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Resumo
Nessa tese, estudamos fluxos lagrangianos locais associado a campos vetoriais com estrutura
do tipo onda ou convolução de uma função com núcleo muito singular, isto é, uma função
cuja singularidade é pior do que a clássica da teoria de Calderón-Zygmund. Tais campos
vetoriais são inspirados no sistema de Vlasov-Maxwell e da equação gSQG, onde ambos
são equações não-lineares do transporte e da continuidade. Mais precisamente, provamos
existência, unicidade e propriedade de semigrupo para o fluxo e boa colocação de soluções
lagrangianas para as equações do transporte e do continuidade, isto é, soluções lagrangianas
são soluções fracas ou renormalizadas. Como aplicação, provamos que caso soluções do
sistema de Vlasov-Maxwell ou da gSQG sejam regulares o suficiente, então elas possuem
estrutura lagrangiana.

Palavras-Chave: Equações diferenciais ordinárias para campos vetoriais não suaves.
Equação do transporte. Fluxo regular lagraniano. Soluções renormalizadas. Integrais
singulares. Sistema de Vlasov-Maxwell. Equação gSQG.

Classificação por assunto da AMS,2020: 34A12, 35F25, 35Q35, 35Q61, 35Q83, 37C10,
76B03.



Abstract
In this thesis, we study local Lagrangian flows associated to vector fields with wavelike
structure or a convolution of a function and a very singular kernel, that is, a function
whose singularity is worse than the classical one of Calderón-Zygmund theory. Such vector
fields are inspired by the Vlasov-Maxwell system and the generalized SQG equations,
which are nonlinear transport and continuity equations. More precisely, we prove existence,
uniqueness and the semigroup property for the flow and the well posedness of the induced
Lagrangian solutions for the transport or continuity equations, that is, Lagrangian solutions
are weak or renormalized solutions. As an application, we prove that if solutions of the
Vlasov-Maxwell system or the generalized SQG are regular enough, then they have a
Lagrangian structure.

Keywords: Ordinary differential equations with nonsmooth vector fields. Transport
equation. Regular Lagrangian flow. Renormalized solutions. Singular integral. Vlasov-
Maxwell system. Generalized surface quasi-geostrophic equation.

2020 AMS Subject Classifications: 34A12, 35F25, 35Q35, 35Q61, 35Q83, 37C10,
76B03.



List of symbols

N set of natural numbers.

R, R� set of real and nonnegative real numbers, respectively.

Rd Euclidean space of dimension d.

xj j�th component of x P Rd.

Brpxq, Br open balls in Rd of radius r and center x and 0, respectively.

BB1 � Sd�1 d� 1 dimensional unit sphere.

Ω open subset of Rd.

Ω̄ closure of set Ω.

tu ¡ λu set of x P Ω such that upxq ¡ λ for some λ P R.

κj j�th component of the vector κ.

|κ| size of the multi-index κ � pκ1, . . . , κdq P Nd, |κ| �
ḑ

i�1
κi.

At transpose of matrix A.

vK perpendicular vector to v P R2.

tÑ a t tending towards a.

tÕ a t increasingly tending towards a.

t× a t decreasingly tending towards a.

Ld d�dimensional Lebesgue measure.

|Ω| the measure of Ω with respect to Lebesgue measure.

ϕ#µ pushforward of a measure µ by a function ϕ.

µ A the restriction of a measure µ on a set A.

µa the absolutely continuous part of µ with respect to Lebesgue measure.

µs the singular part of µ with respect to Lebesgue measure.

|µ| total variation of a measure µ.



ωpzq direction of vector z P Rd.

δij Kronecker delta.

ϵijk Levi-Civita symbol.

δx Dirac delta measure.

MpΩq space of finite measures in Ω.

PpXq space of probability measures in a Banach space.

ACpIq space of absolutely continuous functions in a interval I.

LppΩ, µq space of Lp integrable functions of Ω with µ; if µ not explicit, µ � Ld.

Lp � LqpΩq space of functions f � g � h, where g P LppΩq and h P LqpΩq.

Lp
locpΩ, µq space of locally Lp integrable functions of Ω with measure µ.

Lp
cpΩ, µq space of Lp integrable functions with compact support.

} � }Lppµq norm of Lp space with measure µ.

Lp
wpΩ, µq weak Lp space of functions of Ω with µ; if µ not explicit, µ � Ld.

||| � |||Lp
wpµq

“norm” of Lp
w space of measure µ.

1A indicator function of the set A.

distpx,Ωq distance function of a point x and the set Ω.

f |K restriction of a function f in K � Ω.

F Fourier transform operator.

Id Identity matrix.

f � g convolution of a function f and a function or distribution g.

ftpxq function f evaluated at pt, xq P r0,8q � Ω.

Bif partial derivative of f in the xi direction, i P t1, . . . , du.

Btf partial derivative of f in the t (time) direction.

f 1 derivative of f with interval domain.

9f derivative of f with respect to t.

∇Kf perpendicular gradient of f in R2.



curl b curl of the vector field b � pb1, . . . , bdq.

div b divergence of the vector field b � pb1, . . . , bdq.

Db Jacobian matrix of vector field b.

Dκf partial derivative of f of order |κ|, where Dκf � Bκ1
1 . . . Bκd

d f .

p�∆qs fractional laplacian of order 2s, where s P R.

W k�α,ppΩq fractional Sobolev space in Ω with k P N and α P p0, 1q.

Bk�α
p,q pRdq Besov space in Rd with k P N and α P p0, 1q.

BVpΩq space of bounded variation functions in Ω.

Xc space of compactly supported functions in a Banach space X.

LippΩq space of Lipschitz functions in Ω.

CpΩq space of continuous functions in Ω.

Ck,αpΩq space of k�differentiable functions with kth derivative α�Hölder con-
tinuous in Ω.

C8pΩq space of infinitely differentiable functions of Ω.

Cpp0, T q;Xq space of time continuous function with values in Banach space X.
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1 Introduction

One may frame the state of the art of Lagrangian solutions as the following: if
the vector field has structure bt � Γ � g for a singular kernel Γ and a bounded variation
function g, then there exists a unique solution of (1.2) satisfying the semigroup property.
Moreover, it induces Lagrangian solutions (1.3) and (1.5) which are renormalized solutions
of (1.1) and (1.4), respectively. The main motivation of the research of this thesis was to
extend this result not by relaxing the regularity of functions g, but “changing the other two
symbols” in Γ � g, that is, by considering different operators instead of the convolution “�”
(Chapter 4) and more general singular kernels “Γ” not admissible for Calderón-Zygmund
theory (Chapter 5). In what follows, we specify the considered changes and important
examples which are not directly covered by the theory recalled in Chapter 2.

In the realm of differential equations, the transport equation is sometimes
referred as the “simplest” partial differential equation (PDE) when the vector field b is
constant; see Evans’ book [49, Section 2.1]. Indeed, notice that the initial value problem$&

%Btu� b �∇u � 0 in r0,8q � Rd;

ut�0 � u0 on Rd
(1.1)

only has first order derivatives with respect to all variables. Such partial differential
equation is a simple model of the time evolution of some quantity u by a velocity b, and
it can be verified by its explicit solution in a smooth setting utpxq � u0px� tbq if b does
not depend on t; we remark that the subscript does not represent partial derivatives, as
defined in list of symbols. Such representation of solutions holds for non-constant vector
fields which can depend on the quantity u if b is smooth enough. The classical way to
approach the aforementioned PDE is by solving the ordinary differential equation (ODE)
with x P Rd and s P r0,8q fixed$&

%
9Xpt, s, xq � btpXpt, s, xqq in r0,8q;

Xps, s, xq � x.
(1.2)

The local well-posedness of the above ODE, i.e. existence and uniqueness of Xp�, xq, is
well-known by Cauchy-Lipschitz theory (also known as Picard-Lindelöf theorem) if one
has b P Cpr0, T s;ClocpRd;Rdqq with bt P LiplocpRd;Rdqq for all t P r0, T s, or in the context
of Sobolev spaces one may relax the hypothesis to b P L1pr0, T s;W 1,8

loc pRd;Rdqq; for the
global well-posedness is ensured if one drops the “loc” in the regularity hypothesis. Here,
we considered a finite interval of existence r0, T s. Moreover, it satisfies the semigroup
property, that is, for any s, s1, t P r0, T s, it holds

Xpt, s,Xps, s1, xqq � Xpt, s1, xq.
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In particular, we have an inverse of Xpt, 0, xq (take s � 0 and s1 � t), with the identity

X�1pt, 0, xq � Xp0, t, xq.

The function X is often called the flow associated to the vector field b, and with it one
may construct a solution of the transport equation as

upt, xq � u0pXp0, t, xqq. (1.3)

Such construction is called characteristic method, and it can be done for more general
PDEs by solving an associated ODE; see Evans’ book [49, Section 3.2] for a general
overview of the technique.

We also remark the close relation of the transport equation with the continuity
equation $&

%Btu� divpbuq � 0 in r0,8q � Rd;

ut�0 � u0 on Rd.
(1.4)

Indeed, if the vector field b is divergence-free, then both equations coincide. Moreover,
even if the latter does not hold, they still share the characteristic ODE (1.2). Therefore,
by assuming div b P L1pr0, T s;L8pRdqq, we may construct a solution as

upt, xq � exp
�
�

» t

0
div bτ pXpτ, t, xqq dτ



u0pXp0, t, xqq. (1.5)

Concerning the regularity of u solution of (1.1), we notice that a simple
computation gives that

LippX�1pt, 0, �qq ¤ exp ptLippbqq ,

where Lippfq stands for the uniform with respect to time Lipschitz constant of a function
f . Hence, one may conclude by (1.3) that if u0 P C0,αpRdq for α P p0, 1s, then u P

L8pr0, T s;C0,αpRdqq, that is, it preserves the regularity of the initial data. Since the
continuity equation also has the same characteristic ODE, then the same regularity
preservation holds for it.

The regularity assumption b P LippRd;Rdq is however very restrictive, and
many mathematicians tried to relax such hypothesis. An positive result in this direction is
due to Osgood, by assuming that b has a uniform in time modulus of continuity ω such
that » 1

0
ω�1psq ds � 8.

The classical example of a non-Lipschitz function satisfying the above (known as Osgood
condition) is |x| log |x|, and more generally log�Lipschitz functions. However, notice that
Hölder functions do not satisfy Osgood condition, and in fact fail uniqueness of solutions
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of (1.2) by considering the vector field btpxq � |x|1{3 (for simplicity, we assume d � 1).
Indeed, we have that Xpt, 0, 0q � 0 and Xpt, 0, 0q � p2t{3q3{2 both solve the ODE

9Xpt, 0, 0q � btpXpt, 0, 0qq;
Xp0, 0, 0q � 0.

As for the regularity for vector fields satisfying Osgood condition, as well as general loss
of regularity for Besov vector fields, we refer to Bahouri-Chemin-Danchin’s book [13,
Chapter 3]. Moreover, we also refer to Crippa-Mazzucato and collaborators works [3, 40]
and references therein for very recent results concerning loss or regularity for Sobolev
vector fields for d ¥ 2, and a classical result by Colombini-Luo-Rauch [34] for the case
d � 2. Nevertheless, as mentioned in [3], the one dimensional case preserves BV regularity,
and also there exists some very weak notion of regularity preserved; see Crippa’s thesis
[38, Section 7.5] and a very recent result of Bruè and Nguyen of “log-Sobolev” type of
preserved regularity [26]. Finally, we also refer to [38, Chapter 1] for a result concerning
one-sided Lipschitz condition and a brief summary of these classical results.

Concerning existence and uniqueness of solutions of (1.2), the first major
breakthrough was by an indirect proof by DiPerna-Lions in the seminal paper [48], whose
proof lies on the renormalization property for Sobolev vector fields. The motivation follows
from the computation for smooth solutions u of (1.1)

Btpβ � uq � divpb β � uq � β � u div b � Btpβ � uq � b �∇pβ � uq

� β1puq pBtu� b �∇uq � 0,

where β is any smooth function. Analogously, we may compute assuming (1.4) that

Btpβ � uq � divpb β � uq � β1puq pBtu� b �∇uq � pβ � uq div b

� div b pβ � u� uβ1puqq .

We remark that in the transport equation case, we have that a smooth solution u implies
that β � u is also a solution, provided that β is regular enough, e.g. β P C1pRq. However,
the divergence structure of the continuity equation is more intricate, with a nonlinear
right-hand term. We summarize the idea above as a property for weak solutions of (1.1)
by simply integrating by parts the divergence and time derivative.

Condition 1.1 (Renormalization property). Let b P L1
locpr0, T s � Rd;Rdq such that

div b P L1
locpr0, T s � Rdq. We say that b has the renormalization property if for any weak

solution u P L8locpr0, T s � Rdq of the transport equation, β � u is also a weak solution of
(1.1) for all β P C1pRq.

Such condition, albeit present implicitly in [48], is not posed in it, and so
we follow a more modern presentation, as in De Lellis’ seminar [44]. We remark that
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Condition 1.1 implies uniqueness and stability of solutions of (1.1) and (1.4) if the vector
field b also satisfies div b P L1pr0, T s;L8pRdqq and the growth assumption

» T

0

���� bt

1� | � |

����
L1�L8pRdq

dt   8. (1.6)

We sketch the proof of uniqueness and stability for the transport equation (the continuity
equation case follows from the subsequent referred results of [48]), as in [44]: notice that
for u1, u2 solution of transport equation with vector field b with initial data u0 and holding
the renormalization property, the difference v � u1 � u2 satisfies$&

%Btv
2 � divpb v2q � v2 div b in r0,8q � Rd;

vt�0 � 0 on Rd,

A formal computation gives that p}vt}
2
L2pRdqq

1 ¤ } div bt}L8pRdq}vt}
2
L2pRdq, and so the Gron-

wall Lemma gives that v � 0. If one assumes that b P L1pr0,8q;L8pRd;Rdqq, a precise
proof is done in [44, Proposition 1.6] with a weak Gronwall version and suitable test
functions, and with the growth assumption (1.6) in [48, Theorem II.2].

As for stability result, that is, assuming smooth sequences bk and pu0qk with
limits bk Ñ b in L1

locpRd;Rdq and pu0qk Ñ u0 L
1
locpRdq with a uniform bound pu0qk P

L8pRdq, and uk solutions of$&
%Btuk � divpbk ukq � uk div bk in r0,8q � Rd;

put�0qk � pu0qk on Rd,

we prove that there exists u solution of (1.1) with vector field b and initial data u0. Indeed,
by Cauchy-Lipschitz theory, uk is smooth and satisfies

}uk}L8pr0,8q�Rdq ¤ sup
k
}pu0qk}L8pRdq ¤ C

and the above uniform bound combined with the uniqueness results gives that uk converges
weakly* to some function u P L8pr0,8q � Rdq. Moreover, since b has the renormalization
property, then u2

k satisfies (1.1) with initial data pukq
2
0. By the same argument as before

and by the renormalization property, u2
k converges weakly* to u2. Therefore, we have that

uk Ñ u in L1
locpr0,8q � Rdq as k Ñ 8. By the strong limits of bk and pu0qk, we may pass

the limit in the weak setting of (1.1) and so the result follows. We refer to the original
proof in [48, Theorem II.4] and [38, Theorem 2.3.3] for a modern presentation.

The above uniqueness and stability result is called the “soft” part of DiPerna-
Lions result [44], which juxtapose the regularity assumption for b to satisfy Condition 1.1—
or the “hard” part—and it is proven in [48, Section II] that it suffices that b is in the
Sobolev vector field b P L1pp0, T q;W 1,1

loc pRd;Rdqq. The key idea is to mollify the transport
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equation in space variable with ρϵ � ϵ�dρpϵ�1 � q, where ρ is a smooth and even kernel,
and then write the transport equation as

Btuϵ � b �∇uϵ � b �∇uϵ � pb �∇uq � ρϵ �: rϵ,

where uϵ � u � ρϵ. The right-hand term rϵ is known as “commutator”, since it can be
written as the difference of changing order of derivatives and convolutions. Since uϵ is
smooth in space and Btu

ϵ � �pb �∇uq � ρϵ, we may use the chain rule for Sobolev maps
so that

Btβpuϵq � b �∇βpuϵq � β1puϵqrϵ (1.7)

for every β P C1pRq. We wish to pass the limit in the above equation in the weak sense.
Notice that each function on the right-hand side converges weakly, but this is not enough
for the convergence of the product. Since β1puϵq is locally uniformly bounded, it suffices to
show a strong convergence rϵ Ñ 0 in L1

locpRdq as ϵÑ 0. This is precisely [48, Lemma II.1],
but we refer to [38, Lemma 2.5.2] for a more direct presentation.

In the subsequent years, the interest of extending DiPerna-Lions result for
vector fields was latent. The first main improvement was by relaxing the summability
condition of the Jacobian matrix of b by only assuming the summability of symmetric part
Db� pDbqt P L1pp0, T qL1

locpRd;Rd�dqq; see Capuzzo-Dolcetta-Perthame paper [27]. Later,
the major breakthrough was due to Bouchut [23] for Vlasov equations, that is, transport
equations in R2d with vector field btpx, vq � pξpvq, Ftpx, vqq, where ξ is the “velocity” and E
is the “acceleration” with regularity ξt P W

1,1
loc pRd;Rdq, DvF P L1pp0, T q;L1

locpR2d;Rd�dqq,
and the assumption DxF P L1pp0, T q; BVlocpR2d;Rd�dqq. Notice that it was not assumed
that Ft P W

1,1
loc pR2d;R2dq, for its derivative with respect to x variable is only a Radon

measure. Finally, the full generalization was due to Ambrosio [4] for vector fields b P

L1pp0, T q; BVlocpRd;Rdqq with div b P L1pp0, T q;L1
locpRdqq, with the aid of rank one theorem

for bounded variations functions of Alberti [1]. Informally, the rank one theorem states
that if f P BVlocpRdq, then one can explicitly write the matrix function M which satisfies
Dsf � M |Dsf |, where Dsf is the singular part of Df with respect to the Lebesgue
measure. They key idea is to consider once again (1.7), but now they split the derivative
(which is a Radon measure) into absolutely continuous and singular parts with respect to
the Lebesgue measure. Therefore, the absolutely continuous part is computed analogously
as in [48] using the fact that div b is absolutely continuous, but if one carries the same
computations for the singular part one only gets a locally finite measure σ (known as
“defect measure”) such that

σ � Btβpuq � b �∇βpuq.

The computations à la DiPerna-Lions imply that σ is singular with respect to the Lebesgue
measure in spacetime, and it has being coined as “isotropic estimate”, for it does not assume
any further conditions on the convolution kernel. In order to conclude the renormalization
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property, one needs to show that in fact σ � 0. This was done using the so called
“anisotropic estimate” (see [38, Subsection 2.6.3]), which in turn implies that the measure
σ is estimated by an infimum over the convolution kernels of a linear functional, and by
[1], it can be shown that such infimum equals zero. More recently, it has been shown
that the aforementioned infimum can be explicitly computed, simplifying the original
proof [38, Subsection 2.6.6]. Furthermore, there exists a more modern proof for Alberti’s
rank one theorem by De Lellis [43], and also a more general result concerning the explicit
computation of the singular parts of measures with respect to their total variation in De
Philippis-Rindler’s paper [72].

We summarize the above as the following: if b P L1pr0, T s; BVlocpRd;Rdqq has
integrability div b P L1pp0, T q;L1

locpRdqq, then Condition 1.1 holds. In particular, if one
further assumes that div b P L1pr0, T s;L8pRdqq and the growth assumption (1.6), then
there exists a unique renormalized solution of (1.1) and (1.4). We remark that existence
of weak solutions of transport and continuity equations is a trivial result, and so the
existence of renormalized ones and their uniqueness follow from Condition 1.1. Indeed,
by considering the convolution of the vector field and initial data with a mollifier and
denoting them as bϵ and pu0qϵ, respectively, we have by Cauchy-Lipschitz theory a unique
solution uϵ of $&

%Btuϵ � div pbϵuϵq � 0 in r0,8q � Rd;

put�0qϵ � pu0qϵ on Rd.

In particular, we have that uϵ is uniformly bounded in L8pp0,8q �Rdq, and so we have a
subsequence uϵk

weakly* converging to some u in L8pp0,8q�Rdq as ϵk Ñ 0. Since bϵ and
pu0qϵ converges strongly in L1

locpRd;Rdq, the result follows. The transport equation case is
analogous with the aditional assumption that div b P L1

locpp0,8q � Rdq.

There are also results further that extend the admissible vector fields satisfying
Condition 1.1, and we highlight two results; first due to Ambrosio-Crippa-Maniglia [8] for
renormalization property for special bounded deformation vector fields, that is, functions
with symmetric derivative being a Radon measure with zero Cantor part; the second
due to Miot and Sharples [67] for the renormalization property for BV vector fields off
a “small” set S in spacetime, provided that the vector field has appropriate integrability
with respect to the normal component of S. We also highlight the Alberti-Bianchini-
Crippa’s paper [2] for uniqueness of weak solutions of the continuity equation in 2D for
autonomous vector fields with Hamiltonian structure and satisfying a weak Sard property,
where the proof does not rely on the renormalization property and Le Bris-Lions work
[25] for existence and uniqueness of renormalized solutions of the transport equation for
vector fields bpx, yq � pb1pxq, b2px, yqq, where px, yq P Rd1 �Rd2 and b2 has only regularity
W 1,1

loc pRd2 ;Rd2q on the variable y and only the summability in t, x variables. We also refer
to [38, Sections 2.7–2.8, Chapter 3] and references therein for a general discussion of the
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renormalization property—in particular for nearly incompressible vector fields. Finally,
we also highlight some very recent results for vector fields in infinitely many coordinates
found in [9, 12, 65] and references therein.

We emphasize that the renormalization approach is purely from a PDE’s
perspective, and as a byproduct it is possible to prove existence and uniqueness of
solutions of the ODE (1.2). Indeed, the results in [48, Section III] and [4, Section 6] for
existence, uniqueness and semigroup property for (1.2) follow analogous approximation
procedures as before and using the “soft” part of DiPerna-Lions theorem. Moreover, the
solution has a Lagrangian structure, that is, if it is a solution of the transport or continuity
equation, then it satisfies almost everywhere (1.3) or (1.5), respectively. Furthermore, the
uniqueness for (1.2) from the renormalization property Condition 1.1 is quite rigid: it has
been known since DiPerna-Lions’ work [48, Section IV] that vector fields with unbounded
divergence or without integrability assumptions on their derivatives (e.g., vector fields in
any fractional Sobolev space Wα,p

loc pRd;Rdq for any α   1) do not have unique flows. Quite
remarkably, there are finer results for nonuniqueness of flows: the example by Depauw in
[45] shows that the integrability in time for Ambrosio’s theory needs to be global, that is,
if b P L1

locpp0, T q; BVlocpR2;R2qq, then uniqueness of flows are not guaranteed; the example
by Colombini-Luo-Rauch in [33] shows nonuniqueness for bounded autonomous vector
fields b in R3 with x3Db being a finite Borel matrix measure. Therefore, the BVpRdq space
is very almost the best space for the renormalization property to hold.

We organize the thesis as follows: in Chapter 2, we recall the Lagrangian
approach for (1.1) and (1.4) introduced in [39] by Crippa-De Lellis, that is, a direct
study of existence, uniqueness and semigroup property of (1.2), and so it is possible
to construct a renormalized solution for transport and continuity equations for b P

L1pp0, T q;W 1,ppRd;Rdqq for p ¡ 1. This result was further extended independently by
Jabin [59] and Bouchut-Crippa [22] for vector fields in L1pp0, T q;W 1,1pRd;Rdqq; the former
in fact also extended the proof for vector fields in the space of special bounded variation
functions (SBV) and the latter for convolutions of singular kernels à la Calderón-Zygmund
theory with a W 1,1pRdq function among other cases. Moreover, the results was extended
for vector fields with anisotropic regularity in [16] by Crippa-Bohun-Bouchut in a similar
spirit as the aforementioned [25], where the vector field bpx, yq � pb1px, yq, b2px, yqq has
derivative Dyb2 being singular kernel convolution with a finite measure, while the others
are singular kernel convolution with an summable function. Finally, Nguyen [70] extended
the result for vector fields which are singular kernels convoluted with a function of bounded
variation. In particular, it extends Ambrosio’s results [4] on the ODE level. All of the
aforementioned works assume the bounded divergence in space of its vector fields and the
growth assumption (1.6).

In Chapter 3 we recall the work of Ambrosio-Colombo-Figalli [5] and [6, Sections
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4 and 5] on local flows without assuming the growth assumption (1.6), that is, given a
x P Rd, there exists T � T pxq ¡ 0 and a unique solution of (1.2) in r0, T pxqq. They prove
existence, uniqueness and semigroup property of flows in this setting, as well existence of
renormalized solutions of (1.1) for divergence-free vector fields. Furthermore, they show a
sort of “weak” renormalization property if one assumes uniqueness of nonnegative solutions
of (1.4). The latter result has not been reproduced in the previous setting, i.e., where vector
fields satisfy (1.6). Finally, we also recall the extension done by the author with Marcon
[21] for quasistatic Vlasov-Maxwell systems, extending the result of [6] for Vlasov-Poisson
equation.

We now explain somewhat informally the contents of Chapters 4 and 5, which
are the author’s original contributions: in Chapter 4, we study solutions of (1.2) with vector
fields which are wavelike convolutions of a singular kernel and some L1pp0, T q;LppRdqq

function, where p ¥ 1. More precisely, we consider vector fields

bi
tpxq �

»
Btpxq

Kipx� yqgt�|x�y|pyq dy �: K � gtpxq,

where K is a singular vector kernel near the origin of order at most |x|1�d. Such vector
fields arise from inhomogeneous solutions of the wave equation [49, Section 2.4], where
in the three dimensional case the kernel is precisely computed as Kipxq � p4π|x|q�1ei, ei

being the canonical basis in R3. We remark that this “hyperbolic convolution” operator �
is not symmetric nor associative in both variables, and so many of the techniques employed
in [22] are not available. In order to prove existence, uniqueness and semigroup property
for solutions of (1.2), it was necessary to extend an estimate for a composition of grand
maximal functions and singular kernels [22, Theorem 3.3], where in our case the kernel are
not necessarily smooth, i.e. C1pRdq functions outside the origin. An important application
is in Vlasov-Maxwell system, where we consider vector fields (as aforementioned in the
discussion of [23]) with further structure of the acceleration F , that is

btpx, vq � pξpvq, Etpxq � ξpvq �Htpxqq.

The physical velocities ξpvq are either nonrelativistic, where it coincides with phase velocity
v and so ξpvq � v; or relativistic, i.e. ξpvq � p1 � |v|2q�1{2v, where the first term is the
Lorentz correction factor (we consider the speed of light c � 1). Moreover, the electric and
magnetic fields E and H, respectively satisfy the wave equation

BttE �∆E � �∇ρ� Btj and BttH �∆H � curl j

for particle and current densities ρ, j, respectively; we remark that these physical quantities
depend on the solution of the transport equation, hence so does the vector field b. In
particular, the Vlasov-Maxwell system is a nonlinear transport/continuity equation. We
shall make an explicit derivation of the above wave equations with physical units from
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Maxwell’s equations in Chapter 4, as well as write the electromagnetic field depending
only on the densities ρ, j, and Btj. We prove that if densities and some time derivatives
are summable, then weak, renormalized, and Lagrangian solutions are all equivalent. All
of the aforementioned new results can be found in [20].

In Chapter 5, we consider vector fields bt � Kα � gt and bt � Γα � gt, where
0   α   1 and the kernels Kα and Γα satisfy the decay

|Kαpxq| ¤
C

|x|d�1�α
and |Γαpxq| ¤

C

|x|d�α
.

Since we shall need to compute the jacobian of bt, we distinguish the kernels for which
term in the convolution we differentiate: in the former, the kernel is less singular, and so
we have enough room to compute it as Bjb

i � pBjK
α
i q � g, and so we assume that either

Kα
i pyq �

Ωipyq

|y|d�1�α
,

where Ωi are smooth zeroth order homogeneous functions with average zero on the sphere
Sd�1; in the latter, we differentiate the functions g, i.e.

Bjb
i
tpxq � Γα

i � Bjgtpxq for kernels Γα
i pyq �

Ωipyq

|y|d�α
.

We shall consider ever more singular kernels in Chapter 5, where we shall assume more
cancellation properties for Ωi, e.g. zero average on the sphere in all directions. Concerning
the regularity needed for the functions g, the results of [22, 70] suggests that one should
consider an “intermediate” space between L1pRdq and BVpRdq in cases bt � Kα � gt, and a
more regular space than BVpRdq in cases bt � Γα � gt. Moreover, such spaces should take
into account the parameter α, and we were able to prove that the Besov spaces Bα

p,1pRdq are
the appropriate ones when considering the less singular kernels; the other cases one takes
B1�α

p,1 pRdq. The even more singular cases needed not only better cancellation properties for
the kernels, but also stricter Besov spaces for the functions g. The proof of such results is
in fact an simplification of the Nguyen’s work [70] for the aforementioned special case.

The quintessential example of vector fields with such structure are from the
generalized surface quasi-geostrophic equations (gSQG) with parameter α P p0, 2qzt1u:$&

%Btθ � r∇Kp�∆qα
2 �1θs �∇θ � 0 in p0, T q � R2;

θt�0 � θ0 on R2.
(1.8)

Notice that cases α � 0 and α � 1 are the 2D vorticity Euler and surface quasi-geostrophic
equations, respectively. Indeed, writing the vector field explicitly (see Silvestre’s thesis [74,
Chapter 2] for an extensive study of fractional Laplace operator), we have that

btpxq � ∇Kp�∆qα
2 �1θtpxq � Cα∇K

»
R2

θpyq

|x� y|α
dy � Cα

»
R2

px� yqK

|x� y|2�α
θpyq dy.
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In this context, we prove that if solutions are nonnegative and in the appropriate Besov
space, then we have equivalence of weak, renormalized, and Lagrangian solutions; if we
do not know a priori the sign of solutions, we still have existence of renormalized/weak
solutions. The latter can also be extended for bounded divergence vector fields.

Finally, in Chapter 6, we summarize the results for wavelike and very singular
vector fields, and discuss the possible extension of these type of results for less regular vector
fields, such as bounded deformation or with anisotropic regularity, and Euler equations
with measure vorticity.
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2 Global results with Lagrangian approach

In this chapter, we revisit the results without relying on the renormalization
property Condition 1.1 introduced by Crippa-De Lellis in [39]. This is now called Lagrangian
approach and we shall expose it among several generalizations, namely [16, 22, 70]. We
begin by recalling classical results regarding maximal functions and singular integrals.

2.1 Maximal functions and singular integrals
In this section, we recall the estimates of maximal functions (also known as

Hardy-Littlewood maximal function) and singular integrals. We first define maximal,local
maximal functions, and grand maximal functions.

Definition 2.1. For u P L1
locpRdq, we define the maximal function Mu as

Mupxq :� sup
ϵ¡0

1
|Bϵpxq|

»
Bϵpxq

|upyq| dy,

for each x P Rd. We define the local maximal function MRu as

MRupxq :� sup
0 ϵ R

1
|Bϵpxq|

»
Bϵpxq

|upyq| dy.

Finally, given a family of functions tρνuν � L8c pRdq, we define the grand maximal function
Mρνu associated to tρνu as

Mρνupxq :� sup
ν

sup
ϵ¡0

|pρν
ϵ � uqpxq|,

where ρν
ϵ pxq � ϵ�dρνpϵ�1xq for all x P Rd. If tρνuν � C8

c pRdq, then one may consider finite
measures u.

We remark that MRupxq ¤ Mupxq for all R ¡ 0. Moreover, by assuming
uniform boundedness of the functions ρν and uniform support supp ρν � B1, we have that

Mρνupxq � sup
ν

sup
ϵ¡0

���� 1
ϵd

»
Rd

ρν
�x� y

ϵ

	
upyq dy

���� ¤ |B1| sup
ν
}ρν}L8pRdqMupxq.

In particular, if we take ρνpxq � |B1|
�1
1B1pxq (so that it is independent of ν), and so

Mρνupxq � sup
ϵ¡0

���� 1
ϵd|B1|

»
Rd

1B1

�x� y

ϵ

	
upyq dy

���� � sup
ϵ¡0

���� 1
|Bϵpxq|

»
Bϵpxq

upyq dy
���� ,

that is, the maximal function with the absolute value outside of the integral.
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We begin by recalling the classical result concerning estimates of the operator
M in LppRdq for all the range p P r1,8s. For a concise presentation, we refer to the seminal
book of Stein [76, Chapter I]. By the above considerations, the following also holds for the
grand maximal operators.

Lemma 2.1 (Hardy-Littlewood estimates). Let u P LppRdq. If 1   p ¤ 8, then there
exists a constant Cp ¡ 0 depending only on p such that

}Mu}LppRdq ¤ Cp}u}LppRdq.

If p � 1, there exists a constant Cd ¡ 0 depending on the dimension d such that it holds
the weak estimate

|||Mu|||L1
wpRdq ¤ Cd}u}L1pRdq.

Moreover, let λ ¡ 0 and r ¡ 0. If p ¡ 1, there exists a constant Cd,p ¡ 0 depending only
on d, p such that

}Mλu}LppBrq ¤ Cd,p}u}LppBλ�rq.

If p � 1, there exists a constant Cd ¡ 0 depending only on d such that

|||Mλu|||L1
wpBλq

¤ Cd}u}L1pBλ�rq.

We also recall the pointwise estimates for the difference quotient of a function;
they are finer estimates than those typically presented in graduate studies, e.g. [49, Section
5.8.2]. They are sometimes referred as Lusin-Lipschitz inequalities.

Lemma 2.2 (Difference quotient estimates). Let u P W 1,1
loc pRdq. Then there exists a

measure zero set (with respect to the Lebesgue measure) E such that for any x, y P Rd E,
it holds

|upxq � upyq| ¤ |x� y|pM|x�y|∇upxq �M|x�y|∇upyqq.

More generally, if u P L1
locpRdq (but not necessarily in W 1,1

loc pRdq), consider the family of
functions"

Υj,ξpxq � h

�
ξ

2 � x



xj : h P C8

c pRdq,

»
Rd

hpyq dy � 1, supph � B1{2

*
j�1,...,d; ξPSd�1

and the associated grand maximal operator MΥj,ξ . Moreover, let η P C8
c pRdq be a function

satisfying»
Rd

ηpyq dy � 1 and supp η � Bα for some α ¡ 0 such that supp ηn � B1{2�α,

where ηnpxq :� ndηpnxq for n P N. Finally, denote E the measure zero set such that
ηn � upxq Ñ upxq for all x P Rd E. If we further assume that there exists a measure zero
set F such that the weak derivative ∇u satisfies MΥj,ξp∇uqpxq   8 for all x P Rd F , then
for all x, y P Rd pE Y F q, it holds

|upxq � upyq| ¤ |x� y| pMΥj,ξ∇upxq �MΥj,ξ∇upyqq .
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We refer to Bojarski-Hajłasz’s work [19, Theorem 1] for the first claim of
Lemma 2.2. For the second, we remark that the aforementioned result is due to Bouchut-
Crippa work [22, Proposition 4.2]–albeit not stated as above, but rather in the specific
application for their subject of study. Nevertheless, their thesis can be extended as stated
in Lemma 2.2 with the same proof.

Concerning the theory of singular kernels, we refer once again to Stein’s classical
book [76, Chapter II], and also the Muscalu and Schlag’s chapter [68]. By assuming a
regular enough kernel, the singular operator defined by it enjoys estimates similar to
Lemma 2.1, and are usually refer as Calderón-Zygmund theory.

Lemma 2.3 (Calderón-Zygmund estimates). Let Γ P L1
locpRd t0uq be a function for which

there exists a constant C ¡ 0 such that»
BR

|y||Γpyq| dy ¤ CR for all R ¡ 0;»
Rd B2|x|

|Γpy � xq � Γpyq| dy ¤ C for all x P Rd;����
»

BR Br

Γpyq dy
���� ¤ C for all 0   r   R   8.

If p P p1,8q, there exists a constant C 1 ¡ 0 such that it holds

}Γ � u}LppRdq ¤ C 1}u}LppRdq

for all u P LppRdq. If p � 1, it holds the weak estimate

|||Γ � u|||L1
wpRdq ¤ C 1}u}L1pRdq.

In the above, the convolution is understood in the sense

Γ � upxq � lim
ϵÑ0

»
Rd Bϵpxq

Γpx� yqupyq dy.

We remark that the case p � 8 is intentionally omitted for it is beyond the
scope of this work. Nevertheless, there are results concerning estimates of Γ � u in bounded
mean oscillation (BMO) spaces; see [68].

The kernel conditions in Lemma 2.3 which are known as singular kernels usually
are too relaxed for some applications, e.g. [22, Theorem 3.3] and [68, Section 7.3]. The
first one is usually restricted to kernels with pointwise estimate

|Γpxq| ¤ C

|x|d
for all x P Rd t0u;

the second one1 follows if we assume pointwise estimate on the kernel’s derivative:

|∇Γpxq| ¤ C

|x|d�1 for all x P Rd t0u;
1 Such estimate is known as Hörmander’s condition.
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the third estimate, sometimes called “cancellation property” is a finer condition, for it
allows us to prove that a composition of singular operators are also singular operators;
see the comment in the beginning of [22, Section 3]. Therefore, it is usual to assume a
structure for the kernels rather than an estimate, as in

Γpxq � Ωpxq
|x|d

, with
»
Sd�1

Ωpyq dSy � 0. (2.1)

Here, Ω is a zeroth order homogeneous function, that is, Ωptxq � Ωpxq for all x P Rd and
t P R, and so it is completely determined by its values in Sd�1.

We also recall the results in [68, Section 7.3] concerning a truncated version of
the singular operator associated to kernels of form (2.1):

T�upxq :� sup
ϵ¡0

����
»
Rd Bϵpxq

Γpx� yqupyq dy
���� .

Lemma 2.4 (Calderón-Zygmund estimates for truncated kernel). Let u P LppRdq and Γ
as in (2.1). Then there exists a constant Cd ¡ 0 depending only on the dimension such that

T�upxq ¤ CdpMpΓ � uqpxq �Mupxqq.

In particular, if p P p1,8q, there exists a constant C 1
d ¡ 0 such that

}T�u}LppRdq ¤ C 1
d}u}LppRdq.

Moreover, if p � 1, it satisfies the weak estimate

|||T�u|||L1
wpRdq ¤ C 1

d}u}L1pRdq.

Remark 1. In Section 2.5, we shall need specialized versions of Lemma 2.2 and Lemma 2.3.
By the niche nature of these results, we shall state them afterwards in Proposition 2.5,
Theorem 2.5, and Lemma 2.12.

2.2 Dawn of Lagrangian theory: Crippa-De Lellis’ result
Albeit pioneering the study of (1.2) by Crippa and De Lellis’ work [39], their

conclusions can be further improved following the presentation of Bouchut-Crippa [22].
Moreover, inspired by [6, Proposition 4.11], we further improved Crippa-De Lellis’ result,
and so we present the latter. We begin by defining the key mathematical object throughout
the thesis, which in a sense is the “correct” solution of (1.2).

Definition 2.2 (Renormalized regular Lagrangian flow). Let b : p0, T q � Rd Ñ Rd be a
vector field satisfying the growth assumption» T

0

���� bt

p1� | � |q logp2� | � |q

����
L1�L8pRdq

dt   8. (2.2)
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For a fixed s P r0, T q, consider the map X continuous in time and locally measurable in
space such that for almost any t P rs, T s it holds»

BR

log logpe� |Xpt, s, xq|q dx   8.

We say that X is a renormalized regular Lagrangian flow2 of b starting at s if

(i) it satisfies in the weak sense the ODE$&
%BtpβpXpt, s, xqqq � ∇βpXpt, s, xqq � btpXpt, s, xqq in ps, T q � Rd;

Xps, s, xq � x on Rd;

for all β P C1pRd;Rq such that

|βpxq| ¤ C p1� log logpe� |x|qq and |∇βpxq| ¤ C

p1� |x|q logp2� |x|q

for all x P Rd and some constant C ¡ 0.

(ii) there exists a compressibility constant L ¡ 0 such that for every t P rs, T q, it holds

Xpt, s, �q#Ld ¤ LLd.

We remark that the above definition is not contained in [39] nor [22]: the
former defines a Lagrangian flow via almost everywhere well-posedness of (1.2) instead of
Definition 2.2 (i), while the latter assumes a stricter class of test functions β, replacing
their estimates by

|βpxq| ¤ C p1� logp1� |x|qq and |∇βpxq| ¤ C

1� |x|
;

see also [42] for a similar approach of renormalized Lagrangian flows. Definition 2.2 (ii)
and on β and b shall imply that t ÞÑ βpXpt, s, xqq is an absolutely continuous function for
almost every t P rs, T s and x P Rd. Assuming the integrability of b (2.2) and the estimates
of β in Definition 2.2 (i), we may take βpxq � log logpe � |x|q, and so we heuristically
conclude for any R ¡ 0 that»

BR

log logpe� |Xpt, s, xq|q dx ¤ CR,L � L

» T

0

���� bt

logp2� | � |q p1� | � |q

����
L1�L8pRdq

dt   8

for some CR,L ¡ 0 depending on the subscripts, where we have used Definition 2.2 (ii). The
same computation is done in [22] when assuming (1.6), and so by taking βpxq � logp1�|x|q,
their flow is logarithmically more integrable then what we consider in this section. Before
we make the above computation precise, we define the sublevels of a flow.
2 An important question is whether Lagrangian flows are well-posed in the sense of Lebesgue classes,

namely if ∇βpXq�bpXq depends on the representation of its Lebesgue representative. For this discussion,
we refer to Remark 22.
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Definition 2.3 (Sublevels). For a measurable in spacetime flow Xp�, s, �q starting at s
and a fixed λ ¡ 0, we call the sets

Gλ :�
 
x P Rd : |Xpt, s, xq| ¤ λ for a.e. t P rs, T s

(
the sublevels of the flow.

Finally, we shall write vector fields satisfying (2.2) as

btpxq

logp2� |x|q p1� |x|q
� b̃

1
t pxq � b̃

2
t pxq, (2.3)

where b̃
1
P L1pp0, T q�Rd;Rdq and b̃

2
P L1pp0, T q;L8pRd;Rdqq. We are now ready to prove

the “log logL” integrability of the flow.

Lemma 2.5 (Integrability of flow). Let b be a vector field satisfying (2.2) and an associated
renormalized regular Lagrangian flow X starting at time s with compressibility constant L.
Then for any R ¡ 0 and t P rs, T s, it holds»

BR

log logpe� |Xpt, s, xq|q dx ¤
»

BR

log logpe� |x|q dx

� L}b̃
1
}L1pp0,T q�Rdq � |BR|}b̃

2
}L1pp0,T q;L8pRdqq

and also for any R ¡ 0»
BR

sup
tPrs,T s

log logpe� |Xpt, s, xq|q dx ¤
»

BR

log logpe� |x|q dx

� L}b̃
1
}L1pp0,T q�Rdq � |BR|}b̃

2
}L1pp0,T q;L8pRdqq.

In particular, it follows that there exists function fpr, λq, gpr, λq depending only on
}b̃

1
}L1pp0,T q�Rdq, }b̃

2
}L1pp0,T q;L8pRdqq, and the constant L such that

|Br Gλ| ¤ fpr, λq and |Gλ Br| ¤ gpr, λq,

where r, λ ¡ 0. Moreover, for a fixed r ¡ 0, the function fpr, �q satisfies the limit

lim
λÕ8

fpr, λq × 0;

and for a fixed λ ¡ 0, the function gp�, λq satisfies

lim
rÕ8

gpr, λq × 0.

Proof. We follow very closely the proof of [22, Lemma 5.5]. We consider for ϵ ¡ 0 the
function

βϵpxq � log logpe�
a
|x|2 � ϵq.



Chapter 2. Global results with Lagrangian approach 29

By Definition 2.2 (i), Definition 2.2 (ii), and (2.2) we have that

BtpβϵpXp�, s, �qqq P L1pps, T q;L1
locpRdqq.

In particular, for almost every x P Rd, BtpβϵpXp�, s, xqqq is summable in ps, T q, and so for
almost every x P Rd and for all t P ps, T q, we claim that

βϵpXpt, s, xqq � βϵpXps, s, xqq �

» t

s

∇βϵpXpτ, s, xqq � bτ pXpτ, s, xqq dτ. (2.4)

Indeed, since βϵpXp�, s, xqq coincides with an absolutely continuous function ξϵp�, xq in
ps, T q, and so we have that

βϵpXpt, s, xqq � ξϵps, xq �

» t

s

∇βϵpXpτ, s, xqq � bτ pXpτ, s, xqq dτ.

Since the integral on the right-hand-side and t ÞÑ βϵ�pXpt, s, xqq are an continuous function
in time for almost all s P r0, T s and x P Rd, we conclude that ξϵps, xq � βϵpXps, s, xqq.

By the above claim, we may take ϵÑ 0 to obtain that

log logpe� |Xpt, s, xq|q ¤ log logpe� |x|q �
» T

0
|b̃

1
τ pXpτ, s, xqq| � |b̃

2
τ pXpτ, s, xqq| dτ (2.5)

for all t P ps, T q. Integrating with respect to x in BR for any R ¡ 0 implies the first
inequality in the thesis of Lemma 2.5; taking the supremum with respect to t in rs, T s and
then integrating in BR implies the second one.

Integrating (2.5) in Br Gλ, we have that

|Br Gλ| ¤
|Br| log logpe� rq � L

�
}b̃

1
}L1pp0,T q�Rdq � |Br|}b̃

2
}L1pp0,T q;L8pRdqq

	
log logpe� λq

�: fpr, λq.

Notice that we may estimate (2.4) from the other side, and so by taking ϵÑ 0, we have
that

log logpe� |x|q ¤ log logpe� |Xpt, s, xq|q �

» T

0
|b̃

1
τ pXpτ, s, xqq| � |b̃

2
τ pXpτ, s, xqq| dτ. (2.6)

Integrating in Gλ Br and an analogous estimate as before, we have that

|Gλ Br| ¤
L
�
|Bλ| log logpe� λq � }b̃

1
}L1pp0,T q�Rdq � |Bλ|}b̃

2
}L1pp0,T q;L8pRdqq

	
log logpe� rq

�: gpr, λq.

The limits of fpr, �q and gp�, λq follow, and so does the lemma.

Remark 2. An analogous thesis of Lemma 2.5 holds if one assumes (1.6) instead of (2.2).
Indeed, by dropping the logarithm in the denominator in (2.3), we have that»

BR

sup
tPrs,T s

logp1� |Xpt, s, xq|q dx ¤
»

BR

logp1� |x|q dx

� L}b̃
1
}L1pp0,T q�Rdq � |BR|}b̃

2
}L1pp0,T q;L8pRdqq.

In particular, the control of |Br Gλ| and |Gλ Br| holds.
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We are now ready to state the now called “fundamental estimate for flows”,
coined by Bouchut-Crippa in [22, Proposition 5.9]. We shall follow the former approach
for a more modern presentation comparatively to [39].

Proposition 2.1. Let b and b̄ be vector fields satisfying (2.2), and X, X̄ their renormal-
ized regular Lagrangian flows starting at time s with compressibility constants L and L̄,
respectively. Moreover, assume that Db P L1pp0, T q;Lp

locpRd;Rd�dqq for some p P p1,8q.
Then for every γ ¡ 0, η ¡ 0, and r ¡ 0, there exists λ ¡ 0 and a constant Cγ,η,r ¡ 0 such
that

|Br X t|Xpt, s, �q � X̄pt, s, �q| ¡ γu| ¤ Cγ,η,r}b� b̄}L1pp0,T q�Bλq � η

uniformly in s P r0, T s and t P rs, T s. The constant Cγ,η,r depends only on its subscripts,
the compressibility constants L and L̄, the norms (2.2) of b and b̄ and }Db}L1pp0,T q;LppB3λqq.

Proof. We begin by defining for any δ ¡ 0, λ ¡ 0, and t P rs, T s the function

Φδptq �

»
BrXGλXḠλ

log log
�
e�

|Xpt, s, xq � X̄pt, s, xq|

δ



dx,

where Ḡλ is the sublevel associated to X̄p�, s, �q. By the assumed regularity of X and X̄,
we have that Φδ is absolutely continuous, and it satisfies

Φ1
δptq ¤

»
BrXGλXḠλ

|btpXpt, s, xqq � b̄tpX̄pt, s, xqq|

|Xpt, s, xq � X̄pt, s, xq| � δ
dx

¤

»
BrXGλXḠλ

|btpX̄pt, s, xqq � b̄tpX̄pt, s, xqq|

|Xpt, s, xq � X̄pt, s, xq| � δ
dx

�

»
BrXGλXḠλ

|btpXpt, s, xqq � btpX̄pt, s, xqq|

|Xpt, s, xq � X̄pt, s, xq| � δ
dx.

(2.7)

The first integral on the right-hand side is bounded by using Definition 2.2 (ii) for X̄, and
so »

BrXGλXḠλ

|btpX̄pt, s, xqq � b̄tpX̄pt, s, xqq|

|Xpt, s, xq � X̄pt, s, xq| � δ
dx ¤ L̄

δ
}bt � b̄t}L1pBλq.

For the second integral, we use Lemma 2.2, and so»
BrXGλXḠλ

|btpXpt, s, xqq � btpX̄pt, s, xqq|

|Xpt, s, xq � X̄pt, s, xq| � δ
dx ¤

»
BrXGλXḠλ

|M2λDbtpXpt, s, xqq|

� |M2λDbtpX̄pt, s, xqq| dx.

Therefore, we have by (2.7), Hölder inequality, Lemma 2.1, and Definition 2.2 (ii) that

Φ1
δptq ¤

L̄

δ
}bt � b̄t}L1pBλq � pL� L̄q|Br|

1�1{p}Dbt}LppB3λq.

Integrating with respect to t in rs, s� τ s and noticing that Φδpsq � 0, we have that

Φδpτq ¤
L̄

δ
}b� b̄}L1pp0,T q�Bλq � pL� L̄q|Br|

1�1{p}Db}L1pp0,T q;LppB3λqq. (2.8)
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On the other hand, we have a lower bound for Φδpτq:

Φδpτq ¥ log log
�
e�

γ

δ

	
|Br X t|Xpτ, s, �q � X̄pτ, s, �q| ¡ γu XGλ X Ḡλ|.

In particular, we have that

|Br X t|Xpτ, s, �q � X̄pτ, s, �q| ¡ γu| ¤
Φδpτq

log log
�
e� γ

δ

� � |Br Gλ| � |Br Ḡλ|.

By the above, Lemma 2.5, and (2.8), we conclude

|Br X t|Xpτ, s, �q � X̄pτ, s, �q| ¡ γu| ¤
L̄}b� b̄}L1pp0,T q�Bλq

δ log log
�
e� γ

δ

�
�
pL� L̄q|Br|

1�1{p}Db}L1pp0,T q;LppB3λqq

log log
�
e� γ

δ

�
� fpr, λq � f̄pr, λq,

where f̄pr, λq is the function which comes from Lemma 2.5 associated to X̄. Now, by
Lemma 2.5, we may choose λ large enough so that fpr, λq   η{3 and f̄pr, λq   η{3.
Moreover, since λ is now fixed, we choose δ small enough so that

pL� L̄q|Br|
1�1{p}Db}L1pp0,T q;LppB3λqq

log log
�
e� γ

δ

�  
η

3 .

We recall that since the functions f and f̄ depend on the norm (2.2) of b and b̄, then so
does η, and therefore so does δ. Defining the constant

Cγ,η,r :� L̄

δ log log
�
e� γ

δ

� ,
we have that the proposition follows.

From Proposition 2.1, we may derive uniqueness, stability, and existence of
renormalized regular Lagrangian flows. We remark that such results depend only on the
estimate contained in the aforementioned proposition, and so in the forthcoming results,
in order to obtain uniqueness, stability, and existence of renormalized regular Lagrangian
flows, it suffices to prove an analogous result of Proposition 2.1 for more general vector
fields. Before we prove the compactness result for renormalized regular Lagrangian flows,
we recall a criterion for L1pRdq sequence convergence. For a proof the result below, see
Bogachev’s book [15, Section 4.5].

Lemma 2.6 (Vitali convergence theorem). Let pX,µq be a measure, tfnunPN be a sequence
of functions and f a function in L1pµq. Then fn converges to f in L1pµq if and only if
it converges locally in measure, it is uniformly integrable, and has uniformly absolutely
continuous integrals, that is,

lim
nÑ8

»
X

|fnpxq � fpxq| dµ � 0

if and only if



Chapter 2. Global results with Lagrangian approach 32

• (Local convergence in measure) for any γ ¡ 0 and K any compact set of X, it holds

lim
nÑ8

µpK X t|fn � f | ¡ γuq � 0.

• (Uniform integrability) for every ϵ ¡ 0, there exists a finite measure set Ωϵ � Rd

such that for any n P N »
RdzΩϵ

|fnpxq| dµ   ϵ.

• (Uniform absolutely continuity of integrals) it holds for any n P N that

lim
|Ω|Ñ0

»
Ω
|fnpxq| dµ � 0.

Notice that if µ is a finite measure, e.g. µR � Ld BR for R ¡ 0, then uniform
integrability of tfnu is equivalent to uniformly absolutely continuity of integrals and
uniform bound of }fn}L1pµq; see [15, Proposition 4.5.3]. For a clean presentation of the
compactness result, we first prove a technical lemma concerning composition of sequences
converging locally in measure.

Lemma 2.7. Let tXnunPN be a sequence of renormalized regular Lagrangian flows with
compressibility constants Ln satisfying sup

nPN
Ln   8 such that Xnpt, s, �q converges locally in

measure to a renormalized regular Lagrangian flow Xpt, s, �q with compressibility constant
L for any s P r0, T s and t P rs, T s. Assume also that its associated sublevels Gn

λ of Xn and
Gλ of X have the control of |Br Gn

λ|, |Br Gλ| as in Lemma 2.5 (e.g. if the sequence of
vector fields bn which Xn is associated can be written as in (2.3)). Moreover, let tϕnunPN

be a sequence of Lebesgue functions converging locally in measure to a Lebesgue measurable
function ϕ. Then for any r ¡ 0, γ ¡ 0, s P r0, T s, and t P rs, T s, it holds

lim
nÑ8

|Br X t|ϕnpXnpt, s, �qq � ϕpXpt, s, �qq| ¡ γu| � 0,

that is, the composition ϕn �Xnpt, s, �q also converges locally in measure to ϕ �Xpt, s, �q.

Proof. We proceed by adapting the proof of [22, Theorem 6.4]: for a fixed r ¡ 0,γ ¡ 0,
s P r0, T s, and t P rs, T s, we have

|Br X t|ϕnpXnpt, s, �qq � ϕpXpt, s, �qq| ¡ γu|

¤ |Br XGn
λ X t|ϕnpXnpt, s, �qq � ϕpXnpt, s, �qq| ¡ γ{4u|

� |Br XGn
λ XGλ X t|ϕpXnpt, s, �qq � ϕpXpt, s, �qq| ¡ 3γ{4u|

� |Br Gλ| � |Br Gn
λ|,

(2.9)

where Gn
λ is the sublevel of flow Xn and λ is chosen such that for a given η ¡ 0,

|Br Gλ| � |Br Gn
λ|   η;
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such choice is possible by Lemma 2.5. Now, by the local convergence in measure of ϕn,
then we may take n large enough so it holds

|Bλ pBλ X t|ϕn � ϕ|   γ{4uq|   η.

Therefore, we have that the first term in (2.9) is bounded by Lnη. Since the third and
fourth terms are bounded by η by the choice of λ, it remains to estimate the second one.
By Lusin’s theorem, there exists a function ϕ̂ such that ϕ̂ P CpB̄λq and

|B̄λ X tϕ̂ � ϕu| ¤ η. (2.10)

Moreover, by the continuity of ϕ̂, then there exists α ¡ 0 such that

|y � x| ¤ α ùñ |ϕ̂pyq � ϕ̂pxq| ¤
3
4γ, (2.11)

Therefore, we have that

|Br XGn
λ XGλ X t|ϕpXnpt, s, �qq � ϕpXpt, s, �qq| ¡ 3γ{4u|

¤ |Br XGn
λ XGλ X t|ϕ̂pXnpt, s, �qq � ϕ̂pXpt, s, �qq| ¡ 3γ{4u|

� |Br XGn
λ X tϕ̂pXnpt, s, �qq � ϕpXnpt, s, �qqu|

� |Br XGλ X tϕ̂pXpt, s, �qq � ϕpXpt, s, �qqu|.

The second and third terms above can be bounded by Lnη and Lη, respectively by (2.10)
and the compressibility of X and Xn. For the first term, notice that by (2.11) that

|Xnpt, s, xq �Xpt, s, xq| ¡ α for every x P Br.

Choosing n even larger, by the local convergence in measure of Xn we have that

|Br pBr X t|Xnpt, s, xq �Xpt, s, xq| ¡ αuq|   η.

Using all of the above, we conclude by (2.9) that

|Br X t|ϕnpXnpt, s, �qq � ϕpXpt, s, �qq| ¡ γu| ¤ Cη,

to some C ¡ 0, and so the lemma follows.

Lemma 2.8 (Stability and compactness of flows). Let tbnunPN a sequence such that for
every R ¡ 0

sup
nPN

�
}b̃

n,1
}L1pp0,T q�Rdq � }b̃

n,2
}L1pp0,T q;L8pRdqq � }bn}L1pp0,T q;LqpBRqq

	
  8, (2.12)

where the decomposition of bn as in (2.3) and q ¡ 1. Moreover, let Xn be the renormal-
ized regular Lagrangian flow associated to bn starting at s P rt, T s with compressibility
constant Ln, where sup

nPN
Ln   8. Assume that bn converges in L1pp0, T q;L1

locpRd;Rdqq to

b P L1pp0, T q;Lq
locpRd;Rdqq with regularity Db P L1pp0, T q;Lp

locpRd;Rd�dqq for some p ¡ 1.
Then tXnunPN converges to X locally in measure in Rd uniformly in s and t, where X is
a renormalized regular Lagrangian flow associated to b starting at s.
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Proof. Step 1. We begin by proving the stability result, that is, if the existence of X is
known, then the convergence of Xn claimed in the thesis follows. But this is a corollary
from Proposition 2.1 by taking b̄ � bn, as by our assumptions Cγ,η,r is uniformly bounded
with respect to n, and so we may take n large enough in order to obtain for any r ¡ 0,
γ ¡ 0 that

|Br X t|Xpt, s, �q �Xnpt, s, �q| ¡ γu| ¤ Cγ,η,r}b� bn}L1pp0,T q�Bλq � η ¤ 2η

uniformly in s P r0, T s and t P rs, T s. This is precisely the desired convergence.

Step 2. We now prove the compactness result, i.e., we do not assume the
existence of X. For this purpose, we may proceed analogously as before, but now with a
Cauchy sequence

|Br X t|Xmpt, s, �q �Xnpt, s, �q| ¡ γu| ¤ 2η.

This implies that there exists a locally measurable in space and continuous in time function
X such that

|Br X t|Xpt, s, �q �Xnpt, s, �q| ¡ γu| Ñ 0 as nÑ 8, uniformly in s, t.

Moreover, by the uniform global bound (2.12), we have by Lemma 2.5 that X satisfies the
integrability assumptions of Definition 2.2 (i). Moreover, by Fatou’s Lemma, we have that

Xpt, s, �q#Ld ¤ lim inf
nÑ8

Xnpt, s, �q#Ld ¤ lim inf
nÑ8

LnLd,

and so Definition 2.2 (ii) follows with L :� lim inf
nÑ8

Ln. Hence, it suffices to show that X

satisfies the ODE in Definition 2.2 (i). We claim that it suffices to consider β P C1
c pRdq;

indeed consider for any β satisfying the hypothesis in Definition 2.2 (i) the approximation

βϵpxq :� βpxqχ
�
ϵ log logpe�

a
|x|2 � ϵq

	
,

where χ P C8
c pr0,8qq is a nonnegative function such that χpzq � 1 for z ¤ 1 and ϵ ¥ 0.

Notice that since Xnpt, s, �q converges locally in measure uniformly in s, t, then
taking φ P C1

c pr0, T q � Rdq with suppφt � BR for some R ¡ 0, we have
» T

s

»
Rd

BtφtpxqrβpX
npt, s, xqq � βpXpt, s, xqqs dx dt

¤ 2T }Btφ}L8pp0,T q�Rdq sup
sPr0,T s

sup
tPrs,T s

»
BR

|βpXnpt, s, xqq � βpXpt, s, xqq| dx.

By Lemma 2.7, βpXnpt, s, �qq Ñ βpXpt, s, �qq locally in measure uniformly in s, t. Moreover,
βpXnpt, s, �qq has uniform absolutely continuous integrals, for»

ΩXBR

|βpXnpt, s, xqq| dx ¤ }β}L8pRdq|Ω|.
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Therefore, we conclude by Lemma 2.6 that

lim
nÑ8

» T

0

»
Rd

BtφtpxqβpX
npt, s, xqq dx dt �

» T

0

»
Rd

BtφtpxqβpXpt, s, xqq dx dt.

It remains to show that

lim
nÑ8

» T

0

»
Rd

φtpxq∇βpXnpt, s, xqq � bn
t pX

npt, s, xqq dx dt

�

» T

0

»
Rd

φtpxq∇βpXpt, s, xqq � btpXpt, s, xqq dx dt.

Notice that since β P C1
c pRdq, we may consider supp β � BR for R ¡ 0 large enough. By

the same argument as above, it suffices to show that

∇βpXnpt, s, �qq � bn
t pX

npt, s, �qq Ñ ∇βpXpt, s, �qq � btpXpt, s, �qq

locally in measure uniformly in s, t, for the uniform compressibility constant and uniform
bound of bn P L1pp0, T q;LqpBR;Rdqq implies that» T

s

»
ΩXBR

|∇βpXnpt, s, xqq � bn
t pX

npt, s, xqq| dx dt

¤ |Ω|1�
1
q }∇β}L8pRdq sup

nPN

�
Ln}b

n}L1pp0,T q;LqpBRqq

�
and so uniform absolutely continuity of integrals holds. But local convergence in measure
follows from Lemma 2.7 with ϕn � ∇β � bn, and so does the lemma.

We are now ready to prove existence and uniqueness of renormalized regular
Lagrangian flows.

Theorem 2.1 (Existence and uniqueness of flows). Let b P L1pp0, T q;Lq
locpRd;Rdqq be

a vector field satisfying (2.2) for some q ¡ 1, Db P L1pp0, T q;Lp
locpRd;Rd�dqq for some

p ¡ 1, and div b ¥ m in p0, T q � Rd for some m P L1pp0, T qq. Then there exists a unique
regular renormalized Lagrangian flow, as in Definition 2.2. Moreover, it holds the forward
semigroup property: for every 0 ¤ s ¤ τ ¤ t ¤ T , it follows that

Xpt, τ,Xpτ, s, xqq � Xpt, s, xq for almost every x P Rd.

Finally, if one further assumes that div b P L1pp0, T q;L8pRdqq, then the above
also holds backward in time, that is, for any s, τ , t P r0, T s. In particular, taking t � s,
we have the well posedness of the inverse of Xpτ, s, �q, with X�1pτ, s, xq � Xps, τ, xq for
almost every x P Rd, and the following regularity holds: X is continuous in t P r0, T s,
s P r0, T s and locally measurable in space, and»

BR

log logpe� |Xpt, s, xq|q dx   8

for all R ¡ 0 and s, t P r0, T s.



Chapter 2. Global results with Lagrangian approach 36

Proof. Notice that uniqueness follows from Proposition 2.1, for if X and X̄ are flows
associated to b, then for all r ¡ 0 and γ ¡ 0 it holds

|Br X t|Xpt, s, �q � X̄pt, s, �q| ¡ γu| ¤ η for all η ¡ 0 and t P rs, T s,

and so uniqueness holds. For existence, we shall use Lemma 2.8 with bn � ζn � b, where
ζnpxq � nζpnxq and ζ is a nonnegative radial convolution kernel with support in B1. By
Young convolution inequality, bn satisfies (2.12) and converges in L1pp0, T q;L1

locpRd;Rdqq to
b. Moreover, since div bn

t ¥ mptq for ζ is nonnegative, we have that Xn has compressibility
constant Ln � expp}m}L1pp0,T qqq. Therefore, the existence follows.

For the forward semigroup property, notice that for the approximate flows it
holds for every 0 ¤ s ¤ τ ¤ t ¤ T that

Xnpt, τ,Xnpτ, s, xqq � Xnpt, s, xq for every x P Rd.

By considering φn :� Xnpt, s, �q and φ :� Xpt, s, �q, we have by Lemma 2.7 that uniformly
in s P r0, T s, τ P rs, T s, and t P rτ, T s it holds

Xnpt, τ,Xnpτ, s, �qq Ñ Xpt, τ,Xpτ, s, �qq locally in measure in Rd.

Therefore, the forward semigroup property follows. Finally, if div b P L1pp0, T q;L8pRdqq,
one has existence and uniqueness for the backward flow, that is, a renormalized regular
Lagrangian flow for the vector field �bT�tpxq, with the compressibility constant L �

expp} div b}L1pp0,T q;L8pRdqqq, and so by the same argument as before, now for any time
s, τ, t P r0, T s, the result follows.

In the more regular case of div b P L1pp0, T q;L8pRdqq, we are also able to prove
the change of variables associated to x ÞÑ Xpt, s, xq.

Proposition 2.2 (Change of variables). Let b P L1pp0, T q;L1
locpRd;Rdqq be a vector field

satisfying (2.2), Db P L1pp0, T q;Lp
locpRd;Rd�dqq for some p ¡ 1, and div b P L1pp0, T q;L8pRdqq.

Then it holds
Ld � Xpt, s, �q# exp

�» t

s

div bτ pXpτ, s, �qq dτ



Ld. (2.13)

Moreover, if there exists some function F pt, s, xq such that

Ld � Xpt, s, �q#F pt, s, �qLd, (2.14)

then we have for almost every x P Rd and for all t, s P r0, T s that

F pt, s, xq � exp
�» t

s

div bτ pXpτ, s, �qq dτ


.

In particular, we have also, by the semigroup property, the other change of variables

exp
�
�

» t

s

div bτ pXpτ, t, �qq dτ



Ld � Xpt, s, �q#Ld. (2.15)
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Proof. Notice that if there exists F and F 1 satisfying (2.14), then

Xpt, s, �q#F pt, s, �qLd � Xpt, s, �q#F
1pt, s, �qLd.

On the other hand, given g P L1pRdq, we have that fpxq � gpXps, t, xqq defines a function
in f P L1pRdq, by the compressibility both forward and backward in time, and so by
testing the above with f , we have that»

Rd

gpxqF pt, s, xq dx �
»
Rd

gpxqF 1pt, s, xq dx,

where we have used that X�1pt, s, xq � Xps, t, xq. Therefore, we conclude that F pt, s, �q �
F 1pt, s, �q for almost every x P Rd. Hence, it suffices to prove (2.13)

For this purpose, notice that for approximation flows Xn associated to bn �

ζn � b, where ζn as in the previous proof, it holds

Ld � Xnpt, s, �q# exp
�» t

s

div bn
τ pX

npτ, s, �qq dτ



Ld.

Notice that div bn Ñ div b in L1pp0, T q;L1
locpRdqq and div bn P L1pp0, T q;L8pRdqq uni-

formly in n P N, and so by the local measure convergence of Xnpτ, s, �q uniformly in
τ, s P r0, T s, we have that

div bnpXnp�, s, �qq Ñ div bpXp�, s, �qq in L1pp0, T q;L1
locpRdqq

uniformly in s P r0, T s. Indeed, notice that since» T

0

»
Ω
| div bτ pX

npτ, s, xqq| dx dτ ¤ |Ω| sup
nPN

} div bn}L1pp0,T q;L8pRdqq,

which combined with Lemma 2.7 with ϕn � div bn
t and Lemma 2.6 implies the L1 conver-

gence. In particular, it holds uniformly in s, t P r0, T s that» t

s

div bn
τ pX

npτ, s, �qq dτ Ñ
» t

s

div bτ pXpτ, s, �qq dτ in L1
locpRdq.

Now, in order to conclude (2.13), it suffices to show that it holds uniformly in s, t P r0, T s

φpXnpt, s, �qq Ñ φpXpt, s, �qq in L1pRdq

for all φ P CcpRdq. This holds once again by Lemma 2.6: the local convergence in measure
follows from Lemma 2.7, since that, by the compressibility of flows, we have

}φ �Xnpt, s, �q}L1pRdq ¤ sup
nPN

Ln}φ}L1pRdq;

the uniform absolutely continuity of integrals follows by»
Ω
|φpXnpt, s, xqq| dx ¤ |Ω|}φ}L8pRdq;
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and the uniform integrability follows from Lemma 2.5, for suppφ � Bλ for some λ ¡ 0,
and so »

Rd Br

|φpXnpt, s, xqq| dx ¤ }φ}L8pRdq|pRd Brq XGn
λ| ¤ }φ}L8pRdqgpr, λq.

Thus, (2.15) follows, which is equivalent to (2.13).

Remark 3. The existence of a nonnegative function

F P Cpr0, T s � r0, T s;L8pRdq � w�q

satisfying (2.14) is guaranteed by only assuming the weaker condition div b ¥ m in
p0, T q � Rd; see [22, Proposition 6.7, proof of step 2].

Finally, we show that solutions defined by the transport of the initial data by
the regular flow, in the sense (1.3) or (1.5) for the transport and continuity equations,
respectively, are also renormalized solutions, in a sense similar as in Condition 1.1.

Theorem 2.2 (Existence of renormalized solutions). Let b P L1pp0, T q;Lq
locpRd;Rdqq be

a vector field satisfying (2.2), with Db P L1pp0, T q;Lp
locpRd;Rd�dqq for some p, q ¡ 1, and

div b P L1pp0, T q;L8pRdqq. Moreover, let u as in (1.3). Then for any β P L8pRq X CpRq,
the function β �u is a weak solution of the initial value problem of transport equation (1.1),
that is, it solves» T

0

»
Rd

rBtφtpxq � φtpxq div btpxq �∇φtpxq � btpxqsβputpxqq dx dt �
»
Rd

φ0pxqβpu0pxqq dx

for all φ P C1
c pr0, T q � Rdq and with initial data u0 P L

1pRdq. Analogously, let v as in
(1.5). Then for any β P L8pRq X C1pRq and logp2� | � |qp1� | � |q|β1p�q| also bounded, the
function β � v is a weak solution of the initial value problem of continuity equation (1.4),
that is, it solves» T

0

»
Rd

rBtφtpxq �∇φtpxq � btpxq � φtpxq div btpxqsβpvtpxqq

� φtpxq div btpxqβ
1pvtpxqqvtpxq dx dt �

»
Rd

φ0pxqβpv0pxqq dx

for all φ P C1
c pr0, T q � Rdq and with initial data u0 P L

1pRdq.

Proof. Notice that for the transport equation case, the function β � u is given by β �

u0pXp0, t, xqq. Therefore, by a density argument, it suffices to show that wpXp0, t, xqq is
a solution (in the weak sense) to the transport equation starting at w P C8

c pRdq. But this
can be proven by considering approximations flows Xn associated to bn

t � ζn � bt in a
similar fashion as in Proposition 2.2. Indeed, bn and div bn converge in L1pp0, T q;L1

locpRdqq
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to b and div b, respectively, and we have also the uniform in time convergence in measure
of Xn, and the uniform bounds» T

0

»
BR

|wpXnp0, t, xqq| dx dt ¤ T |BR|}w}L8pRdq;» T

0

»
ΩXBR

|wpXnp0, t, xqq| dx dt ¤ T |Ω|}w}L8pRdq,

where suppφ � BR, and so wpXnp0, t, �qq converges to wpXp0, t, �qq in L1
locpRdq uniformly

in t P r0, T s.

For the continuity equation case, it suffices to consider β P C1
c pRdq using the

approximations βϵ in the proof of Lemma 2.8. Moreover, by a density argument it suffices
to consider v0 P C

8
c pRdq. By considering bn � ζn � b with associated Xn, we have as

in the transport case that bn and div bn converge in L1pp0, T q;L1
locpRdqq to b and div b,

respectively, as well as v0pX
np0, t, �qq converges to v0pXp0, t, �qq in L1

locpRdq uniformly for
t P r0, T s. Moreover, we have the following uniform convergence with respect to t P r0, T s
proven in Proposition 2.2:

exp
�
�

» t

0
div bn

τ pX
npτ, t, �qq dτ



Ñ exp

�
�

» t

0
div bτ pXpτ, t, �qq dτ



in L1

locpRdq.

In particular, this implies that

vn
t :� v0pX

np0, t, �qq exp
�
�

» t

0
div bn

τ pX
npτ, t, �qq dτ



Ñ vt in L1

locpRdq

uniformly for t P p0, T q. Of course, this implies that βpvn
t q Ñ βpvtq and β1pvn

t q Ñ β1pvtq in
L1

locpRdq uniformly for t P p0, T q. Therefore, the theorem follows.

Remark 4. If one replaces the assumption div b P L1pp0, T q;L8pRdqq with

div b P L1
locpp0, T q � Rdq and div b ¥ m in p0, T q � Rd,

then it is possible to show that

utpxq � uT pXpT, t, xqq

is a solution of the terminal value problem$&
%Btu� b �∇u � 0 in r0, T q � Rd;

ut�T � uT on Rd;

see [22, Proposition 7.2]. Moreover, in [22, Propositions 7.2 and 7.5], it was proven that
if uT P LqpRdq for some q P r1,8s, then the Lagrangian solution for the transport and
continuity equation u P Cpp0, T q;LqpRdqq if q P r1,8q or

u P Cpp0, T q;L8pRdq � w�q X Cpp0, T q;L1
locpRdqq
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if q � 8. If one only has that uT is a measurable function, then the Lagrangian solution is
continuous in time and locally measurable in space, and it is a renormalized solutions of
the transport or continuity equation.

Remark 5. If one assumes that bn has the relevant uniform boundedness with respect to
n, namely the ones of b from Theorem 2.2, then we have stability of Lagrangian solutions
associated to transport and continuity equations [22, Propositions 7.3 and 7.6]. With this
result at hand, it is possible to prove that if one has initial data un

0 weakly converging to
u0 in LqpRdq for some q P r1,8s, then one has weak convergence if q P r1,8q (and weak*
convergence if q � 8) of Lagrangian solutions un starting at un

0 to u Lagrangian solutions
with initial data u; see [22, Proposition 7.7] for these results for transport and continuity
equations.

2.3 Singular kernels and W 1,1: the Bouchut-Crippa’s result
In the previous section, the key estimate in Proposition 2.1 and the control

Lemma 2.5 are sufficient to imply uniqueness, existence and forward semigroup property for
the flow of a vector field b P L1pp0, T q;Lq

locpRd;Rdqq (for some q ¡ 1) satisfying also div b ¥

m and the growth assumption (2.2). Indeed, notice that Lemma 2.8, Theorem 2.1, and even
the results assuming div b P L1pp0, T q;L8pRdqq, such as Proposition 2.2 and Theorem 2.2
do not depend explicitly on the assumption on the Jacobian Db P L1pp0, T q;Lp

locpRd;Rd�dqq

for some p ¡ 1 nor on (2.2), but rather on the fundamental estimate

|Br X t|Xpt, s, �q � X̄pt, s, �q| ¡ γu| ¤ Cγ,η,r}b� b̄}L1pp0,T q�Bλq � η

(see Proposition 2.1) and on the control of sub and superlevels

|Br Gλ| ¤ fpr, λq and |Gλ Br| ¤ gpr, λq

(see Lemma 2.5).

Accordingly, we shall reproduce Bouchut-Crippa’s proof of the analogous result
Proposition 2.1 for vector fields satisfying (1.6) (instead of the milder (2.2)) and

b P Lp
locpp0, T q � Rd;Rdq for some p ¡ 1;

Bjb
i
t �

m̧

k�1
Γijk � gijk

t in the weak sense,
(2.16)

where Γijk is a singular kernel as in Section 2.1 and gijk P L1pp0, T q � Rdq for each
i, j, k P t1, . . . , du.

Remark 6. Notice that the space of vector fields satisfying (2.16) are not contained nor
contains the space L1pp0, T q; BVpRdqq. On one hand, this implies that the class of vector
fields studied by Bouchut-Crippa did not provide a direct Lagrangian approach for the
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vector fields studied by Ambrosio [4]; on the other hand, notice that it provides a suitable
flow for vector fields beyond the scope of renormalization technique.

For this purpose, we begin by recalling two slightly obscure results concerning
the space L1pRdq. The first one is an interpolation result between integrable function
spaces and weak Lebesgue spaces. For a proof, we refer to [22, Lemma 2.2].

Lemma 2.9 (Interpolation for L1). Let Ω be a finite measurable subset of Rd and u P

Lq
wpΩq X L1

wpΩq for some q ¡ 1. Then u P L1pΩq, and it holds the estimate

}u}L1pΩq ¤
q

q � 1 |||u|||L1
wpΩq

�
1� log

�
|Ω|1�

1
q |||u|||Lq

wpΩq

|||u|||L1
wpΩq

��
if q   8;

}u}L1pΩq ¤ |||u|||L1
wpΩq

�
1� log

�
|Ω|}u}L8pΩq

|||u|||L1
wpΩq

��
if q � 8.

We also recall a uniform decomposition for a sequence of functions uniformly in-
tegrable and with uniform absolutely continuous integrals; as mentioned in [22, Proposition
5.8], the proof is quite straightforward.

Lemma 2.10. Let tfnunPN be a bounded sequence in L1pRdq and let p P r1,8q. Then the
sequence is uniformly integrable and with uniform absolutely continuous integrals if and
only if given ϵ ¡ 0, there exists a constant Cϵ ¡ 0 and a finite measure Borel set Ωϵ � Rd

such that for any n P N, we have
fn � f 1

n � f 2
n,

where }f 1
n}L1pRdq ¤ ϵ and supp f 2

n � Ωϵ, }f 2
n}LppRdq ¤ Cϵ.

Finally, as stated in Section 2.1, the cancellation property associated to singular
kernels implies that a “composition” of them is also a singular kernel, i.e. for Γ1 and Γ2

singular kernels, Γ1 � Γ2 is also one. We shall state an analogous result for singular kernels
and grand maximal operator which were defined in Section 2.1. For a proof, we refer to
[22, Theorem 3.3]; we shall revisit this type of result in Chapter 4 in an analogous case,
and since the proof is quite similar, we skip the one for the following result.

Definition 2.4 (Singular kernel of fundamental type). We say Γ is a singular kernel of
fundamental type if it satisfies the following: there exists a constant C0 ¡ 0 such that

|Γpxq| ¤ C0|x|
�d, |∇Γpxq| ¤ C0|x|

�d�1 @x P Rd t0u, and
����
»

BR Br

Γpxq dx
���� ¤ C0

for all 0   r   R   8.

Theorem 2.3 (Weak Lebesgue space estimate). Let Γ be a singular kernel of fundamental
type and tρνuν be a family of functions in L8pRdq such that supp ρν � B1, sup

ν
}ρν}L1pRdq ¤
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C0, and
sup
ϵ¡0

sup
ν
}pϵdΓpϵ � qq � ρν}L8pRdq ¤ C0.

3

Therefore, it holds the following:

(i) there exists a constant C ¡ 0 depending on C0 and on the dimension d such that

|||Mρν pΓ � uq|||L1
wpRdq ¤ C}u}L1pRdq for all u P L1pRdq;

(ii) if ρν P C8
c pRdq, then it holds with the same constant C ¡ 0 as before that

|||Mρν pΓ � µq|||L1
wpRdq ¤ CµpRdq for all µ P MpRdq;

(iii) if sup
ν
}ρν}L8pRdq ¤ C0, then there exists a constant C 1 ¡ 0 depending on C0 ¡ 0, on

dimension d, and on p P p1,8q such that

}Mρν pΓ � uq}LppRdq ¤ C 1}u}LppRdq for all u P LppRdq.

We are now ready to state the Proposition below, which states fundamental
estimate (the same as Proposition 2.1) associated to vector fields satisfying (2.16) found
in [22, Proposition 5.9]. We remark that (2.2) is no longer sufficient for our computations,
and so we assume the classical (1.6).

Proposition 2.3. Let b and b̄ be vector fields satisfying (1.6), with b as in (2.16), and
X, X̄ their renormalized regular Lagrangian flows starting at time s with compressibility
constants L and L̄, respectively. Then for every γ ¡ 0, η ¡ 0, and r ¡ 0, there exists λ ¡ 0
and a constant Cγ,η,r ¡ 0 such that

|Br X t|Xpt, s, �q � X̄pt, s, �q| ¡ γu| ¤ Cγ,η,r}b� b̄}L1pp0,T q�Bλq � η

uniformly in s P r0, T s and t P rs, T s. The constant Cγ,η,r depends only on its subscripts,
the compressibility constants L and L̄, the norms (1.6) of b and b̄, }b}Lppps,tq�Bλq for any
t P ps, T q, }gijk}L1pp0,T q�Rdq, and the constants at Theorem 2.3.

Proof. Analogously to the proof of Proposition 2.1, we consider now for fixed δ ¡ 0, λ ¡ 0,
and t P rs, T s the function

Φδptq �

»
BrXGλXḠλ

log
�

1� |Xpt, s, xq � X̄pt, s, xq|

δ



dx,

3 Such condition is fulfilled if the family ρν is regular enough, e.g. ρν P HspRdq for s ¡ d{2.
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and it satisfies for all τ P rs, T s

Φδpτq �

» τ

s

Φ1
δptq dt ¤

» τ

s

»
BrXGλXḠλ

|btpXpt, s, xqq � b̄tpX̄pt, s, xqq|

|Xpt, s, xq � X̄pt, s, xq| � δ
dx dt

¤

» τ

s

»
BrXGλXḠλ

|btpX̄pt, s, xqq � b̄tpX̄pt, s, xqq|

|Xpt, s, xq � X̄pt, s, xq| � δ
dx dt

�

» τ

s

»
BrXGλXḠλ

|btpXpt, s, xqq � btpX̄pt, s, xqq|

|Xpt, s, xq � X̄pt, s, xq| � δ
dx dt

�:Ipτq � IIpτq

The first integral on the right-hand side is bounded as in Proposition 2.1:

Ipτq ¤ L̄

δ
}b� b̄}L1pp0,T q�Bλq.

For the second integral, we use the second part of Lemma 2.2, for Theorem 2.3 gives that
MΥj,ξpBjb

i
tqpxq   84 for all i, j P t1, . . . , du and almost every x P Rd, t P rs, T s, and so

IIpτq ¤
ḑ

i,j�1

» τ

s

»
BrXGλXḠλ

min
#
MΥj,ξBjb

i
tpXpt, s, xqq �MΥj,ξBjb

i
tpX̄pt, s, xqq,

|bi
tpXpt, s, xqq|

δ
�
|bi

tpX̄pt, s, xqq|

δ

+
dx.

By Lemma 2.10 with n � pi, j, kq and (2.16), we may write

Bjb
i
tpxq �

m̧

k�1
Γijk � gijk

t pxq �
m̧

k�1
Γijk � ḡijk

t pxq � Γijk � g̃ijk,2
t pxq,

where }ḡijk}L1pp0,T q�Rdq ¤ ϵ and }g̃ijk,2}L2pp0,T q�Rdq ¤ Cϵ uniformly in i, j, k. Therefore, we
have that

IIpτq ¤
m̧

k�1

ḑ

i,j�1

» τ

s

»
BrXGλXḠλ

min
#
MΥj,ξΓijk � ḡijk

t pXpt, s, xqq

�MΥj,ξΓijk � ḡijk
t pX̄pt, s, xqq,

|bi
tpXpt, s, xqq|

δ
�
|bi

tpX̄pt, s, xqq|

δ

+

�MΥj,ξΓijk � g̃ijk
t pXpt, s, xqq

�MΥj,ξΓijk � g̃ijk
t pX̄pt, s, xqq dx dt.

The second term is simply bounded by the compressibility assumption Definition 2.2 (ii)
and Theorem 2.3, so that» τ

s

»
BrXGλXḠλ

MΥj,ξΓijk � g̃ijk
t pXpt, s, xqq dx dt

¤ rpτ � sq|Br|s
1{2L}MΥj,ξΓijk � g̃ijk}L2pps,τq�Bλq

¤ CrT |Br|s
1{2L}g̃ijk}L2pp0,T q�Rdq ¤ C0Cϵ,

4 Recall that Bibj � Γij � g, and an weakly summable function is finite almost everywhere.
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and analogously the third term is bounded. Therefore, it suffices to estimate the first integral.
For this purpose, we shall exploit Lemma 2.9: we have a L1

w�bound by Definition 2.2 (ii)
and Theorem 2.3, for

������MΥj,ξΓijk � ḡijkpXp�, s, �qq
������

L1
wpps,τq�Gλq

dt ¤ CL}ḡijk}L1pp0,T q�Rdq ¤ C1ϵ,

and also the Lp
w�bound follows by (2.16) and Definition 2.2 (ii):

|||bpXp�, s, �qq|||Lp
wpps,τq�Gλq

¤ CL}b}Lppps,τq�Bλq ¤ C2.

Therefore, we have that (recall that t ÞÑ t logpC{tqq is and increasing function)
»

BrXGλXḠλ

min
#» τ

s

MΥj,ξΓijk � ḡijk
t pXpt, s, xqq �MΥj,ξΓijk � ḡijk

t pX̄pt, s, xqq dt,

» τ

s

|bi
tpXpt, s, xqq|

δ
�
|bi

tpX̄pt, s, xqq|

δ
dt
+

dx

¤ 2C1ϵ

�
1� log

�
rT |Br|s

1� 1
pC2

C1δϵ

��
,

and so it holds

Φδpτq ¤
C

δ
}b� b̄}L1pp0,T q�Bλq � C0Cϵ � C1ϵ

�
1� log

�
rT |Br|s

1� 1
pC2

C1ϵδ

��
.

On the other hand, we have a lower bound for Φδpτq computed in Proposition 2.1,
but now with logp1� |x|q instead of log logpe� |x|q:

|Br X t|Xpτ, s, �q � X̄pτ, s, �q| ¡ γu| ¤
Φδpτq

log
�
1� γ

δ

� � fpr, λq � f̄pr, λq

¤
C

log
�
1� γ

δ

�
δ
}b� b̄}L1pp0,T q�Bλq

�
C0Cϵ

log
�
1� γ

δ

�
�

C1ϵ

log
�
1� γ

δ

�
�

1� log
�
rT |Br|s

1� 1
pC2

C1ϵδ

��

� fpr, λq � f̄pr, λq

We now proceed analogously to the conclusion of Proposition 2.1: by Lemma 2.5, we may
choose λ large enough so that fpr, λq   η{4 and f̄pr, λq   η{4. Moreover, we may take ϵ
small enough so that

C1ϵ

log
�
1� γ

δ

�
�

1� log
�
rT |Br|s

1� 1
pC2

C1ϵδ

��
 
η

4 ,
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for the above is uniformly bounded with respect to δ5. Moreover, since λ and ϵ are now
fixed, we choose δ small enough so that

C0Cϵ

log
�
1� γ

δ

�   η

4 ,

Defining the constant
Cγ,η,r :� C

δ log
�
1� γ

δ

� ,
we have that the proposition follows.

Remark 7. We conclude this section by proving that Proposition 2.3 can be applied to
vector fields b P Lppp0, T q;W 1,1

loc pRd;Rdqq if p ¡ 1. For this purpose, we proceed as Nguyen
[70]: first, recall that we have the identity

bt �
ḑ

k�1
R2

kpχRbtq in BR, (2.17)

where χR P C8
c pRdq satisfies χR � 1 in B2R and χR � 0 in Rd B4R and Rk is the Riesz

transforms in Rd for k P t1, . . . , du. Now, notice that the proof of Proposition 2.3 also
holds for vector fields satisfying a similar structure as in (2.17) for every R ¡ 0, that is, for
any given R ¡ 0, there exists singular kernels Γj

R and functions gj,R P Lppp0, T q;W 1,1pRdqq

for some p ¡ 1 such that

bt �
m̧

k�1
Γk,R � gk,R

t in BR for almost all t P p0, T q.

Indeed, the Sobolev embedding implies that gj,R P Lqpp0, T q � Rdq for q � mintp, 3{2u.
Moreover, we have that

Bjb
i
tpxq �

m̧

k�1
Γik,R � Bjg

k,R
t in BR for almost all t P p0, T q,

and Bjg
k,R P L1pp0, T q �Rdq uniformly in j, k, and R ¡ 0. Since the integral defining Φδ is

local in Br, then the thesis of Proposition 2.3 follows. In particular, by (2.17), we have
that results of Section 2.1 also hold for b P Lppp0, T q;W 1,1

loc pRd;Rdqq if p ¡ 1.

It is interesting to observe that in the result Proposition 2.3 we assumed a mild
higher integrability in time, which is undesirable not only from a mathematical perspective,
but also from a compatibility one: we only assumed so far that b P L1pp0, T q;L1pRdq �

L8pRdqq, so that (1.6) holds, and Db P L1pp0, T q;W 1,ppRd;Rd�dqq if p ¡ 1. Since (2.17) is
just a technical consideration, we only needed to assume higher integrability in time to
“match” the hypothesis on Proposition 2.3. This shall be addressed in Section 2.5 in a
more general context of BV vector fields.
5 Here, the proof requires the growth assumption (1.6) instead of the more mild (2.2).
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Remark 8. It is possible to extend the aforementioned results for vector fields with Vlasov-
type structure, as in Remark 9. For this purpose, the authors in [18] proved that with the
additional structure of the vector field, one may relax (1.6) for only assuming the control
of sublevels, namely |Br Gλ| being arbitrary small for a fixed r; see Lemma 2.5. Moreover,
the same authors proved in [17] that one has compatibility of solutions to the 2D Euler
equation and 2D Euler vorticity equation$''''&

''''%
Btu� ωuK �∇

�
p�

|u|2

2



� 0,

div u � 0,

ut�0 � u0;

$&
%Btω � u �∇ω � 0,

ωt�0 � ω0,

where u � K � ω and ∇K is a singular kernel of fundamental type. More precisely, they
show that solutions transported by the flow, weak and symmetrized solutions are all
equivalent notions.

2.4 Anisotropic vector fields: Bohun-Bouchut-Crippa’s result
The duo Bouchut-Crippa further explored the result of Section 2.3–joined with

Bohun–for vector fields satisfying analogous assumptions of (2.16):

btpx1, x2q � pb1
t px1, x2q, b

2
t px1, x2qq with the splitting Rd � Rn1 � Rn2 ;

b P Lp
locpp0, T q � Rd;Rdq for some p ¡ 1;

Dbt �

�
D1b

1 D2b
1

D1b
2 D2b

2

�
in the weak sense,

(2.18)

as well as the ever present growth assumption (1.6). The structure of the derivative is
assumed to be the following:

pD1b
1
t q

ijpx1, x2q �
m̧

k�1
αijk

t px2qΓijk
1 � gijk

t px1q for i, j P t1, . . . , n1u;

pD2b
1
t q

ijpx1, x2q �
m̧

k�1
βijk

t px2qΓijk
2 � ḡijk

t px1q for i P t1, . . . , n1u, j P tn1 � 1, . . . , du;

pD1b
2
t q

ijpx1, x2q �
m̧

k�1
γijk

t px2qΓijk
3 � µijk

t px1q for i P tn1 � 1, . . . , du, j P t1, . . . , n1u;

pD2b
2
t q

ijpx1, x2q �
m̧

k�1
ψijk

t px2qΓijk
4 � g̃ijk

t px1q for i, j P tn1 � 1, . . . , du,

(2.19)

where for all suitable i, j, k, it holds αijk, βijk, γijk, ψijk P L8pp0, T q;LqpRn2qq for some
q ¡ 1, Γijk

1 , . . . ,Γijk
4 are singular kernels of fundamental type in Rn1 as in Theorem 2.3,

gijk, ḡijk, g̃ijk P L1pp0, T q � Rn1q, and µ P L1pp0, T q; MpRn1qq.
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Remark 9. The natural application of vector fields with structure (2.18) in Vlasov type
systems, where btpx, vq � pξpvq, Etpxqq and px, vq P Rd � Rd, being ξ usually a Lipschitz
function and Etpxq � ∇p�∆q�1µt for µ a integrable in time finite measure, and so

Dbtpx, vq �

�
0 ∇vξpvq

D2p�∆q�1µtpxq 0

�
in the weak sense.

Notice that for every i, j P t1, . . . , du

Bijp�∆q�1µtpxq �

»
Rd

δij � dωipx� yqωjpx� yq

|x� y|d
dµtpyq �: Γij � µtpxq,

where ωpzq � z{|z| is the direction vector field. It is straightforward to show that Γij is
a singular kernel of fundamental type. The authors of [18] remarked that the strategy
they used for the case µt � ρtLd for some bounded in time summable function ρ was
not suitable for a precise definition of a Lagrangian solution without energy hypothesis.
This was later remedied by Ambrosio-Colombo-Figalli in [6] with a notion of generalized
solution of such equation; we shall explore this in Section 3.2.

In order to prove the analogous result of Proposition 2.1 and Proposition 2.3,
we shall state the “anisotropic” version of Lemma 2.2 proved in [16, Lemma 5.5]:

Lemma 2.11. Let u P L1
locpRdq and A the matrix

A � diagtδ1, . . . , δ1looomooon
n1 times

, δ2, . . . , δ2looomooon
n2 times

u.

Assume further that it holds in the weak sense

Bjupx1, x2q �
m̧

k�1
αjkpx2qΓjk � µjkpx1q

for some αjk P L1pp0, T q;LqpRn2qq for some q ¡ 1, being µjk a finite measure in Rn1, and
Γjk a singular kernel of fundamental type for all j P t1, . . . , du and k P t1, . . . ,mu. Then
it holds for almost every x, y P Rd that

|upxq � upyq| ¤ |A�1rx� ys|
�
UpA�1xq � UpA�1yq

�
where

Upxq :�
ḑ

j�1

m̧

k�1
AjjMΥj,ξ

1 bΥj,ξ
2

�
αjkpδ2 � qpδ

n1
1 Γjkpδ1 � q � µ

jkpδ1 � qq
�
pxq.

Moreover, the above satisfies the following estimates: denoting B1
R and B2

R the balls in Rn1

and Rn2, respectively, there exists a constant Cq,R,m,d ¡ 0 depending only on the subscripts
and on Γjk such that������UpA�1 � q

������
L1

wpB
1
R�B2

Rq
¤ Cq,R,m,d

�
δ1

n1̧

j�1

m̧

k�1
}αjk}LqpRn2 qµ

jkpRn1q

� δ2

ḑ

j�n1�1

m̧

k�1
}αjk}LqpRn2 qµ

jkpRn1q
	
.
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Finally, if µjk � gjkLd for some gjk P LqpRn1q, then there exists a constant Cq,d ¡ 0
depending only on the subscripts such that

}UpA�1 � q}LqpRdq ¤ Cq,d

�
δ1

n1̧

j�1

m̧

k�1
}αjk}LqpRn2 q}g

jk}LqpRn1 q

� δ2

ḑ

j�n1�1

m̧

k�1
}αjk}LqpRn2 q}g

jk}LqpRn1 q

	
.

We are now ready to prove the fundamental estimate for the anisotropic
case (2.18) found in [16, Theorem 6.1]. The proof follows the same idea as the proof of
Proposition 2.3.

Proposition 2.4. Let b and b̄ be vector fields satisfying (1.6), with b as in (2.18) and
(2.19), and X, X̄ their renormalized regular Lagrangian flows starting at time s with
compressibility constants L and L̄, respectively. Then for every γ ¡ 0, η ¡ 0, and r ¡ 0,
there exists λ ¡ 0 and a constant Cγ,η,r ¡ 0 such that

|Br X t|Xpt, s, �q � X̄pt, s, �q| ¡ γu| ¤ Cγ,η,r}b� b̄}L1pp0,T q�Bλq � η

uniformly in s P r0, T s and t P rs, T s. The constant Cγ,η,r depends on its subscripts, as well
as the compressibility constants L and L̄, on the norms (1.6) of b and b̄, on }b}Lppps,tq�Bλq

for any t P ps, T q, on the norms αijk, βijk, γijk, ψijk P L8pp0, T q;LqpRn2qq for some q ¡ 1,
gijk, ḡijk, g̃ijk P L1pp0, T q � Rn1q, and µ P L1pp0, T q; MpRn1qq, and on the constants at
Theorem 2.3 for Γijk

1 , . . . ,Γijk
4 .

Proof. For a fixed matrix A as in Lemma 2.11 with δ1 ¤ δ2 and s P r0, T s, we define for
t P rs, T s

Φδ1,δ2ptq �

»
BrXGλXḠλ

log
�
1� |A�1rXpt, s, xq � X̄pt, s, xqs|

�
dx.

Using the same argument as in Proposition 2.3, we have that

Φδ1,δ2pτq �

» τ

s

Φ1
δ1,δ2ptq dt ¤

» τ

s

»
BrXGλXḠλ

|A�1rbtpXpt, s, xqq � b̄tpX̄pt, s, xqqs|

|A�1rXpt, s, xq � X̄pt, s, xqs| � 1
dx dt

¤

» τ

s

»
BrXGλXḠλ

|A�1rbtpX̄pt, s, xqq � b̄tpX̄pt, s, xqqs| dx dt

�

» τ

s

»
BrXGλXḠλ

|A�1rbtpXpt, s, xqq � btpX̄pt, s, xqqs|

|A�1rXpt, s, xq � X̄pt, s, xqs| � 1
dx dt

�:Ipτq � IIpτq.

The first term is estimated using the compressibility and δ1 ¤ δ2:

Ipτq ¤ }b� b̄}L1pps,τq�Gλq

δ1
. (2.20)
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The second term can be estimated as in Proposition 2.3:

IIpτq ¤
» τ

s

»
BrXGλXḠλ

min
#
|A�1rbtpXpt, s, xqq � btpX̄pt, s, xqqs|,

1
δ1

|rb1
t pXpt, s, xqq � b1

t pX̄pt, s, xqqs|

|A�1rXpt, s, xq � X̄pt, s, xqs|

�
1
δ2

|rb2
t pXpt, s, xqq � b2

t pX̄pt, s, xqqs|

|A�1rXpt, s, xq � X̄pt, s, xqs|

+
dx dt.

(2.21)

By Lemma 2.11, we have that

|rb1
t pXpt, s, xqq � b1

t pX̄pt, s, xqqs|

|A�1rXpt, s, xq � X̄pt, s, xqs|
¤ U1pA�1Xpt, s, xqq � U1pA�1X̄pt, s, xqq;

|rb2
t pXpt, s, xqq � b2

t pX̄pt, s, xqqs|

|A�1rXpt, s, xq � X̄pt, s, xqs|
¤ U2pA�1Xpt, s, xqq � U2pA�1X̄pt, s, xqq,

where U1 and U2 are defined analogously as in Lemma 2.11:

U1
t pxq :�

ḑ

i,j�1

m̧

k�1
AjjMΥj,ξ

1 bΥj,ξ
2

�
αijk

t pδ2 � qpδ
n1
1 Γijk

1 pδ1 � q � g
ijk
t pδ1 � qq

� βijk
t pδ2 � qpδ

n1
1 Γijk

2 pδ1 � q � ḡ
ijk
t pδ1 � qq

�
pxq,

U2
t pxq :�

ḑ

i,j�1

m̧

k�1
AjjMΥj,ξ

1 bΥj,ξ
2

�
γijk

t pδ2 � qpδ
n1
1 Γijk

3 pδ1 � q � µ
ijk
t pδ1 � qq

� ψijk
t pδ2 � qpδ

n1
1 Γijk

2 pδ1 � q � g̃
ijk
t pδ1 � qq

�
pxq.

By Lemma 2.10, we have the decomposition for each i, j P t1, . . . , du and k P t1, . . . ,mu:

gijk � gijk,1 � gijk,2, ḡijk � ḡijk,1 � ḡijk,2, g̃ijk � g̃ijk,1 � g̃ijk,2,

where supp gijk,2, supp ḡijk,2, supp g̃ijk,2 � Ωϵ and

}gijk,1}L1pp0,T q�Rn1 q   ϵ, }ḡijk,1}L1pp0,T q�Rn1 q   ϵ, }g̃ijk,1}L1pp0,T q�Rn1 q   ϵ,

}gijk,2}Lqpp0,T q�Rn1 q   Cϵ, }ḡijk,2}Lqpp0,T q�Rn1 q   Cϵ, }g̃ijk,2}Lqpp0,T q�Rn1 q   Cϵ.

Now, we may further split the functions U1 and U2 as

U1
t pxq � U11

t pxq � U12
t pxq and U2

t pxq � U20
t pxq � U21

t pxq � U22
t pxq

where for l P t1, 2u we define

U1l
t pxq :�

ḑ

i,j�1

m̧

k�1
AjjMΥj,ξ

1 bΥj,ξ
2

�
αijk

t pδ2 � qpδ
n1
1 Γijk

1 pδ1 � q � g
ijk,l
t pδ1 � qq

� βijk
t pδ2 � qpδ

n1
1 Γijk

2 pδ1 � q � ḡ
ijk,l
t pδ1 � qq

�
pxq,
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and for the U2 splitting we define

U20
t pxq :�

ḑ

i,j�1

m̧

k�1
AjjMΥj,ξ

1 bΥj,ξ
2

�
γijk

t pδ2 � qpδ
n1
1 Γijk

3 pδ1 � q � µ
ijk
t pδ1 � qq

�
pxq,

U2l
t pxq :�

ḑ

i,j�1

m̧

k�1
AjjMΥj,ξ

1 bΥj,ξ
2

�
ψijk

t pδ2 � qpδ
n1
1 Γijk

4 pδ1 � q � g̃
ijk,l
t pδ1 � qq

�
pxq.

Notice that by Lemma 2.11 and δ1 ¤ δ2 we have������U11pA�1 � q
������

L1
wpp0,T q�Bλq

¤ Cϵ pδ1 � δ2q ¤ Cϵδ2,
������U21pA�1 � q

������
L1

wpp0,T q�Bλq
¤ Cϵδ2,

}U12pA�1 � q}Lqpp0,T q�Bλq ¤ Cϵδ2, }U22pA�1 � q}Lqpp0,T q�Bλq ¤ Cϵδ2.

Moreover, we have ������U20pA�1 � q
������

L1
wpp0,T q�Bλq

¤ Cδ1.

Now, by (2.21) and the above definitions, we may estimate

IIpτq ¤
» τ

s

»
D

min
#
|A�1rbtpXq � btpX̄qs|,

U20
t pY q � U20

t pȲ q

δ2

+

�min
#
|A�1rbtpXq � btpX̄qs|,

U21
t pY q � U21

t pȲ q

δ2

+

�
U22

t pY q � U22
t pȲ q

δ2
�
U12

t pY q � U12
t pȲ q

δ1

�min
#
|A�1rbtpXq � btpX̄qs|,

U11
t pY q � U11

t pȲ q

δ1

+
dx dt,

where we simplified the notation; D � Br X Gλ X Ḡλ, Y � A�1Xpt, s, xq, and Ȳ �

A�1X̄pt, s, xq. The third and fourth integrals are trivially estimated using Hölder inequality
and δ1 ¤ δ2: » τ

s

»
D

U12
t pY q � U12

t pȲ q

δ1
dx dt ¤ |Br|

1� 1
qCϵ

δ2

δ1» τ

s

»
D

U22
t pY q � U22

t pȲ q

δ2
dx dt ¤ |Br|

1� 1
qCϵ.

Now, notice that by the compressibility of the flows, δ1 ¤ δ2, and (2.18) that

}A�1rbtpXq � btpX̄qs}Lqpps,τq�Dq ¤
L� L̄

δ1
|Br|

1� 1
p }b}Lppps,τq�Bλq ¤

C 1

δ1
.

Therefore, the first integral is estimated by using Lemma 2.9:
» τ

s

»
D

min
#
|A�1rbtpXq � btpX̄qs|,

U20
t pXq � U20

t pX̄q

δ2

+
dx dt

¤
Cδ1q

δ2pq � 1q

�
1� log

�
δ2C

1

δ2
1C


�
¤
Cδ1

δ2

�
1� log

�
δ2

δ2
1


�
,
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and so does the second and fifth integrals:
» τ

s

»
D

min
#
|A�1rbtpXq � btpX̄qs|,

U21
t pXq � U21

t pX̄q

δ2

+
dx dt

¤
Cϵq

pq � 1q

�
1� log

�
1� C 1

Cϵδ1


�
¤ Cϵ log

�
1
ϵδ1



,

» τ

s

»
D

min
#
|A�1rbtpXq � btpX̄qs|,

U11
t pXq � U11

t pX̄q

δ2

+
dx dt

¤
Cϵqδ2

pq � 1qδ1

�
1� log

�
1� C 1

Cϵδ2


�
¤ Cϵ

δ2

δ1
log

�
1
ϵδ2



.

Therefore by denoting δ1{δ2 � α we have the following estimate

IIpτq ¤ Cϵ

�
1� α

α
� α log

�
1
δ1α


�
� Cϵ

�
1
α

�
log

�
1
ϵδ2



� 1



� 1� log

�
1
ϵδ1


�
. (2.22)

Using the same idea as in Proposition 2.3 and δ1 ¤ δ2, then

|Br X t|Xpτ, s, �q � X̄pτ, s, �q| ¡ γu| ¤
Φδ1,δ2pτq

log
�

1� γ
δ2

	 � fpr, λq � f̄pr, λq.

By the same idea as in Lemma 2.5, then fpr, λq � f̄pr, λq ¤ η{2 for λ large enough. Now,
choose α small enough so that

Cϵ

log
�

1� γ
δ2

	α log
�

1
δ1α



¤
η

6 .

and ϵ ¤ α2 so that

Cϵ

log
�

1� γ
δ2

	 �
1
α

�
log

�
1
ϵδ2



� 1



� 1� log

�
1
ϵδ1


�
¤
η

6 .

As long as the ratio α � δ1{δ2 is constant, we have δ1 and δ2 are free–only α, ϵ, and λ are
fixed. Therefore, we may choose δ2 small enough so that

Cϵp1� αq

α log
�

1� γ
δ2

	 ¤
η

6 .

Hence, we have by (2.20), (2.22), and the above estimates that

|Br X t|Xpτ, s, �q � X̄pτ, s, �q| ¡ γu| ¤
}b� b̄}L1pps,τq�Gλq

δ1 log
�

1� γ
δ2

	 � η.

Since δ2 and α are fixed, then so is δ1, and so the proposition follows.
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Remark 10. There exists a closely related result of anisotropic vector fields by Crippa and
Ligabue [41]. They assume (1.6) and a similar structure of (2.18), that is

btpx1, x2q � pb1
t px1q, b

2
t px1, x2qq, where b1 and b2 satisfies

b1 P L1pp0, T q;W 1,ppRn1 ;Rn1qq;
b2 P L1pp0, T q � Rn2 ;Wα,1pRn1 ;Rn2qq X L1pp0, T q � Rn1 ;W 1,ppRn2 ;Rn2qq,

where α P p0, 1q and p ¡ 1. Notice that in this setting D1b
1 is only a distribution, and the

lack of derivatives of b1 in x1 is “compensated” by the fact that D2b
1 � 0. The strategy of

proving the fundamental estimate for such vector fields follows very closely Proposition 2.4,
but adding and subtracting the mollified vector fields b � pb1, b2,ϵq and using the fact that

}u� uϵ}W s,ppRdq ¤ Cϵs}u}W s,ppRdq and }∇uϵ}W s,ppRdq ¤ Cϵs�1}u}W s,ppRdq;

see [41, Lemma 2.4] for a detailed proof of the above. Then the proof follows by choosing
ϵ depending on the quotient α � δ1{δ2.

2.5 Singular kernels and BV: the Nguyen’s result
Very recently, the Lagrangian approach was fully extended by Nguyen [70]

to cover Ambrosio’s result for vector fields of bounded variation. The difficulty lies in
the singular part (with respect to the Lebesgue measure) of ∇g, where g P BVpRdq. The
Nguyen’s approach also uses Alberti’s rank one theorem–which we briefly discussed in
Chapter 1, but now we give a precise statement of the result.

Theorem 2.4 (Alberti’s rank one theorem). Let b P BVpRd;Rmq. Then there exists unit
vectors apxq P Rd and bpxq P Rm such that

dpDbqspxq � apxq b bpxqd|pDbqs|pxq,

where dµ means the differential of the measure µ.

We begin this section by recalling the generalization of Theorem 2.3 for rough
kernels and more general family of functions considered in the grand maximal operator.
Moreover, we also recall the crucial result associated to Kakeya singular integral operator.
The name is an allusion to the Kakeya maximal function M δ, δ ¡ 0 of a measure µ in Rd:

M δµpxq � sup
ξPSd�1

sup
ϵ¡0

1
|Bϵ|

»
Bϵpxq

1|ωpy�xq�ξ|¤δ

δd�1 d|µ|pyq,

where ωpzq � z{|z| as in Remark 9. Loosely speaking, it considers a family of functions
favoring a direction ξ P Sd�1 and then takes a supremum over all ξ. This is analogous to
the anisotropic estimate Ambrosio used to prove the renormalization property. Before we
state the results, we begin by establishing the considered singular kernels.
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Definition 2.5 (Singular rough kernels). Let Γ P C1pRd t0u;Rdq be a singular kernel
with decay as in Theorem 2.3, that is, there exists a constant C ¡ 0 such that

|Γpxq| ¤ C|x|�d and |∇Γpxq| ¤ C|x|�d�1.

Moreover, let Ω be a zeroth order homogeneous function as in Section 2.1 satisfying

}Ω}W α,1pB2 B1q :�
»

B2 B1

|Ωpyq| dy �
»

B2 B1

|Ωpxq � Ωpyq|
|x� y|d�α

dy ¤ C1

for some α P p0, 1q and C1 ¡ 0. We say that

Γ̃pxq :� ΩpxqΓpxq for all x P Rd t0u

is a singular rough kernel if it satisfies the following cancellation property: there exists a
constant C2 ¡ 0 such that����

»
BR Br

Γ̃pxq dx
���� ¤ C2 for all 0   r   R   8.

In particular, if Ω P C1pSd�1q, then Γ̃ is a singular kernel of fundamental type.

We are now ready to state one of the main theorems in [70]; for a proof of the
results below, we refer to the original ones [70, Proposition 2.13, Theorem 3.3]. They are
very technical and are only used in the proof of Theorem 2.6.

Proposition 2.5. Let tρνuν be a family of functions satisfying ρν P C1pRd t0uq such that

supp ρν � B1 and sup
xPRd

sup
ν
|ρνpxq| � |x||∇ρνpxq| ¤ C0.

Therefore for any γ P p0,8q and Γ̃ singular rough kernel, the operator

Tµpxq :� sup
ν

sup
ϵ¡0

����
�

ϵ�γ

| � |d�γ
ρνpϵ�1 � q



� Γ̃ � µpxq

���� for all x P Rd

is a bounded from Lp to Lp for any p P p1,8q and from bounded signed measure space to
L1

w, with estimates

}Tu}LppRdq ¤ C0pC1 � C2q}u}LppRdq for any u P LppRdq

|||Tµ|||L1
wpRdq ¤ C0pC1 � C2q|µ|pRdq for any bounded signed measure µ.

Moreover, it holds

lim sup
λÑ8

λ|tTµ ¡ λu| ¤ C0pC1 � C2q|µ|
spRdq.

Finally, for ϵ0 ¡ 0, γ0 P p0, γs and the operator

T γ0µpxq :� sup
ν

sup
ϵPp0,ϵ0q

����
�
ϵγ0�γ

| � |d�γ
ρνpϵ�1 � q



� Γ̃ � µpxq

���� for all x P Rd,
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there exists a constant C ¡ 0 such that

}T γ0µ}LqpRdq ¤ CpC1 � C2q|µ|pRdq

where
q :� d

d� 4�1 mintα, γ, γ0u
.

Finally, if ψ P L8pp0, T q;W 1,8pRd;Rdqq, then for all R ¡ 0 there exists a constant CR ¡ 0
such that» T

0
}T γ0rpψt � ψtp�qqµts}LqpBRq dt ¤ CR}ψ}L8pp0,T q;W 1,8pRdqq

» T

0
|µt|pRdq dt

for any µ P L1pr0, T s; MpRdqq.

Notice that we may write T as a grand maximal operator, with the family of
functions t| � |γ�dρνuν . In particular, if γ � d, then

Tµpxq �Mρν

�
Γ̃ � µ

�
pxq for all x P Rd,

and so the above result generalizes Theorem 2.3 for singular rough kernels Γ̃.

Theorem 2.5 (Kakeya singular operator estimates). Let tρδ,ξuϵ,ξ be a family of functions
satisfying ρδ,ξ P C1pRd t0u;Rdq such that for some δ0 ¡ 0 it holds

supp ρδ,ξ � B1 X tx P Rd : |ωpxq � ξ|   δu,

sup
xPRd

sup
pδ,ξqPp0,δ0q�Sd�1

|ρδ,ξpxq| � δ|x||∇ρδ,ξpxq| ¤ C0.

Let Γ̃pxq � ΩpxqΓpxq for Rd t0u be a singular rough kernel. Moreover, assume that there
exists a bounded zeroth degree homogeneous function Ωn P C

2pSd�1q such that

}Ωn}W α,1pB2 B1q ¤ 2C1 and lim
nÑ8

}Ωn � Ω}W α,1pB2 B1q � 0 (2.23)

for some α P p0, 1q, and Γ̃npxq :� ΩnpxqΓpxq satisfies����
»

BR Br

Γ̃npxq dx
���� ¤ C3 for all 0   r   R   8,

lim
nÑ8

sup
0 r R 8

����
»

BR Br

Γ̃npxq � Γpxq dx
���� � 0.

Then, for the operator–which we shall name Kakeya singular operator defined as

Kγ
ρδ,ξµpxq :� sup

ξPSd�1
sup
ϵ¡0

����
�
δ1�dϵ�γ

| � |d�γ
ρδ,ξpϵ�1 � q



� Γ̃ � µpxq

���� for all x P Rd

for γ P p0,8q satisfies for all u P BVpRdq the estimate

lim sup
λÑ8

λ|tKγ
ρδ,ξp∇uq ¡ λu| ¤ C| logpδq||∇u|spRdq.

In particular, the operator has the above bound uniformly with respect to γ P p0,8q.
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The aforementioned result does not hold for any µ P MpRdq; see the fairly
simple counterexample by Nguyen in [70, Remark 3.4] in Remark 13.

Remark 11. It is not trivial task to show examples of Γ̃ with the approximations properties
assumed in Theorem 2.5. Nevertheless, Nguyen proved in [70, Remark 2.6] that if the
singular rough kernel satisfies (2.1), i.e. Γpxq � |x|�d, then

Ωnpxq :� 1
log 2

» 8

0

�
Ωp�q
| � |d

1B2 B1



� ζnpτωpxqqτ d�1 dτ

for ζ the standard mollifier and ζnpxq � ndζpnxq satisfies the desired properties with (2.23)
holding for α{2 instead of α. In particular, it holds for Ω P BVpSd�1q satisfying (2.1).

We shall also need a version of Lemma 2.2 for BV functions and with T δ as
above replacing the maximal operators. For a proof, see [70, Lemmas 4.5 and 4.6]. The
key idea is that by [70, Lemma 2.3], we may write

|ujpxq � ujpxq| ¤ |x� y|pf δpDujqpxq � f δpDujqpyq � δgδpDujqpxq � δgδpDujqpyqq

for some subadditive functions f δ and gδ. Using the Lebesgue decomposition, the Alberti’s
theorem gives dpBiu

jq � dpBiu
jqa � aibjd|pDuqs|. Applying the above on fpDujq and

using its subadditivity, we have the following:

Lemma 2.12 (Difference quotient for BV functions). Let Ω as in Theorem 2.5 and
Γ̃pxq � ΩpxqΓpxq be a singular rough kernel as in Definition 2.5. Moreover, for every
u P BVpRd;Rmq, let apxq P Rd and bpxq P Rd be the unit vector fields given by Theorem 2.4
such that

dpDuqspxq � apxq b bpxqd|pDuqs|pxq,

and consider aϵpxq P C8pRd;Rdq be unit vector field approximating apxq in the sense

lim
ϵÑ0

»
Rd

|aϵpxq � apxq| d|pDuqs|pxq � 0.

Then for every x, y P Rd, x � y, it holds

|Γ̃ � ujpxq � Γ̃ � ujpyq|

|x� y|
¤SΘδ,ξpω � pDujq

aqpxq � SΘδ,ξpω � pDujq
aqpyq

� SΘδ,ξpω � pa� aϵqbj|pDuqs|qpxq

� SΘδ,ξpω � pa� aϵqbj|pDuqs|qpyq

� SΘδ,ξpω � paϵ � aϵpxqqbj|pDuqs|qpxq

� SΘδ,ξpω � paϵ � aϵpyqqbj|pDuqs|qpyq

� }∇aϵ}L8pRdqSΘδ,ξpbj|pDuqs|qpyq

� δrSΞδ,ξpDujqpxq � SΞδ,ξpDujqpyqs

� ω � aϵpxqrSΘδ,ξpbj|pDuqs|qpxq � SΘδ,ξpbj|pDuqs|qpyqs,
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where for simplicity we denote ω � ωpx� yq. In the above, there exist a family of functions
tΘδ,ξupδ,ξqPpp0,δ0q,Sd�1q, tΞδ,ξupδ,ξqPpp0,δ0q,Sd�1q for some δ0 ¡ 0 such that Θδ,ξ is nonnegative,
Θδ,ξ P C8pRd t0uq and Ξδ,ξ P C8pRd t0u;Rdq, and there exists a constant C ¡ 0 so that

supp Θδ,ξ, supp Ξδ,ξ � B3{4 X tx P Rd : |ωpxq � ξ|   δu;
sup
xPRd

sup
δPp0,δ0q

sup
ξPSd�1

�
|Θδ,ξpxq| � δ|x||∇Θδ,ξpxq|

�
¤ C;

sup
xPRd

sup
δPp0,δ0q

sup
ξPSd�1

�
|Ξδ,ξpxq| � δ|x||∇Ξδ,ξpxq|

�
¤ C;

sup
ξPSd�1

δ1�d
�
}Θδ,ξ}L1pRdq � }Ξδ,ξ}L1pRdq

�
¤ C.

We also have used the following operator defined on x, y for µ P MpRdq and ν P MpRd;Rdq:

SΘδ,ξµpxq :� sup
ξPSd�1

�
δ1�d|x� y|�1

| � |d�1 Θδ,ξp|x� y|�1 � q



� Γ̃ � µpxq;

SΘδ,ξµpyq :� sup
ξPSd�1

�
δ1�d|x� y|�1

| � |d�1 Θδ,ξp|x� y|�1 � q



� Γ̃ � µpyq;

SΞδ,ξνpxq :� sup
ξPSd�1

ḑ

i�1

�
δ1�d|x� y|�1

| � |d�1 Ξδ,ξ
i p|x� y|�1 � q



� Γ̃ � νipxq;

SΞδ,ξνpyq :� sup
ξPSd�1

ḑ

i�1

�
δ1�d|x� y|�1

| � |d�1 Ξδ,ξ
i p|x� y|�1 � q



� Γ̃ � νipyq;

S̄Θδ,ξµpxq :� sup
ξPSd�1

�
δ1�d|x� y|�1

| � |d�1 Θδ,ξp|x� y|�1 � q



� µpxq;

S̄Θδ,ξµpyq :� sup
ξPSd�1

�
δ1�d|x� y|�1

| � |d�1 Θδ,ξp|x� y|�1 � q



� µpyq;

Moreover, it holds

SΘδ,ξpaϵpxq � b|pDuqs|qpxq � SΘδ,ξpaϵpxq � b|pDuqs|qpyq ¤SΘδ,ξpDuqapxq � SΘδ,ξpDuqapyq

� SΘδ,ξppa� aϵqb|pDuqs|qpxq

� SΘδ,ξppa� aϵqb|pDuqs|qpyq

� SΘδ,ξppaϵ � aϵpxqqb|pDuqs|qpxq

� SΘδ,ξppaϵ � aϵpyqqb|pDuqs|qpyq

� }∇aϵ}L8pRdqS̃Θδ,ξpb|pDuqs|qpyq

� S̄Θδ,ξ div upxq � S̄Θδ,ξ div upyq,

where S̃Θδ,ξ � |x� y|SΘδ,ξ and for vectors u, v, we denote for simplicity the tensor product
pub vqij � puvqij � uivj and the operator S acting on vector valued functions as the sum
of its action on each component.

Remark 12. Notice that by taking the supremum over ϵ � |x � y| and recalling the
definitions in Proposition 2.5 and Theorem 2.5, we have for ρ � Θ,Ξ that

Sρδ,ξµpxq ¤ K1
ρδ,ξµpxq, |x� y|Sρδ,ξµpxq ¤ T 1µpxq,

S̄ρδ,ξµpxq ¤ δ1�dCMµpxq, |x� y|S̄ρδ,ξµpxq ¤ δ1�dCI1µpxq,
.
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where M is the classical maximal function and I1 is the Riesz potential (without renor-
malization constant; see [76, Chapter III])

I1upxq :�
�

1
| � |d�1



� upxq.

We are now ready to state the main result of this section originally proved
in [70, Theorem 4.3]. It extends Proposition 2.3 and Proposition 2.4 in four ways: it
relaxes the conditions on singular kernels Γ̃ and on densities g, assuming that Γ̃ is singular
rough kernel and g P BVpRdq; it does not assume the convolution structure Γ̃ � g (or
more generally a sum of Γ̃k � gk) in all space, but rather a localized version on balls, with
kernels and densities depending on the radius; it splits the growth assumption (1.6) and
of the structure and integrability of its divergence; finally, it does not require the extra
integrability on time, since it swaps Lemma 2.9 for the following (for a proof, see [70,
Lemma 2.4, Remark 2.16]):

Lemma 2.13. 6 Let q ¡ 1 and R ¡ 0. Then if one has an operator T bounded from
MpRdq to L1

wpRdq, with local estimate» T

0
lim sup

λÑ8
λ|BR X tTµt ¡ λu| dt ¤ C

» T

0
|µs

t |pRdq dt,

µ P L1pp0, T q; MpRdqq, and f P L1pp0, T q;LqpBRqq, we have that

lim sup
δÑ0

1
| log δ|

» T

0

»
BR

min
"
ftpxq

δ
, Tµtpxq

*
dx dt ¤ q

q � 1C
» T

0
|µs

t |pB̄Rq dt.

Proof. We first give the prove for the time independent case. By layer cake representation,
we have that for λ1   λ2 that»

BR

min
"
fpxq

δ
, Tµpxq

*
dx �

» 8

0

����
"

min
"
f

δ
, Tµ

*
¡ λ

*
XBR

���� dλ

¤

» λ1

0
|BR| dλ�

» λ2

λ1

|tTµ ¡ λu XBR| dλ

�

» 8

λ2

����
"
f

δ
¡ λ

*
XBR

���� dλ

¤λ1|BR| � log
�
λ2

λ1



sup
λ¡λ1

λ |tTµ ¡ λu XBR|

�
λ1�q

2
qδq

}f}q
LqpBRq

.

Choosing λ1 � | log δ|1{2 and λ2 � δ
q

1�q and considering δ small enough so that λ1   λ2,
we obtain that

lim sup
δÑ0

1
| log δ|

»
BR

min
"
fpxq

δ
, Tµpxq

*
dx ¤ q

q � 1C|µ
s|pB̄Rq.

The time dependent case is a simple application of dominated convergence theorem.
6 This result could be applied in Section 2.3 and the main estimate would be valid without requiring

b P Lp
locpp0, T q � Rd;Rdq for p ¡ 1, but rather b P L1pp0, T qLp

locpR
d;Rdqq.



Chapter 2. Global results with Lagrangian approach 58

Theorem 2.6. Let R ¡ 0 and c P L1pp0, T q;L1
locpRd;Rdqq be a vector field such that for

any R ¡ 0, there exists an integer mR and (vector valued) singular rough kernels Γ̃k,R with
constants C1R, C2R, gk,R P L1pp0, T q; BVpRdqq, and Ω as in Theorem 2.5 such that

ctpxq �
mŖ

k�1
Γ̃k,R � gk,R

t pxq in BR,

div c P L1pp0, T q; MlocpRdqq and pdiv cq� P L1pp0, T q;L1
locpRdqq.

Moreover, let b, b̄ P L1pp0, T q;L1
locpRd;Rdqq be vector fields satisfying (1.6) and X, X̄ their

renormalized regular Lagrangian flows starting at time s with compressibility constants
L and L̄, respectively. Then for any γ1 ¡ 0, η ¡ 0, and r ¡ 0, there exists λ ¡ 0 and a
constant Cγ1,η,r ¡ 0 such that it holds

|Br X t|Xpt, s, �q � X̄pt, s, �q| ¡ γ1u| ¤ Cγ1,η,rp}b� c}L1pp0,T q�Bλq

� }c� b̄}L1pp0,T q�Bλqq � η

uniformly in s P r0, T s and t P rs, T s. The constant Cγ1,η,r depends on its subscripts, as
well as the compressibility constants L and L̄, on the norms (1.6) of b and b̄, on the
norm sup

kPt1,...,mr0u
}gk,r0}L1pp0,T q;BVpRdq, and on the constants associated to the singular rough

kernel C1r0 and C2r0, with radius r0 depending on r, on the norms (1.6) of b and b̄, on
compressibility constants L and L̄, and on η.

Proof. Let atpxq, btpxq be the unit vector fields given by Theorem 2.4 such that

dpDbtq
spxq � atpxq b btpxqd|pDbtq

s|pxq.

Moreover, let aϵ
tpxq, bϵ

tpxq P C
8pp0, T q � Rd;Rdq be unit vector fields approximating atpxq,

btpxq in the sense

lim
ϵÑ0

» T

0

»
Rd

|aϵ
tpxq � atpxq| � |bϵ

tpxq � btpxq| d|pDbtq
s|pxq dt � 0.

Now, for δ ¡ 0, γ P p0, | log δ|q, ϵ ¡ 0, and t P rs, T s, we consider

Φγ,ϵ
δ ptq �

1
2

»
D

log
�

1� |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

δ2



dx, (2.24)
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where D � Br XGλ X Ḡλ, X � Xpt, s, xq, and X̄ � X̄pt, s, xq for simplicity. Then

Φγ,ϵ
δ pτq �

» τ

s

pΦγ,ϵ
δ q1ptq dt �

» τ

s

»
D

pX � X̄q � rbtpXq � b̄tpX̄qs

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

dx dt

�

» τ

s

»
D

γraϵ
tpXq � pX � X̄qsaϵ

tpXq � rbtpXq � b̄tpX̄qs

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

dx dt

�

» τ

s

»
D

γraϵ
tpXq � pX � X̄qsrDaϵ

tpXqbtpXq � pX � X̄qs

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

dx dt

�

» τ

s

»
D

γraϵ
tpXq � pX � X̄qsrBta

ϵ
tpXq � pX � X̄qs

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

dx dt

�:Iγ,ϵ
δ pτq � IIγ,ϵ

δ pτq � IIIγ,ϵ
δ pτq � IVγ,ϵ

δ pτq.

By the trivial estimate 2|uv| ¤ |u|2 � |v|2, we use the compressibility condition on the
flows to estimate the third and fourth terms by

IIIγ,ϵ
δ pτq ¤ Lγ1{2}Daϵ}L8pp0,T q�Rdq}b}L1pp0,T q�Bλq;

IVγ,ϵ
δ pτq ¤ T |Br|γ

1{2}Bta
ϵ}L8pp0,T q�Rdq.

(2.25)

For the first and second terms, we add and subtract the respective terms with c, and so
we have the estimate

Iγ,ϵ
δ pτq ¤

» τ

s

»
D

pX � X̄q � rbtpXq � ctpXqs

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

dx dt

�

» τ

s

»
D

pX � X̄q � rctpXq � ctpX̄qs

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

dx dt

�

» τ

s

»
D

pX � X̄q � rctpX̄q � b̄tpX̄qs

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

dx dt.

The first and third integrals are bounded analogously as above:» τ

s

»
D

pX � X̄q � rbtpXq � ctpXqs

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

dx dt ¤ L

δ
}b� c}L1pp0,T q�Bλq;» τ

s

»
D

pX � X̄q � rctpX̄q � b̄tpX̄qs

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

dx dt ¤ L̄

δ
}c� b̄}L1pp0,T q�Bλq.

By performing the same computation for IIγ,ϵ
δ pτq, we conclude that

Iγ,ϵ
δ pτq ¤

L� L̄

δ

�
}b� c}L1pp0,T q�Bλq � }c� b̄}L1pp0,T q�Bλq

�
�

» τ

s

»
D

pX � X̄q � rctpXq � ctpX̄qs

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

dx dt;

IIγ,ϵ
δ pτq ¤

pL� L̄qγ1{2

δ

�
}b� c}L1pp0,T q�Bλq � }c� b̄}L1pp0,T q�Bλq

�
�

» τ

s

»
D

γraϵ
tpXq � pX � X̄qsaϵ

tpXq � rctpXq � c̄tpX̄qs

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

dx dt.

(2.26)
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The estimate of Φγ,ϵ
δ pτq from below follows the same idea as Proposition 2.3 and Proposi-

tion 2.4, using the fact that we chose γ   | log δ|:

|Br X t|Xpτ, s, �q � X̄pτ, s, �q| ¡ δ1{2u| ¤ |Br Gλ| � |Br Ḡλ| �
Φγ,ϵ

δ pτq

| log δ| .

Combining the above with Lemma 2.5, (2.25), and (2.26), we have that

|Br X t|Xpτ, s, �q � X̄pτ, s, �q| ¡ δ1{2u| ¤fpr, λq � f̄pr, λq �
Cr

| log δ|1{2
�
1� }b}L1pp0,T q�Bλq

�
�
pL� L̄q

δ
}b� c}L1pp0,T q�Bλq

�
pL� L̄q

δ
}c� b̄}L1pp0,T q�Bλq

�
1

| log δ| pV
γ,ϵ
δ pτq � VIγ,ϵ

δ pτqq ,

(2.27)

where we have used that γ1{2   log |δ| for δ small enough and

Vγ,ϵ
δ pτq �

» τ

s

»
D

pX � X̄q � rctpXq � ctpX̄qs

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

dx dt;

VIγ,ϵ
δ pτq �

» τ

s

»
D

γraϵ
tpXq � pX � X̄qsaϵ

tpXq � rctpXq � c̄tpX̄qs

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

dx dt.

We shall use Lemma 2.12 with δ � ϵ1, x � X, y � X̄, and estimate each term separately.
For this purpose, notice that by the inequality 2|uv| ¤ |u|2 � |v|2, Proposition 2.5, and
Remark 12, we have that

|X � X̄|2SΘδ,ξpDctq
apXq

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

¤ min
#

1
δ
T 1pDctq

apXq, K1
Θδ,ξpDctq

apXq

+
,

and analogously for pDctq
apX̄q. Moreover, we have

|X � X̄|2SΘϵ1,ξppat � aϵ
tqbt|pDctq

s|qpXq

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

¤ min
#

1
δ
T 1ppat � aϵ

tqbt|pDctq
s|qpXq,

K1
Θϵ1,ξppat � aϵ

tqbt|pDctq
s|qpXq

+
;

|X � X̄|2SΘϵ1,ξppaϵ
t � aϵ

tpXqqbt|pDctq
s|qpXq

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

¤ K1
Θϵ1,ξppat � aϵ

tpXqqbt|pDctq
s|qpXq;

|X � X̄|2}∇aϵ
t}L8pRdqS̃Θϵ1,ξpbt|pDctq

s|qpX̄q

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

¤ }∇aϵ
t}L8pRdqT

1pbt|pDctq
s|qpX̄q;

|X � X̄|2ϵ1SΞϵ1,ξpDctqpXq

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

¤ ϵ1 min
#

1
δ
T 1pDctqpXq, K1

Ξϵ1,ξpDctqpXq

+
;
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|X � X̄|pX � X̄q � aϵpXqSΘϵ1,ξpbt|pDctq
s|qpXq

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

¤ γ�1{2 min
#

1
δ
T 1pbt|pDctq

s|qpXq,

K1
Θϵ1,ξpbt|pDctq

s|qpXq

+
.

All of the above holds changing the argument X for X̄. Now, by the compressibility of
flows, Proposition 2.5, Theorem 2.5, and Lemma 2.13, we have that (recall btpxq is a unit
vector)

lim sup
δÑ0

1
| log δ|V

γ,ϵ
δ pτq ¤Cϵ1

» T

0

»
Rd

|atpxq � aϵ
tpxq| d|pDctq

s|pxq dt

� ϵ1C| logpϵ1q|

» T

0
|pDctq

s|pRdq dt

� γ�1{2Cϵ1

» T

0
|pDctq

s|pRdq dt.

(2.28)

The analogous estimate for VIγ,ϵ
δ follows very similarly, e.g.

γ|X � X̄|raϵ
tpXq � pX � X̄qsSΘϵ2,ξpDctq

apXq

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

¤ γ1{2 min
#

1
δ
T 1pDctq

apXq,

K1
Θϵ2,ξpDctq

apXq

+
,

and so we have

lim sup
δÑ0

1
| log δ|VIγ,ϵ

δ pτq ¤γ1{2Cϵ2

» T

0

»
Rd

|atpxq � aϵ
tpxq| d|pDctq

s|pxq dt

� γ1{2ϵ2C| logpϵ2q|

» T

0
|pDctq

s|pRdq dt

� lim sup
δÑ0

1
| log δ|VIIγ,ϵ

δ pτq.

(2.29)

In the above, we have defined

VIIγ,ϵ
δ pτq :�

» τ

s

»
D

γraϵ
tpXq � pX � X̄qs2SΘϵ2,ξpaϵ

tpXqbt|pDctq
s|qpXq

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

dx dt

�

» τ

s

»
D

γraϵ
tpXq � pX � X̄qs2SΘϵ2,ξpaϵ

tpXqbt|pDctq
s|qpX̄q

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

dx dt.

Now, by the nonnegativity of Θϵ2,ξ, pdiv cqs ¤ 0–for pdiv cq� P L1pp0, T q;L1
locpRdqq–as well

as aϵ
tpxq being a unit vector and the uniform boundedness of Θϵ2,ξ, we have that

γraϵ
tpXq � pX � X̄qs2S̄Θϵ2,ξ1D div ctpXq

δ2 � |X � X̄|2 � γraϵ
tpXq � pX � X̄qs2

¤ Cϵ1�d
2 γ1{2 min

"
1
δ

I1r1Dpdiv ctq
�spXq,M r1Dpdiv ctq

�spXq

*
,
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By a simple application of Young convolution inequality, we have for every R ¡ 0 that

}I1u}LppBRq ¤ CR}u}L1pRdq for all 1 ¤ p  
d

d� 1 .

Using the second part of Lemma 2.12 with δ � ϵ2 and repeating the argument as above
with Lemma 2.13, we have that

lim sup
δÑ0

1
| log δ|VIIγ,ϵ

δ pτq ¤γ1{2Cϵ2

» T

0

»
Rd

|atpxq � aϵ
tpxq| d|pDctq

s|pxq dt

� γ1{2ϵ2C| logpϵ2q|

» T

0
|pDctq

s|pRdq dt.
(2.30)

Combining (2.27), (2.28), (2.29), and (2.30), there exists δ0 ¡ 0 such that for all δ P p0, δ0q,
it holds

|Br X t|X � X̄| ¡ δ1{2u| ¤
�
fpr, λq � f̄pr, λq

�
�

Cr

| log δ|1{2
�
1� }b}L1pp0,T q�Bλq

�
�
pL� L̄q

δ
p}b� c}L1pp0,T q�Bλq � }c� b̄}L1pp0,T q�Bλqq

� Cϵ1,ϵ2,γ

» T

0

»
Rd

|atpxq � aϵ
tpxq| d|pDctq

s|pxq dt

� γ1{2ϵ2C| logpϵ2q|

» T

0
|pDctq

s|pRdq dt

� pϵ1C| logpϵ1q| � γ�1{2Cϵ1q

» T

0
|pDctq

s|pRdq dt.

In order to conclude, we take the limits in the following order: firstly ϵÑ 0 so that the
fourth term vanishes; secondly ϵ2 Ñ 0 so that the fifth term vanishes; thirdly, γ Ñ 8

(recall that the range of γ after the limit superior is p0,8q) and then ϵ1 Ñ 0 for the sixth
term to vanish. Now, for any η ¡ 0, we choose δ small enough so that

Cγ,r

| log δ|1{2
�
1� }b}L1pp0,T q�Bλq

�
¤
η

2 .

Recalling that Lemma 2.5 implies that the first term is less than η{2, provided λ is large
enough, and so for all γ1 ¡ 0, it holds

|Br X t|X � X̄| ¡ γ1u| ¤ η � Cγ1,η,rp}b� c}L1pp0,T q�Bλq � }c� b̄}L1pp0,T q�Bλqq,

provided we also restrict δ so that δ1{2   γ1.

Remark 13. Before we finish the chapter, we recall the striking counterexample of gen-
eralizing the results of Section 2.3 for bounded measure. More precisely, it is a natural
question whether one can weaken the assumption on vector field

bi
tpxq �

mŖ

k�1
Γ̃ik,R � gik,R

t pxq in BR
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where Γ̃ik,R is a singular rough kernels as in Theorem 2.5 and gik,R P L1pp0, T q; BVpRdqq

for all i P t1, . . . , du and k P t1, . . . ,mRu for an analogous version (2.16), namely

Bjb
i
t �

mŖ

k�1
Γ̃ijk,R � µijk,R

t in the weak sense in BR, (2.31)

where Γ̃ijk,R is a singular rough kernels as in Theorem 2.5 and µijk,R P L1pp0, T q; MpRdqq

for all i, j P t1, . . . , du and k P t1, . . . ,mRu. The result of Nguyen [70, Proposition 1.2]
states that (2.31) is not enough to ensure uniqueness of flows, and so in particular the
fundamental estimate Theorem 2.6 does not hold. The proof is a clever repurposed example
of DiPerna-Lions [48, Section IV.2], where the vector field has no integrable first derivative,
and so Nguyen was able to show that such example can be written as (2.31) with additional
structure explained in Remark 11. We refer to Chapter 6 for a discussion of related open
problems.
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3 The Ambrosio-Colombo-Figalli theory: local
results with Lagrangian approach

In this chapter, we shall present the local version of the results of Chapter 2
developed by Ambrosio-Colombo-Figalli [5] in the abstract form, i.e. not assuming explicitly
any structure for vector fields, but rather a uniqueness hypothesis on a class of solutions
of continuity equation (1.4); see Condition 3.1. The motivation follows from the classical
Cauchy-Lipschitz theory: local Lipschitz regularity in space variable of vector fields implies
local well-posedness on (1.2), and the global regularity implies global well-posedness.
Notice that the latter is addressed in Chapter 2, since it was assumed growth assumptions
(2.2) or (1.6), but the former is not, for the aforementioned technique heavily relies on the
control of the sublevels obtained in Lemma 2.5, which is a consequence of (2.2) and (1.6).

We also present an important application of the local theory for Vlasov systems
in Section 3.2, namely the (nonrelativistic) Vlasov-Poisson equation by Ambrosio-Colombo-
Figalli1 [6] and later the more general quasistatic Vlasov-Maxwell approximations by the
author and Marcon [21].

3.1 Local flows: Ambrosio-Colombo-Figalli’s result
In order to present the results of [5], we first recall the fundamental theorems

proven in Chapter 2: it was necessary the control of the sublevels, namely

|Br Gλ| Ñ 0 for a fixed r as λÑ 8 (3.1)

proven in Lemma 2.5–which followed by assuming either (2.2) or (1.6). Moreover, it was
crucial the fundamental estimate associated to flows: for every s P r0, T s, t P rs, T s, γ ¡ 0,
r ¡ 0, and η ¡ 0, there exists a constant Cγ,η,r ¡ 0 and λ ¡ 0 such that

|Br X t|Xpt, s, �q � X̄pt, s, �q| ¡ γu|   Cγ,η,r}b� b̄}L1pp0,T q�Bλq � η (3.2)

proven in Propositions 2.1, 2.3 and 2.4 and Theorem 2.6. In order to prove this, besides
the aforementioned control of sublevels, it was necessary to assume some structure to the
vector fields, e.g. (2.16) and (2.18)-(2.19). Finally, in order to establish well-posedness for
the flows, it was necessary to assume (at least) a lower bound on the divergence of the
vector field, as in Theorem 2.1. Notice that all the developed theory in Section 2.2 can be
reproduced if one assumes that the vector field satisfies (3.1), (3.2), and a lower bound on
the divergence as in (H3) in Condition 3.1 below.
1 Throughout this chapter, we shall refer to them as “trio”.
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The major change in the work [5] is not assume (3.1) and (3.2), but rather
local properties (H1) and (H2) in Condition 3.1 below.

Condition 3.1. We say that a Borel vector field b : p0, T q � Rd Ñ Rd is admissible if the
following are satisfied:

(H1) it holds b P L1pp0, T q;L1
locpRd;Rdqq;

(H2) for any nonnegative ū P L8c pRdq and ra, bs � r0, T s, there exists at most one
nonnegative weak solution u P L8c pra, bs � Rdq of the continuity equation$&

%Btu� divpbuq � 0 in ra, bs � Rd;

ut�a � ū on Rd.

such that u P Cpra, bs;L8pRdq � w�q;

(H3) for all t P p0, T q, it holds in the sense of distributions div bt ¥ mΩptq in Ω for all
compact Ω � Rd and some mΩ P L

1pp0, T qq.

Remark 14. Although (H1) and (H3) are clearly local hypothesis in space, it is not
straightforward to see that (H2) also is. In fact, the trio showed in [5, Lemma 8.1] that
(H1)-(H2) are equivalent to (H1)-(H2’), where

(H2’) for any t0 ¥ 0 and x0 P Rd, there exists ϵ � ϵt0,x0 ¡ 0 such that for any nonnegative
ū P L8pRdq with compact support contained in Bϵpx0q and ra, bs � rt0 � ϵ, t0 � ϵs X

r0, T s, there exists at most one nonnegative solution ut P L
8
c pBϵpx0qq for all t P ra, bs

of the continuity equation$&
%Btu� divpbuq � 0 in ra, bs � Rd;

ut�a � ū on Rd.

such that u P Cpra, bs;L8pRdq � w�q,

and so (H2’) can be seen as a local version of (H2). Since it combined with (H1) is
equivalent to (H2), we can assume (H2’) in place of (H2) in Condition 3.1.

Remark 15. As mentioned in Chapter 1, by the striking example of Depauw [45], we know
that in order to establish uniqueness of the flow–even if only a local one–it is not sufficient
to assume a local in time (H1), that is, to assume that b P L1

locpp0, T q � Rd;Rdq; it is
however enough to assume b P L1pp0, T0q�Rd;Rdq for all T0   T . Moreover, as commented
in [5, Remark 5.1], the hypothesis (H3) can be weakened for (H3’), where

(H3’) for T0   T and all t P p0, T0q, it holds in the sense of distributions div bt ¥ mΩptq in
Ω for all compact Ω � Rd and some mΩ P L

1pp0, T0qq.
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Notice that in both cases the hypothesis in not truly local in time, for we cannot relax the
assumption from local in r0, T q to local in p0, T q. Hence, (H3) are chosen for the sake of
simplicity and they are not essential, for it could be instead assumed (H3’), and likewise
the assumption b P L1pp0, T0q � Rd;Rdq in place of (H1).

Finally, we remark that t � 0 being the initial time is for the sake of simplicity,
and all of the above considerations can be made mutatis mutandis for any initial time
s P r0, T s.

A natural question is what class of vector fields satisfy (H2); condition (H1)
is very mild and (H3) is usually an assumption. We shall see that in fact proofs of (3.2)
can be adapted to prove (H2). In particular, (H2) holds for vector fields considered in
Section 2.5, namely b being locally written as convolution of a zero average singular kernel
with a BV function in space an summable in time. Before we prove it, we first state some
useful functional analysis results. For a detailed proof of them, we refer to [15, Theorems
4.7.18 and 8.6.2] and [11, Theorem 5.3.1]; they may be stated more generally, but for the
sake of simplicity we restrict their thesis for a clearer presentation.

Theorem 3.1 (Dunford-Pettis property). Let µ P MpRdq. Then a family in L1pµq has
compact closure in the weak topology of L1pµq if and only if it is uniformly integrable (recall
its definition in Lemma 2.6).

A natural comparison can be made between Lemma 2.6 and Theorem 3.1: if
the sequence is uniformly bounded in L1pµq but lacks local convergence in measure, then
it does not converge strongly in L1pµq, but has a subsequence converging weakly in L1pµq.

Theorem 3.2 (Prokhorov compactness criterion). Let tµnunPN be a sequence of Radon
signed measures in X. Then such sequence has compact closure in the weak topology of
MpXq if and only if |µnpXq| is uniformly bounded and uniformly tight, that is, if for every
ϵ ¡ 0, there exists a compact Kϵ such that |µnpX Kϵq|   ϵ for all n.

Remark 16. We shall use an equivalent definition of uniform tightness [7, Remark 5.1.5],
which says that there exists a coercive functional F : X Ñ r0,8s such that

sup
nPN

»
X

F pxq dµnpxq   8

and has compact sublevels, that is, for each λ ¡ 0, tx P X : F pxq   λu is a compact subset
of X.

Before we state the disintegration theorem, we recall the definition of Radon
spaces: a separable metric space X is a Radon space if every probability measure µ P PpXq
is inner regular for every Borel set.
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Theorem 3.3 (Disintegration). Let X and Y be Radon spaces, µ P PpY q and π : Y Ñ X

a Borel map. Then by denoting ν :� π#µ P PpXq, there exists an ν�almost everywhere
uniquely determined Borel family tµxuxPX � PpY q such that µxpY π�1pxqq � 0 for
ν�almost every x P X and for every Borel map f : X Ñ R it holds»

Y

fpyq dµpyq �
»

X

»
π�1pxq

fpyq dµxpyq dνpxq.2

One of the simplest motivations for Theorem 3.3 is the following (see [32,
Example 2]): consider a unit square Q � r0, 1s � r0, 1s in R2 and a probability measure
µ P PpQq defined as µ :� L2 Q. Notice that for any line segment Lx � txu � r0, 1s,
the measure µ “does not see” any probability in it, that is µpLxq � 0. However, it seems
plausible that by “restricting” the measure µ in Lx–not by simply considering µ Lx, for
it is the zero measure, hence the quotation marks–we would have the one dimensional
Lebesgue measure restricted to Lx. This is precisely what the disintegration does, for
considering the projection π : Q Ñ r0, 1s, πpx, yq � x, we obtained a one dimensional
measure µx such that

µpEq �

»
r0,1s

µxpEq dνpxq �
»
r0,1s

µxpE X Lxq dνpxq for any Borel set E � Q.

Finally, we shall need the so called “superposition principle” stated in [5,
Theorem 2.1] with a detailed proof in [7, Theorem 4.4]; it heavily uses Theorem 3.1 and
Theorem 3.2. We shall use throughout this chapter the evaluation function at time t P I

et : CpI;Rdq Ñ Rd, etpγq � γptq,

where I is an interval.

Theorem 3.4 (Superposition principle). Let b : p0, T q � Rd Ñ Rd be a Borel vector field
and tµtutPp0,T q be a family of measures in MpRdq such that t ÞÑ µt is weakly continuous,

that is, for any bounded φ P CpRdq, the map t ÞÑ
»
Rd

φpxq dµtpxq is continuous. Moreover,

assume that µ : p0, T q ÞÑ Rd, µptq � µt solves in the weak sense Btµ � divpbµq � 0 in
p0, T q � Rd with the following integrability:

» T

0

»
Rd

|btpxq|

1� |x|
dµtpxq dt   8. (3.3)

Then there exists a measure η P PpCpr0, T s;Rdqq concentrated on absolutely continuous in
times curves γptq solving 9γptq � btpγptqq for almost every t P p0, T q such that µt � petq#η

for all t P r0, T s.

2 When there is no confusion, we shall write it for simplicity in a more compact form µ �

»
µxdνpxq.
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In the above, we did not use the renormalized formulation of (1.2), namely
Definition 2.2 (i), but rather the almost everywhere notion, and so in order to make it
precise the curves need to be absolutely continuous.

By [7, Remark 4.3], it is equivalent to state Theorem 3.4 for probability measures
σ on Cpr0, T s;Rdq in place of η, and Theorem 3.4 would state that µt satisfy the identity»

Rd

φpxqdµtpxq �

»
Rd�Γ

φpetpγqqdσpx, γq,

where Γ � tγ P ACpr0, T s;Rdq : 9γptq � btpγptqq and γp0q � xu. This justifies the name
“superposition principle”, for solutions of continuity equation can be written as a sum of
integral curves associated to b.

Remark 17. The Theorem 3.4 can be stated for a family of measures in other sets besides the
Euclidean spaces. For the sake of simplicity, we remark that the result holds for tµtutPp0,T q

being a family of measures in MpSdq solving the continuity equation in p0, T q � Sd and
satisfying the assumptions of Theorem 3.4. More generally, the result would hold for any
subset Ω � Rd, for the result only uses the structure of Euclidean spaces. Indeed, this can
be done by extending µt P MpΩq as zero in Rd Ω, and so the proof of [7, Theorem 4.4]
can be used for such case. We emphasize that it is not used any intrinsic property of Ω,
e.g. topology, metric, etc. For these type of results, we refer to [12].

We now show an argument of the trio [5, Remark 3.2] regarding the idea of
adapting the global results of Chapter 2 without the growth assumptions.

Remark 18. Notice that if one considers as in (H2) a nonnegative solution u P L8c pra, bs�Rdq

of the continuity equation on ra, bs � Rd � r0, T s � Rd, then considering dµt � utdLd

and a vector field b satisfying (H1), we have that (3.3) holds. Moreover, if one further
assumes the structure for b studied in Section 2.5, namely the one for c in Theorem 2.6, we
have that (H2) holds. Indeed, consider two solutions u1 and u2 of the continuity equation
with same vector field and initial data, with support in space inside BR for some R ¡ 0.
By Theorem 3.4, there exists two measures η1,η2 P PpCpr0, T s;BRqq concentrated on
absolutely continuous in times curves γptq solving 9γptq � btpγptqq for almost every t P p0, T q
such that µt � petq#η. If we are only interested in compressible curves in the sense that
they satisfy Definition 2.2 (ii), we consider the analogous for measures in trajectories3,
that is, for all t P pa, bq it holds

petq#η1 ¤ L1Ld and petq#η2 ¤ L2Ld

for some constants L1, L2 ¡ 0. Moreover, notice that peaq#η1 � µa � peaq#η2. Denoting
the probability measure η � pη1 � η2q{2, if one proves that its disintegration with respect
3 Notice that if one has uniqueness for the flow equation (1.2), then η is concentrated on X, and so we

have µt � petq#η � petq#

»
Rd

δXp�,xq dµ0pxq, and so µt � Xpt, �q#µ0. Since we may take µ0 � fLd for

nonnegative f P L1pRdq, it is analogous to Definition 2.2 (ii).
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to peaq#η denoted ηx is a Dirac measure for µa�almost every x, then

ηx � η1
x � η2

x for µa � almost every x.

Therefore, we have that η1 � η2, and so (H2) would follow. In order to prove that ηx is a
Dirac delta measure, we adapt (2.24) for the context of probability measures: let

Ψα,ϵ
δ ptq �

1
2

»
Rd

» »
log

�
1� |γt � ηt|

2 � αraϵ
tpγtq � pγt � ηtqs

2

δ2



dηxpγq dηxpηqdµapxq;

we changed the γ parameter to α for we now use the former to denote curves and for
simplicity we write γt � γptq, ηt � ηptq. Since it holds petq#η ¤ LLd for L � pL1 � L2q{2,
the same upper estimates done for Φα,ϵ

δ can be done for the above Ψα,ϵ
δ , namely it holds

for all t P ra, bs that for any ϵ1 ¡ 0, there exists δ0 small enough such that

lim
αÑ8

lim
ϵÑ0

Ψα,ϵ
δ ptq ¤ | log δ|ϵ1 for all δ   δ0. (3.4)

In order to conclude it, we proceed as in [6, Theorem 4.4]: assume by contradiction that
ηx is not a Dirac delta. Then there exists a constant c ¡ 0 such that½ » b

a

mint1, |γt � ηt|u dt dηxpγq dηxpηqdµapxq � c.

Indeed, let us prove the contraposition, and so by assuming that ηx are Dirac deltas,
notice that for almost every t P ra, bs and µa�almost every x P Rd, we would have that¼

mint1, |γt � ηt|u dηxpγq dηxpηq � 0.

Now, it follows by using the proof found in [77, Theorem 3.1] that if¼
|γt � ηt| dηxpγq dηxpηq � 0,

then ηx is not a Dirac delta.

By Fubini theorem there exists t0 P ra, bs such that½
mint1, |γt0 � ηt0 |u dηxpγq dηxpηqdµapxq ¡

c

T
.

Now, consider the set

Ω :�
!
pγ, η, xq : mint1, |γt0 � ηt0 |u ¥

c

2T

)
and notice that since ηx are probability measures, we have½

1Ω mint1, |γt0 � ηt0 |u dηxpγq dηxpηqdµapxq ¡
c

2T .

Therefore, without loss of generality assuming c   2T , we have that

|γt0 � ηt0 | ¥
c

2T for all pγ, η, xq P Ω.
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Hence, we have a lower bound

Ψα,ϵ
δ pt0q ¥

c

4T log
�

1� c2

p2Tδq2



¥

c

2T

�
log

� c

2T

	
� | log δ|

�
. (3.5)

Combining (3.4) and (3.5), we conclude� c

2T � ϵ1
	
| log δ|   c

2T log
�

2T
c



.

Taking ϵ1   c{2T and letting δ Ñ 0, we have a contradiction to the assumption and so ηx

is a Dirac delta measure.

We may state a abstract form of the aforementioned result concerning the proof
of the disintegration ηx being a Dirac delta measure [5, Theorem 3.4]: It states that if one
assumes (H1) and (H2) for b, and given η concentrated on absolutely continuous curves
associated to b and petq#η ¤ LLd for some L ¡ 0, then its disintegration with respect to
e0 is an Dirac delta.

Theorem 3.5. Let Ω be a subset of Rd and b satisfying (H1) and (H2) in Ω4 and
η P PpCpr0, T s;Rdqq concentrated on

tγ P ACpr0, T s; Ωq : 9γptq � btpγptqq for almost every t P p0, T qu (3.6)

and such that petq#η ¤ LLd for some L ¡ 0 for all t P r0, T s. Then its disintegration with
respect to e0 is a Dirac delta measure; equivalently, there exists curves γx in (3.6) such
that γxp0q � x such that η �

»
Ω
δγx dpe0q#ηpxq.

Remark 19. As discussed in [7, Theorem 4.1], notice that Theorem 3.5 implies local
uniqueness of compressible Lagrangian flows, for it suffices to consider

η �
1

2|BR|

»
BR

δXp�,xq � δX̄p�,xq dx

for R ¡ 0 and X, X̄ regular Lagrangian flows in ra, bs � BR. On the other hand, local
uniqueness of flows implies (H2) by Theorem 3.4, for one may consider weak solutions of
continuity equation utLd � Xpt, �q#pχBR

Ldq and ūtLd � Xpt, �q#pχBR
Ldq. Moreover, (3.6)

implies the consistency of regular Lagrangian flows [5, Lemma 4.2]: for X : r0, τ s�Ω Ñ Rd

and X̄ : r0, τ̄ s � Ω̄ Ñ Rd regular Lagrangian flows (Ω, Ω̄ Borelian sets), it follows by
considering the probability measure

η �
1

2|ΩX Ω̄|

»
ΩXΩ̄

δXp�,xq � δX̄p�,xq dx

on time interval r0,mintτ, τ̄us that Xp�, xq � X̄p�, xq in r0,mintτ, τ̄us for almost every
x P ΩX Ω̄.
4 By that we mean b P L1pp0, T q; L1

locpΩ;Rdqq and the uniqueness condition of (H2) holds replacing Rd

with Ω.
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Notice that the lower bound estimate (3.5) is completely independent of the
growth assumption (1.6) and even of (3.3), where the latter was only used for the application
of Theorem 3.4. This key observation led the trio to prove the so called “extended
superposition principle” [6, Theorem 5.1] which is completely independent of (3.3). In
particular, we do not have to restrict solutions u of continuity equation being bounded and
of compact support as in (H2), but rather a much milder assumption u P L8pp0, T q;L1pRdqq.
Before we prove it, we recall the result [6, Lemma 5.3] which states that we may construct
a “damped stereographic projection”, that is, given a nonincreasing function g, there exists
a diffeomorphism between the d�sphere without the north pole and pd� 1q�Euclidean
space such that its gradient is less than g. We denote N the north pole of the d�sphere.

Lemma 3.1. Let g : r0,8q Ñ p0, 1s be a monotone nonincreasing function. Then there
exists r0 ¡ 0 and a smooth diffeomorphism ψ : Rd Ñ Sd tNu � Rd�1 such that

ψpxq Ñ N as |x| Ñ 8;
|∇ψpxq| ¤ gp0q for all x P Rd;
|∇ψpxq| ¤ gp|x|q for all x P Rd Br0 .

(3.7)

We shall denote R̄d � Rd Y t8u the one-point compactification (sometimes
referred as Alexandroff compactification) of the d�Euclidean space. Moreover, we recall an
equivalent formulation of weak solution of the continuity equation, which typically of form» b

a

»
Ω
Btφtpxq � btpxq �∇φtpxq dµtpxq dt � 0

for all φ P C8
c ppa, bq � Ωq, where µ is said to be a weak solution of continuity equation

with vector field b in pa, bq � Ω. As proven in [11, Section 8.1], the above is equivalent of
proving that for almost every t P pa, bq, it holds

d
dt

»
Ω
φpxq dµtpxq �

»
Ω

btpxq �∇φpxq dµtpxq (3.8)

for all φ P LipcpΩq, where the left-hand side should be understood as
»

Ω
φpxq dµtpxq being

equal almost everywhere to an absolutely continuous function. If one consider an initial
value problem, we further assume that such function coincides at t � 0 to

»
Ω
φpxq dµ0pxq.

Theorem 3.6 (Extended superposition principle). Let u P L8pp0, T q;L1pRdqq be a non-
negative solution of the continuity equation with vector field b satisfying (H1) such that
the map t ÞÑ utpxq is weakly continuous in duality with CcpRdq. Moreover, assume that
|b|u P L1pp0, T q;L1

locpRdqq. Then there exists η P MpCpr0, T s; R̄dqq concentrated on the set

tγ P Cpr0, T s; R̄dq : γ P AClocptγ � 8u;Rdq

and 9γptq � btpγptqq for almost every t P tγ � 8u.u
(3.9)

such that utLd � petq#η Rd for all t P r0, T s and ηpCpr0, T s; R̄dqq ¤ }u}L8pp0,T q;L1pRdqq.
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Proof. We begin by considering in Lemma 3.1 the function

gprq �

$'&
'%

1 if r P r0, 1q;

2�n

�
1�

» T

0

»
B2n

|btpxq|utpxq dx dt

�1

if r P r2n�1, 2nq,

and so we obtain the existence of a smooth diffeomorphism ψ : Rd Ñ Sd tNu that it can
be extended as ψp8q � N and such that |∇ψpxq| ¤ gp0q � 1 for all x P Rd, and there
exists some n0 such that r0 ¤ 2n0 and for all n ¥ n0

|∇ψpxq| ¤ 2�n

�
1�

» T

0

»
B2n

|btpxq|utpxq dx dt

�1

for all x P B2n B2n�1 .

Therefore, we conclude that» T

0

»
Rd

|∇ψpxq||btpxq|utpxq dx dt ¤
» T

0

»
B2n0

|btpxq|utpxq dx dt

�
8̧

i�n0�1

» T

0

»
B2i B2i�1

|∇ψpxq||btpxq|utpxq dx dt

¤

» T

0

»
B2n0

|btpxq|utpxq dx dt�
8̧

i�n0�1
2�i   8.

(3.10)

We now construct η with desired properties. Without loss of generality, assume
that }u}L8pp0,T q;L1pRdqq � 1 and write ϕ as the inverse of the diffeomorphism ψ constructed
above. Let mt � }ut}L1pRdq,

ctpyq �

$&
%∇ψpϕpyqqbtpϕpyqq if y P Sd tNu;

0 if y � N,

and consider the measure

µt � ψ#putLdq � p1�mtqδN for t P r0, T s.

Notice that ϕ#pµt pSd tNuqq � pψ � ϕq#putLdq � utLd, and since ctpNq � 0, it holds» T

0

»
Sd

|ctpyq| dµtpyq dt �
» T

0

»
Rd

|∇ψpxq||btpxq| dϕ#pµt pSd tNuqqpxq dt

�

» T

0

»
Rd

|∇ψpxq||btpxq|utpxq dx dt   8,

(3.11)

where the last inequality follows from (3.10), and so c satisfies (3.3). Therefore, in order to
apply Theorem 3.4 (recall Remark 17), it suffices to show that µ is a solution of continuity
equation with vector field c on p0, T q � Sd and that it is weakly continuous in time in
duality with bounded CpRd�1q5. The latter follows by the weak continuity of ut and the
5 Recall that Sd � Rd�1, and so the weak continuity in duality with bounded CpRd�1q means that the

map t Ñ

»
Sd

φpyq dµtpyq is continuous for all bounded φ P CpRd�1q.
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fact that µt is a probability measure. Indeed, recall that the continuity of µt in duality with
CcpRd�1q is equivalent to bounded CpRd�1q if µt is a probability measure (see [11, Remark
5.1.6]), which is easily verified by its definition. Notice that by the weak continuity in time
of u, then assuming that µt has two limit points λ, ν as tÑ s, then for all φ P CcpRd�1q,
it holds (recall that mt � µtpSd tNuq)»

Sd

φpyq dλpyq �
»
Rd

φpϕpxqq dµspxq � p1� λpSd tNuqqφpNq;»
Sd

φpyq dνpyq �
»
Rd

φpϕpxqq dµspxq � p1� νpSd tNuqqqφpNq,

(3.12)

and so both limit points are uniquely determined in Sd tNu. Subtracting both equations
in (3.12) and considering φ P CcpRd�1 tNuq, we have that»

Sd

φpyq dpλ� νqpyq � pν � λqpSd tNuqφpNq � 0,

and so λ � ν in Sd tNu. Since the right-hand of (3.12) coincide, we conclude λ � ν in Sd.
Now, since the limit point is unique, the same reasoning implies that such limit point is
µs, and so the claim follows.

We now prove that µ solves the continuity equation in the equivalent sense
(3.8), i.e. for almost every t P p0, T q it holds

d
dt

»
Sd

φpyq dµtpyq �

»
Sd

ctpyq �∇φpyq dµtpyq

for all φ P C8pRd�1q. Of course, if one has φ P C8
c pRd�1 tNuq, then since u is a weak

solution of continuity equation with vector field b in p0, T q � Rd by assumption, then the
result follows easily by the definition of c and µ, since

d
dt

»
Sd

φpyq dµtpyq �
d
dt

»
Rd

φpψpxqqutpxq dx �
»
Rd

btpxq �∇pφ � ψqpxqutpxq dx

�
ḑ

i,j�1

»
Rd

bi
tpxqBiψ

jpxqBjφpψpxqqutpxq dx

�

»
Sd tNu

p∇ψbtqpϕpyqq �∇φpyqutpϕpyqq dy

�

»
Sd

ctpyq �∇φpyq dµtpyq.

Nevertheless, we still need to verify when φ is not necessarily zero at N . For this purpose,
since µtpSdq � 1 for all t P r0, T s, we have»

Sd

φpyq dµtpyq � φpNq �

»
Sd

φpyq � φpNq dµtpyq. (3.13)

Now, consider a cutoff function χϵ such that it vanishes in BϵpNq, equals one in Rd�1 B2ϵpNq,
and whose gradient is bounded by 2ϵ�1. Since χϵpyqrφpyq � φpNqs P C8

c pRd�1 tNuq, we
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may apply the previous result and so

d
dt

»
Sd

χϵpyqrφpyq � φpNqs dµtpyq �

»
Sd

rφpyq � φpNqsctpyq �∇χϵpyq dµtpyq

�

»
Sd

χϵpyqctpyq �∇φpyq dµtpyq.

Since |φpyq�φpNq| ¤ C|y�N |   Cϵ for y P B2ϵpNq, it follows that rφpyq�φpNqs∇χϵpyq

is uniformly bounded with respect to ϵ, and so the first integral is bounded by»
Sd

rφpyq � φpNqsctpyq �∇χϵpyq dµtpyq ¤ C

»
B2ϵpNq BϵpNq

|ctpyq| dµtpyq.

By (3.11) and dominated convergence theorem, such term vanishes as ϵ Ñ 0. Since the
second term converges in L1pp0, T qq to

»
Sd

ctpyq � ∇φpyq dµtpyq as ϵ Ñ 0. Therefore, it

follows that t ÞÑ
»
Sd

φpyq � φpNq dµtpyq is absolutely continuous in r0, T s, with for almost
every t P p0, T q it holds

d
dt

»
Sd

φpyq � φpNq dµtpyq �

»
Sd

ctpyq �∇φpyq dµtpyq.

By the above and (3.13), it follows that µ is a weak solution of continuity equation with
vector field c in p0, T q � Sd.

Hence, by Theorem 3.4 and Remark 17, it follows that there exists probability
measure σ P PpCpr0, T s; Sdqq concentrated on absolutely continuous in time curves solving
9γptq � ctpγptqq for almost every t P p0, T q and µt � petq#σ for all t P r0, T s. In order to
transport it back to the desired space R̄d, we consider

Ξ : Cpr0, T s; Sdq Ñ Cpr0, T s; R̄dq, Ξpγq :� ϕ � γ.

Setting η :� Ξ#σ P PpCpr0, T s; R̄dqq, we notice that it is concentrated on (3.9). Indeed,
denoting Λ :� tγ P ACpr0, T s; Sdq : 9γptq � ctpγptqqu, we have for any set Γ � Cpr0, T s; R̄dq

that

ηpΓq � σppΞq�1Γq � σppΞq�1ΓX Λq � σppΞq�1pΓX ΞΛqq � ηpΓX ΞΛq.

By a simple computation and recalling the definition of c, we obtain that ΞΛ is a subset
of (3.9), as desired. Moreover, we have that

petq#η Rd � rΞ#ppetq#σqs Rd � ϕ#µt Rd � utLd,

and so the theorem follows.

Remark 20. In the proof of Theorem 3.6, we did not verify that the set (3.9) is Borel in
Cpr0, T s; R̄dq. We refer to [6, Footnote 3] for a proof of such result.
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Notice that we have been using the almost everywhere notion of solution of
the flow equation (1.2). We now give a precise notion of such regular Lagrangian flows
in a local sense, that is, solutions in a Borel set of Rd and in time r0, τ s. By Remark 19,
notice that one may assume the largest τ possible, which shall be called maximal time.
Before we give such definition, we define the concept of hitting time of a curve in a set Ω.

Definition 3.1 (Hitting time in Ω). Let τ ¡ 0 and Ω an open subset of Rd and γ P

Cpr0, τq;Rdq. We say that hΩpγq is the hitting time of γ in Ω as

hΩpγq :� sup
"
t P r0, τq : max

sPr0,ts
VΩpγpsqq   8

*
,

if γp0q P Ω, and hΩpγq � 0 otherwise, where VΩpxq � maxtrdistpx,Rd Ωqs�1, |x|u.

The above definition of hitting time was chosen for convenience, for one could
have consider a more general function VΩ. More precisely, one could replace the above
function VΩ by any continuous function VΩ : Ω Ñ r0,8q such that lim

xÑBΩ
VΩpxq � 8 in the

sense that for any M ¡ 0, there exists a compact set K � Ω such that VΩ ¥M in Ω K.

Remark 21. Notice that hΩ is a lower-semicontinuous function. Indeed, let γn Ñ γ in
Cpr0, τq;Rdq. For any δ ¡ 0, consider Ωδ � tx P Ω : distpx,Rd Ωq ¥ δu. Denoting
a � hΩpγq, for any ϵ ¡ 0, there exists δ ¡ 0 such that γptq P Ω2δ for all t P r0, a� ϵs, and
by the convergence of γn, we have that γnptq P Ωδ for all t P r0, a� ϵs. Then we have that

VΩpγ
nptqq � rVΩpγ

nptqq � VΩpγptqqs � VΩpγptqq

is finite for all t P r0, a� ϵs. Therefore we have for all ϵ ¡ 0 that

hΩpγ
nq ¥ a� ϵ � hΩpγq � ϵ.

Definition 3.2 (Maximal regular flow). Let Ω a Borel set of Rd and b : p0, T q � Ω Ñ Rd

be a Borel map. We say that X is the maximal regular flow associated to b if there exists
a Borel map–which shall be called maximal time–T�X : Ω Ñ p0, T s6 such that X is defined
on tpt, xq : t   T�Xpxqu and

(Flow) for almost every x P Ω, Xp�, xq P AClocpr0, T�Xpxq;Rdq and it solves for almost
every t P p0, T�Xpxqq

BtXpt, xq � btpXpt, xqq;
Xp0, xq � x;

(3.14)

6 The notation may seem unnecessarily cumbersome, but in [6] they study the case when the initial
time is s ¡ 0, and they also need a minimal time T�

X : Ω Ñ r0, sq, and the maximal time should read
T�

X : Ω Ñ ps, T s.
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(Regular) for any compact K � Ω, there exists a constant CK,X ¡ 0 such that for all
t P r0, T s

Xpt, �q#pLd tTK ¡ tuq ¤ CK,XLd, (3.15)

where TKpxq is the hitting time of the curve Xp�, xq at the boundary of K. More
precisely,

TKpxq �

$&
%hKpXp�, xqq if x P K;

0 if x P Ω K;

(Maximal) for almost every x P Ω such that T�Xpxq   T , it holds

lim sup
tÕT�

Xpxq

VΩpXpt, xqq � 8. (3.16)

Remark 22. Notice that for any negligible set E � p0, T q � Rd, by the compressibility of
flows it follows for any Borelian set Ω that

 
x P Ω : |tt P p0, T�Xpxqq : pt,Xpt, xqq P Eu| ¡ 0

(
is negligible. In particular, (3.14) does not depend on the representative (in Lebesgue
equivalence class) of b.

Notice that (3.15) is a weaker notion than Definition 2.2 (ii). Although many
results follow from the former, which is intrinsically a local property, for proper blowup–
which means that lim sup in (3.16) is in fact a limit–of flows as the time approaches the
maximal time we shall need a global version of it akin to the latter.

In order to establish existence of maximal regular flows, we define a probability
measure version of Definition 3.2; it is precisely the one we have used in Theorem 3.5.

Definition 3.3 (Regular generalized flow in Ω̄). Let Ω an open set of Rd and let a Borel
vector field b : p0, T q � Ω̄ Ñ Rd. A measure η P PpCpr0, T s;Rdqq is said to be a regular
generalized flow7 in Ω̄ if it is concentrated in

tγ P ACpr0, T s; Ω̄q : 9γptq � btpγptqq for almost every t P p0, T qu

and there exists a constant Lη ¡ 0 such that for all t P r0, T s it holds

rpetq#ηs Ω ¤ LηLd.

We now prove the tightness and stability associated to regular generalized flows
by the trio in [5, Theorem 4.4]. It parallels the already proven stability and compactness
result for global regular flows Lemma 2.8. The proof does not rely on Lemma 2.6, but
rather on Theorems 3.1 and 3.2.
7 Notice that when there exists a regular flow X, then petq#η � δXpt,�q.
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Theorem 3.7 (Tightness and stability of regular generalized flows). Let Ω an open
bounded set of Rd and let c, cn : p0, T q � Ω̄ Ñ Rd Borel vector fields satisfying c � cn � 0
on p0, T q � BΩ8 and

lim
nÑ8

cn � c in L1pp0, T q � Ωq.

Moreover, let ηn P PpCpr0, T s; Ω̄qq be regular generalized flows of cn with compressibility
constants Ln uniformly bounded. Then tηnunPN is tight, with limit point η being a regular
generalized flow of c, and for any Γ � Cpr0, T s; Ω̄q and Ω1 � Ω, it holds

rpetq#pη
n Γqs Ω1 ¤ CnLd for some Cn ¡ 0

ùñ rpetq#pη Γqs Ω1 ¤ plim inf
nÑ8

CnqLd.
(3.17)

Proof. By the convergence of tcnunPN in L1pp0, T q�Ω̄q, for cn and c vanish at the boundary
of Ω, then by Theorem 3.1 and [62, Theorem 6.19] there exists an increasing, convex, and
superlinear function F : r0,8q Ñ r0,8q such that9 F p0q � 0 and

sup
nPN

» T

0

»
Ω̄
F p|cn

t pxq|q dx dt   8.

Define the functional G : Cpr0, T s;Rdq Ñ r0,8s as

Gpγq �

$'&
'%
» T

0
F p| 9γptq|q dt if ACpr0, T s; Ω̄q;

8 if Cpr0, T s;Rdq ACpr0, T s; Ω̄q.

Since ηn is concentrated on ACpr0, T s; Ω̄q, we have by Theorem 3.3 and the regularity (in
the compressibility sense) of ηn that»

Gpγq dηnpγq �

» » T

0
F p| 9γptq|q dt dηnpγq �

» T

0

»
Ω̄
F p|cn

t pxq|q drpetq#ηnspxq dt

¤ Ln

» T

0

»
Ω̄
F p|cn

t pxq|q dx dt

¤ sup
nPN

Ln

» T

0

»
Ω̄
F p|cn

t pxq|q dx dt   8.

(3.18)

If one proves that G has compact sublevels, by Theorem 3.2 and Remark 16 we have
that ηn is uniformly tight and there exists a limit point η (since tηnunPN are probability
measures, the uniform boundedness of follows trivially). Moreover, notice that it suffices
to prove that its sublevels are sequentially compact, for Cpr0, T s;Rdq is a metric space.
For this purpose, fix M ¡ 0 and consider a sequence γk P tγ : Gpγq  Mu for k P N. Since
F is an increasing and convex function, we have by Jensen’s inequality that

|γkptq � γkpsq| ¤ |t� s|F�1
�
|t� s|�1

» t

s

F p| 9γpτq|q dτ


¤M

F�1pM |t� s|�1q

M |t� s|�1 .

8 Although the c, cn are invariant on Lebesgue measure zero sets, the vanishing hypothesis on the
boundary of Ω is understood in a pointwise sense.

9 It is known as modulus of integrability, and by superlinear we mean lim
zÑ8

F pzq

z
� 8.
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Since F is superlinear, then it follows that lim
zÑ8

F�1pzq

z
� 0, and so for every ϵ ¡ 0, there

exists Nϵ ¡ 0 such that F�1pzq   ϵM�1z whenever z ¡ N . Choosing z � M |t � s|�1,
we conclude that |γkptq � γkpsq|   ϵ whenever |t � s|   MN�1

ϵ �: δ. Since M does
not depend on k, we have that tγkukPN is equicontinuous, which combined with its
uniform boundedness–for Ω̄ is a compact subset–gives that such sequence has a convergent
subsequence by Arzelà-Ascoli theorem.

Moreover, notice that G is lower semicontinuous by the classical result due
to Ioffe originally proved in [58]; see a modern presentation in [10, Theorem 5.8] and
[63, Theorem 1.1]. Indeed, consider tγkukPN a sequence converging to γ P Cpr0, T s;Rdq

with respect to the uniform norm. Notice that if γ P Cpr0, T s;Rdq ACpr0, T s; Ω̄q, then
Gpγq � 8, so it amounts to show that lim inf

kÑ8
Gpγkq � 8. Since ACpr0, T s; Ω̄q is a closed

subset of Cpr0, T s;Rdq with respect to the topology induced by the uniform norm, we have
that there exists N such that for all k ¡ N , γk P Cpr0, T s;Rdq ACpr0, T s; Ω̄q, and so we
are done.

If γ P ACpr0, T s; Ω̄q, then it suffices to prove when L :� lim inf
kÑ8

Gpγkq   8.
Notice that there exists a subsequence tγkjujPN such that lim

jÑ8
Gpγkjq � L. By the definition

of G we have that γj P ACpr0, T s; Ω̄q for j ¡ N for some N P N (we have relabeled kj as
j). Since γj Ñ γ in Cpr0, T s; Ω̄q, we have for every t, s P r0, T s that» t

s

9γjpτq dτ Ñ
» t

s

9γpτq dτ as j Ñ 8,

and so it follows that 9γj á 9γ weakly in L1pr0, T sq. Since F is a convex function, it follows
from Ioffe’s result that

Gpγq �

» T

0
F p| 9γptq|q dt ¤ lim inf

kÑ8

» T

0
F p| 9γkptq|q dt � lim inf

kÑ8
Gpγkq,

and so the lower semicontinuity of G follows. We now claim that
»
Gpγq dηpγq   8,

so that η is concentrated on ACpr0, T s; Ω̄q. Indeed, following the proof of [78, Theorem
4.3], we have that G � lim

kÑ8
Gk in a pointwise sense, where tGkukPN is a nondecreasing

sequence of continuous functions10. Therefore by monotone convergence theorem, the weak
convergence ηn á η in MpCpr0, T s;Rdqq (given by Theorem 3.2), and (3.18), we have
that »

Gpγq dηpγq � lim
kÑ8

»
Gkpγq dηpγq � lim

kÑ8
lim

nÑ8

»
Gkpγq dηnpγq

¤ lim inf
nÑ8

»
Gpγq dηnpγq   8.

10 For instance, consider Gkpγq � inf
ηPCpr0,T s;Rdq

tGpηq � k}γ � η}L8pr0,T squ.
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Now, since petq#ηn converges to petq#η in duality with bounded continuous
functions and the compressibility of ηn, we have for any Ω1 � Ω and t P r0, T s that

petq#ηpΩ1q ¤ lim inf
nÑ8

petq#ηnpΩ1q ¤ plim inf
nÑ8

Lnq|Ω1|,

and so η is regular in the compressibility sense by the arbitrariness of Ω1. The same
argument can be done to prove (3.17).

In order to conclude the theorem, we must show that η is concentrated on
integral curves of c, and it suffices to prove that for any t P r0, T s» ����γptq � γp0q �

» t

0
cτ pγpτqq dτ

���� dηpγq � 0.

For this purpose, consider c1 P Cpr0, T s � Ω̄;Rdq satisfying c1 � 0 on r0, T s � BΩ. We begin
by proving that» ����γptq � γp0q �

» t

0
c1τ pγpτqq dτ

���� dηpγq ¤ C

» T

0

»
Ω
|ctpxq � c1tpxq| dx dt.

The above follows by using that the approximation tηnunPN is a regular (in the compress-
ibility sense) measure concentrated on integral curves of vector fields cn:» ����γptq � γp0q �

» t

0
c1τ pγpτqq dτ

���� dηnpγq �

» ����
» t

0
cn

τ pγpτqq � c1τ pγpτqq dτ
���� dηnpγq

¤

» T

0

»
Ω
|cn

τ pxq � c1τ pxq| drpeτ q#ηnspxq dτ

¤ sup
nPN

Ln

» T

0

»
Ω
|cn

τ pxq � c1τ pxq| dx dτ.

Taking the limit in nÑ 8 in the above and using the convergences cn Ñ c in L1pp0, T q�Ωq
and ηn Ñ η in duality with bounded continuous functions, we conclude that» ����γptq � γp0q �

» t

0
c1τ pγpτqq dτ

���� dηpγq ¤ sup
nPN

Ln

» T

0

»
Ω
|cτ pxq � c1τ pxq| dx dτ.

Therefore, we conclude by the above that that» ����γptq � γp0q �
» t

0
cτ pγpτqq dτ

���� dηpγq �

�
1� sup

nPN
Ln


» T

0

»
Ω
|cτ pxq � c1τ pxq| dx dτ.

Choosing c1 as a sequence converging in L1pp0, T q � Ω̄q to c, the result follows.

We now prove the local existence of local regular flows for vector fields satisfying
Condition 3.1 (the first “local” refers to the space variable). This is a combination of
Theorems 5.2 and 5.5 of trio [5].

Theorem 3.8 (Local existence). Let b : p0, T q�Rd Ñ Rd be a Borel vector field satisfying
Condition 3.1 and let Ω be an open subset of Rd with compact closure. Then there exists
Borel maps TΩ : Ω Ñ p0, T s (as in Definition 3.2) and a Borel map Xpt, xq for x P Ω and
t P r0, TΩpxqs such that
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(i) for almost every x P Ω, Xp�, xq P ACpr0, TΩpxqs;Rdq, Xp0, xq � x, Xpt, xq P Ω for
all t P r0, TΩpxqq, and XpTΩpxq, xq P BΩ for TΩpxq   T ;

(ii) for almost every x P Ω, Xp�, xq is an integral curve associated to the vector field b

almost everywhere in p0, TΩpxqq;

(iii) Xpt, �q#pLd tTΩ ¡ tuq ¤ exp
�» T

0
mΩpτq dτ



Ld for all t P r0, T s, where mΩ is the

function in (H3).

Proof. We shall split the proof in three steps: the first is concerned with existence of
flows for the truncated vector field 1Ωb given a regular generalized measure η in Ω̄; the
second ensures existence of such η if b is a smooth function; finally, the third concludes
the theorem for the whole b. We remark that steps 1 and 2 do not rely on hypothesis (H3).

Step 1: Let us denote Γt � tγ : hΩpγq ¡ tu for t P p0, T q (recall the definition
of hitting time in Definition 3.1) and Σt : Γt Ñ Cpr0, ts; Ωq the restriction of curves on r0, ts,
i.e. Σtpγq � γ|r0,ts. We begin by proving that given δ P p0, 1q and a regular generalized
flow η in Ω̄ with respect to vector field 1Ωb with compressibility constant L ¡ 0 and such
that pe0q#η � ρ0Ld with ρ0 ¡ 0 almost everywhere in Ω, it holds that

σx :� 1
ηxpΓtq

Σt
#pηx Γtq P PpCpr0, ts; Ωqq

is a Dirac measure for ρ0Ld�almost every x such that ηxpΓtq ¥ δ, where ηx is the
disintegration of η with respect to e0. Since ηx is concentrated on integral curves in r0, T s
of 1Ωb with initial data x, the probability measure

σ :�
»
txPΩ:ηxpΓtq¥δu

σxρ0pxq dx

satisfies the hypothesis of Theorem 3.5 with T � t, for the definition of σ gives that»
Rd

φpxq pesq#σpxq ¤
1
δ

»
Rd

φpxq pesq#ηpxq ¤
L

δ

»
Rd

φpxq dx

for all φ P CcpΩq, and so σ has compressibility constant δ�1L. Therefore Theorem 3.5
implies that σx is a Dirac measure for ρ0Ld�almost everywhere in tx P Ω : ηxpΓtq ¥ δu.
In particular, by the definition of ρ0, we have for almost every x P Ω and all t P p0, T q that
Σt

#pηx Γtq is either a multiple of Dirac delta or null measure.

The above gives that, for ρ0Ld�almost every x P Ω, hΩpγq equals a positive
constant for ηx�almost every γ. Indeed, let

Q1 :�tq P Q : Σq
#pηx Γqq is a null measureu;

Q2 :�tq P Q : Σq
#pηx Γqq is a multiple of Dirac measureu,

and notice by the above result that Q � Q1 Y Q2. By their definition, ηxpΓqq � 0 for
q P Q1 and there exists γq P Cpr0, qs; Ωq such that ηxppΣqq�1Cpr0, qs; Ωq tγquq � 0 for
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q P Q2. Moreover, notice that if Q1 � H, then hΩpγq � T for all γ P Cpr0, T s; Ω̄q. Let us
consider the ηx�null set

E :� pYqPQ1Γqq Y
�
YqPQ2pΣqq�1Cpr0, qs; Ωq tγqu

�
� Q1 YQ2.

Then we have that

Cpr0, T s; Ω̄q E �
�
Cpr0, T s; Ω̄q Q1

�
Y
�
Cpr0, T s; Ω̄q Q2

�
�tγ P Cpr0, T s; Ω̄q : hΩpγq ¤ q for all q P Q1

and Σqpγq � γq for all q P Q2u.

Therefore by defining q1 � inf Q1 and q2 � supQ2, we have that q2 ¤ q1. In order to
conclude the claim, we prove that q2 � q1. Assuming otherwise, that is q2   q1, there
exists q0 P Q X p0, T q such that q2   q0   q1. Since q0 is either in Q1 or in Q2, we
get a contradiction to the definition of q1 or q2, and so the claim follows. In particular,
taking TΩpxq as the constant hΩpγq for γ R E, then petq#ηx is a Dirac measure for all
t P r0, TΩpxqs. Indeed, notice that for any Borel A � Rd, we have for almost every x P Rd

and all t P r0, TΩpxqs that

ηxppetq
�1Aq � ηx

�
tγ P Cpr0, T s; Ω̄q : Σqpγq � γq for any q P Q2 and γptq P Au

�
.

Now, if γq2ptq :� lim
qÕq2

γqptq P A, then γ|r0,q2s
ptq P A; if γq2ptq R A, then γ|r0,q2s

ptq R A.
Summarizing, we have that

ηxppetq
�1Aq �

$&
%1 if γq2ptq P A

0 if γq2ptq R A,

and so petq#η is a Dirac delta measure for all t P r0, TΩpxqs.

Hence, we now define the curve

Xpt, xq :�
»
etpγq dηxpγq,

for t   TΩpxq and x P Ω, we conclude by Theorem 3.3 that X is a Borel map and (i) and
(ii) of Theorem 3.8 holds for such vector fields. Moreover, Remark 21 gives that TΩ is a
Borel map, and by the definition of X, we conclude that

Xpt, �q#rρ0Ld tTΩ ¡ tus ¤ LLd for all t P r0, T s.

Step 2: Assuming that b P C8pr0, T s � Ω̄;Rdq, we shall prove that there exists
a regular generalized flow η associated to 1Ωb such that

pe0q#η �
1
|Ω|L

d Ω and rpetq#η thK ¡ tus K ¤
1
|Ω| exp

�» T

0
mKpτq dτ



Ld (3.19)
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for all t P r0, T s and any compact subset K � Ω, Ω am open subset of Rd. For this purpose,
notice that we may apply the classical Cauchy-Lipschitz theory and denote Xp�, xq the
unique integral curve of b with initial data x P Ω in the interval r0, TΩpxqs, where TΩpxq

denotes the first time where the flow hits the boundary of Ω. Therefore, we may extend
Xp�, xq to r0, T s as XpTΩpxq, xq for t P rTΩpxq, T s. We thus define η as the law under
|Ω|�1Ld Ω of X11 and we prove that it is a generalized regular flow associated to 1Ωb

and satisfies (3.19). By its definition, η is concentrated on integral curves of 1Ωb–namely,
the flow Xpt, �q–and the first property in (3.19). Hence, it suffices to prove that it satisfies
the compressibility property in the sense of the second property in (3.19). For this purpose,
we begin by recalling the change of variables formula»

Rd

φpXpt, xqq exp
�» t

0
div bτ pXpτ, xqq dτ



dx �

»
Rd

φpxq dx

for all φ P CcpRdq, which holds since b is a smooth vector field. Now, for any Ω open
subset of Rd and any compact K � Ω, we consider a nonnegative function φ P CcpKq.
Notice that φpXpt, xqq � 0 if t ¥ hKpXp�, xqq, hence suppφpXpt, �qq is a compact subset
of tx P K : t   hKpXp�, xqqu. Therefore, we have for all t P r0, T s that»

KXtx:t hKpXp�,xqqu

φpXpt, xqq dx ¤ exp
�» T

0
mKpτq dτ


»
Rd

φpxq dx,

where mK is the lower bound on the divergence of b, as in (H3). By the definition of η,
we conclude that the above is equivalent to

rpetq#η thKp�q ¡ tus K ¤
1
|Ω| exp

�» T

0
mKpτq dτ



Ld for all t P r0, T s.

Step 3: We now conclude Theorem 3.8. By step 1, it suffices to construct a
regular generalized flow η in Ω̄ associated to vector field 1Ωb such that pe0q#η � ρ0Ld for
some ρ0 ¡ 0 almost everywhere in Ω. For this purpose, we shall use step 2 and construct
via approximation such η by considering the mollification of b in spacetime (possibly
extending b to be the null vector field for R1�d), which we denote as bϵ. Indeed, step 2
gives the existence of a regular generalized flow ηϵ in Ω̄ associated to 1Ωbϵ with

rpetq#ηϵ thKp�q ¡ tus K ¤
1
|Ω| exp

�» T

0
mϵ

Kpτq dτ



Ld for all t P r0, T s,

where div bϵ ¥ mϵ
K in p0, T q�K. By the definition of bϵ and mϵ

K , we have for any compact
K � Ω that

lim sup
ϵ×0

1
|Ω| exp

�» T

0
mϵ

Kpτq dτ


¤

1
|Ω| exp

�» T

0
mΩpτq dτ



,

11 Recall that given pΩ, F , P q a probability space, pS, Σq a measure space, and Y : I � Ω Ñ S a map
such that Y pt, �q is a measurable function for each index t P I, the law of Y is defined as pΦY q#P ,
where rΦY pxqsptq � Y pt, xq.
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and so by Theorem 3.7, it follows that

rpetq#η thKp�q ¡ tus K ¤
1
|Ω| exp

�» T

0
mΩpτq dτ



Ld for all t P r0, T s.

By taking the limit K Õ Ω12, we may drop the restriction in K on the left-hand side.
Moreover, by step 1 one takes TΩ as the hitting time and ρ0 � |Ω|�1, we conclude

Xpt, �q#pLd tTΩ ¡ tuq ¤ exp
�» T

0
mΩpτq dτ



Ld for all t P r0, T s,

which gives (iii), and so the theorem follows.

We now state and prove an uniqueness and existence theorem, which is one of
the main results of the trio [5, Theorem 5.7]. It heavily relies on Theorem 3.8 by taking
the limit of local regular flows in Ωn as nÑ 8. Moreover, we also prove that if (H3) is
strengthened to

div b ¥ m in p0, T q � Rd for some m P L1pp0, T qq, (3.20)

which implies that (3.15) holds with tT�X ¡ tu instead of tTK ¡ tu and with compressibility
constant independent of the compact set K, then limit superior in (3.16) is in fact a limit;
this is precisely the trio’s result [5, Theorem 7.1].

Theorem 3.9 (Existence and uniqueness of maximal regular flow). Let b : p0, T q�Rd Ñ Rd

be a Borel vector field satisfying Condition 3.1 and let Ω be a compact subset of Rd. Then
there exists an unique maximal regular flow associated to b, with compressibility constant

exp
�» T

0
mΩpτq dτ



. Moreover, let Y : r0, τq � Ω1 Ñ Rd for τ P p0, T s and a compact set

Ω1 � Rd such that Y p�, xq P Ω is an integral curve of b in r0, τq for x P Ω1 satisfying

Y pt, �q#Ld Ω1 ¤ LLd

for some L ¡ 0. Then τ   T�Xpxq and Xp�, xq � Y p�, xq in r0, τq for almost every x P Ω1.
Finally, if (3.20) holds, then for all t P r0, T s, it follows that

Xpt, �q#Ld tT�X ¡ tu ¤ exp
�» T

0
mpτq dτ



Ld, (3.21)

and the limit superior in Definition 3.2 is in fact an limit, that is,

lim
tÕT�

Xpxq
|Xpt, xq| � 8.

12 Such limit is the usual definition: for K1 � K2 � . . . Kn � � � � � Ω, we define Kn Õ Ω for n Ñ8 as
the union Yn¥1Kn � Ω.
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Proof. By Theorem 3.5 and Remark 19, for maximal regular flows X and X̄ with maximal
times T�X and T�

X̄
, respectively, then Xp�, xq � X̄p�, xq in r0,mintT�X , T�X̄uq for almost

every x P Ω. Now, notice that for almost every x P tT�X ¡ T�
X̄
u, then for any VΩ as in

Definition 3.1, we have that the image of r0, T�
X̄
pxqs through VΩpXp�, xqq is bounded, and

of r0, T�
X̄
pxq through VΩpX̄p�, xqq is not (by the maximality of T�

X̄
). Therefore, we have

that tT�X ¡ T�
X̄
u has measure zero. Applying the same argument swapping the flows, we

conclude that T�Xpxq � T�
X̄
pxq for almost every x P Ω, and so uniqueness of maximal regular

flow follows. The same argument holds when considering flows Y as in Theorem 3.9.

In order to ensure existence of maximal regular flows, we begin by constructing
auxiliary local flows Xn in Ωn, where Ωn Õ Rd such that Ωn is compactly contained in
Ωn�1, with Borel map Tn :� TΩn–whose existence follows from Theorem 3.8–such that

(i) for almost every x P Ωn, Xnp�, xq P ACpr0, Tnpxqq;Rdq, Xp0, xq � x, Xpt, xq P Ωn for
all t P r0, Tnpxqq, and XpTnpxq, xq P BΩn for Tnpxq   T , so Tnpxq � hΩnpX

np�, xqq;

(ii) for almost every x P Ωn, Xnp�, xq is an integral curve associated to the vector field b

almost everywhere in p0, Tnpxqq;

(iii) Xnpt, �q#pLd tTn ¡ tuq ¤ exp
�» T

0
mΩnpτq dτ



Ld for all t P r0, T s.

Now, we define for almost every x P Rd

T�Xpxq :� lim
nÑ8

Tnpxq, Xpt, xq :� Xnpt, xq for t P r0, T�Xpxqq.

The first limit is well-posed by the monotonicity of the sequence tTnpxqunPN for almost
every x P Ωn, which follows by using the same argument for the proof of uniqueness of
maximal regular flows. As a consequence, we have for n ¤ k that Xnp�, xq � Xmp�, xq

in r0, Tnpxqs for almost every x P Ωn. We now prove that X is a maximal regular flow
with maximal time T�X . By the definition of X and the fact that Xn is an integral curve
of vector field b in p0, Tnpxqq implies that X satisfies the flow property in Definition 3.2.
For the regular property, notice that the compressibility of the auxiliar flows Xn and the
definition of X gives that for all t P r0, T s,

Xpt, �q#pLd tTn ¡ tuq ¤ exp
�» T

0
mΩnpτq dτ



Ld.

Now, for any compact set Ω � Rd, take Ωn Õ Ω and since in this case holds

Xpt, �q#pLd tTn ¡ tuq ¤ exp
�» T

0
mΩpτq dτ



Ld,

we may pass the limit using the fact that Tn � hΩnpXp�, xqq. Finally, for the maximal
property in Definition 3.2, notice that for any compact Ω P Rd, we may take Ωn containing
it for n sufficiently large, and since XpTnpxq, xq P BΩn, and so the property follows trivially.
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If the vector field also satisfies (3.20), notice that by the previous construction,
(3.21) follows. Now, since we consider Ωn Õ Rd such that Ωn is compactly contained in
Ωn�1, we may consider ψn P C

8
c pΩn�1q cutoff functions such that 0 ¤ ψn ¤ 1 and ψn � 1

in Ω̄n. Therefore, denoting L :� exp
�» T

0
mΩpτq dτ



, we have that

»
Rd

» T�
Xpxq

0

���� d
dtψnpXpt, xqq

���� dt dx ¤
» T

0

»
tT�

X¡tu

|∇ψnpXpt, xqq||btpXpt, xqq| dx dt

¤L}∇ψn}L8pRdq

» T

0

»
Ωn�1

|btpxq| dx dt   8.

Hence for almost every x P Rd ψnpXp�, xqq is the restriction absolutely continuous function
in r0, T�Xpxqs. In order to conclude that the limit superior

lim sup
tÕT�

Xpxq

|Xpt, xq| � 8

is a limit, it suffices to show that limit inferior also diverges to infinity. For this purpose,
fix x P Rd such that the maximal property in Definition 3.2 holds and notice by the above
that ψnpXp�, xqq is uniformly continuous in r0, T�Xpxqq. This combined with the compact
support of ψn implies that

lim
tÕT�

Xpxq
ψnpXp�, xqq � 0 for any n P N.

Assuming by contradiction that limit inferior of |Xpt, xq| as t Õ T�Xpxq is finite, there
would exist an integer N and a sequence of times tk Õ T�Xpxq such that Xptk, xq P Ωn;
this is not possible, for ψN�1pXptk, xqq � 1, and so the theorem follows.

Remark 23. The proof of Theorem 3.9 exemplifies why the growth assumptions (1.6) and
(3.3) for vector fields b are crucial in order to ensure global well-posedness in time of
integral curves associated to b, for even in the classical case for Cauchy-Lipschitz theory.
Indeed, the very simple one dimensional example bpxq � x2 illustrate this phenomenon. For
also a simple example in higher dimension, consider the divergence-free time independent
two-dimensional vector field

bpx, yq � px2,�2xyq.

Then the associated flow can be explicitly computed, and so denoting X � pX1,X2q, we
have that �

X1pt, x, yq

X2pt, x, yq

�
�

�
xp1� xtq�1

y exp p2 log |1� xt|q .

�

Notice that although X is smooth, the lack of global control does not guarantee that X

is well-posed for all times. In this particular example, we have T�Xpxq � |x|�1.
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So far, we have recovered in Theorem 3.9 the existence and uniqueness analogous
to Theorem 2.1 without any growth assumptions. The complete analogy shall be done
once we obtain a forward semigroup property first proven in [5, Theorem 6.1], in the sense
that

Xp�, s,Xps, 0, xqq � Xp�, 0, xq in rs, T�Xpxqq (3.22)

for almost every x P tT�X ¡ su, where we once again denote Xpt, s, xq as a flow with initial
time s and T�X,spxq the maximal time of Xp�, s, xq. In this notation, Xpt, 0, xq � Xpt, xq

and T�X,0pxq � T�Xpxq.

Theorem 3.10 (Semigroup property). Let b satisfying Condition 3.1 and s P r0, T s. Then
the maximal regular flow associated to b satisfies (3.22) for almost every x P tT�X ¡ su

and T�X,spXps, xqq � T�Xpxq for almost every x P tT�X ¡ su.

Proof. Since both thesis assume that x P tT�X ¡ su, without loss generality assume
|tT�X ¡ su| ¡ 0. Let Ωs � tT�X ¡ su such that |Ωs| ¡ 0, and by the compressibility of X,
there exists a bounded function ρs such that

1
|Ωs|

Xps, �q#Ld Ωs � ρsLd.

Consider π :� |Ωs|
�1pId�Xps, �qq#Ld Ωs a probability measure, and by disintegrating π

with respect to ρsLd we obtain a family of probability measures tπyuyPRd such that

π :�
»
rπy b δysρspyq dy.

Now, for ϵ ¡ 0, we construct the probability measure

πϵ :�
»
tρs¥ϵu

πy b δy dy,

and since ϵπϵ ¤ π, the first marginal of πϵ
13 is bounded by the first marginal of π over ϵ,

i.e. pϵ|Ωs|q
�1Ld Ωs, by the definition of π. Therefore, we have that the first marginal of

πϵ can be written as ρ̃ϵLd for some bounded function ρ̃ϵ. Moreover, notice that

π ¤ }ρs}L8pRdqπϵ � ϵ

»
tρs ϵu

πy b δy dy,

which gives that
1
|Ωs|

Ld Ωs ¤ }ρs}L8pRdqρ̃ϵLd � ϵ

»
tρs ϵu

πy dy,

and so we conclude that ρ̃ϵ ¡ 0 almost everywhere in Ωs for ϵ small enough.
13 Recall that the first marginal of a measure µ P PpX � Y q is a probability measure in PpY q defined as

π̃#µ, where π̃px, yq � x is the canonical projection.
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We now construct a generalized regular flow ητ,ϵ P PpCprs, τ s;Rdqq for fixed
τ ¡ s and ϵ ¡ 0 as

ητ,ϵ :�
»
tρs¥ϵu

»
tT�

X,s¡τu

δXp�,xq dπypxq dy �
»
tT�

X,s¡τu

δXp�,xqρ̃ϵpxq dx. (3.23)

Notice that by its definition, ητ,ϵ is concentrated on integral curves of b, and the compress-
ibility follows by the computation»

Rd

ϕpxq drpeτ 1q#ητ,ϵspxq �

»
tT�

X,s¡τu

ϕpXpτ 1, xqqρ̃ϵpxq dx ¤ L}ρ̃ϵ}L8pRdq

»
Rd

ϕpxq dx

for any bounded nonnegative ϕ P CpRdq and τ 1 P rs, τ s, where L is the compressibility
constant for the maximal regular flow X. By Theorem 3.5 with interval rs, τ s, we have

ητ,ϵ �

»
δγx drpesq#ητ,ϵspxq,

and by the uniqueness proven in Theorem 3.9, we have that γxptq � Xpt, s, xq for
rpesq#ητ,ϵs�almost every x P Rd and all t P rs, τ s. Using the fact that by definition
rpesq#ητ,ϵs � Xps, �q#r1tT�

X,s¡τuρ̃ϵs, we conclude

ητ,ϵ �

»
tT�

X,s¡τu

δXp�,s,Xps,xqqρ̃ϵpyq dy. (3.24)

By (3.23) and (3.24), the positivity of ρ̃ϵ on Ωs, and the arbitrariness of τ , we conclude
(3.22) and T�X,spXps, xqq ¡ T�Xpxq for almost every x P Ωs. Notice that by the maximal
property for maximal regular flows and the identity (3.22), we conclude that

T�X,spXps, xqq � T�Xpxq for almost every x P Ωs.

By the arbitrariness of Ωs, the theorem follows.

To conclude the trio’s main results concerning the general theory, we now
present a criterion for maximal regular flows to be global in time, with first iteration in [5,
Theorem 7.6], but we shall present a more general version found in [6, Proposition 4.11].
For this purpose, we shall prove a result essentially contained in [6, Theorem 4.7].

Proposition 3.1. Let b a vector field satisfying Condition 3.1 and X its associated
maximal regular flow (existence, uniqueness and semigroup property of it follows from
Theorems 3.9 and 3.10). Moreover, let η P MpCpr0, T s; R̄dqq concentrated on (3.9), and
such that there exists a constant L ¡ 0 satisfying petq#η Rd ¤ LLd for all t P r0, T s.
Then for pe0q#η-almost every x P Rd, the disintegration ηx of η with respect to e0 is
concentrated on the set

tγ P Cpr0, T s; R̄dq : γp0q � x and γptq � Xpt, xq for all t P r0, T�Xpxqqu.

In particular, η is concentrated on

tγ P Cpr0, T s; R̄dq : γp0q � 8 or γptq � Xpt, γp0qq for all t P r0, T�Xpxqqu.
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Proof. Since T�Xpxq and γ ÞÑ Xpt, xq � Xpt, γp0qq are a Borel maps, then so is the above
set by first considering t P QX p0, T q. By the definition of ηx, it suffices to show that it is
concentrated on

tγ P Cpr0, T s; R̄dq : γptq � Xpt, xq for all t P r0, T�Xpxqqu. (3.25)

For this purpose, we consider for every R ¡ 0 and t P p0, T s the measure

ηR,t :� Σt
# pη tγ : |γpsq|   R for all s P r0, tsuq ,

where Σt the restriction of a curve as in Theorem 3.8. By its definition, ηR,t satisfies the
hypothesis of Theorem 3.4, and so there exists Y p�, xq an integral curve of b in r0, ts such
that Y p0, xq � x for pe0q#ηR,t�almost every x P Rd and

ηR,t �

»
δY p�,xq dpe0q#ηR,tpxq. (3.26)

By the compressibility of η, there exists a function ρR,t bounded by L such that pe0q#ηR,t �

ρR,tLd. Moreover, we have that

Y pt, �q#pLd tρR,t ¡ δuq ¤ δ�1petq#

»
tρR,t¡δu

δY p�,xqdpe0q#ηR,tpxq ¤ δ�1LLd,

and so Y p�, xq is a regular flow in r0, ts for almost every x P tρR,t ¡ δu with compressibility
constant δ�1L. Hence by Theorem 3.9, we conclude that Y p�, xq � Xp�, xq in r0, ts for
almost every x P tρR,t ¡ δu, and so by letting δ Ñ 0 and then R Ñ 8, we have that
Y p�, xq � Xp�, xq in r0, ts for pe0q#σt�almost every x P Rd, where

σt :� Σt
# pη tγ : γpsq � 8 for all s P r0, tsuq

satisfies by (3.26) for all t P p0, T s that

σt �

»
δXp�,xq dpe0q#σtpxq.

By way of contradiction, assume that there exists a Borel set Ω � Rd such that
it is not pe0q#η�negligible and for every x P Ω, and so the set

YqPQXp0,T�
Xpxqq

 
γ P Cpr0, T s; R̄dq : γptq � Xpt, xq for all t P r0, qs, γpr0, qsq � Rd

(
is not ηx�negligible; notice that this is equivalent to proving (3.25). Of course, this implies
that for every x P Ω, there exists rx P QX p0, T�Xpxqq such that

Σrx
# pηx tγ : γptq � 8 for every t P r0, rxsuq

is not a null measure nor a multiple of δXp�,xq. Therefore, there exists a Borel set with
positive measure Ω1 � Ω with respect to pe0q#η and r P Q X p0, T s such that for every
x P Ω1,

Σr
#pηx tγ : γptq � 8 for every t P r0, rsuq
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is not a null measure nor a multiple of δXp�,xq. By the definition of σt, pe0q#σt ¤ pe0q#η,
and so δXp�,xq ¥ Σr

#pηx tγ : γptq � 8 for every t P r0, rsuq for pe0q#η�almost every x.
Notice that this is a contradiction of the existence of Ω1, and so ηx is concentrated on (3.25).
For the concentration of η, it follows from the concentration of ηx and Theorem 3.3.

We are now ready to prove a criterion for global well-posedness in time of
maximal regular flow.

Proposition 3.2 (No-blow-up criterion). Let b be a Borel vector field satisfying (H1),
η P MpCpr0, T s; R̄dqq concentrated on the set (3.9) such that ηptγ : γp0q � 8uq � 0, and
for µt � petq#η Rd assume that

» T

0

»
Rd

|btpxq|

p1� |x|q logp2� |x|q
dµtpxqdt   8.

Then ηptγ P Cpr0, T s; R̄dq : γptq � 8 for some t P p0, T quq � 0. In particular, if µt is
absolutely continuous with respect to the Lebesgue measure for all t P r0, T s and η is
concentrated on the maximal regular flow X associated to b, then Xp�, xq P ACpr0, T s;Rdq

for µ0�almost every x P Rd, and µt � Xpt, �q#µ0 for all t P r0, T s.

Proof. Since ηptγ : γp0q � 8uq � 0, for η�almost every curve there exists a time which
it is finite, and so η is concentrated on

Γ :�
 
γ P Cpr0, T s; R̄dq : γp0q P Rd

(
,

and so it suffices to show that η Γ is concentrated on non-blow-up curves. For this purpose,
notice that by Proposition 3.1, η Γ is concentrated on integral curves in r0, T�Xpγp0qqq.
Therefore, we have by Fubini theorem and the definition of µt that

» » T�
Xpγp0qq

0

���� d
dtrlog logp2� |γptq|qs

���� dt drη Γspγq

¤

» T

0

»
|btpγptqq|

p1� |γptq|q logp2� |γptq|q
dpetq#rη Γspγq dt

¤

» T

0

»
Rd

|btpxq|

p1� |x|q logp2� |x|q
dµtpxqdt   8,

and so for η Γ�almost every γ, it holds

sup
0¤s t¤T�

Xpγp0qq
| log logp2� |γptq|q � log logp2� |γpsq|q|   8.

Therefore, we have that T�Xpγp0qq � T and γ does not blow up on r0, T s. In particular,
the disintegration ηx of η with respect to e0 is concentrated on

tγ P Cpr0, T s; R̄dq : γp0q � x, γptq � 8 and γ � Xp�, xq for all t P r0, T su
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for µ0�every x P Rd. Since ηx is a probability measure, we conclude that ηx � δXp�,xq, and
so for all t P r0, T s it holds

µt � petq#η Rd � petq#

»
Rd

δXp�,xq dµ0pxq � Xpt, �q#µ0.

Before we proceed to the next section, we emphasize that all of the results
were streamlined for a cleaner presentation. For instance, the theorems extracted from
[5] can be proven for local flows, that is, for integral curves of b P L1pp0, T q;L1

locpΩ;Rdqq

for some Borel set Ω � Rd. Moreover, the results from [6] can be stated for flows starting
from any s P r0, T s if one assumes divergence-free vector fields; we shall revisit this case in
Chapter 5 without the divergence-free assumption. We also remark that

• we skipped the analogous results of Theorem 2.2, for the available ones are either
only concerned with weak solutions of continuity equation [5, Remark 7.2] or with
renormalized and weak solutions of transport/continuity equations for divergence-
free vector fields [6, Proposition 4.10]. We shall provide a complete analogous of
Theorem 2.2 in Chapter 5 by using a slight variation of Theorem 3.9 for vector fields
with bounded divergence;

• by [5, Theorem 6.2 and Proposition 6.5], it is possible to extend Theorem 3.7 without
the strong convergence of cn, replacing it by the weak convergence of cn and uniform
convergence (with respect to n) of 1Ω|h|px� hqcn

t px� hq as hÑ 0 in L1pp0, T q � Ωq,
where Ω|h| :� tx P Ω : distpx,Rd Ωq ¡ |h|u; such condition is akin to the classical
DiPerna-Lions’ one [48, Theorem II.7];

• the global assumption (3.20) is optimal (at least in dimensions d ¥ 3) in order to
obtain proper blow in Theorem 3.9, namely the maximal property in Definition 3.2
is in fact a limit. Indeed, the trio provided a very intricate counterexample in [5,
Proposition 7.3] of a time independent vector field b P W 1,p

loc pRd;Rdq for p ¡ 1 with
div b P L8locpRdq, and a positive Borel measure Ω � Rd such that for every x P Ω,
it holds T�Xpxq ¤ 2, lim inf

tÕT�
Xpxq

|Xpt, xq| � 0, and lim sup
tÕT�

Xpxq

|Xpt, xq| � 8 for d ¥ 3.

Nevertheless, in the case d � 2, if b P BVlocpRd;Rdq with div b P L8locpRdq, then for
almost every x P R2, the proper blow-up occurs [5, Proposition 7.4]; the authors
conjectured whether if one may construct a time dependent two dimensional vector
field on the same lines as in d ¥ 3 case for an counterexample;

• if one assumes b P L1pp0, T q�Ω;Rdq, (H2), and (H3), then Xp�, xq P ACpr0, T�Xpxqsq
for almost every x P Ω, and lim

tÕT�
Xpxq

Xpt, xq P BΩ if T�Xpxq   T .
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3.2 Vlasov-Poisson and quasistatic Vlasov-Maxwell
The trio rapidly applied their theory of local flows for the Vlasov-Poisson system

[6, Sections 2 and 3]. The main advantage over the global theory shown in Chapter 2
is that we may define a suitable notion of a solution of Vlasov systems without energy
hypothesis; as proven in [18] and briefly exposed in Remark 9, such assumptions were
necessary for a precise notion of Lagrangian solution.

Before we make a rigorous comparison between the results of [6] and [18], we
motivate the general Vlasov-system (see [28, Chapter II] for a extensive derivation of the
more general Boltzmann equation): for a distribution of particles f : p0,8q�R2d in phase
space px, vq P Rd�Rd–x and v being the physical space and the phase velocity coordinates,
respectively–over time t P p0,8q, we may compute its time derivative (assuming that x
and v are functions depending of t rather than independent variables) and conclude that

d
dtf � Btf � 9x �∇xf � 9v �∇vf,

where the subscript on symbol ∇ signifies with respect to which variable is being dif-
ferentiated. In classical mechanics, physical and phase velocity coincide, so 9x � v and
9v � m�1F pfq, where ξpvq is the physical velocity, i.e. the velocities of each particle, m
is the mass of a particle (we assume that all particles are identical), and F is the force
experienced by each particle, which may depend on the distribution of particles, that is, on
f . In most applications, F may depend on f only in the physical space x P Rd, and so we
rather consider F depending on x, v and an integral over v P Rd of f multiplied by some
function gpx, vq, that is, for ρ̄tpxq �

»
Rd

gpx, vqftpx, vq dv we have F � F px, v, ρ̄tpxqq. In
special relativity case, physical and phase velocities ξpvq and v, respectively no longer coin-
cide, but have a correction factor ξpvq � r1�pc�1|v|q2s�1{2v, where c is the speed the light;
this can be derived by the Lorentz factor γpξpvqq :� r1� pc�1|ξpvq|q2s�1{2 and the relation
v � γpξpvqqξpvq; see [60, Section 11.4]. Hence we have 9x � ξpvq and 9v � m�1F px, v, ρ̄pxqq,
where F is again the force experienced by the particles, but now in the relativistic case,
and so in fact F may only depend of ξpvq rather than v. Hence, we write

d
dtf � Btf � ξpvq �∇xf �m�1F px, v, ρ̄pxqq �∇vf,

where from now on ξpvq is either v or r1� |v|2s�1{2v depending on which framework we
are working on; we shall always assume that c � 1 for simplicity.

We have not considered so far the collision between particles: the most general
form is to consider a function G depending on f (known as collision operator) such that

Btf � ξpvq �∇xf �m�1F px, v, ρ̄pxqq �∇vf � Gpfq. (3.27)
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The simplest–although very complicated–collision operator is to consider only collision
pairwise, which gives a bilinear operator Q and the above evolution equation now reads

Btf � ξpvq �∇xf �m�1F px, v, ρ̄pxqq �∇vf � Qpf, fq; (3.28)

see [28, Chapter II] for a complete derivation of such operator for hard sphere models and
its generalizations, as well as a probability-based justification on why it suffices to consider
pairwise collisions.

Remark 24. It is common to refer to both (3.27) and (3.28), even in the particular case
F � 0 as Boltzmann equation, although they have different levels of generality.

We shall consider only the collisionless case–known as Vlasov equation

Btf � ξpvq �∇xf �m�1F px, v, ρ̄pxqq �∇vf � 0,

which implies a transport equation structure (1.1) with vector field

btpx, vq � pξpvq,m�1Ftpx, ξpvq, ρ̄tpxqqq.

It is expected, given some structure for the force function F , that the theory of Chapter 2
and Chapter 3 can be applied to this transport equation. For this purpose, let us consider
a force given by the sum of Lorentz and Newton gravitational laws (we assume d � 3)

Ftpx, vq � q pEtpxq � ξpvq �Htpxqq �mgtpxq,

where q is the charge of particles, E, H, and g are the electric, magnetic, and gravitational
acceleration fields satisfying

divE � pϵ0q
�1qρ, curlE � �BtH;

divH � 0, curlH � µ0qj � BtE;
div g � �4πmGρ, curl g � 0.

(3.29)

Here, the first four equations are Maxwell equations, G is Gravitational constant, ϵ0

and µ0 are vacuum permittivity and permeability, respectively, and ρ, j are number and
momentum densities, respectively, defined as

ρtpxq �

»
R3
ftpx, vq dv and jtpxq �

»
R3
ξpvqftpx, vq dv. (3.30)

Following the same computations in [21, Appendix] based on quasi-static limits proven in
[64], we have that either

divE � pϵ0q
�1qρ, curlE � �BtH;

divH � 0, curlH � µ0qj

which is the quasi-magnetostatic limit, or

divE � pϵ0q
�1qρ, curlE � 0;

divH � 0, curlH � µ0qj � BtE,
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which is the quasi-electrostatic limit. In either case, Maxwell equations become decoupled,
and so

p�∆qE � �pϵ0q
�1q∇ρ� µ0qBtj and p�∆qH � µ0q curlH

or
p�∆qE � �pϵ0q

�1q∇ρ and p�∆qH � µ0q curl j.

Hence it motivates us to consider the electric magnetic fields as

Etpxq � �pϵ0q
�1q∇rΓ � ρtpxqs and H � µ0q curlrΓ � jtpxqs,

where Γpxq � p4π|x|q�1. Notice that since p�∆qg � 4πmG∇ρ, we may write the force
term as

m�1Ftpx, vq �

�
q2

4πϵ0m
�Gm



∇rΓ � ρtpxqs �

µ0q
2

4πmξpvq � curlrΓ � jtpxqs.

Notice that the first constant has no definite sign, whereas the second is nonnegative.
Hence, upon redefining densities ρ and j, then we may further write Etpxq � �∇rΓ�ρtpxqs,
Htpxq � curlrΓ � jtpxqs, and

btpx, vq � pξpvq, σEEtpxq � σHξpvq �Htpxqq , (3.31)

where σE P t0,�1u and σH P t0, 1u. This class of vector fields has two important cases:
σE � 0 and σH � 0 is the Vlasov-Poisson equation; σE � 0 na σH � 1 is the Vlasov-Biot-
Savart equation14. Notice that divx,v btpx, vq � divvpξpvq�Htpxqq � 0. Moreover, a simple
application of Young convolution inequality implies that b P L8pp0, T q;Lp

locpR6;R6qq for
any p P r1, 3{2q.

We are now ready to state the main results of [21] by Borrin-Marcon; since it
contains the Vlasov-Poisson case, we shall also cover the results of [6]. We begin with the
consistency result [21, Theorem 1.1] which extends [6, Theorem 2.2].

Theorem 3.11 (Consistency of solutions). Let f P L8pr0, T s;L1pR6qq be a nonnegative
function weakly continuous in time in duality with CcpR6q and either f P L8pp0, T q � R6q

is a weak solution of (1.1) with vector field (3.31); or f is a renormalized solution of
(1.1) with vector field (3.31). Then f is a Lagrangian solution with respect to maximal
regular flow, that is, ftLd � Xpt, �q#

�
f0Ld tT�X ¡ tu

�
. In particular, f is a renormalized

solution.

The result follows from Theorem 3.6 and an application of [6, Proposition 4.10];
we shall prove an analogous result in Chapter 5 for non-divergence-free vector fields.

In order to establish existence of renormalied solutions of nonrelativistic Vlasov-
Poisson equations, i.e. the transport/continuity equation with vector field (3.31) with
14 Their names follow from the fact that E satisfies the Poisson equation �∆E � σE∇ρ and H the

Biot-Savart law.
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ξpvq � v, σE � 1, and σH � 0, the authors of [18, Theorem 8.4] assumed finite initial
energy »

R6
|v|2f0px, vq dx dv �

»
R3
|E0pxq|

2 dx   8 (3.32)

in order to ensure the control of sublevels, i.e. (3.1). With minor modifications, one can
extend to the relativistic case replacing |v|2 with p1� |v|2q1{2. The key innovation of the
trio [6, Theorem 2.7] was to obtain a “generalized” solution of the Vlasov-Poisson equation.
The main advantage is that it is only assumed that f0 P L

1pR6q is a nonnegative function,
and if (3.32) holds, then generalized and renormalized solutions are equivalent [6, Theorem
2.8], as well as continuity in time in L1

loc for ρ, E and an energy inequality. Moreover, in
[6, Remark 2.9], the trio gave a sketch for a proof when σE � �1, and the full generality
was achieved in [21, Theorems 1.2 and 1.3].

Theorem 3.12 (Existence of generalized solutions). Let f0 P L
1pR6q be a nonnegative

function. Then there exists a renormalized solution of transport/continuity equation with
vector field

beff � pξpvq, σEE
eff � σHξpvq �Heffq,

where ξpvq � p1� |v|2q�1{2v, Eeff
t pxq � �∇rΓ � ρeff

t pxqs, Heff
t pxq � curlrΓ � jeff

t pxqs for some
measures ρeff , jeff such that ρtL3 ¤ ρeff

t and |jeff
t |   ρeff

t as measures, ρeff
t pR3q ¤ }f0}L1pR6q,

and Btρ
eff � div jeff � 0 with initial data ρ0. Moreover, f is continuous in time in L1

loc, i.e.

lim
tÑs

»
BR

|ftpx, vq � fspx, vq| dv dx � 0 for any R   8,

and by Theorem 3.11, ftLd � Xeffpt, �q#
�
f0Ld tT�

Xeff ¡ tu
�
, where Xeff is the maximal

regular flow associated to beff .

The proof is via approximation by smoothing the singular kernels in E, H, and
when passing to the limit for approximation densities ρn, jn, we cannot ensure that they
converge to ρ, j in L8pp0,8q;L1pR3qq, respectively; we can only ensure that ρnLd, jnLd

converges weakly* in L8pp0,8q; MpR3qq to some measures ρeff , jeff with the properties
listed in Theorem 3.12.

Finally, we have the existence of renormalized solutions of transport/continuity
equation with vector field (3.31) if one assumes that f0 has finite energy, that is»

R6
p1� |v|2q1{2f0 dv dx�

»
R3

σE

2 Γ � ρ0pxqρ0pxq �
σH

2 Γ � j0pxqj0pxq dx (3.33)

and has integrability

f0 P

$'''&
'''%
L1pR6q if σE � 1;

L1pR6q X L3{2pR6q if σE � 0;

L1pR6q X L3{2pR6q and }f0}L3{2pR6q   ϵ0 if σE � �1,

(3.34)
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where ϵ0 is any constant such that ϵ0   C�1
HLS and CHLS ¡ 0 is a constant in the Hardy-

Littlewood-Sobolev inequality }Γ � g}L6pR3q ¤ CHLS}g}L6{5pR3q.

Theorem 3.13 (Existence of renormalized solutions). Let f0 be a nonnegative function
satisfying (3.33) and (3.34). Then there exists a maximal regular flow associated to vector
field b as in (3.31) with ξpvq � p1�|v|2q�1{2v such that ftL6 � Xpt, �q#

�
f0L6 tT�X ¡ tu

�
is a renormalized solution of transport/continuity equation with vector field b and initial
data f0, the flow is globally defined in r0,8q for f0L6�almost every px, vq P R6, and ρ, j,
E, and H are continuous in time in L1

loc. Moreover, it holds for all t ¥ 0 that»
R6
p1� |v|2q1{2ft dv dx� σE

2

»
R3

Γ � ρtpxqρtpxq dx

¤

»
R6
p1� |v|2q1{2f0 dv dx� σE

2

»
R3

Γ � ρ0pxqρ0pxq dx.

The main strategy to prove this theorem is to show that the measures in
Theorem 3.12 satisfy ρeff � ρL3 and the inequalities»

R3
|Etpxq|

2 dx ¤
»
R3

Γ � ρtpxqρtpxq dx;»
R3
|Htpxq|

2 dx ¤
»
R3

Γ � jtpxqjtpxq dx�
»
R3
rdiv Γ � jtpxqs

2 dx.

We shall not provide the proof for Theorems 3.11 to 3.13 as the techniques are very specific
for vector fields with structure (3.31) and do not seem to be applicable for the cases
presented in Chapters 4 and 5.

Notice that Theorems 3.12 and 3.13 do not contemplate the classical case
ξpvq � v. The main difficulty is that in this case the electromagnetic force Etpxq�v�Htpxq

is not bounded by a function independent of v. Moreover, it does not follow that |j|   ρ,
and so the properties of ρ does not translate to j via dominated convergence theorem.
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4 Extension for wavelike vector fields

In this chapter, we shall study the transport/continuity equation

Btf � divx,vpbfq � 0,

where the vector field b has structure (3.31) (hence, divergence-free) with σE � σH � 1 and
the electromagnetic field E and H satisfies the rescaled first four equations (3.29)–recall
that they are the so called Maxwell’s equations–with densities ρ and j as in (3.30). More
precisely, we are interested in the Vlasov-Maxwell system (in Gaussian units and with
speed of light c � 1):$''''&

''''%

Btf � ξpvq �∇xf � pE � ξpvq �Hq �∇vf � 0 in p0,8q � R3 � R3;

divE � 4πρ, divH � 0 in p0,8q � R3;

BtH � curlE � 0, BtE � curlH � �4πj in p0,8q � R3,

(4.1)

where the densities ρ, j satisfy (3.30). Once again we shall write it as a transport/continuity
equation with vector field

bpx, vq :� pξpvq, E � ξpvq �Hq. (4.2)

We now follow the same idea as in Section 3.2 and we decouple Maxwell equations with
respect to electric and magnetic fields: by the quintessential vector calculus identity

curl curl u � ∇pdiv uq �∆u,

one may formally compute that

�∆E � �∇pdivEq � curl BtH � �4π∇ρ� 4πBtj � BttE;
�∆H � �∇pdivHq � curlpBtE � 4πjq � 4π curl j � BttH.

Therefore one has that E and H solves the non-homogeneous wave equation

pBtt �∆qE � �4π∇ρ� 4πBtj;
pBtt �∆qH � 4π curl j.

As argued in [52], the above is equivalent to Maxwell’s equations provided that we assume
initial data E0 and H0, as well as f0, with compatibility equations

divE0 � 4πρ0, BtE|t�0 � �4πj0 � curlH0;
divH0 � 0, BtH|t�0 � � curlE0;

(4.3)



Chapter 4. Extension for wavelike vector fields 97

Following the explicit formula for solutions of wave equation; see [49, Section 2.4], we have
the so called Jefimenko’s equations, as computed in [60, 66, 75]: the eletric field reads

Etpxq �E
0
t pxq �

»
Btpxq

ωpx� yq

|x� y|2
rρtpyqsret pxqdy

�

»
Btpxq

ωpx� yq

|x� y|2
ωpx� yq � rjtpyqsret pxqdy

�

»
Btpxq

ωpx� yq

|x� y|2
� pωpx� yq � rjtpyqsret pxqq dy

�

»
Btpxq

ωpx� yq

|x� y|
� pωpx� yq � rBtjtpyqsret pxqq dy,

(4.4)

while the magnetic field reads

Htpxq �H
0
t pxq �

»
Btpxq

ωpx� yq

|x� y|2
� rjtpyqsret pxqdy

�

»
Btpxq

ωpx� yq

|x� y|
� rBtjtpyqsret pxqdy.

(4.5)

where we recall the notation of Section 2.5 ωpzq :� z{|z|, and we denote rftpyqsret pxq :�
ft�|y�x|pyq

1, and pE0, H0q are functionals depending only on initial data pf0, E0, H0q:

E0
t pxq :�EH

t pxq �
1
t

»
BBtpxq

ρ0pyqωpx� yq dSy

�
1
t

»
BBtpxq

j0pyq � ωpx� yqωpx� yq dSy;

H0
t pxq :�HH

t pxq �
1
t

»
BBtpxq

j0pyq � ωpx� yq dSy,

(4.6)

where EH , HH are homogeneous solutions of Maxwell’s equations (see “Kirchhoff’s formula”
in [49, Section 2.4]):

EH
t pxq �

1
4πt2

»
BBtpxq

tpcurlH0pyq � 4πj0pyqq � E0pyq �DE0pyqpy � xq dSy;

HH
t pxq �

1
4πt2

»
BBtpxq

�t curlE0pyq �H0pyq �DH0pyqpy � xq dSy.

(4.7)

There are two main results concerning existence of solutions of (4.1): the first one is due
to Glassey and Strauss [52] for distribution functions with a cutoff at high velocities, that
is, they prove existence of C1 solutions with an a priori assumption that fpt, x, vq � 0 for
v ¡ αptq for some continuous function α, provided that the initial data f0 is a C1 function
with compact support and the initial electromagnetic field E0 and H0 are C2 functions
satisfying the compatibility conditions (4.3); see also in [52] a result with a modification
1 Notice that the “retarded bracket” function rftpxqsretpyq is a measurable function as a function of

t, x, y, if f is measurable as a function of t, y. Indeed, it is the composition of f and the Lipschitz
function t, x, y ÞÑ pt � |y � x|, yq.
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of (4.1) with acceleration term now reading ζpvqrEtpxq � ξpvq � Htpxqs for some cutoff
function ζ and a modern presentation of the original result in [24, 61]. Moreover, we also
refer to [53] for a substitution of the aforementioned a priori assumption for an a priori
bound on first v�moments. The second one is due to DiPerna and Lions [47] via the
now called “average lemma” result. Loosely speaking, weak solutions of (4.1) enjoys a
H1{4�regularity when averaged with respect to v�variable and with any smooth weight.
We refer to [73, 75] and references therein for a very recent survey of results concerning
Vlasov systems.

We now present some results we obtained in this thesis and are already published
in [20].

4.1 Singular kernels and “hyperbolic convolution”
Notice that any of the terms in (4.4)-(4.5) cannot be written as a convolution of

a singular kernel and a density function, and so the previous theory presented in Chapter 2
is not applicable. Hence, here we study vector fields in the form

btpxq �
m̧

i�1

»
Btpxq

Kipx� yqgi
t�|y�x|pyqdy �:

m̧

i�1
Ki � gi

tpxq, (4.8)

where Ki is a kernel with suitable singularity at the origin and gi are summable functions
in spacetime. In (4.8) we introduce the “�” operator and we refer to it as hyperbolic
convolution. If one considers a non-unit speed of propagation v, (4.8) should now read

btpxq �
m̧

i�1

»
Bvtpxq

Kipx� yqgi
t�v�1|y�x|pyqdy �:

m̧

i�1
Ki � gi

tpxq;

if one formally takes v Ñ 8, then the classical convolution is recovered. More generally,
vector fields with such hyperbolic convolution come from solutions of wavelike equations;
for instance, if b satisfies the wave equation for d � 3 with zero initial data

pv�2Btt �∆qbt � pg1, g2, g3q,

then b has structure (4.8) with Kipxq � p4π|x|q�1ei, where te1, e2, e3u is the canonical
basis of R3.

Let us make more precise the hypothesis on the kernels K � Ki:

Condition 4.1. We shall consider kernels K P C1pRd t0u;Rdq such that there exists a
bounded set A Q 0 and a constant C ¡ 0 in which |Kpxq| ¤ C|x|1�d for x P A t0u and
|Kpxq| ¤ C for x P Rd A.

Moreover, let us make some comments on the hyperbolic convolution: the first
one is that an analogous result related to the classical convolution, namely the associative
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property pf � gq � h � f � pg � hq does not hold for the hyperbolic variant, that is, generally,

K � pf � gtqpxq � pK � fq � gtpxq,

although a similar result (which is a simple exercise on changing the order of integrals)
does hold:

K � pf � gtqpxq � f � pK � gtqpxq.

While the latter allow us to use the result Lemma 2.2, the former implies that the proof of
Theorem 2.3 found in [22, Theorem 3.3] is no longer adaptable. Moreover, many of classical
results about convolution–namely Young’s convolution inequality–do not readily extend
for the hyperbolic convolution. Nevertheless, by using that the integrability is local, we
prove that K � g have similar inequalities to Young’s convolution case if one assumes that
K satisfies Condition 4.1 and g has enough integrability in spacetime. In particular, we
conclude that it is locally summable in space and globally in time, i.e. it satisfies property
(H1).

Lemma 4.1 (Young’s convolution inequality and property (H1)). Let b be a vector field
with structure

btpxq � K � gtpxq �

»
Btpxq

Kpx� yqrgpyqsretpxq dy,

where g P L1pp0, T q;LppRdqq for p ¥ 1 and K satisfies Condition 4.1 with set A and
constant CA ¡ 0. Then there exists a constant CA,T ¡ 0 such that

}K � g}L1pp0,T q;LppRdqq ¤ CA,T }g}L1pp0,T q;LppRdqq,

and for s P r1, d{pd� 1qq, g P L1pp0, T q � Rdq, Btg P L
1pp0, T q;LqpRdqq for q ¥ 1, it holds

}K � g}L1pp0,T q;LspRdqq ¤ CA,T,s

�
}g}L1pp0,T q�Rdq � }Btg}L1pp0,T q;LqpRdqq

�
for a constant CA,T,s ¡ 0. In particular, b satisfies (H1).

Proof. By changing variables, we have that
�»

Rd

����
»

Btpxq

Kpx� yqrgtpyqsretpxq dy
����
p

dx
� 1

p

¤C

�»
Rd

����
»

AXBt

|y|�d�1gt�|y|px� yq dy
����
p

dx
� 1

p

�

�»
Rd

����
»

BtzA

Kpyqgt�|y|px� yq dy
����
p

dx
� 1

p

¤C

»
Bt

�
|y|�d�1 � 1

�
}gt�|y|}LppRdq dy

�C

» t

0

»
BB1

�
1� τ d�1� }gτ}LppRdq dSω dτ

¤CA,T }g}L1pp0,T q;LppRdqq.



Chapter 4. Extension for wavelike vector fields 100

Integrating with respect to t P r0, T s, the first inequality follows. The second one follows
from the fact that

|K � gtpxq| �

����
»
Rd

Kpx� yq1Btpx� yqgt�|x�y|pyq dy
����

�

�����
»
Rd

Kpyq1Btpyq

�
gtpx� yq �

» t�|y|

t

Btgτ px� yq dτ
�

dy
�����

¤ p|K|1Btq � |gt|pxq � p|K|1Btq �

» T

0
|Btgτ | dτpxq.

Taking the Ls norm, using Young’s convolution inequality, we have that

}K � gt}LspRdq ¤ }K}LspBT q}gt}L1pRdq � }K}Ls1 pBT q
}Btgt}LqpRdq,

where s1 ¤ s satisfies
1� 1

s
�

1
s1
�

1
q
.

Integrating with respect to time, the result follows.

As mentioned in Chapter 1, it is well-known since [48, Section IV] some
regularity on the derivatives of vector fields, and so we shall compute it for (4.8). For
this purpose, we need to assume some further regularity on kernesl Ki, namely on its
derivative.

Condition 4.2. We shall also assume that Ki as in Condition 4.1 has derivative

BjK
ipxq �

Ωijpxq

|x|d
,

where Ωij is a zero order homogeneous function with average zero over the Sd�1 sphere,
that is, Ωijptxq � Ωijpxq for all t P R and»

Sd�1
Ωijpyq dSy � 0.

Lemma 4.2. Let b as in (4.8), where for each i � 1, . . . ,m, the kernels K satisfying Con-
dition 4.1 and Condition 4.2, the functions gi P L1pp0, T q;LppRdqq with further regularity
Btg

i P L1pp0, T q;LqpRdqq and gi
0 P L

rpRdq for p, q, r ¥ 1. Then for each j � 1, . . . , d, it
holds in the weak sense

Bjbtpxq �
m̧

i�1
�

»
BBt

ωjpyqK
ipyqgi

0px� yq dSy � BjK
i � gi

tpxq � pωjK
iq � Btg

i
tpxq. (4.9)

Proof. Notice that the first and third terms are Lr and Lq functions, as for the third term
follows from Lemma 4.1 and the first one is trivial. For the second, consider ϕ P C8

c pRdq.
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Then »
Rd

ϕpxq

»
Btpxq

Ωijpx� yq

|x� y|d
rgtpyqsretpxq dy dx

�

»
R3
ϕpxq

» t

0

»
BB1

Ωijpωq

t� τ
gτ px� ωpt� τqq dSωdτdx

�

»
Rd

» t

0

»
BB1

rϕpx� ωpt� τqq � ϕpxqs
Ωijpωq

t� τ
gτ pxq dSωdτdx,

and so we have that����
»
Rd

ϕpxq

»
Btpxq

Ωijpx� yq

|x� y|d
rgtpyqsretpxq dy dx

���� ¤ C}∇ϕ}L8pRdq}g}L1pp0,T q;LppRdqq.

Therefore, the derivative is well-defined in the weak sense.

We shall prove (4.9) when m � 1, for the case m ¡ 1 the argument is done for
each term Ki � gi, where K and g satisfy the conditions for any Ki and gi, respectively.
Moreover, without loss of generality, we shall assume that g is a smooth function, for
otherwise we may use a standard density argument. By change of variables, we have

Bjbtpxq �

»
Bt

KpyqrBjgtpx� yqsretp0q dy.

We now want to integrate by parts the gradient, and so we recall the commutation between
the retarded brackets and derivatives with respect to y, t:

Byj
rgtpyqsretpxq � rByj

gtpyqsretpxq � ωjpx� yqBtrgtpyqsretpxq,

Btrgtpyqsretpxq � rBtgtpyqsretpxq.
(4.10)

Therefore, we have

Bjbtpxq � �

»
BBt

ωjpyqKpyqg0px� yq dSy �

»
Bt

BjKpyqrgtpx� yqsretp0q dy

�

»
Bt

ωjpyqKpyqrBtgtpx� yqsretp0q dy.

Changing variables once again, we obtain the desired result.

Now, we recall the grand maximal function studied in [22] and introduced in
Section 2.1. For the convenience of the reader, we also recall all the relevant properties
and desired estimates.

Definition 4.1. Let u P L1
locpRdq. Given a family of functions tρνuν such that supp ρν �

B1, and }ρν}L1pRdq � }ρν}L8pRdq ¤ C0 for all ν, we define the grand maximal function of u
associated to ρν as

Mρνupxq :� sup
ν

sup
ϵ¡0

|ρν
ϵ � upxq|,

where ρν
ϵ pxq � ϵ�dρνpx{ϵq.
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Recall that the grand maximal function behaves like the classical maximal
function

Mupxq � sup
ϵ

1
|Bϵ|

»
Bϵ

|upx� yq| dy,

in the sense that it is a bounded operator from Lp to Lp for p ¡ 1 and from L1 to L1
w,

where L1
w stands for the weak L1 space. Indeed, as argued in Section 2.1, we have that

Mρνupxq ¤ sup
ν
}ρν}L8pRdqMupxq ¤ C0Mupxq, (4.11)

and so the aforementioned bounds hold. We would like to take uj � BjpK � gq for each
j � 1, . . . , d, but it is not clear that such function is in any Lp, and so we shall compute it
explicitly. For this purpose, we recall the definition in Section 2.3 of singular kernels of
fundamental type, which now will further assume the structure analogous to Condition 4.2:

Definition 4.2. A function Γ is said to be a singular kernel of fundamental type if

1. Γ|Rdzt0u P C
1pRdzt0uq;

2. There exists constants C ¥ 0 such that |Γpxq| ¤ C|x|�d and |DΓpxq| ¤ C|x|�d�1 for
every x � 0;

3. The kernel can be written as Γpxq � Ωpx{|x|q|x|�d, where»
BB1

Ωpωq dSω � 0.

In the following, we shall use the fact that if ρν is sufficiently regular (e.g.
ρν P HspRdq for s ¡ d{2 with uniform bounds), then Fρν P L1pRdq, where F is the Fourier
transform. Taking Γ a singular kernel of fundamental type, since FpΓ1Bc

δ
q P L8pRdq by

Calderón-Zygmund theory (see [68, Estimate 7.3]), it holds FρνFpΓ1Bc
δ
qpϵ�q P L1pRdq

uniformly for ϵ ¡ 0 and δ ¡ 0. Therefore, we have that there exists a constant C1 ¡ 0
such that for all ϵ ¡ 0, ν and δ ¡ 0,

}ϵdρν
ϵ � pΓ1Bc

δ
q}CbpRdq � }ρν � pϵdΓ1Bc

δ
qpϵ�q}CbpRdq ¤ C1. (4.12)

We begin by proving that Mρν pΓ1Bc
δ
� gq is in L1

wpRdq.

Proposition 4.1. Let δ ¡ 0, Γ a kernel satisfying Definition 4.2, and a function g P

L1pp0, T q;LppRdqq for 1 ¤ p   8. Then there exists a constant Cd ¡ 0 independent of δ
such that ������Mρν pΓ1Bc

δ
� gtq

������
L1

wpRdq
¤ CdpC0 � C1q}gt}L1pRdq

if p � 1, and if p ¡ 1, it follows that

}Mρν pΓ1Bc
δ
� gtq}LppRdq ¤ CdC0}gt}LppRdq.
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Proof. If p ¡ 1, the result follows easily from (4.11), the boundedness of the maximal
operator from Lp to Lp, the boundedness of the operator u ÞÑ Γ � u from Lp to Lp (see
[68, Theorem 7.5]), and the estimate [68, Proposition 7.10]

sup
δ¡0

|Γ1Bc
δ
� gtpxq| ¤ C pMpΓ � gtpxqq �Mgtpxqq .

Hence, it remains to prove the harder case p � 1. Notice that by the definition of grand
maximal function, we have that

Mρν pΓ1Bc
δ
� gtqpxq ¤ sup

ν
sup
ϵ¡0

����ρν
ϵ � Γ1Bc

δ
� gtpxq � pΓ1Bc

η
q � gtpxq

»
Rd

ρνpyq dy
����

� sup
ν
}ρν}L1pRdq sup

ϵ¡0

��Γ1Bc
η
� gtpxq

��
where η :� maxt2ϵ, δu. Now, the second term can be estimated as

sup
ν
}ρν}L1pRdq sup

ϵ¡0

��Γ1Bc
η
� gtpxq

�� ¤ C0 sup
η¡0

��Γ1Bc
η
� gtpxq

�� .
By the L1 to L1

w boundedness of maximal truncated operator (see [68, Proposition 7.10]),
it suffices to estimate the first term. For this purporse, we shall split it as the supremum
for ϵ ¥ δ{2 and 0   ϵ   δ{2.

Notice that

sup
ν

sup
ϵ¥δ{2

����ρν
ϵ � Γ1Bc

δ
� gtpxq � pΓ1Bc

η
q � gtpxq

»
Rd

ρνpyq dy
���� �

sup
ν

sup
ϵ¥δ{2

����
�
ρν

ϵ � Γ1Bc
δ
� Γ1Bc

2ϵ

»
Rd

ρνpyq dy
�
� gtpxq

���� .
Now, by (4.12), we have that for all x P Rd and ϵ ¥ δ{2 that����ρν

ϵ � Γ1Bc
δ
pxq � pΓ1Bc

2ϵ
qpxq

»
Rd

ρνpyq dy
���� ¤ C1 � 2�dC0

ϵd
.

Moreover, for |x| ¡ 3ϵ, we have that����ρν
ϵ � Γ1Bc

δ
pxq � pΓ1Bc

2ϵ
qpxq

»
Rd

ρνpyq dy
���� ¤

�����
»

Bc
δ

rΓpyq � Γpxqsρν
ϵ px� yq dy

�����
� |Γpxq|

»
Bδ

|ρν
ϵ px� yq| dy

¤C

» 1

0

»
Rd

ϵ|ρν
ϵ px� yq|

|x� spx� yq|d�1 dy ds,

since |x� y| ¡ |x| � |y| ¡ 3ϵ� δ ¥ 3ϵ� 2ϵ � ϵ, and so the second integral vanishes. Since

|x� spx� yq| ¥ |x| � |x� y| ¥ |x| � ϵ ¡
2
3 |x|,

we have ����ρν
ϵ � Γ1Bc

δ
pxq � pΓ1Bc

2ϵ
qpxq

»
Rd

ρνpyq dy
���� ¤ 3d�1C0ϵ

2d�1|x|d�1
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and so ����ρν
ϵ � Γ1Bc

δ
pxq � pΓ1Bc

2ϵ
qpxq

»
Rd

ρνpyq dy
���� ¤ CdpC0 � C1q

ϵd

�
1�

�
|x|
ϵ

	d�1

 .

By [76, Chapter III, Section 2.2, Theorem 2], we conclude that

sup
ν

sup
ϵ¥δ{2

����
�
ρν

ϵ � Γ1Bc
δ
� Γ1Bc

2ϵ

»
Rd

ρνpyq dy
�
� gtpxq

���� ¤ CdpC0 � C1qMgtpxq,

and so the above boundedness implies the desired L1
w to L1 boundedness.

It remains to study

sup
ν

sup
0 ϵ δ{2

����
�
ρν

ϵ � Γ1Bc
δ
� Γ1Bc

δ

»
Rd

ρνpyq dy
�
� gtpxq

���� . (4.13)

We begin by writing it as

sup
ν

sup
0 ϵ δ{2

����
»
Rd

�
ρν

ϵ � Γ1Bc
δ
pzq � pΓ1Bc

δ
qpzq

»
Rd

ρνpyq dy
�
gtpx� zq dz

����
¤ sup

ν
sup

0 ϵ δ{2

����
»

B2ϵ

�
ρν

ϵ � Γ1Bc
δ
pzq � pΓ1Bc

δ
qpzq

»
Rd

ρνpyq dy
�
gtpx� zq dz

����
� sup

ν
sup

0 ϵ δ{2

�����
»

Bc
2ϵ

ρν
ϵ � Γ1Bc

δ
pzq � pΓ1Bc

δ
qpzq

»
Rd

ρνpyq dy gtpx� zq dz
�����

By (4.12), we have for all z P Rd and 0   ϵ   δ{2 that����ρν
ϵ � Γ1Bc

δ
pzq �

�
Γ1Bc

δ

�
pzq

»
Rd

ρνpyq dy
���� ¤ C1

ϵd
�
C0

δd
¤
C1 � 2dC0

ϵd
,

and so

sup
ν

sup
0 ϵ δ{2

����
»

B2ϵ

�
ρν

ϵ � Γ1Bc
δ
pzq � pΓ1Bc

δ
qpzq

»
Rd

ρνpyq dy
�
gtpx� zq dz

����
¤ CdpC1 � C0q sup

ϵ¡0
ϵ�d

»
B2ϵ

|gtpx� zq| dz ¤ CdpC1 � C0qMgtpxq.

(4.14)

The second term can be written as

sup
ν

sup
0 ϵ δ{2

�����
»

Bc
2ϵ

ρν
ϵ � Γ1Bc

δ
pzq � pΓ1Bc

δ
qpzq

»
Rd

ρνpyq dygtpx� zq dz
�����

� sup
ν

sup
0 ϵ δ{2

�����
»
Rd

»
Bc

2ϵ

�
Γ1Bc

δ
pz � yq � pΓ1Bc

δ
qpzq

�
gtpx� zq dz ρν

ϵ pyq dy
����� .

We may write

Bc
2ϵ � pt|z| ¡ 2ϵu X t|z � y| ¥ δu X t|z| ¥ δuq Y pt|z| ¡ 2ϵu X t|z � y|   δu X t|z| ¥ δuq

Y pt|z| ¡ 2ϵu X t|z � y| ¥ δu X t|z|   δuq

�: AYB Y C.
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At set A, we have

�
Γ1Bc

δ
pz � yq � pΓ1Bc

δ
qpzq

�
� Γpz � yq � Γpzq ¤ |y|

» 1

0
|∇Γpz � syq| ds

¤
2d�1|y|

|z|d�1

¤
Cd

ϵd

�
1�

�
|z|
ϵ

	d�1



since |y|   ϵ and |z � sy| ¥ |z| � |y| ¥ |z| � ϵ ¡ |z|{2. Therefore, we have by [76, Chapter
III, Section 2.2, Theorem 2] that

sup
ν

sup
0 ϵ δ{2

����
»
Rd

»
A

�
Γ1Bc

δ
pz � yq � pΓ1Bc

δ
qpzq

�
gtpx� zq dz ρν

ϵ pyq dy
���� ¤ CdC0Mgtpxq.

(4.15)

At set B, we have

sup
ν

sup
0 ϵ δ{2

����
»
Rd

»
B

�
Γ1Bc

δ
pz � yq � pΓ1Bc

δ
qpzq

�
gtpx� zq dz ρν

ϵ pyq dy
����

� sup
ν

sup
0 ϵ δ{2

����
»
Rd

»
B

Γpzqgtpx� zq dz ρν
ϵ pyq dy

���� ¤ CC0

»
B

|gtpx� zq|

|z|d
dz.

Now, notice that
B � tδ ¤ |z|   2δu .

Indeed, the lower bound is by the definition of the set and for the upper bound, we have

|z| ¤ |z � y| � |y|   δ � |y| ¤ δ � ϵ ¤ δ �
|z|

2 .

Therefore, we have that

sup
ν

sup
0 ϵ δ{2

����
»
Rd

»
B

�
Γ1Bc

δ
pz � yq � pΓ1Bc

δ
qpzq

�
gtpx� zq dzρν

ϵ pyq dy
����

¤ CC0

»
B2δzBδ

|gtpx� zq|

|z|d
dz.

(4.16)

At set C, we proceed analogously, noticing that

C �

"
δ ¤ |y � z|  

3
2δ

*
,

as the lower bound is trivial and the upper bound follows easily:

|y � z| ¤ |y| � |z|   ϵ� δ   δ{2� δ.
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Hence, we have by (4.11) that

sup
ν

sup
0 ϵ δ{2

����
»
Rd

»
C

�
Γ1Bc

δ
pz � yq � pΓ1Bc

δ
qpzq

�
gtpx� zq dz ρν

ϵ pyq dy
����

¤ C sup
ν

sup
0 ϵ δ{2

»
Rd

»
B3δ{2pyqzBδpyq

|gtpx� zq|

|y � z|d
dz |ρν

ϵ pyq| dy

� C sup
ν

sup
0 ϵ δ{2

»
Rd

1B3δ{2zBδ

| � |d
� |gt|px� yq|ρν

ϵ pyq| dy

¤ CdC0M

�
1B3δ{2zBδ

| � |d
� |gt|



pxq.

(4.17)

Combining the estimates (4.14), (4.15), (4.16), and (4.17), we have the boundedness for
(4.13):

sup
ν

sup
0 ϵ δ{2

����
�
ρν

ϵ � Γ1Bc
δ
� Γ1Bc

δ

»
Rd

ρνpyq dy
�
� gtpxq

���� ¤CdpC1 � C0qMgtpxq

� CC0
1B2δzBδ

| � |d
� |gt|pxq

� CdC0M

�
1B3δ{2zBδ

| � |d
� |gt|



pxq.

Therefore, it suffices to prove that the last two terms are in L1
w. Notice that����

����
����1B2δzBδ

| � |d
� |gt| �M

�
1B3δ{2zBδ

| � |d
� |gt|


����
����
����
L1

wpRdq

¤

����1B2δzBδ

| � |d

����
L1pRdq

}gt}L1pRdq ¤ Cd}gt}L1pRdq,

and so the proof is complete.

Notice that the above is a direct extension of Theorem 2.3 for truncated
kernels. Moreover, the result of Nguyen Proposition 2.5 does not cover the case treated
in Proposition 4.1, and so we have a new fundamental estimate for vector fields b whose
derivative can be written as in Definition 4.2, following the same lines as in Section 2.2
and Section 2.3. More precisely, we have the following:

Proposition 4.2. Let b and b̄ be vector fields satisfying (1.6), with b with regularity

b P Lp
locpp0, T q � Rd;Rdq for some p ¡ 1;

Bjb
i
t �

m̧

k�1
Γijk

1Rd Bδijk
� gijk

t in the weak sense,

where δijk are constants, Γijk as in Definition 4.2, and gijk P L1pp0, T q � Rdq. Moreover,
let X, X̄ renormalized regular Lagrangian flows with respect to b and b̄ starting at time
s with compressibility constants L and L̄, respectively. Then for every γ ¡ 0, η ¡ 0, and
r ¡ 0, there exists λ ¡ 0 and a constant Cγ,η,r ¡ 0 such that

|Br X t|Xpt, s, �q � X̄pt, s, �q| ¡ γu| ¤ Cγ,η,r}b� b̄}L1pp0,T q�Bλq � η
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uniformly in s P r0, T s and t P rs, T s. The constant Cγ,η,r depends on its subscripts, as well
as the compressibility constants L and L̄, on the norms (1.6) of b and b̄, on }b}Lppps,tq�Bλq

for any t P ps, T q, on }gijk}L1pp0,T q�Rdq, and on the constants at Definition 4.2.

We now estimate each term in the derivative of the vector field computed in
Lemma 4.2.

Proposition 4.3. Let, for each i � 1, . . .m, gi P L1pp0, T q LppRdqq such that Btg
i P

L1pp0, T q;LqpRdqq and gi
0 P L

rpRdq, where 1 ¤ p   8 and 1 ¤ q, r ¤ 8, and Ki as in
Condition 4.1 and Condition 4.2. Then, for any R ¡ 0, there exist constants Cd,R,r and
Cd,T,R,q depending only on the dimension quantities specified as subscripts, such that the
following holds for a.e. t ¡ 0:����

»
BBt

ωjpyqK
i
l pyqg

i
0px� yq dSy

����
L1pBRq

¤ Cd,R,r}g
i
0}LrpRdq;

��pωjKlq � Btg
i
��

L1pp0,T q�BRq
¤ Cd,T,R,q}Btg

i}L1pp0,T q;LqpRdqq;» T

0

��rpBjK
i
l q � g

i
t � pBjK

i
l1Btq � g

i
ts
��

L1pBRq
dt ¤ Cd,T,R,q}Btg

i}L1pp0,T q;LqpRdqq

Moreover, by further assuming that ρν satisfies Definition 4.1, there exists a constant Cd,p,R

depending only on d,R, p such that$&
%}Mρν pBjKl1Btq � gt}L1pBRq

¤ Cd,R,pC0}g
i
t}LppRdq if p ¡ 1;������Mρν pBjK

i
l1Btq � g

i
t

������
L1

wpRdq
¤ Cd,R pC0 � C1q }g

i
t}L1pRdq if p � 1.

Proof. We shall omit the index i, for the sake of clarity. Notice that����
»
BBt

ωlpyqK
i
jpyqg

i
0px� yq dSy

����
L1pBRq

¤ Cd

»
BB1

}g0px� tωq}LrpBRq
dSω

¤ Cd,R,r}g0}LrpRdq,

and so integrating in time gives the first estimate. The second estimate follows from
Lemma 4.1. For the third inequality, denoting Γlj � BlKj � |x|�dΩljpx{|x|q, we may write

Γlj � gtpxq � pΓlj1Btq � gtpxq �

»
Bt

Γljpyqpgt�|y|px� yq � gtpx� yqq dy.

Now, the integral can be written as

�

»
Bt

» 1

0
ΓljpyqBtgt�s|y|px� yq|y| ds dy � �

»
Bt

» 1

0
|y|�d�1Ωljpy{|y|qBtgt�s|y|px� yq ds dy.

Extending gtpxq � 0 for t   0 for all x P Rd, we may reproduce the proof of Lemma 4.1,
and so the third estimate follows. The fourth and fifth estimate follow from Proposition 4.1
and Theorem 2.3, since we may write

pBlK
i
j1Btq � g

i
t � BlK

i
j � g

i
t � pBlK

i
j1Bc

t
q � gi

t.
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We now adapt the notion of Lagrangian solutions of (1.1) found in (1.3) in the
context of maximal regular flows, as in Chapter 3:

Definition 4.3 (Lagrangian solution). For vector fields b with a well defined maximal
regular flow X, we say that ft P L

1pRdq is a Lagrangian solution of the transport equation
with vector field b and initial data f0 if

ftLd � Xpt, 0, �q#f0 exp
�» t

0
div bτ pXpτ, 0, �qq dτ



Ld tx P Rd : T�0,Xpxq ¡ tu.

We are now ready to state the main result of this section and the first original
theorem of this thesis.

Theorem 4.1 (Lagrangian flow and renormalized solution). Let T ¡ 0 and b be a vector
field satisfying div bt ¥ αptq, for α P L1pp0, T qq and (4.8) with kernels Ki satisfying
Condition 4.1 and Condition 4.2 and gi P L1pp0, T q;LppRdqq with further regularity Btg

i P

L1pp0, T q;LqpRdqq and gi
0 P L

rpRdq for 1 ¤ q, r ¤ 8, and 1 ¤ p   8. Then

1. there exists a maximal regular flow X associated to b (see Definition 3.2) starting
from 0;

2. if bf P L1pp0, T q;L8pRdqq, the Lagrangian solution, i.e., the transport of f0 by X

(see Definition 4.3) is a renormalized solution of (1.1) with initial data f0; if we
further assume that bf P L1pp0, T q;L1

locpRd;Rdqq, then the Lagrangian solution is a
distributional solution of (1.1);

3. assuming a divergence-free vector field b, if a nonnegative function f is weakly contin-
uous in r0, T s in duality with CcpRdq and it is either a renormalized or distributional
solution of (1.1), then f is a Lagrangian solution.

Proof. Notice that by our assumptions and Lemma 4.1, we only need to prove that property
(H2) holds for such vector fields, and so existence, uniqueness and semigroup property for
the flow will follow.

We split the proof in three steps: we begin by proving that property (H2) holds
for such vector fields, and so existence, uniqueness and semigroup property for the flow
will follow; in step two, we prove that Lagrangian solutions are renormalized ones; finally,
in step three we show that renormalized/distributional solutions are Lagrangian.

Step 1. By Theorems 3.9 and 3.10, existence, uniqueness, and semigroup
property of maximal regular flow follow once we prove that (H2) holds, and so (1) is
ensured. For this purpose, we follow the same strategy as [6, 21] presented in Chapter 3.
We begin by defining PpXq as the set of probability measures on X � Cpr0, T s;BRq, being
R ¡ 0 arbitrary and the evaluation map et, t P r0, T s of curves γ P X, i.e. etpγq :� γptq.
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Using the same argument as in [6], by extended superposition principle [6, Theorem 5.1]),
it is sufficient to show that a measure η P PpXq satisfying petq#η ¤ C̃Ld for all t P r0, T s
concentrated on integral curves Xp�, 0, xq of b has Dirac delta disintegration ηx with
respect to e0. More precisely, ηx � δx for pe0q#η�a.e. x P BR.

For this purpose, we consider an “local” adaptation of the function Φδ in
Proposition 2.1 presented in Chapter 3:

Φδptq :�
½

log
�

1� |γptq � ηptq|

δ



dµpη, γ, zq,

where dµpη, γ, zq :� dηzpγqdηzpηqdpe0q#ηpzq, δ P p0, 1q is arbitrary and t P r0, T s; note
that µ P PpCpr0, T s;BRq

2 �BRq and Φδp0q � 0, as curves begin at the same point. Now,
assuming by contradiction that ηx is not a Dirac delta for pe0q#η�a.e. x, we may computed
a lower bound to Φδ as in (3.5), and so

Φδpt0q ¥
a

2T log
�

1� a

2δT

	
. (4.18)

Computing the time derivative of Φδ, we have that

dΦδ

dt ptq ¤
½

|btpγptqq � btpηptqq|

δ � |γptq � ηptq|
dµpη, γ, zq ¤

½
htpη, γq dµpη, γ, zq, (4.19)

where by Lemma 2.2 and Proposition 4.3, we have

htpη, γq :� min
#

ḑ

j�1

�
Mρν,j

0
Bjbtpγptqq �Mρν,j

0
Bjbtpηptqq

	
,
|btpγptqq| � |btpηptqq|

δ

+
.

Now, notice that
htpη, γq ¤ h1

t pη, γq � h2
t pη, γq � h3

t pη, γq,

where

h1
t pη, γq :� min

#
ḑ

j,l�1

m̧

i�1

�
Mρν,j

0

»
BBt

ωjpyqK
i
l pyqg

i
0pγptq � yq dSy

�Mρν,j
0

»
BBt

ωjpyqK
i
l pyqg

i
0pηptq � yq dSy

	
,
|btpγptqq| � |btpηptqq|

δ

+
;

h2
t pη, γq :� min

#
ḑ

j�1

m̧

i�1

�
Mρν,j

0
pωjKlq � Btg

i
tpγptqq

�Mρν,j
0
rpBjK

i
l q � g

i
t � pBjK

i
l1Btq � g

i
tspγptqq

�Mρν,j
0
rpBjK

i
l q � g

i
t � pBjK

i
l1Btq � g

i
tspηptqq

�Mρν,j
0
pωjKlq � Btg

i
tpηptqq

	
,
|btpγptqq| � |btpηptqq|

δ

+
;
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h3
t pη, γq :� min

#
ḑ

j�1

m̧

i�1

�
Mρν,j

0
pBjK

i
l1Btq � g

i
tpγptqq

�Mρν,j
0
pBjK

i
l1Btq � g

i
tpηptqq

	
,
|btpγptqq| � |btpηptqq|

δ

+
.

With the above definitions, we have that

Φδpt0q ¤

» t0

0

½
h1

t pη, γq � h2
t pη, γq � h3

t pη, γq dµpη, γ, zq dt.

Now, firstly notice that if r ¡ 1, the condition petq#η ¤ C̃Ld η and (4.11) imply that

}h1}L1pp0,T q�µq ¤ 2
ḑ

j,l�1

m̧

i�1

» T

0

����Mρν,j
0

»
BBt

ωjpyqK
i
l pyqg

i
0p� � yqdSy

����
L1pBRq

dt

¤ C̃Cd,T,R,r

m̧

i�1
}gi

0}LrpRdq,

and analogously if q ¡ 1,

}h2}L1pp0,T q�µq ¤2
ḑ

j,l�1

m̧

i�1
�}Mρν,j

0
pωjKlq � Btg

i}L1pp0,T q�BRq

�

» T

0
}Mρν,j

0
rpBjK

i
l q � g

i
t � pBjK

i
l1Btq � g

i
ts}L1pBRq dt

¤C̃Cd,T,R,q

m̧

i�1
}Btg

i}L1pp0,T q;LqpRdqq,

and if p ¡ 1,

}h3}L1pp0,T q�µq ¤ 2
ḑ

j,l�1

m̧

i�1

» T

0
}pBjK

i
l1Btq � g

i
t}L1pBRq dt

¤ C̃Cd,T,R,p

m̧

i�1
}gi}L1pp0,T q;LppRdqq,

Therefore, we shall study separately when each exponent p, q, r equals 1.

Case p=1: Notice that by Proposition 4.3, we only need to consider the
integral of h3. Recalling Lemma 2.10, for fixed ϵ ¡ 0, we may write

gi � gi,1 � gi,2,

where
}gi,1}L1pp0,T q�Rdq ¤ ϵ, }gi,2}L2pp0,T q�Rdq ¤ Cϵ,

we may estimate h3 as h3 ¤ h3,1 � h3,2, where for k � t1, 2u, we define

h3,k
t pη, γq :�min

#
ḑ

j�1

m̧

i�1

�
Mρν,j

0
pBjK

i
l1Btq � g

i,k
t pγptqq

�Mρν,j
0
pBjK

i
l1Btq � g

i,k
t pηptqq

	
,
|btpγptqq| � |btpηptqq|

δ

+
.
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By Proposition 4.3 and the condition petq#η ¤ C̃Ld, we have that

}h3,2}L1pp0,T q�µq ¤ C̃Cd,T

m̧

i�1
}gi}L2pp0,T q�Rdq ¤ Cϵ.

On the other hand, by combining (4.8), the interpolation estimate in Lemma 2.9, the
condition petq#η ¤ C̃Ld, and Proposition 4.3, we have

}h3,1}L1pp0,T q�µq ¤ C
m̧

i�1
}gi,1}L1pp0,T q�Rdq log

�
C

δ



¤ ϵ logpδ�1q;

details on the above estimate can be found in the proof of [6, Theorem 4.4]. Hence, we
have that

}h3}L1pp0,T q�µq ¤ Cϵ � ϵ logpδ�1q.

Cases q=1 and r=1: Proceeding analogously as the previous case, and so for
a fixed ϵ ¡ 0, we write Btg

i as
Btg

i � f i,1 � f i,2,

where
}f i,1}L1pp0,T q�Rdq ¤ ϵ, }f i,2}L2pp0,T q�Rdq ¤ Cϵ,

and also
gi

0 � gi,1
0 � gi,2

0 ,

where
}gi,1

0 }L1pRdq ¤ ϵ, }gi,2
0 }L2ppRdq ¤ Cϵ,

and so mutatis mutandis, we have

}h1}L1pp0,T q�µq � }h2}L1pp0,T q�µq ¤ Cϵ � ϵ logpδ�1q.

Hence, we have that

}h}L1pp0,T q�µq ¤ Cϵ � ϵ logpδ�1q.

Therefore, we have by (4.18) and the above estimate of h that

a

2T log
�

1� a

2δT

	
¤ Cϵ,T,R � ϵ log

�
CCRpϵδq

�1� ¤ Cϵ,T,R � ϵ logpδ�1q.

Taking ϵ   a{2T , we have a contradiction by letting δ Ñ 0�, and so (H2) holds.

Step 2. For the statement (2) in Theorem 4.1, we extend [6, Theorem 4.10]
for vector fields (4.8) with bounded divergence in space and integrable in time. We recall
Definition 4.3, which stated that

ftLd � Xpt, 0, �q#f0 exp
�» t

0
div bτ pXpτ, 0, �qq dτ



Ld tx P Rd : T�0,Xpxq ¡ tu,
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and notice that for all φ P C1
c pRdq and t P r0, T q, we have the following equalities in the

set At :� tx P Rd : T�0,Xpxq ¡ tu:»
At

φpXpt, 0, xqqftpXpt, 0, xqq dx �
»

Xpt,0,�qAt

φpxqftpxq

� exp
�
�

» t

0
div bτ pXpτ, t, �qq dτ



dx

�

»
At

φpXpt, 0, xqqf0pxq dx.

In the first equality above, we performed the change of variables x ÞÑ Xpt, 0, xq and noticed
that the jacobian determinant, which is given by the exponential in the second integral
above is well-defined by the hypothesis on the divergence of b stated in (2) and the fact
that by Lemma 4.1, we have that b P L1pp0, T q;LppRdqq � L1pp0, T q;L1pRdq � L8pRdqq;
see [51, Proposition 6.9], and so one can apply Proposition 2.2. In the second equality we
used the definition of Lagrangian solution. Therefore

ftpXpt, 0, xqq � f0pxq for a.e. x P At.

Then we have that for β P C1pRq X L8pRq, and so we obtain»
Rd

φpxqβpftpxqq dx �
»

Xpt,0,�qAt

φpxqβpftpxqq dx

�

»
At

φpXpt, 0, xqqβpf0pxqq exp
�» t

0
div bτ pXpτ, 0, xqq dτ



dx

�

»
Rd

φpXpt, 0, xqqβpf0pxqq exp
�» t

0
div bτ pXpτ, 0, xqq dτ



dx,

since by (iii) of Definition 3.2, we have that φpXpt, 0, xqq continuously vanishes at tx P
Rd : T�0,Xpxq ¤ tu � Ac

t if the maximal time does not reach T . Furthermore, we have that
(see [6, Equation 4.31]) for a.e. t P r0, T s

d
dtφpXpt, 0, xqq � 1r0,T�

0,XpxqqbtpXpt, 0, xqq �∇φpXpt, 0, xqq,

and so by denoting the above jacobian determinant as Jtpxq, we have that

d
dt

»
Rd

φpxqβpftpxqq dx �
»

At

btpXpt, 0, xqq �∇φpXpt, 0, xqqβpf0pxqqJtpxq dx

�

»
At

φpXpt, 0, xqq div btpXpt, 0, xqqβpf0pxqqJtpxq dx

�

»
Rd

rbtpxq �∇φpxq � φpxq div btpxqsβpftpxqq dx.

Since this is equivalent to stating that β � f is a distributional solution of the transport
equation with vector field b (see [11, Section 8.1]), we are done. For the case bf P

L1pp0, T q;L1
locq, we proceed analogously, without taking the composition of f with β.
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Step 3. Finally, the statement (3) in Theorem 4.1 follow from [6, Theorem
5.1]. More precisely, it follows by Theorem 3.6. Moreover, if f is a bounded distributional
solution, then it is a Lagrangian solution, and so by the previous step, also a renormalized
solution.

This concludes the proof of Theorem 4.1.

The global in time well-posedness of the maximal regular flow is ensured by
Proposition 3.2 for vector fields b with extra integrability assumption, namely, for all
nonnegative β P L8pRq X C1pRq, it holds» T

0

»
Rd

|btpxq|βpftpxqq

p1� |x|q logp2� |x|q
dx dt   8. (4.20)

Notice that if p P r1, d{pd�1qs and d ¥ 2, then by Lemma 4.1 we have that the vector field
b P L1pp0, T q;LppRd;Rdqq, and so (4.20) follows for Lagrangian solutions. Indeed, notice
that by taking β � 1, we have that» T

0

»
Rd

|btpxq|βpftpxqq

p1� |x|q logp2� |x|q
dx dt ¤Cd}b}L1pp0,T q;LppRdqq

�

�
1�

» 8

1

τ d�1

rp1� τq logp2� τqsq
dτ


 1
q

,

where q � p{pp � 1q ¥ d, and so the integral on the right hand side is finite, and so by
Proposition 3.2, we have that Xp�, 0, xq P ACpp0, T q;Rdq for a.e. x P Rd.

We now prove an analogous result for p P pd{pd � 1q,8q, provided that f P
L8pp0, T q;L1pRdqq and d ¥ 2; such condition follows if one has that f is a Lagrangian
(hence, renormalized by Theorem 4.1) solution of transport equation, provided that div b P

L1pp0, T q;L8pRdqq. The proof is straightforward: let βn :� 2
π

arctan �ζn P C
1pRq X L8pRq,

where pζnqnPN is a nonnegative monotonous sequence such that ζn Õ | � |. Then» T

0

»
Rd

|btpxq|βnpftpxqq

p1� |x|q logp2� |x|q
dx dt ¤ }b}L1pp0,T q;LppRdqq}βnpfq}L8pp0,T q;LqpRdqq

¤ }b}L1pp0,T q;LppRdqq}ζnpfq}
1{q
L8pp0,T q;L1pRdqq,

where q � p{pp � 1q and we have used that
���� 2π arctanpxq

����
q

¤

���� 2π arctanpxq
���� ¤ |x|. By

monotone convergence theorem, we have that» T

0

»
Rd

|btpxq|βnpftpxqq

p1� |x|q logp2� |x|q
dx dt ¤ }b}L1pp0,T q;LppRdqq}f}

1{q
L8pp0,T q;L1pRdqq   8.

Therefore, by Proposition 3.2, Xp�, 0, xq P ACpp0, T q;Rdq for βnpf0qLd�a.e. x P Rd and
all n P N. Since the tangent function is a diffeomorphism, we have that it holds for
ζnpf0qLd�a.e., and by monotone convergence theorem, we finally conclude that it holds
for |f0|Ld�a.e. x P Rd. We remark that the result holds for the full range p P r1,8q.
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4.2 An application for Vlasov-Maxwell system
We now consider the case (4.1) with electromagnetic fields with structure (4.4)

and (4.5). Recall that ξpvq is either equals v or p1� |v|2q�1{2v. We begin by verifying (H1):

Lemma 4.3. [Property (H1) for Vlasov-Maxwell system] Let ρ P L1pp0, T q � R3q, j P
W 1,1pp0, T q;L1pR3qq, with ρ0 P L

1pR3q and E0, H0 P W
1,1pR3;R3q. Then the vector field

(4.2) satisfies property (H1).

Proof. Notice that since ξpvq P W 1,8
loc pR3

vq, it is trivial to verify that the vector field (4.2)
satisfies (H1). Moreover, since the electromagnetic field E,H does not depend on v, it
suffices to show that they are in L1pp0, T q � R3q. By the definition of the functionals
E0, H0 and the homogeneous solutions of 3D wave equation (4.7), we have that

}E0}L1pp0,T q�R3q � }H0}L1pp0,T q�R3q ¤CT

�
}E0}W 1,1pR3q � }H0}W 1,1pR3q

� }ρ0}L1pR3q � }j0}L1pR3q

�
.

The estimate for the non-homogeneous terms follow from Lemma 4.1.

As we shall apply the same idea as in the proof of Theorem 4.1, we need to
compute the spatial derivative of the electromagnetic fields given in (4.4) and (4.5). We
begin by computing the derivative of the homogeneous terms:

Lemma 4.4. Let ρ0 P W
1,1pR3q, j0 P W

1,1pR3;R3q, E0, H0 P W
2,1pR3;R3q. Then there

exists a constant CT ¡ 0 depending only on T such that

}DE0}L1pp0,T q�R3q � }DH0}L1pp0,T q�R3q ¤ CT

�
}E0}W 2,1pR3q � }H0}W 2,1pR3q

� }ρ0}W 1,1pR3q � }j0}W 1,1pR3q

�
.

Proof. We begin by assuming E0, H0 P C
8
0 pR3;R3qXW 2,1pR3;R3q. Recall that by classical

results of wave equation (see [71]), we have that EH , HH is smooth, and

}DEH}L1pp0,T q�R3q � }DHH}L1pp0,T q�R3q ¤ CT

�
}E0}W 2,1pR3q � }H0}W 2,1pR3q

�
.

Moreover, assuming that ρ0 P W
1,1pR3q X C8

0 pR3q and j0 P W
1,1pR3;R3q X C8

0 pR3;R3q,
we have that» T

0

����1
t

»
BBt

Dρ0p� � yqωpyq dSy

����
L1pR3q

�

����1
t

»
BBt

Dj0p� � yq � ωpyq dSy

����
L1pR3q

�

» T

0

����1
t

»
BBtpxq

j0pyq � ωpx� yqωpx� yq dSy

����
L1pR3q

dt

¤ CT

�
}Dρ0}L1pR3q � }Dj0}L1pR3q

�
.

By a density argument, we have the result for the general case.



Chapter 4. Extension for wavelike vector fields 115

We now compute the derivative of the first term of the electric and magnetic
fields, namely»

Btpxq

ωpx� yq

|x� y|2
rρtpyqsret pxqdy,

»
Btpxq

ωpx� yq

|x� y|2
� rjtpyqsret pxqdy;

we will split the derivative computation of each term of the electromagnetic field for the
sake of clarity.

Lemma 4.5. Let Ki and Γij denote the kernels

Kipxq :� ωipxq

|x|2
, Γikpxq :� BkKipxq �

δik � 3ωipxqωkpxq

|x|3
.

Assume that ρ0 P L
1pR3q, j0 P L

1pR3;R3q, ρ P L1pp0, T q � R3q, j P W 1,1pp0, T q;L1pR3qq,
and that Btρ� div j � 0 holds in the weak sense. Then, it holds in the weak sense

BkpKi � ρtqpxq � �

»
BBt

ωkpyqKipyqρ0px� yq � ωkpyqKipyqωpyq � j0px� yq dSy

� Γik � ρtpxq �
3̧

l�1
pωkΓilq � j

l
tpxq � pKiBlωkq � j

l
tpxq � pωkKiωlq � Btj

l
tpxq,

BkpKi � j
l
tqpxq � �

»
BBt

ωkpyqKipyqj
l
0px� yq dSy � Γik � j

l
tpxq � pωkKiq � Btj

l
tpxq.

Proof. The second equality is a simple application of Lemma 4.2, since Γij has average
zero. Therefore, it suffices to prove the first equality. Furthermore, by density argument,
we only need to consider smooth densities ρ and j. By Lemma 4.2, we have

BkpKi � ρtqpxq � �

»
BBt

ωkpyqKipyqρ0px� yq dSy � Γik � ρtpxq � pωkKiq � Btρtpxq.

Now, since it holds the continuity equation Btρ� div j � 0, then

pωkKiq � Btρtpxq � �pωkKiq � div jtpxq � �

»
Bt

ωkpyqKipyqrdiv jtpyqsretpx� yq dy.

Using the commuting relation of the retarded brackets and derivatives (4.10), we have

pωkKiq � Btρtpxq �

»
Bt

ωkpyqKipyq divrjtpyqsretpx� yq dy �
3̧

l�1
pωkKiωlq � Btj

l
tpxq

�

»
BBt

ωkpyqKipyqωpyq � j0px� yq dSy �
3̧

l�1
�pωkΓilq � j

l
tpxq

� pKiBlωkq � j
l
tpxq � pωkKiωlq � Btj

l
tpxq.

In order to conclude the lemma, one needs to verify that ωkΓil and KiBlωk satisfy Defini-
tion 4.2. Since the first two properties are trivial, it suffices to compute the averages of
ωkpδik � 3ωiωlq and ωiBlωk � ωipδlk � ωlωkq on the sphere. This is verified by the oddness
of the kernel.
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We now compute the derivative the second and third terms of the electric field,
namely»

Btpxq

ωpx� yq

|x� y|2
ωpx� yq � rjtpyqsret pxqdy �

»
Btpxq

ωpx� yq

|x� y|2
� pωpx� yq � rjtpyqsret pxqq dy;

the main difference of them from the previous terms is the kernel, and so the proof is
similar and we shall skip it. More precisely we have the following lemma and we will skip
its proof since it is similar to previous one.

Lemma 4.6. Let K̃il and Γ̃ilk denote the kernels

K̃ilpxq :� ωipxqωlpxq

|x|2
, Γ̃ilkpxq :� BkK̃ilpxq �

δikωlpxq � δlkωipxq � 4ωipxqωlpxqωkpxq

|x|3
.

Assume that j0 P L
1pR3;R3q and j P W 1,1pp0, T q;L1pR3qq. Then, it holds in the weak sense

BkpKil � j
m
t qpxq � �

»
BBt

ωkpyqK̃ilpyqj
m
0 px� yq dSy � Γ̃ilk � j

m
t pxq � pωkK̃ilq � Btj

m
t pxq.

Finally, we compute the derivative of the radiation terms»
Btpxq

ωpx� yq

|x� y|
� pωpx� yq � rBtjtpyqsret pxqq dy,

»
Btpxq

ωpx� yq

|x� y|
� rBtjtpyqsret pxqdy.

Of course, if ∇Btj P L
1pp0, T q�R3q, there is nothing to prove, as the hyperbolic convolution

and the derivative commutes in the second variable, that is, ∇pK � gtq � K �∇gt, and so
by assuming K as in Condition 4.1, we have that

}K �∇g}L1pp0,T q�R3q ¤ CT }∇g}L1pp0,T q�R3q.

Notice that in this case the only important feature of the kernel is its decay, that is, it need
not to be smooth and with zero average. Therefore, we only need to prove the case where
we assume Btj P W

1,1pp0, T q;L1pR3;R3qq and ξpvqpξpvq � ∇xf0q P W
1,1pR6;R3qq. Notice

that the latter assumption follows (as well as j0 P W
1,1pR3;R3q and ρ0 P W

1,1pR3qq) if one
assumes that the initial distribution satisfies ∇xf0 P L

1pR6q for the relativistic case, as
|ξpvq|   1.

Lemma 4.7. Let K̄i

��
Rdzt0u P C1pR3zt0u;R3q with Γ̄ik :� BkK̄i be kernels satisfying

Condition 4.1. Moreover, let E0, H0 P L3pR3;R3q, ρ0 P L3{2pR3q, j0 P L3{2pR3;R3q,
ξpvqpξpvq �∇xf0q P L

1pR6;R3q, and j P W 2,1pp0, T q;L1pR3qq and the compatibility relation
at Theorem 4.2 be satisfied. Then it holds

BkpK̄i �Btj
l
tqpxq � �

»
BBt

ωkpyqK̄ipyqBtj
l
0px�yq dSy� Γ̄ik �Btj

l
tpxq�pK̄iωlq�Bttj

l
tpxq. (4.21)

Proof. We begin by claiming that Btj|t�0 P L
1pR3;R3q, where

Btj
l
0 � �

»
R3
ξpvql pξpvq �∇xf0p�, vqq dv �

»
R3
pBvk

ξpvqlq pE0 � ξpvq �H0q
k f0p�, vq dv � 0.
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The first term on the right hand side is integrable by our integrability assumption of f0,
hence it remains to show that the second one is also in L1. In the relativistic case, notice
that Bvk

ξpvql � p1� |v|2q�1{2 pδkl � ξpvqkξpvqlq, and so by Hölder inequality we have»
R6
|Bvk

ξpvql|
��pE0 � ξpvq �H0q

k
�� f0p�, vq dv dx ¤ 2

»
R6
p|E0| � |H0|qf0p�, vq dv dx

¤ 2p}E0}L3pR3q � }H0}L3pR3qq}ρ0}L3{2pR3q.

In the nonrelativistic case, we have that Bvk
ξpvql � δkl, and so»

R3
pBvk

ξpvqlq pE0 � ξpvq �H0q
k f0p�, vq dv � pρ0E0 � j0 �H0q

l.

By Hölder inequality, the claim follows.

Therefore, we may repeat the proof of Lemma 4.2, but now since Γ̄ik is less
singular than a singular kernel of fundamental type at the origin, we can use Lemma 4.1
to conclude that the second term on the right hand side of (4.21) is an integrable function.
By the above claim, the first term is clearly integrable and the integrability of the third
follows by an analogous proof of Lemma 4.1.

We remark that the integrability assumption of ρ0 P L
3{2pR3q, j0 P L

3{2pR3;R3q,
E0, H0 P L

3pR3;R3q follows from the hypothesis ρ0 P W
1,1pR3q, j0 P W

1,1pR3;R3q, E0, H0 P

W 2,1pR3;R3q at Theorem 4.2 by the Sobolev embedding.

We now prove that b P L1pp0, T q;Lp
locpR6;R6qq for some p ¡ 1, where b as in

(4.2). Since ξpvq P L8locpR3;R3q, it suffices to show that E, H P L1pp0, T q;Lp
locpR3;R3qq.

Lemma 4.8 (Lp
loc�estimate for the electromagnetic field). Let the densities ρ P L1pp0, T q�

R3q, j P W 1,1pp0, T q;L1pR3;R3qq X L1pp0, T q;Lp
locpR3;R3qq for some p ¡ 1, the continuity

equation Btρ � div j � 0 be satisfied in the distributional sense, ρ0 P W 1,1pR3q, j0 P

W 1,1pR3;R3q, E0, H0 P W
2,1pR3;R3q, and either Btj P L

1pp0, T q;W 1,1pR3;R3qq or Bttj P

L1pp0, T q � R3;R3q. Then it holds that

E, H P L1pp0, T q;Lq
locpR3;R3qq, where 1   q   min

"
3
2 , p

*
.

Proof. By the proof of Lemma 4.3 and Lemma 4.4, we have that

E0, H0 P L1pp0, T q;L3{2pR3;R3qq.

Moreover, by Lemma 4.1 we have that for any s P p1, 3{2q, it holds» T

0

����
»

Bt

ωpyq

|y|2
� rjtp� � yqsret p0qdy

����
LspR3q

�

����
»

Bt

ωpyq

|y|2
ωpyq � rjtp� � yqsret p0qdy

����
LspR3q

�

����
»

Bt

ωpyq

|y|2
� pωpyq � rjtp� � yqsret p0qq dy

����
LspR3q

dt ¤ CT }j}W 1,1pp0,T q;L1pR3qq.
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Furthermore, if Btj P L
1pp0, T q;W 1,1pR3;R3qq then Sobolev embedding gives that Btj P

L1pp0, T q;L3{2pR3;R3qq, and so Lemma 4.1 gives that
» T

0

����
»

Bt

ωpyq

|y|
� pωpyq � rBtjtp� � yqsret p0qq dy

����
L3{2pR3q

�

����
»

Bt

ωpyq

|y|
� rBtjtp� � yqsret p0qdy

����
L3{2pR3q

dt ¤ CT }Btj}L1pp0,T q;L3{2pR3qq.

(4.22)

If Bttj P L
1pp0, T q � R3;R3q, then it follows from Lemma 4.1 that for any s P p1, 3{2q, it

holds » T

0

����
»

Bt

ωpyq

|y|
� pωpyq � rBtjtp� � yqsret p0qq dy

����
LspR3q

�

����
»

Bt

ωpyq

|y|
� rBtjtp� � yqsret p0qdy

����
LspR3q

dt ¤ CT }j}W 2,1pp0,T q;L1pR3qq.

(4.23)

Hence, it remains to estimate the term»
Bt

ωpyq

|y|2
rρtpx� yqsret p0qdy.

For this purpose, notice that»
Bt

ωipyq

|y|2
rρtpx� yqsret p0qdy �

�
ωi

| � |2
1Bt



� ρtpxq �

»
Bt

» 1

0

ωipyq

|y|
Btρt�τ |y|px� yq dτ dy

�

�
ωi

| � |2
1Bt



� ρtpxq �

»
Bt

» 1

0

ωipyq

|y|
div jt�τ |y|px� yq dτ dy

�

�
ωi

| � |2
1Bt



� ρtpxq

�

» 1

0

»
BBt

ωipyq

|y|
rωpyq � jtp1�τqpx� yqs dSy dτ

�

» 1

0

»
Bt

3̧

k�1

δik � 2ωipyqωkpyq

|y|2
jk

t�τ |y|px� yq dy dτ

�

» 1

0

»
Bt

τ
ωipyq

|y|
ωpyq � Btjt�τ |y|px� yq dy dτ.

The first term is an L1pp0, T q;LspR3;R3qq for any s P p1, 3{2q; the third is bounded as
» T

0

» 1

0

�����
»

Bt

3̧

k�1

δik � 2ωipyqωkpyq

|y|2
jk

t�τ |y|p� � yq dy
�����

LspR3q

dτ dt ¤ CT }j}W 1,1pp0,T q;L1pR3qq.

The fourth term is bounded analogously as in (4.22) or (4.23). For the second one, notice
that» 1

0

»
BBt

ωipyq

|y|
rωpyq � jtp1�τqpx� yqs dSy dτ �

» t

0

»
BB1

ωipyqrωpyq � jτ px� tyqs dSy dτ,
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and so for any R ¡ 0, we have» T

0

����
» 1

0

»
BBt

ωipyq

|y|
rωpyq � jtp1�τqp� � yqs dSy dτ

����
LppBRq

dt ¤ CT }j}L1pp0,T q;LppBR�T qq.

Therefore, the lemma follows.

We now state the main result of this section, and the second original theorem
of this thesis.

Theorem 4.2 (Existence of flow and consistency). Let T ¡ 0 and f0 a nonnegative function.
Moreover, assume that j0 P W

1,1pR3;R3q, ρ0 P W
1,1pR3q, E0, H0 P W

2,1pR3;R3q satisfying
(4.3), and ρ P L1pp0, T q�R3q, j P W 1,1pp0, T q;L1pR3;R3qq, j P L1pp0, T q;Lp

locpR3;R3qq for
some p ¡ 1, f is weakly continuous in r0, T s in duality with CcpR6q, and either

• Bttj P L1pp0, T q � R3;R3q, ξpvqpξpvq � ∇xf0q P L1pR6;R3q, and the compatibility
condition

Btj
l
��
t�0 �

»
R3
ξpvql pξpvq �∇xf0p�, vqq dv

�
3̧

k�1

»
R3
pBvk

ξpvqlq pE0 � ξpvq �H0q
k f0p�, vq dv � 0; or

• Btj P L
1pp0, T q;W 1,1pR3;R3qq.

Now assume that either f P L8pp0, T q � R6q is a distributional solution or f is a renor-
malized solution of (4.1) and Btρ� div j � 0 in the distributional sense.

Then, there exists a unique maximal regular flow X associated to the vector
field (4.2) (see Definition 3.2) starting at 0 such that f is the transport of f0 by X (see
Definition 4.3). In particular, all the above notions of solutions are consistent for bounded
(in phase space) distribution function f .

Before we prove Theorem 4.2, we shall make a few comments on its hypothesis.

Remark 25. The integrability hypothesis ρ0 P W
1,1pR3q, j0 P W

1,1pR3;R3q and E0, H0 P

W 2,1pR3;R3q is so that the functionals E0, H0 have the regularity E0
t , H

0
t P BVpR3;R3q,

which follows from classical wave equation results; see [71]. Indeed, such hypothesis implies
that the homogeneous solution EH

t , H
H
t P W 1,1pR3;R3q, and so we conclude the result by

the embedding W 1,1 � BV. The author did not find explicit results (possibly relaxing the
integrability) for BV spaces, so it is worth pointing that our result holds for the space of
BV homogeneous solutions.

Remark 26. Notice that the vector field b in Theorem 4.2 cannot be written as in
Theorem 4.1, only the electromagnetic fields E and H. This is similar to the Vlasov-Poisson
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result as in Section 2.4, where they consider the vector field btpx, vq � pv,K � ρtpxqq. In
order to obtain the existence and consistency of notions of solutions, the authors could not
directly apply the results of Section 2.3, for only the second part of the vector field has
derivative which can be written as convolution of singular kernel and a density. Moreover,
in the case of Theorem 4.2, one has the second part E � ξpvq � H, which its cannot
be written as “hyperbolic convolutions”, only E and H; we circumvent this problem by
adapting the proof found in [21]. Therefore Theorem 4.1 should be read as a standalone
abstract result parallel to the one in Section 2.3.

Let us make some comments on the (myriad of) hypothesis on Theorem 4.2.
Notice that if we only used the regularity results for the wave equation (see [71]), that
is, not relying on Jefimenko’s equations (4.4) and (4.5), then one would need to assume
that ρt P W

2,1pR3q, jt P W
2,1pR3;R3q, and Btjt P W

1,1pR3;R3q. Therefore Theorem 4.2
is a relaxation of hypothesis on the densities, as it does not assume any integrability of
Hessian matrix of ρ, j. However, the hypothesis on the second derivative of jt is far from
optimal, for (4.1) only has first order ones. Moreover, by [47, Theorem 2], if one assumes
finite initial total energy (here, we assume that c � 1), i.e.»

R6

a
1� |v|2f0px, vq dx dv �

»
R3

1
2 |E0pxq|

2 � 1
2 |H0pxq|

2 dx   8

in the case ξpvq � p1� |v|2q�1{2v, or electromagnetic and kinetic initial energies are finite,
i.e., »

R6
|v|2f0px, vq dx dv �

»
R3
|E0pxq|

2 � |H0pxq|
2 dx   8

in the case ξpvq � v, as well as f0 P L
2pR6q one has finite energy at later times (and also

ft P L
2pR6q). Moreover, the continuity equation Btρ� div j � 0 holds in the distributional

sense. In particular, by [35, Lemma 8.15] and [21, Lemma 4.1], we conclude that ρt

and jt are in LppR3q and LqpR3;R3q for some p, q ¡ 1, respectively, and so the local Lp

integrability of j and the continuity equation assumptions at Theorem 4.2 follow if one
assumes finite initial energy.

Now, notice that by multiplying the Vlasov equation (4.1) by ξpvq and inte-
grating in the v�marginal, we have

Btj
l �

3̧

k�1

»
R3
ξpvql pξpvq �∇xfp�, vqq dv �

»
R3
pBvk

ξpvqlq pE � ξpvq �Hqk fp�, vq dv � 02.

Therefore, the compatibility relation in the first alternative of Theorem 4.2 is physically
justified, and we only need to assume for the initial data; see Lemma 4.7 for a proof that
such term is in fact a summable function at t � 0.

Since the results of Theorem 4.2 are purely local (see Definition 3.2), one may
ask for conditions of global existence of the Maximal Regular Flow, so that Proposition 3.2
2 By pE � ξpvq � Hq

k we mean the k�th component of the vector field E � ξpvq � H.
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is applicable. We have a positive answer for this question by assuming integrable finite
total energy in the relativistic case» T

0

»
R6

a
1� |v|2ftpx, vq dx dv �

»
R3

1
2 |Etpxq|

2 � 1
2 |Htpxq|

2 dx dt   8,

which follows if the initial energy is finite. Moreover, by the incompressibity of bt, integrals
of ψ � ft in R6 are conserved through time for all Borel function ψ. Such result is a
direct adaptation of results found in [21, Corollary 2.1], since they do not use the explicit
formulation of electromagnetic fields. We remark that such integrability in the relativistic
case follows from a priori energy estimates from Vlasov-Maxwell system; see [47].

Proof of Theorem 4.2. As remarked in the beginning of this section, it suffices to verify
assumption (H2).

Once again following the idea and notations of Theorem 4.1, we now study the
adapted function

Φδ,ϵptq :�
½

log
�

1� |γ1ptq � η1ptq|

δϵ
�
|γ2ptq � η2ptq|

δ



dµpη, γ, zq,

where now the trajectories are denoted as γ � pγ1, γ2q P R3 � R3, and δ, ϵ P p0, 1q to be
chosen later, and assume by contradiction that ηx is not a Dirac delta for pe0q#η�a.e. x.
Taking the derivative of Φδ,ϵ and then integrating at r0, t0s, we have that

Φδ,ϵpt0q ¤

» t0

0

½
|ξpγ2ptqq � ξpη2ptqq|

ϵ pδ � |γ2ptq � η2ptq|q
dµpη, γ, zq dt

� ϵ

» t0

0

½
|Epγ1ptqq � Epη1ptqq|

δϵ� |γ1ptq � η1ptq| � ϵ|γ2ptq � η2ptq|
dµpη, γ, zq dt,

� ϵ

» t0

0

½
|ξpγ2ptqq �Hpγ1ptqq � ξpη2ptqq �Hpη1ptqq|

δϵ� |γ1ptq � η1ptq| � ϵ|γ2ptq � η2ptq|
dµpη, γ, zq dt,

By mean value inequality, recalling that the derivative of the velocity is bounded (see the
proof of Lemma 4.7) and that the µ has measure 1, we have that» t0

0

½
|ξpγ2ptqq � ξpη2ptqq|

ϵ pδ � |γ2ptq � η2ptq|q
dµpη, γ, zq dt ¤ 2t0

ϵ
. (4.24)

The third integral is bounded by» t0

0

½
|Epγ1ptqq � Epη1ptqq|

δϵ� |γ1ptq � η1ptq|
dµpη, γ, zq dt

�

» t0

0

½
|pξpγ2ptqq � ξpη2ptqqq �Hpγ1ptqq|

ϵ|γ2ptq � η2ptq|
dµpη, γ, zq dt

�

» t0

0

½
|ξpγ2ptqq � pHpγ1ptqq �Hpη1ptqqq|

δϵ� |γ1ptq � η1ptq|
dµpη, γ, zq dt.

(4.25)
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By the condition petq#η ¤ C̃Ld, the boundedness of derivative of the velocity, and the
integrability of the magnetic field (Lemma 4.3) the second term in (4.25) is bounded as» t0

0

½
|pξpγ2ptqq � ξpη2ptqqq �Hpγ1ptqq|

ϵ|γ2ptq � η2ptq|
dµpη, γ, zq dt ¤ 2|BR|

ϵ
}H}L1pp0,T q�R3q.

Now, by Hölder inequality, the condition petq#η ¤ C̃Ld, and the local boundedness of the
velocity, we have that» t0

0

½
|ξpγ2ptqq � pHpγ1ptqq �Hpη1ptqqq|

δϵ� |γ1ptq � η1ptq|
dµpη, γ, zq dt

¤ }ξpγ2q}L1pp0,T q�µq

» t0

0

½
|Hpγ1ptqq �Hpη1ptqq|

δϵ� |γ1ptq � η1ptq|
dµpη, γ, zq dt

¤ |BR|
2T }ξ}L8pBRq

» t0

0

½
|Hpγ1ptqq �Hpη1ptqq|

δϵ� |γ1ptq � η1ptq|
dµpη, γ, zq dt.

Therefore, it remains to estimate the terms» t0

0

½
|Epγ1ptqq � Epη1ptqq|

δϵ� |γ1ptq � η1ptq|
dµpη, γ, zq dt and» t0

0

½
|Hpγ1ptqq �Hpη1ptqq|

δϵ� |γ1ptq � η1ptq|
dµpη, γ, zq dt.

We split the proof for each of the above integrals.

Step 1: Once again, we estimate» t0

0

½
|Epγ1ptqq � Epη1ptqq|

δϵ� |γ1ptq � η1ptq|
dµpη, γ, zq dt ¤

» t0

0

½
hE

t pγ
1, η1qdµpγ, η, zq dt,

where by Lemma 2.2, we have

hE
t pγ

1, η1q :� min
#

3̧

k�1

�
Mρν,k

0
BkEtpγptqq �Mρν,k

0
BkEtpηptqq

	
,
|Etpγptqq| � |Etpηptqq|

δϵ

+
.

Now, by Lemmas 4.4 to 4.7, we have that

BkE
i
tpxq �

� �
BkE

0
t

�i
pxq �

»
BBt

ωkpyqKipyqρ0px� yq � ωkpyqKipyqωpyq � j0px� yq dSy

�
3̧

l�1

»
BBt

ωkpyqK̃ilpyqj
l
0px� yq dSy

�
3̧

l,m,a,b�1
εbaiεalm

»
BBt

ωkpyqK̃blpyqj
m
0 px� yq dSy

�
�
�
Γik � ρtpxq

�

�

�
3̧

l�1

�
pωkΓilq � j

l
tpxq � pKiBlωkq � j

l
tpxq � Γ̃ilk � j

l
tpxq

�

�
3̧

l,m,a,b�1
εbaiεalmΓ̃blk � j

m
t pxq

�
�

�
3̧

l�1

�
pωkKiωlq � Btj

l
tpxq � pωkK̃ilq � Btj

l
tpxq

�

�
3̧

l,m,a,b�1
εbaiεalm

�
pωkK̃blq � Btj

m
t pxq � Bkpωbωl| � |

�1 � Btj
m
t qpxq

� �
,
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where ε stands for the Levi-Civita symbol. By Lemmas 4.1, 4.4 and 4.7, we have that the
first and fourth brackets are integrable in spacetime, and so the grand maximal operator
applied to them lie in L1

wpR3q. Moreover, by adding and subtracting in the third bracket
the analogous convolution term, that is,�

3̧

l�1

�
pωkΓilq � j

l
tpxq � pKiBlωkq � j

l
tpxq � Γ̃ilk � j

l
tpxq

�
�

3̧

l,m,a,b�1
εbaiεalmΓ̃blk � j

m
t pxq

�
3̧

l�1

�
pωkΓilq � j

l
tpxq � pKiBlωkq � j

l
tpxq � Γ̃ilk � j

l
tpxq

�
�

3̧

l,m,a,b�1
εbaiεalmΓ̃blk � j

m
t pxq

�

�
3̧

l�1

�
pωkΓilq � j

l
tpxq � pKiBlωkq � j

l
tpxq � Γ̃ilk � j

l
tpxq

�
�

3̧

l,m,a,b�1
εbaiεalmΓ̃blk � j

m
t pxq,

we have by Propositions 4.1 and 4.3 that the grand maximal operator applied to the above
is in L1

wpR3q. Therefore, it suffices to estimate the grand maximal function applied to the
second bracket. Once again, by adding and subtracting a convolution term, we have

Mρν,k
0

Γik � ρtpxq ¤
�
Mρν,k

0
pΓik � ρtpxq � Γik � ρtpxqq

�
�Mρν,k

0
Γik � ρtpxq.

The second term is an L1
wpR3q function by Proposition 4.1, and the first term can be

estimated as

Mρν,k
0
pΓik � ρtpxq � Γik � ρtpxqq �Mρν,k

0

»
Bt

» 1

0
Γikpyq|y|Btρt�s|y|px� yq ds dy.

Once again, we may use the continuity equation Btρ � � div j and the commuting relation
(4.10) to obtain»

Bt

» 1

0
Γikpyq|y|Btρt�s|y|px� yq ds dy �

3̧

l�1

� »
Bt

» 1

0
sΓikpyqωlpyq|y|Btj

l
t�s|y|px� yq ds dy

�

»
BBt

» 1

0
ωlpyqΓikpyq|y|j

l
tp1�sqpx� yq ds dSy

�

»
Bt

» 1

0
BlpΓikpyq|y|qj

l
t�s|y|px� yq ds dy

�
.

Notice that the first term is an L1pp0, T q�R3;R3q function, by the proof of Proposition 4.3.
Since j P W 1,1pp0, T q;L1pR3;R3qq � L8pp0, T q;L1pR3;R3qq, we have that����

»
BBt

» 1

0
ωlpyqΓikpyq|y|j

l
tp1�sqp� � yq ds dSy

����
L1pR3q

¤ C}j}W 1,1pp0,T q;L1pR3qq,

and so the second term is also a L1pp0, T q � R3;R3q. For the third term, recalling the
definition of Γik at Lemma 4.5, we have that

BlpΓikpyq|y|q �Bl

�
δik � 3ωipyqωkpyq

|y|2




�
�2δikωlpyq � 12ωlpyqωipyqωkpyq � 3δilωkpyq � 3δklωipyq

|y|3

�:Γ1iklpyq.
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Notice that Γ1ikl satisfies Definition 4.2. Therefore, we estimate the third term as»
Bt

» 1

0
Γ1iklpyqj

l
t�s|y|px� yq ds dy �

»
Bt

» 1

0
Γ1iklpyqrj

l
t�s|y| � jl

tspx� yq ds dy

�

»
Bt

» 1

0
Γ1iklpyqj

l
tpx� yq ds dy

��

»
Bt

» 1

0

» 1

0
Γ1iklpyqs|y|Btj

l
t�ss1|y|px� yq ds1 ds dy

�

»
Bt

» 1

0
Γ1iklpyqj

l
tpx� yq ds dy.

Therefore, we have that

Mρν,k
0
pΓik � ρtpxq � Γik � ρtpxqq ¤

3̧

l�1

�
Mρν,k

0

»
Bt

» 1

0
Γikpyqωlpyq|y|Btj

l
t�s|y|px� yq ds dy

�Mρν,k
0

»
BBt

» 1

0
ωlpyqΓikpyq|y|j

l
tp1�sqpx� yq ds dSy

�Mρν,k
0

»
Bt

» 1

0
BlpΓikpyq|y|qj

l
t�s|y|px� yq ds dy

�Mρν,k
0

»
Bt

» 1

0

» 1

0
Γ1iklpyqs|y|Btj

l
t�ss1|y|px� yq ds1 ds dy

�Mρν,k
0

»
Bt

Γ1iklpyqj
l
tpx� yq dy

�
.

By the previous estimates and Propositions 4.1 and 4.3, there exists a constant Cd,T ¡ 0
depending only on d and T such that�������������Mρν,k

0
pΓik � ρ� Γik � ρq

���������
L1

wpR3q

����
L1p0,T q

¤ Cd,T }j}W 1,1pp0,T q;L1pR3qq.

Therefore, we have that�������������Mρν,k
0
BkE

���������
L1

wpR3q

����
L1p0,T q

¤ Cd,T

�
}E0}W 2,1pR3q � }H0}W 2,1pR3q � }ρ0}W 1,1pR3q � }j0}W 1,1pR3q

� }j}W 1,1pp0,T q;L1pR3qq � }ρ}L1pp0,T q�R3q

� }Dpω b ω| � |�1 � Btjq}L1pp0,T q�R3q

	
,

where the last term is bounded by Lemma 4.7. Hence, by the condition petq#η ¤ C̃Ld, we
have that���������hE

t

������
L1

wpµq

���
L1p0,T q

¤2
�������������Mρν,k

0
BkE

���������
L1

wpµq

����
L1p0,T q

¤ 2C̃|BR|

�������������Mρν,k
0
BkE

���������
L1

wpR3q

����
L1p0,T q

¤Cd,T,RC̃
�
}E0}W 2,1pR3q � }H0}W 2,1pR3q � }ρ0}W 1,1pR3q � }j0}W 1,1pR3q

� }j}W 1,1pp0,T q;L1pR3qq � }ρ}L1pp0,T q�R3q

� }Dpω b ω| � |�1 � Btjq}L1pp0,T q�R3q

	
.
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Hence, by (2.9) and Lemma 4.8, we have that» t0

0

½
hE

t pγ
1, η1qdµpγ, η, zq dt ¤ C log

�
C

δϵ



¤ C p1� | log ϵ| � | log δ|q . (4.26)

Step 2: We analogously estimate the magnetic field term as» t0

0

½
|Hpγ1ptqq �Hpη1ptqq|

δϵ� |γ1ptq � η1ptq|
dµpη, γ, zq dt ¤

» t0

0

½
hH

t pγ
1, η1qdµpγ, η, zq dt,

where by Lemma 2.2, we have

hH
t pγ

1, η1q :� min
#

3̧

k�1

�
Mρν,k

0
BkHtpγptqq �Mρν,k

0
BkHtpηptqq

	
,
|Htpγptqq| � |Htpηptqq|

δϵ

+
.

Computing the derivative of the magnetic field, we have by Lemmas 4.5 to 4.7 that

BkH
i
tpxq � pBkH

0
t q

ipxq �
3̧

m,l�1
εlmi

�
� ωkKipyqj0px� yq dSy � Γil � j

m
t pxq

� pωkKiq � j
m
t pxq � Bkpωl| � |

�1 � Btj
m
t qpxq

�
.

Moreover, by Propositions 4.1 and 4.3 and lemma 4.4, we conclude that�������������Mρν,k
0
BkH

���������
L1

wpR3q

����
L1p0,T q

¤ Cd,T

�
}E0}W 2,1pR3q � }H0}W 2,1pR3q � }j0}W 1,1pR3q

� }j}W 1,1pp0,T q;L1pR3qq � }Dpω| � |�1 � Btjq}L1pp0,T q�R3q

	
.

Therefore, by Lemma 4.8, we may conclude analogously as in (4.26) that» t0

0

½
hH

t pγ
1, η1qdµpγ, η, zq dt ¤ C p1� | log ϵ| � | log δ|q . (4.27)

Finally, we have by (4.24), (4.25), (4.26), and (4.27) that

Φδ,ϵpt0q ¤
C

ϵ
� Cϵ p1� | log ϵ| � | log δ|q .

Taking ϵ   a{p2CT q and recalling that the assumption that “ηx is not a Dirac delta for
pe0q#η�a.e. x” implies (4.18), we have the desired contradiction.

Hence, property (H2) holds, and so by Theorems 3.9 and 3.10, existence,
uniqueness, and semigroup property of maximal regular flow follow. Moreover, as the
vector field is divergence free, Lagrangian solutions are renormalized; finally, since f is
nonnegative and weakly continuous in r0, T s in duality with CcpR3q, the consistency of
solutions follows from [6, Theorem 5.1].
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5 A study for gSQG-type vector fields

A natural question when comparing the results in Section 2.3 and Section 2.5
is if one can consider the intermediate cases. More precisely, recall that by Proposition 2.3,
the fundamental estimate holds for vector fields b � K � g, where g P L1pp0, T q � Rdq and
K has estimate |Kpxq| ¤ C|x|�pd�1q has derivative Γ � DK which is a singular kernel of
fundamental type. Moreover, in Theorem 2.6, the fundamental estimate also holds for
vector fields b � Γ � g, where g P L1pp0, T q; BVpRdqq and Γ � | � |�dΩ is a singular kernel
of fundamental type with average zero, that is,

»
Sd�1

Ωpyq dSy � 0. Hence, we ask if one
can consider b � Kα � g, with a kernel Kα having appropriate cancellation properties
and an estimate |Kαpxq| ¤ C|x|�pd�1�αq for some α P p0, 1q, and g in a space between
L1pp0, T q; BVpRdqq and L1pp0, T q � Rdq. A natural candidate for this space would be the
fractional Sobolev space L1pp0, T q;W α,1pRdqq.

Analogously, by Proposition 2.1 in Section 2.2 the fundamental estimate
holds for vector fields b � K � g for g P L1pp0, T q;LppRdqq and b � Γ � g for g P

L1pp0, T q;W 1,ppRdqq, where K and Γ as before and p P p1,8q. In this case, the candidate
of an intermediate space for g is not that clear. For instance, one might expect the fractional
Sobolev space L1pp0, T q;Wα,ppRdqq or the Besov space L1pp0, T q;Bα

p,qpRdqq or even the
Triebel-Lizorkin space L1pp0, T q;F α

p,qpRdqq for some q P r1,8s; notice that in the p � q � 1
case, all of the above spaces are equal. We shall consider g in the space L1pp0, T q;Bα

p,1pRdqq.
We did not investigate whether the other aforementioned spaces are also suitable.

Accordingly, in this chapter we shall study the transport and continuity equa-
tions

Btu� b �∇u � 0;
Btu� divpbuq � 0;

where the vector field b has one of the following structures: the more regular form

bi
tpxq � Kα

i � gtpxq, where Kα
i pyq �

Ωipyq

|y|d�1�α
and |BjK

α
i pyq| ¤

C

|y|d�α
(5.1)

or the more singular form

bi
tpxq � Γk,α

i � gtpxq, where Γk,α
i pyq �

Ωipyq

|y|d�k�α
. (5.2)

In the above, we assume that g is in an appropriate fractional Sobolev/Besov
space, the indexes k, α are k P t0, 1, 2u, α P p0, 1q (we shall refer to Kα,Γk,α as kernels and
g as density of the vector field), and the functions Ω are zero order homogeneous function
and satisfy the appropriate cancellation condition:
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Definition 5.1 (Cancellation property). For vector fields (5.1), we say that Ω has
cancellation property if for every i, j � 1, . . . , d, we have that»

BB1

Ωipyq dSy � 0.

We additionally assume in (5.1) that |Ωip�q| P W
1,8pSd�1q. Moreover, for vector fields (5.2),

we always assume that |Ωip�q| P L
8pSd�1q; in the case k � 0, we assume that for every

i � 1, . . . , d that »
BB1

Ωipyq dSy � 0.

In the case (5.2) with k � 1, we further assume that for every i, j � 1, . . . , d, we have that»
BB1

Ωipyq dSy � 0 and
»
BB1

ωjpyqΩipyq dSy � 0,

where ωjpyq � yj|y|
�1. Finally, in the case (5.2) with k � 2, we assume that for every

index, i, j, l � 1, . . . , d, it holds»
BB1

Ωipyq dSy � 0,
»
BB1

ωjpyqΩipyq dSy � 0, and
»
BB1

ωlpyqωjpyqΩipyq dSy � 0.

Remark 27. Notice that in the case of gSQG equation (1.8) (changing the parameter α
to γ in order to avoid any confusion), the associated kernels can be written as Kγpyq �

|y|�p2�γqyK if γ P p0, 1q and Γ0,γ�1pyq � |y|�p2�γqyK if γ P p1, 2q.

Remark 28. This chapter is in fact a simplified proof of Nguyen’s work [70] for vector fields
with structure (5.1) and (5.2) and Definition 5.1. It is an open problem if the well-posedness
of regular flows holds if one does not assume the latter.

The quintessential examples of Ω satisfying Definition 5.1 are Ωipyq � ωipyq

and Ωijpyq � δij � dωipyqωjpyq. Moreover, notice that Ωipyq � δi1 � dωipyqω1pyq satisfies
Definition 5.1 in the case k � 1. Finally, as an example for Definition 5.1 in the case k � 2
in dimension d � 2, we have

Ωipyq � ω1pyq

�
δi1 �

4
3ωipyqω1pyq



� ω2pyq

�
δi2 �

4
3ωipyqω2pyq



.

We first recall the definition of Besov spaces: for k P N, α P p0, 1q, p P r1,8s, q P r1,8q,
we define such space as

Bk�α
p,q pRdq �

#
g P W k,ppRdq :

�»
Rd

}Dσgp� � yq �Dσg}q
LppRdq

|y|d�qα
dy

�1{q

  8,

where |σ| � k

+
,



Chapter 5. A study for gSQG-type vector fields 128

and so we may define the associated norm }g}Bk�α
p,q pRdq

:� }g}W k,ppRdq � rDσgsBα
p,qpRdq with

|σ| � k, where

rf sBα
p,qpRdq :�

�»
Rd

}fp� � yq � f}q
LppRdq

|y|d�qα
dy

�1{q

.

We now make a precise assumption on the regularity of densities g:

Condition 5.1 (Regularity of densities). We shall assume in the case (5.1) that g P
L1pp0, T q;Bα

p,1pRdqq for some p P r1,8s. In the case (5.2) with k � 0, we assume that
g P L1pp0, T q;B1�α

p,1 pRdqq for some p P r1,8s.

Notice that by Definition 5.1 and assuming that Ω is a zeroth homogeneous
function, the vector fields b � Γk,α � g and b �

�
Ω| � |�pd�kq

�
� g in the case k P t1, 2u can

be rewritten as

Γ1,α � gtpxq �

»
Rd

Ωpyq
|y|d�1�α

rgtpx� yq � gtpxqs dy

� �

» 1

0

»
Rd

Ωpyq
|y|d�α

ωpyq �∇gtpx� τyq dy dτ

� �

» 1

0
τα dτ

»
Rd

Ωpyq
|y|d�α

ωpyq �∇gtpx� yq dy

�
�1

1� α

»
Rd

Ωpyq
|y|d�α

ωpyq �∇gtpx� yq dy

(5.3)

where ωpyq :� |y|�1y, and so we may write b � Γ1,α � g as finite sum of Γ0,α
i � hi

t, where

Γ0,α
i pyq �

�Ωpyqωipyq

p1� αq|y|d�α
and hi

tpyq � Bigtpyq.

By Definition 5.1, the kernels satisfy the k � 0 of Definition 5.1 (and so the notation is
consistent) and we shall assume that densities hi have the integrability» T

0

��hi
t

��
B1�α

p,1 pRdq
dt   8 ðñ

» T

0
}Dσgt}B1�α

p,1 pRdq dt   8, where |σ| � 1.

Applying the same idea twice, we may write

Γ2,α � gtpxq �
1

p1� αq2

»
Rd

Ωpyq
|y|d�α

rωpyq b ωpyqs : D2gtpx� yq dy, (5.4)

and so we may write it as a sum of kernels Γ0,α
ij satisfying Definition 5.1 for k � 0 and

assume that densities hij
t � Bijgt with integrability» T

0

��hij
t

��
B1�α

p,1 pRdq
dt   8 ðñ

» T

0
}Dσgt}B1�α

p,1 pRdq dt   8 where |σ| � 2.

Hence, any property to be obtained for a finite sum Γ0,α � g shall be translated for vector
fields (5.2) with k P t1, 2u by assuming that the density function g has the aforementioned
suitable regularity. Therefore we restrict ourselves to prove the desired estimates for the
case k � 0 in (5.2).
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Remark 29. One could iterate the above process for k ¥ 3, and the above computation
would follow for even more singular kernels, provided that we increase the required
regularity of the density g and the cancellation property for Ω. We do not include such
cases for we do not find any explicit examples of functions satisfying Definition 5.1 in the
case k � 2, as well as for all i, j, l,m � 1, . . . , d»

BB1

ωmωlpyqωjpyqΩipyq dSy � 0.

Remark 30. The same computation (5.3) holds for b �
�
Ω| � |�pd�1q� � g, and the only

difference is now the regularity hi
t P BVpRdq or hi

t P W
1,ppRdq, since it now becomes a

particular case of Theorem 2.6 and Proposition 2.1. Similarly, the computation (5.4) holds
for b �

�
Ω| � |�pd�2q� � g, where now one assumes hij

t P BVpRdq or hij
t P W 1,ppRdq.

We begin by proving that (H1) and (1.6) hold, that is, the local integrability
and growth assumption of b. We recall that the Besov space in this case gives Bα

1,1pRdq �

W α,1pRdq, where the latter is the fractional Sobolev space.

Lemma 5.1 (Property (H1) and (1.6)). Let b be a vector field satisfying (5.1) and
(5.2) with Definition 5.1 and Condition 5.1 with p P r1,8s. Then it holds that b P

L1pp0, T q;LppRdqq. In particular, b P L1pp0, T q � Rdq � L1pp0, T q;L8pRdqq.

Proof. Let us first consider Kα
i � |�|�pd�1�αqΩi. Then by the computation and zero average

of Ωi, we have that

}bt}LppRdq ¤}Ω}L8pSd�1q

»
B1

1
|y|d�1�α

}gt}LppRdq dy

� }Ω}L8pSd�1q

»
Rd B1

1
|y|d�1�α

}gtp� � yq � gt}LppRdq dy

¤Cd,α}gt}Bα
p,1pRdq,

we conclude that b P L1pp0, T q;LppRdqq. For the case Γα
i � | � |�pd�αqΩi, it follows from the

zero average of Ωi that

}bt}LppRdq ¤ }Ω}L8pSd�1qrgtsBα
p,1pRdq ¤ Cα}gt}B1�α

p,1 pRdq.

Integrating with respect to time, the lemma follows.

We are now ready to prove the fundamental estimate associated to vector fields
(5.1) and (5.2) and the third main result of this thesis.

Proposition 5.1. Let b̄ be vector field satisfying (1.6) and b as in (5.1) with g P

L1pp0, T q;Bα
p,1pRdqq or (5.2) with k � 0, with Definition 5.1 and g P L1pp0, T q;B1�α

p,1 pRdqq

for p P r1,8s, and X, X̄ their renormalized regular Lagrangian flows starting at time s
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with compressibility constants L and L̄, respectively. Then for every γ ¡ 0, η ¡ 0, and
r ¡ 0, there exists λ ¡ 0 and a constant Cγ,η,r ¡ 0 such that

|Br X t|Xpt, s, �q � X̄pt, s, �q| ¡ γu| ¤ Cγ,η,r}b� b̄}L1pp0,T q�Bλq � η

uniformly in s P r0, T s and t P rs, T s. The constant Cγ,η,r depends on its subscripts, as
well as the compressibility constants L and L̄, on the norms (1.6) of b and b̄, and on the
W 1,8pSd�1q (or on L8pSd�1q) norm of Ω.

Proof. As in Proposition 2.3, we consider for fixed δ ¡ 0, λ ¡ 0, and t P rs, T s the function

Φδptq �

»
BrXGλXḠλ

log
�

1� |Xpt, s, xq � X̄pt, s, xq|

δ



dx,

and it satisfies for all τ P rs, T s

Φδpτq �

» τ

s

Φ1
δptq dt ¤

» τ

s

»
BrXGλXḠλ

|btpXpt, s, xqq � b̄tpX̄pt, s, xqq|

|Xpt, s, xq � X̄pt, s, xq| � δ
dx dt

¤

» τ

s

»
BrXGλXḠλ

|btpX̄pt, s, xqq � b̄tpX̄pt, s, xqq|

|Xpt, s, xq � X̄pt, s, xq| � δ
dx dt

�

» τ

s

»
BrXGλXḠλ

|btpXpt, s, xqq � btpX̄pt, s, xqq|

|Xpt, s, xq � X̄pt, s, xq| � δ
dx dt

�:Ipτq � IIpτq.

The first integral on the right-hand side is bounded as in Proposition 2.1:

Ipτq ¤ L̄

δ
}b� b̄}L1pp0,T q�Bλq.

For the second integral, we use the second part of Lemma 2.2, for Theorem 2.3 gives that
MΥj,ξpBjb

i
tqpxq   8 for all i, j P t1, . . . , du and almost every x P Rd, t P rs, T s, and so

IIpτq ¤
ḑ

i,j�1

» τ

s

»
BrXGλXḠλ

min
#
MΥj,ξBjb

i
tpXpt, s, xqq �MΥj,ξBjb

i
tpX̄pt, s, xqq,

|bi
tpXpt, s, xqq|

δ
�
|bi

tpX̄pt, s, xqq|

δ

+
dx.

We shall split the proof in the simpler p ¡ 1 case and in the more challenging p � 1 case.

The p ¡ 1 case: Notice that if b � Kα � g, then

Bjb
i
tpxq � Bj

»
Rd

Ωipx� yq

|x� y|d�1�α
rgtpyq � gtpxqs dy �

»
Rd

Bj

�
Ωipx� yq

|x� y|d�1�α



rgtpyq � gtpxqs dy,

where the above computation can be justified by the regularity of g. By the compressibility
of flows X, X̄, we have that

}Db}L1pp0,T q;LppRdqq ¤ Cα,d}Ω}W 1,8pSd�1q}g}L1pp0,T q;Bα
p,1pRdqq,
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and so we are in fact in the same setting as in Proposition 2.1. Analogously, if b � Γ0,α � g,
then

}Db}L1pp0,T q;LppRdqq ¤ Cα,d}Ω}L8pSd�1q}∇g}L1pp0,T q;Bα
p,1pRdqq,

and once again the desired estimate follows from Proposition 2.1.

The p � 1 case: We shall apply Lemma 2.13 with operator Tj �MΥj,ξ and
f i

t pxq � |bi
tpXpt, s, xqq| � |bi

tpX̄pt, s, xqq|. Indeed, since the grand maximal operator is a
bounded operator from L1pRdq to L1

wpRdq. In the p � 1 case, we have either Bα
1,1 � Wα,1 in

the (5.1) case or B1�α
1,1 � W 1�α,1 (5.2) with k � 0 case. By fractional Sobolev embedding

(see [46, Chapter 6]), we have that g P L1pp0, T q;LqpRdqq if g P L1pp0, T q;Wα,1pRdqq and
∇g P L1pp0, T q;LqpRdqq for any q P r1, d{pd� αqs if g P L1pp0, T q;W 1�α,1pRdqq, and so for
any R ¡ 0 that

}Kα � g}L1pp0,T q;LqpBRqq ¤}p1B1K
αq � g}L1pp0,T q;LqpBRqq � }p1Rd B1K

αq � g}L1pp0,T q;LqpBRqq

¤}Kα}L1pB1q}g}L1pp0,T q;LqpRdqq

� |BR|
1�1{q}Kα}L8pRd B1q}g}L1pp0,T q�Rdq

¤Cα,R,d}g}L1pp0,T q;W α,1pRdqq,

and analogously for the case b � Γ0,α � g by the identity (the computation is mutatis
mutandis the same as in (5.3))

b � Γ0,α � gtpxq � �
1
α

»
Rd

Ωpyq
|y|d�1�α

ωpyq �∇gtpx� yq dy,

we have for any R ¡ 0 that

}Γ0,α � g}L1pp0,T q;LqpBRqq ¤ Cα,R,d}∇g}L1pp0,T q;W α,1pRdqq ¤ Cα,R,d}g}L1pp0,T q;W 1�α,1pRdqq.

By the compressibility of flows X, X̄, we conclude that there exists q ¡ 1 such that
f P L1pp0, T q;LqpBRqq. Finally, we shall consider as measures µij

t pxq � Bjb
i
tpXpt, s, xqqLd

or µ̄ij
t pxq � Bjb

i
tpX̄pt, s, xqqLd, which by the above considerations and the compressibility

of flows X, X̄, we have that µ, µ̄ are finite measures in space and integrable in time. By
Lemma 2.13, we conclude for each i, j � 1, . . . , d that

lim sup
δÑ0

1
| log δ|

» T

0

»
Br

min
"
f i

t pxq

δ
, Tjµ

ij
t pxq

*
dx dt � 0. (5.5)

Using the same lower bound for Φδ as in Proposition 2.3, we have that

|Br X t|Xpτ, s, �q � X̄pτ, s, �q| ¡ γu| ¤
Φδpτq

log
�
1� γ

δ

� � fpr, λq � f̄pr, λq

¤
C

log
�
1� γ

δ

�
δ
}b� b̄}L1pp0,T q�Bλq

�
1

| log δ|

» T

0

»
Br

min
"
f i

t pxq

δ
, Tjµ

ij
t pxq

*
dx dt

� fpr, λq � f̄pr, λq,
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where f i, Tj , µij as before and f , f̄ the sublevel’s control as in Lemma 2.5. By choosing λ
large enough so that fpr, λq � f̄pr, λq   η{2 and using (5.5) to obtain for δ small enough
so that

1
| log δ|

» T

0

»
Br

min
"
f i

t pxq

δ
, Tjµ

ij
t pxq

*
dx dt ¤ η

2 ,

and so the proposition follows by defining

Cγ,η,r :� C

log
�
1� γ

δ

�
δ
,

since the choice of δ depends on η and r.

Using the machinery majorly developed in [22] presented in Section 2.2, we may
state existence and uniqueness of Lagrangian solutions of transport/continuity equations
associated to vector fields (5.1) and (5.2). More precisely, following the proofs of Theorem 2.1
and Theorem 2.2, we conclude the result below:

Theorem 5.1. Let b as in (5.1) or (5.2), where Ωi satisfies Definition 5.1, α P p0, 1q,
p P r1,8s, and the density g has one of the integrabilities below:» T

0
}gt}Bα

p,1pRdq dt   8 if b � Kα � g;» T

0
}gt}B1�α

p,1 pRdq dt   8 if b � Γ0,α � g;
(5.6)

» T

0
}Dσgt}B1�α

p,1 pRdq dt   8 if b � Γ1,α � g with |σ| � 1;» T

0
}Dσgt}B1�α

p,1 pRdq dt   8 if b � Γ2,α � g with |σ| � 2.

Then there exists an unique renormalized regular flow in the sense of Definition 2.2 (i) and
Definition 2.2 (ii). Moreover, there exists a Lagrangian solution (1.3)/ (1.5) of transport
equation (1.1)/continuity equation (1.4).

We now turn our attention to the gSQG equation (1.8). We recall that general
interest in the literature for range of α is r0, 2q, where α � 0 and α � 1 corresponds to the
2D-Euler vorticity equation and the SQG equation, respectively; see [30, 31] and references
therein. We remark that θ is taken as the vorticity if α � 0 and as potential temperature
if α � 1 (see the comment in Chapter 1). Of course, taking α � 2 implies that θt � θ0,
and so (5.2) with k � 1 no longer has a direct application. Nevertheless, we refer to [30,
Theorem 1.3] where the authors study the dissipative version of (1.1) with the vector field
bt � ∇K plogp1�∆qqµ θt for any µ ¡ 0, which is logarithmically more singular than the
case α � 2.

Concerning existence of solutions, there are results for global weak solutions
of (1.8) in bounded domains for 1 ¤ α ¤ 2 (see [37, 69]). Also, existence and uniqueness
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of local in time classical solutions for 0 ¤ α ¤ 2 has been obtained in [29, 30, 56, 57, 79].
More precisely, if θ0 P H

1�α�ϵpR2q for any ϵ ¡ 0, then there exists a finite time T ¡ 0
depending on the initial data and a unique solution θ P Cpr0, T s;H1�α�ϵpR2qq of (1.8).
Notice that by the relation (for p P r2,8s)

H1�α�ϵpR2q � B1�α�ϵ
2,2 pR2q � B1�α

2,1 pR2q � Bα
p,1pR2q,

our regularity assumptions (5.6) in Proposition 5.1 much milder than the ones for classical
solutions. Moreover, since θ represent the potential temperature, we have that θ ¥ 0.
Finally, notice that by (1.8), the associated vector field btpxq � ∇Kp�∆qα

2 �1θtpxq is
divergence-free. Combining all the above, we may apply Theorem 3.6 and Proposition 5.1
and obtain a criteria for Lagrangian solutions and the fourth and final main result of this
thesis, as described below.

Theorem 5.2 (Lagrangian solutions of gSQG). If θ is a nonnegative distributional
or renormalized solution of (1.8) with regularity θ P L1pr0, T s;Bα

p,1pR2qq, where α P

p0, 2q t1u, p P r1,8s, and t ÞÑ utpxq is weakly continuous in duality with CcpRdq, then
there exists a renormalized regular Lagrangian flow X in the sense Definition 2.2 (i) and
Definition 2.2 (ii) (and also in the sense Definition 3.2 with maximal time T ) and θ can
be written as a Lagrangian solution θtpxq � θ0pXp0, t, xqq.

Proof. If θ is a distributional solution, then one may apply Theorem 3.6 and Proposition 3.1,
with properties (H1) and (H2) ensured by Lemma 5.1 and Proposition 5.1 to obtain that
θ is Lagrangian solution. If θ is a renormalized solution, then β � θ is distributional
solution of the continuity equation with vector field btpxq � ∇Kp�∆qα

2 �1θtpxq for any
β P L8pRq X LippRq.1 We now follow the proof found in [6, Step 3 of Theorem 5.1]: we
can consider a family of functions

βkpzq :�

$'''&
'''%

0 if z ¤ k;

z � k if k   z   k � 1;

1 if z ¥ k � 1,

and so by Theorem 3.6, we conclude that there exists ηk P MpCpr0, T s; R̄dqq βk � θtLd �

petq#ηk Rd for all t P r0, T s and ηkpCpr0, T s; R̄dqq ¤ }βk�θ}L8pp0,T q;L1pRdqq. Therefore, since
8̧

k�0
βkpzq � z, we have that η :�

8̧

k�0
ηk satisfies the same properties as in Theorem 3.6.

Moreover, we may apply Proposition 3.1 for each k and then summing over all possible k,
we conclude that θ is also a Lagrangian solution.

1 We have assumed so far that the admissible class of β is L8pRq X C1pRq, but a simple approximation
argument can be done to allow a more general class L8pRq X LippRq.
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6 Conclusion and Future problems

In Chapters 4 and 5, we were able to extend the Lagrangian approach technique
of obtaining a solution via the transport of the initial data by its associated flow for vector
fields with the following structures:

• it can be written as hyperbolic convolution in the sense of (4.8), as proven in
Theorem 4.1;

• if it can be written as a convolution of singular kernel with non-fundamental decay
and a density in a Besov space as in (5.1) or (5.2), as proven in a simplified version
of Nguyen’s result [70] in Theorem 5.1.

As an application, we were able to present a criteria of Lagrangian structure for the
Vlasov-Maxwell system (4.1) and the gSQG equation (1.8), provided we assume enough
regularity of solutions; see Theorem 4.2 and Theorem 5.1. We have extensively used the
ideas presented in Chapters 2 and 3 in order to conclude our four aforementioned main
theorems.

Concerning future problems we are interested in investigating, we list them
below without any order of preference:

(i) obtain a extension of Theorem 2.5 in two main branches: using the ideas of Propo-
sition 4.1 to allow truncated singular rough kernels; obtaining a non average-zero
singular rough kernel with desired approximating sequence of kernels (recall that
the only example given by Nguyen for such vector fields is the one in Remark 11);

(ii) generalize Proposition 4.1 for more complicated truncated kernels, e.g. with truncation
1Aδ

for some general family of sets tAδuδ¡0 with suitable hypothesis;

(iii) drop the second order derivative integrability of the density j in the Vlasov-Maxwell
system result Theorem 4.2, possibly exploring the ideas of [52, 53];

(iv) obtain Theorem 5.1 for vector fields with structure (5.1) and (5.2) without assuming
Definition 5.1;

(v) obtain a Besov type continuation of regularity result a la [31, Theorem 1.5] for
the gSQG equation. More precisely, we would like to ensure that if one assumes
that the initial data is in some appropriate Besov space B and the solution is a
less regular Besov space B1 � B, then solutions are also in B for later times. The
main motivation is that in the proof of [31, Theorem 1.5], they use the Lagrangian
structure via the Cauchy-Lipschitz approach;
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(vi) obtain a Lagrangian structure for the Landau-Vlasov equation [55], that is, the
Vlasov equation as in Section 3.2 with Ftpxq � �∇ pV pxq � ρtpxqq, where V is a
given potential and ρ the v�marginal of f ;

(vii) obtain a Lagrangian structure for the quantum Vlasov equation [54], that is, the
Vlasov equation as in Section 3.2 replacing F �∇vf with»

R6

i

ϵ

�
V

�
x�

ϵṽ

2



� V

�
x�

ϵṽ

2




ftpx, yqe

ipv�v1q�ṽ dv1 dṽ.

This is the quantum version of the classical conservative force Ftpxq � �∇V pxq with
parameter ϵ (in a unit system, ϵ should read ℏ). An interesting question is whether
we have stability of solutions and/or of flows as ϵÑ 0;

(viii) in the same spirit as before, we would like to generalize the idea heavily utilized
in Chapter 2 of obtaining a fundamental estimate for vector fields which we only
have its the Fourier symbol in the sense Fpbtqpξq � mpξqFgtpξq. This is a natural
extension of assuming that the vector field can be written as convolution of singular
kernel and a density, which gives that m P L8pRdq among other properties;

(ix) a natural extension of a Lagrangian structure for the Vlasov-Poisson equation studied
in [6] is to consider bounded physical domains, in the sense that px, vq P Ω� R3 for
some open and bounded Ω � R3. The first major step in this direction was due to
Fernández-Real [50], where they consider BΩ as a perfect conductor with specular
reflection, that is, the electric field has no tangential component on the boundary
and the particles’ collision to the boundary is perfectly elastic, so that the angle of
incidence matches the reflection’s one. It is worth investigating whether the same
type of result holds for magnetic analogous case, i.e. for px, vq P pR3 Ωq � R3, we
only consider particles under magnetic field (the Vlasov-Biot-Savart equation, see
Section 3.2), and still assuming that BΩ is a perfect conductor, we should assume
now that the magnetic field has no normal component at the boundary. It is also of
interest whether one can drop the perfect elastic collision hypothesis;

(x) following the work of [22], more precisely Theorem 2.3, it should be possible to
extend their result for kernels without pointwise estimates, but rather integrals ones
a la Lemma 2.3;

(xi) it has been proven by Nguyen [70, Proposition 1.2], the extension of Theorem 2.3 for
finite measure densities is not possible. Notice, however, that it does not cover the
case K � µ, where K is a singular kernel with singularity of order d� 1 at the origin
and µ a finite density. This is particularly interesting for the 2D-Euler equation with
finite measure vorticity;
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(xii) it has been proven by Colombo-Crippa-Spirito [36] that if the vector field has the
renormalization property Condition 1.1, as well as satisfies the growth assumption
(1.6) and integrable in time, bounded in space divergence, then there exists a unique
solution of the so called damped continuity equation$&

%Btu� divpbuq � cu in r0,8q � Rd;

ut�0 � u0 on Rd

and has a Lagrangian structure, that is, it can be written as

upt, xq � exp
�» t

0
cτ pXpτ, t, xqq � div bτ pXpτ, t, xqq dτ



u0pXp0, t, xqq,

even if one considers c P L1pp0, T q � Rdq; the DiPerna-Lions result [48] needed to
assume that c P L1pp0, T q;L8pRdqq, and so div b, c are treated the same. Moreover, it
has been hinted by Ambrosio-Colombo-Figalli in a comment before [6, Theorem 4.10]
that in the c � 0 case, i.e. (1.4), that the Lagrangian solution (1.5) is a renormalized
or weak solution of continuity equation (and analogously (1.3) should be a Lagrangian
solution of transport equation (1.1)) without the growth assumption, but they only
prove it for divergence-free vector fields. Therefore, it should be possible to extend
at least the existence result in [36] without the growth assumption;

(xiii) finally, the generalization of Theorem 2.6 for densities in the space of bounded
deformation, that is

Eb �
1
2
�
Db� pDbqt

�
P L1pp0, T q; MpRd;Rdqq.

Of course, the Theorem 2.4 is no longer available in this case, but an analogous
result proven by De Philippis-Rindler [72] gives that

dpEbqspxq �

�
apxq b bpxq � bpxq b apxq

2



d|pEbqs|pxq.

This is by far the most difficult open problem listed in this chapter, for no analogous
result is available apart from [8], which still heavily restricts the type of vector fields
considered in order to obtain the renormalization property.
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