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Abstract

In this paper, we present the development of a new version of the BrkgaCuda, called BrkgaCuda 2.0,
to support the design and execution of Biased Random-Key Genetic Algorithms (BRKGA) on
CUDA/GPU-enabled computing platforms, employing new techniques to accelerate the execution.
We compare the performance of our implementation against the standard CPU implementation called
BrkgaAPI, developed by Toso and Resende (2015), and the recently proposed GPU-BRKGA, devel-
oped by Alves et al (2021). In the same spirit of the standard implementation, all central aspects
of the BRKGA logic are dealt with our framework, and little effort is required to reuse the frame-
work on another problem. The user is also allowed to choose to implement the decoder on the CPU
in C++4 or on GPU in CUDA. Moreover, the BrkgaCuda provides a decoder that receives a per-
mutation created by sorting the indices of the chromosomes using the genes as keys. To evaluate
our framework, we use a total of 54 instances of the Traveling Salesman Problem (TSP), the Set
Cover Problem (SCP), and the Capacitated Vehicle Routing Problem (CVRP), using a greedy and
an optimal decoder on the CVRP. We show that our framework is faster than the standard BrkgaAPI
and the GPU-BRKGA while keeping the same solution quality. Also, when using the bb-segsort to
create the permutations, our framework achieves even higher speedups when compared to the others.

Keywords: Genetic algorithms, BRKGA, Framework, Parallel, GPU, CUDA

1 Introduction

Several techniques were developed aiming to
solve hard combinatorial optimization problems.
Among these techniques, there are combinato-
rial branch-and-bound algorithms, integer linear
programming, dynamic programming, and other
enumerative methods. Despite the development
in this field, some problems with large input
instances are still difficult to be tackled with
these techniques due to the large amount of time
required to explore a large search space. In these

cases, the use of heuristics and metaheuristics
seems to be appropriate, since one can find accept-
able solutions in reasonable computing times.
Even when optimal solutions are required, the
use of heuristics appears as a standard method
to generate primal bounds, helping to speedup
the execution of exact algorithms (Sadykov et al,
2019).

Several papers were devoted to the description
of heuristics and metaheuristics for hard combi-
natorial problems, such as Variable Neighborhood
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Search, Greedy Randomized Adaptive Search Pro-
cedure, Simulated Annealing, and Genetic Algo-
rithms (Ezugwu et al, 2021). This last one belongs
to the class of evolutionary algorithms, where
a population of individuals, representing solu-
tions, evolve while a selection process occurs
filtering the best individuals to the next gen-
erations. Among them, the Biased Random-Key
Genetic Algorithm (BRKGA) has the advantage
of being easy to apply to different types of
problems. Some examples of its applications are
network design (Andrade et al, 2021; Gongalves
and Resende, 2015), scheduling (Kong et al,
2020; Soares and Carvalho, 2020), molecular dock-
ing (Leonhart et al, 2019), routing (Chagas et al,
2021; Ruiz et al, 2019), and set covering (Jing et al,
2020).

To design a solution with BRKGA, the user
must specify a decoding function that converts
an array of decimal values in the range [0, 1] into
solutions. All the other aspects of the algorithm,
such as evolution, crossover, and mutation, are
standard operations in the BRKGA. Since those
operations are independent of the problem, Toso
and Resende (2015) proposed a C++ Applica-
tion Programming Interface (API) that requires
only that the user implements the decoding func-
tion to the problem. This implementation signif-
icantly reduces the effort needed to implement a
BRKGA-based solution. Moreover, to speedup the
execution time of the algorithm, Xavier (2019)
and Alves et al (2021) implemented the same
code in CUDA to accelerate the algorithm using
Graphics Processing Units (GPU).

The CUDA language was created by Nvidia to
allow developers to use the GPU for general pro-
cessing, not only for graphical processing (Nvidia,
2007). The language provides a layer that gives
access to the GPU, which is designed to execute
massively parallel tasks. Since its release, sev-
eral applications were ported to run over CUDA,
even heuristics to hard combinatorial optimiza-
tion problems — in general with significant gains
of speed when compared to sequential heuris-
tics (Essaid et al, 2018).

Although metaheuristics do find solutions of
good quality, the reuse of the implemented code
to tackle different problems requires a significant
implementation effort. Some works tried to cre-
ate libraries to facilitate this task, such as the

Jgap (Meffert et al, 2012), which provides a pack-
age in Java for genetic algorithm development.
Yet, the use of the package is not so simple since
the user has to implement several aspects of the
algorithm. In this respect, the BrkgaAPI, the
BrkgaCuda, and the GPU-BRKGA bring great
simplification, requiring only the implementation
of the decoding function.

In this work, we present a new version of
the BrkgaCuda, called BrkgaCuda 2.0, which
improves the original framework proposed by
Xavier by employing new techniques to acceler-
ate the execution, such as the use of multiple
streams and changing the logic to take advantage
of coalesced memory access. Also, we improve the
solution quality of the GPU-BRKGA, bringing
results similar to the ones found by the Brkga-
API. Tt is worth mentioning that the user of our
framework is not required to understand GPU
programming, since it only requires the implemen-
tation of a decoding function that can be imple-
mented in standard C++ language — in this case,
our framework is still able to harness the power
of GPUs to accelerate the BRKGA. To evaluate
our framework, we used 54 instances, 22 instances
of the Traveling Salesman Problem (TSP) and
9 instances of the Set Cover Problem (SCP)
with instances available in the OR-Library', and
23 instances of the Capacitated Vehicle Routing
Problem (CVRP) with instances available in the
CVRPLIB2. We perform an extensive evaluation
by comparing its performance against the Brkga-
API, the BrkgaCuda, and the GPU-BRKGA using
four implementations to these problems. We show
that the BrkgaCuda 2.0 is the fastest one, cre-
ate solutions of similar quality, and doesn’t have
the chromosome length limited by the number of
CUDA threads.

The remainder of this text is organized as fol-
lows: Section 2 provides an overview of Biased
Random-Key Genetic Algorithms; Section 3
presents the related works; Section 4 discusses the
implementation of the BrkgaCuda 2.0; Section 5
presents several computational experiments com-
paring the BrkgaCuda 2.0 with the BrkgaAPI,
the BrkgaCuda, and the GPU-BRKGA; finally,
Section 6 presents the conclusions.

Yhttp://people.brunel.ac.uk/~mastjjb/jeb/info.html
2http://vrp.atd-lab.inf.puc-rio.br/index.php/en/



Springer Nature 2021 ETEX template

d Random-Key Genetic Algorithms on GPUs 3

2 Biased Random-Key
Genetic Algorithm

The Genetic Algorithm (Holland, 1984) was devel-
oped as a method for solving optimization prob-
lems simulating the natural selection process. The
algorithm simulates a population of individuals,
where each individual is represented by a chromo-
some, which in turn represents a solution. Each
chromosome consists of n genes. The evolution of
the population combines the genes of individuals,
a process called crossover. Although the process is
random, the crossover process is specified in such a
way that good characteristics of the chromosomes
are passed to the next generation. The individu-
als can also mutate, helping to escape from local
optima. This mutation can be done, for example,
by creating new individuals with random genes or
selecting some individuals after the crossover oper-
ation and changing some genes to a new random
value. Also, the concept of survival is applied as a
way of selecting individuals representing the best
solutions for the next generation.

In the BRKGA, the genes of the chromosome
are represented by a random key encoded as a
floating-point value in the range [0, 1]. Initially,
a population is randomly created with p chro-
mosomes. Then the fitness is calculated by the
decoding function, which maps the chromosome
to a numerical value (the fitness) that repre-
sents the solution performance (or quality). After
calculating the fitness of each chromosome, the
population is divided into two groups: the p. best
solutions (elite) and the p — p. others (non-elite).
The population is evolved through survival, muta-
tion, and crossover operations, which change the
population across generations. The survival oper-
ation ensures that the p. best chromosomes of
the current generation are preserved in the next
generation. The mutation operation constructs p,,
new chromosomes with random values. Finally,
the remaining p — p. — p,,, chromosomes are gen-
erated by the crossover operation, which combines
one chromosome from the elite group with other
from the non-elite groups. Let p > 0.5 be a param-
eter for the crossover operation, the new chromo-
some C'is created by combining an elite (C¢) and a
non-elite (C™¢) chromosome so that gene C; = C¢
with probability p and C; = C** with probabil-
ity 1 —p, for each i =1,...,n. Note that p is

biased to select the genes of the elite solution.
Figure 1 presents the BRKGA flowchart, high-
lighting the only part that is problem-dependent.

Finally, the multi-population concept increase
the variability of good solutions in each popu-
lation. In this concept, several populations are
created and evolve independently of each other. To
find even better solutions, it is possible to perform
periodic exchanges of the best individuals between
different populations, replacing bad chromosomes
with the elites of another population (Branke et al,
2000).

3 Related Works

Several works proposed Biased Random-Key
Genetic Algorithms to solve optimization prob-
lems. Chagas et al (2021) combine the TSP with
the knapsack problem to select the locations to
visit that maximize the profit while minimizing
the travel time. To do so, they modified the
BRKGA to work in a Multi-Objective fashion and
concluded that their solution consistently finds
high-quality solutions. Ruiz et al (2019) apply
the BRKGA to the Open Vehicle Routing Prob-
lem (OVRP), which doesn’t require the vehicle to
return to the depot at the end of the tour. Their
solution could improve the results of 16 out of 30
instances tested. Cicek and Ozturk (2021) use the
BRKGA to define the number of neurons and their
weights of an Artificial Neural Network (ANN).
This approach could find better forecasts when
compared to other ANN algorithms.

BRKGA has also been combined with other
techniques to improve its convergence and the
solution quality. Chaves et al (2018) proposed to
make the parameters of the BRKGA adaptive,
i.e., updating the parameters while the algorithm
is running. This approach simplified even more
the algorithm by removing the need to set the
parameters of the algorithm while improving the
results compared to static parameters. Jing et al
(2020) combine the SCP and the VRP to solve
the problem of using drones to perform inspec-
tions. They use the BRKGA with local search to
solve the problem, reducing the total distance of
the planned inspection to near half of the ones
found in the literature. Andrade et al (2021) add
to the BRKGA the Multi-Parent strategy, which
selects three or more chromosomes to mate to gen-
erate the next population. Moreover, they applied
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Fig. 1 Flowchart of the BRKGA algorithm.

the Implicit Path Relinking (IPR) local search
independently of the problem, allowing its reuse
on other problems. Soares and Carvalho (2020)
address the scheduling problem using the BRKGA
with the Variable Neighborhood Descend run-
ning many local searches. Homayouni et al (2020)
address a variation of the Job-Shop Scheduling
Problem (JSP) using the BRKGA with many
heuristics performing local searches. All works
that used BRKGA with local search had faster
convergence and found solutions of very high
quality.

Some frameworks were proposed to facilitate
the design and implementation of BRKGA-based
solutions. These frameworks aim at abstracting
away the details, leaving the user only with the
design and implementation of a solution decod-
ing function, which takes a chromosome as input
and returns a numerical value (the fitness) indi-
cating the performance (or quality) of the solution
it represents. Smaller fitness means better chro-
mosormes.

A C++ implementation known as BrkgaAPI
was proposed by Toso and Resende (2015). The
BrkgaAPI provides the user with the BRKGA class,
which is implemented as a template class that
receives a Decoder class as a parameter. The
Decoder class, in turn, is a C4++ code defined by
the user that implements the decoder function.
Xavier (2019) presented the first version of the
BrkgaCuda, a framework that implements a simi-
lar API, but runs on GPUs. This framework allows
the user to implement the decoding process for
execution on the CPU or the GPU and achieved
performances up to 1.36x faster than BrkgaAPI
using OpenMP. A similar framework called GPU-
BRKGA was proposed by Alves et al (2021). The
authors evaluated the GPU-BRKGA performance

using three multidimensional functions and con-
cluded that it is faster than the BrkgaAPI and
the BrkgaCuda frameworks. It is worth notic-
ing that these problems are not representative
of combinatorial optimization problems, and they
were evaluated using small chromosomes (< 128).
As we show in our experimental results, their
implementation does not work with large chromo-
somes (> 1024) and did not perform as well as
our implementation on hard combinatorial opti-
mization problems, which are more common on
the literature.

In this work, we present a new version of
the BrkgaCuda, called BrkgaCuda 2.0, which
improves the preliminary framework proposed by
Xavier by employing new techniques to accelerate
the execution. Finally, we perform an extensive
evaluation by comparing its performance against
the BrkgaAPI, the previous version of the Brkga-
Cuda, and the GPU-BRKGA frameworks using 54
instances with four implementations of three com-
binatorial optimization problems.

4 The BrkgaCuda 2.0
Framework

In this work, we present the BrkgaCuda 2.0, an
open-source framework® to facilitate the design
and execution of fast Biased Random-Key Genetic
Algorithms on GPUs. In this section, we present
the framework, a sample decoder for the TSP
problem, and the parallelization of the BRKGA
using CUDA.

3To be made available at GitHub.
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4.1 The BrkgaCuda 2.0

The main class in this framework is the Brkga
class, which contains the following public meth-
ods:

® Brkga: a constructor method that takes as a
parameter a configuration class containing: the
decoder of the problem; the number of indepen-
dent populations; the population size; the size
of the chromosome; the number or the percent-
age of elites; the number or the percentage of
mutants; the bias used in the crossover opera-
tion; the decoder to use; the seed used in the
pseudo-random number generator; the number
of threads to use on the CPU and the GPU.

® evolve: evolves the populations to the next
generation.

® ecxchangeElite(M): exchanges the best M
elites of each population, replacing the worst
chromosomes.

® getBestFitness, getBestChromosome, and
getBestPermutation: return, respectively, the
fitness, the chromosome, and the permutation
of the best fitness found among all populations.

The other relevant class is the abstract class
Decoder, which contains the methods that must
be implemented by the user. The user should over-
ride the method according to the desired decoder.
A common operation is to sort the chromosome
before decoding, especially when the solution is
a permutation-like. The “permutation” methods
already provide the user with the permutation
created by sorting the genes of the chromosome
and returning their initial index. In this case, the
sorting process is performed on the GPU by the
framework itself. The available decoders are:

e Single-CPU: receives a single chromosome and
must return its fitness value.

¢ Single-CPU-Permutation: similar to Single-
CPU, but receives a permutation instead of the
chromosome.

® CPU: receives a population of chromosomes
and an array in which the user must store the
results. The code must calculate and store the
fitness value of each chromosome on the results
array.

e CPU-Permutation: similar to CPU, but receives
a permutation instead of the chromosome.

e GPU: similar to CPU, but runs on the GPU.

e GPU-Permutation: similar to CPU-Permutati-
on, but runs on the GPU.

All decoders that run on the GPU receive a
stream to run on. The user is also allowed to
specify that all populations must be decoded at
once, allowing its implementation to process a
large amount of data at once and, perhaps, have a
speedup due to better resource usage. Moreover,
the default implementation of CPU and CPU-Per-
mutation is to call, respectively, Single-CPU and
Single-CPU-Permutation using OpenMP, simpli-
fying the implementation. The GPU and GPU-
Permutation were provided for users who have
knowledge of CUDA and want to use the GPU
to decode the chromosome. Otherwise, the user
can implement the CPU decoder in plain C++.
Notice that, even though the user may implement
all methods, only one of them needs to be imple-
mented to produce a valid BRKGA solution. The
next section illustrates how the framework can
be used through the implementation of a sample
decoder for the TSP problem.

4.2 Sample Decoder

Consider for example the TSP problem. The input
is a complete graph G = (V, E) with edge costs
and whose goal is to find a minimum cost Hamilto-
nian cycle. We can consider the chromosomes with
size n =V, in which each gene represents a ver-
tex. Then we sort the genes according to their key
values keeping track of the initial index. This way
the indices will generate a permutation represent-
ing an order to visit the vertices in a Hamiltonian
cycle. The fitness will be the sum of the costs of
the edges used to visit the clients in that order.

The Code 1 presents an example of the decoder
discussed above for the BrkgaCuda 2.0. In this
example, the clients are represented by 2D coordi-
nates and the graph G is implicit with edge costs
calculated by the distance method. The decoder
inherits from Decoder and overrides the decode
method for the chromosome and a population of
permutations, both on the CPU. The GPU version
is similar.
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class TspDecoder :
std :: vector<Point> clients;

public box::Decoder {
// 2D points

public:
using box:: Decoder;

TspDecoder (std :: vector<Point> c¢)
clients (c) {}

float distance (unsigned u,
unsigned v) const {
return std:: hypotf(
clients [u].x — clients[v].x,
clients [u].y — clients[v].y);

}

// Decode the chromosome on the CPU
float decode(const float* chromosome)
const override {
// config is defined in box::Decoder
unsigned n = config—>chromosomeLength;

// Sort the permutation wusing
// the chromosome as keys
std :: vector <unsigned> tour(n);
std::iota(tour.begin(), tour.end(), 0);
std :: sort (tour.begin (), tour.end(),
[&](unsigned lhs, unsigned rhs) {
return chromosome/|lhs]
< chromosome [rhs];
1)

// Calculate the fitness
float fitness = distance(tour[0],
tour[n — 1]);
for (unsigned j = 1; j < n; ++j) {
fitness += distance(tour[j — 1],
tour [31);

return fitness;

}
+s

Code 1 Sample decoder of the TSP for the
BrkgaCuda 2.0.

4.3 Parallelization of the BRKGA
on CUDA

To represent all the chromosomes in all pop-
ulations we use a contiguous array. We use
the curandGenerateUniform function, from the
CUDA toolkit, to generate pseudo-random num-
bers in the range [0,1] in parallel. This generator
is used to initialize and evolve the population. The
evolution requires a temporary array to which we
copy elite chromosomes, create the mutants, and
perform the crossover. To create the elite and non-
elite groups, we keep a sorted array of fitness and
the index of the corresponding chromosome. The
first p. chromosomes belong to the elite group and
the last p,, are the ones replaced by the mutants.

In the new version of the framework, each
thread processes a single gene. To sort all chromo-
somes at once (if the user chooses to decode the
permutations), we use the bb-segsort implementa-
tion by Hou et al (2017), as suggested by Schmid
et al (2022). Moreover, each population is assigned
to a different stream. The multiple streams allow
scheduling CUDA operations to run concurrently,
enabling the GPU to interleave the execution
with data transfers and functions that doesn’t use
all the resources of the GPU, for example. This
way, the operations on the same population are
enqueued and the synchronization only happens
in three cases: to call the bb-segsort, to exchange
elites, and to return the best chromosome. More-
over, the synchronization to call the bb-segsort
occurs only if the user selects to use the sorted
decoder. As we show in the experiments, even syn-
chronizing before calling the sorted decoder have
higher speedups.

Figure 2 presents the expected CPU and GPU
usage executing the BrkgaCuda 2.0 when evolving
three populations for four generations, exchanging
the elites after the 2nd generation. Each popula-
tion is assigned to a different stream (Py, P, and
P;). The filled boxes represent a kernel launch,
which enqueues the operation to be processed on
a stream. On the beginning, the evolution (ev)
is enqueued for each population. The evolution
doesn’t occur concurrently as one population will
already be using all the GPU resources. As the
CUDA blocks finishes, they will release some
resources, allowing another enqueued evolution to
start running concurrently. Notice that the CPU
is blocked waiting the evolution to finish before
starting to decode (dec). When the decoding is
done, the corresponding population is sorted (S)
to define the elite and non-elite groups, as well
as defining the best chromosome of the popula-
tion. On this point, the GPU gets blocked waiting
the decoder, and the CPU cannot enqueue the
evolve operation because it is waiting the call to
the evolve method return. This process will repeat
to all generations, which after some of them will
execute the exchange elites (X) method. In the
example, the method is called after the 2°¢ genera-
tion. This method depends on all populations, and
the next generation also depends on it, blocking
the CPU and the GPU until the exchange finishes.
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Fig. 2 Expected CPU and GPU usage when running 4 generations of 3 populations decoding on the CPU, exchanging

elites after every 274 generation.

5 Computational Experiments

In this section, we present computational results
to compare the performance of the BrkgaCuda 2.0
against the BrkgaAPI, BrkgaCuda, and the GPU-
BRKGA. The BrkgaAPI can only decode on the
CPU while the GPU-BRKGA uses CUDA and can
execute the decode operation on the CPU or the
GPU. In addition, the BrkgaCuda can also decode
the permutation on the GPU. Our framework also
uses CUDA and can decode on the CPU or the
GPU; nonetheless, it also allows the user to decode
a permutation based on the genes’ indices sorted
according to their key value.

The machine used in the experiments has
an Intel(R) Core(TM) i7-7820X* with 64GiB of
memory and a Nvidia GeForce GTX 1070 GPU
with 8GiB of memory. We ran the experiments
inside a Docker container with nvce 11.2.152, and
g++ 9.4.0 . The experiments consist of searching
for solutions to TSP, SCP, and CVRP using the
BrkgaAPI, the GPU-BRKGA, the BrkgaCuda,
and the BrkgaCuda 2.0 frameworks. The tests
evaluate the algorithm alone, i.e., without any
local search.

In the tests, we evaluate all decoders available
in each framework. Due to the stochastic nature
of the BRKGA, each test is repeated 10 times. We
present on Figure 3, for each problem, a boxplot
with the quality of the solutions obtained normal-
ized using the average of the values found by the
BrkgaAPI on each instance. We choose to normal-
ize using the BrkgaAPI because it is the first and
standard framework used. Each box of the plot is
divided into four sorted ranges, highlighting the
lowest, the highest, the median, the median of the
lower half, and the median of the upper half of the

4This CPU contains a total of 8 cores and 16 hardware
threads.

values. Outliers are plotted as individual points.
Let’s take as an example the results with the GPU-
BRKGA (highlighted). The figure shows that,
except for the TSP, both of its decoders (CPU and
GPU) has more than 50% of the values worse than
the ones found with the BrkgaAPI, and near to
75% are worse than most of them. Moreover, the
smallest solution found with the GPU-BRKGA is
close to the median found with the BrkgaAPI. It
was expected that all frameworks keep the solu-
tion close to the same range. This consistently
worse solutions motivated us to investigate the
implementation and fix its sorting procedure to
work on all populations during the evolution, call-
ing that version GPU-BRKGA-Fixed. This new
version have similar values to the ones found with
BrkgaAPI; in fact, it was able to find even bet-
ter results on the SCP. Also, as our experimental
results show, this new version achieves the same
performance as GPU-BRKGA.

The parameters chosen for the frameworks are:
k =3 (populations), p = 256 (chromosomes per
population), p. = 25 (elites), p,, = 25 (mutants),
and p = 0.75 (bias). The algorithm runs for 1000
generations, exchanging the 2 best chromosomes
after every 50 generations. To define the parame-
ters we selected a small set of instances to perform
the tuning. We ran all frameworks to ensure
that our algorithm doesn’t have an unfair advan-
tage over the others. The results (fitness ratio
and speedup) are similar with different param-
eters, except for GPU-BRKGA, which doesn’t
improve the fitness when increasing the number of
populations.

5.1 Results with TSP

Given G =(V,E) with edge costs, the TSP
consists of determining a route to visit n =V
cities (the nodes of G) exactly once, returning to
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the origin city at the end of the tour. The objec-
tive is to find a route with the minimum cost (such
as distance or time). In this problem, we set the
length of the chromosome to n. To decode, we use
a permutation as explained in Section 4.2. This
strategy was used both on the CPU and on the
GPU implementation.

Figure 4 presents the boxplot of the time
elapsed of each framework for the TSP. The GPU-
BRKGA failed to execute due to the chromosome
length exceeding the maximum number of threads
of the GPU (which is 1024); hence, we decided
to not include its results. When decoding the
chromosome on the CPU, both versions of the
BrkgaCuda have speedups between 2x and 4x,
while decoding the permutation have speedups
between 4x and 7x. When decoding the chromo-
some on the GPU, the speedups are between 0.5x
and 3x. Decoding the permutations on the GPU

have even higher speedups of up to 10x. Note
that, when decoding on the CPU, the decoder will
use all the CPU cores to decode in parallel. Investi-
gating the speedup obtained when decoding on the
GPU, we found that the libraries to sort the chro-
mosome (both thrust and bb-segsort) used by the
decoder performs a synchronization. Moreover, in
the BrkgaCuda 1.0, all populations are decoded
at once, using all the GPU resources. Decoding
all chromosomes on a single call to the decoder
will allow the user’s implementation to harness
the GPU resources and reduce the number of syn-
chronizations. Compared to the BrkgaCuda 2.0
GPU decoder, the All-GPU decoder of the Brkga-
Cuda 1.0 had a speedup on the median time
elapsed of 1.4x and the BrkgaCuda 2.0 had a
speedup of 1.6x. The All-GPU-Permutation of
the BrkgaCuda 2.0 had a speedup of 1.5x of the
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median value when compared to the GPU-Permu-
tation.
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Fig. 4 Boxplot of the time elapsed of each framework for
the TSP.

5.2 Results with SCP

Given a universe U and nsets S; C U,i =1,...,n,
each set with a cost associated, the SCP consists of
selecting some of those sets whose union equals U
and the cost is minimized. In other words, select
some sets in a way that each element of U is cov-
ered by at least one set. In this problem the length
of the chromosome is n. To decode the chromo-
some, the set ¢ in the solution if gene C; < 0.5.
If an element u € U is uncovered, the fitness of
the chromosome is set to infinity. Moreover, this
decoder doesn’t require sorting the chromosome.
Thus, we didn’t run the experiments with the
decoders of the permutation.

Figure 5 presents the boxplot of the time
elapsed of each framework for the SCP. Most of the
decoders achieved speedups between 2x and 3x.
As in the TSP, decoding all chromosomes at once
allow the decoder to harness the GPU resources.
The A11-GPU decoder has a speedup near to 6x
and 7.5x with BrkgaCuda and BrkgaCuda 2.0,
respectively.

5.3 Results with CVRP

Given a complete graph G = (V| E), the CVRP
consists of determining many routes starting on a
depot to deliver the demands of n =V — 1 clients

) )\ ) \ ) D \ D ) ) )\
O O Q\B szo Czo ézc (30 (30 (30 6‘0 ézo

N\ &N NN
T F ST

Fig. 5 Boxplot of the time elapsed of each framework for
the SCP.

minimizing the cost, visiting each client exactly
once. The vehicles have the same capacity and
each demand has weight d;. In this problem, the
chromosome has length n, and to decode we use a
permutation as explained in Section 4.2. To split
the permutation into routes we use dynamic pro-
gramming to find in linear time the optimal clients
to return to the depot, as explained by Vidal
(2016). The solution will be the cost between adja-
cent clients plus the cost from the depot to the
clients and from the clients back to the depot on
the split positions.

Figure 6 presents the boxplot of the time
elapsed of each framework for the CVRP when
using dynamic programming. To decode on the
device we use the same dynamic programming,
which isn’t good to use on the GPU due to the
large number of memory accesses that cannot be
coalesced. Moreover, the decoder will synchronize
when decoding the chromosomes as we discussed.
Thus, the GPU decoders don’t perform as good
as the CPU decoders; in fact, the GPU decoder is
slower than the BrkgaAPI which runs on the CPU
only. Even the fastest decoder (All-GPU-Permu-
tation) could not surpass the CPU decoder of the
GPU-BRKGA, the GPU-BRKGA-Fixed, and the
BrkgaCuda 2.0.

Since the dynamic programming algorithm did
not perform well on the GPU, we tested a greedy
decoder to evaluate time elapsed. The greedy
strategy consists in picking the clients from the
permutation, one by one, until the truck is full
and another route is started. Remember that the
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Fig. 6 Boxplot of the time elapsed of each framework for
the CVRP with dynamic programming.

decoder is developed by the user of the frame-
work, and this greedy strategy is fast but generates
worse solutions — even with the chromosome
corresponding to the best tour this decoder can
return a significantly worse fitness value. The fit-
ness with this decoder are on average 30% and
up to 65% worse when compared to the dynamic
programming decoder. Also, it is important to
highlight that the time elapsed with the Brkga-
APT is slightly faster than the ones using dynamic
programming.

Figure 7 presents the boxplot of the time
elapsed of each framework for the CVRP with
the greedy strategy described. Unfortunatelly, the
speedups are similar to the ones found with the
dynamic programming approach, with a slightly
higher speedup.

6 Conclusions

In this paper, we present a new version of the
framework BrkgaCuda, called BrkgaCuda 2.0 for
the BRKGA using the CUDA platform. BRKGA
is a metaheuristic based on genetic algorithms
and the use of a generic implementation to it
has a great advantage for users since the work of
implementing a solution to an optimization prob-
lem is significantly reduced. The user has just to
implement a decoding function that transforms
a random key array (called chromosome) into a
solution to the problem being considered. Our
framework allows the user to select to use the CPU
or the GPU to execute the decoding procedure,
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Fig. 7 Boxplot of the time elapsed of each framework for
the CVRP with a greedy strategy.

and also allows selecting to decode the chromo-
some or the permutation of the indices of the
chromosome when sorting them using the genes as
keys.

We compared the BrkgaCuda 2.0 with the
standard framework for BRKGA, called Brkga-
API, the preliminary BrkgaCuda for GPUs, and
with the recently proposed GPU-BRKGA also
for GPUs. We use the Traveling Salesman Prob-
lem (TSP), the Set Covering Problem (SCP),
and the Capacitated Vehicle Routing Prob-
lem (CVRP) to perform the experiments. Most of
the solutions found are in a range of 5% around the
average found by the BrkgaAPI, except the GPU-
BRKGA that consistently found results worse
than BrkgaAPI. That motivated us to investigate
the code and fix a sorting procedure that wasn’t
called on all populations, which we call GPU-
BRKGA-Fixed. The fixed version found solutions
in the range of 5% as the other frameworks. Thus,
we can conclude that both the GPU-BRKGA-
Fixed and the BrkgaCuda 2.0 could keep the same
quality as the BrkgaAPI. Moreover, the fix didn’t
have a big impact on the time elapsed when com-
pared to the GPU-BRKGA — it is a bit faster, as
we show in the results.

As we presented, even when decoding the chro-
mosomes on the CPU using the Host decoder
one can expect an improved execution time. In
our experiments, the BrkgaCuda 2.0, the GPU-
BRKGA, and the GPU-BRKGA-Fixed frame-
works required less than half of the time elapsed by
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the BrkgaAPI to achieve a similar solution. More-
over, decoding the permutation with the Host
Sorted decoder was even faster. We also show that
decoding on the GPU using the Device decoder
can have lower speedups if the decoding process
does not fit well the GPU parallelism — and, per-
haps, have a slowdown. From the problems we
have chosen to perform the experiments, only the
TSP decoder had higher speedups in the GPU
when compared to the CPU, and the CVRP had a
slowdown. That is expected because both the SCP
and the CVRP decoder require a higher number
of memory access that cannot be coalesced. Still,
except for the CVRP with dynamic programming,
the Device Sorted decoder was able to improve
the time elapsed when decoding on the GPU.

The BrkgaCuda 2.0 framework does find
acceptable solutions in a reasonable time, but in
the literature, it is common to find that meta-
heuristics are combined with local search to fur-
ther improve a solution by searching on its neigh-
borhood. Thus, the framework can be expanded
to provide such local searches to the user and
enable them if he wishes to. Moreover, it is inter-
esting to allow the user to control the details of
the algorithm, such as adaptive parameters and
hybridization with other methods.
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