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Abstract
This master’s thesis presents the results of a study conducted at the Laboratory of
Physics of Quantum Devices (LFDQ) and Laboratory of Materials and Low Temperatures
(LMBT), whose goal was to investigate, in the context of the newly developing field of
cavity magnonics, the interaction of microwaves with metallic microwires of CoFeSiB.
The focus is on the characterization of the ferromagnetic resonance and the nature of
the coupling. The metallic character imposes challenges in describing this resonance due
to skin effect, but it also allows for the resonance to be driven by the strong induced
magnetic field of the currents generated by an impinging electric field, ultimately realizing
an electrically mediated coupling. It is this coupling that is discussed and studied in this
work.

First, the physics of ferromagnetic resonance, including its behaviour in the presence
of metallic materials, is presented, together with the description of the photon-magnon
coupling as two coupled harmonic oscillators. The two are related by dissipation in the weak
coupling regime. Then the microwires and their characteristics are presented. Following, the
main experimental techniques used are explained, and finally the results of the experiments
are displayed and analysed.

The main results are that the ferromagnetic resonance occurs at the Kittel plane resonance
condition – due to the smallness of the skin depth –, and that the coupling with the
electric field is not only realizable, but much stronger than the magnetic counterpart.
Coupling strengths of over 50 MHz were achievable, although the magnetic dissipation of
the system is too large (> 800 MHz) making it impossible a strong coupling regime, and
hence coherent coupling, to be reached.

The possibility of using the metallic character to realize this electrical coupling has not
yet been explored in cavity magnonics, although metallic materials like permalloy have
been studied. This work should raise the awareness about the importance of considering
the metallic character of samples in studying cavity magnonics, including their geometry
and electromagnetic environment.

Keywords: Cavity Magnonics; Spintronics; Ferromagnetic Resonance; Microwires; Mag-
netic Materials



Resumo

Esta tese de mestrado apresenta os resultados de um estudo conduzido no Laboratório
de Física de Dispositivos Quânticos (LFDQ) e no Laboratório de Materiais e Baixas
Temperaturas (LMBT), cujo objetivo era investigar, sob o contexto da magnônica de
cavidades, a interação de microondas com microfios de CoFeSiB. O foco é na caracterização
da ressonância ferromagnética e a natureza do acoplamento. O caráter metálico dos fios
impõe um desafio na descrição dessa ressonância, devido ao efeito pelicular, mas também
permite a ressonância ser induzida pelos fortes campos magnéticos das correntes geradas
por um campo elétrico incidente, realizando um acoplamento mediado eletricamente. É
este acoplamento que é discutido e estudado nesse trabalho.

Primeiramente, a física da ressonância ferromagnética, incluindo sob a presença de materiais
metálicos é apresentada, junto com a descrição do acoplamento fóton-magnon como dois
osciladores harmônicos acoplados. As duas descrições são relacionadas pela dissipação
no regime de acoplamento fraco. Os microfios são apresentados e, logo após, as técnicas
e os aparatos experimentais; por fim, os resultados dos experimentos são mostrados e
analisados.

Os resultados principais são que, devido ao efeito pelicular, a ressonância ferromagnética
acontece na condição de ressonância de Kittel para o plano e que o acoplamento com o
campo elétrico não é apenas realizável, mas muito mais forte que o magnético. Acoplamentos
acima de 50 MHz foram alcançados, porém a dissipação no sistema magnético era muito
grande (> 800 MHz) impossibilitando alcançar o regime de acoplamento forte, e portanto
de acoplamento coerente.

A possibilidade de usar o caráter metálico para realizar esse acoplamento elétrico ainda não
foi explorada em magnônica de cavidades, embora materiais metálicos, como permalloy,
tenham sido estudados. Este trabalho deve levantar a importância de se considerar o
caráter metálico das amostras ao estudar magnônica de cavidades, incluindo sua geometria
e ambiente electromagnético.

Palavras-chave: Magnônica de Cavidades; Spintrônica; Ressonância Ferromagnética;
Microfios; Materiais Magnéticos
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Introduction

The recent technological advancements and foundational studies in quantum
mechanics, in which single quantum systems are being measured and controlled, are
inserted in the so-called second quantum revolution (DOWLING; MILBURN, 2002). In
contrast to the first that saw the creation of the theory in the early 20th century and,
later, the blooming of based technologies like transistors and lasers, now the technology of
this second revolution has quantum mechanics as an essential modus operandi, harnessing
superposition, entanglement and coherence for applications in communication, metrology
and information processing. One of its landmarks was the development of Cavity Quantum
Electrodynamics (cavity QED), where the quantum states of Rydberg atoms in microwave
cavities and photons were directly measured and controlled (HAROCHE; RAIMOND,
2006), realizing several achievements in quantum optics that were once inconceivable.
Later, a team in Yale developed a platform using superconducting circuits to perform
experiments of cavity QED and achieve coupling regimes impossible with natural atoms
(WALLRAFF et al., 2004) and with a high potential of scalability that is nowdays the
leading technology towards the development of a quantum computer (HUANG et al., 2020)

Hybrid quantum systems leverage the physical properties of different platforms
and are an innate source of interest due to combined functionalities that are useful to
engineer different quantum devices and allow the study of these systems in the quantum
regime. Cavity Magnonics (RAMESHTI et al., 2022) study one of such systems, namely
the hybrids of confined photons in cavities with magnetic orderly systems that have
magnons as a fundamental collective excitation. The study of the interaction of magnets
with microwaves is not new and has been extensively explored in ferromagnetic resonance
experiments for decades (GRIFFITHS, 1946; KITTEL, 1947). Though the focus was usually
on the characterization of the material or of the spin waves, and not on the interaction
itself or coherence. In 2010, Soykal and Flatté (SOYKAL; FLATTÉ, 2010) predicted
that strong coupling could be achievable between a cavity and a nanomagnet with the
formation of photon-spin entangled states. In 2013, Huebl (HUEBL et al., 2013) achieved
strong coupling between a Yttrium Iron Garnet (YIG) crystal and a superconducting
resonator. Different coupling regimes were explored by Zhang (ZHANG et al., 2014) at
room temperature, and the coherent coupling of a YIG sphere with a 3D cavity was used by
Nakamura’s group to realize an effective interaction with a superconducting qubit, allowing
the detection, in the dispersive regime, of single magnons (LACHANCE-QUIRION et al.,
2017), opening the avenue of quantum magnonics (YUAN et al., 2022).

The common material used for these experiments is YIG, as it have a high spin
density that collectively increases the coupling and extremely low magnetic dissipation.
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Other materials like permalloy (PY) films in specifically engineered resonators have been
studied (HOU; LIU, 2019). In this work, a different material is explored: amorphous
CoFeSiB metallic microwires. They have been the focus of many studies due to their Giant
Magneto Impedance and other useful magnetic properties (CHIRIAC; ÓVáRI, 1996) .
Ferromagnetic resonance in those wires is challenging due to their metallic character that
makes their response highly dependent on the electromagnetic environment and skin-depth.
For instance, in 1959, Rodbell performed ferromagnetic resonance measurements in iron
whiskers (RODBELL, 1959a) and showed that a resonance could be driven by the circular
magnetic field induced by the electric field in the whisker. This configuration is sometimes
used to study thin wires, and here we use it to study their cavity-magnetic coupling. No
strong coupling was achieved due to high dissipation, but the interaction was analysed
using cavity electrodynamics, yielding interesting results.
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1 Theory of the Interaction of Microwaves
with Magnets and Wires

This chapter presents the theory of magnets coupled with microwave photons
in a cavity and ferromagnetic resonance in metallic wires. These concepts form the basis
used for interpreting the experiments discussed in subsequent chapters.

1.1 Microwave Cavity
A three-dimensional microwave cavity is a metallic shell on the order of a few

centimetres, enclosing a hollow or dielectric-filled region of space that supports resonant
microwaves. In this work, we employed nearly rectangular cavities, machined from metal
blocks with polished inner surfaces to maximize the cavity’s quality factor. Small apertures
allow antennas to be inserted, which can be used to inject and detect microwaves by
coupling to the fields inside the cavity. Figure 1 shows an example of one of the cavities
used (Cavity A).

Figure 1 – Open aluminium cavity. The two parts fit over each other, enclosing a prismatic
hollow space with an almost rectangular cross-section. SMA pins (circled in
red) serve as antennas connecting the cavity to external waveguides. Different
pin sizes lead to different coupling strengths for each port. The dimensions of
this cavity are: 26 mm × 8 mm × 36 mm.

The highly conductive walls of the cavity impose boundary conditions on the
electromagnetic fields, resulting in a discrete spectrum of resonant modes. An estimation
of the first resonant modes of a rectangular cavity can be made considering a rectangular
box of perfectly conducting surfaces. This system is the same as a rectangular waveguide
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shorted by planes at the ends. The task is to solve Maxwell equations inside the waveguide
with the boundary conditions: E∥ = B⊥ = 0 on the walls of the waveguide and then short
the ends (JACKSON, 1962; GRIFFITHS, 2013).

The coordinates are defined such that the z direction is along the longest length
– the axis of the waveguide – and y is along shortest. It is convenient to separate the z and
t dependence of the fields with the ansatz:

E(r, t) = Ẽ(x, y)ei(kzz−ωt),

B(r, t) = B̃(x, y)ei(kzz−ωt),
(1.1)

where ω is the frequency of the wave, kz is the z-direction wavenumber. The Maxwell
equations then turn into the waveguide Maxwell equations:

∇ · B = 0 ∇ · E = 0

∇ × E = iωB ∇ × B = − iω

c2 E
(1.2)

Because of the boundary conditions of the hollow waveguide, waves with
Ez = Bz = 0, the so-called transverse electric magnetic (TEM) waves, cannot exist. The
possible modes are then either transverse electric (TE) Ez = 0 or transverse magnetic
(TM) Bz = 0. For the TE modes, Equations 1.1 and 1.2 yield:

B̃x = ikz

(ω/c)2 − k2
z

∂B̃z

∂x
, Ẽx = iω

(ω/c)2 − k2
z

∂B̃z

∂y
,

B̃y = ikz

(ω/c)2 − k2
z

∂B̃z

∂y
, Ẽy = − iω

(ω/c)2 − k2
z

∂B̃z

∂x
,

(
∂2

∂x2 + ∂2

∂y2 + (ω/c)2 − k2
z

)
B̃z = 0.

(1.3)

Solving for these waves in a rectangular waveguide with dimensions Lx and
Ly the magnetic field in the z direction is given by B̃z = Bz0 cos(kxx) cos(kyy), where
kx = nπ/Lx and ky = mπ/Ly are the wave vectors that meet the boundary condition and
are constrained by (ω/c)2 = k2

z + k2
x + k2

y. Closing this waveguide with rectangular planes
creates a cavity, where the propagating and reflected fields sum to create a standing wave:
B = (B̃(x, y, kz)eikzz − B̃(x, y, −kz)e−ikzz)e−iωt. The z wavevector with this new boundary
condition becomes kz = lπ/Lz, leading to the field configuration:
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Bx = Bx0 sin(kxx) cos(kyy) cos(kzz),
By = By0 cos(kxx) sin(kyy) cos(kzz),
Bz = Bz0 cos(kxx) cos(kyy) sin(kzz),
Ex = Ex0 cos(kxx) sin(kyy) sin(kzz),
Ey = Ey0 sin(kxx) cos(kyy) sin(kzz).

(1.4)

Similarly, the TM waves can be solved. The resonance frequency for both mode
types are given by:

fnkl = c

2

√√√√( n

Lx

)2
+
(

k

Ly

)2

+
(

l

Lz

)2

. (1.5)

The possible TEnkl modes have l ̸= 0 and at least one, n or k, different than zero as
well. For TM modes, both n and k have to be different to zero, so the dominant (lowest
frequency) TE mode is TE101 and the dominant TM mode is TM110. Because of these
conditions, in rectangular cavities, several TE modes will have lower frequencies than TM
modes.

An important property of a cavity mode is the quality factor which is an expres-
sion of the total losses of that mode and it is defined as Q = 2π×energy stored/energy lost per cycle.
It is related to the width at half height of the transmission peak at resonance by:

Q = fc

∆f3dB

; (1.6)

that is also related to the dissipation rate κ = 2π∆f3dB (see Section 4.1 and Appendix C).
The total loss of a cavity mode is a sum of its coupling with the exterior κex = κ1ex + κ2ex,
where κiex refer to the coupling with port i, and the internal losses κint that arises from
finite conductivity, surface imperfections, impurities, etc.

The quantization of the electromagnetic field involves associating a harmonic os-
cillator to each field mode (STECK, 2012). Considering a one-mode cavity, its Hamiltonian
is thus given by:

Hc = h̄ωca
†a. (1.7)

The electric and magnetic fields are promoted to operator fields and have a distribu-
tion given by the mode functions (the spatial solution of Maxwell’s Equation, like the
configurations given by 1.4). For example, the magnetic field has the form:

B = BZP F (r)(ae−iωct + a†eiωct), (1.8)

where BZP F refers to the zero-point fluctuation of the field (
√

⟨0| ∆B2 |0⟩) that is propor-
tional to the normalized mode distribution of the magnetic field fB:

BZP F =
√

h̄

2ωϵ0
fB. (1.9)
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1.2 Micromagnetics
Ferromagnetism can be explained by the Heisenberg model where the Coulomb

force between electrons and the Pauli exclusion principle give rise to an effective interaction
between neighboring spins called exchange interaction. This interaction has the form:

H = −J
∑

<i,j>

Si · Sj, (1.10)

where the sum is taken over neighboring spins. As a consequence, when J > 0, the ground
state of this Hamiltonian has all spins aligned in the same direction, resulting in the
spontaneous magnetization characteristic of ferromagnetism.

Besides the exchange interaction, there are other competing energies that
influences the static configuration of mesoscopic magnetization, such as long-range dipole-
dipole interaction, spin-orbit coupling, external and internal fields. Mesoscopically, these
effects can be phenomenologically accounted for by a magnetic free energy functional
F [M(r)]. The approach of micromagnetics minimizes this functional with the constraint
M2 = M2

s , where Ms refers to the saturation magnetization – where all spins are aligned,
except for thermal fluctuations – determining the equilibrium configuration of M(r) in
the material, allowing one to calculate, for example, the formation of magnetic domains
(LANDAU; LIFSHITZ, 1935; HUBERT; SCHäFER, 1998; CALDEIRA, 2014; BROWN,
1963).

The exchange interaction (Equation 1.10) is responsible for a magnetic stiffness
term in the free energy density proportional to (∇M)2 that is a minimum when the
magnetization is uniform. Usually, in a crystalline material there will also be an anisotropy
term that comes from the spin-orbit coupling of the electrons, where the orbital part is
affected by the electric field of the spatially ordered ions (REZENDE, 2020). In our case,
the microwires are amorphous, so there is no crystalline anisotropy. Instead, there is an
anisotropy that comes from stresses (σi,j) through the magnetoelastic energy ume(M, σ).
This energy is related to elastic deformations caused by changes in magnetization –
magnetostriction – and vice-versa. This energy will depend on the magnetostriction
constant λ.

Finally, there are the energies of dipoles immersed in a magnetic field. There is
a self-dipolar energy associated to the interaction of the dipoles with the field HD produced
by the magnet itself (see Appendix A), and there is the interaction with an external field
H0. Combining all these energies, the free energy becomes:

F [M(r)] =
∫

dV

[
A

M2
s

(∇M)2 + ume(M, σ) − µ0

2 HD · M − µ0H0 · M
]

(1.11)



Chapter 1. Theory of the Interaction of Microwaves with Magnets and Wires 16

1.3 Basic Theory of Ferromagnetic Resonance

1.3.1 Electron Precession

The relationship between the electron magnetic moment and spin angular
momentum is given by its gyromagnetic ratio γ:

µµµ = −γS, (1.12)

that equals:
γ = gee

2me

≈ 2π × 28 GHz/T, (1.13)

where me and e are, respectively, its mass and charge, and ge ≈ 2 is the g-factor that is
approximately obtained by the non-relativistic limit of Dirac equation.

When a magnetic dipole is placed in a magnetic field B, it experience a torque:

τ = µµµ × B, (1.14)

and because the magnetic dipole is related to the angular momentum, the effect is not
actually a rotation of dipole – as it happens in the electric case – but a precession (Figure
2a) around the direction of the field given by:

µ̇µµ = −γµµµ × B (1.15)

Figure 2 – a) Illustration of the precession of the electron dipole moment around a magnetic
field. b) Splitting of the electron spin energy degeneracy by application of a field.
The transition between the levels is realized by a photon of energy h̄ω = 2µBB0

This is called Larmor precession, and its angular frequency is given by the
Larmor formula:

ω0 = γB. (1.16)

One can see that for an applied field on the order of ∼ 0.1 T, the constant (1.13) gives for
the electron a frequency precession on the order of ∼ 3 GHz which is in the microwave
range.
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Applying a small magnetic field BAC = be−iωtx̂ oscillating near the Larmor
frequency, perpendicular to the static field, one obtains the following linear response
function for small angles of precession:

µx

b
= ω0γµ

ω2
0 − ω2 , (1.17)

on which one observes a resonance at ω0. This resonance is realized experimentally and it
is called Electron Spin Resonance (ESR) or Electron Paramagnetic Resonance (EPR).

Another way to understand this resonance is to start with the Zeeman energy
(Equation 1.18), and realize that when an electron is subject to a magnetic field, its
spin degeneracy is lifted. The transition from one level to another (Figure 2b) involves a
microwave photon of frequency 2µBB/h̄ – where µB is the Bohr magneton – which is the
value given by Equation (1.16).

E = −µµµ · B (1.18)

1.3.2 Magnetization Dynamics

As explained by Brown, (BROWN, 1963), the equilibrium configuration of the
magnetization, reached by the minimization of the functional (Equation 1.11) with the
constraint of M2 = M2

s can be seen as a problem of finding the configuration that nullifies
the torque caused by an effective field Heff in the magnetization at each point. That is,
the equilibrium condition ∂tM = 0 in the precession equation:

∂M
∂t

= γµ0Heff × M (1.19)

results in the parallelism: M = λHeff , where λ is a Lagrange multiplier of the minimization
of F and the effective field is:

Heff ≡ − 1
µ0

δF

δM
(1.20)

Equation 1.19 is named after Landau and Lifshitz and can be used to analyze
the dynamics of magnetization that leads to ferromagnetic resonance (FMR). Another
version of this equation includes phenomenologically a damping term due to Gilbert
(GILBERT, 2004):

∂M
∂t

= γµ0Heff × M + α

Ms

M × ∂M
∂t

, (1.21)

that represents a tendency of the magnetization to curl up in the equilibrium direction due
to relaxation mechanisms of the coupling of the movement with a bath of other modes. There
are other types of relaxation terms more appropriate to different descriptions (REZENDE,
2020). The relaxation also implies that for the precession continue, a perpendicular pumping
field needs to be added. This is analogous to the ESR case.

For a uniform precession of resonance frequency ω0, driven by a RF field
of frequency ω, the AC susceptibility tensor is calculated from (Equation 1.21) and
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its component in the pumping direction (REZENDE, 2020) has real and imaginary
components:

Re(χ) = γµ0Ms(ω0 − ω)/2
(ω0 − ω)2 + (η/2)2 ,

Im(χ) = γµ0Msη/4
(ω0 − ω)2 + (η/2)2 ,

(1.22)

where η ≡ 2ω0α. Plotting these components – corresponding respectively to the reactive
and dissipative parts of the susceptibility (GIRVIN, 2019) – one obtains the Figure 3. The
dissipative part is proportional to the absorbed power and the reactive to the dispersion.
Ferromagnetic resonance experiments are usually performed with a phase-locked loop that
measures the derivative of the absorbed power (REZENDE, 2020).

Figure 3 – Dispersive and dissipative responses of ferromagnetic resonance.

1.3.3 Kittel Formula

Writing the density of the free energy (1.11) as a function of the angles of the
magnetization in spherical coordinates: f = f(θ(r, t), φ(r, t)), Equation (1.19) holds:

∂tθ = γHφ,

(∂tφ) sin θ = −γHθ,
(1.23)

where Hφ = −∂φf/(M sin θ) and Hθ = −∂θf/M are the spherical components of the
effective field. Now, for small deviations δθ and δφ around the equilibrium direction (θ0, φ0)
caused by a small pumping field :

∂φf = (∂2
φθf)δθ + (∂2

φφf)δφ

∂θf = (∂2
φθf)δφ + (∂2

θθf)δθ.
(1.24)

Plugging this into Equation (1.23), one finds in first order a system of coupled linear
differential equations (SLE). The ansatz δθ = δθ0e

iωt, δφ = δφ0e
iωt leads to a system of
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linear equations, that has nontrivial solutions when its determinant is zero, leading to the
resonant frequency:

ω2
0 = γ2

M2
s sin2 θ0

[(∂2
ϕf)(∂2

θ f) − (∂2
θϕf)2] (1.25)

Considering an ellipsoidal specimen, with principal axis along x̂, ŷ and ẑ,
submitted to a uniform field H0 in the ẑ direction, the demagnetization tensor will be
diagonal (Appendix A) and the uniform magnetization will nullify the exchange energy
term in the free energy (1.11). If the substance if soft enough for its anisotropy be neglected,
the free energy density will be in this case:

f = −µ0MzH0 + µ0

2 (NxM2
x + NyM2

y + NzM2
z ). (1.26)

From this density and Equation (1.25) one obtains the Kittel Resonance condition (KIT-
TEL, 1947):

ω2
0 = γ2µ2

0[H0 + (Ny − Nz)Ms][H0 + (Nx − Nz)Ms]. (1.27)

For a sphere, the demagnetization factors are equal, and (1.27) satisfies the
Larmor formula. Although the cylinder and the plane have non-uniform demagnetiza-
tion fields, the degenerate cases of a very long cylinder (length >> radius) and a flat
plane (radius >> thickness) can be approximated, giving the demagnetization factors
of (Nx, Ny, Nz) = (1/2, 1/2, 0) for the cylinder and (Nx, Ny, Nz) = (0, 0, 1) for the plane,
assuming the ẑ direction is along the cylinder and parallel to the plane. Thus, for a field H0

applied in this z direction Equation (1.27) holds the Kittel Formula for a Infinite Cylinder
(1.28) and Kittel Formula for a Plane (1.29) :

ω0 = γµ0(H0 + M/2), (1.28)

ω2
0 = γ2µ2

0H0(H0 + M). (1.29)

1.4 Spin Waves and Magnons
The ground state of a spin lattice given by the ferromagnetic Hamiltonian 1.10

has all spins aligned in the same direction. The low-lying energy eigenstates are given by
collective excitations involving non-localized deviations in all spins. For example, in spin
1/2 system, the first excited eigenstate is not states with one localized spin flip, as the
interaction of this spin with neighbours would make this spin flip propagate through the
lattice. Instead, the eigenstates are superpositions of individual spin-flips, constituting
spin waves (KRANENDONK; VLECK, 1958). A semi-classical view is given considering
the effective field that each spin feels due to its neighbours and also external fields: their
equations of precession (Equation 1.15) are coupled and form a linear system and the
system eigenmodes are precessions with a varying phase given by a certain wavelength
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Figure 4 – Illustration of a spin wave in a linear lattice of spins. a) gives an image from
above showing the different phase of precession of the spins that is shown in
(b). This image was taken from (REZENDE, 2020)

(REZENDE, 2020), strongly remembering a wave (Figure 4). The picture of all spins
precessing uniformly as given in the last section hence corresponds to a particular spin
wave with k = 0. Exchange spin waves that arise from the exchange interaction have
smaller wavelengths than those that arise from dipolar interaction (magnetostatic spin
waves), and are usually measured in magnonics experiments.

The quantization of spin waves leads to the concept of magnons, their quantum
quasiparticle. When the total spin deviation of the material is not so big (small number of
magnons), the spin waves can essentially be thought of independent or not interacting, so
the energy of the system is essentially the sum of the number of magnons for each mode.
The Holstein-Primakoff transformation associates spin operators with bosonic operators
helping the quantization of spin waves (REZENDE, 2020):

S+
i = h̄

√
2S

(
1 − m†

imi

2S

)1/2

mi,

S−
i = h̄

√
2Sm†

i

(
1 − m†

imi

2S

)1/2

,

Sz
i = h̄(S − m†

imi),

(1.30)

where 2S refers to the spin value and mi are the bosonic operators associated to each site.
A Fourier transformation of these operators leads to the magnonic operators mk. When
the number of magnons in each site is low ⟨m†

imi⟩ << 2S the spin operators are essentially
proportional to the bosonic operators and there is no interaction. The Hamiltonian is then:

Hm =
∑

k
h̄ωkm†

kmk, (1.31)

where ωk is the corresponding frequency of the magnon and, given the nature of the spin
waves, naturally depends on external applied fields.
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1.5 Cavity Magnonics

1.5.1 Cavity-Magnon Polaritons

When an insulating magnetic material is placed in a microwave cavity, the
interaction with the oscillating magnetic field can excite spin waves and ferromagnetic
resonance, especially in the presence of a static magnetic field that tunes these excitations.
The Hamiltonian of this coupled system is of the form:

H = Hc + Hm −
∫

B · MdV, (1.32)

where Hc refers to the energy of the cavity, and Hm to the energy of the magnetic system
and the Zeeman energy that realizes the interaction between the two.

A first approach to study this interaction is to consider the magnet as a
macrospin M = −γS/V (SOYKAL; FLATTÉ, 2010) submitted to a uniform AC field of
the cavity in the x direction and a DC field B0 in the z direction. The Hamiltonian is then
given by:

H = h̄ωca
†a + γB0Sz + γBZP F

2 (a + a†)(S+ + S−). (1.33)

Taking a perturbative approach – coupling much smaller than the energies of the individual
systems alone –, the operators have in the Heisenberg picture essentially an oscillatory
time dependence of e±iωet – where ωe is the frequency of the corresponding excitation –
; the plus sign (+) happens for the rising operators and the (−) for the lowering. This
motivates the rotating wave approximation (RWA), in which terms with fast evolution
∼ e±i(ωc+ωm) are neglected close to resonance as their effects average out on the slower
dynamics of interest. Doing so yields the following Hamiltonian:

H = h̄ωca
†a + γB0Sz + γBZP F

2 (aS+ + a†S−). (1.34)

Now, assuming the linear approximation, the Holstein-Primakoff transformation 1.30 for
this spin gives:

H = h̄ωca
†a + h̄ωm(B0) + h̄g(am† + a†m), (1.35)

where the coupling g is given by:

g = geγBZP F

√
N/2, (1.36)

where N is the number of spins.

Considering variations of the precession phase of the material, which lead to
spin waves, the integral in Equation 1.32 is replaced by the sum over the interaction
of individual spins in the sample, and these spins expanded in the zeroth order of the
Holstein-Primakoff transformation, resulting in a sum of different magnon modes and their
individual coupling with the cavity mode. The intensity of this coupling depends on the



Chapter 1. Theory of the Interaction of Microwaves with Magnets and Wires 22

Figure 5 – Illustration of the eigenfrequencies of the coupled system as a function of an
applied field that changes the frequency of the magnetic mode (detuning). Far
from resonance, the two systems are essentially separated; close to resonance,
they strongly hybridize, forming two polaritons, and the energy levels avoid
crossing.

overlapping of the AC magnetic field and the spatial profile of the magnonic mode (AL.,
2019); for a uniform field distribution, only the FMR mode survives, holding Equation
(1.35), that we consider.

The Hamiltonian 1.35 is a system of two coupled quantum harmonic oscillators.
As in the classic case, they have as normal modes of oscillation the symmetric and
antisymmetric modes that are linear combinations of the individual motion of each
resonator. The Hamiltonian in Equation (1.35) is diagonal in these two independent hybrid
modes given by:

c± =
[
ga +

(
∆
2 ± 1

2
√

∆2 + 4g2

)
m

]
/N±, (1.37)

where N± are normalization constants to maintain the canonical commutation relations
[c†

±, c±] = 1, and ∆ = ωm − ωc. The corresponding eigenfrequencies are given by:

ω± = ωc + ∆
2 ± 1

2
√

∆2 + 4g2. (1.38)

Figure 5 shows how these frequencies usually vary with the field. Far from resonance
∆ → +∞, the eigenmodes in Equation 1.37 tend to decouple c+ → m and c− → a, as one
would normally expect. Close to ∆ = 0, however, the hybridization is strong and the modes
cannot be seen separately anymore, forming what is known as cavity-magnon polaritons.
In the resonance, the polaritons are a totally symmetric/antisymmetric combination of
photon and magnon modes: c± = (a ± m)/

√
2 and their energy separation is 2h̄g. This

pattern of hybridization at the resonance of two interacting systems called anticrossing is
very common in nature.

The coupling g, given by Equation 1.36 is proportional to the zero-point
fluctuations of the field (Equation 1.9), hence, in experiments on cavity magnonics and
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FMR, the magnet is usually placed in the position corresponding to maximum magnetic
field of the cavity. The dependence of the coupling on the number of spins

√
N also means

that samples with higher spin density have stronger coupling.

1.5.2 Input-Output and Coupling Regimes

Both the cavity and the magnet interact with several other environmental
systems that make them lose coherence and also eventually decay. This is summarized in
their dissipation constants κi and η. The cavity-magnet system will also be externally driven
and dissipate energy into the measurement apparatus. To analyse this open response of the
cavity-magnet system, we use the input-output formalism (WALLS, 2008; RAMESHTI et
al., 2022). The typical experimental situation is depicted in Figure 6, where the cavity
with the magnet inside is coupled to transmission lines that send/receive signals. The
transmission lines can be thought of as an ensemble of harmonic oscillators, having a
continuous spectrum; the coupling of the system with this bath of oscillators makes its
dynamics dissipative, but also allow for driving by signals coming down the line and,
ultimately, probing of the system. The equations of motion that govern the intra-cavity
field a and the magnetic mode m are a modification of the Heisenberg equations of motion
that include dissipation; those are the quantum Langevin equations:

ȧ(t) = i

h̄
[H̃, a(t)] − κ

2a(t) − √
κ1,exb1,in(t) − √

κ2,exb2,in(t), (1.39)

ṁ(t) = i

h̄
[H̃, m] − η

2m(t), (1.40)

where H̃ is the Hamiltonian 1.35 in the rotating frame of the driving frequency ω, κ =
κ1,ex + κ2,ex + κi is the total cavity loss rate, given by the sum of the loss in the first port,
the second port and internal losses, and b1,in and b2,in are the operators related to the
fields that are entering the cavity by port 1 and 2. The outgoing fields of the ports are
related to the other fields by the boundary condition:

b1/2,out = b1/2,in + √
κ1/2,exa. (1.41)
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Figure 6 – Illustration of the typical experimental situation in Cavity Magnonics. A cavity
with internal losses κi coupled to a magnet with losses η is externally coupled
to an exterior measurement system by transmission lines. The coupling with
ports 1 and 2 are given by κ1,ex and κ2,ex.

With this, the scattering parameters Si,j which are measured in experiments
can be calculated. In the steady regime, ⟨ṁ⟩ = ⟨ȧ⟩ = 01, the transmission parameter is
given by:

S21 =
(

⟨b2,out⟩
⟨b1,in⟩

)
⟨b2,in⟩=0

=
√

κ1,exκ2,ex

i(ω − ωc) − κ
2 + g2

i(ω−ωm)−η/2

, (1.42)

and the reflection parameter in port 1 by:

S11 =
(

⟨b1,out⟩
⟨b1,in⟩

)
⟨b2,in⟩=0

= 1 + κ1,ex

i(ω − ωc) − κ
2 + g2

i(ω−ωm)−η/2

. (1.43)

The picture with dissipation provides a more complete and accurate description
of experimental data. It also bridges the quantum description with the classical one.
Different regimes can be realized in cavity-magnet coupling depending on the strength
of the interaction relative to dissipation. The situation where g > η, κ is called the
strong coupling regime, where the anticrossing (Figure 5) will be clearly visible and the
interaction between the magnetic system and photon coherent. This interaction was and
still is extensively studied with YIG crystals (HUEBL et al., 2013; TABUCHI et al., 2014;
BOVENTER, 2019), that have low dissipation rates η of few MHz.

As the dissipations increases, it becomes harder to observe signatures of co-
herence. For instance, the anticrossing changes and become too faint. Still, interesting
features can still be observed and have been studied (ZHANG et al., 2014). In figures 7,8
1 A more serious calculation is performed taking the Fourier transform of equations 1.39 and 1.40
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and 9, numerical simulations of the transmission response 1.42 for different values of η are
presented, showing the transition from the strong coupling regime to the so called Purcell
regime.

The weak coupling regime given by η >> g and g > κ is called the Purcell
regime. Only the Lorentzian of the cavity resonance can be seen (Figure 9) for all field
values, with only a slight bend of its frequency and a substantial loss of quality at the
resonance – hence decrease in photon lifetime, giving the name Purcell effect in analogy
to the atomic physics effect. These cavity perturbation effects follow the linear response of
a Lorentzian oscillator, as shown in Figure 10. This is the FMR susceptibility given by
Equation 1.22 and Figure 3. The measured cavity dispersion and dissipation is given by
equations 1.44 and 1.45 (ABE et al., 2011).

ωcav = ωc − g2(ωm − ωc)
(ωm − ωc)2 + (η/2)2 (1.44)

κcav = κc + g2η

(ωm − ωc)2 + (η/2)2 (1.45)

Figure 7 – Numerical simulation of the transmission given by Equation 1.42 using the
parameters: g/(2π) = 20 MHz, η/(2π) = 5 MHz, κ/(2π) = 5 MHz, κ1,ex = 0.7κ
and κ2,ex = 0.3κ. The dashed white line shows ωm/(2π) = γB0/(2π). The
system is in the strong coupling regime and the anticrossing is clearly visible.
The inset shows the line shape of transmission at the resonance, where the two
eigenfrequencies are clearly distinguished.
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Figure 8 – Numerical simulation of the transmission given by Equation 1.42 using the
same parameters as in Figure 7 but with η/(2π) = 30 MHz, instead. As g > η,
the system is no longer on the strong coupling regime. The inset shows the
line shape of transmission at the resonance, where two resonances can still be
distinguished.

Figure 9 – Numerical simulation of the transmission given by Equation 1.42 using the
same parameters as in Figure 7 but with η/(2π) = 100 MHz, instead. Deep
into the Purcell Regime. The dashed white line shows ωm/(2π) = γB0/(2π).
The inset shows the line shape of transmission at the resonance where just a
broadened cavity peak can be seen.



Chapter 1. Theory of the Interaction of Microwaves with Magnets and Wires 27

Figure 10 – Resonance frequency and widths of the peaks of the simulation with g/(2π) =
20 MHz, η/(2π) = 100 MHz

1.6 Ferromagnetic Resonance in Metals
The metallic character of a material imposes challenges in the description of

ferromagnetic resonance due to skin effect. In a non-magnetic conductor, the current
density j is related to the electric field by Ohm’s law: j = σE that when applied to
Maxwell’s equations give for the fields:

∇2E = µ0ϵ0∂
2
t E + µ0σ∂tE,

∇2B = µ0ϵ0∂
2
t B + µ0σ∂tB.

(1.46)

The first order time derivative introduced on these equations give rise to a damping of
the waves as they penetrate the conductor, distributing them more intensely close to the
surface. A plane wave solution for the electric field has the form E = Ẽei(kz−ωt), where the
imaginary part of the propagation constants k determines the damping. The skin depth δ

is then defined as the length the wave is attenuated by a factor of e−1:

δ ≡ 1
Im(k) . (1.47)

The nonmagnetic skin depth for good conductors2, σ >> ωϵ0, is given by:

δ0 =
√

2ρ

µ0ω
. (1.48)

In a magnetic material, besides the conducting current caused by the electric
field, there are the circulating currents of the quantum angular momentum of charges,
2 Note that for ω ∼ 10 GHz, 1/(ωϵ0) ∼ 2 Ωm, whereas, the resistivity of most metals are in the order of

10−8 Wm , allowing the displacement current be neglected
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summarized by the magnetization: ∇ × M = jm. Considering the time varying parts of
the fields to be represented by small letters, Maxwell’s equations for a magnetic conductor
gives:

∇2h − ∇(∇ · h) = 2i

µ0δ2
0
b. (1.49)

By (1.49) the field dynamics depends on the magnetization, the dynamics of
which is field dependent by (1.21). Thus it is necessary to simultaneously solve both
equations inside the material. In 1940 Ament and Rado (AMENT; RADO, 1955) provided
a theory of ferromagnetic resonance for normal incident waves in tangentially magnetized
metal planes. They noted that due to the skin effect, M is not uniform, causing exchange
effects to be observable as a consequence of the effective field term: 2A

µ0Ms

∇2m. The
exchange field also introduces a new set of boundary conditions related to the vanishing of
its total torque that are used together with the equations to solve the problem.

In a first approach, ignoring the exchange effect, considering a uniformily
magnetized sample in the z direction by a static effective field Hz, one calculates from
Equation 1.21 the AC susceptibility: m = χh and the Polder permeability tensor µ = 1+χ

given by (KRAUS et al., 2011):

µ ≡

µ1 −iµ′

iµ′ µ1

 = µ01 + µ0Ms(
Hz + iαω

γµ0

)2
−
(

ω
γµ0

)2


Hz + iαω

γµ0

−iω

γµ0
iω

γµ0
Hz + iαω

γµ0

 . (1.50)

Now substituting b = µh in Equation 1.49, assuming a plane wave incident perpendicular
to the plane, one gets an SLE, whose vanishing determinant gives the propagation constant
of the wave inside the material:

k2 = −2i

δ2
0

µeff

µ0
, (1.51)

where the effective permeability is given by:

µeff = µ2
1 − µ′2

µ′ (1.52)

The interaction with the spins changes the wavelength and the skin depth, which now
presents a minimum at the resonance, as shown in a numerical calculation of Figure 18.
This resonance frequency remains the one given by Kittel formula (1.29).

When the exchange interaction is taken into account and the effective field
2A/(µ0Ms)∇2m added, the resultant SLE will lead to a secular cubic equation for k2.
Thus for a given direction of propagation, there will be three roots (wave branches); one
of which is a long-wavelength excitation, with similar features to the solution with A = 0,
where the imaginary part is a maximum at the resonance (minimum of skin depth), and
the other two are related to spin waves and may lead to spin wave resonances (KRAUS,
1982; LIU; BARKER, 1975).
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1.7 Theory of Ferromagnetic Resonance in Metallic Wires
The theory of ferromagnetic resonance in metallic micro- and nanowires was

extensively investigated and reviewed by Kraus (KRAUS et al., 2011; KRAUS, 1982). The
situation considered here is a wire magnetized along its axis (z direction) and subjected to
transverse microwaves that add a time varying part m to the magnetization. Due to the
geometry, this time-varying part is decomposed into cylindrical waves (Equation 1.53) –
where the z dependence is ignored assuming a small wire in comparison to the radiation
wavelength. The absorption of energy is related to the real part of the surface impedance,
but also, for longer wires, to scattering moments (see Appendix B). Overall the excitation
of each azimuthal mode of ac magnetization will depend on the symmetry of the incident
radiation, making their response sensitive to the measuring circuit/setup. The modes that
are generally excited are n = 0 and n = 1. Figure 11 illustrates the spatial distribution of
ac magnetization for these modes. Mode n = 0 is circularly symmetric and couples with
circular ac magnetic fields, like the ones produced by axial currents; while n = 1 has a
dipolar character and couples with a perpendicular field on the wire.

m(r, ϕ, t) = eiωt
∑

n

mneinϕJn(kr) (1.53)

Figure 11 – Illustration of the ac magnetization modes n = 0 and n = 1 for two limits
of the ratio δ0/R. When the skin depth is much smaller than the radius,
the resonance happens only at a thin shell of wire; in the other case, the
resonance happens throughout the entire wire and the dipolar mode n = 1
have its resonance condition shifted from Kittel Plane (Equation 1.29) to
Kittel Cylinder (Equation 1.28) (see Appendix B). This image is from Kraus
(KRAUS, 2015)

Substituting this cylindrical decomposition into Maxwell’s and Landau’s equa-
tions, as in the planar case, the propagation constant k is given by Equation 1.51 when
A → 0, and by the bicubic equation otherwise. Considering the former case, and writing
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the susceptibility in the circularly polarized base: µ± = µ1 ∓ µ′, the surface impedance for
each mode n is given by (KRAUS et al., 2011):

ηn = en,z(r = R)
hn,ϕ(r = R) = ρ

2kJn(kR)
µeff [Jn+1(kR)/µ+ − Jn−1(kR)/µ−] , (1.54)

where R is the radius of the wire, ρ its resistivity. The surface impedance for the case
considering exchange is given by Equation B.1 in the Appendix. For n = 0, the surface
impedance 1.54 reduces to:

η0 = ρk
J0(kR)
J1(kR) , (1.55)

that is the formula for the giant magneto impedance effect (CHRISCHON, 2012).

When the skin depth is much less than the radius of the cylinder, |kR| >> 1,
the wave is restricted to a small layer close to the surface, that unrolled is equivalent to a
planar surface (Figure 12), thus the situation is the same as in the last section and the
resonance frequency is given by Kittel’s Formula 1.29. For wires of smaller radii R ∼ δ, the
curvature becomes important; the response broadens and becomes asymmetric. As R >> δ

the resonance condition for the dipolar mode shifts to the uniform magnetized cylinder
Kittel condition (Equation 1.28) as expected in this regime, but the mode n = 0 keeps
the Kittel plane condition (besides shifts due to exchange effect) and actually presents
anti-absorbance or transparency at the resonance. These regimes are explored by Kraus
((KRAUS et al., 2011)) and we reproduce his calculations and example in the Appendix B.

Figure 12 – Illustration of an axially magnetized cylinder with a time varying magnetization
at a shell (given by the skin depth) close to the surface. The topology is the
same as ferromagnetic resonance in a tangentially magnetized plane, being
given by Kittel Plane resonance condition (Equation 1.29)

As it was mentioned the symmetry of mode n = 0 couple it strongly with axial
currents on the wire. This can be performed by placing the wire as part of centre conductor
of a transmission line or by placing it along the rf electric field of a 3D cavity, working as
an antenna. Rodbell reported ferromagnetic resonance in Iron Whiskers using this last
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method (RODBELL, 1959a). He also reported in another paper (RODBELL, 1959b) that
this absorption could be orders of magnitude higher than the conventional measurement
setup. This makes mode n = 0 dominant in almost all experimental situations and mode
n = 1 relevant only at the node of the electric field (KRAUS et al., 2011). We follow
other authors and call the wire positioned at the electric anti-node of the cavity Rodbell
configuration.

It is hard to determine precisely the value of magnetic field achievable by this
electrically driven resonance, and it would require one to know the value of electric field
inside the wire. That probably depends on the wire geometry and the frequency of the
wave. Here I present an argument that the induced magnetic field in the wire at Rodbell
position of a rectangular cavity have a higher value than the maximum magnetic field of
the unperturbed cavity. The most important assumption is that the electric field on the
surface of the wire is on the order or bigger than the unperturbed field intensity ey at this
position. The induced curled magnetic field at the surface is, by Ampère law, then :

hin >
1

2πρR

∫
ey0e

−r/δdS, (1.56)

where the integration is taken on the cross section of the wire, and the exponential factor
gives the decaying of the skin effect. Assuming R >> δ, this leads to:

hin >
δ2

ρR
ey0. (1.57)

Now, the field ey0 at the cavity anti-node for mode TE101 is related to the field hz0 of the
cavity node by (POZAR, 2012):

hz0 = πey0

k
√

µ0/ϵ0Lx

, (1.58)

thus:
hin

hz0

>
Lx

R
, (1.59)

which is easily on the order of 103. Of course, the first assumption of the intensity of the
field on the wire is dubious, but even if not true, and ey is smaller by some factor, the size
ratio will likely still be strong enough to ensure the higher value of the induced field, as
this is shown in several experiments, including this thesis.
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2 CoFeSiB Microwire

This chapter presents the microwires studied. These wires have been extensively
studied because of their magnetic properties, such as magnetic softness, a pronounced
Barkhausen effect, and giant magnetoimpedance (GMI), which enable potential appli-
cations. The vast body of literature on magnetic amorphous microwires cannot be fully
reviewed or discussed here. Instead, this chapter provides a brief overview, accompanied
by images and measurements that offer relevant information about the material.

2.1 Introduction
The magnetic system studied in this dissertation consists of glass-covered amor-

phous microwires with a nominal composition of Co68.15Fe4.35Si12.5B15. These microwires
have an overall diameter of approximately 16 µm and an inner metal core of 8 µm. They
were manufactured by Manuel Vázquez’s group at ICMM/CSIC in Madrid, Spain, and
provided through a collaboration with the institute’s Materials and Low-Temperature
Laboratory (LMBT). Glass-covered microwires are produced by rapid cooling of molten
metal while it is continuously drawn with softened glass, forming a long strand of wire.
This process is known as Taylor-Ulytowsky (TAYLOR, 1924; ZHUKOVA et al., 2022).
The amorphous structure results in a higher fracture strength and exhibits notable soft
magnetic properties (CHIRIAC; ÓVáRI, 1996).

2.2 Material Handling and Microscopy
Depending on the surface they are placed on, the wires are generally visible to

the naked eye due to light scattering on their surface, which gives them a gray or slightly
shiny appearance, depending on the angle and lighting. For handling purposes, a blank
white sheet of paper was usually used as a surface. This not only enhanced their visibility
but also made it easier to spot "runaway" pieces. Due to their small size and light weight,
the wires can become electrostatically – and sometimes magnetically – attached to various
surfaces, making it important to keep track of all pieces to avoid contamination. Although
the amorphous nature of the metallic core provides higher fracture strength and the glass
coating adds mechanical robustness and some flexibility, the microwires are still delicate
and can break easily. Care must be taken handling them. Luckily, as they are produced in
long strands, plenty of material was available.

Figure 13 shows an image of the microwires taken with an optical microscope.
On the left, the metallic core is visible shining through the glass cover. On the right, where
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Figure 13 – Microscope image of a wire. On the right side, the wire had the glass coating
removed as evidenced by the absence of glass distortion

Figure 14 – FEG-SEM images of a piece of wire made at the chemistry institute (IQ).
An accelerating voltage of 10 kV was used. (a) Image of the glass covered
wire and measured diameter. (b) Image of the tip of the wire showing the
metal exposed. It is brighter than the glass as it does not get charged with
the electrons of the microscope.

the glass was mechanically removed by shattering of the glass and gently brushing it with
a scalpel, the bare metal is visible. Figure 14 presents two Scanning Electron Microscopy
(SEM) images of the wires; the measured diameter of the microwire with the glass sleeve
is 17 µm and the diameter of the metallic core is 8 µm. In Figure 14 (a), we present the
micrography of the wire covered with glass and in Figure 14(b), the metallic core and the
glass cover. The apparent hollowness observed on the tip of the wire in the Figure 14(b),
is probably due to how the wire was cut.

To further investigate the morphology of the microwires, Figure 15 presents
SEM images of vertical cross-sections of a couple of wires prepared using Focused Ion
Beam (FIB) and platinum deposition. Figure 15(a) shows a metal disk cut from the wire,
where platinum was deposited on top to increase contrast. Carbon paint was applied to
secure the microwires onto the aluminum stub and so it is present around all samples.
Figure 15(b) presents a piece of wire cut exposing the metallic inner core surrounded by
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Figure 15 – FEG-SEM images of two wires cut with FIB. They were made on the Dual
Beam FIB-SEM of the center of semiconductors and nanotechnology at Uni-
camp (CCSnano). Tilt Angle: 30°. (a) A piece of a wire without glass (grey
cylinder) immersed in carbon cut from both sides forming a disk. Platinum
(in bright, above the disk) was deposited on top to increase contrast. (b) Cross
section of a wire immersed in carbon that was cut exposing the metal core
with 8.5 µm of diameter surrounded by the glass cover.

Metal Glass
Element Atomic Percentage (%) Element Atomic Percentage (%)

Co 81 Si 25
Fe 5 O 75
Si 11
B 3

Table 1 – Atomic composition of the metal and the glass of the wires obtained from an
EDS measurement

the glass sleeve. These images of the cross-section confirm that they are solid cylinders1.

An EDS map was obtained (Figure 16) to analyse the elemental composition
of the metallic core, confirming the presence of the expected elements: Co, Fe, Si and B.
Table 1 summarizes the EDS results for both the metallic core and the glass. The atomic
percentages, however, deviate from the nominal composition. A possible explanation
for this is the difficulty of EDS to accurately detect elements with low atomic number,
like boron, giving a wrong percentage composition. Variations in the composition of the
material are also possible. The composition of the glass cladding was also analysed.

2.3 Magnetic and Electric Properties
A Lakeshore Vibrating Sample Magnetometer was used to measure the room-

temperature M-H curve of a microwire sample. The wire was oriented parallel to the
1 We performed the FIB due to the suspicion of hollowness observed from the microscopy of Figure 14b.

But thankfully this was not the case.
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Figure 16 – EDS map of the exposed metal part of a CoFeSiB wire indicating the presence
of the elements in the composition: Cobalt in yellow, iron in red, silicon in
green and boron in purple. The boron signal is very weak and only slightly
bigger than the background

applied field and glued onto the VSM quartz rod with silicone wax. Figure 17 shows
the obtained hysteresis curve. The microwires exhibit great magnetic softness, having a
coercive field of a few 10−4 T. Additionally, the hysteresis curve does not fully close, as
observed by comparing the initial magnetization value (indicated by the orange dot in
Figure 17) with the final magnetization value. This could be an effect of the field sweeping
too fast. The noise is due to a bad setting of the sensor sensitivity. There could also be
dielectric effects of the glass.

The saturation magnetization of the wire was calculated by dividing the
measured moment by the estimated mean volume. The measured piece was 5 mm long,
yielding an estimated volume of (2.6 ± 0.3) × 10−7 cm3. The primary sources of uncertainty
are the length measurement and possible variations in the wire diameter. Assuming a linear
approach to magnetization saturation as a function of 1/H, a value of µ0Ms = (0.8 ± 0.1) T
was estimated. This result aligns with the literature value of 0.85 T reported by Chiriac
et al. (CHIRIAC et al., 1999) and agrees well with the experimental data presented in
subsequent sections. However, the uncertainty in volume estimation and noise observed in
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the hysteresis measurements limit the overall precision of this value. The estimated spin
density for this material considering its magnetization to be 0.85 T is ∼ 7.3 × 1022 cm−3

The magnetic structure of glass-covered amorphous microwires strongly depends
on internal stresses and the sign of the magnetostriction constant, as the absence of
crystalline anisotropy makes the magnetoelastic term a significant factor in their magnetic
free energy (CHIRIAC; ÓVáRI, 1996). There are essentially three main sources of stresses
during wire formation: solidification of the metal core, differences in thermal expansion
coefficients between the metal and glass, and the tensile drawing stress applied during
wire forming.

Calculations of these stresses performed by (CHIRIAC; ÓVáRI, 1996) predict
that microwires with negative magnetostrion constant, such as Co68.15Fe4.35Si12.5B15 ,
exhibit an axially oriented magnetic domain inner core and large circularly oriented
outer domains. This structure leads to a smoother change in axial magnetization, as
observed in Figure 17. Applied stresses and thermal treatment can alter these domain
structures changing their RF response at low fields as observed in Giant Magnetoimpedance
experiments (PIROTA et al., 2000). The DC fields applied in our studies of ferromagnetic
resonance are much higher than the coercive field of the wires, so we ignore anisotropy
effects and always assume the wire is uniformly magnetized along its axis at saturation.

Regarding their electrical properties, the metallic core of the wire makes the
skin effect important in their FMR behaviour as described in Section 1.7. Their resistivity
is on the order of thousands of nΩ, and we use 1100 nΩm (CHIRIAC; ÓVáRI, 1996) as
a reference. This gives for the applied frequencies ∼ 7 GHz a nonmagnetic skin depth of
∼ 6 µm, that is in the order of the wire radius. In Figure 18, the skin depth based on
Equation 1.51 for the typical wire parameters and a frequency of 7.2 GHz is plotted.
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Figure 17 – 300 K M-H curve of the Co68.15Fe4.35Si12.5B15 microwire measured by VSM.
The magnetization was obtained by dividing the measured moment by the
calculated volume of (2.6 ± 0.3) × 10−7 cm3. The orange dot indicates the
starting point of the curve, where the magnetization was saturated. Probable
ionization of the air around the sample caused the curve to not close.

Figure 18 – Magnetic skin depth as a function of the field for a frequency ω/(2π) = 7.2
GHz, ρ = 11 × 10−7 Ωm and µ0Ms = 0.85 T, α = 0.02. The resonance field Br

is calculated by the Kittel formula for this frequency. The dashed line is the
value of the nonmagnetic skin depth.
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3 Experimental Apparatus

This chapter presents the experimental setup used in the FMR measurements
of the next chapter and explains some of their working principles.

3.1 Vector Network Analyser
When dealing with a system composed of several passive and active microwave

components, most of the time the interest lies only on a few parameters which determines
the engineering properties of system, without the need to solve the whole electromagnetic
field problem. A set of parameters of this kind are the scattering parameters Sij of a
component. The device is regarded as a linear black box connected in multiple ports,
through which RF signals can flow. The scattering parameters Sij are then defined (POZAR,
2012) as the ratio of the voltage1 reflected at port i to the voltage incident on port j, when
the incident voltages on the other ports are zero (match terminated):

Sij = V −
i

V +
j

∣∣∣∣∣
V +

k
=0,k ̸=j

, (3.1)

thus determining a scattering matrix of the device. Diagonal terms represent reflection
coefficients at each port and the off-diagonal terms represent the different relative trans-
mission coefficients. For a two port system, with an excitation on the port 1, the reflection
and transmission parameters correspond respectively to S11 and S21. As waves are being
considered, the scattering parameters are actually complex, having a magnitude and a
phase. The first describes the relation between the amplitudes of the waves, and the second,
phase shifts. In this work, when the magnitude is referred in dB units, it is calculated by
the usual expression:

|Sij|2 (dB) = 20 log10 |Sij|. (3.2)

The Vector Network Analyzer (VNA) is an instrument capable of measuring
the scattering parameters of a device. Figure 19 shows a schematic exhibiting the working
principles of this equipment (POZAR, 2012). It has a controllable RF generator which
sends a signal to a reference line and to a directional coupler that is connected to one
of the ports. The directional coupler is a component that is built so that signals coming
back the line are coupled to the second line, thus allowing the analysis of reflected signals.
The ports are connected to coaxial cables that connect to the device under test (DUT).
A switch can change the excitation from the first port to the second. The signals are
1 In (POZAR, 2012) the concept of voltage for a electromagnetic wave or a voltage wave is discussed.

The scattering parameters can also be defined in terms of so called power waves.
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sent to a heterodyne system, where mixers multiply them by a fixed-frequency RF signal,
called the local oscillator (LO) to produce intermediate frequency (IF) waves through
downconversion. These IF signals are easier to process electronically as they have lower
frequency. After passing through a filter, they are digitized and processed by a computer.

In a typical measurement using the VNA, the frequency range is selected along
with the number of points, the IF bandwidth, the RF power and the measurement type
to be performed. The frequency is sweeped and the parameter measured. For absolute
measurements, the VNA must be calibrated to account for impedance mismatches and
phase shifts caused by connectors and coaxial cables. In this work, two VNAs were used, a
E8362C by Agilent Technologies, for the room temperature measurements and a E5063A
from Keysight, for the cryogenic measurements. Two different VNAs were used simply
because they are from different labs.

Figure 19 – Schematic of the working principles of a VNA

3.2 Cavity VNA-FMR Setup
The schematic of the experimental apparatus used for the room temperature

VNA ferromagnetic resonances is presented in Figure 20b. It consists of a microwave cavity
connected to a VNA submitted to the field of a Helmholtz coil that is fed by a current
source. A hall probe is used to measure the intensity of the field on the region of the cavity.
Figure 20a shows a photo of the setup. The RF magnetic field of the cavity is oriented
in the x direction of the cavity and the static field in the y direction. The gaussimeter,
VNA and power supply communicated through a IEEE488 bus (GPIB) with a computer
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where a GPIB-USB-HS adapter was used with the correct drivers. The communication
then is followed by the VISA protocol using as a wrapper the Python package PyVISA.
In this way, the measurement is automated following a Python program that is presented
in Appendix D.

Usually VNA-FMR are performed using broadband microstrip or coplanar
waveguides (CPW) (KRAUS, 2015), while 3D cavity VNA is commonly performed in
measuring circuits that includes a phase-locked loop. We use the high quality of our cavity
and the sensitivity of the VNA to measure the absorption directly, in a Cavity-VNA setup
(LO; LAI; CHENG, 2011). We vary both the applied magnetic field and the frequency,
allowing us to take a map. These measurements are of the same type as those performed
in other Cavity Magnonics experiments (TABUCHI et al., 2014; ZHANG et al., 2014).

Figure 20 – a) Photo of the measurement setup. The cavity connected to the VNA via
the coaxial cables is placed above a foam that is hold by the two poles of the
coil. The hall probe can be seen behint it. b) Schematic of the setup

3.3 Cryogenic Setup

3.3.1 Dilution Refrigerator and Superconducting Magnet

To cool the samples down to 7 mK, a commercial Blue Fors XLD dry dilution
refrigerator was used (Figure 22a). A dilution refrigerator (DR) is a closed-cycle cryogenic
system designed to provide continuous cooling below 1 K. It works based on the heat of
mixing of 3He and 4He. Below the temperature of 0.87 K the mixture of 3He and 4He
separates into two phases of different concentrations; at 0 K, the concentrated phase
becomes pure 3 He, but the dilute one remains with 6.6% of 4He (POBELL, 2007). This
finite solubility allows for cooling at very low temperatures, until few mK. Basically, cooled
3 He is pumped into a chamber (mixing chamber) that contains the mixture, with 3 He
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Figure 21 – schematic of the lowest stage of a dilution refrigerator, where the cooling to
mK happens. Image from Pobell (POBELL, 2007)

floating on top of the dilute phase. A wide pipe (Figure 21) that goes into the dilute phase
connect it with the Still that is kept at 0.7 K by a heater and evaporates 3 He that is
continuously pumped, resulting in an osmotic pressure that keeps the flow of 3He and its
crossing at the interphase boundary (dilution). This mixing is an endothermic process
that is responsible for the cooling down to temperatures of mK with a cooling power of
hundredths of µW.

A superconducting coil by American Magnetics designed to be used with our
dilution refrigerator was used to supply the static magnetic field to the sample. At low
temperatures the generation of magnetic field by current has to be done by superconducting
lines, as ohmic dissipation would heat the system. This also allows for the production of
strong magnetic fields. Our commercial coil can produce fields up to 8 T, with a control of
5 × 10−4 T or less depending on the stability. The field is produced in the upward direction
along the DR and the coil is thermally anchored on the 4 K stage (Figures 23a,b). The
coil wires connect at the exterior with the current leads that are fed by a quadrupolar
power supply which by itself is controlled by the power supply programmer. From this
programmer, one can set field targets, ramp rates, give a start and a pause, among other
things. The programmer was connected via ethernet to a network switch, along with other
instruments, so that they comunicate with a computer. Using the socket library in python,
a connection is established with a python script to control the magnet. The program that
was written to control it is presented in Appendix E.
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Figure 22 – a) Image of the open dilution refrigerator. The different temperature stages
are marked. The cavity is anchored at the 7 mK stage with the sample holder
built to be positioned at centre of the magnetic field of the superconducting
coil. b) Schematic of the microwave circuit of the dilution refrigerator that
the sample was connected with. Descending from the room temperature the
microwave signals are attenuated until they reach the lowest stage. After
passing through the sample it comes back from a circulator that prevents
noise from the upper stages to heat the mK stage, it is amplified a goes out
the DR.



Chapter 3. Experimental Apparatus 43

Figure 23 – a) On the left is a picture of the DR with its aluminium shield and the
superconducting magnet at the bottom. The magnet is connected to the 4K
stage. Aluminium thermal shields are still to be added before the vacuum
can that closes all. On the upper right, the magnet is being installed. On the
bottom right, an overhead image of the magnet is shown b) An schematic of
the lowest temperature stages, showing the mounting. There is the vacuum
can at the outside, a thermal aluminium shield, then another aluminium at
the top and the magnet at the bottom, both connected at the 4K stage. There
is then the innermost shield of OFHC copper coated in gold. c) Sample holder
designed to anchor the cavity at the MXC and position it at the center of
superconducting coil.

3.3.2 Sample Holder

In order to thermally anchor the cavity with the sample to the MXC flange
and also position it at the magnetic field centre of the coil – that is 400 mm down from
the MXC –, a sample holder was designed (Figure 23c). Firstly, as Cavity A (see 2), that
was mostly used in the experiments at room temperature, is made of aluminium, that is a
superconductor, another cavity had to be designed made out of copper. This is Cavity C,
that have the same inner dimensions as Cavity A, but the metallic box was made bigger
in order to pass screw holes through its y direction. Then a connector was developed to
fix the cavity to a copper rod by these holes, positioning the cavity y direction along the
magnetic field direction (vertical). It was also thought about the possibility – for future
experiments, not related to this thesis – to align the cavity in the z direction, so the
conector have four additional holes to attach the cavity by its backside. Finally the copper
rod is mounted in the MXC flange with a rod holder. The schematics of all these pieces
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are presented on Appendix F.

3.3.3 Cavity Ringdown Setup

Spectroscopic measurements at cryogenic temperatures were essentially taken
like the ones at room temperature: the magnetic field was varied and a spectrum from
the VNA recorded. Taking advantage of the advanced microwave measurement systems
of the LFDQ that were built to measure superconducting qubits, we performed a cavity
ringdown measurement that used a heterodyne downconversion setup and a broadband
fast oscilloscope with 20 GSa/s (giga sample per second). Figure 24 show the heterodyne
circuit. It uses two mixers and three rf generators. Figure 25 show the complete schematic
of the measurement system. One of the generators was modulated by a Arbitrary Wave
Generator that created pulses of 200 µs, this signal was then combined with 240 MHz to
have the frequency of the cavity; this was sent to the sample. The transmission was then
down-converted with the use of another microwave generator, producing again a signal of
240 MHz, which was recorded on the fast oscilloscope. This way, we could send pulses to
the cavity and read its transmission; in particular, analyse the end part of the transmitted
pulse that have the exponential decay given by the photon lifetime (related to the cavity
quality). This type of measurement is called cavity ringdown spectroscopy.

Figure 24 – Image of the heterodyne microwave circuit assemble. A signal of 6.97 of a
generator is combined with another of 240 MHz to send a signal of 7.21 GHz
to the cavity. The return signal is down-converted to 240 MHz



Chapter 3. Experimental Apparatus 45

Figure 25 – Schematic of the circuit used for the cavity ringdown spectroscopy. A microwave
generator was modulated by an arbitrary wave generator (AWG) that created
pulses. This signal was later combined to 240 MHz to send a pulsed signal
of 7.21 GHz to the sample. The transmitted signal after amplification was
down-converted using another microwave generator to 240 MHz that was
recorded on a fast oscilloscope. The oscilloscope trigger was set at the rising
of AWG.
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4 Measurements and Analysis

This chapter presents the results of the measurements realized and analyse
them under the light of the presented theory.

4.1 Microwave Cavities Characterization
For the experiments, three microwave cavities, denoted A, B and C were used.

The first two were made of aluminium and used at the room temperature experiments –
for instance, cavity B was only used in the FMR with multiple wires (described in the
next section). Cavity C was made of copper and used at the mK experiments. It had the
same dimensions of cavity A, but with different couplings κ1 and κ2.

To characterize the cavity modes, the S parameters as a function of frequency
were measured with the VNA. At the resonance, the transmission (reflection) is a maximum
(minimum) and its width is related to the quality of the mode by Equation 1.6. The
transmission parameter around a resonant mode have the form given by Equation C.2
when the VNA is not calibrated but follows Equation C.1 as the ideal response, where the
magnitude is Lorentzian.

Figure 26 presents a transmission spectroscopy of Cavity A, where 3 resonant
peaks are observed. Using the dimensions of this cavity (26 mm × 8 mm × 36 mm), the
fundamental mode TE101 estimation based in the Equation 1.5 for rectangular cavities
gives 7.1 GHz, which is close to the measured value. The same happen for the other modes.
A simulation of the scattering parameters using software that solves Maxwell’s equations
with Finite Element methods, incorporating the input geometry and real properties like
finite conductivity, provides a more precise prediction. The resulting response (black curve
of Figure 26) closely matches the measurement.

By measuring around each prominent peak of each cavity with the VNA
calibrated and using the fitting procedure in Appendix C (when applicable), the mode
frequencies and qualities of the three cavities are determined, as shown in Table 2.

The field configuration of the cavity can also be estimated using the Expressions
1.4 of the rectangular box, but to precisely determine the mode distributions for a cavity,
simulations give better results, especially for complicated geometries. Figures 27 and 28
show the field configurations for the fundamental mode TE101 of the cavity A and C.
Knowing the fields configurations is important to determine where to place the sample on
the cavity, considering direction of the RF fields and mode function distribution – which
are related to the intensity of vacuum fluctuations by Equation 1.9. Assuming the same
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Figure 26 – Measured broadband transmission response of Cavity A in red showing three
resonance peaks. In black, the simulated response performed on CST Studio
Suite. The first peak corresponds to the resonant mode TE101 and the second
to TE102; the third contains the modes TE103 and TE201 superimposed

Peak Frequency Quality
Cavity A (TE101) 7.435 GHz 3000
Cavity A (TE102) 10.328 GHz 1300

Cavity A (3rd peak) 13.8 GHz -
Cavity B (TE101) 5.605 GHz 400

Cavity B (2nd peak) 8.7 GHz -
Cavity C (TE101) 7.406 GHz 2200
Cavity C (TE102) 10.280 GHz 500

Table 2 – Characterization at room temperature of the peaks of the three cavities, showing
the peak frequency and quality. The peaks in that the quality are not displayed
are formed by the superposition of two different modes and were not fitted.

convention of coordinate system as in Chapter 1, where the z direction is taken along the
largest side, y along the smallest, and the origin in a corner, for this mode there are four
magnetic field antinodes: (x = 0, z = Lz/2), (x = Lx, z = Lz/2), (x = Lx/2, z = 0) and
(x = Lx/2, z = Lz); and one electric field antinode: (x = Lx/2, z = Lz/2). Also note that
the field is approximately uniform in the y direction

As a reference, an FMR experiment was performed in empty cavity A to record
its background. There is, in fact, a broad resonance, that for the 7.43 GHz mode happens
at 0.92 mT, with a signal amplitude of ∆S21 ∼ 8 × 10−4 (see Appendix G). Only signals
bigger than this value was then considered.
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Figure 27 – Electric field configuration for the TE101 mode of Cavity A. In a) the variation
of the intensity is shown, from cold to hot. In b) the direction of the field
is shown. Note that this qualitatively agrees with equations 1.4. This was
simulated on Ansys HFSS

Figure 28 – Magnetic field configuration for the TE101 mode of Cavity A. In a) the variation
of the intensity is shown, from cold to hot. In b) the direction of the field
is shown. Note that this qualitatively agrees with equations 1.4 . This was
simulated on Ansys HFSS
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4.2 Room Temperature FMR at the Magnetic Antinode
Due to the small size of the wires, measuring the signal from a single wire at

the magnetic field antinode is too difficult with our setup. Attempts were made, but the
signal was indistinguishable from the background. To measure the signal from a single wire
in this position, a Phase Locked Loop FMR (PLL-FMR) was performed at the Laboratory
of Metals and Alloys (GLM) using a conventional ESR setup. The wire was fixed at the
bottom of a small paper reel and inserted in a quartz tube designed for this setup; the
tube was installed into a TE102, 9.131 GHz cavity at the magnetic field antinode. The
wire was aligned with the static field. Figure 29 show the result of the measurement. The
curve is proportional to the derivative of the FMR absorption (REZENDE, 2020). The
resonance occurs on the passage from the positive to the negative sign, that is estimated
to happen at the applied field of 110 mT . This agrees with the Kittel plane formula for
the cavity frequency. The low signal-to-noise ratio for even such sensible technique shows
how low is the strength of the interaction in this position.

Figure 29 – Phase Locked Loop FMR of one wire performed in a ESR setup showing
the signal that is proportional to the derivative of absorption. The resonance
happens at the field of 110 mT.

To increase their interaction, a sample containing 67 microwires was prepared.
The microwires were manually inserted into a glass capillary with 6 mm length and 0.1 mm
of internal diameter. This sample was positioned at z = Lz and x = Lx/2, as shown in
Figure 30a, in the cavities A and B, corresponding to a magnetic field antinode for the first
two modes: TE101 and TE102. The transmission spectrum S21 was recorded as a function
of the applied field up to 0.32 T for each mode and each cavity, corresponding to four
different resonance frequencies: 5.6 GHz, 7.4 GHz, 8.7 GHz, and 10.3 GHz (Figure 54, S21).
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Figure 30 – a) A tube containing 67 microwires is secured with paraffin wax parallel
to the y-axis at the bottom of the cavity at a position corresponding to a
magnetic field antinode for modes TE101 and TE102; b) A single wire, affixed
with cryo varnish to a silicon die, is positioned at the center of the cavity,
aligning with an antinode of the electric field.

The four measurements display a dip in transmission intensity at certain field
values. To highlight these dips, Figure 32 presents the background-subtracted spectra,
where the spectrum of each field value was subtracted by that of the highest field – far
away from the dips. These dips in transmission are interpreted as absorption due to
ferromagnetic resonance of the sample. Figure 33a show the absorption lineshape by
tracing the middle frequency of the spectra. The fields at the minimum of were plotted
against the mode frequencies (Figure 33b) along with the prediction given by the Kittel
Plane Formula 1.29 with µ0Ms = 0.84 T1. The agreement suggests that for our wire and
this range of frequencies, the resonance condition is captured by this formula, at least for
multiple wires in this position.

1 Initially, the nominal value of 0.85 T was used and also fits well; however, a value of 0.84 T provides an
even better fit, and was therefore used in subsequent analyses.
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Figure 31 – Data from the field-dependent spectroscopy performed on the sample contain-
ing 67 microwires for two modes of two different cavities. The high transmission
centres in frequency are the cavities resonant peaks. At certain field values,
this transmission diminishes in amplitude. For the 7.4 GHz mode there is also
a change in resonance frequency that comes from the coupling and is better
explored next section. The spectra of 7.4 GHz and 10.3 GHz are from cavity
A, while the other two are from cavity B.
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Figure 32 – Background-subtracted data from the field-dependent spectroscopy performed
on the sample containing 67 microwires for two modes of two different cavities.
Each of the four spectra exhibits a significant drop in transmission at specific
field values corresponding to FMR absorption

Figure 33 – a) Traces in the middle of the measured spectrum for the four frequencies. The
dip in transmission correspond to the resonant absorption. The spectrum of
7.4 GHz was scaled by 0.2, and all curves were normalized b) Plot of the fields
corresponding to the minimum of transmission for each frequency compared
to the prediction given from Kittel’s Plane Formula with µ0M = 0.84 T
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4.3 Room Temperature FMR at Rodbell Position
The measurement setup described in the previous section, where the sample

is located at the magnetic antinode, is the conventional one used in cavity magnonics
experiments. As outlined in Section 1.7, metallic microwires can also couple to the
microwave cavity through the electric field. This section explores this scenario, where
the microwire is positioned at the cavity’s electric antinode aligned with the field. When
placed in such a position, the wire behaves like an antenna, and the longitudinal electric
field that generates an alternating current induces strong circular magnetic fields that
significantly couple to the magnetization mode n = 0. This gives a strong FMR signal for
even just one wire.

The samples were positioned at z = Lz/2, x = Lx/2 within cavity A, corre-
sponding to a maximum of the electric field and a minimum of the magnetic field for
the mode TE101 (Figure 27). Two arrangements to hold the microwires were used: in the
first, the microwire was affixed to a piece of silicon using cryogenic varnish as shown in
Figure 30b; in the second configuration, they were simply attached to a piece of paper
using double-sided tape. The transmission and reflection parameters were measured with
a calibrated VNA with 0 dBm (1mW) of input power.

4.3.1 FMR Spectrum and Harmonic Model

A measured reflection S22 spectrum of an electric field-coupled microwire is
shown in Figure 34. The first noticeable effect of positioning the microwire in this location
is a significant perturbation of the cavity resonance frequency due to the strong interaction
of the metallic wire with the mode TE101. In the measurement shown in Figure 34, the
resonance at zero field shifts the cavity frequency from 7.435 GHz to 7.400 GHz. Then, as
the magnetic field is varied, a peak in reflection is seen at ±76 mT,corresponding to the
Kittel plane resonant condition for the cavity frequency. The cavity frequency also bends
close to the FMR, forming a tail of high reflection that resembles the anti-crossing pattern.
Close to zero-field there is also a small resonance that we attribute to magnetization
phenomena (CHIRIAC et al., 1999) or giant magneto impedance effects (PIROTA et al.,
2000) and we do not investigate further. A measurement was also taken at -15 dBm (0.03
mW) of input power holding a very similar spectrum, indicating linear regime.

Considering the discussion of sections 1.7 and 1.5, the results are interpreted
as follows: in this configuration, the magnetization precession mode n = 0, with frequency
ωm(B) as given by the Kittel Plane Formula 1.29, is significantly coupled with the perturbed
cavity mode. This coupling is assumed to be linear, as in Equation 1.35, where g depends
on the induced magnetic field, and hence on the electric field.

To further investigate the results under this picture, the reflection curves around
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Figure 34 – Field-depedent reflection spectra around cavity resonance for a wire of 4 mm
glued in paper at Rodbell position. The cavity resonance was shifted from
7.435 GHz to 7.40 GHz. The "slashes" are the FMR resonance consistent with
Kittel Plane condition.

the FMR resonance are plotted in Figure 35. Even at resonance, only one distinct valley is
observable, indicating that the system is at the weak coupling regime (Section 1.5). In
Figure 35, one sees that the cavity resonance frequency slowly rises with the field until
the ferromagnetic resonance (dotted cyan), from where it rapidly shifts to lower fields
and starts rising again. The dispersion and the quality of the peaks causes a significant
difference in reflection at the tails that creates the "halo" or tails around the resonance. We
note that the transmission spectrum similarly shows a dip corresponding to the resonance
and the bent ’fingers,’ but no strong tails are visible due to the diminished dissipation
rate at the other port.

Fitting a Lorentzian curve in the spectrum |S22(f)|2 for each field, this behaviour
get more clear. The resonance frequency and the width, corresponding to the dispersion
and absorption of the system are plotted in 36. The response has the form of a linear
susceptibility, as discussed in section 1.5. Fitting the equations 1.44 and 1.45 on the data
gives the red curves (36). The experimental data are asymmetrical and the agreement
is only relative. The R2 values of the fitting are around 0.96 for the data around the
resonance 2

The fitting of the dispersion gives the parameters ωc/(2π) = 7.401 GHz ,
g/(2π) = (42.6 ± 0.5) MHz η/(2π) = (0.95 ± 0.06) GHz, while the fitting of the absorption
2 The coefficient of determination R2 of the Lorentzian fits are all above 0.999, showing a very good

agreement with the expected cavity response in this regime, and confirming that the asymmetrical
features of the curves are due to deviations of the model described by Equations 1.44 and 1.45.
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Figure 35 – Plot of 20 reflection curves (vertical cuts of Fig. 34) for progressively different
values of magnetic field from dark blue (63.9 mT) to dark red (97.5 mT)
passing through the ferromagnetic resonance at 76 mT (dotted cyan)

3 gives κ/(2π) = 6.6 MHz, g/(2π) = (37.5 ± 0.8) MHz and η/(2π) = (0.72 ± 0.04) GHz.
These values are close but do not coincide. Also κ is considerably higher than the actual
baseline of the measurement far from resonance. In section 4.6, we discuss the asymmetry
and perform a better fitting of the absorption considering the theory of FMR in wires
based on the surface impedance (Equation1.54). For the moment, the fitting based in the
equations 1.45 and 1.44 serves as a first analysis and provide figures for the important
parameters of the cavity-magnet interaction.

To highlight the absorption due to the interaction between the electromagnetic
field inside the cavity and the magnetic microwire, the background-subtracted spectrum
– given by |S22(B)| − |S22(0.35T)|) – of the positive-field measurement of Figure 34 was
taken , essentially removing the bare cavity response (BOVENTER, 2019; SMITH et
al., 2024) . Using g/(2π) = 40 MHz4, we also plot the eigenfrequencies predicted from
Equation 1.38 in comparison with this background subtracted data. The splitting due
to the resonant interaction is apparent, and the spectrum agrees well with the predicted
polariton frequencies, corroborating the model of two coupled harmonic oscillators for this
coupling.

Finally, to strengthen the comparisons with the model even further, using the
3 The value of ωc obtained from the dispersion fit was fixed in the absorption function to avoid over

fitting. There are other ways of obtaining ωc, like from the lorentzian fit for a distant field and the
results do not change much, but allowing ωc as a free parameter in κcav usually gave a wrong value
that did not agreed with the data

4 The mean value obtained from the ωcav and κcav fitting
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Figure 36 – Cavity frequency and width as a function of the field for the measurement of
Figure 34, corresponding respectively to the dispersion and absorption of the
response. In red, the fit based in the equations 1.44 and 1.45 are displayed,
showing that the data is asymmetrical.

Figure 37 – Background subtracted data of Figure 34, showing that the absorption struc-
ture close to resonance is approximately guided by the predicted polariton
eigenfrequencies in dashed lines. The dotted lines are the frequencies of the
bare perturbed cavity frequency ωc/(2π) and Kittel ωm/(2π).
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Figure 38 – Positive-field part of the measured spectrum of Figure 34 sided by the numerical
simulation of the model expressed by Equation 4.1 with the parameters:
κ/(2π) = 6.61 MHz, η/(2π) = 840 MHz, κ2,ex/(2π) = 0.6 MHz, ωc/(2π) =
7.40 GHz, g/(2π) = 40 MHz

microwave reflection coefficient obtained from input-output theory, described by:

S22 = 1 + κ2,ex

i(ω − ωc) − κ
2 + g2

i(ω−ωm)−η/2

, (4.1)

we simulate in Figure 38 the spectrum of |S22|, using the mean values of parameters obtained
from the fitting of the curves of Figure 36 and the coupling port value κ2,ex = 0.6MHz.
The resemblance is high, showing that the description given by section 1.5 can be used to
explain and analyse the data.

4.3.2 Coupling Dependence on Wire Position

To further explore the electrically induced cavity-magnet coupling, an experi-
ment was conducted where the position of the wire along the x-axis was varied. In the
measurement discussed in the previous section, the magnetic microwire was placed at the
center of the cavity (x = Lx/2) and had an estimated coupling strength of g/(2π) = 40 MHz.
In this new set, the wire was shifted off-center by 5 mm and 8 mm. The reflection spectra,
shown in Figure 39, demonstrate a reduction of the dispersion amplitude, representing
a reduction of the cavity-magnet coupling, with fitted values of g/(2π) = 33 MHz and
21 MHz, respectively.

From the electromagnetic field distribution for the mode TE101, depicted in
Figure 27, it is evident that the electric field diminishes outward from the center, which
supports the claim that the coupling grows with the amplitude of the electric field mode
function, or EZP F , of the unperturbed cavity. Not only that, but the magnetic field
increases in this direction, evidencing that the coupling with the electric field is much more
dominant. Taking the coupling at the center x = Lx/2 as a reference, the two couplings
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Figure 39 – Spectra for two dislocations off center of the wire: 5 and 8 mm. The dashed
lines show the dispersion. The amplitude variation for the 5 mm shifted wire
is smaller than the center wire (Figure 36) and bigger than the 8 mm shifted
wire. The perturbation of the cavity also diminishes as expected.

Figure 40 – Dependence of the coupling with the x position of the sample, compared with
the sine dependence of electric field normalized by the coupling at x = Lx/2
(40 MHz). The error bars were taken as the distance between the g’s obtained
from the fitting of the dispersion and absorption, and g by the mean.

were plotted in comparison with the electric field sine dependence in x of the rectangular
box cavity (Figure 40). Although there are just two points, the good agreement suggests a
proportional relationship g ∼ EZP F .
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Figure 41 – Dependence of the coupling with the length of the wire. The black star is the
coupling for the sample in silicon measured by cavity A, and the blue star is
the coupling for the same sample but measured by cavity C.

4.3.3 Coupling Dependence on Wire Length

A separate set of experiments examined the effect of varying the length of the
wires on the coupling strength. Different wire lengths of 3 mm, 4 mm, and 5 mm were
tested by affixing them to paper. Additionally, a microwire of 2.5 mm was prepared and
affixed to silicon die for comparative analysis in a cryogenic setup.

Figure 41 shows the coupling strength as a function of the microwire length.
The data demonstrate a linear relationship between wire length and coupling strength,
described by g/(2π) = 17L − 30 MHz. The nonzero intercept of the linear relationship
suggests a potential nonlinearity close to zero length. Additionally, this linear dependence
on L differs from the expectations of the coupling (Equation 1.36), where it should scale
with the square root of the number of spins

√
N , hence with

√
L. For the range of lengths

measure here, the observed linear dependence supports the model of electric dipole coupling
g ∼ LE for this electrically induced cavity-magnet interaction studied here. This difference
must be caused by the relationship of the induced magnetic field with the electric field
and the geometry of the sample. We note that the length dependences found are different
than the ones measured by Rodbell (RODBELL, 1959b).

The sample on silicon with a length of 2.5 mm, show disagreement with the
linear dependence. This could be associated with a effect dielectric effect of the silicon that
changes the electromagnetic environment felt by the wire. Similarly, when measured in a
different cavity (blue star in Figure 41), that has different electromagnetic characteristics,
like the different couplings, the coupling constant also changes for the same sample.
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4.3.4 Comparisons

The measurement of the wire in the Rodbell position gives a signal much
stronger than the wire at the magnetic antinode. This is evidenced by the fact that the
signal of the wire in this position could not even be measured, being lower than the cavity
magnetic background response ∆S21 < 10−4. The strongest signal with 67 microwires had
an amplitude of ∆S21 ∼ 4.8 × 10−3. A single microwire of 4 mm at Rodbell position had
an amplitude signal of ∆S21 ∼ 1.3 × 10−2. This is at least two orders of magnitude bigger
than the signal of a single wire, meaning that the coupling is more than 10 times bigger.

The values of coupling obtained are common in Cavity Magnonics experiments
(Table 3). A figure normally used to compare the efficiency of the microwave setup is the
coupling per spin gs that is calculated by g/

√
N . Estimating the density of spins in the

wire to be ∼ 7.3 × 1028 m−3, this gives for the wire of 4 mm – as our g also varies with
L – gs ∼ 2π × 300mHz. For our cavity, it is estimated a gs = γ

√
µ0h̄ω/V ∼ 2π × 25mHz,

giving four our setup more than 10 times the coupling – in agreement with the estimation
above. Our dissipation is considerably higher than other experiments, though.

Parameters PY on CPW and LE5 YIG 3D Cavity6 CoFeSiB 3D Rodbell
g/(2π) 8 - 172 MHz 47 MHz 40 MHz
gs/(2π) 18 Hz (CPW)/ 263 Hz (CPW) 38 mHz 300 mHz
η/(2π) 120 MHz 1.1 MHz 840 MHz

Table 3 – Comparison of parameters find in the literature with the estimated parameters of
our system. The first column refers to permalloy (PY) films of different thickness
on coplanar waveguide resonators and lumped element cavities. These planar
systems have a more concentrated field distribution that substantially increases
the coupling per spin compared to 3D cavities. The dissipation of PY films are
also substantially big. The coupling gs at Rodbell position is approximately 10
times bigger than the conventional one using 3D cavities of typical dimensions.

4.4 Cryogenic Spectroscopies
In this section, we present our measurements of the cavity-microwire system at

ultra-low temperatures (≤ 10 mK). The cavity with the sample on silicon at the Rodbell
position was anchored to the mixing chamber of a dilution refrigerator equipped with
an 8 T superconducting magnet coil, as illustrated in Figure 22. With the reduction of
temperature, it was expected a reduction in dissipation of the magnetic system, implicating
an improvement in the effective cavity-magnetic system coupling.
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Figure 42 – Power Sweep performed on the cavity at zero field. The power used on the
VNA was -5 dBm, and there were a base total att. of -59 dB descending
toward the cavity, added to that is the att. of the attunator that is swept.
The power range thus goes from -64 dBm to -123 dBm

4.4.1 Cavity Power Sweep

We initiated the measurements by identifying the resonance of the cavity using
the VNA. Based on the measurements at room temperature, the resonance of the coupled
system at zero field ω/2π = 7.210GHz is observed to increase by 32 MHz relative to room
temperature measurements.

To examine the effect of drive strength, we conducted a power sweep cavity
spectroscopy without any external magnetic field. Figure 42 displays the cavity’s transmis-
sion spectrum as a function of applied attenuation ranging from -64 dBm (approximately
106 photons) to -123 dBm (approximately 10 photons). The analysis of the quality factor
of the cavity as a function of the drive strength shows negligible change until about -100
dBm, after which its value begins to increase, reaching up to approximately 4600 at -123
dBm. This decrease of loss could be an effect of the wire or the cavity itself. The internal
losses of the cavity depend on its surface quality, including imperfections, microfractures
and oxide layers. It also depends on the surface resistivity of the metal that decreases
with temperature. In superconducting planar resonators the quality factor varies with
power due to the dominant contribution of a bath of two level systems (TLS) in their
dissipation (MCRAE et al., 2020; KIM et al., 2014), while superconducting 3D cavities
made of aluminium do not have such variation (KIM et al., 2014; REAGOR et al., 2013).
Assuming the situation with a resistive metal like copper would be similar, the observed
variation is probably due to the wire; a power sweep of the empty copper cavity – maybe
with a piece of silicon inside too – could confirm this. No studies were found performing
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Figure 43 – Cavity quality as a function of the attenuation

such measurements in a copper cavity. No further investigations were conducted on this
matter.

4.4.2 Cryogenic FMR at Rodbell Position

The field dependent spectroscopy was performed using the superconducting
coil. The current in the coil was controlled by a power supply and the field was calculated
using the coil conversion factor specified in its manual. Because of the non-reciprocal
nature of the DR circuit (Figure 22b), only the transmission parameter S21 parameter was
measured, without calibration. The power on the cavity was -99 dBm.

The measured transmission spectrum (Figure 44) displayed a pattern similar
to that observed at room temperature, featuring a strong fall in quality at the resonance,
and slight bend around it, but no anti-crossing pattern, indicating that the reduction of
temperature did not brought the system to the strong coupling regime. It is noted that
the resonance now occurs at a lower external magnetic field of 53 mT, consistent with an
increase in the saturation magnetization due to decreased thermal fluctuations.

Considering the fact the |S21| was taken without calibration, the curves were now
fitted at the skewed Lorentzian C.4. The resulting dispersion and absorption as a function
of field are presented in Figure 45. Once again, the FMR data exhibit an asymmetry
that makes it deviates from the model given by equations 1.44 and 1.45. We extracted a
coupling strength of g/(2π) = 41 MHz and a dissipation rate of γ/(2π) = 860 MHz. The
relatively minor changes in the dissipation parameter, compared to those measured at
room temperature, suggest that the dissipation mechanism is not substantially affected
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Figure 44 – Measured spectrum at 7 mK. For this measurement the attenuator was set at
35 dB showing the typical anti-crossing features at 53 mT.

Figure 45 – Measured dispersion and absorption of the cavity-wire system at 7 mK and in
red the fit based in equations 1.45, 1.44.

by temperature reduction. The coupling strength had a significant change, from its
room temperature value of g/(2π) = 25 MHz, which could be due to a change in the
material properties, like conductivity. Additionally, the saturation magnetization was fitted
according to the Kittel formula (1.29), yielding a value of µ0M = 1.18 T, which is an
increase from 0.84 T.

4.5 Purcell Effect and Cavity Ringdown
Despite the magnetic system’s high dissipation, characterized by η ≫ g, which

prevents achieving strong coupling even at low temperatures, the cavity maintains relatively
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Figure 46 – A cavity ringdown signal snapshot taken at 0 mT in blue. The signal have
240 MHz of frequency. In red the amplitude of this snapshot is highlighted.
It is clear that the signal decays with time. A exponential decay was fitted
holding the dashed black line.

good quality with g > κ. These values make possible the observation of the Purcell effect
(ZHANG et al., 2014; ZHAO; WANG; QIAN, 2025). The Purcell effect in atomic physics
happens when there is an increase of the density of states of photons at an emitter (such
an atom) position. This can happen for example by placing an atom in a cavity. From
Fermi’s Golden Rule, the emission rate of the emitter will be proportional to the density
of final states, thus enhancing the decay rate of the emitter. For the case in question,
the photon in the cavity, that have a decay rate κ, have an increase in decay rate when
the cavity-magnet system is in resonance. The resonance allows efficient transferring of
quanta from the cavity to the magnet, increasing the effective interaction with, or making
available the decay channels associated with the wire.

The photon lifetime is associated with the ability of the cavity of holding
photons. The photons will eventually be lost for internal baths, like the ones associated
with resistance, imperfections of the surface and, in the present case, with the lossy
magnetic system. Photons also leak out the cavity from the ports that connect it with
external measurement circuitry (Figure 6); these photons are a probe of the intra cavity
field and, in the case of an initial population of photons in a not driven cavity, the probe
will see the exponential decay of the cavity photons. The photon lifetime is given by the
characteristic time of this power decay.

To directly see the Purcell effect, a cavity ringdown spectroscopy was performed
in the cavity-magnet system. In this measurement technique, an electromagnetic pulse
in the cavity’s resonance frequency is sent into the cavity and the transmitted pulse is
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recorded. The end tail of the pulse will have the exponential decay from which the photon
lifetime is calculated . In the measurement, a 200 µs long square pulse of 7.21 GHz was sent
into the system and the output signal from the cavity was recorded in a fast oscilloscope
using a home-made heterodyning circuit. The setup used were presented in figures 25 and
24. Figure 46 shows a typical signal captured by the oscilloscope. The signal is 240 MHz
and has a decaying amplitude. For each external magnetic field applied, a snapshot like
this was taken 100 times. The amplitude envelope was fitted in Equation 4.2, determining
the characteristic decay time τphoton that was then averaged with the other measurements.
Figure 47 illustrates the average decay curves against the maximum amplitude of all
measurements for 0 mT and at the resonance. The Purcell effect is evident in the difference
of the decay rates.

s = (A + c) + A

[
exp

(
− (t − t0)

2τphoton

)
− 1

]
θ(t − t0) (4.2)

Figure 48 plots τphoton as a function of the external magnetic field. At zero
magnetic field, τphoton = (30.6 ± 0.8) ns, from which it decreases monotonically to τphoton =
(12 ± 1) ns at the resonance field of 53 mT, increasing again at higher magnetic fields.

Figure 47 – Maximum of amplitude voltage for 100 measured signals and exponential
decay fit at zero field and at resonance, showing the change in the photon
lifetime.
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Figure 48 – Photon lifetime as a function of the applied field

4.6 Asymmetries and High Damping
Part of the asymmetry of the absorption and dispersion data (Figure 36) comes

from the fact that the radius of the wire is in the order of the skin depth R ∼ δ0 , which
also causes broadening of the absorption (see section 1.7, appendix B). Fitting the cavity
absorption based in (KRAUS et al., 2011):

Pabs ∝ Re(η0)
8c
√

ϵ0/µ0

πRω|H(2)
0 (ωR/c) + i

√
ϵ0/µ0η0H

′(2)
0 (ωR/c)|2

, (4.3)

where η0 is the surface impedance of mode n = 0 given by Equation1.54 and H
(2)
0 and

H
′(2)
0 are the second order Hankel function and its derivative, the red curve in Figure 49

is obtained. The parameters fitted were the resistivity ρ = (4.0 ± 0.6) × 10−7 Ωm7, the
Gilbert constant α = 0.01 and the magnetization µ0Ms = 0.83 T. The agreement is slightly
better than the previous Lorentzian fit, with R2 = 0.98, and the curve accounts for some
asymmetry. The improvement on the basis of the Lorentzian was significant as follows
for measured data ever far from resonance. Other contributors for the asymmetry may
include exchange effects, anisotropy and inhomogeneous dissipation mechanisms.
7 This value is smaller than the usual resistivity reported in the literature for those wires, for example

ρ = 11 × 10−7 Ωm
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Figure 49 – Fitting of absorption based on the theory of FMR in wires by (KRAUS, 1982)
(in red) compared to the Lorentzian fit (blue) of section 4.3.1 on the data of
Figure 34.

In regards to the dissipation, it is interesting to first note that, from the
Lorentzian fit, the total dissipation of the sample is in the order of 860 MHz. But following
the fit of the absorbed power from the FMR theory in the wires, the fitted Gilbert
parameter is only 0.01, corresponding to a Gilbert dissipation of 74 MHz. Considering
the nature of the absorption by the surface impedance in Equation 4.3, much of this
broadening comes from eddy current losses. So from this model, most of the dissipation
would be ohmic of origin. An important mechanism of the magnetic dissipation that the
model do not addresses is the loss by anisotropy dispersion (SOSSMEIER et al., 2010; de
Cos; GARCíA-ARRIBAS; BARANDIARAN, 2008), in that the variation of the magnetic
properties of the material along its volume, produce local resonances at shifted frequencies
that broaden the curve. This mechanism was seen to be dominant for CoFeSiB for certain
field range when the eddy current losses was removed (SOSSMEIER et al., 2010). So we
assume it plays a role in our experiment too. A detailed investigation of the dissipation
mechanisms and, for example, their dependence with temperature is left for future works.
We note that Dyson’s theory of ESR in metals (DYSON, 1955), where conduction electron
diffuse in and out of the skin, presenting a asymmetric lineshape could probably be used
to explain our results. We didn’t pursued this approach though.
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5 Conclusion

In this monograph the cavity-magnet coupling of metallic microwires in 3D
cavities was studied. The metallic character of the wires and their aspect ratio presents
the possibility of achieving this coupling using the electric fields of the cavity. This gives
in fact a much larger coupling than the conventional setup. This coupling was explored
in this work. Ferromagnetic experiments were performed using Vector Network Analyser
and varying field, obtaining maps from which both the dispersion and the absorption of
the coupled system could be measured. The results were first analysed using the model of
two coupled harmonic oscillators, with the passive oscillator possessing high dissipation,
causing the driven one to be perturbed according to linear response theory. From this,
important parameters of the interaction like the coupling strength and dissipation could
be obtained and interesting comparisons with the model made. Coupling strengths around
50 MHz could be reached, which is a good value for Cavity Magnonic experiments using
3D cavities and are impressive for such small magnetic system.

The coupling strength was then studied, and it was found that it is linear with
the electric field of the unperturbed cavity and, apparently for our system, linear in the
length also. Hence having an electric dipole nature.

The high dissipation is not completely understood, although eddy current losses
should have a big impact on it. Also, there is the question of why it does not significantly
change with the temperature. There could be competing temperature dependences on
different mechanisms or simply there is little change on the main mechanism. A more
careful investigation is needed to answer these questions.

Although the large dissipation prevented the system reaching the strong cou-
pling regime, using the advanced measurement setup available to the LFDQ Lab while
the sample was in the dilution refrigerator, a cavity ringdown spectrocopy was performed,
directly showing the Purcell effect on the cavity photons.

Future works investigating those wires could characterize its dissipation and
overall response in the range of frequencies and fields here considered. In regards to the
electrically mediated interaction, a more thorough investigation is worthy. One of the
problems to be solved is the exact format of the coupling: how g varies with the number
of spins, the electric field, the geometry and the frequency. Another question that begs
to be addressed given the discussion is if this sort of coupling could be used in Cavity
Magnonics experiments to achieve the strong coupling regime. Will the eddy current losses
be too big to impend it? Could a specially designed setup be used to easily achieve a
controllable coupling a dissipation? These are interesting questions that could potentially
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lead to powerful applications in the field.

As a consequence of the project, several skills and technical tools were developed
in the LFDQ that will form the basis of future endeavors in quantum magnonics.
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APPENDIX A – Demagnetization Field

From Helmholtz theorem, the magnetic field H is decomposed in two vector
fields: a solenoidal field HC with zero divergence and a irrotational field HD with zero
curl. The first one is the part of the field produced by free currents, as Amperè law holds:
∇ × H = ∇ × HC = j; the other is the part produced by the permanent magnetic
moments that makes up the magnetization; as it is curl-less it is the gradient of a potential:

HD = −∇ϕ, (A.1)

and from Gauss’ law ∇ · B = 0, it follows that

∇ · HD = −∇ · M (A.2)

from where one gets the Poisson equation for magnetic potential:

∇2ϕ = −∇ · M. (A.3)

The field HD is called demagnetization field inside the magnet and stray field outside of it.
This Poisson equation can be solved by Green’s function, giving the field produced by the
magnetization of the magnet. The term −∇ · M is called density of magnetic change, in
analogy to the Poisson equation of electrostatics.

The magnetostatic energy is the self energy of the magnet given by the energy
of the dipoles MdV immersed in the field HD produced by the other dipoles. Thus it is
equal to:

EM = −µ0

2

∫
dV HD · M, (A.4)

where the factor of 2 comes to eliminate the double counting.

For a uniformly magnetized ellipsoidal specimen, the demagnetization field is
related linearly to M by the demagnetization tensor (COEY, 2010):

Hdi = −
∑

j

NijMj; (A.5)

the tensor Nij has unit trace, and is diagonal on the base of the ellipse’s principal axes.
For a sphere, (Nx, Ny, Nz) = (1/3, 1/3, 1/3).

For a cylinder of length L and radius R, magnetized along its length (z direction),
the magnetic surface charges will be at its extremities. If L >> R this will be like point
charges too far from each other and the demagnetization field along the cylinder will be
small, so it is possible to see that for this geometry Nz → 0 and due to the symmetry
and normalization of the trace Nx, Ny → 1/2. Flatting that cylinder, R >> L, now it is
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a situation like the parallel plates of a capacitor that from Gauss’s law: E ∝ σ; hence
Hz = M , and consequently Nz → 1 , Nx, Ny → 0 . Although a specific direction of
magnetization was chosen to find these factors, they only depend on geometry and could
also be obtained from the "needle" (an extreme prolate ellipse) and "dish" (extreme oblate
ellipse) limits of the the general demagnetization tensor for the ellipse.
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APPENDIX B – Theory of FMR in Metallic
Wires With Exchange

As developed by Kraus (KRAUS, 1982).

When the exchange is considered, the equation 1.51 becomes bicubic. The
three resulting wave branches are associated with different waves. One of them have the
characteristics of nearly uniform precession (FMR), but all three can be excited and should
be considered when evaluating the surface impedance with exchange effects. Using the
Rado and Weertman boundary of conditions, the surface impedance is given by (KRAUS,
1982):

ηn = −ρ

∣∣∣∣∣∣∣∣∣
Wn,U Wn,S Wn,N

Xn,U Xn,S Xn,N

Yn,U Yn,S Yn,N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Vn,U Vn,S Vn,N

Xn,U Xn,S Xn,N

Yn,U Yn,S Yn,N

∣∣∣∣∣∣∣∣∣
, (B.1)

where U ,N , and S refers to the different wave branches, and X, Y , V and W , when there
is no anisotropy, are defined by:

Wn,j = kj

µeff,j

Jn(kjR),

Vn,j = 1
2

[
Jn−1(kjR)

µ−,j

− Jn+1(kjR)
µ+,j

]
,

Xn,j =
(

1
µ0

− 1
µ−,j

)
kjJ

′
n−1,j(kjR) +

(
1
µ0

− 1
µ+,j

)
kjJ

′
n+1,j(kjR),

Yn,j =
(

1
µ0

− 1
µ−,j

)
kjJ

′
n−1,j(kjR) −

(
1
µ0

− 1
µ+,j

)
kjJ

′
n+1,j(kjR).

(B.2)

For wires of small length compared to the cavity dimensions, the absorption for a
mode is proportional to the real part of the correspondent surface impedance B.1 (KRAUS,
1982); for longer wires it is also proportional to the scattering moments of cylindrical
waves that contain ηn in the denominator and produce changes in the absorption character
(KRAUS et al., 2011). The expression for the absorption per unit of length for this last
case is given by:

Pn

Pn,inc

= Re(ηn)
8c
√

ϵ0/µ0

πRω|H(2)
n (ωR/c) + i

√
ϵ0/µ0ηnH

′(2)
n (ωR/c)|2

, (B.3)
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Figure 50 – Absorption curves simulated for magnetization mode n = 0 for different wire
radius. The curves were escalated for allow comparison, as indicated in the
legend. When the wire is bulk R >> δ0, the resonance happens on the Kittel
plane condition. When they are comparable, the curve is asymmetric and
broad. When R << δ0 there is not an absorption, but a transparency instead.
The dislocation of the features is an exchange phenomenon. The small dip in
the curve of R = 50µm in 1.51 T is due to spin waves.

where Pn,inc is the incident power in that mode and H(2)
n and H ′(2)

n are the Hankel function
of the second-kind and its derivative, respectively.

Some of the curves presented in the article (KRAUS et al., 2011) were recal-
culated here using the above equations in Wolfram Mathematica. The code is displayed
below. The parameters used were the same of the article: f = 70 GHz, A = 2 × 10−11 J/m,
µ0Ms = 2.146 T, α = 1.35 × 10−3, ρ = 97 nΩm, which gives δ0 = 592 nm, Kittel Resonance
condition for plane Hr,P = 1.65 T, and for cylinder Hr,C = 1.43 T. Figure 50 presents the
simulation for mode n = 0, and Figure 51 for mode n = 1. When the R >> δ0, both
resonances conditions tend happen in the plane condition, as explained in section 1.7.
When R ∼ δ0, the resonances broaden and deform. When R << δ0, the mode n = 0
presents a dip in the absorption, a transparency for field values smaller than the resonance
condition – this dislocation in resonance is due to exchange effects – , while mode n = 1
have now a resonance in the Kittel condition for the cylinder, which is expected.
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Figure 51 – Absorption curves simulated for magnetization mode n = 1 for different wire
radius. The curves were escalated for allow comparison, as indicated in the
legend. When the wire is bulk R >> δ0, the resonance happens on the Kittel
plane condition. When they are comparable, the curve is asymmetric and
broad. When R << δ0 the resonance condition shifts for the Kittel cylinder.
This shows the transition of the dipolar mode from a situation when the skin
effect dominates and the resonance only happens close to the surface, to the
situation that the whole wire participates in the precession, equivalent to the
insulator case.

Mathematica Code
1 rho = 97*10^ -9;
2 alpha = 1.35*10^ -3;
3 omega = 70*10^9;
4 mu0 = 4*Pi *10^ -7;
5 M = 2.146;
6 gamma = 28*10^9;
7 delta0 = (2* rho /(2* Pi*omega*mu0))^0.5;
8 A = 2*10^ -11;
9 epsilon0 = 8.85*10^ -12;

10 c = 3*10^8;
11 kappa = 2*Pi*omega/c;
12 mup[B_ , k_] =
13 mu0 *(B + M + I*alpha*omega/gamma + omega/gamma + mu0*A*k^2/

M)/(B +
14 I*alpha*omega/gamma + omega/gamma + mu0*A*k^2/M);
15
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16 mum[B_ , k_] =
17 mu0 *(B + M + I*alpha*omega/gamma - omega/gamma + mu0*A*k^2/

M)/(B +
18 I*alpha*omega/gamma - omega/gamma + mu0*A*k^2/M);
19 mueff[B_ , k_] = 2*(1/ mup[B, k] + 1/ mum[B, k])^-1;
20

21 f[B_ , k_] = k^2 + 2*I/delta0 ^2* mueff[B, k]/ mu0;
22 V[B_ , k_ , r_ , n_] =
23 1/2*(1/ mum[B, k]* BesselJ [n - 1, k*r] -
24 1/ mup[B, k]* BesselJ [n + 1, k*r]);
25 W[B_ , k_ , r_ , n_] = k/mueff[B, k]* BesselJ [n, k*r];
26 X[B_ , k_ , r_ ,
27 n_] = (1/ mu0 - 1/ mum[B, k])*
28 k/2*( BesselJ [n - 2, k*r] - BesselJ [n, k*r]) + (1/ mu0 -
29 1/ mup[B, k])*k/2*( BesselJ [n, k*r] - BesselJ [n + 2, k*r

]);
30 Y[B_ , k_ , r_ ,
31 n_] = (1/ mu0 - 1/ mum[B, k])*
32 k/2*( BesselJ [n - 2, k*r] - BesselJ [n, k*r]) - (1/ mu0 -
33 1/ mup[B, k])*k/2*( BesselJ [n, k*r] - BesselJ [n + 2, k*r

]);
34 M1[B_ , k1_ , k2_ , k3_ , r_ ,
35 n_] = {{W[B, k1 , r, n], W[B, k2 , r, n],
36 W[B, k3 , r, n]}, {X[B, k1 , r, n], X[B, k2 , r, n],
37 X[B, k3 , r, n]}, {Y[B, k1 , r, n], Y[B, k2 , r, n], Y[B, k3

, r, n]}};
38

39 M2[B_ , k1_ , k2_ , k3_ , r_ ,
40 n_] = {{V[B, k1 , r, n], V[B, k2 , r, n],
41 V[B, k3 , r, n]}, {X[B, k1 , r, n], X[B, k2 , r, n],
42 X[B, k3 , r, n]}, {Y[B, k1 , r, n], Y[B, k2 , r, n], Y[B, k3

, r, n]}};
43 eta[B_ , k1_ , k2_ , k3_ , r_ , n_] = -rho*
44 Det[M1[B, k1 , k2 , k3 , r, n]]/ Det[M2[B, k1 , k2 , k3 , r, n]];
45 P[etav_ , r_ , n_] =
46 Re[etav ]*8*( epsilon0 /mu0)^0.5/( Pi*r*kappa*
47 Abs[ HankelH2 [n, r*kappa] +
48 I*( epsilon0 /mu0)^0.5*
49 etav *( HankelH2 [n - 1, r*kappa] - HankelH2 [n + 1, r*
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kappa ]) /2]^2);
50 listB = Range [1.2 , 1.7, 0.5/999];
51 points = {};
52 Do[
53 sol = NSolve [{f[B, k] == 0, Re[k] > 0}, k];
54 ksol = k /. sol;
55 etasol = eta[B, ##, 50*10^ -6 , 0] & @@ ksol;
56 y = P[etasol , 50*10^ -6 , 0];
57 AppendTo [points , {B, y}],
58 {B, listB}
59 ];
60 ListPlot [points , PlotRange -> All]
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APPENDIX C – Cavity Fitting

The expression for the transmission parameter can be obtained from Input-
Output formalism or microwave circuit theory. It is given with the correct phase convention
by Equation C.1, where f0 standas for the resonance frequency of the cavity. Figure 52a
shows a S21 in the complex plane, and the magnitude and phase. The plot of S21 on the
complex plane is a frequency parameterized circle, which touches zero at f = ±∞ and the
real line at f = f0; the magnitude has a lorentzian shape peaked at the resonnace and the
phase passes from π to −π, the circuit passes from a inductive character to a capacitive
one.

S21 =
√

κ1κ2

i (f − f0) + κ
2

, (C.1)

Figure 52 – a) Expected transmission parameter around the resonance of a cavity in the
complex plane, in magnitude and phase. b) Transmission parameter in the
presence of impedance mismatches and delay

In a real measurement setup, though, there will be changes on Equation C.1, due
to impedance mismatches and cross talks (PETERSAN; ANLAGE, 1998). This introduces
scaling, translation and a rotation of S21. Along that, when the measurement plane does
not coincide with the coupling ports of the resonator, for example due to the transmission
line length of the probes, a frequency dependent shift from delay is also introduced, leading
to a measured S21 closer to the form of Equation C.2, that in the complex plane shows as
an enovalated trace like shown in Figure 52b.

S̃21 = eiζf

 Aeiϕ

1 + 2iQ
(

f
f0

− 1
) + X

 . (C.2)

A VNA properly calibrated will remove these parameters; in the case the calibration is
not performed, they have to be considered in the fitting procedure. A fitting procedure
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that corrects the data in the complex plane and obtains the resonace frequency and the
quality factor accurately consists of the following steps (PETERSAN; ANLAGE, 1998;
GAO, 2008):

• Correction of the phase/electrical delay (a lot of times visually)

• Circle Fit

• Translation followed by rotation of the circle to bring it to the origin (shifted by
minus a radius (-r) from the canonical position of Figure 52)

• Fitting of the phase vs frequency given by Equation C.3

ϕ = ϕ0 + 2 arctan
[
2Q

(
1 − f

f0

)]
(C.3)

Figure 53 shows this circle fit for the mode TE101 of the aluminum cavity 1. The fitted
value of resonance frequency and quality for that mode were 7.435 GHz and 3060. Another
fitting procedure, more simple, though less precise (PETERSAN; ANLAGE, 1998) is
simply to fit in the magnitude data in the skewed Lorentzian given by:

|S21|(f) = A1 + A2f + |Smax| + A3f√
1 + 4 f−f0

∆f

, (C.4)

where Q is calculated by f0 and ∆f . Similarly, the other S parameters can be fitted.
Note that the magnitude square of C.1 (same for the reflection parameter) is a proper
Lorentzian.

Figure 53 – Measurement of S21 by a calibrated VNA in blue, basically showing just a
phase shift. The data was corrected to the canonical position and then shifted
to the origin, shown in red.
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APPENDIX D – Python Program to Control
the Room T. System

1 import matplotlib .pyplot as plt
2 import numpy as np
3 import pyvisa
4 import time
5 import pandas as pd
6

7 rm = pyvisa. ResourceManager ()
8 rm. list_resources ()
9 fonte=rm. open_resource ( ’GPIB0 ::6:: INSTR ’)

10 vna=rm. open_resource ( ’GPIB0 ::16:: INSTR ’)
11 gauss=rm. open_resource ( ’GPIB0 ::10:: INSTR ’)
12 gauss. read_termination = ’\r’
13 gauss. write_termination = ’\r’
14 fonte. read_termination = ’\r’
15 fonte. write_termination = ’\r’
16

17 def writeB(B):
18 C=1 # Conversion factor in A/T
19 VMAX =20 # Maximum Voltage
20 # Conversion Factors Obtained from Calibration

21 C =36.01249612
22 C2 = -0.11840127
23 I=C*B+C2
24 if (I >=0):
25 fonte.write(’CURR {}; VOLT {} ’.format(I,VMAX))
26 if (I <0):
27 fonte.write(’CURR {}; VOLT {} ’.format(I,-VMAX))
28 return None
29

30 def zeroI ():
31 I=fonte.query(’CURR?’)
32 I=float (I)



APPENDIX D. Python Program to Control the Room T. System 86

33 for n in reversed (range (6)):
34 i=str(I*n/6)
35 fonte.write(’CURR {}; VOLT 20’.format(i))
36 time.sleep (2.5)
37

38 def measB ():
39 b=gauss.query(’FIELD?’)
40 b=b.strip(’\n’)
41 b=float (b)
42 return b
43

44 def FMR_map_meas_all (Binicial ,Bfinal ,pB ,finicial ,ffinal ,N,
sleep ,ifres , nome_arquivo ):

45

46 psweep =( ffinal - finicial )/N
47

48 Blst=np.arange(Binicial ,Bfinal+pB ,pB)
49

50

51 vna.write(’SENS:SWE:POIN {}’.format(N))
52 vna.write(’SENS1:FREQ:START {}; :SENS1:FREQ:STOP {}’.

format(finicial ,ffinal))
53 vna.write(’SENS1: BANDwidth :RES {}’.format(ifres))
54 vna.write(":SENSe1: AVERage :COUNt 10")
55 vna.write(’SENS1: BANDwidth :RES {}’.format(ifres))
56 vna.write(’DISP:WIND:TRAC1:Y:SCAL:AUTO ’)
57 vna.write(’SENS1:AVER:STATE ON’)
58

59 column_list =[ ’B’,’freq ’, ’S11mag ’, ’S11ph ’, ’S21mag ’, ’
S21ph ’,’S12mag ’,’S12ph ’,’S22mag ’,’S22ph ’]

60

61 DADOS = {}
62 for column in column_list :
63 DADOS[column ]=[]
64

65

66 for b in Blst:
67 writeB(b)
68 time.sleep (2)
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69

70 B=measB ()
71

72 vna.write(’SENS1:AVER:CLE ’)
73 vna.write(’: DISPlay : WINDow1 :TRACe1:Y:SCALe:AUTO ’)
74 vna.write(’: DISPlay : WINDow1 :TRACe2:Y:SCALe:AUTO ’)
75 vna.write(’: DISPlay : WINDow1 :TRACe3:Y:SCALe:AUTO ’)
76 vna.write(’: DISPlay : WINDow1 :TRACe4:Y:SCALe:AUTO ’)
77 vna.write(’CALC:PAR:DEF MEAS ,S21 ’)
78 time.sleep(sleep)
79 vna.write(’CALC:PAR:SEL MEAS ’)
80

81

82

83 dados=vna.query(’CALC:DATA:SNP?’) #coleta o arquivo
SNP com as medidas

84 ’’’ SNP Format :
85 Freq/S11 linmag/S11 ph/S21 linmag/ S21 ph/ S12

linmag/ S12 ph/ S22 linmag/ S22 ph
86 Data comes in a long string
87 ’’’
88

89 lst=dados.split(’,’)
90 for i in range(len(lst)):
91 lst[i]= float (lst[i])
92

93 DADOS[’B’]. append(B)
94 for i,column in enumerate ( column_list [1:]):
95 DADOS[column ]. append(lst[N*i:N*(i+1) ])
96

97 vna.write(’CALC:PAR:DEL MEAS ’)
98

99

100 zeroI ()
101

102 final_data =pd. DataFrame (DADOS)
103 final_data .to_csv("{}. csv".format( nome_arquivo ), index =

False)
104 return DADOS



88

APPENDIX E – Python Module that creates
a class to control the superconducting magnet

1 ’’’
2 This module creates a class for the American Magnetics ,Inc.

Model 430 power supply programmer that controls the
quadupolar power supply

3 4 Q06125PS . The communication is realized by a ethernet
connection .

4

5 Disclaimer :
6 This is a module under construction so it has few

functionalities implemented , but if the ethernet
connection is successfull ,

7 any acceptable command or query can be send through these
commands below. One should consult the manuals to get a
full

8 understanding of the workings of the system and the different
SCPI commands .

9

10 Comment about units:
11 Our model is (or should be) always set to use teslas and

teslas/min. Other units may be set/used either by
programming or

12 directly in the instrument . Just be aware to consider the
correct values and change all the code acordingly .

13 ’’’
14

15

16

17 import socket
18 from time import sleep
19

20

21

22 class Model_430 :
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23

24 def __init__ (self ,DeviceIP , timeout =10):
25 self.DVM=socket.socket ()
26 self.DVM. settimeout ( timeout )
27 try:
28 self.DVM. connect (( DeviceIP , 7180))
29 sleep (1e -2)
30 print(self.DVM.recv (1024))
31 except socket. timeout :
32 print(’Socket Timed Out ’)
33

34

35

36 def query(self , question ):
37 ’’’
38 This command sends a query to the instrument in the

SCPI format .
39 Example : instrument_name .query(’ CURR:SUPP ?\n’). One

should always add the end termination \n.
40 ’’’
41 self.DVM.send( question .encode ())
42 sleep (1e -2)
43 try:
44 response =self.DVM.recv (1024)
45 return response
46 except socket. timeout :
47 print(’Socket Timed Out ’)
48 return None
49

50

51 def write(self , command ):
52 ’’’
53 This command writes a command onto the instrument in

the SCPI format .
54 Example : instrument_name .write(’ PAUSE\n’). One should

always add the end termination \n.
55 ’’’
56 self.DVM.send( command .encode ())
57



APPENDIX E. Python Module that creates a class to control the superconducting magnet 90

58

59 def field(self):
60 ’’’
61 This command queries the supply current in a m p r e s ,

and from that , calculates the applied field in
teslas

62 with the coil conversion factor. So this command
should give the current magnetic field generated
by the coil

63 in case the persistent switch heater is on.
64 ’’’
65 return float (self.query(’CURR:SUPP ?\n’).decode ().

strip(’\r\n’)) *0.0912
66

67

68 def ramp_to_and_monitor (self ,value):
69 ’’’
70 This command initiates the field ramp to the inputed

value in teslas. It is advised to determine and
check the ramp rate

71 beforehand .
72 This command has a loop that print the current field

value , monitoring the ramp. If one wants only to
initiate the ramp

73 and execute any other sequential line of code , it
should use the ramp_to (value) command instead .

74 ’’’
75 self. field_target =value
76 self.write(’RAMP\n’)
77 sleep (1e -2)
78 state=self.query(’STATE ?\n’).decode ().strip(’\r\n’)
79 while state == ’1’:
80 field_now =self.field ()
81 print(f’\r{ field_now } T’+’ ’*100 , end=’\r’,flush=

True)
82 sleep (1)
83 state=self.query(’STATE ?\n’).decode ().strip(’\r\n

’)
84 final_field = float (self.query(’CURR:SUPP ?\n’).decode
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().strip(’\r\n’)) *0.0912
85 print(’Target Reached {}’.format( final_field ))
86 self.pause ()
87

88 def ramp_to (self ,value):
89 ’’’
90 This command initiates the field ramp to the inputed

value in teslas. It is advised to determine and
check the ramp rate

91 beforehand , though the ramp rate can usually be
changed during the ramp. One can also use the
command pause () to pause the ramp.

92 ’’’
93 self. field_target =value
94 self.write(’RAMP\n’)
95

96

97 def ramp_to_zero (self):
98 ’’’
99 This command ramps to zero field while monitoring . It

is advised to determine and check the ramp rate
beforehand .

100 ’’’
101 self.write(’ZERO\n’)
102

103 while True:
104 field_now =self.field ()
105 print(f’\r{ field_now } T’+’ ’*100 , end=’\r’,flush=

True)
106 sleep (1)
107 if (abs( field_now ) <5e -6):
108 print(’Field at Zero ’)
109 break
110

111

112 def pause(self):
113 self.write(’PAUSE\n’)
114

115
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116

117 @property
118 def ramp_rate (self):
119 ’’’
120 Get the ramp rate in teslas per minute
121 ’’’
122 result = self.query(’RAMP:RATE:FIELD :1?\n’). decode ().

strip(’\r\n’).split(’,’)[0]
123 return result
124

125 @property
126 def field_target (self):
127 ’’’
128 Get the field target in teslas
129 ’’’
130 result= self.query(’FIELD:TARG ?\n’).decode ().strip(’\

r\n’)
131 return result
132

133 @ramp_rate .setter
134 def ramp_rate (self ,value):
135 ’’’
136 Set the ramp rate value in teslas per minute of

segment 1 and an upper bound field of 8 teslas.
137 ’’’
138 self.write(’CONF:RAMP:RATE:FIELD 1 ,{} ,8\n’.format(

value))
139

140 @field_target .setter
141 def field_target (self ,value):
142 ’’’
143 Set the field_target value in teslas
144 ’’’
145 self.write(’CONF:FIELD:TARG {}\n’.format(value))
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APPENDIX G – Cavity Background
Resonance

Figure 54 – FMR measurement of empty cavity A, showing a small resonance close to 0.1 T.
The field at minimum is 92 mT. The amplitude of the signal is ∆S21 ∼ 8×10−4.
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