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RESUMO

Estruturas e mecanismos de tensegridade tém atraido a aten¢do da comunidade cientifica devido
ao seu potencial em associado a transformacgdo de forma e eficiéncia estrutural em termos de re-
sisténcia por peso. Sistemas de tensegridade podem ser projetados para empacotar, desenvolver
e transformar em uma geometria de interesse. Essas caracteristicas fazem das tensegridades
alternativas promissoras para substituir bracos manipuladores sélidos, que geralmente sao pesa-
dos, longos e inconvenientes para transportar. Adicionalmente, antenas de satélites necessitam
de uma superficie continua para reflexdo, o que motiva a pesquisa de sistemas tensegridade-
membrana. Este estudo apresenta o objetivo geral de contribuir para a consolidagdo de sistemas
tensegridade através da produciao de um trabalho abrangente entre temas fundamentais da en-
genharia mecanica, fornecendo andlises de estdtica e dinamica, em duas e trés dimensdes do
espaco, e por vias analiticas, numéricas e experimentais. Quatro projetos sdo apresentados:
uma membrana triangular pré-tensionada, uma viga tensegridade plana puxada por um cabo
na extremidade livre, defini¢des analiticas de conectividade e incidéncias para prismas tenseg-
ridade e um braco 3D tensegridade que se expande e move conforme os comprimentos dos
cabos variam. Os cddigos fundamentais implementados em MATLAB estdo disponiveis no
repositorio GitHub publico <https://github.com/FictorP/Tensegrity/tree/main/formfinding>.

E razodvel desenvolver um modelo de membrana antes de avangar para sistemas de tensegridade-
membrana. Esta parte do estudo € dedicada a constru¢do de um modelo numérico confidvel de
membrana. A membrana pré-tensionada é modelada num programa comercial e validada com
um protétipo. O protétipo de borracha € cortado em um formato triangular, montado sobre um
quadro e tensionado sob diversos niveis de carga. As frequéncias naturais sido extraidas por
processamento de imagem em cada configuracdo. A estrutura € reproduzida em um programa
comercial e 0 modelo numérico € validado com os resultados experimentais.

A viga plana € submetida a grandes deslocamentos e vibra¢do, os modelos numéricos para as
andlises estdtica ndo linear e modal sdo validados com um protétipo fabricado por manufatura
aditiva. A metodologia para resolver a andlise estatica ndo linear é baseada no procedimento
de cdlculo de rigidez de elemento de barra pré-tensionado e no método de cargas incrementais
de Euler. O protétipo € sujeito a diversos niveis de carga, o que gera diversas configuracdes
deformadas. As frequéncias naturais sdo extraidas em cada configuragdo por processamento

de imagem e testes com martelo de impacto e acelerometro. O modelo numérico € calibrado



com os resultados experimentais e uma andlise de vibracdo completa € executada para todas as
posicdes deformadas intermedidrias.

Pesquisadores aplicam prismas tensegridade regulares para montar torres e grades, mas nao ha
uma defini¢do analitica para a matriz de conectividade dos membros. A metodologia apresen-
tada nesta tese traz expressoes genéricas para as matrizes de coordenadas dos nds, incidéncia e
conectividade vdlidas para qualquer prisma tensegridade regular. Em seguida, essas expressoes
sdo aplicadas no método de determinacdo de forma do projeto do braco de tensegridade, que é
um empilhamento de prismas.

O projeto do braco pode ser dividido em trés estdgios: expansdo de uma configuracdo plana
em uma torre de alta razdo de aspecto, encurvamento da estrutura desenvolvida para gerar um
movimento de manipulador, e cinematica inversa. A determinacao de forma € obtida através de
métodos cinemadticos, minimizando os comprimentos dos cabos para encontrar configuracoes
estdveis, e a cinemadtica inversa € resolvida por redes neurais. Seis médulos quadruplex sdo
combinados para montar o mecanismo deste estudo, mas a metodologia apresentada é valida

para qualquer combinagdo de tensegridades cilindricas.

Palavras—chave: tensegridade, determinacdo de forma, estdtica ndo linear, membrana, vi-

bragdes, conectividade



ABSTRACT

Tensegrity structures and mechanisms have drawn the attention of the scientific and engineering
communities due to their potential related to shape shifting attributes and structural efficiency
in terms of resistance per weight. Tensegrity systems can be designed to pack, deploy and
transform their shape into a desired geometry. These characteristics make tensegrities promis-
ing alternatives to replace solid manipulator arms, which are usually heavy, long and inconve-
nient to transport. Additionally, satellite antennas require a continuous surface to reflect, which
motivates the research of tensegrity-membrane systems. This study presents a global aim of
contributing to the advancement of tensegrity systems by producing a comprehensive work that
integrates fundamental topics in mechanical engineering, providing static and dynamic anal-
yses in two and three dimensions in space through analytical, numerical, and experimental
approaches. Four projects are presented: a prestressed triangular shaped membrane, a planar
tensegrity beam guyed by a cable on its free end, analytical definitions for connectivity and
incidence for tensegrity prisms and a 3D tensegrity arm that expands and moves as the ca-
ble lengths vary. The essential MATLAB scripts are posted in the public GitHub repository
<https://github.com/FictorP/Tensegrity/>.

It is reasonable to develop a membrane model before advancing to tensegrity-membrane sys-
tems. This part of the study is dedicated to building a reliable numerical membrane model. The
prestressed membrane is modeled in commercial software and validated with a prototype. The
rubber prototype is cut into a triangular shape, mounted on a frame, and stressed under vari-
ous load levels. Natural frequencies are extracted by image processing in each configuration.
The structure is reproduced in commercial software, and the numerical model is validated with
experimental results.

The planar beam is subjected to large displacements and vibration. The numerical models for
nonlinear static and vibration analyses are validated with a 3D printed prototype. The method-
ology to perform the nonlinear static analysis is based on a procedure to calculate prestressed
bar element stiffness and Euler’s incremental loads method. The prototype is subjected to vari-
ous load levels, generating multiple deformed configurations. Natural frequencies are extracted
in those configurations by image processing and impact hammer tests with an accelerometer.
The numerical model is calibrated with the experimental results, and a full vibration analysis is

performed for all intermediate deformed configurations.



Researchers apply regular tensegrity prisms to assemble towers and grids, but an analytical
definition for the member connectivity matrix is missing. The methodology presented in this
thesis provides general expressions for node coordinates, incidence, and connectivity matrices,
valid for any regular tensegrity prism. Subsequently, these expressions are applied in the form-
finding method for the design of the tensegrity arm, which is a stack of prisms.

The arm design study can be divided into three stages: deployment of a flat configuration into
a high aspect ratio tower, bowing the deployed structure to generate manipulator movement,
and inverse kinematics. Form-finding is achieved through kinematical methods, by minimizing
cable lengths to find stable configurations, and inverse kinematics is solved by neural networks.
Six quadruplex modules are combined to assemble the mechanism of this study, but the pre-

sented methodology covers any stacking of cylindrical tensegrities.

Keywords: tensegrity, form-finding, nonlinear statics, membrane, vibration, connectivity
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1 INTRODUCTION

Tensegrity structures gained popularity in 1948 for their artistic value. Later, their
potential for engineering applications was recognized by Buckminster Fuller, who coined the
term tensegrity by merging the words ‘tensional’ and ‘integrity’ (Fuller; Applewhite, 1975).
Tensegrity structures are composed of discontinuous bars or struts under compression and con-
tinuous tensile elements (cables) connected by torqueless joints (Zhang; Ohsaki, 2015b). The
stressed state of the structure provides stability and affects the system stiffness (Motro, 1992),
and a tensegrity structure must be stable without external forces. Furthermore, the maximum
number of bars in contact determines the class of a tensegrity. In a class 1 tensegrity, the bars
do not touch each other (Skelton; Oliveira, 2009).

The advantages of tensegrities over traditional structures have drawn the attention
of researchers from various fields, such as architecture (Jauregui, 2020), robotics (Paul et al.,
2006), material sciences (Fraternali et al., 2012) and even biology (Ingber, 2003) and DNA
related research (Liedl et al., 2010). Three of the main advantages of tensegrity systems are
highlighted in this work: uniaxial stress, stiffness control and shape transformation.

The uniaxial stress condition guarantees that the bars remain under compression
while the cables remain under traction (Ashwear; Eriksson, 2014). In terms of applications in
engineering, this property contributes to an optimized material selection and to well defined
boundary conditions in kinematical studies. The designer can select a traction resistant material
to build the cables and a compression (and buckling) resistant material to manufacture the struts
(Motro, 1992). In terms of modelling, the uniaxial stress property is advantageous to know
which elements are potentially subject to compression or traction in advance. This information
creates opportunities to optimize the numerical methodologies developed in this study.

Cables are usually selected as the tensile components in tensegrity systems, but
membranes can also act as tensile elements and replace the cables in a few designs. These
assemblies are called tensegrity-membrane systems and can be useful, for example, in satellite
antennas. They combine the advantages of tensegrity systems with the possibility of using a
membrane to act as a reflective surface. However, implementing a membrane finite element
model can be challenging. Numerous researchers have addressed this problem, but much of the

published literature skips steps when defining these models. In this work, a numerical model of
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a prestressed membrane is developed in commercial software (ANSYS) to assess its vibration
behavior. Various stress levels are analyzed, and a triangular membrane prototype (Figure 1.1)

is experimented with and compared to the numerical model.

Figure 1.1 — Prestressed membrane.

Traditional structures, such as beams and trusses, would have to be rebuilt in order
to adjust their stiffness or geometry. However, a tensegrity system can have its stiffness and
geometry adjusted by varying the prestress in its cables. Furthermore, if the stresses are propor-
tionally changed, the geometry remains. This property is assessed in this study with a planar
tensegrity beam under large displacements (Figure 1.2). The nonlinear changes in geometry
cause significant variation in the cable stresses and natural frequencies, which are extracted by
an accelerometer and image processing. The community has developed several strategies for
solving nonlinear static analyses using the finite element method (FEM) and has applied FEM
methodologies to tensegrity systems. However, studies involving nonlinear statics on tenseg-
rity structures are rare or rely on lengthy strategies. Additionally, while many works address
tensegrity beams, few develop models for their control. This work aims to fill these gaps with a
straightforward methodology validated by experiments.

The overall shape of tensegrity systems can be organized into categories: prismatic,
spherical, humanoid and bio-inspired (Liu ef al., 2022). Tensegrity prisms are formed by two
polygonal bases connected by struts joining their vertexes. For example, the simplest prism

(triplex) is formed by two triangular shapes (three cables each), three bars connecting the bottom
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Figure 1.2 — Tensegrity beam.

and top vertexes, and three cables also connecting the bottom and top vertexes. The number
of bars dictates the number of sides in the polygonal bases and the total number of cables.
Additionally, the rotation of the top base can be clockwise or counterclockwise relative to the
bottom base (Figure 1.3). However, the general definition of node, connectivity and incidence
matrices for prisms with four or more struts are missing in the literature. In this work, analytical
definitions for those matrices are provided using floor and ceiling functions.

The geometry of a tensegrity can also be changed by varying the cable lengths.
However, determining its final form given the member lengths is a relatively complex problem.
This problem category has been defined as form-finding, and numerous techniques have been
developed. Among them, kinematical methods usually fix the length of the bars and minimize
the length of the cable elements. The literature contains several works that apply kinematical
methods, particularly those based on dynamic relaxation. However, a detailed, step-by-step
algorithm for form-finding using nonlinear programming is still lacking. In this study, a 3D arm
(Figure 1.4) is designed and a kinematical form-finding procedure is developed to calculate its

deployment and shape transformation. Additionally, the inverse kinematics is calculated using
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yim T yim T

Figure 1.3 — Regular tensegrity prisms.

an artificial neural network.

Figure 1.4 — Tensegrity arm.

1.1 Objectives

The overall objective of this work is to enhance the recognition of tensegrity and
tensegrity-membrane systems as potential solutions to engineering challenges. This is achieved
by reporting studies across an extensive range in solid mechanics, including static, kinematic,
vibration and control analyses, in two- and three-dimensional environments, using analytical,
numerical, and experimental approaches. To fulfill this global goal, four independent projects

are performed, with the following specific objetives:

* Implement a numerical model of a membrane in a commercial software and validate the

outputs with a prototype.
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* Develop a methodology to solve nonlinear static analyses of prestressed tensegrity struc-

tures.

Perform a vibration study on a planar tensegrity beam and validate with experimental

results.

* Develop analytical definitions for node, incidence and connectivity matrices for tensegrity

prisms.

Develop a form-finding procedure to deploy a transportable packed tensegrity system into

a high structure and afterwards into a bowed arm.

1.2 Thesis structure

This thesis follows the paper-based format: Chapter 2 contains a literature review
related to statics, form-finding and dynamics of tensegrity and tensegrity-membrane systems,
Chapter 3 covers the tensegrity-membrane report presented in the International Congress of
the Aeronautical Sciences 2022, Chapter 4 presents the tensegrity beam study published in the
Journal of Mechanisms and Robotics, Chapter 5 contains the analytical definitions of node,
incidence and connectivity matrices of tensegrity prisms published in the Mechanics Research
Communications journal, and chapter 6 shows the tensegrity arm work published in Meccanica.
Chapter 7 discusses how those studies are connected and brings methodological challenges that
have been omitted in the papers for conciseness. Chapter 8 summarizes the main conclusions,
limitations of the developed procedures and future research directions. Appendix A shows the
definition of the Kronecker product applied in Chapter 4 and appendices B, C and D present the
permission to use content by the publishers that hold copyrights. The MATLAB scripts used
in the form-finding and beam projects are publicly available at <https://github.com/FictorP/

Tensegrity/>.
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2 LITERATURE REVIEW

Tensegrity theory and mechanisms have been applied to robotics recently. Four
main categories of tensegrity robots can be defined (Liu et al., 2022), according to their shapes:
prismatic (Arsenault; Gosselin, 2009), spherical (SunSpiral et al., 2015), humanoid (Lessard
et al., 2016) and bio-inspired (Liu; Yao, 2019). The spherical shape can also be achieved with
curved members (Schorr et al., 2021; Jahn et al., 2024). The 3D arm (Chapter 6) studied
in this thesis can be mostly associated with the prismatic category, as it combines tensegrity
prisms to assemble a tower. However, it performs a manipulator movement in the second stage
of the study. Therefore, it could be combined with a gripper (Sumi et al., 2017) to integrate
a humanoid robot design. The planar beam (Chapter 4) can be equally associated with the
humanoid and bio-inspired categories.

Some characteristics of tensegrity robots are attractive to space engineering projects,
such as low weight and deployment capability. The Super Ball bot (Agogino et al., 2018) is an
icosahedral tensegrity robot with 24 cables and 6 bars and was designed to be used as a space
exploration probe. The high resistance to impact of the probe is useful for landing, and the
system rolls to explore the terrain, as cables are tension-controlled. Also, space exploration ve-
hicles usually contain a camera on top of a solid mast to reach a farther horizon and collect data
of scientific interest. For example, the Mars 2020 Perseverance rover (Maki et al., 2020) has a
mast that carries two cameras (Navcam), tilts to increase its field of view and provides an advan-
tageous position from a higher spot. However, a flexible mast (Holland et al., 2006; Kurka et
al., 2014) could bring more features to the probe by bending to explore cliffs and difficult access
regions. The disadvantage associated with a long and flexible beam is the nonlinear behavior
and vibration. Therefore, sophisticated techniques are required to predict its kinetics. The pla-
nar beam (Chapter 4) is a tip pulled tensegrity version of a space exploration mast, that brings
the advantages of tensegrity structures to a space exploration vehicle. Its nonlinear static be-
havior and vibrations are studied. In addition, a 3D tensegrity arm (Chapter 6) is advantageous
because the movements are driven by the internal cables of the structure, avoiding the necessity
to attach a pulling cable to the tip of the structure to provide bending. Also, the compact shape
is helpful to save volume in the launcher and absorb impact on landing (Sabelhaus et al., 2015).

Many aerospace structures require reflective surfaces, such as satellite antennas and sails. Pure
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tensegrity systems cannot fulfill that requirement, but tensegrity-membrane structures provide
a surface that can be covered with a reflective skin and take advantage of the benefits associated
to tensegrity systems (Teixeira et al., 2018; Kurka et al., 2018). To better predict the behav-
ior of tensegrity-membrane systems, it is reasonable to build a reliable numerical model of a
prestressed membrane (Chapter 3). The natural frequencies obtained numerically are compared

with image processing outputs from a prototype.

2.1 Prestressed membrane

The propulsion efficiency of a spacecraft depends on a low ratio of overall mass to
solar sail and antenna area. Technological solutions for in-orbit deployable, ultralightweight
sail and antenna surfaces are, therefore, in high demand (Leipold et al., 2005).

The modification of space structure may require adding numerous components,
leading to weight increase (Yang; Sultan, 2017). The mechanical properties of tensegrity-
membrane systems make them appealing solutions for lightweight and deployable systems that
the aerospace industry can apply and substitute a pure tensegrity structure (Gebara et al., 2019;
Yang; Sultan, 2019; Leipold et al., 2005). Yang and Sultan (2016) used the total Lagrangian for-
mulation to perform a dynamics study of a tensegrity-membrane structure. Goyal et al. (2017)
designed a growth adaptable artificial gravity space habitat based on a tensegrity-membrane
structure.

The membrane of the tensegrity system performs a structural role as a tensile ele-
ment, and can perform a reflective function if covered by a reflective skin. As membranes are
usually very flexible, their vibration behavior has a direct impact on their geometry and effi-
ciency (Kukathasan; Pellegrino, 2002). Therefore, accurate models to calculate their vibration
behavior are in demand. Sunny et al. (2012) suggests a method that provides an analytical ap-
proximation to the behavior of prestressed membranes. Liu ef al. (2021) modeled an umbrella
membrane in ANSYS and analysed its behavior under different sets of rain loads. The numer-
ical results were validated with a prototype. Hu et al. (2017) performed vibration studies of an
inflatable tube and a plane film and compared numerical and experimental results for different
internal pressures of the tube and for wet and dry conditions. Wei et al. (2018) modeled a tri-
angular plane membrane and a long inflatable boom and validated the numerical results with
prototypes. The authors suggest the use of catenary-shaped edges to reduce wrinkling of the tri-

angular membrane and compare the stress analysis with a straight edge model. Catenary edges
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on membranes are implemented experimentally by (Wong; Pellegrino, 2006a), analytically by
(Wong; Pellegrino, 2006b) and numerically by (Wong; Pellegrino, 2006¢).

Vibration studies can be used to detect structural damage. Hu et al. (2019) proposed
a methodology to detect local damage in rectangular and circular membranes by combining
Bayesian operational modal analysis and 3D digital image correlation. The damped vibration
response of a membrane under impact loads is studied experimentally (Liu et al., 2019), ana-
lytically (Liu et al., 2019) and numerically (Li et al., 2018). Finally, Liu et al. (2018) suggested
a methodology to use the vibration response to a local impact to find the stress level of a mem-
brane. The triangular membrane studied in this thesis is stressed at different levels, and its
natural frequencies are recorded and extracted by image processing. A numerical model is

created in ANSYS, and the results are compared.

2.2 Tensegrity beam

Tensegrity structures have the particularity to eventually display large nodal dis-
placements even when the deformations of its members are small (Kebiche ez al., 1999). Also,
the occurrence of slack cables is problematic in tensegrity mechanisms because it generates
rough movements, especially when those cables constantly change from stressed to slack states
(Kan et al., 2018a; Shi et al., 2020). Numerous researchers have suggested methodologies for
nonlinear analysis of tensegrity systems. Kebiche er al. (1999) proposed a methodology for
tensegrity structures considering geometrical nonlinearities. They applied a total Lagrangian
formulation to calculate the internal stress vector and the tangent matrix of a four struts tenseg-
rity system under compression, traction, bending, and torsion loads. A stressed multi-cell beam
was also investigated, and the outputs present a nonlinear behavior caused by the flexibility.
They observed that the stiffness of the system increases with the self-stress level and external
loads. However, the behavior is different under compressive loads. Analogously to anisotropic
materials, the orientations of the loads dictate the displacements.

Tran and Lee (2011) proposed a numerical method for large displacements that
considers nonlinearities in geometry and material properties. Total and updated Lagrangian
formulations were applied to assess the geometrical nonlinearity, and the elastoplastic stress-
strain relationship was used to account for the material nonlinearity. The suggested procedure
determines responses of the quadruplex unit module, five-quadruplex module beam and double

layer quadruplex grid. The outputs agree with the work presented by Kebiche er al. (1999)
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and support that stiffness and self-stress increase together. The stretching (instead of bending)
stiffness is dominant in the quadruplex unit module. The self-stress level does not affect the
bending strength capacity of the double layer quadruplex tensegrity grid.

Zhang et al. (2013) developed a numerical methodology that can be applied for
tensegrity systems both externally or internally actuated. The procedure captures mechanical
responses of tensegrities subject to large and nonlinear deformation under different conditions.
The dynamics and control aspects of tensegrity systems are in evidence, but a static analysis
for critical situations is relevant in most engineering projects. Therefore, it is beneficial for the
community to document new methods and validate them with experiments involving statics.

Skelton and Oliveira (2009) show a methodology to determine the stiffness of a
tensegrity for given element stresses and material properties. That stiffness is suitable to per-
form a linear static analysis. But large displacements and internal stresses create nonlinearities
associated to geometry and tension and provide inaccurate results. The study shown in Chapter
4 extends the reach of that methodology by presenting an algorithm that can be applied when
large deformations are involved as well. Faroughi and Lee (2014) and Zhang et al. (2016) used
a co-rotational approach to solve the nonlinear structural problem. Murakami (2001) obtained
the equation of motion of the tensegrity system through Euler method and updated Lagrangian
formulation.

The method presented in this thesis combines the methodology shown in (Skelton;
Oliveira, 2009) for pre-stressed tensegrity structures with Euler (or incremental) loads algorithm
(Crisfield, 1991). A 3D printed prototype of the 3D arm is used to validate the numerical
model. The experiments contemplate five load levels. A vibration study is performed in those
deformed configurations, the natural frequencies are obtained by an acceleromenter and by

image processing and compared to the numerical results.

2.3 Analytical studies

Prismatic or cylindrical tensegrity structures consist of two parallel polygonal bases.
A regular t-strut prism is built from two t-sided polygons, each composed of t cables, connected
by t struts and t vertical cables. These modules are also referred to as triplex, quadruplex, and
so on, depending on the number of struts (Vassart; Motro, 1999). Tensegrity prism modules
have been extensively studied (Micheletti ez al., 2019; Xu; Luo, 2010; Amendola et al., 2014;
Ma et al., 2018) and combined to generate masts (Furuya, 1992) or grids (Wendling et al.,
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2003; Tran; Lee, 2010). The specific number of struts in a tensegrity prism determines its
shape and results in associated node and connectivity matrices. Modules with 3-struts (triplex)
(Furuya, 1992; Fraternali et al., 2012), 4-struts (quadruplex) (Feron et al., 2019; Wendling et
al., 2003; Tran; Lee, 2010), 5-struts (pentaplex) (Feron et al., 2019), 6-struts (Feron et al.,
2019), and others have been applied by the community. Although many articles specify their
node and connectivity matrices, few studies have focused on deriving general definitions for
these matrices.

Node positions can be generated using widely-known form-finding techniques, such
as force density (Zhang; Ohsaki, 2015a), dynamic relaxation (Ali et al., 2011), and kinematical
methods (Tibert; Pellegrino, 2011), but most of these techniques require a connectivity matrix
as input. The adapted force density method described in (Yu et al., 2022) can be employed
to model T-4 tensegrity structures, including regular prisms like the quadruplex module refer-
enced in numerous studies. However, this method involves numerical procedures to generate
the connectivity matrix and then identifies whether members are bars or cables. A more efficient
approach could involve deriving the connectivity matrix directly from the geometry.

This issue has been partially addressed; the methodology to obtain the connectivity
of a 3-strut tensegrity prism is covered in (Nagase et al., 2016). Furthermore, they construct a
global connectivity matrix for combinations of 3-strut prisms: stacked to form towers or aligned
to create grids. This work is expanded in (Jiang et al., 2020), where a general definition for
the node matrix of tensegrity plates formed by 3-strut prisms of any complexity is developed.
Additionally, they explore assemblies of reinforced 3-strut prisms, which include extra cables to
enhance stiffness. However, analytical definitions for node and connectivity matrices applicable
to prisms with more than three struts remain undeveloped.

Research groups in materials science (Angelo et al., 2020) and biomechanics (Ban-
sod et al., 2018) may prefer to use the finite element method (FEM). FEM typically requires an
incidence matrix, which conveys the same information as the connectivity matrix, though it is
rarely provided in tensegrity research papers. The study presented in Chapter 5 offers analyt-
ical definitions for node, incidence, and connectivity matrices, applicable to t-strut tensegrity
prisms in both clockwise and counterclockwise rotations with ¢ > 3. These definitions utilize
floor and ceiling operators, which have not been widely applied in tensegrity research but offer

a convenient method for working with indexes and facilitating subsequent implementation.



26

2.4 Tensegrity arm

The applications suggested previously are focused on aerospace structures, but civil
engineering projects can benefit from tensegrity systems too. Kitipornchai et al. (2005) com-
bined a Lamella suspen-dome with a tensegrity base to increase its reduce its member stresses
and increase its buckling capacity and stiffness. Also, if properly equipped with actuators,
tensegrity structures applied to civil engineering designs can have their strength-to-mass ra-
tio improved by actively resisting external loads (Wang et al., 2021). Rhode-Barbarigos et
al. (2010) designed a deployable tensegrity footbridge, Veuve et al. (2017) developed control
commands to accommodate the structure in case of element damages, and Sychterz and Smith
(2018) evaluated the impact of ruptured cables on natural frequencies. A deployable tensegrity
grid can be used as a solution for sea accessibility (Hrazmi et al., 2021). Skelton et al. (2014)
and Carpentieri et al. (2015) combined fractals (Michell, 1904) and topology optimization to
suggest methodologies to develop arch shaped minimal mass tensegrity bridges. Carpentieri et
al. (2017) applied their procedures to develop a deployable roof, which aims to harvest solar
energy on water canals while minimising water losses through evaporation. Temporary bridges
are useful to access disaster areas (Yeh et al., 2015), a tensegrity structure that can be con-
veniently packed and transported is convenient. Also, depending on the local topography, the
capacity to generate an arch shape after deployment can be beneficial. The design presented in
Chapter 6 could inspire a transportable bridge project because it addresses packing, deploying
and arching.

Those features are accomplished by shape transformations, which are calculated
through form-finding procedures and can be organized as static and kinematic categories (Tib-
ert; Pellegrino, 2003). Static methodologies seek equilibrium configurations that guarantee a
state of self stress in the structure (subject to a set of requirements). A popular example of static
methodology is the force density method (Zhang; Ohsaki, 2006). Estrada et al. (2006) proposed
a numerical procedure that does not require the element lengths as input. It is based on the force
density matrix rank and generates new configurations. When the lengths of the members are not
initially specified, that procedure is worthy of being considered. Raj and Guest (2006) proposed
a method that utilizes symmetry to reduce computational effort. Zhang et al. (2014) suggested
a form-finding method based on the stiffness matrix (SMFF). Koohestani (2012) converted the
form-finding method in an optimization problem and applied a genetic algorithm to solve it.

The objective function generates the desired rank on the force density matrix, and the technique
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determines the force densities by minimising such function. Analytical solutions (Koohestani,
2017) and an approach using nonlinear programming and LU-decomposition of the force den-
sity matrix (Koohestani, 2020) have been presented.

Kinematic methods work by keeping the bar lengths constant and minimizing the
cable lengths (Tibert; Pellegrino, 2003). The opposite is valid, but it is relatively complex to
increase the length of a bar in a robot. The form-finding of a tensegrity structure can be trans-
formed in a constrained minimization problem (Pellegrino, 1986) and solved by nonlinear pro-
gramming (Ohsaki; Zhang, 2015). When there is a large solution space, nonlinear programming
is disadvantageous. Therefore, stochastic techniques have been selected by some researchers.
Xu and Luo (2010) used a binary coded genetic algorithm to determine the shape of irregular
tensegrity systems. Also, Li et al. (2010) presented a Monte Carlo form-finding method and
demonstrated it on various tensegrity configurations.

Quadruplex modules (tensegrity prisms with four bars) are stacked to form a deploy-
able class 2 tensegrity tower presented in this thesis. The system deploys from a flat configura-
tion into a tower (first stage) and from a tower into an arch (second stage). The cable lengths
are shortened to achieve the shape transformation of the first stage. After fully deployed into a
high aspect ratio tower, the cable lengths are changed to form asymmetric modules and generate
the arch shape of the second stage. As the modules are asymmetric, form-finding methods that
assume symmetry cannot be applied. Also, force density methods may not be advantageous
because all bars and many cables keep their lengths constant in both stages. Therefore, the se-
lected strategy to calculate the tensegrity tower is an adapted kinematic method with nonlinear
programming. This design contributes to the field because it provides advances in the kinematic

methods and suggests a structure that could be applied in engineering projects.

2.5 Tensegrity systems in other fields

Aside from evident applications of tensegrity and tensegrity-membrane systems in
physics, architecture and engineering, the features explored in this thesis can be availed in
other fields. Double helix DNA structures can be used as struts and single stranded DNA can
be used as cables in nanoscale tensegrity prisms. The work developed in (Liedl et al., 2010)
shows a three-strut tensegrity prism that deploys by shortening one of their vertical cables,
similar to the form-finding procedure suggested in Chapter 6. Also, they assemble a planar

tensegrity in the same configuration of a single level of the tensegrity beam studied in Chaper 4.
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An equivalent self-assembly property is explored in human anatomy. Collagen is an abundant
structural protein, forms the extracellular matrix around most cells, and provides a tensegrity-
based structural framework that is continuous with the fascia (Scarr, 2011). Even though its
shape is mostly helical, the methodology presented in Chapters 6 and 7 can be adapted to model
its packing and deployment steps. Also, tensegrity systems can be integrated with origami
structures (Ma et al., 2023; Fonseca et al., 2022). This combines the reach of tensegrity research
to the reach of origami systems in studies covering RNA (Poppleton et al., 2023), biomedical
(Ahmed et al., 2020) and battery (Song et al., 2014) research.

Apart from the evident applications of tensegrity and tensegrity-membrane systems
in physics, architecture, and engineering, the features explored in this thesis can be applied to
other fields. Double-helix DNA structures can act as struts, while single-stranded DNA can
serve as cables in nanoscale tensegrity prisms. The work in (Liedl et al., 2010) demonstrates a
three-strut tensegrity prism that deploys by shortening one of its vertical cables, similar to the
form-finding procedure proposed in Chapter 6. They also assemble a planar tensegrity in the
same configuration as a single level of the tensegrity beam studied in Chapter 4. An equivalent
self-assembly property is explored in human anatomy: collagen, an abundant structural protein,
forms the extracellular matrix around most cells and provides a tensegrity-based framework
continuous with the fascia (Scarr, 2011). Although its shape is primarily helical, the method-
ology in Chapters 6 and 7 can be adapted to model its packing and deployment. Additionally,
tensegrity systems can be integrated with origami structures (Ma et al., 2023; Fonseca et al.,
2022), combining tensegrity research with the potential of origami in studies involving RNA
(Poppleton et al., 2023), biomedical applications (Ahmed et al., 2020), and battery (Song et al.,
2014) research.
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3 PRESTRESSED MEMBRANE

The article entitled “Experimental and numerical analysis of a pre-stressed tenseg-
rity membrane” is presented in this chapter. It is authored by Victor A. S. M. Paiva, Luis H.
Silva-Teixeira, Jaime H. Izuka, Paola G. Ramos and Paulo R. G. Kurka and was presented by
Prof. Kurka at the 33rd congress of the International Council of the Aeronautical Sciences
(ICAS) held in Stockholm (Sweeden) in September 2022. The congress does not hold a copy-
right on the published papers.

This paper explores the potential of tensegrity-membrane structures in the context
of aerospace engineering, where their structural efficiency and shape-shifting capabilities are
highly valued. The study focuses on the integration of a stressed membrane within a tensegrity
system, which presents challenges in modeling and construction. A triangular-shaped mem-
brane is numerically modeled and experimentally tested under four distinct sets of stresses.
The study includes the calculation of natural frequencies, which are validated through image
processing of membrane vibration records. These results provide critical insights into the be-
havior of tensegrity-membrane systems, contributing to the broader understanding and potential
applications of these structures.

Chapter 7 contains comments on how this paper relates to the overall objective of
this thesis. Additionally, it discusses the potential of the image processing methods in assisting

physics and engineering educators.
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Abstract

Tensegrity structures have caught the attention of scientists and aerospace engineers because of their poten-
tial, regarding structural efficiency and shape shifting characteristics. Furthermore, some applications require
surfaces to perform structural or reflective functions, which motivate the design of tensegrity-membrane sys-
tems. Such systems can be challenging in terms of modelling and construction, therefore it is important, in
the first place, to analyse the tensioned membrane component of such a tensegrity system. In this study, a
triangular shaped membrane is numerically modelled and experimentally tested, under four sets of stresses.
Natural frequencies are calculated and validated from image processing of membrane vibration records.

Keywords: membrane; tensegrity; modal; static; ansys

1. Introduction

Tensegrity is a class of pre-stressed structures in which tension provides integrity. The rigid compo-
nents of a tensegrity structure remain always under compression, while cables and membranes work
always under tension [18]. Tensegrity-membrane systems are comprised of membranes, bars and
tendons. They belong to the class of flexible multibody structures and can be treated as an extension
of tensegrity systems [27]. Tensegrities ideally match the definition of smart structures because they
represent a special class of tendon-spatial structures. Their members may perform functions such as
sensing, actuating, and feedback controlling simultaneously [16]. Additional advantages of tensegri-
ties over traditional structures are: high structural efficiency and resistance to impact [1], controllable
stiffness [2], controllable shape [31], deployability [17] and uniaxial stress of its elements [3].

Also, tensegrity-membrane configurations are generally light weighted and capable of significant
shape changes, which enable these novel systems to experience relatively easy folding and unfolding
between packed and deployed configurations, if properly controlled [28].

Researchers in aerospace sciences have interest in tensegrity structures. A growth adaptable arti-
ficial gravity space habitat based on a tensegrity-membrane structure has been designed by [5]. A
tensegrity robot with six bars and 24 cables in an icosahedral shape was suggested by [21], to be
used as a space exploration probe. The high resistance to impact of the probe is useful for landing,
and the system rolls to explore the terrain, as cables are tension-controlled. Tensegrity-membrane
systems can also be used in the exploration of ocean and lakes [4].

The propulsion efficiency of a spacecraft depends on a low ratio of overall mass to solar sail and
antennas area. Technological solutions for in-orbit deployable, ultralightweight sail and antenna sur-
faces are, therefore, in high demand [10].

Traditional space systems are generally designed with rigid support frames. The modification of their
configuration requires addition of numerous components, which leads to an increase in weight [27].
The mechanical properties of tensegrity-membrane systems thus, make them promising candidates
for lightweight and deployable space structures that can be used in the aerospace industry, such as
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space antennas and solar sails. The tensegrity-membrane combination appears as an alternative
solution to a pure tensegrity structure ([4], [29] and [10]).

The membrane of the tensegrity system can be covered by a reflective skin, performing structural
and reflective functions ([22] and [9]). However, as membrane structures are generally very flexible,
there is a need for accurate models to predict their vibration behavior because it has a direct impact
on their desired geometric characteristic and efficiency [8]. A methodology that provides an ana-
lytical approximation to the behavior of membranes under a certain pre-stress limit is suggested by
[20]. An umbrella membrane is modelled in ANSYS by [14] and its behavior is analysed for different
sets of rain load. The numerical analysis results are validated with a prototype. Vibration studies
of a plane film and an inflatable tube is performed in [6]. Their work compares numerical and ex-
perimental results for wet and dry conditions and for different internal pressures of the tube. A long
inflatable boom and a triangular plane membrane are modelled in [23] and the numerical results are
validated with prototypes. To reduce wrinkling of the triangular membrane, the authors suggest using
catenary-shaped edges and compare the stress analysis with a straight edge model. The implemen-
tation of catenary edges on membranes is assessed experimentally by [24], analytically by [25] and
numerically by [26].

Vibration studies are also useful to detect damage in a structure. A methodology is proposed by
[7] to detect local damage in circular and rectangular membranes by combining 3D digital image
correlation and Bayesian operational modal analysis. Numerical, analytical and experimental studies
of the damped vibration response of a membrane under impact loads are also performed in ([13],
[15]) and [11]). Finally, a methodology is suggested by [12] to find the stress level of a membrane
from its vibration response to a local impact.

The present work, therefore, contributes to the validation of a pre-stressed membrane model. A
finite element model of a membrane is built in the ANSYS platform to analyse the behavior of a
pre-stressed tensegrity-membrane structure. Different pre-stressing conditions are simulated and
analysed, and a triangular stressed membrane prototype is assembled and experimented to validate
the numerical model of the structure.

2. Methodology

A membrane pulled at its vertexes (Figure 1) through cables ¢y, ¢; and ¢,, develops pre-stresses,
and its natural frequencies and modes of vibration are acquired. The triangular shape is convenient
because the traction in one cable allows the calculation of the traction in the other two, so the ex-
periment requires traction measurement of only one cable. Four sets of pre-stresses generated by
four different forces in ¢, are simulated in the commercial software Ansys Mechanical APDL and
experimentally tested.

2.1 Numerical static analysis

The pre-stresses in the membrane are used to calculate the stiffness for the vibration analysis. Move-
ment constraints in axes X and Y are applied to the vertexes 1 and 2 of the membrane. All nodes in
this analysis are constrained to move in the Z direction. The elements LINK180 and SHELL281 are
used in the FEM platform to model the cables and the membrane, respectively.

2.2 Numerical vibration analysis

All cables ends are fixed, and the pre-stresses from the static analysis are used to calculate the stiff-
ness. However, these stresses do not contain the forces in ¢; and ¢, because they do not participate
in the static analysis. Therefore, the stress in the cables are inserted manually. Movement along the
Z-axis is free in the vibration analysis. The INISTATE command is used to store, load, and insert
the pre-stresses. With such boundary conditions applied, a numerical modal analysis is performed
to estimate the pre-stressed structure’s natural frequencies and mode shapes. Figures 2a and 2b
show the static and modal analyses (respectively) of the second set of pre-stresses, as an example.
Modes of vibration associated with wrinkling of the membrane (Figure 3) and rigid body modes were
discarded.
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(a) Static analysis. (b) Modal analysis.

Figure 2 — Numerical results for the second set of pre-stresses.

y
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Figure 3 — Example of a mode of vibration associated with wrinkling.

Materials properties and geometrical parameters for simulation are indicated in Table 1. The influence
of air displacement in the vibration of the membrane can be represented numerically by increasing

3



PRE-STRESSED MEMBRANE - EXPERIMENTAL AND NUMERICAL ANALYSES 33
the material density to 3500kg/m* (actual density of the material is 1350kg/m?) [30].

Table 1 — Simulation parameters.

Young modulus 2.5 MPa
Density 3500 kg/m?

Membrane thickness  0.43 mm
Membrane side 0.17 m

c1 0.01m

c 0.08 m

Cy 0.08 m

6 n/4 rad

3. Experimental procedure

Similarly to the numerical model, the ends of the cables are fixed. However, one of them is fixed to a
hook scale (10 g resolution) that indicates the traction in that cable (Figure 4). This measured value
is the input for the numerical analyses. The membrane is made of rubber, and the nylon cables have
a diameter of 0.4mm.

Figure 4 — Prototype.

Animpulse is applied perpendicular to the membrane, and a 30 ps camera, parallel to the XY plane of
the membrane surface, records its vibration as shown in Figure 4, . From this position, the membrane
is seen from its side and the vibration happening in the Z direction is tracked by the vertexes and by
a marked point in the middle of the prototype. An image processing software acquires the position of
these markers over time, the data is treated, and a Fourier transform is applied to obtain the response
in the frequency domain. Each pre-stress set is analysed multiple times, its specters are normalised
to unity, and a mean curve is plotted with a thicker line (Figures 5a, 5b, 5¢c and 5d).

4
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T=0.7N w =6.63 Hz T=1.3N w =9.05 Hz

(a) ¢, =0.7N. (b) ¢, =1.3N.

T=19N w=11.2Hz T=23N w =124 Hz

(c) ¢, = 1.9N. (d) ¢, = 2.3N.

Figure 5 — Modal analysis for different sets of membrane stress.

4. Results

Results from the experiments are collected and organized along with the numerical outputs (table 2).
The first mode of vibration is the highest energy one and is most relevant to the membrane dynamics.
The experimental analysis compares the measured frequencies of the first mode with those obtained
numerically. Spurious modes [19] were discarded.

Table 2 — Natural frequencies.

Cy Experimental Numerical Error

0.7N 6.63Hz 6.95Hz  3.17%
1.3N 9.05Hz 8.95Hz  2.55%
1.9N 11.2Hz 10.89Hz  4.33%
2.3N 12.4Hz 13.24Hz  5.02%

5. Conclusions

The numerical model of the membrane of a tensegrity structure is implemented. Simulations and
experimental tests on a prototype are performed under different pre-stressing conditions. Higher
stresses generate higher natural frequencies, as expected. The obtained results are compared and
errors between numerical and experimental procedures are not greater than 5.02%, which indicates
good agreement between model and prototype. Furthermore, the uncertainties of the simulation
and experimental procedures do not invalidate the proposed methodologies. It indicates that the
numerical model of the membrane can be successfully used and integrated with previously validated
numerical models of tensegrity structures. Future steps involve building and modelling a membrane
with catenary edges and combining it with a tensegrity to assemble a tensegrity-membrane system.

5
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4 TENSEGRITY BEAM

The article entitled “A dynamical model for the control of a guyed tensegrity beam
under large displacements” (Kurka ef al., 2024) is presented in this chapter. It is authored by
Victor A. S. M. Paiva, Luis H. Silva-Teixeira, Jaime H. Izuka, Paola G. Ramos and Paulo R. G.
Kurka and is presented with permission from the American Society of Mechanical Engineering
ASME (Appendix C). The paper has been published in the Journal of Mechanisms and Robotics,
vol. 16, issue 9, 2024. DOI: 10.1115/1.4064259.

This paper addresses a gap in the existing literature on tensegrity systems, where
most studies either overlook the possibility of large static deformations or rely on complex and
lengthy methods to determine system dynamics. In contrast, this work introduces a straightfor-
ward methodology to identify the dynamic characteristics of a guyed tensegrity beam structure,
specifically under conditions of large deformations. The method, based on a low-order, adap-
tive, nonlinear finite element model with pre-stressed components, is applied to both numerical
and experimental models of a planar tensegrity beam. The study combines image processing
and accelerometer data to extract the experimental natural frequencies of the structure, which
are then compared to numerical results. Additionally, Prony’s method is employed to estimate
damping, and a numerical control strategy is developed using the dynamical model of the struc-
ture.

Chapter 7 contains comments on the results presented in this paper that relate to the
overall objective of this thesis. It also reaffirms the application of image processing techniques
in educational environments for engineering and physics. Appendix presents the definition of
the Kronecker product operator & shown in sections 2.1 Static Analysis of Tensegrity Structures
and 3.4 Relevance of the Force Density Term.

The MATLAB scripts used in the nonlinear static analysis are publicly available
at <https://github.com/FictorP/Tensegrity/tree/main/beam/static>, and in the modal analysis at

<https://github.com/FictorP/Tensegrity/tree/main/beam/modal>.



ASME

SETTING THE STANDARD

ASME Journal of Mechanisms and Robotics
Online journal at:
hitps://asmedigitalcollection.asme.org/mechanismsrobotics

Paulo R. G. Kurka

Faculty of Mechanical Engineering,
Universidade Estadual de Campinas,
Mendeleyev Street,

13083-860 Campinas, Sdo Paulo, Brazil
e-mail: kurka@unicamp.br

Victor A. S. M. Paiva’

Faculty of Mechanical Engineering,
Universidade Estadual de Campinas,
Mendeleyev Street,

13083-860 Campinas, Sdo Paulo, Brazil
e-mail: v140962@dac.unicamp.br

Luis H. Silva-Teixeira
Faculty of Mechanical Engineering,
Universidade Estadual de Campinas,
Mendeleyev Street,

13083-860 Campinas, Sdo Paulo, Brazil
e-mail: luishsteixeira@gmail.com

Paola G. Ramos

Faculty of Mechanical Engineering,
Universidade Estadual de Campinas,
Mendeleyev Street,

13083-860 Campinas, Séo Paulo, Brazil

A Dynamical Model for the
Control of a Guyed Tensegrity
Beam Under Large
Displacements

Most studies regarding models of tensegrity systems miss the possibility of large static
deformations or provide elaborate and lengthy solutions to determine the system dynamics.
Contrarily, this work presents a straightforward methodology to find the dynamic charac-
teristics of a guyed tensegrity beam structure, allowing the application of vibration control
strategies in conditions of large deformations. The methodology is based on a low-order,
adaptive, nonlinear finite element model with pre-stressed components. The method is
applied to numerical and experimental models of a class 2 tensegrity structure with a
high length-to-width aspect ratio. Image processing and accelerometer data are combined
to extract the experimental natural frequencies of the structure, which are compared to
numerical results. Prony’s method is applied to estimate damping, and a numerical
control strategy is employed using the dynamical model of the structure.

e-mail: pagora00@gmail.com

Jaime H. lzuka

Faculty of Applied Sciences,
Universidade Estadual de Campinas,
Pedro Zaccaria Street,

13484-350 Limeira, Sao Paulo, Brazil
e-mail: jhizuka@unicamp.br

1 Introduction

Tensegrity structures became popular in 1948 by Snelson as an
art form. Fuller and Applewhite recognized their engineering
value and created the term tensegrity as a contraction of “tensional”
and “integrity” [1]. Tensegrity structures contain compressive dis-
continuous parts (struts) and continuous tensile parts (cables) con-
nected with ball joints (pin-joint) [2]. The rigidity of tensegrity
systems results from a state of self-stressed equilibrium between
cables under tension and compressed rigid bodies [3]. Generally,
the self-weight of the cables can be disregarded [4]. However,
recent articles have explored factors such as friction and contact
between struts [5,6]. Tensegrities are considered class one if the
bars do not touch each other. Otherwise, the class is given by the
maximum number of struts sharing a common node. A fundamental
aspect of tensegrities is the uniaxial stress property of the
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components: cables and bars must be under tension and compres-
sion, respectively [7]. This property contributes to an optimized
choice of materials and geometry, focusing on resistance to traction
in the cables and compression (and buckling) in the bars [3].

Tension structures, such as cable nets, membrane structures, and
tensegrity domes, offer significant advantages over conventional
structures, such as steel structures [8]. Due to their design, tenseg-
rities can serve as the foundation of lightweight and strong mechan-
ical structures using less material [9] when designed efficiently [10].
Among various traditional approaches, the tensegrity concept is one
of the most promising for active and deployable structures [11-13].
For deployment, the disjointed struts provide a crucial advantage of
the tensegrity concept, enabling a compact package [14]. In addi-
tion, they may integrate structural and control systems since the
elastic components can carry both sensing and actuating functions
[15]. Also, a small amount of energy is sufficient to control the
shape of tensegrity structures, which is advantageous for active
control [16]. Tensegrity structures also exhibit excellent shape
change capability and shock resistance. These features can be ben-
eficial in mechanisms, robots, and space exploration rovers [17-20].
The concept and features of tensegrities are valuable in high tech-
nology and aerospace structural applications [21].
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Recently, tensegrities have received significant attention from sci-
entists and engineers in fields such as architecture, civil engineering
[22], biology [23], and in the construction of dampers [24], shape-
shifting structures, such as twisting wings [25] and ocean wave
energy harvesting mechanisms [26]. Many form-finding methods
and topology designs have been developed recently [27-33] along
with the introduction of new tensegrity families [34,35]. The kine-
matic and dynamic behaviors of tensegrities have been investigated
in works such as those in Refs. [5,6,9,11,14,36,37]. Particular con-
cerns in these studies include the magnitudes of structural displace-
ments, which can be large, even if the deformation of individual
members are small [38]. Slack cables also represent a relevant
problem, especially when such elements transition from tensioned
to slack states in tensegrity mechanisms, generating roughness in
the system movements [39,40]. The literature shows a large
number of works related to the nonlinear analysis of tensegrity
systems. Kebiche et al. [38] developed a calculation method for ten-
segrity systems taking into account geometrical nonlinearities. They
used a total Lagrangian formulation to determine the tangent matrix
and the internal stress vector for a four-strut tensegrity system sub-
jected to traction, compression, bending, and torsion loading. They
also studied a multi-cell beam under traction. The results reveal non-
linear behavior due to flexibility, with rigidity increasing with the
external load and self-stress level, except in compression loads.
The mechanical behavior was observed to be similar to anisotropic
materials, where the displacements response depends on the orienta-
tion of the loads. Tran and Lee [41] also presented a numerical
method for large deflections, including both geometric and material
nonlinearities. They utilized total Lagrangian and updated Lagrang-
ian formulation to treat the geometrical nonlinearity, while material
nonlinearity was handled through the elastoplastic stress—strain rela-
tionship. Their proposed method calculates responses of the quadru-
plex unit module, double layer quadruplex grid, and five-quadruplex
module beam under external loads. The results indicate that the stiff-
ness of tensegrity structures increases with the self-stress level. In the
quadruplex unit module, the stretching stiffness dominates over
bending. The bending strength capacity of the double layer quadru-
plex tensegrity grid is not significantly affected by the self-stress
level. The updated Lagrangian formulation is recommended for
the large deflection analysis of tensegrity structures. Zhang et al.
[42] developed an efficient numerical method capable of capturing
mechanical responses of tensegrity structures with very large and
highly nonlinear deformations under different conditions. This
method is applicable for all types of tensegrities subjected to either
external or internal applied actuation.

The literature is limited in terms of experimental results on high
aspect ratio tensegrity beams. This work extends the available col-
lection to assist the community in validating new static and dynamic
models. Additionally, considering the dynamical analysis works
investigated, there is a knowledge gap regarding vibration control
of tensegrity structures with fast and large geometry changes.
Most kinematic and kinetic models of tensegrities found in the lit-
erature employ lengthy and time consuming adaptive or relaxation
techniques to evolve from the different conditions of large displace-
ment movements. Implementing control strategies based on these
techniques can be challenging. In contrast, the present work pro-
poses simpler manners to build a dynamic model of tensegrity struc-
tures that can be assembled in real-time, yielding sufficient
parameters to allow the vibration control of the structure at any
stage of its present large displacement movement. The proposed
methodology is based on the superimposition of a low-order, adap-
tive, nonlinear finite element model with pre-stressed components
onto the nodes of the statically deformed structure. The node posi-
tions of the structure, then, are determined by a polynomial function
obtained previously from static analysis data, undergoing the work-
space of possible large deformations. To verify and validate the pro-
posed analysis technique, the numerical model and a physical
prototype of a planar tensegrity guyed beam are utilized. The
dynamic characteristics under different operational conditions are
also investigated.
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Furet and Wenger [43] also studied the kinematics and actuation
of a planar tensegrity manipulator with two levels (2-X) and
observed that friction can be relevant to the dynamics of the mech-
anism, which should be added in future reports. Even though the
results from a two-level tower can be extrapolated to a certain
extent, the behavior might change significantly in higher aspect
ratios. The prototype presented in this work features six levels
(6-X), and the damping ratios are estimated. There is limited data
available in the literature regarding these kinds of analyses on ten-
segrity guyed beams. The tensegrity structure presented in this
paper counts on comparisons to the studies presented in Refs.
[44,45], which focused on a solid, long, guyed beam under large
displacements. However, the present model was observed to
behave similarly. Furthermore, the dynamic model developed in
this work is used to apply the vibration control procedure shown
in Ref. [45] for long beams, which has been verified experimentally
[46]. An adaptation of the dead-band controller shown in Ref. [47]
for tensegrity systems is another viable option.

2 General Modeling Methodology

2.1 Static Analysis of Tensegrity Structures. The geometry
of a tensegrity structure is defined by the node and connectivity
matrices [48]. The ith node coordinates are described by a position
vector n;. A node matrix N containing all b nodes of the structure is
defined (Egs. (1) and (2)). The connectivity ¢y of the kth member
joining nodes i and j is given by Eq. (3), where e; is a vector with
a length of b, filled with zeros and containing 1 in the ith position.
The connectivity matrix is thus assembled (Eq. (4)).

_ |
ni—|:yi:| (D

N=[nmy- -] 2)
CK =€ — € (3)
CT=[C1(:2-~~C},] (4)

The member vectors my represent the # members of the structure in
the members matrix M, which is obtained from the node and con-
nectivity matrices (Eq. (5)).

M=NC"=[m; m, my, | %)

Finally, the stiffness matrix Ky of a member k can be defined (Eqgs.
(6) and (7)) as

Kk = cker” ® L 6)
where
T T
myi Mg my Mg
Lk=Sk<I— ) B =K):+K(/, (@)
[y |2 [y 2

The term s, =f;/l; is the force density of a member and Kz = E;A,/I;
is the linear elastic stiffness for bars. Therefore, the stiffness matrix
Ky is composed of the pre-stress Ky and material K, components.
Terms f; and /; represent, respectively, the normal force and length
of the kth member.

The symbol ® in Eq. (6) indicates a Kronecker product. As ‘ckckT
is bx b and Ly is 2 x 2 (in a planar system), the product cycy "® Ly
is 2b x 2b, the same dimensions as the global stiffness matrix Kg,
which is assembled by the simple sum of all element stiffness matri-
ces K. Finally, for a given load vector f, the displacements u are
calculated as

u=K;'t 8)

Static environmental loads can be introduced into the load vector f,
while temperature loads can be introduced directly into the pre-
stress component Ky as the effect of thermal expansion.
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Fig. 1 Flowchart of the incremental loads algorithm adapted to
tensegrity structures

2.2 Nonlinear Static Analysis. The method described in the
previous section is appropriate for small displacements, but can
be adapted to assess behavior under large deformations. The total
load, which causes large displacements, must be applied in small
increments to satisfy the small deformations assumption in all
steps, resembling the strategy used in Ref. [49]. The intensity of
the total force f is divided by the number of steps p, transforming
one nonlinear analysis into p linear analyses [50,51]. Material prop-
erties E and p, cross-sectional areas A, and incidences are assumed
to be constant during all steps of the analysis.

Node coordinates N and internal stresses ¢ have to be updated at
every step according to the new displacements, as shown in Fig. 1.
The internal loads affect the pre-stress component Ky of the stiff-
ness matrix Ky. The force density sy is related to the internal stresses
o of the deformed members of the tensegrity structure by the rela-
tion in Eq. (9).

s =t = 2 ©)
Ik

For efficiency purposes, the incremental loads can be calculated in
advance if the system does not generate significant changes in the
direction of external loads. But, in many applications, the large
deformations of the structure generate relevant impacts on the exter-
nal loads orientations. Therefore, the algorithm suggests calculating
the incremental loads vector at every step.

The Euler’s incremental loads procedure is not recommended for
solving models containing a high number of elements due to its rel-
atively lower efficiency when compared to more sophisticated
methodologies. However, models with few elements can be calcu-
lated in an adequate simulation time. Additionally, the procedure is
relatively simple to implement and combine with the methodology
that assumes small displacements.

Still, real-time controllers may need to convert an external load
into node coordinates nearly instantaneously. To provide a quick
access, resultant node positions from a large set of analyses are
associated with their respective external loads and fitted using a
fourth-order polynomial. Also, the final [f and starting lo lengths
of a determined cable are used to represent the external load in a
dimensionless measure ¢ = If/lo. The polynomials are expressed in
matrix form (Eq. (10)), where X and Y represent the coefficient
matrices, and r,, is the position vector of node # in x (i) and y (j)
coordinates. Furthermore, the image of the polynomials for 0 <c<
1 can be interpreted as the workspace of the mechanism joints,
which adds to the work developed in Ref. [52].

ri C4 C4
I C3 C3
=X 2 |i+Y| A ) (10)
: c c
Tp 1 1
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2.3 Modal Analysis. Any set of node coordinates, material
properties, and rest lengths provides enough information to define
the stiffness and mass matrices. Once the final static positions are
calculated, the force density in each cable is obtained by comparing
their final and natural lengths, and the stiffness matrix is determined
as shown in Eq. (6). The total mass ¢ is assumed to be equally dis-
tributed within the w bars, and first-order shape functions are used
to calculate each element mass matrix Hy (Eq. (11)).

an

The global mass matrix Hg is the superposition of the element mass
matrices Hy. The natural frequencies @ and modes of vibration d are
extracted from the solutions of the eigenvalue problem (Eq. (12)).

(K¢ — 0*Hg)d =0 (12)

2.4 Damping Parameters. The tensegrity dynamics can be
represented by the matrix equation (13):

Hx +Dx + Kx =f (13)

where D is the damping matrix and can be represented as propor-
tional to mass and stiffness (Eq. (14)). The proportional damping
assumption has to be taken carefully in tensegrity systems [53,54].
Numerical results (Fig. 9) show that the first two natural frequencies
are sufficiently separated and the dynamic study focuses on them.
Additionally, the experimental procedures considered impulse exci-
tation instead of harmonic. These criteria do not guarantee that a pro-
portional damping model will be accurate, but suggest that the
assumption can lead to reasonable results. This hypothesis is

assumed subject to a second inspection in the results section.
D=oH+ pK (14)

To reduce the order of Eq. (13), an equivalent system (Eq. (15)) can
be defined and further replaced by the matrix equation (16) [55].

Hx(1) + Dx(1) + Kx(r) = £(1)
{ Hx(t) - HX() =0

0 HT(x@) K C x(1) _ f(1)
[H 0]{i(t>}+[0 —H]{xa)}‘{ 0}

— Gz(t) + Qz(t) =f'(r)

15)

(16)

Also, an optimization procedure can be used to estimate the propor-
tional damping parameters o (geometry related) and S (material and
joints associated). The cost function (J) of the optimization problem
that has to be minimized is presented in Eq. (17):

D 5
minimize J= 2 G ey
D
subjectto a >0
=0

a7

where d corresponds to the vibration mode, D is the total number of
modes, and &yum and &, are the numerical and experimental
damping ratios, respectively.

To calculate the cost function J, the number of numerical
damping ratios must match the number of experimental damping
ratios. Therefore, a model order reduction is performed to achieve
a second-order state-space model. Minimizing J is equivalent to
finding a and S that generate numerical damping ratios &, as
close as possible to the experimental damping ratios ..

2.5 Control. To assess the control behavior of the vibrating
structure, a numerical simulation is performed. The mass H, stiffness
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K, and damping D matrices of the tensegrity beam model are used in
the implementation of a control technique. The numerical H,,
control strategy presented in Ref. [45] is replicated, with a single
motor acting on the structure. The external load vector () in Eq.
(13) can be expressed as a combination of disturbance and actuator
terms (Eq. (18)), where B and b stand for disturbance matrix and
force input vector, while w(¢) and u(¢) are the disturbance and actu-
ator forces, respectively. Transient environmental conditions, such
as wind loads, can be incorporated into the disturbance term.

f(r) = Bw(?) + bu(r) (18)

The controller aims to add active damping and minimize the
system’s highest singular value. Weight functions are employed to
focus the vibration suppression in the frequency range close to the
dominant frequency. In this approach, performance, actuator
signal, disturbance, and noise weight functions are applied, con-
nected to the model, and the hinfsyn MATLAB function is used.
Their filter gains must be adjusted to minimize the H, norm,
thereby increasing the system’s robustness.

3 Guyed Tensegrity Beam Model

3.1 Numerical Procedures. A planar tensegrity beam with six
sections, as shown in Fig. 2, is studied in this paper. Thick lines rep-
resent bars and thin lines stand for the tendons. The maximum
number of rigid bodies connected by the same node is two. There-
fore, it is a class 2 tensegrity. A cable pulls the tip toward a fixed
point located close to the base and causes large deformations in
the structure, following the studies presented by Holland et al.
[56] and Kurka et al. [45], but with a guyed tensegrity instead of
a long beam. The large deformations require a nonlinear static
study. Additionally, the high aspect ratio suggests low frequencies
and motivates a vibration analysis.

The numerical model was implemented under the following
assumptions:

e The structure is composed of 30 elements (12 bars and 18
cables) and 14 nodes.

Fig. 2 Schematics of the studied structure
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Bars and cables are linearly elastic and one-dimensional
elements.
The total mass of the structure is attributed to the bars.
Damping is included in the joints and assumed to be propor-
tional to mass and stiffness.
o Gravity is included. The self-weight is inserted as a load.

Rubber bands are applied as cables because their natural length is
shorter than the starting distance between nodes. Therefore, they
begin the experiment under tension and bear a larger displacement
before becoming slack. Additionally, friction in the joints was not
considered in the static analysis because it mostly depends on rela-
tive motion.

The load changes its direction during the analysis. As the top
node moves while the base does not, the guying cable varies its ori-
entation. Therefore, the force has to be adjusted in each step of the
incremental loads procedure. Despite the relatively low efficiency
of the incremental loads technique, in this study, all 30 members
can be represented by a single element each, leading to a very
low computational cost in each iteration. To conveniently access
the static analysis results, the node positions are associated with
the relative length ¢ = Ifllo of the pulling cable through a polynomial
fit. Base nodes remain fixed, as their coordinates do not vary under
different levels of c¢. The node coordinates matrix (which can be
quickly built from a given pulling cable relative length ¢) provides
enough information to assemble the mass and stiffness global
matrices.

The damping global matrix is required to obtain a complete
dynamic model of the structure. The system poles 4, for each d
mode are obtained from experimental responses using Prony’s
method (as described in Ref. [55]) and using Eq. (19) as a fitting
function.

D
fy =" Pac* (19)
d=0

where P, is the amplitude, and D is the number of modes.

The damping ratio £, for each d mode is obtained from Eq. (20).
These damping ratios are used to estimate the damping matrix D
through an optimization procedure (Eq. (17)).

Aa =—=E404 +iQy = —E404 + i<wd\/ 1- f;})

3.2 Experimental Procedures. The prototype is built with
150 mm 3D-printed bars and rubber bands as cables, forming a
class 2 tensegrity. Each bar is composed of two strips that
entwine the strips of its pair (Fig. 4), minimizing displacements in
depth and increasing the critical buckling load, which could be
problematic in planar tensegrity systems [57]. Also, one of their
ends is slightly arched to allow acute angles. The use of 3D printing
technology facilitates this unique design. The bi-dimensional beam
is hung upside down against a grid paper and guyed by a nylon
cable, as shown in Fig. 3. The prototype is bi-dimensional and
offers more stability when hung upside down, which reduces
out-of-plane motion. Although most applications suggest a
stand-up position, it is important to validate the numerical model
under reduced error conditions. Deformed configurations are photo-
graphed, and image pixel positions are calibrated to yield metric
deformation measurements. The camera is placed as far as possible
from the prototype, and the images are zoomed in to minimize per-
spective errors. Tolerance for these uncertainties is indicated in the
results section.

Four deformed configurations and the natural layout under self-
weight are studied, and the final length of the pulling cable is rep-
licated in the numerical model for all configurations. Vibration anal-
yses are performed in all positions. An accelerometer is attached to
the last bar (highlighted in Fig. 3) to extract the natural frequencies.
The accelerometer is used to generate a frequency response function
using the impact hammer test. Additionally, the experiment is

(20)
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Fig. 3 Example of a deformed configuration

Fig. 4 Struts design in detail

recorded by a 30 frames per second (fps) camera, and image pro-
cessing software is used to track the node positions over time.
Finally, a fast Fourier transform algorithm is applied to convert
those position-time data sets into frequency responses, providing
more experimental data to validate the method. Utilizing image pro-
cessing to the vibration study is convenient in this experiment
because this structure exhibits low natural frequencies, staying
within the camera’s fps limits. Furthermore, the mass of the accel-
erometer may interfere with the results. However, the image pro-
cessing approach is impracticable for higher frequencies, leaving
a range of interest to rely on the accelerometer data.

3.3 Properties of the Cables. Rubber bands are employed as
cables due to their low Young’s modulus and extensive elastic
range, enabling small input loads to induce large displacements
without plastic deformation. Furthermore, as the relaxed length of
the bands is shorter than the distance between nodes, they are ini-
tially pre-stressed, reducing the occurrence of slack cables in the
analysis. An experiment is conducted to find the Young’s
modulus of the rubber. A hook scale pulls a 0.083 m long band,
and the normal force is acquired for every 0.01 m or 0.005 m displa-
cement, yielding the results shown in Table 1.

Since the rubber material exhibits a nonlinear stress—strain beha-
vior, we use the Young’s modulus from the stress—strain relation
observed on the prototype, which never exceeds 30%. Therefore,
the best-fitting Young’s modulus for the prototype of 3.00 MPa is
obtained using the first six experimental stress—strain test data
points, as shown in Fig. 5.

3.4 Relevance of the Force Density Term. It is reasonable to
question the importance of the force density s, compared to the clas-
sical bar stiffness EA/l. Since its contribution to the global stiffness
might not be significant [58], this term could be removed to simplify
the methodology. This subsection focuses on showing the relevance
of such term and why it should not be removed in this study. For a
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Table 1 Rubber band strain results
[ (m) fN) € o (Pa)
0.083 0.000 0 0
0.090 0.883 0.08 3.92x10°
0.095 1.275 0.14 5.67x10°
0.100 1.668 0.20 7.41%10°
0.105 1.962 0.27 8.72x10°
0.110 2.256 0.33 1.00x 10°
0.120 2.747 0.45 1.22x10°
0.130 2.943 0.57 1.31x10°
0.140 3.335 0.69 1.48x10°
0.150 3.630 0.81 1.61x10°
x 105
10 1
8r 4
= 6 1
a,
S}
4+ i
ol J
+  Experimental
Linear fit [3.00x + 0.08]E+06
0 ‘ | ‘ I ‘ I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

€

Fig. 5 Stress strain diagram of the rubber material
horizontal element of length /, cross-sectional area A, and Young’s

modulus E under the action of a regular force f, the members’ matrix
is defined by Eq. (21).

m=nc'= [0 0|17 ]=[o]

L; and K¢ matrices are built (Egs. (22) and (23)) following the
methodology described in Section 2.1.

@2n

I I
M[z 0] M[z 0]
Li=si| 1 -==f— | + Kp=—f—
Kz O £A 0
SRR
0 Sk 0 T
o[ —1]®L_[L1 —Ll]
Tl 1 Tl W
BB g
of 0 7
=\ _ (23)
A 0B
0% 0

The stiffness Kp and force density s; contribute directly to the stift-
ness matrix. The first one is assumed to be constant, but the second
one is not, as the normal force f changes depending on the loads.
The tension ¢ does not exceed 3MPa in this study, therefore we
may plot the comparison between s, and Kp versus tension ¢

SEPTEMBER 2024, Vol. 16 / 091004-5



161 1

14 1

10 .

k 0,
e [%]

0 0.5 1 1.5 2 25 3 3.5 4
o [Pa] x10°

Fig. 6 Relevance of s,

(Fig. 6). Since s, reaches up to 12% of stiffness K3, the contribution
of the force density must be considered in the stiffness matrix of the
present prototype.

4 Results and Discussion

4.1 Nonlinear Static Analysis. The prototype’s response and
the simulation results are represented by dashed and solid lines,
respectively (Figs. 7(a)-7(e)). Thick lines represent the struts, and
thin lines stand for the cables. The circles show the 10 mm radius

43
tolerance of the experiment regarding node positions. The total
weight of the structure (290 g) is equally distributed among the
12 bars, and the cables are considered massless. The Young’s
modulus of the bars is considered to be 2 GPa, and they are
assumed to have a Hookean behavior. The final lengths of the
pulling cable are 0.61 m, 0.49 m, 0.40 m, 0.28 m, and 0.16 m for
configurations 0, 1, 2, 3, and 4, respectively.

Because the structure is hung upside down, gravity points
upwards in the graphs as shown in Figs. 7(a)-7(e). The first
graph contains data from the experiment and simulation without
any loads in the pulling cable (under self-weight only). Therefore,
the tip of the beam holds its own weight, and the base supports
the weight of the whole structure, causing more significant deforma-
tion of the sections close to the support. All the other four graphs
contain the guying cable, each with a different final length.

Despite showing a slightly nonlinear behavior (Fig. 5), which
brings errors to the graphs in Figs. 7(a)-7(e), the rubber bands
are helpful in reducing the number of discontinuities (transitions
between slack to tensioned states) in the analysis. Additionally,
despite the geometric constraints of the bars that force the experi-
ment to remain two-dimensional, they exhibit slight bending, allow-
ing for a small displacement in depth. Using the tip position as a
reference, the modeling error relative to the beam length is calcu-
lated (Table 2). Most of the experimental data points align with
the simulations, and the maximum error in the tip position is
3.51% in configuration 1, indicating the robustness of the model.

4.2 Polynomial Interpolation of Nodal Positions. The trajec-
tory of each node is mapped (Fig. 8) for 150 load increments from
configuration 1 to configuration 4.

To simplify access to these results and approximate any interme-
diate configuration, the polynomials are expressed in matrix form
(Eq. (10)). The coefficient matrices X and Y are defined in

0.5

(@) (b) (c)
067 067 06
@& — - -
st ’ ‘. \ osf
¥\
0af ". 04t
gl | X Eus
> b g
N
<
o1t v 01f
0 b ‘ 0
01 0 01 02 03 04 05 0.4
x [m]
(d)ys,
05t
04t
Eos
02f
0.1}
§ ! . . |
01 0 o1 02 03 04 05 -0.1
x [m]

Fig. 7 Static analysis: (a) configuration 0, (b) configuration 1, (c) configuration 2, (d) configuration 3, and (e) configuration 4
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Table 2 Tip positions of configurations 0—-4 obtained from
experimental and numerical approaches

Experimental Numerical
Config. x (m) y (m) X (m) y (m) Error (%)
0 0.112 0.535 0.101 0.524 2.97
1 0.252 0.474 0.235 0.468 3.51
2 0.332 0.400 0.319 0.400 2.49
3 0.394 0.290 0.389 0.290 1.02
4 0411 0.168 0.420 0.169 1.64

Egs. (24) and (25) for generating x (i) and y (j) coordinates in mil-
limeters.

0 0 0 0 -1.107
110 —324 436 -632 31.1
177 =539 708 -162 117
137 —294 228 -242 220
007 479 —157 -227 321
206 122 -394 —154 406
255 915 —603 199 473

X=1 o 0 0 0 106 24

-3.70 —0.08 -3.78 —19.8 143
—113 846 —465 —122 174
-147 726 —110 801 222
787 -155 —185 40.1 276
186 -520 -278 111 328

| 223 —715 -—454 198 400 |

C 0 0 0 0 0 7
409 -132 124 =376 133
100 271 —63.7 302 199
-306 81.8 —194 180 227
—400 814 —285 390 204
-325 521 -301 59 163
387 —114 =174 756 944

Y=1 o 0 0 0 0 (25)

436 202 -255 587 492
—9.12 232 -279 118 832
~199 2089 -248 204 89.6
374 850 —637 305 842
—64.5 —586 362 416 524

| 842 —69.0 80.0 588 11.8

The computational cost of a polynomial evaluation for each node is
about 3 x 10° less than running a nonlinear static analysis of this
model. This fast transformation allows this technique to be imple-
mented in real-time vibration control strategies.

4.3 Modal Analysis. The first set of graphs (Figs. 15, 16, 17,
18, and 19) contains the numerical results displaying the two first
vibration modes and their natural frequencies. The experimental
results acquired through image processing and the accelerometer
(impact hammer test) are presented in Figs. 20-25 and Figs. 26—
30, respectively (these figures are available in the Appendix). In
Figs. 20-25, the thin lines represent the frequency spectrum of dif-
ferent points in the same capture or different captures, while the
thick line in each graph represents the mean spectral value. Some
of the frequency responses show the first two natural frequencies
in the same spectrum (positions O and 2), but two analyses are
required to extract each frequency in position 1. In Figs. 26-30,
each thin line represents the spectrum of a different external
input, and the thick line in each graph is the mean spectral value.
Finally, the results for natural frequencies are compiled and com-
pared in Table 3.
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Fig. 8 Polynomial approximation of the static results

The Error column compares the experimental and numerical
results and shows the lowest experimental error. Configurations
0, 1, 3, and 4 report a good agreement between numerical and
experimental results, but there is a considerable error in the first
mode of configuration 2. The resolutions of the spectrum obtained
through image processing are approximately 0.4 Hz, which fit in
the 7% error that has garnered attention. These discrepancies pri-
marily stem from the experimental data capturing damped frequen-
cies and the uncertainties associated with material properties and
geometry. Furthermore, the peaks shown in the spectra are consid-
erably wide, encompassing the natural frequencies obtained
through simulations within their width. The second frequency of
configuration 4 could not be extracted through image processing,
but was acquired by the accelerometer and concurred with the
numerically predicted result. Due to the hardware limitations of
the uniaxial accelerometer, some vibration modes where the dis-
placement is mostly orthogonal to the sensor could not be
extracted. This limitation is noticeable in the second vibration
mode of configurations 0, 1, 2, and 3 and the first mode of config-
uration 2. Moreover, a high damping ratio may affect the accurate
extraction of higher mode natural frequencies through experimen-
tal methods. In this study, this issue is present in the second mode
of configuration 3, where the damping factor is more significant
(Table 4).

The increase in stiffness in a more tensioned structure is
gradual because some cables of the tensegrity become slack
under larger deformations, reducing the growth rate of the
global stiffness. Contrarily, as the geometry of the tensegrity
changes, its effective length decreases, leading to higher natural
frequencies in these deformed configurations. In other words,
shortening the guying cable causes a few tendons to become
slack, but it also places more stress on the taut tendons and short-
ens the beam, causing an overall increase in the global stiffness.
This pattern is more evident in the numerical results for all inter-
mediate configurations (Fig. 9), where higher loads lead to higher
natural frequencies.

The vertical axis compares the final length [, of the pulling cable
in each configuration to the starting length [, (configuration 0),
therefore keeping the ratio between 0 (maximum load) and 1 (no
load). The axis orientation is reversed to follow the pattern used
in the work presented in Ref. [45]. Also, the best-fitting
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Table 3 Natural frequencies extracted from experiments (image processing and accelerometer data) and numerical analyses

w Hz

Configuration Mode Numerical (Hz) Image processing (Hz) Accelerometer (Hz) Error (%)
0 Ist 2.80 2.36 2.87 2.5
2nd 4.45 4.38 - 1.6
1 Ist 2.89 2.93 - 1.4
2nd 4.41 4.40 - 0.2
2 Ist 2.99 3.20 3.50 7.0
2nd 4.56 437 - 4.2
3 Ist 3.19 3.67 3.25 1.9
2nd 4.96 - - -
4 Ist 3.40 3.44 3.38 0.6
2nd 5.82 - 6.12 5.2
Table 4 Damping ratio and natural frequency obtained using 0.2 T T T T
Prony’s method %, .
03 ! R
Modal parameters /’
Configuration Natural frequency (Hz) Damping ratio (%) 0.4 / 1
/
0 272 325 osh i |
1 2.95 323 o 7
2 3.09 17.4 = |
3 3.33 49.4 0.6 I 1
4 3.76 18.8 /l %
0.7 ! i
I
[ — — —mode 1 (numerical)
08F & e mode 2 (numerical) 1
X mode 1 (experimental)
+  mode 2 (experimental)
0.2 T T : :
0.9 ) . s s ‘ : :
2.5 3 35 4 45 5 5.5 6 6.5
03 R w Hz
Fig. 10 Experimental and numerical solutions of the two first
0.4 1 natural frequencies
051 1
o
= —%— mode 1
L —©—mode?2 | |
08 —A—mode 3 Structure's position time series
5 mode 4 0.05 T ‘ T ‘ T ‘ T ‘ T
L —<—mode 5 it -
0.7 4 (R A
g P i Conf!guratfon 0| |
gy i 1 === Configuration 1
ok —e—mode8 | | 0.03 - L === Configuration 2| |
—©&— mode 9 i - - =Confi ti 3
odi nl on !gura fon
0.9 L ‘ ; . L L 0.02 7 : ===== Configuration 4|
0 5 10 15 20 25 30 35 1
1
1

Fig. 9 Ten first natural frequencies obtained numerically for all
static positions between configurations 1 and 4

experimental results for the first two modes are compared to numer-
ical outputs (lines) in Fig. 10.

4.4 Damping. Free damped responses for configurations 0—4
(Fig. 11) are obtained from the video recordings used in Sec. 4.3
to determine the natural frequencies of the tensegrity.

Prony’s method is applied for all five configurations. The first
mode natural frequencies and damping ratios of each configuration
are presented in Table 4. Based on previous studies [45], the
damping ratio in intermediate configurations can be reliably esti-
mated from five states using a low-order polynomial interpolation.
The steepest descent algorithm is applied to solve the optimization
problem, and the proportional damping parameters are listed in
Table 5.

The numerical results for natural frequencies presented in Table 5
exhibit good agreement with the experimental results shown in
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Position (m)
o
=

o

-0.01
-0.02
-0.03
0 01 02 03 04 05 06 07 08 09 1
Time (s)
Fig. 11 Free damped response obtained through image pro-

cessing. Results presented for five configurations.

Table 4 under a maximum relative difference of 7.45%. Therefore,
the proportional damping assumption is considered satisfactory in
this scenario.

4.5 Control. To evaluate the proposed procedures, the dyna-
mical characteristics of configuration 2 are used as inputs for the
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Table 5 Natural frequencies and damping ratio of the first
mode’s system with estimated proportional damping

Parameters

a-10° p-10° Natural Damping
Config. (1/s) (s) frequency (Hz) ratio (%)
0 4.0 36.7 2.83 325
1 1.5 35.1 2.95 323
2 73 18.6 3.05 17.4
3 10.8 51.8 3.29 494
4 6.39 37.8 3.48 18.8
Singular Values
0 T . :
— — —Open loop
s "“ Close loop
% -40
9]
o
=]
g -60
k]
3
(=)}
£ 80 F
@]
-100
2120 il ; ‘ L !
107 100 10" 102 10°

Frequency (Hz)

Fig. 12 Frequency response for controlled and uncontrolled
vibration on configuration 2

5 %1078 Impulse Response
T T T T
wp—++—+ 1T Uncontrolled| |
Controlled

(] =
°
2
= ]
£
<

8 L 1 ! | I | | | |

0 1 2 3 4 5 6 7 8 9 10

Time(s)

Fig. 13 Controlled and uncontrolled responses under an
impulse load on the tensegrity beam tip on configuration 2

H, control strategy. This configuration is selected because it pre-
sents the lowest damping factor and the structure is in an interme-
diate shape between configurations O and 4. The filters replicate
those used in Ref. [45] but with adjusted gains to satisfy the differ-
ent structural dynamics. The open- and closed-loop systems are
compared in Fig. 12 in terms of singular values. The frequency
peak at 2.88 Hz is significantly reduced by the controller. Addition-
ally, an impulse force (Fig. 13) and a 2 N root-mean-square (RMS)
random vibration (Fig. 14) are loaded on the tensegrity beam tip
node in both directions. The infinite norm is 0.224 and 0.078 for
the system without and with control, respectively. The controlled
response to an impulse input shows a higher vibration suppression
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Fig. 14 Controlled and uncontrolled responses under a random
load on the tensegrity beam tip on configuration 2

compared to the random input response. This suggests that this
control technique is less efficient under random inputs for this
model. Still, the vibration levels of the controlled response to
random inputs are approximately 36% lower than the uncontrolled
response. The control results regarding configurations 0, 1, 3, and 4
are equivalent in behavior to configuration 2.

5 Conclusions

A lightweight, long, and flexible 2D tensegrity cable guyed beam
was both modeled and built. The model accounted for self-weight
and was verified in static experiments with five different loads.
The proposed methodology offers reliable results through a more
straightforward process compared to current techniques. It involves
combining Euler’s incremental loads method for solving nonlinear
problems in finite element analysis with a procedure designed to
calculate linear statics of pre-stressed tensegrity structures. The
incremental loads procedure is convenient to implement, but also
less efficient than other methodologies. However, the structure
under study requires modeling very few elements, which keeps
the computational cost of the simulation low and highlights the
advantages of simpler implementation. Most of the experimental
data aligned with the simulation outputs, indicating the accuracy
of the proposed methodology. The image processing technique pro-
vides closer results to the numerical outcomes than the accelerom-
eter data for low frequencies, which are not far from the minimum
range of the instrument (1 Hz). However, image processing is
limited by the camera’s fps, narrowing the acquisition range.
Advantages such as high accuracy, ease of use, low cost, quick
data acquisition, and absence of instrumentation attached to the
structure justify its use in low-frequency experiments. Damping
ratios were estimated through an optimization technique comparing
image processing and numerical data using Prony’s method. This
study estimates the damping ratio for five configurations of the
structure, with intermediate points reliably predicted by a low-order
polynomial interpolation. The numerical natural frequencies
obtained through Prony’s method showed good agreement with
experimental results, with a maximum difference of 7.45%.
Finally, a numerical H,, control strategy is applied to suppress
vibrations in the tensegrity beam using the presented dynamical
model. Future research steps involve assessing the influence of
environmental factors on the behavior of the structure, such as
wind and temperature loads, and performing experiments to
verify the numerical control results and optimize the controller.
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Nomenclature

THHOZ RN A I AR T m IS NR EE R EE oo T T aal e >

number of nodes

final to initial length ratio
normal force (N)

member length (m)
structure’s mass (kg)

force density (N/m)

time (s)

actuator force (N)

number of struts

position in x direction (m)
position in y direction (m)
force input vector
connectivity vector
auxiliary connectivity vector
external loads vector (N)
member vector (m)

position vector (m)

position vector in the static analysis (m)
displacements vector (m)
disturbance forces (N)

position vector in the dynamical analysis (m)

order reduction auxiliary vector
cross-sectional area (m?)
number of vibration modes
Young’s modulus (Pa)

cost function

amplitude

disturbance input vector
connectivity matrix

damping matrix (N s/m)

order reduction auxiliary matrix
mass matrix (kg)

stiffness matrix (Pa)

stiffness matrix auxiliary component (Pa)
members matrix (m)

node matrix (m)

order reduction auxiliary matrix
x coefficients matrix (m)

y coefficients matrix (m)

fitting function

Greek Symbols

08 vt

mass associated damping parameter
stiffness associated damping parameter
pole

damping ratio

internal normal stress (Pa)

natural frequency (rad/s)

damped frequency (rad/s)

Superscripts and Subscripts

vibration mode
experimental
final

global

node index
node index

091004-10 / Vol. 16, SEPTEMBER 2024

~

num

0.6

0.5

0.4

0.3

0.2

0.1

0.6

0.5

0.4

0.3

0.2

0.1

0.6

0.5

0.4

0.3

0.2

0.1

0.6

0.5

0.4

0.3

0.2

0.1

S Mo

47

element index
numerical

initial

pre-stress component
material component

Appendix A: Numerical Modal Analyses on
Configurations 0—4

Mode 1 -f=2.81 Hz Mode 2 - f = 4.46 Hz
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Fig. 15 Configuration 0

Mode 1 -f=2.89 Hz Mode 2 - f=4.41 Hz
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Fig. 16 Configuration 1
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Fig. 17 Configuration 2
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Fig. 18 Configuration 3
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Appendix B: Frequency Responses Obtained Through
Image Processing
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Fig. 22 Configuration 1—second mode

w [Hz]

Fig. 23 Configuration 2
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Fig. 24 Configuration 3
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Fig. 25 Configuration 4

Appendix C: Frequency Responses Obtained Through
Accelerometer Data
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S ANALYTICAL DEFINITIONS FOR TENSEGRITY PRISMS

The article entitled “Analytical definitions of connectivity, incidence and node ma-
trices for t-struts tensegrity prisms” (Paiva et al., 2024b) is presented in this chapter. It is au-
thored by Victor A. S. M. Paiva, Jaime H. Izuka and Paulo R. G. Kurka and is presented with per-
mission from Elsevier (Appendix B). The paper has been published in the Mechanics Research
Communications journal, vol. 137, p. 104271, 2024. DOI: 10.1016/j.mechrescom.2024.104271.

This paper addresses a common gap in the literature regarding the structural analy-
sis of regular tensegrity prism modules. While numerous research articles have explored these
modules, particularly in forming grids and towers, they often define connectivity and node ma-
trices specific to their entire structures. However, a general definition applicable to the basic
modules themselves has not been formally established. This paper formalizes sets of defini-
tions for the connectivity, incidence, and node matrices that are valid for any tensegrity prism
formed by four or more struts. The definitions are grounded in geometry and offer simple, gen-
eral formulations by applying floor and ceiling operators. Additionally, the paper covers both
clockwise and counterclockwise rotated modules, providing a comprehensive framework for
these structures.

Chapter 7 includes a discussion that integrates this paper with the rest of the thesis

and its importance to complete the development of the paper discussed in Chapter 6.
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Regular tensegrity prism modules are widely used by researchers. Numerous research articles combine them to
form grids and towers under various assembly strategies. Most of them define connectivity and node matrices
that satisfy their structures as a whole, but a general definition for the basic modules has not been formally
reported. This paper formalizes sets of definitions for the connectivity, incidence, and node matrices that are
valid for any tensegrity prism formed by four struts or more. The definitions are based on geometry and provide

simple and general formulations by applying floor and ceiling operators. Both clockwise and counterclockwise

rotated modules are covered.

1. Introduction

Tensegrity systems are formed by a set of cables in traction and
rigid bodies (usually struts) in compression. They have been availed
for numerous innovative applications, such as earthquake-proof and
wind resistant constructions [1], solar modules [2], wave energy har-
vesting [3], space lander [4], animal mimicking [5] and morph-
ing airfoil [6], as well as traditional uses in robots [7], beams [8]
and bridges [9,10], for example. Therefore, tensegrity structures have
significant scientific value.

Prismatic or cylindrical tensegrity structures are formed by two
polygonal parallel bases. A regular t-struts prism is formed by two t-
sided polygons, formed by t cables each, connected by t struts and t
vertical cables. These modules can also be called triplex, quadruplex...
t-plex, according to the number of struts [11]. Tensegrity prism mod-
ules have been widely explored [12-15]. Many researchers combine
them to assemble masts [16] and grids [17]. The number of struts
in a tensegrity prism assigns it a specific shape, leading to associated
node and connectivity matrices. The community has applied modules
with 3-struts (triplex) [16,18], 4-struts (quadruplex) [10,17,19], 5-
struts (pentaplex) [10], 6-struts [10] and so forth. Even though most
articles define their node and connectivity matrices, only a few re-
searchers have investigated the derivation of general definitions for
node and connectivity matrices. Node positions can be generated by
popular form-finding techniques, such as force density [20], dynamic
relaxation [21] and kinematical methods [22], but most of them require
a connectivity matrix as an input. The adapted force density approach
presented in [23] can be applied to model T-4 tensegrity structures,

* Corresponding author.
E-mail address: v140962@dac.unicamp.br (V.A.S.M. Paiva).

https://doi.org/10.1016/j.mechrescom.2024.104271

which include regular prisms such as the quadruplex module that
appears in several studies. However, it applies numerical procedures
to generate the connectivity matrix and then checks which members
are bars or cables. An analytical approach that builds it directly from
geometry could be more efficient. This challenge is partially solved, the
methodology to obtain the connectivity of a 3-struts tensegrity prism
is covered in [24]. Also, they assemble a global connectivity matrix
for combinations of 3-struts prisms, either stacked to form towers or
aligned to build grids. The reach of that work is extended in [25], where
they derive a general definition for the node matrix of tensegrity plates
of any complexity formed by 3-struts prisms. In addition, they cover
assembles of reinforced 3-struts prisms, with extra cables to increase
stiffness. Still, analytical definitions for node and connectivity matrices
that satisfy prisms with more than three struts are missing.

The stiffness matrix can be obtained from node and connectivity
matrices [26], but research groups from other fields, such as materials
science [27] and biomechanics [28], may prefer to apply the finite
element method (FEM). FEM usually requires an incidence matrix,
which carries the same information as the connectivity matrix, but
is rarely provided in tensegrity research papers. This paper provides
analytical definitions of node (Section 2), incidence (Section 3), and
connectivity (Section 4) matrices covering t-struts tensegrity prisms
in both clockwise and counterclockwise rotations with ¢z > 3. These
definitions apply floor and ceiling operators, which have not been
explored by the community in tensegrity related research, but provide
a convenient manner to analytically work with indexes and favor later
implementation.
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Fig. 1. Regular tensegrity prisms formed by 4 to 7 struts in clockwise (upper row) and counterclockwise (bottom row) rotations.
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Fig. 2. Scheme of a tensegrity prism highlighting the twist angle formed between node
1 and the projection of node (t+1).

1.1. Limitations and assumptions

The proposed methodology generates a viable structure for 1 = 3,
but the rotation inverts, i.e. the clockwise formulation generates a
counterclockwise module and vice versa. Therefore, the lower limit is
defined as 7 > 3. Also, the upper limit is not covered in this paper, as
it is mostly imposed by construction parameters rather than geomet-
rical relations. Static and material parameters, such as mass, stiffness
and pre-stress, are not considered in this methodology, the equations
shown in this work derive from geometry and pattern recognition. The
following assumptions are taken:

1. Top or bottom base nodes are coplanar and concentric.
2. Top and bottom bases are parallel.

3. Both bases are formed by regular t-sided polygons.

4. All members are thin and do not clash.

2. Node matrix

The top base of a cylindrical tensegrity is rotated relative to its
bottom base. The rotation can be clockwise (or right-handed) and coun-
terclockwise (or left-handed [29]). Fig. 1 shows examples of tensegrity
prisms under both rotations, where thick and light lines stand for bars
and cables, respectively. The twist angle « that stabilizes a t-struts prism

isa = % — Z [30]. The bottom Ng and top Ny node coordinates are

defined by Erqs. (1) and (2), where rp and r; are the bottom and top
base radii, 4 is the height of the prism, and n; (Eq. (3)) defines the node
coordinates of the ith node. The methodology presented in this section
is valid for regular prisms, i.e. prisms whose bases are regular polygons
in parallel planes (Fig. 2).

Np = [nl n, .. nt] M
Np=[ngg Do oy @
X; chos(?T”)
n =13y =1 rBsin('zT”) ifi<t
z; 0
J 3
X; rTcos([zT” +a)
n =4y = rTsin(izT’r +a)pifi>t
z h

The global nodes matrix N is assembled by N = [Ny Np]. To
obtain the node coordinates of a counterclockwise module, the twist
angle is multiplied by —1.

3. Incidence matrix

The global incidence matrix can be split in four 7 x 2 blocks: bars
(Eq. (4)), bottom cables (Eq. (5)), top cables (Eq. (6)) and vertical
cables (Eq. (7)). Each line in the incidence matrix indicates the first
and second nodes connected by their associated element. The vertical
cables connect a bottom to a top base nodes, but it is important to alert
that their orientation are usually inclined and may even be horizontal
in non-regular tensegrity prisms.

Incidence matrices derive from inspection of the pattern of connect-
ing elements. In a clockwise 5-struts tensegrity (Fig. 3), a bar connects
the top node 6 to the bottom node 4, while in a 6-struts prism (Fig. 4),
the top node 7 also connects to the bottom node 4 by a strut. The top
node can be easily inferred as ¢ + 1 to lead to 6 when ¢+ = 5 and to
7 when ¢t = 6. But the bottom node poses a challenge to assemble a
single mathematical function that satisfies both cases. Floor and ceiling
functions are helpful to solve this issue, the floor operator |x| rounds
a real number x to the largest integer less than or equal to x, while
the ceiling operator [x] rounds a real number x to the lowest integer
greater than or equal to x. In the example, |5/2| = 2 and [5/2] = 3.
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Fig. 3. Example of a clockwise 5-struts tensegrity prism. Node numbers are highlighted.
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Fig. 4. Example of a clockwise 6-struts tensegrity prism. Node numbers are highlighted.

Therefore, the bottom node, which must be 4 for both r =5 and 7 = 6,
can be defined as [¢/2]+1, resulting [5/2]+1 =4 and [6/2]+1 = 4. The
next incidences sum 1 in both indexes until the bottom node reaches
its maximum (7), then it starts counting from 1.

Iy, [ t+1 [1/2] + 1]
Iy, t+2 [t/2]+2
1 t/2] +1 t
I, = Ble/2) | [7/2] @
Ig|e/2)41 [t/2] +t+1 1
It 2142 [t/2] +t+2 2
[ Iy | [ 2t [1/2]
Iyc1 2
Ipca 2 3
IBC = : = : (5)
Igciot r—1 t

Igct t 1
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(e | [t+1 142
Ipcs t+2 t+3
ITC = : = : (6)
Itci-1 2t—1 2t
Irce 2t t+1
va | [ /21 t+1
Iyc [t/2]+1 t+2
I t t/2] +t+1
Iy = | Ve | [7/2] o
Iveii/2i+2 1 [#/2] +1+2
Iycii/2143 2 [1/2] +1+3
| Lyee | L[/21-1 2 _

These equations cover the clockwise case. The incidences of bars Iy
and vertical cables Iy are defined in Egs. (8) and (9) for counterclock-
wise tensegrity prisms.

Iy [ t+1 [2/2] + 1]
Ip; t+2 [7/2] +2
IB _ IB 1t/2] _ [[/2] +t t @)
Tgje/2141 [t/2]+1+1 1
Ige/2142 [t/2] +1+2 2
L Ige | | 2t [2/2]
[ Tyer | [Lle/2] +2 t+1
Iyc 2/2] +3 t+2
L= Lvcpz1-1] t [1/2]1 +1-1 ©
ve = =
Iverez 1 [1/2] +1
Ivcrtya141 2 [t/2] +1+1
L Ivee 1 LL/2]+1 2t i

Note that 7+ = 3 leads to « = %, with ns in the fourth quadrant
connected to n; in the second quadrant by a bar. Conversely, for all
configurations with ¢ > 3, n; resides in the first quadrant, connected by
a bar to a top node in the fourth quadrant. This characteristic generates
an inverted rotation in 3-strut prisms.

4. Connectivity matrix

The connectivity matrix C carries the same information as the inci-
dence matrix, but in a different manner. It is composed of connectivity
vectors ¢ (Eq. (10)), each representing a member of the structure. The
connectivity vectors are 2r long and filled with zeros except for two
positions, which are replaced by —1 and 1 indicating the first and
second nodes connected by that member. Therefore, each connectivity
vector can be built by combining two 2¢ long unit vectors e;, which are
filled with zeros and contain 1 in the ith position.

C'=lc; ¢ .. c4 10)

The global connectivity matrix C can be split in four 7 x 2¢ blocks:
bars (Eq. (11)), bottom cables (Eq. (12)), top cables (Eq. (13)) and
vertical cables (Eq. (14)).
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The bar Cy and vertical cable Cy¢ connectivities of a counterclock-
wise module are defined in Egs. (15) and (16).

[e[t/2J+1 - et+1]T

[ CmT | r
cpa’ [e[t/2]+2 — e
. T
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¢ T T
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cpe! T
- few e ]
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5. Conclusions

It has been observed that tensegrity prisms are mostly applied with
three or four struts, even on theoretical builds, possibly due to their
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simpler node and connectivity matrices. The lack of a general and
analytical definition of those matrices might have been a bottleneck in
the study of prisms with a higher number of struts. This paper brings
general definitions for node, connectivity and incidence matrices of
t-struts tensegrity prisms with t greater than 3 under clockwise and
counterclockwise rotations. These definitions derive from geometry
and assume thin members, therefore they do not cover element clashes
or stress-related results. Also, examples for 4, 5, 6 and 7-struts prisms
are presented. Future research should include the definitions of those
matrices for prism assemblies, such as tensegrity towers and grids, and
the application of these definitions on form-finding methods.

CRediT authorship contribution statement

Victor A.S.M. Paiva: Writing — review & editing, Writing — original
draft, Validation, Methodology, Investigation, Formal analysis, Concep-
tualization. Paulo R.G. Kurka: Writing — review & editing, Validation,
Supervision. Jaime H. Izuka: Writing — review & editing, Validation,
Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
No data was used for the research described in the article.

Appendix. Node, incidence and connectivity matrices for rp; =
rr =h=1mand t € [4,5,6,7]

This appendix covers popular arrangements studied by the com-
munity, but the formulae developed in this study are not limited
to the results presented in this section. Node (Table A.1), incidence
(Tables A.2-A.5) and connectivity (Tables A.6—A.9) matrices for rp =
rp=h=1mand t € [4,5,6,7] are presented for both clockwise (CW)
and counterclockwise (CCW) configurations.

Table A.1
Transpose node matrices for ¢ € [4,5,6,7] in CW and CCW rotations.
t Np NI CwW NJ ccw
0.000  1.000 O] 0707 0707 1 [0707 0707 1
4 —1.000  0.000 0 -0.707  -0.707 1 -0707 0707 1
0.000  —1.000 0 0707  —0.707 1 -0707 —0707 1
1.000  —0.000 0 0.707 0707 1 0.707  —0.707 1
[ 0.309 0951 0] [-0.588  0.809 1] [0.951 0309 1]
-0.809 0588 0 -0.951 -0.309 1 0.000 1.000 1
5 —0.809 —0.588 0 —0.000  —1.000 1 -0.951 0309 1
0309 0951 0 0951  —0309 1 -0.588  —0.809 1
| .000  —0.000 0] | 0.588 0.809 1] | 0.588  —0.809 1]
[ 0.500 0.866 0] r-0.500  0.866 1] [ 1.000 0.000 17
-0.500  0.866 0 —1.000 0000 1 0.500 0.866 1
6 —1.000  0.000 0 —0.500 —0.866 1 -0.500  0.866 1
—-0.500 —0.866 0 0500  —0.866 1 —-1.000 0000 1
0500 —0.866 0 1.000  —0.000 1 -0.500 —0.866 1
L 1.000 0.000 0] L 0.500 0.866 1] L0500 —0.866 1]
[ 0.624 0782 0] [-0.434  0.901 1 [ 0975 -0223 1]
-0223 0975 0 —0.975 0223 1 0.782 0.624 1
-0.901 0434 0 —0.782 -0.624 1 0.000 1.000 1
7 -0.901 —0434 0 0.000  —1.000 1 -0782 0624 1
-0223 -0975 0 0782  —0.624 1 -0975 -0223 1
0.624 —0.782 0 0.975 0223 1 —0.434 0901 1
| 1.000 0.000 0 | 0.434 0901 1 | 0434 —0901 1]
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Table A.8
Transpose connectivity matrices for a 6-struts tensegrity prism.
C,' cw Cy' CCW  Cy” Cye” Cye’ CW Gy CCW

Tal.)le A2 ) . . [es - 9417 [es— e4]T [es - e7]T [e, - eI]T [es - ev]T [e; - es]T

Incidence matrices for a 4-struts tensegrity prism. [eg _ 95] - [e, _ Es] ’ [e9 _ es]? [e3 _ ez]” [e7 _es]n [es _ es] ,

Iy CW Iy CCW Irc Iyc Iyc CW Iyc CCW [eso — €] [es0 — €] lero = e,]l [es —es] [e; —ey] [es —¢]

5 3 5 3 5 6 1 2 2 5 4 5 [eu - el] [eu - e1] [911 - 31011 [es - 34] [e3 - 910] [ew - ez]

6 4 6 4 6 7 2 3 3 6 1 6 lerz — €] le — ez]T leys — eu]T les - es]T les —en] [ens — €3]

71 701 78 34 47 27 [51 - 93] [el - 33] [e, - elz] [91 - eﬂ] [es - eu] [elz - 94]

8 2 8 2 8 5 4 1 1 8 3 8

Table A.9

Table A.3 Transpose connectivity matrices for a 7-struts tensegrity prism.

Incidence matrices for a 5-struts tensegrity prism. " cw CT CCW G Cpc” Cy' CW Cyc" CCW
I CW Iy CCW Trc Tnc Tye CW Tve CCW T e - es][ [ey — e] [e2 - el], [er —ey] ' [es - es]’

[913 - es] T T T T

6 4 6 3 6 7 1 2 3 6 4 6 [e e ] lel = 99] , [elo - e9] [e3 - ezJ [e13 - es] [e, - esJ .
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6 FORM-FINDING

The article entitled “A form-finding method for deployable tensegrity arms and in-
verse kinematics” (Paiva et al., 2024a) is presented in this chapter. It is authored by Victor A. S.
M. Paiva, Luis H. Silva-Teixeira, Jaime H. Izuka, Eduardo P. Okabe and Paulo R. G. Kurka and
is presented with permission from Springer Nature (Appendix D). The paper has been published
in Meccanica, 2024. DOI: 10.1007/s11012-024-01880-5.

This paper explores the development of a form-finding methodology for deployable
tensegrity mechanisms composed of cylindrical modules. Using nonlinear programming, the
study designs a structure capable of complex shape transformations, such as expanding from a
theoretically flat configuration into a tower and bowing into an arch. The work also includes
workspace approximation and inverse kinematics using neural networks and optimization algo-
rithms. The methodology is applicable to any stacking of cylindrical tensegrity structures, as
demonstrated with a six-quadruplex module example.

Chapter 7 delves deeper into the discussion on the initial guess for the nonlinear
programming routine, highlights the importance of alternating the rotation at each level, and
presents equations that were omitted in the paper for conciseness.

The MATLAB scripts used in the form-finding method and inverse kinematics are
publicly available at <https://github.com/FictorP/Tensegrity/tree/main/formfinding>, including

the trained neural network.
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Abstract Manipulator arms in robots can be bulky
and difficult to transport. Tensegrity mechanisms,
which can be compact, deployed, and shaped to
adjustable lengths, offer a promising alternative for
robotic manipulators. This work develops a method-
ology for class 2 tensegrity mechanisms formed by
cylindrical modules, using nonlinear programming to
design a deployable tower capable of complex shape
transformations, such as bowing. The study starts by
deploying the structure from a compact shape into
a tower, thereby enhancing its transportability and
impact resistance. Next, a form-finding procedure
assigns a bowing movement to the tower by pulling
specific cables, using a kinematical method and non-
linear programming to achieve a stable configuration.
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Finally, the workspace of the mechanism is approxi-
mated through surface fitting, and three inverse kin-
ematics functions are defined using artificial neural
networks, sequential quadratic programming and a
genetic algorithm. The example presented uses six
quadruplex modules, but the floor and ceiling func-
tions applied make it valid for any cylindrical tenseg-
rity stacking.

Keywords Form-finding - Tensegrity - Deployable -
Inverse kinematics - Floor and ceiling

1 Introduction

Deployable structures and mechanisms, such as
tensegrity and origami systems that transition from
a compact state to a larger configuration, hold sig-
nificant value in various engineering applications.
Tensegrity structures consist of rigid elements con-
nected by cables and rely on this network to maintain
stability without external forces [1]. When properly
optimized, tensegrity systems are lightweight, offer
controllable shape [2] and stiffness [3], and can be
integrated with origami [4]. These properties provide
deployment capabilities and have driven develop-
ments in several scientific fields, such as biology [5,
6], architecture [7, 8], robotics [9], civil construc-
tion [10, 11] and material science [12]. By exten-
sion, multidisciplinary works also apply tensegrity
systems [13]. This work focuses on the shape-shifting
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characteristic of tensegrity structures, which is cal-
culated through a form-finding technique, and its
objective is to design a deployable tower capable of
bowing.

Tensegrity robots can be organized into four main
categories [14], referencing their shape: prismatic
[15], spherical (with straight [16] or curved [17, 18]
members), humanoid [19] and bio-inspired [20]. The
mechanism studied in this paper mostly fits in the
prismatic category because it stacks tensegrity prisms
to form an arm.

Shape transformations can be calculated using
form-finding methods, which are divided into two
main categories: statical and kinematical [21] (or
geometrical and topological [22]). Statical methods
seek equilibrium configurations that meet specific
requirements, allowing the structure to achieve a
state of prestress. The force density method [23] is a
popular example within the statical category. Raj and
Guest [24] suggested a methodology that leverages
symmetry to reduce the computational effort. Zhang
et. al. [25] proposed a form-finding procedure based
on the stiffness matrix (SMFF). Koohestani [26] pre-
sented a technique that determines the force densities
by minimizing an objective function that generates
the desired rank on the force density matrix, where
the optimization is performed by a genetic algorithm.
Additionally, an analytical approach [27] and an alter-
native involving nonlinear programming and LU-
decomposition of the force density matrix [28] have
been presented.

Kinematical methods usually fix the lengths of
the bars and minimize the lengths of the cables or
vice versa. One branch of this approach is to trans-
form the form-finding of a tensegrity structure into
a constrained minimization problem [29] that can
be solved by nonlinear programming [30]. But non-
linear programming may not be suitable when there
is a large solution space, therefore some researchers
prefer a stochastic technique. A binary coded genetic
algorithm was used in [31] to find the shape of non-
regular tensegrities. Also, a Monte Carlo form-find-
ing method was presented in [32] and demonstrated
on numerous tensegrity configurations. The dynamic
relaxation method is another significant branch within
the kinematic category of form-finding methods.
Starting from an initial guess, the member deforma-
tions are calculated and transformed into nodal forces
using fictitious stiffness. Additionally, a fictitious

@ Springer

mass is assigned to the nodes to determine their
instantaneous accelerations, and the node equations
of motion are solved using finite difference analysis
[33]. Along with a damping factor, the parameters of
the dynamic relaxation method can be optimized to
improve efficiency [34].

The main purpose of this work is to develop a gen-
eral kinematic study, from deployment and form-find-
ing to inverse kinematics, of tensegrity towers formed
by cylindrical prisms. Additionally, since there are
not so many form-finding examples in the literature
[35], this work aims to extend the collection of docu-
mented examples by applying the general method-
ology to a six quadruplex tower (see Fig. 1 and the
video included as a supplementary file). These results
contribute to an improved understanding of the paper
and assist the community to build upon. A set of pro-
cedures is developed to produce the expansion of a
transportable packed system into a tensegrity tower
and afterward into an arched arm. The lengths of the
cables are shortened to deploy the mechanism from
the compact configuration into the high aspect ratio
tower. Once fully deployed, cable lengths are varied
to create irregular modules and assign a manipulator
movement to the tower. The modules do not remain
regular, therefore form-finding methods that assume
symmetry cannot be used in this second part. Bars
and base cables do not change their lengths, therefore
force density methods may not be the best option.

257

z[m]

Fig. 1 Deployable tensegrity arm example composed of six
quadruplex modules. Red and black lines indicate bars and
cables, respectively
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Since there is a small number of elements in each
module, the nonlinear programming approach is
advantageous. Additionally, floor and ceiling func-
tions are applied to generalize the method’s formula-
tion for any assembly of cylindrical tensegrities [36].
The dynamic relaxation approach also meets these
requirements and is compared to the method devel-
oped in this study.

The form-finding procedure determines the node
coordinates from a given set of cable lengths. How-
ever, most practical applications have a target con-
figuration to reach and require, in real-time, a set of
cable lengths as an input. Therefore, an accurate and
efficient inverse kinematics function is needed. In this
paper, the workspace of the mechanism is approxi-
mated by a surface fit from discrete form-finding data.
That data is also used as training information for a
multilayer perceptron neural network to convert node
coordinates in length cables. In the six quadruplex
prisms example, the outputs of the inverse kinematics
function are compared to four target positions.

The community has applied artificial intelli-
gence to solve form-finding problems in tensegrity,
reticulated [37] and origami [38] systems. A deep
neural network can be trained using force densities
obtained from a differential evolution algorithm [35]
and applied to form-finding. The dynamic relaxation
method can be combined with feed-forward neural

(a) Counterclockwise.

networks [39] or noise-tolerant zeroing neural net-
works [40] to improve model accuracy and better
support active controllers. In this work, inverse kin-
ematics functions based on neural networks, genetic
algorithm and sequential quadratic programming are
proposed and compared.

2 Expansion of a packed system into a tower

Building a tensegrity system with variable strut
lengths is possible [41], but substantially complex.
However, the lengths of the cables can be changed
by attaching one of their ends to a spool [42]. Still,
having too many variable cables increase the overall
weight of the structure due to the addition of actua-
tors [43]. In this study, bar lengths b are fixed, and
the only variable length cables are those connect-
ing the top and bottom bases of each module. These
cables are addressed as cross cables v to follow the
pattern established by the community. Bottom nodes
are fixed as in [44]. The twist angle (a) of tensegrity
prisms can be counterclockwise (Fig. 2a) or clock-
wise (Fig. 2b), this characteristic has to be defined
in advance and cannot be changed without rebuild-
ing the prism. The rotations can also be named right
and left-handed [45] referring to clock and counter-
clockwise, respectively. The mechanism shown in

(b) Clockwise.

Fig. 2 Counterclockwise and clockwise examples of 12-struts regular modules
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this study uses alternate rotation modules to provide

a straight bending.
In the expansion stage, all cross cables keep the
same length v, =v, =...=v, =v. The coordinates

of the bottom Ny and top nodes Ny of a regular coun-
terclockwise tensegrity prism with ¢ struts can be
defined by equations 1 and 2 [36].

Ng = [y n, ... n] (1)

Ny = [nt+l Dy e “2t] 2

Where £ is the height of the prism, r; and ry are the
top and bottom bases radii, respectively, and n; (equa-
tion 3) defines the node coordinates of the i node.

X; chos(izT”)
n =9y ¢ =1 rstn(lzT”) ||ifni (S NB”
i 0
< . . ) (3)
2
x; rTcos(% +a)
n; =4y, 0 =9 rpsin(ZE +a) ¢ |lif m € Ny
g L h
8 7
-

The global nodes matrix is formed by N = [Ng, Nt].
The length of a bar b can be evaluated from the dis-
tance between nodes np/;; and my in the clockwise
module [36], where the prism height / can be defined
(equation 4). Also, v is the distance from node np
to node n,_; (equation 5).

b* =[npy 5y — 0y |I> — > = b

“4)
- (x [t/21 — xzr)z - ()’[z/z] - Yzz)Z

2 2 2 2
V =”n|'t/2] —l‘lH_]” — >V =h

&)
+ (i = X)) + Opay = Vi)

These equations provide the length of the cross
cables v given the twist angle a. Considering the
twist angle o range from 0 to 7 — = (stable a for a
tensegrity prism [46]), the expansion of a module
from a flat configuration to its maximum height can
be calculated. Also, a counterclockwise module can
be attached bar to bar on top, generating a class two
tensegrity system. These alternate rotation pairs may
be repeatedly combined to obtain a tensegrity mecha-
nism that can be deployed from a flat configuration.

@ Springer

Equations 4 and 5 are valid for regular counterclock-
wise tensegrity modules with four struts or more. The
three struts module is not availed in this work because
it locks [47] before reaching a flat configuration.

3 Form-finding

All modules in section 2 are regular because
v, =V, =..=v,=v, which generates a straight
expansion across stacked prisms [48]. However,
irregular modules are necessary to induce a bowing
movement, therefore cross cables are shortened or
extended independently in this section.

To find the form of a module, v, to v,_; remain
fixed and the algorithm finds the minimum length
of v,. The solution can be separated into two smaller
tasks:

1. Finding the final shape for a given set of cross
cables v, to v,, assuming the structure is possible.

2. Given v, to v,_;, find the minimum v, that gener-
ates a viable structure.

The first task can be transformed into a system of
nonlinear equations, by geometrical relations, and
solved by Newton—Raphson. Other numerical meth-
ods could be applied instead, but Newton—Raphson
is simple to implement, provides relatively fast con-
vergence and its main drawbacks are conveniently
addressed: the derivatives are not complex and a rea-
sonable initial guess can always be determined from
the lower base coordinates.

The second task is an optimization problem that
can be solved by nonlinear programming. The node
coordinates of the bottom base are known for the
ground module (equation 1) and the method calcu-
lates its top nodes coordinates.

3.1 Finding the final shape from v, to v,

The bar (equation 6), top cables (equation 7) and
cross cables (equation 8) incidences of a clockwise
tensegrity prism are defined using floor and ceil-
ing functions (for example, [1.8] =2 and [1.8] = 1)
[36]. For counterclockwise modules, the top base
cable incidences remain the same, but bar and cross
cable incidences are shown in equations 9 and 10,
respectively.
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I _ t [2/21+¢-1 _ 2_ 2
Iye =| Vet | - Fu = gy g =yl = v
VC IVC[t/Z] 1 I't/z'] 4t (10) 3t [t/ﬂ 1 2t t
Iycreya141 2 [1/2] +1+1 The set of relations in a counterclockwise prism are
: : analogous (equations 15, 16 and 17).
Iy /2] +1 2t

In a clockwise tensegrity prism, the distances from

node Ny /3141 10 Ny g, My /2142 0 Do My /710N /34
and n; to n[t/2J+t+l, n, to n[t/2J+t+2... n[t/z] to Iy, are
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Ji =20 = 0| = 5°

b= =0l =07

Jryn = lImg = n[t/2]+t”2 - b

(15)
Jr241 = lImy — n[t/z1+t+1||2 -b*
S = g =0z ye2ll> = 17
fr= 1y, - ny||* - b
S = Imgyy = nt+2”2 -
Sz = Ny — nt+3”2 -
: (16)
S = Mgy — nzt”2 -P
Jor = lImy — “t+1||2 -
2 2
Jorr = Iy ap 0 =y ll” = v;
Frvr = 0oy = B pll® =07
22
Frerryn-1 = M=l = Vo 0120
(17)

Freatym = Iy =P =i

2 2
f2t+ﬁ/21+1 = |Iny — nft/21+t+1” V2

_ 22
fa = ||n[t/2j+l —nyll" =V,

To satisfy the nonlinear system of equations, f must
be close enough to zero. A solution vector containing
the unknown top node coordinates x is created. The
Jacobian matrix J can be assembled with the deriv-
atives of f relative to the unknowns. Under a maxi-
mum number of iterations it,,,y, a Newton—Raphson
routine finds a solution to the system. The system is
considered to be impossible if it;;,y is reached and a
solution vector that satisfies the tolerance e has not
been found.

A solution vector x that solves the nonlinear system
of equations may not stabilize the tensegrity. For a given
set of constant v, to v,_;, the tensegrity is stable if v, can-
not be shortened anymore. A long v, solves the New-
ton—Raphson routine successfully, while a shorter than
necessary v, suggests an impossible structure and the
Newton—Raphson method cannot find a solution. The
form-finding routine (Fig. 3) suggested in this paper uses

@ Springer

these conditions to find the minimum v, that satisfies the
Newton—Raphson method for a given set of v, to v,_;.

This form-finding methodology can be verified by
inputting v; =...=v,_;toobtain v, = ... =v,_; = v,.
Other length combinations lead to irregular modules,
which are useful to assign an arch shape to the mech-
anism. By attaching alternate rotation modules, a
class 2 tensegrity mechanism that is capable of bow-
ing is obtained.

3.2 Relevant comments

Top base nodes may not be coplanar, which may com-
promise the final shape of the tower. This issue can be
measured by the volume formed by n_ {n; 5, n 0y
and all other top base vectors. Increments on cross cables
should be applied to minimize the sum (equation 18) of
these volumes.

21—1
V= D @ =) - (g = 0y) X (g = 1)l

=143
(18)

Researchers occasionally avoid wusing a New-
ton—Raphson routine because an inconvenient initial
guess may lead to inaccurate results. A reasonable
guess for the top nodes can be found from the nor-
mal unitary vector uy that defines the bottom base
plane. The initial guess can be calculated by scaling
uy, (equation 19) according to the bar length and add-
ing it to the base nodes. For efficiency purposes, this
initial guess strategy remains valid for other solvers,
such as the Levenberg-Marquardt method.

(Mg =M ip) X (Mg y — Dyy)
IJN =

= 19
(1 — Ngsp) X (Mg — g0l 9

4 Inverse kinematics

The form-finding strategy takes a set of cable lengths
(v, to v,) as an input and returns its resultant node coor-
dinates. A hypothetical camera or manipulator would be
placed in the upper base node coordinates. Therefore,
the mean coordinates of the upper base node coordinates
(x, v, z)ep are addressed as the end-effector of the mecha-
nism. A discrete definition of the end-effector workspace
may be obtained from a large group of cable length sets.
Also, a fifth order polynomial (equation 20) that best fits
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Newton - Raphson

X = initial guess

Sorting .

vMin =0

Set b, Ng, vMax,
itS=1

itMax, itSMax and

conv =0

vy to vy,
v, = vMax

it=1 |

Calculate f

!

Update itS = itS + 1
vMin = v,

v, = (v, + vMax)/2

itS > itSMax ?

Unconverged

Ny = reshape(x)

v, = vMax

Fig. 3 Kinematical form-finding algorithm for tensegrity prisms

the discrete data can be approximated to represent a con-
tinuous shape of the workspace.

J&.Y) =poo + P1oX + Pory + PoX” + Prixy
+ o)’ + PaoX + pyx’y

+ 01X + Py’ + Paok’ + py Xy
2.2 3 (20)
+ P X7y + pi3xXy

+poay* +psox +41x'y + ppx’y?

+ P33y + praxy* + posy’

The inverse kinematics is necessary because most
applications have a target position to place the end-
effector and require the cable lengths information
to supply the actuators. In this study, the inverse
kinematics function converts a desired end-effec-
tor position (x,y,z),, in a set of cable lengths (v, to
v,_1)- The discrete workspace data is used as train-
ing information for an artificial neural network. A

N !
Y Calculate x,,
it> itMax ?
x,=x-JIf

Calculate J

!

Calculate err = (X , X-)/X,

Update x =x, and it =it + 1

>

Y

Update itS = itS + 1

vMax = v,

vy = (v + vMin)/2

conv=1

relatively simple multilayer perceptron network [49,
50] with ten hidden layers and five neurons layer size
(Fig. 4) provides reliable results under the Bayesian

Input 10 Hidden layers Output

« >« > >

K2
B2

R

Fig. 4 Neural network diagram

@ Springer



66

Meccanica

regularization training algorithm. A data set with at
least 2000 samples is recommended.

5 Six quadruplex case
5.1 Expansion of the six quadruplex case

The general methodology is applied to a class 2
tensegrity tower formed by six levels of four struts
(t =4) prisms. Also, the base radius is half of the
bar length (r = b/2) to allow a fully flat configura-
tion before expansion. In this study, the bar length is
unitary 1 m. The nodes matrix N is defined in equa-
tion 21 as a function of the twist angle 0 < a < 7 /4
rad. The height 4 and the cross cable length v can be
calculated by applying r = 4 in equations 4 and 5.

0 —g 0 g—gcos(a) —kcos(a) gcos(a) écos(or)
N= % 0 —%6 %sin(a) —3sin(a) —%sin((x) 5 sin(a)

00 00O h h h h
(21)

The process is reproduced in the counterclockwise
module. Their bars are attached to generate a class
two tensegrity tower that can be deployed from a flat
configuration (Fig. 5). The height of the structure in
the first position depends on the diameter of the bars,
therefore a physical prototype would not be fully flat
as in this simulation. Analogously, manufacturing
imperfections could integrate irregularities in a fully
expanded prototype [51].

v=0.707 m v=0.623 m

0

y [m] x [m] y [m] x [m]

5.2 Form-finding of the six quadruplex case

To assign a manipulator shape to the tower, the form-
finding procedure is applied. The set of functions for the
clockwise and counterclockwise modules are obtained
by applyingt=4,b=11= b\/E/Z and r = b/2. The
Jacobian matrix J for the clockwise (Table 4) and coun-
terclockwise (Table 5) modules are calculated and sup-
plied to the form-finding algorithm.

The form-finding routine calculates the mini-
mum v, that satisfies the Newton—Raphson procedure
given vy, v, and v;. As a form of validation, the input
v, =V, =v3 =0.541m returns v, = 0.541m to build
a regular prism. The node coordinates used as an initial
guess for the Newton—Raphson method are found by
summing the bottom base coordinates with the normal
vector (22) that defines its plane.

_ (n5 — ng) X (n5 — ng)
[[(mg — ng) X (ng — ng)||

uy (22)
To generate a coplanar upper base, each v; and v, pair
is associated with a v; whose v, provided by the rou-
tine minimizes the volume formed by the top nodes
vectors (equation 23).

V = ||(n5 —ny) - (N5 — ng) X (n5 — ng))|| 23)

Shorter v, and v, lead to longer v; and v,. That gener-
ates an irregular module, which is useful to assign an
arch format to the tower when combined with other
prisms. Also, it is convenient to alternate clockwise
and counterclockwise modules to avoid a spiral shape
while keeping all modules under the same set of cross

v=0.563 m

ym T xm) y [m]

x [m]

Fig. 5 Deployment of a class two tensegrity tower. Dotted blue lines indicate cables that have shortened compared to the previous

stage
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cable lengths. Each configuration presented in Fig. 6
is formed by combining prisms with identical v sets.

5.3 Comparison to other form-finding techniques

The dynamic relaxation method is a popular kinematic
form-finding approach that has been extensively studied
by the community. The traditional version [33] is imple-
mented in this study, but it has been found to be less effi-
cient under equal tolerance requirements (Table 1). This
outcome is expected, as the dynamic relaxation method
relies on finite difference evaluations of differential equa-
tions, which generally require more computational effort
than solving a nonlinear system of equations. The mass
and stiffness assigned to the mechanism elements are
fictitious and can be further adjusted to improve perfor-
mance, along with a damping factor [34]. However, the
significant efficiency gap between this method and alter-
natives suggests that these enhancements may not justify
using the dynamic relaxation algorithm for this purpose
when efficiency is a priority.

In a single iteration, the Newton—Raphson method
demonstrates significantly higher efficiency. This is
expected because the Jacobian matrix is precomputed
for this nonlinear system (Tables 4 and 5), while other
methods require additional computational resources to
obtain the equivalent information. However, for a high
number of iterations, the built-in Levenberg-Marquardt
function outperforms its alternatives. This advantage
arises because the initial call to fsolve incurs additional
overhead related to initialization and memory allocation,
while subsequent calls can reuse some cached compo-
nents, resulting in faster execution times.

3 3
.2 _2
£ E
N N

1 1

0 0

1 - 2 -3 1 2
y [m] y [m]

Table 1 Performance comparison for a tolerance of 1072! in
square sum of member length error. The time elapsed measure-
ments are obtained using MATLAB version 2022a running in
a standard desktop computer (core i5-9400F 16GB RAM)

Iterations Dynamic Levenberg- Newton-Raphson
relaxation Marquardt

1 1.037 s 0.712's 0.088 s

10 9.593 s 0.786 s 0.652s

100 93.29s 1.117 s 5478 s

1000 931.7 s 4.052s 53.67 s

5.4 Inverse kinematics of the six quadruplex case

A discrete definition of the end-effector workspace
is obtained by 2555 sets of cross cable lengths. The
fifth-order polynomial, whose coefficients are defined
in Table 6, provides a continuous approximation
(R? = 0.74) of that workspace.

The circle markers in Fig. 7 represent the discrete
workspace obtained through form-finding from 2555
cable length sets. This form of presentation is quali-
tatively equivalent to the workspace shown in [52] of
a tensegrity arm formed by x-shaped rigid bodies. The
artificial neural network contains ten layers, five neurons
layer size and is trained with the Bayesian regularization
algorithm using 70% of the data for training, 15% for vali-
dation and 15% for testing. The time elapsed in the train-
ing session ranges from 30 s to 200 s, and from 4 to 12 h
to generate the data set in a standard desktop computer
(core 15-9400F 16GB RAM), both can vary due to the
stochastic nature of the methods.

Four target positions (x,y, z),g in the surface fit are
indicated in Fig. 7 by cross markers. Their x coordinates
are zero, y coordinates are —0.5m, —1.0m, —1.5m and
—2m, and z coordinates are estimated by the polyno-
mial approximation of the workspace. Their respective

Fig. 6 Arching of a class two tensegrity tower. Dashed green lines indicate cables that have lengthened compared to the previous

stage
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Table 2 Sets of cross cable

Jengths obtained by the Target  (x,y,2),,[ml Vige (M) vy, [m] vy, [m] vye [m] (. y,2),, [m]

aneje kmemaflcs funclzlon 1 (0,—05,2341) 05486 05277 05362 05537 (= 0.001, — 0.500, 2.340)
ased on neural networks 2 (0,—.0,2.182) 05572 05130  0.5300  0.5719  (0.004, — 0.985, 2.171)

and their respective v,

found by the form-finding 3 0,—1.5,1.641) 05726 04862 05205 0.6184 (= 0.002, — 1.516, 1.638)

procedure 4 0,-2.0,0329) 06101 04500 0.5135 0.6924 (- 0.013, — 1.974, 0.335)

Table 3 Relative error of the end-effector coordinates
obtained by the model from inverse kinematics functions based
on neural network, SQP and genetic algorithms

Target Neural network % SQP % Genetic
algorithm
%
1 0.0470 17.241 0.0389
2 0.7981 17.105 4.7794
3 0.7274 38.244 0.2917
4 1.4828 28.562 1.4430
25
2
1.5
E
Ny
0.5
25

25 25

(v1, vy, V), sets calculated by the trained neural net-
work are presented in Table 2. These cross cable sets are
applied in the form-finding function (configurations in
Fig. 6) to obtain v, and the actual end-effector positions
(x,¥,2),, (plus markers in Fig. 7) and remained within
a maximum relative error of 1.48% relative to the target
length (Table 3).

As an alternative approach, optimization techniques
can be employed to minimize the squared error between
the target and calculated end-effector coordinates. In this

O  Workspace [form-finding]
[ Workspace [polynomial fit]

== Neural network

® Target

Fig. 7 Discrete and continuous definitions of the workspace, target positions and outputs from the inverse kinematics function
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study, we utilize the Sequential Quadratic Programming
(SQP) [53] method and the Genetic Algorithm (GA)
[54] to solve the inverse kinematics problem. The rela-
tive errors produced by their respective inverse kinemat-
ics solutions are presented in Table 3. Both SQP and GA
routines are performed in MATLAB version 2022a with
default parameters, except for the 100 population size in
GA and 0.541m cable length as initial guess for the SQP
method. The lower and upper bounds for cable lengths
are set as 0.4m and 0.7m.

The error between the target and calculated coordi-
nates is highly nonlinear and generates numerous local
minimum points. This characteristic is adverse to the per-
formance of the SQP method, which may converge to a
local minimum that is closer to the initial guess. Com-
binations of initial guesses have been employed, but no
significant gain in accuracy has been observed in this
particular example. On the other hand, stochastic meth-
ods make them usually more efficient in escaping local
optimum points. The GA presents satisfactory relative
errors for the four targets, which suggests it could be reli-
ably employed as an inverse kinematics function for this
tensegrity arm example. The processing time is the main
drawback of these optimization techniques in this con-
text. Therefore, for applications that require a real-time
computation, a previously trained neural network is rec-
ommended to perform the inverse kinematics over SQP
or GA optimization methods.

6 Conclusions

The methodologies for deployment, form-finding, and
inverse kinematics of a tensegrity tower mechanism are
presented. The tower is formed by attaching cylindrical
modules base to base to generate a class 2 tensegrity. The
deployment of the structure from a flat configuration into
a high aspect ratio mast is detailed. A kinematical form-
finding method to determine the final form of the struc-
ture from a given set of cross cable lengths is developed.
The procedure converts form-finding into an optimiza-
tion problem and solves it by nonlinear programming.
The details of the routine are presented. A strategy that
shifts the shape of the tower into an arch is shown, and
a discrete definition of the mechanism workspace is cal-
culated through form-finding. A fifth-order polynomial
approximation is used to define a continuous surface that
fits the discrete workspace. The discrete workspace and
its cable length sets are also used as training data for an

artificial neural network with five hidden layers and five
neurons layer size. The suggested methods are functional
for any number of cylindrical tensegrity modules due to
the floor and ceiling functions, six quadruplex are used
as an example. However, poorly selected member lengths
may lock the structure before reaching a fully flat config-
uration or require more modules to produce a tower that
is capable of arching.

The inverse kinematics function generated by the
trained neural network model approximates four target
positions with a maximum relative error of 1.48% in a
very low computing time. The inverse kinematics func-
tion based on the genetic algorithm presents a maximum
relative error of 4.78% without spending computational
resources on training sessions and data sets generation.
However, each evaluation requires high computational
effort, leading to a very long computing time. Therefore,
neural networks are recommended to build the inverse
kinematics model employed real-time applications that
rely on fast responses, such as control.

Compared to other form-finding methods, this kin-
ematic approach requires more input data, such as strut
lengths and ground base coordinates. However, many
applications benefit from having constant member
lengths and do not permit variable base coordinates.
Additionally, the methodology proposed in this study
has shown greater efficiency than the traditional dynamic
relaxation algorithm when applied to the quadruplex
example. Future work will involve analysing the possi-
bility of creating an S shape by combining modules with
different cross cable sets, constructing the mechanism
and conducting experiments to further validate its effec-
tiveness as a deployable mechanism.

Funding No funding was received to assist with the prepara-
tion of this manuscript

Declarations

Conflict of interest The authors have no Conflict of interest
to declare.

Appendix A Workspace coefficients and Jacobian
matrices

This appendix contains the Jacobian matrices (Tables 4
and 5) of a clockwise and counterclockwise quadruplex
modules and the coefficients of the mechanism work-
space surface approximated by a fifth order polynomial
(Table 6).
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Table 4 Jacobian matrix for the clockwise tensegrity prism
Eq. 9 9 9 9 9 9

axs s 0z5 0xg A, 0z,
A 2(xs — x3) 2(y5 — y3) 2(zs — 23) 0 0 0
H 0 0 0 2(xg — X4) 2(y6 = y4) 2(v6 = ¥4)
f3 0 0 0 0 0 0
n 0 0 0 0 0 0
fs 2(xs5 — xg) 2(y5 — ¥g) 2z5 — 2¢) 2(xg — X5) 2(y6 — ¥5) 2(z6 — z5)
f6 0 0 0 Z(Xﬁ —X7) 2()’6 - y7) 2(16 - Z7)
fr 0 0 0 0 0 0
Js 2(xs — xg) 2(ys — yg) 2(z5 — zg) 0 0 0
1o 2(xs —xp) 2035 —y2) 225 — %) 0 0 0
fio 0 0 0 2(xg — x3) 2(y6 = 3) 2(z6 — 23)
Ju 0 0 0 0 0 0
fi2 0 0 0 0 0 0
Eq. 9 9 9 9 9 9

0x7 dy; dz5 dxg dyg g
A 0 0 0 0 0 0
£ 0 0 0 0 0 0
5 2(x7 — x) 207 =y 2z —zy) 0 0 0
fi 0 0 0 2 — X3) 20y = y2) 2z — 22)
fs 0 0 0 0 0 0
fe 2(x7 — x6) 2(v7 — ¥e) 2(z7 — 26) 0 0 0
5 2(x; — xg) 2(y7 — yg) 2(z7 — zg) 2(xg — x7) 2(ys —¥7) 2(zg — z7)
fs 0 0 0 2(xg — x5) 2(ys — ¥s) 2(zg — z5)
Jo 0 0 0 0 0 0
S0 0 0 0 0 0 0
S 20y — x4) 2(y7 = y4) 2(z7 — 24) 0 0 0
fin 0 0 0 2(xg — xy) 20y =) 2zg —z1)
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Table 5 Jacobian matrix for the counterclockwise tensegrity prism

Eq. 9 9 9 9 9 9
axs s 0z5 0xg A, 0z,
fi 2(xs — x3) 2(ys — y3) 2(z5 — 23) 0 0 0
H 0 0 0 2(xg — X4) 2(¥6 = y4) 2(v6 = ¥4)
5 0 0 0 0 0 0
n 0 0 0 0 0 0
fs 2(xs5 — xg) 2(y5 — Ye) 2(z5 — z6) 2(xg — X5) 2(y6 — ¥5) 2(z6 — 25)
fs 0 0 0 2(xg — X7) 2(ys = ¥7) 2(z6 — 27)
f 0 0 0 0 0 0
Js 2(xs — xg) 2(ys — yg) 2(z5 — zg) 0 0 0
Jo 2(xs — x4) 2(ys = y4) 2(z5 — 24) 0 0 0
fio 0 0 0 2(xg — x) 2096 —¥1) 2(2z6 = 21)
Ju 0 0 0 0 0 0
Jio 0 0 0 0 0 0
Eq. 9 9 9 9 9 9
0x7 dy; dz5 dxg dyg 07y
A 0 0 0 0 0 0
£ 0 0 0 0 0 0
5 2(x7 — x) 207 =y 2z —zy) 0 0 0
fi 0 0 0 2 — X3) 20y = ¥2) 2z — 22)
fs 0 0 0 0 0 0
fs 2(x; — x4) 2(v7 = Ye) 2z7 — z) 0 0 0
5 2(x; — xg) 2(y7 — yg) 2(z7 — zg) 2(xg — x7) 2(ys — ¥7) 2(zg — z7)
fi 0 0 0 2(xg — xs5) 2(ys = ¥s) 2zg = 25)
fo 0 0 0 0 0 0
fio 0 0 0 0 0 0
ful 2(x; = x,) 2(y; = ¥,) 227 — 22) 0 0 0
fin 0 0 0 2(xg — x3) 2(yg = ¥3) 2z — 23)
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Table 6 Surface fit coefficients and 95% confidence bounds

Coefficient Average value Confidence bounds
DPoo 2.35500 (2.28600, 2.42400)
Do —0.05612 (= 0.17760, 0.06538)
Dot —0.03196 (- 0.15540, 0.09145)
Do —0.23170 (— 0.30960, -0.15370)
P 0.01159 (—0.07329, 0.09647)
P —0.08932 (= 0.16770, -0.01089)
Do 0.06654 (—0.03178, 0.16490)
Dt 0.09260 (—0.03390, 0.21910)
Do 0.04508 (—0.08186, 0.17200)
Po3 0.01422 (—0.08598, 0.11440)
Dao — 0.06075 (— 0.07924, — 0.04225)
D3 —0.04199 (— 0.06814, — 0.01585)
D —0.19340 (- 0.22320, — 0.16360)
P13 0.02814 (0.00281, 0.05347)
DPoa —0.10140 (= 0.11970, — 0.08306)
Dso —0.01764 (- 0.03682, 0.00154)
Pay —0.01434 (—0.04473, 0.01604)
D3 —0.01338 (- 0.05251, 0.02574)
D23 —0.02329 (= 0.06270, 0.01612)
Pia —0.01637 (—0.04651, 0.01376)
Dos —0.00010 (—0.01947, 0.01926)
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7 DISCUSSION

This chapter synthesizes the findings from the preceding studies, highlighting the in-
terconnections between them and their broader implications. By examining the methodologies,
results, and potential applications, this discussion aims to provide a cohesive understanding of
how each chapter contributes to the overall research objectives. The chapter is divided into sub-
sections to address key themes, including educational purposes of the research, relevant reports

not available in the papers, and the relevance of tensegrity structures across different fields.

7.1 Education in physics and engineering

Accelerometers have been widely used by the engineering community due to their
high accuracy and frequency range. However, they can be expensive, introduce load errors in
light structures, and may require wired connections to transfer data.

The membrane (Chapter 4) and tensegrity beam (Chapter 5) works applied image
processing and presented equivalent accuracy. Recently, the use of image processing has been
increasing in popularity because cameras have become more accessible as their technology
and manufacturing have advanced. Nowadays, most people have access to cameras in their
smartphones, therefore, the experiments reported in this thesis may also serve as inspiration
for educational experiments by teachers in school laboratories, which were only possible at
universities with a dedicated set of sensors. The limited frames per second (FPS) is the main
drawback of using image processing to acquire vibration data compared to accelerometer-based
instruments. Still, cameras with higher FPS rates have been developed by many industries,
followed by a decrease in their prices, which favors image processing as a promising method
for acquiring low vibration frequencies in light structures. Additionally, tensegrity systems offer
challenges in the manufacturing process and material selection, which generates the possibility

to integrate units of study in a multidisciplinary project.

7.2 Relevant reports

The tensegrity beam paper presents a static analysis addressing large displacements.
This introduces nonlinearity of a geometric nature, as member stiffness varies with their orien-

tations, and of a force-density nature, since stiffness increases with internal stresses. However,
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it is important to clarify that the modal analysis performed on the deformed configurations is
linear. Additionally, the occurrence of slack cables is an important topic in the research commu-
nity (Kan et al., 2018b). Since cables can only withstand tensile forces, they slack if subjected
to compressive forces, introducing another form of nonlinearity that must be addressed. In the
nonlinear static analysis presented in the tensegrity beam study (Chapter 4), cable stiffness is set
to zero whenever their length becomes shorter than their natural length. To delay the occurrence
of slack cables in this study, the elastic bands are pre-stressed at the start of the experiment. This
is an improvement of the methodology in (Paiva, 2019), where elastic tendons were initially re-
laxed. In that earlier work, the tendons alternated between slack and stressed states as the guying
load increased, leading to nonlinearities in the load versus natural frequency plots. The camera
used in the static and vibration experiments has a resolution of 4160x3120 pixels, 13 MP, {/2.0
aperture, 30 fps and was placed 2.5 meters away from the structure to minimize perspective
eITors.

Section 6.3.2 Relevant comments in the form-finding paper (Chapter 6) highlights
an issue regarding the method related to the initial guess for the nonlinear programming routine.
Since there are two possible solutions, an inconvenient initial guess might not converge or lead
to an upside down module (Figure 7.1), which compromises the whole mechanism. The normal
vector suggested to provide an educated initial guess can be graphically represented in Figure
7.2. Also, section 5.2 Form-finding of the six quadruplex case mentions it is convenient to
alternate clockwise and counterclockwise modules to avoid a spiral shape. Figure 7.3 shows
that scenario, which may be useful in other applications, but is undesirable in this arm design.
The expansion equations that define the height i and vertical cable v generated by the direct
application of ¢ = 4 (four struts) lead to equations 7.1 and 7.2, respectively, and the form-finding
functions f are described in equations 7.3 and 7.4 for clockwise and counterclockwise modules,
respectively. Where, x, y and z represent the node coordinates associated to an n position
vector, and b and [ are the bar and horizontal cable, respectively. These three figures, expansion
equations and form-finding functions have been removed from the paper for conciseness, but fit

the scope of this thesis.

b2 = ||I12 — Il8||2 — h2 = b2 — (ZL’Q — ZE8)2 — (y2 — ’yg)2 (71)

v? = |ng — ns||* — v* = h? + (v2 — x5)° + (22 — 25)° (7.2)
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The neural network applied in the paper is described in terms of size and train-
ing parameters, but is not thoroughly explained. The model was developed using MATLAB’s
neural network toolbox, with training based on the Bayesian regularization algorithm. The se-
lection of these parameters was achieved through an iterative process of trial and error. Various
configurations and training algorithms available within the MATLAB toolbox were evaluated
to find a model that best balanced performance accuracy with computational effort. Bayesian
regularization minimizes a combination of squared errors and weights, adjusting the network’s
configuration throughout training to enhance generalization (Foresee; Hagan, 1997; MacKay,
1992). This regularization operates within the Levenberg-Marquardt algorithm, where back-

propagation calculates the Jacobian of performance with respect to network weights and biases.
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fo= (x4 — 26)* + (ys — yo)* + (24 — 26)* — b°
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fo = (x5 — 26)* + (y5 — v6)* + (25 — 26)* = °
fo = (6 — 22)* + (Yo — y7)* + (26 — 21)* = I° 73)
fr= (w7 —28)* + (yr —y8)* + (27 — )" = I°
fs = (s — 25)* + (ys — y5)* + (28 — 25)* = I°
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Figure 7.1 — Upside down quadruplex module.

7.3 Interconnection between papers

The methodology for nonlinear static analysis presented in Sections 2./ Static Anal-
ysis of Tensegrity Structures and 2.2 Nonlinear Static Analysis of the tensegrity beam paper
(Chapter 4) can be validated using results from ANSYS, applying the same commands used
in the membrane paper (Chapter 3). This can be done by modeling the bars and cables, in-
cluding the guying cable, with LINK180 elements. A fictitious thermal expansion constant can

be assigned to the material of the guying cable, and a negative temperature load can be ap-
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Figure 7.3 — Spiral generated by anticlockwise quadruplex modules.

plied to reduce its length, thereby generating a force on the beam tip directed along the guying
cable. However, during the nonlinear analysis, some cables may become slack, requiring the
application of conditional commands to remove their stiffness in compression. Given the com-
plexity and temporary nature of this approach, it may be more convenient to apply a load with

a constant direction, ensuring that no cable enters a slack state. This alternative will validate
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the model with significantly less effort. As an example, the first vibration mode in configura-
tion 4 is analyzed in Ansys (Figure 7.4). The deformed configuration and natural frequency
validate the numerical model. These Ansys analyzes are omitted in the paper as the results
are redundant, but the code associated with this simulation in the Ansys Mechanical APDL
platform is available in the public repository <https://github.com/FictorP/Tensegrity/blob/main/
beam/modal/torreModallmpressa.txt>. Additionally, the natural frequencies obtained from im-
age processing in both papers were determined using Kinovea as the tracking software, with the
same 30 fps camera. All experimental vibration frequencies were extracted by observing the

amplitude peaks in the frequency domain spectra.

DISPLACEMENT

Figure 7.4 — First vibration mode in configuration 4 of the tensegrity beam analyzed in Ansys.

The form-finding work in Chapter 6 was initially developed to solve the four-strut
prism only, but it became evident that a general definition for the incidence matrix could ex-
tend the method to cover any tensegrity prism stacking. This realization prompted the analytical
study in Chapter 6, which required a pause in the form-finding analysis to develop the incidence

matrices using floor and ceiling functions. The connectivity matrix contains the same informa-
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tion in a different format, allowing for straightforward formalization of connectivity definitions
and making the paper self-sufficient. Even though the paper in Chapter 5 is essential for ad-
vancing the form-finding study, its analytical scope points in a different direction, justifying its
publication as a separate manuscript.

In Section 4.2 Polynomial Interpolation of Nodal Positions of the tensegrity beam
paper (Chapter 4), a polynomial approximation is adjusted to the nonlinear static results. A
similar technique is employed to approximate the workspace of the tensegrity arm in Sections
4. Inverse kinematics and 5.4. Inverse kinematics of the six quadruplex case in the form-finding
paper (Chapter 6). While both models perform relatively quickly, they are not fully optimized
to meet real-time requirements for typical controller strategies. However, these straightforward
polynomial approximations do offer a real-time solution with an acceptable level of relative
error. This metric extends to the execution time based comparisons in section 5.3 Comparison
to other form-finding techniques.

Providing a general guide on solid mechanics of tensegrity systems is an overall
objective of this thesis. Chapters 4, 5 and 6 contribute to this goal because they complement
each other when covering statics, kinematics, vibrations and control of tensegrity and membrane

mechanisms from analytical, numerical and experimental sources in two and three dimensions.
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8 CONCLUSIONS

When properly optimized, tensegrity structures can be ahead of trusses and beams
in terms of structural efficiency. Tensegrity systems are also useful to develop mechanisms
because of their versatility in terms of shape transformation. These advantages are convenient
for space engineering applications, such as arms and towers for exploration probes and satellites.
Satellite antennas usually require a reflector surface, which can be replaced by a membrane and
combined with a tensegrity to assemble a tensegrity-membrane system. This work presents
three separate studies to assess those possibilities: a vibration study of a prestressed membrane,
a statics and vibration study of a bi-dimensional tensegrity beam that is pulled by its tip and
shows large displacements, and a kinematics study of a three-dimensional tensegrity arm that
expands from a compact shape and bows into an arch. Additionally, a theoretical contribution
covering analytical expressions to model tensegrity prisms is presented.

The membrane prototype is made of thin rubber and cut in a triangular shape. This
shape is beneficial because only one load cell is required to find the traction forces in all three
vertexes. The membrane is mounted on an aluminium frame and hung by cables attached to
its vertexes. Four load levels are applied to generate four stressed configurations. The first vi-
bration frequency is extracted by image processing in each configuration. In this experiment,
the image processing technique is convenient because the weight of the accelerometer would
significantly impact the behavior of the structure, as its mass is greater than the prototype’s.
A numerical model is implemented in ANSYS Mechanical APDL for both static and vibration
analyses. The cable and membrane are modelled by LINK180 and SHELL281 elements, re-
spectively. The stresses from the static analysis are saved and applied to the vibration analysis
with the INISTATE command. The density of the membrane is increased by a factor of 2.6
to account for the air displacement. The relative error between numerical and experimental
results remains within 5.02%, which suggests that the numerical model is accurate and can be
combined with a tensegrity to assemble a tensegrity-membrane system.

The tensegrity beam is formed by six pairs of crossed bars connected by pin joints
to assemble a class 2 tensegrity structure. The design of the bars forces the experiment to re-
main bi-dimensional. Rubber bands perform the function of the cables and are prestressed from

the start. The prototype is hung upside down and loaded by a pulling cable attached to the tip
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of the beam. The structure is subject to self weight only (configuration 0) and four load levels
(configurations 1 to 4). The vibration frequencies are extracted through image processing and
accelerometer data in each configuration. An algorithm for nonlinear static analysis is imple-
mented to model the structure and validated with the experimental results. The methodology
combines a standard finite element procedure for prestressed tensegrity systems with Euler’s in-
cremental loads technique for nonlinear analysis. The numerical modal analysis compares the
first and second vibration frequencies of each configuration with both experimental techniques
and remains within a relative error of 7%. The numerical model then calculates all intermediate
configurations from 1 to 4 and extracts their first ten natural frequencies. Higher loads cause
slackness in a few cables, which contributes to a lower stiffness and higher natural frequencies.
However, higher loads also reduce the effective length of the structure and increase the stresses
in the taut cables, which contributes to a higher stiffness and, therefore, higher natural frequen-
cies. The combination of those phenomena is verified by this study to cause higher natural
frequencies. Even though the algorithm is efficient, a real time application would require faster
evaluation of the static configurations, therefore a polynomial approximation is employed to
predict the trajectories of all nodes, and the coefficients are presented in matrix form. Propor-
tional damping parameters are estimated and a ., control is applied as an example that the
model is valid. The MATLAB scripts associated with the static and vibration analyses can be
publicly retrieved at <https://github.com/FictorP/Tensegrity/tree/main/beam>.

Most works involving tensegrity prisms apply triplex or quadruplex modules, which
are formed by three or four struts, respectively. Prisms with more than four struts should be
explored by the scientific community, especially in multidisciplinary studies, but their node
and connectivity matrices may offer higher complexity to derive. The analytical definitions
of connectivity, incidence and node matrices provided in this thesis cover prisms with four or
more struts and might be useful to insipire more research involving prisms with five or more
bars. Also, these definitions may be key to adapt methods that are functional only for prisms
with a fixed number of struts, and generalize them for a larger scope. They are originated from
geometry and pattern recognition. Examples for four to seven struts prisms are provided.

The tensegrity arm is formed by six quadruplex modules, but the presented method-
ology is valid for any stacking of cylindrical tensegrity modules because it applies the definitions
that use floor and ceiling functions described in the analytical study. The modules are capable

of shrinking into a flat configuration and expanding into a three-dimensional shape. They are
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stacked bar to bar to assemble a high aspect ratio class 2 tensegrity tower. This transforma-
tion from a flat system to a high tower is addressed as the first stage, while the second stage is
associated with transforming the tower into a bowed structure.

The modules remain regular in the first stage, which leads to a simplified kinematics
methodology. The bowing movement created in the second stage of the study relies on irregular
modules, therefore, requiring more sophisticated kinematics methodologies. A form-finding
using the incidence definitions with floor and ceiling functions is adjusted and implemented to
calculate this mechanism. Most member lengths are provided, and the algorithm finds the length
of the missing element. This technique can be understood as an optimization problem because
the structure reaches stability when the cables cannot be shortened anymore. Therefore, the
length of the last cable must be minimized. The Newton-Raphson method is used to solve the
nonlinear system of equations and nonlinear programming is applied to minimize the error. This
form-finding method is compared to the dynamic relaxation algorithm and the Newton-Raphson
procedure is compared to the MATLAB inbuilt Levenberg-Marquardt routine. The Levenberg-
Marquardt based form-finding method has shown to be more efficient for a large number of
iterations, because it reuses cached data, while the Newton-Raphson version outperforms it for
a small number of iterations due to the pre calculated Jacobian matrix.

Regardless of the minimization method, the form-finding procedure calculates the
node positions (and by extension, the end-effector position) for a given set of cables, but most
applications have a target position and require the associated cables set in real time to feed
their actuators. A large collection of cable sets is used to calculate an equally large collection
of points within the workspace of the mechanism end-effector. The workspace surface is ap-
proximated by a polynomial fit that contains all the possible positions the arm can reach. This
inverse kinematics problem is solved by a previously trained neural network, and by minimiz-
ing the squared error using the genetic algorithm and sequential quadratic programming. The
results indicate that the genetic algorithm based inverse kinematics function provides results
with a maximum error of 4.78%, but the result is not obtained in real time. The MATLAB
scripts associated with the form-finding method and inverse kinematics are publicly available
at <https://github.com/FictorP/Tensegrity/tree/main/formfinding>. For applications that require
fast responses, the neural networks provide outputs with a maximum error of 1.48% with the
drawback of requiring a previously calculated data set of end-effector positions associated with

their respective cable lengths and training sessions. This design can be applied as a transportable
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bridge to aid accessing disaster areas or as a manipulator to carry a camera on top of a space
exploration probe.

The studies presented in this thesis are advances of the research developed in (Paiva,
2019). The prestressed membrane study fills the gap between the previously suggested applica-
tion of a tensegrity-membrane system to assemble a satellite reflector antenna. The tensegrity
beam prototype is a substantial improvement of the previous manipulator, which did not have
any feature to avoid the occurrence of slack cables or in depth motion. The tensegrity arm
design builds upon the expansion study of a single module and develops a full kinematical
form-finding method. These improvements are relevant for achieving the individual objectives
of the four presented projects and, by extension, the overall goal of demonstrating the viability
of tensegrity and membrane systems. This is accomplished by subjecting them to a broad set of
solid mechanics studies, including two- and three-dimensional statics and dynamics through an-
alytical, numerical and experimental approaches. The advantages of tensegrity systems justify
their application in engineering structures and mechanisms. However, the industry is relatively
conservative regarding novel designs and solutions. This thesis contributes to the collection of
methodologies and experiments, which is a necessary step to build the acceptance of tensegrities
among the community.

Based on the literature review and the concluding remarks, the following topics are

relevant future work directions:

* The membrane prototype does not feature catenary edges, which causes wrinkling in high

stresses. In an advanced iteration, the prototype and model should present catenary edges.

* Both numerical models of membrane and tensegrity have been validated with experi-

ments. These models should be combined to assemble a tensegrity-membrane system.

* Analytical definitions of node, incidence and connectivity matrices for prisms assemblies
are still missing. Finding general formulae for prism assemblies using the definitions
provided for single modules is a natural sequence of this work and an open challenge for

the community.

* The experimental work with the beam is planar, but the methodology can be applied to
three-dimensional systems. The 3D tensegrity arm design should be built and experi-

mented under the same methodologies of the planar tensegrity beam.
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* The tensegrity arm suggested is grounded and would require a moving base to travel, this
feature limits its range of applications. Therefore, the methodologies proposed should be

applied to design a tensegrity robot that can crawl or roll.

» Tensegrity systems frequently feature in biological studies, and the methodologies devel-

oped in this thesis should be applied to support multidisciplinary research.
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APPENDIX A - KRONECKER PRODUCT

If His a: x j matrix and G is a a x ( matrix, the Kronecker product H ® G of

dimensions i« x j[3 is defined in equation A.1.

HHG ngG cee Hle
HyG Hy»G --- HyG
HoG— 2.1 2.2 2'] _
HyGu HinGia -+ HiGag
H11.G21 H11.G22 s Hll'G2B HuG - Hy,G
= Hi1Goyr HiGao -+ HiuGog (A.1)
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