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Abstract

Let G be a Lie group, S C G a subsemigroup and G/If a homogeneous
space of G. It is considered here the subsets of G/ H, associated to the ac-
tion of S, which corresponds to the chain control sets for control systems[1].
Their formal definition requires a family F of subsets of S, and when partic-
ularized to a control semigroup recovers its original form. It is shown, under
broad conditions, that a chain control set is the intersection of control sets
for semigroups generated by the neighborhoods of the subsets in F. This fact
permits to prove, for the chain control sets, results similar to those in [12]
about control sets on the flag manifolds of semi-simple Lie groups.
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1 Introduction

One of the principal concepts appearing in the control theories of both continuous
and discrete time systems is the semigroup of transformations defined by the flow
of the control system, known as the system’s semigroup. Many questions about

the control system, specially those related to its controllability depends, in fact,

only of the action ol the semigroup of the system, so that it can be abstracted to
arbitrary semigroup actions and solved in a more general setting. This procedure
have provided a fruitful interrelation between the theories of Lie semigroups and
control systems(as reference sources see (7, §] ).

The present article follows this line of questioning. It investigates the chain
control sets for semigroup actions on homogeneous spaces. The chain control sets as
well as the control sets for control systems were extensively studied by F.Colonius
and W.Kliemann [2, 3, 4, 5, 6] in relation to some dynamical properties rounding
the long time behavior of the trajectories of the control system. In the analysis of
these sels, a particular attention is put on systems evolving on projective spaces
(cl.[4]) because of their interest in the study of the linearized flow and thus in the
study of the stability properties, in the sense of Lyapunov, of the system. This
being so, one is interested in looking at the control sets and chain control sets for
the action of linear semigroups in projective spaces. As to the control sets, this
analysis was pursued in [10, 12] (see also [13]) in a situation which encompasses in a
natural way the action of a linear semigroup in projective spaces, namely, the action
of semigroups in non compact semi-simple Lie groups on the flag manifolds of the
group, that is, its Furstenberg boundaries. The analysis of these control sets turned
out to be an useful tool for the understanding of some properties of the semigroups
in semi-simple Lie groups. For instance, in [12] a subgroup W(S) of the Weyl group
W of the Lie group G is built from a semigroup S C G with non empty interior
in G. The subgroup W(S) reflects geometrical properties of the control sets on the
boundaries of G, and the number of such sets is given by a double coset involving
IW(S). Moreover, W(S) describes exactly the type of diagonalizable elements that
can be encountered inside the interior of the semigroup. In this paper we pursue the
same kind of results for the chain control sets. Our main interest are in the setting
adopted in [10, 12, 13]. There is however a basic question involving the formal
definition of a chain control set. Certainly, a chain control set is a subset such
that its points can be linked by chains in the semigroup (see Definition 2.1 below).
However, it is not realistic to take arbitrary chains in the semigroup because this
would, on one hand trivialize the concept, and on the other hand would not cover

the chain control sets for control systems as they require that the chains involve
large time trajectories of the system. We define Lherefore the notion of F-chain
control set (Definition 2.2) where F is a family of subsets of the semigroup. The
chain control sets are not, therefore, defined intrinsically from the action of the
semigroup, depending on the family . We discuss these sets in Section 2 below
for a general action of a semigroup in homogeneous spaces. After these generalities
we go into the analysis of the F-chain control sets on the flag manifolds. Our
main technique is based on the fact that it is possible to get the chain control sets
as intersections of control sets for semigroups generated by subsets of the original
semigroup. This technique works in a very general situation which covers the action
on the flag manifolds (see Theorem 3.7 below). After having means of describing
the F-chain control sets through control sets, we apply the results of [12] in order to
define a semigroup Wx(S) of the Weyl group which [urnishes the number of F-chain
control sets on the flag manifolds.

2 F-Chain control sets

In this section we discuss the concept of chain control set for actions of subsemigroups
of Lie groups in homogeneous spaces. The notion of chain control sets for control
systems was extensively studied by F.Colonius and W. Kliemann ( cf.[2, 3, 4, 5, 6]).
Our purpose here is to extend this notion for semigroups which do not come from
a control system. Thus, let G be a Lie group and § C G a subsemigroup. It
will be assumed throughout that intS # 0. Although this condition is not needed
everywhere, the main results require that S has interior points in G. Let If be
a closed subgroup of G and form the homogeneous space G/H. Then S acts on
G/H as a semigroup of diffeomorphisms. We fix a distance d in G/H and consider
S-chains in G/H according to a family F of subsets of S.

Definition 2.1 Let F be a family of subsets of S. Take x.y € G/H, a real ¢ > 0
and A € F. A (S,¢,A)-chain from z to y consists of rg = r.xy,..... Tnol, Ty = ¥ i
G/H and go,...,gn-1 in A such that d(g;zj,tj41) <€ for j=0,....n— L.

A F-chain control set is a subset whose points can be linked by (S, ¢, A)-chains.
Precisely,

Definition 2.2 A F-chain control set for S on G/H is a subset E C G[H that
salisfies




1. intE # 0,
9. Vz,y € E, there exists a (S,¢,A)-chain from = to y, for alle >0 and Ae F

3.

and

E is mazimal with these properties.

The semigroup S is said to be F-chain transitive if G/H is a F-chain control
set, that is, if any two of its points can be linked by (S, ¢, A)-chains for any ¢ > 0
and A€ F.

We note that although the above definition mentions explicitly a distance in
G/H, it is casily seen that the notion of F-chain control set does not change if
an cquivalent distance is considered. Also, it follows quickly from condition 3 that
two F-chain control sets are either disjoint or coincident. On the other hand, a
simple application of Zorn's Lemma shows that any subset satisfying the first two
conditions is contlained in a F-chain control set.

The following families of subsets are the ones which will be highlighted in the
scquel.

1.

(Control semigroups)Let Xy, X1,..., X, be right invariant vector fields in G,
and consider the control system

(1) = Xo(a(t) + 3 ult)Xi(a(0) 1)

where u = (ug,...,u,) € U for some class of admissible controls Z{. Denote
by 7(g,u,t) the solution of the system at time ¢ given by the control u and
starting at g € G. It is given by 7(g,u,t) = m(1,u,t)g where 1 stands here for
the identity in G. The attainable set from the identity at time ¢, A(t) is given
by A(t) = {x(1,u,t) : u € U}. Their union

S=JAQ@)

>0

is a subsemigroup of G' known as the system’s semigroup.

Let Feontrol be the family of subsets of S defined by

f-control = {U A(t) : T 2 0}

t>T

Then the Foniro-chain control sets on G/ H are related to the chain control
sets for control systems as defined by F.Colonius and W.Kliemann in [2]. In
fact, the above right invariant control system on (7 induces on G'/H a control
system whose trajectories are given by w(1,u,t)r,z € G/H so that the set of
attainability from x is given by its S orbit. In (2] F.Colonins and W. Kliemann
defined a chain control set for the induced system to be a subset £ C G/H
which satisfies

(a) For all z,y € E and all ¢,T > 0 there are z,...,z, € G/H with zo =
T,y Tn =Y, toy-..ytno1 > T and ug,...,u,—y € U such that

d(m(1,ui, ti)zi, Tipr) < €

forallz=0,...,n—1.
(b) For all z € E there exists u € U with 7(1,u,t)x € I for all possible times
t>0.

(c) E is maximal with these two properties.

Since, for ¢; > T, m(1,u,t;) € Ui>TA(2), it is readily scen that a chain control
set for the induced system is an Foniroi-chain tontrol set if it has non void
interior, a property which holds under the natural assumption that S has
interior points in G (cf. [2] ) Reciprocally, a Feonroi-chain control set is a
chain control set for the control system as in the above definition. For this
statement, the only thing which needs to be checked is that an Feoyei-chain
control set satisfies the second condition, which will be verified below for chain
control sets containing control sets.

. Let F, be the intersections with S of neighborhoods of co in the one-point

compactification of G, that is,

Fo={S—K:K C S is compact in G }.

. Let Fo s be the neighborhoods of co in the one point compactification of S5

that is |
Foos = {S = K : K is compact in S}

The Fomro-chain control sets are exclusive to the control semigroups while the
Foo and the F, s-chain controls sets are meaningful for general semigroups. Note
that Feo,s C Feo, and that they coincide if S is closed in G.

Different chain control sets can be related as follows.



Proposition 2.3 Let F; and F, be two families of subsets of S and suppose that
for all B € F, there exists A € Fy such that A C B. Then cvery F,-chain control
set is conlained in a Fo-chain control set. In particular, this holds if Fo C Fr.

Proof. Let E be a F;-chain control set and take B € F,, € > 0 and z,y € E.
By assumption, there exists A € F; with A C B. Since E is a Fy-chain control set,
there exists a (S, ¢, A)-chain from z to y. As A C B, there exits also a (S, ¢, B)-chain
from z to y. Since B and ¢ were arbitrary, this shows that E satisfies 2 with 7 = F;
so that it is contained in a J,-chain control set.0

Corollary 2.4 The F,-chain control scis are conlained in the F, s-chain control
set. The same happens wilh the Feono-chain control scls in place of Fous if S is a
semigroup of control.

Proof. The first statement follows from the fact that Fo 5 C Foo. As to the
Feontrol, suppose first that the control system (1) has restricted controls, that is,
cach control function u assume values in a compact subset of I2™. In this case, the
set Uop<icr A(t) of the altainable points up to time T is relatively compact in &
(sce e.g. [9, Lemma 4.4]). Therefore, any B € Feonrol contains the complement in
S of a compact subset of G, that is, a subset A € F.,. The general case follows
by restricling the controls and observing that the sets of attainability for (1) with
the controls restricted to a compact subset are contained in the sets of attainability
without restriction of the controls.O

As Lo the converse inclusion, we have.

In order to continue our discussion of the chain control sets, it is convenient
to recall some facts about control sets for semigroup actions (see (2, 3, 4, 5, 6] for
results about control sets for control systems and {12, 13] for the control sets for the
semigroup actions).

A control set for S on G/H is a subset D C G/H which satisfies

1. intD # 0,
2.Vze D,D Ccl(Sz) and

3. D is maximal with these properties.

Note that contrary to the chain control sets, the control sets depend only of
the action of the semigroup needing no reference to some other object. As stated
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in 2 above, the control sets are the subsets where the semigronp are approximately
transitive. This approximate transitivity can be improved to exact transitivity inside
a dense subset of D as follows: let

Do ={z € D:z € (intS)z}.

be the set of those points of D which are self accessible by intS. In general, Dy
may be empty. However, in case it is not empty, it is open and dense in D, for
all z,y € Do there exists g € intS such that gz =y, and Dy = (intS)D N D (see
(12, Proposition 2.2]). We shall refer to Do as the set of transitivity of S inside
D, and D will be said to be an effective control set in case D, # . The above
definition of control set for semigoup actions differs slightly for the one considered
in e.g. [2] for control systems. The difference comes from the assumption that a
control set has non empty interior, which is not assumed beforehand in [2], but which
turns out to hold in case the system satisfies the accessibility property(condition
in [2]). For right invariant control systems and the systems induced by them on
the homogeneous spaces, this property holds in case the control semigroup has non
empty interior, which is our basic assumption about the semigroup S. We note,
furthermore, that for right invariant control systems, which satisfy the accessibility
property, every control set is effective. In fact, in this case it is well known that the
identity 1 € cl(intS) so that (intS)zN D # 0 if x € intD.

In the sequel we are interested mainly in those chain control sets which contain
the control sets. Note that in the full generality we have been working up to now,
it is not clear that the control sets are contained in chain control sets. This is due
to the fact that the elements of .S in the chains linking points of a F-chain control
set are restricted to belong to the subsets A € F. Therefore, although two points of
a control set can be linked, approximately, by the S-action. it is possible that this
can not be done by F-chains if the subsets A € F are not large enough. Because of
this, we consider the following conditions on F.

Definition 2.5 The family F is said to satisfy property Py (vespectively P,) if for
every ¢ € intS,h € S and A € F, there exists a positive integer n such that
g"h € A(respectively hg™ € A )

Note that by taking h = g, both P, and P, imply that ¢" € A for some n > 0.

These properties are satisfied by the families mentioned above. In case of Fo,
they are satisfied except in the trivial case where § = G. In fact, {g" : n > 0} is
relatively compact in case g"h or hg™ do not belong to some A € F, hence g is

-



contained in a compact subgroup so that intS intercepts a compact subgroup in
case g € intS, which shows that S = G. Since Fi, s C Fu the same is true for
Feos. As to the family Feonuor of a control semigroup, both P and P, hold because
if ¢ € inlS is altainable in time T by means of a control u, then g" is attainable
in time nT by means ol the control «®, which is the n times concatenation of u by
itself (sce e.g. [9, Lemma 4.5]).

For families satisfying the P-properties, il is possible to compare their chain
control sets with the S-control sets. In order to do that, let us denote, for a subset
A C S by Sy the subsemigroup of S generated by A. In case A belongs to a family
salislying the P properties, the effective S-control sets are also control sets for S4:

Proposition 2.6 Suppose that the family F satisfies P, and P,. Take A € F and
let S4 denote the subsemigroup generated by A. Let D be an effeclive control sct for
S. Then D C cl(Syz) for any x € D.

Proof. Take z,y € D and let us show that y € cl(S,2). Suppose first that
y € Do. Then there exists h € § such that y = ha because D C (intS)~'Dy. Also,
there exists g € intS such that gy = y. Since g"h € A by P, and g™ha = y, we get
that y € Syz. Now, for arbitrary y, pick z € Do. Then z € Saz so it is enough to
show that y € cl(S,z). For this, take g € intS such that gz = z and a sequence
h,. € S such that h,z — y. Then h,g" € S, for large enough n, by P, and since
hmg"z = hyz, this shows that there exists a sequence gy € S4 with gz — ,
concluding the proof of the proposition.0

A consequence of this statement is that the effective control sets for S are con-
tained in F-chain control sets if F satisfies both P; and P,. In fact, the above propo-
sition shows immediately that an effective control set satisfies 2 for every A € F
and since it has non empty interior, it is indeed contained in a F-chain control set.

A F-chain control set will be said to be effective if it contains an effective control
sel. In case F satisfies the properties P, and P,, a F-chain control set is effective if
and only if the subset Eq = {z € £ : 2 € (intS)z} is not empty. In fact, Ey # 0 if
E contains an effective control set by the very definition of the latter. Conversely,
any ¢ € Ej is fixed by some g € intS so that z belongs to some control set, say D,
which is effective (cf. [14]). By the above proposition, D is contained in a F-chain
control set if F satisfies P, and P,. Since this chain control set meets £, it follows
that D C E.

We note that under our basic assumption that the control system satisfies the
accessibility property, the F o, ,0-chain control sets which contain control sets are

- ———

eflective because in this case the control sets are effective. This remark shows that
the Feontrol-chain control sets which contain control sets are chain control sets for
(1) in the sense of [2].

We conclude this section by showing that under equivariant fibrations, chain
control sets are projected into chain control sets. This fact will be needed later in
the analysis of the chain control sets on the flag manifolds.

Proposition 2.7 Let L; C L, be closed subgroups of G and denote by 7 : G/L, —
G/L, the canonical equivariant fibration w(gL,) = gLy. Suppose that G}L, is com-
pact, and let E be a F-chain control set for S on G/L,. Then n(E) is contained in
a F-chain control set for S in G/L,.

Proof.
interior.

Takee > 0, A € F and z’, ¥’ € n(E). We shall show that thereisa (S, ¢, A)- chain
from z’ to y'. Pick =,y € E so that m(z) = 2z’ and 7(y) = y". Since G/L, is compact,
7 is uniformly continuous so that there exists § > 0 such that d(#(z).7(z")) < € il
d(z,2') < 8,2,z € G/L;. Let 2o = z,21,...,Ta_1,Ta = y in /L, together with
9oy - -+, gn—1in A form a (5,8, A)-chain from z to y. "As d(giri, Tiy1) < &. we have
that d(7(g:z;), 7(zi41)) < € which shows that #(z;), ¢; form a (S. ¢, A)-chain from z*
to y'.

ySince 7(E) is F-chain transitive it is contained in a F-chain control set. O

As a converse to this statement, we have.

Since intE # @ and = is an open map, we have that 7(E) has non empty

Proposition 2.8 Let F be a family satisfying Py and P, and = : G /Ly — G[L; as
above with G/L, compact. Let also, F be an effective F-chain control scl for S on
G/L,. Then there exists an effective F-chain control set E for S on i/ Ly such that
m(E) C F.

Proof. Take x € Eg. Then there is ¢ € intS such that gr = x. The fiber
over z is compact and invariant under g. Therefore, there exists a minimal set for
g, say M, in this fiber. Since each minimal set is contained in the interior 0? a
control set (see [14, Proposition 2.5]), there exists a control set D on G/ Ly which
contains M. This control set is effective because gy € (intS)DND = Dy il y € M
so that Do # 0. Therefore, D is contained in a F-chain control set E. By the last
proposition, n(E) C F. O

9




3  Chain control sets and control sets

A chain in the semigroup S is given by interchanging the action of elements of-S'
with small jumps of the elements of the homogeneous space G/ H. Because of this,
it is Lo be expected that the chain control sets for the S action could be obtained
as intersections control sets for semigroups generated by neighborhoods of 5. This
turns out to be the case as will be shown in this section. Such a characterization
of the chain control sets permits to apply the results on control sets in the study of

the chain control sets.
We shall assume [rom now on that the homogeneous space G/H where S acts is

compact. We assume also that the action of G on G/II is elfective, that is, H does
not contain normal subgroups. Fix, as before a metric  in G/H. The elements of &
are viewed as homeomorphisms of G/H so it is possible to consider in G' the metric
of uniform convergence in G/H. It is given by

d'(g,h) = sup d(gx,hx),
z€G/H

which is a right invariant metric on G. We use the notation B(A,¢) for the e-
neighborhood with respect to d' of the subset A :

B(A,e)={g€ G:3he A,d'(h,g) < €}

Also, given a subset A C S, we shall denote by S, 4 the subsemigroup of G
generated by the e-neighborhood of A in G :

Se.a =< B(A,¢) >.
We have,
Proposition 3.1 Let z,y € G/H,A C S. Then
1. there ezists a (S,¢, A)-chain from z toy if y € S, a2, and

2. There exists a (S, €, A)-chain from z to y for every € > € if y € cl(Sax).

Proof.

10
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l. Since y € S, 4z, there exists g € S, 4 such that y :.g‘r. It follows [rom
the definition of S, 4 that ¢ = gs_,...g, with g9 € B(A.¢),i=0,... k-1
Choose hy, ..., hi-1 € A such that d'(hi,g.) < e, =0...., = 1. Then the
sequences To = Z,ZT; = oZ0,...,Tk = Gk—1Tp—y = y and hy, ..., hi_y € A

form a (S, ¢, A)-chain from z to . In fact,
d(h,‘-]l‘,’-[,l',’) = (I(hi—l:"i—lv_’]l—l-rx—l)
< d'(hici,gi00)

€

AN

for any ¢ = 1,...,k, which shows the existence of a (S, ¢, A)-chain from z to
Y.

2. Pick y € cl(S.az). Then there exists a sequence g, € S,y such that g,z
converges to y. Take ¢ > ¢, and let ng be such that d(g,, r.y) < ¢ — ¢
As in the proof of 1, there are ko,...,h,_; € A, which together with y, =
T, Y15y Yn = Gno T becomes a (S,¢, A)- chain from r to g,,r. Changing in
this sequence gn,z by y, a (5, ¢/, A)-chain is obtained. In fact.

d(hn—lyn—]’y) S d(hn—l.’/n-‘lvyno"‘) + ’[(!lm.-"-.'/)
<et+(f—e)=¢
and d(h;_1yi—1,yi) <e<€éfori=1,...,n—1.0

The above statement shows that the points reachable through the semigroup
generated by a perturbation of A are also reachable by (S, ¢, A)-chains. We shall
now get the converse of this statement by showing that the points reachable by
chains can be reached by the action of the perturbed semigroup. For this it will be
needed the following assumption about the action of (G on G/ 1.

Hipothesis H : There are constants ¢ > 0 and 5 > 0 such that the action of G
on G/H satisfies Vo € G/I,Vy € B,(x) there exists & € (7 with ko = y and
d(kz,z) > cd'(k,1).

For actions which satisfy H, it is possible link points which are close enough
in G/H by elements of G whose distance to the idenlity are not too bigger than
the distance between the points. Note that as d'(k,1) = sup e u d(ky,y) and
d(kz,z) > cd'(k,1), we have that ¢ < 1, and for a given x it is possible to take ¢ = |
if and only if z is a point for which the sup in &'(k, 1) is attained.

Proposition 3.2 Assume H holds and let € be such that 0 < ¢ < 1. Also, lel
Zoy...,n € G[H and hy,..., h,_y € G be sequences forming a (S, ¢, A)-chain from
Tg to T,. Then there exists g € Sp 4 with gro = x, where ¢ = (/ec.

11



Proof.  Since d(hjzi, 2i41) < ¢ < 17, We have, by H, that there are k; € G such
that

d(zipr, hixs) = d(kihiai, hix) 2 ed'(ki, 1)
i=0,....n—1,so0 that &(k;,1) < €/c = €. Let g; = kih. Then d'(gi,hi) =
d'(kihi, hi) = d'(kiy1) < € because of the right invariance ol d'. Hence, gi € B(A,¢€).
However, giz; = kil = Ti41, so that x,, = g,_ ... goxe which shows the desired
resull. O

This statement together with Proposition 3.1 show that the chain control sets
in homogencous spaces satisfying H can be studied through the control sets of the
semigroups S, 4. Belore embarking on the discussion of this relation, we will ensure
that hypothesis H holds for a large class of homogencous spaces, namely those for
which there is a compact subgroup K C G which acts transitively in G//11. This
class of homogeneous spaces includes the flag manifolds, which will be considered
later.

Lel K be a compact group and A'/L a homogeneous space of I{'. 1t is well known
that in A'/L there is a K-invariant Riemannian metric < -, > . This metric is built
as follows. Let k be the Lie algebra of K and choose in it an inner product which
is Ad(I)-invariant, that is, < Ad(k)X, Ad(k)Y >=< X,Y > for all X,Y € k and
k € K. Fixing * € G/H let k, be the isotropy algebra at x, and denote by P, the
orthogonal projection onto ki with respect to < -,- >, where k} stands for the
orthogonal complement to k;. Then the desired Riemannian metric is defined as

< X(z),Y(z) >=< P, X,P,Y >

where X (z) = d/dt (exp(tX)x),—, stands for the vector field induced by X on K/L.
Of course, this expression defines an inner product in To(K /L) as every v € To(K/L)
is given as v = X(z) for some X € k. Moreover, this Riemannian metric is K-
invariant, that is, < k.u, kv >=< u,v > for all k € K and u,v € T,(K/L),where
k. denotes the diflerential of the mapping k: K/L — K/L.

We take in K'/L the distance d given by this Riemannian metric. Since for
X €k, |X(z)] =< P.X,P.X >'? we have that |X(2)| < |X|. This inequality
implies that the length of the curve t — exp(tX),t € [0,1], which is given by
Jo | X (exp(tX)z)|dt is bounded above by | X|. Since the distance between two points
is given by the infimum of the lengths of the curves joining them, we get, therefore,
that d(exp(X )z, z) < |X|. The inequality required in H is a kind of local equivalence
between d and the norm in k. We state

Proposition 3.3 The homogeneous space K /L with K compact and the distance d
given by a Riemannain metric satisfies H.
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Proof. Fix xq € K/L. We check first that it is enough to show that H holds at
To. So suppose that there are ¢ > 0 and 5 > 0 such that for cvery = € B,(a¢) there
exists k € K with kxo = z and d(kxg, o) > cd'(k,1). Take »r € K/L and u € K
such that x = uwo, and let &' = uku="'. We have k'z = y and since the Riemannian
metric is K-invariant the same holds for the distance d, so that ' is both left and
right invariant in K. Therefore, d(k'z,x) = d(kxg, 29) > cd'(k, 1) = ed'(K',1) and H
holds at x as well with the same constants ¢ and 7.

In order to verify H at o, let f : k — K/L be defined by f(X) = exp(X).
Its differential at the origin is (df)o(.X) = X () which shows that ker(df)o = Ka,-
Therefore, dfy is one-to-one in kio so that [ is a diflecomorphism frux‘n a neighborhood
of the origin of ki onto an open ball B,(xo) for some 5" > 0. Now. the (listnnr:- d
comes from a Riemannian metric so its square is dilferentiable. Sinee X — [ N7 s
also differentiable, we have that
d(eX zg, 20)

hmp\"?—f.o x| >0
for X € k. It follows that d((exp X)zq, xo)/ | X|is bounded below in some neighibor-
hood U of the origin so that there exists a constant ¢ > 0 such that d((exp X' )z, xo) 2
c|X| for all X € U. However, d'(exp X,1) < |X], so that d((exp X)xg, o) >
cd'(exp X, 1), and since f is onto a neighborhood of xy, this shows that K/ L satisfies
H at z, and hence the proposition.O

This proposition implies immediately that a homogeneous space G/l satisfies
H if G has a compact subgroup which acts transitively on i/ /1.

Corollary 3.4 Let G/H be a homogeneous space and suppose that there exists a
compact subgroup K C G such that K acts lransilively on G H. Then G[H salisfies
H with the distance d given by a Riemannian melric invarianl by K.

Recalling now Propositions 3.1 and 3.2 we get the following relationship between
the (S, ¢, A)-chains and the action of S, 4.

Proposition 3.5 Let G be a Lie group and G/H a homogencous space which sat-
isfies the condition of the above corollary. Let S C G be a subsemigroup and lake a
subset A C S. Let also, z,y € G/H. Then there erists a (S, ¢, A)-chain from x loy
ify € Sc.ax. Conversely, y € Sefe,az if there exists a (S, ¢, A)-chain from x loy.

This last statement relating chain attainability with the action of a semigroup,
permits to characterize the F-chain control sets as intersections of control sets for the
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semigroups S, 4. For this characterization, we shall need that the family F salisfies
the properties P, and P, of Section 2. When these propertics hold, we have at our
disposal Proposition 2.6 so that the fact that Sq C Sc 4 for any € > 0, implies that
the eflective control sets for S are contained in the control sets for S, 4. Note that
under these circumstances, the S, 4-control set containing the effective S-control set
is also effective. Indeed, if g € intS fixes a point y then the same holds for g™, n > 0,
and clearly, g" € intS, 4. For the perturbed semigroup S, 4 Proposition 2.6 can be
made more precise. In facl, we have

Proposition 3.6 Assume that F satisfies P, and P,, and suppose furthermore that
the homogencous spacc under consideration satisfies L. Then D C S,z for any
z € D, A€ F and ¢ small cnough.

Proof. Let 2,y € D. Lel us show that y € S, a2. By Proposition 2.6, there
exists, g € S4 such that gz is near y. Since S, is generated by A, ¢ is of the form
g=9;...9, with g; € A. Using H, there is k € G with '(k,1) < € and kgaz =y so
that kg € Sc.4 and y € S 4.0

We can now state the main result of this section which characlerizes the F-chain
control sets as intersections of control sets for the semigroups S 4.

Theorem 3.7 Supposc that GJ/H satisfies H and let F be a family of subsels of S
salisfying P, and P,. Let D be an effective control set for S on G/H and for ¢ > 0
and A € F, denote by D, 4 the S, s-control set containing D. Then

E= ﬂD('A

A

is the only F-chain control sel containing D.

Proof. Clearly, intl # 0 as D C E. Also, for any x,y € I,y € cl(S¢ ax) lor
all ¢ > 0 and A € F. Therelore, there exists a (S, ¢, A)-chain from x to y for all
¢>0and A € F, which shows that £ is chain transitive. I lasts only Lo verily
the maximality of £. For this, take € £ and y € E and suppose that for every
¢>0and A € F there are (S, €, A)-chains [rom « to y and [rom y to . Since G/H
satisfies H, Proposition 3.5 shows that @ € S, 4y and y € S for all € > 0 and
A € F.Nowever, y € D, 4,50 that 2 € D, 4 for all ¢, A contradicting the assumption
that = ¢ I. Hence, there is no chain either from x to y or from y to x, which shows

that E'U {x} is nol contained in any chain control set and so the maximality of £
follows.0
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As to the F-chain control scts containing the invariant control sets, there is the
following result which improves the above theorem when there is just one invariant

control set.

Proposition 3.8 Let the assumplions be as in the previous theoremn and suppose
moreover thal there is just one invariant control set for S in Ci/Il. Denote il by D
and keep the notations as before. Then D, , is the only S, 4-invariant control sct so
that D, 4 and E are closed subsets. Moreover,

E={"\(Beals-
A

Proof. A well known fact aboul invariant control sets is that there is only one
invariant control set for S if and only if

n cl(Sx) £ Y

reG/!

(c.f. [1, Lemma 3.1]). In this case, the invariant control set is given by this inter-
section. Of course, a similar statement holds also for S, 4 so that in order to prove
the proposition it is enough to show that

Dz‘A N ﬂ CI(S(‘A.'L‘) # (0
zeG/H

This being so, pick € G/H and choose g € intS such that gr € Dy this is possible
because D C (intS)~'z for every z € Dy. Since F satisfies P, g" € A for some
integer n. We have that ¢"z € D because D is invariant. As D C D, and D 4
is a control set for S 4 it follows that D, 4 C ¢l(S, 4z) showing that D, 4 is indeed
an invariant control set. As to the last statement, take y € E and r € Dy. Then
t € (D)o for every ¢, A, and by Proposition 3.2, y € S,z for all ¢, 4. The
invariance of D, 4 implies then that y € (D)o for arbitrary ¢, 1. O

4 Chain control sets on flag manifolds
We specialize now the preceding results on chain control sets to actions of subsemi-
groups of semi-simple Lie groups on their flag manifolds(Furstenberg bLoundaries).

Thus, we let, in this section, G be a semi-simple Lie group and S C (i a semigroup
with non empty interior in G. Also, we consider the homogencous space G/ o be
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one of the (finite in number) flag manifolds of G, that is, /] is a parabolic subgroup
of G. We refer the reader to [15, 16] for the detailed theory of parabolic subgroups
and flag manifolds. We refer also to (10, 12, 13] for an account according to the needs
of this paper. In [12] the control sets on the flag manifolds were studied. There,
their sets of transitivity were characlerized as sets ol fixed points of cerlain elements
in intS. That characterization provided a means for counting and distinguish the
control sets. In the sequel, we shall recall those results on control sets and then use
them together with Theorem3.7 in order to have a procedure for counting the chain
control sets on the {lag manifolds.

Let g be the Lic algebra of G and select a Cartan decomposition g = k + s of
g, with Cartan involution 0, where k is a compactly embedded subalgebra and s
is its orthogonal complement with respect the Cartan-Killing form. Let a C s be
a maximal abelian subalgebra, which in the sequel will be referred to as a split
subalgebra. We have that a decomposes in Weyl chambers. Select one of them,
say at. Associated with this chamber there is a system of posilive roots, denoted
by A*. The simple system of roots generating A% is denoted by TII, and the set of
all rools is denoted by A, which is given by A = A*Y U (—=A*). Ior a root a € A,
we let g, = {X € g : ad(H)X = a(H)X} be its root space. The subalgebra
nt =3 ca+ 8o is nilpotent. It provides the Iwasawa decomposition of g

g=k+a+nt

with corresponding global decomposition G = K AN*, where I = expk, A = expa
and N* = expn*. The subgroup A is a split subgroup of G. We use the notation
At = expat and reler Lo this subset as a Weyl chamber in (. Ior a subset © C II we
denote by g the parabolic subgroup defined by ©. Its Lic algebra is the subalgebra
po generated by ng = Y ,e40 8o, and Po is the normalizer of pe. The associated
flag manifold is Be = G'//Po. When O is the empty set the subscript is omitted so
that £ is a minimal parabolic subgroup and B3 = G//P the maximal (lag manifold
of G. We denote by b, the origin in G/P.

Of interest here is the action of the elements of A* in B. Given k € At, it has a
finite number of fixed points in B. They are {wby : w € W} where W is the Weyl
group W = M*/M where M* is the normalizer and M is the centralizer of A in
K. These fixed points are hyperbolic with unstable and stable manifolds given by
N*wby and N~wby respectively where N~ = §(N*) is the nilpotent group opposed
to N*. The orbit N=bg is open and dense so that by is the only attractor for h, the
other stable manifolds are lower dimensional. In the sequel we shall refer to wbo
as the fixed point of type w for the elements of A*. The cloices of these objects
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is no unique. In fact, given g € (7, a conjugation by ¢ lead to another choice. In
particular, the G-conjugates of A, gAg™" are the split subgroups of G. The same
way, the subsets gA*g™" are the Weyl chiambers in (7. As to the elements of A,
the elements of gA*g~" also have a finite number of fixed points in their action on
B. They are given by gwbs = (gwg=")gbo, w € W which are the translates by the
Weyl group gWg™" conjugate of W of the attractor ghy. In the sequel we choose a
basic chamber A* in the split subgroup A and refer to a fixed point gwby, w € W of
an element of gA*g™" as the fixed point of type w. These fixed points play a central
role in the description of the control sets of a semigroup in B.'

We recall now the results of [12] (see also [13]) about control sets on B. As before,
we let § be a semigroup with non empty interior in .

Proposition 4.1 for each w € W there exists an effective control set D, for S
on B. [ts set of transitivity (D)o consists of the fized ponts of lype w Jor the
elements of the Weyl chambers in G meeting intS. There erisls just one invariant
control set Dy whose set of transitivity is the scl of allractors for the splil elemenls
in intS. Moreover, any effective control set on B is D, for some w € W.O (cf. [12,
Theorems 3.2,3.5])

Proposition 4.2 The subset
W(S)={weW:D,= D}

is a subgroup of W and W(S)w, = W(S)w, if and only if D,, = D,, so thal
w €W — D, fibers through W(S)\W defining a bijection between the set of control
sets and W(S)\W. O (cf. [12, Section §])

Proposition 4.3 Suppose the basic chamber A% is chosen so that A*¥ NantS # 8.
Then there exists a subset © of the simple system of roots Il such that W(5) = We.
In this case, the invariant control set is given as D, = 7 '(Co) where Cg 15 the only
invariant control set on Bg. Moreover, there erists h in closure of A* and n € N*
such that h is fired by Wo and hn € intS.O(cf. [12, Corollary {.}])

These results are about the control sets on the maximal bouundary. The control
sets on the other boundaries are obtained from the control sets on the maximal one
as follows.

Proposition 4.4 Let 1 : B — Bg be the canonical fibration onto the boundary
Bo. Then w((Dw)o) is the set of transitivity of a control scl on Be. Reciprocally,
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on Do salisfics x((Dw)o) = Eo for BmywE W sueh they
e scl of such control sets on B is nol empty. O Be

an effective control sel I3
I sel as well.D (cf. [12, Proposition 5.1 ])

(Dw)o N Y (L) # 9, 'mzd th

there is just onc invariant contro
From now on, we shall denote by DS the c.ontrol set on Bo whose set of trap.

sitivily is the projection of the set of transitivity of the ?011L1'ol set D, on B. Aq

a rom);)](;mcnt to this last statement we have the following fact which, a~|t]10ug|1

implicit were not proved in [12].

L 4.5 Lel Bo be a boundary and denote by # : B — Be the canonical

Propositiol e :
projection. Then DE?, =] D& if and only if W(S)wiWe = W(S)heWo. Hence the
number of control sets on Bo equals the order of W(S)\1W/We.

Proof.  Suppose DS = D® . Then (Dy,)o and (Du;,)o project onto the set of
transitivity of Lhe same control set. Therefore, there is, on the same fiber as w; by,
a fixed point which belongs to Dy,. Since wy maps fiber into fibers and fixed points
into fixed points, that fixed point is of the form w;w'by with w'by on the same fiber
as by so that w’ € Wo. Now Dy, = Dy, s0 that W (S)w, = W(S5)w,w’ showing

that the condition is necessary.
Reciprocally, suppose that w; = w"w;w’ with w” € W(S),w" € Wo. Then

Dy, = Du,w, and since DS = DS, we have that DY = D .0

These results apply, in particular to the semigroups S, 4 whose control sels con-
tain the F-chain control sets of S. Because of this, the above statements on the
number of control sets on the flag manifolds can be carried out to the chain control
sets. In order to do this let, for € > 0 and a subset A € F, W, 4 be the subgroup
W(S, 1) associated to the semigroup S, 4. Consider also the subgroup

Wx(S) = () Wen.
e, A

We assume from now on that the family F satisfies both P, and P,. Since the
flag manifolds satisfy H, because a compact subgroup is transitive on it, we are
under the situation covered by Theorem 3.7.

For the F-chain control sets, the subgroup Wx(S) works the same way as W(5)
for the control sets. Indeed, for each w € W, let £, stand for the only effective
F-chain control set on B which contains Dy, and for a subset © of the simple system
of roots, let £ be the F-chain control set which contains D®. With these notations,
the above statements for control sets extend to cliain controwl sets as [ollows.
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Proposition 4.6 With the notations as above, we have

1. We(S)={weW:E,=FE}.
2. Wr(S)w, = We(S)w, if and only i £, = L,,.

Proof.

1. For e > 0, A € F,and w € W, let D5" be the corresponding control sct for
S..a in B. By definition, w € Wx(S) il and only if w € W, , for all ¢, A, and
this holds if and only if D4 = DY Therelore, w € We(S) il and only if

o3t = 0.
A

A

+

Which shows the first statement, because by Theorem3.7 the left hand side of
this equality is £, while the right one is £.

2. Wx(S)w, = Wx(S)w, if and only il waw' € We(S) =N 4 W, for all e, A,
which holds if and only if W, 4w, = W aw,, which in turn is equivalent to

Dfu';“ = Df”;1 for all €, A. Theorem3.7 shows then that £, = £, . O
Proposition 4.7 Keeping the notations as above, we have that ET = EJ of and
only if Wx(S)w,We = Wx(S)w,Wsg.

Proof. Is analogous to the above proposition.O
These statements have as consequences that the number of elfective F-chain

control sets is given by Wx(5).

Corollary 4.8 On the mazimal boundary B the number of F-chuin control sels
equals the number of elements in the coset space We(S)\W' while the number of
F-chain control sets on the boundary Be equals the order of the double cosel space

Wr(S)\W/We.D

Apart from the information provided about the nnmber of chain control sets,
the subgroup Wx(S) has also something to say about the geometry of the chain
control set which contains the invariant control set. We have from Proposition 1.3
that W(S) is the subgroup generated by a subset © of the simple system of roots if
the basic chamber A* is chosen so that it meets intS. Keeping fixed this chamber,
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Lisfies 1 or P, implies that it mects also intS, 4 for s

o {a;tv th?lt’ fizaél;o generated by the reflexions of a subset, say © 4,
Therefore, Wea

jated to

stem of roots assocld DS

:Zc]mical Jemma about the intersections 0

any family {E),-},-e, of subscls of the simple system of 1001s, e

{the sin
Ol the simp)
A*, that is, Wea = We, .- Now, we have the o)) .

owj
{ the subgroups We. Ving

Lemma 4.9 Given

have that n;We, = Whn.e;-

Proof. In fact, w belongs lo 2 subgroup |_'V(.) il and only ri)f wl = H for every
in the subspacc ©* of a annihilated by © (cl. [16, Thm.l.ﬁ..,.S]), S]ane the ©;s are
a simple system of roots, we have that (ﬂiQi) =¥,0L, Therefore,
L ifit belongs to N;We,. This shows that N;We, ¢ W/, -
ate, the equality follows. O o

subsets of
fixes the clements in (N:©:) . .
Since the reverse inclusion is immedi |

Applying this Jemma to the subgroups IV(,,:,, we get that Wr(S) is generated by
the reflections defined by some subset of the simple system of roots as well.

Proposition 4.10 Suppose F satisfies Py and P, and take a basic chamber At sych,
that A* NintS # 0. Let O, be the subset of the simple system of roots associated
to A* such that W, 4, = Wo, , and pul O =N 40,4. Then

Wr(S) = We,.

Moreover, let Bo, be the flag manifold corresponding to ©x, and denote by Eg, the
F-chain control sel on Bg, which contains the invariant control set. Then

E=r""Ee,)

where I is the F-chain control sct on B containing the invariant control sel and
m: B — Bo, is the canonical fibration.

Proof. It is needed t(_g) prove only the last statement. We have from Proposition
13 that Doy = 774 (D5*) where D, 4 is the S, s-invariant control set on B and

D_S:{A is the S s-invariant control set on the boundary Be, , corresponding to O
Since ©7 C ©,4, it [ollows that Bo, fibers over By, , so that D, 4 is also the inverse
Image gf the .9¢:A-invaria|1t control set on By, Wl]iC(lll is denoted ,by D®,. Now, Dea
and D2, contain the S-invariant control sets on B and on Be 1'eS])Céti"elY- Hence
B =NaDes = 17(N04DS) = -1 (Eo,). O ’
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We finish this section with the following remarks about chain transitivity on the
flag manifolds. ’

It was shown in [10, Thm.4.2] that the only sernigroup with non empty interior
of G which satisfies W(S) = W is & itself in case (7 has finite center. Since, in any
case, the action of G kills off the center, this fact implies that S is transitive on
any boundary if W(S) = W. Since Wx(S) = NW, . it follows that the semigroups
S, 4 are transitive on the flag manifolds provided Wx(S) = IV so that this equality
implies that S is F-chain transitive on any flag manifold as the chain control sets are
intersections of S, 4-control sets. Reciprocally, suppose that S is F-chain transitive
on some boundary. Then S, . is transitive on this boundary for any ¢ > 0 and
A € F. Now, is was proved in [12, Thm.6.2] that the only semigroup which is
transitive on some boundary is G itsell il (¢ is simple and has linite center. Again,
the fact that the center of G is finite is not relevant as the action of the center
on the flag manifolds is trivial . Therefore, under the condition that (7 is simple,
S.a = G, S, is transitive on every boundary for all €, A, and Wx(S) = Wil §is
F-chain transitive on some flag manifold. Summarizing, we have

Proposition 4.11 Assuming the above condilions on F, S is F-chain transilive on
any flag manifold provided Wx(S) = W. Reciprocally, Wxr(S) =W if S is F-chain
transitive on some flag manifold and G is simple.O

It isinteresting to have conditions ensuring that a semigroup is chain transitive on
the boundaries. Regarding this, it was shown in [10, Lemma 1.1] that a semigroup
is transitive on the flag manifolds (and is in fact the whole group il it has finite
center) in case it contains in its interior a nilpotent element. Since the chain control
sets are intersections of control sets of a semigroup generated by neighborhoods of
subsets, it can be seen that a semigroup is chain transitive provided it contains, not
necessarily in its interior, nilpotent elements.

Proposition 4.12 Let F be a family of subsets of S and supposc thal for every
A € F, there exists n € A such that n = exp X and ad(X) is nilpotent in g. Then
§ is F-chain transitive on any flag manifold.

Proof.  The semigroups S, 4 are generated by a neighborhood of A. Thus n €
intS,q if n is as in the statement. It follows then from [10, Lemma 4.1 that
Se.a is transitive on the boundaries. Proposition 3.1 implies then that S is chain
transitive.O



osition is the case when F = F, and the semigro
up

contains an element 72 such that n = CXI:i-\ ka-f‘(la‘]’i(‘?]L‘il“)];)l:);(‘:l} lIn g. Si.nce the
subset {n* : k 2 1} is not compact, and 7 ; i 2 l' “]‘m of a Nilpoten;
element, the assumption holds for all A € Fea: AS ‘a.n example .0[ a Semigl‘oup
satisfying these conditions, let S-1+(n,].R) be the semigroup of.mal,l:lccs in Si(n, Ip)
which have positive entries. This S'legl'Oll[) llﬁs non emply interior and i
upper triangular matrices whose dla.go.na] ’elll-}‘ICS are :1[1 <?(lua‘ls to 1. Since such
a matrix is the exponential of a matrix X with ad(.X) nilpotent, it follows thay
S+ (n, ) is Foo-chain transitive on any flag manifold. Note that this holds Sesite
the non transitivity of Sit(n, R) itsell.

In order to present another technique for checking chain transitivity, we conside
the following example of semigroups of Sl(n, IR). r

A case covered by {his prop

Example 4.13 Let IV be a pointed cone with non void interior in ™. This means
that W is a closed convex cone which does not contain subspaces of positive dimen

ston. Sel

Sw = {g € Sl(n,R) : gV C W}.
Take v € Wov # 0 and complement it to a basis f ={v,ez,...,€,} such that the
subspace spanned by {ea, ..., €5} has zevo intersection with W. Let H, be the linear
map which in basis B is diag{n —1,—1,...,—1}. We claim that exp(tH,) € W for
{111 { .2 0. In fact, take w € W and wrilc w = ayv + -+ + a,e,. The choice of §
implies that a; > 0. But

etHo t(n-1) t

w=e v t+ew

which shows thal exp(tH,)w € W. In case v € intW this equality shows moreover
ttai .CXP(”I”)w € mntlV. This fact together with a simple argument involving the
gonf;mu(y of the Sl(n, R)-action ensures thal exp(tH,) € Sw if v € intW, so that
a::;l ;tzsa';;:zcj::‘p'fy [zlnler;‘m.-, ]'\fow, exp('tH) belongs to a split subgroup of Sl(n,IR)
that Sy has just ;Z:o . ]);t?];’ctwe EPOGE b5 t.he line spanned by v. From this it follows
. - :‘Otn 7o[.scts m fts action on the projective space. The invariant
confoflgelote ”;C ‘cl of lines u'vh-zch are contained in W U —W, while the other
These fasts abocoatng ement of C' in RP™=" (cf. [12, Thm. 6.11] for delails).

and hence in any flllag ;aa;;'efel’:iou.[qh to show that it is Fo,-chain transitive on RP™™!
sets of Sy are contained in Ocoﬁtrnlfactt’ Jor any A € F, and positive € the control
t?f W. Then fort > g P l? es,e s”f;r (Sw)ea. Now, pick v in the bound‘m‘y
tn any compact subset, Thercfm‘g Dl ") A bc'causc exp(tH,) is not contame.d

¢ exp(tH,) € int(Sy ). 4 and since its attractor
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IRP™ is the line spanned by v, it follows that this line is in the interior of (Sw)ea-
which thercfore meels the complement of C. This shows that
control set and hence is transilive on the projeclive

it follows that Sy is Foo-chain transitive on IRP™!

invariant conlrol set,
(Sw)e,a has just one invariant
space. Since €, A were arbitrary,
and thus on any flag manifold.
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