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Resumo

Nessa tese, estudamos fluxos lagrangianos locais associado a campos vetoriais com estrutura
do tipo onda ou convolu¢ao de uma funcao com niicleo muito singular, isto é, uma funcao
cuja singularidade ¢é pior do que a classica da teoria de Calderén-Zygmund. Tais campos
vetoriais sao inspirados no sistema de Vlasov-Maxwell e da equacao gSQG, onde ambos
sao equagoes nao-lineares do transporte e da continuidade. Mais precisamente, provamos
existéncia, unicidade e propriedade de semigrupo para o fluxo e boa colocacao de solugoes
lagrangianas para as equagoes do transporte e do continuidade, isto é, solucoes lagrangianas
sao solugoes fracas ou renormalizadas. Como aplicagao, provamos que caso solugoes do
sistema de Vlasov-Maxwell ou da gSQG sejam regulares o suficiente, entao elas possuem

estrutura lagrangiana.

Palavras-Chave: Equacoes diferenciais ordinarias para campos vetoriais nao suaves.
Equacao do transporte. Fluxo regular lagraniano. Solu¢oes renormalizadas. Integrais

singulares. Sistema de Vlasov-Maxwell. Equacao gSQG.

Classificacao por assunto da AMS,2020: 34A12, 35F25, 35Q35, 35Q61, 35Q83, 37C10,
76B03.



Abstract

In this thesis, we study local Lagrangian flows associated to vector fields with wavelike
structure or a convolution of a function and a very singular kernel, that is, a function
whose singularity is worse than the classical one of Calderén-Zygmund theory. Such vector
fields are inspired by the Vlasov-Maxwell system and the generalized SQG equations,
which are nonlinear transport and continuity equations. More precisely, we prove existence,
uniqueness and the semigroup property for the flow and the well posedness of the induced
Lagrangian solutions for the transport or continuity equations, that is, Lagrangian solutions
are weak or renormalized solutions. As an application, we prove that if solutions of the
Vlasov-Maxwell system or the generalized SQG are regular enough, then they have a

Lagrangian structure.

Keywords: Ordinary differential equations with nonsmooth vector fields. Transport
equation. Regular Lagrangian flow. Renormalized solutions. Singular integral. Vlasov-

Maxwell system. Generalized surface quasi-geostrophic equation.

2020 AMS Subject Classifications: 34A12, 35F25, 35Q35, 35Q61, 35Q83, 37C10,
76B03.
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List of symbols

set of natural numbers.

set of real and nonnegative real numbers, respectively.
Euclidean space of dimension d.

j—th component of = € R%

open balls in R? of radius r and center x and 0, respectively.
d — 1 dimensional unit sphere.

open subset of RY.

closure of set €.

set of x € 2 such that u(z) > A for some A € R.

j—th component of the vector k.
size of the multi-index x = (K1, ..., rq) € N, |k| = Z K.

transpose of matrix A.

perpendicular vector to v € R?.

t tending towards a.

t increasingly tending towards a.

t decreasingly tending towards a.

d—dimensional Lebesgue measure.

the measure of €2 with respect to Lebesgue measure.
pushforward of a measure p by a function ¢.

the restriction of a measure p on a set A.

the absolutely continuous part of p with respect to Lebesgue measure.
the singular part of p with respect to Lebesgue measure.

total variation of a measure p.



w(z) direction of vector z € R?.
dij Kronecker delta.

Levi-Civita symbol.

Oy Dirac delta measure.

M(Q) space of finite measures in €.

P(X) space of probability measures in a Banach space.
AC(I) space of absolutely continuous functions in a interval I.

LP(Q, 1) space of LP integrable functions of Q with s if p not explicit, p = £°.
LP + L9(Q) space of functions f = g + h, where g € LP(2) and h € LI(2).

LY (2, 1) space of locally L” integrable functions of {2 with measure pu.

LP(2, ) space of L integrable functions with compact support.

(RR07% norm of L” space with measure .

LP(Q, 1) weak LP space of functions of Q with s; if y not explicit, u = £%.

I Wlzey — “norm” of Lf, space of measure p.

14 indicator function of the set A.

dist(x,Q)  distance function of a point = and the set €.

[l restriction of a function f in K < .

F Fourier transform operator.

Id Identity matrix.

f*g convolution of a function f and a function or distribution g.
fi(x) function f evaluated at (¢,z) € [0,00) x Q.

oif partial derivative of f in the x; direction, i € {1,...,d}.
o f partial derivative of f in the ¢ (time) direction.

I derivative of f with interval domain.

f derivative of f with respect to t.

Vi perpendicular gradient of f in R?.



curl b
divb

Db

()

C((0,T); X)

curl of the vector field b = (b, ..., by).
divergence of the vector field b = (by,. .., by).

Jacobian matrix of vector field b.

partial derivative of f of order |k|, where D" f = o7* ... 0, f.
fractional laplacian of order 2s, where s € R.

fractional Sobolev space in © with £k € N and a € (0,1).
Besov space in R? with k€ N and a € (0, 1).

space of bounded variation functions in €.

space of compactly supported functions in a Banach space X.
space of Lipschitz functions in 2.

space of continuous functions in 2.

space of k—differentiable functions with kth derivative a—Hoélder con-

tinuous in €.
space of infinitely differentiable functions of ).

space of time continuous function with values in Banach space X.
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1 Introduction

One may frame the state of the art of Lagrangian solutions as the following: if
the vector field has structure by = I" = g for a singular kernel I' and a bounded variation
function g, then there exists a unique solution of (1.2) satisfying the semigroup property.
Moreover, it induces Lagrangian solutions (1.3) and (1.5) which are renormalized solutions
of (1.1) and (1.4), respectively. The main motivation of the research of this thesis was to
extend this result not by relaxing the regularity of functions g, but “changing the other two
symbols” in I' # g, that is, by considering different operators instead of the convolution “=”
(Chapter 4) and more general singular kernels “I"” not admissible for Calderén-Zygmund
theory (Chapter 5). In what follows, we specify the considered changes and important

examples which are not directly covered by the theory recalled in Chapter 2.

In the realm of differential equations, the transport equation is sometimes
referred as the “simplest” partial differential equation (PDE) when the vector field b is
constant; see Evans’ book [49, Section 2.1]. Indeed, notice that the initial value problem

du+b-Vu=0 in [0,00) x RY (1)

Ut—0 = Ug on Rd
only has first order derivatives with respect to all variables. Such partial differential
equation is a simple model of the time evolution of some quantity u by a velocity b, and
it can be verified by its explicit solution in a smooth setting u;(z) = ug(x — tb) if b does
not depend on t; we remark that the subscript does not represent partial derivatives, as
defined in list of symbols. Such representation of solutions holds for non-constant vector
fields which can depend on the quantity w if b is smooth enough. The classical way to
approach the aforementioned PDE is by solving the ordinary differential equation (ODE)
with € R and s € [0, o) fixed

X(t,s,z) =b(X(t,s,x2)) in [0,00);
X(s,s,x)=x.

(1.2)

The local well-posedness of the above ODE, i.e. existence and uniqueness of X (-, x), is
well-known by Cauchy-Lipschitz theory (also known as Picard-Lindelof theorem) if one
has b e C([0,T]; Cioe(R%: RY)) with by € Lip,,.(R%RY)) for all ¢ € [0, 7], or in the context
of Sobolev spaces one may relax the hypothesis to b € L*([0, T]; Wn2 (R% R%)); for the
global well-posedness is ensured if one drops the “loc” in the regularity hypothesis. Here,
we considered a finite interval of existence [0,T"]. Moreover, it satisfies the semigroup

property, that is, for any s, s',t € [0, 77, it holds

X(t,s,X(s,s',1)) = X(t,5,2).



Chapter 1. Introduction 14

In particular, we have an inverse of X (¢,0,z) (take s = 0 and s’ = t), with the identity
X 1(t,0,2) = X(0,t,7).

The function X is often called the flow associated to the vector field b, and with it one

may construct a solution of the transport equation as
u(t, ) = up(X(0,t, x)). (1.3)

Such construction is called characteristic method, and it can be done for more general
PDEs by solving an associated ODE; see Evans’ book [49, Section 3.2] for a general

overview of the technique.

We also remark the close relation of the transport equation with the continuity
equation
Owu +div(ibu) =0 in  [0,00) x RY (1.4)
Up—p = Ug on R '
Indeed, if the vector field b is divergence-free, then both equations coincide. Moreover,
even if the latter does not hold, they still share the characteristic ODE (1.2). Therefore,

by assuming divb e L'([0,T]; L*(R?)), we may construct a solution as

u(t, z) = exp (— L div b (X (r.4.2)) dT) o (X (0,1, 2)). (1.5)

Concerning the regularity of w solution of (1.1), we notice that a simple

computation gives that
Lip(X~'(#,0,-)) < exp (t Lip(b)) ,

where Lip(f) stands for the uniform with respect to time Lipschitz constant of a function
f. Hence, one may conclude by (1.3) that if uo € C**(R?) for o € (0,1], then u €
L*([0,T]; C**(R%)), that is, it preserves the regularity of the initial data. Since the
continuity equation also has the same characteristic ODE, then the same regularity

preservation holds for it.

The regularity assumption b € Lip(Rd;Rd) is however very restrictive, and
many mathematicians tried to relax such hypothesis. An positive result in this direction is
due to Osgood, by assuming that b has a uniform in time modulus of continuity w such
that

fl w(s)ds = 0.

0

The classical example of a non-Lipschitz function satisfying the above (known as Osgood
condition) is |z|log |x|, and more generally log —Lipschitz functions. However, notice that

Holder functions do not satisfy Osgood condition, and in fact fail uniqueness of solutions
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of (1.2) by considering the vector field by(z) = |z|** (for simplicity, we assume d = 1).
Indeed, we have that X (¢,0,0) = 0 and X (¢,0,0) = (2¢/3)*? both solve the ODE

X (£,0,0) = by(X(,0,0));

As for the regularity for vector fields satisfying Osgood condition, as well as general loss
of regularity for Besov vector fields, we refer to Bahouri-Chemin-Danchin’s book [13,
Chapter 3]. Moreover, we also refer to Crippa-Mazzucato and collaborators works [3, 40]
and references therein for very recent results concerning loss or regularity for Sobolev
vector fields for d = 2, and a classical result by Colombini-Luo-Rauch [34] for the case
d = 2. Nevertheless, as mentioned in [3], the one dimensional case preserves BV regularity,
and also there exists some very weak notion of regularity preserved; see Crippa’s thesis
[38, Section 7.5] and a very recent result of Brue and Nguyen of “log-Sobolev” type of
preserved regularity [26]. Finally, we also refer to [38, Chapter 1] for a result concerning

one-sided Lipschitz condition and a brief summary of these classical results.

Concerning existence and uniqueness of solutions of (1.2), the first major
breakthrough was by an indirect proof by DiPerna-Lions in the seminal paper [48], whose
proof lies on the renormalization property for Sobolev vector fields. The motivation follows

from the computation for smooth solutions u of (1.1)

O(Bou)+divibou)—poudivb=(fou)+b-V(5ou)
= f'(u) (Qu+b-Vu) =0,

where (3 is any smooth function. Analogously, we may compute assuming (1.4) that

o(Bou)+div(b fou) =p'(u) (Gu+b-Vu)+ (fou)divb
=divb(Bou—upf'(u)).

We remark that in the transport equation case, we have that a smooth solution u implies
that (o u is also a solution, provided that 3 is regular enough, e.g. 5 € C*(R). However,
the divergence structure of the continuity equation is more intricate, with a nonlinear
right-hand term. We summarize the idea above as a property for weak solutions of (1.1)

by simply integrating by parts the divergence and time derivative.

Condition 1.1 (Renormalization property). Let b € LL_([0,7] x R%:R?) such that
divb e Li ([0, T] x R?). We say that b has the renormalization property if for any weak

solution u € L ([0, T] x R?) of the transport equation, 3 o u is also a weak solution of

(1.1) for all B e C'(R).

Such condition, albeit present implicitly in [48], is not posed in it, and so

we follow a more modern presentation, as in De Lellis’ seminar [44]. We remark that
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Condition 1.1 implies uniqueness and stability of solutions of (1.1) and (1.4) if the vector
field b also satisfies divb € L'([0,T]; L*(R?)) and the growth assumption

[

We sketch the proof of uniqueness and stability for the transport equation (the continuity

b,
L+

dt < oo. (1.6)
L1+L"(RY)

equation case follows from the subsequent referred results of [48]), as in [44]: notice that
for uq, us solution of transport equation with vector field b with initial data uy and holding

the renormalization property, the difference v = u; — uy satisfies

o + div(bv?) = v*divh in [0,00) x R

Vi—g = 0 on Rd,

A formal computation gives that (Hth%Q(Rd)), < | div thLm(Rd)Hthiz(Rd), and so the Gron-
wall Lemma gives that v = 0. If one assumes that b e L'([0,00); L*(R% R?)), a precise
proof is done in [44, Proposition 1.6] with a weak Gronwall version and suitable test

functions, and with the growth assumption (1.6) in [48, Theorem II.2].

As for stability result, that is, assuming smooth sequences by and (ug); with
limits by — b in L. _(R%RY) and (ug)r — uo L (R?Y) with a uniform bound (ug)y €

L*(R%), and u; solutions of

Oyuy + div(bg ug) = up divb, in  [0,00) x R%

(utzo)k = (UO)k on Rd,

we prove that there exists u solution of (1.1) with vector field b and initial data ug. Indeed,

by Cauchy-Lipschitz theory, u; is smooth and satisfies
| o ([0,00) xRy < Sl}ip (o) kll L ray < C

and the above uniform bound combined with the uniqueness results gives that uy converges
weakly* to some function u € L*([0,0) x R?). Moreover, since b has the renormalization
property, then u; satisfies (1.1) with initial data (u;)3. By the same argument as before
and by the renormalization property, u; converges weakly* to u?. Therefore, we have that
up — uin Ll ([0,0) x R?) as k — oo. By the strong limits of b, and (ug), we may pass
the limit in the weak setting of (1.1) and so the result follows. We refer to the original

proof in [48, Theorem II.4] and [38, Theorem 2.3.3] for a modern presentation.

The above uniqueness and stability result is called the “soft” part of DiPerna-
Lions result [44], which juxtapose the regularity assumption for b to satisfy Condition 1.1—
or the “hard” part—and it is proven in [48, Section II| that it suffices that b is in the
Sobolev vector field b e L'((0,T); Wbl (R% RY)). The key idea is to mollify the transport

ocC
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d -1

- ), where p is a smooth and even kernel,

equation in space variable with p. = ¢ “p(e

and then write the transport equation as
Oue + b-Vue =b-Vue— (b-Vu) * p. = 1,

where u. = u * p.. The right-hand term r. is known as “commutator”, since it can be
written as the difference of changing order of derivatives and convolutions. Since wu, is
smooth in space and dyu® = — (b - Vu) = p., we may use the chain rule for Sobolev maps
so that

5t6(ue) +b- vﬁ(“ﬁ) = BI(UE)TE (1'7)

for every 8 € C'(R). We wish to pass the limit in the above equation in the weak sense.
Notice that each function on the right-hand side converges weakly, but this is not enough
for the convergence of the product. Since 3'(u.) is locally uniformly bounded, it suffices to
show a strong convergence r. — 0 in L{ (R?) as ¢ — 0. This is precisely [48, Lemma II.1],

but we refer to [38, Lemma 2.5.2] for a more direct presentation.

In the subsequent years, the interest of extending DiPerna-Lions result for
vector fields was latent. The first main improvement was by relaxing the summability
condition of the Jacobian matrix of b by only assuming the summability of symmetric part
Db + (Db)' e L*((0, T) L}, .(R% R?)); see Capuzzo-Dolcetta-Perthame paper [27]. Later,
the major breakthrough was due to Bouchut [23] for Vlasov equations, that is, transport
equations in R*® with vector field by(z,v) = (£(v), Fy(z,v)), where £ is the “velocity” and E
is the “acceleration” with regularity & € Wbl (R%: RY), D, F € L*((0,T); LL (R%; R¥*%)),
and the assumption D, F € L'((0,T); BViee(R*; R?*%)). Notice that it was not assumed
that F, € Wb (R*; R??), for its derivative with respect to z variable is only a Radon
measure. Finally, the full generalization was due to Ambrosio [4] for vector fields b €
LY((0,7); BVioe(R%: RY)) with div b e L((0, T); Ly, (RY)), with the aid of rank one theorem
for bounded variations functions of Alberti [1]. Informally, the rank one theorem states
that if f € BVi,(R?), then one can explicitly write the matrix function M which satisfies
D*f = M|D*f|, where D°f is the singular part of Df with respect to the Lebesgue
measure. They key idea is to consider once again (1.7), but now they split the derivative
(which is a Radon measure) into absolutely continuous and singular parts with respect to
the Lebesgue measure. Therefore, the absolutely continuous part is computed analogously
as in [48] using the fact that div b is absolutely continuous, but if one carries the same
computations for the singular part one only gets a locally finite measure o (known as
“defect measure”) such that

o= 0B(u) +b-Vp(u).

The computations a la DiPerna-Lions imply that ¢ is singular with respect to the Lebesgue
measure in spacetime, and it has being coined as “isotropic estimate”, for it does not assume

any further conditions on the convolution kernel. In order to conclude the renormalization
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property, one needs to show that in fact ¢ = 0. This was done using the so called
“anisotropic estimate” (see [38, Subsection 2.6.3]), which in turn implies that the measure
o is estimated by an infimum over the convolution kernels of a linear functional, and by
[1], it can be shown that such infimum equals zero. More recently, it has been shown
that the aforementioned infimum can be explicitly computed, simplifying the original
proof [38, Subsection 2.6.6]. Furthermore, there exists a more modern proof for Alberti’s
rank one theorem by De Lellis [43], and also a more general result concerning the explicit
computation of the singular parts of measures with respect to their total variation in De

Philippis-Rindler’s paper [72].

We summarize the above as the following: if b € L*([0, T]; BVioe(R% R%)) has
integrability divb e L'((0,7T); L;,.(R%)), then Condition 1.1 holds. In particular, if one
further assumes that divb e L'([0,T]; L*(R%)) and the growth assumption (1.6), then
there exists a unique renormalized solution of (1.1) and (1.4). We remark that existence
of weak solutions of transport and continuity equations is a trivial result, and so the
existence of renormalized ones and their uniqueness follow from Condition 1.1. Indeed,
by considering the convolution of the vector field and initial data with a mollifier and
denoting them as b, and (ug)., respectively, we have by Cauchy-Lipschitz theory a unique
solution u,. of

Oy + div (beu) =0 in  [0,00) x RY;

(t=0)e = (uo)e on R%

In particular, we have that u, is uniformly bounded in L*((0,0) x R%), and so we have a
subsequence u,, weakly* converging to some u in L*((0, c0) x R%) as €, — 0. Since b, and
(1) converges strongly in Li (R% R?), the result follows. The transport equation case is

analogous with the aditional assumption that divb e L{ ((0,0) x R?).

loc

There are also results further that extend the admissible vector fields satisfying
Condition 1.1, and we highlight two results; first due to Ambrosio-Crippa-Maniglia [8] for
renormalization property for special bounded deformation vector fields, that is, functions
with symmetric derivative being a Radon measure with zero Cantor part; the second
due to Miot and Sharples [67] for the renormalization property for BV vector fields off
a “small” set S in spacetime, provided that the vector field has appropriate integrability
with respect to the normal component of S. We also highlight the Alberti-Bianchini-
Crippa’s paper [2] for uniqueness of weak solutions of the continuity equation in 2D for
autonomous vector fields with Hamiltonian structure and satisfying a weak Sard property,
where the proof does not rely on the renormalization property and Le Bris-Lions work
[25] for existence and uniqueness of renormalized solutions of the transport equation for
vector fields b(z,y) = (b1(z), by(z, %)), where (x,y) € R x R® and b, has only regularity
T/Vll’l(RdQ;Rdz) on the variable y and only the summability in ¢, x variables. We also refer

ocC

to [38, Sections 2.7-2.8, Chapter 3| and references therein for a general discussion of the
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renormalization property—in particular for nearly incompressible vector fields. Finally,
we also highlight some very recent results for vector fields in infinitely many coordinates

found in [9, 12, 65] and references therein.

We emphasize that the renormalization approach is purely from a PDE’s
perspective, and as a byproduct it is possible to prove existence and uniqueness of
solutions of the ODE (1.2). Indeed, the results in [48, Section III] and [4, Section 6] for
existence, uniqueness and semigroup property for (1.2) follow analogous approximation
procedures as before and using the “soft” part of DiPerna-Lions theorem. Moreover, the
solution has a Lagrangian structure, that is, if it is a solution of the transport or continuity
equation, then it satisfies almost everywhere (1.3) or (1.5), respectively. Furthermore, the
uniqueness for (1.2) from the renormalization property Condition 1.1 is quite rigid: it has
been known since DiPerna-Lions” work [48, Section IV] that vector fields with unbounded
divergence or without integrability assumptions on their derivatives (e.g., vector fields in

any fractional Sobolev space Wy,

(R%: R?) for any a < 1) do not have unique flows. Quite
remarkably, there are finer results for nonuniqueness of flows: the example by Depauw in
[45] shows that the integrability in time for Ambrosio’s theory needs to be global, that is,
if be LL.((0,T); BViy.(R* R?)), then uniqueness of flows are not guaranteed; the example
by Colombini-Luo-Rauch in [33] shows nonuniqueness for bounded autonomous vector
fields b in R?® with 23Db being a finite Borel matrix measure. Therefore, the BV(Rd) space

is very almost the best space for the renormalization property to hold.

We organize the thesis as follows: in Chapter 2, we recall the Lagrangian
approach for (1.1) and (1.4) introduced in [39] by Crippa-De Lellis, that is, a direct
study of existence, uniqueness and semigroup property of (1.2), and so it is possible
to construct a renormalized solution for transport and continuity equations for b €
LY(0,T); WhP(R% RY)) for p > 1. This result was further extended independently by
Jabin [59] and Bouchut-Crippa [22] for vector fields in L'((0, T); W' (R% R%)); the former
in fact also extended the proof for vector fields in the space of special bounded variation
functions (SBV) and the latter for convolutions of singular kernels d la Calder6n-Zygmund
theory with a W' (R?) function among other cases. Moreover, the results was extended
for vector fields with anisotropic regularity in [16] by Crippa-Bohun-Bouchut in a similar
spirit as the aforementioned [25], where the vector field b(x,y) = (bi(z,y), ba(z,y)) has
derivative D, b, being singular kernel convolution with a finite measure, while the others
are singular kernel convolution with an summable function. Finally, Nguyen [70] extended
the result for vector fields which are singular kernels convoluted with a function of bounded
variation. In particular, it extends Ambrosio’s results [4] on the ODE level. All of the
aforementioned works assume the bounded divergence in space of its vector fields and the

growth assumption (1.6).

In Chapter 3 we recall the work of Ambrosio-Colombo-Figalli [5] and [6, Sections
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4 and 5] on local flows without assuming the growth assumption (1.6), that is, given a
x € R there exists T = T'(z) > 0 and a unique solution of (1.2) in [0, 7(x)). They prove
existence, uniqueness and semigroup property of flows in this setting, as well existence of
renormalized solutions of (1.1) for divergence-free vector fields. Furthermore, they show a
sort of “weak” renormalization property if one assumes uniqueness of nonnegative solutions
of (1.4). The latter result has not been reproduced in the previous setting, i.e., where vector
fields satisfy (1.6). Finally, we also recall the extension done by the author with Marcon
[21] for quasistatic Vlasov-Maxwell systems, extending the result of [6] for Vlasov-Poisson

equation.

We now explain somewhat informally the contents of Chapters 4 and 5, which
are the author’s original contributions: in Chapter 4, we study solutions of (1.2) with vector
fields which are wavelike convolutions of a singular kernel and some L'((0,7); LP(R%))

function, where p > 1. More precisely, we consider vector fields

bi(z) = K& = y)gimjo—y(y) dy = K * gi(2),
Bi(x)
where K is a singular vector kernel near the origin of order at most |z|*~¢. Such vector
fields arise from inhomogeneous solutions of the wave equation [49, Section 2.4], where
in the three dimensional case the kernel is precisely computed as K'(z) = (4r|z|) " e;, e
being the canonical basis in R®. We remark that this “hyperbolic convolution” operator *
is not symmetric nor associative in both variables, and so many of the techniques employed
in [22] are not available. In order to prove existence, uniqueness and semigroup property
for solutions of (1.2), it was necessary to extend an estimate for a composition of grand
maximal functions and singular kernels [22, Theorem 3.3], where in our case the kernel are
not necessarily smooth, i.e. C*(R?) functions outside the origin. An important application
is in Vlasov-Maxwell system, where we consider vector fields (as aforementioned in the

discussion of [23]) with further structure of the acceleration F', that is

bi(x,v) = (£(v), Ey(x) + £(v) x Hy(x)).

The physical velocities £(v) are either nonrelativistic, where it coincides with phase velocity
v and so &(v) = v; or relativistic, i.e. £(v) = (1 + |v|*)™?v, where the first term is the
Lorentz correction factor (we consider the speed of light ¢ = 1). Moreover, the electric and

magnetic fields F and H, respectively satisfy the wave equation
Ooull —AE =—-Vp—0j and 0JyH —AH = curlj

for particle and current densities p, j, respectively; we remark that these physical quantities
depend on the solution of the transport equation, hence so does the vector field b. In
particular, the Vlasov-Maxwell system is a nonlinear transport/continuity equation. We

shall make an explicit derivation of the above wave equations with physical units from
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Maxwell’s equations in Chapter 4, as well as write the electromagnetic field depending
only on the densities p, 7, and d,j. We prove that if densities and some time derivatives
are summable, then weak, renormalized, and Lagrangian solutions are all equivalent. All

of the aforementioned new results can be found in [20].

In Chapter 5, we consider vector fields b, = K* = g, and b, = ['* = g;, where
0 < a < 1 and the kernels K and I'“ satisfy the decay
C

|x|d+o¢’

|K* () and  |T(z)| <

| < |$|d71+a

Since we shall need to compute the jacobian of b;, we distinguish the kernels for which
term in the convolution we differentiate: in the former, the kernel is less singular, and so
we have enough room to compute it as 9;b" = (6; K{*) + g, and so we assume that either
£ (y)

o . 7
K (y) = W;
where (); are smooth zeroth order homogeneous functions with average zero on the sphere
S? 1 in the latter, we differentiate the functions g, i.e.

. Q
0;by(x) = I'Y « 0;g.(x) for kernels TI'{'(y) = |y|c(lg+/l

We shall consider ever more singular kernels in Chapter 5, where we shall assume more
cancellation properties for €2;, e.g. zero average on the sphere in all directions. Concerning
the regularity needed for the functions g, the results of [22, 70] suggests that one should
consider an “intermediate” space between L'(R?) and BV(R?) in cases b, = K® # g, and a
more regular space than BV(R?) in cases b, = T'® * g,. Moreover, such spaces should take
into account the parameter «, and we were able to prove that the Besov spaces Bﬁl(Rd) are
the appropriate ones when considering the less singular kernels; the other cases one takes
B;ja (Rd). The even more singular cases needed not only better cancellation properties for
the kernels, but also stricter Besov spaces for the functions g. The proof of such results is

in fact an simplification of the Nguyen’s work [70] for the aforementioned special case.

The quintessential example of vector fields with such structure are from the

generalized surface quasi-geostrophic equations (gSQG) with parameter o € (0,2)\{1}:

00 + [VH=A)2716]-VO=0 in (0,T) x R%

(1.8)
Ht:() = 90 on Rz.

Notice that cases a = 0 and o = 1 are the 2D vorticity Euler and surface quasi-geostrophic
equations, respectively. Indeed, writing the vector field explicitly (see Silvestre’s thesis [74,

Chapter 2] for an extensive study of fractional Laplace operator), we have that

(z —y)*
y|2+a

bi(z) = VH(—A)310,(z) = cavlj W) g, e, 0(y) dy.

R2 |7 —y|® R2 |7 —
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In this context, we prove that if solutions are nonnegative and in the appropriate Besov
space, then we have equivalence of weak, renormalized, and Lagrangian solutions; if we
do not know a priori the sign of solutions, we still have existence of renormalized /weak

solutions. The latter can also be extended for bounded divergence vector fields.

Finally, in Chapter 6, we summarize the results for wavelike and very singular
vector fields, and discuss the possible extension of these type of results for less regular vector
fields, such as bounded deformation or with anisotropic regularity, and Euler equations

with measure vorticity.
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2 Global results with Lagrangian approach

In this chapter, we revisit the results without relying on the renormalization
property Condition 1.1 introduced by Crippa-De Lellis in [39]. This is now called Lagrangian
approach and we shall expose it among several generalizations, namely [16, 22, 70]. We

begin by recalling classical results regarding maximal functions and singular integrals.

2.1 Maximal functions and singular integrals

In this section, we recall the estimates of maximal functions (also known as
Hardy-Littlewood maximal function) and singular integrals. We first define maximal,local

maximal functions, and grand maximal functions.

Definition 2.1. For ue L}

L (R, we define the maximal function Mu as

1
Mu(z) = sup

Ju(y)| dy,
0 |Be()] Jp. ()

for each z € R%. We define the local maximal function Mzu as

1
Mpu(z) = sup o u(y)| dy.
0<e<R | Be(z)| Be(x)
Finally, given a family of functions {p”}, = L®(R?), we define the grand maximal function
M ,vu associated to {p”} as

My u() = supsup (5 « u)(2)],

v e>0

where p?(x) = e %p” (e z) for all x € R If {p*}, = CP(R?), then one may consider finite

measures u.

We remark that Mgpu(x) < Mu(x) for all R > 0. Moreover, by assuming

uniform boundedness of the functions p” and uniform support supp p” < B, we have that

M u(x) = supsup

v >0

1 v (T Y v
L 2wt o] < 1Bl sup 1L et
R 14

In particular, if we take p”(z) = |B;| '1p,(x) (so that it is independent of ), and so

Mu(z) = sup

e>0

Y

1 T =y 1
—— Ill()uydy‘:sup u(y) dy
] Jo 1 )W) B Jp. "

e>0

that is, the maximal function with the absolute value outside of the integral.



Chapter 2. Global results with Lagrangian approach 24

We begin by recalling the classical result concerning estimates of the operator
M in LP(R?) for all the range p € [1, 00]. For a concise presentation, we refer to the seminal
book of Stein [76, Chapter I]. By the above considerations, the following also holds for the

grand maximal operators.

Lemma 2.1 (Hardy-Littlewood estimates). Let u € LP(RY). If 1 < p < oo, then there

exists a constant C, > 0 depending only on p such that
IMu| ey < Cpllu| Lrgay.

If p =1, there exists a constant Cy > 0 depending on the dimension d such that it holds
the weak estimate

IMullyy ey < Callu]pr ey
Moreover, let A >0 and r > 0. If p > 1, there exists a constant Cyq, > 0 depending only
on d,p such that

IMyu|Los,y < Caplul Losy,,)-

If p =1, there exists a constant Cq > 0 depending only on d such that

IMyull Ly 5,y < CallulLis,.,)-

We also recall the pointwise estimates for the difference quotient of a function;
they are finer estimates than those typically presented in graduate studies, e.g. [49, Section

5.8.2]. They are sometimes referred as Lusin-Lipschitz inequalities.

Lemma 2.2 (Difference quotient estimates). Let u € W (RY). Then there exists a
measure zero set (with respect to the Lebesque measure) E such that for any x,y € RN E,
it holds

u(z) = u(y)| < |z = yl(Mjo—y Vulz) + Mgy Vu(y)).

More generally, if u e Li_(RY) (but not necessarily in W,bH(RY) ), consider the family of

ocC

functions
{Tj’g(a:) =h (5 = x) zj: he CP(RY), J h(y)dy = 1, supph < B1/2}
2 R j=1,...,d; £eSd-1
and the associated grand maximal operator Mvje. Moreover, let n e C’EO(Rd) be a function
satisfying
J n(y)dy =1 and suppnc B, for some a > 0 such that suppn, < Bijs_a,
R4

where n,(x) = nn(nz) for n € N. Finally, denote E the measure zero set such that
N * u(z) — u(z) for all x € RINE. If we further assume that there exists a measure zero
set F' such that the weak derivative Vu satisfies My (Vu)(x) < o for all x € RINF, then
for all x, y e R\ (E U F), it holds

u(z) —uly)| < & =yl (MryssVu(z) + MyicVu(y)) .
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We refer to Bojarski-Hajtasz’s work [19, Theorem 1] for the first claim of
Lemma 2.2. For the second, we remark that the aforementioned result is due to Bouchut-
Crippa work [22, Proposition 4.2]-albeit not stated as above, but rather in the specific
application for their subject of study. Nevertheless, their thesis can be extended as stated

in Lemma 2.2 with the same proof.

Concerning the theory of singular kernels, we refer once again to Stein’s classical
book [76, Chapter II|, and also the Muscalu and Schlag’s chapter [68]. By assuming a
regular enough kernel, the singular operator defined by it enjoys estimates similar to

Lemma 2.1, and are usually refer as Calderén-Zygmund theory.

Lemma 2.3 (Calderén-Zygmund estimates). Let ' e L (R*\{0}) be a function for which

there exists a constant C' > 0 such that

f ly||IT(y)|dy < CR  for all R > 0;
Br

J Ty —2) —T(y)|dy < C for all z € RY;
RABy |y

J F(y)dy‘sc forall0 <r < R < 0.
BRr\B,

If pe (1,0), there exists a constant C' > 0 such that it holds
IT = uf| Loray < C'uf| o(ray
for all we LP(RY). If p = 1, it holds the weak estimate
T = wll s ray < C'lulz1(ray.-
In the above, the convolution is understood in the sense

[« u(z) = lim ['(x — y)u(y) dy.
=0 Jra\B,(x)
We remark that the case p = o0 is intentionally omitted for it is beyond the
scope of this work. Nevertheless, there are results concerning estimates of I" = v in bounded

mean oscillation (BMO) spaces; see [68].

The kernel conditions in Lemma 2.3 which are known as singular kernels usually
are too relaxed for some applications, e.g. [22, Theorem 3.3] and [68, Section 7.3]. The

first one is usually restricted to kernels with pointwise estimate
¢ d
II'(z)| < T2l for all x € R*\{0};
x
the second one' follows if we assume pointwise estimate on the kernel’s derivative:

VI (2)] < for all x € R4\ {0};

|:L‘|d+1

L Such estimate is known as Hormander’s condition.
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the third estimate, sometimes called “cancellation property” is a finer condition, for it
allows us to prove that a composition of singular operators are also singular operators;
see the comment in the beginning of [22, Section 3]. Therefore, it is usual to assume a

structure for the kernels rather than an estimate, as in

I'(z) = T:ET;) with Q(y)dS, = 0. (2.1)

§d-1

Here, € is a zeroth order homogeneous function, that is, Q(tz) = Q(z) for all 2 € R? and

t € R, and so it is completely determined by its values in S 1.

We also recall the results in [68, Section 7.3] concerning a truncated version of

the singular operator associated to kernels of form (2.1):

T.u(x) == sup

e>0

J [z —y)u(y) dy| .
RANB, (z)

Lemma 2.4 (Calderén-Zygmund estimates for truncated kernel). Let u € LP(R?) and T

as in (2.1). Then there exists a constant Cyq > 0 depending only on the dimension such that
Teu(z) < Cy(M(T = u)(z) + Mu(zx)).
In particular, if p € (1,00), there exists a constant C, > 0 such that
| Tl poray < Callul Logray-
Moreover, if p = 1, it satisfies the weak estimate
Tl oy, ey < Calul oy

Remark 1. In Section 2.5, we shall need specialized versions of Lemma 2.2 and Lemma 2.3.
By the niche nature of these results, we shall state them afterwards in Proposition 2.5,
Theorem 2.5, and Lemma 2.12.

2.2 Dawn of Lagrangian theory: Crippa-De Lellis" result

Albeit pioneering the study of (1.2) by Crippa and De Lellis’ work [39], their
conclusions can be further improved following the presentation of Bouchut-Crippa [22].
Moreover, inspired by [6, Proposition 4.11], we further improved Crippa-De Lellis’ result,
and so we present the latter. We begin by defining the key mathematical object throughout

the thesis, which in a sense is the “correct” solution of (1.2).

Definition 2.2 (Renormalized regular Lagrangian flow). Let b : (0,7) x R? — R% be a
vector field satisfying the growth assumption
e

o |(X+]-])log(2+]-])

dt < co. (2.2)
L1+ L*(R4)
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For a fixed s € [0,T), consider the map X continuous in time and locally measurable in

space such that for almost any t € [s, T] it holds
J loglog(e + | X (¢, s, 2)|) dz < .
Br
We say that X is a renormalized regular Lagrangian flow” of b starting at s if

(i) it satisfies in the weak sense the ODE
(B(X(t5,2)) = VA(X(t 5,2)) - bi(X (t,5,2)) in (s,T) x R
X (s,s,x) =x on R%;

for all 5 € C'(R% R) such that

C
(1 + [[) log(2 + |)

18(z)] < C(1+1loglog(e + |z|)) and |VB(z)] <

for all x € R and some constant C' > 0.
(ii) there exists a compressibility constant L > 0 such that for every ¢ € [s,T), it holds

X(t,s, )4 L < LLC

We remark that the above definition is not contained in [39] nor [22]: the
former defines a Lagrangian flow via almost everywhere well-posedness of (1.2) instead of
Definition 2.2 (i), while the latter assumes a stricter class of test functions [, replacing
their estimates by

C
< ;
1+ |z

Bx)] < C (1 +1log(1 +[z])) and [Vi(z)|

see also [42] for a similar approach of renormalized Lagrangian flows. Definition 2.2 (ii)
and on 8 and b shall imply that ¢ — (X (¢, s, z)) is an absolutely continuous function for
almost every ¢ € [s,T] and x € R?. Assuming the integrability of b (2.2) and the estimates
of B in Definition 2.2 (i), we may take f(x) = loglog(e + |z|), and so we heuristically
conclude for any R > 0 that

T bt

log@+ [ DA+ ] dr=

L1+ L*(Rd)

J loglog(e + | X (t,s,z)])de < Crp + LJ
Br 0

for some Cr 1, > 0 depending on the subscripts, where we have used Definition 2.2 (ii). The
same computation is done in [22] when assuming (1.6), and so by taking 3(z) = log(1+|z|),
their flow is logarithmically more integrable then what we consider in this section. Before

we make the above computation precise, we define the sublevels of a flow.

2 An important question is whether Lagrangian flows are well-posed in the sense of Lebesgue classes,

namely if V3(X)-b(X) depends on the representation of its Lebesgue representative. For this discussion,
we refer to Remark 22.
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Definition 2.3 (Sublevels). For a measurable in spacetime flow X (-, s, ) starting at s
and a fixed A > 0, we call the sets

Gy ={zeR":|X(t, s z) < Aforae tel[sT]}

the sublevels of the flow.

Finally, we shall write vector fields satisfying (2.2) as

bi(x)

g2+ o) (A3 o~ @)+ o), (2.3)

where b’ € LY((0,7) x R%; RY) and b e LY((0,7); L*(R% R%)). We are now ready to prove
the “loglog L” integrability of the flow.

Lemma 2.5 (Integrability of flow). Let b be a vector field satisfying (2.2) and an associated
renormalized reqular Lagrangian flow X starting at time s with compressibility constant L.
Then for any R > 0 and t € [s,T], it holds

J loglog(e + | X (t,s,x)]) dx <J loglog(e + |z|) dz
BR BR

~1 ~2
+ L|b HLl((OI)XRd) + | Bgl|b HLl((O,T);L‘“L(Rd))

and also for any R > 0

J sup loglog(e + | X (t,s,x)])dx <J log log(e + |z|) dz
B Br

R t€[s,T]

-1 =2
+ LIb | 10,0y xrey + | BRI [ L1 (0,7); (m4)) -

In particular, it follows that there exists function f(r,)), g(r,\) depending only on

HBlHLl((O’T)XRd)7 ||62||L1((07T);L”f,w(Rd))7 and the constant L such that
|BAGA < f(r,A) and |G\ B, < g(r, ),
where v, X > 0. Moreover, for a fized r > 0, the function f(r,-) satisfies the limit
lim f(r.0) N\, 0
and for a fized A > 0, the function g(-, \) satisfies

li A) N\ 0.
rlfngog(r, )\

Proof. We follow very closely the proof of [22, Lemma 5.5]. We consider for ¢ > 0 the

function

Be(x) = loglog(e + +/|x|? + €).



Chapter 2. Global results with Lagrangian approach 29

By Definition 2.2 (i), Definition 2.2 (ii), and (2.2) we have that

O(B(X (,5,4))) € L'((5, T); Lige(RY))-

In particular, for almost every = € R%, 0,(3.(X (-, s,2))) is summable in (s, T, and so for

almost every 2 € R? and for all t € (s, T), we claim that

Be(X (t,s,x)) = B(X (s,5,2)) + J VBA(X(1,s,2)) b (X(7,s,2))dr. (2.4)

Indeed, since 5.(X (-, s,z)) coincides with an absolutely continuous function & (-, z) in
(s,T), and so we have that

Be(X (t,s,x)) =E&(s,x) + J VBE(X(1,s,)) b (X(7,s,))dr.

Since the integral on the right-hand-side and ¢ — §.0(X (¢, s, z)) are an continuous function
in time for almost all s € [0,7] and x € R?, we conclude that &.(s,2) = B(X (s, s, x)).

By the above claim, we may take ¢ — 0 to obtain that

T
loglog(e + | X (¢, s, 2)|) < loglog(e + |z|) +J b (X (7,5, 2))| + [B(X (7, 5,2))| dr (2.5)
0

for all t € (s,T'). Integrating with respect to x in Bg for any R > 0 implies the first
inequality in the thesis of Lemma 2.5; taking the supremum with respect to ¢ in [s, 7] and

then integrating in Bg implies the second one.
Integrating (2.5) in B, \ G, we have that

~1 ~2
|B,|loglog(e + 1) + L (||b |1 (0,1 xray + | Br]|b ”Ll((O,T);L"f»‘(Rd)))

B A\G,| <
| A loglog(e + A)

= f(r,\).

Notice that we may estimate (2.4) from the other side, and so by taking ¢ — 0, we have

that

T
loglog(e + |z]) < loglog(e + | X (t, 5,z)|) + f bo(X (7, 5,2))| + |b(X (7, 5, 7)) d7. (2.6)
0

Integrating in G \ B, and an analogous estimate as before, we have that

-1 )
L(|B>\| loglog(e + A) + ||b HLl((o,T)de) + |Byl|b ”Ll((O,T);Lf‘(JRd)))
|G\ B,| < = g(r,A).
log log(e + 1)

The limits of f(r,-) and g(-, A) follow, and so does the lemma. O

Remark 2. An analogous thesis of Lemma 2.5 holds if one assumes (1.6) instead of (2.2).

Indeed, by dropping the logarithm in the denominator in (2.3), we have that

J sup 1og(1+|X(t,s,x)|)dx<f log(1 + |z[) da
B Br

r t€[s,T]
-1 =9
+ L6 [ L1o,ryxray + I BrIO [ 210,112 R -
In particular, the control of |B,\ G,| and |G\ B,| holds.
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We are now ready to state the now called “fundamental estimate for flows”,
coined by Bouchut-Crippa in [22, Proposition 5.9]. We shall follow the former approach

for a more modern presentation comparatively to [39].

Proposition 2.1. Let b and b be vector fields satisfying (2.2), and X, X their renormal-
ized reqular Lagrangian flows starting at time s with compressibility constants L and L,
respectively. Moreover, assume that Db e L*((0,T); LY, .(R%; R**%)) for some p e (1,0).
Then for every v > 0, n > 0, and r > 0, there exists A > 0 and a constant C, ,,, > 0 such
that

|B7“ N {|X(t7 S, ) - X(t7 S, )| > ’7}| < 0%777THb - B||Ll((07T)><B)\) +1
uniformly in s € [0,T] and t € [s,T]. The constant C.,,,, depends only on its subscripts,

the compressibility constants L and L, the norms (2.2) of b and b and | Db| 110 1):10(Bsy))-

Proof. We begin by defining for any § > 0, A > 0, and ¢ € [s,T] the function

X(t - X(t
®(5(t) — JB . 10g10g (€+ | ( 787:6) 5 ( ,S,SC)|> dx,
rNG NG

where G, is the sublevel associated to X (-, s,-). By the assumed regularity of X and X,

we have that ®; is absolutely continuous, and it satisfies

o (1) <f by (X (t,s,x)) —_Bt(j((t, s, x))| de

B,nGANG |X(t,8,l') —X(t,8,$)| +6
<J |bt(X(t787x)) — bt(X(ta S,.I'))| dax (27)
BrnGxnGy

| X (t,s,2) — X(t,s,2)|+6

+J |bt(X(t757x)) —_bt(X(t,S,.f)ﬂ dx
BrmG)\méA |X(t,8,l’) —X(t,s,x)| +5 .

The first integral on the right-hand side is bounded by using Definition 2.2 (i) for X, and

SO

L _
Y dr < —|b; — by|| 11 .
X (t,s,7)— X(t,s,0)| 10 -0 [br = byl 1)

For the second integral, we use Lemma 2.2, and so

f b,(X (t,s,2)) — by(X(t,s,2))]

b, (X (t — b, (X (¢t
J | t( ( 7S7x)) _ t( ( 7S,$))| dr < J |M2)\Dbt(X(t,S,x))|
BrnGanG, | X (t,s,2) — X (t,s,2)|+ 0 By nGynGy

+ |Mo)xDb (X (t, s, x))| dx.

Therefore, we have by (2.7), Hélder inequality, Lemma 2.1, and Definition 2.2 (ii) that

©5(t) < <lbe = bill 11,y + (L + L) B~V Dby| (5,

Slal

Integrating with respect to ¢ in [s, s + 7] and noticing that ®5(s) = 0, we have that

@5(7’) <

Sl el

[b = b 1(01)x 8y + (L + LB "D 11(0,1y:0(530))- (2.8)



Chapter 2. Global results with Lagrangian approach 31

On the other hand, we have a lower bound for ®s(7):
@5(7) = loglog (e + 1) B, 0 {IX(r,5,) = X(7,5,) > 7} 1 Gr n G,

In particular, we have that
Ps(7)
loglog (e + 1)

1B, n {|X(7,5,) — X(7,5,)| > 7}| < + |BA\Gy| + | B\ G

By the above, Lemma 2.5, and (2.8), we conclude
L|b — b 11o,r)xBy)
dloglog (e + )
(L + L)|B,|' =7 Db 11 (0,7, 0(530))
loglog (e + 1)
+ f(r,N) + f(r, ),

where f(r,)) is the function which comes from Lemma 2.5 associated to X. Now, by

|BT A {|X(7_737') _X(T757')| > 7}| <

Lemma 2.5, we may choose A large enough so that f(r,\) < n/3 and f(r,\) < 1/3.
Moreover, since \ is now fixed, we choose d small enough so that

(L + L) B[ Dbl ey _ 1
loglog (e + 1) 3

We recall that since the functions f and f depend on the norm (2.2) of b and b, then so

does 7, and therefore so does §. Defining the constant

L
dloglog (e + 1)’

Coynr =
we have that the proposition follows. O

From Proposition 2.1, we may derive uniqueness, stability, and existence of
renormalized regular Lagrangian flows. We remark that such results depend only on the
estimate contained in the aforementioned proposition, and so in the forthcoming results,
in order to obtain uniqueness, stability, and existence of renormalized regular Lagrangian
flows, it suffices to prove an analogous result of Proposition 2.1 for more general vector
fields. Before we prove the compactness result for renormalized regular Lagrangian flows,
we recall a criterion for Ll(Rd) sequence convergence. For a proof the result below, see
Bogachev’s book [15, Section 4.5].

Lemma 2.6 (Vitali convergence theorem). Let (X, i) be a measure, {fn}nen be a sequence
of functions and f a function in L'(y). Then f, converges to f in L'(u) if and only if
it converges locally in measure, it is uniformly integrable, and has uniformly absolutely

continuous integrals, that is,

if and only if
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e (Local convergence in measure) for any v > 0 and K any compact set of X, it holds
lim (K {1~ £ > 73 = 0.

e (Uniform integrability) for every ¢ > 0, there exists a finite measure set Q. < R?

such that for any n € N
| i@l <e
R\,

e (Uniform absolutely continuity of integrals) it holds for any n € N that

lim L ()] dpz = 0.

|Q]—0

Notice that if 4 is a finite measure, e.g. up = L2 B for R > 0, then uniform
integrability of {f,} is equivalent to uniformly absolutely continuity of integrals and
uniform bound of | f"|1,.); see [15, Proposition 4.5.3]. For a clean presentation of the
compactness result, we first prove a technical lemma concerning composition of sequences

converging locally in measure.

Lemma 2.7. Let {X"},en be a sequence of renormalized reqular Lagrangian flows with

compressibility constants L, satisfying sup L, < oo such that X" (t, s, ) converges locally in

measure to a renormalized regular Lag;};igz’an flow X (t,s,-) with compressibility constant
L for any s € [0,T] and t € [s,T]. Assume also that its associated sublevels G of X" and
Gy of X have the control of |B.\GY|, |B,\Gx| as in Lemma 2.5 (e.g. if the sequence of
vector fields b" which X" is associated can be written as in (2.3)). Moreover, let {¢" }nen
be a sequence of Lebesque functions converging locally in measure to a Lebesque measurable
function ¢. Then for any r >0, v >0, s€ [0,T], and t € [s,T], it holds

Jim | B, o {[0" (X" (t,5,-) = (X (t,5,))[ > 7} = 0,

that is, the composition ¢" o X" (t,s,-) also converges locally in measure to ¢ o X (t,s,-).

Proof. We proceed by adapting the proof of [22, Theorem 6.4]: for a fixed r > 0,y > 0,
s€(0,T], and t € [s,T], we have

1By 0 {|o™(X"(t,s,0)) — o(X (t,s,-))| >~}

< [Br 0 GX 0 {9 (XM (L 5,0)) — o(X"(L,5,-))| > /4]
+|Br 0 G0 Gan {|o( X (1 s,0)) — o(X (L5, ) > 37/4
+ |B:\Gy| + | B \GY,

where GY is the sublevel of flow X™ and A is chosen such that for a given n > 0,

| B NG| + | B, \NGY| < n;
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such choice is possible by Lemma 2.5. Now, by the local convergence in measure of ¢",

then we may take n large enough so it holds

[BAN (B {[9" — o <~/4})| <.

Therefore, we have that the first term in (2.9) is bounded by L,n. Since the third and
fourth terms are bounded by n by the choice of )\, it remains to estimate the second one.

By Lusin’s theorem, there exists a function ¢ such that ¢ € C (B,) and
By {6 # 0} <. (2.10)

Moreover, by the continuity of qg, then there exists a > 0 such that

3

ly -zl <a = [(y) - d()| < <o (2.11)

Therefore, we have that
1B, NGy Gy {[o(X"(E,s,) — 9(X (¢, 5,7))| > 37/4}]
< [B, NG5 A G {|3(X"(E5,7) — (X (1,5,-))] > 3v/4)]
+ B, 0 GX 0 {o(X"(L,5,0)) # o(X"(t,s,-)}]
+ |BTﬁG)\ﬁ {¢(X(t757)) 7 (b( (t757'))}|'
The second and third terms above can be bounded by L,n and Ln, respectively by (2.10)
and the compressibility of X and X". For the first term, notice that by (2.11) that
| X"(t,s,z) — X(t,s,2)| >« for every x € B,.
Choosing n even larger, by the local convergence in measure of X" we have that
| B\ (B, n {| X" (t,s,2) — X (t,s,2)] > a})| <n.

Using all of the above, we conclude by (2.9) that

|BT M {|¢n(Xn(t> S, )) - ¢(X(t757 ))| > ’7}| < 0777
to some C' > 0, and so the lemma follows. n

Lemma 2.8 (Stability and compactness of flows). Let {b"},en a sequence such that for
every R > 0
~n,l 7,2 n

Sup (Hb |Liomyxmay + [07 | oryperay) + [ HLl((o,T);Lq(BR))) < o, (2.12)

ne
where the decomposition of " as in (2.3) and ¢ > 1. Moreover, let X™ be the renormal-
ized regular Lagrangian flow associated to b" starting at s € [t,T] with compressibility
constant L,,, where sup L,, < 00. Assume that b™ converges in L'((0,T); Li (R%;RY)) to

neN

be L'((0,T); LL . (R* RY) with regqularity Db e L*((0,T); LY (R% R %)) for some p > 1.
Then {X™}nen converges to X locally in measure in R? uniformly in s and t, where X is

a renormalized reqular Lagrangian flow associated to b starting at s.
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Proof. Step 1. We begin by proving the stability result, that is, if the existence of X is
known, then the convergence of X" claimed in the thesis follows. But this is a corollary
from Proposition 2.1 by taking b = b", as by our assumptions C, y,r is uniformly bounded
with respect to n, and so we may take n large enough in order to obtain for any r > 0,
~v > 0 that

|BT a {|X(t757 ) - Xn(tv S, )| > fy}| < C’Yﬂlvr

b—b"||L10,r)xBy) + 1 <21

uniformly in s € [0, 7] and t € [s, T]. This is precisely the desired convergence.

Step 2. We now prove the compactness result, i.e., we do not assume the
existence of X. For this purpose, we may proceed analogously as before, but now with a

Cauchy sequence
|BT M {|Xm(t7 S, ) - Xn(t757 )| > 7}| < 277

This implies that there exists a locally measurable in space and continuous in time function
X such that

|B, n {| X (t,s,-) — X"(t,s,-)] >} =0 asn — oo, uniformly in s, ¢.

Moreover, by the uniform global bound (2.12), we have by Lemma 2.5 that X satisfies the

integrability assumptions of Definition 2.2 (i). Moreover, by Fatou’s Lemma, we have that
d . . n d . . d
X(t,s,-)uL" < hTIlILIO%lf X" (t, s, )x LY < hyrlriloglf L, L%

and so Definition 2.2 (ii) follows with L = lim inf L,,. Hence, it suffices to show that X
satisfies the ODE in Definition 2.2 (i). We claim that it suffices to consider 5 € C}(R%);
indeed consider for any [ satisfying the hypothesis in Definition 2.2 (i) the approximation

() = Bla)x (cloglog(e + v/ )
where x € C([0,00)) is a nonnegative function such that x(z) =1 for z <1 and € = 0.

Notice that since X" (¢, s, -) converges locally in measure uniformly in s, ¢, then

taking ¢ € C1([0,T) x R?) with supp ¢; = Bg for some R > 0, we have

f dupe () [B(X(t, 5,7)) — B(X (¢, 5,))] da dt

s JRd

< 2T||at§0HL‘"“((O,T)><]Rd) sup sup J |IB(X"(t,s,x)) — B(X(t,s,x))|dz.
s€0,T] te[s,T] JBR

By Lemma 2.7, (X" (t,s,-)) — B(X (¢, s,-)) locally in measure uniformly in s, ¢. Moreover,

B(X"(t,s,-)) has uniform absolutely continuous integrals, for

| st sl do < 18] ol
QQBR
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Therefore, we conclude by Lemma 2.6 that
T

lim LT fRd Ao ()X (L, 5, 2)) dar df — f

n—oo
0

JRd Orpe(x)B(X (t, s,x)) da dt.

It remains to show that

lim L fRd () V(X (¢, 5,2)) - BE (X" (5, 7)) da dt

_ L fRd (@) VB(X (L, 5, 2)) - by(X (£, 5, 2)) da dt.

Notice that since 3 € C}(R?), we may consider supp 8 < Bg for R > 0 large enough. By

the same argument as above, it suffices to show that
VB(Xn(t, S, )) ) b?(Xn(ta S, )) - VB(X(t, S, )) ’ bt(X(ta S, ))

locally in measure uniformly in s, ¢, for the uniform compressibility constant and uniform
bound of b" € L'((0,T); L?(Bgr; R?)) implies that

T

f J IVB(X"(t,s,x)) b (X" (t,s,x))|dxdt
s QNBpr

< Q' VB e ey sup (L™ 22 0,7:L9(BR)) )

and so uniform absolutely continuity of integrals holds. But local convergence in measure

follows from Lemma 2.7 with ¢" = V3 - b", and so does the lemma. O]

We are now ready to prove existence and uniqueness of renormalized regular

Lagrangian flows.

Theorem 2.1 (Existence and uniqueness of flows). Let b € L'((0,T); LL .(R%:R?)) be

loc

a vector field satisfying (2.2) for some ¢ > 1, Db e L*((0,T); L} .(R%: R™%)) for some
p>1, and divb = m in (0,T) x R? for some m € L'((0,T)). Then there exists a unique
reqular renormalized Lagrangian flow, as in Definition 2.2. Moreover, it holds the forward

semigroup property: for every 0 < s <7 <t < T, it follows that
X(t,7,X(1,5,1)) = X(t,s,2) for almost every x € R%
Finally, if one further assumes that divb e L'((0,T); L(R%), then the above
also holds backward in time, that is, for any s, 7,t € [0,T]. In particular, taking t = s,
we have the well posedness of the inverse of X (r,s,-), with X *(1,s,x) = X(s,7,) for

almost every x € R?, and the following regularity holds: X is continuous in t € [0,T],

s € (0,T] and locally measurable in space, and
J loglog(e + | X (t,s,z)|)dx < o
Br

for all R >0 and s,t € [0,T].
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Proof. Notice that uniqueness follows from Proposition 2.1, for if X and X are flows

associated to b, then for all » > 0 and v > 0 it holds
1B, n {|X(t,s,") — X(t,s,))] >} <n foralln>0 and te [s,T],

and so uniqueness holds. For existence, we shall use Lemma 2.8 with " = (" = b, where
("(z) = n¢(nx) and ( is a nonnegative radial convolution kernel with support in B;y. By
Young convolution inequality, b" satisfies (2.12) and converges in L'((0,T); L, .(R% R%)) to
b. Moreover, since div b, = m(t) for ¢ is nonnegative, we have that X" has compressibility

constant L,, = exp(||m|1(o,r)))- Therefore, the existence follows.

For the forward semigroup property, notice that for the approximate flows it
holds for every 0 < s < 7 <t < T that

X"(t, 7, X"(1,s,2)) = X"(t,s,z) for every z € R?.

By considering ¢" = X"(t,s,-) and ¢ = X (¢, s,-), we have by Lemma 2.7 that uniformly
inse[0,7], 7€[s,T], and t € [, T] it holds

X"(t, 7, X"(1,5,)) = X(t,7,X(7,s,-)) locally in measure in R%.

Therefore, the forward semigroup property follows. Finally, if divb e L'((0,T); L*(R?)),
one has existence and uniqueness for the backward flow, that is, a renormalized regular
Lagrangian flow for the vector field —br_;(x), with the compressibility constant L =
exp(| div b L1((0,r);=(ray)), and so by the same argument as before, now for any time
s, 7,t € [0,T], the result follows. ]

In the more regular case of divb e L'((0,T); L*(R%)), we are also able to prove

the change of variables associated to z — X (t, s, x).

Proposition 2.2 (Change of variables). Let be L'((0,T); Li. (R RY)) be a vector field
satisfying (2.2), Db e L*((0,T); LY, .(R% R %)) for somep > 1, and divb e L'((0,T); L*(R?)).
Then it holds .

L= X(t,5,)4exp (j divb. (X (7,s,")) dT) L (2.13)

s

Moreover, if there exists some function F(t,s,x) such that
L= X(t,s,)4F(t,s,) LY, (2.14)

then we have for almost every x € R and for all t,s € [0,T] that

F(t,s,7) — exp <Jt divb, (X (7,5, ) dr) |

s

In particular, we have also, by the semigroup property, the other change of variables

exp (- f divbo (X (r.1.) dr) L0 = X (t, s, )4 L7 (2.15)

S
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Proof. Notice that if there exists F' and F” satisfying (2.14), then
X(t,s, ) F(t,s,)L" = X (t,5,-) £ F'(t,s,) L

On the other hand, given g € L'(R?), we have that f(x) = g(X(s,t,2)) defines a function
in f e L'(RY), by the compressibility both forward and backward in time, and so by
testing the above with f, we have that

fRd g(x)F(t,s,z)dx = J g(@)F'(t, s, 2) da,

Rd

where we have used that X (¢, s, 2) = X (s,t,x). Therefore, we conclude that F(t,s,-) =

F'(t,s,-) for almost every z € R%. Hence, it suffices to prove (2.13)

For this purpose, notice that for approximation flows X" associated to b" =

(" # b, where (" as in the previous proof, it holds

t
L= X"(t,5,)4exp (J div b (X" (7, s,-)) d7> £

S

Notice that divd™ — divb in L'((0,T); L. .(R?)) and divd™ € L'((0,7); L*(R?)) uni-

loc

formly in n € N, and so by the local measure convergence of X"(7,s,-) uniformly in

7,5 € [0,T], we have that
divbd™(X"(-,s,+)) — divb(X (-,s,-)) in L'((0,T); Li..(R?)

loc

uniformly in s € [0, T]. Indeed, notice that since

T
f J | div b.,-(Xn(T, S, .’L'))| dedr < |Q| SUII\I) || div anLl((O,T);L‘""(Rd))a
0 JQ ne

which combined with Lemma 2.7 with ¢™ = div ] and Lemma 2.6 implies the L' conver-

gence. In particular, it holds uniformly in s, € [0, 7] that

t t

J div b (X"(7, 5, ) dr *J divh, (X (r,s,-))dr in L. (R),

Now, in order to conclude (2.13), it suffices to show that it holds uniformly in s,¢ € [0, 7]
@(Xn(tv S, )) - @(X(t’ 5, )) in Ll(Rd)

for all p € C,(R?). This holds once again by Lemma 2.6: the local convergence in measure

follows from Lemma 2.7, since that, by the compressibility of flows, we have
lpo X (s, Yerms < sup Lull @l ga);
ne
the uniform absolutely continuity of integrals follows by

|| 1ot do < 0l
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and the uniform integrability follows from Lemma 2.5, for supp ¢ < B, for some A > 0,

and so

JRdB | p(X"(t, 5, 2)| do < ol ey (RN Br) 0 GR| < ] pomayg (7, A)-
\Gp

Thus, (2.15) follows, which is equivalent to (2.13). O

Remark 3. The existence of a nonnegative function
F e C([0,T] x [0,T]; L(R?) — w+)

satisfying (2.14) is guaranteed by only assuming the weaker condition divb > m in
(0,T) x R% see [22, Proposition 6.7, proof of step 2].

Finally, we show that solutions defined by the transport of the initial data by
the regular flow, in the sense (1.3) or (1.5) for the transport and continuity equations,

respectively, are also renormalized solutions, in a sense similar as in Condition 1.1.

Theorem 2.2 (Existence of renormalized solutions). Let b e L*((0,T); LL (R* R%)) be

loc

a vector field satisfying (2.2), with Dbe L'((0,T); LY (R%:R¥) for some p,q > 1, and
divb e L'((0,T); L*(R%)). Moreover, let u as in (1.3). Then for any € L*(R) n C(R),
the function Bow is a weak solution of the initial value problem of transport equation (1.1),

that is, it solves

| oo + oy divbuto) + Tiulo) - b lanta)) ded = | gala) o)) da

Ra
for all p € CH[0,T) x RY) and with initial data uy € L'(RY). Analogously, let v as in
(1.5). Then for any € L*(R) n C*(R) and log(2 + |- )(1 + |- | ()] also bounded, the
function B owv is a weak solution of the initial value problem of continuity equation (1.4),

that s, it solves

|| toeata) + Viaa) - bua) + ) div b)) 301(0)
— () div by () B (vy () )vy (z) dz dt = J wo(x)f(vo(x)) de

Rd

for all p e CH[0,T) x RY) and with initial data ug € L*(R?).

Proof. Notice that for the transport equation case, the function o u is given by o
uo(X (0,1, x)). Therefore, by a density argument, it suffices to show that w(X (0,t,x)) is
a solution (in the weak sense) to the transport equation starting at w e C*(R%). But this
can be proven by considering approximations flows X™ associated to b} = (" = b; in a
similar fashion as in Proposition 2.2. Indeed, b" and div " converge in L'((0,T); Lj,.(R%))
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to b and div b, respectively, and we have also the uniform in time convergence in measure

of X™, and the uniform bounds

T
| [ tweno.topldsa < TiBallwl oo
0 Br
T
| [ wer.eopldede < 71l
0 JQNBpgr

where supp ¢ < Bg, and so w(X"™(0,t,-)) converges to w(X (0,t,-)) in L{.(R?) uniformly

loc
intel0,T].
For the continuity equation case, it suffices to consider 5 € C!(R?) using the
approximations [ in the proof of Lemma 2.8. Moreover, by a density argument it suffices

to consider vy € C*(R?Y). By considering b" = (" + b with associated X", we have as
in the transport case that b" and divb” converge in L'((0,7); L;,.(R%)) to b and div b,

loc
respectively, as well as vo(X™(0,t,-)) converges to vy(X (0,t,)) in L. (R?) uniformly for
t € [0, T]. Moreover, we have the following uniform convergence with respect to t € [0, T]

proven in Proposition 2.2:

exp (— f div b (X" (7,1, ) d7> s exp (- f div b, (X (.1, ")) d7> in L1 (RY).

0 0

In particular, this implies that

t
vy = vo(X"(0,t,-)) exp <— J div b (X" (7,t,)) dT) — v, In Llloc(]Rd)
0

uniformly for ¢ € (0, 7). Of course, this implies that 5(v;') — B(v;) and 5'(v)') — £'(v;) in
L (R%) uniformly for ¢ € (0, T). Therefore, the theorem follows. O

Remark 4. If one replaces the assumption divb e L'((0,T); L”(RY)) with
divbe L ((0,7) x RY) and divb = m in (0,7) x R?,
then it is possible to show that
w () = up(X (T, t,x))
is a solution of the terminal value problem
du+b-Vu=0 in [0,T) x R
U = UT on Rd;

see [22, Proposition 7.2]. Moreover, in [22, Propositions 7.2 and 7.5], it was proven that
if u” € LYR?) for some ¢ € [1, 0], then the Lagrangian solution for the transport and
continuity equation u € C((0,T); LY(R%)) if ¢ € [1,0) or

we C((0,T); L*(RY) —ws) n C((0,T); LL (R%))

loc
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if ¢ = co. If one only has that u” is a measurable function, then the Lagrangian solution is
continuous in time and locally measurable in space, and it is a renormalized solutions of

the transport or continuity equation.

Remark 5. If one assumes that b" has the relevant uniform boundedness with respect to
n, namely the ones of b from Theorem 2.2, then we have stability of Lagrangian solutions
associated to transport and continuity equations [22, Propositions 7.3 and 7.6]. With this
result at hand, it is possible to prove that if one has initial data uj weakly converging to
ug in L1(R?) for some ¢ € [1, 00], then one has weak convergence if ¢ € [1,00) (and weak*
convergence if ¢ = o0) of Lagrangian solutions u" starting at u{ to u Lagrangian solutions
with initial data w; see [22, Proposition 7.7] for these results for transport and continuity

equations.

2.3 Singular kernels and WW'!: the Bouchut-Crippa's result

In the previous section, the key estimate in Proposition 2.1 and the control
Lemma 2.5 are sufficient to imply uniqueness, existence and forward semigroup property for
the flow of a vector field b e L*((0, T); L .(R% R?)) (for some ¢ > 1) satisfying also divd >

loc

m and the growth assumption (2.2). Indeed, notice that Lemma 2.8, Theorem 2.1, and even
the results assuming divb e L'((0,T); L*(R%)), such as Proposition 2.2 and Theorem 2.2
do not depend explicitly on the assumption on the Jacobian Db e L*((0,T); L} .(R% R**4))

loc

for some p > 1 nor on (2.2), but rather on the fundamental estimate

|BT M {|X(t> 57') _X(tv S:')| > ’Y}| < C’Y

)b — B”Ll((O,T)xBA) +n

(see Proposition 2.1) and on the control of sub and superlevels
|IBA\NGy| < f(r,\) and |Ga\B,| < g(r,\)

(see Lemma 2.5).

Accordingly, we shall reproduce Bouchut-Crippa’s proof of the analogous result
Proposition 2.1 for vector fields satisfying (1.6) (instead of the milder (2.2)) and

be L} ((0,T) x R RY)  for some p > 1;
AU . 2.16
0;b, = 2 7% « g% in the weak sense, (2.16)
k=1
where % is a singular kernel as in Section 2.1 and ¢”* € L'((0,T) x R?) for each
i ke ll,... d).

Remark 6. Notice that the space of vector fields satisfying (2.16) are not contained nor
contains the space L'((0,7); BV(R?)). On one hand, this implies that the class of vector
fields studied by Bouchut-Crippa did not provide a direct Lagrangian approach for the
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vector fields studied by Ambrosio [4]; on the other hand, notice that it provides a suitable

flow for vector fields beyond the scope of renormalization technique.

For this purpose, we begin by recalling two slightly obscure results concerning
the space L'(R?). The first one is an interpolation result between integrable function

spaces and weak Lebesgue spaces. For a proof, we refer to [22, Lemma 2.2].

Lemma 2.9 (Interpolation for L'). Let Q be a finite measurable subset of R? and u €
Li(Q) n LL(Q) for some ¢ > 1. Then ue L'(Q), and it holds the estimate

1-1 ]
q Q2 lulll g .
lullre) < el [1 +log ( Lo@) if ¢ < oo

g—1 el o) |
Al ]
lull o) < |||u|||L}U(Q) 1+ log @ if ¢ = o0.
|||u|||L}U(Q)

We also recall a uniform decomposition for a sequence of functions uniformly in-
tegrable and with uniform absolutely continuous integrals; as mentioned in [22, Proposition

5.8], the proof is quite straightforward.

Lemma 2.10. Let {f,}nen be a bounded sequence in L'(RY) and let p € [1,00). Then the
sequence is uniformly integrable and with uniform absolutely continuous integrals if and
only if given € > 0, there exists a constant C. > 0 and a finite measure Borel set . < R?

such that for any n € N, we have
fn = fylL + ffm

where ||f$HL1(Rd) < ¢ and supp f; < Q. quf”LP(Rd) < Ce.

Finally, as stated in Section 2.1, the cancellation property associated to singular
kernels implies that a “composition” of them is also a singular kernel, i.e. for I'! and I'?
singular kernels, I'* # I'? is also one. We shall state an analogous result for singular kernels
and grand maximal operator which were defined in Section 2.1. For a proof, we refer to
[22, Theorem 3.3]; we shall revisit this type of result in Chapter 4 in an analogous case,

and since the proof is quite similar, we skip the one for the following result.

Definition 2.4 (Singular kernel of fundamental type). We say I' is a singular kernel of

fundamental type if it satisfies the following: there exists a constant Cy > 0 such that

IT(z)| < Colz|™, |VI(2)] < Colz|™ Vo e R4\ {0}, and

forall 0 <r < R < 0.

Theorem 2.3 (Weak Lebesgue space estimate). Let I' be a singular kernel of fundamental

type and {p”}, be a family of functions in L*(R?) such that supp p” < By, sup 1P| L1 may <
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Cy, and
supsup [ (e'T(e-)) * p| poray < Co.?

e>0 v

Therefore, it holds the following:

(i) there exists a constant C' > 0 depending on Cy and on the dimension d such that

M (T = )y oy < Cllaceay for all we LR

(ii) if p” € CX(R?), then it holds with the same constant C' > 0 as before that

IV (T < 1)y gy < O Sor all e M(RY;

(i) if SUp 1p" || L= ray < Co, then there exists a constant C" > 0 depending on Cy > 0, on

dimension d, and on p € (1,00) such that

| My (T = w) | poray < C'ulpogay  for all ue LP(RY).

We are now ready to state the Proposition below, which states fundamental
estimate (the same as Proposition 2.1) associated to vector fields satisfying (2.16) found
in [22, Proposition 5.9]. We remark that (2.2) is no longer sufficient for our computations,

and so we assume the classical (1.6).

Proposition 2.3. Let b and b be vector fields satisfying (1.6), with b as in (2.16), and
X, X their renormalized reqular Lagrangian flows starting at time s with compressibility
constants L and L, respectively. Then for everyy >0, 7> 0, and r > 0, there exists A > 0

and a constant C. ,,, > 0 such that

|B7” M {|X(t7 S, ) - X(ta S, )| > 7}| < C’YJN’

b— B”Ll((O,T)xB,\) +1n

uniformly in s € [0,T] and t € [s,T]. The constant C.,,, . depends only on its subscripts,
the compressibility constants L and L, the norms (1.6) of b and b, ||b]| 1o((s x5, for any

te (s, 1), ||gijk||L1((07T)><Rd), and the constants at Theorem 2.3.

Proof. Analogously to the proof of Proposition 2.1, we consider now for fixed 6 > 0, A > 0,
and t € |s,T] the function

X(t — X(t
w):f g (1+| (t,5,7) <,s,x>|> o
BrﬁG)\ﬂGA

4]
Such condition is fulfilled if the family p” is regular enough, e.g. p* € H*(R?) for s > d/2.

3
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and it satisfies for all 7 € [s, T

o / |bt (t,S,ZL‘)) _ Bt(X(t’Svm)”
Os(7) —J O (t) dt <J meGmGk |X(t o) X(t,s,$)| - dz dt

J J |bt (t,S,SL’)) - bt(X(tu S,LL’))| dx dt
BrnGAnGx |X(t,S,ZL‘) X(t,S,ZE)| + 0

(X (t,5,2)) — by(X (t,s,7))]
J J;rﬁhmak X(ts1) - X(tsa) 1o U

=1(7) + II(7)

The first integral on the right-hand side is bounded as in Proposition 2.1:

L _
I(T) < g”b - b||L1((0,T)><BA)~

For the second integral, we use the second part of Lemma 2.2, for Theorem 2.3 gives that
Moy (0;b)) () < oo* for all 4, j € {1,...,d} and almost every z € R%, t € [s,T], and so

1(r) < JL o mm{Mmab( (t,5,2)) + MO (X (£, 5, 2)),

biX (1,5,2))] |bi<X<t’8’x>>|}dx.

o 0

By Lemma 2.10 with n = (4, j, k) and (2.16), we may write

m

a bz Z Fzyk N gzgk Z Fzgk N gz]k‘ + szk zgk: 2(1‘)7

where Hgijk”Ll((o’T)de) < e and || HL2((0’T)XRUZ) < C, uniformly in i, j, k. Therefore, we
have that

< Z J J min{ My, e[« g7 (X (8, 5, 7))
k=14,j=1 B,nGAnGx
+ MTJfFZJk * gzjk(X(t7 S, SL’))’

BUX (1, 5.2)] |b3;<5<<t,s,x>>|}
d d

+ My TR GR (X (1,5, 2))
+ Mo e D%« g% (X (t, 5, 2)) da dt.

The second term is simply bounded by the compressibility assumption Definition 2.2 (ii)
and Theorem 2.3, so that

J J Moy T Qijk(X(t, s,x)) dx dt
BrnGxnGay

<[(7 = $)| Be ]2 LI Mrgs.c D9+ §9% | 1205 7y )
< C[T|Br|]1/2L||§ijk||L2((o,T)de) < Gl

Recall that 0;b; = I'Y « g, and an weakly summable function is finite almost everywhere.

4
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and analogously the third term is bounded. Therefore, it suffices to estimate the first integral.
For this purpose, we shall exploit Lemma 2.9: we have a L. —bound by Definition 2.2 (ii)
and Theorem 2.3, for

| Mryse D% = g7F (X (-, s, '))H‘Lgu((w)xan dt < CL||§7*| 1o,y xrey < Che,
and also the L2 —bound follows by (2.16) and Definition 2.2 (ii):
OCXCy 83 Dlr, ((smyx) < CLBlLr((s,r) 31y < Co

Therefore, we have that (recall that ¢ — tlog(C/t)) is and increasing function)
f f Megse D9 5 gM (X (8, 5,0)) + Mysc D7« g7 (X (8, 5, 2)) dt,
BTﬁG)\ﬁG)\

Jw (ts.0)] |bi<X<t,s,:c>>|dt}dx

)
(uu)]

C _
ds(1) < gHb — bl L1017y By) + CoCe + Che

< 2016

and so it holds

()

On the other hand, we have a lower bound for ®5(7) computed in Proposition 2.1,

but now with log(1 + |z|) instead of loglog(e + |z|):

_ (136(7—) _
B, 01X = X5, > Sy + 0 + )
C _
< |b—b| 101
log (15 2) 516 = bl oy«
CoC.

* log (1 + %)

Ce [T|B,]]'"#C;
* log (1 + %) [1 +log ( Ched )]
+ f(r,\) + f(r,\)

We now proceed analogously to the conclusion of Proposition 2.1: by Lemma 2.5, we may
choose A large enough so that f(r, \) < n/4 and f(r,\) < n/4. Moreover, we may take e

small enough so that

Cie [1]B.]]' "7 Cy U
B R | | Sl el Ve i
log (1+7) [ log ( Cied R
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for the above is uniformly bounded with respect to §°. Moreover, since A and € are now

fixed, we choose § small enough so that

COCE n
e < 7’
log (1+73) 4
Defining the constant
C -
1 Flog (14 3)
we have that the proposition follows. O

Remark 7. We conclude this section by proving that Proposition 2.3 can be applied to
vector fields b e LP((0,T); W,o1(R% R?)) if p > 1. For this purpose, we proceed as Nguyen
[70]: first, recall that we have the identity

d
b= Y, Ri(xrbi) in Bp, (2.17)
k=1

where yr € OP(R?) satisfies yg = 1 in Byg and xz = 0 in R\ B,z and R, is the Riesz
transforms in R? for k e {1,...,d}. Now, notice that the proof of Proposition 2.3 also
holds for vector fields satisfying a similar structure as in (2.17) for every R > 0, that is, for
any given R > 0, there exists singular kernels T'}, and functions ¢/'% € LP((0, T); W' (R))
for some p > 1 such that

b, = Z %R« gof in By for almost all ¢ € (0,7).
k=1
Indeed, the Sobolev embedding implies that ¢*% e LI((0,T) x Rd) for ¢ = min{p, 3/2}.
Moreover, we have that

0;bi(r) = Z R4 9,g0" in B for almost all ¢ € (0,T),
k=1
and ;"% € L'((0,T) x R?) uniformly in j, k, and R > 0. Since the integral defining ®s is
local in B,, then the thesis of Proposition 2.3 follows. In particular, by (2.17), we have
that results of Section 2.1 also hold for b e LP((0,T); Wi (R4 RY)) if p > 1.

It is interesting to observe that in the result Proposition 2.3 we assumed a mild
higher integrability in time, which is undesirable not only from a mathematical perspective,
but also from a compatibility one: we only assumed so far that b e L'((0,T); L*(R?) +
L*(R%), so that (1.6) holds, and Db e L'((0,T); W'P(R% R**%)) if p > 1. Since (2.17) is
just a technical consideration, we only needed to assume higher integrability in time to
“match” the hypothesis on Proposition 2.3. This shall be addressed in Section 2.5 in a

more general context of BV vector fields.

® Here, the proof requires the growth assumption (1.6) instead of the more mild (2.2).
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Remark 8. 1t is possible to extend the aforementioned results for vector fields with Vlasov-
type structure, as in Remark 9. For this purpose, the authors in [18] proved that with the
additional structure of the vector field, one may relax (1.6) for only assuming the control
of sublevels, namely |B,\G,| being arbitrary small for a fixed r; see Lemma 2.5. Moreover,
the same authors proved in [17] that one has compatibility of solutions to the 2D Euler

equation and 2D Euler vorticity equation

2
8tu+wuL+V(p+|u2|) =0,

0w + u-Vw =0,

divu =0,
Wi=0 = Wo,

Ut=0 = Uo;

where u = K +w and VK is a singular kernel of fundamental type. More precisely, they
show that solutions transported by the flow, weak and symmetrized solutions are all

equivalent notions.

2.4 Anisotropic vector fields: Bohun-Bouchut-Crippa’s result

The duo Bouchut-Crippa further explored the result of Section 2.3—joined with

Bohun—for vector fields satisfying analogous assumptions of (2.16):

b,(x1,22) = (b (1, 12), bl (w1, 15)) with the splitting R? = R™ x R"2;
be L} ((0,T) x R RY)  for some p > 1;

loc

Dib'  Dyb'
Db, = ! ) 2 ) in the weak sense,
Db Dyb

(2.18)

as well as the ever present growth assumption (1.6). The structure of the derivative is

assumed to be the following:

af* (@) TV g () forije {1, m);

NgE

(D1by)Y (w1, 22) =

e
Il
—

(ng%)ij(azl, 1’2) = ﬁzjk(l’g)rsjk * g_]é]k(l’l) for i e {1, e ,nl}, j € {n1 + 1, e ,d}7

NgE

=
Il
—

’%]k(ab)rgjk * :u?k(xl) for i € {nl + 17 s 7d}7 ] € {17 s 7n1};

NgE

(D1b7)7 (w1, 22) =

=
Il
—_

¢z]k(x2)FZ]k * g;jk(xl) for /l,j € {nl + ]-; s 7d}7

NgE

(D2b))" (1, 22) =

k=1
(2.19)
where for all suitable i, j, k, it holds a™* gk ~iik ik e [°((0,T); LY(R™)) for some
qg > 1, Fij k, e ,Fff " are singular kernels of fundamental type in R™ as in Theorem 2.3,

g7, g"%, g7 € L'((0,T) x R™), and p e L'((0,T); M(R™)).
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Remark 9. The natural application of vector fields with structure (2.18) in Vlasov type
systems, where by(z,v) = (£(v), Ey(x)) and (z,v) € R x R being ¢ usually a Lipschitz

function and Ey(z) = V(—=A) 'y, for u a integrable in time finite measure, and so

0 vvf(v)

Dby(z,v) = _, . in the weak sense.
DX (=A)" (x) 0

Notice that for every i,j € {1,...,d}

03 (=) () = JRd e dwz-Tz - 3y/|):} sz y) dpue(y) = T » (),

where w(z) = 2/|z| is the direction vector field. It is straightforward to show that I'V is
a singular kernel of fundamental type. The authors of [18] remarked that the strategy
they used for the case y; = pL? for some bounded in time summable function p was
not suitable for a precise definition of a Lagrangian solution without energy hypothesis.
This was later remedied by Ambrosio-Colombo-Figalli in [6] with a notion of generalized

solution of such equation; we shall explore this in Section 3.2.

In order to prove the analogous result of Proposition 2.1 and Proposition 2.3,

we shall state the “anisotropic” version of Lemma 2.2 proved in [16, Lemma 5.5]:
Lemma 2.11. Let u e Li (R%) and A the matriz

A= diag{él, ce ,51, 527 ce ,(52}.
—_—
ny times ng times

Assume further that it holds in the weak sense
u(xy, z2) Z Oéjk F]k * /ljk(ah)

for some o’* € L*((0,T); L1(R™)) for some q > 1, being /% a finite measure in R™, and
9% 4 singular kernel of fundamental type for all j € {1,...,d} and ke {1,...,m}. Then
it holds for almost every x,y € R? that

u(z) = u(y)| < |[A7Hz = y]| (U(A™ 2) + U(A™"y))
where

x) = Z i TR [ajk(52 ’ )(571“ij(51 ) * Mjk((sl ) ))] (x)

Moreover, the above satisfies the following estimates: denoting By, and B% the balls in R™
and R"?, respectively, there exists a constant Cyrma > 0 depending only on the subscripts

and on T7% such that

m

LL(BxBY) S qud( ZZ o [y (R™)

k=1

d m
IS o gy (R™) )
j=n1 k=1

loca)
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Finally, if p’* = ¢*L% for some ¢°* € LYR™), then there exists a constant Coa >0
depending only on the subscripts such that

ny m

HU(A_I ’ )”L‘J(Rd) < C’q,d (51 Z Z ||Oéjk||Lq(Rn2)ngkHLq(Rnl)
j=1k=1
d m A '
3 Dl aageon g s ).
j=n1+1k=1

We are now ready to prove the fundamental estimate for the anisotropic
case (2.18) found in [16, Theorem 6.1]. The proof follows the same idea as the proof of
Proposition 2.3.

Proposition 2.4. Let b and b be vector fields satisfying (1.6), with b as in (2.18) and
(2.19), and X, X their renormalized regular Lagrangian flows starting at time s with
compressibility constants L and L, respectively. Then for every v >0, n > 0, and r > 0,
there exists X > 0 and a constant C.,,,, > 0 such that

B, 01X (t5,) = X(t,5,)] > 9} < Copar|b = bllaomyxsyy + 1

uniformly in s € [0,T] and t € [s,T]. The constant C,,,, depends on its subscripts, as well
as the compressibility constants L and L, on the norms (1.6) of b and b, on |b]|s((s)x5y)
for any t e (s,T), on the norms o' 39k ik ik e [20((0,T); LY(R")) for some q > 1,
g7* g% g% e LYN(0,T) x R™), and u € L*((0,T); M(R™)), and on the constants at
Theorem 2.3 for T9% .. TW*,

Proof. For a fixed matrix A as in Lemma 2.11 with d; < d2 and s € [0,T], we define for
telsT]

By, 5, (1) :f Clog (14 [A X (s, 2) - X (t,5,2)]]) d.
BTﬁG)\ﬁG)\

Using the same argument as in Proposition 2.3, we have that

_ (X (5, 2)) — b(X (¢, 5, 2))]|
Doy (7) = L (1) Al <J meGme A X (t,s,2) — X(t,s,2)]| +1 du df

<J meGmGA |A7 [bt(X(t, S,x)) — l_)t()_((t, s,2))]| dz dt

bi(X(t 5, 7)) — bi(X (¢t 5,2))]|
J meGmGA IA-1[X (t,5,2) — X(L,s,2)]| + 1 dz dt

=1(7) + II(7).
The first term is estimated using the compressibility and §; < d:

1) < L= lreency

S (2.20)
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The second term can be estimated as in Proposition 2.3:

7)) — by (X (t,5,2))]] (2.21)

where U! and U? are defined analogously as in Lemma 2.11:

2 Y rrsrye | AP (02 ) GTTYH@, )« g7 (81 )

i,=1k=1

A6, P T ) 36, ))| @),

Z 34, Maysgree |75 (02 )G TH (61 ) » (01 )

1,9=1k=1
PO ) TPTEEE ) < 6 ) | @),
By Lemma 2.10, we have the decomposition for each 7,5 € {1,...,d} and ke {1,...,m}:

gijk _ gijk 1 + gzij gijk _ gijkl + gZJkQ gijk _ gijkl + gmk’2
where supp ¢“%2, supp g%, supp §¥*? < Q. and
||gijk’1HL1((o,T)an1) <€ |\§ijk’1||L1((o,T)an1) <e€ Hgiij”Ll((o,T)me) <€,

Hgijk’anq(((],T)xR”l) <, ||§ijk’2HLq((o,T)an1) <, Hgijk’QHLq((o,T)ann <C..
Now, we may further split the functions U' and U? as
U (x) = U/ (x) + U*(x) and U(z) = UP(x) + U (2) + U (2)

where for [ € {1,2} we define

Ull Z Z Aji Moy, IERYTDE [at (05 )(5?1F§jk(51 ) # g?k l(51 )

i,j=1k=1

A6, )OI ) (51 )| (),
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and for the U? splitting we define

U () o Z 4, Mgpigrye |16 YO TH (51 -) o i (51)) | (),

i,j=1k=1

d m
Ui @)= 2, 2y Ay oy | (0 ORI G) » 37 60D | @),
Notice that by Lemma 2.11 and é; < d, we have

11/ 4—1 21/ 4—1
H‘U (A7) LL{(0,T)x By) < Ce (01 + 02) < Cedy, H‘U (A ')H‘L}U((O,T)XBA
U2 (AT ) | Laqo.ryxyy < Ceda, |UZ2(A™ ) | Lao.ry <))

< 0662,
< Chs.

Moreover, we have

lo*ca-l

< Oy

Ly, ((0,7)x Bx)

Now, by (2.21) and the above definitions, we may estimate

T)<JTLmiH{M_l[bt(X)_bt(X)“aUt (Y)(;;Ut (Y)}

U2\Y) + UP(Y) }

+ min {|A1[bt(X) —b,(X)]],

02
UP(Y) +UP(Y)  UP(Y) +UP(Y)
+ +
62 51
11 11(vy/
+ min {|A1[bt(X) —b(X)]], U (¥) ; U (Y) } dz dt,
1

where we simplified the notation; D = B, n Gy n Gy, Y = A7 X (t,s,2), and Y =
A7'X (t,s,x). The third and fourth integrals are trivially estimated using Holder inequality
and 07 < d9:

12 12
f f VPO T UPX) s < B 2
51 51

22 22
J J Ui );U ) qrar < IB,|"5C.
2

Now, notice that by the compressibility of the flows, §; < d2, and (2.18) that

L+L C’

BBl ooy <
1

JAT'[b,(X) — by(X N zas,mxp) <

Therefore, the first integral is estimated by using Lemma 2.9:

[ [ {|A-1[bt<x> ~p(xy), VX : v (X) } dar

Chq 5,C" Coy 02
<2 14 1+log [ 2],
52(q_1)[ o (620)] 5 [ " Og(é%)]
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and so does the second and fifth integrals:

< (qC_eql) [1 + log (1 + Ci{;)] < Celog <$1> ,
Jibm{Mway@mmyHXHUﬂqu&

CEQ(SQ Cl 52 1
< -— 1 < (Oe-2 il
S (4= 16, ll + log (1 + 0652>] < 0651 log (652) )

Therefore by denoting d;/d = o we have the following estimate

A

1+«

e ([ e[ (o (L) 41) 1o (1)) oo

Using the same idea as in Proposition 2.3 and d; < 95, then

B, o {1 X (5, — X(rys.)| > 7} <o) g3 4 fr ),
(1+%)

log .

mﬂsa[

By the same idea as in Lemma 2.5, then f(r,\) + f(r, \) < n/2 for X large enough. Now,

choose a small enough so that

Ce

1
————~alog 5o s
log (1 + %) 1

I3

and ¢ < o so that

C’e[l (log (1) —1—1) —i—l—i—log(l)] <Q.
log (1+%> o €0 €01 6

As long as the ratio av = d;/0, is constant, we have d; and dy are free-only «, €, and \ are
fixed. Therefore, we may choose d5 small enough so that
Ce(1+ a)

I S S
a10g<1+%) G

~

Hence, we have by (2.20), (2.22), and the above estimates that

% b_i) 8,T) X
B {1X (5.~ X(r5,)] > 7| < o Dlittemnta) )
5110g(1+%>

Since 0, and « are fixed, then so is 41, and so the proposition follows. n
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Remark 10. There exists a closely related result of anisotropic vector fields by Crippa and
Ligabue [41]. They assume (1.6) and a similar structure of (2.18), that is

b,(z1,22) = (b (x1), b} (21, 72)), where b' and b? satisfies
b' e L((0,7); WH(R™; R™));

b’ e L'((0,T) x R™; WHR™; R"™)) n LY((0,T) x R™; WhP(R"2; R")),

where a € (0,1) and p > 1. Notice that in this setting D;b" is only a distribution, and the
lack of derivatives of b' in x is “compensated” by the fact that Dyb' = 0. The strategy of
proving the fundamental estimate for such vector fields follows very closely Proposition 2.4,
but adding and subtracting the mollified vector fields b = (b', b*) and using the fact that

lu — uwewga) < C€|ulwsogay and  [[Vu|wonwa < Cfs_lH“HWsm(Rd);

see [41, Lemma 2.4] for a detailed proof of the above. Then the proof follows by choosing
e depending on the quotient a = 91 /5.

2.5 Singular kernels and BV: the Nguyen's result

Very recently, the Lagrangian approach was fully extended by Nguyen [70]
to cover Ambrosio’s result for vector fields of bounded variation. The difficulty lies in
the singular part (with respect to the Lebesgue measure) of Vg, where g € BV(R?). The
Nguyen’s approach also uses Alberti’s rank one theorem—which we briefly discussed in

Chapter 1, but now we give a precise statement of the result.

Theorem 2.4 (Alberti’s rank one theorem). Let b e BV(R%R™). Then there exists unit
vectors a(z) € R and b(x) € R™ such that

d(Db)*(z) = a(z) ® b(x)d|(Db)*|(x),

where du means the differential of the measure pu.

We begin this section by recalling the generalization of Theorem 2.3 for rough
kernels and more general family of functions considered in the grand maximal operator.
Moreover, we also recall the crucial result associated to Kakeya singular integral operator.

The name is an allusion to the Kakeya maximal function M°, § > 0 of a measure p in R%:

1 Loz cl<s
M°p(x) = Loty—a)-g<s 4
) = sup sup oy | A= dw)

where w(z) = z/|z| as in Remark 9. Loosely speaking, it considers a family of functions
favoring a direction & € S*! and then takes a supremum over all £&. This is analogous to
the anisotropic estimate Ambrosio used to prove the renormalization property. Before we

state the results, we begin by establishing the considered singular kernels.
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Definition 2.5 (Singular rough kernels). Let I' € C*(R*\ {0};R?) be a singular kernel

with decay as in Theorem 2.3, that is, there exists a constant C' > 0 such that
T(z)| < Clz|™® and |VI(z)| < Clz|"* .

Moreover, let € be a zeroth order homogeneous function as in Section 2.1 satisfying

oiay [ 126120

Bo\B1 |x - y|d+a

HQ||WD"1(BQ\Bl) = J dy < Cl

Bo\B1

for some « € (0,1) and C; > 0. We say that
[(z) = Qz)T(z) forall zeRIN\{0}

is a singular rough kernel if it satisfies the following cancellation property: there exists a

constant Cy > 0 such that

J [(z)da
BRr\Br

In particular, if Q € C*(S?71), then T is a singular kernel of fundamental type.

<0, forall 0<r<R < .

We are now ready to state one of the main theorems in [70]; for a proof of the
results below, we refer to the original ones [70, Proposition 2.13, Theorem 3.3]. They are

very technical and are only used in the proof of Theorem 2.6.
Proposition 2.5. Let {p"}, be a family of functions satisfying p* € C*(R*\{0}) such that

suppp” < By and supsup |p”(z)| + |z]|Vp” ()| < Co.

zeRd ¥V

Therefore for any v € (0,00) and T singular rough kernel, the operator

for all x € R?

<|,€|c:'ypy(€_1 . )> « T v pu(x)

Tu(x) = supsup

v ex>0

is a bounded from LP to LP for any p € (1,00) and from bounded signed measure space to
Ll

ws With estimates

| 7wl o gay < Co(Cr + Co)lull ey for any ue LP(R?)
Tl 1 ey < Co(Cr + Cy)|u|(RY)  for any bounded signed measure pu.

Moreover, it holds
limsup A[{Tp > M| < Co(Ch + Co) |l (RY).
A—0

Finally, for e > 0, v € (0,7] and the operator

<|6_’Y(|]d_77py(61 . )> # v pu(x)

T u(zx) = sup sup for all z € RY,

vV ee(0,e0)
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there exists a constant C > 0 such that
|77 1] paray < C(Cy + Ca) |l (RY)

where
d

T d—4 min{a, v, v}
Finally, if ¥ € L*((0,T); WH*(R%: R?), then for all R > 0 there exists a constant Cr > 0
such that

q:

T T
J |71 = e )l | Loy At < Cr[[Y] Lo 0,mw12 (R J || (RY) dit
0 0

for any e L'([0,T]; M(RY)).
Notice that we may write T" as a grand maximal operator, with the family of
functions {| - ["=%p"},. In particular, if v = d, then
Tu(z) = My (T'# p) (x) for all z € RY,

and so the above result generalizes Theorem 2.3 for singular rough kernels I'.

Theorem 2.5 (Kakeya singular operator estimates). Let {p‘s’g}af be a family of functions
satisfying p>¢ € CH(RU\{0}; RY) such that for some 0y > 0 it holds

supp p>¢ < By n {z e R?: |w(z) — €| < 6},

sup  sup ()] + 62|V ()] < Co.
zeR? (§,£)€(0,50) xSd—1

Let T'(x) = Q(z)T'(x) for RU\N{0} be a singular rough kernel. Moreover, assume that there

exists a bounded zeroth degree homogeneous function Q, € C*(S*™') such that
||Qn||WO"1(B2\B1) < 20]_ and r}l_I)IOlO HQTL — QHWQJ(BQ\BI) = O (223)

for some a € (0,1), and T™(z) := Q,(2)T(x) satisfies

J I"(z)dx
BRr\B,

LR\BT P (2) — T(z) da

<C3 forall 0<r <R <o,

lim  sup = 0.

=0 g cr<R<oo

Then, for the operator—which we shall name Kakeya singular operator defined as
51—d€—'y B N
(o) T

for v € (0,00) satisfies for all u e BV(R?) the estimate

Kg&gu(x) = sup sup for all x € R?

£eSd—1 >0

limsup A[{K s (Vu) > M| < C log(8)]|Vul* (R).

A—00

In particular, the operator has the above bound uniformly with respect to v € (0, 00).
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The aforementioned result does not hold for any u € M(R?); see the fairly
simple counterexample by Nguyen in [70, Remark 3.4] in Remark 13.

Remark 11. Tt is not trivial task to show examples of I with the approximations properties
assumed in Theorem 2.5. Nevertheless, Nguyen proved in [70, Remark 2.6] that if the
singular rough kernel satisfies (2.1), i.e. T'(z) = |z| ™%, then

O (x) = F <?(|'3132\Bl)*gn(m(x))Td1d¢

log?2 Jo

for ¢ the standard mollifier and ¢"(z) = n?((nx) satisfies the desired properties with (2.23)
holding for /2 instead of . In particular, it holds for Q € BV(S?™!) satisfying (2.1).

We shall also need a version of Lemma 2.2 for BV functions and with 7° as
above replacing the maximal operators. For a proof, see [70, Lemmas 4.5 and 4.6]. The

key idea is that by [70, Lemma 2.3|, we may write

uj(2) = w;(2)] < |z = yl(f (Duy)(x) + 2 (Du;)(y) + 69° (D) (x) + 6g° (D) (y))
for some subadditive functions f° and ¢°. Using the Lebesgue decomposition, the Alberti’s

theorem gives d(g;u’) = d(du’)* + a'b/d|(Du)*|. Applying the above on f(Du;) and

using its subadditivity, we have the following:

Lemma 2.12 (Difference quotient for BV functions). Let Q as in Theorem 2.5 and
['(z) = Q(z)[(z) be a singular rough kernel as in Definition 2.5. Moreover, for every
u e BV(R%:R™), let a(z) € R and b(x) € R? be the unit vector fields given by Theorem 2./
such that

d(Du)*(z) = a(x) @ b(z)d|[(Du)’|(z),

and consider a“(z) € C°(R%RY) be unit vector field approvimating a(x) in the sense

lim ) la‘(x) — a(z)| d|(Du)®|(z) = 0.

e—0
Then for every x,y € RY, & # y, it holds

[0 x (@) — T =y (y)]

<Senc(w - (Duy)*) (@) + Senc(w - (Duy)*)(y)

|z — ]
+ Sese(w - (a — a)b;|(Du)*|)(2)
+ Sese(w - (a — a)b;|(Du)*|)(y)
+ Sese(w - (a° — a*(x))bj|(Dw)*|)(x)
+ S@M (w - (@ = a“(y))b|(Dw)’|)(y)

+ [ Szse (Duj)( ) + Szse(Duj)(y)]
+w - a’(@)[Sese (b[(Du)’|)(z) + Sese (b (Dw)*[)(y)],
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where for simplicity we denote w = w(x —y). In the above, there exist a family of functions
{@5’5}(575)6((0750)5%1), {55’5}(575)6((0750)5&1) for some 6y > 0 such that ©%¢ is nonnegative,
0% e C*(R\{0}) and 2% € C°(RI\{0};RY), and there exists a constant C > 0 so that

supp ©%¢, supp 2 < Byjy n {r e R : Jw(x) — €| < 0};

sup sup sup (|©%(z)| + 0|z||VO*(2)]) < C;
zeR? §e(0,60) EeSd—1

sup sup sup (|2%(z)| + 0|z||VE"(2)]) < C;
zeR4 §€(0,60) £eSd—1

sup 61 d (H@égHLl(Rd + H’_‘6£”L1 R4 ) < C.

£esd—1
We also have used the following operator defined on x,y for p € M(R?) and v e M(R%; R%):

517d T —y —1 _ ~
(||_|d_1|@5’5(|96 — vyt -)) « v p(a);

Sesep(x) == sup
gegd—l

51_d$ y 1 B N
Sescpi(y) = sup <|dl|9‘55(| —y|™ -)) « T x pu(y);
£eSd—1 | |
O —y|™!

d
Szsev(x) == sup Z (HdlEfEQx — gyl )) « [ x v();
1

£eSd—1 T

d - _
St d|[E—y| 1H B 5
(| e = (|~ ] 1-)) I v (y);
1

Szsev(y) = sup

§€Sd71i
51 dx Y 1 3
Sescti(a) = sup (T @0¢(w —y1)) e
fESd 1 |
ot d|x—y| ! _
Sescpi(y) = sup a0z =yl ) ) = uly);
gegd 1 |

Moreover, it holds

Sese(a(x) - 0](Du)’[)(x) + Sess (a(x) - b|(Dw)*|)(y) <Sese(Du)(x) + Sess(Du)(y)
+ Sese((a — a%)b|(Du)’|
+ Sese((a — a%)b|(Du)’|
+ Sese((a® — a*(x))b](Dw)*[)(
+ Sese((a” — a’(y))b|(Du)’|)(y)
+ [Vac| Lo @iy Sose (0] (Dw)*[) ()
+ Sese divu(z) + Sese div u(y),

)
)
*)(z)

)
)

where S@é,s = |z — y|Sese and for vectors u,v, we denote for simplicity the tensor product
(u®v);; = (wv);; = wv; and the operator S acting on vector valued functions as the sum

of its action on each component.

Remark 12. Notice that by taking the supremum over € = |z — y| and recalling the

definitions in Proposition 2.5 and Theorem 2.5, we have for p = ©, = that

Spsepi(r) < Kpep(r), o —y|Spep(r) < Thu(z),
Syicu(e) <O CMp(), |r - ylSpep(x) < 8 CTi(x),
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where M is the classical maximal function and Z; is the Riesz potential (without renor-

malization constant; see [76, Chapter III])

Tou(z) = (Hld_l) v u(z).

We are now ready to state the main result of this section originally proved
n [70, Theorem 4.3]. It extends Proposition 2.3 and Proposition 2.4 in four ways: it
relaxes the conditions on singular kernels I and on densities ¢, assuming that ' is singular
rough kernel and g € BV(R?); it does not assume the convolution structure I' « g (or
more generally a sum of I'* « g") in all space, but rather a localized version on balls, with
kernels and densities depending on the radius; it splits the growth assumption (1.6) and
of the structure and integrability of its divergence; finally, it does not require the extra
integrability on time, since it swaps Lemma 2.9 for the following (for a proof, see [70,
Lemma 2.4, Remark 2.16]):

Lemma 2.13. % Let ¢ > 1 and R > 0. Then if one has an operator T bounded from
M(R?) to LL(RY), with local estimate

T T
f limsup A|Bg 0 {Tu; > A} dt < C’j | |(RY) dt,
0

0 A—0

pe LY(0,T); M(Rd ), and f e L*((0, T) LY(Bg)), we have that

. ft q JT s D,
< —
hr?syp |log(5| J LR m{ Tu(x) p dedt < . 10 . || (Br) dt

Proof. We first give the prove for the time independent case. By layer cake representation,

we have that for \; < Ay that
{min {‘(];,Tu} > )\} N Bpr

JBRmin{f(;),Tu(@} d$=L
)\1 >\2
<L |Br| dX\ + Ll {Tw > A} n Bg| dA
0 f }
= >\ B
+J;\2 {5 > N DR

A
<\i|Bg| + log ()\2) sup A {T'u > A} n Bg]
1

)\>)\1

dA

dA

)\

Hf |Zasr)-

Choosing A\, = |log 5|1/2 and Ay = 677 and considering 0 small enough so that A\; < A,

we obtain that

. | f(2) } q -
lim su min{ —=, Tu(x) p de < ——C|u’|(BRr).
wsp s [ i {250, 20) | e < ey

The time dependent case is a simple application of dominated convergence theorem. []
6

This result could be applied in Section 2.3 and the main estimate would be valid without requiring
be L’ ((0,T) x R:;RY) for p > 1, but rather be L' ((0,T)LP _(R%RY)).

loc loc
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Theorem 2.6. Let R > 0 and ce L'((0,T); L. (R4 RY) be a vector field such that for
any R > 0, there exists an integer mg and (vector valued) singular rough kernels T5R with
constants Cig, Cor, ¢°F € LY((0,T); BV(R?Y)), and Q as in Theorem 2.5 such that

MR

ci(x) = Z Tof s« gPR(x)  in Bpg,
k=1

dive e LY((0,T); Mioe(RY)) and (dive)t e LY((0,7T); L. (R%)).
Moreover, let b, be L*((0,T); Li..(R%: R?)) be vector fields satisfying (1.6) and X, X their
renormalized reqular Lagrangian flows starting at time s with compressibility constants
L and L, respectively. Then for any v >0, n >0, and r > 0, there exists A > 0 and a
constant Cy ,» > 0 such that it holds
|B7" M {|X(tv S, ) - X(t, S, )| > 7,}| < Cﬂ/’,n,r(”b - CHLl((O,T)xB/\)
+ e = bllLiomyxny) + 1

uniformly in s € [0,T] and t € [s,T]. The constant C.,,, depends on its subscripts, as
well as the compressibility constants L and L, on the norms (1.6) of b and b, on the

norm  sup ||gk”"°||L1((07T);BV(Rd), and on the constants associated to the singular rough

kernel Cy,, and Csy,,, with radius ro depending on r, on the norms (1.6) of b and b, on

compressibility constants L and L, and on 1.

Proof. Let a,(z), b(z) be the unit vector fields given by Theorem 2.4 such that
d(Db,)*(x) = ai(x) ® b (x)d[(Db;)’| ().

Moreover, let af(z), b$(x) € C*((0,T) x R%:R?) be unit vector fields approximating a,(x),

by(x) in the sense

lim LT de a5(x) — an(2)] + |B(x) — be()] d|(Db)*|(z) dt = 0.

e—0

Now, for 6 > 0, v € (0,|logd|), e > 0, and t € [s,T], we consider

log (1 X XP 4900 (X - X)]2> dz, (2.24)

1
€ .
(I)(S (t) - 2 J 52

D



Chapter 2. Global results with Lagrangian approach 59

where D = B, n Gy n Gy, X = X(t,s,2), and X = X (t,s,z) for simplicity. Then

- X) - [b(X) — B,(X)]
%3(r) = | (@@= ”52+|X XP i (X)- (X - X)p
[ [ 0 - X0 b
Jp 52+|X X|2+’y[a(X) (X—X
f (1) (X - XIDeX)BX) - (X X)
Jp 2+ |X - X|2—i—”y[

~—

_l’_

[ [ai(X) - (X = X)][a5(X) - (X -
Jp 0% 41X = X +9[af(X) - (X = X)]
=] 6(7' + 11)°(7) + I3 (7) + V(7).

_l’_

By the trivial estimate 2|uv| < |u|* + |v|?, we use the compressibility condition on the

flows to estimate the third and fourth terms by

() < LWI/Q |Dafl| ((0,T) xR4) I b||L1((o,T) xBy)>

e 12 . (2.25)
IV (m) < T|B [y 7)| 0| Lo (0,7 x re)-

For the first and second terms, we add and subtract the respective terms with ¢, and so

we have the estimate

» X)) e,
b ”52+|X XP a5 (X) - (X - x)p
X) - [e(X) — e(X)]
”52+|X XP (%) (X - x)p

X
X) - [ei(X) — b(X)]
f J, 62+|X X o (X (X - X

The first and third integrals are bounded analogously as above:

I, MX X0 (8 :
) —

X) - [e(X) — by(X)] L .
J. 1, 62+|X X (%) (X - Xp ¥4 = Gl Vluonny,

By performing the same computation for IT)(7), we conclude that

e (X)] L .
( X)]2 dx dt < EHb — CHLl((O,T)XB)\)7

. L+L
I;°(r) < (Ib— CHLl((OT)xBA + |le = bl o)< By)
f [ X) felX) - elX)
FTIX RS0 X - T -
. L+ L)y '
() <L (Hb—c\lp oty + 1€ — Bliroryny)

JJ (X — X)]aj(X) - [ex(X) — e(X)] dz dt.
i S R E e o



Chapter 2. Global results with Lagrangian approach 60

The estimate of ®“(7) from below follows the same idea as Proposition 2.3 and Proposi-
tion 2.4, using the fact that we chose v < |logd]:

i (1),
| log 4|

1B, n{| X (7,s,-) — X(1,5,))| > 62} < |B\Gy| + |B,\Gy| +
Combining the above with Lemma 2.5, (2.25), and (2.26), we have that

_ _ c,
|BT M {|X(T, S, ) — X(T, S, )| > 51/2}| <f(7“, )\) + f(T, )\) + W (1 + ||b||L1((07T)><B>\))

(L+1L)
+ 5o =cluomnxny
(L+1L) _
+ 5 le=bluomnxny
1

Togg] (V3 0) + VI (),

(2.27)
where we have used that v'/? < log|d| for & small enough and

» X) [o(X) -a(X)]
Vo ”52+|X X|2+v[at<x> x - x)p

- X)]as(X) - [e(X) - &(X)]
Vi ” 52+|X X0 (x—xp

We shall use Lemma 2.12 with 6 = 1, z = X, y = X, and estimate each term separately.
For this purpose, notice that by the inequality 2|uv| < |ul* + |v|?, Proposition 2.5, and
Remark 12, we have that

| X —7)_(|2596,5(D0t)a(X) _
0% +|X — X + y[af(X) - (X — X)J?

< min { ;Tl (De)*(X), Kgse(Der)*(X) } )

and analogously for (De;)*(X). Moreover, we have

X = X [Sgc((a = apb|(De) )X) _ 1,
71X~ XP (X)X - Xp - {5T (@ = a)be|(Der)"D(X),

Ko ((ar — ai)btl(DCt)sl)(X)};

[ X — X[* S (a5 — a5(X))b|(Der)*)(X)
24+ |X — X+ y[af(X) - (X - X))
X — X | Vag] 1 gy e (0] (Der)* ) (X)

02+ |X — X2 +9[af(X) - (X - X)]?

< Keere((ae — ag(X))be| (Der)*[)(X);

< |IVa§]| Lo @ayT" (0| (Dee) ) (X);

X — X |%€520.¢(Dey) (X) (1, X |
02+ X — X2 +9[a(X) - (X — X)]? <€1mm{5T (DCt)(X)’KEEL&(DQ)(X)}’
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X — X[(X — X) - a(X)Sen (b (Der) ) (X)
2+ X~ XP o ylas(X) - (X - X)P

1
< min {aTl(bt|<Dct>S|><x>,

Kéq,s(btl(Dct)sl)(X)}-

All of the above holds changing the argument X for X. Now, by the compressibility of
flows, Proposition 2.5, Theorem 2.5, and Lemma 2.13, we have that (recall b;(x) is a unit

vector)

nmsupuo V) oqj f lay(x) — af(x)] d|(De,)*| () dt

6—0

+€1C|log(61)|J;) (Dey)*|(RY) dt (2.28)
+~7 20, L |(De,)*|(RY) dt.

1776

The analogous estimate for VIJ* follows very similarly, e.g.

VX — X|[a§(X) - (X — X)]Seese(Der) (X)

: 1 1 a
X - XP (X)X -XP mm{aT (e X)

Kéez,s(DCt)“(X)}

and so we have

s L V) <0 [ [ o) = aiwlaloa) o) d

+71/2620|1og(62)|f |(Dey)*|(RY) dt (2.29)
. e
+111§1551p|10g5|VII (1).
In the above, we have defined
VI (r J J [a5(X) - (X = X)]*Seeac (a5 (X)by] (Der)* ) (X) da dt
52+|X Xl2+v[at( ) (X = X)J?
JJ [ag (X X" Seer ¢ (g (X)br|(De)*N(X)

52+|X X2 +y[af(X) - (X = X)]? '

Now, by the nonnegativity of ¢, (div¢)® < 0-for (dive)™ e L'((0,T); Li..(R%))-as well

as at(z) being a unit vector and the uniform boundedness of ©°*, we have that

ai(X) - (X — X)PSeuclpdive (X)
54X = X+ (o X) - (X - X)P

< Ces™yY2 min {;L [Lp(dive,)T[(X), M[1p(dive)™] (X)} :
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By a simple application of Young convolution inequality, we have for every R > 0 that

d
[Tyt Loy < Crlulpigey forall 1 <p < ——
Using the second part of Lemma 2.12 with § = €; and repeating the argument as above
with Lemma 2.13, we have that

lim su
50 | log 4

( A1/ ai(x) — af c,
VI e[ [ ) - aitl ey iar -

26,0 log(es)] f (Dex)|(RY) dt.
0

Combining (2.27), (2.28), (2.29), and (2.30), there exists dy > 0 such that for all 6 € (0, &),
it holds

_ , c.
|Br M {|X — X| > 51/2}| < (f(T’, )\) + f(T, )\)) + W (1 + ||bHL1((0,T)><B/\))

+(L+E)

(16 = ¢ rror)xmy) + e = blrior)xny)

c. j | edt@) =it alDeny o) a

#912e,C] log(er) f (Ded)*|(RY) de
0

T

+ (@Clog(e))| +7 V2., f (Dey)*| (R dt.

In order to conclude, we take the limits in the following order: firstly e — 0 so that the
fourth term vanishes; secondly €3 — 0 so that the fifth term vanishes; thirdly, v — o
(recall that the range of y after the limit superior is (0,00)) and then ¢; — 0 for the sixth
term to vanish. Now, for any 1 > 0, we choose ¢ small enough so that

CPY7T

0
Togoyz (T Blercom) <5

5
Recalling that Lemma 2.5 implies that the first term is less than 7/2, provided A is large
enough, and so for all 4 > 0, it holds

B n{1X = X| >} <0+ Crna (b= ellromyxy + e = bluiom«s,)),

provided we also restrict § so that 62 <+ m

Remark 13. Before we finish the chapter, we recall the striking counterexample of gen-
eralizing the results of Section 2.3 for bounded measure. More precisely, it is a natural

question whether one can weaken the assumption on vector field

Zl—\sz sz ) in BR
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where I'"* is a singular rough kernels as in Theorem 2.5 and ¢ € L((0,T); BV(R%))

for all i € {1,...,d} and k € {1,...,mg} for an analogous version (2.16), namely
. mR ~ .. 3.
0;b; = Z T9kR 7R in the weak sense in By, (2.31)
k=1

where T% is a singular rough kernels as in Theorem 2.5 and p*f e L1((0,T); M(R?))
for all i,j € {1,...,d} and k € {1,...,mg}. The result of Nguyen [70, Proposition 1.2]
states that (2.31) is not enough to ensure uniqueness of flows, and so in particular the
fundamental estimate Theorem 2.6 does not hold. The proof is a clever repurposed example
of DiPerna-Lions [48, Section IV.2], where the vector field has no integrable first derivative,
and so Nguyen was able to show that such example can be written as (2.31) with additional
structure explained in Remark 11. We refer to Chapter 6 for a discussion of related open

problems.
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3 The Ambrosio-Colombo-Figalli theory: local

results with Lagrangian approach

In this chapter, we shall present the local version of the results of Chapter 2
developed by Ambrosio-Colombo-Figalli [5] in the abstract form, i.e. not assuming explicitly
any structure for vector fields, but rather a uniqueness hypothesis on a class of solutions
of continuity equation (1.4); see Condition 3.1. The motivation follows from the classical
Cauchy-Lipschitz theory: local Lipschitz regularity in space variable of vector fields implies
local well-posedness on (1.2), and the global regularity implies global well-posedness.
Notice that the latter is addressed in Chapter 2, since it was assumed growth assumptions
(2.2) or (1.6), but the former is not, for the aforementioned technique heavily relies on the

control of the sublevels obtained in Lemma 2.5, which is a consequence of (2.2) and (1.6).

We also present an important application of the local theory for Vlasov systems
in Section 3.2, namely the (nonrelativistic) Vlasov-Poisson equation by Ambrosio-Colombo-
Figalli' [6] and later the more general quasistatic Vlasov-Maxwell approximations by the
author and Marcon [21].

3.1 Local flows: Ambrosio-Colombo-Figalli's result

In order to present the results of [5], we first recall the fundamental theorems

proven in Chapter 2: it was necessary the control of the sublevels, namely
|B,\NG\| — 0 for a fixed r as A — (3.1)

proven in Lemma 2.5-which followed by assuming either (2.2) or (1.6). Moreover, it was
crucial the fundamental estimate associated to flows: for every s € [0,T], t € [s,T], v > 0,

r >0, and 1 > 0, there exists a constant C, ,,, > 0 and A > 0 such that
B, 0 {IX (t5,) = X (t5,)] > 7} < Cor b= bllaoryy) + 1 (3.2)

proven in Propositions 2.1, 2.3 and 2.4 and Theorem 2.6. In order to prove this, besides
the aforementioned control of sublevels, it was necessary to assume some structure to the
vector fields, e.g. (2.16) and (2.18)-(2.19). Finally, in order to establish well-posedness for
the flows, it was necessary to assume (at least) a lower bound on the divergence of the
vector field, as in Theorem 2.1. Notice that all the developed theory in Section 2.2 can be
reproduced if one assumes that the vector field satisfies (3.1), (3.2), and a lower bound on

the divergence as in (H3) in Condition 3.1 below.

L Throughout this chapter, we shall refer to them as “trio”.
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The major change in the work [5] is not assume (3.1) and (3.2), but rather
local properties (H1) and (H2) in Condition 3.1 below.

Condition 3.1. We say that a Borel vector field b : (0,7) x R? — R? is admissible if the

following are satisfied:

(H1) it holds b e L'((0,T); Ly, .(R% R%));

(H2) for any nonnegative u € LX(R?) and [a,b] = [0,T], there exists at most one

nonnegative weak solution u € L ([a, b] x R?) of the continuity equation

O +div(bu) =0 in [a,b] x R

Upeg = U on RY
such that u € C([a, b]; L™ (R?) — w+);

(H3) for all t € (0,7, it holds in the sense of distributions divb; = mgq(t) in Q for all
compact Q = R? and some mq € L'((0,T)).

Remark 14. Although (H1) and (H3) are clearly local hypothesis in space, it is not
straightforward to see that (H2) also is. In fact, the trio showed in [5, Lemma 8.1] that
(H1)-(H2) are equivalent to (H1)-(H2’), where

(H2’) for any to = 0 and zy € R%, there exists € = €, ,, > 0 such that for any nonnegative
u e L*(R?) with compact support contained in B(xo) and [a,b] < [to — €,to + €] N
[0, T, there exists at most one nonnegative solution u; € L’ (B.(xy)) for all ¢ € [a, b]

of the continuity equation

O+ div(ibu) =0 in [a,b] x R

Up—gq = U on R’
such that u € C([a, b]; L™ (RY) — w+),

and so (H2’) can be seen as a local version of (H2). Since it combined with (H1) is

equivalent to (H2), we can assume (H2') in place of (H2) in Condition 3.1.

Remark 15. As mentioned in Chapter 1, by the striking example of Depauw [45], we know
that in order to establish uniqueness of the flow—even if only a local one-it is not sufficient
to assume a local in time (H1), that is, to assume that b € L. _((0,T) x R%:R?); it is
however enough to assume b e L'((0,Ty) x R R?) for all Ty < T. Moreover, as commented
in [5, Remark 5.1], the hypothesis (H3) can be weakened for (H3"), where

(H3") for Ty < T and all t € (0,7p), it holds in the sense of distributions div b; = mgq(t) in
Q for all compact Q = R? and some mq € L*((0,Tp)).
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Notice that in both cases the hypothesis in not truly local in time, for we cannot relax the
assumption from local in [0,7") to local in (0,7"). Hence, (H3) are chosen for the sake of
simplicity and they are not essential, for it could be instead assumed (H3’), and likewise
the assumption b e L'((0,Tp) x R4 R?) in place of (H1).

Finally, we remark that ¢ = 0 being the initial time is for the sake of simplicity,
and all of the above considerations can be made mutatis mutandis for any initial time
s€[0,T].

A natural question is what class of vector fields satisfy (H2); condition (H1)
is very mild and (H3) is usually an assumption. We shall see that in fact proofs of (3.2)
can be adapted to prove (H2). In particular, (H2) holds for vector fields considered in
Section 2.5, namely b being locally written as convolution of a zero average singular kernel
with a BV function in space an summable in time. Before we prove it, we first state some
useful functional analysis results. For a detailed proof of them, we refer to [15, Theorems
4.7.18 and 8.6.2] and [11, Theorem 5.3.1]; they may be stated more generally, but for the

sake of simplicity we restrict their thesis for a clearer presentation.

Theorem 3.1 (Dunford-Pettis property). Let u € M(RY). Then a family in L* (1) has
compact closure in the weak topology of L* (1) if and only if it is uniformly integrable (recall

its definition in Lemma 2.6).

A natural comparison can be made between Lemma 2.6 and Theorem 3.1: if
the sequence is uniformly bounded in L'(p) but lacks local convergence in measure, then

it does not converge strongly in L'(u), but has a subsequence converging weakly in L'(u).

Theorem 3.2 (Prokhorov compactness criterion). Let {,}nen be a sequence of Radon
stgned measures in X. Then such sequence has compact closure in the weak topology of
M(X) if and only if |, (X)| is uniformly bounded and uniformly tight, that is, if for every
€ > 0, there exists a compact K. such that |, (X \ K.)| < € for all n.

Remark 16. We shall use an equivalent definition of uniform tightness [7, Remark 5.1.5],

which says that there exists a coercive functional F': X — [0, oo] such that

sup JX F(z)dp,(z) < oo

neN

and has compact sublevels, that is, for each A > 0, {x € X : F(z) < A} is a compact subset
of X.

Before we state the disintegration theorem, we recall the definition of Radon
spaces: a separable metric space X is a Radon space if every probability measure p € P(X)

is inner regular for every Borel set.
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Theorem 3.3 (Disintegration). Let X and Y be Radon spaces, p€ P(Y) and w:Y — X
a Borel map. Then by denoting v := mup € P(X), there exists an v—almost everywhere
uniquely determined Borel family {p,}eex < P(Y) such that p(Y N7 *(z)) = 0 for
v—almost every x € X and for every Borel map f : X — R it holds

ff ) dia(y ff( ) di () do (@) 2

One of the simplest motivations for Theorem 3.3 is the following (see [32,
Example 2]): consider a unit square @ = [0, 1] x [0, 1] in R? and a probability measure
p € P(Q) defined as p := L£>L Q. Notice that for any line segment L, = {z} x [0, 1],
the measure p “does not see” any probability in it, that is p(L,) = 0. However, it seems
plausible that by “restricting” the measure p in L,—not by simply considering u L L,, for
it is the zero measure, hence the quotation marks—we would have the one dimensional
Lebesgue measure restricted to L,. This is precisely what the disintegration does, for
considering the projection 7 : @ — [0,1], w(z,y) = x, we obtained a one dimensional

measure (i, such that

u(E) = J pz(E) dv(z) = J pe(E n L,)dv(xz) for any Borel set FE < Q.
[0,1] [0,1]

Finally, we shall need the so called “superposition principle” stated in [5,
Theorem 2.1] with a detailed proof in [7, Theorem 4.4]; it heavily uses Theorem 3.1 and

Theorem 3.2. We shall use throughout this chapter the evaluation function at time t € 1
et : C(LRY) > RY e(y) =9(b),
where [ is an interval.

Theorem 3.4 (Superposition principle). Let b: (0,T) x R* — R be a Borel vector field

and {it}ieo,r) be a family of measures in M(R 4 such that t v~ ju; is weakly continuous,

that is, for any bounded ¢ € C(R?Y), the map t J x)dp(x) is continuous. Moreover,

assume that p : (0,T) — R?, u(t) = p, solves in the weak sense Oy + div(bu) = 0 in
(0,T) x RY with the following integrability:

tFLJM@HM@w<w. (3.3)

Then there exists a measure € P(C([0,T];RY)) concentrated on absolutely continuous in

times curves y(t) solving y(t) = by(y(t)) for almost every t € (0,T) such that p, = (er)4m
for allte|0,T].

2 When there is no confusion, we shall write it for simplicity in a more compact form p = J,uwdu(x).
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In the above, we did not use the renormalized formulation of (1.2), namely
Definition 2.2 (i), but rather the almost everywhere notion, and so in order to make it

precise the curves need to be absolutely continuous.

By [7, Remark 4.3], it is equivalent to state Theorem 3.4 for probability measures
o on C([0,T];R?) in place of , and Theorem 3.4 would state that p, satisfy the identity

[ et = [ st

where I' = {y € AC([0, T];R?) : 4(t) = by(y(t)) and v(0) = x}. This justifies the name
“superposition principle”; for solutions of continuity equation can be written as a sum of

integral curves associated to b.

Remark 17. The Theorem 3.4 can be stated for a family of measures in other sets besides the
Euclidean spaces. For the sake of simplicity, we remark that the result holds for { Mt}te(o,T)
being a family of measures in M(S?) solving the continuity equation in (0,7) x S* and
satisfying the assumptions of Theorem 3.4. More generally, the result would hold for any
subset Q < RY, for the result only uses the structure of Euclidean spaces. Indeed, this can
be done by extending 1, € M(f2) as zero in R\ Q, and so the proof of [7, Theorem 4.4]
can be used for such case. We emphasize that it is not used any intrinsic property of €2,

e.g. topology, metric, etc. For these type of results, we refer to [12].

We now show an argument of the trio [5, Remark 3.2] regarding the idea of

adapting the global results of Chapter 2 without the growth assumptions.

Remark 18. Notice that if one considers as in (H2) a nonnegative solution u € L ([a, b] xR?)
of the continuity equation on [a,b] x R < [0,7] x R?, then considering dy, = u,dL?
and a vector field b satisfying (H1), we have that (3.3) holds. Moreover, if one further
assumes the structure for b studied in Section 2.5, namely the one for ¢ in Theorem 2.6, we
have that (H2) holds. Indeed, consider two solutions u' and u? of the continuity equation
with same vector field and initial data, with support in space inside By for some R > 0.
By Theorem 3.4, there exists two measures n*,1n*> € P(C([0,T]; Bg)) concentrated on
absolutely continuous in times curves 7(t) solving (t) = b;(y(t)) for almost every t € (0,T')
such that u; = (e;)xn. If we are only interested in compressible curves in the sense that
they satisfy Definition 2.2 (ii), we consider the analogous for measures in trajectories®,
that is, for all ¢ € (a, b) it holds

(e)gm* < L'LY and  (e)um® < L2LC

for some constants Ly, Ly > 0. Moreover, notice that (e,)xn' = pta = (€4)4n°. Denoting

the probability measure n = (' + n?)/2, if one proves that its disintegration with respect

3 Notice that if one has uniqueness for the flow equation (1.2), then n is concentrated on X, and so we

have py = (er)4m = (et)#f 0x(-,z) dito(z), and so py = X (1, -)#po. Since we may take g = L for
Rd

nonnegative f € L'(R%), it is analogous to Definition 2.2 (ii).
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to (e,)xm denoted m, is a Dirac measure for p,—almost every z, then
n, =n.=mn> for yu, —almost every x.

Therefore, we have that n' = n*, and so (H2) would follow. In order to prove that 7, is a

Dirac delta measure, we adapt (2.24) for the context of probability measures: let

vy =g [ [ [ros (1 Dzt 2l 0= B Gy ) a0

we changed the v parameter to o for we now use the former to denote curves and for
simplicity we write vy, = v(t), 7, = n(t). Since it holds (e;)4n < LL? for L = (L, + Ly)/2,

the same upper estimates done for @5 can be done for the above W5 namely it holds
for all ¢ € [a,b] that for any € > 0, there exists dy small enough such that
lim Tim U5e(t) < |logdle’  for all § < dy. (3.4)

a—0 e—(

In order to conclude it, we proceed as in [6, Theorem 4.4]: assume by contradiction that

1M, is not a Dirac delta. Then there exists a constant ¢ > 0 such that

fﬂ Lb min{1, |y — e[} dt dm,(v) dn,(n)dpa(z) = c.

Indeed, let us prove the contraposition, and so by assuming that n, are Dirac deltas,

notice that for almost every ¢ € [a, b] and u,—almost every z € R?, we would have that
[ mint. b= ) dm, ) dm o =
Now, it follows by using the proof found in [77, Theorem 3.1] that if

[ b= mldn. o an.o) <o,

then n, is not a Dirac delta.

By Fubini theorem there exists ¢y € [a, b] such that

H min{1, [vi, — 1} dn, (v) dm, (n)dpe(z) >

Sl o

Now, consider the set

Q= {(rn.2) s min{L, by, — o} > )

and notice that since 1, are probability measures, we have

f” Lo min{1, [ve, — 14|} A, (7) dn, (n)dpa(z) > 2;'

Therefore, without loss of generality assuming ¢ < 27", we have that

c
h/to - nt0| = ﬁ for all (/7777737) e (.
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Hence, we have a lower bound

C CQ C C
Q€ > I > — . .
5" (to) = 77108 (1 * (2T5)2) Zor [log <2T) * |10g5|] (8:5)

Combining (3.4) and (3.5), we conclude

o) (2T
<2T € |0g5|<2T og< )
Taking € < ¢/2T and letting 6 — 0, we have a contradiction to the assumption and so 7,

is a Dirac delta measure.

We may state a abstract form of the aforementioned result concerning the proof
of the disintegration n, being a Dirac delta measure [5, Theorem 3.4]: It states that if one
assumes (H1) and (H2) for b, and given n concentrated on absolutely continuous curves
associated to b and (e;)um < LL® for some L > 0, then its disintegration with respect to

ep is an Dirac delta.

Theorem 3.5. Let Q be a subset of RY and b satisfying (H1) and (H2) in Q' and
n e P(C([0,T];RY)) concentrated on

{v € AC([0,T];2) : A(t) = by(y(t)) for almost every t € (0,T)} (3.6)

and such that (e;)yn < LL" for some L > 0 for all t € [0, T|. Then its disintegration with

respect to eg is a Dirac delta measure; equivalently, there exists curves v, in (3.6) such

that v,(0) = x such that n = f 9, d(eg)gn(x).
Q

Remark 19. As discussed in [7, Theorem 4.1], notice that Theorem 3.5 implies local

uniqueness of compressible Lagrangian flows, for it suffices to consider
! f o +0 d
n=s- X(x X (. z) 4T
2|BR| Br ) X(-)

for R > 0 and X, X regular Lagrangian flows in [a,b] x Bg. On the other hand, local
uniqueness of flows implies (H2) by Theorem 3.4, for one may consider weak solutions of
continuity equation u,£% = X (t, )4 (x5,L%) and 4L = X (t,-) 4 (x5, L"). Moreover, (3.6)
implies the consistency of regular Lagrangian flows [5, Lemma 4.2]: for X : [0, 7] x Q — R?
and X : [0,7] x Q — R? regular Lagrangian flows (€, Q Borelian sets), it follows by

considering the probability measure

1

m= 2|QmQ| QNGO

on time interval [0, min{r, 7}] that X (-,z) = X (-, ) in [0, min{7, 7}] for almost every
reQnQ.

4 By that we mean b e L'((0,T); Li,.(Q;R?)) and the uniqueness condition of (H2) holds replacing R?
with Q.
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Notice that the lower bound estimate (3.5) is completely independent of the
growth assumption (1.6) and even of (3.3), where the latter was only used for the application
of Theorem 3.4. This key observation led the trio to prove the so called “extended
superposition principle” [6, Theorem 5.1] which is completely independent of (3.3). In
particular, we do not have to restrict solutions u of continuity equation being bounded and
of compact support as in (H2), but rather a much milder assumption u € L*((0,T); L*(R%)).
Before we prove it, we recall the result [6, Lemma 5.3] which states that we may construct
a “damped stereographic projection”, that is, given a nonincreasing function g, there exists
a diffeomorphism between the d—sphere without the north pole and (d + 1)—FEuclidean
space such that its gradient is less than g. We denote N the north pole of the d—sphere.

Lemma 3.1. Let g : [0,00) — (0,1] be a monotone nonincreasing function. Then there
exists ro > 0 and a smooth diffeomorphism ¢ : R? — S\ {N} = R*™™ such that

(x) > N as|z| > oo;
V()| < g(0)  for all x € RY (3.7)
(Vo (z)| < g(|z])  for all x € RI\ B,,.

We shall denote R = R? U {00} the one-point compactification (sometimes
referred as Alexandroff compactification) of the d—Euclidean space. Moreover, we recall an

equivalent formulation of weak solution of the continuity equation, which typically of form

J L Orpi(x) + by(x) - Vo () dpy(x) dt = 0

for all ¢ € CF((a,b) x Q), where u is said to be a weak solution of continuity equation
with vector field b in (a,b) x Q. As proven in [11, Section 8.1], the above is equivalent of

proving that for almost every ¢ € (a,b), it holds
d
G | e dn = [ v - Vo duo 39
Q Q
for all ¢ € Lip,(£2), where the left-hand side should be understood as J o(x) dug(x) being

Q
equal almost everywhere to an absolutely continuous function. If one consider an initial

value problem, we further assume that such function coincides at t = 0 to J o(x) dpo(z).
Q

Theorem 3.6 (Extended superposition principle). Let u e L*((0,T); L*(R?%)) be a non-
negative solution of the continuity equation with vector field b satisfying (H1) such that

the map t — wuy(x) is weakly continuous in duality with C,(R?). Moreover, assume that
lblu e L'((0,T); L, . (RY)). Then there exists § € M(C([0,T];R%)) concentrated on the set

{ve C([0,T];R?) : v € ACpc({y # w0};RY)

(3.9)
and (t) = b (y(t)) for almost every t € {y # w0}.}

such that w,L* = (e;)gmLR? for all t € [0,T] and n(C([0,T];R?)) < |u] pr((0.1):01®a)-
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Proof. We begin by considering in Lemma 3.1 the function

it rel0,1);

1
= o1 [ [ areca)” o st

and so we obtain the existence of a smooth diffeomorphism ¢ : R — S*\ { N} that it can
be extended as 1(o0) = N and such that |Vi(z)| < g(0) = 1 for all 2 € R?, and there
exists some ng such that rog < 2™ and for all n = nyg

-1

|V'§Z)( <1 + J J |bt |Ut dl’ dt) forall z € Bgn \ Banl.
Bon

Therefore, we conclude that

LT fRd VY ()[[bi(w) () de dt < f ' L b s () da dt
" Z f J [V (@)1be () |uy () d i (3.10)

i=no+1 ByiN\Byi—1

<J f b)) drdt + ) 27 < oo,
0 JByng

i=ng+1

We now construct  with desired properties. Without loss of generality, assume
that |ul|z= (o 1);21(rey) = 1 and write ¢ as the inverse of the diffeomorphism ¢ constructed

above. Let m; = |Jug| 11 (ray,

Vi (p(y)bi(p(y)) if yeSN{N};

ci(y) =

and consider the measure
e = Vp(u LY + (1 —my)dy  for te[0,T].

Notice that ¢4 (u; L (STN{N})) = (¢ 0 ¢) 4 (u, L) = u, L7, and since ¢;(N) = 0, it holds

| [ leldumar = | [ [wo@libo)]dontul 6 () de
0 0 (3.11)

:LT fRd V() by (&) g () dar It < o0,

where the last inequality follows from (3.10), and so ¢ satisfies (3.3). Therefore, in order to
apply Theorem 3.4 (recall Remark 17), it suffices to show that p is a solution of continuity
equation with vector field ¢ on (0,7) x S% and that it is weakly continuous in time in
duality with bounded C'(R*™). The latter follows by the weak continuity of u, and the

> Recall that S* ¢ R%*! and so the weak continuity in duality with bounded C(R%*!) means that the
map t — J y) dp(y) is continuous for all bounded ¢ € C(R*1).
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fact that y, is a probability measure. Indeed, recall that the continuity of i, in duality with
C.(R1) is equivalent to bounded C'(R*™) if j; is a probability measure (see [11, Remark
5.1.6]), which is easily verified by its definition. Notice that by the weak continuity in time
of u, then assuming that s, has two limit points A, v as t — s, then for all ¢ € C,(R*™),
it holds (recall that m, = i, (S*\ {N}))

f e(y) dA(y) = f p(d(w)) dps () + (1 = ASNANY))p(N);
s R (3.12)

| emavin = [ (o) duo + 0= v(s s (V)N),

R4

and so both limit points are uniquely determined in S\ {N}. Subtracting both equations
in (3.12) and considering ¢ € C.(R*™\ {N}), we have that

L ) AN = 2)) = (= NEND(V) =0,

and so A = v in S*\ {N'}. Since the right-hand of (3.12) coincide, we conclude A = v in S*.
Now, since the limit point is unique, the same reasoning implies that such limit point is

s, and so the claim follows.

We now prove that p solves the continuity equation in the equivalent sense
(3.8), i.e. for almost every ¢ € (0,7) it holds

d

G | e an = | et Vet duty)

Sd

for all p € C®(R*™). Of course, if one has p € CP(R*™ \ {N}), then since u is a weak
solution of continuity equation with vector field b in (0,7") x R? by assumption, then the

result follows easily by the definition of ¢ and pu, since

d d

G L ewanm = 5 | ewou@r = | @) Vigo s@ul) d

2 f b (2)0s0 ()50 (1(2) s () da

2,j=1

_ f o (FEB(60) - Fl)un(6(0) dy

— JSd c(y) - Vo(y) du(y).

Nevertheless, we still need to verify when ¢ is not necessarily zero at N. For this purpose,
since 1, (S?) = 1 for all ¢ € [0, T], we have

Ld e(y) du(y) = p(N) + Ld e(y) — o(N) de(y). (3.13)

Now, consider a cutoff function y. such that it vanishes in B.(N), equals one in R*™ By (N),
and whose gradient is bounded by 2¢ . Since x.(y)[¢(y) — @(N)] € CX(RT\{N}), we
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may apply the previous result and so

i X)) — ()] dpuly) = f [o(y) — w(N)]e(y) - Vxely) dpun(y)

Sli

. f xWedy) - Violy) dply).

Since |¢(y) —@(N)| < Cly— N| < Ce for y € B (N), it follows that [p(y) — o(N)]Vx(y)

is uniformly bounded with respect to €, and so the first integral is bounded by

| teto) = oM jets) - Pxm amtn <€ | )l dnely).

Bac(N\B(N)
By (3.11) and dominated convergence theorem, such term vanishes as € — 0. Since the
second term converges in L'((0,T)) to f ci(y) - Vo(y) due(y) as € — 0. Therefore, it
Sd
follows that t — J — @(N) du(y) is absolutely continuous in [0, T'], with for almost
every t € (0,7) it holds

jt L P —eN) duly) = Ld c(y) - Vely) dpe(y)-

By the above and (3.13), it follows that p is a weak solution of continuity equation with
vector field ¢ in (0,77 x S?.

Hence, by Theorem 3.4 and Remark 17, it follows that there exists probability
measure o € P(C([0,T];S%)) concentrated on absolutely continuous in time curves solving
Y(t) = ei(y(t)) for almost every t € (0,7") and p; = (e¢)xo for all ¢ € [0,T]. In order to

transport it back to the desired space R?, we consider
=:0([0,T]:8%) - C([0, TR, E(y)=¢on.

Setting 0 := =40 € P(C([0, T]; R%)), we notice that it is concentrated on (3.9). Indeed,
denoting A := {y € AC([0, T];S%) : 4(t) = e,(())}, we have for any set I' = C([0, T]; R?)
that

n(T) = o((®)7'D) = o((5)'T 0 A) = o((E)” (T A EA)) = (T A ZA).

By a simple computation and recalling the definition of ¢, we obtain that ZA is a subset

of (3.9), as desired. Moreover, we have that

(e)yn LR = [E4((er)40) | LR? = gy LR = w, L7,
and so the theorem follows. ]

Remark 20. In the proof of Theorem 3.6, we did not verify that the set (3.9) is Borel in
C([0,T]; RY). We refer to [6, Footnote 3] for a proof of such result.
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Notice that we have been using the almost everywhere notion of solution of
the flow equation (1.2). We now give a precise notion of such regular Lagrangian flows
in a local sense, that is, solutions in a Borel set of R? and in time [0, 7]. By Remark 19,
notice that one may assume the largest 7 possible, which shall be called maximal time.

Before we give such definition, we define the concept of hitting time of a curve in a set 2.

Definition 3.1 (Hitting time in Q). Let 7 > 0 and Q an open subset of R? and v €
C([0,7);RY). We say that hqg(7) is the hitting time of  in Q as

ta(r) = sup { € [0.7): max Vol (s) < .

s€[0,t]

if v(0) € Q, and hq(y) = 0 otherwise, where Vo (z) = max{[dist(z, R\ Q)]7", |z|}.

The above definition of hitting time was chosen for convenience, for one could
have consider a more general function V. More precisely, one could replace the above
function Vg, by any continuous function Vg : © — [0, 00) such that hIng Va(z) = o in the

r—

sense that for any M > 0, there exists a compact set K < € such that Vo > M in Q\ K.

Remark 21. Notice that hq is a lower-semicontinuous function. Indeed, let 4" — v in
C([0,7);RY). For any 6 > 0, consider Q° = {z € Q : dist(z,R*\ Q) > d}. Denoting
a = ho(7), for any € > 0, there exists § > 0 such that v(t) € Q¥ for all t € [0, a — €], and
by the convergence of ", we have that v"(t) € Q° for all t € [0, a — €]. Then we have that

Va(y"(1)) = [Va(y" (1)) = Va(v ()] + Va(y (1))

is finite for all ¢ € [0, a — €]. Therefore we have for all € > 0 that

ho(7") 2 a — €= ho(y) — €.

Definition 3.2 (Maximal regular flow). Let Q a Borel set of R* and b : (0,7) x Q — R*
be a Borel map. We say that X is the maximal regular flow associated to b if there exists
a Borel map-which shall be called maximal time-T% :  — (0, 77]° such that X is defined
on {(t,z) : t < Tx(x)} and

(Flow) for almost every z € Q, X (-, ) € AC)([0, Tx(2); R?) and it solves for almost
every t € (0, Tx(z))

O X (t,x) = by(X(t,2));

X(0.0) — o (3.14)

¢ The notation may seem unnecessarily cumbersome, but in [6] they study the case when the initial

time is s > 0, and they also need a minimal time Ty : Q@ — [0, s), and the maximal time should read
TS : Q — (s,T).
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(Regular) for any compact K < €, there exists a constant C x > 0 such that for all
te[0,T]

X (t, )4 (LY ATx > t}) < O x L%, (3.15)
where Ti () is the hitting time of the curve X (-, x) at the boundary of K. More
precisely,

hg(X(,z)) ifxeK;
0 if v e Q\K;

TK(.I') =

(Maximal) for almost every z € € such that Ty (z) < T, it holds
lim sup Vo (X (t,z)) = . (3.16)

t/'T; (z)

Remark 22. Notice that for any negligible set £ < (0,T) x R, by the compressibility of

flows it follows for any Borelian set {2 that
{a: eQ:|{te(0,Tx(x)): (t,X(t,x)) € E}| > O}

is negligible. In particular, (3.14) does not depend on the representative (in Lebesgue

equivalence class) of b.

Notice that (3.15) is a weaker notion than Definition 2.2 (ii). Although many
results follow from the former, which is intrinsically a local property, for proper blowup—
which means that limsup in (3.16) is in fact a limit—of flows as the time approaches the

maximal time we shall need a global version of it akin to the latter.

In order to establish existence of maximal regular flows, we define a probability

measure version of Definition 3.2; it is precisely the one we have used in Theorem 3.5.

Definition 3.3 (Regular generalized flow in Q). Let Q an open set of R? and let a Borel
vector field b : (0,T) x Q — R% A measure n € P(C([0,T];R?)) is said to be a regular

generalized flow” in Q if it is concentrated in
{ve AC([0,T]; Q) : %(t) = by(v(t)) for almost every t e (0,T)}
and there exists a constant L, > 0 such that for all ¢ € [0,7] it holds

[(e)gmlLQ < LyL”.

We now prove the tightness and stability associated to regular generalized flows
by the trio in [5, Theorem 4.4]. It parallels the already proven stability and compactness
result for global regular flows Lemma 2.8. The proof does not rely on Lemma 2.6, but

rather on Theorems 3.1 and 3.2.

7 Notice that when there exists a regular flow X, then (ed)yn = 0x(t,)-
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Theorem 3.7 (Tightness and stability of regular generalized flows). Let €2 an open
bounded set of R® and let ¢, ¢ : (0,T) x Q — R? Borel vector fields satisfying ¢ = ¢ = 0
on (0,T) x 0Q° and

lim ¢ =c¢ in L'((0,T) x ).

n—aoo
Moreover, let ™ € P(C([0,T];Q)) be reqular generalized flows of ¢ with compressibility
constants L, uniformly bounded. Then {n"},en is tight, with limit point ) being a regqular

generalized flow of ¢, and for any T < C([0,T]; ) and ' < Q, it holds

[(e)x(n" L)L < C.LY  for some C,, > 0

4 (3.17)

= [(e)x(mL D)L < (liminf C,)L".
Proof. By the convergence of {€"} ey in L' ((0,T) x Q), for ¢" and ¢ vanish at the boundary
of Q, then by Theorem 3.1 and [62, Theorem 6.19] there exists an increasing, convex, and
superlinear function F' : [0,00) — [0, o) such that? F(0) = 0 and

wqum@umma<m

neN

Define the functional G : C([0, T];R%) — [0, 0] as

_ fF(W(t)Ddt if AC([0,T]; );

0

% it ([0, T]; R4\ AC([0, T]; ).

G(7)

Since n" is concentrated on AC([0,T7]; ), we have by Theorem 3.3 and the regularity (in
the compressibility sense) of n" that

ﬁ%mwm=fffmwwmmw=fLFwwmwmwwmw
<lmjjJ%Fﬂd%ﬂDdxdt (3.18)

T
<wﬂﬂ[ﬁﬂﬁme&<w
0 Q

neN
If one proves that GG has compact sublevels, by Theorem 3.2 and Remark 16 we have
that n™ is uniformly tight and there exists a limit point 1 (since {n"},en are probability
measures, the uniform boundedness of follows trivially). Moreover, notice that it suffices
to prove that its sublevels are sequentially compact, for C'([0,T]; R?) is a metric space.
For this purpose, fix M > 0 and consider a sequence v* € {7 : G(vy) < M} for k € N. Since
F' is an increasing and convex function, we have by Jensen’s inequality that
FH (M|t —s|™)

Mt — s|1
Although the ¢, " are invariant on Lebesgue measure zero sets, the vanishing hypothesis on the
boundary of €2 is understood in a pointwise sense.
It is known as modulus of integrability, and by superlinear we mean Zh*)H)lr | Fiz) =

w@—%@Kw—MHwa*fHMﬂmQ<M

s

8

9
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Since F' is superlinear, then it follows that lim = 0, and so for every € > 0, there

F1(2)
Z—00 z
exists N, > 0 such that F~!(2) < eM 'z whenever z > N. Choosing z = M|t — 5|7,
we conclude that [7¥(t) — +*(s)| < € whenever |t —s| < MN.' = §. Since M does
not depend on k, we have that {7}y is equicontinuous, which combined with its
uniform boundedness—for ) is a compact subset-gives that such sequence has a convergent

subsequence by Arzela-Ascoli theorem.

Moreover, notice that G is lower semicontinuous by the classical result due
to loffe originally proved in [58]; see a modern presentation in [10, Theorem 5.8] and
(63, Theorem 1.1]. Indeed, consider {7*}en a sequence converging to v € C([0, T]; RY)
with respect to the uniform norm. Notice that if v € C([0,T]; RY)\ AC([0,T]; Q), then
G(v) = o0, so it amounts to show that li;?iiol.}f G(7*) = 0. Since AC([0,T7]; ) is a closed
subset of C([0,T]; R?) with respect to the topology induced by the uniform norm, we have
that there exists N such that for all k > N, +* € C([0, T]; R\ AC([0, T]; ©2), and so we

are done.

If v € AC([0,T];Q), then it suffices to prove when L = liin inf G(v*) < .
—00
Notice that there exists a subsequence {7*/} ey such that lim G(y%) = L. By the definition
j—0

of G we have that 7/ € AC([0,T]; Q) for j > N for some N € N (we have relabeled k; as
4). Since v/ — v in C([0, T]; Q), we have for every ¢, s € [0,T] that

¢ ¢
f &j(T)drﬁf A(r)dr as j — oo,

and so it follows that 4/ — + weakly in L'([0,T]). Since F is a convex function, it follows
from loffe’s result that

G) = | P de < timint [ F(154(0)) dt = liminf G,

0 k= Jg

and so the lower semicontinuity of G follows. We now claim that JG(v) dn(y) < o,

so that n is concentrated on AC([0,T7; ). Indeed, following the proof of [78, Theorem
4.3], we have that G = k}im G in a pointwise sense, where {Gy}ren is a nondecreasing
—00

sequence of continuous functions'®. Therefore by monotone convergence theorem, the weak
convergence " — n in M(C([0,T]; R?%)) (given by Theorem 3.2), and (3.18), we have
that

| crane) = fim [ G antr) = Jim timy, [ G2 dn o)

< lim ianG(’y) dn"(vy) < .

n—0

10" For instance, consider Gy () = nec([igg“];w){G(n) + kv =1l L (o, }-
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Now, since (e;)xm" converges to (e;)xn in duality with bounded continuous

functions and the compressibility of n™, we have for any ' < Q and t € [0, T] that
(e n(¥) < lininf(eo) () < (iminf L),

and so 7 is regular in the compressibility sense by the arbitrariness of Q. The same

argument can be done to prove (3.17).

In order to conclude the theorem, we must show that 7 is concentrated on

integral curves of ¢, and it suffices to prove that for any ¢ € [0, T']

[r=20- [ e:tmar

0

dn(vy) = 0.
For this purpose, consider ¢’ € C([0,T] x Q;R?) satisfying ¢’ = 0 on [0, T] x 092. We begin
by proving that

[her=0- [ &amar

0 ant) < [ [ Jede) - ] ara.

The above follows by using that the approximation {n"},en is a regular (in the compress-

ibility sense) measure concentrated on integral curves of vector fields ¢™:

[0 =20 [ &aena are - |
<[ [ tert) - bttty an

J@WW%%%WﬁMdWW)

0

T
<sup Lnf f € (x) — ¢.(2)] da dr.
0 Q

neN

Taking the limit in n — oo in the above and using the convergences ¢ — ¢ in L' ((0,7) x 2)

and " — n in duality with bounded continuous functions, we conclude that

[her=20- [ ¢amar

T
dn(vy) < sup L, J J le, (z) — ¢ (z)| dz dr.
0 0 Jo

neN

Therefore, we conclude by the above that that

J‘*y(t)—fy(O)—f e.(+(7)) dr| dn(y) (1+Suan) LTJQ|CT(x)—c'T(a:)|d:UdT.

0 neN

Choosing ¢’ as a sequence converging in L'((0,T) x Q) to ¢, the result follows. O

We now prove the local existence of local regular flows for vector fields satisfying
Condition 3.1 (the first “local” refers to the space variable). This is a combination of
Theorems 5.2 and 5.5 of trio [5].

Theorem 3.8 (Local existence). Let b : (0,7T) x R? — R? be a Borel vector field satisfying
Condition 3.1 and let Q be an open subset of R with compact closure. Then there exists
Borel maps Tq : Q@ — (0,T] (as in Definition 3.2) and a Borel map X (t,z) for x € Q and
t €10, To(x)] such that
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(i) for almost every x € Q, X (-,x) € AC([0, To(z)];RY), X(0,7) =z, X(t,x) € Q for
all t € [0, Ta(x)), and X (To(x),x) € 0Q for To(x) < T

(ii) for almost every x € Q, X (-, x) is an integral curve associated to the vector field b

almost everywhere in (0, To(x));

T
(iii) X (t, )4 (LY A{To > t}) < exp <f ma(T) d7'> L% for all t € [0, T], where mq is the
0
function in (H3).

Proof. We shall split the proof in three steps: the first is concerned with existence of
flows for the truncated vector field Lob given a regular generalized measure n in : the
second ensures existence of such n if b is a smooth function; finally, the third concludes
the theorem for the whole b. We remark that steps 1 and 2 do not rely on hypothesis (H3).

Step 1: Let us denote I' = {7 : hq(y) >t} for t € (0,T) (recall the definition
of hitting time in Definition 3.1) and X : I'" — C/([0,]; Q) the restriction of curves on [0, ¢],
ie. Y(y) = 7|[07t]. We begin by proving that given § € (0,1) and a regular generalized
flow m in €2 with respect to vector field 1ob with compressibility constant L > 0 and such
that (eg)4m = poL® with pg > 0 almost everywhere in €2, it holds that

1
o, =
n,(I')

is a Dirac measure for poL%—almost every z such that n,(I"") > 0, where n, is the

Xy (n, LT e P(C([0,1]: Q)

disintegration of m with respect to eq. Since 1, is concentrated on integral curves in [0, 7]

of 1ob with initial data x, the probability measure

o= J o.po(x)de
{zeQun, (Tt)=4}

satisfies the hypothesis of Theorem 3.5 with 7" = ¢, for the definition of o gives that
L
| @ o <5 | v e <5 | e
Rd (5 Rd 5 Rd
for all p € C.(Q), and so o has compressibility constant 6 'L. Therefore Theorem 3.5
implies that o, is a Dirac measure for poL£?—almost everywhere in {z € Q : 5, (I'") > d}.
In particular, by the definition of py, we have for almost every z € Q and all t € (0,7") that

3L (n, LT"Y) is either a multiple of Dirac delta or null measure.

The above gives that, for poL?—almost every x € Q, hq(7) equals a positive

constant for n,—almost every 7. Indeed, let
Q1 ={qe Q: X% (n, LT is a null measure};
Qy ={qe Q: X% (n, LT is a multiple of Dirac measure},

and notice by the above result that Q = Q; U Q9. By their definition, n,(I'?) = 0 for
q € Q; and there exists 77 € C([0, ¢]; Q) such that n,((3%) 'C([0,q]; )\ {y?}) = 0 for
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q € Q,. Moreover, notice that if Q; = &, then hq(y) = T for all v € C([0,T]; Q). Let us

consider the 1, —null set

E = (Ugequ ) U (Vgen, () ' O([0, gl DN {7}) = Q1 v Qs
Then we have that

([0, TS )\ E = (C([0, T2 Q1) o (C([0, T); )\ Q)

={y € C([0,T}; Q) : ha(7) < g for all g € Qy
and X7(y) = 4 for all ¢ € Qo}.

Therefore by defining ¢; = inf Q; and ¢u = sup@Q,, we have that ¢s < ¢;. In order to
conclude the claim, we prove that ¢ = ¢;. Assuming otherwise, that is ¢o < ¢y, there
exists gg € Q n (0,7) such that ¢ < qo < ¢i. Since ¢ is either in Q; or in Q,, we
get a contradiction to the definition of ¢; or ¢s, and so the claim follows. In particular,
taking T(x) as the constant ho(y) for v ¢ E, then (e;)xm, is a Dirac measure for all

t € [0, To(2)]. Indeed, notice that for any Borel A < R?, we have for almost every = € R?
and all ¢ € [0, To(x)] that

m,((ee) ' A) = m, ({7 € C(10,T];Q) : (7) = 47 for any g € Q; and y(t) € A}).

Now, if y9(t) = li/m 74(t) € A, then 7|y (1) € A; if ¥#(t) ¢ A, then 7|, () ¢ A.
992 ’

Summarizing, we have that

1 ify2(t)e A

ma((e) tA) =4
0 ify®(1) ¢ A,

and so (e¢)xn is a Dirac delta measure for all ¢ € [0, T (z)].

Hence, we now define the curve

X@w%=j@WNMAﬂ,

for t < To(x) and x € Q, we conclude by Theorem 3.3 that X is a Borel map and (i) and
(ii) of Theorem 3.8 holds for such vector fields. Moreover, Remark 21 gives that T, is a
Borel map, and by the definition of X, we conclude that

X (t,)4[poL L {Tq > t}] < LL* for all t € [0,T].

Step 2: Assuming that be C®([0,T] x Q; R?), we shall prove that there exists

a regular generalized flow 71 associated to 1ob such that

(e0)pm = @LdI_Q and [(e))gmli{hx > t}]LK |Q| exp (J my (T dr> £ (3.19)
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for all ¢ € [0, T] and any compact subset K < 2, 2 am open subset of R?. For this purpose,
notice that we may apply the classical Cauchy-Lipschitz theory and denote X (-, x) the
unique integral curve of b with initial data x € €2 in the interval [0, To(z)], where T (x)
denotes the first time where the flow hits the boundary of 2. Therefore, we may extend
X (-, z) to [0,T] as X(Tq(x),x) for t € [To(x), T]. We thus define n as the law under
Q7 LYL Q of X! and we prove that it is a generalized regular flow associated to 1ob
and satisfies (3.19). By its definition, 1 is concentrated on integral curves of 1gb-namely,
the flow X (¢,-)-and the first property in (3.19). Hence, it suffices to prove that it satisfies
the compressibility property in the sense of the second property in (3.19). For this purpose,

we begin by recalling the change of variables formula

fw p(X(t, x)) exp (f div b (X (r, x))dr) dz = dew(x) de

0

for all ¢ € C,(R?), which holds since b is a smooth vector field. Now, for any  open
subset of R? and any compact K < €, we consider a nonnegative function ¢ € C,(K).
Notice that (X (t,z)) = 0if t = hx(X (-, z)), hence supp p(X (t,-)) is a compact subset
of {re K :t < hg(X(-,z))}. Therefore, we have for all ¢ € [0, 7] that

T
[ o(X(t,2)) dir < exp ( [ df) [ oteran
Kn{zit<hg(X(-,x))} 0 R4

where mg is the lower bound on the divergence of b, as in (H3). By the definition of n,

we conclude that the above is equivalent to
1
[(er)un L {hk(-) >t} LK < 9] exp (J mg (T )dT) L£? for all t e [0,T].

Step 3: We now conclude Theorem 3.8. By step 1, it suffices to construct a
regular generalized flow 1 in Q associated to vector field 1ob such that (€0)um = poL? for
some py > 0 almost everywhere in 2. For this purpose, we shall use step 2 and construct
via approximation such m by considering the mollification of b in spacetime (possibly
extending b to be the null vector field for R1+d), which we denote as b°. Indeed, step 2

gives the existence of a regular generalized flow n¢ in Q associated to 1ob° with

[(er)un L {hk(-) >t} LK < Q| exp <J m (T dT) L£? forall t € [0,T],

where divd® = mf in (0,7) x K. By the definition of b and m$, we have for any compact

K <  that
lim sup — exp <f m§ ) exp (J ma(T >
e\0 |Q| K |Q|

11" Recall that given (2, F, P) a probability space, (S, %) a measure space, and Y : I x Q — S a map
such that Y (¢,-) is a measurable function for each index ¢ € I, the law of Y is defined as (®y )4 P,
where [Py (2)](t) = Y (¢, z).
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and so by Theorem 3.7, it follows that

[(er)umL {hx(-) >t} LK < |§12| exp <L ma(T) dT> L% forall te [0,T].

By taking the limit K " Q' we may drop the restriction in K on the left-hand side.

Moreover, by step 1 one takes Ty, as the hitting time and py = ||}, we conclude
T
X (t, )4 (LY ATy > t}) < exp <J ma(T) d7'> £ forall te [0,T],
0
which gives (iii), and so the theorem follows. O

We now state and prove an uniqueness and existence theorem, which is one of
the main results of the trio [5, Theorem 5.7]. It heavily relies on Theorem 3.8 by taking
the limit of local regular flows in 2,, as n — co. Moreover, we also prove that if (H3) is

strengthened to
divb = min (0,T) x R* for some m e L*((0,T)), (3.20)

which implies that (3.15) holds with {7y > ¢} instead of {T > ¢} and with compressibility
constant independent of the compact set K, then limit superior in (3.16) is in fact a limit;

this is precisely the trio’s result [5, Theorem 7.1].

Theorem 3.9 (Existence and uniqueness of maximal regular flow). Let b : (0,7) xR? — R?
be a Borel vector field satisfying Condition 3.1 and let Q be a compact subset of RY. Then

there exists an unique mazimal reqular flow associated to b, with compressibility constant
T
exp (J ma(T) dT). Moreover, let Y : [0,7) x Q' — R? for 7 € (0,T] and a compact set
0
Q' < R such that Y (-, z) € Q is an integral curve of b in [0,7) for x € Q' satisfying
Y(t, )4 L < LL
for some L > 0. Then 7 < Tx(z) and X (-,z) =Y (-,z) in [0,7) for almost every x € Q.

Finally, if (3.20) holds, then for all t € [0,T], it follows that

T
X (t, )4 LTy >t} < exp (J m(T) dT) £ (3.21)
0
and the limit superior in Definition 3.2 is in fact an limit, that is,

lim |X (¢ z)| = o0.
t/Tx(x)

12 Qych limit is the usual definition: for Ky c Ky c ... K, c --- C Q, we define K,, / Q for n — o0 as
the union U,>1 K, = Q.
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Proof. By Theorem 3.5 and Remark 19, for maximal regular flows X and X with maximal
times T and T, respectively, then X (-,z) = X (-, z) in [0, min{T%¥,T}}) for almost
every = € €. Now, notice that for almost every x € {Tx > Ty}, then for any Vg as in
Definition 3.1, we have that the image of [0, T (2)] through V(X (-, 7)) is bounded, and
of [0, T (x) through Vo(X(-,z)) is not (by the maximality of T5). Therefore, we have
that {Tx > Ty} has measure zero. Applying the same argument swapping the flows, we
conclude that T () = Tx () for almost every x € Q, and so uniqueness of maximal regular

flow follows. The same argument holds when considering flows Y as in Theorem 3.9.

In order to ensure existence of maximal regular flows, we begin by constructing
auxiliary local flows X™ in Q,,, where ©,, /' R% such that ©,, is compactly contained in

41, with Borel map T, := Ty —whose existence follows from Theorem 3.8-such that

(i) for almost every z € Q,,, X"(-,z) € AC([0, T,,(z)); RY), X (0,z) = 2, X (t,2) € Q, for
all t € [0,T,,(x)), and X(T,,(z),x) € 09, for T,,(z) < T, so T,(x) = hq, (X"(-,x));

(ii) for almost every x € Q,, X"(-,z) is an integral curve associated to the vector field b

almost everywhere in (0,7, (z));

(iil) X™(t, ) (L AT, > t}) < exp (L ma, (T) dT) L% for all t € [0,T].

Now, we define for almost every z € R?

Tx(z) = lim T,(x), X(t,x):=X"(t,x) forte|0,Tx(z)).

n—ao0

The first limit is well-posed by the monotonicity of the sequence {T},(x)},en for almost
every z € (), which follows by using the same argument for the proof of uniqueness of
maximal regular flows. As a consequence, we have for n < k that X"(-,z) = X™(-, x)
in [0,T,(x)] for almost every = € Q,,. We now prove that X is a maximal regular flow
with maximal time T. By the definition of X and the fact that X™ is an integral curve
of vector field b in (0,7, (z)) implies that X satisfies the flow property in Definition 3.2.
For the regular property, notice that the compressibility of the auxiliar flows X" and the
definition of X gives that for all ¢ € [0,T],

X (t, )4 (LYLAT, > t}) < exp (LT maq,, (T) dT) L

Now, for any compact set < R?, take Q, ' Q and since in this case holds

X (t, )4 (LYLAT, > t}) < exp (LT ma(T) dT) e,

we may pass the limit using the fact that T,, = hg, (X (-, z)). Finally, for the maximal

n

property in Definition 3.2, notice that for any compact 2 € R?, we may take ©,, containing

it for n sufficiently large, and since X (T, (x), x) € 09, and so the property follows trivially.
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If the vector field also satisfies (3.20), notice that by the previous construction,
(3.21) follows. Now, since we consider 2, ,/ R? such that ,, is compactly contained in

0,41, we may consider 1, € CF(£,,1) cutoff functions such that 0 <, < 1 and ¢, =1

T
in Q,,. Therefore, denoting L := exp (J ma(T) d7'>, we have that
0

LI
Rd JO

d T
Ao (X (7)) dtda:<f f IV (X (1, 2)) ||y (X (¢, )| dar it
de 0 JTE>t}
X
T
<L||v¢n|Lm(Rd)ff by ()| dar dt < .
0 Jon

Hence for almost every z € R? ¢,,(X (-, z)) is the restriction absolutely continuous function

in [0, 75 (x)]. In order to conclude that the limit superior

limsup | X (¢, x)| = w0

t/Tx (x)
is a limit, it suffices to show that limit inferior also diverges to infinity. For this purpose,
fix € R? such that the maximal property in Definition 3.2 holds and notice by the above
that v, (X (-, x)) is uniformly continuous in [0, 7% (x)). This combined with the compact
support of ¥, implies that

lim ¢, (X(-,z)) =0 for any ne N.
t/ Ty ()
Assuming by contradiction that limit inferior of | X (¢,z)| as t / Tx(x) is finite, there
would exist an integer N and a sequence of times t;, / Tx(z) such that X (ty,x) € Qy;
this is not possible, for ¥ 1(X (tx, z)) = 1, and so the theorem follows. O

Remark 23. The proof of Theorem 3.9 exemplifies why the growth assumptions (1.6) and
(3.3) for vector fields b are crucial in order to ensure global well-posedness in time of
integral curves associated to b, for even in the classical case for Cauchy-Lipschitz theory.
Indeed, the very simple one dimensional example b(x) = 2? illustrate this phenomenon. For
also a simple example in higher dimension, consider the divergence-free time independent

two-dimensional vector field
b($v y) = (ZEQ, —Qxy)

Then the associated flow can be explicitly computed, and so denoting X = (X5, X5), we

have that
Xi(t,z,y)\ w(l—at)™!
Xo(t,z,y) yexp (2log |l — at|).

Notice that although X is smooth, the lack of global control does not guarantee that X

is well-posed for all times. In this particular example, we have T (z) = |z| '
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So far, we have recovered in Theorem 3.9 the existence and uniqueness analogous
to Theorem 2.1 without any growth assumptions. The complete analogy shall be done
once we obtain a forward semigroup property first proven in [5, Theorem 6.1], in the sense
that

X5 X(s,0,x)) = X(-,0,z) in [s,Tx(x)) (3.22)
for almost every x € {T% > s}, where we once again denote X (¢, s, z) as a flow with initial
time s and T ,(z) the maximal time of X (-, s,2). In this notation, X (¢,0,z) = X (t, z)
and T o(z) = Tx (z).

Theorem 3.10 (Semigroup property). Let b satisfying Condition 3.1 and s € [0,T]. Then
the mazimal regular flow associated to b satisfies (3.22) for almost every x € {Tx > s}
and Tx (X (s,7)) = Tx(x) for almost every v € {Tx > s}.

Proof. Since both thesis assume that x € {Tyx > s}, without loss generality assume
{Tx > s}| > 0. Let Qy < {T¥ > s} such that |Q| > 0, and by the compressibility of X,

there exists a bounded function pg such that

1

mX(s, N L Q, = p L7

Consider 7 := || (Id x X (s, -)) 2L L Q, a probability measure, and by disintegrating =

with respect to psL£? we obtain a family of probability measures {m,},cgs such that

mi [ Ir @800 0) v

Now, for € > 0, we construct the probability measure
Te = J Ty ® 0y dy,
{ps=e}

and since em, < 7, the first marginal of 7.'* is bounded by the first marginal of 7 over e,
ie. (e|Q])71LYL Q,, by the definition of 7. Therefore, we have that the first marginal of

m. can be written as p}ﬁd for some bounded function p.. Moreover, notice that
T < ||ps| Lo mayTe + ef T, ® 6, dy,
{ps<e}

which gives that
1

42|

and so we conclude that p. > 0 almost everywhere in €2, for € small enough.

Edl_Qs < HpsHL"L‘(Rd)ﬁE‘Cd + GJ Ty dy,

{ps<e}

13 Recall that the first marginal of a measure € P(X x Y) is a probability measure in P(Y) defined as
74, where 7(z,y) = x is the canonical projection.
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We now construct a generalized regular flow n,.. € P(C([s, 7]; R?)) for fixed

7>sand e >0 as

. J J oy () dy = J Sxemple)de.  (3.23)
{ps=e} HTx >}

{T;YS>T}
Notice that by its definition, 7, is concentrated on integral curves of b, and the compress-

ibility follows by the computation
o) dlle)sn @) = | oX( ) ) do < Ll | o)
R4 {Ty >} R4

for any bounded nonnegative ¢ € C(R?) and 7’ € [s, 7], where L is the compressibility

constant for the maximal regular flow X. By Theorem 3.5 with interval [s, 7], we have

nm=f%ﬂ@mmmm

and by the uniqueness proven in Theorem 3.9, we have that ~,(t) = X(t,s,x) for
[(es)4m, ]—almost every z € R? and all ¢ € [s,7]. Using the fact that by definition

[(es)#m,e] = X (s, ')#[H{T;?T}ﬁeL we conclude
Nre = J OX (-5,X (s,2)) Pe(y) dy. (3.24)
{Tx >}

By (3.23) and (3.24), the positivity of p. on g, and the arbitrariness of 7, we conclude
(3.22) and Tx (X (s,2)) > Tx(x) for almost every x € Q,. Notice that by the maximal

property for maximal regular flows and the identity (3.22), we conclude that
Tx (X(s,z)) = Tx(z) for almost every z € Q.

By the arbitrariness of €2, the theorem follows. n

To conclude the trio’s main results concerning the general theory, we now
present a criterion for maximal regular flows to be global in time, with first iteration in [5,
Theorem 7.6], but we shall present a more general version found in [6, Proposition 4.11].

For this purpose, we shall prove a result essentially contained in [6, Theorem 4.7].

Proposition 3.1. Let b a vector field satisfying Condition 3.1 and X its associated
mazimal reqular flow (existence, uniqueness and semigroup property of it follows from
Theorems 3.9 and 3.10). Moreover, let n € M(C([0,T];R?)) concentrated on (3.9), and
such that there exists a constant L > 0 satisfying (e;)xn L R? < LL? for all t € [0,T].
Then for (eg)ym-almost every x € R?, the disintegration m, of m with respect to ey is

concentrated on the set
{ve C([0,T];RY) : v(0) = z and (t) = X (t,x) for all t € [0, T (z))}.
In particular, i is concentrated on

{7 € C([0, TIR?) : 7(0) = 00 or y(t) = X (t,7(0)) for all t € [0,Tx(x))}.
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Proof. Since Tx(x) and v +— X (t,x) = X (t,7(0)) are a Borel maps, then so is the above
set by first considering t € Q » (0, 7). By the definition of n,, it suffices to show that it is

concentrated on
{ve O([0,T];RY) - y(t) = X (t,z) for all t € [0, T (x))}. (3.25)
For this purpose, we consider for every R > 0 and ¢ € (0, T] the measure
n' =3 (nLA{y: [y(s)| < R for all s € [0,4]})

where ! the restriction of a curve as in Theorem 3.8. By its definition, n™' satisfies the
hypothesis of Theorem 3.4, and so there exists Y (-, z) an integral curve of b in [0, ¢] such
that Y (0,7) = z for (eg)4n™'—almost every x € R and

nft = J(sy(.,x) d(co) ym™ (z). (3.26)

Rt _

By the compressibility of 1, there exists a function p’* bounded by L such that (€0)xm

p" L% Moreover, we have that

Y (t,)u(LLA{p"™ > 0}) < 5_1(6t)#f Oy(ayd(eo)yn™ (x) < 07 LLY,

(ot >5}

and so Y (-, z) is a regular flow in [0, ¢] for almost every = € {p" > &} with compressibility
constant ' L. Hence by Theorem 3.9, we conclude that Y (-,z) = X (-, x) in [0,#] for
almost every z € {p™" > 6}, and so by letting § — 0 and then R — oo, we have that
Y (-,7) = X(-,z) in [0,t] for (e)xo'—almost every = € R? where

ot =Xl (nL{y: v(s) # oo for all 5 € [0,¢]})

satisfies by (3.26) for all ¢ € (0, 7] that
o' = J(SX("I) d(eg)yo'(z).

By way of contradiction, assume that there exists a Borel set Q < R? such that

it is not (eg)xn—negligible and for every x € €2, and so the set

qu@m(O,T;(m)) {7 € C([()?T]aRd) : V(t) 7 X(th) for all ¢ € [07 Q],’Y([O, q]) - Rd}

is not m,,—negligible; notice that this is equivalent to proving (3.25). Of course, this implies
that for every x € €, there exists 7, € Q n (0, T (x)) such that

E;‘Z (n, L {y:7v(t) # oo for every t € [0,7,]})

is not a null measure nor a multiple of dx.,). Therefore, there exists a Borel set with
positive measure ' < Q with respect to (eg)xm and r € Q n (0,77 such that for every
z e,

¥y (n, L {y:v(t) # o for every t € [0,7]})



Chapter 3. The Ambrosio-Colombo-Figalli theory: local results with Lagrangian approach 89

is not a null measure nor a multiple of dx. ). By the definition of o', (eg) 2o’ < (e0)4n,
and 80 Ox(.2) = Xy (n, L {y : y(t) # oo for every t € [0,7]}) for (eg)yn—almost every =.
Notice that this is a contradiction of the existence of ', and so 7, is concentrated on (3.25).

For the concentration of n, it follows from the concentration of n, and Theorem 3.3. [

We are now ready to prove a criterion for global well-posedness in time of

maximal regular flow.

Proposition 3.2 (No-blow-up criterion). Let b be a Borel vector field satisfying (H1),
n e M(C([0,T];R%)) concentrated on the set (3.9) such that n({y : v(0) = w}) =0, and
for iy = (e))xm L R* assume that

|b.(z)]
d dt .
f Ld (1 + || log(2 + |z]) pr()dt < o0

Then n({y € C([0,T];R%) : v(t) = o for somet € (0,T)}) = 0. In particular, if ju; is
absolutely continuous with respect to the Lebesque measure for all t € [0,T] and n is
concentrated on the mazimal reqular flow X associated to b, then X (-,z) € AC([0,T];RY)
for po—almost every x € RY, and p, = X (t,-) 4o for all t € [0,T).

Proof. Since n({vy : v(0) = w0}) = 0, for n—almost every curve there exists a time which

it is finite, and so i is concentrated on
= {'y e C([0, T];RY) : v(0) € Rd} ,

and so it suffices to show that nL_I" is concentrated on non-blow-up curves. For this purpose,
notice that by Proposition 3.1, n_T" is concentrated on integral curves in [0, 7% (7(0))).
Therefore, we have by Fubini theorem and the definition of y; that

Tx () | q
[ 77| gitostontz + ] aratnrie)

" |bt<v<t>>|
< | L aera et sy e TIo

by (2)|
d dt
J JRd 1+ |z])log(2 + |z|) p()dt < o,

and so for nL I'—almost every ~, it holds

sup | loglog(2 + [y(t)]) — loglog(2 + [(s)])| < oo.
0<s<t<T5 (v(0))

Therefore, we have that T (7(0)) = 7" and ~ does not blow up on [0,7]. In particular,

the disintegration m, of n with respect to eg is concentrated on

{ye C([0,T);RY) : v(0) = =, y(t) # o0 and v = X (-, z) for all ¢ € [0, T]}
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for ip—every x € R%. Since 1, is a probability measure, we conclude that n, = § X(-z), and
so for all ¢ € [0, 7] it holds

= (@)L R = (@) | Gxcn duala) = X (0, )t .

Before we proceed to the next section, we emphasize that all of the results
were streamlined for a cleaner presentation. For instance, the theorems extracted from
[5] can be proven for local flows, that is, for integral curves of b e L*((0,T); Ly, .(€; R%)
for some Borel set Q = R?. Moreover, the results from [6] can be stated for flows starting
from any s € [0, 7] if one assumes divergence-free vector fields; we shall revisit this case in

Chapter 5 without the divergence-free assumption. We also remark that

« we skipped the analogous results of Theorem 2.2, for the available ones are either
only concerned with weak solutions of continuity equation [5, Remark 7.2] or with
renormalized and weak solutions of transport/continuity equations for divergence-
free vector fields [6, Proposition 4.10]. We shall provide a complete analogous of
Theorem 2.2 in Chapter 5 by using a slight variation of Theorem 3.9 for vector fields

with bounded divergence;

e by [5, Theorem 6.2 and Proposition 6.5], it is possible to extend Theorem 3.7 without
the strong convergence of ¢", replacing it by the weak convergence of ¢" and uniform
convergence (with respect to n) of Lgum (z + h)e}(x + h) as h — 0 in L'((0,T) x Q),
where Q" = {z € Q : dist(z,R¥\ Q) > |h|}; such condition is akin to the classical
DiPerna-Lions’ one [48, Theorem I1.7];

o the global assumption (3.20) is optimal (at least in dimensions d > 3) in order to
obtain proper blow in Theorem 3.9, namely the maximal property in Definition 3.2
is in fact a limit. Indeed, the trio provided a very intricate counterexample in [5,
Proposition 7.3] of a time independent vector field b e WL?(R%: R?) for p > 1 with

divb e L (R?), and a positive Borel measure Q < R? such that for every z € €,

it holds Tx(z) < 2, liminf | X (¢,2)] = 0, and limsup | X (¢,z)| = oo for d = 3.
t/ Ty () t T (2)
Nevertheless, in the case d = 2, if b € BVi,.(R% R?) with divb e L (R?), then for

almost every x € R?, the proper blow-up occurs [5, Proposition 7.4]; the authors
conjectured whether if one may construct a time dependent two dimensional vector

field on the same lines as in d > 3 case for an counterexample;

o if one assumes b € L'((0,T) x Q;R?), (H2), and (H3), then X (-, 2) € AC([0, Tx(2)])

for almost every x € Q, and lim X (t,x) € 0Q if T (x) <T.
t /T (z)
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3.2 Vlasov-Poisson and quasistatic Vlasov-Maxwell

The trio rapidly applied their theory of local flows for the Vlasov-Poisson system
[6, Sections 2 and 3]. The main advantage over the global theory shown in Chapter 2
is that we may define a suitable notion of a solution of Vlasov systems without energy
hypothesis; as proven in [18] and briefly exposed in Remark 9, such assumptions were

necessary for a precise notion of Lagrangian solution.

Before we make a rigorous comparison between the results of [6] and [18], we
motivate the general Vlasov-system (see [28, Chapter II] for a extensive derivation of the
more general Boltzmann equation): for a distribution of particles f : (0,00) x R?*® in phase
space (z,v) € R? x R%2 and v being the physical space and the phase velocity coordinates,
respectively—over time ¢ € (0, 00), we may compute its time derivative (assuming that x

and v are functions depending of ¢ rather than independent variables) and conclude that

d

where the subscript on symbol V signifies with respect to which variable is being dif-
ferentiated. In classical mechanics, physical and phase velocity coincide, so © = v and
v =m 'F(f), where £(v) is the physical velocity, i.e. the velocities of each particle, m
is the mass of a particle (we assume that all particles are identical), and F' is the force
experienced by each particle, which may depend on the distribution of particles, that is, on
f. In most applications, F' may depend on f only in the physical space z € R%, and so we
rather consider F depending on z, v and an integral over v € R? of f multiplied by some
function g(z,v), that is, for p,(x) = g(x,v) fi(z,v)dv we have F = F(z,v, p(x)). In
special relativity case, physical and phaﬂéz velocities £(v) and v, respectively no longer coin-
cide, but have a correction factor £(v) = [1 + (¢7|v])?] ™1/
this can be derived by the Lorentz factor v(&(v)) := [1 — (¢7}|€(v)])?]~%? and the relation
v = y(£(v))E(v); see [60, Section 11.4]. Hence we have & = £(v) and © = m™ ' F(x, v, p(x)),

where F' is again the force experienced by the particles, but now in the relativistic case,

v, where ¢ is the speed the light;

and so in fact F' may only depend of £(v) rather than v. Hence, we write

G =0+ EW) - Vuf + T (a0, 5(2) - Vo,

—-1/2

where from now on £(v) is either v or [1 + |v|*] "?v depending on which framework we

are working on; we shall always assume that ¢ = 1 for simplicity.

We have not considered so far the collision between particles: the most general

form is to consider a function G depending on f (known as collision operator) such that

Ouf + &) Vaof +m F(z,v,p(x)) - Vof = G(f). (3.27)
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The simplest—although very complicated—collision operator is to consider only collision

pairwise, which gives a bilinear operator () and the above evolution equation now reads

Ouf + &) - Vaof +m™ F(z,0,p(2)) - Vo f = Q(F, f); (3.28)

see [28, Chapter II] for a complete derivation of such operator for hard sphere models and
its generalizations, as well as a probability-based justification on why it suffices to consider

pairwise collisions.
Remark 24. It is common to refer to both (3.27) and (3.28), even in the particular case

F' =0 as Boltzmann equation, although they have different levels of generality.
We shall consider only the collisionless case-known as Vlasov equation
Ouf + &) - Vof +m™ F(z, v, p(x)) - Vo f =0,
which implies a transport equation structure (1.1) with vector field

bi(z,v) = (§(v),m ' Fi(x,§(v), pe()))-

It is expected, given some structure for the force function F', that the theory of Chapter 2
and Chapter 3 can be applied to this transport equation. For this purpose, let us consider

a force given by the sum of Lorentz and Newton gravitational laws (we assume d = 3)
Fi(z,v) = ¢ (Ei(z) + £(v) x Hi(x)) + mgi(),

where ¢ is the charge of particles, E/, H, and g are the electric, magnetic, and gravitational

acceleration fields satisfying
div E = () *qp, curl B = —0,H;
divH =0, curl H = ppqj + 01 E; (3.29)
divg = —4mmGp, curlg = 0.
Here, the first four equations are Maxwell equations, G is Gravitational constant, ¢

and p are vacuum permittivity and permeability, respectively, and p, 7 are number and

momentum densities, respectively, defined as

pi(x) = | filz,v)dv and ji(z) = [ &(v)fil(z,v)do. (3.30)
R3 R3
Following the same computations in [21, Appendix] based on quasi-static limits proven in

[64], we have that either

divE = (o) 'qp, cwrl B = —0,H;
divH =0, curl H = poqy

which is the quasi-magnetostatic limit, or

div E = () *qp, curl £ = 0;
divH =0, curl H = poqj + 0 F,
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which is the quasi-electrostatic limit. In either case, Maxwell equations become decoupled,
and so
(=A)E = —(e) 'qVp + uoqdj and (=A)H = poqecurl H
or
(=A)E = —(e0)'qVp and (—A)H = poqcurl j.

Hence it motivates us to consider the electric magnetic fields as
Ey(z) = —(e0) 'qVI[T * py(2)] and H = poqcwrl[T » jy(2)],

where I'(z) = (4x|z|)~". Notice that since (—=A)g = 4mrmGVp, we may write the force

term as
2

m~ Fy(z,v) = ( 7 Gm) VT = py(z)] + 'uoq2§(v) x curl[I" # ji(2)].

4megm 4mm

Notice that the first constant has no definite sign, whereas the second is nonnegative.
Hence, upon redefining densities p and j, then we may further write Ey(x) = —V|[I' = p(2)],
Hy(x) = curl[l" = j,(x)], and

bi(z,v) = (£(v),05E(x) + opé(v) x Hy(x)), (3.31)

where o € {0, +1} and oy € {0,1}. This class of vector fields has two important cases:
org # 0 and oy = 0 is the Vlasov-Poisson equation; g = 0 na oy = 1 is the Vlasov-Biot-
Savart equation'*. Notice that div,,, b;(z,v) = div,(£(v) x Hy(x)) = 0. Moreover, a simple
application of Young convolution inequality implies that b e L*((0,7T); L} .(R% R®)) for
any p € [1,3/2).

We are now ready to state the main results of [21] by Borrin-Marcon; since it
contains the Vlasov-Poisson case, we shall also cover the results of [6]. We begin with the

consistency result [21, Theorem 1.1] which extends [6, Theorem 2.2].

Theorem 3.11 (Consistency of solutions). Let f e L*([0,T]; L*(R%)) be a nonnegative
function weakly continuous in time in duality with C,(R®) and either f € L*((0,T) x R®)
is a weak solution of (1.1) with vector field (3.31); or f is a renormalized solution of
(1.1) with vector field (3.31). Then f is a Lagrangian solution with respect to maximal
regular flow, that is, f,L% = X(t, ")y [foL'LA{Tx > t}]. In particular, f is a renormalized

solution.

The result follows from Theorem 3.6 and an application of [6, Proposition 4.10];

we shall prove an analogous result in Chapter 5 for non-divergence-free vector fields.

In order to establish existence of renormalied solutions of nonrelativistic Vlasov-

Poisson equations, i.e. the transport/continuity equation with vector field (3.31) with

14 Their names follow from the fact that F satisfies the Poisson equation —AE = o5Vp and H the
Biot-Savart law.
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€(v) = v, o = 1, and oy = 0, the authors of [18, Theorem 8.4] assumed finite initial

energy
J v fo(z,v) dz dv + J | Eo()]? dz < oo (3.32)
RS R3

in order to ensure the control of sublevels, i.e. (3.1). With minor modifications, one can

/2 The key innovation of the

extend to the relativistic case replacing |v|* with (1 + |v]?)
trio [6, Theorem 2.7] was to obtain a “generalized” solution of the Vlasov-Poisson equation.
The main advantage is that it is only assumed that f, € L'(R®) is a nonnegative function,
and if (3.32) holds, then generalized and renormalized solutions are equivalent [6, Theorem
2.8], as well as continuity in time in L{ . for p, £ and an energy inequality. Moreover, in
[6, Remark 2.9], the trio gave a sketch for a proof when ox = —1, and the full generality

was achieved in [21, Theorems 1.2 and 1.3].

Theorem 3.12 (Existence of generalized solutions). Let fy € L'(R®) be a nonnegative
function. Then there exists a renormalized solution of transport/continuity equation with
vector field

b = (§(v), 0 ET + oy&(v) x HT),
where £(v) = (1 + |v|*) V%0, B (z) = —V[T# o (2)], H¥ (2) = curl[T + 5 (2)] for some
measures p™, jN such that p,L* < i and || < pT as measures, piT(R?) < | fol 1 (rs)s

and 0,p°T + div j°T = 0 with initial data py. Moreover, f is continuous in time in Li., i.e.

lim |fe(z,v) — fs(z,v)|dvde =0 for any R < oo,

t—s
R

and by Theorem 3.11, f,L% = XM(t,-)x [foL?L (Tt > t}], where X% js the maximal

reqular flow associated to b°T.

The proof is via approximation by smoothing the singular kernels in £, H, and
when passing to the limit for approximation densities p", j", we cannot ensure that they
converge to p, j in L®((0,00); L*(R?)), respectively; we can only ensure that p"£%, ;"L
converges weakly* in L*((0,0); M(R?)) to some measures p®, jT with the properties
listed in Theorem 3.12.

Finally, we have the existence of renormalized solutions of transport/continuity

equation with vector field (3.31) if one assumes that f, has finite energy, that is

o o . .
f (1+ ) fodvda + f TEF + po(x)po(z) + 7HF + Jo(7)jo(x) dz (3.33)
R6 R3
and has integrability

LY(R%) if op = 1;
foe { LY(R®) n L¥?(RY) if o = 0; (3.34)
L'(R®) n L(R%) and | foll poarsy < €0 if o5 = —1,
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where ¢y is any constant such that ¢; < Cﬁﬁs and Cyrs > 0 is a constant in the Hardy-

Littlewood-Sobolev inequality |I"  g||zsms)y < Crrs| gl zo/sra)-

Theorem 3.13 (Existence of renormalized solutions). Let fy be a nonnegative function
satisfying (3.33) and (3.34). Then there exists a mazimal reqular flow associated to vector
field b as in (3.31) with £(v) = (14 |[v[*)™%v such that f,L% = X (t,-)4 | oL L {Tx > t}]
is a renormalized solution of transport/continuity equation with vector field b and initial
data fy, the flow is globally defined in [0,00) for foL°—almost every (z,v) € R, and p, j,

E, and H are continuous in time in Ly, .. Moreover, it holds for all t = 0 that
2\1/2 0FE
[La e+ Z [ repnt i
R6 2 R3

< J (1 + [0 fydvda + o5 [« po(x)po(x) da.
R6 2 R3
The main strategy to prove this theorem is to show that the measures in

Theorem 3.12 satisfy p°f = p£3 and the inequalities
| IE@Par<| rep@o s
R3 R3

J}RB | Hy(x)]* dz < JRS [+ jy(z)je(x) do — J [div T « j, ()] da.

R3
We shall not provide the proof for Theorems 3.11 to 3.13 as the techniques are very specific

for vector fields with structure (3.31) and do not seem to be applicable for the cases

presented in Chapters 4 and 5.

Notice that Theorems 3.12 and 3.13 do not contemplate the classical case
&(v) = v. The main difficulty is that in this case the electromagnetic force Fy(x)+v x Hy(x)
is not bounded by a function independent of v. Moreover, it does not follow that |j| < p,

and so the properties of p does not translate to 5 via dominated convergence theorem.
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4 Extension for wavelike vector fields

In this chapter, we shall study the transport/continuity equation
Orf + dive(bf) =0,

where the vector field b has structure (3.31) (hence, divergence-free) with op = oy = 1 and
the electromagnetic field £ and H satisfies the rescaled first four equations (3.29)-recall
that they are the so called Maxwell’s equations—with densities p and j as in (3.30). More
precisely, we are interested in the Vlasov-Maxwell system (in Gaussian units and with
speed of light ¢ = 1):

Of +EW) Vof H(E+EW)x H)-Vof =0 in (0,00) x R* x R?;
divE =4mp, divH =0 in  (0,00) x R?; (4.1)
OH+curlE =0, OF —curlH=—4nj in  (0,00) x R?,

where the densities p, j satisfy (3.30). Once again we shall write it as a transport/continuity

equation with vector field
b(x,v) = (&), E + &(v) x H). (4.2)

We now follow the same idea as in Section 3.2 and we decouple Maxwell equations with

respect to electric and magnetic fields: by the quintessential vector calculus identity
curl curlu = V(divu) — Au,

one may formally compute that
—AFE = -V(divE) —curl ), H = —47Vp — 4wd;j — O E;
—AH = —=V(div H) + curl(¢,F + 47j) = 4w curl j — 0y H.
Therefore one has that £/ and H solves the non-homogeneous wave equation
(Op — A)E = =47V p — 4o j;
(O — A)H = 4m curl j.

As argued in [52], the above is equivalent to Maxwell’s equations provided that we assume

initial data Fy and Hy, as well as fy, with compatibility equations

div Ey = 4mpy, O.F|,_, = —4mjo + curl Hy;

(4.3)
divHy =0, 0.H|,_,= —curl Ep;
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Following the explicit formula for solutions of wave equation; see [49, Section 2.4], we have

the so called Jefimenko’s equations, as computed in [60, 66, 75]: the eletric field reads

B =B+ [ R

. j & ZY) e g) - )], (@)dy

(@) [T =y
(4.4)
w@=y) o )
i JBz(x) |z — yl? (w(z —y) x [3:(Y)],e () dy
WE=y) A i
" JBt(x) |z — y| (w( y) x [0:Je(y)] e (2)) dy,
while the magnetic field reads
0 w(z —y) »
Ht(J?) ZHt (I) — — % [jt(y)]ret (l‘)dy
Lt@) |z =y (4.5)

_ JB( C@ =) o)), (@)dy.

) [z =y

where we recall the notation of Section 2.5 w(z) := z/|z|, and we denote [ fi(y)],.; () =
fiy—2/(y)", and (E°, H°) are functionals depending only on initial data (fy, Eo, Ho):

P =Bl = | o =),
1 ) .
ot LBt(Z‘) Jo(y) - w(z —yw(z —y) dSy; (4.6)

1 .
H) =B+ [ ) x wle-)as,
6Bt x

where B, H are homogeneous solutions of Maxwell’s equations (see “Kirchhoff’s formula”
in [49, Section 2.4]):

Bl ) = |, Hew (o) —4mis) + o) + DE(a)y ~ )5,
OB (4.7)
HF () ! —tcurl Ey(y) + Ho(y) + DHo(y)(y — z) dS,,.

a 47t? 0B ()

There are two main results concerning existence of solutions of (4.1): the first one is due
to Glassey and Strauss [52] for distribution functions with a cutoff at high velocities, that
is, they prove existence of C'! solutions with an a priori assumption that f(¢,z,v) = 0 for
v > aft) for some continuous function «, provided that the initial data f; is a C' function
with compact support and the initial electromagnetic field Ey and H, are C? functions

satisfying the compatibility conditions (4.3); see also in [52] a result with a modification

! Notice that the “retarded bracket” function [f;()],:(y) is a measurable function as a function of

t,x,y, if f is measurable as a function of t,y. Indeed, it is the composition of f and the Lipschitz
function t,x,y — (t — |y — z|,y).
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of (4.1) with acceleration term now reading ((v)[E(z) + £(v) x Hy(x)] for some cutoff
function ¢ and a modern presentation of the original result in [24, 61]. Moreover, we also
refer to [53] for a substitution of the aforementioned a priori assumption for an a priori
bound on first v—moments. The second one is due to DiPerna and Lions [47] via the
now called “average lemma” result. Loosely speaking, weak solutions of (4.1) enjoys a
H'*—regularity when averaged with respect to v—variable and with any smooth weight.
We refer to [73, 75] and references therein for a very recent survey of results concerning

Vlasov systems.

We now present some results we obtained in this thesis and are already published
in [20].

4.1 Singular kernels and “hyperbolic convolution”

Notice that any of the terms in (4.4)-(4.5) cannot be written as a convolution of
a singular kernel and a density function, and so the previous theory presented in Chapter 2

is not applicable. Hence, here we study vector fields in the form

by(x) =) - K'(z = y)gi_p,_o()dy = D K"+ gj(x), (4.8)
i=1 T =1

where K* is a kernel with suitable singularity at the origin and ¢° are summable functions
W, ”

in spacetime. In (4.8) we introduce the “x” operator and we refer to it as hyperbolic

convolution. If one considers a non-unit speed of propagation v, (4.8) should now read

b(x) =Y fB K00 = DK )
i=1 vt \T

i1
if one formally takes v — oo, then the classical convolution is recovered. More generally,

vector fields with such hyperbolic convolution come from solutions of wavelike equations;

for instance, if b satisfies the wave equation for d = 3 with zero initial data
(V™20 — A)by = (9%, 9%, 9°),

then b has structure (4.8) with K*(z) = (4r|z|)~'e;, where {e1,es,e3} is the canonical

basis of R3.

Let us make more precise the hypothesis on the kernels K = K*

Condition 4.1. We shall consider kernels K € C*(R?\ {0}; R?) such that there exists a
bounded set A 3 0 and a constant C' > 0 in which |K(z)| < C|z|* "¢ for € A\ {0} and
|K(7)] < C for v € RU\ A

Moreover, let us make some comments on the hyperbolic convolution: the first

one is that an analogous result related to the classical convolution, namely the associative
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property (f =g)=h = f=(g=h) does not hold for the hyperbolic variant, that is, generally,

K*(f*g)(z) # (K= f)* gi(x),

although a similar result (which is a simple exercise on changing the order of integrals)
does hold:

Kox (f = gi)(x) = f o (K x gi) ().
While the latter allow us to use the result Lemma 2.2, the former implies that the proof of
Theorem 2.3 found in [22, Theorem 3.3] is no longer adaptable. Moreover, many of classical
results about convolution—namely Young’s convolution inequality—do not readily extend
for the hyperbolic convolution. Nevertheless, by using that the integrability is local, we
prove that K * g have similar inequalities to Young’s convolution case if one assumes that
K satisfies Condition 4.1 and g has enough integrability in spacetime. In particular, we

conclude that it is locally summable in space and globally in time, i.e. it satisfies property
(H1).

Lemma 4.1 (Young’s convolution inequality and property (H1)). Let b be a vector field

with structure

bi(z) = K * g,(x) = Kz =y)lg(y)lre() dy,

Bt(ac)
where g € L*((0,T); LP(RY)) for p = 1 and K satisfies Condition 4.1 with set A and

constant C'y > 0. Then there exists a constant Car > 0 such that

15 * g”Ll((O,T);LP(Rd)) < CA,T”gHLl((O,T);LP(IR{d))7

and for s € [1,d/(d — 1)), ge L'((0,T) x R?), o,g € L*((0,T); LY(R%)) for ¢ = 1, it holds

| * gHLl((o,T);LS(Rd)) < Cars (Hg”Ll((O,T)xIR{d) + ||6tg||L1((O,T);L‘I(Rd)))

for a constant Cars > 0. In particular, b satisfies (H1).

Proof. By changing variables, we have that

L e <],
K(y)ge-1y(z —y) dy

n [ |
Rd [JBA\A

dx]
<C | (Wl 4 1) ey

e f f ) g0 L1 gee) dS. dr
0B1

<CarlglooryLrwey)-

Bi(x) K(x = y)[g:()]ret (x) dy

J |~ gy (2 — dy
AﬁBt

o
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Integrating with respect to t € [0, T], the first inequality follows. The second one follows
from the fact that

Ko = | [ K= nae = o)
t—|y|
= Rgawmaw[%@—ngﬁ ewxx—de(w
< (K118) - ad(o) + (K1) « [ fogelas(o)

Taking the L® norm, using Young’s convolution inequality, we have that

||K*9t

LeRd) S K LS(BT)”gtHLl(Rd) + | K Ls’(BT)||5tgtHLq(Rd)a

where s’ < s satisfies
1 1 1
T4 -=—4-.
s s q

Integrating with respect to time, the result follows. O

As mentioned in Chapter 1, it is well-known since [48, Section IV] some
regularity on the derivatives of vector fields, and so we shall compute it for (4.8). For
this purpose, we need to assume some further regularity on kernesl K, namely on its

derivative.

Condition 4.2. We shall also assume that K* as in Condition 4.1 has derivative

Qi5(x)
zfd

5]KZ(ZE) =

where €);; is a zero order homogeneous function with average zero over the S?1 sphere,
that is, Q;;(tx) = Q;;(x) for all t € R and

Qi;(y) dsS, = 0.

gd—1

Lemma 4.2. Let b as in (4.8), where for each i = 1,...,m, the kernels K satisfying Con-
dition 4.1 and Condition 4.2, the functions g' € L*((0,T); LP(R%)) with further reqularity
09" € LY(0,T); LY(RY)) and g, € L"(RY) for p,q,r = 1. Then for each j = 1,....d, it

holds in the weak sense

05y (x) = i — | wi@E W)gy(x —y) dSy + K" * gy(x) + (w;K") * dig;(z).  (4.9)

0By

Proof. Notice that the first and third terms are L" and L? functions, as for the third term

follows from Lemma 4.1 and the first one is trivial. For the second, consider ¢ € C°(R?).
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Then

fRd Lt . |x_y|d [gt(y)]ret(:c) dy dz

J JL& o 9r(@ tw(t = 7)) dSdrde
JRdJLBl v - w(t - 7)) — o) 22 i) g-(z) dS, drdz,

t—T

and so we have that

fRd L() |x_y|d D [04(9)ea() dy < C|V|l 1@ 9] L1 0.0y -

Therefore, the derivative is well-defined in the weak sense.

We shall prove (4.9) when m = 1, for the case m > 1 the argument is done for
each term K' x ¢', where K and g satisfy the conditions for any K* and ¢', respectively.
Moreover, without loss of generality, we shall assume that ¢ is a smooth function, for

otherwise we may use a standard density argument. By change of variables, we have
0;bi () = K()[9j9:(x — y)]ret(0) dy.
By

We now want to integrate by parts the gradient, and so we recall the commutation between

the retarded brackets and derivatives with respect to y, t:

Oy, L9t (W) ]ret(®) = [0y, 91 (1) ]ret () + wi(@ — ¥) Ol ge () ]rer (),
at[gt(y)]ret(x) = [atgt(y)]ret(x)-

Therefore, we have

(4.10)

;b () = — LB Wi K Y)go(w —y)dSy + | K (y)[g:(x = y)]ree(0) dy

By

+J;%@ﬂawm%m—ymamdy

Changing variables once again, we obtain the desired result. O]

Now, we recall the grand maximal function studied in [22] and introduced in
Section 2.1. For the convenience of the reader, we also recall all the relevant properties

and desired estimates.

Definition 4.1. Let u € L} (R?). Given a family of functions {p"}, such that supp p”
By, and |p"||p1ray + |07]| L may < Co for all v, we define the grand maximal function of u
associated to p” as

Myu(x) = supsup |o} « ()],

v >0

where p!(z) = ¢ 4p”(x/e).
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Recall that the grand maximal function behaves like the classical maximal

function .
Mu(z) = sup 7= | |u(z —y)|dy,
€ |BE| B.
in the sense that it is a bounded operator from L to LP for p > 1 and from L' to L}

w?

where L} stands for the weak L' space. Indeed, as argued in Section 2.1, we have that
Mpu(z) < sup||p”| p»mayMu(x) < CoMu(x), (4.11)

and so the aforementioned bounds hold. We would like to take u; = 0;(K x g) for each
j=1,...,d, but it is not clear that such function is in any L?, and so we shall compute it
explicitly. For this purpose, we recall the definition in Section 2.3 of singular kernels of

fundamental type, which now will further assume the structure analogous to Condition 4.2:

Definition 4.2. A function I' is said to be a singular kernel of fundamental type if

L Tlgagoy € CHRN{0});
2. There exists constants C' > 0 such that |['(z)| < C|z|™* and |DT(z)| < Olz|"** for

every x # 0;

3. The kernel can be written as I'(x) = Q(z/|z|)|z|™¢, where
f Q(w) dS, = 0.
0B,

In the following, we shall use the fact that if p” is sufficiently regular (e.g.
p” € H*(R?) for s > d/2 with uniform bounds), then Fp* € L*(R?), where F is the Fourier
transform. Taking I' a singular kernel of fundamental type, since F(I'l g¢) € L (R%) by
Calderén-Zygmund theory (see [68, Estimate 7.3]), it holds Fp"F(I'Lpe)(e-) € L'(R?)
uniformly for € > 0 and 0 > 0. Therefore, we have that there exists a constant C; > 0
such that for all e > 0, v and § > 0,

le?pl « (M)

cyay = 07+ (€ T1pe)(e) |y ray < Ci. (4.12)
We begin by proving that M, (I'l g  g) is in LL(R%).

Proposition 4.1. Let 6 > 0, I' a kernel satisfying Definition 4.2, and a function g €
L'Y((0,T); LP(RY)) for 1 < p < 0. Then there exists a constant Cy > 0 independent of &
such that

17 (T g+ g0)| 1, gty < CalCo + C)lgellr ey
ifp=1, and if p > 1, it follows that

|Mp (P ge * gi)| oray < CaCollge Lo ray-
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Proof. If p > 1, the result follows easily from (4.11), the boundedness of the maximal
operator from L? to L, the boundedness of the operator u +— I" = u from L? to L? (see
(68, Theorem 7.5]), and the estimate [68, Proposition 7.10]

sup [ e # ()] < C(M(T = g,()) + Mg ().

6>0

Hence, it remains to prove the harder case p = 1. Notice that by the definition of grand

maximal function, we have that

My (P » 00(e) <supsup |t « T+ o) — (C1) + 0i2) [ o)y

vooe>0 R4
+sup ||p" | L1(ray sug) ‘F]lB% * gt(:v)‘
v €>
where 7 := max{2¢,}. Now, the second term can be estimated as

sup ||| L1 (ray SUP ‘FILB% # gy()] < Cosup ‘FILB% + gi(2)] .
v e>0 n>0

By the L' to L. boundedness of maximal truncated operator (see [68, Proposition 7.10]),
it suffices to estimate the first term. For this purporse, we shall split it as the supremum
for e > 6/2 and 0 < € < §/2.

Notice that

sup sup |p¢ # I'lpe # gi(x) — (I'lpe) » gt(:t)f " (y) dy‘ =
Vooez§/2 R4
sup sup [p? # ['lpe — lpg. J ' (y) dy] x gi(x)].
Vooexd/2 R4

Now, by (4.12), we have that for all z € R and € > §/2 that

) Cy +274C
p” () dy‘ < %

pr + Tlgg(o) ~ (P1ag)@) |

Rd
Moreover, for |z| > 3¢, we have that

p:*rﬂng>—<rnBixm>f .f [D(y) — (@)1 (z — y) dy

Rd

P’ (y) dy‘ <

BC
I | e =)y

elp? (v —y)|
< € dyd
CJ JRd iz — s(z — )| yas,

since |x — y| > |z| — |y| > 3¢ — § = 3¢ — 2¢ = ¢, and so the second integral vanishes. Since

2
@ = s(@ —y)[ = |2] = |z —yl > o] —e> Zlal,

we have
3d+10 €

Udy‘ S Qarigpn

pz*rﬂng>—<FnB&xx>j

R4
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and so
Ca(Co + C)

(1 + <w|)d“)'

By [76, Chapter III, Section 2.2, Theorem 2], we conclude that

 Tlag(o) — (L)) [ ) dy\

R4

lpg * [l e —T'lgg, f ) P’ (y) dy] # gi(7)| < Ca(Co + Cr) M gi(z),
R

sup sup
Vooez6/2

and so the above boundedness implies the desired L} to L' boundedness.

It remains to study

sup sup (4.13)

Vo 0<e<d/2

[p? # Ilpe — Ipg J ) dy] * 9i(2)] -
R

We begin by writing it as

sup sup f lpZ*FﬂBE( ) — (T'lpe)(2) dy] gi(x — 2)dz
v 0<e<s/2 |JRd
<sup sup J lplg # [ pe(2) — (I'pe)( f p”( dy] gi(x —2)dz
Vo 0<e<é/2 |J Ba. R4
rsw s ([T - 1)) [ ) dvate - 2)d:
v 0<e<d/2 |JBS, R4

By (4.12), we have for all z € R? and 0 < € < §/2 that

. C, Cy  C)+2iC
p(y)dy‘<€;+53<1€do,

p+ Tleg(2) - (Pag) (2) |

Rd
and so
sup sup [ ¢ # Dlpe(2) — (Mge)(2) f p”(y) dy] gi(z — z)dz
vV 0<e<6/2 |JBae R4

(4.14)
< Cyg(Cy + Cy)supe” J lg:(z — 2)| dz < Cy(Cy + Co) Mgy ().
BZe

e>0

The second term can be written as

sup sup | [« TLag(e) — (C1a)(2) | o) dygs(o = 2) s
v 0<e<d/2 |JBS, R4
= sup sup J J [F]lBg(z —y) — (FILBg)(z)] gi(x — z)dz p(y) dy| .
v 0<e<d/2 |JR? JBS,

We may write
Bie = ({2l > 2¢; 0 {lz =yl = 6} n {lz] = 6}) v ({[z] > 2¢} N {lz =yl < 3} N {]z] = 0})
U ({lz] > 2¢} 0 {[z =yl = 0} n {l2] < 6})
=AuBuC.
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At set A, we have

[C15:(z — ) — (TLpe)(2)] = T(z — y) — T(2) < |yl f V(= — sy)| ds

2d+1|y|
- |Z|d+1

<1 ‘ (dz)d“)

since |y| < e and |z — sy| = |z] — |y| = |z| — € > |2|/2. Therefore, we have by [76, Chapter
I1I, Section 2.2, Theorem 2| that

sup sup
Vo 0<e<d/2

fRd f F]LBC z— (F]ch)(z)] gi(x — 2)dz p?(y) dy‘ < CqCoM gy().
(4.15)

At set B, we have

swp sup [ [ [Pl =) - (01)(2) gt<x—z>dzpz<y>dy\
v 0<e<d/2 | JRd
=sup sup f j 2)ge(x — 2) dz p¥(y )dy‘ C’C’OJ wdz.
v 0<e<6/2 | JRE 2]

Now, notice that
Bc {0 <z <26}.

Indeed, the lower bound is by the definition of the set and for the upper bound, we have

z
A< le—ul+ ol <o+l <d+e<at
Therefore, we have that
sup sup J J FILBc z— (FﬂBc)(Z)] gi(x — 2)dzpl(y)dy
Vo 0<e<é/2 |JRE (4 16)
< CCOJ M_dz” dz.
Bas\Bs 2|

At set C, we proceed analogously, noticing that

Cc{5<|y—z|<§5},

as the lower bound is trivial and the upper bound follows easily:

ly—z| < |yl + |z <e+d < /2 +0.
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Hence, we have by (4.11) that

sup sup J f F]ch z— (FILBC)(z)] gi(x — 2)dz p¥(y) dy
v 0<e<é/2 |JRE
< Csup sup f J 9:( d)| dz |p¢(y)| dy
v 0<e<d/2 JR? J Bys o (y)\Bs(y) |y - Z| (4 17)
]]-B \B v .
= (C'sup sup J Ldé * |ge|(x — y)|pY (y)| dy
vV 0<e<é/2 JRA | ) |

1p...\B
<@%M({ﬁﬁwmym

Combining the estimates (4.14), (4.15), (4.16), and (4.17), we have the boundedness for
(4.13):

sup sup <Cy(Chr + Co)M gy(x)

vV 0<e<d/2

[P? # [ —I'lpe J , P (y) dy] * g1()
R

1
+a%ﬁﬁumm>

1g...\B
+@@M({ﬁw*m)@.

Therefore, it suffices to prove that the last two terms are in L. . Notice that

1
o (R0 ) e

|- |

19¢ L1 ray < Calgell L1 may,
L1(RY)

L, ()

and so the proof is complete. O

Notice that the above is a direct extension of Theorem 2.3 for truncated
kernels. Moreover, the result of Nguyen Proposition 2.5 does not cover the case treated
in Proposition 4.1, and so we have a new fundamental estimate for vector fields b whose
derivative can be written as in Definition 4.2, following the same lines as in Section 2.2

and Section 2.3. More precisely, we have the following:
Proposition 4.2. Let b and b be vector fields satisfying (1.6), with b with reqularity
be LY ((0,T) x R:LRY)  for some p > 1;

@bi = Z Fijk]le\Béijk * g,fjk in the weak sense,
k=1
where &5, are constants, T* as in Definition 4.2, and g"* € L'((0,T) x R?). Moreover,
let X, X renormalized reqular Lagrangian flows with respect to b and b starting at time
s with compressibility constants L and L, respectively. Then for every v > 0, n > 0, and

r >0, there exists A > 0 and a constant C. . > 0 such that

By o {1X(ts,) = X (ts,)] > 7] <

Cymrl|b— b||L1 ((0,7)xBy) T 1
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uniformly in s € [0,T] and t € [s,T|. The constant C,,,, depends on its subscripts, as well
as the compressibility constants L and L, on the norms (1.6) of b and b, on 10/l Lo ((s,0)x By)

for any t € (s,T), on ||g"jk||L1((0’T)de), and on the constants at Definition 4.2.

We now estimate each term in the derivative of the vector field computed in

Lemma 4.2.

Proposition 4.3. Let, for each i = 1,...m, ¢g* € L'((0,T) LP(R?)) such that 0,g' €
LY(0,T); LYRY) and g, € L"(RY), where 1 < p < o0 and 1 < q,r < o0, and K as in
Condition 4.1 and Condition 4.2. Then, for any R > 0, there exist constants Cqr, and
Car rg depending only on the dimension quantities specified as subscripts, such that the

following holds for a.e. t > 0:

< Courr |90 rray;
L(BgR)

J w; (Y) K} (y)go(x — y) dS,
2B

H(ijl) * atgiHLl((O,T)xBR) < CdvT?quHatgiHLl((QT);Lq(Rd));
T
fo H[@'Kl@) * g — @'KfﬂBt) * gZ]HLl(BR) dt < Cd,T,R,qHatngLl((O,T);L‘Z(Rd))

Moreover, by further assuming that p” satisfies Definition 4.1, there exists a constant Cy, g

depending only on d, R,p such that

| My (05 KiLp,) * gt”Ll(BR) < Cd,RmCOng”LP(Rd) ifp>1;
M (0K 15,) * 92| 11 oy < Car (Co+ C) lgilprey if p=1.

Proof. We shall omit the index i, for the sake of clarity. Notice that

LB wi(y) K (y)go(z — y) dS,

<Ca | oo = 1)l A5
L1(BRr) 0B

< Cyrorlgo] e may,

and so integrating in time gives the first estimate. The second estimate follows from

Lemma 4.1. For the third inequality, denoting T';; = 0,K; = |x|™%Qy;(x/|z|), we may write

Ty gu(x) — (T, » go() = f Lo () (i@ — 1) — g — ) dy.

Now, the integral can be written as

1 1
|| ruwag e - wluldsdy = = [ | ol 9 /o) (e ) dsdy
Bt 0 Bt 0

Extending g,(x) = 0 for ¢ < 0 for all z € R?, we may reproduce the proof of Lemma 4.1,
and so the third estimate follows. The fourth and fifth estimate follow from Proposition 4.1

and Theorem 2.3, since we may write

(O K1p,) xg; = OK, + g, — (OK 1pe) * g;. —~



Chapter 4. Extension for wavelike vector fields 108

We now adapt the notion of Lagrangian solutions of (1.1) found in (1.3) in the

context of maximal regular flows, as in Chapter 3:

Definition 4.3 (Lagrangian solution). For vector fields b with a well defined maximal
regular flow X, we say that f, € L'(R?) is a Lagrangian solution of the transport equation
with vector field b and initial data f; if

t
fil® = X(t,0,-)4foexp (J div b, (X (7,0,)) dT) L {z e RY: Tifx (2) > t}.
0

We are now ready to state the main result of this section and the first original

theorem of this thesis.

Theorem 4.1 (Lagrangian flow and renormalized solution). Let T'> 0 and b be a vector
field satisfying divb, = a(t), for a € L'((0,T)) and (4.8) with kernels K' satisfying
Condition 4.1 and Condition 4.2 and g' € L*((0,T); LP(RY)) with further reqularity d,g" €
LY(0,T); LYRY)) and g5 € L"(RY) for 1 < q,r < oo, and 1 <p < 0. Then

1. there exists a mazimal reqular flow X associated to b (see Definition 3.2) starting

from 0;

2. if bf € L'((0,T); L°(R%)), the Lagrangian solution, i.e., the transport of fo by X
(see Definition 4.3) is a renormalized solution of (1.1) with initial data fo; if we
further assume that bf € L'((0,T); L. .(R%:R?)), then the Lagrangian solution is a

distributional solution of (1.1);

3. assuming a divergence-free vector field b, if a nonnegative function f is weakly contin-
uous in [0, T] in duality with C.(R?) and it is either a renormalized or distributional

solution of (1.1), then f is a Lagrangian solution.

Proof. Notice that by our assumptions and Lemma 4.1, we only need to prove that property
(H2) holds for such vector fields, and so existence, uniqueness and semigroup property for

the flow will follow.

We split the proof in three steps: we begin by proving that property (H2) holds
for such vector fields, and so existence, uniqueness and semigroup property for the flow
will follow; in step two, we prove that Lagrangian solutions are renormalized ones; finally,

in step three we show that renormalized /distributional solutions are Lagrangian.

Step 1. By Theorems 3.9 and 3.10, existence, uniqueness, and semigroup
property of maximal regular flow follow once we prove that (H2) holds, and so (1) is
ensured. For this purpose, we follow the same strategy as [6, 21] presented in Chapter 3.
We begin by defining P(X) as the set of probability measures on X = C([0,7']; Bg), being
R > 0 arbitrary and the evaluation map e;, t € [0,T] of curves v € X, i.e. e;(7y) = v(t).
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Using the same argument as in [6], by extended superposition principle [6, Theorem 5.1]),
it is sufficient to show that a measure 1 € P(X) satisfying (e;)xn < CL? for all t € [0, T
concentrated on integral curves X (+,0,2) of b has Dirac delta disintegration n, with

respect to eg. More precisely, n, = 0, for (eg)xn—a.e. v € Bg.

For this purpose, we consider an “local” adaptation of the function ®s in

Proposition 2.1 presented in Chapter 3:

::J]]ﬂog<14—kﬂw;;n@”><hdnx%2%

where du(n,v,z) = dn,(y)dn,(n)d(eo)xn(z), d € (0,1) is arbitrary and ¢ € [0,7']; note
that u e P(C([0,T]; Bg)* x Bg) and ®5(0) = 0, as curves begin at the same point. Now,
assuming by contradiction that 1, is not a Dirac delta for (eg)xn—a.e. x, we may computed

a lower bound to @5 as in (3.5), and so

Bs(ty) = ﬁ log (1 4 ﬁ) (4.18)

Computing the time derivative of ®4, we have that

< [ 002 < [t

where by Lemma 2.2 and Proposition 4.3, we have

hy(n,7) = min {

Now, notice that

(M,s03b4(0) + M0,0u(0(0)))

o,
[~
i

|m@@»~4mm@m}
u |

he(n,7) < hi(n,7) + ki (n,7) + ki (n,7),

M s [(0;K7) * gi — (8K 1,) * g,](7(1))
M vi[(9;K]) * g, — (0;K{15,) = g,](n(t))

wxwwﬂ+wxmwﬂ}
2 :

4 My (w3 K1) % Bghn(2)) ).
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hi}(1,7) := min { Zi ( 5 (0K 1p,) + gi(7(t)
by ()] + [ben(t)) }

+ M,y (0K15,) » /(1)) ;
With the above definitions, we have that
to
Ds(to) < f Hj he(n,7) + BE(n,7) + hi(n,y) dp(n, v, 2) dt.
0

Now, firstly notice that if » > 1, the condition (e;)sn < CL% n and (4.11) imply that

Wl <23 S f o | wwKiac-os,)
jl=1i=1 0Bt L1(BR)
< CCurypy Z “gé||LT(Rd)a
i=1

and analogously if ¢ > 1,
d m
W2 ] L 0,1y %y <2 Z Z H| M s (w1 * 029" | L2 (0.1) < Br)
g,l=1Tz=1
| UM [ KD g = @FTLR) «g lay

<CCurnrg ), |09 | pomyiza@e),

i=1

and if p > 1,
d m T - -
Wl <2 333 [ 1@t18) gl
[=11=1

< CCurrp ), 19| rcoryLeea.

i=1
Therefore, we shall study separately when each exponent p, ¢, r equals 1.

Case p=1: Notice that by Proposition 4.3, we only need to consider the

integral of k3. Recalling Lemma 2.10, for fixed € > 0, we may write
g =g+ g2
where

o™ e omyen < € N9 lzeomywre) < Co

we may estimate h* as h® < h*! + h*?) where for k = {1,2}, we define

het (n,7) —mm{Zi( o (0K L) * g (4(1))
B ()] + [bu (1)) }

+ My (K 15,) » g (1(1))). 5
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By Proposition 4.3 and the condition (e,)4n < CL?, we have that

1232 11 0y sy < CCar D 19l z2(o.)may < Cee
i1
On the other hand, by combining (4.8), the interpolation estimate in Lemma 2.9, the
condition (e;)xn < C L%, and Proposition 4.3, we have

th’lnLl((O,T)x,u) < CZ lg ’1||L1((0,T)de) log (5) < elog(67);

=1

details on the above estimate can be found in the proof of [6, Theorem 4.4]. Hence, we
have that
”hB”Ll((O,T)xu) < O +elog(6 ).

Cases q=1 and r=1: Proceeding analogously as the previous case, and so for

a fixed € > 0, we write d,¢" as

a9 = 1+ [,

where

1 o omyxray < €& 1F2 2o cray < Cey
and also
where

||96’1||L1(Rd) < €, ||gé’2||L2((Rd) < (.,

and so mutatis mutandis, we have
”hl”Ll((O,T)x,u) + ||h2||L1((0,T)><u) <C.+ elog(é_l).

Hence, we have that
|12 o,y xpy < Ce + elog(6 ).
Therefore, we have by (4.18) and the above estimate of h that

a a _ _
o log (1 + %—T) < Corp + elog (CCR(e8)™) < Corp + elog(d7Y).

Taking € < a/2T, we have a contradiction by letting § — 07, and so (H2) holds.

Step 2. For the statement (2) in Theorem 4.1, we extend [6, Theorem 4.10]
for vector fields (4.8) with bounded divergence in space and integrable in time. We recall
Definition 4.3, which stated that

fil® = X(t,0,-)4foexp (Lt div b, (X (7,0,)) dT) L {zxeR?: Ty x(z) > t},
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and notice that for all p € C}(R?) and ¢ € [0, T), we have the following equalities in the
set Ay = {z e R?: T x () > t}:

L S(X (1,0, 2)) fi(X (1,0, 2)) dar = f () fi(2)

X(t707')At

X exp (— J div b (X (r.1, -))dT) do

0

_ f H(X (1,0, 7)) fol) d.

In the first equality above, we performed the change of variables = — X (¢, 0, z) and noticed
that the jacobian determinant, which is given by the exponential in the second integral
above is well-defined by the hypothesis on the divergence of b stated in (2) and the fact
that by Lemma 4.1, we have that be L'((0,T); LP(R%)) < L*((0,T); L' (RY) + L™ (R%));
see [51, Proposition 6.9], and so one can apply Proposition 2.2. In the second equality we

used the definition of Lagrangian solution. Therefore
fi(X(t,0,2)) = fo(x) forae. ze A

Then we have that for 3 € C*(R) n L*(R), and so we obtain

r

JRd o(z)B(fi(x))dx = o(2)B(f,(x)) da

JX(t,0,) A
-

(X0, 0,2)8(fole)) exp ( [

JA 0

t

div b, (X (7,0, z)) dT) dz

r

= | @(X(¢,0,2))B(fo(z))exp <Lt divb, (X (7,0, 2)) d7’> dz,

JR4

since by (iii) of Definition 3.2, we have that ¢(X(¢,0,z)) continuously vanishes at {x €
R?: Ty x () <t} = A{ if the maximal time does not reach T'. Furthermore, we have that
(see [6, Equation 4.31]) for a.e. t € [0,T]

&@(X(ta 07 .CE)) = l[O,Ta—X(m))bt(X(t? OJ x)) ’ VSD(X(t7 07 l’)),

and so by denoting the above jacobian determinant as J;(x), we have that

d

a ). @(x)ﬁ(ft(iv))deJ bi(X (t,0,7)) - V(X (,0,2))8(fo(x))Ji(x) dz

Ay

+ JA ©(X(t,0,2)) divb (X (¢,0,2))B(fo(x))Je(z) dx
_ fRd [by() - Voo() + () div by(@)]B(fi () da.

Since this is equivalent to stating that § o f is a distributional solution of the transport
equation with vector field b (see [11, Section 8.1]), we are done. For the case bf €

L*((0,T); Li..), we proceed analogously, without taking the composition of f with 3.

loc
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Step 3. Finally, the statement (3) in Theorem 4.1 follow from [6, Theorem
5.1]. More precisely, it follows by Theorem 3.6. Moreover, if f is a bounded distributional
solution, then it is a Lagrangian solution, and so by the previous step, also a renormalized

solution.

This concludes the proof of Theorem 4.1. n

The global in time well-posedness of the maximal regular flow is ensured by

Proposition 3.2 for vector fields b with extra integrability assumption, namely, for all
nonnegative 3 € L*(R) n C*(R), it holds

J JR @BUUE) g 41 < o, (4.20)

a (14 ]z|)log(2 + |x|)

Notice that if p € [1,d/(d—1)] and d = 2, then by Lemma 4.1 we have that the vector field
be L'((0,T); LP(R% R?%)), and so (4.20) follows for Lagrangian solutions. Indeed, notice
that by taking § =1, we have that

b(z)|5
J j i L R <Cabl 1 (0,1):Lr(ma)
R

a (1+|z|) log(2 + |z])
1
0 7_d—l q
1+ d ,
( f [(1+ 7)log(2 + 1) )

where ¢ = p/(p — 1) = d, and so the integral on the right hand side is finite, and so by
Proposition 3.2, we have that X (-,0,z) € AC((0,T); R?) for a.e. z € R

We now prove an analogous result for p € (d/(d — 1), ), provided that f €
L*((0,T); L*(R%)) and d = 2; such condition follows if one has that f is a Lagrangian
(hence, renormalized by Theorem 4.1) solution of transport equation, provided that divb e
LY(0,7); L*(R%)). The proof is straightforward: let 3, := iarctan o(, € CHR) n L®(R),

where ((,)nen is a nonnegative monotonous sequence such that ¢, / |- |. Then

b, ()| 8, (fi(x
[ [, o)zt < folusgomyaouonlale ommaneny

1
< Bl o.ryzr @Gl DI oryir ey

2 q
— arctan(x) < |z|. By

where ¢ = p/(p — 1) and we have used that
m

2
< |—arct
‘W arctan(x)

monotone convergence theorem, we have that

b1 (2) 50 ()
d dt b 1 P s} 1 .
[ [ BBt < ooyl I ey <

Therefore, by Proposition 3.2, X (-,0,z) € AC((0,T); R?Y) for 3,(fo)L?—a.e. x € R? and
all n € N. Since the tangent function is a diffeomorphism, we have that it holds for
Ca(fo)L%—a.e., and by monotone convergence theorem, we finally conclude that it holds
for | fo|£%—a.e. 2 € R%. We remark that the result holds for the full range p € [1,0).
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4.2 An application for Vlasov-Maxwell system

We now consider the case (4.1) with electromagnetic fields with structure (4.4)
and (4.5). Recall that &(v) is either equals v or (14 |v]|?)~"?v. We begin by verifying (H1):

Lemma 4.3. [Property (H1) for Viasov-Mazwell system] Let p € L'((0,T) x R?), j €
W0, T); LY (R?)), with py € L'(R®) and Ey, Hy € W 1 (R*; R?). Then the vector field
(4.2) satisfies property (H1).

Proof. Notice that since £(v) € WP (R3), it is trivial to verify that the vector field (4.2)
satisfies (H1). Moreover, since the electromagnetic field F, H does not depend on v, it
suffices to show that they are in L'((0,T) x R?). By the definition of the functionals

E°, H° and the homogeneous solutions of 3D wave equation (4.7), we have that
| E® 1 omyxmey + 1 HO | 1oy xrsy SO (| Eollw sy + | Hollwagesy
+ llpollzr@sy + ol sy ).

The estimate for the non-homogeneous terms follow from Lemma 4.1. O]

As we shall apply the same idea as in the proof of Theorem 4.1, we need to
compute the spatial derivative of the electromagnetic fields given in (4.4) and (4.5). We

begin by computing the derivative of the homogeneous terms:

Lemma 4.4. Let po € WH(R?), jo € WHH(R? RY), Ey, Hy € W*'(R*;R*). Then there
exists a constant Cr > 0 depending only on T such that

HDEOHLl((O,T)xR?’) + ||DH0||L1((O,T)><R3) < CT(”EO”WQJ(]R?’) + HHO||W2,1(]R3)

+ ||p0HW171(]R3) + HjOHWl‘l(R?’))‘

Proof. We begin by assuming Ey, Hy € C°(R? R?*) n W' (R?; R?®). Recall that by classical

results of wave equation (see [71]), we have that E*, H¥ is smooth, and

||DEH||L1((0,T)><R3) + ||DHH||L1((07T)XR3) < Cr (HEOHWQJ(H@) + ”HOHWQJ(H@)) .

Moreover, assuming that py € W'(R?) n CP(R?) and j, € W (R?; R?) n CP (R R?),

we have that
| Dot =,
2By

T

Nt

T
g
0

< Cr (||DP0||L1(R3) + “Djo“Ll(R3)) :

1

1 .
+Hf Dijo(- — ) x w(y) S,
L1(R3) 0Bt

L1(R3)

1

) s pee - gas,)
0B¢(z)

LH(R?)

By a density argument, we have the result for the general case. O]
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We now compute the derivative of the first term of the electric and magnetic

fields, namely

JB M[pt(y)]m ()dy, JB Wiz —y) X [Je()],e (2)dy;

() 17— Y2 2 —yl?
we will split the derivative computation of each term of the electromagnetic field for the
sake of clarity.
Lemma 4.5. Let K; and I';; denote the kernels

dir — Bw;(z)w ()
|z[3

Ki(x) = w;() Dir(2) = OpK;(z) =

o

Assume that py € L'(R?), jo € L'(R*R%), pe L'((0,T) x R?), j e WH((0,T); L'(R?)),
and that dyp + div j = 0 holds in the weak sense. Then, it holds in the weak sense

O (IS * py) () = — LB wr(Y) Ki(y)po(r — y) — wi(y) Ki(y)w(y) - jo(z — y) dS,

+ Tip pr(w) = D (wila) * i () + (Ko = ji(x) + (wrKw) * 0,j1 (),
=1

04 (I % 1) (x) = — f w0 K ()b — 1) S, + Do J1(2) + (i) * L),

0By

Proof. The second equality is a simple application of Lemma 4.2, since I';; has average
zero. Therefore, it suffices to prove the first equality. Furthermore, by density argument,

we only need to consider smooth densities p and j. By Lemma 4.2, we have

W x p) (o) == | o))l = 1) S, + Do o) + (0 J) o).
Now, since it holds the continuity equation d;p + divj = 0, then

(Wi ) » Oy () = — (Wi k) * div gy () = — JB wi (W) K (W) [V jie(y)]rer (2 — y) dy.
Using the commuting relation of the retarded brackets and derivatives (4.10), we have

3

(Wi EG) * Orpi() = f we () Ki(y) AV i) ]re(@ — y) dy = > (wiFiw) * 4,ji (x)

By =1

:LB wi(Y) Ki(y)w(y) - Jo(z — +Z (welar) » jf ()
— (K;Qwy) * ji(z) — (wiKiwr) * 05l ().

In order to conclude the lemma, one needs to verify that wyl';; and K;0,w; satisfy Defini-
tion 4.2. Since the first two properties are trivial, it suffices to compute the averages of
Wi (0s — Bwiwy) and w;Qwy, = w; (o — wiwy) on the sphere. This is verified by the oddness

of the kernel. N
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We now compute the derivative the second and third terms of the electric field,

namely

[ D) il @+ [ e = ) L) )
Bi(z) [z —y Bi(z) |z —y

the main difference of them from the previous terms is the kernel, and so the proof is

similar and we shall skip it. More precisely we have the following lemma and we will skip

its proof since it is similar to previous one.

Lemma 4.6. Let K;; and filk denote the kernels

Ky(x) = M7 lek(l’) = O K (z) = dinear(w) + duoi(w) — 4wi(x)wl(x)wk(x),

|2 |z ?

Assume that jo € L*(R*R?) and j € W'((0,T); L*(R?)). Then, it holds in the weak sense

Oe(Ka * j{")(z) = —J wi(Y) K ()0 (x — y) dSy + Dap * 5" (2) + (i Ka) * 0,57 ().
0B

Finally, we compute the derivative of the radiation terms

M X (w(z —y) x |0 x M < [0 .
[ S e < il @ [ S i),

Of course, if Vd,j € L'((0, T) x R?), there is nothing to prove, as the hyperbolic convolution
and the derivative commutes in the second variable, that is, V(K x ¢;) = K * Vg;, and so

by assuming K as in Condition 4.1, we have that

| K~ v9||L1((O,T)><R3) < Or)Vglor)<rs)-

Notice that in this case the only important feature of the kernel is its decay, that is, it need
not to be smooth and with zero average. Therefore, we only need to prove the case where
we assume 0;j € W((0,7); LY(R* R?)) and £(v)(£(v) - Vafo) € WHHR® R?)). Notice
that the latter assumption follows (as well as jo € WHH(R?; R?) and py € WHH(R?))) if one

assumes that the initial distribution satisfies V, fy € L'(R®) for the relativistic case, as

E()] < 1.

Lemma 4.7. Let Ki‘Rd\{O} e CHR\{0};R?) with Ty, = 0K, be kernels satisfying
Condition 4.1. Moreover, let FEy, Hy € L*(R%R?), py € L¥*(R®), jo € L¥*(R3R?),
EW)(EW) - Vofo) € LYRYR?), and j € W((0,T); L'(R?)) and the compatibility relation
at Theorem 4.2 be satisfied. Then it holds

Ou(Ki#0,j) (x) = —J Wk (W) Ki(y)0ujo( —y) dSy + Lo % 0,i (x) + (Kwr) * Qi (). (4.21)
0B,
Proof. We begin by claiming that d,j|,_, € LY(R?*: R?), where

0y == | €0 (W) Vahulto0) dvt | (@u€0h) (Bo+ €)% Hol fo-,0)do =0,
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The first term on the right hand side is integrable by our integrability assumption of fy,
hence it remains to show that the second one is also in L. In the relativistic case, notice
that 0, £(v); = (1 + |[v]*) Y% (6 — £(v)k&(v)1), and so by Hélder inequality we have

L 20 &N [(Bo + €(0) % H)¥| fol-,v) dvda < 2J6(|E0| 1 Ho D fo(-0) dv de
R R
< 2(| Eollzs sy + [ Hollzs@s))llpo | L2 ws)-

In the nonrelativistic case, we have that 0,,&(v), = 0k, and so

JRS(aka(U)l) (Eo + &(v) x Ho)k Jo(-,v)dv = (poEp + jo ¥ Ho)l-

By Holder inequality, the claim follows.

Therefore, we may repeat the proof of Lemma 4.2, but now since Ty is less
singular than a singular kernel of fundamental type at the origin, we can use Lemma 4.1
to conclude that the second term on the right hand side of (4.21) is an integrable function.
By the above claim, the first term is clearly integrable and the integrability of the third

follows by an analogous proof of Lemma 4.1. m

We remark that the integrability assumption of py € L¥*(R?), jo € L*?(R% R?),
Ey, Hy € L*(R?; R?) follows from the hypothesis pg € W'H(R?), jo € WM (R R?), Ey, Hy €
W2HR? R?) at Theorem 4.2 by the Sobolev embedding.

We now prove that be L*((0,T); LY (R% R®)) for some p > 1, where b as in

loc
(4.2). Since £(v) € L. (R* R?), it suffices to show that E, H € L'((0,T); L} .(R*: R?)).

loc

Lemma 4.8 (L —estimate for the electromagnetic field). Let the densities p € L*((0,T) x

R%), j € WHY((0,T); LY(R% R?))  LH((0, T); L, (R* R?)) for some p > 1, the continuity
equation d,p + divj = 0 be satisfied in the distributional sense, py € WH(R?), jo €
WH(R? R?), Ey, Hy € W' (R*;R?), and either 0,5 € L*((0,T); W' (R* R?)) or 0yj €

L'((0,T) x R* R*). Then it holds that

E, He L'((0,7); LL (R*R%), wherel <q< min{g,p} )

loc

Proof. By the proof of Lemma 4.3 and Lemma 4.4, we have that
E° H® e L*((0,T); L¥*(R3; R?)).

Moreover, by Lemma 4.1 we have that for any s € (1,3/2), it holds

e o)
jo f e PIOL B j TRCRL IO
+ W) o) % Gl — )] Oyt < Ol s o
B |Vl L3(R3)
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Furthermore, if 0,5 € L'((0,T); W' (R?*;R?)) then Sobolev embedding gives that 0,j €
LY((0,7); L¥*(R*:R?)), and so Lemma 4.1 gives that

[

| = oty < it~ s )

Y|

L3 R?) (4.22)

N dt < CTH@&]‘“Ll((O,T);L3/2(R3))‘

13/2 (]R3)

JB =) X [0 (- — y)]ret (0)dy

Y|

If 0,5 € L'((0,T) x R* R?), then it follows from Lemma 4.1 that for any s € (1,3/2), it

holds
T
)

|| =W o) < 0 = ) O 2y

|y|( ) L%RS) (4}23)
w , .
S - Oyt < el
B |y| LS(R3)
Hence, it remains to estimate the term
Wiy
[ A o=l 000
By Y
For this purpose, notice that
1
willy Wi W;
| S bt Ot = (1) ) - [ 280060 - paray
B |yl |- | B.Jo 1yl
W ! w;
= ( 2]1&) x py (1) —i—f J ) div je—rpy (x — y) d7 dy
- B Jo 1yl
Wi
~(tn) -ot0
wi(y)

rl )
- J [w(y) * Jt(1—r) (x —y)] ds, dr
Jo JoB, |Z/|

”lj 23 G — 2wi (y)wi(y)
B

+ 5 Jt-rly (x —y) dydr
JO t k=1 |y|
rl W;
+ J T (y)w(y) < Oft—rpy|(x — y) dy dr.
JO By |y|

The first term is an L' ((0,T); L*(R*; R?)) for any s € (1, 3/2); the third is bounded as

J f JB Z e (y)jf—ﬂm('—y)dy

N lyl”
The fourth term is bounded analogously as in (4.22) or (4.23). For the second one, notice
that

J f -z —y)]dS, dr —f J wi(y ) - gr(x — ty)] dS, dr,
2B, |?J| 0B,

drdt < CTHj||W1v1((O,T);L1(R3))~
L5 (R3)
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and so for any R > 0, we have

I

Therefore, the lemma follows. O

Jia—n (- —y)]dS, dr dt < Cr|jl o)L Basr))-

0B |y| Lr(BRg)

We now state the main result of this section, and the second original theorem
of this thesis.

Theorem 4.2 (Existence of flow and consistency). Let T > 0 and fo a nonnegative function.
Moreover, assume that jo € W (R* R?), po € WHHR?), Ey, Hy € W2H(R? R?) satisfying
(4.3), and p e L'((0,T) x R?), j e WH((0,T); L*(R*; R?)), j € L*((0,T); L .(R*; R*)) for
some p > 1, f is weakly continuous in [0,T] in duality with C.(R®), and either

e 0uj € L'((0,T) x R*R?), £(v)(€(v) - Vafo) € L'(R%R?), and the compatibility

condition

o] + Jf )+ Vafolv)) dv

_ZJ (0o, &(0)1) (Eo + €(v) % Ho)" fol-,v)dv = 0; or

e 0ij € L*((0,T); WH(R* RY)).

Now assume that either f € L®((0,T) x R%) is a distributional solution or f is a renor-

malized solution of (4.1) and 6yp + divj = 0 in the distributional sense.

Then, there exists a unique mazimal reqular flow X associated to the vector
field (4.2) (see Definition 3.2) starting at O such that f is the transport of fy by X (see
Definition 4.3). In particular, all the above notions of solutions are consistent for bounded

(in phase space) distribution function f.

Before we prove Theorem 4.2, we shall make a few comments on its hypothesis.

Remark 25. The integrability hypothesis po € W (R?), jo € W (R?*: R?) and Ey, Hy €
W2HR? R?) is so that the functionals E°, H® have the regularity EY, HY € BV(R?; R?),
which follows from classical wave equation results; see [71]. Indeed, such hypothesis implies
that the homogeneous solution EtH , HtH e WH(R?* R?), and so we conclude the result by
the embedding W' = BV. The author did not find explicit results (possibly relaxing the
integrability) for BV spaces, so it is worth pointing that our result holds for the space of

BV homogeneous solutions.

Remark 26. Notice that the vector field b in Theorem 4.2 cannot be written as in

Theorem 4.1, only the electromagnetic fields £ and H. This is similar to the Vlasov-Poisson
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result as in Section 2.4, where they consider the vector field b;(z,v) = (v, K * pi(x)). In
order to obtain the existence and consistency of notions of solutions, the authors could not
directly apply the results of Section 2.3, for only the second part of the vector field has
derivative which can be written as convolution of singular kernel and a density. Moreover,
in the case of Theorem 4.2, one has the second part E + £(v) x H, which its cannot
be written as “hyperbolic convolutions”, only £ and H; we circumvent this problem by
adapting the proof found in [21]. Therefore Theorem 4.1 should be read as a standalone

abstract result parallel to the one in Section 2.3.

Let us make some comments on the (myriad of) hypothesis on Theorem 4.2.
Notice that if we only used the regularity results for the wave equation (see [71]), that
is, not relying on Jefimenko’s equations (4.4) and (4.5), then one would need to assume
that p, € W>HRY), j, € W*H(R* R?), and 0,5, € WHH(R?; R?). Therefore Theorem 4.2
is a relaxation of hypothesis on the densities, as it does not assume any integrability of
Hessian matrix of p, j. However, the hypothesis on the second derivative of j; is far from
optimal, for (4.1) only has first order ones. Moreover, by [47, Theorem 2], if one assumes

finite initial total energy (here, we assume that ¢ = 1), i.e.
J AV 1+ o2 folz,v)dedv + J S| Eo(2))? + $|Ho(2)|* dz < o0
RS R3

in the case £(v) = (1 + |[v|*)™"?v, or electromagnetic and kinetic initial energies are finite,

ie.,
f |v|2f0(x,v) d:cd’u—l—J |E0(£L')|2 + |H0(31:)|2 do < o
RS R3

in the case £(v) = v, as well as fy € L*(R®) one has finite energy at later times (and also
fr € L*(R%)). Moreover, the continuity equation d,p + divj = 0 holds in the distributional
sense. In particular, by [35, Lemma 8.15] and [21, Lemma 4.1], we conclude that p,
and j, are in LP(R?) and LY(R*;R?) for some p,q > 1, respectively, and so the local L”
integrability of j and the continuity equation assumptions at Theorem 4.2 follow if one

assumes finite initial energy.

Now, notice that by multiplying the Vlasov equation (4.1) by £(v) and inte-

grating in the v—marginal, we have

3

0+ 33 [ O E0) Ty o) o= | @00 (B4 60) x 1) o) do = 0

Therefore, the compatibility relation in the first alternative of Theorem 4.2 is physically
justified, and we only need to assume for the initial data; see Lemma 4.7 for a proof that

such term is in fact a summable function at ¢t = 0.

Since the results of Theorem 4.2 are purely local (see Definition 3.2), one may

ask for conditions of global existence of the Maximal Regular Flow, so that Proposition 3.2

2 By (E +£(v) x H)* we mean the k—th component of the vector field E + £(v) x H.
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is applicable. We have a positive answer for this question by assuming integrable finite

total energy in the relativistic case

T
f f «/1+|v|2ft(x,v)dxdv+f YE (@) + L Hy(@)]? dedt < o,
0 R6 R3

which follows if the initial energy is finite. Moreover, by the incompressibity of b;, integrals
of ¥ o f, in R® are conserved through time for all Borel function . Such result is a
direct adaptation of results found in [21, Corollary 2.1], since they do not use the explicit
formulation of electromagnetic fields. We remark that such integrability in the relativistic

case follows from a priori energy estimates from Vlasov-Maxwell system; see [47].

Proof of Theorem 4.2. As remarked in the beginning of this section, it suffices to verify

assumption (H2).

Once again following the idea and notations of Theorem 4.1, we now study the

adapted function

o0t - [[[1oe (14 OO OO g,

where now the trajectories are denoted as v = (v',7%) € R?* x R?, and d,¢ € (0,1) to be

chosen later, and assume by contradiction that 7, is not a Dirac delta for (ep)gn—a.c. x.

Taking the derivative of @5, and then integrating at [0, %], we have that

© ([ JE0m — €0Fm)l
outtn < [ [[] 2 e o oncnn- e

k (0) ~ Bl ()
ve f”kewv SO+ eR(0) ) ) A

to €07 H(y'(t) — (1) x H(n'(t))|
e H 5e+|7 (&) — 1 (8)] + e[12(8) — 2(8)] du(n,v,z) dt,

By mean value inequality, recalling that the derivative of the velocity is bounded (see the

proof of Lemma 4.7) and that the p has measure 1, we have that

€0 (1) = E@* (@) 2t
J JJ (6 + |7 nz(t)DdM(??, v, z)dt < - (4.24)

The third integral is bounded by
r’ H” [E(v'(1) — E(
0 o€ + |’71(t)

* fg JJJ (E620) eh (t) — p2(1)] dp(n, v, z) dt (4.25)
" ([ 1EG20) x (HGM @)~ Hn' (1)
) ) 1

56 + ' (E) = n' (D)l

3
-
—~
~
N—r
N—r’
~—
SN’
(oW
~+

(' (®)]

de
—~
3

[}
~
SN—
SN—
N—
X

dp(n, 7, 2) dt.
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By the condition (e;)xn < CL? the boundedness of derivative of the velocity, and the
integrability of the magnetlc field (Lemma 4.3) the second term in (4.25) is bounded as

(€ E(P(1) x H(H'(1)] 2| Byl
J JJJ elv t) —n?(t)| dp(n, 7, ) dt < THHHD((O,T)st).

Now, by Holder inequality, the condition (e;)xn < C£? and the local boundedness of the

velocity, we have that

J ” €y H(y 1(lt))—1‘1(771(75)))|d#(77 V. 2)dt

56 —|— |yt (t nl(t)|
to H 1 t
< JlE(? Mz, T)XM)J Jf 56 + |’Y (7]771((t))|)|du(77’% z)dt

< Bl Tielg [ [[[ OO H;T((t’f)>|>'du<n,%z>dt_

Therefore, it remains to estimate the terms

J H (5€+|fy ( ((f))|)|du(77,%z)dt and
f“ (56—|—|'y (n(&)'du(n 7, 2)dt.

We split the proof for each of the above 1ntegrals.

Step 1: Once again, we estimate

[ [[] o) EO Ol < [ ([ 06 apvantrn )

where by Lemma 2.2, we have

hi'(v',n') = min {2 (Mpg,kﬁkEt(fy(t)) + Mpg,k(?kEt(n(t))) [EO®) ;; | E(n(t))] } |

k=1

Now, by Lemmas 4.4 to 4.7, we have that

OBl () = (akE?)i (x) — J wr () Ki(y) po(r — y) — wi(y) Ki(y)w(y) - jo(z — y) dS,

0By

_EL& () Ka(y)jb(@ — y) ds,

i _bai _aim L ) Ru(y)j™(z — ) dSy] + Dot * pe()]

_ [ 3 ((wel) * 1(e) + (Kidhon) * () — Fan  1(2))

LS iy ] [2 (k) * (@) — (@) * 21(@))

3
+ Z "™ ((wiKu) * 057" () — Ox(wpwy] - |71 % 0u57") () |,
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where € stands for the Levi-Civita symbol. By Lemmas 4.1, 4.4 and 4.7, we have that the
first and fourth brackets are integrable in spacetime, and so the grand maximal operator
applied to them lie in L. (R?*). Moreover, by adding and subtracting in the third bracket

the analogous convolution term, that is,

3 3
Z ((wWila) * Gy (2) + (K;0wn) * jj(x) — Tig * ji(x)) — Z ghaigalmy % 5™ (z)
= I,m,a,b=1
3 ) 3
— > ((@ila) = ji(x) + (KiOwy) * ji(z) — Do * ji(z)) — Z ghaigttmpy e w ()
=1 I,m,a,b=1
3 ) 3 o
+Z ((welar) = ji(z) + (Kidwe) = jy(x) — Tie » iy (2)) — Z ghaigalmy v i (),
=1 I,m,a,b=1

we have by Propositions 4.1 and 4.3 that the grand maximal operator applied to the above
is in L. (R?). Therefore, it suffices to estimate the grand maximal function applied to the

second bracket. Once again, by adding and subtracting a convolution term, we have
Mpg,krik * py(r) < [Mpg,k(rik * py(x) — Ty » pt(a:))] + Mpg,krik x py(x).

The second term is an L. (R?) function by Proposition 4.1, and the first term can be

estimated as

Mg (T # (o) = T ) = Mg | f ) 9120p1 (& — v) ds .
By

Once again, we may use the continuity equation d;p = — div j and the commuting relation
(4.10) to obtain

1 3 1
J J Fz’k(?/)|y|at,0t—s\yl(x —y)dsdy = Z [J J slix (y)wl(y)|y|atjifs|y‘ (r —y)dsdy
B JO =1 By JO

1
_ j j @) i)yl (2 — v) ds dS,
0B JO

[, [ aawiit -y i)

Notice that the first term is an L'((0, T") x R*; R?) function, by the proof of Proposition 4.3.
Since j € WH((0,T); L*(R*; R?)) = L*((0,T); L*(R*;R?)), we have that

1
| awrawlsli o - ndsas,
0B JO

and so the second term is also a L'((0,7) x R* R*). For the third term, recalling the
definition of I';; at Lemma 4.5, we have that

AT y]) =0, (6ik — 3wz‘(y)wk(y))

ly|?
_ —20uwi(y) + 12wi(y)wi(y)wr(y) — 30uwn(y) — 30mwi(y)
ly[?

< Clillwraorycr sy,
L1(R3)

::F{ikl (y).
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Notice that I",, satisfies Definition 4.2. Therefore, we estimate the third term as

1 1
| [ ritit s - sy = [ ] Tl g, - il - sdy

F;kl( ) ( )ds dy
By

N
L |
|

+ J T ()i (z — y) ds dy.
B: Jo

J 11 (8191001 gy (z — y) ds' ds dy

Therefore, we have that
3
M,,gvk(rz‘k * pr(x) = Tig # pe()) <ZZ: [ ok JBt f ik (y)wn(y |y|at]t s\yl( —y)dsdy
+ M wz(y)l“m(y)lyljf(lfs) (z —y)dsdsS),
Po Jas, Jo
1
Mo || aCuliitay o~ ) dsdy
By
+ M’”’“J J J F;kl |y|at]t ss’|y\(l‘ - )dS dey
By

+ Mpg"“ fB ngz(y)jé (z—y) dy] :

By the previous estimates and Propositions 4.1 and 4.3, there exists a constant Cqr > 0

depending only on d and T" such that

< Carljllwrroryczs)-

L1(0,T)

gt

Therefore, we have that

“HMPO’ < Cd,T(HEOHWZJ(R?*) + ||HOHW271(R3) + HPOHWM(R?’) + ”].OHWM(]}@)

L1(0,T)
+ HJ'HWM((O,T);U(RS)) + ||pHL1((0,T)><R3)

+ [Dw@w|- 7" * 5tj)||L1((o,T)xR3))7

where the last term is bounded by Lemma 4.7. Hence, by the condition (e;)xn < CLY, we
have that

0 g < 2C| Byl

H‘M ,
Po

<2“HM
L1 OT

Mrio,r) B 10,7
<Cd,T,RC<||E0||W2J(R3) + | Hollw21(ms) + [lpolwr@sy + [Jollwres)
+ 7wy @ey + ol o) xrs)

+[Dwuw|- |7t % atj)HLl((O,T)xIR3)>-
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Hence, by (2.9) and Lemma 4.8, we have that

to
J Jffhf(yl,nl)du(%n, 2)dt < Clog (i) <C(1+|loge +|logd]).  (4.26)
0

Step 2: We analogously estimate the magnetic field term as

J, ] a2y < [ [[[ it santon 2y

where by Lemma 2.2, we have

= o€

hE (v, n') :== min {Z (Mpg’kakHt(’Y(t)) + Mpg’kakHt(ﬁ(t))) ’ |Hy(v(1))] + |He(n(t))] } .

Computing the derivative of the magnetic field, we have by Lemmas 4.5 to 4.7 that
’ 3
OpHy (x) = (O H})'( Z < — wiKi(y)jo(x — y) dSy + Ty = j;" ()

+ (wilSi) * 5" (@) = Oplwn] - |7 » 5tjtm)($)>-

Moreover, by Propositions 4.1 and 4.3 and lemma 4.4, we conclude that

“HM ukakH‘ Cd,T(”EO”W?J(R?’) + HHOHW?J(R?’) + ||jOHW171(R3)

LR || L1 o,1)

+ ||jHW171((O,T);L1(R3)) + HD(W| . |_1 * atj)”Ll((O,T)xR?’))-

Therefore, by Lemma 4.8, we may conclude analogously as in (4.26) that

to
| [[[ et ontiautrn, 2y ae < 0.0+ togel + f1oga). (1.27)
0
Finally, we have by (4.24), (4.25), (4.26), and (4.27) that
C
s (tg) < s Ce(1+ |loge| + |logdl) .

Taking € < a/(2CT) and recalling that the assumption that “n, is not a Dirac delta for

(eo)xm—a.e. x” implies (4.18), we have the desired contradiction.

Hence, property (H2) holds, and so by Theorems 3.9 and 3.10, existence,
uniqueness, and semigroup property of maximal regular flow follow. Moreover, as the
vector field is divergence free, Lagrangian solutions are renormalized; finally, since f is
nonnegative and weakly continuous in [0, 7] in duality with C.(R?), the consistency of

solutions follows from [6, Theorem 5.1]. O



126

5 A study for gSQG-type vector fields

A natural question when comparing the results in Section 2.3 and Section 2.5
is if one can consider the intermediate cases. More precisely, recall that by Proposition 2.3,
the fundamental estimate holds for vector fields b = K # g, where g € L'((0,T) x R%) and
K has estimate |K(z)| < C|z| " has derivative I' = DK which is a singular kernel of
fundamental type. Moreover, in Theorem 2.6, the fundamental estimate also holds for

vector fields b = T g, where g € L*((0,T); BV(R?)) and T = | - |7¢Q is a singular kernel

of fundamental type with average zero, that is, Q(y)dsS, = 0. Hence, we ask if one
can consider b = K = g, with a kernel K“ haviicglappropriate cancellation properties
and an estimate [K®(z)| < Clz|~“ 1 for some o € (0,1), and g in a space between
L'((0,7); BV(R?)) and L'((0,T) x R%). A natural candidate for this space would be the

fractional Sobolev space L'((0,T); W' (R%)).

Analogously, by Proposition 2.1 in Section 2.2 the fundamental estimate
holds for vector fields b = K + g for g € L*((0,7); LF(R%)) and b = T'« g for g €
LY((0,T); W'P(R%)), where K and T as before and p € (1, 00). In this case, the candidate
of an intermediate space for ¢ is not that clear. For instance, one might expect the fractional
Sobolev space L'((0,T); W*?(R?)) or the Besov space L'((0,T); By, (R?) or even the
Triebel-Lizorkin space L'((0,T); F5',(R?)) for some g € [1,90]; notice that in the p = ¢ = 1
case, all of the above spaces are equal. We shall consider g in the space L'((0,T); By, L(RY).

We did not investigate whether the other aforementioned spaces are also suitable.

Accordingly, in this chapter we shall study the transport and continuity equa-

tions
diu+b-Vu=0;
oru + div(bu) = 0;

where the vector field b has one of the following structures: the more regular form

7 «@ «@ Ql Y « C
bile) = KE e ae). where K2() = 2 and I0K20) € o (5)
or the more singular form
7 « a QZ(?/)

In the above, we assume that g is in an appropriate fractional Sobolev/Besov
space, the indexes k, a are k € {0,1,2}, a € (0,1) (we shall refer to K T™ as kernels and
g as density of the vector field), and the functions ) are zero order homogeneous function

and satisfy the appropriate cancellation condition:
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Definition 5.1 (Cancellation property). For vector fields (5.1), we say that {2 has

cancellation property if for every 7,7 = 1,...,d, we have that

f Qu(y) dS, = 0.
0B1

We additionally assume in (5.1) that |€;(-)| € W< (S%1). Moreover, for vector fields (5.2),
we always assume that [Q;(-)] € L%(S*1); in the case k = 0, we assume that for every
1=1,...,d that

0B1

In the case (5.2) with k& = 1, we further assume that for every i, j = 1,...,d, we have that
f Qi(y)dS, =0 and f w;(y)i(y) dS, = 0,
531 aBl

where w;(y) = y;|y|'. Finally, in the case (5.2) with & = 2, we assume that for every
index, 4,7,l = 1,...,d, it holds

Qu(y) dS, = 0, L W) S, =0, and L s (o) dS, = .

0B

Remark 27. Notice that in the case of gSQG equation (1.8) (changing the parameter «
to v in order to avoid any confusion), the associated kernels can be written as K7 (y) =
[y~ Pyt v € (0,1) and T (y) = |y~ 7yt if v e (1,2),

Remark 28. This chapter is in fact a simplified proof of Nguyen’s work [70] for vector fields
with structure (5.1) and (5.2) and Definition 5.1. It is an open problem if the well-posedness

of regular flows holds if one does not assume the latter.

The quintessential examples of € satisfying Definition 5.1 are ;(y) = w;(y)
and €;;(y) = d;; — dw;(y)w;(y). Moreover, notice that Q;(y) = d;1 — dw;(y)w:(y) satisfies
Definition 5.1 in the case £ = 1. Finally, as an example for Definition 5.1 in the case k = 2

in dimension d = 2, we have

0(0) =100} (31— 300 +200) (32 = Js )l

We first recall the definition of Besov spaces: for k € N, a € (0,1), p € [1,0], g € [1,0),

we define such space as

1/q
N 1D7g(- +y) — D79l g
By (R?) = {9 e WHP(RY) - (JRd ly|d+aa ED dy < o,

where |o| = k},
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and so we may define the associated norm H9||B,’§;a(Rd) = | g| wrrway + [D"g]Bg’q(Rd) with

1/
[f] — J Hf( + y) o f”qu(Rd) d !
By (RY) ra |- vl -

We now make a precise assumption on the regularity of densities g:

|o| = k, where

Condition 5.1 (Regularity of densities). We shall assume in the case (5.1) that g €
LY((0,T); B;I(Rd)) for some p € [1,00]. In the case (5.2) with & = 0, we assume that
g€ L'((0,T); B)1*(R%)) for some p € [1,0].

Notice that by Definition 5.1 and assuming that €2 is a zeroth homogeneous
function, the vector fields b = I'™* » g and b = (0] - |_(d+k)) x g in the case k € {1,2} can

be rewritten as

I s gy(o) = JRd %[Qt(f’f —y) — gi(x)] dy

- f f |§|Si)a

B _L T JR S w(y) - Vgi(z —y) dy

a |yl

w(y) - Vgi(x — my)dydr

_ -1 Qy)
- 1+ J]Rd |y|d+o¢w(y) : vgt(*r y) dy

where w(y) = |y| 'y, and so we may write b = I'"* « g as finite sum of | hi, where
—Q(y)wi(y)

(1+a)ly|®re
By Definition 5.1, the kernels satisfy the k = 0 of Definition 5.1 (and so the notation is

consistent) and we shall assume that densities h’ have the integrability

I (y) = and  h(y) = 0;g:(y)-

T T
J T e J 1D7:] g1 (ay At < 0, where |o] = 1.
0 2 0 :

Applying the same idea twice, we may write

e gi() = +1 )2 fm |£;|Efil [w(y) ®w(y)] : D?gi(a —y)dy, (5.4)

and so we may write it as a sum of kernels F%’-O‘ satisfying Definition 5.1 for k = 0 and

assume that densities b7 = 0;;9¢ with integrability
T T
fo | HB;J;“(Rd) dt <0 = L HDagtHB;fl“(Rd) dt <o where |o] = 2.

Hence, any property to be obtained for a finite sum I'** « ¢ shall be translated for vector
fields (5.2) with k € {1, 2} by assuming that the density function ¢ has the aforementioned
suitable regularity. Therefore we restrict ourselves to prove the desired estimates for the
case k = 0 in (5.2).
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Remark 29. One could iterate the above process for k > 3, and the above computation
would follow for even more singular kernels, provided that we increase the required
regularity of the density g and the cancellation property for 2. We do not include such
cases for we do not find any explicit examples of functions satisfying Definition 5.1 in the

case k =2, as well as for all 4,5, m=1,...,d

LB wWinwi (y)w; (1)%(y) dS, = 0.

Remark 30. The same computation (5.3) holds for b = (€] - |’(d+1)) « g, and the only
difference is now the regularity k! € BV(R?) or hi € W?(R?), since it now becomes a

particular case of Theorem 2.6 and Proposition 2.1. Similarly, the computation (5.4) holds
for b= (] -|"“*?) « g, where now one assumes h;’ € BV(R?) or ki € W"P(R?).

We begin by proving that (H1) and (1.6) hold, that is, the local integrability
and growth assumption of b. We recall that the Besov space in this case gives Bil(Rd) =
W1 (RY), where the latter is the fractional Sobolev space.

Lemma 5.1 (Property (H1) and (1.6)). Let b be a vector field satisfying (5.1) and
(5.2) with Definition 5.1 and Condition 5.1 with p € [1,00]. Then it holds that b €
LY((0,T); LP(R%). In particular, be L*((0,T) x RY) 4+ L*((0,T); L*(R%)).

Proof. Let us first consider K& = |-|~@=179)Q;,_ Then by the computation and zero average
of €;, we have that

1
Bel 2oty <N gy f e
1

1
+ || Q| oo (ga- —— (- +y) — d
|| HL (Sd-1) JRd\Bl |y|d,1+a Hgt( y) gt”LP(Rd) Yy
<Cd,aHgt”BgJ(Rd)a

we conclude that b e L'((0,T); LP(RY)). For the case I'* = | - |74+, it follows from the

zero average of ); that

”bt”LP(Rd) < HQHL*(Sd*)[gt]Bgﬁl(Rd) < CaHgt”B;ja(Rd)-

Integrating with respect to time, the lemma follows. O

We are now ready to prove the fundamental estimate associated to vector fields
(5.1) and (5.2) and the third main result of this thesis.

Proposition 5.1. Let b be vector field satisfying (1.6) and b as in (5.1) with g €
LY((0,T); B;il(Rd)) or (5.2) with k = 0, with Definition 5.1 and g € L*((0,T); B;ja(Rd))

forpe [1,0], and X, X their renormalized reqular Lagrangian flows starting at time s
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with compressibility constants L and L, respectively. Then for every v > 0, n > 0, and
r > 0, there exists A > 0 and a constant C., , , > 0 such that

B, 01X (t5,7) = X (t,5,)] > 9} < Copar|b = bllaoryxyy + 1

uniformly in s € [0,T] and t € [s,T]. The constant C.,,,, depends on its subscripts, as

well as the compressibility constants L and L, on the norms (1.6) of b and b, and on the
W2 (ST (or on L*(S*™)) norm of Q.

Proof. As in Proposition 2.3, we consider for fixed § > 0, A > 0, and ¢ € [s,T'] the function

X(t — X(t
o0 - | 1og(1+| o)~ <,s,x>|>d
BrﬁG)\ﬂG)\

and it satisfies for all 7 € [s, T

o / |bt (t,S,ZL‘)) _ Bt(X(t’Svm)”
Os(7) —J O (t) dt <J meGmGk |X(t o) X(t,s,$)| - dz dt

J J |bt (t,S,SL’)) - bt(X(tu 8,(L’))| dx dt
BrnGAnGx |X(t,8,l‘) X(t,S,I)| + 0

b(X (t,5,2)) — by(X (t,s,7))]
J JTmG’AmG,\ | X (t,s,2) — X(t,s,2)|+6 da dt

Y

=1(7) + II(7).

The first integral on the right-hand side is bounded as in Proposition 2.1:

16— b]|1(0.1)x By)-

For the second integral, we use the second part of Lemma 2.2, for Theorem 2.3 gives that
Moy (0;b)) () < oo for all 4,5 € {1,...,d} and almost every z € R?, t € [s,T], and so

d T
e < S f L - min{MTj,gﬁjbi(X(t, 5,2)) + Mysco,bl (X (1, 5,2),
¥ s FNGANG )y

bU(X (t,5,2))|  [Bi(X(t,5,2))]
5 + 5 }dm.

We shall split the proof in the simpler p > 1 case and in the more challenging p = 1 case.

The p > 1 case: Notice that if b = K* = g, then

o) =0 [ T ot - ey = [ o (ST ) - adalan

where the above computation can be justified by the regularity of g. By the compressibility
of flows X, X, we have that

| Db 10,1y 0 ret)) < Cad| | wien(sa-1) |9l i 0,1y 82, Ry,
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and so we are in fact in the same setting as in Proposition 2.1. Analogously, if b = '« g,
then

| Db 1o,y 0rey) < Cad|Qpoge1) Vgl oryse, ey,
and once again the desired estimate follows from Proposition 2.1.
The p = 1 case: We shall apply Lemma 2.13 with operator T; = My, and
fi(x) = |bU(X (t,s,2))| + |bi(X(t,s,x))|. Indeed, since the grand maximal operator is a
bounded operator from L'(R?) to L;,(R?). In the p = 1 case, we have either B!} = W*" in
the (5.1) case or Bj1* = W'**! (5.2) with k = 0 case. By fractional Sobolev embedding
(see [46, Chapter 6]), we have that g € L*((0,T); LY(R%)) if g € L'((0,T); W*!(R%)) and
Vge L'((0,7); LYRY) for any q € [1,d/(d — a)] if g € L*((0,T); W' (R?)), and so for
any R > 0 that
[ glleromiasay <I(UsK) * gluiomyizasay + [(Tras, K) * gluioryLesa)
<HKa\\Ll(Bl)H9||L1((0,T);Lq(Rd))
+ [ Bl K L sy | 9] 21 (0.7 <)
<Cordl 9l L 0.0y we1 (1Y),

and analogously for the case b = I'>* « g by the identity (the computation is mutatis

mutandis the same as in (5.3))

1 Q
b=I""wgi(x) =~ fRd |y|d(y1)+aw(y) Vai(x —y) dy,

we have for any R > 0 that

1T % g| L1o.1)298r) < Cardl Vel iorywar ey < Caralglloior)mwirer gay).

By the compressibility of flows X, X, we conclude that there exists ¢ > 1 such that
fe L'((0,T); LYBg)). Finally, we shall consider as measures 1 (v) = 9;b(X (t, s, 2)) L
or iy () = ;b1 (X (t, s,x)) L%, which by the above considerations and the compressibility

of flows X, X, we have that y, fi are finite measures in space and integrable in time. By

Lemma 2.13, we conclude for each 7,5 = 1,...,d that
lir?jélp |101g5| LT JBT min { fggx),ﬂu?(x)} dzdt = 0. (5.5)
Using the same lower bound for ®4 as in Proposition 2.3, we have that
B A 1K) = X5 > ) < Sy 100 4 )
<log(10+gb — bl 21(0.1)%By)

T Y dx dt
+ Tog o L 5 mln{ 5 Js (x)} T
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where f*, T}, u* as before and f, f the sublevel’s control as in Lemma 2.5. By choosing A
large enough so that f(r, \) + f(r,A) < n/2 and using (5.5) to obtain for ¢ small enough

so that i ( )
1 . filx i

j <

|10g(5|f0 erm{ 5 s Ty (35)} dedt <

and so the proposition follows by defining

N3

Y

C

since the choice of § depends on 7 and r. O

Using the machinery majorly developed in [22] presented in Section 2.2, we may
state existence and uniqueness of Lagrangian solutions of transport/continuity equations
associated to vector fields (5.1) and (5.2). More precisely, following the proofs of Theorem 2.1

and Theorem 2.2, we conclude the result below:

Theorem 5.1. Let b as in (5.1) or (5.2), where Q; satisfies Definition 5.1, a € (0,1),
p € [1,00], and the density g has one of the integrabilities below:

T
J(; ”gtHBl‘il(Rd) dt <o ifb= K" =g

T
L Hgt”Béja(Rd) dt <o ifb= [0 & g;

T
J. ||DUQtHB;+1a(Rd) dt <oo if b=T""xg with |o] = 1;
0 ,

T
0 >

Then there exists an unique renormalized reqular flow in the sense of Definition 2.2 (i) and
Definition 2.2 (ii). Moreover, there exists a Lagrangian solution (1.3)/(1.5) of transport
equation (1.1) /continuity equation (1.4).

We now turn our attention to the gSQG equation (1.8). We recall that general
interest in the literature for range of « is [0,2), where & = 0 and « = 1 corresponds to the
2D-Euler vorticity equation and the SQG equation, respectively; see [30, 31] and references
therein. We remark that 6 is taken as the vorticity if & = 0 and as potential temperature
if « =1 (see the comment in Chapter 1). Of course, taking o« = 2 implies that 0, = 6,
and so (5.2) with £ = 1 no longer has a direct application. Nevertheless, we refer to [30,
Theorem 1.3] where the authors study the dissipative version of (1.1) with the vector field
b, = V* (log(1 — A))" 0, for any p > 0, which is logarithmically more singular than the

case o = 2.

Concerning existence of solutions, there are results for global weak solutions

of (1.8) in bounded domains for 1 < a < 2 (see [37, 69]). Also, existence and uniqueness
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of local in time classical solutions for 0 < a < 2 has been obtained in [29, 30, 56, 57, 79].
More precisely, if 6y € H'T*"¢(R?) for any e > 0, then there exists a finite time 7" > 0
depending on the initial data and a unique solution § € C([0, T]; H'***¢(R?)) of (1.8).
Notice that by the relation (for p € [2, x0])

H1+a+e(R2) _ B%’-goz—&-e(R?) — B%IQ(RQ) (- B;l(RQ)a

our regularity assumptions (5.6) in Proposition 5.1 much milder than the ones for classical
solutions. Moreover, since # represent the potential temperature, we have that 6 > 0.
Finally, notice that by (1.8), the associated vector field by(z) = V(—=A)2710,(z) is
divergence-free. Combining all the above, we may apply Theorem 3.6 and Proposition 5.1
and obtain a criteria for Lagrangian solutions and the fourth and final main result of this

thesis, as described below.

Theorem 5.2 (Lagrangian solutions of gSQG). If 0 is a nonnegative distributional
or renormalized solution of (1.8) with regularity 6 € L'([0,T]; BS,(R?)), where a €
(0,2)\ {1}, p e [1,0], and t — u,(z) is weakly continuous in duality with C.(R?), then
there exists a renormalized reqular Lagrangian flow X in the sense Definition 2.2 (i) and
Definition 2.2 (ii) (and also in the sense Definition 3.2 with maximal time T') and 0 can

be written as a Lagrangian solution 0,(x) = 6y(X (0,t,z)).

Proof. 1f 0 is a distributional solution, then one may apply Theorem 3.6 and Proposition 3.1,
with properties (H1) and (H2) ensured by Lemma 5.1 and Proposition 5.1 to obtain that
f is Lagrangian solution. If # is a renormalized solution, then g o # is distributional
solution of the continuity equation with vector field by(z) = V*(—=A)2 16,(z) for any
B e L*(R) n Lip(R)." We now follow the proof found in [6, Step 3 of Theorem 5.1]: we

can consider a family of functions

0 if z < k;
Br(z) =< 22—k ifk<z<k+1;
1 ifz>k+1,

and so by Theorem 3.6, we conclude that there exists i, € M(C([0, T];R%)) By 0 6,L% =
(e) gmLR? for all ¢ € [0, T] and 1, (C([0, T); RY)) < | Bk 00| 1o (0711 (rey)- Therefore, since
0 e¢]
Z Br(z) = z, we have that n = Z 7, satisfies the same properties as in Theorem 3.6.
k=0 k=0
Moreover, we may apply Proposition 3.1 for each k£ and then summing over all possible k,

we conclude that 6 is also a Lagrangian solution. O

1 We have assumed so far that the admissible class of 3 is L*(R) n C*(R), but a simple approximation
argument can be done to allow a more general class L™ (R) n Lip(R).
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6 Conclusion and Future problems

In Chapters 4 and 5, we were able to extend the Lagrangian approach technique
of obtaining a solution via the transport of the initial data by its associated flow for vector

fields with the following structures:

e it can be written as hyperbolic convolution in the sense of (4.8), as proven in
Theorem 4.1;

« if it can be written as a convolution of singular kernel with non-fundamental decay
and a density in a Besov space as in (5.1) or (5.2), as proven in a simplified version

of Nguyen’s result [70] in Theorem 5.1.

As an application, we were able to present a criteria of Lagrangian structure for the
Vlasov-Maxwell system (4.1) and the gSQG equation (1.8), provided we assume enough
regularity of solutions; see Theorem 4.2 and Theorem 5.1. We have extensively used the
ideas presented in Chapters 2 and 3 in order to conclude our four aforementioned main

theorems.

Concerning future problems we are interested in investigating, we list them

below without any order of preference:

(i) obtain a extension of Theorem 2.5 in two main branches: using the ideas of Propo-
sition 4.1 to allow truncated singular rough kernels; obtaining a non average-zero
singular rough kernel with desired approximating sequence of kernels (recall that

the only example given by Nguyen for such vector fields is the one in Remark 11);

(ii) generalize Proposition 4.1 for more complicated truncated kernels, e.g. with truncation

14, for some general family of sets {As}s~0 with suitable hypothesis;

(iii) drop the second order derivative integrability of the density j in the Vlasov-Maxwell
system result Theorem 4.2, possibly exploring the ideas of [52, 53];

(iv) obtain Theorem 5.1 for vector fields with structure (5.1) and (5.2) without assuming
Definition 5.1;

(v) obtain a Besov type continuation of regularity result a la [31, Theorem 1.5] for
the gSQG equation. More precisely, we would like to ensure that if one assumes
that the initial data is in some appropriate Besov space B and the solution is a
less regular Besov space B’ > B, then solutions are also in B for later times. The
main motivation is that in the proof of [31, Theorem 1.5, they use the Lagrangian

structure via the Cauchy-Lipschitz approach;
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(vi)

(vii)

(viii)

(ix)

(xi)

obtain a Lagrangian structure for the Landau-Vlasov equation [55], that is, the
Vlasov equation as in Section 3.2 with Fy(x) = =V (V(z) + p(x)), where V is a

given potential and p the v—marginal of f;

obtain a Lagrangian structure for the quantum Vlasov equation [54], that is, the

Vlasov equation as in Section 3.2 replacing F' -V, f with

[ 8) o) s
R6 € 2 2

This is the quantum version of the classical conservative force Fy(x) = —VV(x) with
parameter € (in a unit system, € should read %). An interesting question is whether

we have stability of solutions and/or of flows as € — 0;

in the same spirit as before, we would like to generalize the idea heavily utilized
in Chapter 2 of obtaining a fundamental estimate for vector fields which we only
have its the Fourier symbol in the sense F(b;)(&) = m(§)Fgi(§). This is a natural
extension of assuming that the vector field can be written as convolution of singular

kernel and a density, which gives that m e L*(R?) among other properties;

a natural extension of a Lagrangian structure for the Vlasov-Poisson equation studied
in [6] is to consider bounded physical domains, in the sense that (z,v) € Q x R3 for
some open and bounded Q  R3. The first major step in this direction was due to
Fernandez-Real [50], where they consider 0S2 as a perfect conductor with specular
reflection, that is, the electric field has no tangential component on the boundary
and the particles’ collision to the boundary is perfectly elastic, so that the angle of
incidence matches the reflection’s one. It is worth investigating whether the same
type of result holds for magnetic analogous case, i.e. for (z,v) € (R*\Q) x R* we
only consider particles under magnetic field (the Vlasov-Biot-Savart equation, see
Section 3.2), and still assuming that 0€2 is a perfect conductor, we should assume
now that the magnetic field has no normal component at the boundary. It is also of

interest whether one can drop the perfect elastic collision hypothesis;

following the work of [22], more precisely Theorem 2.3, it should be possible to
extend their result for kernels without pointwise estimates, but rather integrals ones

a la Lemma 2.3;

it has been proven by Nguyen [70, Proposition 1.2}, the extension of Theorem 2.3 for
finite measure densities is not possible. Notice, however, that it does not cover the
case K = u, where K is a singular kernel with singularity of order d — 1 at the origin
and p a finite density. This is particularly interesting for the 2D-Euler equation with

finite measure vorticity;
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(xii)

(xiii)

it has been proven by Colombo-Crippa-Spirito [36] that if the vector field has the
renormalization property Condition 1.1, as well as satisfies the growth assumption
(1.6) and integrable in time, bounded in space divergence, then there exists a unique

solution of the so called damped continuity equation

Owu + div(bu) = cu in [0,00) x R%

Ut—p = Ug on Rd

and has a Lagrangian structure, that is, it can be written as

u(t,z) = exp (f c(X(1,t,2)) — divb (X (7,t,x)) dT) uo(X(0,t, x)),
0

even if one considers ¢ € L'((0,T) x R%); the DiPerna-Lions result [48] needed to
assume that ¢ € L*((0,T); L*(R%)), and so div b, ¢ are treated the same. Moreover, it
has been hinted by Ambrosio-Colombo-Figalli in a comment before [6, Theorem 4.10]
that in the ¢ = 0 case, i.e. (1.4), that the Lagrangian solution (1.5) is a renormalized
or weak solution of continuity equation (and analogously (1.3) should be a Lagrangian
solution of transport equation (1.1)) without the growth assumption, but they only
prove it for divergence-free vector fields. Therefore, it should be possible to extend

at least the existence result in [36] without the growth assumption;

finally, the generalization of Theorem 2.6 for densities in the space of bounded

deformation, that is

1

Eb =2 (Db + (Db)") € L'((0,T); M(R%:RY)).

Of course, the Theorem 2.4 is no longer available in this case, but an analogous

result proven by De Philippis-Rindler [72] gives that

AEe) (o) — (U EHDTAIOUD) gy o)

This is by far the most difficult open problem listed in this chapter, for no analogous
result is available apart from [8], which still heavily restricts the type of vector fields

considered in order to obtain the renormalization property.
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