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Abstract

This paper studies invariant control sets for d-dimensional bilinear control
systems on the Stiefel manifolds St2(d) of two orthonormal frames in RY.
It is shown that under an accessibility assumption the only non trivial case
which remains to be analyzed is the case where the system’s semigroup is a
semigroup with non void interior in SI(d,IR). For this case the quantity of
invariant control sets on St3(d) is computed with the aid of the results of
[7] about invariant control sets on the flag manifolds. Also. it is given an
answer to the question of the existence or not, in an invariant control set
on Sty(d), of frames which span the same two dimensional subspace and are
positively oriented inside this subspace. This question is suggested by the
rotation numbers in higher dimensions as discussed in [2].

1 Introduction

Let

b3 T=Ax+ Z u,Bx
=1
be a bilinear control system on IR?, d > 3. Denote by Sg (or just by S) the system
semigroup and by Gg (or G) the system group (scc c.g. [6]).1t is known that Sy is a
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semigronp with non void interior in Gg. The system induces a right invariant system
on GI(d, I?) and so it induces also control systems on the homogeneous spaces of
Gl(d, IR). Their orbils, control sets, etc... are given by the action of G and Sg as
a subgroup and subsemnigroup of Gl(d, IR) respectively.

Of interest here are the invariant control sets for the system induced on the Stiefel
manifolds St,(d) of two-orthonormal frames of /R, that is the invariant control sets
for the action of § on Sty(d). In particular, it will be discussed whether an invariant
control set contain frames which are of the same orientation within a two-plane.
This question is relevant for rotation numbers (c.f. [2, Thm. 4.1 ii]).

It will be assumed that Gy C Sl(d, R). This assumption amounts to lLake A
and DI; with zero trace, and can be done withoul loss of generality hecause Gl(d, IR)
decomposes as Si(d, ) Z with Z the center which is the subgroup of the multiples
of the identily and acls trivially on the Stiefel manifolds.

It will be assumed also that the system on St,(d) has the accessibility property,

that is

A: it (Sz) #0

This assumption, although natural from the points of view of e.g control theory;
uniqueness of invariant probability inside the invariant control sets, etc.... (see[l])
it is Lighly restrictive from the point of view of group theory. In fact, A implies
trivially that G is transitive on St;(d). On the other hand, there is the following

Fact: Except in dimensions 7 and 8 the only subgroups of Si(d, IR) which arc
transitive on Sty(d) (with the action induced by the Si(d, IR)—action) are SO(d, IR)
and Si(d, ) itsell. The other groups transitive in dimensions 7 and 8 are compact.
This fact was stated without proof in [6, Example 3,page 58]. Its proof is based
on Boothby[3] and Boothby and Wilson [4] classification of the groups which are
transitive on Id.

This fact will be proved in section 2 below. From it, the accessibility assumption
A reduces the possibilities only to those semigroups which are either with non void
interior in Si(d, R) or with non void interior in a compact group. In the latter case,
the semigroup is a group so there is no further analysis to be done. In the case of
a semigroup with non void interior in Si(d, IR), the analysis of its invariant control
sets in the Stiefe]l manifold is provided in section 3. The main technique used comes
from the results of [7] about the action of subsemigroups with non empty interior in

Sl(d, R) on the flag manifolds.

2 Groups Transitive on Sty(d)

The idea for classifying the linear groups (subgroups of Si(d, 7)), which are tran-
sitive on St3(d) is to look at those groups which are transitive on the sphere 54!
and then use the fibration

x : Sty(d) — 59!

which maps the orthonormal two-frame {u,v} into its first element v € S*-'.
The action of Sl(d, IR) on Sty(d) is given by orthonormalization of {gu,gv}, g €
Si(d, k), {u,v} € Sty(d). This implies, among other things, that the above fibra-
tion is equivariant w.r.t the S{(d, R)—actions, whicl in turn implies that a necessary
condition for a subgroup G € Sl(d, IR) to be transitive on Sty(d) is that it is tran-
sitive on §4~1. On the other hand, fixing v € S*7', the fiber 77 '(u) over it is the
set of frames {u,v} with v € $%-! orthogonal to u , so that it is homeomorphic to
S59-2, Also, in order that G is transitive on St,(d) it is nccessary that it is transitive
on the fiber over u all u, where transitivity on the fiber means that ¥p,q € 7="(u)
there exists g € G such that gp = ¢. Now, due to the equivariance of 7, gp = ¢
implies that gu = u, so that G is transitive on the fiber over u if and only if the

isotropy

Gu.={9€G:gu=u}

is transitive in this fiber.

The job thus is to look at those groups which are transitive on S*=' and check
whether their isotropies are transitive on the fiber $*=2. T'he lincar gronps transitive
on S4=! where classified by Boothby [3] and Boothby and Wilson [].

The idea to check the transitivity of the isotropy on the fiber is to use Boothby’s
classification in dimension one less. There is however a problem about this which
comes from the fact that this classification is exclusive for linear groups with action
coming from the Si(d, I?)—action. So in order that that classification becomes
available it is necessary to ensure first that the action of G, on the fiber is lincar,
that is, comes from a linear represcntation of G, on I*='.This is assured by the

Proposition 1 Sty(d) is the sphere bundle S(S4=') of the spheres of the tangent
bundle of S*=1, and the action of SI(d, R) on it is just the differential action (lifting)
of elements of Sl(d, IR) viewed as diffeomorphisms of S*='.



Proof. 1In fact, the mapping {u,v} € Sta(d) — $(541),u € S v € T8¢!
defines a bijection between S(S4°") and Sta(d). t
Denote for a moment by g + u the action of g € SI(d, IR) in u € & s

where gu is matrix multiplication(action on IR?). Suppose g * u = u and take
v e T,5%"; v e IR and is orthogonal to u. Let u, be a curve in §4°' with ug = u
and whose derivative at 0 is v. Then

o - Qut \/
dt(g *U )= = Toue] /t=0
- Qv <4!|lqug>
lguo| lougp 90
qv (gugu) u
lgul loul 9

because gu = |gu|u and uy = u. Therelore the differential of y — g * y at u is

gvu < gv,u >
S L PR xR
lgu| lgn|

which has the same direction as the second vector of the orthonormalization of
{gu,gv}. Therefore the action of the isotropy is linear. O

Now it is possible to start.

Let G be a linear Lie group transitive on S9! and g its Lie algebra. Transitivity
of G implies its irreducibility and therefore g decomposes as

gE=80Dz

with go semi-simple and z the center (compare with [3]). Let G be the connected
subgroup of G whosc Lie algebra is go. It is known that Gy is also transitive on 54!
(see [3] and [4, page 216] ).

The discussion to follow is to ensure that the analysis of the transitivity on the
Sticfel manifold St,(d) can be reduced to the action of Gy, so that it is enough to
look at semi-simple Lie groups. This facilitates the computations.

Let H be the isotropy (at some point of $47!) and denote by h its Lie algebra.
Assume that it is transitive on the fiber. Then, as to g, it acts irreducible on R4,

By the discussion above this action comes from a representation, say p, of .
Denoting also by p the representation of h, irreducibility implies that

p(h)=1®dc

L\

with | semi-simple and c the center. The derived algchras are

p(h) =1

g =g and

so that

I'=p(h)" = p(h') C p(h N go)
because h’ C g’ = go. Now, hN gy is the Lie algebra of /f N (y. Since the connected
subgroup whose Lie algebra is | is transitive (if /{ is transitive), this implies that
II N Gy, which is the isotropy of the Go—action is also transitive. ‘Therefore, a
linear group G is transitive on Sty(d) if and only if its semi-simple component is
also transitive. ‘

The table below is extracted from [4] and shows the linear Lie algebras transitive
on S, Transitivity of the Lie algebra g means that the gronp (7 obtained by ex-
ponentiating a faithful representation of g is transitive on the correspounding sphere.
Due to the discussion above, it is reproduced here only the semi-simple components
of the Lie algebras.

Notation d is the dimension of the representation an NV is the dimension of the
Lie algebra.

Type d N Algebra
I1 m m(m-1)/2 so(m)
12 2m m?-1 su(m)

I3 4m 2m*4m sp(m)
I4  4m 2m?*+m+3 sp(m) Ml

I5 8 22 spin(T)

16 16 36 spin(9)

1.7 i 14 B2(-11)

11 m m?-1 sl(in, II?)

I1.2 2m 2(m?-1) sl(m,q)

I1.3 4m 4m? -1 sl(m, 1)

II4 2m 2m?+4+m sp(in, )

II5 4m 4m?+2m  sp(m.CT)

IIT  4m 4m? 42 sl(m, 1) 9 su(2)

The algebras of class I are compact and those of classes Il and I1] are non
compact.

It is not worth to describe here all the representations. ixcepl from 1.5,6 and
7 they are described by algebras of real, complex and quaternionic matrices. In
particular, I.1 and I1.1 are the canonical representations ol so and sl respectively.
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Clearly, I.1 and I1.1 arc transitive on Sty(d).

The others non compact are not transitive. This can be easily checked by the
dimension of the isotropy. This is a non compact Lie group acling transitively in a
sphere in dimension one less, so thal it is part of the above list. Now, the only non

compact case occurring in odd dimension is I1.1. Since the isotropy represents in
dimension d — 1, the inequality

di=N-d+1<ds

where di stands for the dimension of the isotropy and ds = dimsl(d — 1, IR), shows
that the isotropy is properly contained in sl(d — 1, IR) so it cannot be transitive if d
is even. The following list show this inequality for the non compact cases different
from [L.1. Init, 7t are the roots of ds — di which in all the cases is a quadratic
polynomial in m with positive leader coeflicicnt so that ds — di > 0 for m bigger
than the highest root or all m if the roots are nol real.

11.2
d = 2m
di = 2m?-2m —1
ds = 4m? —4m
ds—di = 2m? —2m +1
rt complex
cds—di >0 all m
11.3
d = 4m
di = 4m?—4m
ds = 16m? —8m
ds—di = 12m?* —4dm
rl 0,1/3
ds—di >0 m>1
11.4
d = 2m
di = 2m*—-m—1
ds = 4m?—4m
ds—di = 2m?-=3m+1
rt 1/2,1

ds—di >0 m>2

when m =1 there is isomorphism with /7.1 with m =2
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11.5
d = 4m
di = 4m? = 2m + 1
ds = 16m?—8m
ds—di = 12m*—6m — |
rt 6+/84
24
ds—di >0 m> 1
The roots are smaller than 1 '
II1
d = 4m
di = 4m*—4dm+1

ds = 16m?—8m
ds—di = 12m? —4m — |
11
ri 22 "6
ds —di >0 m > |

3 The invariant control sets

By virtue of the above classification of the groups transitive on St,(d) the accessibil-
ity property A reduces everything to two possibilities: cither the group is compact

or it is Sl(d, R). Since for G compact S = G, the only casc which needs further
analysis is the case where

Gs = Sl(d, IR)

The counting and other descriptions of the invariant control sets on Sta(d) to be
done in the sequel is not restrictive lor semigroups coming from a control system.
So in what follows, S will stand [or an arbitrary semigroup with non empty interior

in Si(d, R).
The S — i.c.s’s on St,(d) are looked through the fibralion

7 1 Sty(d) — I(1,2)

where IF4(1,2) is the manifold of flags (V; C V3) with dim; = i and 1] are subspaces

of IR?. The above fibration is a four sheet covering and it can be seen in either one
of the two ways




Geometricaly let (u,v) be an orthonormal two-frame in R, Then m(u,v) = (W C
V,) where V; = span{u} and V3 = span{u,v}; let § = (V, C Vy) € F*(1,2) be
aflag. Then its inverse image 7~ '{€} under 7 are the four possible orthonormal
two-frames (u,v) with u € V; and v € V,, that is the four orthonormal basis
(u,v) of Vo with u € V.

As homogencous spaces Let 8= {e),...,eq} be a basis of I¢. Then

Sty(d) = SI(d, R)/ 1 = SO(d, IR)/ L

and

"4(1,2) = Si(d, R)/ P(1,2) = SO(d, IR)/ M

where the isotropies are the groups of matrices which in basis f look like

A e
0 A
0 A

with A € Gl(d — 2, IR), Ay A\;det A =1, and

e A\, >0 for M,
e My =0=1,A€50(d—-2)and ¢ =€ =0Tfor L,
o A and A; are 1, A € SO(d — 2), and € = €3 = 0 for M.

There is the canonical fibration
SO(d, R)/L — SO(d, )/ M
whicli is the same as
Si(d, R)/H — Sl(d, IR)/P(1,2)

and maps cosets into cosets. The fiber is M/L which is isomorphic to the abelian
group of four elements

{(ahaia a3) Lap = j‘:l,a]ﬂzaa = 1}

8
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The fact that M/L is a group ( that is, L is normal in M), inplies that = :
Sty(d) — IF¥(1,2) is a principal bundle with structure group M/L and thus it is a
four sheet covering and there is a right action of M/, identifying it with the fibers.
Geometricaly this right action is given by changing signals of the elements of the
two-frame (u,v) according to the signals of the first two coordinates of the element
of M/L. This is because the right action of an element of A/, is given by the
usual action of any of its representatives in M and a representative of (a,,a,,a3) is
any diagonal matrix such that the signals of the first Lwo diagonal elements coincide
with the signals of the first two coordinates of (ay. a;. a3).

In IF¥(1,2) there is just one invariant control set, say (', for S (c.[.[5]). Since
7 : Sty(d) — I4(1,2) is equivariant with respect to the action of Si(d, It), the
invariant control sets for S on St,(d) are contained in 7='(C') and project down onto
C. Also, the fact that L is normal in M implies that lor any a € M/], Cya is an
invariant control set if C; is an z.c.s. This fact implies that there exists a subgroup
M of M/L such that

M= {g€eM/L:Cyg=Callics C, on Sty(d)}

Therefore the number of i.c.s's on Sty(d) is 1,2 or 4 according the order of M is
4,2 or 1 respectively.

For rotation numbers it is also relevant to know whether an 1.c.s on Sty(d)
contains or not in the same fiber over ['¥(1,2) frames with dilferent orientations
inside the plane containing them (c.f [2, Th.4.1]). This questioun is answered by a
quick glance at M: taking the realization of AM/L as above, there are the possibilities

o M = {1}; four i.c.s's and the four frames over an element of C are in different
invariant control sets.

o M = {1,(=1,-1,-1)}; two i.c.s’s; along a fiber the frames in the same i.c.s
have the same orientation.

o« M= {1,(-1,1,=D)} or {1,(1,=1,=1)}; two i.c.s"s; along the fiber the frames
in the same 1.c.s have opposite orientation.

o M = M/L; just one i.cs.

Remark Actually the question of having frames with the same or different ori-
entation should be seen inside a two plane and not "inside™ a llag as given by M



above. The discussion about he mutual orientations of frames of a given two-plane
which are in the same i.c.s will be postponed till the end.

In what follows, M will be given in its dependence to some structural properties
of S which are given by its action on the flag manifolds. Because of this the following
comments about the flag manifolds will be needed.

Denote by P a partition in intervals of {1,...,d}, that is a decomposition of this
sel into non overlapping intervals defined with respect to its natural order. Such a
partition will be written visually as

P=(l...on [+ 1, ooma)yeo s re+ 1, .00, d]
Associaled to this P there is the flag manifold I™(ry,rq,...,7¢) of flags (V4 C
- C V) with dimV; = »;; ¢ = 1,...,k. Hencelorth this flag manifold will be
denoted by [(P). 1t is a honogeneous space of Sl(d, IR) and of SO(d, R) and is
writlen as

F(P) = SI(d, R)/P(P)
SO(d, IR)/M(P)

where P(P) is the (parabolic) subgroup of Si(d, IR) of matrices of the form

where the diagonal blocks decompose the diagonal exactly as P decomposes
{1,...,d}, and M(P) = Sl(d, R) N SO(d, R). Reciprocally, given a flag manifold,
its isotropy is a subgroup of matrices as above so it defines a partition of {1,...,d}
in intervals and the flag is of the form I(P) some P.

Let IV be the permutation group of {1,...,d}. It is the Weyl group of 5i(d, IR)
and acts on the set of diagonal matrices by permuting its entries. Given a partition
P, let Wp be the subgroup of 1V generated by the permutation groups of the intervals
defined by P. That is

Wp = [1(1,7)(r1 + 1,72)... (e + 1,d)

where TI(z, j) is the permutation group of {i,...,7},7 < j, and P is as above.These
subgroups will play a role in the sequel. Note that the diagonal matrices which are

keep fixed by every element of Wp are those which have repeated eigenvalues inside
the diagonal blocks defined by P(P).
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EXAMPLES
d=4

P=[RIBIG  We={1);  F(P)=1"(1,2,3)

P=[12)34);  Wp={1,3,)};  L(P)=14"(1,2)

P=12)@3)[4);  We={L1,(1,2)};  F(P)=1"(23)

P = [1][23](1]; Wp = {1.(2,3)}; I(P) = I'(1,3)

P=[)234); Wp=1(2,3,4);  F(P)=F"'(1) = 0"

P= [12”34]1 ”/7’ = {1,(1,2),(3,‘]),([,2)(\5,‘”}, ”‘p) = ”i(-’) = ","." 1)

P = [123][4]; We = 11(1,2,3); WPy = I"'(3) = Gru1)

Wp = W; I°('P) reduces to one point

P = [1234];

In general,
F(P)= kP

F(P) = Gry(d);
F(P) = IF'(1,2);

P =2
P =(12)[3,....d]
P = []I[l“;.,c/]

Returning now to the semigroups, in [7], it was associated o cach senngroup
S C Sl(d, R), with intS # 0, a subgroup W(S) of 1V. This association is roughly
as follows: In the full flag manifold there is, for cach w € I, a control set for S
denoted by D,. The invariant control set is D, and the D.'s are not necessarily
distinct. W(S) is a kind of kernel of the map w — 0, and is given as W(S) =
{weW:D, = D};itis a subgroup of V.

The properties of W(S) which will be needed are given in the following state
ments:




Proposition 2 A permutation w belongs to W(S) if and only if there exists a basis
{evy..ovru) of mntand h € inlS such that with respect to this basis

h = llifl[][.\l,. - ,A,(} with .\] > 2 ;\'1 >0
(the ordering of the cigenvalues is essential) and wh = h where w acts in h by
permuling the eigenvalues. (e.f [7, Corollaryf.{)).

Proposition 3 W(S) = Wp some partition P. For any P there crists S with
W(S) = Wp. [7, Theorem 4.3]

Proposition 4 IfW(S) = Wr then the invariant control sel on the full flag is given
by n="(C'p) where Cp is the invariant control set on I°(P) and © is the canonical
fibration = B(1,....d = 1) — I°(P). {7, Theorem 4.3]

In order to state the next property, let = {ey,...,cq} be a basis of I and
denote by Ny the group of those matrices which in basis 3 are lower triangular with
I’s in the diagonal. On any flag manifold 4(ry,...,ry), N3 has just one open and
dense orhit. Ng fz where fp is the flag built from {ey,... €4} as

[3 = (spanfey,- - ¢, } C spanfey, - er e} C oo+ C spanfey, -+ eryin,})

These orbits are - as Ny - homeomorphic to Enclidian spaces.

Proposition 5 Suppose W(S) = Wp and let {c,,...,eq} be a basis realizing Propo-
sition 8. Then Cp the invariant control sel on IF(P) is conlained in Np 5. [7,
Proposition {.8]

The fact stated in Proposition 2 shows onc of the essential features of W(S),
namely it measures the possible repetitions of the eigenvalues of the diagonalizable
matrices inside intS. For instance, W(S) = {1} implies that there are in intS only
diagonal matrices with distinct eigenvalues.  As another example, let d = 4 then
W(S) = Wp with P = [12][34) if and only if there are, in intS, diagonalizable
matrices (real cigenvalues) whose two biggest cigenvalues coincide, as well as the
smallest. ones.

T'he objective now is to delermine M from W(S). That this is possible is sug-
gested by Proposition 4 : 1V(S) measures, in a cerlain sense how and how much the

19

invariant control set in the full flag turns around. Now, when lifting the invariant
control sets from [F4(1,2) to St,(d) this turning around of the invatiant control sct
will cause dillerent ones to collapse and this will influence M. On the other hand
Proposition § says Lhat 1V (5) measures exactly the tnrning around of the invariant
control set because on the flag Fp intrinsically associated to S there is no turning
around of the invariant control sct as it is contained in an N,;—orhit.

Examples 6 1. d = 2 There are Lwo possibilities: \V(S) = {1} or W and just
one flag MP'. When W(S) = W the semigroup is everylhing and the i.c.s is
also everything, and W(S) is proper if and only if S is proper o wnd ouly of the
invariant conlrol sel is proper if and only if there s no turning wround H¢P!
and of course the invarianl conlrol scts arc conluined in N j—orbits which ar
the complementaries of one poinl scls.

2. d=13. The possibililies are:

{1} (1,2
(W(S), F(P)) = {1,(2,3)} RP?
{1,(1,2)} Gry(3)

An ezample of the second type is the semigroup Sl(d, BR)* of malrices which
have positive entries, that is of matrices which map the first orthant mto itsclf:
if {vi,v2,v3) is a basis such that vy is in the interior of the first orthunt and
span{vy, v3} meets it only in the origin then any lincar map b wheeh in this
basis wriles as diag{ A, \"V* A=Y} X > 1 is in il SU(d, IR)*. The invariant
control set on IRP? is the subsel corresponding lo the first orthanl. lts lifting
to the sphere splits out into two invariant control scts namely the posilive and
the negative orthants.

On the other hand, § = S{(d, m)+-1 is of the third type becanse of It s as
above, the two highest eigenvalues of h™"' coincide. Its invariant control sel on
Gra(3) does not "turn around” but on projective space, it can be shown that
the invariant control set is the closure of the complement of the first orthant.
This invariant control sel lifts lo just one invariant conlrol sct on S*.

Consider the following cases
a) P=Ry2 35 [oed
b) P =[1][2)3,...]...[..]
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o) P =123 [
Y P (12 ]l < o=

Of course these four types of partitions cover all the possibilities.

In case a) holds, M = M/I regardless any further assumption about S, so that
there is just on invariant control set on Sta(d). In fact, in this case it is possible
e the first three eigenvalues with elements in IV(S) so thal there exists a

Lo pernn
.,eq) and h € intS s.t with respect to this basis

bhasis {ci, .-

’l:{Al,Al,Al,...} A|>0

Since h € intS it is possible to perturb it and gel in intS malrices whose upper
left. 3 x 3 corner is one of the following

,\| ==C /\1 ,\] -
C /\1 /\l —€ '\l
/\] € Al € A1
These are exponentials of matrices of the form
a —b a a -b
b «a a —b a
a b a b a

Choosing b to be rational and taking powers of the perturbed matrices if needed,

there are in int.S diagonal matrices whose first three cigenvalues are of the type
{=it,—op)  Ao=m=n)  A=pm—r)

and these are representatives in M of the elements (—1,-1,1),(1,-1,-1) and
(=1,1,-1) of M respectively. Therefore M = M/L. (Note that this case cover
the controllable case, that is, the case when S = Si(d, ) and W(S) = W and
P=[l...d]).

For the other cases it will be needed Lo assume that S is connecled what happens
to control semigroups.

Let P = [1][2][3..]...[-..] be a partition as in case b) and let Po = [1][2)3...4]
be the partition associated to 74(1,2). Since P is a sub partition of P, it follows
that Wp C Wy, and that F(P) fibers over F4(1,2), thal is the flags in IF(P)
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contain one and two dimensional subspaces. Let {e),... ¢} bea Dbasis as stated in
Proposition 2 and denote by fj the flag on IF(P) as well as on (1,2) huill Trom
it. Since the projection of I'(P) onto [F4(1,2) is equivariant, the N —orbits and
the invariant control set on IF'(P) project onto the Ny—orbils and invariant control
set on IF%(1,2) respectively. This and Proposition 5 imply that the invariant control
set on IF4(1,2) , say C, is contained in Nj f3. Now, there is the

Lemma 7 Let 7 : Sty(d) — 14(1,2) be the canonical projection. Then =" (Ny [s)
is open dense and has four connected components. Moreover, M/L, acts simply
transitively on the connected components

Proof. Choose an inner product < -,- > on R* such that /3 s orthononnal.
Nj fp is the set of llags (span{v;} C span{vy, v2}) such that

+v, = fitaofitt agfu
+v, fotvafs+ -+ vk

that is

<1'l7.fl >#0 <v'lnf'l >¢”

The set of orthonormal frames which satisfy these two conditions has fonr con
nected components. The fact that M/L acts simply transitively on the connected
components comes from the transitive right action of A on the fiber. O

To conclude the analysis for case b) for connected S it is enongh to observe now
that the i.c.s’s are connected and contained in 77'(("; ;) so cach one is contained in
a connected component of 7='(N;; f3), so there is at lcast four Lesson Sty(d), and
there is exactly four because of the transitivity of A/L on the fiber and the lact
that elements of A//L maps i.c.s’s into i.c.s’s.

Turn now to case c) also with the assumption that § is connected. Fiest ol all,
the form of W(S) = Wp and Proposition 2 ensures the existence of

(li(lg{A],Az,Az,.. } € i!tlS Al P> 4\_- > 0.

Perturbing this matrix as in case a), il is shown the existence of

diag{jey, =2y —jtzy .- -} € intS e >\,

15




. —1,—-1) so this clement of M/L
: eentative in (1,2) of (1, =1 belongs |,
wlli(']l IS El[!'”"j?; .;:'::I:‘io or four chl]lCnts- It E\,Ctlln"y has two C]Cments, T fho‘:
M. Therelore
this il is needed the ‘ A ‘
" (S) be as in ¢) and denote by Cy the invariant control e -

Ig
Lemma 8 Le! ! Y(Cy) where @ is the projection of [ onto RPd4-1

”?Pd-‘. Then C|'2 =1

P is a refinement ol Py = llll2s?> a ] Wh_ic'h is nssof’ia"ed to Mmpi-t
and is not a refinement of [l][.?][:‘,-- : ’d] “’!"d' B as:<0c1a.t.c(l to ™ (‘1,2)- Therefore
F(P) = (1,72 ry) withre 23 (r2 mlght. be d'm which case I'(P) = ]de_l).

Lel Cp be the i.c.s on I°(P). Then the |||var1a‘nt.. control s.et on the full flag
manifold, say C is the inversc image of Cp. Also, _Cm is the projection of C. Since
rp > 3 this ensures that Ciz2 ="' (C1). In fact, pick a Nag

Proof.

L= ciyc - cVy) elr(P).

Its inverse image is the sel of all flags in ]F"(l,...,d — 1) which completes
19, Since dimV', > 2, every two-dimensional subspace appear in a full flag which
projects into f°. This means that the projection into I"4(1,2) of the inverse image
of f?is the subsel

(1P C Va) dimV, =

The lemma follows now by varying f° along C,. O

Now, let {er,...,eq} be a basis like in Proposition 2. Since P is a refinement
of the partition associated to the P!, IF(P) libers over the projective space so
that C; C Nj f3 where Cy is the i.c.s on MP*" and f; = spanfe;}. But Ng fgin
projective space is the set of lines spanned by v € ¢ such that < ey,v >7# 0 there-
fore its inverse image in 174(1,2) is the set of flags (span{mn} C span{vy,v2}) such
that < e,y >% 0. The set ol orthonormal frames {ey. vz} adapled lo these flags
is thus those whicli satisfly tie inequalily. Hence it has two connected components,
and an argument like in b) together with the above leinma ensures that S has at
least two 7.c.s’s on Sit,(d) if it is connected. Since it was shown belore that M has
at least two clements, it follows that A7 = {1,(1,—1,—1)} in case c). }

Turn now to case d). An argument as in c) shows that (=1,-1, 1) € M. It
must be checked that the order of M is at most lwo, that is, that there is at least
two i.c.s's. The proof of this is similar to case c), only that instead of mpP'itis

nccdc.d to take the partition Py = [12)[3,...,d] which is associated to Gry(d). The
flags in () are of Lthe forin

(Vac--) dimVy =2
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so similar to c) it follows that C'y 2 is the inverse image of Cy where Cyis the invariant
control set on Gry(d). The same way, %, C Ny span{cy, ey} which is the subset of
planes in Gra(d) spanned by {vy, vz} with

+u, = fitatft...touls
+v, = fotsfs 1

that is which

<Uhjl > <“lvf'2>
det =< v A l‘b.[l N [_: /,é ()
( <vgy 1> <y f2>

Therefore the orthonormal frames adapted to this set has two connected com
ponents so M = {1,(-=1,-1,1)}.
Summarizing, there is the

Theorem 9 Suppose W(S) = Wp with P divided in the followiny cuscs
a) P=[1,2,3,...]...[]
b) P =[]R213,.. .. [ ]
o) P=[23,..]...[.]
d) P=[1,2]3,...)...[..]

Assume for cases b),c) and d) that S is conneeled.
Then

In case a) M = M/L and there is just one invariant control sct for S on St(d).
In case b) M= {1} and there are four i.c.s’s
In case c) M= {1,(1, =1, =1)} so there are two i.c.s’s on St (d) wud the frumes

belonging to an i.c.s and adapled to a given flag (Vy C V) huee opposite
orientation inside V.

In case d) M= {1,(=1,=1,1)} so there are two i.c.s's on St (d) and the frames

belonging to a given i.c.s and adapted to a given flug (V) C V) wre positively
oriented inside V,.
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Remarks

(-4 —1)} appears. This is due to the y,
that the frames {u,v} and {—u, v} belong til)
¢ i.c.s., that is, il {—wu,v}) is attainap]e
} arc also attainable.

. In none of the cases the group
as M/Lis realized and means |
the same i.¢.8- only if there 18 just on
from {u,v) then {—u,——v} and {u,—v

9 The case b),c) and d) do nol hold for non connc.ctcd S As an example,
. take d to he even and put S' = {-1}5 ‘T'I‘('"C S is a given semigroup and
_1 € Sl(d, ) is the opposite of the identity. The characterization of w(s
by diagonalizable clements in intS shmf's that W(S") = W(S). However, for
S in case h), M= {L(‘la"lvl)} and in casc ¢), M = M/L.

3. n case a) and c) the i.c.s 's contain frames adapled to a flag which are in
opposile orientation while posilive orientation lolds in b) and d). This is
relevant for rotation numbers (c.[.[2, section 4]), causing them to be zero or
not. The geometric difference from cases a) and c) to cases b) and d) is that
in a) and ¢) the semigroup furns around the Grassmannian Gry(d) while this
turning does not happen in cases b) and d). llere turning around means, as
above, that the invariant control set on Gry(d) is not contained in a nilpotent

orbit of the type Nafp.

Proposition 10 Let C; be the 1.c.s. on Gry(d). Then in cases b) and d), Cy is
contained in a Ng-orbit for some f3.

Proof. In case b), P is a refinement of [1][2](3,...,d] which is associated to
(1,2) and in case d) P is a refinement of [1,2][3,.. ] so in both cases IF(P) fibers

over Gry(d) and Lhe statement follows from Proposition 5. O

Proposition 11 n cases a) and ¢), Cy is not conlained in Nz-orbils.

Proof.  In fact, realizing the oriented Grassmannian as a subsct of the sphere
in2 the two fold exterior product, an Ng—orbit becomes a set of the type {€ €
A’ IR :< €, >:> 0). Since in Sty(d) there are frames with opposite orientation
in the same i.c.s, the same happens in the oriented Grassmannian, showing that in
the Grassmannian itsell (' is not contained in an Ng—orbit.O

_1"""3”)', in cases b) and d), the 7.c.s’s can not contain frames of the same
which are of opposite orientation (e.g. {w,v} and {v,u} which do not belong to

plane

18

,I |Ii> is Lecanse ('Z |~. 1'unl,|i||m| inoan /\’,,-‘ul":ll

the same element of F(1,2) ).
anes with diflerent

and these orbits on the oriented Grassmannian do not contain pl

orientation.
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