5. Version Control

• Git: Version 2.34.1, with the repository hosted on GitHub for source code
management and collaboration; github.com/H-IAAC/meta-7.git.

6. Additional Tools

• Data Visualization: Matplotlib and Seaborn (via Python scripts) for generating
EDA figures and correlation heatmaps;

• Statistical Analysis: for conducting advanced statistical tests to validate per-
formance differences.

Libraries and Tools

The implementation relied on a combination of libraries and tools to facilitate data pro-
cessing, model training, and evaluation:

1. Java Libraries

• Weka: Core library for implementing machine learning algorithms and handling
data preprocessing tasks;

• Apache Commons Math: Supplementary library for advanced mathematical
operations and statistical computations.

2. Python Libraries

• Pandas: For data manipulation and preprocessing tasks not directly handled
within Java.

• Matplotlib & Seaborn: For creating visualizations such as correlation heatmaps
and feature distributions during EDA.

3. Data Visualization and Statistical Analysis

• Scipy: Utilized for conducting statistical tests to determine the significance of
performance differences between models and ensembles.

4. Additional Tools

• Jupyter Notebooks: Facilitated exploratory data analysis and prototyping of
data preprocessing scripts.

By meticulously documenting and standardizing all aspects of the experimental setup,
the study ensures that results can be reliably reproduced and validated by other re-
searchers, thereby enhancing the credibility and impact of the findings.

https://github.com/H-IAAC/meta-7.git

61

3.8 Multi-Dataset Evaluation

To evaluate the generalizability of the proposed RTCP system, this study includes three
publicly available telecom churn datasets: the Churn-in-Telecom Dataset, the Churn-
data-UCI Dataset, and the IBM Telco Dataset. This multi-dataset approach ensures that
the proposed solution is tested under different scenarios, addressing potential dataset
dependency and aligning with the recommendations for broader validation.

Dataset Structure and Features

The three datasets employed in this study vary in size and feature composition, offering
a comprehensive basis for assessing the RTCP system’s adaptability:

1. Churn-in-Telecom Dataset: Contains 3,000 customer records with 11 attributes,
focusing on various aspects of customer behavior and service usage;

2. IBM Telco Dataset: Includes 7,043 customer records and 33 features, covering de-
mographic information, account characteristics, and service utilization patterns;

3. Churn-data-UCI Dataset: Comprises 30,000 customer records with 20 features, cap-
turing diverse customer service interactions and usage metrics.

The three datasets employed in this study vary in size and feature composition, offering
a comprehensive basis for assessing the RTCP system’s adaptability:

Table 3.2: Dataset Characteristics Summary. The Class Distribution column shows the
number of churned customers versus non-churned customers (churn/not-churn) for each
dataset.

Dataset Name Size Features Class Distribution Source Format
Churn-in-Telecom 3,000 11 400/2,600 [74] CSV
IBM Telco 7,043 33 1,869/5,174 [24] CSV
Churn-data-UCI 30,000 20 7,597/22,403 [24] CSV

The same preprocessing steps were applied consistently to all three datasets to ensure
comparability and maintain high data quality throughout the analysis as discussed in 3.3.

The performance of the proposed RTCP system was evaluated using all three datasets.
Additionally, a comparison with an adaptive ensemble framework from related work was
conducted, using the same performance metrics—accuracy, precision, recall, and F1-score.
This comparative analysis assessed the system’s effectiveness across different datasets,
demonstrating its generalizability and adaptability in various data scenarios.

3.9 Comparative Framework

To establish a baseline for evaluating the proposed RTCP system, this study compares
with an existing adaptive ensemble framework described in related work [24]. The

62

chosen framework employs ensemble learning techniques and adaptive weighting strate-
gies, similar to the RTCP system. However, it is not designed specifically for real-time
processing but is a robust point of reference for adaptive performance across churn pre-
diction datasets.

Overview of the Adaptive Ensemble Framework in the Literature

The adaptive ensemble framework uses dynamic weight adjustment to prioritize well-
performing models, similar to the proposed RTCP system. It was evaluated across three
telecom churn datasets: the Churn-in-Telecom Dataset, the Churn-data-UCI Dataset,
and the IBM Telco Dataset. The framework’s design aligns with the goal of adaptive
prediction accuracy, allowing for a direct comparison with the RTCP system in terms of
performance metrics such as accuracy, precision, recall, and F1-score.

Evaluation Strategy

In this comparative evaluation, the proposed RTCP system and the adaptive ensemble
framework were subjected to the same preprocessing steps, data partitioning strategies,
and performance metrics. The evaluation aims to demonstrate the effectiveness of the
RTCP system’s real-time adaptation capabilities compared to the adaptive ensemble’s
batch-processing design. This comparative analysis will be revisited in the Results chap-
ter, where a detailed performance comparison will be presented to highlight the strengths
and limitations of each approach across different datasets.

3.10 Final Remarks

This chapter presented our comprehensive methodology, designed and implemented using
a cognitive architecture framework, for real-time churn prediction. Our methodology
implements multiple integrated components to achieve adaptive and accurate prediction
capabilities.

The implementation establishes a cognitive architecture that combines memory ob-
jects and specialized codelets. Memory objects implement efficient data management
through dedicated components for data storage, model state tracking, and prediction
management. The codelet system implements specialized processing units, including data
readers, model processors, and weight managers, working together to achieve real-time
prediction capabilities.

The dynamic weight management system incorporates adaptive mechanisms for op-
timizing ensembles. By employing sliding window approaches and weight adjustment
algorithms, the system maintains responsiveness to evolving data patterns while ensuring
prediction stability. The implementation leverages precisely calibrated parameters, such
as learning rates and forgetting factors, to maximize system effectiveness.

The evaluation implements testing procedures across multiple datasets. By utilizing
three distinct telecom datasets - Churn-in-Telecom, IBM Telco, and Churn-data-UCI -,
the methodology ensures comprehensive validation of the system’s generalizability. The

63

implementation includes comparative analysis against existing adaptive ensemble frame-
works, establishing clear benchmarks for performance assessment. The computational
environment implements specific hardware and software configurations, ensuring repro-
ducibility and consistent performance evaluation.

This methodological framework provides the foundation for subsequent experimental
evaluation and analysis, implementing a comprehensive approach to real-time churn pre-
diction through cognitive architectures. The next chapter will present the results obtained
through this methodology, demonstrating its effectiveness in addressing the challenges of
real-time customer churn prediction.

64

Chapter 4

Results and Discussion

This chapter presents a comprehensive analysis of the performance of cognitive archi-
tecture in real-time churn prediction by examining its predictive accuracy and adaptive
capabilities. The evaluation framework presented in Figure 4.1 implements multiple as-
sessment approaches to validate the system’s effectiveness across different scenarios and
datasets. The analysis proceeded in five key phases:

1. Individual model performance evaluation on balanced and imbalanced datasets;

2. Comparative analysis of static versus dynamic ensemble approaches;

3. Assessment of model contributions through systematic component removal;

4. Statistical validation of performance differences;

5. Cross-dataset evaluation and comparison with existing methods.

The experiments implemented a stream-based evaluation approach that processed the
data incrementally in folds to simulate real-world scenarios. This methodology enables the
assessment of both immediate- and long-term adaptive capabilities. Figure 4.1 illustrates
the systematic evaluation framework used in this study.

Figure 4.1: Systematic approach for assessing model and ensemble performance across
multiple datasets and scenarios. The framework implements incremental data processing
to evaluate both static performance metrics and dynamic adaptation capabilities.

The evaluation implements multiple performance metrics to ensure a comprehensive
assessment.

65

1. Accuracy: Measures overall prediction correctness;

2. Precision: Evaluates prediction reliability;

3. Recall: Assesses prediction completeness;

4. F1-score: Provides balanced assessment of precision and recall.

In addition, statistical validation was implemented using Wilcoxon signed-rank tests
to verify the significance of the performance differences between the static and dynamic
approaches. This ensures that the observed improvements represent genuine advances in
the predictive capability rather than random variations.

To establish the generalizability of the results, the evaluation was extended across the
three datasets.

1. Churn-in-Telecom Dataset (3,000 records, 11 features);

2. IBM Telco Dataset (7,043 records, 33 features);

3. Churn-data-UCI Dataset (30,000 records, 20 features).

The following sections present the detailed results of these evaluations, beginning
with individual model performance and progressing through ensemble behavior, statistical
validation, and comparative analysis. This structured approach enables a systematic
assessment of the effectiveness of the cognitive architecture in real-time churn prediction
while maintaining clear connections to the research objectives established in chapter 1.

4.1 Model Effectiveness

This section provides a comprehensive analysis of the performance of individual machine-
learning models across both imbalanced and balanced datasets. The performance of each
model was evaluated using the following key classification metrics: accuracy, precision,
Recall, F1-Scor. These metrics are crucial for understanding the behavior of models under
different data distributions and assessing their ability to generalize effectively to unseen
data. The models are compared not only in terms of their static performance but also in
terms of their adaptability when the class imbalance is addressed.

4.1.1 Individual Model Performance

Performance on the Imbalanced Dataset

On an imbalanced dataset, where minority class 1 (churn) is significantly underrepre-
sented, the model performance varies significantly. Although some models achieved high
accuracy, this metric alone did not provide a complete picture, as it often masked poor
performance in recalling minority-class instances. Models that performed well in terms
of accuracy sometimes exhibited lower recall and F1-Scores, indicating difficulties in cor-
rectly identifying minority classes.

66

Model Accuracy Precision Recall F1-Score ROC Area

Naive Bayes 77.73% 0.7758 0.7773 0.7764 0.8501
Decision Tree 85.20% 0.8511 0.8520 0.8509 0.8701
Random Forest 87.60% 0.8763 0.8760 0.8744 0.9307
KNN 78.53% 0.7983 0.7853 0.7714 0.8198
SVM 80.93% 0.8076 0.8093 0.8077 0.7904
Logistic Regression 81.07% 0.8089 0.8107 0.8090 0.8783

Table 4.1: Performance metrics for imbalanced Churn-in-Telecom dataset, the evaluation
of individual models on the imbalanced version of the dataset.

The results in Table 4.1 show that Naive Bayes achieved an accuracy of 77.73%, yet
its recall was also 77.73%, suggesting that while the model could identify churn cases,
it struggled to generalize its predictions effectively. The model’s ROC-AUC score of
0.8501 highlighted its moderate ability to distinguish between classes but underscored the
limitations of linear models on imbalanced datasets.

On the other hand, nonlinear models, such as Random Forest and Decision Tree,
handled the imbalanced dataset more effectively. Random Forest achieved the highest
accuracy at 87.60%, with a precision of 87.63%, recall of 87.60%, and F1-Score of 87.44%.
These metrics indicate a more balanced performance, where the model was able to main-
tain high precision while correctly identifying a significant portion of the minority class
instances. DecisionTree also performed well, with an accuracy of 85.20% and an F1-Score
of 85.09%, demonstrating its ability to model complex feature interactions even under
class imbalance.

KNN, while achieving a slightly weaker overall performance, achieved an accuracy of
78.53% and an F1-Score of 77.14%. Its lower performance in recall (78.53%) and ROC-
AUC (0.8198) reflects the challenges faced by this distance-based model in distinguishing
between the majority and minority classes when the data are skewed.

SVM and Logistic Regression, both linear models, performed similarly, with SVM
achieving an accuracy of 80.93% and an F1-Score of 80.77%, whereas Logistic Regression
reached an accuracy of 81.07% and an F1-Score of 80.90%. These models struggled to
balance recall and precision on an imbalanced dataset, likely because of their reliance on
linear decision boundaries, which limited their ability to model the complex relationships
inherent in the data.

Performance on the Balanced Dataset

After balancing the dataset using the SMOTENN technique, all models exhibited substan-
tial improvements across key metrics, particularly in recall and F1-Score. This highlights
the models’ improved ability to correctly classify both the majority and minority classes,
as the balancing process alleviated the bias towards the majority class.

67

Model Accuracy Precision Recall F1-Score ROC Area

Naive Bayes 84.68% 0.8597 0.8468 0.8475 0.8899
Decision Tree 92.11% 0.9211 0.9211 0.9211 0.9361
Random Forest 98.01% 0.9801 0.9801 0.9801 0.9982
KNN 98.82% 0.9883 0.9882 0.9882 0.9892
SVM 82.86% 0.8283 0.8286 0.8279 0.8216
Logistic Regression 82.77% 0.8276 0.8277 0.8267 0.8976

Table 4.2: Performance metrics for the balanced Churn-in-Telecom dataset, highlighting
the top two performing models across all evaluation metrics.

KNN demonstrated the most significant performance gain on the balanced dataset,
achieving an accuracy of 98.82% and corresponding F1-Score of 98.82%. This marked im-
provement illustrates KNN’s strength in environments where the class distribution is more
equitable, allowing the model to leverage its distance-based approach more effectively.

Similarly, the Random Forest improved dramatically, achieving an accuracy of 98.01%
and an F1-Score of 98.01%. The model’s high precision (98.01%) and ROC-AUC (0.9982)
underscore its capacity to capture complex nonlinear relationships in the data when the
class imbalance is corrected. DecisionTree also performed exceptionally well, with an
accuracy of 92.11% and an F1-Score of 92.11%, reflecting its ability to generalize more
effectively under balanced data conditions.

Even models that struggled with an imbalanced dataset, such as NaiveBayes, showed
marked improvements. NaiveBayes achieved an accuracy of 84.68% and an F1-Score of
84.75%, indicating that balancing the data allowed it to generalize better across both
classes. The ROC-AUC score of 0.8899 further highlights its enhanced discriminative
ability on a balanced dataset.

SVM and Logistic Regression both improved the performance but still lagged behind
the nonlinear models. The SVM achieved an accuracy of 82.86% and an F1-Score of
82.79%, whereas Logistic Regression achieved an accuracy of 82.77% and an F1-Score of
82.67%. These results suggest that, while balancing the data helped these models, their
linear nature prevented them from fully capturing the complex patterns present in the
dataset.

The analysis of the individual model performance across both balanced and imbal-
anced datasets established the baseline capabilities for each algorithm. These individual
performance characteristics provide the foundation for understanding how models con-
tribute to ensemble performance, and inform the following comparative analysis.

4.1.2 Comparison of Models

Building on the individual performance metrics established above, this section presents
a systematic comparison of model behaviours across different scenarios. Comparative
analysis revealed how different machine learning algorithms respond to variations in data
distribution, particularly focusing on the distinction between linear and nonlinear ap-
proaches.

68

The comparison of model performance across both datasets provides key insights into
how different machine learning algorithms respond to variations in data distribution. The
analysis revealed that nonlinear models, such as Random Forest and KNN, consistently
outperformed other models, particularly on the balanced dataset. These models excelled
because of their ability to capture complex nonlinear patterns in the data, which became
more pronounced when the class distributions were equalized.

On the imbalanced dataset, Random Forest and Decision Tree stood out, with Random
Forest achieving the highest accuracy (87.60%) and F1-Score (87.44%). These models are
better equipped to handle skewed class distributions because of their inherent ability to
model complex feature interactions.

In contrast, linear models, such as Naive Bayes, SVM, and Logistic Regression, strug-
gled with the imbalanced dataset, with lower recall and F1-Scores. However, their perfor-
mance improved notably on the balanced dataset, with NaiveBayes increasing its accuracy
to 84.68%, and both SVM and Logistic Regression achieving accuracies above 82%.

The most substantial improvement was observed in KNN, which achieved a near-
perfect performance on the balanced dataset with an accuracy of 98.82% and an F1-Score
of 98.82%. This demonstrates the KNN’s sensitivity to class distribution, as balancing
the data significantly enhances its ability to distinguish between classes.

Overall, the comparison highlighted the critical importance of data balancing in clas-
sification tasks. The balanced dataset allowed all models to perform more consistently
across all metrics, reducing bias towards the majority class and enabling more accu-
rate and reliable predictions. Non-linear models, particularly Random Forest and KNN,
showed the greatest capacity to exploit the more equitable data distribution, whereas
linear models, though improved, still lagged behind in terms of their flexibility and ability
to model complex patterns.

Figures 4.2 and 4.3 visually depict the comparison of model accuracy and F1-Score
across both datasets, further illustrating the performance disparities between the models
on imbalanced and balanced data.

Figure 4.2: Model accuracy comparison between balanced and imbalanced datasets.

69

Figure 4.3: Model F1-Score comparison between balanced and imbalanced datasets.

These comparative findings highlight the varying strengths of the different algorithms,
particularly the superior performance of nonlinear models in handling complex patterns.
This understanding of individual model capabilities provides a crucial context for analyz-
ing collective behavior within an ensemble framework.

4.2 Ensemble Performance

By leveraging the insights gained from the individual model comparisons, this section
evaluates how these models collectively perform within the ensemble framework. The
analysis examines both static and dynamic ensemble approaches, focusing on how the
combination of models enhances the prediction capability beyond individual performance
levels.

This section evaluates the effectiveness of the ensemble model across both imbalanced
and balanced datasets. The performance of the ensemble was examined through dynamic
weighting, where model weights were adjusted over time in response to the performance,
and static weighting, where the model weights remained fixed. Additionally, the impact
of individual models on the ensemble was analyzed by removing models individually and
observing the subsequent changes in performance metrics, such as accuracy, precision,
recall, and F1-Score. This analysis aimed to demonstrate the effectiveness of ensemble
learning and to highlight the significance of individual model contributions.

Dynamic Ensemble Performance Over Time

The dynamic ensemble model was designed to adjust the weights of individual models
adaptively as new folds of data were processed. This allowed the ensemble to prioritize
the models that performed well on each fold, thereby optimizing the overall performance
of the system over time. The performance of the dynamic ensemble was evaluated on both

70

the imbalanced and balanced datasets, providing insight into how it adapted to different
data distributions

Imbalanced Dataset On the imbalanced dataset, the dynamic ensemble faced the
challenge of balancing predictions between the overrepresented majority class and the
underrepresented minority class. Initially, the weights were distributed relatively evenly
across all the models, reflecting the uncertainty of which model would perform best. How-
ever, as more data folds were processed, models such as Random Forest and Decision Tree
quickly gained higher weights, owing to their ability to handle the complex relationships
between features in imbalanced data. These models consistently contribute more to the
ensemble decision-making process and improve the performance over time.

The performance of the dynamic ensemble fluctuated slightly as new folds were pro-
cessed, reflecting the varying effectiveness of individual models on different data segments.
Despite these fluctuations, the dynamic ensemble maintained a strong overall perfor-
mance, achieving an average accuracy of 82.93%, precision of 80.66%, recall of 72.77%,
and an F1-Score of 76.51%. These metrics indicate that the dynamic weighting mecha-
nism allowed the ensemble to adapt to imbalanced data, particularly by leveraging models
such as Random Forest and Decision Tree, which outperformed other models in handling
skewed class distributions.

Balanced Dataset On the balanced dataset, where class distribution was balanced,
the dynamic ensemble demonstrated even greater stability and higher performance across
all metrics. With the class imbalance mitigated, models such as KNN and Random Forest
were assigned significantly more weight because of their strong performance on balanced
data. This shift in weighting allowed the dynamic ensemble to achieve much higher
accuracy and generalization.

Figure 4.4: Dynamic ensemble accuracy over time (balanced vs. imbalanced datasets).

71

The dynamic ensemble on the balanced dataset achieved an average accuracy of
95.92%, precision of 97.71%, recall of 95.06%, and an F1-Score of 96.37%. These met-
rics represent a substantial improvement over the imbalanced dataset, highlighting the
ability of the ensemble to adapt dynamically to a more equitable class distribution. The
adaptability of the ensemble, driven by its ability to prioritize stronger models, was par-
ticularly evident in later data folds, where the performance consistently remained high as
the ensemble was adjusted to evolving data patterns.

Figure 4.4 illustrates the evolution of the dynamic ensemble accuracy over time for
both the imbalanced and balanced datasets. The figure shows that while the performance
on the imbalanced dataset fluctuated more significantly owing to varying model contri-
butions, the dynamic ensemble on the balanced dataset maintained a much more stable
and upward trend in performance.

The dynamic ensemble on the balanced dataset achieved an average accuracy of
95.92%, precision of 97.71%, recall of 95.06%, and an F1-Score of 96.37%. These average
metrics were calculated by calculating the mean of the accuracy, precision, recall, and F1-
scores obtained across 10 evaluation folds, where each fold involved separate training and
testing sets. This approach ensures that the reported metrics reflect the generalization
capabilities of the ensemble across the entire dataset.

This substantial improvement over the imbalanced dataset highlights the ability of
the dynamic ensemble to effectively adapt to a more equitable class distribution. The
adaptability of the ensemble, driven by its capacity to prioritize stronger models, was
particularly evident in later data folds, where the performance remained consistently high
as the ensemble was adjusted to evolving data patterns.

Static Ensemble Performance Over Time

Unlike the dynamic ensemble model, the static ensemble model used fixed weights for each
model throughout the evaluation process. Although this approach offers consistency, it
lacks the flexibility to adapt to changing data patterns over time. As a result, the static
ensemble’s performance was more stable but less optimized compared to the dynamic en-
semble, particularly on datasets where class distributions or feature relationships evolved

Imbalanced Dataset On the imbalanced dataset, the static ensemble achieved an
average accuracy of 82.00%, precision of 84.75%, recall of 73.53%, and an F1-Score of
78.74%. Although these metrics were relatively strong, they were slightly lower than
those of the dynamic ensemble. The fixed weighting prevented the static ensemble from
fully capitalizing on stronger models, such as the Random Forest and Decision Tree, which
performed well on imbalanced data. This limitation reduces the static ensemble’s ability to
adapt to the varying effectiveness of models across different folds of data, particularly when
the performance of certain models, such as Naive Bayes, fluctuates more significantly.

Balanced Dataset On the balanced dataset, the static ensemble showed improved
performance across all metrics, achieving an average accuracy of 95.45%, precision of
96.88%, recall of 95.38%, and F1-Score of 96.12%. These metrics are comparable to

72

those of the dynamic ensemble, but the static ensemble still falls short in terms of its
ability to optimize the contribution of the top-performing models over time. Although
the static ensemble performed well on the balanced dataset, its lack of adaptability limited
its capacity to fully exploit the strengths of models such as KNN and Random Forest as
effectively as the dynamic ensemble.

Figure 4.5: Static ensemble accuracy over time (balanced vs. imbalanced datasets).

Figure 4.5 depicts the accuracy of the static ensemble over time for both the imbalanced
and balanced datasets. The figure highlights the relatively stable performance of the
static ensemble but also underscores its inability to dynamically adjust to changes in data
distribution and model effectiveness.

Overall, the static ensemble’s fixed weighting strategy, which is effective in maintain-
ing consistent performance, was outperformed by the dynamic ensemble, particularly in
environments in which data conditions evolved over time. This highlights the importance
of adaptability in ensemble learning, particularly when dealing with real-world datasets
that can change incrementally.

The static ensemble, while effective, lacked the ability to dynamically fine-tune the
contributions of the individual models. This highlights the importance of adaptability in
ensemble learning, particularly when dealing with evolving datasets.

Model Impacts on Ensemble

The cognitive architecture framework used in this study introduces a unique advantage
in its ability to dynamically manipulate model performance using codelets, a feature
that allows models to be selectively activated or deactivated based on their performance.
During the ensemble learning process, models encapsulated as codelets can be adjusted
in real time, where poorly performing codelets may be temporarily shut down, and high-
performing ones can be prioritized. This dynamic adaptability not only enhances the

73

robustness of the ensemble but also provides insights into which models or combinations
contribute most effectively to the overall system performance.

By manipulating the codelets dynamically, it is possible to test the ensemble under dif-
ferent configurations, thereby determining the optimal combination of the models. This
experimentation allows the identification of which models can be deactivated without
significantly affecting performance, which is crucial for maintaining high predictive ac-
curacy. Through this mechanism, the architecture offers a flexible and responsive way
to ensure that only the most valuable models contribute to real-time decision making,
whereas others can be deactivated or reactivated based on evolving data patterns and
model performance.

Imbalanced Dataset In scenarios where the dataset is imbalanced, such as the churn
prediction context explored here, the removal of high-performing models such as Random
Forest or Decision Tree resulted in a notable decline in the ensemble’s accuracy. For in-
stance, removing the Random Forest led to a decrease in accuracy from 82.93% to 82.00%,
whereas removing the Decision Tree lowered the accuracy to 82.53%. This underscores
the pivotal role of these models in handling complex and imbalanced data. Their capac-
ity to model intricate, nonlinear relationships among features is essential for effectively
identifying churn cases.

In contrast, models such as naïve Bayes and KNN had less impact when removed,
suggesting that their contribution was not as critical in the imbalanced dataset. This
could be due to their limitations in capturing the complexities of the minority class, where
more sophisticated models such as the Random Forest excel. The ability of the cognitive
architecture to deactivate these less impactful models without significantly hindering their
performance further demonstrates its adaptive capability.

Balanced Dataset the architecture demonstrated its effectiveness on the balanced
dataset. The removal of KNN and Random Forest had the most significant impact,
with accuracies dropping from 95.92% to 90.93% and 91.02%, respectively. These mod-
els, which excel in nonlinear pattern recognition, are instrumental in maintaining high
levels of accuracy for balanced class distributions. Their absence clearly illustrates their
essential role in the ensemble’s success with balanced datasets, in which distinguishing
between classes is equally challenging.

In contrast, removing models, such as Naive Bayes, SVM, or Logistic Regression, had
a minimal impact, reflecting their lower individual contribution in the context of this
balanced dataset. Interestingly, removing Naive Bayes from the ensemble improved the
performance, particularly on the balanced dataset, where the accuracy increased from
95.92% to 95.29%. This suggests that Naive Bayes may introduce noise or inconsistencies
in predictions when more sophisticated models, such as KNN and Random Forest, are
better suited to handle the complexity of the data.

74

Model Removed Accuracy (Imbalanced) Accuracy (Balanced)

Baseline (All Models) 82.93% 95.92%
Without Naive Bayes 85.60% 95.29%
Without Decision Tree 82.53% 91.75%
Without Random Forest 82.00% 91.02%
Without KNN 82.93% 90.93%
Without SVM 85.20% 95.92%
Without Logistic Regression 85.33% 95.92%

Table 4.3: Performance metrics with various models removed from the ensemble. The
table highlights the significant drop in accuracy for both imbalanced and balanced datasets
when Decision Tree and Random Forest are removed.

Table 4.3 summarizes the performance metrics when specific models are removed
from the ensemble. The table highlights the significant contributions of models such as
Random Forest and KNN, while also demonstrating that some models, such as Naive
Bayes, may introduce noise or reduce the ensemble’s overall accuracy.

Manipulating Codelets for Optimal Model Combinations

The ability to manipulate and deactivate codelets in real time based on their perfor-
mance provides a distinct advantage in determining the best combination of models. By
systematically deactivating underperforming codelets such as Naive Bayes, the cognitive
architecture can focus on models such as Random Forest and KNN, which consistently
show superior performance. This adaptability ensures that the ensemble remains respon-
sive to changing data conditions, thereby improving overall accuracy, precision, and recall
without being weighed down by less effective models.

The results underscore the flexibility of the cognitive architecture in managing ensem-
ble performance. By leveraging the capacity of the architecture to activate or deactivate
models dynamically, it is possible to maintain a highly efficient ensemble in which only
the most impactful models contribute to real-time decision-making. This approach not
only optimizes performance but also provides valuable insights into the contributions of
individual models within the system.

The ensemble performance analysis demonstrated the potential benefits of combining
multiple models. However, the effectiveness of this combination depends critically on
the weighting and adjustment of the individual model contributions over time, which is
examined in detail in the following section.

4.2.1 Dynamic Weight Application Over Time

Building on the ensemble performance analysis, this section examines how the dynamic
weight adjustment mechanism influences the model contributions throughout the predic-
tion process. The analysis focused on the system’s ability to adapt weights in response to
changing performance patterns, thereby providing insight into the architecture’s real-time
adaptation capabilities.

75

The dynamic ensemble approach employed in this study is characterized by a continu-
ous adjustment of the model weights as new folds of data are processed. This methodology
allows the ensemble to prioritize models that demonstrate superior performance over time,
while reducing the influence of underperforming models. As the evaluation progressed,
significant fluctuations were observed in the weights assigned to the individual models,
with the adjustments driven by the relative performance of each model across the evolv-
ing dataset. Thus, the dynamic weight-adjustment mechanism offers a powerful way to
ensure that the ensemble remains adaptable and responsive to changing data landscapes.

Imbalanced Dataset: When applied to the imbalanced dataset, the dynamic weight
adjustment system initially distributed weights relatively evenly across all models. This
approach reflects the uncertainty of which models excel during the early stages of data
processing. However, as the system progressed through subsequent data folds, certain
models began to distinguish themselves, resulting in weight adjustments that favored
stronger models.

KNN, Random Forest, and SVM were the initial beneficiaries of slightly higher weights
owing to their early performance on the imbalanced dataset. As the system processed
more data, the weight distribution shifted dynamically, with Logistic Regression, Naive
Bayes, and Random Forest maintaining their higher weights, owing to their ability to
handle the complexities inherent in imbalanced data. Conversely, naive Bayes and SVM,
despite showing initial promise, saw their weights reduce as they struggled to sustain
consistent performance across different folds. These adjustments allowed the ensemble
to adapt better to the imbalance in the data, ensuring that the models with stronger
generalization capabilities contributed more significantly to the final predictions.

The continuous reassignment of weights based on performance allowed the ensemble
to dynamically allocate more influence to models that are better at handling skewed
data distributions. This mechanism significantly boosted the overall performance of the
ensemble, as it was adapted to the imbalanced dataset. Figure 4.6 illustrates the evolution
of the model weights over time for the imbalanced dataset, highlighting how the dynamic
weighting system responds to performance variations across the data folds.

Balanced Dataset: A similar trend was observed when the dynamic ensemble approach
was applied to the balanced dataset. Initially, the weights were distributed across all the
models to reflect a balanced class distribution, allowing for an equitable start. However,
as the system processed more data folds, specific models emerged as clear leaders in
performance, leading to significant shifts in the weight distribution.

Models such as KNN and Decision Tree quickly gained dominance in the weight dis-
tribution, driven by their strong performance on the balanced dataset. These models
demonstrate a remarkable ability to exploit a more equitable class distribution, thereby
allowing them to achieve high levels of accuracy and generalization. In contrast, SVM
and Logistic Regression consistently received lower weights as the dynamic ensemble was
adjusted to favor more robust models. This weight adjustment pattern highlights the
capacity of the system to prioritize models that are better suited to handling a balanced
class distribution.

76

The adaptability of the dynamic ensemble proved to be particularly advantageous in
the balanced dataset scenario, where class distributions were more equitable, and models
were expected to handle both classes with a similar level of accuracy. As the ensemble
dynamically adjusted its weights, it maintained a high level of performance, as evidenced
by the stable upward trend in the accuracy, precision, and F1-scores across the data
folds. 4.7 illustrates the evolution of model weights over time for the balanced dataset,
showing the ability of the dynamic ensemble to optimize model contributions in response
to changing data conditions.

The dynamic weight adjustment mechanism enabled the ensemble to adapt in real
time, significantly boosting its overall performance compared with the static ensemble.
This adaptability allows the dynamic ensemble to outperform the static ensemble in most
cases, particularly on a balanced dataset, where its ability to allocate weights based on
performance proved to be a major advantage.

Figure 4.7 illustrates the evolution of model weights over time for the balanced dataset

Comparative Analysis of Evaluation Metrics: Dynamic Ensemble vs. Static
Ensemble Performance

A comparative analysis of the evaluation metrics for both the dynamic and static en-
sembles revealed key insights into the advantages of dynamic weight adjustment. By
comparing metrics such as accuracy, precision, recall, and F1-score across multiple data
folds, it was possible to observe the impact of dynamic weighting on the ensemble’s per-
formance and robustness.

Figure 4.6: Model weights over time for the imbalanced dataset.

77

Figure 4.7: Model weights over time for the balanced dataset.

Accuracy: Across the imbalanced and balanced datasets, the dynamic ensemble consis-
tently outperformed the static ensemble, particularly in the later data folds. This trend
suggests that the dynamic approach effectively learned from the recent performance and
adapted accordingly. On the imbalanced dataset, the static ensemble’s accuracy remained
relatively stable, but the dynamic ensemble showed a gradual improvement over time as
it adjusted the weights to favor better-performing models. On the balanced dataset, the
dynamic ensemble demonstrated a stronger upward trend in accuracy, benefiting from its
ability to capitalize on the strengths of models such as KNN and Random Forest. Figure
4.8 illustrates the accuracy of both the dynamic and static ensembles over time for both
datasets, highlighting the superior performance of the dynamic ensemble.

Precision: The dynamic ensemble also showed superior precision compared to the static
ensemble on both the imbalanced and balanced datasets, particularly in later data folds.
The ability of the dynamic ensemble to allocate more weight to models that excelled in
precision allowed it to fine-tune its predictions and achieve higher levels of precision. This
is particularly important in dynamic environments, where the ability to quickly adapt
and improve precision is crucial for success. Figure 4.9 demonstrates the precision of
both ensembles over time, showing the dynamic ensemble’s ability to learn from recent
performance and improve its precision over time.

F1-Score: One of the most significant findings of the analysis is the superior perfor-
mance of the dynamic ensemble in terms of F1-Score on the balanced dataset. The

78

Figure 4.8: Accuracy across different folds, for the imbalanced (left) and balanced (right)
datasets.

Figure 4.9: Precision across different folds, for the imbalanced (left) and balanced (right)
datasets.

dynamic ensemble consistently outperformed the static ensemble across all the data folds,
highlighting its ability to maintain a balance between precision and recall. This was par-
ticularly evident in the balanced dataset, where the adaptive weighting mechanism of the
dynamic ensemble allowed it to achieve higher F1-Scores across all folds. In contrast, the
static ensemble struggled to match the dynamic ensemble performance on the imbalanced
dataset, where its fixed weighting limited its ability to optimize the balance between pre-
cision and recall. Figure 4.10 illustrates the F1-Scores for both ensembles over time,
providing a clear comparison of their performance on both datasets.

Through this comparative analysis, it is evident that the ability of the dynamic en-
semble to adjust weights based on recent performance and to apply forgetting mecha-
nisms plays a crucial role in enhancing its ability to generalize and adapt to new data.
The results suggest that incorporating these mechanisms into an ensemble model can
significantly improve its performance on complex and evolving datasets, particularly in
environments where data are processed incrementally in folds.

Overall, the dynamic ensemble approach offers a major advantage over static ensem-
bles, particularly in environments characterized by evolving data conditions. The ability

79

Figure 4.10: F1-Score across different folds, for the imbalanced (left) and balanced (right)
datasets.

to adapt to changing data distributions and model performance allows the dynamic en-
semble to achieve higher levels of accuracy, precision, recall, and F1-score, making it a
more effective tool for real-time decision-making in adaptive machine learning systems.

Although dynamic weight analysis suggests improvements in prediction capability,
these observations require statistical validation to confirm their significance. The fol-
lowing section describes the implementation of statistical testing to verify the observed
performance differences.

4.2.2 Statistical Test Results

This section implements statistical hypothesis testing to validate the performance im-
provements observed through the dynamic weight adjustment. The analysis employs the
Wilcoxon signed-rank test to evaluate whether the differences between the dynamic and
static approaches represent statistically significant improvements in the prediction capa-
bility.

The results of statistical tests conducted to compare the performances of the dynamic
and static ensemble methods are presented and interpreted. The Wilcoxon signed-rank
test was employed to evaluate whether there was a statistically significant difference in
the performance metrics (accuracy, precision, recall, and F1-score) across the ten data
folds for both imbalanced and balanced datasets.

Hypothesis

• Null Hypothesis (H0): There is no statistically significant difference in perfor-
mance between the dynamic ensemble and the static ensemble across the evaluated
metrics (accuracy, precision, recall, and F1-score).

• Alternative Hypothesis (H1): There is a statistically significant difference in
performance between the dynamic ensemble and the static ensemble across the
evaluated metrics (accuracy, precision, recall, and F1-score).

80

These hypotheses aim to determine whether the dynamic ensemble’s adaptive weight-
ing mechanism significantly enhances the performance compared to the static ensemble.

Imbalanced Dataset

The Wilcoxon signed-rank test was applied to the performance metrics from the imbal-
anced dataset, with the following results.

Measure Score p-value

Accuracy 19 0.4316
Precision 3 0.0098
Recall 0 0.0020
F1-Score 23 0.6953

Table 4.4: Results of the performance measures using a significant threshold of 0.05.

• Accuracy: The p-value of 0.4316 suggests no statistically significant difference
in accuracy between the dynamic and static ensembles. This indicates that both
approaches performed similarly in terms of the overall classification accuracy. How-
ever, given that the architecture aims to enhance adaptability, the lack of significant
improvement in accuracy suggests that, although the dynamic weighting mechanism
may adjust model contributions, it does not necessarily enhance the global accuracy
metric for imbalanced datasets.

• Precision: With a p-value of 0.0098, the difference in precision between the dy-
namic and static ensembles is statistically significant. The superior precision of
the dynamic ensemble indicates its effectiveness in reducing false positives, which
is crucial in scenarios where the cost of false alarms is high. This aligns with the
objective of developing an architecture that can adaptively prioritize models that
contribute to more accurate and reliable predictions.

• Recall: The test results show a statistically significant difference in recall (p-value
= 0.0020), with the dynamic ensemble outperforming the static ensemble. This sug-
gests that the dynamic ensemble is more effective at correctly identifying instances of
the minority class, thereby addressing a common challenge in imbalanced datasets.
This finding underscores the ability of the dynamic ensemble to improve the sen-
sitivity of the architecture to true positives, thereby fulfilling the key objectives of
this study.

• F1-Score: The p-value of 0.6953 indicates no significant difference in F1-scores
between the two approaches. Although the dynamic ensemble showed improvements
in precision and recall, these gains did not translate into a statistically significant
difference in the F1-score, which balances both metrics. This suggests that, although
the dynamic ensemble offers targeted improvements, the overall balance of precision
and recall may still align with the static approach under certain conditions.

81

The results for the imbalanced dataset revealed significant differences in precision and
recall but no significant differences in accuracy or F1-score. This suggests that while
the dynamic ensemble performed better at identifying true positives and reducing false
positives, the overall balance of precision and recall (F1-score) was similar to that of the
static ensemble.

Balanced Dataset

For the balanced dataset, the Wilcoxon signed-rank test produced the following results.

Measure Score p-value

Balanced accuracy 6 0.0502
Precision 1 0.0109
Recall 0 0.3173
F1-Score 6 0.0506

Table 4.5: Results of the performance measures using a significant threshold of 0.05.

• Accuracy: The p-value of 0.0502 is on the borderline of statistical significance,
suggesting that the dynamic ensemble may have a slight edge in accuracy over the
static ensemble. This marginal improvement indicates that the dynamic weighting
mechanism can contribute to a better overall performance when class distributions
are balanced, aligning with the study’s objective of developing an adaptable system
that maintains high accuracy across varying data conditions.

• Precision: A p-value of 0.0109 confirms a statistically significant difference in pre-
cision, with the dynamic ensemble outperforming the static approach. This finding
reinforces the ability of the dynamic ensemble to effectively minimize false positives,
which is crucial in balanced datasets, where both classes are equally important.
This result supports the study’s goal of enhancing the prediction specificity through
adaptive model contributions.

• Recall: The p-value of 0.3173 indicates no significant difference in recall between
the two ensembles. Both methods performed similarly in identifying true positives,
suggesting that, while the dynamic ensemble improves precision, recall is not com-
promised. This balance is critical for maintaining the robustness of the overall model
in balanced scenarios in line with the objectives of the study.

• F1-Score: With a p-value of 0.0506, the F1-score difference is close to statistical
significance. This suggests that the dynamic ensemble may balance precision and
recall slightly better than the static ensemble, offering a more nuanced improvement
in performance. This aligns with the study’s aim to achieve a more balanced and
adaptable predictive system.

The results for the balanced dataset showed that the precision metric was significantly
different, with the dynamic ensemble outperforming the static ensemble. Although the

82

accuracy and F1-score approached statistical significance, they did not meet the threshold,
suggesting only marginal improvements in these areas for the dynamic ensemble. Recall
showed no significant difference between the two ensembles, indicating similar performance
in capturing true positives.

Summary of Statistical Test Results Statistical tests highlighted the strengths of
the dynamic ensemble approach within the architecture, particularly in terms of precision
and recall. The dynamic ensemble consistently outperformed the static ensemble in terms
of precision across both datasets, demonstrating its ability to minimize false positives,
which is essential in high-stake decision-making environments. In the imbalanced dataset,
the superior recall of the dynamic ensemble further indicated its effectiveness in identifying
minority class instances, thereby addressing a key challenge in churn prediction.

However, the lack of statistically significant differences in accuracy and F1-score sug-
gests that the benefits of the dynamic ensemble may be more pronounced in specific met-
rics than across all performance measures. These findings underscore the potential of the
architecture to enhance specific aspects of model performance through dynamic weighting.
However, they also highlight the need for further refinement to achieve broader improve-
ments across all metrics. Overall, the adaptive capabilities of the dynamic ensemble offer
significant advantages in certain evaluation metrics, contributing to the development of a
more effective and adaptable predictive system within the cognitive architecture frame-
work.

Having established the statistical significance of our findings, it is crucial to ensure that
these results are replicated and verified by other researchers. The following section details
the measures implemented to ensure reproducibility of our experimental framework.

4.3 Model Performance Across Datasets

This section compares the performance of the individual models across three balanced
datasets: Churn-in-Telecom, IBM Telco, and Churn-data-UCI. The comparisons included
accuracy, precision, recall, F1-score, and ROC-AUC. By examining how each model per-
forms across multiple datasets, this analysis aimed to demonstrate the consistency and
adaptability of the model. Table 4.6 presents a summary of the individual model metrics
across the three datasets.

Analysis of Model Performance

The results of the table 4.6 analysis of the individual model performance across the
datasets revealed the following key insights.

1. Random Forest, Decision Tree and KNN emerged as the top performers
across all three datasets, particularly for the Churn-in-Telecom dataset, where they
achieved the highest accuracy and F1-scores.

• Random Forest reached its peak performance on the Churn-in-Telecom dataset
with an F1-score of 98.01%.

83

Model Accuracy Precision Recall F1-Score ROC-AUC

Churn-in-Telecom Dataset

Naive Bayes 84.68% 0.8597 0.8468 0.8475 0.8899
Decision Tree 92.11% 0.9211 0.9211 0.9211 0.9361
Random Forest 98.01% 0.9801 0.9801 0.9801 0.9982
KNN 98.82% 0.9883 0.9882 0.9882 0.9892
SVM 82.86% 0.8283 0.8286 0.8279 0.8216
Logistic 82.77% 0.8276 0.8277 0.8267 0.8976

IBM Telco Dataset

Naive Bayes 89.33% 0.8938 0.8933 0.8934 0.9583
Decision Tree 93.17% 0.9317 0.9317 0.9317 0.9385
Random Forest 94.92% 0.9494 0.9492 0.9491 0.9875
KNN 90.23% 0.9026 0.9023 0.9024 0.9301
SVM 91.76% 0.9176 0.9176 0.9175 0.9169
Logistic 92.21% 0.9221 0.9221 0.9221 0.9773

Churn-data-UCI Dataset

Naive Bayes 77.73% 0.7758 0.7773 0.7764 0.8501
Decision Tree 85.20% 0.8511 0.8520 0.8509 0.8701
Random Forest 87.60% 0.8763 0.8760 0.8744 0.9307
KNN 78.53% 0.7983 0.7853 0.7714 0.8198
SVM 80.93% 0.8076 0.8093 0.8077 0.7904
Logistic 81.07% 0.8089 0.8107 0.8090 0.8783

Table 4.6: Model performance comparison across different datasets (highlighted cells in-
dicate top two performing models by accuracy for each dataset).

• KNN achieved an F1-score of 98.82% for the same dataset, highlighting its
sensitivity to balanced data distributions.

2. Naive Bayes, Decision Tree, SVM, and Logistic Regression showed vari-
ability in performance across datasets, with Naive Bayes being more effective on the
IBM Telco dataset compared to the Churn-data-UCI dataset.

3. Logistic Regression and SVM performed better on the IBM Telco dataset
due to their linear nature, which could better capture the relationships within that
dataset.

Dynamic vs. Static Ensemble Performance

Tables 4.7 and 4.8 present the performance metrics of both the dynamic and static
ensembles over ten data folds for each dataset. A performance comparison between the
static and dynamic approaches revealed dataset-specific patterns.

84

Fold Dynamic Ensemble Static Ensemble

1 94.35% 94.35%
2 93.79% 93.22%
3 96.05% 95.48%
4 95.35% 94.92%
5 93.79% 92.09%
6 96.61% 96.61%
7 91.96% 90.96%
8 94.66% 93.22%
9 93.53% 92.09%
10 92.09% 90.66%

Table 4.7: Dynamic vs. static ensemble accuracy over time for IBM Telco dataset. Val-
ues highlighted in green indicate where the dynamic ensemble achieved higher accuracy
compared to the static ensemble.

Fold Dynamic Ensemble Static Ensemble

1 90.33% 90.10%
2 94.32% 92.67%
3 93.56% 94.33%
4 96.28% 95.67%
5 95.45% 93.00%
6 93.67% 90.00%
7 94.67% 94.33%
8 95.20% 93.33%
9 94.67% 91.00%
10 92.00% 90.40%

Table 4.8: Dynamic vs. static ensemble accuracy over time for Churn-data-UCI dataset.

4.4 Comparison with Existing Adaptive Ensemble Meth-
ods

To better understand the effectiveness of the proposed RTCP system, it was compared
with the adaptive ensemble framework described in existing literature [24]. The com-
parison centers on accuracy across similar datasets used for churn prediction, providing
insights into how the RTCP system performs against established adaptive ensemble meth-
ods.

Overview of the Adaptive Ensemble Framework

The adaptive ensemble framework described in the referenced study employs a stacking
approach with a meta-learner to optimize the contributions of various base models, includ-
ing XGBoost, LightGBM, LSTM, MLP, and SVM. This method is designed to improve

85

predictive accuracy by dynamically adjusting the weights of individual models, thus en-
abling the ensemble to effectively adapt to different data distributions. The performance
of this adaptive ensemble was evaluated using the IBM Telco, Churn-in-Telecom, and
Orange Telecom datasets, demonstrating high accuracy and robust performance across
these datasets.

Performance Comparison

Table 4.9 presents the accuracy achieved by both the adaptive ensemble and proposed
RTCP system across three different datasets: IBM Telco, Churn-in-Telecom, and Orange
Telecom.

Dataset Shaikshurab
et al. This Work

IBM Telco 96.65% 93.62%
Churn-in-Telecom 95.60% 95.92%
Orange Telecom 99.89% 94.52%

Table 4.9: Accuracy comparison between the adaptive ensemble and the proposed RTCP
dynamic ensemble across different datasets.

The results indicate that the adaptive ensemble achieves a slightly higher accuracy
on the IBM Telco dataset (96.65% vs. 93.62%) and Orange Telecom dataset (99.89% vs.
94.52%). However, the RTCP system demonstrated comparable accuracy on the Churn-
in-Telecom dataset (95.92% vs. 95.60%), demonstrating its competitiveness, particularly
in handling balanced datasets.

It is important to note that the adaptive ensemble was implemented within a scikit-
learn environment that provided optimized implementations of models such as XGBoost,
LightGBM, and other gradient-boosting learners. These models often benefit from more
efficient algorithms and better integration within Python’s machine learning ecosystem.
In contrast, the cognitive architecture RTCP system was developed using the Java-based
WEKA library, where certain models, especially complex ones, such as XGBoost or Light-
GBM, are not directly available. This limitation in the Java environment contributes to
the marginally lower performance of the RTCP system. The implementation challenges
faced in WEKA, which lacks some of the more sophisticated algorithms available in scikit-
learn, may explain the performance gap observed for some datasets.

Discussion of Findings

This comparison reveals several key findings.

1. Accuracy: The adaptive ensemble achieves higher accuracy on the IBM Telco and
Orange Telecom datasets, indicating its potential advantage in handling complex
datasets. However, the RTCP system performed competitively on the Churn-in-
Telecom dataset, demonstrating its robustness in balanced data scenarios.

86

2. Simplified Architecture: The RTCP system uses a simpler cognitive architecture
that dynamically adjusts model weights without the need for a meta-learner. This
makes it easier to implement and maintain.

3. Real-Time Adaptability: The RTCP system adapts well to evolving data pat-
terns, making it suitable for real-time churn prediction tasks. Dynamic weight ad-
justments ensure optimal contributions from individual models, allowing the RTCP
to adjust more effectively to change data distributions.

Although the adaptive ensemble achieved marginally higher accuracy on some datasets,
mainly because of the advantages of the scikit-learn environment, the RTCP system offers
a more adaptable solution for real-time churn prediction. Its comparable accuracy and
adaptability highlight its potential as an alternative to more complex ensemble meth-
ods, particularly when deployed in environments with limited model support. Despite its
challenges, the RTCP system demonstrates strong potential for real-time streaming data
applications.

4.5 Final Remarks

Integrating dynamic ensemble learning within the cognitive architecture offers significant
performance enhancements over static ensemble methods, particularly when handling im-
balanced and balanced datasets. The ability of the dynamic ensemble to adaptively adjust
model weights based on real-time performance metrics ensures robust and reliable churn
prediction, demonstrating the effectiveness of the architecture in optimizing individual
model contributions. Furthermore, the adaptability of the architecture to changing data
patterns over time underscores its suitability for real-time, evolving environments, fulfill-
ing the study’s objectives of developing an effective and adaptable predictive system.

87

Chapter 5

Conclusion

This study does not focus solely on the performance improvements of dynamic ensemble
learning but rather on the potential of integrating a cognitive architecture into ensemble
learning. The key contribution of this study lies in harnessing the power of cognitive
architectures to improve modularity, real-time adaptability, scalability, and the manage-
ment of memory objects through codelets features that have not been explored in the
domain of supervised learning. This conclusion synthesizes the results, emphasizing the
conceptual innovations brought about by the cognitive architecture framework and its
broader implications for future machine learning systems.

5.1 Answering Research Questions

With the results reported in the previous chapter, we can now address how these findings
specifically answer our research questions. The following section synthesizes the experi-
mental results to provide clear responses to the study’s primary research objectives.

Addressing Research Question 1

How does dynamic ensemble learning within the proposed cognitive architec-
ture improve prediction accuracy in real-time churn prediction?

The experimental results demonstrate that dynamic ensemble learning enhances real-
time churn prediction performance compared to static ensemble methods on the two
datasets. The reported metrics are the averages calculated across all the data folds,
ensuring a comprehensive performance evaluation.

• Dynamic Ensemble: Achieved an average accuracy of 95.92%, precision of 97.71%,
recall of 95.06%, and an F1-Score of 96.37%.

• Static Ensemble: Showed an average accuracy of 95.45%, precision of 96.88%,
recall of 95.38%, and an F1-Score of 96.12%.

The ability of the dynamic ensemble to dynamically adjust model weights allowed it
to leverage high-performing models, such as KNN and Random Forest, more effectively.
This resulted in higher accuracy and better generalization on the balanced dataset. The

88

improvement highlights the advantage of dynamic ensemble methods in optimizing model
contributions based on real-time performance, thereby enhancing overall predictive accu-
racy and reliability (Figures 4.6, 4.7, 4.8, 4.9, and 4.10).

Addressing Research Question 2

How effectively does the proposed cognitive architecture adapt to real-time
changes in data patterns?

The cognitive architecture demonstrated strong adaptability to changing data pat-
terns over time on balanced datasets, as evidenced by the dynamic ensemble performance
metrics and weight distribution analyses. The reported metrics are averaged across all
folds, emphasizing the sustained performance and adaptability of the system.

• The dynamic ensemble achieved stable and upward trends in performance metrics,
with an average accuracy of 95.92%, precision of 97.71%, recall of 95.06%, and an
F1-Score of 96.37%.

• The weight distribution dynamically shifted to favor models excelling under bal-
anced conditions, such as KNN and Random Forest, ensuring responsiveness to
evolving data patterns (Figures 4.6, 4.7, 4.8, 4.9, and 4.10).

Statistical test results confirmed the adaptability of the architecture. For both datasets,
the dynamic ensemble showed statistically significant improvements in precision and re-
call compared with the static ensemble (Tables 4.4 and 4.5), highlighting its capability to
adapt to model contributions based on recent performance. These findings demonstrate
that the proposed cognitive architecture effectively adapts to changing data patterns and
optimizes the model weights in real time to sustain and enhance predictive performance.

5.2 Key Findings

The critical insight from this research is not just in achieving higher predictive perfor-
mance, but also in demonstrating how cognitive architectures provide a flexible and scal-
able framework for managing dynamic ensemble learning in complex environments. Key
findings include:

1. Modularity and Real-Time Adaptability: By implementing the dynamic en-
semble learning within a cognitive architecture, we introduced a modular approach
where individual models act as components that can be dynamically weighted, ad-
justed, or replaced as the system processes data in real-time. The use of codelets
allows specialized processing tasks that adaptively contribute to decision-making.
This architecture ensures that the system can prioritize high-performing models
while diminishing the influence of underperforming models as new data become
available. The emphasis on real-time adaptability was critical because it allowed
the system to continually learn and adjust, enhancing its accuracy and resilience to
changing data conditions.

89

2. Scalability and Flexibility: The cognitive architecture’s modular design inher-
ently supports scalability, allowing the system to grow and evolve as more models,
data types, and processing capabilities are introduced. This makes the architecture
suitable for a wide range of applications requiring real-time decision making and the
ability to integrate new models and data streams without significant reconfigura-
tion. Scalability also extends to managing memory objects, where the architecture
can dynamically store and retrieve important information based on the context and
task requirements, further enhancing its flexibility.

3. Memory Objects and Codelets: The cognitive architecture’s use of memory
objects and codelets enabled efficient management of information and tasks. Mem-
ory objects store essential knowledge from models and processed data, allowing the
system to recall and utilize past experiences for better decision-making. Codelets
are lightweight, task-oriented processes that handle specific responsibilities such
as model weight adjustments, data fold processing, and performance evaluations.
This design provides an organized and efficient way of handling complex, evolving
datasets, which traditional machine learning approaches may struggle to manage in
real time.

4. Improved Generalization and Robustness: The cognitive architecture demon-
strated superior generalization capabilities through dynamic weight adjustments
and real-time processing. Even though performance metrics such as accuracy and
F1-score were strong, the key achievement was how the architecture maintained ro-
bust decision-making under varying conditions. This adaptability ensures that the
system can not only respond to current data patterns but also anticipate and ad-
just to future trends in data, enhancing its longevity and application across various
real-world scenarios.

5.3 Implications of Findings

The findings of this research have broad implications, particularly in the areas of adaptive
machine learning systems and real-time decision making.

• Transforming Ensemble Learning: By shifting the focus from static models to
dynamic, cognitive-driven ensemble systems, this research opens new pathways for
enhancing the effectiveness of machine learning systems in environments character-
ized by constant change. The cognitive architecture’s ability to manage modularity,
process real-time data, and scale effectively allows for a more robust and adaptive
ensemble learning system that can significantly improve machine learning.

• Applications in Real-Time Systems: The use of cognitive architectures in this
research makes a compelling case for their application in real-time systems where
adaptability and modularity are critical, different domains where decisions must
be made rapidly and based on evolving data streams, stand to benefit significantly
from this type of approach. The capability of the architecture to dynamically adjust

90

model weights based on performance offers a more nuanced system for decision-
making tasks.

• Long-Term Learning and Adaptation: The integration of memory objects and
codelets ensures that the system is responsive to immediate data and capable of
long-term learning and adaptation. This continuous learning process allows the
architecture to maintain high levels of performance and reliability over time, even
as data evolve or drift. Long-term adaptability is essential for systems that operate
in unpredictable or rapidly changing environments.

• Scalable and Modular Systems: The architecture allows for a scalable and
modular approach to machine learning, where new models or data streams can be
incorporated seamlessly. This flexibility extends the usefulness of ensemble methods
beyond static datasets, allowing for dynamic interactions between models, real-time
data processing, and scalable growth as the system complexity increases.

5.4 Broader Applications

The cognitive architecture approach demonstrated in this research has broad potential ap-
plications beyond the specific use cases of this study. The cognitive architecture framework
can provide a solution that leverages modularity and adaptability in fields that require
constant adaptation to changing environments and data, such as real-time analytics and
large-scale automated decision-making.

• Real-Time Financial Analysis: Financial markets operate in highly dynamic
environments where data streams constantly shift. A cognitive architecture can
enable real-time adaptation to market conditions, thereby improving the accuracy
of predictions related to stock performance, risk assessment, and fraud detection.

• Healthcare: In healthcare, where patient data is continuously being updated, cog-
nitive architectures can help build adaptive systems that make real-time predictions
and learn from past patient outcomes to improve future diagnostics and treatment
recommendations.

5.5 Limitations and Future Research Directions

Despite these promising results, limitations must be acknowledged as they provide an
important context for interpreting the findings and offer guidance for future research.

5.5.1 Limitations

One of the primary limitations of this study is the use of cognitive architectures in a
domain in which the typical application of reinforcement learning is not the central fo-
cus. Cognitive architectures are traditionally better suited for environments where au-
tonomous decision-making and continuous learning are critical, such as in reinforcement

91

learning tasks. However, this research adapted their use for a supervised learning task,
specifically customer churn prediction, which required additional design considerations to
simulate adaptability and dynamic decision-making. This adaptation, although successful
in certain areas, may not fully exploit the capabilities of cognitive architectures in tasks
that align more closely with their inherent strengths.

Another key limitation is the reliance on Java-based machine learning libraries in this
study. While cognitive architecture frameworks such as the Cognitive System Toolkit
(CST) are essential for modular implementation, the use of Java libraries like Weka pre-
sented challenges in scalability and efficiency. These limitations are implementation-
specific and not inherent to CST as a framework. For instance, Weka lacks support for
advanced machine learning algorithms such as gradient boosting, which are more readily
available in Python libraries like scikit-learn. This disparity imposed constraints on the
optimization and performance of the models. Transitioning to more robust libraries could
significantly enhance the scalability and computational efficiency of future implementa-
tions.

In addition, the research relied on a static dataset for training and evaluation, which
does not fully capture the complexities of real-time customer churn prediction. Although
the system was designed to simulate real-time adaptability, the absence of live-streaming
datasets introduces a gap between the proposed framework and real-world applications,
where continuous data streams and real-time adjustments are critical. This highlights the
need for further evaluation of the cognitive architecture in live environments to validate
its full potential for real-time decision-making.

5.5.2 Transitioning to a Fully Real-Time System

Acknowledging Simulation Limitations

This study simulates real-time prediction by processing static datasets incrementally to
mimic the behavior of a real-time system. While this approach provides valuable insights
into the potential adaptability and scalability of the proposed framework, it does not
fully replicate the complexities of a true real-time environment. Specifically, the system
lacks live-streaming data integration, real-time feedback mechanisms, and infrastructure
optimized for continuous data processing. These limitations highlight the need for further
development to transition the framework into a fully operational real-time system.

Roadmap for Transitioning to Real-Time Prediction

To address these limitations, the following steps are proposed for future development:

1. Integration of Live-Streaming Datasets

• Replace static datasets with live data streams from relevant sources, such as
customer transaction logs, real-time user interactions, or IoT sensors.

• Incorporate tools and platforms like Apache Kafka or AWS Kinesis to manage
and process continuous data streams efficiently.

92

2. Implementation of Real-Time Feedback Mechanisms

• Develop mechanisms to capture real-time system performance metrics, such as
latency, accuracy, and response time, to enable immediate system adjustments.

• Introduce adaptive learning techniques that update model weights dynamically
based on feedback from recent predictions and actual outcomes.

3. Dynamic Data Preprocessing

• Implement automated data preprocessing pipelines that operate in real time,
addressing issues such as missing data, outliers, and class imbalances on the
fly.

4. Validation in Real-World Scenarios

• Test the fully real-time system in real-world environments to assess its perfor-
mance under realistic conditions, such as diverse customer behaviors.

• Collaborate with industry partners to deploy the system in operational settings
and gather feedback for iterative improvement.

5.5.3 Expected Benefits

Transitioning to a fully real-time system would enable the proposed framework to handle
live, continuous data streams, making it more effective in addressing real-world challenges
in churn prediction. Real-time adaptability and feedback mechanisms would enhance
the system’s responsiveness, while infrastructure upgrades would ensure scalability and
reliability in dynamic environments.

5.5.4 Future Research Directions

Future work could explore integrating CST with advanced machine learning libraries in
Python to overcome the scalability and efficiency limitations observed in this study’s
Java-based implementation. By leveraging Python’s optimized libraries, such as scikit-
learn and TensorFlow, the system’s performance and scalability could be significantly
improved. Additionally, transitioning to live-streaming datasets would provide a more
realistic assessment of the framework’s real-time adaptability and its capacity to handle
continuously evolving data.

Another promising direction would involve expanding the cognitive architecture’s func-
tionality to include reinforcement learning techniques. This would allow the system to
capitalize on the natural strengths of cognitive architectures in autonomous decision-
making and dynamic learning environments. Furthermore, future studies could investi-
gate integrating additional variables, such as external economic indicators, into the churn
prediction model to improve its predictive accuracy and broader applicability.

Finally, exploring alternative cognitive architecture toolkits that are designed specif-
ically for real-time data handling could enhance the modularity and adaptability of fu-
ture implementations. These efforts would further validate the framework’s potential to

93

address the challenges of real-time customer churn prediction in dynamic and complex
environments.

In conclusion, although this study makes meaningful contributions to real-time churn
prediction by integrating cognitive architectures with ensemble learning, these limita-
tions highlight areas where future research can build upon these foundations to achieve
more adaptive, scalable, and effective solutions. By addressing these constraints, future
studies can further refine the application of cognitive architectures in dynamic, real-time
environments, and push the boundaries of customer churn prediction.

5.6 Final Thoughts

This study presented an ensemble learning method by introducing a new approach to
adaptive machine learning systems. By leveraging the strengths of cognitive architectures,
such as modularity, real-time adaptability, scalability, and memory management, our
approach offers significant advancements in the design, implementation, and deployment
of machine learning systems in a churn prediction context. Integrating cognitive principles
into machine learning frameworks is a critical step forward in developing more intelligent,
responsive, and effective learning systems with the potential for widespread applications
in real-world environments where data are constantly evolving. This investigation laid the
foundation for future research on cognitive architectures in supervised learning, presenting
exciting opportunities to further enhance the adaptability and performance of machine
learning systems in various complex and dynamic domains.

94

Bibliography

[1] V. Nagesh, “Customer churn prediction,” International Journal of Scientific Research
in Engineering and Management, vol. 7, no. 12, pp. 1–6, December 2023.

[2] A. H. M, B. T, S. Tanisha, S. B, and C. C. Shanuja, “Customer churn prediction using
synthetic minority oversampling technique,” in 2023 4th International Conference on
Communication, Computing and Industry 6.0 (C2I6). IEEE, December 2023, pp.
01–05.

[3] B. Huang, M. T. Kechadi, and B. Buckley, “Customer churn prediction in telecom-
munications,” Expert Systems with Applications, vol. 39, no. 1, pp. 1414–1425, 2012.

[4] M. Saghir, Z. Bibi, S. Bashir, and F. Khan, “Churn prediction using neural network
based individual and ensemble models,” in 2019 16th International Bhurban Confer-
ence on Applied Sciences and Technology (IBCAST). IEEE, 2019, pp. 634–639.

[5] S. K. Wagh, A. A. Andhale, K. S. Wagh, J. R. Pansare, S. P. Ambadekar, and
S. Gawande, “Customer churn prediction in telecom sector using machine learning
techniques,” Results in Control and Optimization, vol. 14, p. 100342, March 2024.

[6] N. Tamuka and K. Sibanda, “Real time customer churn scoring model for the telecom-
munications industry,” in 2020 2nd International Multidisciplinary Information Tech-
nology and Engineering Conference (IMITEC). IEEE, 2020, pp. 1–9.

[7] A. Chakraborty, V. Raturi, and S. Harsola, “Bbe-lswcm: A bootstrapped ensemble
of long and short window clickstream models,” in Proceedings of the 7th Joint In-
ternational Conference on Data Science & Management of Data (11th ACM IKDD
CODS and 29th COMAD), 2024, pp. 350–358.

[8] C. Lebiere, E. A. Cranford, M. Martin, D. F. Morrison, and A. Stocco, “Cognitive
architectures and their applications,” in 2022 IEEE 8th International Conference on
Collaboration and Internet Computing (CIC). IEEE, December 2022, pp. 55–60.

[9] R. Wolniak, “Analyzing customer behavior—employing business analytics within in-
dustry 4.0 ecosystems,” Scientific Papers of Silesian University of Technology, vol.
195, no. 39, June 2024.

[10] S. S. Gokulnath and M. Revathi, “Leveraging data analytics in azure for effective
churn management,” in 2024 Second International Conference on Emerging Trends
in Information Technology and Engineering (ICETITE), February 2024.

95

[11] Z. Hasan and D. Stablichenkova, “Design of long short term memory based deep
learning model for customer churn prediction in business intelligence,” International
Journal of Advances in Applied Computational Intelligence (IJAACI), vol. 5, no. 1,
pp. 56–64, 2024.

[12] V. Nguyen, A. Fermanian, A. Guilloux, and A. Barbieri, “Flash: a fast joint model for
longitudinal and survival data in high dimension,” arXiv preprint arXiv:2309.03714,
2023, proposes a model for real-time churn prediction using longitudinal features.

[13] M. Mallegowda and R. Sanjana, “A comparative analysis of serial and parallel data
mining approaches for customer churn prediction in telecom,” International Research
Journal on Advanced Science Hub, 2023, compares data mining approaches for real-
time churn prediction.

[14] L. Nalla and V. Reddy, “Machine learning and predictive analytics in e-commerce:
A data-driven approach,” Journal of E-commerce Studies and Technology, 2024.

[15] A. Soni, J. Mishra, and M. Dixit, “Comparative study of bank customers churn pre-
diction using ai/ml,” in 2024 IEEE 13th International Conference on Communication
Systems and Network Technologies (CSNT). IEEE, 2024, pp. 1359–1365.

[16] N. Alboukaey, A. Joukhadar, and N. Ghneim, “Dynamic behavior based churn pre-
diction in mobile telecom,” Expert Systems with Applications, vol. 162, p. 113779,
2020.

[17] A. Chakraborty, V. Raturi, and S. Harsola, “Ricon: A ml framework for real-time and
proactive intervention to prevent customer churn,” arXiv preprint arXiv:2203.16155,
2022.

[18] X. Zhu, J. Li, J. Ren, J. Wang, and G. Wang, “Dynamic ensemble learning
for multi-label classification,” Information Sciences, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025521001980

[19] D. Seo and Y. Yoo, “Improving shopping mall revenue by real-time customized digital
coupon issuance,” IEEE Access, vol. 11, pp. 7924–7932, 2023.

[20] A. L. Paraense, K. Raizer, S. M. de Paula, E. Rohmer, and R. R. Gudwin, “The
cognitive systems toolkit and the cst reference cognitive architecture,” Biologically
Inspired Cognitive Architectures, vol. 17, pp. 32–48, 2016.

[21] A. L. O. Paraense, K. Raizer, and R. R. Gudwin, “A machine consciousness approach
to urban traffic control,” Biologically Inspired Cognitive Architectures, vol. 15, pp.
61–73, 2016.

[22] F. Grassiotto, E. Colombini, A. d. S. Simões, and R. R. Gudwin, “Cogtom-cst:
An implementation of the theory of mind for the cognitive systems toolkit,” in
Proceedings of the 14th International Conference on Agents and Artificial Intelligence
(ICAART). Setubal, Portugal: SCITEPRESS, January 2022, pp. 462–469. [Online].
Available: http://hdl.handle.net/11449/237536

https://www.sciencedirect.com/science/article/pii/S0020025521001980
http://hdl.handle.net/11449/237536

96

[23] J. Vallverdú, M. Talanov, S. Distefano, M. Mazzara, A. Tchitchigin, and I. Nurgaliev,
“A cognitive architecture for the implementation of emotions in computing systems,”
Biologically Inspired Cognitive Architectures, vol. 15, pp. 34–40, 2016.

[24] M. A. Shaikhsurab and P. Magadum, “Enhancing customer churn prediction in
telecommunications: An adaptive ensemble learning approach,” arXiv preprint
arXiv:2408.16284, 2024.

[25] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak, “Ensemble
learning for data stream analysis: A survey,” Information Fusion, vol. 37, pp.
132–156, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1566253516302025

[26] L. Yang, D. Li, and Y. Lu, “Prediction modeling and analysis for telecom customer
churn in two months,” arXiv preprint, vol. cs.IR, p. 22, 2019. [Online]. Available:
https://arxiv.org/abs/1911.00558

[27] V. Umayaparvathi and K. Iyakutti, “Applications of data mining techniques in tele-
com churn prediction,” International Journal of Computer Applications, vol. 42,
no. 20, pp. 5–9, March 2012.

[28] J. Rabbah, M. Ridouani, and L. Hassouni, “A new churn prediction model based on
deep insight features transformation for convolution neural network architecture and
stacknet,” International Journal of Web-Based Learning and Teaching Technologies
(IJWLTT), vol. 17, no. 1, pp. 1–18, 2022.

[29] S. Çelik and S. T. Tayalı, “Resampling and ensemble strategies for churn prediction,”
Bilişim Teknolojileri Dergisi, vol. 16, no. 4, pp. 263–273, 2023.

[30] F. Merchie and D. Ernst, “Churn prediction in online gambling,” arXiv preprint
arXiv:2201.02463, 2022, 14 pages, 3 figures. Submitted to Expert Systems with
Applications. [Online]. Available: https://arxiv.org/abs/2201.02463

[31] N. Mustafa, L. S. Ling, and S. F. Abdul Razak, “Customer churn prediction
for telecommunication industry: A malaysian case study,” F1000Research,
vol. 10, p. 1274, 2021, version 1; peer review: 1 approved. [Online]. Available:
https://doi.org/10.12688/f1000research.73597.1

[32] S. Youngjung, “Machine learning based customer churn prediction in home rental
business,” Journal of Big Data, vol. 10, no. 1, p. 41, 2023. [Online]. Available:
https://doi.org/10.1186/s40537-023-00721-8

[33] F. E. Usman-Hamza, A. O. Balogun, R. T. Amosa, L. F. Capretz, H. A.
Mojeed, S. A. Salihu, A. G. Akintola, and M. A. Mabayoje, “Sampling-based novel
heterogeneous multi-layer stacking ensemble method for telecom customer churn
prediction,” Scientific African, vol. 24, p. e02223, 2024, this is an open access article
under the CC BY-NC-ND license. Available online 3 May 2024. [Online]. Available:
http://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.sciencedirect.com/science/article/pii/S1566253516302025
https://www.sciencedirect.com/science/article/pii/S1566253516302025
https://arxiv.org/abs/1911.00558
https://arxiv.org/abs/2201.02463
https://doi.org/10.12688/f1000research.73597.1
https://doi.org/10.1186/s40537-023-00721-8
http://creativecommons.org/licenses/by-nc-nd/4.0/

97

[34] J. Rabbah, M. Ridouani, and L. Hassouni, “New approach to telecom churn prediction
based on transformers,” in The 3rd International Conference on Artificial Intelligence
and Computer Vision (AICV2023). Springer, 2023, pp. 565–574, first Online: March
1, 2023.

[35] J. C. Turiho, W. Cheruiyot, A. Kibe, and I. Mungwarakarama, “Survey of data mining
techniques used for real time churn prediction,” International Journal of Advanced
Research in Computer Science and Software Engineering, vol. 7, no. 3, pp. 219–222,
March 2017.

[36] L. Almuqren et al., “An empirical study on customer churn behaviours prediction
using arabic twitter mining approach,” Future Internet, vol. 13, no. 7, p. 175, 2021.
[Online]. Available: https://www.mdpi.com/1999-5903/13/7/175

[37] M. Almeida, M. Z. Mota, W. F. de Souza, M. Nicolau, E. J. S. Luz, and G. Moreira, “A
temporal approach to customer churn prediction: A case study for financial services,”
in Proceedings, November 27 2022.

[38] E. G. Castro and M. S. Tsuzuki, “Churn prediction in online games using players’
login records: A frequency analysis approach,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 7, no. 3, pp. 255–265, 2015.

[39] P. Bertens, A. Guitart, and Á. Periáñez, “Games and big data: A scalable multi-
dimensional churn prediction model,” in 2017 IEEE conference on computational
intelligence and games (CIG). IEEE, 2017, pp. 33–36.

[40] S. Renjith, “B2c e-commerce customer churn management: Churn detection using
support vector machine and personalized retention using hybrid recommendations,”
International Journal on Future Revolution in Computer Science & Communication
Engineering (IJFRCSCE), vol. 3, no. 11, pp. 34–39, 2017.

[41] P. Lalwani, M. K. Mishra, J. S. Chadha, and P. Sethi, “Customer churn prediction
system: A machine learning approach,” Computing, vol. 104, pp. 271–294, 2021.

[42] S. Tamuka, A. Bhattacharjee, and S. Mitra, “Dynamic churn prediction in online
social platforms,” Information Sciences, vol. 543, pp. 135–151, 2020.

[43] R. Almeida, A. Ferreira, and L. Santos, “A machine learning framework for customer
churn prediction in cloud-based services,” Expert Systems with Applications, vol. 168,
pp. 114–121, 2021.

[44] D. M. M, S. R, and S. Ramineni, “A comparative analysis of serial and parallel data
mining approaches for customer churn prediction in telecom,” International Research
Journal on Advanced Science Hub, vol. 5, no. 12, pp. 413–419, 2023.

[45] O. J. Ogbonna, G. I. Aimufua, M. U. Abdullahi, and S. Abubakar, “Churn predic-
tion in telecommunication industry: A comparative analysis of boosting algorithms,”
Dutse Journal of Pure and Applied Sciences, 2024.

https://www.mdpi.com/1999-5903/13/7/175

98

[46] A. Sussman and J. B. Hollander, Cognitive Architecture: Designing for How We
Respond to the Built Environment. Elsevier, 2014.

[47] S. Hélie and R. Sun, “Cognitive architectures and agents,” in Springer Handbook of
Computational Intelligence. Springer, 2015, pp. 683–696.

[48] J. F. Sowa, “Cognitive architectures for conceptual structures,” in International Con-
ference on Conceptual Structures. Springer Berlin Heidelberg, 2011, pp. 35–49.

[49] R. Gudwin, A. Paraense, S. M. de Paula, E. Froes, W. Gibaut, E. Castro,
V. Figueiredo, and K. Raizer, “The multipurpose enhanced cognitive architecture
(meca),” Biologically Inspired Cognitive Architectures, vol. 22, pp. 20–34, 2017.

[50] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and Y. Qin, “An
integrated theory of the mind,” Psychological Review, vol. 111, pp. 1036–1060, 2004.

[51] J. E. Laird, “Extending the soar cognitive architecture,” in Proceedings of the Artifi-
cial General Intelligence Conference. Memphis, TN: IOS Press, 2008.

[52] P. Langley, K. Cummings, and D. Shapiro, “Hierarchical skills and cognitive archi-
tectures,” in Proceedings of the Twenty-Sixth Annual Conference of the Cognitive
Science Society, Chicago, IL, 2004, pp. 779–784.

[53] G. Morais, I. Loron, L. F. Coletta, A. A. Da Silva, A. Simões, R. Gudwin, P. D. P.
Costa, and E. Colombini, “Cst-godot: Bridging the gap between game engines and
cognitive agents,” in 2022 21st Brazilian Symposium on Computer Games and Digital
Entertainment (SBGames). IEEE, 2022, pp. 1–6.

[54] F. Grassiotto, E. Colombini, A. d. S. Simões, and R. R. Gudwin, “Cogtom-cst: An
implementation of the theory of mind for the cognitive systems toolkit,” in Pro-
ceedings of the 14th International Conference on Agents and Artificial Intelligence.
SCITEPRESS, January 2022, pp. 462–469.

[55] J. K. Kalita, D. K. Bhattacharyya, and S. Roy, Fundamentals of Data Science: The-
ory and Practice, 1st ed. Elsevier, November 2023.

[56] D. Sharma, A. Garg, and A. Kumar, “Ensemble learning in machine learning:
Integrating multiple models for improved predictions,” International Journal of
Applied Research, vol. 4, no. 7, pp. 61–65, July 2018. [Online]. Available:
https://www.allresearchjournal.com

[57] F. Huang, G. Xie, and R. Xiao, “Research on ensemble learning,” in 2009 Interna-
tional Conference on Artificial Intelligence and Computational Intelligence (AICI),
vol. 3. IEEE Computer Society, 2009, pp. 249–252.

[58] P. Gurram and H. Kwon, “Ensemble learning based on multiple kernel learning for
hyperspectral chemical plume detection,” pp. 649–659, 2010.

https://www.allresearchjournal.com

99

[59] M. P. Sesmero, A. I. Ledezma, and A. Sanchis, “Generating ensembles of heteroge-
neous classifiers using stacked generalization,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, vol. 5, no. 1, pp. 21–34, 2015.

[60] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, 1st ed. New
Delhi, India: Pearson Education India, 2016.

[61] R. Polikar, “Ensemble based systems in decision making,” IEEE Circuits and Systems
Magazine, vol. 6, no. 3, pp. 21–45, 2006.

[62] X. Wang, K. Nguyen, and B. P. Nguyen, “Churn prediction using ensemble learning,”
in Proceedings of the 4th International Conference on Machine Learning and Soft
Computing, 2020, pp. 56–60.

[63] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, no. 2, pp. 241–259,
1992.

[64] K. Kim and E. B. Bartlett, “Error estimation by series association for neural network
systems,” Neural Computation, vol. 7, no. 4, pp. 799–808, 1995.

[65] L. Todorovski, H. Blockeel, and S. Dzeroski, “Ranking with predictive clustering
trees,” in Proceedings of the European Conference on Machine Learning. Springer,
2002, pp. 444–455.

[66] I. H. Witten and E. Frank, “Data mining: practical machine learning tools and
techniques with java implementations,” ACM SIGMOD Record, vol. 31, no. 1, pp.
76–77, 2002.

[67] P. L. Bras, F. Sévellec, P. Tandeo, J. Ruiz, and P. Ailliot, “Selecting and weighting
dynamical models using data-driven approaches,” Nonlinear Processes in Geophysics,
2024.

[68] A. Catto, N. Jiang, A. Salleb-Aouissi, and A. Raja, “M-dew: Extending dynamic
ensemble weighting to handle missing values,” 2024.

[69] X. Zhang, Y. Zhou, Z. Lin, and Y. Wang, “Ensemble learning with dynamic weight-
ing for response modeling in direct marketing,” Electronic Commerce Research and
Applications, vol. 64, p. 101371, 2024.

[70] H. Chen, T. Wang, Y. Zhang, Y. Bai, and X. Chen, “Dynamically weighted en-
semble of geoscientific models via automated machine-learning-based classification,”
Geoscientific Model Development, vol. 16, no. 19, pp. 5685–5701, 2023.

[71] I. AlShourbaji, N. Helian, Y. Sun, A. G. Hussien, L. Abualigah, and B. Elnaim, “An
efficient churn prediction model using gradient boosting machine and metaheuristic
optimization.” Scientific Reports, vol. 13, no. 1, p. 14441, 2023.

[72] G. Cleotilde, “Building human-like artificial agents: A general cognitive algorithm
for emulating human decision-making in dynamic environments.” Perspectives on
Psychological Science, vol. 19, no. 5, pp. 860–873, 2024.

100

[73] N. Rane, S. P. Choudhary, and J. Rane, “Ensemble deep learning and machine learn-
ing: applications, opportunities, challenges, and future directions,” Studies in Medical
and Health Sciences, vol. 1, no. 2, pp. 18–41, 2024.

[74] S. Moro, R. Laureano, and P. Cortez, “Using data mining for bank direct marketing:
An application of the crisp-dm methodology,” in Proceedings of the European Simu-
lation and Modelling Conference - ESM’2011, P. N. et al., Ed. Guimaraes, Portugal:
EUROSIS, Oct. 2011, pp. 117–121.

	Glossary
	Introduction
	Context and Motivation
	Importance of Real-Time Churn Prediction
	Problem Characterization
	Objective and Justification
	Research Questions
	Significance of the Study
	Research Contributions
	Dissertation Organization

	Fundamental Concepts and Literature Review
	Literature Review Process
	Customer Churn: Concepts and Importance
	Traditional Churn Prediction Methods
	Real-Time Churn Prediction
	Cognitive Architectures: An Overview
	Ensemble Learning
	Findings and Identification of Research Gaps
	Positioning and Discussion
	Final Remarks

	Methodology
	Cognitive Architecture Implementation
	Workflow of the Proposed Methodology
	Data Processing and Analysis
	Dataset Structure and Features
	Data Preprocessing
	Model Evaluation Framework
	Evaluation Metrics
	Data Flow Management

	Implementation
	Memory Object Implementation
	Codelet System Implementation
	Integration and Execution Framework for Coordinating Ensemble Learning Within the Cognitive Architecture
	Execution Flow Implementation

	Dynamic Weight Management
	Experimental Setup
	Computational Environment
	Multi-Dataset Evaluation
	Comparative Framework
	Final Remarks

	Results and Discussion
	Model Effectiveness
	Individual Model Performance
	Comparison of Models

	Ensemble Performance
	Dynamic Weight Application Over Time
	Statistical Test Results

	Model Performance Across Datasets
	Comparison with Existing Adaptive Ensemble Methods
	Final Remarks

	Conclusion
	Answering Research Questions
	Key Findings
	Implications of Findings
	Broader Applications
	Limitations and Future Research Directions
	Limitations
	Transitioning to a Fully Real-Time System
	Expected Benefits
	Future Research Directions

	Final Thoughts

	Bibliography

