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RESUMO

Esta tese explora metodologias avançadas e aplicações de redes neurais complexas (CVNNs)

e técnicas de aprendizado de máquina para aprimorar a estimativa de canal, decodificação e

processamento de sinal em sistemas de comunicação MIMO (múltiplas entradas e múltiplas

saídas). Abordando os desafios impostos pela crescente demanda por maiores taxas de

dados e comunicação sem fio confiável, introduzimos arquiteturas CVNN inovadoras e abor-

dagens de aprendizado semissupervisionado projetadas para melhorar o desempenho e a

eficiência. As principais contribuições incluem avanços no desenvolvimento de redes neurais

de função de base radial de transmitância de fase (PT-RBF), que demonstram desempenho

superior em sistemas MIMO-OFDM massivos com menor complexidade computacional

em comparação com os métodos convencionais. Além disso, técnicas inovadoras de iniciali-

zação de parâmetros garantem a convergência bem-sucedida de CVNNs multicamadas,

aumentando a robustez e a adaptabilidade. Também introduzimos técnicas de aprendi-

zado semissupervisionado, como aprendizado de inferência rígida (HIL) e aprendizado de

inferência gaussiana (GIL), permitindo que CVNNs aprendam com dados não auxiliados

por piloto e aumentem sua capacidade de rastreamento em canais dinâmicos. Além disso,

foi desenvolvido um método de decodificação paralela usando redes neurais PT-RBF

distintas para cada subportadora, reduzindo significativamente o tempo de decodificação

e melhorando a adaptabilidade do sistema. Simulações extensivas validam os métodos

propostos, mostrando melhorias substanciais na taxa de erro de bit (BER) e eficiência

computacional em vários cenários desafiadores. Esses achados abrem caminho para soluções

de redes neurais escaláveis e adaptáveis adequadas para sistemas de telecomunicações de

próxima geração, incluindo 5G, 6G e além. Em resumo, esta tese avança na aplicação de

CVNNs e aprendizado de máquina para telecomunicações, contribuindo para sistemas de

comunicação mais eficientes, robustos e adaptáveis.

Palavras-chaves: Telecomunicações; MIMO massivo; Aprendizado de Máquina; Redes

neurais; Redes neurais de Valor Complexo.



ABSTRACT

This thesis explores advanced methodologies and applications of complex-valued neural

networks (CVNNs) and machine learning techniques to enhance channel estimation,

decoding, and signal processing in multiple-input multiple-output (MIMO) communication

systems. Addressing the challenges posed by the increasing demand for higher data rates

and reliable wireless communication, we introduce novel CVNN architectures and semi-

supervised learning approaches designed to improve performance and efficiency. Key

contributions include further developments of phase-transmittance radial basis function

(PT-RBF) neural networks, which demonstrate superior performance in massive MIMO-

OFDM systems, with lower computational complexity compared to conventional methods.

Additionally, novel parameter initialization techniques ensure successful convergence of

multi-layered CVNNs, enhancing robustness and adaptability. We also introduce semi-

supervised learning techniques, such as hard inference learning (HIL) and Gaussian inference

learning (GIL), enabling CVNNs to learn from non-pilot-aided data and increasing their

tracking ability in dynamic channels. Furthermore, a parallel decoding method using distinct

PT-RBF neural networks for each subcarrier is developed, significantly reducing decoding

time and improving system adaptability. Extensive simulations validate the proposed

methods, showing substantial improvements in bit error rate (BER) and computational

efficiency across various challenging scenarios. These findings pave the way for scalable

and adaptable neural network solutions suitable for next-generation telecommunication

systems, including 5G, 6G, and beyond. In summary, this thesis advances the application

of CVNNs and machine learning for telecommunications, contributing to more efficient,

robust, and adaptive communication systems.

Keywords: Telecommunications; Massive MIMO; Machine Learning; Neural Networks;

Complex-Valued Neural Networks.
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Chapter 1

Introduction

The rapid evolution of telecommunications has been driven by the need for faster,

more reliable, and more efficient communication systems. In recent years, the integration

of neural networks and machine learning techniques has opened new frontiers in the

field, enabling the development of advanced communication systems that can adapt to

changing environments and optimize performance in real time. Among these techniques,

complex-valued neural networks (CVNNs) have emerged as a powerful tool for addressing

the unique challenges posed by modern communication systems.

A central pillar of contemporary wireless networks is Multiple-Input Multiple-

Output (MIMO) technology, which leverages multiple antennas at the transmitter and

receiver to improve both throughput and link reliability (BJÖRNSON et al., 2023). By

exploiting spatial diversity, MIMO provides significant enhancements in spectral effi-

ciency—capabilities that become particularly indispensable for next-generation standards

such as 5G and beyond (WANG et al., 2023). The growing emphasis on massive MIMO

(mMIMO), wherein large numbers of antennas are deployed to further increase capacity

and reduce interference, has likewise introduced new technical challenges. This thesis

aims to address these complexities by exploring how ML-based approaches, particularly

those using CVNNs, can deliver effective solutions for modern and evolving MIMO-centric

communication infrastructures.

This thesis explores the application of CVNNs and other machine learning algo-

rithms in telecommunications, with a focus on enhancing signal processing, data trans-

mission, and system reliability within massive MIMO contexts. Each chapter presents

a distinct study that contributes to the overall goal of improving telecommunications

through innovative neural network architectures and methodologies.

1.1 MOTIVATION

The integration of neural networks into telecommunications is not a novel concept.

As early as the 1990s, researchers proposed neural network-based methods to handle

tasks such as channel equalization and noise reduction, demonstrating that data-driven

approaches could provide tangible performance benefits over purely analytical solutions.

However, these foundational efforts also exposed significant challenges, in particular, on
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how to design robust training algorithms and ensure that the network can generalize across

diverse operating conditions.

With the recent surge of advanced machine learning techniques, CVNNs have

gained considerable attention in the telecommunications community. Unlike real-valued

networks, which must separate signals into in-phase and quadrature components, CVNNs

handle amplitudes and phases jointly in their native complex form. This property proves

advantageous for many communication problems, such as modulation classification and

adaptive filtering, where channel effects often manifest as complex-valued distortions.

Empirical studies have shown that CVNNs often outperform traditional methods in

challenging scenarios characterized by high noise or interference.

1.1.1 Expanding Community and Theoretical Guarantees

The growing importance of CVNNs is also reflected in broader machine learning

forums. During the past decade, the IEEE World Congress on Computational Intelli-

gence (WCCI) has hosted a recurring special session solely dedicated to neural networks

with complex and hypercomplex value. Organized regularly since 2006, these sessions

have attracted numerous submissions and vibrant discussions, underscoring the field’s

rapid development and the community’s recognition that complex-domain methods can

tackle specialized tasks that real-valued solutions sometimes struggle with. One of the

co-organizers, Hirose Akira, remains a leading researcher in applying CVNNs to physics

and engineering problems, further illustrating the breadth of CVNN applications beyond

standard telecommunications contexts.

From a theoretical point of view, recent results have reinforced the mathematical

foundation of CVNNs, extending classical theorems about real-valued networks to the

complex domain. Notably, Voigtlaender’s universal approximation theorem (VOIGTLAEN-

DER, 2023) shows that feedforward CVNNs with sufficiently flexible activation functions

can uniformly approximate any continuous function on any compact subset of CN . This

parallels well-known results for real-valued neural networks while accounting for holomor-

phic or polyharmonic constraints unique to complex signals. Such developments further

strengthen the case for adopting CVNNs in high-stakes telecommunication tasks, where

the ability to approximate sophisticated nonlinear channel relationships can translate into

substantial performance gains.

1.1.2 RBF-Based CVNNs and Their Connection to the MAP Equalizer

Within the broader spectrum of CVNN architectures, one significant milestone

came in 1993, when Chen et al. first introduced a dedicated complex-valued radial ba-

sis function (C-RBF) network (CHEN et al., 1993). Although existing real-valued RBF



CHAPTER 1. INTRODUCTION 30

frameworks had been adapted to certain communication tasks, this complex RBF net-

work formally incorporated complex-valued centers and weights, permitting more natural

handling of phase and amplitude relationships. Subsequently, Chen and coauthors demon-

strated that, under idealized conditions involving additive white Gaussian noise (AWGN)

and intersymbol interference, the structure of the Bayesian or maximum a posteriori

(MAP) equalizer could be assigned to an RBF network (CHEN; MULGREW; GRANT,

1993), a perspective further reinforced by Patra and Mulgrew (PATRA; MULGREW,

1998). Although these initial proofs were limited to simpler channels and lower-order

constellations (e.g., BPSK), additional work (FERRARI, 2005; FERRARI et al., 2003)

broadened the argument to fuzzy-based filters, revealing that many fuzzy equalizers share

core mathematical elements with RBF networks.

More recently, our own empirical investigations (MAYER et al., 2022; SOARES;

MAYER; ARANTES, 2023) compared multiple CVNN architectures—multilayer per-

ceptrons, convolutional designs, and complex-valued RBF networks—across different

communication tasks. In these studies, RBF-based CVNNs consistently yielded the best

performance, demonstrating superior resilience to noise, interference, and moderate non-

linearities. Although a fully comprehensive proof of the equivalence of MAP—-RBF for

higher-order constellations and strongly nonlinear channels remains elusive, these practical

outcomes reinforce the intuition that RBF’s localized activation functions provide reliable

decision boundaries in environments with Gaussian-like noise clusters.

1.1.3 Research Group Background

In parallel with these theoretical and empirical advances, our research group

has maintained a decades-long commitment to applying machine learning in wireless

communications. Starting in the 1990s, the group investigated neural networks, fuzzy

logic, radial basis function (RBF) architectures, and genetic algorithms to address a wide

array of telecommunication problems, such as video encoding and channel equalization

(DE CASTRO; DE CASTRO; ARANTES, 1998; DE CASTRO; DE CASTRO; ARANTES,

1999; CARDOSO; ARANTES, 1999; CARDOSO et al., 2000; CASTRO et al., 2000; LOSS

et al., 2007b). This tradition forms a direct mentor–student lineage: my own undergraduate

research in MIMO detection took place under Professor Fernando César Comparsi de

Castro, while my subsequent master’s and doctoral studies have been supervised by

Professor Dalton Soares Arantes—who, in the early 2000s, guided Professor Fernando in

his doctoral work. Such deep-rooted collaborations underscore the pioneering nature of

our group’s work, culminating in the advanced CVNN-based strategies examined in this

thesis.
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1.1.4 Open Challenges and thesis Scope

Despite encouraging results and strong theoretical underpinnings for RBF-based

CVNNs, several open questions persist. For example, scaling these techniques to mMIMO

systems with potentially hundreds of antennas is far from trivial, and designing robust

training algorithms for severely nonlinear or time-varying channels requires further innova-

tion. Additionally, while RBF-based networks are known to approximate MAP solutions

under certain assumptions, the exact conditions under which they remain optimal or

near-optimal for large-scale higher-order constellations remain an active research topic.

Accordingly, this thesis targets these gaps by developing, analyzing, and validating

novel CVNN architectures and machine learning tools to enhance signal processing, data

transmission, and reliability in modern communication systems. Through a series of

replicated manuscripts, we demonstrate the transformative potential of RBF-based CVNN

solutions across various scenarios, thereby expanding the applicability of machine learning

in the context of massive MIMO and beyond.

1.2 CONTRIBUTIONS AND OUTLINE

In light of the above discussion, the main scope of this thesis is to conceive and

test a myriad of CVNNs and machine learning applications for telecommunications. The

following chapters are replicas of manuscripts that we have published in or submitted to

journals and conferences along our research activities. Below we present an annotated

outline of each chapter.

To supplement this textual overview, Figure 1.1 visually depicts the relationships

among the core chapters and concepts. It highlights how themes like MIMO, space-time

block coding (STBC), CVNNs, and channel estimation naturally intertwine, culminating

in novel end-to-end solutions and parameter-optimization strategies.

1.2.1 Reliability in MIMO communications

My investigation into MIMO reliability, STBC, and machine learning tech-

niques—particularly those involving CVNNs—did not begin strictly with this doctoral

research. It actually dates back to my undergraduate research program, where I worked

on a project entitled Development of a Sphere Detector Simulator for High-Order MIMO

Systems. Building on that foundation, I pursued a master’s thesis, Complex Phase-

Transmittance RBF Neural Network for Massive MIMO-OFDM Decoding, further refin-

ing novel decoding strategies for massive MIMO setups (see also (MAYER; SOARES;

ARANTES, 2020)). Over the course of these earlier studies, the synergy between robust

STBC schemes and machine learning became increasingly evident, eventually culminating
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MIMO

STBC SDM

Machine Learning

CVNNs

Channel Estimation

PCA-based Channel
Estimation for MIMO

Communications. 

End-to-End Learning for
Massive MIMO Systems

Using Complex-
Valued Neural Networks. 

Complex-Valued
Phase Transmittance RBF

Neural Networks for
Massive MIMO-OFDM

Receivers.

Semi-Supervised ML-Based
Joint Channel Estimation

and Decoding for m-MIMO
With Gaussian Inference

Learning.

Neural Network-based
Subcarrier-level Joint

Channel Estimation and
Decoding for MIMO-

OFDM Receivers.

On the Parameter Selection
of Phase-transmittance
Radial Basis Function
Neural Networks for

Communication Systems.

Deep Complex-valued
Radial Basis Function
Neural Networks and
Parameter Selection.

CVNNs
Optimization

Figure 1.1 – High-level flow chart illustrating how the main chapters/articles of this thesis interrelate. Each
box represents a chapter’s central topic, and the arrows indicate conceptual or methodological
links among them.

in the more advanced topics I address in this doctoral work. The following chapters

present the resulting contributions, showcasing how the integration of STBC designs,

CVNN-based architectures, and other neural-network-driven approaches can significantly

enhance reliability in MIMO communications.

Chapter 2 Complex-Valued Phase Transmittance RBF Neural Networks for

Massive MIMO-OFDM Receivers: This chapter introduces a novel MIMO

scheme employing a phase transmittance radial basis function (PTRBF) neural

network for massive Multiple-Input Multiple-Output Orthogonal Frequency Division

Multiplexing (MIMO-OFDM) systems. The proposed scheme addresses the chal-

lenge of designing cost-effective receivers for MIMO channels by offering a decoding

algorithm that achieves improved performance with lower computational complexity

compared to traditional maximum likelihood decoding. The study highlights the
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increasing demand for technologies to enhance spectral efficiency in bandwidth-

congested areas, driven by the real-time processing of big data, Internet of Things

(IoT), and 4K video streaming. The proposed MIMO-PTRBF neural network lever-

ages its architecture to provide superior performance in 5G wireless Rayleigh channels,

effectively managing nonlinear impairments and intersymbol interference (ISI). Sim-

ulation results demonstrate significant improvements in bit error rate (BER) and

computational complexity, showcasing the feasibility and scalability of the approach

for future mobile communication systems, including fifth-generation wireless technol-

ogy (5G), sixth-generation wireless technology (6G), and beyond.

Chapter 4 Semi-supervised ML-based Joint Channel Estimation and Decoding

for m-MIMO with Gaussian Inference Learning: This chapter proposes an

innovative approach to enhance link quality and reliability in mMIMO systems

using quasi-orthogonal space-time block codes (QOSTBC). The study addresses the

high computational complexity of classical decoding algorithms by utilizing CVNNs

for joint channel estimation and decoding. The work extends previous research by

incorporating two semi-supervised learning techniques: hard inference learning (HIL)

and Gaussian inference learning (GIL). These techniques enable the CVNNs to

self-learn from non-pilot-aided data, increasing their tracking ability and robustness

in dynamic channels. Simulation results demonstrate significant improvements in

performance and robustness, particularly in handling high Doppler frequencies,

making this approach suitable for dynamic 5G channels and beyond.

Chapter 7 Neural Network-based Subcarrier-level Joint Channel Estimation

and Decoding for MIMO-OFDM Receivers: This chapter presents a novel

decoding method for MIMO-OFDM systems that employs parallel neural networks to

significantly enhance decoding speed and accuracy. Unlike traditional serial decoding

methods, which do not address the unique characteristics of individual subcarriers,

this approach utilizes distinct PTRBF neural networks for each subcarrier. This par-

allel processing method reduces decoding time and improves system adaptability by

effectively managing nonlinear impairments and intersymbol interference. Simulation

results demonstrate that this method outperforms conventional decoding techniques,

achieving lower bit error rates (BER) in both linear and nonlinear scenarios, and

showing great potential for scalability in ultra-massive MIMO setups.

1.2.2 Channel estimation in MIMO communications

This chapter is an isolated contribution, since it is somewhat separate from the

other main threads. However, it is a natural product of the research on channel estimation
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in MIMO systems, which is mandatory in many of the linear approaches used as baselines

in the works presented in this thesis.

Chapter 3 PCA-based Channel Estimation for MIMO Communications: This

chapter presents a novel principal component analysis (PCA)-based channel estima-

tion approach for MIMO-OFDM systems. The method first estimates the channel

frequency response using the least squares (LS) method and then applies PCA

to filter out noise components, retaining only the significant channel components.

This approach improves the accuracy of channel estimation while maintaining lower

computational complexity compared to the minimum mean square error (MMSE)

method. The effectiveness of the proposed PCA-based technique is demonstrated

through comparisons with MMSE in terms of bit error rate (BER) versus energy per

bit to noise power spectral density ratio (Eb/N0), especially under dynamic channel

conditions with Doppler frequencies. The results indicate that the proposed approach

offers significant performance improvements and is particularly suitable for massive

MIMO architectures due to its scalability and reduced computational complexity.

1.2.3 Optimization in Neural Networks

We observed that our machine learning models could be further improved via

specific theoretical optimizations. When working with the PTRBF architecture, we noted

a significant sensitivity to initialization parameters, prompting us to develop a systematic

initialization method. Encouraged by these results, we extended the approach to the

C-RBF framework, and we believe similar principles can be generalized to other RBF-

based models. Some architectures and results were only feasible through our proposed

initialization strategy, as demonstrated in the works below.

Chapter 5 On the Parameter Selection of Phase-transmittance Radial Basis

Function Neural Networks for Communication Systems: This chapter delves

into the parameter selection for PTRBF neural networks, which are crucial for various

tasks in digital communication systems such as equalization, channel estimation,

beamforming, and decoding. The study presents a novel parameter initialization

technique specifically designed for multi-layered, multi-input, and multi-output

PTRBF architectures. Through rigorous simulations conforming to 3rd Generation

Partnership Project (3GPP) TS 38 standards, the proposed initialization method

outperforms conventional strategies like random, K-means, and constellation-based

methods. This work highlights the method’s effectiveness in ensuring successful

convergence in deep PTRBF architectures, paving the way for more robust and

efficient neural network deployments in complex digital communication environments.
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The findings emphasize the importance of proper initialization in achieving optimal

performance and scalability in real-world applications.

Chapter 6 Deep Complex-valued Radial Basis Function Neural Networks and

Parameter Selection: This chapter investigates the extension of classical shallow

C-RBF neural networks to deep architectures, enhancing their applicability and

performance in digital communication systems. The study introduces a novel param-

eter initialization scheme for deep C-RBF neural networks, focusing on initializing

synaptic weights, biases, center vectors, and center variances in the complex domain.

Rigorous simulations conforming to 3GPP TS 38 standards demonstrate the proposed

method’s superior performance compared to conventional initialization strategies

like random, K-means, and constellation-based methods. The findings highlight

the method’s unique efficacy and adaptability in achieving successful convergence

for deep C-RBF architectures, paving the way for more robust and efficient neural

network deployments in complex-valued digital communication environments.

1.2.4 Spatial Division Multiplexing and Multi-user

Finally, in the last year of this doctoral work, we noticed several studies addressing

end-to-end (E2E) learning in MIMO communications. This trend motivated us to investi-

gate similar approaches that exploit CVNNs in multi-user scenarios. Our findings were

particularly promising, and combined with some innovative solutions for user multiplexing,

they led us to publish the work below.

Chapter 8 Complex-valued NN-based End-to-end Learning in Massive-MIMO

Communications: This chapter presents a novel end-to-end (E2E) learning archi-

tecture for massive MIMO communication systems using CVNNs. The proposed

architecture integrates both encoding and decoding stages, optimized for flat-fading

Rayleigh channel conditions, focusing on maximizing system capacity and transmis-

sion efficiency. A key contribution is the extension of the approach to multi-user

MIMO (MU-MIMO) scenarios, where data streams are orthogonalized for several user

equipment (UEs), improving spectral efficiency with federated learning. Additionally,

a power control mechanism based on regularization is introduced to ensure stable

transmission power and prevent hardware overflow. Simulation results demonstrate

significant improvements in system capacity and mutual information, with perfor-

mance compared against classical approaches like zero-forcing (ZF) and minimum

mean square error (MMSE) precoding. The findings emphasize the potential of

CVNN-based architectures for future wireless communication systems.

In addition to these replicated chapters, chapter 9 concludes the thesis by synthe-



CHAPTER 1. INTRODUCTION 36

sizing the main results, discussing their implications, and identifying potential avenues for

further research, such as ultra-massive MIMO implementations, advanced hardware accel-

eration for neural networks, and exploration of nonlinear PCA-based denoising methods.

Overall, the contributions throughout the thesis demonstrate the transformative role that

CVNN-based solutions can play in modern wireless networks.
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Chapter 2

Complex-Valued Phase

Transmittance RBF Neural Networks

for Massive MIMO-OFDM Receivers
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tro, and Dalton Soares Arantes

Abstract

Multi-input multi-output (MIMO) transmission schemes have become the techniques of

choice for increasing spectral efficiency in bandwidth-congested areas. However, the design

of cost-effective receivers for MIMO channels remains a challenging task. The maximum

likelihood detector can achieve excellent performance—usually, the best performance—but

its computational complexity is a limiting factor in practical implementation. In the present

work, a novel MIMO scheme using a practically feasible decoding algorithm based on the

phase transmittance radial basis function (PTRBF) neural network is proposed. For some

practical scenarios, the proposed scheme achieves improved receiver performance with lower

computational complexity relative to the maximum likelihood decoding, thus substantially

increasing the applicability of the algorithm. Simulation results are presented for MIMO-

OFDM under 5G wireless Rayleigh channels so that a fair performance comparison with

other reference techniques can be established.

Keywords: artificial neural networks; phase transmittance radial basis function; massive

MIMO; MIMO decoding; 5G.

This Chapter is a replica of the following manuscript: Jonathan Aguiar Soares, Kayol Soares Mayer,
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2.1 INTRODUCTION

In recent years, with the increasing demand for the real-time processing of big

data, the Internet of Things (IoT), and 4K video streaming, technologies to increase area

throughput (ASIF et al., 2020) in base station (BS) coverage and hotspot tiers (SHANG

et al., 2020) have become increasingly important. In general, the system throughput can

be improved by three independent factors: the number of BSs, bandwidth, and spectral

efficiency. While the number of base stations is a complicated variable to handle, there

are substantial bandwidths in the millimeter wavelength (mmWave) bands that could be

employed for BS hotspot tiers. On the other hand, as objects and human bodies easily block

mmWaves, increasing the spectral efficiency (SE) of BS coverage tiers arises as a potential

solution for wide-area coverage. In order to increase SE, advanced techniques are necessary

to use the available BSs and bandwidth more efficiently. In view of this, both BSs and

user equipment (UE) currently operate with multiple antennas and orthogonal frequency-

division multiplexing (OFDM) (TEMIZ; ALSUSA; BAIDAS, 2020; MIRFARSHBAFAN

et al., 2020; GHZAOUI et al., 2020) to increase spectral efficiency.

Multicarrier modulation schemes, such as OFDM, have been widely employed in

digital communications systems due to their low susceptibility to intersymbol interference

(ISI) (YOON et al., 2021; MAREY; MOSTAFA, 2021; HWANG et al., 2021; CONDOLUCI

et al., 2021). OFDM divides the channel bandwidth into K orthogonal subcarriers (HAS-

SAN, 2021). The serial stream at a high data rate applied to the OFDM input is first

converted to multiple parallel low transmission rate sub-streams. Each of the K parallel

sub-streams modulates one of the K subcarriers. In this way, the OFDM symbol duration

is K times longer than the symbol duration of the equivalent single carrier system, thus

avoiding ISI (SOARES, 2021). Another important characteristic of OFDM systems is that

multiple users can be multiplexed in frequency, using K subcarriers.

Multiple-input and multiple-output (MIMO) technologies use multiple antennas

on the transmitter and receiver sides, increasing the wireless channel capacity without

extra bandwidth, extra power transmission, or both (SOARES, 2021). Usually, as BSs

have more computational power than UEs, a larger number of antennas is applied at

the transmitter. In this context, when the number of antennas exceeds the number of

users, the term massive MIMO (mMIMO) is frequently used. Generally, mMIMO systems

operate with 16 or more antennas in BSs. In addition, the uplink can be composed of one

or more UEs, where the former characterizes a single-user mMIMO (SU-mMIMO) (KO

et al., 2021) and the latter a multi-user mMIMO (MU-mMIMO) (DILLI, 2021). For 6G

technologies, ultra-massive MIMO (UM-MIMO) schemes have been explored to support

data throughputs of Terabits (JAMALI et al., 2021). MIMO and mMIMO communications

are broadly implemented either by beamforming, space-time block coding (STBC), or

both (HE; SU; HUANG, 2021; LI et al., 2021). While beamforming techniques (either
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analog, digital, or hybrid (HAN et al., 2021)) may be more attractive to BSs, because of

the necessity of many transmitting antennas, STBC, on the other hand, is feasible for use

in both downlink and uplink connections.

The combination of OFDM and MIMO is a major trend in mobile communication

systems (SOKAL et al., 2021; ELNAKEEB; MITRA, 2021; MAJUMDER et al., 2021;

YERRAPRAGADA; KELLEY, 2020; GUERREIRO; DINIS; CAMPOS, 2020), such as

5G and next-generations, which are based on the so-called MIMO-OFDM and mMIMO-

OFDM approaches (SAAD; BENNIS; CHEN, 2020). Nonetheless, digital communication

systems over wireless channels may suffer severe signal degradations due to multipath

propagation, additive white Gaussian noise (AWGN) (MAYER et al., 2020a, 2019a),

and Doppler effects (OSMAN et al., 2021). Moreover, another frequent impairment in

OFDM systems is signal distortion, characterized by the PAPR (peak-to-average power

ratio), due to nonlinearities at the high-power transmitter amplifier (MAYER et al., 2019c;

ZOU et al., 2021). Since nonlinear impairments usually degrade the performance of linear

filters, the search for robust nonlinear filters at the receiver is essential to circumvent this

issue (SOARES, 2021; MAYER et al., 2019c; MAYER et al., 2019b).

Along with the application of nonlinear filters designed for specific problems

in telecommunications, artificial neural networks (ANNs) have been extensively studied

in various challenging areas of digital communications, including soft and hard fault

detection, channel estimation, equalization, and beamforming (DE SOUSA; FERNANDES,

2018; DE SOUSA; ARANTES; FERNANDES, 2018; DE SOUSA; FERNANDES, 2019;

DONG; HUANG, 2021; ENRICONI et al., 2020; MAYER; SOARES; ARANTES, 2020;

MAYER et al., 2020b; MAYER et al., 2021; SHIMIZU et al., 2020; SWAIN; KHILAR;

DASH, 2020; PINTO et al., 2021). Neural networks can operate like nonlinear filters,

in a structure that can be modeled by nonlinear activation functions, as in multilayer

perceptrons (MLPs), or by Gaussian neurons in radial basis function neural networks

(RBFNN) (MAYER; SOARES; ARANTES, 2020). RBFNN Gaussian neurons have two

free parameters, namely the Gaussian centers and the variances. Moreover, there is a linear

free parameter vector of weights, which linearly weighs the neuron outputs to yield the

network output (LOSS et al., 2007a; MAYER; SOARES; ARANTES, 2020). With these

three independent sets of parameters, RBFNNs are able to represent high-order nonlinear

surfaces without increasing the number of layers, thereby reducing complexity compared

with deep neural networks (SOARES, 2021; MAYER; SOARES; ARANTES, 2020).

In this context, this work proposes a novel complex-valued RBF neural network

architecture: a multiple-input multiple-output phase transmittance RBF (MIMO-PTRBF)

neural network for channel estimation and symbol detection in massive MIMO-OFDM

communication systems. The PTRBF neural network model was chosen due to its lower

computational complexity when compared with deep neural networks and due to its
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crucial role in avoiding the phase invariance which occurs in a standard complex-valued

RBFNN (SOARES, 2021; MAYER; SOARES; ARANTES, 2020; LOSS et al., 2007a).

The proposed MIMO-PTRBF is an extension to multiple outputs of the single-output

PTRBF neural network presented in (LOSS et al., 2007a). This work is based on (MAYER;

SOARES; ARANTES, 2020), in which the authors redesigned the PTRBF neural network

of (LOSS et al., 2007a) to obtain a low-complexity MIMO beamforming transmitter with

the complex-MIMO RBF (CMM-RBF). In the present paper, using the Gaussian neuron

output bounds presented in (MAYER; SOARES; ARANTES, 2020), we prove convergence

in the mean of the PTRBF neural network, relaxing the condition of the trans-dimensional

transformation of the complex-valued Gaussian neuron layer. Preliminary results indicate

that the proposed architecture competes quite favorably with the conventional MIMO

quasi-orthogonal space–time block coding (QOSTBC) with maximum likelihood (ML)

decoding based on linear processing (SOARES, 2021). In addition, an STBC coding

algorithm with full-rate and half-diversity was developed for massive MIMO coding with

square matrices. However, because of its high computational complexity, the ML decoding

may be unfeasible for mMIMO with a large number of antennas, as opposed to the MIMO-

PTRBF neural network proposed here. Although other decoding techniques with lower

computational complexities could be taken into account, for performance comparison, we

chose ML decoding because of its optimal performance in linear channels. For example, the

sphere decoding has lower computational complexity compared to the ML decoding, but its

performance is only lower-bounded by the ML decoding (DURGA; MCLAUCHLIN, 2021).

Furthermore, the MIMO-PTRBF is able to both estimate the channel and decode the

received signal, relying on a training sequence. Simulation results show that the proposed

architecture achieves significantly improved BER figures when compared with MIMO

QOSTBC in an equal scenario, either with linear or with nonlinear impairments under 5G

channels.

This paper is an extension of J. A. Soares’ MSc. dissertation developed at the

School of Electrical and Computer Engineering, University of Campinas, in the area of

Telecommunications and Telematics (SOARES, 2021). In addition to the complex-valued

RBF-based MIMO system proposed in the dissertation (SOARES, 2021), in this paper,

the MIMO-PTRBF receiver is further elaborated with additional results and with the use

of 5G channel models.

The remainder of this work is organized as follows. In Section 2.2, a brief review

of multi-antenna systems is presented. The proposed STBC coding scheme and the MIMO-

PTRBF for channel estimation and symbol detection in massive MIMO-OFDM systems

are presented in Section 2.3. In Section 2.4, simulation results of the MIMO-PTRBF

are compared with the results obtained with the OSTBC under maximum likelihood

decoding in 5G channel models. Computational complexities are presented in Section 2.5
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and conclusions are discussed in Section 2.6.

2.2 BACKGROUND

The main goal in multi-antenna systems is to increase the channel capacity

with MT transmit and MR receive antennas by a factor of min(MT , MR) without using

additional transmit power or spectral bandwidth (YAO; CHEN; HU, 2021). Considering

the MIMO digital communication system r(k) = HT x(k) + η(k), with transmitted signal

x(k) ∈ C
MT , received signal r(k) ∈ C

MR , and additive white Gaussian noise (AWGN)

vector η(k) ∈ C
MR , the channel capacity of H ∈ C

MT ×MR is expressed as (JANKIRAMAN,

2004)

C = log2

[
det

(
IMR

+
Es

MT E0

HHRxxH

)]
, (2.1)

in which IMR
is an MR × MR identity matrix, [·]T is the transpose operator, [·]H is

the conjugate transpose operator, Es is the total transmitted signal power, E0 is the

AWGN power, Rxx = E{x(k)xH(k)} is the correlation matrix of x(k), and E{·} is the

expectation operator.

However, if no channel state information (CSI) is available at the transmitter, we

can assume that the channel components are equally probable. In this case, we consider

that power is equally divided among the transmitting antennas, which implies Rxx = IMT
.

The capacity in such a case is then given by (SOARES, 2021; ZHAO et al., 2019)

C = log2

[
det

(
IMR

+
ES

MT N0

HHH

)]
. (2.2)

Note that Equation (2.2) can be outperformed if the channel information is

available at the transmitter (leading to a coding gain). However, Equation (2.2) is the

maximum diversity capacity without channel knowledge at the transmitter. Furthermore,

if MT = MR = 1, Equation (2.2) represents the Shannon capacity for single-input single-

output (SISO) systems (SOARES, 2021).

In order to increase capacity, the concepts of diversity (ZHANG et al., 2021a),

coding (CHOPRA; GUPTA, 2021), and array (TOKA; KUCUR, 2021) gains play key

roles in MIMO systems. The array gain is the average increase in the signal-to-noise ratio

(SNR) at the receiver that arises from the coherent combining effect of multiple antennas

at the transmitter, receiver, or both. Multiple antenna systems require perfect channel

knowledge at the transmitter, receiver, or both to achieve this array gain (TOKA; KUCUR,

2021). On the other hand, diversity gain is obtained by the provision of replicas of the

transmitted signal at the receiver (ZHANG et al., 2021a). Diversity gain techniques are
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used to mitigate degradations in the error performance due to wireless fading channels (e.g.,

due to multipath). Since the probability that statistically independent fading channels

simultaneously experience deep fading is insignificant, there are various ways of performing

diversity gain and space diversity. To accomplish this, it is necessary to use sufficiently

separated antennas in the array (by more than 10¼ on base stations and 2¼ to 5¼ on

mobile devices (JANKIRAMAN, 2004)) to guarantee independent wireless channels. In

contrast, coding gain is usually provided by temporal channel coding, e.g., convolutional

and block codes (SOARES, 2021).

Space–time code is a digital communication technique used to transmit multiple

copies of a data stream via multiple antennas to compensate for fading and AWGN. At

the receiver side, these multiple copies of the signal are received by one or more antennas,

improving the communication reliability. Depending on the encoder algorithm at the

transmitter, we can have different space–time codes. Space–time trellis codes (STTCs)

combine modulation and trellis coding to transmit signals over a MIMO channel. Although

STTCs provide both coding gain and diversity gain, the computational complexity is

higher than other space–time codes, mainly in the receiver, where a Viterbi decoder

is necessary (SHR; CHEN; HUANG, 2010). Space–time block codes (STBCs) combine

multiple symbols from a digital modulation, creating a block of symbols. The components

of this block (i.e., matrix of symbols) are indexed by the transmitting antenna and the

transmitting time. At the transmitter, STBC decoding is performed in linear processing.

Another technique is the space–time labeling diversity (STLD), a variation of STBC that

takes two bit-streams and outputs two pairs of symbols. Two symbols in each pair are

transmitted by two transmit antennas in two time slots, which results in full-diversity and

half-rate (XU; PILLAY, 2021). In addition, STLD only works with a limited number of

transmit antennas.

2.2.1 Space–Time Block Coding and OFDM

MIMO systems are mainly designed for narrowband or flat channels. Applying

MIMO systems in the wideband frequency selective channel implies a constant penalty

factor in the coding gain compared with that in flat-frequency channels. Furthermore, at

high SNRs, an irreducible error rate floor is inevitable (GONG; LETAIEF, 2000). This

irreducible error rate floor is due to the existence of multipath delay spread, and it persists

even if we increase the number of antennas. Since the ISI is the root cause of the error

floor, in principle, it can be mitigated by resorting to adaptive equalization, but this can

be too complex to implement in such an environment. Another option that is widely used

is to resort to OFDM, which naturally converts a frequency-selective fading channel into a

frequency-nonselective fading channel. The subcarriers (i.e., tones) in an OFDM symbol

are essentially narrowband signals. Since these tones fit perfectly as vehicles for space–time
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codes, OFDM is an enabler for this efficient coding technique (SOARES, 2021).

Figure 2.1 shows the coding scheme for a generic coding matrix X[k] ∈ C
MT ×P ,

where P is the number of time samples for the transmission of one block of coded symbols

and k = 1, 2, · · · , K is the carrier index of the kth MIMO-STBC encoded symbol matrix

X[k] along the OFDM symbol. R[k] ∈ C
MR×P is the matrix of received symbols, ŝ ∈ C

MS

is the decoded vector, and MS is the number of modulated symbols in a MIMO-STBC

matrix.

The transmitting space–time block coder (STBC) encodes the data symbol vector

s[k] ∈ C
MS using the code matrix to construct the transmitting matrix X[k] of length K.

The streams XmT ,p[k] are fed to the inverse fast Fourier transform (IFFT) modulator of

each mT transmitting antenna, at each p period of time relative to the OFDM symbol

sequence. In this manner, the information is transmitted in X[k] blocks of MT antennas

and P OFDM symbols in each k-th carrier. To illustrate this scheme, Figure 2.2 shows an

example for a two-transmitting antenna system using Alamouti coding. Consequently, the

channel is given by H ∈ C
MT ×MR×P ×K . It should be emphasized that in the simulation

in Section 2.4 of this work, the channel is not assumed to be static over the entire

MIMO-STBC block since it spreads over time in P -consecutive OFDM symbols. This

is particularly necessary for the proposed work, as the receiver will fit and adapt to the

characteristics and variations of the channel over time. This is also necessary for a massive

number of broadcast antennas due to the length of the long block coding P that transmits

over time in consecutive OFDM symbols (SOARES, 2021).

Figure 2.1 – Coding scheme for a MIMO-OFDM system in which k is the index of the kth MIMO-STBC-
encoded symbol matrix X[k] along the OFDM symbol (SOARES, 2021).
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Figure 2.2 – Detailed MIMO-OFDM coding system. {·}∗ denotes the conjugate operator.

As in OFDM systems, MIMO-OFDM also requires the channel state information

to decode the received symbols. One of the most popular and widely used approaches

to MIMO channel estimation is to employ pilot signals (also referred to as training

sequences) and then estimate the channel based on the received data and the knowledge

of the training sequence, as detailed in Figure 2.3. Based on pilot signals, in (LI, 2000;

BIGUESH; GERSHMAN, 2006), the least-squares (LS) channel estimation technique is

applied for orthogonal frequency-division multiplexing systems with multiple transmit

antennas (SOARES, 2021).

A generalized coding scheme referred to as space–time block codes (STBCs) (JANKI-

RAMAN, 2004; TAROKH; JAFARKHANI; CALDERBANK, 1999; LI et al., 2021), based

on the theory of orthogonal matrix designs, can achieve the full-transmit diversity of MT MR

employing the maximum likelihood decoding algorithm at the receiver (JANKIRAMAN,

2004). The idea is to transmit MT orthogonal streams, which implies that the receiver

antennas receive MT orthogonal streams. This special class of space–time block codes is

the so-called orthogonal STBC (OSTBC) (SOARES, 2021; TAROKH; JAFARKHANI;

CALDERBANK, 1999; HU; ZHAO; XUE, 2020).

An OSTBC example of coding matrix for MT = 4 (JANKIRAMAN, 2004) is

given by

OSTBC4,8 =




s[1] −s[2] −s[3] −s[4] s[1]∗ −s[2]∗ −s[3]∗ −s[4]∗

s[2] s[1] s[4] −s[3] s[2]∗ s[1]∗ s[4]∗ −s[3]∗

s[3] −s[4] s[1] s[2] s[3]∗ −s[4]∗ s[1]∗ s[2]∗

s[4] s[3] −s[2] s[1] s[4]∗ s[3]∗ −s[2]∗ s[1]∗




, (2.3)

in which s[ms] is the transmitted signal in the discrete symbol index ms. Notice that,

as proved by Tarokh et al. (TAROKH; JAFARKHANI; CALDERBANK, 1999), the

inner product of any two distinct rows of this matrix is equal to zero (i.e., the matrix is

orthogonal) and of full-rank, yielding full-diversity (SOARES, 2021).
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Figure 2.3 – MIMO-OFDM model system with channel estimation.

One of the disadvantages of OSTBC is the code rate. Let P represent the number

of time samples to convey one block of coded symbols and Ms represent the number of

symbols transmitted per block. The space–time block code rate is defined as the ratio

between the number of symbols that the encoder receives at its input and the number

of space–time coded symbols transmitted from each antenna, given by R = Ms/P . This

implies that Equation (2.3) has a code rate R = 1/2, which consequently reduces the

spectral efficiency. Supplementary to the diversity gain, the OSTBC leads to a secondary

linear coding gain Gc = 10 log (R) at the receiver due to the coherent detection of multiple

copies of the signal over time. Furthermore, the multi-antenna system, as presented in

Figure 2.1, will lead to an array gain Ga = 10 log (MR) due to the coherent combination

of multiple received signals over the receiving antennas (SOARES, 2021).

2.2.2 Quasi-Orthogonal Special Case

In order to increase the spectral efficiency in orthogonal codes, Jafarkhani (JA-

FARKHANI, 2001) proposed quasi-orthogonal STBC (QOSTBC) of rate one, relaxing

the requirement of orthogonality. However, when compared with orthogonal codes, the

diversity gain is reduced by a factor of two. Besides, in contrast to orthogonally designed

codes that process one symbol at a time at the decoder, quasi-orthogonal codes process

pairs of transmitted symbols, which exponentially increases the computational complexity

of decoding (SOARES, 2021).

Jafarkhani (JAFARKHANI, 2001) proposed a coding matrix of rate one for

MT = 4, given by
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QOSTBC4,4 =




s[1] s[2] s[3] s[4]

−s[2]∗ s[1]∗ −s[4]∗ s[3]∗

−s[3]∗ −s[4]∗ s[1]∗ s[2]∗

s[4] −s[3] −s[2] s[1]




. (2.4)

In the literature, related approaches with a maximum of MT = 6 antennas

were proposed for quasi-orthogonal codes (TIRKKONEN; BOARIU; HOTTINEN, 2000;

WEIFENG SU; XIANG-GEN XIA, 2002; SINDHU; HAMEED, 2015). In (WEIFENG SU;

XIANG-GEN XIA, 2002), the authors developed an architecture similar to (JAFARKHANI,

2001); however, this presents full-diversity at the cost of more processing and is limited

to MT = 4 antennas. In the same way, by increasing the decoding processing, Sindhu

and Hameed (SINDHU; HAMEED, 2015) proposed two quasi-orthogonal schemes with

MT = 5 and 6 antennas (SOARES, 2021).

2.2.3 Decoding for Space–Time Block Codes

Maximum likelihood (ML) detection calculates the Euclidean distance among the

received signal matrix R and the product of all possible transmitted signal vectors by the

channel matrix H. Considering A, the set of constellation symbols of the transmitted signal,

and MS, the number of transmitted symbols per MIMO block, ML detection determines

the estimation of the conveyed signal vector s as (SOARES, 2021)

ŝ = argmin
s ∈A

MS

∥∥∥R − HT X
∥∥∥

2
. (2.5)

As in maximum a posteriori (MAP) detection, ML detection achieves the optimal

performance when all transmitted vectors are equally probable. However, the number

of ML computation metrics is AMS , where A is the modulation order. Thus, the ML

complexity increases exponentially with the modulation order or the number of transmit

symbols, or both (CHO et al., 2010; JANKIRAMAN, 2004; TAROKH; JAFARKHANI;

CALDERBANK, 1999). Although this method has a high computational complexity, the

ML decoding is used as a benchmark due to its optimal performance (SOARES, 2021).

For orthogonal coding schemes, the ML metric can be simplified, decoding symbol

by symbol (TAROKH; JAFARKHANI; CALDERBANK, 1999). Via this simplification,

it is possible to circumvent the issue of exponential computational complexity. However,

even with this simplification, the computational complexity can be considerably high. In

QOSTBC, the ML metric can be also simplified, but the computational complexity remains

higher than the orthogonal case, because QOSTBC is decoded in pairs of symbols (SOARES,

2021).
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2.3 PROPOSED APPROACH

2.3.1 Coding Scheme

Similarly to the work of (JAFARKHANI, 2001), the present work is derived from

the full-rate full-diversity complex-valued space–time block code scheme proposed by

Alamouti (ALAMOUTI, 1998). The transmission matrix proposed in (ALAMOUTI, 1998)

is given by (SOARES, 2021)

Ai,j =


 s[i] s[j]

−s[j]∗ s[i]∗


 , (2.6)

in which s[i] is the ith input symbol to be encoded.

Based on (ALAMOUTI, 1998), Jafarkhani (JAFARKHANI, 2001) proposed a

quasi-orthogonal coding scheme using four antennas and consequently four encoded symbols

as (SOARES, 2021)

S4
4 =


 A1,2 A3,4

− [A3,4]
∗ [A1,2]

∗


 =




s[1] s[2] s[3] s[4]

−s[2]∗ s[1]∗ −s[4]∗ s[3]∗

−s[3]∗ −s[4]∗ s[1]∗ s[2]∗

s[4] −s[3] −s[2] s[1]




, (2.7)

where S is the quasi-orthogonal coding matrix. The main idea behind the work of (JA-

FARKHANI, 2001) is to build a 4 × 4 matrix from two 2 × 2 matrices, keeping a fixed

transmission rate (SOARES, 2021).

In the present paper, we generalize the idea presented in (JAFARKHANI, 2001)

to a new recursive method of generating coding schemes, as given by (SOARES, 2021)

S
MT

Ms
=


S

MT /2
Ms−MT /2 S

MT /2
Ms

−[S
MT /2
Ms

]∗ [S
MT /2
Ms−MT /2]

∗


 , (2.8)

in which MT = 2n, ∀ n g 1 is the number of transmitting antennas and Ms is the

number of encoded symbols. In the proposed scheme, Ms ≜ MT and the code rate is

R = MT /Ms = 1 (SOARES, 2021). The recurrence is performed until we find S1
n =

s[n], ∀n ∈ [1, 2, · · · , MS] in Equation (2.8).

For example, with four transmitting antennas, Equation (2.8) results in (SOARES,

2021)

S4
4 =


 S

4/2
4−4/2 S

4/2
4

−[S
4/2
4 ]∗ [S

4/2
4−4/2]

∗


 =


 S2

2 S2
4

−[S2
4]

∗ [S2
2]

∗


 . (2.9)

From the recurrent structure of Equation (2.8), S2
2 and S4

2 are
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S2
2 =


 S1

1 S1
2

−[S1
2]

∗ [S1
1]

∗


 , (2.10)

and

S2
4 =


 S1

3 S1
4

−[S1
4]

∗ [S1
3]

∗


 . (2.11)

Thus, substituting Equations (2.10) and (2.11) into Equation (2.9),

S4
4 =





 S1

1 S1
2

−[S1
2]

∗ [S1
1]

∗





 S1

3 S1
4

−[S1
4]

∗ [S1
3]

∗




−


 S1

3 S1
4

−[S1
4]

∗ [S1
3]

∗




∗

 S1

1 S1
2

−[S1
2]

∗ [S1
1]

∗




∗




=




S1
1 S1

2 S1
3 S1

4

−S1
2

∗

S1
1

∗

−S1
4

∗

S1
3

∗

−S1
3

∗

−S1
4

∗

S1
1

∗

S1
2

∗

S1
4 −S1

3 −S1
2 S1

1




. (2.12)

Replacing S1
n = s[n], ∀n ∈ [1, 2, 3, 4], into Equation (2.12),

S4
4 =




s[1] s[2] s[3] s[4]

−s[2]∗ s[1]∗ −s[4]∗ s[3]∗

−s[3]∗ −s[4]∗ s[1]∗ s[2]∗

s[4] −s[3] −s[2] s[1]




. (2.13)

Note that Equation (2.13) is equal to the coding scheme proposed by (JA-

FARKHANI, 2001) with four antennas, as in Equation (2.4). However, in contrast to

the work of (JAFARKHANI, 2001), our coding scheme, presented in Equation (2.8), can

generate coding matrices for any MT = 2n, ∀ n g 1, and Ms ≜ MT (SOARES, 2021). For

the case of n = 1, Equation (2.8) is equal to Equation (2.6), the full-rate full-diversity

complex-valued space–time block code scheme proposed in (ALAMOUTI, 1998).

The main issue of the proposed coding scheme is that we cannot define a simplified

ML decoding method as in the former cases. Then, it is here that the system proposed

in this paper takes shape, with the MM-PTRBF decoding, making the joint solution

feasible. We have observed, by extensive simulations, that Equation (2.8) achieves half

of the diversity presented by the orthogonal coding schemes but keeps full-rate (i.e.,

R = 1), which is essentially the characteristics of the quasi-orthogonal scheme proposed

by (SOARES, 2021; JAFARKHANI, 2001).

2.3.2 Complex MIMO-PTRBF Neural Network for Massive MIMO

Decoding

In the proposed system, the maximum likelihood decoder is replaced by a neural

network, the MIMO-PTRBF, to decode the received symbols, as shown in Figure 2.4. The
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MIMO-PTRBF has a supervised learning stage, in which a training sequence is used to

fit the hyper-parameters of the neural network. A pseudo-random generator creates this

training sequence, which is known both at the transmitter and receiver sides. When the

neural network output achieves the desired mean square error (MSE), it switches from the

learning stage to the decoding stage. At this time, the information data are then effectively

transmitted over the system, and the BER is computed. These two stages are implemented

as in Figure 2.4, with the input switch of the MIMO STBC Encoder block and the output

switch of the Neural Network Decoder block. The switches have two states represented by

(a) and (b), which shift between the training and decoding stages (SOARES, 2021).

Figure 2.4 – Complete vision of the proposed MIMO-OFDM model (SOARES, 2021).

As in the maximum likelihood detector, the input signal to the MIMO-PTRBF

algorithm is the set of received vectors r, as shown in Figure 2.4. The MIMO-PTRBF

architecture, with N neurons, has three free parameters: the matrix of synaptic weights

W ∈ C
Ms×N , the matrix of center vectors Γ ∈ C

MRP ×N , and the vector of variances

σ2 ∈ C
N×1. The MIMO-PTRBF is an extension of the PTRBF for multiple outputs.

The key difference between both architectures is the multiple-output layer, which fits

each output individually. Figure 2.5 shows a closer view of the receiver side using the

MIMO-PTRBF neural network for decoding (SOARES, 2021).
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Figure 2.5 – Closer view of the system with neural network decoding (SOARES, 2021).

The output vector is thus given by

ŝ[u] = W[u]φ[u]. (2.14)

Following the complex-valued radial basis function presented in (LOSS et al.,

2007a), the nth neuron output of the MIMO-PTRBF (ϕn), for the pth output vector of r,

is (SOARES, 2021)

ϕn = exp

(
−

||Re{r} − Re{γn}||22
Re{Ã2

n}

)
+ ȷ exp

(
−

||Im{r} − Im{γn}||22
Im{Ã2

n}

)
, (2.15)

where || · ||2 is the operator which returns the Euclidean norm of its argument, and Re{·}

and Im{·} are the respective real and imaginary parts of their arguments. Additionally,

as shown in Figure 2.6, the output of the neurons can be represented by the vector

φ = [ϕ1 ϕ2 · · · ϕN ]T ∈ C
N×1. This kernel partitioning into real and imaginary com-

ponents has an important role in avoiding any phase invariance at the output of the

neurons (SOARES, 2021; MAYER; SOARES; ARANTES, 2020; LOSS et al., 2007a).



CHAPTER 2. COMPLEX-VALUED PHASE TRANSMITTANCE RBF NEURAL NETWORKS FOR

MASSIVE MIMO-OFDM RECEIVERS 52

1̂s

1s

-

-

-

+

+

+

2ŝ
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Figure 2.6 – MIMO phase transmittance radial basis function neural network architecture (SOARES,
2021).

Thus, by means of the steepest descent algorithm, the update of the MIMO-PTRBF

free parameters is given by

wms,n[u + 1] = wms,n[u] − ¸w∇wJ [u],

γn[u + 1] = γn[u] − ¸γ∇γJ [u], (2.16)

Ã2
n[u + 1] = Ã2

n[u] − ¸σ∇σJ [u],

in which ¸w, ¸γ, and ¸σ are the adaptive steps of wms,n, γn, and Ã2
n, respectively. Fur-

thermore, ∇w, ∇γ, and ∇σ are the complex gradient operators of wms,n, γn, and Ã2
n,

respectively.

Thus, with r and s, the MIMO-PTRBF algorithm can be used to estimate the

output vector ŝ at the uth training epoch by the minimization of the following cost

function:

J [u] =
1

2
||s[u] − ŝ[u]||22, (2.17)

where s and ŝ are the training sequence and the output vector, respectively.

Applying the complex gradient operators (∇w, ∇γ, and ∇σ) to (2.17) yields

∇wJ [u] = −ems
[u]ϕ∗

n[u],

∇γJn[u] = −À∗[u]Én[u] (Re{αn[u]} − Im{αn[u]}) − À[u]É∗

n[u] (Re{αn[u]} + Im{αn[u]}) ,

(2.18)

∇σJn[u] = −À∗[u]Én[u](Re{´n[u]} − Im{´n[u]}) − À[u]É∗

n[u](Re{´n[u]} + Im{´n[u]}),
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in which ems
[u] = sms

[u] − ŝms
[u] is the instantaneous error for the output ŝms

at

the uth training epoch. Then, substituting Equation (2.18) in (2.16) yields

wms,n[u + 1] = wms,n[u] + ¸wems
[u]ϕ∗

n[u],

γn[u + 1] = γn[u] + ¸γ [Re(Àn[u])Re(αn[u]) − ȷIm(Àn[u])Im(αn[u])] ,

Ãn[u + 1] = Ãn[u] + ¸σ [Re(Àn[u])[Re(´n[u]) − ȷIm(Àn[u])Im(´n[u])] ,

(2.19)

in which [·]∗ denotes the complex conjugate operator and Àn[u] is the nth synaptic

transmittance, given by

Àn[u] =
Ms∑

ms=1

e∗

ms
[u]wms,n[u]. (2.20)

Furthermore, αn[u] ∈ C
R is the mth vector of the matrix of weighted centers

(A[u] ∈ C
N×R):

αn[u] = Re(ϕn[u])
[Re(x[u]) − Re(γn[u])]

Re(Ãn[u])
+ ȷIm(ϕn[u])

[Im(x[u]) − Im(γn[u])]

Im(Ãn[u])
. (2.21)

In a similar way, ´n[u] ∈ C is the nth element of the vector of weighted kernel

(β[u] ∈ C
N):

´n[u] = Re(ϕn[u])
∥Re(x[u]) − Re(γn[u])∥2

2

[Re(Ãn[u])]2
+ ȷIm(ϕn[u])

∥Im(x[u]) − Im(γn[u])∥2
2

[Im(Ãn[u])]2
. (2.22)

Generalizing Equation (2.19) to matrix structures results in

W[u + 1] = W[u] + ¸we[u]φH[u],

Γ[u + 1] = Γ[u] + ¸γÆ
∗[u],

σ[u + 1] = σ[u] + ¸σæ
∗[u],

(2.23)

where Æ[u] and æ[u] are auxiliary variables used to reduce the computational complexity.

Æ[u] and æ[u] are given by

Æ[u] = Re(Ξ[u])Re(A[u]) + ȷIm(Ξ[u])Im(A[u]) ∈ C
N×R,

æ[u] = Re(Ξ[u])Re(β[u]) + ȷIm(Ξ[u])Im(β[u]) ∈ C
N,

(2.24)

in which Ξ[u] is the diagonal matrix of synaptic transmittance:

Ξ[u] =




À1[u] 0 · · · 0

0 À2[u] · · · 0

...
...

. . .
...

0 0 · · · ÀN [u]




∈ C
N×N. (2.25)
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Each training update is given by Equation (2.23); however, for u = 0, the MIMO-

PTRBF free parameters are initialized following some criterion defined by the user (e.g.,

based on the probability distribution of the input data). Although (2.23) minimizes the

error between the output vector ŝ and the reference vector s, as the neurons are dependent

on exponential functions, a risk of instability is assumed if the exponential argument is

positive. In order to circumvent this issue, based on Theorem A1 of (MAYER; SOARES;

ARANTES, 2020), the real and imaginary parts of each scalar component of the vector of

variances are lower-bounded by the limit µ > 0, which, consequently, bounds the real and

imaginary parts of the neurons output from 0 to 1 (SOARES, 2021). In addition, taking

into account Theorem 2.2 (see Appendix 2.6), the adaptive step of the matrix of synaptic

weights is limited by ¸w < 1/N for all simulations, to guarantee convergence in the mean.

In addition, in the Appendix, Corollaries 2.1.1 and 2.1.2 are of utmost importance to prove

Theorem A1. In addition, Definition 2..1 is used to prove Corollary 2.1.2.

2.4 SIMULATION RESULTS

Using the formerly mentioned OSTBC (TAROKH; JAFARKHANI; CALDER-

BANK, 1999) and QOSTBC (JAFARKHANI, 2001) coding schemes, several setups are

compared with the proposed approach to validate and assess their performance in massive

MIMO-OFDM. OSTBC and QOSTBC are simulated with the maximum likelihood (ML)

decoding with perfect channel knowledge. This configuration achieves the maximum di-

versity gain Gd = MT MR at the cost of half of the theoretical bandwidth efficiency, since

R = 1/2 in this case. Considering a practical QOSTBC application, we also implement

the EQOSTBC with the least-squares (ML-LS) channel estimation (SOARES, 2021).

Figure 2.7 illustrates the simulated system.

Channel

Decoder

n(t)

Training sequence

Demodulation

Modulation

Output data

IDFT

DFT

BER

Input dataSTBC

Figure 2.7 – Block model of the simulated systems.

In Figure 2.7, the binary input data are created by a pseudo-random generator
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with uniform distribution. The bit-stream is then modulated according to the M -QAM

or M -PSK modulation scheme used in the simulation. Subsequently, using the coding

scheme proposed in Section 2.3, the modulated symbols are encoded in the STBC block.

In the IFFT block, the STBC symbols are frequency-multiplexed for OFDM transmission.

At the receiver side, after the transmitted signal passes through the channel, the fast

Fourier transform (FFT) is applied to demultiplex the STBC symbols. In the decoder, the

proposed ANN-based technique presented in Section 2.3 and the ML algorithm (either

with perfect channel knowledge at the receiver or with channel estimation by LS) are

employed to assess the system performance. In the sequel, the decoder output symbols are

demodulated, and BER is computed.

For the sake of comparison, the BER as a function of energy per bit to noise power

spectral density ratio (Eb/N0) is used in the simulations. By adjusting the transmitting

power for each antenna, the received signals are normalized by MT transmitting antenna,

by the receiver array gain MR, and by the code rate gain R, implying

SNR(dB) = Eb/N0(dB) + 10 log10

(
b

RMT MR

)
, (2.26)

in which b is the number of bits per QAM symbol.

In Figure 2.8, aiming to validate the simulator shown in Figure 2.7, we compare

the obtained results with the theoretical performance of OSTBC for 4th, 8th, 16th, and

64th diversity orders using 4-QAM modulation for a Rayleigh channel with AWGN. For

all OSTBC diversity orders, theoretical and simulated results were approximately the

same, validating the framework. In addition, Figure 2.9 presents the reference results

of (JAFARKHANI, 2001) with MT = 4 antennas and MR = 1 antenna for 16-QAM OSTBC

and 4-QAM QOSTBC and the obtained results for the same scenarios. The simulated results

are in line with theoretical results, which also corroborates the framework’s reliability.
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Figure 2.8 – Simulated and theoretical results for 4th, 8th, 16th, and 64th diversity orders.
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Figure 2.9 – Simulated, reference, and theoretical results for equal diversity order and bitrate (SOARES,
2021).

With the simulation framework validated, we can compare the proposed coding

algorithm with results from the literature. Firstly, Figure 2.10 shows the results of the

proposed coding algorithm and theoretical results for 2nd, 3rd, 4th, 5th, 8th, and 10th order

diversity. As addressed by (JAFARKHANI, 2001), quasi-orthogonal transmitting schemes

with four antennas achieve at least half of the theoretical diversity (Do = MT

2
= 2) of the

orthogonal four antenna scheme (Do = MT = 4). This can be seen in the solid blue curve

with squares of Figure 2.10, which is located between the theoretical second and third-order

curves. Using simulations, we extend the concept introduced by (JAFARKHANI, 2001) for

QOSTBC with 8 × 1 and 16 × 1 antennas. In order to simulate these scenarios, we employ

the proposed coding algorithm presented in Equation (2.8). As expected, the solid green



CHAPTER 2. COMPLEX-VALUED PHASE TRANSMITTANCE RBF NEURAL NETWORKS FOR

MASSIVE MIMO-OFDM RECEIVERS 57

curve with diamonds and the solid orange curve with circles are between the theoretical

4th and 5th order and the 8th and 10th order, respectively. Then, utilizing this analysis, we

validate the proposed code algorithm and show that it is a suitable approach for generating

QOSTBC matrices for at least 16 antennas. Higher-order QOSTBC architectures using

Equation (2.8) are not simulated because of the extensive time required to perform

maximum likelihood detection.
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Figure 2.10 – Simulation for the proposed coding scheme against theoretical results for equal bitrate and
MT = 4 and 8 with MR = 1 (SOARES, 2021).

In order to represent more practical scenarios, we set the simulation system with a

3GPP TS 38.211 specification (ETSI, 2022a) for 5G Physical channels and modulation. The

Subcarrier Spacing (∆f) scales from 15 kHz to 240 kHz. The number of active carriers is

256, and the pilot sample rate (when applicable) is MT × 8 × fDoppler with the conventional

block-based pilot scheme (MEI et al., 2021). We perform simulations in the extremes to

demonstrate the robustness of the proposed approach.

The radio channel realizations are created using the 3GPP TR 38.901 report on

5G: Study on channel model for frequencies from 0.5 GHz to 100 GHz (ETSI, 2022b). The

3GPP channel models (ETSI, 2022b) are applicable for frequency bands in the range of

0.5 GHz to 100 GHz. From Tapped Delay Line (TDL) models in (ETSI, 2022b), TDL-B is

selected from Table 7.7.2-2 (depicted in Table 2.1) for the channel model simulated in this

work.
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Table 2.1 – Table 7.7.2-2. TDL-B.

Tap # Normalized Delay Power (dB) Tap # Normalized Delay Power (dB)

1 0.0000 0.00 13 1.1021 −4.80

2 0.1072 −2.20 14 1.2756 −5.70

3 0.2155 −4.00 15 1.5474 −7.50

4 0.2095 −3.20 16 1.7842 −1.90

5 0.2870 −9.80 17 2.0169 −7.60

6 0.2986 −1.20 18 2.8294 −12.2

7 0.3752 −3.40 19 3.0219 −9.80

8 0.5055 −5.20 20 3.6187 −11.4

9 0.3681 −7.60 21 4.1067 −14.9

10 0.3697 −3.00 22 4.2790 −9.20

11 0.5700 −8.90 23 4.7834 −11.3

12 0.5283 −9.00

In Table 2.1, as the channel model delays are normalized, they need to be scaled

according to a desired delay spread in nanoseconds (ns):

Äscaled = ÄmodelDSns (2.27)

in which Ämodel is the normalized delay value of the TDL model, Äscaled is the new delay

value (in [ns]), and DSns is the desired delay spread (in [ns]). From Table 7.7.3-1 (ETSI,

2022b), examples of scaling delay spreads are very short (DSns = 10 ns), short (DSns = 30

ns), nominal (DSns = 100 ns), long (DSns = 300 ns), and very long (DSns = 1000 ns). In

this work, we use a delay spread of DSns = 50 ns.

From the channel model of Table 2.1, a Rayleigh distribution is used to compute

each sub-channel of H ∈ C
MT ×MR (MIMO channel matrix). The M -QAM BER figure for

the AWGN channel is also used to define a lower bound on BER vs. Eb/N0 performance.

Additionally, it is assumed that all received signals are uncorrelated (SOARES, 2021).

A realistic scenario to assess the performance of a MIMO-OFDM system must

also include the nonlinear effects of the transmitter power amplifiers (SOARES, 2021).

This is necessary because the OFDM signal can have relatively high peak values (i.e., high

PAPR) in the time domain since many subcarrier components are added via an IFFT

operation. A high PAPR is one of the most detrimental aspects of the OFDM system,

as it decreases the SQNR (signal-to-quantization noise ratio) of ADCs (analog-to-digital

converters) and DACs (digital-to-analog converters), while also imposing a back-off that

degrades the efficiency of the power amplifier in the transmitter. The PAPR issue is usually

more critical in the uplink since the efficiency of the power amplifier is critical due to the

limited battery power in a mobile terminal. For this purpose, from now on, the results
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assume mild amplifier nonlinearities, represented by a first-grade power amplifier or an

appropriate back-off operating point (SOARES, 2021). Based on (LOSS et al., 2007a), the

nonlinearity vector ρ = [Ä1 Ä2 Ä3]T = [0.9 0.1 0.05]T implies 90%, 10%, and 5% first,

second, and third-order coefficients, respectively.

With the model properly validated and the specified 5G channel model, we

are now able to analyze the proposed complex-valued ANN-based decoder for MIMO-

OFDM systems. First, we present the MSE convergence curves during the learning

process. The MSE curves are averaged over 10 subsequent simulation traces, and a 4-QAM

modulation with Eb/N0 = 12 dB is employed. Figure 2.11a–d show the MSE evolution

for MT = MR = 4, MT = MR = 8, MT = MR = 16, and MT = MR = 32 antennas,

respectively. The red bottom and top curves in Figure 2.11 refer to the MSE standard

deviations over the 10 subsequent simulation traces, and the green curves refer to the

mean values. Although the steady-state MSEs decrease slightly as the number of antennas

increases, one may notice that the decays of the standard deviations are more conspicuous

as MT = MR increases. This is due to the MIMO characteristics that mitigate the channel

effects by sending several samples of the same signal to the receiver. Thus, sudden channel

variations are smoothed, suggesting that the PTRBF learning process presents a robust

and cohesive behavior.

The 4-QAM scatter plots presented in Figure 2.12 show the convergence of the

proposed neural network decoder for the first 35 training epochs. For this sequence of

scatter plots, each training epoch corresponds to one OFDM symbol; i.e., 256 4-QAM

symbols. As shown in Figure 2.12, the proposed algorithm has a fast convergence rate

since only 10 training epochs are sufficient to separate the 4-QAM constellation symbols

efficiently (SOARES, 2021).

The 16-QAM scatter plots presented in Figure 2.13 show the convergence of the

proposed neural network decoder for the first 140 training epochs, spaced in intervals of

20 OFDM symbols. In this case, the number of training epochs necessary for algorithm

convergence is greater than for the 4-QAM case, given the intrinsic complexity of the

higher-order constellation. Nevertheless, with only 20 training epochs, it is already possible

to visually identify the 16-QAM constellation symbols and, with 80 training epochs, to see

the correctly grouped symbols in the scatter plot (SOARES, 2021).

The 64-QAM scatter plots presented in Figure 2.14 show the convergence of the

proposed neural network decoder for the first 7000 training epochs, spaced in intervals of

1000 OFDM symbols. In this case, the number of training epochs necessary for algorithm

convergence is greater than for the former 16/4-QAM cases, in view of the intrinsic

complexity of the much higher-order 64-QAM constellation. Nevertheless, with 3000

training epochs, it is already possible to visually identify the 64-QAM constellation

symbols and, with 5000 training epochs, to see the correctly grouped symbols in the
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scatter plot (SOARES, 2021). Although an abrupt increase in training epochs occurs,

when compared with 4-QAM in Figure 2.12, it represents a time interval of only 80 ms

(5000 OFDM symbols with 240 kHz sub-carrier spacing).

After analyzing the MSE curves and constellations of the MMPTRBF, we can

further investigate the BER vs. Eb/N0 of the proposed approach. Figure 2.15 shows the BER

vs. Eb/N0 results of the QOSTBC, EQOSTBC, and MIMO-PTRBF systems operating with

MT = MR = 4 antennas and 4-QAM modulation. The 4-QAM AWGN curve defines a

lower bound for all MIMO systems that use 4-QAM modulation. The simulation results

in Figure 2.15 indicate that the QOSTBC system outperforms the proposed work when

perfect channel knowledge is available at the receiver, which is impractical. Although the

EQOSTBC system is a feasible and practical version of the QOSTBC, due to the channel

estimation block at the receiver, simulations using the least-squares channel estimation

show that the EQOSTBC performance is degraded by more than 2.5 dB when compared

with the QOSTBC (SOARES, 2021). Furthermore, even with a perfect channel estimator,

it is computationally expensive to decode QOSTBC codes with maximum likelihood for

more than four antennas, as addressed by (JAFARKHANI, 2001).
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Figure 2.11 – Evolution of MSE values averaged over 10 realization sequences of the proposed MMPTRBF
network decoder, using 4-QAM and Eb/N0 = 12 dB for (a) MT = MR = 4 antennas, (b)
MT = MR = 8 antennas, (c) MT = MR = 16 antennas, (d) MT = MR = 32 antennas.
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Figure 12. Scatter plots for the 4-QAM symbols at the output of the MMPTRBF during the training

                     
               

Figure 2.12 – Scatter plots for the 4-QAM symbols at the output of the MMPTRBF during the training
period, for MT = MR = 4 antennas and Eb/N0 = 12 dB. (a) 1 epoch, (b) 5 epochs, (c) 10
epochs, (d) 15 epochs, (e) 20 epochs, (f) 25 epochs, (g) 30 epochs, and (h) 35 epochs.
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Figure 2.13 – Scatter plots for the 16-QAM symbols at the out-
put of the MMPTRBF during the training period, for
MT = MR = 4 antennas and Eb/N0 = 20 dB. (a) 1 epoch, (b) 20 epochs, (c) 40
epochs, (d) 60 epochs, (e) 80 epochs, (f) 100 epochs, (g) 120 epochs, and (h) 140 epochs.



CHAPTER 2. COMPLEX-VALUED PHASE TRANSMITTANCE RBF NEURAL NETWORKS FOR

MASSIVE MIMO-OFDM RECEIVERS 62

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
               

                      
                

-5 0 5

Q

-5

0

5

I

(a)

-5 0 5

Q

-5

0

5

I

(b)

-5 0 5

Q

-5

0

5

I

(c)

-5 0 5

Q

-5

0

5

I

(d)

-5 0 5

Q

-5

0

5

I

-5 0 5

Q

-5

0

5

I

-5 0 5

Q

-5

0

5

I
-5 0 5

Q

-5

0

5

I

(e) (f) (g) (h)
Figure 14. Scatter plots for the 64-QAM symbols at the output of the MMPTRBF in the training

                     
                

Figure 2.14 – Scatter plots for the 64-QAM symbols at the output of the MMPTRBF in the training
phase, for MT = MR = 4 antennas and Eb/N0 = 26 dB. (a) 1 epoch, (b) 1000 epochs, (c)
2000 epochs, (d) 3000 epochs, (e) 4000 epochs, (f) 5000 epochs, (g) 6000 epochs, and (h)
7000 epochs.
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Figure 2.15 – Systems with MT = MR = 4 antennas for 4-QAM modulation.

Figures 2.16 and 2.17 show the BER×Eb/N0 results of the QOSTBC, EQOSTBC,

and MIMO-PTRBF systems operating with MT = 4 and MT = 8 with MR = 1 antennas

and 4-QAM modulation. Figures 2.16 and 2.17 highlight the diversity gain of the proposed

system when compared with the EQOSTBC. Although the mathematical derivation of the

proposed system diversity gain has not been obtained yet, simulations indicate a significant
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diversity gain (SOARES, 2021). Contrasting Figure 2.15 with Figure 2.16, one can see the

increase in the diversity gain as the number of transmitting antennas increases.
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Figure 2.16 – Systems with MT = 4 and MR = 1 antennas for 4-QAM modulation.
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Figure 2.17 – Systems with MT = 8 and MR = 1 antennas for 4-QAM modulation.

Figure 2.18 shows the BER vs. Eb/N0 results of the MMPTRBF systems operating

with MT = 4, 6, and 8 antennas for a 4-QAM modulation. Figure 2.18 also highlights the

increase in the diversity gain as the number of transmitting antennas increases. For a BER

= 10−2, there is a gain of approximately 2 dB when doubling MT .

To further investigate the effects of a larger number of transmitting and receiving

antennas on the performances of BER, in Figure 2.19, we present the simulation results

for a higher-order system with MT = MR = 8. It can be seen that the performance of

the quasi-orthogonal code with channel estimation is worse for MT = 8 than for MT = 4
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antennas, as shown in Figure 2.19. It is shown in (BIGUESH; GERSHMAN, 2006) that

the performance of the linear estimator decreases proportionally with the number of

transmitting antennas, which adds a constraint to the number of transmitting antennas

for linearly decoded systems.
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Figure 2.18 – MMPTRBF with MT = 4, MT = 8, and MR = 1 antennas for 4-QAM modulation.
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Figure 2.19 – Systems with MT = MR = 4, MT = MR = 8 antennas for 4-QAM modulation.

Figure 2.20 presents the simulation results for MT = MR = 4 (N = 100),

MT = MR = 8 (N = 150), MT = MR = 16 (N = 200), and MT = MR = 32 (N = 600)

to examine the extent of the proposed work for massive MIMO operations. These results

show the potential of the proposed work to efficiently operate with a massive number of

transmitting and receiving antennas. In addition, taking as reference the BER = 10−3,

one can notice that the gain increment is reduced when doubling the number of antennas



CHAPTER 2. COMPLEX-VALUED PHASE TRANSMITTANCE RBF NEURAL NETWORKS FOR

MASSIVE MIMO-OFDM RECEIVERS 65

as MT increases. For instance, increasing from MT = MR = 4 to MT = MR = 8 yields a

gain of 1.22 dB, while increasing from MT = MR = 16 to MT = MR = 32 yields a gain of

only 0.2 dB.

It is important to highlight that, in contrast to the maximum likelihood detection,

the proposed MMPTRBF decoding is able to operate with more than 16 antennas due to

its reduced computational complexity, as discussed below in Section 2.5.
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Figure 2.20 – MMPTRBF with MT = MR = 4, MT = MR = 8, MT = MR = 16, MT = MR = 32,
antennas for 4-QAM modulation.

Figure 2.21 shows the BER vs. Eb/N0 results of the ML-QOSTBC and ML-LS-

QOSTBC with 16-PSK and MIMO-PTRBF with 16-QAM to further examine the extent

of the proposed work for higher-order modulations with MT = MR = 4 antennas. This

result shows that the proposed work operates efficiently with a higher modulation order

of 16-QAM. It is important to note, however, that different modulation formats are used

in this scenario because the maximum likelihood QOSTBC decoding is not capable of

dealing with quadrature amplitude modulation, as addressed in (JAFARKHANI, 2001).

For this reason, in order to keep 16-order modulation, a 16-PSK modulation format for

QOSTBC is used. Figure 2.21 shows that the proposed work outperforms the QOSTBC

using maximum likelihood (which is the optimal decoder for 16-PSK) by about 2 dB and

outperforms the channel estimated scenario by more than 4 dB. Although this robust

result seems to show a great advantage of using the proposed approach, we should be

careful as it is not quite fair to compare 16-QAM and 16-PSK formats under the proposed

nonlinear scenario.
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Figure 2.21 – Systems with MT = MR = 4 antennas operating at the same bitrate with 16-QAM
(MMPTRBF) and 16-PSK (ML-QOSTBC and ML-LS-QOSTBC).

Figure 2.22 shows the BER vs. Eb/N0 results of the MIMO-PTRBF systems

operating with MT = MR = 4 and MT = MR = 8 for 16-QAM modulation. Figure 2.22

highlights the increase in the diversity gain as a result of the increase in the number

of transmitting antennas. Although the MMPTRBF with MT = MR = 8 has the worst

results for low values of Eb/N0, for values above Eb/N0 = 10 dB, the performance with

MT = MR = 8 surpasses the MT = MR = 4 results by about 1.6 dB for BER = 10−3.
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Figure 2.22 – MMPTRBF with MT = MR = 4 and MT = MR = 8 antennas operating at the same bitrate
with 16-QAM modulation.

Figure 2.23 shows the BER vs. Eb/N0 results of the MIMO-PTRBF with 64-QAM

modulation to further investigate the proposed work for higher-order modulations with

MT = MR = 4 antennas. Figure 2.23 shows the potential of the proposed approach of
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working with high-order modulation and highlights the gains over the QOSTBC with

64-PSK and perfect channel estimation, by about 5 dB, and for the channel estimated

scenario by about 7 dB. It is important to emphasize, once again, that it is not quite fair

to compare 64-QAM and 64-PSK formats under the proposed nonlinear scenario.
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Figure 2.23 – Systems with MT = MR = 4 antennas operating at the same bitrate with 64-QAM
(MMPTRBF) and 64-PSK (ML-QOSTBC and ML-LS-QOSTBC).

Figure 2.24 shows the BER vs. Eb/N0 results of the MIMO-PTRBF systems

operating with MT = MR = 4 and MT = MR = 8 for 64-QAM modulation. Figure 2.24

highlights the increase in the diversity gain as a result of the increase in transmitting

antennas. When doubling the number of antennas from MT = MR = 4 to MT = MR = 8,

the gain is about 0.87 dB for BER = 10−3.
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Figure 2.24 – MMPTRBF with MT = MR = 4 and 8 antennas operating at the same bitrate with 64-QAM
modulation.
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2.5 COMPUTATIONAL COMPLEXITIES

Table 2.2 presents the computational complexities of the OSTBC and EOSTBC

with ML decoding, both with the additional complexity of channel estimation, and the

proposed scheme with MIMO-PTRBF for training and decoding operation modes. MT

and MR are the number of transmitting and receiving antennas, Ms is the number of

transmitted symbols per MIMO block, P is the number of time samples per block of coded

symbols, A is the constellation order (e.g., A = 4 in the case of 4-QAM), and N is the

number of neurons used in the PTRBF neural network. Since the exp(·) function can

be easily implemented in hardware by lookup tables, multiplication is the most costly

operation. One may note that, for MT f 8, the complexity of the proposed algorithm is

similar to the complexity of the OSTBC, for which no code exists for MT > 8 (TAROKH;

JAFARKHANI; CALDERBANK, 1999). The case of QOSTBC is similar, for which no

simplified ML metric exists for MT ̸= 4 (SOARES, 2021; JAFARKHANI, 2001).

Table 2.2 – Computational complexities.

Decoder Multiplications Additions exp(·)

OSTBC † (2P MR + 4)MsA + ch (3P MR + 3)MsA + ch ch
QOSTBC † 24MR(Ms/2)A2 + ch 16(MR − 1)(Ms/2)A2 + ch ch

ML∗ with R = 1 MRMT P (AMs ) + ch MRMT (P − 1)(AMs ) + ch ch
MIMO-PTRBF (train) 12NMS + 12N + 8NMRP + 2Ms 6NMRP + 12NMs − 2N 2N

MIMO-PTRBF (decoding) 2NMRP + 2N + 4NMs 4NMRP + 4NMs − 2N − 2Ms 2N

† ch refers to the additional complexity of channel estimation.

Table 2.3 presents the computational complexities for the OSTBC, QOSTBC,

and the proposed system, for MT = MR = 4. In Table 2.3, N = 100 neurons are used

in the neural network, and maximum likelihood decoding is simulated with R = 1. Note

that generic maximum likelihood decoding refers to the minimization of Equation (2.5)

for a rate one (R = 1) coding scheme (e.g., it could decode the QOSTBC for the case

MT = 4 at a higher computational cost), and it will be assumed as an upper bound

for the computational complexities of the other quasi-orthogonal systems. Furthermore,

appropriate modulation schemes are used to provide the desired transmission rate for the

evaluated systems; i.e., 4-QAM for rate one code (R = 1) and 16-QAM for half-rate code

(R = 1/2) (SOARES, 2021).

Table 2.3 – Computational complexities for MT = MR = 4 and 2 bits/s/Hz.

Decoder Multiplications Additions exp(·)

OSTBC † 4.35 × 103 + ch 6.34 × 103 + ch ch
QOSTBC † 3.07 × 103 + ch 1.54 × 103 + ch ch

ML for R = 1 † 1.64 × 104 + ch 1.23 × 104 + ch ch
MIMO-PTRBF (train) 1.88 × 104 1.46 × 104 200
MIMO-PTRBF (test) 5.00 × 103 7.79 × 103 200

† ch refers to the additional complexity of channel estimation.
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Table 2.4 displays the computational complexities for MT = MR = 8, when the

PTRBF is equipped with N = 150 neurons. QOSTBC is defined as not applicable since

no simplified ML decoding metric has been presented in the literature. Thus, we need to

rely on the usual ML metric to perform decoding, which implies the limitation of using

QOSTBC combined with ML for a higher number of antennas in practical approaches.

Table 2.4 – Computational complexities for MT = MR = 8 and 2 bits/s/Hz.

Decoder Multiplications Additions exp(·)

OSTBC † 3.33 × 104 + ch 4.95 × 104 + ch ch
QOSTBC † Not applicable Not applicable Not applicable

ML for R = 1 † 3.36 × 107 + ch 2.94 × 107 + ch ch
MIMO-PTRBF (train) 9.30 × 104 7.23 × 104 300
MIMO-PTRBF (test) 2.43 × 104 4.29 × 104 300

† ch refers to the additional complexity of channel estimation.

Table 2.5 displays the computational complexities for MT = MR = 32, when the

PTRBF is equipped with N = 600 neurons. As the OSTBC coding matrix is limited

to eight antennas (see (TAROKH; JAFARKHANI; CALDERBANK, 1999)), it is not

applicable for MT = MR = 32. As already mentioned, since there is no simplified ML

metric to perform ML decoding with QOSTBC, it results in an explosion of computational

complexity for MT = MR = 32. On the other hand, the proposed approach can expand

the number of antennas, maintaining a reasonable compromise between computational

complexity and BER, as discussed in Section 2.4.

Table 2.5 – Computational complexities for MT = MR = 32 and 2 bits/s/Hz.

Decoder Multiplications Additions exp(·)

OSTBC † Not applicable Not applicable Not applicable
QOSTBC † Not applicable Not applicable Not applicable

ML for R = 1 † 6.04 × 1023 + ch 5.86 × 1023 + ch ch
MIMO-PTRBF (train) 5.15 × 106 3.92 × 106 1200
MIMO-PTRBF (test) 1.31 × 106 2.53 × 106 1200

† ch refers to the additional complexity of channel estimation.

The decoding computational complexities, shown in Figure 2.25, are addressed

in terms of real-valued multiplications per MIMO symbol, as a function of MT = MR

antennas. The orthogonal and quasi-orthogonal systems are not illustrated for the entire

simulation range in Figure 2.25 due to the absence of coding matrices and the simplification

of the ML metric for configurations with MT = MR > 8 (SOARES, 2021).
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Figure 2.25 – Computational complexities as a function of MT = MR.

2.6 CONCLUSIONS

This work proposes a novel MIMO scheme for M-QAM systems that aims to

achieve diversity gain for any number of antennas and at a lower computational cost

when compared with traditional methods. The presented architecture is based on existing

systems but with substantial improvements in the coding and decoding methods, based on

conventional MIMO-OFDM systems with quasi-orthogonal coding but implemented with

complex-valued Radial Basis Functions neural networks. The state-of-the-art algorithms

and the proposed approach have been simulated in MATLAB to measure their relative

performance under fading scenarios.

Based on the synergistic combination of the coding and decoding algorithms

presented in Section 2.2, the proposed MIMO-PTRBF system is discussed and analyzed in

Section 2.3. The main functional features of the proposed architecture can be summarized

as follows: (1) the proposed coding algorithm generalizes the generation of quasi-orthogonal

coding matrices, (2) the MIMO-PTRBF algorithm decodes the signal with satisfactory

performance and feasible computational cost, presenting low steady-state MSE with fast

convergence, and (3) the proposed approach seems practically feasible, at least for 32 x 32

MIMO systems, which are simulated in this work. We conjecture the practical feasibility

of higher-order systems if faster hardware, such as FPGAs, is used.

The MIMO-PTRBF algorithm has been proposed in this work to implement

massive MIMO schemes as an alternative to the classic MIMO-OSTBC systems under

maximum likelihood detection. Simulations have shown that the proposed technique has

a great potential to improve the signal-to-noise ratio at the receiver, with competitive

computational complexity. Although there are recent works in the literature proposing
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techniques for MIMO decoding, they are focused on reducing computational complexity

at the cost of performance and are limited by the simulated ML decoding. In this work,

results show that the proposed approach achieves better results than ML decoding for

higher-order modulation schemes with nonlinearities from power amplifiers, keeping a

competitive computational complexity. Moreover, the proposed system is easily scalable in

terms of the number of antennas, meaning that a wide range of transmitting and receiving

antennas can be used. This is especially important for the next generations of mobile

communications, such as 5G, 6G, and probably beyond.

The proposed architectures and algorithms find potential applications in some

configurations of the next generations of wireless systems. For example, some specialized

hardware improvements currently aim exclusively at real-time neural network algorithms.

These are intended to be implemented in low-power graphical processing units (LPGPUs),

favoring the speed and energy consumption of these algorithms. Therefore, the proposed

architecture will be able to work with low-power consumption devices, with the ability to

handle the distortions of nonlinear power amplifiers while maintaining a fast convergence

rate. It should be emphasized that a fast convergence characteristic is essential for wireless

channels with dynamic fluctuations.

This paper addresses some crucial aspects of MIMO-OFDM coding and decod-

ing schemes for quasi-static channels. A complementary analysis of dynamic scenarios

is also presented. We conjecture that the proposed work may be further improved us-

ing additional techniques, such as a mathematical approach for designing an optimum

adaptive configuration.

Furthermore, it would be interesting to study and validate the proposed archi-

tecture for dynamic scenarios. In addition, as challenging and promising future work, the

proposed algorithm can be adapted and implemented in advanced optical communication

systems with Spatial Division Multiplexing (SDM), which is similar to a MIMO wireless

system.
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Appendix

Definition 2..1. A non-monotone and differentiable transformation g : R
N 7→ R

N ,

composed of M -real solutions, yields a multivariate change of probability density function:

fY(y) =
M∑

m=1

fX(x)
∣∣∣J
(
g−1

m (y)
)∣∣∣ ,

in which x, y ∈ R
N are random vectors, J(·) is the determinant of the Jacobi operator,

and g−1
m is the inverse transformation of g, regarding the mth real solution (see (HELD;

BOVÉ, 2014), p. 322 and (DOLECEK, 2013), pp. 69–70).

Theorem 2.1. If x ∈ R
N is an input random vector of a kernel function g(x) = y ≜

exp
{
−

||x−γ||2
2

z

}
, with constant γ ∈ R

N and z ∈ R; then, g performs a trans-dimensional

transformation of probability density function from fX(x) to fY (y).

Proof. Let the Gaussian kernel function g(x, γ, z) ≜ exp
{
−

||x−γ||2
2

z

}
, with constant center

vector γ and variance z, be denoted by y = g(x), since it is only dependent on the random

vector x ∈ R
N . Furthermore, let y ≜ [g(x) y2 · · · yN ]T be the auxiliary expanded vector

of mapping. With Definition 2..1, we have the following transformation of the probability

density function (PDF):

fY(y) =
M∑

m=1

fX(x)
∣∣∣J
(
g−1

m (y)
)∣∣∣ . (2.28)

However, we need to marginalize the extra dimensions of y in (2.28) to obtain

the PDF of the desired random variable fY (y):

fY (y) =
M∑

m=1

∫
fX(x)

∣∣∣J
(
g−1

m (y)
)∣∣∣ dy2 · · · dyN . (2.29)

Then, finding some non-monotone function h(y) = h (g(x)) = fX(x), in which

h(y) is not a function of the expanded auxiliary terms y2, y3, · · · , yN , we can rewrite (2.29)

as

fY (y) =
M∑

m=1

hm(y)
∫ ∣∣∣J

(
g−1

m (y)
)∣∣∣ dy2 · · · dyN , (2.30)

where the right-hand term under the integral is called integral Jacobian, and it is re-

sponsible for the volume correction (SAMBRIDGE et al., 2006) of the trans-dimensional

transformation.
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In addition, as the Gaussian kernel is a non-monotone function with two real

solutions (due to the Euclidean norm), (2.30) results in

fY (y) = h1(y)
∫ ∣∣∣J

(
g−1

1 (y)
)∣∣∣ dy2 · · · dyN + h2(y)

∫ ∣∣∣J
(
g−1

2 (y)
)∣∣∣ dy2 · · · dyN , (2.31)

which is the trans-dimensional transformation of PDF performed by a Gaussian kernel

function.

Corollary 2.1.1. For any complex-valued vectors of same size x, y ∈ C
N and a scalar

z ∈ C, a kernel function f(x, y, z) ≜ exp
{
−

||ℜ(x)−ℜ(y)||2
2

ℜ(z)

}
+ ȷ exp

{
−

||ℑ(x)−ℑ(y)||2
2

ℑ(z)

}
have

real and imaginary boundaries between 0 and 1, if ℜ(z) > 0 and ℑ(z) > 0.

Proof. The proof is straightforward using Theorem A1 of (MAYER; SOARES; ARANTES,

2020), where the real-valued analyses must be independently performed for the real and

imaginary components of x, y, and z.

Corollary 2.1.2. If x ∈ C
N is a complex-valued input random vector of a complex-valued

kernel function g(x) = y ≜ exp
{
−

||ℜ(x)−ℜ(γ)||2
2

ℜ(z)

}
+ ȷ exp

{
−

||ℑ(x)−ℑ(γ)||2
2

ℑ(z)

}
, with constant γ ∈

C
N and z ∈ C, then g performs a complex-valued trans-dimensional transformation of prob-

ability density function from fℜ(X) (ℜ (x)) + ȷfℑ(X) (ℑ (x)) to fℜ(Y ) (ℜ (y)) + ȷfℑ(Y ) (ℑ (y)),

with independent real and imaginary components.

Proof. The proof is straightforward using Theorem 2.1, where the real-valued analyses

must be independently performed for the real and imaginary components of x and y.

Theorem 2.2. If x ∈ C
K is a stationary complex-valued input random vector of a PT-

RBF, then the matrix of synaptic weights W[k] ∈ C
M×N converges in the mean to the

optimum matrix of synaptic weights Wo when k → ∞, if the matrix of center vectors and

the vector of variances are constants.

Proof. Let the PT-RBF output y[k] = W[k]φ[k] ∈ C
M , where φ[k] ∈ C

N is the vector of

the neuron output. Furthermore, let the update function of the matrix of synaptic weights

W[k + 1] = W[k] + ¸we[k]φH[k] ∈ C
M×N , where ¸w is the adaptive step and e[k] ∈ C

M is

the vector of errors. We can assume without loss in generality that the desired response is

d[k] = Woφ[k] + q[k] ∈ C
M , (2.32)

where q[k] ∈ C
M is a complex-valued white Gaussian noise vector, with zero mean and

variance σ2
q, which is uncorrelated with φ[k]. Then, substituting (2.32) into the error

equation e[k] = d[k] − y[k], we have

e[k] = Woφ[k] + q[k] − W[k]φ[k]. (2.33)
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Thus, replacing (2.33) into the update function of the matrix of synaptic weights:

W[k + 1] = W[k] + ¸wWoφ[k]φH[k] + ¸wq[k]φH[k] − ¸wW[k]φ[k]φH[k]. (2.34)

Subtracting Wo from both sides of (2.34), the synaptic weights error matrix

V[k] = W[k] − Wo can be given by

V[k + 1] = V[k] − ¸wV[k]φ[k]φH[k] + ¸wq[k]φH[k]. (2.35)

Applying the expectation operator to both sides of (2.35):

E (V[k + 1]) = E
(
V[k] − ¸wV[k]φ[k]φH[k] + ¸wq[k]φH[k]

)
, (2.36)

and employing the independence assumptions of W[k] §§ φ[k] and q[k] §§ φ[k]:

E (V[k + 1]) = E (V[k]) − ¸wE (V[k]) E
(
φ[k]φH[k]

)
+ ¸wE (q[k]) E

(
φH[k]

)
, (2.37)

which results in:

E (V[k + 1]) = E (V[k])
[
I − ¸wE

(
φ[k]φH[k]

)]
= E (V[k]) [I − ¸wRφφ] , (2.38)

where I is the identity matrix and Rφφ is the correlation matrix of the neuron outputs.

As Rφφ is Hermitian and positive semidefinite (see (TENOUDJI, 2016), pp. 387, 469), it

can be rotated into a diagonal matrix by the unitary transformation Rφφ = QΛQH , in

which Λ = diag (¼1 ¼2 · · · ¼N) is the diagonal matrix of real and positive eigenvalues of

Rφφ (see (TENOUDJI, 2016), p. 471), in the form of ¼1 g ¼2 g · · · g ¼N , and Q ∈ C
N×N

is the orthonormal matrix of eigenvectors that diagonalizes Rφφ through a similarity

transformation (DINIZ, 2013).

Then, rotating E (V[k]) by the matrix of eigenvectors Q—i.e., V̄[k] = E (V[k]) Q—

decouples the evolution of its coefficients. By means of this rotation, we can express the

modes of convergence (see (MANDIC; GOH, 2009), p. 77) of (2.38) as

V̄[k + 1] = V̄[k] (I − ¸wΛ) . (2.39)

As (I − ¸wΛ) is diagonal and the nth row of V̄[k] represents the projection of

E (V[k]) onto the nth eigenvector of Rφφ, all elements of V̄[k] evolve independently.

Hence, (2.39) converges to zero if |1 − ¸w¼n| < 1 (see (DINIZ, 2013), p. 84). As the

fastest mode of convergence corresponds to the maximum eigenvalue ¼max, using the

identity ¼1 = ¼max f tr(Rφφ) (see (MANDIC; GOH, 2009), p. 77), the condition for the

convergence in the mean becomes
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0 < ¸w <
2

¼max

≈
2

tr(Rφφ)
. (2.40)

As the trace of Rφφ is equal to the product of the number of neurons outputs and

the respective signal power, the adaptive step bound is given by

0 < ¸w <
2

NE
(
|ϕ[k]|2

) . (2.41)

Note that the convergence in the mean of both PT-RBF and complex LMS is

similar (see (MANDIC; GOH, 2009), p. 77), and it is natural in some way, considering

that after the trans-dimensional transformation step of the PT-RBF, both algorithms have

comparable architectures.

However, in view of Corollary 2.1.2, E(|ϕ[k]|2) can be difficult to obtain. To

circumvent this issue, using Corollary 2.1.1, we can replace ϕ[k] by its maximum value

(1 + ȷ) into (2.41), which yields

0 < ¸w <
2

N |1 + ȷ|2
=

1

N
, (2.42)

which is the adaptive step bound for the convergence in the mean.
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Chapter 3

PCA-based Channel Estimation for

MIMO Communications

Authors: Jonathan Aguiar Soares, Kayol Soares Mayer, Pedro Benevenuto Valadares,

and Dalton Soares Arantes

Abstract

In multiple-input multiple-output communications, channel estimation is paramount to

keep base stations and users on track. This paper proposes a novel PCA-based – principal

component analysis – channel estimation approach for MIMO orthogonal frequency division

multiplexing systems. The channel frequency response is firstly estimated with the least

squares method, and then PCA is used to filter only the higher singular components of the

channel impulse response, which is then converted back to frequency domain. The proposed

approach is compared with the MMSE, the minimum mean square error estimation, in

terms of bit error rate versus Eb/N0.

Keywords: MIMO, OFDM, Channel Estimation, Principal Component Analysis.

This Chapter is a replica of the following manuscript: Jonathan Aguiar Soares, Kayol Soares Mayer,
Pedro Benevenuto Valadares, and Dalton Soares Arantes, "PCA-based Channel Estimation for MIMO
Communications" in XL Simpósio Brasileiro de Telecomunicações e Processamento de Sinais (SBrT2022),
Sep. 2022, pp. 1–5, doi: 10.14209/sbrt.2022.1570825011.
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3.1 INTRODUCTION

With the ever-increasing demand for wireless network capacity, multiple-input

multiple-output (MIMO) communications have become essential in novel technologies to

increase spectral efficiency and, consequently, network throughput (SOARES et al., 2021a).

Among the MIMO technologies, space-time block coding (STBC) is fundamental to provid-

ing space diversity by supplying multiple independently faded replicas of the same informa-

tion symbol, increasing communication reliability (KARA; KAYA; YANIKOMEROGLU,

2022). However, efficient channel estimation is still a challenging issue when increasing either

the number of antennas or subcarriers in MIMOorthogonal frequency division multiplexing

(OFDM), mainly in high mobility scenarios due to pilot overhead and complexity (ZHANG;

GAO; ZHOU, 2022).

Under channel linearity and time-invariance constraints, the conventional minimum

mean squared error (MMSE) is the optimal linear operator for channel estimation under

jointly Gaussian distributed random variables (NEUMANN; WIESE; UTSCHICK, 2018).

However, these constraints are unrealistic since even pedestrian channels are dynamic (YIN

et al., 2016), and nonlinearities are common in power amplifiers (ENRICONI et al., 2020;

MAYER et al., 2019c; MAYER; SOARES; ARANTES, 2020; MAYER et al., 2022). In

addition, as the MMSE channel estimation relies on covariance matrix inversions, the

computational complexity is extremely expensive (SHARIATI et al., 2013). Many different

approaches focus on reducing MMSE computational complexity but still have reasonably

high computational complexity for practical applications (ALI et al., 2020). In contrast

to the MMSE, the conventional least squares (LS) algorithm has a lower computational

complexity at the cost of less accurate channel estimation (BALEVI; DOSHI; ANDREWS,

2020).

In order to improve channel estimation of MIMO-OFDM systems, time filtering

can be employed to cut channel components regarding delays longer than the channel delay

spread. To accomplish this, after channel estimation (e.g., using LS or MMSE), inverse fast

Fourier transform (IFFT) converts the channel frequency response to time domain, and a

smoothing filter is applied to the maximum multipath delay which is within the cyclic

prefix (CP) of the OFDM symbols. After subsequent filtering, the channel impulse response

is converted back to frequency domain via a fast Fourier transform (FFT) (DIALLO;

RABINEAU; CARIOU, 2009). Although it is a simple strategy, this is not able to filter

noise components with delays shorter than the delay spread.

In this context, this work proposes a novel extension of the time domain MIMO-

OFDM smoothing filter to mitigate noise components embedded in the channel impulses.

The proposed approach is based on the principal component analysis (PCA) (ABDI;

WILLIAMS, 2010) to filter the noise after the time domain smoothing filter. As the noise
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is orthogonal to the multipath components, for higher signal-to-noise ratio (SNR)s, we

only keep the most significant components of the PCA transformation, which correspond

to the channel components without noise. Then, in a MIMO-OFDM receiver, this filtering

cascade is used after the low computational complexity LS channel estimator. Results are

compared in terms of bit error rate (BER) versus energy per bit to noise power spectral

density ratio (Eb/N0) of the proposed approach and the conventional MSE with smoothing

filter. To validate the proposed filtering robustness, results also consider dynamic channels

with Doppler from 0 Hz to 40 Hz.

The paper notation is mostly standard. For example, Cm×m is the m × m set

of complex numbers. Matrices are denoted by boldface uppercase letters and vectors

are denoted by boldface lowercase letters. The transpose, Hermitian, and inverse matrix

operators are expressed as [·]T , [·]H , and [·]−1, respectively. The indexes [n] and [k] are

related to the time and frequency domain, respectively.

The remainder of this paper is organized as follows. Section 3.2 presents a MIMO-

OFDM communication scheme based on STBC. Section 3.3 describes channel estimation

using MMSE and smoothing filter. Section 3.4 presents the proposed PCA-based channel

estimation. Section 3.5 discusses the asymptotic computational complexities of the PCA-

based and MMSE channel estimation algorithms. Lastly, Section 3.7 concludes the paper.

3.2 MIMO-OFDM SYSTEM MODEL

This paper considers the MIMO space-diversity scheme based on STBC and

OFDM. STBC is responsible for increasing communication reliability by sending multiple

signal copies via multiple antennas. Then, when increasing the number of antennas, the

probability that all signal replicas are affected by deep fading is extremely low. On the other

hand, OFDM enables broadband data transmission across multiple narrowband subchannels

(which is essential for MIMO transmission), also known as subcarriers. By transmitting

data through orthogonal subcarriers, OFDM mitigates intersymbol interference (ISI).

Fig. 3.2.1 presents a diagram of the considered MIMO-OFDM scheme. In the

input data stream block, a sequence of bits is mapped into an M -QAM constellation. The

transmitting Space Time Block Coder (STBC) converts the stream of QAM symbols, using

a code matrix, to construct a transmitting matrix X[k] ∈ C
MT ×P where MT represents the

number of transmitting antennas and P the matrix code length. This procedure is repeated

until the K OFDM subcarriers are filled. After the IFFT of the OFDM modulator, a cyclic

prefix (CP) is added to mitigate OFDM symbol interference. In addition, at a specified

time interval, the OFDM block channel state information reference signal (CSIRS) is sent

to channel estimation at the receiver (Rx). The CSIRS signal is a pseudo-random sequence

generated from the Zadoff-Chu (ZC) sequence (FIGUEIREDO et al., 2018).
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Figure 3.2.1 – STBC configuration for multiple-input multiple-output orthogonal frequency division
multiplexing (STBC MIMO-OFDM).

Considering a time invariant channel in an MIMO-OFDM block, the received

symbols, in the frequency domain, can be written as:

Y[k] = H[k]T X[k] + Z[k] ∈ C
MR×P , (3.1)

where Z[k] ∈ C
MR×P is the AWGN noise at the MR receiving antennas, H[k] ∈ C

MT ×MR

is the frequency domain channel matrix, and k ∈ [1, 2, · · · K]T .

At Rx, the cyclic prefix is removed, and in each OFDM demodulator block, FFT

is performed to convert the received signal to the frequency domain. Then, the received

CSIRS and the CSIRS without channel interference are used to estimate the channel per

subcarrier Ĥ[k] ∈ C
MT ×MR . The maximum likelihood (ML) decoder, with the estimated

channel Ĥ[k], decodes the STBC matrices into QAM symbols to posterior demmaping

into bits at the output data stream block.

3.3 MMSE CHANNEL ESTIMATION

The MMSE algorithm computes the channel estimation ĤMMSE[k] as follows:

ĤMMSE[k] =

(
X[k]X[k]H

MRÃ2
x

+
IMT

MRÃ2
h

)−1
X[k]Y[k]H

MRÃ2
x

, (3.2)

in which Ã2
x and Ã2

h are the variances of X[k] and H[k], respectively. As the MMSE channel

estimation relies on CSIRS, I transmitted CSIRS MIMO-OFDM blocks need to be stored

to compute (3.2).

The FFT-channel filtering (also known as smooth filtering) technique has been

derived to improve the performance of the channel estimation, by eliminating the effect of

noise outside the maximum channel delay. Taking the IFFT of the channel estimate for

each component of ĤMMSE[k]:

IFFT
{
ĥmT ,mR

[k]
}

= ĥmT ,mR
[n] + zmT ,mR

[n], (3.3)

where n denotes the time index, ĥmT ,mR
[n] is the estimated channel impulse

response of the (mT , mR) component of ĤMMSE[n], mT ∈ [1, 2, · · · , MT ], and mR ∈

[1, 2, · · · , MR].
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Ignoring the coefficients ĥ[n] that contain only noise, let us define the coefficients

for the maximum channel delay L as

h̃mT ,mR
[n] =





ĥmT ,mR
[n] + zmT ,mR

[n], if n f L − 1

0, if n > L − 1,
(3.4)

and transform the remaining L elements back to the frequency domain as follows:

h̃mT ,mR
[k] = FFT

{
h̃mT ,mR

[n]
}

, (3.5)

where h̃mT ,mR
[k] is the (mT , mR) component of H̃[k].

Note that the maximum channel delay L must be known in advance. Also note

that smooth filtering method improves the performance of channel estimation. Figure 3.3.1

illustrates the MMSE estimator and smoothing filter.

FFTIFFT Smoothing
Filter H[k]~

FFTIFFT
   H[k] = MMSE^ {X,Y} Smoothing

Filter

Figure 3.3.1 – MMSE channel estimation model of the k-th subcarrier.

3.4 PROPOSED PCA-BASED CHANNEL ESTIMATION

Least squares (LS) channel estimation is widely used in OFDM systems and

has low computational complexity. This method requires CSIRS to obtain the channel

coefficients. The LS channel estimation is given by

ĤLS[k] = X[k]Y[k]H . (3.6)

Since the LS channel estimation is outperformed by the MMSE channel estimation

approach, here we propose a PCA-based method for improving the LS channel estimation,

as shown in Fig. 3.4.1.

IFFT FFT
PCA

0
0

Smoothing
FilterIFFT FFT

PCA
0
0

Smoothing
Filter

   H[k] = LS{X,Y}^
H[k]
_

Figure 3.4.1 – Proposed PCA channel estimation model of the k-th subcarrier.

The PCA is a method of denoising or filtering since noise is usually orthogonal to

the signal. Therefore, we could use PCA denoising instead of performing smooth filtering,
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obtaining a performance similar to that of the MMSE. However, the computational

complexities of both approaches would be the same.

Exploring the case where the IFFT components are set to zero when n > L − 1,

we place the PCA algorithm to remove the last portion of the noise in the n f L − 1

elements. In other words,

h̄mT ,mR
[n] = PCA

{
h̃mT ,mR

[n, i]
}

, (3.7)

where i is the number of stored channel realizations to perform the PCA denoising, and

h̄mT ,mR
[k] = FFT

{
h̄mT ,mR

[n]
}

, (3.8)

is the final least squares principal component analysis (LSPCA) channel estimation of the

(mT , mR) component of H[k].

3.5 COMPUTATIONAL COMPLEXITIES

In this section, we evaluate the computational complexities of the MMSE and

PCA algorithms mentioned above. Since these algorithms exhibit basic operations on

complex matrices, such as multiplication, inversion and more complex transformations,

such as the single-value decomposition (SVD), it is crucial to evaluate the computational

costs involved in these calculations. The results can be summarized as follows:

• Multiplications: Considering A ∈ C
M×N , and B ∈ C

N×P , we have 4nmp multiplica-

tions and (3n − 1)mp additions. If we consider m = n = p, we clearly end up with

an O(n3) asymptotic complexity.

• Inversions: A low complexity matrix inversion method for MIMO communications

systems is proposed in (YU et al., 2015). The SDF-SGR based algorithm, for a

complex square matrix A ∈ C
M×M , contains 8n3 + 4n2 + 3n multiplications and

25
3

n3 − 4n2 − 1
3
n additions, implying an O(n3) asymptotic complexity.

• SVD: SVD algorithms have O(n3) asymptotic complexity for an n × n input matrix.

From MMSE (3.2), we can notice that the algorithm complexity essentially lies in

the computation of very expensive computational cost operations, such as matrix inversion

and multiplication. Thus, the asymptotic complexity of this method is given by O(n3).

Adjusting the dimension of the XT X to match n with MT dimension, we have that the

asymptotic complexity O(n3) is then related to O(M3
T ).

Since the SVD input matrix is h̃mT ,mR
[n, i], where n is the n-th channel delay and

i is the i-th buffered coefficients, i.e., constant size, the SVD complexity is negligible for
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asymptotic complexity. However these computations are performed for each independent

single-input single-output (SISO)-channel in the MIMO-Channel MT × MR channel matrix

H. Therefore, the asymptotic complexity is given by O(MT × MR), i.e., O(n2). Thus the

asymptotic complexity of this estimation method is given by the order of transmitting

and receiving antennas.

Fig. 3.5.1 presents the evolution of the computational complexity of the MMSE (blue

curve) and of the proposed LSPCA (red curve) as a function of the number N of antennas.

As the MMSE and LSPCA computational complexities are O(N3) and O(N2), respectively,

the MMSE computational complexity is always N times higher than for the LSPCA.

Although for MIMO schemes with N = 8 antennas the MMSE could be implemented

with 512 multiplications, when increasing the number of antennas to N = 32 (massive

multiple-input multiple-output (mMIMO)), the computational complexity explodes to

32,768 multiplications, becoming prohibitive. On the other hand, the LSPCA complexity

for N=32 antennas consists of only 1,024 multiplications. This clearly shows that the

proposed scheme is much better suited for massive-MIMO systems.
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Figure 3.5.1 – MMSE and LSPCA asymptotic computational complexities. The MMSE and LSPCA
computational complexities are shown in blue and red curves, respectively.

3.6 RESULTS

In order to represent more practical scenarios, we set the simulation system with

a 3GPP TS 38.211 specification (ETSI, 2022a) for 5G Physical channels and modulation.

The subcarrier spacing (∆f) scales from 30 kHz. The number of active subcarriers is 1024,

and the CSIRS sample rate (when applicable) is 1/24 with the conventional block-based
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CSIRS scheme (MEI et al., 2021). We perform simulations in the extremes of doppler shift

to demonstrate the robustness of the proposed approach.

As the proposed transmitter (Tx) has eight antennas, the STBC encodes the

received symbol sequence in intervals of eight symbols. It means that eight 4-QAM symbols

are encoded into eight sequences composed of eight-time samples. In the Tx OFDM block,

the STBC sequences are converted to the time domain for transmission, using 1,024

subcarriers. After sending 23 OFDM symbols per antenna, the OFDM block input is

switched to send channel state information reference signal (CSIRS). To avoid OFDM

symbol interference, a CP of duration L corresponding to 120% of the channel delay spread

is appended to each OFDM symbol. In the process of channel propagation, the transmitted

symbol will suffer from multipath fading and additive white Gaussian noise (AWGN). The

channel environment will affect the correct signal reception. At the receiver (Rx), the

serial OFDM symbols are transformed into parallel form in the serial-to-parallel (S/P)

block. The CP is then removed from the parallel OFDM symbols. After removing the CP,

the time-domain received OFDM symbols are transformed into the frequency domain via

FFT.

The radio channel realizations are created using the "3GPP TR 38.901 report on

5G: Study on channel model for frequencies from 0.5 GHz to 100 GHz" (ETSI, 2022b).

The 3GPP channel models (ETSI, 2022b) are applicable for frequency bands in the range

from 0.5 GHz to 100 GHz. From Tapped Delay Line (TDL) models in (ETSI, 2022b),

TDL-B is selected from Table 7.7.2-2 for the channel model simulated in this work.

Simulation results are shown in Fig. 3.6.1 by setting channel to be quasistatic, i.e.,

Doppler fd = 0.5 Hz and Fig. 3.6.2 by setting channel to have Doppler fd = 10 Hz both

using 20 realizations to perform channel estimation for the following estimators: LSPCA

¼max = 3 performing PCA with 3 principal components, LSPCA ¼max = 5 performing

PCA with 5 principal components and MMSE. Additional curves of Theoretical BER for

8x8 diversity gain and perfect channel knowledge are plotted as reference.

Fig. 3.6.1 presents results for a quasi-static channel (i.e., fd = 0.5 Hz). Although

the MMSE reached the perfect channel estimation performance, the LSPCA with ¼max = 5

and ¼max = 3 achieved similar results but with much lower computational complexity.

For a more realistic scenario, considering a dynamic channel with a Doppler

frequency of 10 Hz, Fig. 3.6.2 illustrates that the proposed algorithm presents superior

performance when compared with the MMSE. For example, for a BER = 10−4, both

LSPCA with ¼max = 3 and ¼max = 5 achieved a gain of 0.4 dB when compared with the

MMSE.

Fig. 3.6.3 presents simulation results for a range of Doppler frequency fd varying

from 0 Hz (static channel) to 40 Hz (dynamic channel), in steps of 5 Hz and with a fixed
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Figure 3.6.1 – Simulation results for the MIMO-OFDM system with Doppler fd = 0.5 Hz using the
following estimators: LSPCA λmax = 3, LSPCA λmax = 5 and MMSE. Additional curves
of Theoretical BER for 8x8 diversity gain and perfect channel knowledge are plotted as
reference.

pilot ratio. The simulation stops at 40 Hz, since the LSPCA and MMSE channel estimation

results tend to the BER upper limit of 5 × 10−1. For fd > 5 Hz, the proposed LSPCA

presented a significantly better performance, surpassing the MMSE in almost one order of

magnitude for fd = 20 Hz. This result shows that the proposed approach is more robust to

channel variations than the MMSE, which is only optimal for static channels under jointly

Gaussian distributed random variables (NEUMANN; WIESE; UTSCHICK, 2018).

3.7 CONCLUSIONS

This paper presents a PCA-based filtering approach to improve the efficiency

of MIMO-OFDM channel estimation. The proposed approach outperformed the MMSE

channel estimation regarding BER versus Eb/N0 when operating with Doppler frequencies

higher than 10 Hz, keeping the same pilot ratio. For Doppler frequencies lower than 10 Hz,

both PCA-based and MMSE channel estimation presented similar results, but the PCA-

based channel estimation was evaluated with much lower computational complexity (O(N3)

for the MMSE and only O(N2) for the LSPCA). With the computational complexity

defined in terms of transmitting and receiving antennas, it is evident that the proposed

work has much more potential to work with mMIMO architectures. In future works, this

method could be validated for massive MIMO and also for nonlinear PCA using neural

network denoising autoencoders to encompass nonlinear channel estimation.
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Figure 3.6.2 – Simulation results for the MIMO-OFDM system with Doppler fd = 10 Hz using the
following estimators: LSPCA λmax = 3, LSPCA λmax = 5 and MMSE. Additional curves
of Theoretical BER for 8x8 diversity gain and perfect channel knowledge are plotted as
reference.
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Chapter 4

Semi-supervised ML-based Joint

Channel Estimation and Decoding for

m-MIMO with Gaussian Inference

Learning

Authors: Jonathan Aguiar Soares, Kayol Soares Mayer, and Dalton Soares Arantes

Abstract

This letter proposes the use of quasi-orthogonal space-time block codes (QOSTBC)

to enhance link quality and reliability in massive multiple-input multiple-output (m-

MIMO) systems subject to independent fading in dynamic channels. It has been shown,

however, that the computational complexity of classical decoding algorithms, such as

maximum likelihood (ML), can hinder the adoption of QOSTBC codes in systems with

many antennas and high-order modulation schemes. complex-valued neural networks

(CVNNs) offer a promising alternative for joint decoding and channel estimation with

competitive computational complexity. This work presents an extension of our previously

proposed CVNN with supervised training, which incorporates two semi-supervised learning

techniques: hard inference learning (HIL) and Gaussian inference learning (GIL). By

leveraging non-pilot-aided data, HIL and GIL enable the CVNNs to self-learn from useful

information, increasing their tracking ability and robustness in dynamic channels.

Keywords: Massive-MIMO, MIMO-OFDM, inference learning, complex-valued neural

networks, machine learning.
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4.1 INTRODUCTION

Within the context of m-MIMO schemes, spatial diversity assumes a critical

role when the transmitter (Tx) lacks channel knowledge. In these schemes, space-time

block codes (STBC) are employed to transmit orthogonal or quasi-orthogonal signals via

independent fading paths in multiple-input multiple-output (MIMO) links (MORSALI

et al., 2019; FAZAL-E-ASIM et al., 2022). Additionally, orthogonal frequency-division

multiplexing (OFDM) is usually implemented with STBC to avoid channel equalization

and to multiplex users into closely spaced subchannels (CHEN et al., 2017; CHEN; JIANG,

2019; SOARES et al., 2021a).

In m-MIMO, channel estimation, decoding, and beamforming can be efficiently

implemented with neural networks (NNs), handling nonlinearities from radiofrequency

(RF) amplifiers, spatial and stochastic variations of dynamic channels, and even noise in

millimeter-wave (mmWave) systems (HE et al., 2018; MAYER; SOARES; ARANTES,

2020; MAYER et al., 2022; SOARES et al., 2021a). Among these impairments, channel

tracking in dynamic scenarios shows promise when using NNs. This is due to their universal

approximation capabilities, which can help to overcome some of the challenging issues pre-

sented by classical algorithms, such as noise enhancement. Besides that, the class of CVNNs

has been demonstrating an excellent potential for wireless communications (MAYER;

SOARES; ARANTES, 2020; MAYER et al., 2022; SOARES et al., 2021a; MAYER et al.,

2019c; ENRICONI et al., 2020), since their intrinsic complex structures can naturally

manipulate complex-valued data (ZHANG et al., 2021a; ALAPURANEN; SCHROEDER,

2021). CVNNs circumvent phase-recovery issues of real-valued neural networks (RVNNs),

increasing functionality, improving performance, and reducing the training time (HIROSE;

YOSHIDA, 2012a; ZHANG; GAO; ZHOU, 2022; ZHAO; HUANG, 2023; XU et al., 2022;

LEE; HASEGAWA; GAO, 2022; VOIGTLAENDER, 2023).

Recently, several NN-based algorithms have been successfully employed for m-

MIMO channel estimation and decoding (SOARES et al., 2021a; BALEVI; DOSHI;

ANDREWS, 2020; ZHENG; LAU, 2021; GAO et al., 2022; ELBIR; COLERI, 2022; JIA;

CHENG; ZHANG, 2019; YANG et al., 2020; KUMAR; SINGH; MAHAPATRA, 2022).

Balevi et al. (BALEVI; DOSHI; ANDREWS, 2020) employed real-valued deep learning

(DL) and least-squares (LS) algorithms for channel estimation of multi-cell interference-

limited m-MIMO systems. Zheng and Lau (ZHENG; LAU, 2021) proposed a real-valued

deep neural network (DNN) for mmWave m-MIMO channel estimation, based on real-time

received pilot samples and without channel knowledge. Gao et al. (GAO et al., 2022)

implemented real-valued DL with an integrated attention mechanism to improve channel

estimation at the cost of a small complexity overhead. Elbir and Coleri (ELBIR; COLERI,

2022) adopted a federated learning approach to train a real-valued convolutional neural

network (CNN) for channel estimation of both conventional and reconfigurable intelligent
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surfaces (RISs). Jia et al. (JIA; CHENG; ZHANG, 2019) proposed a partial learning scheme

to train RVNNs for m-MIMO decoding, achieving a bit error rate (BER) lower than for

ML detection. Yang et al. (YANG et al., 2020) adopted real-valued graph neural networks

(GNNs) for channel estimation under high mobility scenarios. Kumar and Singh (KUMAR;

SINGH; MAHAPATRA, 2022) implemented a real-valued DNN decoder resorting to the

uplink Rayleigh and correlated channels perfectly known at the receiver.

Some studies have addressed the issue of joint channel estimation and decoding

for m-MIMO communications in the literature (WU et al., 2016; VERENZUELA et al.,

2020; SANOOPKUMAR; MUNEER; SAMEER, 2022). However, when considering m-

MIMO-OFDM with QOSTBC, the topic has received scarce attention. This lack of focus

is possibly due to the challenges of creating quasi-orthogonal matrices and formulating

decoding algorithms for m-MIMO and M-ary quadrature amplitude modulation (M-QAM).

To the best of our knowledge, the phase-transmittance radial basis function (PT-RBF)

neural network, proposed in (SOARES et al., 2021a), is the only work that addresses this

issue.

This letter proposes an extension of the work of Soares et al. (SOARES et al.,

2021a), incorporating semi-supervised training with the novel HIL and GIL approaches.

These methods enable CVNNs to continue learning during the inference phase (i.e., without

pilot data). After the pilot-aided training step, HIL or GIL is activated, controlling the

error magnitude used to update the CVNN. Additionally, this letter extends the results

to other well-known CVNNs, including the complex-valued feedforward neural network

(CVFNN) (DONG; HUANG, 2021; KIM; ADALI, 2002), the split complex feedforward

neural network (SCFNN) (SCARDAPANE et al., 2020; KIM; ADALI, 2002), and the

complex-valued RBF (C-RBF) (ENRICONI et al., 2020). Robust results are depicted in

terms of Doppler shifts on a dynamic 5G channel.

4.2 ML-BASED JOINT CHANNEL ESTIMATION AND DE-

CODING FOR MASSIVE MIMO

4.2.1 Complex-valued Neural Networks

Complex-valued Neural Networks (CVNNs) can directly operate as powerful

nonlinear filters in the complex domain, surpassing the results of classical RVNNs (HI-

ROSE; YOSHIDA, 2012a). In recent works, CVNNs have been successfully employed

in communication systems for channel equalization (MAYER et al., 2019c), beamform-

ing (MAYER; SOARES; ARANTES, 2020; MAYER et al., 2022; ENRICONI et al., 2020),

channel estimation, and decoding (SOARES et al., 2021a). For example, in the case of

joint channel estimation and decoding, CVNNs not only offer superior performance, but
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also present lower computational complexity compared to classical algorithms, as outlined

in references (SOARES et al., 2021a; MAYER, 2022).

CVNNs are mainly divided into shallow (e.g., C-RBF and FC-RBF) and deep (e.g.,

CVFNN, SCFNN, and PT-RBF) neural networks. The well-known CVFNN (DONG;

HUANG, 2021; KIM; ADALI, 2002) is similar to the classical real-valued DL model (SCHMID-

HUBER, 2015), but it distinctively operates with complex values for various elements

such as input, output, synaptic weights, bias, and activation functions. The SCFNN is a

particular case of CVFNNs, in which the activation function independently processes its

real and imaginary inputs (SCARDAPANE et al., 2020; KIM; ADALI, 2002). The C-RBF

is a natural extension of the radial basis function (RBF) neural network into the complex

domain. In this domain, outputs, center vectors, and synaptic weights are all complex-

valued (ENRICONI et al., 2020; MAYER et al., 2022). Designed to circumvent phase

issues intrinsically related to the phase vanishing of C-RBF Gaussian kernels, the PT-RBF

has a Gaussian activation function originally designed in a split-complex architecture. The

split-complex activation function takes the real and imaginary components of the neuron

input separately, keeping the phase information at the output (MAYER et al., 2022).

4.2.2 System Architecture

Fig. 4.2.1 presents the architecture of the massive MIMO-OFDM system incorpo-

rating QOSTBC spatial diversity. Here, Ntx and Nrx represent the number of transmitting

and receiving antennas, respectively. On the Tx side, the QAM symbols q are parallelized

into the vector q[k] ∈ C
Ns in the serial to parallel (S/P) block, where Ns is the number of

QAM symbols to be encoded, and k is the subcarrier index. Subsequently, q[k] is encoded

spatially and temporally via the QOSTBC encoding block (see Eq. 8 in (SOARES et al.,

2021a)) to create the QOSTBC matrix S[k] ∈ C
Ntp×Ntx , where Ntp is the number of time

encoded symbols. Next, each column sntx
[k] ∈ C

Ntp of S[k] feeds into the OFDM modulator

blocks of each transmitting antenna. In each OFDM modulator block, the input signal is

first parallelized by an S/P block, mapping C 7→ C
K , where K is the number of subcarriers.

Then, an inverse fast Fourier transform (IFFT) block converts data from the frequency

domain to the time domain. In the sequel, a cyclic prefix (CP) of length Ncp is inserted at

the beginning of each IFFT output to mitigate the inter-symbol interference (ISI) (YE; LI;

JUANG, 2018). Finally, the resultant signal is serialized (i.e., CK+Ncp 7→ C) in the parallel

S/P CPR FFT P/SS/P IFFT CP P/S

S/P

P/SS/P IFFT CP P/S
QOSTBC
Encoding
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Figure 4.2.1 – Massive MIMO-OFDM system with QOSTBC.
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to serial (P/S) block. As each antenna must transmit the OFDM symbols in sequence,

another P/S block serializes the income data from the Ntp-OFDM modulators, to convey

one at a time.

Considering a sample-spaced multipath channel with Nds samples {Hi[n]}Nds−1

i=0
∈

C
Nrx×Ntx , the received signal is

y[n] =
Nds−1
∑

i=0

Hi[n]x[n − i] + w[n], (4.1)

where n is the discrete-time index, x[n] ∈ C
Ntx is the vector of transmitted data, and

w[n] ∼ CN (0, σ2
w) ∈ C

Nrx is the vector of complex additive white Gaussian noise (AWGN)

at the receiver, with zero mean and variance σ2
w.

On the receiver side, the signal received at each antenna is parallelized by an

S/P block to feed Ntp-OFDM demodulators. In an OFDM demodulator, the input signal

is firstly parallelized by an S/P block, mapping C 7→ C
K+Ncp . Subsequently, the cyclic

prefix is removed in the CPR block, and the resultant signal of dimension C
K is converted

to the frequency domain by a fast Fourier transform (FFT) block. The FFT output is

then serialized by a P/S block, creating the OFDM demodulator output. Consequently,

the input to the CVNN channel estimation and decoding block is the received QOSTBC

vector ŝ[k] ∈ C
NtpNrx for the k-th subcarrier. The CVNN output is the estimated vector

q̂[k] ∈ C
Ns , which is serialized by a P/S block to produce the estimated outputs q̂. In

order to improve the decoded CVNN output, we also adjust q̂[k] to match the QAM

constellation.

We have proposed this system architecture, based on CVNNs, to enable channel

decoding of QOSTBC in m-MIMO-OFDM with high-order M -QAM. Therefore, differently

from previous works limited to M -ary phase-shift keying (PSK), the work proposed here

offers greater flexibility and competitive computational complexity, as already demonstrated

by Soares et al. (SOARES et al., 2021a).

4.2.3 Training Model

An adequate training model is mandatory for supervised machine learning algo-

rithms to achieve satisfactory performance. To train the CVNN block shown in Fig. 4.2.1,

we have adopted the training model proposed in (SOARES et al., 2021a). In this scheme,

part of the transmitted information comprises pilots known to the receiver. Utilizing these

pilots, the CVNN can update its free parameters using a quadratic cost function

J [k] =
1

2
∥e[k]∥2

2 =
1

2
∥qp[k] − q̂[k]∥2

2, (4.2)

in which ∥ · ∥2 is the Euclidean norm, qp[k] ∈ C
Ns is the vector of pilots, q̂[k] ∈ C

Ns is the

estimated vector, and e[k] ∈ C
Ns is the vector of estimation error.
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Through this training model, the CVNN learns how the channel impacts each

independent subcarrier and acquires the ability to decode QOSTBC vectors, regardless of

the number of transmitting and receiving antennas.

4.2.4 Hard Inference Learning

Mobile wireless channels usually vary over time and frequency, affected by large-

and small-scale fading (CHA; NOH, 2019). Due to this highly dynamic nature, channel

estimation and tracking can be challenging. For instance, the training approach proposed

in (SOARES et al., 2021a) can efficiently estimate the channel information in a given time

but, as the channel is dynamic, the estimation error increases over time, degrading the

decoding process.

In this context, our first proposition is a hard inference learning (HIL) technique,

aimed at tracking channel variations over time. HIL is initiated once the supervised training

phase concludes, allowing the CVNN to adjust its parameters based on the hard error

estimation obtained from useful information (i.e., non-pilot-aided). Consequently, HIL

bolsters the learning capabilities of the CVNN without diminishing the rate of useful

information.

Firstly, in the HIL algorithm, the CVNN output vector (after mean and magnitude

corrections, as in Section 4.2.2) is approximated to the reference constellation symbols as

q̄[k] = Q {q̂[k]} , (4.3)

where Q{·} is the constellation quantizer, which is a complex-valued nearest neighbor

operator. The vector q̄[k] ∈ C
Ns is the CVNN approximated output, a coarse estimation

of q[k].

The HIL error vector, which is used to update the CVNN parameters, is then

computed as

ē[k] = q̄[k] − q̂[k]. (4.4)

Despite its improved performance, this semi-supervised hard-decision learning

scheme is susceptible to noise. If a decision is incorrect, it leads to error propagation, which

can subsequently degrade the convergence of the CVNN. This is similar to what happens

in turbo equalization with hard-decision feedback (ZHANG; ZAKHAROV; LI, 2018).

4.2.5 Gaussian Inference Learning

As an extension to HIL, this letter also introduces a more efficient scheme, the

Gaussian inference learning (GIL), which is designed specifically for semi-supervised soft-

decision learning. GIL enables CVNNs to learn from non-pilot-aided data with a reduced
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impact on error propagation during training. The GIL is designed as a heuristic that

refines coarse error estimations based on knowledge of the error distribution. Assuming

that CVNNs are able to mitigate most channel imperfections, only Gaussian noise will

remain present at the output of the joint channel estimation and decoding. This noise can

then be modeled as a Gaussian distribution around the reference symbols, with a variance

that can be estimated. As a result, we can weigh the GIL error vector as

ẽ[k] =
(

α[k] º
√

Pα[k]
)

» ē[k], (4.5)

in which α[k] ∈ R
Ns is the GIL weight vector, and Pα[k] ∈ R

Ns is its respective power vector

used for normalization. The normalized vector α[k] º
√

Pα[k] softly controls the amount

of error passed to the CVNN cost function. The operator
√· denotes the element-wise

square root, and » and º denote the Hadamard product and division, respectively.

The i-th component of the normalization power Pα[k] is

Pαi
[k] =















1

K

K−1
∑

l=0

α2
i [k − l], ∀ k/K ∈ N,

Pαi
[k − 1], ∀ k/K /∈ N,

(4.6)

where N is the set of natural numbers and i ∈ [1, 2, · · · , Ns]. The i-th component of the

vector α[k] is

αi[k] = exp

[

−1

2

|ēi[k]|2
σ2

ei
[k]

]

, (4.7)

in which | · | is the modulus function, and σ2
ei

[k] is the i-th component of the estimated

error variance vector σ
2
e[k] ∈ R

Ns , given by

σ2
ei

[k] =















1

KNf −1

KNf −1
∑

l=0

ē2
i [k − l], ∀ k/K ∈ N,

σ2
ei

[k − 1], ∀ k/K /∈ N,

(4.8)

where Nf is the number of MIMO-OFDM frames used to compute σ2
ei

[k].

To visualize the GIL weighting, we establish a fixed value for the GIL variance,

σ2
αi

= 1/3, in a 16-QAM modulation, as depicted in Fig. 4.2.2. It is notable that the closer

the CVNN estimate is to a reference symbol (represented by a black cross), the closer the

GIL weight is to one. This implies that almost all of the error information is conveyed

to the CVNN update. Conversely, the further the CVNN estimate is from the reference

symbols, the closer the GIL weight becomes to zero, subsequently reducing the impact of

this estimation on the CVNN update.

Note that the computational complexities of HIL and GIL are insignificant when

juxtaposed with channel estimation and decoding. It is because the most onerous operations,

performed in (4.6) and (4.8), are only executed at intervals of K subcarriers, effectively

distributing the complexity per subcarrier.
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Figure 4.2.2 – Heat map of the GIL weight distribution for a 16-QAM modulation with σ2
αi

= 1/3. The
black crosses regard the reference symbols.

4.3 RESULTS

In order to represent a practical scenario, we consider a simulation system with

the 3GPP TS 38.211 specification for 5G physical channels and modulation (5G. . . , 2022).

The OFDM is defined with 60-kHz subcarrier spacing, K = 256 active subcarriers, and

a block-based pilot scheme. Symbols are modulated with 16-QAM and, for the massive

MIMO setup, 32 antennas are employed both at the transmitter and receiver.

Based on the tapped delay line-A (TDL-A) from the 3GPP TR 38.901 5G

channel models (5G. . . , 2022), the massive MIMO channel follows the TDLA from the

3GPP TR 38.104 5G radio base station transmission and reception (5G. . . , 2022). The

TDLA is described with 12 taps, with varying delays from 0.0 ns to 290 ns and powers

from -26.2 dB to 0 dB. A Rayleigh distribution is used to compute each sub-channel of

{Hi[n]}Nds−1

i=0
(see Table G.2.1.2-2 (5G. . . , 2022)). The Doppler frequency (fD) is simulated

in the range from 0 Hz to 200 Hz.

The CVNNs operate with 1024 inputs and 32 outputs. The inputs are taken from

the OFDM demodulator outputs, one at a time, i.e., ŝ[k] for k ∈ [1, 2, . . . , 256]. Each

frame comprised of K subcarriers is dealt with as one training epoch. In the training

phase, the desired output vector of the k-th subcarrier is q[k]. Notwithstanding, a training

upsampling of thirty times, with subcarrier shuffle, was employed to improve convergence.

The CVFNN and SCFNN were constructed with two layers of neurons and arctanh(·)
and tanh(·) activation functions in the hidden layer and linear activation functions in the

output layer. The PT-RBF and C-RBF were built in shallow architectures. The CVNNs

hyperparameters, summarized in Table 4.3.1, were empirically obtained by trial and error,

for 0-Hz Doppler. The CVNNs adaptive steps are denoted by ηw, ηb, ηγ, and ησ, and the
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Table 4.3.1 – CVNNs optimized hyperparameters.

Algorithm ηw ηb ηγ ησ N1 N2

CVFNN 0.005 0.005 − − 168 32

SCFNN 0.050 0.050 − − 168 32

C-RBF 0.050 0.050 0.050 0.050 200 −
PT-RBF 0.050 0.050 0.030 0.050 200 −

(−) not applicable.

Table 4.3.2 – Adaptive step compensation factor (ρ) depending on fD.

Doppler frequency (fD) [Hz]

Algorithm 0 20 40 60 80 100 120 140 160 180 200

CVFNN (HIL) 1 1 5 − − − − − − − −
CVFNN (GIL) 1 2 5 5 − − − − − − −
SCFNN (HIL) 1 1 6 6 − − − − − − −
SCFNN (GIL) 1 1 6 6 6 − − − − − −
PT-RBF (HIL) 1 6 6 8 8 8 10 10 − − −
PT-RBF (GIL) 1 4 6 6 8 8 8 8 9 − −
C-RBF (HIL) 1 6 6 6 6 8 8 8 10 − −
C-RBF (GIL) 1 4 6 6 6 6 8 8 8 8 −

(−) The algorithm did not converge for the corresponding fD.

number of neurons per layer are N1 and N2. However, depending on the Doppler frequency,

it is necessary to increase the adaptive steps to keep the channel estimation on track. Thus,

the adaptive steps of Table 4.3.1 are compensated by a factor ρ, depending on the Doppler

effect, as depicted in Table 4.3.2.

Fig. 4.3.1 presents the inference results for the required bit energy to noise power

spectral density ratio (Eb/N0) to achieve a target pre-forward error correction (pre-FEC)

bit error rate (BER) of 2 × 10−2 (CASTRO et al., 2019) in dynamic channels. Considering

the range of application around Eb/N0 = 25 dB, the SCFNN and CVFNN presented quite

similar results, operating up to approximately 40 Hz (HIL) and 50 Hz (GIL) of Doppler. On

the other hand, the more robust CVNNs, the PT-RBF and C-RBF, presented satisfactory

results up to 150 Hz. The best result was achieved with the C-RBF, for which the GIL

extended its range of application up to 180 Hz. Compared to the C-RBF and PT-RBF,

the CVFNN and SCFNN show poorer performance, primarily due to their susceptibility

to noise, as discussed in (MAYER, 2022).
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Figure 4.3.1 – Joint CVNN channel estimation and decoding performance with HIL and GIL, depending
on the Doppler frequency fD on the TDLA channel (5G scenario). Result of the required
Eb/N0 to achieve a target pre-FEC BER = 2 × 10

−2, i.e., before an advanced FEC decoder,
as in low-density parity check (LDPC) and turbo codes. Dashed and solid lines correspond
to HIL and GIL semi-supervised learning, respectively.

4.4 CONCLUSIONS

This letter introduces two semi-supervised learning techniques for complex-valued

neural networks (CVNNs): hard inference learning (HIL) and Gaussian inference learn-

ing (GIL). These proposed techniques weigh the error utilized in CVNN cost functions,

thus enabling parameter updates with non-pilot aided data, or “useful data”. Simulation

results demonstrate that both HIL and GIL training approaches significantly improve

joint m-MIMO channel estimation and decoding in dynamic channels. While the SCFNN

and CVFNN only achieved satisfactory results up to 50 Hz of Doppler frequency, both

PT-RBF and C-RBF performed quite well up to approximately 150 Hz. Remarkably,

with the application of GIL, the performance of C-RBF could be extended up to 180 Hz.

While they have been used for QOSTBC, the proposed HIL and GIL are suitable learning

heuristics for any CVNN applications that have well-defined outputs from a finite alphabet,

such as those found in digital communication systems.

REFERENCES

5G; NR; BASE STATION (BS) RADIO TRANSMISSION AND RECEPTION. Sophia
Antipolis, France, Oct. 2022. (3GPP technical specification 38.104; version 17.7.0; release
17). Cited on pages 101, 114, 133, 146.

5G; NR; PHYSICAL CHANNELS AND MODULATION. Sophia Antipolis, France, Sept.
2022. (3GPP technical specification 38.211; version 17.3.0; release 17). Cited on pages 101,
114, 133, 146.



CHAPTER 4. SEMI-SUPERVISED ML-BASED JOINT CHANNEL ESTIMATION AND DECODING

FOR M-MIMO WITH GAUSSIAN INFERENCE LEARNING 104

5G; STUDY ON CHANNEL MODEL FOR FREQUENCIES FROM 0.5 TO 100 GHZ.
Sophia Antipolis, France, Apr. 2022. (3GPP technical report 38.901; version 17.0.0;
release 17). Cited on pages 101, 114, 133, 146.

ALAPURANEN, P.; SCHROEDER, J. Complex artificial neural network with
applications to wireless communications. Digit. Signal Process., v. 119, p. 1–6, 2021.
Cited on page 95.

BALEVI, E.; DOSHI, A.; ANDREWS, J. G. Massive MIMO channel estimation with an
untrained deep neural network. IEEE Trans. Wireless Commun., v. 19, n. 3,
p. 2079–2090, Mar. 2020. Cited on pages 83, 95.

CASTRO, C. et al. 100 Gbit/s terahertz-wireless real-time transmission using a
broadband digital-coherent modem. In: PROC. 5G World Forum. Dresden: IEEE, Nov.
2019. P. 399–402. Cited on page 102.

CHA, B.; NOH, S.-K. Learning using LTE RSRP and NARNET in the same indoor area.
In: PROC. Inter. Comput. Sci. Eng. Conf. Phuket: IEEE, Nov. 2019. P. 261–264. Cited on
page 99.

CHEN, L. et al. Performance analysis and compensation of joint TX/RX I/Q imbalance
in differential STBC-OFDM. IEEE Trans. Veh. Technol., v. 66, n. 7, p. 6184–6200,
2017. Cited on page 95.

CHEN, X.; JIANG, M. Enhanced adaptive polar-linear interpolation aided channel
estimation. IEEE Wireless Commun. Lett., v. 8, n. 3, p. 693–696, 2019. Cited on
page 95.

DONG, Z.; HUANG, H. A training algorithm with selectable search direction for
complex-valued feedforward neural networks. Neural Netw., v. 137, p. 75–84, 2021. DOI:
10.1016/j.neunet.2021.01.014. Cited on pages 40, 96, 97.

ELBIR, A. M.; COLERI, S. Federated learning for channel estimation in conventional and
RIS-assisted massive MIMO. IEEE Trans. Wireless Commun., v. 21, n. 6,
p. 4255–4268, 2022. Cited on page 95.

ENRICONI, M. P. et al. Phase transmittance RBF neural network beamforming for static
and dynamic channels. IEEE Antennas Wireless Propag. Lett., v. 19, n. 2,
p. 243–247, Feb. 2020. Cited on pages 40, 83, 95–97, 155.

FAZAL-E-ASIM et al. Kronecker product-based space-time block codes. IEEE Wireless
Commun. Lett., v. 11, n. 2, p. 386–390, 2022. Cited on page 95.

GAO, J. et al. An attention-aided deep learning framework for massive MIMO channel
estimation. IEEE Trans. Wireless Commun., v. 21, n. 3, p. 1823–1835, 2022. Cited on
page 95.

HE, H. et al. Deep learning-based channel estimation for beamspace mmWave massive
MIMO systems. IEEE Wireless Commun. Lett., v. 7, n. 5, p. 852–855, 2018. Cited on
page 95.



CHAPTER 4. SEMI-SUPERVISED ML-BASED JOINT CHANNEL ESTIMATION AND DECODING

FOR M-MIMO WITH GAUSSIAN INFERENCE LEARNING 105

HIROSE, A.; YOSHIDA, S. Generalization characteristics of complex-valued feedforward
neural networks in relation to signal coherence. IEEE Trans. Neural Netw. Learn.
Syst., v. 23, n. 4, p. 541–551, 2012a. Cited on pages 95, 96, 109, 127.

JIA, Z.; CHENG, W.; ZHANG, H. A partial learning-based detection scheme for massive
MIMO. IEEE Wireless Commun. Lett., v. 8, n. 4, p. 1137–1140, 2019. Cited on
pages 95, 96.

KIM, T.; ADALI, T. Fully complex multi-layer perceptron network for nonlinear signal
processing. J. VLSI Signal Process. Syst. Signal Image Video Technol., v. 32,
p. 29–43, 2002. Cited on pages 96, 97.

KUMAR, S.; SINGH, A.; MAHAPATRA, R. DLNet: Deep learning-aided massive MIMO
decoder. AEU-Int. J. Electron. Commun., p. 154350, 2022. Cited on pages 95, 96.

LEE, C.; HASEGAWA, H.; GAO, S. Complex-valued neural networks: A comprehensive
survey. IEEE/CAA J. Autom. Sin., v. 9, n. 8, p. 1406–1426, 2022. Cited on page 95.

MAYER, K. S.; SOARES, J. A.; ARANTES, D. S. Complex MIMO RBF Neural
Networks for Transmitter Beamforming over Nonlinear Channels. Sensors, v. 20, n. 2,
p. 1–15, Jan. 2020. DOI: 10.3390/s20020378. Cited on pages 31, 40, 41, 51, 54, 79, 83,
95, 96, 109, 127.

MAYER, K. S. et al. Blind Fuzzy Adaptation Step Control for a Concurrent Neural
Network Equalizer. Wireless Communications and Mobile Computing, v. 2019,
n. 1, p. 9082362, 2019c. DOI: https://doi.org/10.1155/2019/9082362. Cited on
pages 40, 83, 95, 96, 109, 127, 161.

MAYER, K. S. Complex-valued neural networks and applications in
telecommunications. 2022. Ph.D. Thesis – University of Campinas. Cited on pages 97,
102, 163.

MAYER, K. S. et al. Deep Phase-Transmittance RBF Neural Network for Beamforming
With Multiple Users. IEEE Wireless Communications Letters, v. 11, n. 7,
p. 1498–1502, 2022. DOI: 10.1109/LWC.2022.3177162. Cited on pages 30, 83, 95–97,
109, 127, 142, 145, 155, 156, 161–163.

MORSALI, A. et al. Design criteria for omnidirectional STBC in massive MIMO systems.
IEEE Wireless Commun. Lett., v. 8, n. 5, p. 143–1439, 2019. Cited on page 95.

SANOOPKUMAR, P. S.; MUNEER, P.; SAMEER, S. M. A joint equalization and
decoding technique for multiuser massive MIMO uplink system with transmitter and
receiver RF impairments under doubly selective channels. IEEE Syst. J., p. 1–11, 2022.
Cited on page 96.

SCARDAPANE, S. et al. Complex-valued neural networks with nonparametric activation
functions. IEEE Trans. Emerg. Topics Comput. Intell., v. 4, n. 2, p. 140–150, 2020.
Cited on pages 96, 97.



CHAPTER 4. SEMI-SUPERVISED ML-BASED JOINT CHANNEL ESTIMATION AND DECODING

FOR M-MIMO WITH GAUSSIAN INFERENCE LEARNING 106

SCHMIDHUBER, J. Deep learning in neural networks: An overview. Neural Netw.,
v. 61, p. 85–117, 2015. Cited on page 97.

SOARES, J. A. et al. Complex-valued phase transmittance RBF neural networks for
massive MIMO-OFDM receivers. Sensors, v. 21, n. 24, p. 1–31, Dec. 2021a. ISSN
1424-8220. DOI: 10.3390/s21248200. Available from:
<https://www.mdpi.com/1424-8220/21/24/8200>. Cited on pages 83, 95–99, 109, 127,
142–145, 148.

VERENZUELA, D. et al. Massive-MIMO iterative channel estimation and decoding
(MICED) in the uplink. IEEE Trans. Commun., v. 68, n. 2, p. 854–870, 2020. Cited on
page 96.

VOIGTLAENDER, F. The universal approximation theorem for complex-valued neural
networks. Applied and Computational Harmonic Analysis, v. 64, p. 33–61, 2023.
ISSN 1063-5203. DOI: https://doi.org/10.1016/j.acha.2022.12.002. Available from:
<https://www.sciencedirect.com/science/article/pii/S1063520322001014>.
Cited on pages 29, 95.

WU, S. et al. Message-passing receiver for joint channel estimation and decoding in 3D
massive MIMO-OFDM systems. IEEE Trans. Wireless Commun., v. 15, n. 12,
p. 8122–8138, 2016. Cited on page 96.

XU, J. et al. The performance analysis of complex-valued neural network in radio signal
recognition. IEEE Access, v. 10, p. 48708–48718, 2022. Cited on pages 95, 109, 127.

YANG, Y. et al. Graph neural network-based channel tracking for massive MIMO
networks. IEEE Commun. Lett., v. 24, n. 8, p. 1747–1751, 2020. Cited on pages 95, 96.

YE, H.; LI, G. Y.; JUANG, B.-H. Power of deep learning for channel estimation and
signal detection in OFDM systems. IEEE Wireless Commun. Lett., v. 7, n. 1,
p. 114–117, 2018. DOI: 10.1109/LWC.2017.2757490. Cited on pages 97, 147, 155.

ZHANG, H. et al. An optical neural chip for implementing complex-valued neural
network. Nat. Commun., v. 12, n. 457, p. 1–11, 2021a. Cited on pages 42, 95.

ZHANG, S.-Q.; GAO, W.; ZHOU, Z.-H. Towards understanding theoretical advantages of
complex-reaction networks. Neural Netw., v. 151, p. 80–93, 2022. Cited on pages 83, 95,
109, 127.

ZHANG, Y.; ZAKHAROV, Y. V.; LI, J. Soft-decision-driven sparse channel estimation
and turbo equalization for MIMO underwater acoustic communications. IEEE Access,
v. 6, p. 4955–4973, 2018. Cited on page 99.

ZHAO, W.; HUANG, H. Adaptive orthogonal gradient descent algorithm for fully
complex-valued neural networks. Neurocomputing, v. 546, p. 1–8, 2023. Cited on
page 95.



CHAPTER 4. SEMI-SUPERVISED ML-BASED JOINT CHANNEL ESTIMATION AND DECODING

FOR M-MIMO WITH GAUSSIAN INFERENCE LEARNING 107

ZHENG, X.; LAU, V. K. N. Online deep neural networks for mmWave Massive MIMO
channel estimation with arbitrary array geometry. IEEE Trans. Signal Process., v. 69,
p. 2010–2025, 2021. Cited on page 95.



108

Chapter 5

On the Parameter Selection of

Phase-transmittance Radial Basis

Function Neural Networks for

Communication Systems

Authors: Jonathan Aguiar Soares, Kayol Soares Mayer, and Dalton Soares Arantes

Abstract

In the ever-evolving field of digital communication systems, complex-valued neural networks

(CVNNs) have become a cornerstone, delivering exceptional performance in tasks like

equalization, channel estimation, beamforming, and decoding. Among the myriad of CVNN

architectures, the phase-transmittance radial basis function neural network (PT-RBF)

stands out, especially when operating in noisy environments such as 5G MIMO systems.

Despite its capabilities, achieving convergence in multi-layered, multi-input, and multi-

output PT-RBFs remains a daunting challenge. Addressing this gap, this paper presents

a novel Deep PT-RBF parameter initialization technique. Through rigorous simulations

conforming to 3GPP TS 38 standards, our method not only outperforms conventional

initialization strategies like random, K-means, and constellation-based methods but is

also the only approach to achieve successful convergence in deep PT-RBF architectures.

These findings pave the way to more robust and efficient neural network deployments in

complex digital communication systems.

Keywords: Neural Networks, Complex-valued Neural Networks, Radial Basis Function,

Initialization.
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5.1 INTRODUCTION

Recently, in communication systems, complex-valued neural networks (CVNNs)

have been studied in several applications, such as equalization, channel estimation, beam-

forming, and decoding (MAYER et al., 2019c; DING; HIROSE, 2020; ZHANG et al.,

2021b; LI et al., 2022; MAYER; SOARES; ARANTES, 2020; KAMIYAMA; KOBAYASHI;

IWASHITA, 2021; FREIRE et al., 2021; SOARES et al., 2021a; XU et al., 2022; CHU;

GAO; LIU, et al., 2022; MAYER et al., 2022; YANG et al., 2022; XIAO; YANG; FENG,

2023). This growing interest is related to enhanced functionality, improved performance,

and reduced training time when compared with real-valued neural networks (RVNNs) (HI-

ROSE; YOSHIDA, 2012a; BARRACHINA et al., 2021; CRUZ; MAYER; ARANTES, 2022;

ZHANG; GAO; ZHOU, 2022).

The effectiveness of neural networks is critically dependent on several factors, such

as initialization, regularization, and optimization (HUMBIRD; PETERSON; MCCLAR-

REN, 2019). Although regularization and optimization techniques are vital to speed up

the training process and reduce steady-state error (HU et al., 2021), depending on the

initial parameter selection, the neural network can get stuck at local minima, achieving

suboptimal solutions (NARKHEDE; BARTAKKE; SUTAONE, 2022). For radial basis

function (RBF)-based neural networks, this problem is even worse since, for each layer,

there are four parameters (synaptic weight, bias, center vectors, and center variances) in

contrast to two parameters (synaptic weights and bias) of usual multilayer perceptron

neural networks.

In this context, with a focus on the phase-transmittance radial basis function (PT-

RBF) neural network (MAYER et al., 2022), we propose a novel parameter selection scheme.

This scheme aims to initialize synaptic weights, biases, center vectors, and center variances

in the complex domain. Notably, existing literature offers limited guidance on initialization

techniques for multilayer RBF-based CVNNs. Despite this gap, our study compares the

proposed approach against well-known methods such as random initialization (WALLACE;

TSAPATSOULIS; KOLLIAS, 2005), K-means clustering (TURNBULL; ELKAN, 2005),

and constellation-based initialization (LOSS et al., 2007a). To the best of our knowledge,

this is the first work that handles this initialization challenge for multi-layered PT-RBFs.

5.2 COMPLEX-VALUED PT-RBF NEURAL NETWORKS

Following the notation used by (MAYER et al., 2022), the deep PT-RBF is defined

with L hidden layers (excluding the input layer), where the superscript l ∈ [0, 1, · · · , L]

denotes the layer index and l = 0 is the input layer. The l-th layer (excluding the input

layer l = 0) is composed by I{l} neurons, O{l} outputs, and has a matrix of synaptic weights
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W{l} ∈ C
O{l}×I{l}

, a bias vector b{l} ∈ C
O{l}

, a matrix of center vectors Γ{l} ∈ C
I{l}×O{l−1}

,

and a variance vector σ{l} ∈ C
I{l}

. Notice that x̄ ∈ C
P is the deep PT-RBF normalized

input vector (P inputs) and y{L} ∈ C
R is the deep PT-RBF output vector (R outputs).

The l-th hidden layer output vector y{l} ∈ C
O{l}

is given by

y{l} = W{l}φ
{l} + b{l}, (5.1)

where φ
{l} ∈ C

I{l}
is the vector of Gaussian kernels.

The m-th Gaussian kernel of the l-th hidden layer is formulated as

ϕ{l}
m = exp

[

−ℜ
(

v{l}
m

)]

+ ȷ exp
[

−ℑ
(

v{l}
m

)]

, (5.2)

in which v{l}
m is the m-th Gaussian kernel input of the l-th hidden layer, described as

v{l}
m =

∥

∥

∥ℜ
(

y{l−1}
)

− ℜ
(

γ{l}
m

)∥

∥

∥

2

2

ℜ
(

Ã
{l}
m

)

+ ȷ

∥

∥

∥ℑ
(

y{l−1}
)

− ℑ
(

γ{l}
m

)∥

∥

∥

2

2

ℑ
(

Ã
{l}
m

) , (5.3)

where y{l−1} ∈ C
O{l−1}

is the output vector of the (l − 1)-th hidden layer (except for the

first hidden layer that y{0} = x̄), γ{l}
m ∈ C

O{l−1}
is the m-th vector of Gaussian centers of

the l-th hidden layer, Ã{l}
m ∈ C is the respective m-th variance, and ℜ(·) and ℑ(·) return

the real and imaginary components, respectively.

5.3 INITIALIZATION OF COMPLEX-VALUED RADIAL BA-

SIS FUNCTION NEURAL NETWORKS

5.3.1 Random Initialization

Based on real-valued initialization (WALLACE; TSAPATSOULIS; KOLLIAS,

2005), one of the simplest and easiest ways to initialize the parameters of a complex-valued

RBF-based neural network is setting Γ{l} and W{l} randomly, as

Γ{l} ∼ CG
(

0, Ã2
Γ{l}

)

, (5.4)

W{l} ∼ CG (0, 1) , (5.5)

in which CG(·) is a generic complex-valued distribution function, and Ã2
Γ{l} is the desired

variance of Γ{l}.

On the other hand, the bias and center variances are initialized as constant values

b{l} = 0 + ȷ0, (5.6)
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σ{l} =
Ã2

Γ{l}

2
(1 + ȷ1) , (5.7)

where 0 and 1 are vectors of zeros and ones with the same dimensions of b{l} and σ{l},

respectively.

5.3.2 K-means Clustering

For shallow RBF-based neural networks, a more sophisticated approach of initial-

ization relies on a clustering algorithm, such as K-means, to find K = I{1} cluster centers.

Then, these cluster centers as the initial center vectors of RBFs ensure that the centers

are distributed along the dataset’s inherent structure. However, as the PT-RBF Gaussian

neurons operate with a split-complex design, the K-means must be applied for the real

and imaginary components of the input dataset X £ x, separately, creating a set of cluster

centers CX = Cℜ(X ) + ȷCℑ(X ). The m-th center vector of the hidden layer is γ{1}
m ∈ CX ,

randomly selected without replacement.

The center variances are chosen based on the in-cluster distances from K-means.

Thus, the PT-RBF m-th center variance of the hidden layer is

Ã{1}
m =

1
∣

∣

∣

∣

∣

∣

X
ℜ

(

γ
{1}
m

)

∣

∣

∣

∣

∣

∣

∑

ℜ(x)∈X
ℜ(γ{1}

m )

∥

∥

∥ℜ (x) − ℜ
(

γ{1}
m

)∥

∥

∥

2

2

+ ȷ
1

∣

∣

∣

∣

∣

∣

X
ℑ

(

γ
{1}
m

)

∣

∣

∣

∣

∣

∣

∑

ℑ(x)∈X
ℑ(γ{1}

m )

∥

∥

∥ℑ (x) − ℑ
(

γ{1}
m

)∥

∥

∥

2

2
, (5.8)

in which X
ℜ

(

γ
{1}
m

) ¢ ℜ (X ) and X
ℑ

(

γ
{1}
m

) ¢ ℑ (X ) are subsets of the input dataset

vectors nearest to ℜ
(

γ{1}
m

)

and ℑ
(

γ{1}
m

)

, respectively. The operator | · | returns the subset

cardinality.

The synaptic weights and bias initializations are equal to the random initialization

scheme.

5.3.3 Constellation-based initialization

As an alternative in finite alphabet outputs, the center vectors can be randomly

selected from the output dataset (LOSS et al., 2007a). For example, when the output

dataset is a constellation containing M -ary quadrature amplitude modulation (M -QAM),

all center vector components are initialized with randomly selected M -QAM symbols. The
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PT-RBF m-th center variance of the l-th hidden layer is

Ã{l}
m =

1

2
max

1fi,kfI{l}

[∥

∥

∥ℜ
(

γ
{l}
i

)

− ℜ
(

γ
{l}
k

)∥

∥

∥

2

]

ȷ
1

2
max

1fi,kfI{l}

[∥

∥

∥ℑ
(

γ
{l}
i

)

− ℑ
(

γ
{l}
k

)∥

∥

∥

2

]

. (5.9)

The synaptic weights and bias are initialized with zeros.

5.4 DEEP PT-RBF PARAMETER INITIALIZATION

To properly initialize the deep PT-RBF parameters, we first need to understand

the relationship between the input vector x and the Gaussian center vectors γ{1}
m . In (5.2),

regarding (5.3), and keeping Ã{1}
m constant, the closer γ{1}

m is to x, the higher is the value

of the real and imaginary parts of ϕ{1}
m . For example, if γ{1}

m = x then ϕ{1}
m = 1 + ȷ1.

On the other hand, if γ{1}
m is set far from x, then ϕ{1}

m → 0. In this context, in order to

not saturate or vanish ϕ{1}
m , we assume µx̄ = µγ{1} = 0 and Ã2

x̄ = Ã2
γ{1} , where x̄ is the

normalized input dataset. Furthermore, we expect that depending on the dataset inputs,

ϕ{1}
m varies reasonably. For example, considering v{1}

m = 5 and v{1}
m = 10, the variation in

ϕ{1}
m is only 4.54 × 10−5. In contrast, considering v{1}

m = 0 and v{1}
m = 3, the variation in

ϕ{1}
m is 0.95. Then, it is desirable that µv{1} is not too large. Based on Appendix 5.A, the

expected value of v{1} is

µv{1} =
P

cσ



Ã2
ℜ(x̄) + ȷÃ2

ℑ(x̄) + Ã2

ℜ

(

γ
{1}
m

) + ȷÃ2

ℑ

(

γ
{1}
m

)



 , (5.10)

in which Ã2
x̄ = 2Ã2

ℜ(x̄) = 2Ã2
ℑ(x̄) is the variance of x̄, Ã2

γ
{1}
m

= 2Ã2

ℜ

(

γ
{1}
m

) = 2Ã2

ℑ

(

γ
{1}
m

) is the

variance of γ{1}
m , cσ = ℜ

(

Ã{1}
m

)

= ℑ
(

Ã{1}
m

)

∀ m, and cσ is a positive and nonzero constant.

As Ã2
x̄ = Ã2

γ{1} , from (5.10), we have

Ã2
x̄ =

cσµℜ(v{1})

P
. (5.11)

Based on (5.11), the normalized input is given as

x̄ =
(x − µx)
√

Ã2
x

√

cσµℜ(v{1})

P
, (5.12)

where µx and Ã2
x are applied to adjust the mean and variance of x̄ before the normalization

by (5.11).

Similarly, in the first hidden layer, the normalized matrix of center vectors is

Γ{1} ∼ CG
(

0,
cσµℜ(v{1})

P

)

. (5.13)
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In order to normalize the output dataset d, we need to compute the variance of

the output vector y{L}, by

Ã2
y{L} = Var

[

W{L}φ
{L} + b{L}

]

. (5.14)

However, as W{L} is a complex-valued matrix and performs a linear combination

with φ
{L}, which is a complex-valued vector, the real and imaginary components are

handled at the same time, in the complex domain. Moreover, we assume that b{l} is

initialized with zeros, for all layers. Thus, based on Appendix 5.C, (5.14) results in

Ã2
y{L} =

12

5
c−2

σ exp(−2µv{L})I{L}O{L−1}Ã2
W{L}Ã

4
γ{L} , (5.15)

where Ã2
W{L} is the variance of W{L}, and µv{L} is the expected value of v{L}. Choosing

Ã2
y{L} = Ã2

d̄
, i.e., the variance of the PT-RBF output equal to the variance of the normalized

output dataset, yields the initialization of W{L} as

W{L} ∼ CG


0,
5 exp(2µv{L})Ã2

d̄

12c−2
σ I{L}O{L−1}Ã2

W{L}Ã
4
γ{L}



 , (5.16)

in which the output dataset can be normalized by

d̄ =
(d − µd)
√

Ã2
d

√

Ã2
y{L} =

(d − µd)
√

Ã2
d

√

cσµℜ(v{L})

R
. (5.17)

Relying on (5.13), we can generalize the initialization of Γ{l}, as

Γ{l} ∼ CG
(

0,
cσµℜ(v{l})

O{l−1}

)

. (5.18)

From (5.11), the variance of the output hidden layers can be considered as

Ã2
y{l} =

cσµℜ(v{l+1})

O{l}
, (5.19)

where, replacing Ã4
γ{L} by (5.18) and Ã2

d̄
by (5.19) into (5.16), yields

W{l} ∼ CG
(

0,
5cσ exp(−2µv{L})O{l−1}

12I{l}O{l}µv{l})

)

, (5.20)

It is important to note that, (5.12) and (5.17) only hold for Ã2
x = 2Ã2

ℜ(x) = 2Ã2
ℑ(x)

and Ã2
d = 2Ã2

ℜ(d) = 2Ã2
ℑ(d), respectively. For the particular case of Ã2

ℜ(x) ≠ Ã2
ℑ(x) and

Ã2
ℜ(d) ̸= Ã2

ℑ(d), then (5.12) and (5.17) become

x̄ =





(ℜ (x) − µℜ(x))
√

2Ã2
ℜ(x)

+ ȷ
(ℑ (x) − µℑ(x))

√

2Ã2
ℑ(x)





×
√

cσµℜ(v{1})

P
, (5.21)
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d̄ =





(ℜ (d) − µℜ(d))
√

2Ã2
ℜ(d)

+ ȷ
(ℑ (d) − µℑ(d))

√

2Ã2
ℑ(d)





×
√

cσµℜ(v{L})

R
. (5.22)

5.5 RESULTS

For the sake of simplification, in the proposed approach, the parameters cσ and

µv{l} were set to 1, for all layers. Then, the initializations and normalizations become

b{l} = 0 + ȷ0, (5.23)

σ{l} = 1 + ȷ1, (5.24)

Γ{l} ∼ CG
(

0,
1

O{l−1}

)

, (5.25)

W{l} ∼ CG
(

0,
5 exp(−2)O{l−1}

12I{l}O{l}

)

, (5.26)

x̄ =
(x − µx)
√

Ã2
x

√

1

P
, (5.27)

d̄ =
(d − µd)
√

Ã2
d

√

1

R
. (5.28)

For the random initialization, we defined Ã2
Γ{l} = 1. The K-means and constellation-

based initializations are obtained from the input and output datasets, respectively.

Based on (SOARES; MAYER; ARANTES, 2023), we consider a space-time

block coding (STBC) simulation system with the 3GPP TS 38.211 specification for

5G physical channels and modulation (5G. . . , 2022). The orthogonal frequency-division

multiplexing (OFDM) is defined with 60-kHz subcarrier spacing, 256 active subcarriers,

and a block-based pilot scheme. Symbols are modulated with 16-QAM and, for the MIMO

setup, 4 antennas are employed both at the transmitter and receiver. Based on the tapped

delay line-A (TDLA) from the 3GPP TR 38.901 5G channel models (5G. . . , 2022), the

MIMO channel follows the TDLA from the 3GPP TR 38.104 5G radio base station

transmission and reception (5G. . . , 2022). The TDLA is described with 12 taps, with

varying delays from 0.0 ns to 290 ns and powers from -26.2 dB to 0 dB. A Rayleigh

distribution is used to compute each sub-channel. To avoid influencing the learning curves,

we do not take into account the Doppler effect, and we do not employ the inference learning

techniques proposed in (SOARES; MAYER; ARANTES, 2023). The CVNNs operate with

16 inputs and 4 outputs. The inputs are taken from the OFDM demodulator outputs, one

at a time (see (SOARES; MAYER; ARANTES, 2023), Fig. 1). Training and validation
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Figure 5.5.1 – MSE convergence results of training (solid lines) and validation (asterisks) of the PT-RBF
initialization with a hidden layer (I{1}

= 64 neurons) for joint channel estimation and
decoding in a MIMO-OFDM 4 × 4 system, operating with 16-QAM and 256 subcarriers.
Results were averaged over 100 subsequent simulations with Eb/N0 = 26 dB.

were performed for 3, 840 and 1, 280 instances, respectively. To assess performance, we

calculated the Mean Squared Error (MSE), defined as MSE = 1
n

∑n
i=1(yi − ŷi)

2, where yi

represents the total transmitted constellation symbols over 100 simulations. Each output

training instance corresponds to 4 symbols, resulting in a total of 15,360 and 5,120 16-QAM

symbols for training and validation phases, respectively.

Fig. 5.5.1 illustrates the MSE convergence for 1000 epochs of training (solid lines)

and validation (asterisks) of the PT-RBF with a hidden layer (I{1} = 64 neurons). Results

were averaged over 100 simulations with a bit energy to noise power spectral density

ratio Eb/N0 = 26 dB. Table 5.5.1 depicts the PT-RBF hyperparameters empirically

optimized for each initialization scheme. None of the algorithms presented under- or

over-fitting. The random initialization presented the poorest convergence results, with a

steady-state error of −6 dB. On the other hand, the constellation-based and K-means

initializations achieved a steady-state error of −6 dB and −8.8 dB, respectively. The best

results were obtained with the proposed approach, with −9.1 dB of steady-state error. For

comparison results regarding the convergence rate, considering MSE = −5 dB, the proposed

approach reaches this mark in five training epochs, followed by the K-means (11 epochs),

constellations-based (80 epochs), and random initialization (165 epochs).

For further comparison, we have also employed the initialization schemes for PT-
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Table 5.5.1 – Single layer PT-RBF optimized hyper-
parameters.

Algorithm ¸w ¸b ¸γ ¸σ

Random 0.5 0.5 0.5 0.5

Constellation-based 0.5 0.5 0.5 0.5

K-means 0.1 0.1 0.4 0.2

Proposed Approach 0.1 0.1 0.4 0.2

Table 5.5.2 – Deep PT-RBF optimized hyperparame-
ters for the proposed approach.

Algorithm ¸w ¸b ¸γ ¸σ

first layer 0.100 0.100 0.100 0.100

second layer 0.050 0.050 0.050 0.050

third layer 0.033 0.033 0.033 0.033

fourth layer 0.025 0.025 0.025 0.025

These hyperparameters were optimized for
the proposed initialization of the deep PT-
RBFs. For example, in a deep PT-RBF
with two hidden layers, only the first and
second rows of hyperparameters are nec-
essary. In a shallow architecture, the opti-
mization is available in Table 5.5.1.

RBFs with two, three, and four hidden layers. However, the K-means was not considered

since it is only suitable for shallow RBFs. In addition, although several trials were attempted,

no convergence was achieved for the random and constellation-based initializations. Thus,

Fig. 5.5.2 shows the convergence results for the proposed approach for the PT-RBFs

with one (I{1} = 64 neurons), two (I{1} = 48 and I{2} = 16 neurons), three (I{1} = 24,

I{2} = 24, and I{3} = 16 neurons), and four (I{1} = 16, I{2} = 16, I{3} = 16, and

I{4} = 16 neurons) hidden layers1. Table 5.5.2 depicts the deep PT-RBF hyperparameters

empirically optimized for each hidden layer. Unlike the other initialization schemes, the

proposed approach achieves reasonable convergence for all architectures. One may note

that all multilayered PT-RBFs architectures achieved the same steady-state MSE results.

This result is due to the number of neurons utilized to create the PT-RBF layers. For the

three- and four-layered PT-RBFs, the layers with the lowest number of neurons performed

bottlenecks, impacting results. In order to circumvent this issue, more neurons could be

adopted per layer; nonetheless, it does not affect the convergence verification.
1 For the sake of comparison, we chose a total number of neurons NT = 64, which was split depending

on the number of layers.
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Figure 5.5.2 – MSE convergence results of training (solid lines) and validation (stars) of the proposed
initialization approach with one (I{1}

= 64 neurons), two (I{1}
= 48 and I{2}

= 16 neurons),
three (I{1}

= 24, I{2}
= 24, and I{3}

= 16 neurons), and four (I{1}
= 16, I{2}

= 16,
I{3}

= 16, and I{4}
= 16 neurons) hidden layers for joint channel estimation and decoding

in a MIMO-OFDM 4 × 4 system, operating with 16-QAM and 256 subcarriers. Results
were averaged over 100 subsequent simulations with Eb/N0 = 26 dB.

5.6 CONCLUSION

This paper presents an in-depth analysis of the initialization process in phase-

transmittance radial basis function (PT-RBF) neural networks. Our findings have eluci-

dated the intricate dependencies involved in the initialization process. Specifically, the

normalization between layers which is dependent on the number of inputs, outputs and

neurons. This reveals that synaptic weights initialization is influenced by the layer-wise

configuration of inputs, neurons, and outputs. Consequently, our proposed approach

demonstrates robustness to variations in the number of inputs, outputs, hidden layers, and

neurons.

This innovation is particularly impactful for deploying these networks in real-world

scenarios, which require robustness for a wide range of different configurations, with no room

for ad hoc adjustments. In a carefully designed simulation environment, our proposed deep

PT-RBF parameter initialization exhibited superior convergence performance compared

to existing methods such as random, K-means, and constellation-based initialization.

Notably, for multi-layer architecture, our method was the only one that achieved successful

convergence, highlighting its unique efficacy and adaptability.
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The results of our study have important implications. Firstly, they introduce a

robust and effective initialization method that can significantly improve the convergence

rate and steady state MSE of PT-RBF neural networks. Additionally, offering the potential

for extending our framework to other RBF neural network architectures. In future works,

we plan to validate the robustness of our proposed approach through more exhaustive

experiments. We also aim to explore the applicability of our initialization framework to

other neural network architectures, thereby contributing to the broader advancement of

neural network-based solutions in digital communications.
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Appendix

5.A EXPECTED VALUE OF v{l}

Taking the Gaussian kernel input v{l} of a layer l, its expected value is

µv{l} = E
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 , (5.29)

where m ∈ [1, 2, · · · , I{l}].

Due to the split-complex kernel of PT-RBFs, the expected value of the real and

imaginary components can be computed separately. Focusing on the real part
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Assuming ℜ
(
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which is
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where µ{l}
m,i and y

{l−1}
i are the i-th elements of γ{l}

m and y{l−1}, respectively.

As γ{l}
m and y{l−1} are independent, and assuming γ{l}
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which results in
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Furthermore, the variances of ℜ
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thus, in (5.34), applying the summation to the expected value arguments, yields
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However, as the variances Ã2
ℜ(y{l−1})

and Ã2
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) are constants, ℜ (µv{l}) can be

expressed as
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Applying these computations to ℜ (µv{l}), and adding it to ℜ (µv{l}), we obtain

the expected value of v{l} as
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5.B VARIANCE OF v{l}

The variance of v{l} is
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because the PT-RBF split-complex kernel.
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and similarly Var
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which simplifies to,
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Since Ã2
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, from (5.10), we have,
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5.C VARIANCE OF y{l}

The variance of y{l} is
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where m ∈ [1, 2, · · · , I{l}]. Differently from (5.40), we cannot compute the expected value

of the real and imaginary components separately since y{l} is a linear combination result
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where ϕ{l}
m and w
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Substituting this into (5.C), we arrive at the expression:
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Solving (5.48), yields
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in which erf(·) is the error function.

Relying on the results of Appendix 5.B, we consider that µℜ(v{l}) k Ã2
ℜ(v{l})

,

which is acceptable when the center vectors of Γ{l} are chosen near to y{l−1}. Then, (5.50)
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can be simplified to
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Which, can be simplified to

Ã2
φ{l} = Ã2

v{l} exp (−2µv{l}) (5.54)

Replacing (5.54) into (5.C), results in
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Chapter 6

Deep Complex-valued Radial Basis

Function Neural Networks and

Parameter Selection

Authors: Jonathan Aguiar Soares, Vinícius H. Luiz, Dalton Soares Arantes, and Kayol

Soares Mayer

Abstract

In the ever-evolving field of artificial neural networks and learning systems, complex-valued

neural networks (CVNNs) have become a cornerstone, achieving exceptional performance

in image processing and telecommunications. More precisely, in digital communication

systems, CVNNs have been delivering significant results in tasks like equalization, channel

estimation, beamforming, and decoding. Among the CVNN architectures, the complex-

valued radial basis function neural network (C-RBF) stands out, especially when operating

in noisy environments such as 5G multiple-input multiple-output (MIMO) systems. In such

a context, this paper extends the classical shallow C-RBF to deep architectures, increasing

its flexibility for a wider range of applications. Also, based on the parameter selection of

the phase transmittance radial basis function (PT-RBF) neural network, we propose an

initialization scheme for the deep C-RBF. Via rigorous simulations conforming to 3GPP TS

38 standards for digital communications, our method not only outperforms conventional

initialization strategies like random, K-means, and constellation-based methods but it

also seems to be the only approach to achieve successful convergence for deep C-RBF

architectures. These findings pave the way to more robust and efficient neural network

deployments in complex-valued digital communication systems.

Keywords: Neural Networks, Complex-valued Neural Networks, Radial Basis Function,

Deep Learning, Initialization.

This Chapter is a replica of the following manuscript: Jonathan Aguiar Soares, Vinícius H. Luiz,
Dalton Soares Arantes, and Kayol Soares Mayer, "Deep Complex-valued Radial Basis Function Neural
Networks and Parameter Selection" in 19th International Symposium on Wireless Communication
Systems, July 2024, doi: 10.1109/ISWCS61526.2024.10639101.
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6.1 INTRODUCTION

Recently, in communication systems, CVNNs have been studied in several applica-

tions, such as equalization, channel estimation, beamforming, and decoding (MAYER et al.,

2019c; DING; HIROSE, 2020; ZHANG et al., 2021b; LI et al., 2022; MAYER; SOARES;

ARANTES, 2020; KAMIYAMA; KOBAYASHI; IWASHITA, 2021; FREIRE et al., 2021;

SOARES et al., 2021a; XU et al., 2022; CHU; GAO; LIU, et al., 2022; MAYER et al.,

2022; YANG et al., 2022; XIAO; YANG; FENG, 2023). This growing interest is related to

enhanced functionality, improved performance, and reduced training time when compared

with real-valued neural networks (RVNNs) (HIROSE; YOSHIDA, 2012a; BARRACHINA

et al., 2021; CRUZ; MAYER; ARANTES, 2022; ZHANG; GAO; ZHOU, 2022).

The effectiveness of neural networks is critically dependent on several factors, such

as initialization, regularization, and optimization (HUMBIRD; PETERSON; MCCLAR-

REN, 2019). Although regularization and optimization techniques are vital to speed up

the training process and reduce steady-state error (HU et al., 2021), depending on the

initial parameter selection the neural network can get stuck at local minima, achieving

suboptimal solutions (NARKHEDE; BARTAKKE; SUTAONE, 2022). For radial basis

function (RBF)-based neural networks, this problem is even worse since, for each layer,

there are four parameters (synaptic weight, bias, center vectors, and center variances) in

contrast to two parameters (synaptic weights and bias) of usual multilayer perceptron

neural networks.

In this context, with a focus on the C-RBF neural network (MAYER et al., 2022),

we propose an extension for deep learning and a novel parameter selection scheme. This

scheme aims to initialize synaptic weights, biases, center vectors, and center variances in

the complex domain. Notably, existing literature offers limited guidance on initialization

techniques for multilayer RBF-based CVNNs. Despite this gap, our study compares the

proposed approach against well-known methods such as random initialization (WALLACE;

TSAPATSOULIS; KOLLIAS, 2005), K-means clustering (TURNBULL; ELKAN, 2005),

and constellation-based initialization (LOSS et al., 2007a). To the best of our knowledge,

this is the first work proposing the architecture, training algorithm, and parameter selection

for a multi-layered C-RBF.

6.2 C-RBF NEURAL NETWORKS

The complex-valued Gaussian neuron is a natural extension of the well-known

Gaussian neuron for the complex domain (CHEN; MCLAUGHLIN; MULGREW, 1994).

Similarly to its real-valued version, the output of the C-RBF neuron is described as

y[n] = w[n]ϕ[n] + b[n], (6.1)
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in which ϕ[n] ∈ R is the Gaussian kernel output

ϕ[n] = exp

(

−∥x[n] − γ[n]∥2
2

Ã[n]

)

, (6.2)

and γ[n] ∈ C
P is the Gaussian center, Ã[n] ∈ R is the variance. Note that the bias

b[n] ∈ C is a linear complex-valued synaptic weight like w[n] ∈ C, but considering the

Gaussian output equals one. Unlike the RBF neuron, the C-RBF neuron Gaussian center,

synaptic weight, and bias are complex-valued free parameters, which are essential to map

a complex-valued input x[n] ∈ C
P into a complex-valued output y[n] ∈ C. By (6.2), the

complex-valued input is firstly mapped into a real-valued scalar via the Euclidean norm of

the Gaussian kernel. As the variance is also a real-valued parameter, the Gaussian kernel

output is consequently a real-valued scalar. Thus, the complex mapping to the output is

only possible because of the synaptic weights and bias.

6.2.1 Shallow C-RBF

The main differences between the C-RBF and RBF regard the free parameters

domains and the backpropagation training. In a C-RBF neural network with P inputs, R

outputs, and M Gaussian neurons, the vector of outputs y[n] ∈ C
R is given by

y[n] = W[n]φ[n] + b[n], (6.3)

where W[n] ∈ C
R×M is the matrix of synaptic weights, φ[n] ∈ R

M is the vector of

Gaussian kernels, and b[n] ∈ C
R is the vector of bias.

The m-th Gaussian kernel of φ[n] is formulated as

ϕm[n] = exp

(

−
∥x[n] − γm[n]∥2

2

Ãm[n]

)

, (6.4)

in which γm[n] ∈ C
P and Ãm[n] ∈ R are the m-th vectors of Gaussian Centers and

variances, respectively.

Albeit b[n] and W[n] can be considered as only one free parameter, for the sake

of simplicity we assume it as separate free parameters. Therefore, the C-RBF is a shallow

ANN with four free parameters (i.e., matrix of synaptic weights W[n]; vector of bias b[n];

matrix of Gaussian centers Γ[n] ∈ C
M×P ; and vector of variances σ[n] ∈ R

M), whose

updates are performed via the steepest descent algorithm as

wr,m[n+ 1] = wr,m[n] − ¸w∇wJ [n],

br[n+ 1] = br[n] − ¸b∇bJ [n],

γm[n+ 1] = γm[n] − ¸γ∇γJ [n],

Ãm[n+ 1] = Ãm[n] − ¸σ∇σJ [n],

(6.5)
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where ¸w, ¸b, ¸γ , and ¸σ are the respective adaptive steps of wr,m, br, γm, and Ãm. Also, ∇w,

∇b, ∇γ , and ∇σ are the complex gradient operators of wr,m, br, γm, and Ãm, respectively.

Furthermore, J [n] is the quadratic cost function

J [n] =
1

2
∥e[n]∥2

2 =
1

2
∥d[n] − y[n]∥2

2 , (6.6)

in which e[n] = d[n] − y[n] ∈ C
R is the error vector and d[n] ∈ C

R is the vector of desired

outputs.

Solving the gradients in (6.5), and organizing the equations in matrix structures,

we obtain
W[n+ 1] = W[n] + ¸we[n]φT [n],

b[n+ 1] = b[n] + ¸be[n],

Γ[n+ 1] = Γ[n] + ¸γdiag (ξ[n] » β[n]) (X[n] − Γ[n]) ,

σ[n+ 1] = σ[n] + ¸σξ[n] » β[n] » v[n],

(6.7)

where ξ[n] = ℜ (W[n])T ℜ (e[n]) + ℑ (W[n])T ℑ (e[n]) ∈ R
M is the vector of synaptic

transmittance, and β[n] ∈ R
M is the vector of Gaussian weighted kernel, with the m-th

component ´m[n] = ϕm[n]/Ãm[n]. The expanded input matrix X[n] ∈ C
M×P is

X[n] =

















— xT [n] —

— xT [n] —
...

— xT [n] —

















. (6.8)

6.2.2 Proposed Deep C-RBF

The deep C-RBF is defined with L hidden layers (excluding the input layer),

where the superscript l ∈ [0, 1, · · · , L] denotes the layer index and l = 0 is the input

layer. The l-th layer (excluding the input layer l = 0) is composed by I{l} neurons, O{l}

outputs, and has a matrix of synaptic weights W{l} ∈ C
O{l}×I{l}

, a bias vector b{l} ∈ C
O{l}

,

a matrix of center vectors Γ{l} ∈ C
I{l}×O{l−1}

, and a variance vector σ{l} ∈ R
I{l}

. Notice

that x̄ ∈ C
P is the deep C-RBF normalized input vector (P inputs) and y{L} ∈ C

R is the

deep C-RBF output vector (R outputs). The l-th hidden layer output vector y{l} ∈ C
O{l}

is given by

y{l} = W{l}φ{l} + b{l}, (6.9)

where φ{l} ∈ R
I{l}

is the vector of Gaussian kernels.

The m-th Gaussian kernel of the l-th hidden layer is formulated as

ϕ{l}
m = exp

[

−v{l}
m

]

, (6.10)
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in which v{l}
m is the m-th Gaussian kernel input of the l-th hidden layer, described as

v{l}
m =

∥

∥

∥y{l−1} − γ{l}
m

∥

∥

∥

2

2

Ã
{l}
m

, (6.11)

where y{l−1} ∈ C
O{l−1}

is the output vector of the (l − 1)-th hidden layer (except for the

first hidden layer that y{0} = x̄), γ{l}
m ∈ C

O{l−1}
is the m-th vector of Gaussian centers of

the l-th hidden layer, Ã{l}
m ∈ R is the respective m-th variance.

Similarly to (6.5), we can define a generalized steepest descent algorithm to the

l-th layer, as
w{l}

r,m[n+ 1] = w{l}
r,m[n] − ¸w∇{l}

w J [n],

b{l}
r [n+ 1] = b{l}

r [n] − ¸b∇
{l}
b J [n],

γ{l}
m [n+ 1] = γ{l}

m [n] − ¸γ∇{l}
γ J [n],

Ã{l}
m [n+ 1] = Ã{l}

m [n] − ¸σ∇{l}
σ J [n].

(6.12)

Solving the gradients in (6.12), and organizing the resulting equations in matrix

structures, we obtain

W{l}[n+ 1] = W{l}[n] + ¸{l}
w ψ

{l}[n]
(

φ{l}[n]
)T
,

b{l}[n+ 1] = b{l}[n] + ¸
{l}
b ψ

{l}[n],

Γ{l}[n+ 1] = Γ{l}[n] − ¸{l}
γ δ

{l}[n]
(

Y{l−1}[n] − Γ{l}[n]
)

,

σ{l}[n+ 1] = σ{l}[n] − ¸{l}
σ δ

{l}[n]v{l}[n],

(6.13)

where ψ{l} and δ{l}[n] are presented at the bottom of the next page, and β{l}[n] ∈ R
I{l}

is

the vector of Gaussian weighted kernel of the l-th hidden layer, with the m-th component

´{l}
m [n] = ϕ{l}

m [n]/Ã{l}
m [n]. The vector 1I{l+1} is composed of I{l+1} ones, and Y{l}[n] ∈

C
I{l+1}×O{l}

is the expanded matrix of layer’s outputs, in which each row is given by

Y{l}[n] =



















—
(

y{l}[n]
)T

—

—
(

y{l}[n]
)T

—
...

—
(

y{l}[n]
)T

—



















. (6.14)

ψ{l}[n] =











[

Y{l}[n] − Γ{l+1}[n]
]T
δ{l+1}[n]1I{l+1} , for 0 < l < L,

d[n] − y[n] = e[n], for l = L,
(6.15)

δ{l}[n] = − diag
{[

ℜ
(

W{l}[n]
)T

ℜ
(

ψ{l}[n]
)

+ ℑ
(

W{l}[n]
)T

ℑ
(

ψ{l}[n]
)

]

» β{l}[n]
}

.

(6.16)
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6.3 PROPOSED DEEP C-RBF PARAMETER INITIALIZA-

TION

Based on (SOARES; MAYER; ARANTES, 2024), to properly initialize the deep

C-RBF parameters, we first need to understand the relationship between the input vector

x and the Gaussian center vectors γ{1}
m . In (6.10), regarding (6.11), and keeping Ã{1}

m

constant, the closer γ{1}
m is to x, higher is the value of ϕ{1}

m . For example, if γ{1}
m = x then

ϕ{1}
m = 1. On the other hand, if γ{1}

m is set far from x, then ϕ{1}
m → 0. In this context, to

not saturate or vanish ϕ{1}
m , we assume µx̄ = µγ{1} = 0 and Ã2

x̄ = Ã2
γ{1} , where x̄ is the

normalized input dataset. Furthermore, we expect that depending on the dataset inputs,

ϕ{1}
m varies reasonably. For example, considering v{1}

m = 5 and v{1}
m = 10, the variation

in ϕ{1}
m is only 4.54 × 10−5. In contrast, considering v{1}

m = 0 and v{1}
m = 3, the variation

in ϕ{1}
m is 0.95. Then, it is desirable that µv{1} is not too large. Based on Appendix A of

(SOARES; MAYER; ARANTES, 2024), the expected value of v{1} is

µv{1} =
P

cσ



Ã2
ℜ(x̄) + Ã2

ℑ(x̄) + Ã2

ℜ

(

γ
{1}
m

) + Ã2

ℑ

(

γ
{1}
m

)



 , (6.17)

in which Ã2
x̄ = 2Ã2

ℜ(x̄) = 2Ã2
ℑ(x̄) is the variance of x̄, Ã2

γ
{1}
m

= 2Ã2

ℜ

(

γ
{1}
m

) = 2Ã2

ℑ

(

γ
{1}
m

) is the

variance of γ{1}
m , cσ = Ã{1}

m ∀ m, and cσ is a positive and nonzero constant.

As Ã2
x̄ = Ã2

γ{1} , from (6.17), we have

Ã2
x̄ =

cσµv{1}

2P
. (6.18)

Based on (6.18), the normalized input is given as

x̄ =
(x − µx)
√

Ã2
x

√

cσµv{1}

2P
, (6.19)

where µx and Ã2
x are applied to adjust the mean and variance of x̄ before the normalization

by (6.18).

Similarly, in the first hidden layer, the normalized matrix of center vectors is

Γ{1} ∼ CG
(

0,
cσµv{1}

2P

)

. (6.20)

In order to normalize the output dataset d, we need to compute the variance of

the output vector y{L}, by

Ã2
y{L} = Var

[

W{L}φ{L} + b{L}
]

. (6.21)

We assume that b{l} is initialized with zeros, for all layers. Thus, based on

Appendix C of (SOARES; MAYER; ARANTES, 2024), (6.21) results in

Ã2
y{l} =

12

5





Ã2

γ
{l}
m

cσ exp (µv{l})





2

I{l}O{l−1}Ã2
W{l} , (6.22)
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where Ã2
W{L} is the variance of W{L}, and µv{L} is the expected value of v{L}. Choosing

Ã2
y{L} = Ã2

d̄
, i.e., the variance of the C-RBF output equal to the variance of the normalized

output dataset, yields the initialization of W{L} as

W{L} ∼ CG



















0,
Ã2

d̄

12

5





Ã2

γ
{l}
m

cσ exp (µv{l})





2

I{l}O{l−1}



















, (6.23)

in which the output dataset can be normalized by

d̄ =
(d − µd)
√

Ã2
d

√

Ã2
y{L} =

(d − µd)
√

Ã2
d

√

cσµv{L}

2R
. (6.24)

Relying on (6.20), we can generalize the initialization of Γ{l}, as

Γ{l} ∼ CG
(

0,
cσµv{l}

2O{l−1}

)

. (6.25)

From (6.18), the variance of the output hidden layers can be considered as

Ã2
y{l} =

cσµv{l+1}

2O{l}
, (6.26)

where, replacing Ã2
d̄

by (6.26) into (6.23), yields

W{L} ∼ CG

(

0,
5cσO

{l−1}

6I{l}O{l}µv{l+1} exp(−2µv{l})

)

. (6.27)

It is important to note that, (6.19) and (6.24) only hold for Ã2
x = 2Ã2

ℜ(x) = 2Ã2
ℑ(x)

and Ã2
d = 2Ã2

ℜ(d) = 2Ã2
ℑ(d), respectively. For the particular case of Ã2

ℜ(x) ≠ Ã2
ℑ(x) and

Ã2
ℜ(d) ̸= Ã2

ℑ(d), then (6.19) and (6.24) become

x̄=





(ℜ (x) − µℜ(x))
√

2Ã2
ℜ(x)

+ ȷ
(ℑ (x) − µℑ(x))

√

2Ã2
ℑ(x)





√

cσµv{1}

2P
, (6.28)

d̄=





(ℜ (d) − µℜ(d))
√

2Ã2
ℜ(d)

+ ȷ
(ℑ (d) − µℑ(d))

√

2Ã2
ℑ(d)





√

cσµv{L}

2R
. (6.29)

6.4 RESULTS

For the sake of simplification, in the proposed approach the parameters cσ and

µv{l} were set to 1, for all layers. Then, the initializations and normalizations become

b{l} = 0 + ȷ0, (6.30)
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σ{l} = 1 + ȷ1, (6.31)

Γ{l} ∼ CG
(

0,
1

2O{l−1}

)

, (6.32)

W{l} ∼ CG

(

0,
5O{l−1} exp(2)

6I{l−1}O{l}

)

, (6.33)

x̄ =
(x − µx)
√

Ã2
x

√

1

2P
, (6.34)

d̄ =
(d − µd)
√

Ã2
d

√

1

2R
. (6.35)

For the random initialization, we defined Ã2
Γ{l} = 1. The K-means and constellation-

based initializations are obtained from the input and output datasets, respectively (see

(SOARES; MAYER; ARANTES, 2024)).

Based on (SOARES; MAYER; ARANTES, 2023), we consider a space-time

block coding (STBC) simulation system with the 3GPP TS 38.211 specification for

5G physical channels and modulation (5G. . . , 2022). The orthogonal frequency-division

multiplexing (OFDM) is defined with 60-kHz subcarrier spacing, 256 active subcarriers,

and a block-based pilot scheme. Symbols are modulated with 16-QAM and, for the multiple-

input multiple-output (MIMO) setup, 4 antennas are employed both at the transmitter

and receiver. Based on the tapped delay line-A (TDL-A) from the 3GPP TR 38.901 5G

channel models (5G. . . , 2022), the MIMO channel follows the TDLA from the 3GPP

TR 38.104 5G radio base station transmission and reception (5G. . . , 2022). The TDLA

is described with 12 taps, with varying delays from 0.0 ns to 290 ns and powers from

-26.2 dB to 0 dB. A Rayleigh distribution is used to compute each sub-channel. To avoid

influencing the learning curves, we do not take into account the Doppler effect, and we do

not employ the inference learning techniques proposed by (SOARES; MAYER; ARANTES,

2023). The CVNNs operate with 16 inputs and 4 outputs. The inputs are taken from

the OFDM demodulator outputs, one at a time (see (SOARES; MAYER; ARANTES,

2023), Fig. 1). Training and validation were performed for 3, 840 and 1, 280 instances,

respectively. To assess performance, we calculated the Mean Squared Error (MSE), defined

as MSE = 1
n

∑n
i=1(yi − ŷi)

2, where yi represents the total transmitted constellation symbols

over all 20 simulations and ŷi represents the respective estimated symbol from the C-RBF.

Fig. 6.4.1 illustrates the mean squared error (MSE) convergence results for

1000 epochs of training (solid lines) and validation (asterisks) of the C-RBF with a

hidden layer (I{1} = 64 neurons). Results were averaged over 20 subsequent simulations

with a bit energy to noise power spectral density ratio Eb/N0 = 26 dB. Table 6.4.1 depicts

the C-RBF hyperparameters empirically optimized for each initialization scheme. None of

the algorithms presented under- or over-fitting. The random initialization presented the
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Figure 6.4.1 – MSE convergence results of training (solid lines) and validation (asterisks) of the C-RBF
initialization with a hidden layer (I{1}

= 64 neurons) for joint channel estimation and
decoding in a MIMO-OFDM 4 × 4 system, operating with 16-QAM and 256 subcarriers.
Results were averaged over 20 subsequent simulations with Eb/N0 = 26 dB. The lower the
steady state MSE, the better the performance.

Table 6.4.1 – Single layer C-RBF optimized hyper-
parameters.

Algorithm ¸w ¸b ¸γ ¸σ

Random 0.5 0.5 0.5 0.5

Constellation-based 0.5 0.5 0.5 0.5

K-means 0.1 0.1 0.4 0.2

Proposed Approach 0.1 0.1 0.4 0.2

poorest convergence results, with a steady-state error of −6 dB. On the other hand, the

constellation-based and K-means initializations achieved a steady-state error of −6 dB

and −7.5 dB, respectively. The best results were obtained with the proposed approach,

with −9.5 dB of steady-state error. For comparison results regarding the convergence

rate, considering MSE = −5 dB, the proposed approach reaches this mark in five train-

ing epochs, followed by the K-means (11 epochs), constellations-based (80 epochs), and

random initialization (165 epochs).

For further comparison, we have also employed the initialization schemes for

C-RBFs with two, three, and four hidden layers. However, the K-means was not considered

since it is only suitable for shallow RBFs. In addition, although several trials were attempted,
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Figure 6.4.2 – MSE convergence results of training (solid lines) and validation (stars) of the proposed
initialization approach with one (I{1}

= 64 neurons), two (I{1}
= 48 and I{2}

= 16 neurons),
three (I{1}

= 24, I{2}
= 24, and I{3}

= 16 neurons), and four (I{1}
= 16, I{2}

= 16,
I{3}

= 16, and I{4}
= 16 neurons) hidden layers for joint channel estimation and decoding

in a MIMO-OFDM 4 × 4 system, operating with 16-QAM and 256 subcarriers. Results
were averaged over 20 subsequent simulations with Eb/N0 = 26 dB. The lower the steady
state MSE, the better the performance.

no convergence was achieved for the random and constellation-based initializations. Thus,

Fig. 6.4.2 shows the convergence results for the proposed approach for the C-RBFs with

one (I{1} = 64 neurons), two (I{1} = 48 and I{2} = 16 neurons), three (I{1} = 24, I{2} = 24,

and I{3} = 16 neurons), and four (I{1} = 16, I{2} = 16, I{3} = 16, and I{4} = 16 neurons)

hidden layers1. Table 6.4.2 depicts the deep C-RBF hyperparameters empirically optimized

for each hidden layer. Unlike the other initialization schemes, the proposed approach

achieves reasonable convergence for all architectures. One may note that the steady-state

MSE results converged to the same value by the multi-layered architecture. This result is

due to the number of neurons utilized to create the C-RBF layers. For the layers with the

lowest number of neurons performed bottlenecks, impacting results. In order to circumvent

this issue, more neurons could be adopted per layer; nonetheless, it does not affect the

convergence verification.
1 For the sake of comparison, we chose a total number of neurons NT = 64, which was split depending

on the number of layers.
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Table 6.4.2 – Deep C-RBF optimized hyperparame-
ters for the proposed approach.

Algorithm ¸w ¸b ¸γ ¸σ

first layer 0.100 0.100 0.100 0.100

second layer 0.050 0.050 0.050 0.050

third layer 0.033 0.033 0.033 0.033

fourth layer 0.025 0.025 0.025 0.025

These hyperparameters were optimized for
the proposed initialization of the deep C-
RBFs. For example, in a deep C-RBF with
two hidden layers, only the first and second
rows of hyperparameters are necessary. In
a shallow architecture, the optimization is
available in Table 6.4.1.

6.5 CONCLUSION

This paper presents an in-depth analysis of the initialization process in complex-

valued radial basis function (C-RBF) neural networks. Our findings have elucidated the

intricate dependencies involved in the initialization process. Specifically, the normalization

of the input and output datasets depends on the number of inputs and outputs, respectively.

Furthermore, synaptic weights are influenced by the number of neurons and outputs per

layer, whereas center vectors are dependent on the number of inputs per layer. Therefore,

the proposed approach is robust to changes in the neural network architecture, such as

the number of inputs, outputs, hidden layers, and neurons. This innovation is particularly

impactful for deploying these networks in real-world scenarios, which require robustness

for a wide range of different configurations with no room for ad hoc adjustments. In a

carefully designed simulation environment, conforming to 3GPP TS 38 standards, our

proposed deep C-RBF parameter initialization technique exhibited superior convergence

performance when compared to existing methods such as random initialization, K-means,

and constellation-based initialization. Notably, for deep C-RBF architectures, our method

was the only one that achieved successful convergence, highlighting its unique efficacy

and adaptability. The implications of these results are manifold. First, they introduce a

robust and effective initialization method that can significantly improve the training and

performance of C-RBF neural networks, particularly in challenging 5G MIMO systems.

Secondly, they lay the foundation for future research, opening avenues for the exploration

of adaptive initialization techniques and offering the potential for extending our framework

to other neural network architectures. In future works, we plan to validate the robustness

of our proposed approach through more exhaustive experiments. We also aim to explore

the applicability of our initialization framework to other neural network architectures,
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thereby contributing to the broader advancement of neural network-based solutions in

digital communications.
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MIMO-OFDM Receivers

Authors: Jonathan Aguiar Soares, Kayol Soares Mayer, and Dalton Soares Arantes

Abstract

The increasing demands of modern telecommunications require improvements in spectral

efficiency and system throughput. In this context, our study introduces a novel decoding

method for MIMO-OFDM systems employing parallel neural networks, which markedly

enhances decoding speed and accuracy over previous models. Unlike serial decoding,

which fails to address the unique characteristics of individual subcarriers, our method

employs distinct phase-transmittance radial basis function (PT-RBF) neural networks

for each subcarrier. This parallel processing approach significantly reduces decoding time

and increases system adaptability by effectively managing nonlinear impairments and

intersymbol interference. Simulation results show that our method outperforms conventional

decoding techniques in reducing bit error rate (BER) across both linear and nonlinear

scenarios.

Keywords: Neural Networks, MIMO-OFDM, Complex-valued Neural Networks, Parallel

Processing.
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7.1 INTRODUCTION

The exponential surge in global data consumption, driven by advancements such

as 5G networks, cloud computing, and an ever-growing Internet of Things (IoT) ecosystem,

underscores the critical need for enhanced spectral efficiency, robust telecommunications

infrastructure, and improved reliability. The integration of multiple-input multiple-output

(MIMO) technology with orthogonal frequency-division multiplexing (OFDM), especially

in massive multiple-input multiple-output (mMIMO) systems, markedly increases channel

capacity without additional bandwidth or power, forming the backbone of next-generation

networks like 5G (KO et al., 2021; DILLI, 2021; SOKAL et al., 2021; SACI et al.,

2017; MAJUMDER et al., 2021; YERRAPRAGADA; KELLEY, 2020; GUERREIRO;

DINIS; CAMPOS, 2020). Despite their potential, the performance of these systems

frequently suffers due to multipath propagation, additive white Gaussian noise (AWGN),

and nonlinear impairments like the high peak-to-average power ratio (PAPR) in transmitter

amplifiers (MAYER et al., 2020a, 2019a; OSMAN et al., 2021; ZOU et al., 2021). One

promising solution to overcome these performance challenges in mMIMO systems is the

implementation of transmitting diversity through Space-Time Block Coding (STBC).

STBC enhances signal robustness against fading and mitigates issues such as multipath

propagation and the peak-to-average power ratio effects. By encoding the transmitted

data across multiple antennas, STBC allows the system to exploit spatial redundancy,

thereby significantly improving the reliability and quality of the communication. This

approach not only compensates for channel impairments but also optimizes the use of

available bandwidth and power, further enhancing the efficacy of modern telecommunication

infrastructures (ASIF et al., 2020; SHANG et al., 2020).

STBC is utilized in various communication technologies to enhance system per-

formance. It supports high mobility scenarios with Orthogonal Time Frequency Space

Modulation, contributing to increased transmission rates and diversity in MIMO sys-

tems (QIAN; XIAO; JIANG, 2022). In visible light communications (VLC), STBC is used

to improve reliability in light-based data transmission (NASER et al., 2022), and it aids in

boosting spectral efficiency in MIMO transmissions using quasi-orthogonal structures (WU

et al., 2022a). Additionally, STBC is employed in cognitive radios to assist in modulation

recognition (MAREY; DOBRE; MOSTAFA, 2022) and in challenging underwater and

marine environments to help enhance communication reliability and performance (NAIK

et al., 2023; HE; SHEN, 2022). Additionally, STBC is applicable in a broad range of other

areas (XIU et al., 2022; MAREY et al., 2022; SINGH; KUMAR, 2022; ZHONG; XIAO;

NIU, 2022), illustrating its diverse utility in modern telecommunications.

One significant challenge in implementing STBC is the complexity involved in

deriving orthogonal space time coding (OSTBC) schemes for systems with a high number

of transmitting antennas (JAFARKHANI, 2001). While OSTBC offers the benefit of
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high diversity gain, its application is limited by the difficulty in achieving orthogonal

designs as the number of antennas increases. An alternative, quasi-orthogonal space-time

block coding (QOSTBC), although providing better spectral efficiency due to its lower

code rates, sacrifices some diversity gain compared to OSTBC. Additionally, QOSTBC

introduces greater computational demands during decoding, as it requires processing groups

of transmitted symbols using maximum likelihood (ML) decoders. Moreover, QOSTBC’s

compatibility issues with quadrature amplitude modulation (QAM) constellations further

detract from its spectral efficiency.

To overcome these limitations, Soares et al. (SOARES et al., 2021a) enhanced

decoder performance through the application of machine learning techniques, specifically

employing PT-RBF neural networks. This method effectively manages the complexities

associated with QOSTBC, providing a solution that not only addresses the decoding

challenges but also achieves competitive performance. The findings from this study demon-

strate that incorporating machine learning into the decoding process successfully mitigates

many of the inherent difficulties encountered with QOSTBC, thereby validating the ef-

fectiveness of this innovative approach. However, this method relied on a single neural

network operating as a serial decoder for the entire symbol, a design choice made to utilize

a larger dataset for training, thus reducing the time required for model convergence.

This paper introduces a new approach utilizing parallel neural networks to decode

MIMO-OFDM signals, a significant evolution from the previous serial decoding method.

This approach exploits the recent advancements in neural network technologies, particularly

via the application of deep PT-RBF neural networks (MAYER et al., 2022) and initialization

methods (SOARES; MAYER; ARANTES, 2024). By deploying individual networks for

each subcarrier, the system not only enhances decoding speeds through parallel processing,

but also significantly improves decoding accuracy by allowing each network to specialize

based on the unique characteristics of its respective subcarrier. This presents a substantial

advancement in the decoding process for MIMO-OFDM systems.

The remainder of this paper is organized as follows: Section 7.2 provides a brief

review of STBC systems. The proposed parallel channel estimation and decoding strategy

for MIMO-OFDM systems is detailed in Section 7.3. Simulation results demonstrating the

efficacy of our approach compared with traditional methods are presented in Section 7.4.

Conclusions are discussed in Section 7.5.

7.2 BACKGROUND

Space-time code is a digital communication technique used to transmit multiple

copies of a data stream via multiple antennas to compensate for fading and AWGN. On

the receiver side, these multiple copies of the signal are received by one or more antennas,
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improving communication reliability.

7.2.1 Space-Time Block Coding and OFDM

A generalized coding scheme referred to as space-time block codes (STBCs) (JANKI-

RAMAN, 2004; TAROKH; JAFARKHANI; CALDERBANK, 1999; LI et al., 2021), based

on the theory of orthogonal matrix designs, can achieve the full-transmit diversity of NtxNrx

employing the maximum likelihood (ML) decoding algorithm at the receiver (JANKI-

RAMAN, 2004). The idea is to transmit Ntx orthogonal streams, which implies that

the receiver antennas receive Ntx orthogonal streams. This special class of space-time

block codes is the so-called OSTBC (SOARES et al., 2021a; TAROKH; JAFARKHANI;

CALDERBANK, 1999; HU; ZHAO; XUE, 2020). Besides diversity gain, the OSTBC leads

to a secondary linear coding gain Gc = 10 log (R) at the receiver due to the coherent

detection of multiple signal copies over time, and an array gain Ga = 10 log (Nrx) due to

the coherent combination of multiple received signals over the receiving antennas (SOARES

et al., 2021a).

One of the disadvantages of OSTBC is the code rate. Let Ntp represent the number

of time samples to convey one block of coded symbols and Ns represent the number of

symbols transmitted per block. The space-time block code rate is defined as the ratio

between the number of symbols that the encoder receives at its input and the number

of space-time coded symbols transmitted from each antenna, given by R = Ns/Ntp. For

example, an OSTBC coding matrix for Ntx = 4 implies a code rate R = 1/2, reducing

spectral efficiency.

In order to increase the spectral efficiency in orthogonal codes, Jafarkhani (JA-

FARKHANI, 2001) proposed QOSTBC of rate one, relaxing the requirement of orthogo-

nality. However, when compared with orthogonal codes, the diversity gain is reduced by a

factor of two. In contrast to orthogonally designed codes that process one symbol at a

time on the decoder, quasi-orthogonal codes process pairs of transmitted symbols, which

exponentially increases the computational complexity of decoding (SOARES et al., 2021a).

Jafarkhani (JAFARKHANI, 2001) proposed a coding matrix of rate one for Ntx = 4, given

by

QOSTBC4,4 =

















s[1] s[2] s[3] s[4]

−s[2]∗ s[1]∗ −s[4]∗ s[3]∗

−s[3]∗ −s[4]∗ s[1]∗ s[2]∗

s[4] −s[3] −s[2] s[1]

















. (7.1)

In the literature, related approaches with a maximum of Ntx = 6 antennas

were proposed for quasi-orthogonal codes (TIRKKONEN; BOARIU; HOTTINEN, 2000;
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WEIFENG SU; XIANG-GEN XIA, 2002; SINDHU; HAMEED, 2015). In (WEIFENG SU;

XIANG-GEN XIA, 2002), the authors developed an architecture similar to (JAFARKHANI,

2001); however, it presents full diversity at the cost of more processing and is limited to

Ntx = 4 antennas. In the same way, by increasing the decoding processing, Sindhu and

Hameed (SINDHU; HAMEED, 2015) proposed two quasi-orthogonal schemes with Ntx = 5

and 6 antennas (SOARES et al., 2021a).

7.2.2 Quasi-Orthogonal Coding Scheme

In the present paper, we use the generalized recursive method proposed in (SOARES

et al., 2021a) for generating QOSTBC coding schemes:

SNtx

Ns
=





S
Ntx/2

Ns−Ntx/2
S

Ntx/2

Ns

−[S
Ntx/2

Ns
]∗ [S

Ntx/2

Ns−Ntx/2
]∗



 , (7.2)

in which Ntx = 2n, ∀ n ∈ N
+, is the number of transmitting antennas and Ns is the

number of encoded symbols. In this encoding approach, Ns ≜ Ntx and the code rate

is R = Ntx/Ns = 1 (SOARES et al., 2021a). The recurrence is employed until S1
n =

s[n], ∀n ∈ [1, 2, · · · , Ns] in (7.2).

With four transmitting antennas, (7.2) results in:

S4
4 =

















s[1] s[2] s[3] s[4]

−s[2]∗ s[1]∗ −s[4]∗ s[3]∗

−s[3]∗ −s[4]∗ s[1]∗ s[2]∗

s[4] −s[3] −s[2] s[1]

















. (7.3)

Note that (7.3) is equal to the coding scheme proposed by (JAFARKHANI, 2001)

with four antennas, as in (7.1). However, in contrast to the work of (JAFARKHANI,

2001), this scheme can generate coding matrices for any Ntx = 2n, ∀ n ∈ N
+, and Ns ≜

Ntx (SOARES et al., 2021a). For the case of n = 1, (7.2) is equal to the Alamouti coding,

the full-rate full-diversity complex-valued space-time block code proposed in (ALAMOUTI,

1998).

7.3 PROPOSED PT-RBF-BASED SUBCARRIER-LEVEL JOINT

CHANNEL ESTIMATION AND DECODING

The main issue of the coding scheme proposed by Soares et al. (SOARES et al.,

2021a) is that it is impossible to define a simplified ML decoding method for n > 2. Given

that limitation, and relying on the approximation capabilities of artificial neural networks

(ANNs), Soares et al. (SOARES et al., 2021a) proposed a joint channel estimation and
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decoding approach based on the PT-RBF neural network. As presented in (SOARES

et al., 2021a), compared to the ML decoding, the PT-RBF has a lower computational

complexity and allows the decoding of high-order QAM modulation with a massive number

of transmitting and receiving antennas.

Fig. 7.3.1 shows an mMIMO receiver with QOSTBC decoding using a PT-

RBF (SOARES et al., 2021a). First, the signals received from the Nrx antennas are

parallelized in the serial to parallel (S/P) block to feed Ntp-OFDM demodulators. In each

OFDM demodulator, the input signal is parallelized by an S/P block to subsequently

remove the cyclic prefix in the CPR block. The resulting signal is transformed to the

frequency domain via a FFT block. The FFT output is serialized by a parallel to serial

(P/S) block, yielding the OFDM demodulator output. The PT-RBF Channel Estimation

and Decoding block receives as input a QOSTBC vector ŝ[k] ∈ C
NtpNrx , one at a time (i.e.,

subcarrier per subcarrier, with k ∈ [1, 2, . . . , K]). The PT-RBF output is the estimated

vector q̂[k] ∈ C
Ns .

Although the PT-RBF enables the decoding of massive MIMO QOSTBC systems,

the training becomes challenging with the increasing number of subcarriers, affecting

both convergence rate and accuracy. In mild scenarios (i.e., without deep fading), as the

channel does not vary significantly in frequency, the estimation of a given subcarrier is

very useful for any other, regardless of the frequency separation. On the other hand, if

the channel has many fluctuations, it is not valid anymore. In order to circumvent this

issue, a higher number of neurons can be used in the PT-RBF, at the cost of a higher

computational complexity. Nonetheless, even increasing the number of neurons (or layers in

a deep architecture (MAYER et al., 2022)), there is a penalty compared with the QOSTBC

with ML decoding.

In this context, we propose a new architecture for subcarrier-level joint channel

estimation and decoding of mMIMO QOSTBC based on the well-known PT-RBF. As shown

in Fig. 7.3.2, the receiving and OFDM demodulation process is equal to the one illustrated

in Fig. 7.3.1. However, unlike Soares et al. (SOARES et al., 2021a), the proposed approach

comprises K PT-RBFs, one employed for each subcarrier. The subcarrier allocation is

S/P CPR FFT P/S
S/P

OFDM Demodulators

S/P CPR FFT P/S

S/P CPR FFT P/S
S/P S/P CPR FFT P/S

PT-RBF
Channel

Estimation
and

Decoding

P/S
q

q[k]

s[k]

^

^

^

Figure 7.3.1 – Receiver architecture of a massive MIMO-OFDM system with PT-RBF-based channel
estimation and decoding (SOARES et al., 2021a).
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S/P CPR FFT
S/P

OFDM Demodulators

S/P CPR FFT

S/P CPR FFT
S/P S/P CPR FFT

q

q[1]

^

^

Subcarrier
Allocator

PT-RBF
PT-RBF

PT-RBF
q[K]^

P/S

s[K]^

s[1]^

Figure 7.3.2 – Proposed receiver architecture in a massive MIMO-OFDM system with parallelized PT-
RBF neural networks. The OFDM demodulation process is followed by subcarrier-specific
channel estimation and decoding using multiple PT-RBF neural networks, each handling a
distinct subcarrier for improved parallel processing.

performed by the Subcarrier Allocator block, which parallelizes K QOSTBC vectors

ŝ[k]. Then, in the training phase, the k-th PTRBF neural network is only fed with ŝ[k]

and q̂[k] vectors, becoming an expert in the k-th subcarrier. As a result, it reduces the

PT-RBF computational complexity by reducing the number of neurons, and also splits

the processing into K parts, increasing the parallelism.

7.4 RESULTS

Based on (SOARES; MAYER; ARANTES, 2023), we consider a space-time

block coding (STBC) simulation system with the 3GPP TS 38.211 specification for

5G physical channels and modulation (5G. . . , 2022). The orthogonal frequency-division

multiplexing (OFDM) is defined with 60-kHz subcarrier spacing, 256 active subcarriers,

and a block-based pilot scheme. Symbols are modulated with 4QAM, 16QAM, and 16PSK,

and for the MIMO setup, four antennas are employed at the transmitter and one at the

receiver. Based on the tapped delay line-A (TDLA) from the 3GPP TR 38.901 5G channel

models (5G. . . , 2022), the MIMO channel follows the TDLA from the 3GPP TR 38.104

5G radio base station transmission and reception (5G. . . , 2022). The TDLA is described

with 12 taps, with varying delays from 0.0 ns to 290 ns and powers from -26.2 dB to 0 dB.

A Rayleigh distribution is used to compute each sub-channel. To avoid influencing the

learning curves, we do not take into account the Doppler effect, and we do not employ

the inference learning techniques proposed in (SOARES; MAYER; ARANTES, 2023).

The CVNNs operate with four inputs and four outputs, accounting for the coding with

Ns = Ntx = 4. The inputs are taken from the OFDM demodulator outputs, one at a

time (see Figs. 7.3.1 and 7.3.2). Training and inference were performed for 4, 000 and 1, 000

instances, respectively. Each output training instance corresponds to four QAM symbols,

resulting in 16,000 and 4,000 QAM symbols for the training and inference phases, for

each PT-RBF. Performance was assessed via bit error rate (BER) results. The PT-RBF

hyperparameters were empirically optimized and the best performance was achieved with

three (I{1} = 32, I{2} = 32, and I{3} = 32 neurons), hidden layers. The best results were
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Figure 7.4.1 – BER results of the PT-RBF (proposed approach – red line) with three hidden layers (I1
= 32,

I2
= 32, and I3

= 32neurons) for subcarrier joint channel estimation and decoding in a
MIMO-OFDM 4 × 1 system, operating with 4-QAM and 256 subcarriers. Additionally,
results from the former serial decoding method using three hidden layers(I1

= 128, I2
= 128,

and I3
= 128 neurons) are shown in dark red for comparison. All results were averaged

over 10 subsequent simulations with Eb/N0 in a range of 0 dB to 16dB, in steps of 2dB.
QOSTB-ML(green line) and OSTBC-ML(yellow line) are also simulated for comparison.

obtained with the learning rates η{1}
w = η{2}

w = η{3}
w = 0.01, η

{1}
b = η

{2}
b = η

{3}
b = 0.01,

η{1}
γ = η{2}

γ = η{3}
γ = 0.04, and η{1}

σ = η{2}
σ = η{3}

σ = 0.01 of weights, bias, center vectors,

and variances, respectively.

Fig. 7.4.1 illustrates the BER convergence for QOSTB coding scheme and decoding

with PT-RBF (QOSTBC-PT-RBF) and maximum likelihood (QOSTBC-ML), and OSTBC

coding scheme with maximum likelihood decoding (OSTBC-ML). Although in such a

scenario the ML decoding is the optimal decoder, the proposed decoder achieves almost

the same performance, with a loss of approximately only 0.375 dB. Additionally, we have

included results from the former serial decoding approach, updated with a deep architecture

of three hidden layers and extensively optimized through trial and error. Despite these

enhancements, this former method was unable to achieve satisfactory performance for the

chosen channel environment, illustrating the superiority of our proposed approach.

Additionally, we have also employed nonlinear effects in the system introducing

clipping on the transmitter side, thus adding nonlinearities in the transmitted signal (YE;

LI; JUANG, 2018). Fig. 7.4.2 depicts BER results when the clipping ratio (CR = A/α, in

which α is the root mean square of signal) is 1. In this nonlinear scenario, the proposed
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Figure 7.4.2 – BER results of the PT-RBF (proposed approach – red line) with three hidden layers (I{1}
=

32, I{2}
= 32, and I{3}

= 32 neurons) for subcarrier joint channel estimation and decoding
in a MIMO-OFDM 4 × 1 system, operating with 4QAM and 256 subcarriers. A nonlinear
effect is introduced in the transmitter using clipping in the transmitted signal. Results
were averaged over 10 subsequent simulations with Eb/N0 in a range of 0 dB to 16 dB, in
steps of 2 dB. QOSTB-ML (green line) and OSTBC-ML (yellow line) are simulated for
comparison.

decoder achieves better results compared with the ML decoder for Eb/N0 > 10 dB,

showing the robustness of the proposed decoder when nonlinear impairments are considered.

Furthermore, for Eb/N0 = 14 dB, the proposed decoder achieves 2 dB of gain to achieve

the same BER compared with the ML decoder.

For further comparison, we employed 16QAM modulation in Fig. 7.4.3. However,

QOSTB-ML also considers 16PSK modulation, as decoding is only suitable for PSK

modulations (SOARES et al., 2021a). Additionaly, we have retained the QOSTB-ML

16QAM result for reference. Unlike the QOSTB-ML decoder, the proposed approach

achieves reasonable convergence for a high-order QAM modulation, enabling its application

in more challenging applications, such as the ones discussed in (SOARES et al., 2021a).

Additionally, the proposed PT-RBF decoder achieved better BER results than QOSTB-

ML considering the same bitrate (regardless of the modulation schemes). This is because

MPSK has lower minimal symbol distances than MQAM, which results in a BER penalty.
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Figure 7.4.3 – BER results of the PT-RBF (proposed approach – red line) with three hidden layers (I{1}
=

32, I{2}
= 32, and I{3}

= 32 neurons) for subcarrier joint channel estimation and decoding
in a MIMO-OFDM 4 × 1 system, operating with 16QAM and 256 subcarriers. Results
were averaged over 10 subsequent simulations with Eb/N0 in a range of 0 dB to 18 dB, in
steps of 2 dB. 16QAM QOSTB-ML (green line), 16PSK QOSTB-ML (purple line), and
OSTBC-ML (yellow line) are simulated for comparison.

7.5 CONCLUSIONS

This paper introduces a novel PT-RBF-based subcarrier-level joint channel esti-

mation and decoding approach for MIMO-OFDM systems that leverage parallel neural

networks for enhanced channel estimation. By deploying separate neural networks to

process individual subcarriers in parallel, the proposed method significantly improves

decoding speed and robustness compared to traditional techniques. The empirical results

demonstrate that the proposed decoder not only meets but, in some cases, also exceeds the

performance of the maximum likelihood decoding, especially in scenarios with nonlinear

distortions (transmitter clipping). Despite the success of the current study, there is room

for further research. First, exploring the scalability of the proposed PT-RBF networks to

systems with a higher number of antennas and subcarriers could provide insights into their

performance in ultra-massive MIMO setups. Second, optimizing the training algorithms

and further refining the neural network initialization procedures could enhance the effi-

ciency and accuracy of the decoding process. Third, testing the proposed approach under

a wider range of channel conditions and modulation schemes would help to understand its

robustness and reliability in real-world scenarios.
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Chapter 8

Complex-valued NN-based

End-to-end Learning in

Massive-MIMO Communications

Authors: Jonathan Aguiar Soares, Kayol Soares Mayer, and Dalton Soares Arantes

Abstract

This paper presents a novel end-to-end (E2E) learning architecture for massive MIMO

communication systems using complex-valued neural networks (CVNNs). Our approach

leverages CVNNs to process complex signals directly, eliminating the need to split real

and imaginary components, thereby preserving the natural structure of wireless signals.

The proposed architecture integrates both the encoding and decoding stages, optimized

for flat-fading Rayleigh channel conditions, focusing on improving transmission efficiency.

A key contribution is the extension of the approach to multi-user MIMO scenarios, where

the system is designed to orthogonalize data streams for several user equipment, improving

spectral efficiency with federated learning. We show that it is possible to effectively transmit

a number of data streams that exceed the channel matrix rank. Additionally, a power control

mechanism based on regularization is introduced to ensure stable transmission power. The

effectiveness of the proposed approach is rigorously validated through simulations across

a range of scenarios, demonstrating significant improvements in the mutual information.

The results are compared with theoretical limits and classical approaches, highlighting

the potential of CVNN-based architectures for advancing future wireless communication

systems in both single and multi-user contexts.

Keywords: MIMO, MU-MIMO, End-to-end Learning, Autoencoder, Federated Learning,

Complex-valued Neural Networks.

This Chapter is a replica of the following manuscript: Jonathan Aguiar Soares, Kayol Soares Mayer,
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8.1 INTRODUCTION

multiple-input multiple-output (MIMO) systems have become a paramount tech-

nology in modern wireless communications (BJÖRNSON et al., 2023), enabling significant

improvements in both data throughput and link reliability by leveraging multiple antennas

at the transmitter and receiver. By exploiting spatial diversity, MIMO systems enhance

communication capacity and spectral efficiency, which is essential for current and emerg-

ing wireless technologies like 5G and beyond. As the demand for high-capacity wireless

networks continues to grow, innovations in MIMO technologies are critical to meet the

ever-increasing need for faster and more reliable communication (WANG et al., 2023).

The evolution of deep learning (DL) techniques is boosting the advancement

of MIMO systems (QIN et al., 2019). For example, Ye et al. (YE; LI; JUANG, 2018)

demonstrate how DL can enhance channel estimation and decoding in orthogonal frequency-

division multiplexing (OFDM) systems. Wang et al. (WANG et al., 2022) implemented

a reliable intelligent space-time block coding (STBC) receiver with convolutional neural

networks (CNNs). Albreem et al. (ALBREEM et al., 2022) discuss using DL for MIMO

detection, including the application in cell-free massive MIMO. Yuan et al. (YUAN et al.,

2023) proposed a wideband hybrid precoding network for Terahertz massive MIMO. He et

al. (HE et al., 2020) employed a model-driven DL approach that outperforms a traditional

iterative MIMO detector considering 4 × 4 to 32 × 32 antenna setups.

Although these promising approaches achieve significant results in digital commu-

nication systems, most rely on real-valued DL techniques, even when handling inherently

complex-valued data. This simplification can lead to information loss, particularly when

handling wireless signals, which are naturally complex-valued. In contrast, complex-valued

neural networks (CVNNs) process data directly in the complex domain, preserving signal

integrity (CRUZ; MAYER; ARANTES, 2024). Hirose and Yoshida (HIROSE; YOSHIDA,

2012b) emphasized the advantages of CVNNs in tasks such as equalization and channel

estimation, particularly in maintaining coherence and enhancing generalization in signal

processing. This pioneering work demonstrated that CVNNs provide a more accurate model

of signal behavior in communication systems, resulting in better performance for decoding

and signal reconstruction tasks. Additional CVNN use cases include nonlinear compensa-

tion (FREIRE et al., 2021), channel equalization (XU et al., 2024) and prediction (WU et

al., 2021), beamforming (ENRICONI et al., 2020; MAYER et al., 2022), and joint channel

estimation and decoding (SOARES et al., 2021b; SOARES; MAYER; ARANTES, 2023).

For instance, Wang et al. (WANG et al., 2022) and Soares et al. (SOARES et al., 2021b)

independently tackled the same reliable communication problem. While the real-valued

neural networks (RVNNs) of Wang et al. (WANG et al., 2022) were limited to systems

with 4 × 4 antennas and 4-QAM (quadrature amplitude modulation), the CVNN of Soares

et al. (SOARES et al., 2021b) could handle 32 × 32 antennas and 64-QAM, marking the
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first work to address quasi-orthogonal STBC (QOSTBC) systems with more than 4 × 4

antennas and higher-order QAM modulations.

One promising approach in MIMO systems is using autoencoders, which have

demonstrated significant potential in optimizing the communication process from transmis-

sion to reception (SONG et al., 2022). Autoencoders, a class of artificial neural networks

(ANNs), are trained to learn efficient data representations, leading to more effective encod-

ing and decoding (LI; PEI; LI, 2023). When applied to MIMO systems, these deep learning

models offer improved performance over traditional methods, particularly in handling

complex and nonlinear channel conditions.

Recent works have explored autoencoders in communication systems. O’Shea and

Hoydis (O’SHEA; HOYDIS, 2017) introduced deep learning for the physical layer, showing

that autoencoders can learn robust and efficient E2E communication schemes. Dörner

et al. (DÖRNER et al., 2018) extended this by implementing a neural network-based

over-the-air communication system using software-defined radios, proving the practicality

of such approaches. Aoudia and Hoydis (AOUDIA; HOYDIS, 2019) tackled the issue of

unknown channels by proposing a model-free training method that removes the need for a

differentiable channel model. Further advancing the field, Ye et al. (YE et al., 2020; YE;

LI; JUANG, 2021) developed deep learning-based systems that operate without explicit

channel estimation or pilot signals, leveraging generative adversarial networks (GANs) to

model channel effects. Song et al. (SONG et al., 2022) explored E2E learning for MIMO and

multi-user systems, demonstrating the potential of autoencoders to mitigate interference

in multi-user scenarios.

Despite these advancements, most current autoencoder-based methods rely on

real-valued ANNs, which process complex-valued signals by splitting them into real and

imaginary parts. However, communication signals are inherently complex, and this approach

can introduce inefficiencies and inaccuracies. CVNNs are specifically designed to process

complex signals directly, providing clear advantages to digital signal processing (DSP) in

communication systems (MAYER et al., 2022).

In this paper, we propose a novel E2E learning architecture for MIMO systems

using complex-valued autoencoders. By employing CVNNs, our approach fully utilizes the

complex nature of the signals, improving the system’s overall efficiency and simplifying

the signal processing chain. Moreover, we introduce a robust power control mechanism

through regularization to address potential issues with output signal power, such as signal

distortion, which are common challenges in high-throughput MIMO systems. Additionally,

we extend the autoencoder framework with federated learning to a multi-user MIMO

(MU-MIMO) scheme, in which multiple data streams can be transmitted and received

simultaneously, tackling interference and boosting mutual information (MI). This is a key

advancement over traditional single-user models, addressing the challenges of multi-user
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interference. Simulations are performed over stochastic flat-fading Rayleigh channels.

The remainder of this paper is organized as follows. Section 8.2 discusses the

related work on E2E communication systems and MU-MIMO. Section 8.3 presents the

system model, explaining the MIMO setup. Section 8.4 details the proposed approach,

including the CVNN design, multi-user scheme with federated learning, and transmission

power control. Section 8.5 provides the results and performance evaluation of the proposed

model. Finally, Section 8.6 concludes the paper, discussing the implications of the findings

and potential future work.

8.2 RELATED WORK

8.2.1 End-to-End Communication Systems

The seminal work by O’Shea and Hoydis (O’SHEA; HOYDIS, 2017) pioneered

the use of autoencoders in the physical layer, demonstrating the potential of deep learning

to learn robust communication schemes by interpreting communication systems as E2E

reconstruction tasks. Following this, there has been a significant interest in leveraging

neural networks for optimizing both transmitter and receiver design in wireless communi-

cations (O’SHEA; HOYDIS, 2017; DÖRNER et al., 2018; FELIX et al., 2018; AOUDIA;

HOYDIS, 2018, 2019; ZHANG; ZHANG; JIANG, 2019; LETIZIA; TONELLO, 2021; YE

et al., 2020; YE; LI; JUANG, 2021; AN et al., 2023; AIT AOUDIA; HOYDIS, 2022; GUO

et al., 2024; WU et al., 2022b; SAGDUYU; ULUKUS; YENER, 2023; SONG et al., 2022;

SINGH et al., 2024; ZHANG; VAEZI, 2024; JI et al., 2024).

Building upon this foundation, Dörner et al. (DÖRNER et al., 2018) implemented

an E2E communication system using software-defined radios (SDRs) for single-input single-

output (SISO) and single-carrier systems. Their work demonstrated the practical feasibility

of neural network-based transceivers and introduced methods to handle synchronization

issues in continuous data transmission. Felix et al. (FELIX et al., 2018) extended this

concept to OFDM systems. They proposed an OFDM-based autoencoder that enables

reliable communication over frequency-selective fading channels and inherently learns to

cope with hardware impairments, such as nonlinear amplifiers.

Aoudia and Hoydis contributed significantly to the field by addressing the challenge

of unknown channel models (AOUDIA; HOYDIS, 2018, 2019). In (AOUDIA; HOYDIS,

2018), they introduced a learning algorithm that iterates between supervised training of the

receiver and reinforcement learning-based training of the transmitter, enabling E2E learning

without a differentiable channel model. This work was further expanded in (AOUDIA;

HOYDIS, 2019), where they demonstrated the practical viability of their approach through

hardware implementation on SDRs, achieving state-of-the-art performance over real
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channels.

In 2019, Zhang et al. (ZHANG; ZHANG; JIANG, 2019) analyzed the phenomena

of overfitting and underfitting in deep learning-based E2E communication systems. They

proposed using regularization techniques to alleviate overfitting, thereby improving the com-

munication systems’ reliability and error rate performance. Letizia and Tonello (LETIZIA;

TONELLO, 2021) proposed an approach to maximize MI as a loss function in autoencoder

training. By incorporating the channel into the loss function, they aimed to construct

capacity-approaching codes and mitigate overfitting issues, enhancing the explainability

and performance of machine learning models in communications.

Ye et al. (YE et al., 2020; YE; LI; JUANG, 2021) made notable contributions by

introducing methods to handle unknown channel conditions. In (YE et al., 2020), they

employed conditional generative adversarial networks (GANs) to model channel effects

in a data-driven manner, allowing for E2E learning without explicit channel estimation.

Later, in (YE; LI; JUANG, 2021), they developed pilot-free E2E communication systems

for frequency-selective and MIMO channels, where the transmitter and receiver are jointly

optimized using DL. In more recent works, An et al. (AN et al., 2023) proposed a learning-

based E2E wireless communication system utilizing a deep neural network channel module.

Their approach models unknown channels more accurately, leading to performance gains

over traditional systems and those using GAN-based channel modeling.

In 2022, Aoudia and Hoydis (AIT AOUDIA; HOYDIS, 2022) explored E2E learning

for OFDM systems over frequency- and time-selective fading channels. They showed that

a neural network-based receiver could reduce the reliance on pilot signals without loss

of bit error rate (BER) performance, effectively increasing throughput by 7%. Guo et

al. (GUO et al., 2024) introduced a learning-based framework integrating CSI feedback

and localization in massive MIMO systems. Their approach allows the feedback codeword

to be used directly for localization without requiring reconstruction, improving both CSI

feedback accuracy and localization performance.

Wu et al. (WU et al., 2022b) presented a channel-adaptive joint source and channel

coding scheme for wireless image transmission over multipath fading channels. By employing

OFDM and a dual-attention mechanism, their model adapts to channel variations and

judiciously allocates transmission power, achieving state-of-the-art performance among

existing schemes. Sagduyu et al. (SAGDUYU; ULUKUS; YENER, 2023) discussed task-

oriented communications for next-generation (NextG) networks, focusing on E2E, DL, and

artificial intelligence (AI) security aspects. They considered wireless signal classification as

a task and addressed the security threats posed by adversarial machine learning attacks

on deep learning-based communication systems.

Song et al. (SONG et al., 2022) benchmarked and interpreted E2E learning for
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MIMO and multi-user communication systems. They highlighted potential pitfalls when

interpreting learned communication schemes and demonstrated that autoencoders could

learn to avoid interference in multi-user scenarios. Singh et al. (SINGH et al., 2024) proposed

an autoencoder-based E2E orthogonal time frequency space (OTFS) system design that

accounts for hardware impairments (HIs). By considering HIs in the design, their model

significantly enhances error performance in doubly dispersive channels, outperforming

conventional OTFS systems with state-of-the-art signal detectors.

Despite the extensive research on autoencoders and E2E learning, comparatively

fewer works address multi-user schemes using these techniques. Song et al. (SONG et al.,

2022) benchmarked and interpreted E2E learning for MIMO and multi-user communication

systems. They considered both point-to-point scenarios, such as the Alamouti STBC,

limited to two transmitting antennas and a single user, and singular value decomposition

(SVD)-based schemes, also limited to single-user systems. For multi-user scenarios, they

examined MIMO broadcast channels using zero-forcing (ZF) precoding. Still, their analysis

was restricted to single-antenna users, with an indication that an extension to multiple

antennas was left for future work. They demonstrated that autoencoders could learn to

mitigate interference in multi-user scenarios but also pointed out that the learned schemes

sometimes corresponded to conventional methods in a transformed domain. This outcome

is expected and validates neural networks’ capability as universal approximators (HORNIK;

STINCHCOMBE; WHITE, 1989), inherently converging to optimal or global solutions in

linear and controlled simulation scenarios. However, in practical systems where multiple

complex effects are present, neural networks can demonstrate their true potential by

extrapolating solutions in systems with very high degrees of freedom, as is the case in E2E

approaches.

Zhang and Vaezi (ZHANG; VAEZI, 2024) focused on a two-user z-interference

channel (ZIC) with perfect and imperfect channel state information (CSI). They designed

a deep autoencoder-based structure that jointly optimizes the encoder and decoder pairs

for both users. Their model generates interference-aware constellations that dynamically

adapt their shape based on interference intensity to minimize the bit error rate (BER).

An in-phase/quadrature-phase (I/Q) power allocation layer was introduced to enable the

generation of non-uniform constellations, bringing further gains compared to standard

uniform constellations like QAM. However, their analysis was limited to two users and

specific interference scenarios, which may not generalize to more complex multi-user

environments.

Ji et al. (JI et al., 2024) addressed dynamic interference in E2E communication

systems with multi-user Gaussian interference channels. They proposed an adaptive

learning algorithm for predicting and mitigating dynamic interference, allowing the system

to estimate uncertain interference intensity through an adaptive training loop at the
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receiver. Since existing deep learning-based autoencoders are unable to train E2E systems

without channel knowledge, they introduced a GAN-based training scheme to imitate

real channels. Their approach enables effective communication without prior knowledge of

the channel model. While their method shows significant improvements over traditional

modulation schemes like phase-shift keying (PSK) and QAM in terms of block error rate

(BLER), the study primarily focuses on scenarios with dynamic interference and does not

extensively explore other multi-user aspects such as user scalability or resource allocation.

8.3 SYSTEM MODEL

In a MIMO communication system, multiple antennas on both the transmitter

and receiver sides enable significant improvements in data rates and reliability. The system

depicted in Fig. 8.3.1a can be described by the equation:

y[k] = H[k]x[k] + η[k], (8.1)

in which x[k] ∈ C
Ntx is the transmitted signal, y[k] ∈ C

Nrx is the received signal, H[k] ∈

C
Nrx×Ntx is the channel matrix, η[k] ∈ C

Nrx is the additive white Gaussian noise (AWGN)

vector, and k = 0, 1, · · · , ∞ is the discrete time index.

The matrix H[k] describes the fading channel between the Ntx transmit antennas

and Nrx receive antennas, with elements drawn from a complex Gaussian distribution in

the case of a flat fading Rayleigh channel. The noise η[k] has independent and identically

distributed (i.i.d.) complex Gaussian entries with variance N0.

When CSI is available at the transmitter, the capacity of the MIMO system

can be achieved using singular value decomposition (SVD) and the water-filling algo-
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Figure 8.3.1 – MIMO communication systems. (a) Classical. (b) MIMO system with precoding and
decoding.
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rithm (RALEIGH; CIOFFI, 1998). The capacity expression is based on the transmitted

signal’s correlation matrix Rxx = E{x[k]xH [k]}.

The channel decomposition is given by

H = UΣVH , (8.2)

in which U ∈ C
Nrx×Nrx and V ∈ C

Ntx×Ntx are unitary matrices, and Σ ∈ C
Nrx×Ntx is a

diagonal matrix containing the singular values ¼i of H. Considering the MIMO system

illustrated in Fig. 8.3.1b, the precoding is performed by processing V, resulting in the

transmitted signal x(k) = Vs(k). The received signal after decoding with U is

ŝ = Σs + UH
η. (8.3)

To achieve the channel capacity, the power allocated to each sub-channel is

determined using the water-filling algorithm. The power Pi allocated to each sub-channel

is

Pi =

(

µ −
N0

¼2
i

)+

, (8.4)

in which (·)+ is the rectifying function and µ is the water-filling level, chosen to satisfy

the total average power constraint Ptotal =
∑

i Pi.

The achievable capacity for CSI known at the transmitter and with the transmitted

signal optimally precoded is given by

C =
min(Ntx,Nrx)

∑

i=1

log2

(

1 +
Pi¼

2
i

N0

)

[bits/s/Hz], (8.5)

which is equivalently expressed in bits/channel use.

8.4 PROPOSED APPROACH

In this work, we propose a transmission model designed to improve the performance

and robustness of communication systems. The objective is to refine the signal encoding,

transmission, and decoding processes using complex-valued neural network-based models.

CVNNs can directly operate as powerful nonlinear filters in the complex domain, surpassing

the results of classical RVNNs (HIROSE; YOSHIDA, 2012b). In recent works, CVNNs have

been successfully employed in communication systems for a wide range of applications,

such as channel equalization (MAYER et al., 2019c), beamforming (MAYER et al.,

2022), channel estimation and decoding (SOARES; MAYER; ARANTES, 2023). For

example, in the case of joint channel estimation and decoding, CVNNs not only achieve
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superior performance but also present lower computational complexity compared with

classical algorithms. Among the class of CVNNs, the phase-transmittance radial basis

function (PT-RBF) has been extensively studied for communications systems due to

its better performance in noisy scenarios, as outlined in references (SOARES; MAYER;

ARANTES, 2023; MAYER et al., 2022). Fig 8.4.1 illustrates the proposed E2E architecture

comprised of PT-RBFs (i.e., encoder and decoder) and a de-embedded channel for gradient

transmission.

8.4.1 Complex-valued PT-RBF Neural Networks

Following the notation used in (MAYER et al., 2022), the PT-RBF is defined with

L hidden layers (excluding the input layer), where the superscript l ∈ [0, 1, · · · , L] denotes

the layer index and l = 0 is the input layer. The l-th layer (excluding the input layer

l = 0) is comprised by I{l} neurons, O{l} outputs, and has a matrix of synaptic weights

W{l} ∈ C
O{l}×I{l}

, a bias vector b{l} ∈ C
O{l}

, a matrix of center vectors Γ{l} ∈ C
I{l}×O{l−1}

,

and a variance vector σ{l} ∈ C
I{l}

. Notice that x̄ ∈ C
Ninp is the PT-RBF normalized input

vector (Ninp inputs) and y{L} ∈ C
Nout is the PT-RBF output vector (Nout outputs). The

l-th hidden layer output vector y{l} ∈ C
O{l}

is given by

y{l} = W{l}φ
{l} + b{l}, (8.6)

where φ
{l} ∈ C

I{l}
is the vector of Gaussian kernels.

The m-th Gaussian kernel of the l-th hidden layer is formulated as

ϕ{l}
m = exp

[

−ℜ
(

v{l}
m

)]

+ ȷ exp
[

−ℑ
(

v{l}
m

)]

, (8.7)
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Figure 8.4.1 – Proposed E2E system architecture.
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in which v{l}
m

is the m-th Gaussian kernel input of the l-th hidden layer, described as

v{l}
m

=

∥

∥

∥ℜ

(

y{l−1}
)

− ℜ

(

γ
{l}
m

)∥

∥

∥

2

2

ℜ

(

Ã
{l}
m

)

+ ȷ

∥

∥

∥ℑ

(

y{l−1}
)

− ℑ

(

γ
{l}
m

)∥

∥

∥

2

2

ℑ

(

Ã
{l}
m

) , (8.8)

where y{l−1} ∈ C
O{l−1}

is the output vector of the (l − 1)-th hidden layer (except for the

first hidden layer that y{0} = x̄), γ{l}
m

∈ C
O{l−1}

is the m-th vector of Gaussian centers of

the l-th hidden layer, Ã{l}
m

∈ C is the respective m-th variance, and ℜ(·) and ℑ(·) return

the real and imaginary components, respectively.

8.4.2 Backpropagation and Channel De-embedding

The overall system, depicted in Fig. 8.4.1, can be analyzed by three blocks: an

encoder that transforms the input data into a transmitted signal; a channel H ∈ C
Nrx×Ntx

that interacts with the transmitted signal; and a decoder that reconstructs the original

data from the received signal. To construct such a system, considering the transmitting

model in (8.1), we employ two PT-RBFs, one for encoding and the other for decoding. In

the transmission process (i.e., forward step), the input signal s ∈ C
Ns feeds the encoder,

creating x ∈ C
Ntx . After passing through the channel, the received signal (y ∈ C

Nrx) feeds

the decoder, resulting in ŝ ∈ C
Ns . In the training process (i.e., backward step), a local

gradient is transmitted from the decoder to the encoder. However, since there is a channel

in the middle, we need to consider how the channel affects the transmitted signal and

incorporate this dynamic into the gradient computations.

During backpropagation, the loss function gradient ∇θJ is computed for any

parameter ¹ as described in (MAYER et al., 2022). Nevertheless, it is necessary to take

the channel into account, to update the encoder parameters. Then, at the encoder, the

backpropagation chain rule leads to

∇θJ =
∂J

∂ŝ
· · ·

∂y

∂x

∂x

∂¹
, (8.9)

in which the ellipses are used to omit the rest of the chain rule derivatives that can be

different depending on the neural network architecture. For an in-depth study on the

backpropagation in CVNNs, see (MAYER, 2022).

In view of (8.9), the channel effect is given by derivative ∂y/∂x = HT , which

couples the chain rule from the decoder to the encoder. Consequently, the local gradients

at the encoder become

∇θJ =
∂J

∂ŝ
· · · HT

∂x

∂¹
. (8.10)
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Figure 8.4.2 – Proposed multi-user E2E system architecture.

Regarding the specific case of the PT-RBF, the encoder gradient coupling is given

by

ψ
{L}
enc

= HTψ
{0}
dec

, (8.11)

in which ψ{L}
enc

and ψ{0}
dec

are the gradient vectors at the encoder output and decoder

input, respectively. The remaining parameter update equations for the encoder follow

the standard gradient descent approach, where the error is backpropagated through the

network until it reaches the encoder’s input.

Note that the gradient coupling method of (8.10) can be applied to any complex-

valued neural network by linearly combining the gradient at the decoder input by the

channel matrix. This gradient at the decoder input can be transferred to the encoder via

a low-capacity feedback channel.

By incorporating the channel transpose H into the gradient computations, we

effectively de-embed the channel from the backpropagation process. This allows the gradient

information to flow from the decoder back to the encoder, enabling the encoder to adjust its

parameters to mitigate the channel effects and enhance system performance. It ensures that

the encoder learns signal representations that are robust to channel impairments, thereby

improving data and user multiplexing capabilities. This approach requires knowledge of

the channel matrix H during training, which is feasible in supervised learning scenarios

where the CSI is available. In practical implementations with time-varying channels,

online learning methods can be employed to update the network parameters and maintain

performance.



CHAPTER 8. COMPLEX-VALUED NN-BASED END-TO-END LEARNING IN MASSIVE-MIMO

COMMUNICATIONS 165

8.4.3 Multi-user Autoencoder

Extending the proposed complex-valued PT-RBF neural network to an MU-MIMO

scenario involves accommodating multiple user equipments (UEs), each with its decoder

while maintaining a shared encoder at the transmitter. This architecture allows efficient

data and user multiplexing in a MIMO system serving multiple users simultaneously, as

shown in Fig. 8.4.2.

8.4.3.1 System Model

Consider a MIMO system with Nue UEs, in which the n-th UE (UEn) has Nrx,n

receiving antennas. The transmitter (e.g., base station) is equipped with Ntx transmitting

antennas and employs a single neural network encoder to serve all UEs. Each UE operates

its neural network decoder, which resides within the UE and is independent of other UEs.

For the UEn, the received signal yn ∈ C
Nrx,n is given by

yn = Hnx + ηn, (8.12)

in which x ∈ C
Ntx is the transmitted signal, Hn ∈ C

Nrx,n×Ntx is the UEn channel matrix,

ηn ∈ C
Nrx,n is the UEn noise vector.

8.4.3.2 Training Process

Each UE employs its neural network decoder and uses a unique pseudo-random

pilot sequence for training, eliminating the need to share training sequences among UEs

and reducing computational overhead. The encoder at the transmitter is responsible for

nullifying inter-UE interference by learning to encode signals that are distinguishable at

each UE’s decoder.

During the training phase, UEn computes the quadratic loss function based on its

received pilots

Jn =
1

2
∥sn − ŝn∥2

2, (8.13)

in which sn ∈ C
Ns,n and ŝn ∈ C

Ns,n are the pilot and estimated vectors, respectively.

8.4.3.3 Backpropagation and Federated Learning

Following the strategy proposed in Section 8.4.2, the UEn computes its local gradi-

ent and estimates the channel Hn, transmitting these pieces of information to the encoder.

Then, at the receiver, a global channel matrix H = [H1 H2 · · · HNue
]T ∈ C

(Nrx,nNue)×Ntx can

be stacked to encompass all UEs. Similarly, the same stacking can be employed on the local

gradients, which, for the PT-RBF, yields ψ{0}
dec

=
[

ψ
{0}
dec,0 ψ

{0}
dec,1 · · ·ψ{0}

dec,Nue

]T ∈ C
Nrx,nNue .

Finally, the aggregated gradient at the transmitter can be computed as in (8.11).
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This method accurately accounts for all UEs in a single operation. However, it

requires each UE to feedback both its estimated channel Hn and its local decoder gradient

(i.e., ψ{0}
dec,n for the PT-RBF) to the transmitter, which may not be practical due to feedback

bandwidth constraints.

To address this issue, we propose a federated learning approach in which each UE

computes its local gradient and sends it to the transmitter via a feedback channel. This

approach reduces the feedback overhead, as each UEn only needs to transmit a gradient

vector ∇xJn of length Ntx,n, without requiring the full channel matrix. Specifically, for

UEn

∇xJn =
∂Jn

∂ŝn

· · · ∂yn

∂x
=

∂Jn

∂ŝn

· · · HT
n , (8.14)

which is independent of the transmitted signal x.

After receiving the Nue gradients, the encoder aggregates all ∇xJn in a federated

learning scheme

∇xJ =
Nue
∑

n=1

∇xJn, (8.15)

which yields the encoder gradient

∇θJ = ∇xJ
∂x

∂θ
. (8.16)

Then, for the PT-RBF, UEn transmits the vector

ψ
{0}
fl,n = HT

nψ
{0}
dec,n, (8.17)

and, at the receiver, the federated learning aggregation is

ψ
{L}
enc

=
Nue
∑

n=1

ψ
{0}
fl,n . (8.18)

As in Section 8.4.2, this approach is valid for any complex-valued neural network

by replacing gradients in (8.15) and (8.16).

This federated learning allows each UE to operate independently with its decoder

and training process, fully decoupling the UEs. The encoder at the transmitter learns

to encode signals that can be correctly decoded by each UE while mitigating inter-user

interference. Consequently, data intended for different UEs can be multiplexed efficiently,

enhancing the overall Mutual Information (MI).

Extending the single-user autoencoder framework to a multi-user scenario, we

leverage the neural network’s ability to learn complex mappings in a high-dimensional space.

Each UE’s decoder adapts to its specific channel conditions and interference environment,

while the shared encoder learns to optimize the transmitted signals for all UEs collectively.
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This method requires a feedback mechanism for UEs to return their local gradients

to the transmitter. Although this introduces some overhead, it is feasible in systems where

feedback channels are available and can be efficiently managed. Overall, the proposed

multi-user autoencoder facilitates efficient data and user multiplexing in MIMO systems,

offering a scalable solution for multi-user communications with CVNNs.
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Figure 8.4.3 – (a) Block diagram of the direct transmission model. (b) Power analysis of the direct model
in a 4x4 MIMO system with 16-QAM modulation under a noise-free condition (SNR =

100 dB). (c) Power analysis of the direct model under noisy conditions (SNR = 8 dB).
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8.4.4 Transmission Power Analysis

The proposed approach is evaluated using four transmission models: direct, nor-

malized, regularized, and a combination of regularization with normalization. Each model

addresses specific challenges in maintaining stable transmission power and ensuring efficient

signal recovery.

8.4.4.1 Direct Model

In the direct model, shown in Fig. 8.4.3a, the encoded signal is transmitted without

additional processing. This baseline model helps to understand the transmission behavior

and serves as a basis for enhancements.

To ensure compatibility with the neural network decoder, the received signal is

normalized as ydec = yrxGdec, with

Gdec =
1

Pyrx

√
Nrx

, (8.19)

in which Pyrx
is the received root mean square (RMS) power.

In a noise-free environment, the system stabilizes after a brief transient phase,

as shown in Fig. 8.4.3b. However, as shown in Fig. 8.4.3c, when noise is introduced, we

observe that the encoder increases its output power in an attempt to compensate for the

noise η, leading to an unbounded growth in xenc. This uncontrolled power escalation is

impractical for real-world applications with power constraints.

8.4.4.2 Power-Normalized Transmission

The power-normalized model introduces a normalization step before transmission

to control the transmitted power. The encoded signal is scaled to have unit power xtx =

xencGenc, in which

Genc =
1

Pxenc

. (8.20)

This modification, depicted in Fig. 8.4.4a, stabilizes the transmitted power. How-

ever, the encoder’s output xenc still grows indefinitely (Fig. 8.4.4b), which is expected since

there is no direct restriction preventing the encoder from increasing its output values. This

uncontrolled growth may cause overflow or saturation issues within the neural network.

8.4.4.3 Regularization

To prevent the indefinite growth of xenc, the regularized model applies L2 regular-

ization to the encoder output layer, as shown in Fig. 8.4.5a. L2 regularization is a technique

that adds a penalty term to the loss function, proportional to the squared magnitude of

the neural network parameter. This penalty discourages the network from assigning large
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Figure 8.4.4 – (a) Block diagram of the power-normalized model. The gain Genc normalizes the encoded
signal before transmission. (b) Power analysis of the power-normalized model. The trans-
mitted power is stabilized, but xenc continues to rise indefinitely, potentially leading to
overflow or saturation.

weights, effectively controlling the magnitude of the encoder’s output, and potentially

preventing overfitting.

The update rule for a generic parameter θ, with L2 regularization, is

θ[k + 1] = θ[k] − ηθ (∇θJ [k] + µ[k]θ[k]) , (8.21)

in which ηθ is the learning rate and µ[k] is the regularization factor.

The regularization factor µ[k] is dynamically adjusted using a parametric sigmoid

function to ensure that regularization is applied effectively, as

µ[k] =
c

1 + exp(−a · Pxenc
[k] + b)

, (8.22)

in which Pxenc
[k] is the RMS power of the encoder’s output. In this function, a is the

smoothing factor that determines the steepness of the sigmoid curve; a higher value of

a results in a sharper transition, causing µ[k] to increase rapidly once Pxenc
[k] exceeds

a certain threshold. The parameter b is the shift factor, controlling the point along the

Pxenc
[k] axis where the sigmoid function transitions; adjusting b shifts the curve left or

right, determining when regularization begins to increase. Finally, c is the scaling factor

that sets the maximum value of µ[k]; this parameter limits the regularization factor to

prevent it from becoming excessively large.
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Figure 8.4.5 – (a) Block diagram of the regularized model. L2 regularization is applied to the encoder’s
output layer to control the output magnitude. (b) Power analysis of the regularized model.
L2 regularization stabilizes xenc, but a small transient is observed at the beginning of
transmission.

By tuning a, b, and c, the regularization factor µ[k] remains low when the encoder’s

output power is within acceptable limits and increases only when necessary to prevent

excessive growth. As shown in Fig. 8.4.5b, regularization stabilizes xenc. However, a small

transient in transmitted power remains at the start of transmission.

8.4.4.4 Regularization with Normalization

To eliminate the transient issue, the regularization with normalization model

combines both techniques, as shown in Fig. 8.4.6a. The encoded signal is regularized and

then normalized before transmission.
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Figure 8.4.6 – (a) Block diagram of the regularization with normalization model. The signal is regularized
and normalized before transmission and further normalized at the receiver. (b) Power anal-
ysis of the regularization with normalization model. Both regularization and normalization
contribute to a fully stabilized transmitted signal. (c) MI performance of the transmission
model depending on the power constraint. Regularized models show a slight drop in perfor-
mance at lower SNRs, between 8 dB and 24 dB, but provide enhanced power control.

This approach ensures consistent and stable power levels throughout transmission,

as evidenced in Fig. 8.4.6b. Both xenc and xtx remain stable, addressing the issues identified

in previous models. Fig. 8.4.6c compares the estimated MI performance of all models in a
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Table 8.5.1 – PT-RBF architectures and hyperparameters.

Shallow PT-RBF Deep PT-RBF MU PT-RBF Lightweight MU PT-RBF

Tx Rx Tx Rx Tx Rx Tx Rx

Hyperparam. l = 1 l = 1 l = 1 l = 2 l = 1 l = 2 l = 1 l = 1 l = 1 l = 1

Neurons 250 125 50 50 25 25 250 10 250 4

ηw 5 × 10−6 5 × 10−3 5 × 10−4 5 × 10−6 5 × 10−3 5 × 10−3 5 × 10−6 5 × 10−3 5 × 10−6 5 × 10−3

ηb 5 × 10−6 5 × 10−3 5 × 10−4 5 × 10−6 5 × 10−3 5 × 10−3 5 × 10−6 5 × 10−3 5 × 10−6 5 × 10−3

ηγ 3 × 10−4 3 × 10−3 3 × 10−4 3 × 10−4 3 × 10−3 3 × 10−3 3 × 10−4 3 × 10−3 3 × 10−4 3 × 10−3

ησ 5 × 10−4 5 × 10−3 5 × 10−4 5 × 10−4 5 × 10−3 5 × 10−3 5 × 10−4 5 × 10−3 5 × 10−4 5 × 10−3

l denotes the PT-RBF layer.

4x4 MIMO system with 16-QAM modulation. Although all models perform similarly at

lower and higher SNRs, the regularized models exhibit a slight performance degradation

at SNRs between 8 dB and 24 dB. Despite this minor drawback, the regularized models

offer significant advantages in power control and system robustness.

8.5 RESULTS

In this section, we present the performance analysis of the proposed E2E MIMO

system using complex-valued neural networks (CVNNs) in comparison with conventional

MIMO precoding techniques. We specifically compare the results of our approach with

well-established linear precoding methods of zero-forcing (ZF) and minimum mean square

error (MMSE) precoding. Additionally, the theoretical upper bound is presented using

SVD combined with water-filling (i.e., maximum achievable capacity for a MIMO system).

All systems are evaluated over a static, flat-fading Rayleigh channel with perfect CSI at

the receiver. The detailed configuration of the proposed E2E MIMO system is described in

Table 8.5.1. The training was performed using batch sizes of 100. Each epoch comprehends

50×103 multiplexed symbols. L2 regularization was optimized for a = 3, b = 15, and c = 1.

The PT-RBF parameters are initialized as proposed in (SOARES; MAYER; ARANTES,

2024) and updated using AdaMax, the adaptive moment estimation with infinite norm.

For the sake of comparison, the estimated MI is obtained from ten consecutive

Monte Carlo simulations for each system. The simulation scenarios include different

modulation schemes (4-QAM, 16-QAM, and 64-QAM) with varying levels of complexity

and signal quality, demonstrating the robustness and adaptability of the proposed system

for higher-order modulations. Results were averaged over ten subsequent simulations.

8.5.1 MIMO Results

We compare the proposed model’s performance across different modulation

schemes, including 4-QAM, 16-QAM, and 64-QAM, with four spatially multiplexed streams

transmitted over four antennas. These simulations assess the MI gains achieved using our

model.
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8.5.1.1 4-QAM Modulation

In the first scenario, we utilize Ntx = Nrx = 4, with four spatially multiplexed 4-

QAM streams. The proposed E2E CVNN is employed in a shallow architecture (Table 8.5.1).

Fig. 8.5.1 illustrates the estimated MI performance as a function of the signal-to-noise

ratio (SNR). As observed, the proposed model significantly outperforms both ZF and

MMSE precoding techniques. This result highlights the robustness of the proposed E2E

CVNN learning approach, which can adapt to the channel conditions and achieve near-

optimal performance, closely approaching the theoretical upper bound.
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Figure 8.5.1 – Estimated MI analysis for the proposed system with 4-QAM modulation and Ntx = Nrx = 4.
The solid blue line represents the proposed approach, the dashed yellow line is the MMSE,
the dashed red line is the ZF, and the dotted black line is theoretical capacity.

8.5.1.2 Higher-Order Modulations

To further evaluate the model adaptability, the second scenario extends the

modulation schemes to 16-QAM and 64-QAM. Fig. 8.5.2a presents the estimated MI

analysis with 16-QAM modulation, while Fig. 8.5.2b shows the results with 64-QAM

modulation. Despite the increased complexity of the modulation schemes, the proposed

model demonstrates its ability to manage high-order modulation, continuing to outperform

traditional ZF and MMSE precoding techniques. To handle this increase in the modulation

order the model was optimized according to Table 8.5.1 with two layers both in the encoder

and decoder. These results further solidify the robustness of our E2E approach across a

variety of challenging scenarios.
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Figure 8.5.2 – Estimated MI analysis for Ntx = Nrx = 4: (a) 16QAM. (b) 64-QAM. The solid blue line
represents the proposed approach, the dashed yellow line is the MMSE, the dashed red line
is the ZF, and the dotted black line is theoretical capacity.

From this point forward, we will not compare the proposed system to ZF and

MMSE precoding approaches, as the presented results have already established a reference

for the effectiveness of our model. The following sections will focus on evaluating the

performance of the proposed system in various challenging scenarios to further stress the

model’s capabilities.
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8.5.1.3 Results in terms of MSE

Additionally, the performance of the model is evaluated in terms of the normalized

mean squared error (NMSE) by comparing the estimated signal ŝ with the original reference

signal s per epoch. Fig. 8.5.3 shows the results for 4 × 4 MIMO transmitting 4 streams

in low SNR (Fig. 8.5.3a) and high SNR scenarios (Fig. 8.5.3b). Results demonstrate a

smooth convergence and small standard deviation. Moreover, the maximum error is limited,

indicating the convergence in both low and high SNR.
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Figure 8.5.3 – NMSE convergence analysis of the proposed E2E learning with regularization and normal-
ization for (a) SNR = 5 dB and (b) SNR = 13 dB.

8.5.1.4 Massive MIMO Schemes with 4-QAM Modulation

In this scenario, we extend the evaluation to massive MIMO configurations,

exploring different numbers of antennas at both the transmitter and receiver, where

Ntx = Nrx = Ns is set to 4, 5, 10, and 20. The 4-QAM modulation scheme yields 8, 10, 20,

and 40 bits/s/Hz of spectral efficiencies.



CHAPTER 8. COMPLEX-VALUED NN-BASED END-TO-END LEARNING IN MASSIVE-MIMO

COMMUNICATIONS 176

-5 0 5 10 15 20 25
SNR [dB]

0

10

20

30

40

50

60

70

80

Es
tim

at
ed

 M
I [

bi
ts/

s/H
z]

10 bits

20 bits

40 bits

80 bits
Ntx = Nrx = Ns = 5
Ntx = Nrx = Ns = 10
Ntx = Nrx = Ns = 20
Ntx = Nrx = Ns = 40

Shallow PT-RBF
Theoretical

Figure 8.5.4 – Estimated MI analysis for MIMO configurations with Ntx = Nrx = Ns and 4-QAM
modulation, in which Ntx, Nrx, and Ns are set to 4, 5, 10, and 20. Solid lines represent the
proposed approach and dotted lines the theoretical capacity.

Fig. 8.5.4 presents the performance of the proposed approach across these MIMO

setups. For Ntx = Nrx = Ns = 4, the maximum MI is achieved with an SNR = 13 dB.

In a more complex scenario, Ntx = Nrx = Ns = 20, the maximum MI is achieved for an

SNR = 21 dB. Results demonstrate the model’s capacity to handle a large number of

antennas and streamings while maintaining robust performance. The proposed model shows

remarkable adaptability and efficiency when scaling up to massive MIMO configurations,

maintaining its superior performance even as the complexity of the system increases.
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8.5.1.5 Streams Exceeding the Channel Rank
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Figure 8.5.5 – Performance analysis with NT = NR = 4, 4-QAM modulation, and varying the number
of streams Ns. Solid lines represent the proposed approach and the dotted line is the
theoretical capacity. The ability of the proposed approach to exceed the traditional channel
rank limit is shown, achieving maximum MI with 9 streams.

We explore the ability of the proposed approach to handle cases where the

number of transmitted streams exceeds the channel rank. In a MIMO system, for a given

number of transmitting antennas Ntx and receiving antennas Nrx, the maximum number of

parallel streams that can be transmitted is determined by the rank of the channel matrix

H ∈ C
Nrx×Ntx , which is given by min(Ntx, Nrx). This limitation applies to traditional

methods such as SVD, MMSE, and ZF. In contrast, the proposed approach demonstrates

the capability to multiplex more streams than the channel rank allows. This is illustrated

in Fig. 8.5.5, in which the number of parallel streams varies from 4 to 9. Remarkably,

the system achieves maximum MI for each stream, as evidenced by the 18 bits/s/Hz

transmission when 9 streams are employed. However, to fully separate 8 and 9 streams, the

training process required some optimization, increasing from 100 to 500 training epochs.

This ability to transmit more streams than the traditional limit offers a valuable

degree of freedom when selecting the transmission rate. The system can increase MI by

either increasing the modulation order or adding more parallel streams. This capability to

parallelize streams also hints at the system’s potential to efficiently multiplex multiple

users.

8.5.2 MU-MIMO Results

The following results demonstrate the capability of the proposed federated learning

approach to serve multiple users by multiplexing both users and data streams to enhance
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MI.

8.5.2.1 Massive MU-MIMO Scheme with Several UEs

Fig. 8.5.6 presents five curves, each representing different configurations of user

equipment (UE) and antennas: Nue = 2, 4, 6, 10, and 20. Each UE is equipped with

Nrx = 2 antennas and receives 2 data streams, which means that the total number of

Rx antennas and data streams are matched to the number of transmit antennas, i.e.,

Ntx = Nrx =
∑

n Nrx,n. The 4-QAM modulation is employed in all cases.
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Figure 8.5.6 – 4-QAM MU-MIMO result analysis for Nue = 2, 4, 6, 10, and 20, with Ntx = Nrx =
∑

n Nrx,n.
Solid lines represent the proposed approach and dotted lines the theoretical capacity.

For instance, with 2 UEs, there will be 2 × 2 = 4 Rx antennas and 4 data streams

will be transmitted, resulting in 4 spatially multiplexed data streams. Similarly, in the

setup with 20 UEs, the system will handle 20 × 2 = 40 Rx antennas and 40 data streams.

Results show that the system can separate and achieve the maximum MI for each UE, 4

bits/s/Hz per UE, even in massive MU-MIMO setups, where up to 20 UEs are successfully

multiplexed. It is important to highlight that, although the lightweight PT-RBF has a

reduced number of neurons compared with the shallow PT-RBF (Table 8.5.1), the sum

MI performance is almost the same, demonstrating that for input and output of lower

dimension, less complexity is necessary at the decoder (i.e., at the UE).

8.5.2.2 Data Streams Exceeding the Channel Rank with 4-QAM

In addition to the previous scenarios, we further investigate the ability of the

proposed approach to handle cases where the number of data streams exceeds the channel

rank, i.e., Ns > Ntx. Fig. 8.5.7 presents the estimated sum MI results for a fixed number
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of transmitting antennas (Ntx = 4) and varying numbers of UEs (Nue = 2, 3, and 4), each

equipped with two receiving antennas. Each UE receives two data streams, resulting in a

total number of streams Ns = 2 × Nue.
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Figure 8.5.7 – 4-QAM MU-MIMO result analysis for Nue = 2, 3, and 4, with Ntx = 4 and Nrx =
∑

n Nrx,n.
Solid lines represent the proposed approach and dotted lines the theoretical capacity.

For the case of Nue = 2, the total number of streams is equal to the number

of transmitting antennas (Ns = Ntx = 4), and the proposed approach can achieve the

maximum MI per UE. Remarkably, even when the total number of streams exceeds

the number of transmitting antennas (e.g., Nue = 3 and 4, resulting in Ns = 6 and 8,

respectively), the proposed CVNN-based system still achieves near-optimal MI per UE.

This observation aligns with the results presented in Section 8.5.1.5, where the system can

handle more streams than the channel rank allows.

These results highlight the robustness and scalability of the proposed federated

learning approach in multi-user scenarios. The ability to achieve maximum sum MI even

when Ns > Ntx showcases the system’s capacity to efficiently multiplex data streams and

users beyond the conventional channel rank limitations. This is particularly advantageous

in practical deployments where the number of users and data streams may exceed the

available transmitting antennas. By leveraging the learning capabilities of complex-valued

neural networks, the system adapts to the increased demand, maintaining high spectral

efficiency and effective resource utilization in massive MU-MIMO systems.

8.6 CONCLUSION

This paper presents a novel E2E learning architecture for massive MIMO commu-

nication systems using complex-valued neural networks (CVNNs). By processing signals
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directly in the complex domain, our approach preserves the inherent structure of wireless

signals, eliminating the need to separate real and imaginary components. This leads to

more efficient encoding and decoding processes and improved system performance. We

integrated both encoding and decoding stages optimized for flat-fading Rayleigh channel

conditions, focusing on improving Mutual Information (MI) and transmission efficiency.

Through rigorous simulations, we demonstrated that the proposed CVNN-based architec-

ture significantly outperforms traditional methods such as zero-forcing (ZF) and minimum

mean square error (MMSE) precoding across various modulation schemes, including 4-

QAM, 16-QAM, and 64-QAM. The results showed that our proposals closely approach

the theoretical limits even in massive MIMO configurations.

A key contribution of our work is the extension to multi-user MIMO (MU-MIMO)

scenarios. By incorporating federated learning, we designed a system capable of orthogo-

nalizing data streams for multiple user equipment (UEs), effectively mitigating inter-user

interference and enhancing spectral efficiency. Our simulations demonstrated that the

proposed multi-user autoencoder can serve several UEs simultaneously while maintaining

robust performance, highlighting its scalability and practicality for future wireless com-

munication systems. The results have shown that it is possible to effectively transmit a

number of data streams exceeding the rank of the channel matrix. Additionally, we intro-

duced a regularization based power control mechanism to ensure constrained transmission

power. This mechanism effectively stabilizes the transmitted signals, addressing common

challenges in high-throughput MIMO systems, and contributing to the overall reliability

of the communication process.

Future work will focus on extending the proposed architecture to more com-

plex channel conditions, such as frequency-selective fading channels, and exploring its

performance in practical deployment scenarios. Investigating the impact of imperfect

channel state information (CSI) and developing robust training strategies to handle dy-

namic environments are also promising directions. Furthermore, integrating the proposed

CVNN-based approach with emerging technologies such as massive MIMO in millimeter-

wave (mmWave) and Terahertz (THz) bands could further enhance the capabilities of

next-generation wireless networks.
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Chapter 9

Conclusions

This chapter highlights the main contributions of this dissertation and suggests

possible directions for future related work.

9.1 CONCLUDING REMARKS

In this dissertation, we proposed and analyzed a myriad of complex-valued neural

networks and machine learning applications for telecommunications. The research presented

has demonstrated significant advancements in the design and application of complex-valued

neural networks (CVNNs) for various telecommunication tasks such as channel estimation,

equalization, beamforming, and decoding. By leveraging the unique properties of CVNNs,

we have shown improved performance in terms of accuracy, computational efficiency, and

robustness, especially in challenging environments with high levels of noise and interference.

The studies encompassed a range of scenarios including 5G wireless Rayleigh channels,

dynamic MIMO-OFDM systems, and high Doppler frequencies, underscoring the versatility

and effectiveness of our proposed methods.

Next, we summarize important aspects of our main contributions, challenges, and

conclusions:

9.1.1 Main Contributions

Complex-Valued Neural Networks (CVNNs) for Telecommunications Developed

and analyzed innovative CVNN architectures tailored for various telecommunication

tasks including channel estimation, equalization, beamforming, and decoding. Intro-

duced the phase-transmittance radial basis function (PT-RBF) neural network for

massive MIMO-OFDM systems, demonstrating improved performance with lower

computational complexity compared to traditional methods.

Parameter Initialization Techniques Proposed novel parameter initialization methods

for PT-RBF and deep complex-valued radial basis function (C-RBF) neural net-

works. These techniques ensure successful convergence and enhance the robustness

and efficiency of neural network deployments in complex digital communication

environments.



CHAPTER 9. CONCLUSIONS 186

Semi-supervised Learning Approaches Introduced semi-supervised learning tech-

niques, specifically hard inference learning (HIL) and Gaussian inference learning

(GIL), to enable CVNNs to learn from non-pilot-aided data, increasing their tracking

ability and robustness in dynamic channels.

Parallel Processing in MIMO-OFDM Systems Developed a parallel decoding method

utilizing distinct PT-RBF neural networks for each subcarrier in MIMO-OFDM

systems. This approach significantly reduces decoding time and improves system

adaptability by effectively managing nonlinear impairments and intersymbol inter-

ference.

End-to-End Learning in MIMO Systems Designed a novel end-to-end (E2E) learning

architecture for massive MIMO systems using CVNNs. This approach fully utilizes

the complex nature of communication signals, improving system capacity and trans-

mission efficiency. A key contribution is the extension of this E2E framework to

multi-user MIMO (MU-MIMO) scenarios with federated learning, enabling data

stream orthogonalization for multiple users while ensuring stable transmission power

with regularization.

9.1.2 Challenges

High Computational Complexity Addressed the challenge of high computational com-

plexity in traditional decoding algorithms for MIMO systems by proposing efficient

CVNN-based methods that maintain high performance with reduced computational

requirements.

Dynamic and Noisy Environments Tackled the difficulties posed by dynamic and

noisy environments in telecommunications by leveraging the intrinsic capabilities of

CVNNs to process complex-valued data, ensuring robust performance under various

conditions including high Doppler frequencies and nonlinear distortions.

Parameter Initialization Overcame the challenge of parameter initialization in multi-

layered CVNN architectures by developing robust techniques that ensure successful

convergence and optimal performance across different network configurations.

9.1.3 Conclusions

Enhanced Performance The proposed CVNN-based methods demonstrated significant

improvements in bit error rate (BER), computational efficiency, and system capacity

compared to traditional approaches, particularly in challenging telecommunication

scenarios.
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Scalability and Adaptability The scalability of the proposed neural network archi-

tectures makes them suitable for future telecommunication systems, including 5G,

6G, and beyond, with potential applications in ultra-massive MIMO setups and

multi-user MIMO (MU-MIMO) systems.

Robustness and Reliability The robustness and reliability of the proposed methods

were validated through extensive simulations conforming to technical standards,

highlighting their effectiveness in real-world applications and paving the way for

more adaptive and resilient communication systems.

9.2 FUTURE DIRECTIONS

According to the results obtained from the analysis of the proposed scenarios,

several promising avenues for future research have been identified:

Scalability Exploring the scalability of the proposed CVNN architectures to ultra-massive

MIMO setups with a higher number of antennas and subcarriers could provide deeper

insights into their performance and feasibility in next-generation communication

systems.

Optimization Further optimization of the training algorithms and parameter initialization

procedures could enhance the efficiency and accuracy of the decoding process.

Broader Testing Testing the proposed approaches under a broader range of channel

conditions and modulation schemes will help to validate their robustness and reli-

ability in real-world applications, paving the way for more resilient and adaptive

communication systems in the future.

Federated Learning Extensions Investigating the application of federated learning

techniques in larger and more complex multi-user MIMO scenarios could provide

new insights into how to manage interference and maximize system capacity across

heterogeneous users.
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