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Abstract 

This thesis presents a novel urban electromobility modeling and simulation in the integration framework of 

EV-transportation-land use-energy to predict the spatial-temporal EV charging power demand of the urban 

area and optimal planning of the urban charging infrastructures.   

In the first part of the thesis, the urban spatial model is constructed based on real-world data to provide the 

spatial platform for EV mobility simulation. To this end, the actual urban street network is built based on 

OpenStreetMap data and is integrated with urban land use constructed based on GIS data of the urban area. 

A new tool is developed to extract traffic data of all street segments from the Google map traffic layer to 

simulate the urban streets traffic.  

In the second part, the EV user’s travel behavior, including driving and charging behaviors, is modeled by 

considering the interdependencies between EV user and EV, transportation system, land use, and energy 

system. The EV user’s driving behavior includes the user’s decisions on the spatial-temporal attributes of 

the EV trip (i.e., purpose, departure time, destination, and route of the trip) and the driving pattern (i.e., 

driving speed on the trip route ) are modeled based on user’s preferences, EV technical attributes, and EV 

energy consumption in accordance to the dynamic urban traffic and spatial feature of the urban area. The 

EV user’s charging behavior that implies a decision-making process on the charging, charging 

postponement, delay charging at the destination location, or en-route charging on the trip route is simulated 

based on the user’s location priority and range anxiety, required energy for the next trip, etc. 

In the third part, each EV trip, including driving and subsequent charging or parking, is simulated via 

developed models of user’s travel behavior in integrating the EV-transportation-land use-energy. 

Accordingly, the EV’s daily travels are simulated in the multi-location multi-purpose travel pattern so that 

the user departs from home at a specific time of the day, makes several trips between different locations, 

and finally returns home. The daily travels simulation of an EV leads to predicting the spatial-temporal 

daily charging demand of the EV in the urban area. The daily travels of all EVs in the urban area are 

simulated to forecast the spatial-temporal urban power demands, including the slow charging demand at 

land-use blocks and fast charging demand at fast charging station candidates.  

In the fourth part, the slow and fast charging infrastructures planning models are developed to determine 

the site and size of slow and fast charging stations according to the predicted slow and fast charging power 

demands. The slow charging piles number of each land-use block is determined based on the daily power 

demand of the land use. The optimal number of fast charging stations are selected from the candidates to 

meet the fast charging demand of the urban area. The optimal number of chargers at the selected fast 

charging stations is determined regarding their daily charging power profiles. 

Keywords: electric vehicle, urban electromobility, EV-transportation-land use-energy, driving and 

charging behaviors, spatial-temporal charging demand. 



Resumo 

Esta tese apresenta uma nova modelagem e simulação de eletromobilidade urbana no quadro de integração 

de EV-transporte-uso da terra-energia para prever a demanda de energia de carregamento de VE espaço-

temporal da área urbana e o planejamento ideal das infraestruturas de carregamento urbano. 

Na primeira parte da tese, o modelo espacial urbano é construído com base em dados do mundo real para 

fornecer a plataforma espacial para simulação de mobilidade EV. Para este fim, a rede viária urbana real é 

construída com base nos dados do OpenStreetMap e é integrada ao uso do solo urbano construído com base 

em dados GIS da área urbana. Uma nova ferramenta é desenvolvida para extrair dados de tráfego de todos 

os segmentos de rua da camada de tráfego do Google map para simular o tráfego de ruas urbanas. 

Na segunda parte, o comportamento de viagem do usuário EV, incluindo comportamentos de direção e 

carregamento, é modelado considerando as interdependências entre o usuário EV e EV, sistema de 

transporte, uso do solo e sistema de energia. O comportamento de direção do usuário EV inclui as decisões 

do usuário sobre os atributos espaço-temporais da viagem EV (ou seja, propósito, hora de partida, destino 

e rota da viagem) e o padrão de direção (ou seja, velocidade de direção na rota de viagem) são modelado 

com base nas preferências do usuário, atributos técnicos EV e consumo de energia EV de acordo com o 

tráfego urbano dinâmico e características espaciais da área urbana. O comportamento de carregamento do 

usuário EV que implica um processo de tomada de decisão sobre o carregamento, adiamento de cobrança, 

atraso de cobrança no local de destino ou cobrança em rota na rota de viagem é simulado com base na 

prioridade de localização do usuário e ansiedade de alcance, energia necessária para a próxima viagem, etc. 

Na terceira parte, cada viagem EV, incluindo a condução e subsequente carregamento ou estacionamento, 

é simulada por meio de modelos desenvolvidos de comportamento de viagem do usuário na integração do 

EV-transporte-uso da terra-energia. Consequentemente, as viagens diárias do EV são simuladas no padrão 

de viagem multi-local e multiuso para que o usuário saia de casa em um horário específico do dia, faça 

várias viagens entre locais diferentes e, finalmente, volte para casa. A simulação de viagens diárias de um 

EV leva a prever a demanda de carregamento diário espaço-temporal do EV na área urbana. As viagens 

diárias de todos os VEs na área urbana são simuladas para prever as demandas espaço-temporais de energia 

urbana, incluindo a demanda de carregamento lento em blocos de uso do solo e a demanda de carregamento 

rápido em candidatos a estações de carregamento rápido. 

Na quarta parte, os modelos de planejamento de infraestrutura de carregamento lento e rápido são 

desenvolvidos para determinar o local e o tamanho das estações de carregamento lento e rápido de acordo 

com as demandas de energia de carregamento lento e rápido previstas. O número de pilhas de carregamento 

lento de cada bloco de uso do solo é determinado com base na demanda de energia diária do uso do solo. 

O número ideal de estações de carregamento rápido é selecionado entre os candidatos para atender à 

demanda de carregamento rápido da área urbana. O número ideal de carregadores nas estações de 

carregamento rápido selecionadas é determinado em relação aos perfis de potência de carregamento diários. 

Palavras-chave: veículo elétrico, eletromobilidade urbana, EV-transporte-uso do solo-energia, 

comportamentos de direção e carregamento, demanda de carregamento espaço-temporal. 
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Chapter 1 

 

 

1. Introduction 

 

1.1.Background 

 

The history of the invention of the Electric Vehicle (EV) dates back to the early nineteenth 

century in 1835 when a small-scale electric car was built that powered by non-rechargeable 

primary cells. However, in the twentieth century, Internal Combustion Engine Vehicle (ICEV) 

became very popular in the car manufacturing and transportation system, owing to the 

abundance and cheapness of crude oil. Excessive use of fossil fuel vehicles has increased carbon 

emissions worldwide, and the world has gradually become aware of the adverse effects of 

greenhouse gases. Urban transport systems alone account for a large portion of total greenhouse 

gas (GHG) emissions in cities, and many countries around the world are promoting 

environmentally sustainable transport to achieve energy-efficient and low-carbon development 

in cities. However, the rapidly growing demand for mobility and private-vehicle ownership in 

the urban areas have counteracted efforts to reduce GHG and other air pollutants. In order to 

reduce GHG emissions, the automobile industries and transportation systems trend has shifted 

from fossil fuels to clean energy fuels. EVs are considered a promising technology and an 

attractive solution for a low-carbon future. In recent years, many automakers have made 

significant efforts to transform from the ICEVs to EVs that offer reliable green solutions. The 

significant advantages of using EV are: 

• Zero-emission results in a cleaner environment. 

• The high-efficiency performance leads to maximum use of resources such as 

regenerative braking. 

• Flexibility to charge at any location equipped with an electric power supply such as 

home, workplace, and public charging facilities. 



• Ability to charge with renewable energy, especially solar energy. 

• Noise-free pollution due to the use of fewer non-moving parts. 

Although the EV offers a clean and quiet operation, it still suffers from limited battery capacity, 

long recharging time, higher costs, insufficient access to electricity in urban areas. Due to the 

many governments establishing increasingly stringent and ambitious targets supporting EV 

adoption, the deployment of EVs has been growing rapidly worldwide. In this context, some 

policy interventions like ICEVs bans and government purchase subsidies, improving EV 

technologies, and introducing new EV models by automotive industries can encourage people 

to buy EVs.  As such, with the ambitious goals set by governments and continuous 

improvements in industrial technology, it is expected that the penetration of EVs will be 

increased rapidly across the world. Nevertheless, it is expected that EVs could gain significant 

market penetration in the near future, especially in urban areas. Hence, since transport 

electrification offers an option for a sustainable and decarbonized transport sector, it is essential 

to investigate the energy demand of EVs in the urban transportation system. In this context, 

electromobility is becoming a significant alternative for conventional mobility systems, aiming 

to reduce emissions of harmful substances into the urban environment by reducing the number 

of ICEVs and deploying EVs in the transportation system, especially in the urban areas 

characterized by high population density and heavy traffic. Electromobility is a concept that 

refers to the usage of the electrified transportation system. Therefore, an electromobility system 

should at least include the EVs and the charging facilities system. Electromobility is not just 

about technology but also acceptance within the population, hence the attempt of car 

manufacturers to produce energy efficient EVs and the government’s subsidies can encourage 

the public to buy EVs and lead to electromobility expansion. However, one of the main reasons 

people accept EVs is the easy access to suitable charging facilities. In general, the charging 

facility can be deployed in homes, workplaces, and public locations. All EV owners can access 

public charging facilities, while their access to home and workplace charging is limited and 

depends on their residency and occupation location. However, charging location choice by EV 

users is determined by their interaction with charging facilities in different activity locations so 

that users meet several locations in a day to perform their activities. 

Moreover, concerning their access to charging facilities in different locations, they may 

prioritize a charging location over others regarding factors such as personal mobility behavior, 

charging price, convenience, and personal preference. Hence, locating charging infrastructures 

in the future of urban areas cannot be independent of charging facility types at different 



locations and the charging behaviors of EV owners.  Therefore, predicting the EV charging 

demands based on daily EV users’ travel behavior, including driving and charging behaviors, 

is essential to locating adequate charging infrastructures in the urban areas, which ultimately 

leads to the spread of urban electromobility. 

 

1.2.Research motivation  

 

Due to the much higher efficiency of EVs than ICEVS and the zero-emissions property of EVs, 

transport electrification became the political agenda of governments worldwide. Thus, it is 

expected that the large-scale EV penetration in urban transportation will be realized in the near 

future. The large number of EVs brings high EV charging power demand in the urban areas, 

making the need to construct charging facilities in different locations of the urban area. 

However, the blind construction of charging infrastructures causes problems such as waste of 

land and financial resources and irregular fluctuations in the urban power grids. Predicting the 

spatial-temporal distribution of EV charging power demands can help solve these problems and 

design the charging infrastructures scientifically. In order to forecast urban charging power 

demand and scientifically design the charging infrastructures in the urban areas, EV mobility 

should be modeled accurately in the urban environment. Different systems are involved in urban 

mobility, such as EVs, EV users, the urban transportation system, urban activity locations, 

urban traffic patterns, and urban power grid.  Due to the dynamic and interdependent nature of 

the different systems’ behavior, the models must consider all influencing factors relevant to 

urban electromobility. In this context, it is essential to simulate urban electromobility by taking 

into consideration the travel behavior of the EV users, EV technical attributes, urban 

transportation system characteristics, urban traffic patterns, urban geographic features, urban 

energy systems, etc. Such simulation enables to achieve accurate forecasts of the spatial-

temporal charging power demand at different locations of the urban area and plan the adequate 

charging facility to meet the urban charging demand.  However, the available studies in the 

modeling and simulation of the EV mobility and EV charging demand prediction have proposed 

simple models that ignore the main influencing factors on urban electromobility. As such, the 

proposed models are not suitable to simulate urban electromobility. 

Due to the complexity of the urban transportation system modeling, the previous studies have 

not considered the urban street network and urban traffic simulations in their proposed models. 



In this regard, two studies groups are distinguished; one group that totally ignored the urban 

street network and another group that used a small graph as the street network to model EV 

mobility. 

In the first group of studies, a virtual network was assumed that the EV mobility parameters 

(e.g., driving time, driving distance, etc.) are directly extracted from the travel survey data of 

conventional cars or modeled probabilistically based on the travel data. Furthermore, the traffic 

congestion of streets highly affects EV mobility, EV energy consumption, and the EV charging 

demand. While most studies did not consider the traffic influence, few studies assumed fixed 

traffic congestion value for their virtual network or simple graph. By adopting a simple speed-

flow model, the constant speed was estimated for EV driving. Whereas the urban traffic is 

dynamic and stochastic, and EV driving speed should be modeled in a stochastic and dynamic 

framework to represent the stochastic nature of EV driving in urban transportation systems. 

Thus, the oversimplification in modeling EV mobility in studies cannot result in an accurate 

EV charging demand. Consequently, the proposed models are not suitable for urban 

electromobility simulation. 

Moreover, there is a need for an actual dynamic model of urban traffic and taking into account 

the dynamic traffic on EV mobility regarding the speed limits and traffic congestion of the 

urban street network.  One of the main influencing factors on EV charging demand is the EV 

consumption on EV driving. However, constant energy consumption per kilometer (KWh/km) 

is assumed in most existing studies. The EV energy consumption on each trip is calculated 

based on this assumed consumption rate and a trip distance randomly extracted from a PDF 

calibrated based on travel survey data. This overestimation of EV energy consumption results 

in inaccurate prediction of EV charging demand. Thus, the obtained results of these studies 

cannot represent the realistic EV energy demand in urban areas.  However, besides the technical 

characteristics of EV’s motor and powertrain, its energy demand depends on the street network 

topology and traffic conditions. A detailed model of the EV power train is required to calculate 

EV energy consumption while driving on the street with estimation speed, 

acceleration/deceleration according to street attributes, and dynamic traffic conditions. 

In addition to the features mentioned above of urban mobility, EV mobility cannot be modeled 

independently of the EV users’ travel behaviors. Even though besides the complexity of the 

urban transportation system and urban traffic pattern, the EV users’ travel behavior adds another 

complexity in the urban electromobility simulation. Most studies used simple models to reduce 

the complexity of EV mobility simulations complexity by ignoring the EV users’ behaviors or 



representing a simple model of users’ behaviors. Therefore, these studies are not applicable for 

urban electromobility simulations since the main affecting factors on urban mobility were 

ignored. Hence, the results that are achieved by applying the proposed models for the urban 

areas are not accurate enough to be considered by city policymakers to design the future 

roadmaps of urban transportation and urban energy systems. Therefore, while EVs are not yet 

sufficiently integrated into the urban transportation system, comprehensive modeling and 

simulation of urban electromobility are required to predict the urban charging demand and 

planning urban charging infrastructure by taking into account the influencing factors on urban 

electromobility.   

 

Due to the limited knowledge and experiences of EV traveling in the urban areas and the 

absence of historical data about EV users’ travel behaviors, this research aims to develop 

models of realistic human travel behaviors in the actual urban environment to predict the slow 

and fast charging demands of EVs in the urban area in a multi-location and multi-purpose 

framework in different urban land use and planning the slow and fast charging infrastructures 

for providing a vision of urban charging energy demand to develop and implement urban energy 

management solutions for its sustainable future. 

 

1.3.Scope and Objectives 

 

This thesis addresses the issues related to urban electromobility modeling and simulation to 

achieve accurate EV charging demand prediction to design charging infrastructures in the urban 

area. In this context, the interactions between EV users with the EV, transportation system, land 

uses, and energy system in the urban area are analyzed and modeled, leading to simulating daily 

EV mobility in the urban area. The EV mobility on the urban transportation system eventually 

results in spatiotemporal EV charging demand at the urban street network and urban land-uses, 

which provides the opportunity to determine the optimal location and size of charging 

infrastructure. 

In a nutshell, the thesis aims to simulate urban electromobility by modeling the EV user driving 

and charging behaviors in integrating the EV, transportation system, land-use, and energy 



systems to predict spatial-temporal EV charging demand and slow/fast charging infrastructure 

planning in the urban area. The main objectives of this research are summarized below. 

(1) Constructing the actual urban spatial model includes the urban street network and land 

use to provide a simulation framework to model the spatial attributes of EV mobility in 

the urban area. 

(2) Creating a new tool to extract the real-world city-scale traffic data from the Google map 

traffic layer to model the dynamic traffic pattern of the urban street network.  

(3) Developing a new simulation framework of EV mobility based on the interactions 

between EV, transportation system, land use, and energy system of the urban area to 

simulate the urban electromobility. 

(4) Modeling the EV users’ driving behavior to simulate the EV driving on the urban street 

network in accordance with the dynamic traffic of urban streets and streets topology. 

(5) Modeling the EV users’ charging behavior in accordance with the user’s preferences 

and possible access to charging facilities in the home, workplaces, and public locations 

in the urban area to emulate the realistic human decision-making process on EV 

charging in the urban electromobility simulation. 

(6) Forecasting the spatial-temporal distributions of urban charging power demand based 

on EV users’ driving and charging behavior simulation in the integration of EV-

transportation-land use-energy. 

(7) Planning the slow and fast charging infrastructures in the urban area regarding urban 

energy system interaction with EV users, transportation system, and land use according 

to the slow and fast charging power demand predicted by urban electromobility 

simulation. 

The thesis objectives are described briefly in the following. 

 

1.3.1. Integration of transportation and land use 

 

Despite the existing complexities in urban spatial modeling, a detailed model including the 

actual urban street network and land use is needed to achieve the electromobility objectives. In 

this regard, extensive data of urban street segments and land uses is required for the spatial 

modeling of the urban environment. Fortunately, the open-source data provided by the online 



map provider and the city’s municipality are reliable data to model the urban areas. In this 

regard, the GIS data of the study area are collected to model the street network and land use 

integration. In this framework, the land use includes the locations (e.g., houses, workplaces, 

shopping malls, etc.) where EV users perform their activities. The spatial distribution of 

activities in different urban land uses creates the need for travel on the urban area to cover the 

distance between the locations of activities. Transportation networks provide the connectivity 

between activities and consist of different street segments which are hierarchical by nature, like 

the motorway, primary, secondary, etc. Intending to model the spatial aspects of EV mobility 

in the urban area, the urban street network and land-use integration enable to identify of the 

possible destination locations and route of EV trips, in which the EV users can decide the trip’s 

destination and route based on their preferences and according to the limitations imposed by 

the urban traffic. 

 

1.3.2. Integration of transportation-land use-energy 

 

The main objectives of urban electromobility simulation are EV charging demand forecasting 

and charging infrastructures planning. EVs’ energy consumption of driving on the street 

network leads to charging demands that are met through the charging facilities located at street 

networks or deployed in different urban land-uses. Hence, the charging infrastructures link the 

urban energy system with the integrated urban transportation and land-use system. Integration 

of the energy into transport-land use integrated model could improve the representation of 

energy issues in the urban electromobility, such as EV charging demands and charging 

infrastructures deployment in the urban area. The prediction of spatial-temporal distributions 

of urban charging demand provides a reference for locating the charging facilities in the land-

uses or at the street network. Therefore, to achieve urban electromobility purposes, EV mobility 

in the urban area should be modeled by taking into account the interactions between EV users 

with the transportation system, land uses, and energy system. The integration framework of 

transport-land use-energy allows EV users to satisfy their travel demand and charging demand 

in their daily itinerary. 

 

 



1.3.3. EV user interaction with the transportation-land use-energy integration 

 

In the daily itinerary, the EV users travel on the street network between their activity locations 

and may decide to charge their EVs with the charging facilities at homes, workplaces, or public 

locations. The interactions of EV users with transportation-land use-energy systems refer to the 

ways that EV users pursue to travel on the street network between different activity locations 

in the urban land uses as well as utilize the charging facilities, which is interpreted as EV user’s 

travel behavior including driving, charging/parking behaviors. One of the objectives of this 

research is to develop models to simulate the EV user’s travel behaviors in the integrated 

framework of EV-transportation-land use-energy.  

 

1.3.4. EV user’s travel behavior  

 

An EV trip includes driving and charging or parking afterward. In other words, the EV has 

different states over travel, including driving, charging, or parking states.  Travel behavior 

refers to the decision-making process of the EV user during the travel regarding the state of the 

EV. In each state, the EV user decides on the corresponding parameters based on his/her 

preferences, the existing conditions, and information on the urban environment.  Besides, it is 

assumed that EV users are rational and have sufficient information about the feasible 

alternatives for making a decision. 

 

1.3.4.1.EV user’s driving behavior 

 

The users’ driving behavior refers to their decision-making on the related parameters of the trip 

(i.e., trip purpose, departure time, destination location, trip route) and the driving pattern (i.e., 

EV’s speed profile or driving cycle). EV users decide the trip parameters based on their 

preferences and by regarding the urban streets’ topology, dynamic traffic conditions, and 

activity location distributions in urban land use. Currently, there are very few EVs in the urban 

transportation system, and it isn’t easy to get the real-world EV users’ travel behavior and 

driving pattern data. But it is acceptable to assume that the EV users will more or less have the 



same driving pattern as the conventional cars. Therefore, travel survey data and driving speed 

data of conventional vehicles are used to simulate the driving behavior and driving patterns of 

EV users. 

EV user’s driving behavior modeling aims to simulate the user’s decision-making on purpose, 

departure time, destination location, and route of each trip. Besides, the purpose of driving 

patterns modeling is to generate the instantaneous driving speed on the predicted trip route 

under the dynamic traffic pattern of the urban street network. Contrary to the previous studies 

that neglect the comprehensive model of user’s driving behavior, this research aims to represent 

the realistic model of EV driving, which mainly affects the EV energy consumption, EV 

charging demand, and finally, the urban charging demand. 

 

1.3.4.2.EV user’s Charging behavior 

 

The objective of users’ charging behavior modeling is to determine their decisions on the desire 

to charge, selecting the charging mode, and selecting the charging location. Due to the 

stochastic nature of EV mobility and energy consumption, there is the possibility that the EV 

user decides to charge EV at any time of day and in any location of the urban area. Hence, the 

EV users charging behavior that highly affects the spatial-temporal EV charging demand 

distributions should be modeled realistically by taking into consideration the main influencing 

parameters on users’ decisions. The main influencing parameters include charging location 

type, State of Charge (SoC) of EV’s battery, required energy for the next trip, user’s range 

anxiety, charging convenience, price, and user’s preferences. 

Owing to the lack of empirical data on the EV users’ charging behavior, users’ decision-making 

process in response to the mentioned influencing parameters is modeled to emulate the realistic 

human behavior. To this end, by considering the availability of charging facilities in different 

activity locations, the users are classified, and for each user group, the charging behavior is 

modeled separately. Therefore, in contrast to the studies that assumed simple rules for charging 

EV at fixed locations, this research intends to develop charging behavior modeling in a multi-

purpose multi-location framework for achieving the accurate prediction of spatial-temporal 

urban charging demand distributions. 

 



1.3.5. Spatial-temporal charging demand prediction 

 

One of the main objectives of the electromobility simulations is to predict the EV charging 

demands. In some of the studies, without considering the dynamic nature of EV mobility, the 

charging load in a charging station is estimated by assuming the arrival flow to the station by a 

Probability Distribution Function (PDF) like Poisson distribution. Contrary, some studies 

predict the charging demand load by considering simple trip chains for daily trips for EVs in a 

virtual network. The forecasted charging load distributions in these studies are not accurate due 

to the oversimplification of EV mobility. In order to predict more accurate charging load 

demand in the urban area, this research simulates the daily EV mobility in a multi-purpose and 

multi-location framework into EV-transport-land use-energy integrated context based on the 

users’ travel behavior, dynamic urban traffic, actual EV energy consumption, etc. For this 

purpose, the daily trips of EVs in the urban area are simulated in the mentioned frameworks to 

predict the time, location, power demand of each charging event of each EV at the urban 

charging locations. Accordingly, the daily spatial-temporal charging power distributions of 

urban locations are obtained.  

 

1.3.6. Slow and fast charging infrastructures planning 

 

Besides the spatial-temporal charging demand prediction of urban charging demand prediction, 

the other main objective of the urban electromobility simulation is the slow and fast charging 

infrastructures planning in the urban area. In the urban electromobility simulation, three 

charging location types are distinguished; home, workplace, and public.  The EVs charging at 

homes and workplaces can only be with slow charging facilities. In contrast, the slow and fast 

charging modes are possible for public charging of EVs. The slow charging demands of EVs at 

homes and workplaces are met by their dedicated charging piles. Hence, the charging 

infrastructures planning problem is not implemented for the home and workplaces. Thus, the 

charging infrastructure planning aims to find the size and site of slow and fast-charging stations 

to meet the slow/fast public charging demand predicted by the urban electromobility simulation. 

EVs’ public slow charging demands are met locally by the slow charging piles located at user’s 

activity locations or at the nearby public parking lot within an accepted walking distance (less 



than 300meter). Thus, the slow charging facility planning is performed at the land-use block 

level. The land-use-based slow charging planning is selected because the slow demand’s spatial 

attributes are ignored in point-based slow charging planning. The further drawback of point-

oriented models is the partial coverage problem. However, the use of land-use blocks eliminates 

the drawbacks. Thus, the spatial-temporal distributions of public charging load predicted by 

electromobility simulation are used to determine the required charging piles number via land-

used based planning.  

Contrary the slow charging, to satisfy the fast charging demand of EVs, the Fast Charging 

Stations (FCS) are planned according to the distribution of public fast charging load 

distributions and the structure of the urban street network.  In this regard, the streets with a large 

amount of traffic are considered the best candidates for locating the FCSs. Hence, the actual 

urban street network and urban traffic model provide the opportunity to find the candidate street 

segment for FCS locating. The arterial streets with heavy daily traffic are identified as candidate 

street segments. The midpoints of the candidate street segment are selected as FCS candidate 

locations. The optimal FCS planning is often based on the multi objective optimization methods 

that lead to taxing computational efforts for urban transportation networks. As such, this 

research aims to utilize an evolutionary heuristic approach to find the optimal site and size of 

FCS to meet the fast changing demands of EVs in the urban area. To this end, at the first step, 

the required FCS candidate locations that cover all urban street networks are determined so that 

the geographical distance of each node of the urban street network (as a potential fast demand 

point) to the nearest FCS candidate be less than the maximum detour distance considered for 

planning. At the second step that is performed during the electromobility simulation, each EV 

with fast charging demand is assigned to the nearest FCS candidate by assuming that each FCS 

has enough chargers to charge all incoming EVs. The third step, called the reallocation step, is 

implemented at the end of electromobility simulation when the daily charging demand and the 

number of EVs assigned to the FCS candidate are obtained. At this step, the FCS candidates 

are combined, EVs reallocated to other FCSs while satisfying the planning objectives (e.g., 

minimizing the number of FCSs and economic objective) and constraints (e.g., EV reallocated 

to other FCS if their distance is less than maximum detour distance). At the fourth step of 

planning, a capacity constraint is determined by both technical and economic objectives. 

Considering a finite capacity, the service level is then defined based on the waiting times of the 

EV users at each FCS. At this step, the number of required chargers for each selected FCS is 

established considering the arrival times of the EVs. Therefore, the optimal sizing solution is 



obtained based on a trade-off between the waiting time and the number of active simultaneous 

chargers. 

 

1.4.The major contributions of the thesis 

 

The relatively high complexity of real street networks and traffic conditions of urban areas, the 

high diversity of urban land uses, and the complicated travel behaviors of EV users are expected 

to pose serious challenges to employing the models and approaches of existing studies in urban 

electromobility modeling and simulation. To address the existing challenges, this thesis 

proposes a novel urban electromobility simulation that compared with existing studies the main 

contributions are as follows. 

(1) The actual urban street network graph is constructed based on real-world geospatial 

street data of OpenStreetMap (OSM), consisting of all street types such as the trunk, 

motorway, primary, secondary, tertiary, residential, etc. Although some studies have 

used a simple graph to show the network of urban streets with a few types of roads, 

the graph of the entire actual street network has not been used to simulate EV 

mobility in the urban area. Construction of the actual street network facilitates the 

urban traffic simulation, EV user driving pattern models, EV energy consumption 

model, etc. 

(2) Collecting the traffic data of all urban street segments is almost impossible. To 

overcome the difficulty of collecting city-wide traffic data, a tool is developed to 

extract real-world traffic conditions of the streets from Google Map Traffic Layer 

(GMLT). To this end, the GMLT images of the study area are captured, and by 

processing the captured images, the traffic state of each street segment is specified 

according to the traffic colors of the streets provided by GMLT. 

(3) Besides EV technical aspects, driving speed, and acceleration/deceleration, the EV 

driving energy consumption depends on the slopes of streets. In this regard, the 

constructed actual urban street network provides the opportunity to obtain the slope 

of streets. In this thesis, the open-source Digital Elevation Model (DEM) data 

provided by the Shuttle Radar Topography Mission (SRTM) of NASA is used to 

calculate the average slopes of all street segments of the urban area. 



(4) The polygon-based model of urban land use is created based on the GIS-land use 

data of the study area. The urban land-use blocks and urban street networks are 

integrated to represent the urban spatial model. The integrated street network and 

land use allow modeling the spatial characteristics of EV mobility in the urban area 

that is ignored in the previous studies. 

(5) To overcome the oversimplification of EV mobility simulation in the previous 

studies, in this research the EV user driving behavior, which includes decision-

making on trip parameters (purpose, departure time, destination, and route of trip) 

and driving pattern (driving speed, acceleration/deceleration), is comprehensively 

modeled in the integration framework EV-transportation-land use-energy in the 

urban area. 

(6) Contrary to the existing studies that simply model the charging decision of EV users, 

this research proposes a model to emulate the realistic EV charging behavior based 

on the following.  

• EV users are classified based on their access to charging facilities at different 

locations such as home, work, and public locations of the urban area 

•  Different charging strategies are considered based on EV users’ preferences, 

including obligatory charging, convenient charging, charging postponement, 

and charging delay. 

•  The slow charging mode at land-uses and fast charging mode at FCSs are 

considered to simulate the EV user charging mode decision. 

(7) In the absence of a detailed model of slow/fast charging demand prediction in the 

actual urban environment in the available studies, this thesis simulates the EV daily 

travels in a multi-purpose multi-location framework in the integration of EV-

transportation-land use-energy to forecast the spatial-temporal slow and fast EV 

charging power demand in the land-use blocks and FCS candidates.  

(8) The spatial attributes of the integrated urban model and dynamic traffic simulations 

provide the opportunity to determine the suitable FCS candidates’ locations, which 

are located along the arterial urban streets with two or more one-way lanes with 

heavy daily traffic. Moreover, an evolutionary heuristic model proper for large-scale 

urban transportation systems is developed to optimally site and size of FCSs by 

considering the EV user preferences, FCS constraints, and the urban environment 

constraints. 

 



1.5.Thesis overview 

 

In order to reduce the usage of conventional vehicles, which burn fossil fuels and emit 

greenhouse gases, electromobility as a viable alternative has been considered a practical means 

of sustainable urban mobility. In this context, comprehensive electromobility models are 

required to provide a suitable framework for increasing EVs in the urban transportation system. 

Due to the dynamic and interdependent nature of the system’s behavior, the models need to 

consider all affecting factors relevant to urban electromobility. To this end, the 

interdependencies between EV users, EVs, transportation systems, and urban land use should 

be comprehensively analyzed to forecast the urban charging power demand and plan the 

charging infrastructures in the urban environment. In this regard, EV mobility is simulated in 

the integration framework of EV users, transportation systems, land-uses, and energy systems. 

Users travel between different locations that are located in different urban land-uses to perform 

their activities. The transportation system provides connectivity between the activity locations 

through the street network. EV consumes energy when driving on the street network, which its 

amount depends on the EV technical attributes and user driving behavior. Regarding the 

available energy in EV’s battery and required energy to support EV travel, the user may decide 

to charge EV at any time and any location of the urban area. The charging infrastructure as the 

energy system at urban land use or urban streets provides energy to charge EVs supplied by the 

urban power grid or RES.   

Therefore, the EV user’s travel behaviors modeling in the integrated context of the street 

network and land use allows predicting the spatial-temporal distributions of urban charging 

demands and charging infrastructure planning in the urban environment, which are the main 

objectives of this research. The EV user travel behavior in integrating the urban street network 

and functional zones considering the urban traffic should be modeled accurately to simulate the 

EV daily travels, eventually leading to achieving the EV energy demand in the urban area. 

Based on GIS data of the street network and land-uses, the integrated urban area is modeled 

spatially so that a street segment is identified as a line between two intersection nodes with a 

given latitude and longitude (Lat/Long). Polygons specify Land-uses boundaries with specific 

Lat/Longs for their vertices. The specific Lat/Longs identify the activity locations in each land-

use block to determine each EV trip's Origin-Destination (OD). 



The travel behaviors of users are interpreted as their decision-making on the spatial-temporal 

characters such as departure time, trip purpose, destination location choice, trip route choice, 

driving acceleration/deceleration, charging mode. These users’ decision-making processes are 

modeled under the user’s preferences within the urban environment and in response to the 

dynamic traffic of the urban street network.  Moreover, to consider the travel behavior of the 

study area’s drivers, the study area’s travel data is used in developing the models.  

For each EV trip, the EV user decides to travel to perform an activity, chooses a destination 

location related to the activity (trip purpose) in an urban land-use block, chooses an optimal-

energy trip route on the street network from O location to D location. Then, the user leaves the 

origin location at a specific departure time. During the driving, the second-by-second driving 

speed of EV is generated stochastically based on the user’s driving behavior in response to 

traffic conditions and the speed limit of each street segment of the trip route. Traveling on the 

trip route continues until the EV arrives at the destination at a specific arrival time. When the 

EV arrives at the destination location, the user decides whether to charge or not. If the user 

decides to charge, the EV will be charged during parking at the destination location. Otherwise, 

it will be idle. The spatial-temporal characteristics of an EV trip include OD locations and street 

intersections of the trip route, departure time from origin location, arrival time at the destination 

location, and times to reach or leave the street intersections. In other words, an EV travel can 

be represented as three typical EV behaviors, namely driving, parking, and charging, which can 

be thought of as three states which an EV traverses over time.  

EV daily trips are considered home-to-home trips in which the EV user departs from home at a 

specific time of the day, performs several activities in different locations, and finally returns 

home. For each trip of EV daily trips, the spatial-temporal characteristics of the driving, 

charging, or parking are recorded during the simulation. By simulating the daily trips of a 

number of EVs in the study area, the start time, end time, location, energy demand amount of 

charging events of the EVs are extracted from the recorded data of EV daily trips to obtain the 

spatial-temporal charging demand distributions in the urban area. 

The thesis overview is shown in the flowchart of Figure 1.1. 



 

Figure 1.1. Thesis overview flowchart 
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1.6.Organization of the Thesis   

 

This thesis consists of five chapters that are listed below: 

Chapter 1: Introduction 

In this chapter, an introduction to urban electromobility modeling is introduced briefly. In 

addition, the research motivations, objectives, main contributions, overview, and organization 

of this thesis are also discussed in this chapter. 

 

Chapter 2: Literature Review 

In this chapter, basic concepts related to urban electromobility are explained briefly. The state-

of-art about various models and simulation methods used for EV mobility simulation are 

discussed. Along with this detailed review of previous studies, drawbacks from the previous 

studies have been identified. These drawbacks in the existing studies led to the research on the 

urban electromobility modeling and simulation in the integration framework of EV-

transportation-land use-energy system. 

 

Chapter 3: Integrated Urban Model 

This chapter creates the spatial urban model by integrating the urban transportation system and 

land use. To this end, the urban street network and urban land use are constructed based on GIS 

data to provide the opportunity to model the spatial attributes of EV mobility in the urban area. 

Moreover, the tool developed to extract data traffic of the urban area is described in this chapter. 

 

Chapter 4: EV users travel behavior modeling in the urban electromobility framework 

This chapter presents the driving and charging behavior models developed to simulate the 

behavior of EV users in the integration of EV-transportation-land use-energy systems. 

Accordingly, the spatial-temporal attributes of EV trips are simulated. 

 



Chapter 5: Forecasting Spatial-temporal Charging Demands and Charging infrastructure 

planning in the urban electromobility simulation 

In this chapter, based on the models developed in previous chapters, the daily travels of EVs in 

the study area are simulated to predict the spatial-temporal charging power in the urban area. 

The slow charging demand at urban-land uses and fast charging demand at FSC candidates are 

predicted, which are then used to charging infrastructure planning. Finally, the charging 

infrastructure planning models are developed based on the economic and convenience 

objectives of FCS and EV users by considering the urban constraint. 

 

Chapter 6: simulation results and analysis 

This chapter provides the numerical simulation for a given EV penetration rate in the study are 

to represent the efficiency of proposed models in predicting the slow and fast charging demand 

and planning of charging infrastructures, which are the main objectives of urban electromobility 

simulation. 

 

Chapter 7: Conclusion and Recommendations for Future Research  

This chapter provides an overall assessment of this thesis. The recommendations for future 

research directions are discussed regarding the extension of research in the urban 

electromobility for integrating renewable energy to the EV charging system, leading to 

increasing the synergy between EV and renewable energy and reducing dependency on the 

urban power grid. 

 

 

 

 

 

 

 



 

Chapter2 

 

2. Literature Review 

 

2.1. Introduction 

 

The state-of-art various modeling techniques used for modeling electromobility are discussed. 

Along with this detailed review of previous studies, drawbacks from the previous studies have 

been identified. These drawbacks led to the research on urban electromobility modeling and 

simulation in the EV-transportation-land use-energy integrated framework. 

Replacing conventional combustion-engine vehicles with EVs is unavoidable in the world due 

to concerns about the depletion of fossil fuels and urban environmental pollution issues [1]. 

With the development of EV technology, government incentives for the purchase of EVs, and 

a significant decrease in EV prices, the number of EVs in the urban transportation system is 

expected to grow rapidly in the coming years [2]. The large-scale penetration of EVs in the 

urban transportation system helps increase energy security and reduce emissions [3]. 

Meanwhile, the uncertainty and flexibility of EV charging power demand pose both challenges 

to and opportunities for the operation of charging infrastructure, distribution grid, and 

Renewable Energy Sources (RES) [4]. The great number of EVs will demand a significant 

amount of charging power and require the construction of a large number of charging 

infrastructures in urban areas [5]. On the other hand, unscientific construction of charging 

infrastructure leads to excessive or insufficient charging facilities in different urban zones and 

causes irregular fluctuations in the urban distribution grid [6]. From the distribution grid 

perspective, on the one hand, EV will result in a random and uncertain load that leads to 

increased peak load and load pattern changes [7], the need for capacity expansion and grid 

reinforcement [8], etc. 

On the other hand, EV as distributed energy storage can help improve the operation of the grid 

by increasing the integration of RES [9-10] and providing ancillary services [11-12]. 

Furthermore, EV charging with clean energy generated from RES leads to positive 



environmental effects from EV penetration in urban areas [13] and decreases the distribution 

system’s pressure [14]. Therefore, analyzing and predicting the spatial-temporal distribution of 

EV charging load demands in urban areas is essential to scientifically determine the optimal 

site and size of charging infrastructure, reducing the harmful effects of EV charging load on the 

distribution grid and increasing the synergies of EVs with RES.  

  

2.2. Simulation framework 

 

The electromobility simulations can be implemented within a wide range of simulation 

frameworks and using various modeling techniques. The probabilistic travel parameters 

extracted from travel survey data were used to simulate the spatial-temporal driving and 

charging patterns of EVs to obtain the charging load demand at different times and locations 

by using stochastic methods like Monte Carlo Simulation (MCS) [15-20], Markov chain [21-

22], Markov chain Monte Carlo [23-24], trip chain [25-28], trip chain and Markov decision 

process (MDP) [29-30]. Nevertheless, most of these studies considered three destination types 

– home, work, and others – to model the daily travels of EVs, whereas traveling in the urban 

transportation system should be modeled on a multi-location and multi-purpose framework to 

reflect realistic traveling in the urban area [31]. 

The primary purpose of EV charging load modeling is to deduce the traveling behavior of EV 

drivers in the transportation system to predict the spatial-temporal distribution of the charging 

power demand in different locations [32-34]. The spatial characteristics of the street network 

and destination locations and the drivers’ decisions in response to the traffic flow of streets 

connecting destination locations significantly influence the EV travel pattern, EV energy 

consumption, and the resulting charging demand. In this context, the existing studies on 

modeling and predicting EV charging load were conducted according to two main frameworks. 

(1) The first group of studies was performed based on virtual road networks. In these studies, 

regardless of the topological features of the street network, all travel parameters (e.g., travel 

distance, travel time, etc.) were modeled by PDFs calibrated by vehicle travel data (mainly the 

NHTS dataset). Thus, the spatial characteristics of the destination locations and routes of EV 

trips are neglected, and the travel distance is extracted from PDF (generally lognormal). 

Moreover, the energy consumption of the trips was estimated based on energy consumption per 

kilometer of EV driving, which is assumed to be a constant value or a random number obeying 



a specific PDF. At the same time, the topological characteristics of street networks, OD 

locations, and traffic flow of the road network significantly affect EV travel behavior, energy 

consumption, and the resultant charging demand of EVs. (2) In the second group of studies, EV 

charging demand modeling was conducted based on a simple road network graph containing 

several edges and nodes. The edges represent the streets, and the nodes are considered the 

charging locations or functional areas.  

Transportation network modeling based on graph theory makes it possible to incorporate the 

transportation characteristics and traffic flow in the spatial-temporal modeling of EV trips. 

However, previous studies utilized a graph model to represent transportation systems only 

containing a few street segments that cannot represent an actual urban transportation system. 

Although modeling a city-scale transportation system with a huge number of nodes and street 

segments by graph increases the complexity of the simulation, it leads to obtaining a more 

accurate and realistic model of urban electromobility. 

 

2.3. Urban traffic simulation 

 

The traffic congestion of urban street networks is an essential factor affecting EVs’ energy 

consumption and charging demand by increasing the driving duration and service time of air 

conditioning and reducing driving efficiency. The driving behavior of EV users is also affected 

by the traffic congestion level of streets, so it is assumed that the EV users are aware of the 

traffic conditions of the urban street network and choose the optimal travel route based on their 

preferences. In this context, the traffic simulation methods that determine the dynamic traffic 

conditions of street networks help to model the realistic driving behavior of EV users in more 

detail. Despite the traffic significantly affecting EVs’ driving and charging behaviors, it is rarely 

considered in the existing studies in electromobility simulations. Only a few recent studies the 

traffic and speed-flow relationships are considered to model the EV travel patterns.  In [35], by 

considering the topological characteristics of the traffic network and simulating the movement 

process of the vehicle on the road by using the cellular automata, the space-time prediction of 

the EV charging load is performed. In [29], the traffic congestion of different roads of assumed 

transportation network graph in a time period is set to a uniform value, assuming that the 

congestion degree of different roads has a generally consistent temporal trend, to estimate the 

EV speed with a simple speed-flow model on the trip route that determined by Dijkstra 



algorithm as the shortest path. In [36], a Markov-chain traffic model was used to describe the 

EV traveling characteristics, simulate the EV flow on a traffic network, and determine the fast-

charging demand from the spatial and temporal perspective. In [37], a forecasting method based 

on neural networks is established to predict the hour-by-hour traffic flow of EVs on the traffic 

network model in the EV charging model. In addition, a road network testbed based on the 

Dublin traffic network is established to study the willingness of EV drivers to choose the FCS 

with the lowest travel time considering the network’s traffic. In [38], an EV charging demand 

forecasting method based on real-world traffic volume data collected by the Traffic Monitoring 

System in the highway, national route, and local roads of South Korea every hour is forecasting 

the EV charging demand in the residential and commercial sites. The collected traffic data was 

used to determine the EV charging starting time without considering the traffic impact on travel 

behaviors of EVs like driving time, driving speed, and travel route. In [39], the daily EV 

charging is simulated by incorporating the impacts of traffic congestion on the energy 

consumption of EVs. To this end, the road congestion level of three road types, i.e., express 

road, main road, and secondary road, and the congestion level of each road was determined 

according to the calculated driving speed and its road grade, as smooth, basically smooth, slight 

congestion, medium congestion, and severe congestion. In addition, two indexes are defined to 

measure the level of traffic congestion and to correct the driving duration and speed. In [40], 

consider traffic conditions on the EV’s route towards its destination by minimizing the total trip 

duration. It is assumed that the traffic conditions are locally available, either from the vehicular 

network itself or from an external traffic service, and can be used to estimate the EV’s arrival 

time towards a specific charging speed. Therefore, this paper focuses on the influence of 

considering traffic conditions on the EVs’ charging planning and not on the travel routing based 

on the dynamic traffic pattern of the city. 

Therefore, the influence of traffic congestion of street networks on the driving behavior of EV 

users includes the driving speed, driving time, driving energy consumption, and the EV user 

decision on travel route choice rarely considered in previous studies. Moreover, these 

mentioned studies only considered the traffic for a small traffic network or a city zone. In 

contrast, the city-wide traffic simulation is needed in the realistic electromobility simulation. In 

this context, a city-scale traffic simulation is required that be able to determine the traffic 

condition of actual urban streets to simulate the traffic impact on the driving riving behavior of 

EV users in urban electromobility simulation. To simulate the urban traffic pattern, the 

developed countries invest in intelligent transportation research where researchers collect 



traffic data through loop detectors [41], Radio Frequency Identification (RFID) [42], and sensor 

networks [43] to model and predict the traffic patterns of urban areas.  

Due to the need for a substantial budget to collect traffic data by using advanced instruments 

and the non-grid structure of the urban street network in developing countries, the mentioned 

techniques are not still used to collect the traffic data in the cities of Brazil. Moreover, the 

traditional data collection processes at the city level are tedious and require considerable human 

effort and instruments. Thus, one solution could be to use a platform like Google Maps. In this 

context, in this research, the traffic data of the urban street network of the study area is collected 

from Google Map Traffic Layer (GMTL) to simulate the urban traffic patterns. 

 

2.4. EV user driving behavior 

 

In the studies that used virtual networks for the transportation system, driving behavior is not 

modeled explicitly. Instead, the related parameters are directly extracted from the travel data of 

conventional cars or the PDFs fitted on travel data. The spatial attributes of trips (OD locations, 

trip routes) are ignored in these studies, so they did not propose a framework to analyze and 

model driving behaviors. Hence, the proposed models are not adequate for urban 

electromobility simulation. 

Several of mentioned studies used a simple small graph to model the travel behavior of EV 

drivers realistically. In these studies, nodes of the graph are considered destination locations or 

functional zones (e.g., residential, commercial, etc.). In order to model the travel behavior of 

drivers, in these studies, the trip destinations were randomly selected from the graph’s nodes 

without considering parameters that affect the destination choice of EV users, such as travel 

time and attractiveness. In addition, the trip route was randomly selected or determined as the 

shortest path between nodes of the network graph. The traffic conditions of road networks were 

mostly considered free-flowing or set to a uniform value over a period of time, assuming that 

the congestion level of roads has a generally consistent temporal trend. Only a few studies 

considered real-world traffic to analyze the characteristics of spatial-temporal charging load 

[44-45]. In these studies, the trip distance was calculated based on the length of edges, and the 

energy consumption of trips was estimated based on trip distance and energy per kilometer 

(kWh/km), which was assumed to be a constant value or calculated from the empirical equation 



corresponding to the assumed road type of edges. However, the virtual road networks or 

oversimplified road network graphs used in the existing studies cannot accurately represent the 

actual topological characteristics of real street networks. 

Moreover, the choice of random destination and the shortest trip route cannot describe the 

realistic travel behavior of EV drivers. In addition, underestimated or overestimated energy 

consumption leads to unrealistic EV charging demand. The assumed traffic conditions or real-

world traffic data collected from a small area cannot represent urban transportation systems’ 

real-world city-scale dynamic traffic. Therefore, the proposed models in the existing study 

cannot be adequate to model the realistic driving behavior of EV drivers in the urban 

environment, including the extensive street network with dynamic traffic patterns that highly 

affect the driver behavior. Hence, to model the driving behavior of EV users, it is essential that 

their decision-making on the spatial-temporal attributes of their trips in the urban area explicitly 

are modeled, which is one of the objectives of this research.  

Besides the driver behavior in destination and route selection for each trip, the EV driving 

pattern of EV on the urban selected trip route on the street network should be modeled to 

determine the driving time, driving energy consumption, etc. In this regard, the instantaneous 

driving speed of EV on the trip route must be modeled according to the street speed limits and 

traffic conditions. In this context, the driving cycle generation methods can be used to model 

the instantaneous velocity, acceleration, and driving distance of EV driving patterns. In [46], 

the standard driving cycles include Environmental Protection Agency (EPA), Urban 

Dynamometer Driving Schedule (UDDS), Highway Fuel Economy Cycle (HWFET), and high 

acceleration aggressive driving (US06) are incorporated by power train model to calculate the 

energy consumption of EVs and determine the SoC profiles of EV trips. Although this paper 

represents a more accurate model than papers that only consider constant energy consumption 

for EVs, standard driving cycles cannot display realistic driving conditions because the standard 

cycles are only recorded under certain, precise conditions and may not always represent real-

world driving conditions [47].   

Due to the stochastic nature of driving in the urban transportation system, stochastic driving 

cycles can represent realistic driving patterns. In [48], the stochastic driving cycles are 

generated from standard driving cycles UDDS, HWFET, Artemis Urban (AU), and Artemis 

Road (AR). However, the stochastic driving cycles generated in these papers cannot represent 

the real-world driving condition because they are generated from standard driving cycles with 

limited datapoint despite being stochastic. Therefore, stochastic driving cycle generation needs 



a sizeable real-world dataset to better demonstrate the realistic driving conditions. In this regard, 

in the absence of EV driving cycle data, the large-scale driving dataset of the National 

Renewable Energy Laboratory (NREL) [49], which has been used widely in previous studies, 

is used to generate the stochastic driving cycle for each EV trip in this thesis. 

Therefore, the integration of urban street network and land use provide a platform to model the 

driving behavior of EVs accurately based on the developed models of destination type 

prediction, destination location choice, route choice, and synthesis stochastic driving cycle for 

each EV trip, which are not considered in previous studies. 

 

2.5. EV user charging behavior 

 

Besides the EV user driving behavior, the user charging behavior affects the EV charging 

demand of the urban area. In this regard, realistic models should be developed to simulate the 

user charging behavior by considering the main affecting parameters on user decision in the 

charging EV. Moreover, the user preference for charging mode, charging location, and charging 

time should be considered to achieve more accurate urban charging demand prediction. 

 

2.5.1. Classification of EV charging modes 

 

When the EV is connected to the power grid through the EV charger, its battery is charged 

through the AC/DC power converter. This converter can either be on-board (inside the EV) or 

off-board (outside the EV). The power level of these chargers varies for various manufacturers 

[50-52]. In addition, there are multiple types of battery technologies used by the EV 

manufacturers, such as lead-acid batteries [53], lithium-ion batteries [54], and nickel-metal 

hydride (NiMH) batteries [55]. With the recent progress in lithium-ion battery technology, it 

has used almost all of the current EV models in these recent years.  EV charging mode can be 

classified based on the charging power rate that the EV is charged. The EV charging mode is 

mainly classified into slow and fast charging modes [56]. Besides the slow and fast charging 

modes, EV charging can also be classified into Level I, Level II, and Level III. 



Levels I and II chargers are considered slow charging due to their relatively low power ratings. 

Level III chargers are considered fast chargers due to their higher power ratings, usually known 

as DC fast chargers. The DC fast charging is the most helpful method to decrease the range 

anxiety of EV users [50]. However, DC fast charging brings an increased rate of battery 

degradation. It also shows disadvantages such as voltage sags and voltage flickers in the power 

distribution system [57]. 

 

2.5.2. Charging decision 

 

The threshold-based charging behavior models are used in studies by assuming that the 

charging decision is made at a destination when the SoC is reached below certain SOC 

thresholds. For instance, in [58], charging is assumed to occur whenever EV arrives at a 

destination with a SOC of below 30% or when their SOC falls below 60%, and the parking 

duration is longer than two hours. Similarly, [59-62] stipulates fixed charging thresholds. 

Contrary to realistic charging behavior, users might decide to charge in anticipation of their 

impending energy consumption. Threshold-based behaviors assume that users blindly use their 

EVs until charging becomes unavoidable. Like SOC thresholds, the en-route charging is 

decided by EV users if they cannot complete their ongoing trip due to an empty battery [63-

65]. Few studies considered charging opportunities within the context of their overall mobility 

behavior. In this context, authors in [66-67] show that more realistic charging behavior can be 

simulated when future demand is considered. [68] implement plan-aware agents who choose to 

charge whenever their SOC is below their estimated SOC requirements for future trips plus a 

safety margin. None of those mentioned above models considers influencing variables other 

than the vehicle’s SOC. 

 

2.5.3. Charging location choice 

 

Charging location choice is another important aspect of modeling user charging behavior in 

electromobility simulations. Usually, both charging decisions and charging location choices are 

made simultaneously, especially for slow charging mode. The simplest forms of integrated 

location choice assume users always charge at home [69] or–even more bindingly–at any 



destination with charging opportunity [70]. In the vast majority of studies mentioned above, 

especially to choose an FCS, charging is modeled to occur at the nearest charging station as 

soon as the respective charging behavior calls for recharging. In simulations where trips cannot 

be interrupted, or chargers are available at only a few dedicated facilities, agents charge at their 

trip destinations or the nearest charging station after completing their trip. Ref. [71] expressed 

that drivers prefer to charge at the home and workplace rather than public charging stations. 

The [72] used a mixed logit model to determine the charging choice at the end of each trip and 

assumed that charging usually occurs after the last trip when returning home. Ref.  [73] shows 

that most users prefer to charge at midnight.  The study in [74] concluded that the main 

predictors for choosing the charging location and mode are the battery capacity, midnight 

indicator, SoC, etc. However, a few existing studies investigated the choice of charging stations 

(private/workplace or public) and the charging preference of public stations of users. While EV 

users meet several destination types in their daily trips and have the opportunity to charge their 

EV at home (private), working places, and public charging stations, most studies consider one 

or two fixed locations to charge EVs. Therefore, to model the user charging behavior in urban 

electromobility, it is essential that charging behavior is modeled in a multi-purpose, multi-

location context of EV trips in the urban environment by taking into account the user 

preferences and influencing factors on the user’s charging decision such as SoC, required 

energy for next trip, range anxiety, charging convenience, midnight charging, etc. 

 

2.6. Spatial-temporal charging demand predictions 

 

In recent years, extensive studies have been conducted on EV charging load modeling and 

forecasting. Two datasets are used to model EV charging demand in the studies: historical 

charging data and travel data of conventional vehicles. The historical charging data were 

collected from the private and public charging infrastructure in the form of charging power 

(kW) and energy (kWh), and the State of Charge (SoC) of EV batteries was directly employed 

to predict and model the charging load demand through data-driven and machine learning [75-

78]. Historical data-based forecasting models can only be used for a specific area from which 

the data comes, making the models less scalable. 

Unlike historical charging data that was only used in a few studies, vehicle trip datasets are 

widely used in most existing studies. Since nowadays EVs are not yet widespread in the 



transportation system, especially in developing countries, travel data of conventional vehicles 

are used to model EV travel patterns on the assumption that EVs have similar driving patterns 

to traditional vehicles and the advent of EVs will not affect the daily travel patterns of cars in 

the transportation system. The vehicle travel datasets include household travel survey data, e.g., 

National Household Travel Survey (NHTS) [79], Origin-Destination (OD) travel data [80], and 

vehicle GPS data [81] that were collected from a specific region over a period of time. Travel 

parameters such as start and end times of trips, travel distance, and driving time are modeled 

by Probability Density Functions (PDFs) calibrated by travel data. With these input parameters, 

probabilistic models were developed to simulate the stochastic nature of EV driving and 

charging patterns to obtain EVs’ charging demand [82-86]. 

In Ref. [87], probabilistic models of time of departure from home, time of arriving at home, and 

daily travel distance were used to model EVs stochastic travel by assuming that the EVs are 

charged once per day at home. In [88], the charging load of EVs is estimated at the home and 

workplace without considering other locations. The charging load of EVs in public charging 

stations is modeled in [89], while EV load demands in the other locations are not considered.  

The charging demand obtained by these studies cannot be accurate enough because of ignoring 

the possibility of EV charging in multiple locations. Thus, these models cannot be used to model 

the urban EV charging demand, which should be modeled in multi-locations of urban areas, 

including private and public locations.  Tao et al. [90] utilized the Monte Carlo method to draw 

the trip chain of EVs based on NHTS data and developed a charging demand prediction 

probability model to evaluate the charging load in different locations and times.  Wang and 

David [91] allocated a dynamic trip chain for each EV in a region through the Markov chain 

Monte Carlo (MCMC) approach, simulated vehicle travel and charging behaviors, and 

proposed a dynamic charging demand model to analyze the uncertainty of charging effects in 

homes, workplaces and commercial areas. Ref. [92] proposed a dynamic probabilistic spatial-

temporal model for EV charging demand. The temporal characteristics include the driving time 

and parking time. The spatial attributes of travel include the travel distance and destination 

transitions modeled by Probability Distribution Functions (PDFs) calibrated by travel survey 

data. Ref. [93], probabilistic spatial-temporal model to simulate the daily profile of EV charging 

load based on the refined probabilistic models and Monte Carlo algorithm. In the above studies, 

all spatial and temporal parameters of EV travel patterns are extracted from the travel survey 

data without considering the impact of road networks on the EV travel patterns modeling. 

 



 

2.7. Charging infrastructures planning  

 

The EV users prefer to charge their EVs at their daily itinerary’s primary activity locations 

(home and work). However, since all EV users have no access to charging facilities at home or 

workplace, or when EVs need emergency charging, the public charging facilities are selected 

by users to meet their changing demands. Thus, the lack of enough slow and fast public charging 

infrastructure can be one of the main barriers to accepting electromobility by the people and 

urban transportation electrification. Thus, comparing the models for slow charging stations with 

those for FCS in the literature, it is clear that models for FCS are based on the street network 

while models for slow charging stations are based on zones. Most existing models in literature 

only consider FCS planning without considering the actual street network. As such, most of the 

models are not realistic and not applicable in urban charging infrastructures planning. 

 

2.8. Slow charging infrastructures planning 

 

According to the estimated charging demand of city zones, some studies investigated slow 

charging stations. In [94], the daytime and nighttime charging demands in each Traffic analysis 

zone (TAZ) are estimated based on employment and residence data. An optimization model 

maximized the total coverage with a given number of charging stations. [ 95] estimated the 

charging demand for each TAZ, and the assigned slow charging stations aim to maximize the 

chargers’ usage. In [ 96], regression analysis based on travel survey data was also used to 

estimate charging demand in each TAZ and develop an optimization model to minimize the 

total access cost of EVs to their nearest charging stations. In [ 94,96], the centroid-to-centroid 

distances between TAZs were estimated to assign EV to a TAZ, and a charging station was 

located at the centroid of each TAZ. However, the proposed models in these studies are 

problematic and inaccurate because they did not distinguish whether a TAZ is partially covered 

or fully covered. A TAZ of a city includes different land use and activity locations. Hence slow 

charging station planning at the TAZ level is not realistic because EV users choose a charging 

station for slow charging in or near (walking distance up to 300 meters) their activity locations. 



Moreover, in these studies, the dynamic EV mobility in the city is neglected, and charging 

demands are estimated based on simple assumptions. 

 

2.9. Fast charging infrastructures planning 

 

A large number of studies can be found in the specialized literature devoted to locating the FSC 

with a particular focus on developing mathematical optimization models. However, in order to 

implement the mathematical optimization models on the urban transportation system, two main 

issues should be taken into account: firstly, the optimization models will be multi objective 

optimization include constraints related to the EV user preferences, transportation system, and 

FCS make the problem more challenging to solve and need very high computational time [97-

100]. In other words, due to a large number of constraints, the optimization problem is NP-hard, 

which is impractical to apply on large systems [97,101]. Secondly, the optimization problem 

for an extensive urban transportation system leads to a high computational burden. As a result, 

it is impossible to solve the mathematical optimization models for a comprehensive urban 

transportation system within an acceptable time. Therefore, the FCS planning problem as an 

NP hard problem is mainly solved by clustering algorithms and heuristic methods. The 

clustering methods were used to determine the FCS locations by clustering the fast charging 

demand points and assigning FCSs into the cluster centers. In [102], a hybrid algorithm based 

on K-means clustering was developed to site and size charging systems to satisfy the EV fleet’s 

changing demands. In [103], the iterative clustering technique was proposed to deploy fast 

charging infrastructures in large urban areas for electric taxis. In this regard, an iterative version 

of Density-based Spatial Clustering of Applications with Noise (DBSCAN) was used to find 

the charging station locations that satisfy the charging demand of an electric taxi fleet. In [104], 

a taxi trajectory data-based FCS planning was developed based on iterative K-means clustering 

to meet the hourly demand of an e-taxi fleet. Although the clustering methods can find the 

solutions quickly for an extensive system, they only consider the distance between demand 

points to find the centers of the clusters as FCS locations. Due to ignoring the urban structure, 

they may allocate FCSs at unfeasible locations. 

Contrary to the clustering methods, the heuristic methods consider the optimization criteria to 

develop an algorithm to find optimal size and site of FCS with trad-off between different 

constraints imposed by the urban environment, street network structure, urban traffic, and 



economic constraint investments, user preferences, etc. AS such, it is more officinal than 

clustering algorithms. In [105], an FCS locating model named the multipath refueling location 

model was proposed and solved using heuristic algorithms to locate FCS in Sioux Falls. In 

[106], the FCS planning problem was carried out through the heuristic method to avoid the high 

computational effort that results from traditional optimization models. In [107], a heuristic 

method was designed for charging infrastructure planning in virtual urban contexts based on 

distance, economic objective, and infinite capacity constraint to meet the estimated hourly 

demand of charging demands. In [108], presented a heuristic methodology for urban 

transportation networks, considering the deployment of the FCS for coverage objective and the 

fulfillment of user preferences and constraints. 

 

2.10. Research gaps 

 

According to the above literature review, although the available research investigates the EV 

mobility, spatial-temporal prediction of charging load, charging facilities planning, due to the 

following issues, the proposed approaches in existing studies are not suitable to urban 

electromobility simulations. 

(1) The actual urban street networks and their traffic conditions are neglected in most 

studies. Nonetheless, several studies used a small graph to represent the street network. 

The proposed models in these studies to EV mobility simulation are not applicable for 

the urban area with a large street network and dynamic traffic. 

(2) In most existing studies, the energy consumption of EV trips is simply calculated by 

assuming constant energy consumption per kilometer. This oversimplification leads to 

an inaccurate estimation of EV charging demand and the urban charging power demand.  

(3) The previous studies mainly utilized the travel survey data to model the travel distance 

and travel time of EV trips. While these parameters should be calculated based on urban 

street network topology and dynamic traffic conditions. As such, the EV mobility 

models in these studies are not suitable for urban electromobility simulation. 

(4) In existing studies, the daily travels of EVs are widely modeled as simple trip chains 

with few trip purposes in a virtual network. This model of EV daily trips is not realistic 

for urban electromobility simulation. In the accurate urban electromobility simulation, 

the EV daily trips should be modeled in a multi-purpose framework between different 



activity locations in the actual urban land-uses to obtain accurate spatial-temporal 

charging power demand. 

(5) The effect of traffic on EV mobility is ignored in most studies. Some studies considered 

constant traffic congestion levels for EV driving on a small street network graph. A few 

studies used the actual traffic data of a small region to simulate EV mobility. While, in 

urban electromobility, the city-scale dynamic traffic simulation is needed to model EV 

mobility on a large-scale urban street network. 

(6) In almost all studies, the destination choice and route choice behavior of EV drivers are 

neglected in EV mobility simulation. Few recent studies modeled the destination and 

route choice by a random process in which destination and route of trips are randomly 

selected from available destinations and routes. The random choice model ignores the 

factors influencing user decisions on destination and route, such as user preferences, 

traffic, EV energy consumption, activity locations attractiveness, etc. 

(7) The threshold-based modeling of EV user charging behavior, charging at a fixed 

location at a fixed time of day that widely were used in previous studies, cannot 

represent the realistic charging behavior of EV users. For urban electromobility 

simulation, it is essential to model the charging behavior in a multi-location framework 

by considering the main influencing parameters on the users’ behaviors such as charging 

location access, location priority, range anxiety, as well as considering different 

charging strategies and charging modes. 

(8) The charging infrastructure planning models in the studies are mainly developed to 

determine the location of charging facilities in a small area of the city or a hypothetical 

network. These studies ignored the urban spatial attributes, and the proposed models are 

applicable in greenfield planning. However, in urban electromobility simulation, the 

urban spatial structure and urban traffic should be considered in charging infrastructures 

planning. 

To address the mentioned research gaps, this thesis proposes the urban electromobility 

simulation based on the EV user driving and charging behavior modeling in the integration 

framework of EV-transportation-land use-energy to predict spatial-temporal urban charging 

power demand and slow/fast charging infrastructures planning. 

 

 



 

Chapter 3 

 

 

3. Integrated Urban Model 

 

3.1.Introduction 

 

An integrated urban model would be able to consider land use–transport–energy interactions 

with explicit spatial-temporal representations at the zonal scale. In an integrated urban model 

representing interplays between transport land use and energy, EV consumes energy while 

driving on the transportation system and can be charged at charging infrastructures located at 

land-uses and the street network at any time. The interaction of EV driver with an integrated 

framework of transport-land use- energy is translated into EV driver driving and charging 

behaviors. 

 

3.1.1. Transportation system and land use integrating 

 

Transportation in urban areas is highly complex, and its complexity is related to the urban 

spatial structure. The spatial distribution of human activities in the urban area creates the need 

for travel to overcome the distance between the locations of activities.  Urban land use 

represents the location and level of spatial accumulation of activities and is characterized by 

social, cultural, and economic activities forming an activity system at separate locations. Land 

use is the characterization of land based on what can be built on it. It determines what kind of 

community, environment, or settlement can be used on a particular type of land. It is worth 

noting that land use and zoning are not the same, so that land use is the way that people adapt 

the land to suit their needs, and zoning is how the government regulates the land.  Transport 

networks provide connectivity between activity locations in land-uses through the street 



network. Therefore, transportation and land use are interrelated because of urban activities’ 

locational and interactional nature. Two-way interaction of land use and transport led to the 

notion of the ‘land use transport feedback cycle’ that theorizes the complex relationships 

between the transport network and land use, which can be briefly summarized as follows. 

• The distribution of land uses, such as residential, industrial, or commercial, over the 

urban area determines the locations of human activities such as living, working, 

shopping, education, or leisure.  

• The distribution of human activities in space requires spatial interactions or trips in the 

transport system to overcome the distance between the locations of activities.  

• The distribution of infrastructure in the transport system creates opportunities for spatial 

interactions and can be measured as accessibility.  

• The distribution of accessibility in space co-determines the destination location and 

route decisions of daily travels 

According to the land use transport feedback cycle that is shown in Figure 3.1, the accessibility, 

availability, and attractiveness of locations in different land-use are indicators to choose an 

activity location in a land-use. The transportation system creates spatial accessibility so that 

there is a path between every two locations of land uses, including different street types. 

Therefore, integrated transportation and land use outcomes provide the potential activity 

locations in different land uses and possible street paths between activity locations. 

 

 

Figure 3.1. The land-use transport feedback cycle 



Transport networks, together with land-use patterns and sociodemographic traits, attitudes, and 

preferences–co-determine EV users’ travel behavior, that is, the way they use the transport 

networks to connect their activity locations. As such, the transportation system and land-use 

integration provide a framework to model the travel behaviors of EV users. The outcomes of 

this integration for EV drivers are the potential activity locations in different land uses and the 

possible paths on the street network to reach these activity locations.  

 

3.1.2. Urban Transportation, land use, and energy integrating 

 

Land use and transport are intertwined and correlate with energy consumption, particularly in 

urban areas. Thus, urban mobility is not only affected by transport-land use but also by energy 

consumption and demand. In this context, EVs consume energy while driving on the street 

network and are charged charging stations located at land-uses. The energy system can include 

energy demand not only from the EVs but also from conventional stationary demand sources 

related to activity locations at land uses (e.g., households, offices, firms, etc.). Moreover, it is 

essential to note that EV diffusion may increase CO2 emissions if EVs are charged with carbon-

intensive electricity. RES, especially Photovoltaics (PVs), prevents such an adverse effect. On 

the other hand, if EVs are completely charged only from RES, the negative correlation between 

the energy system and CO2 emissions from the transport sector might be changed. Hence, the 

conventional fossil energy sources of the energy system in the integrated urban can be included 

in the RES urban energy system to supply the traditional and EV demands.  

 

3.2.Urban transportation system spatial modeling 

 

To achieve an accurate model of EV mobility in the urban electromobility simulation, the EV 

position and its status (driving, parking, or charging) must be monitored at each time of day. 

The instantaneous EV’s position in driving state is on the urban street network, and at the 

parking/charging states is at activities locations or charging stations. The spatial integrated 

urban model, which integrates transportation-land use systems, provides the opportunity to 

determine the instantaneous EV’s position. For each trip, EV departs from an origin location at 

specific land use and passes from several street segments to reach a destination location at 



another land use. Urban transportation system provides the connectivity between Origin-

Destination (OD) locations of trips by the street network with different attributes. Therefore, to 

simulate urban electromobility, a spatial model of the transportation system is needed with the 

following attributes. 

• A street network consisting of all actual urban streets that provides the connection 

between each pair of locations in the urban area. 

• The different street types of the street network must be known to predict the EV driving 

characteristics regarding the traffic and speed limit of the streets. 

• Regarding the EV driver preference to choose an optimal trip route on the street network 

between OD locations, the routing algorithm is needed to find the optimal route. Hence, 

the street network should be able to be modeled as a graph to determine the optimal trip 

route between locations by routing algorithm. 

To model the urban street network with the specifications mentioned above, the GIS data of all 

actual streets are required to create a fully connected graph of the street network. The street 

network data can be collected from different government agencies, and map providers, who 

often deliver data in non-standard formats, and datasets provided by various agencies are 

typically not explicitly referenced to each other. OpenStreetMap (OSM) [109] offers geospatial 

data of streets and their attribute. OSM provides an open-source collection of real-world street 

network data, including geospatial information about streets and intersections, along with 

attribute data about street types. Hence, it is suitable for modeling the urban street network in 

urban mobility studies. Moreover, OSM data allows modeling the street network as a graph 

with nodes representing street intersections and edges representing street segments. However, 

OSM data cannot be automatically extracted into a graph, and an interface with computing 

environments (like MATLAB) is required to process the data and generate a graph.  

 

3.2.1. The general structure of OSM data  

 

The OSM data structure comprises two essential elements to assess spatial data: geometry and 

attributes. The attributes are described with tags on any geometry. Tags provide information to 

the user about the particular element to which they are attached. They contain two free-format 

text items, such as key-value pairs. The geometry consists of three components: nodes, ways, 



and relations. The node geometry basically represents a specific point on the Earth’s surface by 

its latitude, longitude, and ID. The way geometry consists of the lines connecting two or more 

nodes. The relation geometry logically defines geographic relationships between geometry and 

tags with respect to their order. As nodes, ways, and relations describe the spatial distribution 

of the elements, and tags contain all non-spatial information. A tag is a combination of a key 

and a value which are both arbitrary strings. It can be attached to nodes, ways, and relations. A 

road feature is stored as a way element in OSM data, which includes a geometric part composed 

of ordered referenced nodes and an attribute part consisting of several key-value pairs. A 

referenced node contains an ID that can be used to retrieve its latitude and longitude. 

 

3.2.2. Extracting GIS data of OSM 

 

The GIS formatted data files of the desired urban area are downloaded and imported in 

MATLAB to extract information contained in the files by a parsing script. As such, the 

geometry and attributes of streets are obtained. The streets are stored as ways with the tag 

‘highway’ and one of the following values: “motorway,” “primary,” “secondary,” “tertiary,” 

“residential,” etc. There are several steps required to produce the street network segments. 

Firstly, the OSM ways that contain a ‘highway’ tag are extracted and inserted into a street 

segments table, keeping the complete tag contents. Secondly, according to road hierarchy using 

the associated tags, the street segments are classified into the motorway, trunk, primary, 

secondary, tertiary, residential, motorway_link, trunk_link, primary_link, secondary_link, 

tertiary_link. Thirdly, the street segments are corrected for possible geometry and topology 

problems.  In this research, the urban area of Campinas, Brazil, is considered the study area. 

The study area is 116.525  that includes the 113062 street segments and 49532 

intersections. Figure 3.2 shows all the study area’s actual streets with different street types 

(determined with different colors).  



 

Figure 3.2. Urban street network. 

 

3.2.3. Graph-based Street Network Model 

 

Graph theory is considered a meaningful way to study street network analysis. The 

transportation network is spatially modeled by a street network graph, where nodes are 

intersections and edges are road segments. The extracted urban streets GIS data from OSM is 

used to construct the street network graph G = (V, E), in which the vertex set V consists of street 

intersections, and the edge set E includes street segments between intersections.  

An adjacency matrix is required to construct this graph that indicates the adjacent relation 

between nodes in the network. Some intersections may appear multiple times in the streets 

connectivity matrix because different streets may meet at the same intersection, and various 

directions are considered different streets.  

To obtain the adjacency matrix, the unique nodes are identified, and a square orthogonal matrix 

is obtained with the size equal to all unique nod numbers. The square adjacency matrix is 

generated so that the corresponding entry of two nodes is one if there is a connection between 
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them and otherwise is zero. Finally, the fully connected graph is created based on nodes’ 

adjacency matrix and geographic information (latitude and longitude).   

The procedure of constructing the street network graph from OSM data is summarized below. 

(1) The desired area’s OSM data is downloaded, the data files are imported in MATLAB, 

and a parsing script extracts part of the information contained in the files. 

(2)  The OSM ways that contain a ‘highway’ tag are extracted as street segments. 

(3) According to road hierarchy, according to the associated key-value, the street segments 

are classified into the motorway, trunk, primary, secondary, tertiary, residential, 

motorway-link, trunk-link, primary-link, secondary-link, tertiary-link, etc. 

(4)  The street segments are corrected for possible geometry and topology problems.  

(5) A square adjacency matrix is generated so that the corresponding entry of two nodes is 

one if there is a connection between them and otherwise is zero.  

(6) The street network graph is created based on the adjacency matrix and intersection 

nodes’ latitudes and Longitudes (Lat/Longs). 

The street network graph constructed according to the above procedure for the study area is 

shown in Figure 3.3. In the created graph, between each pair of graph nodes, there is a path 

consisting of several edges. Each edge is represented as a street segment with the specified type, 

and its length is calculated by the Haversine function using the latitude and longitude of nodes 

at the two ends of the edge. 



 

Figure 3.3. Urban street network graph 

 

3.3.Urban land-use model 

 

Each EV travel is taken to perform an activity at the destination location. The EV user’s decision 

in selecting the destination location is influenced by the distribution of activity locations in the 

urban area. The actual urban land use information helps model the destination choice of trips 

more realistically, which was ignored in the existing studies of EV charging demand modeling.  

In this research, the GIS data of the actual land use of Campinas provided by Prefecture 

Municipal de Campinas [110] are used to develop the polygon-based model of urban land use. 

The land uses are classified into residential, commercial and service, industrial, mixed, 

shopping mall, hypermarket, education, institution, leisure and sport, park, greenfield, and 

especial.   The residential land use is divided into single-family, single and multi-family, and 

multi-family land uses. The mixed land uses consist of residential-commercial (RC), 

residential-industrial (RI), commercial-industrial (CI), and residential-commercial-industrial 

(RCI). The special land uses include military, and cemetery land uses.  
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In order to integrate land uses with the urban street network constructed based on OSM data, 

the GIS data of urban land use polygons are converted to geographic coordinates. As such, the 

polygon vertices specified by Lat/Longs determine the geographic boundaries of the land use. 

Figure 3.4 shows the urban land use of the study area. 

 

Figure 3.4. Urban land-use of the study area. 

The urban street network and urban land-use blocks are integrated to model the spatial attributes 

of EV mobility in the urban electromobility simulation. Figure 3.5 shows the integration of the 

street network and land-uses block of the study area.  
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Figure 3.5. Integration of the street network and land-uses of the study area. 

 

3.4.Transportation Analysis Zones 

 

Since the travel data of the study area was collected at the Transportation Analysis Zone (TAZ) 

level, to utilize this dataset in proposed models in the thesis, the urban zoning based on TAZs 

is also considered. The travel data for the study area is extracted from the Origin and Destination 

survey of the Metropolitan Region of Campinas, OD-MRC, which was carried out by the 

Metropolitan Transportation Secretariat of São Paulo (MTSSP) [111], comprises the spatial and 

temporal information of the travels made by the population in the city. To capture the spatial 

characteristics of travels, the city was divided into TAZs. The trips’ spatial characteristics were 
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collected at the TAZ level, including the OD’s TAZs of trips. Moreover, the temporal attributes 

include the trip’s start time and end time, travel time, and dwelling time at the destination are 

recorded for each trip. The study area consists of 30 TAZs from the TAZs defined by MTSSP. 

Each TAZ is represented by a polygon that shows the geographical boundaries of the TAZ. 

Figure 3.6 shows the TAZ polygons of the study area. 

 

Figure 3.6. TAZs of the study area. 

 

3.5.Urban traffic simulation  

 

The urban traffic simulation methods proposed in the literature are essentially different in terms 

of traffic data collection. The approaches used to collect traffic data include data collection 

through advanced instruments (e.g., loop detectors, Radio Frequency Identification (RFID), 

sensor networks, etc.), traffic data collection using GPS data (e.g., taxi GPS data, cell phones 

in vehicles), manual counting (manual traffic volume count) of cars in a specific case study 
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area, etc. Data collection with advanced instruments is costly, and traditional traffic data 

collection is time-consuming and requires significant human effort. Moreover, these 

approaches are not scalable for city-wide traffic data collection, and it is practically impossible 

to collect traffic data for all street segments of the city.  

The modeling of urban street networks based on OSM geographical data makes it possible to 

use traffic information data provided by mapping systems such as Google Maps. Customizable, 

scalable, and cost-effective traffic data can be obtained by using Google Map Traffic Layer 

(GMTL), which provides valuable and continually updated traffic information of streets at the 

city scale. GMTL represents the traffic conditions of the streets by colors at any given time: 

green (smooth traffic), orange (moderate traffic), red (heavy traffic), dark red (Traffic jam), and 

white (no traffic).  

However, GMTL does not provide the traffic dataset of streets, and it updates the traffic 

conditions of streets by colors at each moment. Hence, a method is needed to automatically 

capture GMTL images off streets and detect their traffic colors. In this regard, a tool is 

developed that captures GMLT images with a certain time-step over a desired period to provide 

the traffic data of the study area. This tool includes pre-processing GMTL images of the study 

area, automatically capturing GMTL images over the day, image processing, and determining 

the traffic condition of each street segment of the urban street network. The following 

subsections describe each step of the proposed tool in more detail. 

 

3.5.1. Pre-processing of GMTL images of the study area 

 

Urban traffic simulation aims to specify the traffic state of the urban street network dynamically 

over the day. To this end, the traffic condition of each street segment is recognized from the 

corresponding streets in the GMTL images.  

In the urban street network graph created based on OSM data, each street segment (an edge of 

graph) is a straight line between two consecutive intersections (two nodes of the graph) with 

specific Lat/Longs coordinates. While, in the GMTL images, the street coordinates can be 

extracted from their pixel location coordinate regarding RGB values obtained from the image 

processing of map images. Thus, it is required to match the OSM street network and streets of 

GMTL images. For this purpose, firstly, the GMTL images containing all study area streets are 



captured, and secondly, the street pixels of captured images are extracted. Finally, the 

corresponding street pixels to each street segment of the OSM street network are obtained by 

matching the OSM street network and street pixels. 

GMTL does not provide images of a particular area and shows the traffic of streets of the 

world’s map with mentioned traffic colors. To collect the study area’s traffic data, the GMTL 

images containing all streets of the study area should be captured. To make the color of the 

streets clearly visible, the GMTL map needs to be zoomed in enough. A zoom level of 15 is 

enough to clearly show the streets’ colors. Since only one image of a zoomed-in map cannot 

cover all streets of the study area, several images should be captured. Each map image is 

specified by a center defined by Lat/Long and a zoom level. Hence, by considering the zoom 

level of 15, the six images of the GMTL map should be captured to cover the study area.  

In addition to the traffic colors, the GMTL shows the additional information on the map like 

the street name, location name, bus stops, etc. These labels and tags should be removed to more 

accurately specify the color of street traffic. To this end, for each GMTL image of the study 

area, an HTML file is created to load and control the map by removing the labels, tags, and 

generally all additional information on the map except the colored street pixels. The map images 

that can be used to identify all streets of the study area are the images that contain all streets 

specified with only white and orange colors. These images that are called white images, are 

illustrated in Figure 3.7. 

 

 

 

 



                

Figure 3.7. White images contain the street network of the study area. 

 

These white images are captured and processed to extract the streets edge’s pixel’s locations 

coordinates according to assigned RGB values. Then, by manually cleaning and incorporating 

the pixels of these white images, the edge’s pixels of the streets of the study area are obtained, 

as shown in Figure 3.8.                   

 



 

Figure 3.8. Street edge pixels for all streets in the study area are extracted from white images. 

 

The streets edge’s pixels coordinates are specified with x and y in the cartesian coordinate 

system, while the OSM street segments are defined by Lat/Longs coordinates. To obtain the 

streets edge’s pixels corresponding to OSM street segments, they should be defined in the same 

coordinate system. Accordingly, the Lat/Longs of the OSM street network are converted to x 

and y coordinates, and then they are scaled and shifted horizontally and vertically to match with 

the street edge’s pixels.  

Since it is not possible to match all street segments by all streets edge pixels by only one scaling 

and shifting, the matching process is accomplished for the street segments in each TAZ. Due to 

this, each TAZ is divided into several sub-TAZs, and the street segments in each sub-TAZ are 

scaled and shifted to match with the corresponding street edge’s pixels. After matching the 

OSM street segments and edge pixels, a rectangular buffer is created around each street segment 

to determine the edges pixels corresponding to the segment. Figure 3.9 shows the street 

segments matched with edges pixels and corresponding rectangular buffer for a sample area. 
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Figure 3.9. Rectangular buffers (in red color) corresponding to street segments (in green) containing 

the street edges pixels (in blue) for a sample area. 

 

Therefore, for each OSM street segment, a rectangular buffer with x and y coordinates contains 

corresponding street edge pixels of GMTL images. Since the colored pixels are located at the 

street edge pixel’s locations, capturing and processing the GMTL images at each moment and 

extracting the colored pixel locations, the colored pixel in each rectangular buffer and 

consequently the traffic color of each OSM street segment is obtained. 

 

3.5.2. Automatic image capture 

 

The GMTL does not show map images of a specific time; instead, it updates every second the 

traffic information of the streets, marked with the above traffic colors. To capture GMTL 

images automatically with a predefined time-step, a tool is developed using the Java robot and 

web reader of MATLAB. At each time-step, the web reader reads the HTML file of each map 

image, the 2.5-second pause is imposed to ensure that the map is loaded with the updated traffic 

information, and the Java-robot captures a screenshot of the web map image and saves it in 
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image data format corresponding to the step-time. This process is repeated for each map image 

of the study area and each time-step over the desired time to collect the traffic data of the street 

network. Figure 3.10 shows the captured images from GMTL at a sample time step.   

                  

Figure 3.10. Traffic images of the study area are captured from GMTL at a sample time step. 

 

3.5.3. Image processing of captured images 

 

Image processing aims to identify the colored pixels and their location coordinates of captured 

images from GMTL. These images were saved as image data corresponding to each time step. 

As such, for each image of the study area at each time step, the locations of the colored pixel 

are extracted using their assigned RGB values. The extracted colored pixels are then 

incorporated to show the streets of the study area. Figure 3.11 shows the colored pixels of the 

street network of the study area at a sample time-step. 



 

Figure 3.11. Extracted colored pixels of the traffic images of the street network for the study area. 

3.5.4. Determining the traffic condition of urban street segments 

By matching colored pixels and street segments’ rectangular buffer, the colored pixels 

surrounded by each buffer are obtained regarding the location coordinates of colored pixels and 

rectangular buffer vertices coordinates. For example, the matching of colored pixels and buffers 

for the sample area of Figure 3.12 is illustrated in the following figure. 

 

Figure 3.12. Matching of colored pixels and rectangle buffer for sample area. 
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Finally, the dominant color of colored pixels in each street segment’s buffer is considered as 

the traffic color of the street segment. At each time step, the traffic color of each street segment 

is determined and stored with a numeric value: 1, 2, 3, 4, and 5 for green, orange, red, dark red, 

and white colors, respectively. By considering the time-step of two minutes, the traffic data for 

a weekday are collected by the developed tool from hour 5:00 to 5:00 of next day. Thus, traffic 

data for each street segment comprises 720 numbers of 1-5. The Historical Average (HA) traffic 

model is developed based on the extracted traffic data of five weekdays to predict the traffic 

conditions of the street network for a typical weekday. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

 

 

4. EV users travel behavior modeling 

 

4.1. Introduction  

 

In the travel demand modeling of EVs in the urban electromobility simulation, it is essential to 

model the user’s travel behavior in the integrated framework of transportation and land-use 

systems. Users’ daily trips are performed between different activity locations in the urban area. 

In this context, EV users’ travel behavior is the way they use the street network to travel 

between OD locations of each trip. The EV users’ travel behavior refers to the users’ decision-

making process on selecting the spatial-temporal travel attributes of driving, charging, and 

parking. EV users are assumed to be aware of the urban environment like street networks, 

activity locations distributions in different land use, urban traffic prediction, charging 

infrastructure locations, etc. Besides, assuming that users make rational decisions based on the 

information about alternatives in response to dynamic attributes of EV and urban transportation 

systems. In this context, the integrated urban spatial model provides the opportunity to emulate 

the EV user’s travel behavior in the urban environment, which allows simulating the spatial-

temporal attributes of each EV trip. The spatial parameters are OD locations, street segments, 

and intersections of the trip route, and temporal parameters include departure time from the 

origin, the times to reach or leave intersection nodes of the trip route, arrival time to destination, 

parking, or charging time at destination. Therefore, on each trip, EV follows a trip route 

between OD locations through space as a function of time. Each travel represents three typical 

behaviors of EVs, namely, driving, parking, and charging. These can be thought of as three 

states, where an EV traverses among them over time in the electromobility simulation. 

In addition to the urban spatial features, the EV technical attributes significantly impact the EV 

users’ travel behavior. The main affecting factors of EVs on the users’ travel behavior are the 

EV energy consumption and the SoC of the EV battery. Hence, it is essential to provide an 

accurate model of EV to estimate the energy consumption and SoC of EV at each moment of 



electromobility simulation. To this end, In the next section, the EV is modeled by focusing on 

its energy consumption components. 

 

4.2.EV Model for Energy Consumption Simulation in Electromobility  

 

In daily mobility, EV consumes energy when traveling through the urban street network 

according to its technical characteristics and the user driving behavior, and is charged by user 

decision to avoid becoming stuck with an empty battery.  In order to provide a more accurate 

model, more realistic conditions have been applied to model EV consumption, such as urban 

traffic, geographic spatial model of the urban street network, an efficiency model, parasitic 

power, etc. The EV technical specifications, EV driving speed, and streets slopes are required 

to develop the EV energy consumption model. 

 

4.2.1. EV technical specifications 

 

The required EV specifications to use in the energy consumption model are: curb mass ( ), 

EV width (B) and height (H), drag coefficient ( ) and battery capacity ( ). In this research, 

the best-selling EV brands in Brazil 2020 [112] are considered the available EVs in the study 

area. Table 4.1 shows the selling percentages and attributes of these EVs. In the urban 

electromobility simulation, an EV brand is assigned randomly to each EV user according to 

selling percentages, and the corresponding specifications are used in the EV model.  

 

 

 

 

 

 

 

 

 



Table 4.1 

EV specifications  

 

EV brands 

 

Selling 

percentage 

(%) 

 

EV specification 

 

Curb 

weight(kg) 

Width

(mm) 

Height 

(mm) 

Drag 

coefficient 

Battery 

capacity 

AUDI E-TRON 21.3 2490 1935 1629 0.28 71 

CHEVROLET BOLT 12.6 1616 1765 1595 0.308 60 

NISSAN LEAF 12.3 1558 1791 1560 0.28 40 

JAGUAR I-PACE 11.5 2140 1895 1565 0.29 90 

BMW i3 9.5 1245 1775 1598 0.29 33.2 

RENAULTZ.E  7.5 1530 1829 1801 0.29 33 

JAC IEV40 7.3 1460 1750 1560 0.35 40 

RENAULT ZOE 3.84 1500 1703 1562 0.29 45 

JAC IEV 20 3.38 1340 1685 1570 0.35 41 

MERCEDES-BENZ  3.15 2495 1884 1624 0.26 80 

BYD ET3 2.2 2420 1772 1875 0.28 50.3 

TESLA MODEL 3 1.3 1611 1849 1443 0.23 53 

TESLA MODEL Y 1.3 2003 1921 1624 0.23 74 

TESLA MODEL X 0.95 2352 1999 1676 0.25 75 

PORSCHE  0.6 2140 1966 1379 0.22 71 

TESLA MODEL S 0.58 2027 1963 1445 0.24 75 

JAC IEV 330P 0.25 2200 1880 1830 0.35 67.2 

RENAULT TWIZY 0.23 450 1234 1454 0.64 6.1 

BYD E5 0.11 1845 1765 1500 0.28 47 

JAC IEV 60 

 

0.11 1665 1782 1656 0.35 63 

 

4.2.2. EV driving speed 

 

In addition to the EV technical attributes, the EV speed has the largest effect on the energy 

consumption of the EV. The instantaneous speed of EV is used to estimate the instantaneous 

EV energy consumption of driving on the street network. It is difficult to predict the accurate 

EV driving speed in the stochastic transportation system with dynamic traffic. Besides, there is 



no mathematical model for achieving the exact driving speed for an arbitrarily given street at 

the accuracy needed for the user’s driving behavior modeling. In the literature, two methods 

were mainly utilized to the driving speed of vehicles on the streets, including determining the 

average speed of street segments according to the segment’s traffic and speed limits and 

stochastically generating driving speeds by driving cycle synthesis model. 

In this context, the segment-based energy consumption model based on average speed is 

developed to predict the required energy for the next trip of the EV. Moreover, to estimate the 

instantaneous EV driving energy consumption, the EV energy consumption model is developed 

based on the instantaneous driving speeds generated based on a stochastic driving cycle 

synthesis model. In the segment-based energy consumption model, the acceleration is assumed 

to be zero. In contrast, in the instantaneous EV driving energy consumption model, the 

instantaneous acceleration is calculated based on the instantaneous EV driving speeds. 

 

4.2.3. Street slope 

 

The slope of the part of the street that EV passes through every second may change. However, 

determining the street slope for each second of EV driving is very difficult and needs high-

resolution geospatial data of urban streets. Nevertheless, modeling the street network based on 

OSM data creates the opportunity to estimate the average slope of each street segment based 

on the Digital Elevation Model (DEM). The DEM is the 3D representation of continuous 

elevation data over the Earth’s surface. It is represented as a raster that can be expressed as a 

2D array so that each pixel has its elevation. Among the various sources of DEM data, the 

Shuttle Radar Topography Mission (SRTM) [113] is selected that provides the reliable DEM 

data of the earth. The SRTM void-filled, one arc-second DEM data with a resolution of 

approximately 30m is extracted for the study area as shown in Figure 4.1.  



 

Figure 4.1. DEM raster map of the study area. 

 

SRTM-DEM is a raster map in which each pixel has an individual elevation value that may be 

the average elevation of the street segment and possible heights (buildings, hills, etc.) beside it. 

Thus, the slope of each pixel can be the slope of the street segment with the surrounding terrain, 

which may be higher than the actual street slope. The procedure to calculate the average slope 

of the urban street segment is described below. 

(1) Calculating the slope raster of the study area 

SRTM-DEM data are comprised of pixels with individual elevation values. The slope of each 

pixel is defined as the change in elevation per unit distance along the path of steepest ascent or 

descent from the pixel to one of its eight immediate neighbors, which can be calculated in two 

types of units, degrees or percent. The rates of change of the surface in the horizontal ( ) 

and vertical ( ) directions from the pixel determine the slope that is calculated based on 

the following equation: 

 (degree)                                                                    (4.1) 

For the elevation raster of the SRTM-DEM data of the study area, the slope raster (in degree) 

for the study area is shown in Figure 4.2.  



 

Figure 4.2. The slope of the study area. 

 

(2) Overlapping the street and the slope raster 

Since the pixels of the slope raster and street segments are specified by Lat/Long coordinates, 

street segments are overlaid on pixels to identify their intersections. To accurately determine 

the intersection of street segments and pixels, each street segment is interpolated and divided 

into sub-segments with a length of 1m. Then, the intersected pixels for each street segment are 

determined from overlapping the interpolated street segments and pixels. 

(3) Calculating the slope of street segments 

The slope value of a street segment is the average slope of all intersecting pixels with that street 

segment. The slope values of all urban street segments are obtained based on SRTM-DEM data. 

 

4.2.4. Energy consumption model of EV 

 

In this section, a detailed energy consumption model of EV is introduced that includes two main 

components:  

• Tractive effort model with air drags, rolling resistance, acceleration, and hill-

climbing components 



• Individual efficiencies of powertrain components describe lumped loss model for 

the mechanical and electric powertrain.  

Together, both components provide a reasonably accurate description of the energy 

consumption of an EV in almost any driving situation. Tractive effort is the force propelling 

the vehicle forward, transmitted to the ground through the drive wheels.  

 

 

 

 

  

 

 

 

 

Figure 4.3.  The forces acting on an EV move up an inclined road. 

 

According to Figure 4.3, for an EV with mass m (sum of curb mass and passengers’ mass), that 

is proceeding at an instantaneous velocity , the instantaneous total tractive effort is 

described in equation (4.2). 

                                                                                              (4.2) 

The forces are defined as follows. 

• Rolling resistance force ( ) 

                                                                                                                                           (4.3) 

 The value of  is calculated by following the empirical equation [114], based on the EV 

attributes.   

                                                                                      (4.4) 

mg 



Where p is tire pressure considered standard value 30 bar for EVs. g is the gravitational 

acceleration which is equal to 9.81  . 

• Aerodynamic drag force  

                                                                                                                              (4.5) 

is the,  is the density of air,  is the drag coefficient,  is the frontal cross-sectional area of 

EV. The  is determined by EV attributes according to Table 4.1. Referring the [115], the  

(in ) for each EV is calculated by the following equation, 

                                             

(4.6) 

Where B is the width of EV and H is the height of EV mentioned in table x for each EV brand. 

• Hill-climbing force ( ) 

                                                                                                                                 (4.7) 

The hill-climbing force component depends on total EV mass and slope changes along the street 

segment.  is the slope of the street segment where the EV travels in one second, which is 

the average slope of the street segment that EV is driving on it at second t.  

• Acceleration force ( ) 

                                                                                                                                          (4.8) 

Where a  is the linear acceleration of EV, however, for a more accurate model of acceleration 

force, the rotational acceleration and linear acceleration should be considered in the model.  

To model the angular acceleration force, the axle angular speed of the tire is formulated as  

(radians per second) which  is the radius of the tire. Then by considering the gear ratio (G) of 

the system connecting the motor to the axle, the angular acceleration  is found by equations 

(4.12). motor angular speed and acceleration are  

                                                                                                                                     (4.9)                    

                                                                                                                                              (4.10)                    

 



The torque required for this angular acceleration is 

                                                                                                                                                    (4.11)                    

The force at the wheels needed to provide the angular acceleration is 

                                                                                                                                        (4.12) 

Where,  is the mechanical powertrain efficiency, and  is the moment of inertia. For each 

EV, an overall fixed gear ratio G is considered between the  and  . I is considered 

constant value 0.025 . 

Therefore, the total tractive effort of equation (4.2) is rewritten as equation (4.13). 

                                                                                                          (4.13) 

To calculate the EV’s energy consumption of each second of the driving cycle, the energy flow 

of a classical EV illustrated in Figure 4.4 is used.   

     

Figure 4.4: Energy flow of EV. 

 

The tractive power consumer at wheels is calculated by equation (4.14). 

                                                                                                                                       (4.14)     

The energy required to move the EV for one second is the same as the power (E(t)= ). 

The efficiencies of different EV components are needed to calculate EV’s total propulsion 

power. The efficiencies of battery, power converter, mechanical powertrain are demonstrated 

by  ,  ,  ,  respectively. These efficiencies are described in table 4.2 [116]. 
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Table 4 .2. 

EV’s efficiencies 

 

 Efficiency (%) 

 Min.                              Max.  

   93                                   99 

   90                                   98 

   87                                   93 

 

The efficiencies of the electric motor and its controller are considered together as  and it is 

depended on power, torque, and also motor size. A simplified model of electric motor efficiency 

can be obtained by the following equation. 

                                                                                                                  (4.15) 

Where,  is the copper loss coefficient,  is the iron loss coefficient,  is the windage loss 

coefficient and C represents constant losses that apply at any speed. typical values for these 

constants for a 100kW high-speed induction motor are ,  ,  , 

C=600. Therefore, the overall propulsion power balance equation can be written as: 

                                                                                      (4.16) 

In the case of regenerative braking, the power flow is reverse, and by modification of the above 

equation, it is written as: 

                                                                                         (4.17) 

when EV is at propulsion mode where the vehicle is being driven, the output power from EV’s 

battery is   

 +                                                                                                                         (4.18)                    

Where  is the accessories power (e.g., lights, air conditioning, etc.) are considered in the EV 

energy consumption model and modeled by Normal PDF (i.e., N(500w,25)). 

If the motor is being used in regenerative braking mode, then the efficiency (or rather the 

inefficiency) works in the opposite sense.  



In other words, the electrical power from the motor is reduced, and the input power to the 

battery is: 

 =                                                                                                                        (4.19)                

During the driving, based on the instantaneous energy consumption of EV, the battery SoC is 

updated at each second of driving. The flowchart of energy consumption and SOC calculation 

for a second time is illustrated in Figure 4.5. 

 

           

Figure 4.5: Flow chart of instantaneous energy consumption and SOC based on EV’s model. 
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4.3.EV user driving behavior 

 

Besides the technical model of EV, the user’s driving behavior significantly influences EV 

energy consumption in a trip, which is due to the user’s decisions on the trip destination and 

route and driving pattern (e.g., driving speed). In this section, the user’s driving behavior in 

urban electromobility is modeled comprehensively. The EV user driving behavior is modeled 

into two parts; the decision-making process to predict the trip’s parameters and the trip’s driving 

pattern.  The decision-making process to determine the trip parameters such as trip purpose, 

departure time, trip destination, and route. The driving pattern simulates the driving speed, 

acceleration/deceleration on the decided trip route. 

 

4.3.1. EV user decision-making on the trip parameters 

 

The driving decisions are modeled by assuming that users are sufficiently rational and able to 

identify all potential alternatives.  EV users predict the spatial-temporal characteristics of the 

trip before departure from the origin. To this end, they determine the travel purpose (activity) 

and departure time of origin (start time of travel). Then, they choose the trip’s destination 

location, where they perform the activity, and the trip route from origin to the selected 

destination. The various models of simulating the EV users’ driving behavior are described in 

the following subsections. 

 

4.3.2. EV’s user classification 

 

The total number of EVs is determined for a given penetration of EVs in the study area.  It is 

assumed that the users have enough knowledge about places, activities, and urban transport 

networks at any given time. This spatial-temporal knowledge can be employed to make various 

spatial-temporal decision tasks such as choosing the destination, departure time, trip route, etc.

 Most of the existing works utilized the travel data for all kinds of users and ignored the 

influence of users’ social attributes on their travel behavior, which deteriorates the accuracy of 

the users’ travel and charging demands. In this regard, from the point of user’s occupation, the 



users are classified according to the travel survey data of the study area. In the OD-RMC 

dataset, the drivers are classified as employed, unemployed, retirees, housewives, and students 

based on their occupation. Accordingly, in this research, three EV user groups are defined as; 

employed, unemployed, and students, in which the unemployed group consists of unemployed, 

retirees, and housewives. In addition, students include students who have a driver’s license and 

are studying at universities.  

 

4.3.3. Departure time  

 

In this paper, EV daily trips are considered home-to-home trips in which the EV departs from 

home at a specific time, performs a set of activities at different locations, and finally back home. 

Hence, except for the departure time of the first trip that starts from home, the departure time 

from an activity location is the sum of the arrival time and the parking time at the location. The 

first departure time from home is decided by EV users, independent of the urban transportation 

system and traffic conditions. It largely depends on EV user occupational status, so it is different 

for the three mentioned user groups. Since there are no specific rules to determine this time, it 

is modeled probabilistically based on the data extracted from travel survey data to reflect the 

stochastic nature of the first departure time from home. Figure 4.6 shows the distribution of 

first departure time from home data extracted from the OD-RMC dataset for three user groups. 

 

 

 

 



        

Figure 4.6. Distribution of first departure time from home for drivers; (a) employed, (b) unemployed, 

(c) students 

 

The first departure time from home is modeled by a PDF for each EV user group. The 

Generalized Extreme Value (GEV) as the best-fitted PDF on the data is selected to model each 

EV user group’s first departure time.  
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4.3.4. Stochastic trip purpose prediction 

 

Daily EV travels include two or more trips with different purposes. The purpose of each trip 

represents the activity that will be performed at the destination location. To simulate EV daily 

trips in a multi-purpose framework in real-world conditions, the empirical EV’s travel data can 

be used to model the realistic EV user travel behavior.  

Since nowadays EVs are not yet widely popular in the urban transportation system, it is difficult 

to obtain a large number of EV travel statistics (especially in developing countries like Brazil), 

so it is assumed that EVs have the same travel patterns as conventional vehicles and the travel 

characteristics of EVs can be simulated based on travel survey dataset of fuel vehicles. 

Therefore, conventional cars’ travel survey data of the study area is used to model the trip 

purpose prediction for each user’s trip of the daily itinerary. 

In some existing studies, a complete activity schedule for a whole day is extracted from travel 

data and assigned to each EV user, consisting of a sequence of activities with the starting time, 

ending time, etc. However, in these studies, it is ignored that arrival time to each activity 

depends on driving time, which is highly affected by urban street topology and urban traffic.  

Thus, extracting all travel attributes from travel data is not realistic enough because the spatial 

characteristics of the urban street networks and dynamic traffic are not considered. To overcome 

this problem and represent the stochastic nature of trip purpose decisions by EV users, the trip 

activity(purpose) is generated trip-by-trip stochastically at the departure time of each 

destination location by taking into account the influence of traffic condition of the street 

network and users’ driving behavior on arrival time to destination.  

The trip purpose prediction model is developed based on the Markov chain concept, assuming 

that the trip purpose of the forthcoming trip depends on the origin’s departure time and activity 

type. In order to predict stochastically the purpose of daily trips that represent real-world travel 

conditions and differentiate the trips by time, the Transition Probability Matrices (TPM) are 

calculated based on the frequencies of transferring between different purposes collected from 

the OD-MRC at one-hour intervals.  

The trip purposes defined in OD-MRC are home (H), Work (W), Education (E), Shopping (S), 

Meals(lunch) (M), Health (H), Recreation (R), Personal matters (P), and Others (O). In the daily 

itinerary, home is divided into three purposes: starting the trip from home ( ), short stay at 



home during the daily trips ( ) and end of daily trips at home ( ). Therefore, by considering 

the 24-hour day and the eleven trip purposes ( , , , W, E, S, M, H, R, and O), 24 hourly 

TPMs with square size 11×11 are generated for each user group. For instance, the TPMs for 

hours 7:00-8:00 and 17:00-18:00 for three user groups are shown in Figure 4.7. 

 

 

Figure 4.7: (a) TPM at 8’ocolock of employed, (b) TPM at 18’ocolock of employed, (c) TPM at 

8’ocolock of unemployed, (d) TPM at 18’ocolock of unemployed, (e) TPM at 8’ocolock of 

student, (f) TPM at 18’ocolock of student 

 

In urban electromobility simulation, the trip purpose is predicted stochastically for each EV trip 

according to the TPM corresponding to the hour of departing and the EV user group. To this 

end, the row of the TPM respective origin activity type is identified, then the row’s 

accumulative probabilities are compared with a random number drawn from U (0,1) to 

determine the trip purpose. 
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4.3.5. Modeling the destination location choice and trip route choice 

 

The EV users’ decisions on the destination location and trip route between origin and 

destination locations significantly impact EV travel and charging demands in the urban 

electromobility simulation. Integrating the urban street network and land use provides a spatial 

framework to simulate the EV user’s behavior in selecting the destination and route for each 

trip. 

The daily travels of EV users are made to perform a set of activities at different locations. To 

simulate the EV user’s destination choice behavior, two activity types are considered as 

activities at fixed locations and non-fixed locations. Regarding the activities defined as trip 

purposes in the previous section, home, work, and education are activities with fixed locations. 

On the other hand, shopping, meal, health, recreation, personal matters, and others are non-

fixed locations. The proposed urban electromobility simulation requires the exact activity 

locations with their own Lat/Longs. In the absence of this data in the study area, the potential 

activity locations are generated synthetically in the respective land-uses blocks. 

 

4.3.5.1.Synthetic activity locations in urban land-uses 

 

To synthesize potential activity locations, two location points are considered; home points and 

non-home points. Each non-home point is regarded as a potential location for non-home 

activities like work, shopping, etc. Due to the fact that activity locations are situated in parallel 

to the streets, home points are specified in parallel to residential streets in the land-uses with 

habitability like residential, mixed zones, and city center land-uses. On the other hand, non-

home points (e.g., workplaces, shops, etc.) are determined parallel to tertiary, secondary, and 

primary streets in land-uses blocks adjacent to these streets. To this end, hypothetical lines are 

considered in parallel to the OSM streets with a short distance (i.e., 5 meters), and the location 

points are generated on these lines with certain distances between two consecutive points: for 

homes, a random distance is extracted from the uniform distribution U (20-50), but for non-

home points, a random distance is extracted from U (50-150). Figure 4.8 shows the synthetic 

home points and non-home points in the land-uses of a sample part of the study area. 

 



   

 

Figure 4.8. Synthetic home points and non-home points. 

 

Destinations for activities with fixed locations are not chosen on a trip-by-trip basis, and they 

remain fixed over a long period. As such, during the EV mobility simulation, no destination 

choice is made for such activities. Instead, for each EV user, the activities with fixed locations 

are assigned in the setup phase of modeling and simulation regarding the EV user type.  

 

• Home locations 

Since EV users belong to households and have home-to-home daily trips in the electromobility 

simulation, a home location should be assigned to each of them.  The home locations are at the 

land uses with residential possibilities, i.e., residential zones, mixed zones, and the city center 

area. Due to the price of the EV, it is assumed that high-income households are more likely to 

have an EV. Based on households’ income in the different areas of Campinas extracted from 

the city’s census data [117], the study area is divided into three groups: high, medium, and low 
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income. The EVs are randomly assigned to residential land use in the high, medium, and low-

income regions with 60%, 30%, and 10%, respectively. 

 

• Workplace locations 

The workplaces are assigned to the employed EV user types regarding their work type. In this 

regard, a work type is given to each employed EV user based on the work type distribution of 

the employees extracted from city economic indicators [118] adapted from the city’s census 

data shown in table 4.3. Furthermore, for each work type, potential land uses are identified. A 

land-use from potential land uses is assigned to an EV user based on the spatial attributes of 

work trips for each work type extracted from the OD-MRC dataset. Since the OD-MRC dataset 

was collected at the TAZ level, the TAZ respective to work type is first identified. Then a land-

use block corresponding to the work type is selected in the specified TAZ.  

 

 

Table 4.3 

work type distribution of study area 

 

Work type 

 

Percentage 

(%) 

 

Services 

 

37.2 

Commercial 24.4 

Industrial 15.2 

Education 7.3 

Administrations  6.8 

Health and social 

services 

5 

Construction 3.4 

Arts, culture, sports,  

and recreation 

0.7 

 

Therefore, to assign a workplace to an EV user, firstly, a work type is randomly picked out from 

the work type distribution (Table 4.3). Secondly, a TAZ is stochastically assigned to the EV 

user according to the percentage of work trip destinations respective work type at TAZs. 

Finally, the land-use blocks related to the user’s work type in selected TAZ are identified, and 



a land-use from the available land-uses is randomly assigned to the EV user. Since the Lat/Long 

of workplace location is required to simulate the EV mobility, a non-home point in the selected 

land use is randomly selected as the workplace of the EV user. 

 

• Education locations 

The education land uses containing universities and colleges are identified as potential land 

uses for students who can own EVs. Then, the education location for each student is randomly 

selected from non-home points in the identified education land uses. 

 

For the trips ending at the fixed destination locations, the EV users only decide on the trip route 

from origin to the preset destination locations. On the contrary, for trips to the non-fixed 

destination locations, users need to determine the trip’s destination location and route, which 

are chosen simultaneously due to their interdependency. 

 

4.3.5.2.Optimal-energy trip route choice for fixed-location 

 

Once the EV trip is toward the destination with a fixed location, the user selects the route 

between the origin and the assigned fixed destination location. Unlike conventional trip routing 

methods, which determine the trip route as the shortest or fastest route between activity 

locations, this research develops a route planning model specifically for EV users that prefer to 

choose the trip route with minimum EV energy consumption. To this end, the realistic EV user 

behavior in finding a minimum-energy route is modeled in the dynamic and stochastic urban 

transportation networks that the streets’ traffic varies dynamically over the day. In this context, 

it is assumed that the daily traffic conditions of urban streets are provided for EV users, who 

can predict the minimum-energy trip route by estimating the EV energy consumption of driving 

based on their EV technical attributes, traffic conditions, and topology of urban streets. 

In the microscopic simulation of EV driving on the urban street network, the instantaneous EV 

energy consumption can be calculated based on the second-by-second driving speed and 

acceleration/deceleration.  However, in the route planning model based on EV driving 

microscopic simulation on the urban street network graph, the acceleration/deceleration of 

transition between adjacent edges for edges of the graph with two or more incoming edges 



arises a significant issue in the EV speed driving and energy consumption modeling, because 

the first-second speed of EV on a segment with two or more incoming edges cannot be 

determined uniquely. Consequently, the transient speed and energy consumption are not 

unique. 

To use microscopic driving simulation in predicting trip routes between OD locations, one 

option could be to find all possible routes between OD locations to uniquely determine the 

transient speed and energy consumption. However, determining all paths between a pair of OD 

locations on the large-scale urban street graph is very time-consuming and impractical. In this 

regard, route choice set generation can reduce the computational time. Still, generation route 

choice without empirical data of EV user’s behavior or generating random route choice sets is 

not realistic and creates unrealistic or unfeasible routes. Furthermore, changing the graph 

structure may help find the unique acceleration/deceleration transition between adjacent edges 

in small graphs, but due to the large size urban street network graph in this research, changing 

the graph structure to use the microscopic simulation of EV driving is very difficult and 

impossible.  

The macroscopic modeling of trip route choice was used for conventional vehicles to find 

shortest or fastest routes, which are not always the most energy-optimal routing, can be 

developed to find optimal route choice models of EVs. In this context, an energy-optimal 

routing model is developed based on the macroscopic model of EV energy consumption, which 

takes as inputs the mean EV velocity, mean driving time, and mean road grade of street 

segments to estimate the EV energy consumption on the urban street network and find the 

minimum-energy trip route. By taking into account the EV technical characteristics, 

topography, and dynamic traffic conditions of the street network, the macroscopic routing 

model can provide a reasonable model of the EV user’s route choice behavior on the large-scale 

street network graph with short computational time.  

In the EV energy consumption macroscopic model, the street segment’s energy consumption is 

proportional to the segment’s mean EV velocity and mean EV driving time. Hence, in the 

stochastic and dynamic urban transportation system, EV users prefer to choose the streets 

without traffic congestion that driving time and consequently energy consumption is small. In 

congested streets, although the average speed is low, the energy consumption is high due to the 

extensive driving time.  

 



 

4.3.5.2.1. Estimation of the segment’s average driving speed and driving time  

 

The EV driving speed on each street segment is affected by the segment’s traffic condition and 

street type, which determine the average speed and speed limit, respectively. In this regard, the 

Speed Performance Index (SPI) introduced in [119] as the ratio between average driving speed 

and maximum permissible speed on a street segment for different traffic conditions is used to 

estimate the average EV driving speed on a street segment. The SPI values for the different 

traffic conditions are shown in Table 4.4. 

Table4.4 

The traffic levels and the speed performance index. 

Traffic level      SPI Traffic condition 

 

1 

 

[0, 0.25] 

 

Traffic jam 

 

2 (0.25, 0.5] Heavy traffic 

 

3 (0.5, 0.75] Moderate traffic 

 

4 

 

5 

(0.75, 1) 

 

   1 

Smooth traffic 

 

No traffic 

 

The maximum driving speed in different street types are adapted from the speed limits of the 

study are by assuming that the driver may exceed the speed limit of the street as 10 to 15 percent 

of maximum speed, the maximum speed in km/h for OSM street types of the study area are 

determined as shown in Table 4.5. 

Table 4.5 

 The maximum speed of urban streets 

Street 

type 

Motorway Trunk Primary Secondary Tertiary Residential Especial Motorway-

link 

Trunk-

link 

Primary-

link 

Secondary-

link 

Tertiary-

link 

 110 90 70 60 50 40 30 50 50 40 30 30 

 

The aforementioned values of  are used to estimate the average EV driving speed on the 

street segments. For this purpose, first, the traffic condition of the street segment is determined 



based on the urban traffic prediction model by considering the time-step and the driving time 

in the day. Then an SPI value is extracted randomly from the SPI range presented in table 4.4 

corresponding to the street’s traffic condition. Finally, the average EV driving speed on the 

street segment is calculated by the following equation: 

.                                                                                                                                       (4.20) 

In the traffic jam (Traffic level 1), the minimum velocity of EV is set to 5 km/h. 

 The average driving time on each street segment is calculated based on the and the length 

of the street segment that is calculated by the Haversine formula using the Lat/Long coordinates 

of both nodes of the street segment. 

 

4.3.5.2.2. Segment-based EV energy consumption 

 

The average EV energy consumption on a street segment is calculated based on the segment’s 

average values of driving speed, driving time, and street slope. Regarding the described EV 

model, the segment-based EV energy consumption model is obtained by assuming acceleration 

a(t)=0 and replacing the instantaneous speed v(t) with v, which is the average EV driving speed 

on the segment. Then, the average mechanical power consumption at wheels on the segment is 

calculated by equation (4.21). 

                                                                              (4.21) 

With zero acceleration/deceleration, the regenerative power will also be zero, and the power 

draw of the battery is;  

                                                                                                                (4.22) 

by considering the length of the segment  and the driving time on the segment  , the 

total consumed energy of the EV’s battery on ith segment  is calculated as below. 

                                                                                                                                          (4.23) 

 

 



4.3.5.2.3. Minimum-energy dynamic route choice model 

 

An energy-optimal dynamic route choice model is created using a dynamic traffic prediction 

model, segment-based EV energy consumption model, and a routing algorithm. In the proposed 

route choice model, the traffic model predicts the dynamic traffic condition of the street 

segments at each time step of traffic simulation over the day.  

At each time step, the average driving speeds and driving times on all street segments are 

estimated according to the segment’s street types and traffic conditions. Next, the EV energy 

consumptions on street segments are calculated based on the segment-based energy 

consumption model regarding their average EV driving speed, average driving time, and 

average segment slope. Finally, a routing algorithm (i.e., the Dijkstra algorithm) is used to find 

the energy-optimal trip route between OD locations on the weighted street network graph, in 

which the edges’ weights are the estimated EV energy consumption of driving on these edges. 

This process is repeated at each time step in EV driving prediction on the street network. At the 

departure time of O location, the optimal trip route is found, EV driving is simulated segment-

by-segment on the predicted trip route, at the beginning of each time step the trip route is 

updated, the route updating is repeated until EV arrives at the D location.  

Therefore, the dynamic route choice model predicts the trip route choice behavior of the EV 

users by pre-trip route planning and en-route replanning according to the dynamic predicted 

traffic condition of street segments.  

Pre-trip route planning is simulated the EV users’ behavior at the departure time to find the 

optimal route between the OD locations. En-route replanning simulates the EV users’ behavior 

during the trip that updates the EV’s trip route according to the updated street traffic states at 

each time step and the new calculated travel cost of street segments. The procedure of finding 

the optimal trip route between the OD locations of each EV trip based on the proposed dynamic 

trip route choice model is described as follows: 

(1) Since the OD locations are not on the street network graph (they are located parallel to 

the streets), each of them should be connected to the street network graph with a street 

segment. To this end, two straight lines from the O and D locations to the nearest nodes 

of the graph are established, named as departure segment and destination segment, 

respectively. 



(2) At the departure time of the O location, the pre-trip route planning predicts the initial 

trip route between the OD locations on the weighted street network graph using the 

Dijkstra algorithm, which the weighs are the driving energy consumption of street 

segments estimated by segment-based energy consumption model regarding the traffic 

conditions at the time-step corresponding to the departure time. The initial trip route 

starts from the departure segment, contains the street segments with the minimum 

energy that connects the departure segment to the destination segment, and ends at the 

destination location.  

(3) While EV driving along the trip route is simulated segment-by-segment, the possibility 

of en-route replanning is checked at the end node of segments by considering driving 

time, arriving time at the end node of segments, and the time-step change. If the time-

step has changed when the EV reaches the end node of a segment, the route is updated 

by the Dijkstra algorithm from the node to the D location according to the new energy 

weights of the street graph. 

(4) Step 3 is continued until EV driving prediction simulation is over, or in other words, the 

EV reaches the D location at the end of the destination segment.  

In a nutshell, the EV user behavior in predicting a trip’s trip route with a fixed destination 

location is modeled by the energy-optimal dynamic route choice model based on macroscopic 

simulation of EV energy consumption model and urban traffic simulation. In this context, 

according to the trip’s starting time (or departure time from the O location), the first time-step 

number of traffic simulations is determined. At the departure time, the initial trip route between 

OD locations is found (pre-trip route planning) by the Dijkstra algorithm on a weighted street 

network graph, in which the weights are the EV energy consumption on each graph edge (street 

segment). Then, the EV driving on the initial trip route is simulated segment-by-segment.  

By taking into account the departure time and driving time on each segment, when the time-

step of traffic simulation is changed, the traffic conditions of street segments and energy 

consumption on segments are changed, thus, the previously determined trip route is updated 

(en-route replanning) to find the new trip route from the current position of EV to D location 

based on new weights of graph edges. The en-route replanning is performed at the beginning 

of each time-step until the EV reaches the D location. Therefore, the user predicts the trip route 

by choosing the minimum-energy route between OD locations while refusing to choose the 

traffic-congested street segments that driving time and energy consumption on them are high. 

For a pair of arbitrary OD locations, the proposed model to find the minimum energy route by 



pre-trip route planning and en-route replanning following the dynamic urban traffic is 

demonstrated in Figure 4.9, in which figure 4.9 (a) illustrates the dynamic routing with six en-

route replannings and (b) shows the final route between OD locations. 

           

 

          

 

Figure 4.9. The dynamic routing between two sample OD locations. (a) pre route replanning and en-

route (b) final trip route. 
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4.3.5.3.Simultaneous Destination and Route Choice Modeling for non-fixed locations 

 

Unlike fixed locations, non-fixed locations are changed trip-by-trip, and a point from the 

synthetic non-home points in a land-use block respective to trip purpose should be selected as 

the destination location. Due to the interdependency of destination choice and route choice, a 

model is developed to simulate the EV user behavior in selecting the destination and trip route 

for non-fixed locations simultaneously. The destination choice models were typically 

developed based on travel survey data. Since this data is generally collected at the TAZ level, 

the destination choice models were usually created at the TAZ level where a TAZ or a random 

point in a TAZ is selected as the destination location. However, the actual location of an activity 

can be better represented by a type of land use instead of a TAZ, which is an aggregation of 

several land uses. 

In this research, the destination choice model is developed at the land-use level that selects a 

land-use block as the destination land use and picks out a random non-home point in the chosen 

land use as the destination location of the trip. To this end, the simultaneous destination and 

route choice model generates a choice set consisting of potential land-uses destinations 

corresponding to trip purpose. Then, it calculates the choice probability of each land-use block 

in the choice set based on the travel cost (energy and time) from O location to land-use blocks 

in the choice set. Finally, based on the calculated choice probabilities, a land-use block is 

selected stochastically, and a point is randomly extracted from the non-home points in the 

destination land-use as the destination location of the trip. It is worth noting that since there 

might be many land-use blocks respective to the trip activity of a trip, the same connected land-

use blocks are considered as aggregated land-use. In this case, the aggregated land use is a 

polygon consisting of the land-use blocks.  

 

4.3.5.3.1. Choice set generation 

 

For each trip to a non-fixed destination location, a choice set consisting of land-uses with 

potential locations corresponding to the trip’s purpose is generated to prevent selecting 

irrelevant land use for the trip. For this purpose, based on the land uses characteristics, the 



possible destination land-use blocks from non-residential land-use blocks corresponding to the 

trip purpose (activity) are selected as the choice set.   Furthermore, there are non-home points 

in some residential land-uses that can be potential destinations for some trip purposes like 

shopping, meal, personal matters, and Others. In this regard, it is assumed that the residential 

land-uses with none-home points can be potential land-uses for EV users living near these land-

uses. As such, for home-based trips (i.e., the trips that are started from home) to the mentioned 

non-fixed location, in addition to the possible non-residential land-use blocks corresponding to 

the trip purpose, the residential land-uses with none-home points with a distance of less than 

2km from the EV user’s home are also included in the choice set. 

 

4.3.5.3.2. Determining the attractiveness of land uses by the Fuzzy system  

 

The possibility of choosing a land-use block by an EV user depends on the attractiveness of 

land use from the user’s point of view. In this context, considering the EV users’ preference 

and their logical decision-making on choosing the trip destination and route with the minimum 

driving energy consumption and time, the proposed simultaneous trip destination and route 

choice model assumes that the attractiveness of a land-use from the EV user’s perspective 

depends on the following three main variables. 

(1) The EV driving energy consumption of traveling from the origin location to potential 

land-use destinations.  

(2) The travel time from the origin location to potential land-use destinations.  

(3) The number of trips corresponding the trip purpose to the destination land use. 

Significant data and an extensive model calibration process are needed to model the actual 

relationships between the attractiveness as a dependent variable and the aforementioned 

independent variables. Thus, modeling these relationships is impossible due to the shortage of 

travel data at the land-use level, as the travel survey data is typically collected at the TAZ level. 

However, these relationships can be constructed with fuzzy logic using logical rules, in which 

the calibration is neither necessary nor challenging.  

Therefore, the three variables mentioned earlier are considered inputs of a Fuzzy system to 

estimate the choice probabilities of potential land-uses in the choice set. In this regard, for each 

trip with tip purpose corresponding non-fixed location activity, the simultaneous destination, 



and route choice model, firstly, find the choice set of potential land-uses destination 

corresponding to trip purpose, then the values of three fuzzy inputs are estimated for the 

potential trips from the O location to the center of land-uses in the choice set. Thirdly, the fuzzy 

output determines the choice probabilities of each potential land-use destination. Finally, a land-

use is selected stochastically according to choices probabilities as destination land-use, and the 

trip route is the minimum-energy route from the O location to the selected land-use that is 

already simulated as the fuzzy input in the second step.  

• Fuzzy input1: EV driving energy consumption to the land-uses in the choice set 

According to the EV users’ preferences, the simultaneous trip destination and route choice 

model aims to find a destination location for each trip consuming minimum energy. Thus, 

although there are many trip routes between the origin location and center of a land use, the 

minimum energy consumption route is selected as the trip route between the origin location to 

each land-use block in the choice set. As such, the values of energy consumption of the 

minimum-energy trip routes from the origin to the centers of land-uses blocks in the choice set 

are specified as the first input of the Fuzzy system. The land-use block with the lowest trip’s 

energy consumption has the highest choice probability among the land-use blocks in the choice 

set. 

In order to obtain the energy consumption of traveling from the origin location to the center of 

the land-use blocks of the choice set, since the OD locations of the trips are known, the already 

described energy-optimal dynamic route choice model described is used to find the minimum-

energy trip routes. As an example, for a trip with leisure purpose from a sample origin location 

and the 27 land use blocks in the corresponding choice set, the minimum-energy routes between 

the origin location and the centers of land use blocks in the choice set are shown in Figure 4.10. 



 

Figure 4.10. Trip routes from origin to land-uses in the choice set for a sample of simultaneous 

destination and route choices. 

The energy consumption of the trip (in KWh) to each land-use block is the sum of energy 

consumptions of driving on the route’s segments, which is the first input of the fuzzy system to 

determine the choice probability of the land-use block. 

• Fuzzy input2: EV driving time to the land-uses in the choice set 

In addition to the energy consumption, the driving time of traveling from the origin location to 

the center of a land-use block affects the EV user’s decision to choose the land-use as the trip 

destination. Thus, the trip’s driving time between the origin location to the center of a land-use 

block in the choice set is considered the second fuzzy input to determine the choice probability 

of the land use and is the sum of the driving time on the segments of the minimum-energy route 

found by the Energy-optimal dynamic route choice model. 

• Fuzzy input3: number of trips to the land-uses in the choice set 

For a trip purpose (activity), the number of trips made with that purpose to a land-use indicates 

the attractiveness of the land use for that trip purpose. The historical travel data of the study 

area can be used to determine the trip numbers by assuming that the pattern of travels in the 

study area is maintained. Given that the travel data of the study area was collected at the TAZ 

level, not at the land-use level, the number of trips to the corresponding TAZ of the land-uses 

is considered to determine the land-use attractiveness. Moreover, to consider the effect of time 
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of the day on the number of trips, the hourly number of trips to the TAZs is taken into account. 

The number of trips to the TAZs of the study area with a one-hour interval for the mentioned 

trip purposes corresponds to non-fixed activity locations are extracted from the OD-RMC.  

Therefore, for each land-use in the choice set, the corresponding TAZ is specified, and the 

hourly number of trips to the TAZ corresponding to the trip purpose and the hour of travel 

starting time (departure time) is used as the third input of the fuzzy system. 

The Fuzzy system works in three steps; First, all input values are fuzzified into fuzzy 

membership functions. One of the main solutions for assigning membership functions to Fuzzy 

variables is intuition. Second, all applicable rules are executed in a rule-based platform to 

compute the fuzzy output functions. The fuzzy rules are defined as the conditional statement 

(IF-THEN), which sets the relationship between the input and output variables regarding the 

logical decisions of users.  Third, the fuzzy output functions are de-fuzzified to obtain crisp 

output values using the centroid defuzzification method. 

In the simultaneous trip destination and route choice model, the Fuzzy system is developed to 

determine the relative attractiveness of land-uses in the choice set based on the mentioned 

inputs. In other words, a land-use with the lowest driving energy consumption and driving time 

and the greatest number of trips to its TAZ has the highest attractiveness among the land-uses 

in the choice set from the EV user’s point of view. Hence, to set the values of the membership 

functions of inputs, different percentile values (i.e., 25th, 50th, and 75th percentile values) of 

the maximum input values of alternatives are considered. As such, the values of each input are 

normalized to generate the number between 0 to 1, and the three fuzzy triangular membership 

functions with three linguistic variables, low, medium, and high, are used to describe the 

mentioned three fuzzy inputs. The fuzzy outputs are the attractiveness of land-uses in the choice 

set ranging from 0 to 1, which is described by four linguistic variables low, medium-low, 

medium, medium-high, and high. Figure 4.11 shows the membership functions of inputs and 

output of the fuzzy system. 



 

Figure 4.11. Membership functions;(a) energy of trip route, (b) driving time of trip route, (c) trip 

numbers, (d) output 

 

4.3.5.3.3. Choice probabilities of land-uses in the choice set 

 

Based on the attractiveness of land-uses obtained by the Fuzzy system, the choice probabilities 

of the land-uses are calculated from the following equation. 

                                                                                                                                           (4.24) 

Where is the probability of i-th land-use corresponding to the trip purpose k in the choice set, 

 is the attractiveness of i-th land-use obtained by the fuzzy system, and   is a scale parameter. 

As the choice set may have many alternatives, the differences in the probabilities of high and 

less attractive options can be very small. As such, a scale factor  is imposed to inflate the most 

attractive opportunities and simultaneously penalize the least attractive options. 

(a) 
(b) 

(c) (d) 



 A value of  provides different outcomes for attractiveness. In this study, we considered 

different values of  and found that a higher value inflates the probabilities of the attractive 

options while penalizing the least attractive options. However, in this study  = 20 seems to 

provide slightly better predictions than others.  

To choose a destination land-use stochastically based on the calculated choice probabilities, a 

tempting approach would be to choose the land-use with the maximum probability. Still, this 

strategy would have the effect of choosing only the dominant alternative, and less frequent 

alternatives would be eliminated entirely. Clearly, this is not a realistic choice model because a 

few EV users can decide a little illogic decision.  

In order to address this problem, an alternative can be selected by sampling a random number 

from the uniform distribution in the range 0 to 1(U (0,1)) and comparing this random draw to 

the cumulative probabilities of the alternatives. Whichever alternative the sampled random 

number falls within is the alternative that is selected as the chosen one.  

Since the exact destination location point is required in electromobility simulation, a destination 

location is randomly selected from synthetic non-home points in selected land use.  

Moreover, the trip route is the minimum energy route from the origin location to the center of 

selected land use, which is completed then from the equivalent node of the graph to the selected 

non-home point in the chosen land-use destination. 

The flowchart of the simultaneous destination and trip route choice model is illustrated in Figure 

4.12.  



           

Figure 4.12. Flowchart of simultaneous modeling of destination and trip route choices. 

 

 

Calculate choice probability of 

land-uses in choice set            

Pc (1), Pc (2), …, Pc (j) 

Finding trip rout from the origin to 

the assigned destination location to 

the user 

Stochastic choice process 

 

 

 

 

Cumulative 

probability 

0-0.25  

0.25-0.5  

0.5-0.75  

0.75-1 

Random number 

from U (0~1) 

U (0,1) 

choice 

Choose the destination location in the 

selected land-use 

Finding attractiveness of land-

uses of choice set  

Trip purpose prediction at departure time 

Fixed activity location  Non-fixed activity location  

Optimal-energy trip route 

choice model for fixed location  

Minimum-energy trip 

route prediction 

Generating a choice set include land-

uses corresponding to trip purpose 

Finding the energy and time of travel 

from origin to land-uses of choice set by 

Optimal-energy trip route choice model  

Minimum-energy trip route to the selected 

destination location 



4.3.6. Driving pattern modeling  

 

As mentioned before, the user driving behavior is modeled in two steps. In the first step, the 

trip purpose, departure time, destination location, and trip route are predicted. In the second 

step, the driving pattern (i.e., driving speed, acceleration/deceleration) is modeled to simulate 

the EV driving on the predicted trip route.  There is no mathematical model for achieving the 

realistic EV driving speed at the accuracy needed to model the users’ driving patterns in the 

urban electromobility simulation. In the literature, the vehicle driving speed profile is modeled 

with a driving cycle, which is defined as a series of data points representing the speed of a 

vehicle versus time.  

The standard driving cycles were used in a few studies as the driving speed of EVs, while 

standard driving cycles cannot display realistic driving conditions because the standard cycles 

were recorded under specific conditions and cannot represent real-world driving conditions.  

A driving cycle is a speed-time profile designed to represent a real-world driving pattern. The 

relationship of speed-time at any time in the driving process is uncertain, so actually driving 

cycle should be a random process. Due to the stochastic nature of EV driving speed in the 

transportation system, stochastic driving cycles can represent the realistic driving speed of 

vehicles. Driving Cycles are used for many purposes, such as traffic engineering purposes, 

estimation of emission inventories, and estimation of fuel consumption. For the estimation of 

fuel consumption and emission inventories, vehicles are tested using chassis dynamometers 

with respect to a given driving cycle. While various driving cycle generation methods have 

been presented in previous studies, they have all centered around the concept of constructing a 

single statistically representative cycle for a region based on measured data. Opposite these 

studies, in this research, the objective of driving cycle generation is to synthesize the driving 

speed profile for each trip.  

Thus, for each EV trip, a Trip-Specific Stochastic Driving cycle (TSSDC) is generated with a 

one-second resolution time from origin to the selected destination of the trip on the predicted 

trip route. To this end, the Markov Chain (MC) is used to generate TSSDC in the urban 

electromobility simulation. MC generates the driving speeds based on Transition Matrix 

Probability (TPM), representing the transfer probability between different speed levels. The 

general idea of the MC is to predict the probability of a transition into a particular state of the 

system. In an n-order MC, the transition probability depends on the last n previous states. 



Hence, it is unnecessary to regard the whole chain of prior states. An MC in which only the 

current state is considered to predict the probability of the following state is called an MC of 

the first order, which is used in this study for stochastic driving cycle generation. 

Based on this idea, it is possible to create a TPM that includes all of the possible transitions 

between every possible state of the recorded driving data. Each state  contains one value for 

velocity. Each transition is assigned to a probability that leads to transition probabilities  for 

each pair of states , . Each row in the TPM represents the transition probabilities from the 

state  in the first column to the following states in the subsequent columns. Therefore, 

the sum of each row in the TPM equals one. The MC begins with an initial state, and at each 

second, a choosing mechanism determines the next state stochastically based on states’ 

probabilities in the TPM. To this end, a random number U (0,1) is picked out and compared 

with the cumulative probabilities of the TPM’s row corresponding to the current state to choose 

the next state, in which a state with the highest probability is usually chosen, while it is possible 

to select another state. The procedure is repeated until the MC has reached the desired length. 

However, a sizeable real-world dataset of driving speed is needed to generate the required 

TPMs. Therefore, in the absence of the driving speed of EVs, the collected driving speed of 

conventional vehicles can be used to synthetic driving speed profiles. In this context, the large 

dataset of driving data provided by the National Renewable Energy Laboratory (NREL) is used 

to generate TPMs.  Although the driving speeds on the streets are stochastic, traffic conditions 

and the type of street affect the users’ driving patterns. The users adjust the driving speed of 

EVs on each street segment in accordance with the speed limit and the congestion level of the 

street segment. Since the speed limit depends on the type of street and the congestion level of 

the street determined by street traffic condition, the trip’s driving cycles should be stochastically 

generated according to the street’s type and traffic condition.  Whereas the street type and traffic 

condition parameters are not considered in the driving speed recording in the NREL dataset, as 

expressed in [120], the characteristics that describe driving under different street types and 

traffic conditions can be assumed to classify driving speed data.  The street type of a street 

segment determines the speed limit, and segment traffic conditions identify the segment’s 

average driving speed. Hence, the average and maximum driving speeds can be considered two 

indicators to classify driving data according to traffic and street type. In this context, according 

to the four SPI values illustrated Table 4.4corresponding to the traffic conditions, and seven 

unique  for street types speed limits mentioned in Table 4.5, the 28 classes are specified to 

classify the driving speed data for different combinations of traffic conditions and street types. 



Table 4.6 demonstrates the classes specification for 28 classes of traffic-street type 

combinations. 

Table 4.6 

Traffic class specifications 

class Street type traffic Avg.speed 

fragments(km/h) 

of 

fragment(km/h) 

1 motorway Traffic jam 

 

  5 < 27.5 27.5 

2 motorway Heavy traffic 

 

27.5< 55 55 

3 motorway Moderate traffic 

 

55< 82.5 82.5 

4 motorway Free flow 82.5< 110 110 

5 trunk Traffic jam 

 

5 <  22.5 22.5 

6 trunk Heavy traffic 

 

22.5 < 45 45 

7 trunk Moderate traffic 

 

45 < 67.5 67.5 

8 trunk Free flow 67.5 < < 90 90 

9 primary Traffic jam 

 

5 < 17.5 17.5 

10 primary Heavy traffic 

 

17.5< 35 35 

11 primary Moderate traffic 

 

35 < 52.5 52.5 

12 primary Free flow 52.5<  70 70 

13 secondary Traffic jam 

 

5 <  15 15 

14 secondary Heavy traffic 

 

15< 30 30 

15 secondary Moderate traffic 

 

30< 45 45 

16 secondary Free flow 45< <60 60 

17 Tertiary, 

motorway-

link, trunk-link 

Traffic jam 

 

5< <12.5 12.5 



18 Tertiary, 

motorway-link 

Heavy traffic 

 

12.5< <25 25 

19 Tertiary, 

motorway-

link, trunk-link 

Moderate traffic 

 

25< < 37.5 37.5 

20 Tertiary, 

motorway-

link, trunk-link 

Free flow 37.5< <50 50 

21 Residential, 

primary-link 

Traffic jam 

 

5< <10 10 

22 Residential, 

primary-link 

Heavy traffic 

 

10< <20 20 

23 Residential, 

primary-link 

Moderate traffic 

 

20< <30 30 

24 Residential, 

primary-link 

Free flow 30< <40  

25 Especial, 

secondary-

link, 

tertiary-link 

 

Traffic jam 

 

5< <7.5 7.5 

26 Especial, 

secondary-

link, 

tertiary-link 

Heavy traffic 

 

7.5< <15 15 

27 Especial, 

secondary-

link, tertiary-

link 

Moderate traffic 

 

15< <22.5 22.5 

28 Especial, 

secondary-

link, 

tertiary-link 

Free flow 22.5< <30 30 

 

As mentioned before, the objective is to develop a model to synthesize driving cycles for 

possible combinations of street type and traffic conditions (e.g., the 28 classes as mentioned 

earlier) to generate EV driving speed in each trip. For this purpose, the real-world driving speed 



data should be assigned in the classes. To classify driving speed data, similar to [121], the 

driving speed data of NREL are divided into kinematic fragments that each fragment includes 

an idle phase followed by a driving phase. Figure 4.13 shows the kinematic sequence 

fragmentation for a sample trip of the NREL driving speed dataset. 

 

 

Figure 4.13. Kinematic fragments of a sample trip. 

  

The extracted kinematic sequences are examined to remove abnormal sequences so that the 

sequences with a maximum speed of more than 120km/h, acceleration more than 4m/ , 

deceleration less than -4m/ ,  idle time of more than 180 seconds and running time smaller 

than 30 seconds are removed. Each kinematic fragment is a part of a trip representing the driving 

speed profile on a street segment under a specific street type and traffic condition. As such, the 

kinematic fragments can reflect the driving under a particular pair of street types and traffic 

conditions. Thus, the kinematic fragments are assigned to classes regarding each class’s average 

and maximum speeds (Table 4.5). To this end, each fragment’s average and maximum speed 

are determined. Then, kinematic fragments are assigned to classes according to their average 

and maximum speed and each class’s average speed range and maximum speed. It is worth 

noting that a fragment may be assigned to several classes, which is not an issue because the 

objective is not to generate a unique driving cycle.  

After assigning kinematic fragments to classes, a TPM is constructed for each class. The TPM 

of each class is constructed based on transferring probabilities between different speed levels 
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in the fragments of the class. The speed bins with a constant bin width of 1 km/h are considered 

as states. For each class, the number of states is equal to , which  is the maximum 

permissible speed of the class. Thus, the speed values of each kinematic sequence, which are 

with one-second resolution, are discretized into speed bins, with a constant bin width of 1 km/h, 

so that the v(t)  [0, 1] km/h are in the first velocity state , all velocities v(t)  [1, 2] m/s are in 

the second state , and so on. Thus, each kinematic sequence is defined as 

                                               

(4.25) 

Finally, based on transferring probabilities between states in all kinematic fragments in a class, 

its square matrix TPM with size  *   is created. Figure 4.14 shows the TPM of class 

20 with . 

 

 

Figure 4.14. Speed TPM of class 20. 

 

4.3.6.1.Synthesis stochastic driving speed profile of a street segment 

 

The MC generates the second-by-second driving speed of each street segment based on the 

segment’s corresponding TPM and initial state . The procedure of generating a stochastic 
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driving speed profile for a segment with the known street type, daily traffic condition 

predictions, length(  ) is described as follows.  

• Determining the segment’s TPM 

The segment’s TPM is selected from the generated 28 TPMs according to the segment’s class, 

determined based on the segment’s street type and traffic condition. The street type of a segment 

is known and is fixed during simulation, but its traffic condition is changed over the day. The 

traffic prediction model determines the daily traffic of urban street segments with the two-

minute time-step that the segments’ traffic state is considered fixed within each time step. The 

daily traffic of each segment includes 740 traffic states, in which the time-step number for 

determining the segment’s traffic state for EV driving is selected based on the arrival time of 

EV at the segment. The arrival time is the sum of departure time from the O location (starting 

time of the trip) and driving time from the O location until the beginning of the segment. For 

example, suppose departure time from an O location is 9:00 hours and EV driving time to an 

arbitrary segment is three minutes. So, the arrival time will be 9:03(543 in minutes), so the time 

step number to determine the traffic state of the segment is 272(ceil (543/2)).  Accordingly, the 

segment’s class is specified based on segment traffic state and street type according to Table 

4.6. The segment’s TPM is selected from the classes’ TPMs.  

• Specifying the initial state  for street segment 

To generate the driving speed profile of the segment, in addition to the segment’s TPM, the MC 

needs the  that is determined based on the initial speed  . For the first street segment of the 

trip route the  and =1, because the driving starts from the O location at zero speed. 

For other segments of the trip route, the transition from the previous segment to the segment 

is determined according to the previous segment’s last-second speed and Vmax of the segment. 

If the previous segment’s last-second speed is less than Vmax of the segment, the  is 

considered the last-second speed of the previous segment, and the corresponding state is 

determined. Otherwise, the previous segment’s last-second speed cannot be considered as the 

 for the segment because there isn’t a row in the TPM corresponding to the  corresponding 

to this . For example, suppose the previous segment’s last-second speed is 50 km/h, and the 

maximum speed of the segment is 40 km/h, so the segment’TPM, which is a square matrix 

40*40 (s=1,2,..40), doesn’t have a row corresponding to 50 km/h to generate driving speed for 

the first-second speed of the segment. In this case, a few seconds deceleration modal with 

constant deceleration called slow-down is added to decrease the speed from the last-second 



speed of the previous segment to the first speed less than Vmax of the segment. The constant 

deceleration for slow-down is determined as the maximum deceleration corresponding to the 

previous segment’s last-second speed, determined based on the acceleration-speed distribution 

of driving data as shown in Figure 4.15. 

 

Figure 4.15. Distribution of speed-acceleration data. 

 

• Generating driving speed profile of street segment by MC 

After determining the initial state and TPM for the street segment, MC generates the second-

by-second speed of EV driving on the segment based on the TPM and the speed of the previous 

second. Moreover, the acceleration/deceleration, travel distance, and energy consumption are 

calculated each second. This process is continued until EV reaches the end of the segment.  

 

4.3.6.2.Trip-Specific Stochastic Driving Cycle (TSSDC) 

 

For an EV trip, the predicted trip route consists of  street segments, which according to their 

IDs, attributes include street type, length, and daily traffic predictions are extracted from the 

urban street network information. The stochastic driving speed profiles of the route’s segments 
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are generated by the MC according to the previous section, and then they are put together to 

generate the TSSDC. The procedure of the TSSDC synthesis is summarized below. 

(1) According to the IDs of  street segments of the trip route, the required information of 

route’s segments are extracted. 

(2) Set the sequence number of rout’s segments; N=1, 2, …,  

(3) EV driving starts from the O location at zero initial speed.  

(4) MC generates the second-by-second driving speed profile of each segment. 

(5) The acceleration/deceleration, travel distance, and energy consumption are calculated 

each second. 

(6) According to instantaneous SoC calculation of EV on the segment, the SoC of EV at 

the end of the segment is considered to assess the possibility of en-route charging by the 

EV user (i.e., whether SoC is less than SoC critical). If en-route charging is the case, the 

EV user finds the nearest FCS to charge the EV. To simulate the user behavior in FCS 

selection, the shortest routes on the street network graph from the end node of the 

segment to FCS candidates are determined by the Dijkstra algorithm. Then the nearest 

FCS is selected, and the shortest route to the selected FCS is considered the new trip 

route. The information of the new trip route is extracted and go to step 3. 

(7) If en-route charging is not the case and , N= N+1, and go to step 3. 

(8) If  , the EV reached the D location, and a slow-down from the last speed of the 

last segment to zero (i.e., EV reaches zero speed at the D location.) is added to the 

driving speed profile of the last segment. 

(9) The driving speed profiles of segments are combined to generate the TSSDC. 

(10) Based on departure time at the O location and driving times on segments, the 

arrival time at the D location is calculated. 

(11) According to departure SoC at O location, the instantaneous EV energy 

consumption and SOC updating at each second of driving, the driving SoC profile, and 

arrival SoC at the D location are obtained. 

For a sample EV trip, the trip route, TSSDC, and SoC profile of an EV trip are illustrated in 

Figure 4.16. 
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Figure4.16. Driving pattern of a sample EV trip: (a) trip route, (b) TSSDC, (c) SoC profile. 

 

The flowchart of generating the TSSDC for an EV trip is demonstrated in figure 4.17. 
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Figure 4.17. Flowchart of the TSSDC generation. 
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4.4.EV user’s charging behavior  

 

In the electromobility simulation, the charging behavior of the EV user is interpreted as their 

decision-making at a given charging opportunity, which determines their tendency to charge. 

Furthermore, EV users who decide to charge also make decisions on the charging mode and 

start time of the charging process.  

In most literature, charging behavior is often modeled based on simple rules that initiate 

charging when certain SoC thresholds are reached. However, these methods are not suited to 

the realistic model of charging behavior because they do not consider that in the real world, 

users are aware of their mobility behavior and environment (street topology, traffic, etc.) and 

can estimate the amount of energy to meet their subsequent travel demands. Moreover, EV 

users prefer to integrate charging into their daily activities, especially in primary activities 

(home, work), which is more comfortable. 

The previous models that in contrast to real-life charging behavior, in which users might decide 

to charge in anticipation of their impending energy consumption, using threshold- and 

feasibility-based behaviors assume that users blindly use their vehicles until charging becomes 

unavoidable, leads to inaccurate prediction of EV charging demand in different location of the 

urban area. Therefore, to provide a realistic model of users’ charging behavior in a realistic 

simulation of the urban electromobility, it is essential to consider all influencing parameters on 

users’ decision-making. 

 

4.4.1. EV user classification based on access to charging location  

 

In the daily itinerary, the EV users travel between different activity locations that can be 

classified as home, workplace, and public locations. It is not realistic to assume that every user 

can charge at each activity location. All homes in the urban area cannot be equipped with a 

charging pile due to the shortage of budget and space. Besides, the charging facilities are 

partially provided at workplaces, such as government agencies, large offices, companies, 

manufacturing, etc. However, contrary to the home and workplace, it is assumed that all agents 



have access to slow and fast charging at public destination locations, which include the EV 

parking lot at different activity types (e.g., shopping malls, recreation amenities, restaurants, 

etc.), FCS, public EV parking lots, etc. 

Therefore, according to the access of the charging locations (i.e., home, work, and public), EV 

users can be classified into four types as follows. 

(1) Home-based users  

(2) Work-based users  

(3) Home and work-based users  

(4) Public-based users  

The home-based users consist of the employed, unemployed, and student user types that have 

charger piles at their homes. Work-based users only include the employed user type with access 

to charging facilities at their workplaces. Home and work-based users consist of employed users 

who have chargers at their homes and workplaces. Public-based users include users that only 

have access to charging facilities at public locations. 

It is worth noting that all EV users have access to charging facilities at public charging, that is, 

home-based, work-based, and home and work-based users, in addition to their private charging 

at home or workplace, can charge EV at each public location. Moreover, it is assumed that 

public locations have enough charger piles to charge all incoming EVs at these locations. 

Charging network coverage can be represented by the probability that a charger is available at 

an activity location type.  Two probabilities are assumed for users who live in single-family 

houses and multiple families for access to charging facilities at homes. For workplaces, 

according to the work type of user, the probabilities of availability of charging facilities at 

workplaces are assumed. Besides, it is assumed that there are enough charging infrastructures 

in the land-uses to meet the charging demand of EVs with the destination at public locations 

(travel activities at S, R, H, R, P, and O). Each public location in different land-uses has enough 

charging piles to charge incoming EVs. 

 

 

 



4.4.2. Influencing factors on EV users charging decision 

 

To achieve accurate predictions of urban charging demand for transportation electrification 

planning, besides the models of the actual urban street network, urban traffic pattern, and EV 

user driving behavior, the realistic charging behavior of EV users, must be modeled by taking 

into account the main effective parameters. However, most existing studies reduce charging 

behavior to a fixed and often overly simplistic set of rules, which trigger the charging process 

at a fixed SoC threshold at a fixed charging opportunity (only at home or workplace) a particular 

hour of the day.  While in the daily urban trips, EVs can be charged at different locations and 

times of the day under EV user preference that is influenced by technical and mental factors. 

Contrary the most of the existing models that assumed users blindly use their EVs until charging 

becomes unavoidable, in real-life charging behavior, users are aware of their mobility behavior 

as a whole, and they are capable of estimating the amount of energy they will need until the 

next destination regarding the urban traffic predictions and EV energy consumption estimation. 

Therefore, the charging decision of EV users can be affected by technical considerations, 

behavioral patterns, mental models, price, and personal preferences. In this regard, in this 

research, the impact of the SoC level of EV at the moment of decision, required energy for the 

next trip, user range anxiety, convenience in charging are considered in the EV user charging 

behavior modeling. 

 

4.4.2.1.SoC level of EV’s battery 

 

SoC of EV as an indicator can help EV users decide whether to charge or not. In this regard, 

the prediction of the SoC for the forthcoming trip and estimation of instantaneous SoC during 

driving enable users to decide the charging at destination location and en-route emergency 

charging. As described in the EV users’ driving behavior modeling, users predict the trip route 

and required energy for the next trip at the destination location. Accordingly, they can decide 

to charge EV at the destination location based on the available SoC and required SoC for the 

next trip. Furthermore, the TSSDC generating and instantaneous SoC calculation on the 

predicted trip route described in the EV driving pattern modeling help users to make decisions 

on en-route charging.  



Upon arrival at a destination with a charging opportunity, the user decides to charge EV at the 

current destination if the arrival SoC is less than the needed SoC for the next trip. Thus, 

predicting the required energy for the next trip facilitates the user’s decision to charge EV at 

each activity location. To this end, based on the arrival time and parking time at a destination, 

the departure time of the destination is calculated. The purpose of the next trip is determined 

based on departure time and hourly TPM corresponding to the user type. The required SoC for 

the next trip is predicted based on the optimal-energy trip route choice and segment-based EV 

energy consumption models regarding the EV technical features, street network topology, and 

traffic conditions. 

As described before, since the prediction of instantaneous EV driving speed and energy 

consumption predictions for the next trip is complicated on the large urban street network, the 

destination location and route of the next trip are determined based on the segment-based 

optimal-energy trip route model, in which respect to the next trip fixed or non-fixed destination 

location, the optimal-energy route found by the optimal trip route choice model or simultaneous 

destination and route choice model for the non-fixed destination location. As such, the user 

decides to charge EV at the destination location if the arrival SoC is insufficient to support the 

next trip.  However, despite having enough energy for the next trip, it is still possible that the 

user tends to charge EV at this destination, which can be caused by their range anxiety and 

preferences of charging at locations more comfortably. 

 

4.4.2.2.EV user’s Range Anxiety 

 

Range anxiety has a strong influence on charging behavior that refers to the psychological state 

of the users who are trying to avoid a low SoC to prevent the psychological stress associated 

with the possibility of an empty battery. The range anxiety parameter is difficult to quantify as 

it is determined with the users’ thoughts. To quantify the range anxiety of users, the anxiety 

SoC (  ) is defined as the minimum SoC preference of a user, which is the SoC level 

that EV must be charged before the battery’s SoC reaches it. As such, for each user, a specific 

 is considered so that EV user prefers to charge EV before the battery’s SoC reaches 

 even if EV has enough energy to meet the next trip. According to this, users prefer to 

keep the SoC of EV’s battery more than before starting a new trip. The SoC level at 

the beginning of EV charging presented by [122] is considered to determine the  of EV 



users that they do not allow EV’s SoC to fall below this SoC level by charging at destination 

before departure from the destination. Accordingly, the  is represented by a normal 

distribution with µ= to  and =0.179, which this PDF is truncated from the lower and 

upper tails to 0.2 and 0.8, respectively.   

 

4.4.2.3.Convenience in EV charging 

 

Charging convenience refers to EV users’ preference to integrate charging into their daily 

activities. Hence, if the charger is available at the activity location, users take advantage of the 

dwell time to charge their EVs with slow charging without interfering with their travel plans. 

In this regard, the charging at home and workplaces are more comfortable than in other 

locations to users who access charging facilities at these locations.  As a result, home-based 

users prefer nighttime charging at home to public charging to take advantage of low-price 

charging costs. 

 

4.4.3. Charging strategies 

 

Regarding charging’s influencing factors and users’ preferences, the following charging 

strategies are used to model the users’ charging behavior. 

 

4.4.3.1.Obligatory charging 

 

Obligatory charging is developed based on the users’ range anxiety concept and the required 

energy for the next trip. In this context, obligatory charging is invoked when the battery’s SoC 

is insufficient to meet the user’s range anxiety and required energy for the next EV trip. Two 

obligatory charging are considered; obligatory charging at destination and en-route obligatory 

charging. 

 

 



• Obligatory charging at destination location 

At any destination location with charging opportunity if the arrival SoC ( )  of EV less 

than the sum of required SoC for the next trip (  ) and  , EV must be charged 

immediately. 

• En-route obligatory charging 

According to the instantaneous driving speed of TSSDC on the chosen trip route, the 

instantaneous acceleration/deceleration, travel distance, and energy consumption are 

calculated. Based on instantaneous energy consumption, the SoC of EV is updated at each 

instant. As such, whenever the SoC is less than the critical SoC ( ), the obligatory en-route 

charging is invoked. At this moment, the user accepts a detour to charge EV at the nearest FCS, 

and after fully charging the EV, continues the trip to reach the planned destination location. The 

 is considered as 25%, which is widely assumed in the literature. It is worth noting that, 

although for a trip, at the arrival of the origin of the trip, the required energy of the trip is 

estimated and charging decision is made, there is the possibility that the actual EV energy 

consumption based on instantaneous driving speed is more than estimated required energy 

based on segment-based energy consumption. Thus, it is possible that during driving the SoC 

of EV reaches the critical SoC, and EV needs to emergency en-route charging. 

 

4.4.3.2.Convenient Charging  

 

In contrast the obligatory charging, convenient charging is decided by EV users while the 

 at the destination is still sufficient to meet the required energy for the next trip, but the 

EV user prefers to charge the EV at the destination location. The user’s decision for this 

charging strategy is mainly influenced by the destination type (home or workplace), the amount 

of , and parking time at the destination. For users with charging facilities at home and 

work, the convenient charging is the nighttime charging at home and daytime charging at the 

workplace so that these users’ preferences are the convenient charge at home and work 

regardless of the required energy for the next trip and range anxiety, to take advantage of 

parking time to charge EV as much as possible. Public charging is not convenient for EVs who 

have charging facilities at home or work, and the preference of these users is postponement 

charging to home and workplace. On the other hand, for users who only have access to public 

charging facilities, it is assumed that there is no priority between public locations. The public-



based users’ decision for convenient charging at public destinations can be affected by the 

current SoC level of EV’s battery, parking time, distance to the next destination.  

 

4.4.3.3.Charging delay  

 

It is assumed that the Time of Use (TOU) electricity tariff motivates EV users to delay charging 

to the low-price off-peak hours if they have enough parking time at the destination location. 

Regarding the TOU electricity price in the study area, delayed charging is considered only for 

home charging, so the EV user who arrives home early (before 23:00 hours) delay EV charging 

to 23:00 hours to take advantage of the low-price energy from 23:00 to 6:00 hours. 

 

4.4.4. EV user’s decision-making on the charging mode 

 

The charging mode is mainly divided into slow and fast charging modes. Slow charging is 

available at the home, workplace, parking lots at different activity locations (e.g., shopping, 

recreation, etc.), and public parking lots. Fast charging is mainly available at the FCS in the 

urban area. 

It is assumed that for slow charging at workplaces and public locations, the EV user leaves the 

EV in the charging location and goes to the activity location to perform the activity. Then, at 

the end of activity time, the user takes EV from the charging location. In this case, the slow 

charging facility is usually located at the activity location or near it within a reasonable walking 

distance (e.g., maximum 300 meters).  

However, contrary to slow charging, fast charging time is short, and the user cannot leave the 

EV at FCS. Therefore, it is assumed that a user with fast charging demand at an activity location, 

at the end of the activity and before starting the next trip, goes to the nearest FCS to charge EV. 

Moreover, it assumed that the user who goes to FCS prefers to charge EV fully and then 

continues the trip to the next destination. In this case, the trip route is updated from the FCS 

location to the already predicted destination at the departure time of the activity location. Given 

that homes and workplaces are only equipped with slow charging, the user does not make the 



charging mode decision whenever they decide to charge at them. Contrary, the user needs to 

choose the charging mode for charging EVs at public destinations.  

Basically, the users prefer to choose slow charging to integrate charging with their activities. 

Nonetheless, the fast charging mode will be selected if the parking time is very short (e.g., less 

than 30 minutes) or if slow charging within the parking time cannot meet their minimum 

expected SoC ( ), which is calculated as follows: 

                                                                                              (4.26) 

Therefore, if equation (4.27) is satisfied or if  is less than 30 minutes, the user chooses to 

charge the EV by fast-charging power. Otherwise, the slow charging mode is used. 

                                                                                                            (4.27) 

Where  is the slow charging power and  is the battery capacity.  

When the charging decision has been made, and the user has chosen the charging mode, EV’s 

charging demand and charging time are calculated. For slow charging mode, the maximum 

charging time equals parking time (activity duration), and EV can be fully charged during 

parking time if the required time to full charge is less than parking time. Otherwise, the charging 

demand is the amount of energy that EV can receive during parking, which is calculated 

according to the equation (4.28). For fast charging at FCS, the EV will be fully charged, and 

the charging time is the required time for fully charging regarding the charging power rate and 

battery capacity, as shown in equation (4.29).  

 

Slow charging:                                                                                         (4.28) 

 



Fast charging:                                                                                         (4.29) 

Where P is the charging power rate,  is the charging efficiency,  is the full charging time, 

and D is the charging demand. The subscriptions s and f refer to slow and fast charging mode, 

respectively.  

At the departure time of the destination location, the departure SoC of EV ( ) is updated 

based on the equation (4.30) and equation (4.31) for slow and fast charging, respectively. 

                                                                                                                      (4.30)                    

                                                                                                         (4.31) 

Therefore, regarding those above four charging strategies and two charging modes, the charging 

behaviors of four EV user types are modeled as follows.   

 

4.4.5. Charging behavior of home-based users 

 

These EV users have the possibility to charge their EVs at home and public locations. Regarding 

convenience charging, their preferences are nighttime charging at home. Moreover, they delay 

the charge to lower energy price time regarding arrival and parking times at home. In this 

regard, based on arrival time and the departure from home at next day, the parking time at home 

is calculated. Then, the possibility of delay charging time to 23:00 hours is evaluated. If the 

user’s arrival time to home is after 23:00 hours, the EV is connected to the charger immediately 

upon arriving home. If the arrival time is before 23:00 hours, regarding the , it is assessed 

whether EV can be charged fully at the low-price time after 23:00. If it is the case, the charging 

start time is delayed to 23 hours.  Otherwise, the charging is started before 23 hours, and a 

charging start time is selected that EV will be fully charged so that the maximum low-price 

time from 23:00 – 6:00 is used to charge EV. 

Once the home-based EV users are at public locations, if the EV needs obligatory charging, the 

EV must be charged immediately. Otherwise, the user postpones charging until they reach home 



to take advantage of nighttime charging at home. In fact, for these users, the probability of 

public charging is very low due to frequent nighttime charging at home. 

 

4.4.6. Charging behavior of home and workplace-based users 

 

Although these users have access to all charging alternatives (home, work, and public), they 

prefer to convenient charge at home and the workplace even if the EV doesn’t need charging. 

As such, upon arriving at the workplace, EV is connected to charge immediately, and EV is 

charged while the user is working at the workplace. The home charging behavior of these users 

is the same as home-based users mentioned in the previous section. These users choose public 

charging only for obligatory charging, otherwise, they postpone charging to home and 

workplaces. For these users, the probability of public charging is very low because of 

frequentative charging at the home and workplace. 

 

4.4.7. Charging behavior of work-based users 

 

These users only have access to charging facilities at their workplaces. The preference of these 

users is charging at the workplace during working time. If obligatory charging is the case at the 

public destinations, EV will be charged immediately. Otherwise, the charging is postponed.  

These users charge their EVs at workplaces regardless of the SoC level and range anxiety and 

tend to full charge EV. 

  

4.4.8. Charging behavior of public-based users 

 

This group consists of users who only can charge EVs at public charging locations in the urban 

area. It is assumed that there is no priority between different public charging locations for these 

users, and they tend to select the most convenient charging location. In this regrade, if there is 

no need for obligatory charging at the public activity location, the convenient charging is 

stochastically determined based on the charging probability estimated via the Fuzzy system 



according to the affecting factors. The main affecting parameters on the charging decision of 

these EV users are the SoC level of EV’s battery, parking time, distance to the next destination. 

Since these EVs have enough energy to support the next trip (i.e., obligatory charging is not the 

case), the users are not concerned about the following travel distance. Hence, the charging 

decision is mainly affected by the SoC level and parking time. 

Explicit mathematical expressions cannot express the influence of these parameters on users’ 

charging decisions. Due to the lack of actual charging behavior data of EV users, there is no 

basis to determine specific formulas or assumptions to determine the users’ decisions. 

Moreover, modeling the charging behavior by assuming that the charging takes place at a 

particular time or is based on a specific formula is not realistic. To overcome this drawback, 

the probability of EV charging is determined based on a Fuzzy inference system by taking into 

account the influential factors on the charging decision of EV users, which can lead to a realistic 

model of the charging decision of users. The Fuzzy system consists of four principal 

components: fuzzification, a rule base, inference logic, and defuzzification. First, the numerical 

inputs are applied to the fuzzification block, and the fuzzification interface converts numerical 

inputs into fuzzy variables. Finally, the defuzzification interface changes the Fuzzy variables 

back into the numerical output. For both inputs and the output, fuzzification is achieved utilizing 

membership functions, determined primarily based on the choice of shape and the number of 

fuzzy signals. Inputs to the fuzzification block include two variables for each EV: SoC level at 

arriving at the destination location and the parking duration. The output is the charging 

probability for EV at the destination location. For both inputs and the output, fuzzification is 

achieved through membership functions, determined primarily based on the choice of shape 

and the number of fuzzy variables. Gaussian shapes are chosen for the inputs and outputs after 

several trials and practices. 

Two fuzzy inputs are converted into different linguistic variables through the proposed fuzzy 

inference system, which is Mamdani fuzzy inference system. The SoC amount of battery is a 

significant parameter to EV’s driver deciding charging at the destination location, which is 

defined in the range of [0~1]. The Gaussian membership function with five linguistic terms as 

Low (L), MediumLow (ML), Medium (M), MediumHigh (MH), and High (H) are defined for 

SoC. The maximum parking duration is assumed as 12hourss (720min) according to the OD-

RMC dataset. Parking time is described by five linguistic variables as; Very Short (VS), Short 

(S), Medium (M), Long (L), and Very Long (VLD). The output of the fuzzy system as a decision 

variable is charging probability which is defined in the range of [0~1]. Its membership functions 



are gaussian with five linguistic variables:  Low (L), MediumLow (ML), Medium (M), 

MediumHigh (MH), and High (H). Finally, the fuzzy system is coupled by stochastic sampling 

to determine the charging decision (charging or not charging) according to the obtained 

charging probabilities. The stochastic charging decision model based on the Fuzzy system is 

shown in Figure 4.18. 

 

Figure 4.18. Flowchart of Fuzzy charging decision process. 
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slow/fast charging modes. Figure 4.19 shows the flowchart of EV users charging behaviors in 

the urban electromobility simulation. 

Figure 4.19. Flowchart of EV user charging behavior in the urban electromobility simulation. 

 

4.5.EV users’ parking behavior modeling  

 

The EVs are parked at the destination location for a specific parking time decided by the EV 

user. The parking times at different activity types, which are independent of the urban street 

network and traffic pattern, are modeled by PDFs calibrated by dwelling times at different 
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destination types extracted from the OD-MRC dataset. In addition to the destination type, it is 

assumed that parking times vary with the time of the day. In other words, the parking time at a 

destination depends on the destination type and arrival time to the destination. The average 

dwell time at the shopping destination extracted from the OD-MRC dataset is shown in Figure 

4.20. For example, the EV that arrives at four in the morning at 8:00 will stay on average 56 

minutes, and other that arrives at 20:00 will park on average 100 minutes. 

       

Figure 4.20. The hourly average dwell time for trips with shopping purposes. 

  

Thus, by considering one-hour intervals for the destination types (H1, W, E, S, M, H, R, P, O), 

24 PDFs are modeled based on the dwell time data at the destination type (activity locations) 

extracted from the travel dataset. These PDFs include Uniform, Normal, Lognormal, 

Loglogistic, Gamma, Weibull, Nakatomi, and Generalized extreme value. 

The parking time at H2(ending at home purpose) is considered the period between the ending 

time at home and the departure time on the next day. It is worth noting that the PDFs are 

truncated from low tail to five minutes to prevent the generation zero or negative random 

number as parking time. In other words, the minimum parking time at the destinations is 

assumed to be five minutes. 

 

 

 

 

 



Chapter 5 

 

 

5. Forecasting spatial-temporal charging demands and charging infrastructure planning  

 

5.1.Introduction 

 

Energy consumption of EV driving in the transportation system is eventually translated into 

spatial-temporal charging demand in the urban area. Each EV trip is simulated based on EVs’ 

driving and charging behaviors in the EV-transport-land use-energy integration to determine 

the charging demand of the EV over the trip. Since each EV user performs several travels in a 

day, the daily travels of EV are simulated in a multi-purpose multi-location context in the 

integrated framework of EV-transportation-land use-energy to predict the daily charging 

demand of EV. Accordingly, the spatial-temporal urban charging power demand distributions 

are obtained by simulating the daily travels of all EVs in the urban area. Moreover, forecasting 

spatial-temporal EV charging energy demand distributions provides an opportunity for 

slow/fast charging infrastructure planning in the urban area. 

In the urban area, the slow charging demand is spatially divided into home charging, workplace 

charging, and public charging, while the fast charging demands are considered the demands at 

FCSs. The home and work dedicated chargers meet slow charging demands at home and 

workplaces. Hence, the charging infrastructure planning model is not applied to home and work 

charging demand. Instead, the public slow charging demands are satisfied locally by the slow 

charging piles located at the urban land-uses, in which the number of charging piles at each 

land use is determined by the charging infrastructure planning model.  In contrast, the fast-

changing demands are met by the FCSs built at the urban street network, which are optimally 

planned based on the fast-charging demand prediction and urban street network structures. In 

this research, the urban street network constructed based on OSM data and traffic prediction 

model make it possible to identify street segments with heavy daily traffic as street candidates 

to locate the FCSs by considering the spatial-temporal urban fast charging demand power 

prediction. 



In this chapter, the forecasting model of spatial-temporal charging demand distribution is 

developed based on the driving and charging behavior of EV users modeled in the previous 

chapter. Then, the slow and fast charging infrastructure planning models are used for planning 

urban charging infrastructures based on predicted spatial-temporal charging demand 

distributions.  

 

5.2.EV trip charging demand 

 

According to the driving, charging/ parking behaviors of the EV user, each EV trip is modeled 

temporally and spatially in the EV-transportation-land use-energy integrated framework. In this 

regard, an EV trip between two activity locations is described as follows.  

Before departure from the current activity location (origin) to the next activity location 

(destination), the EV user decides the departure time, travel purpose (next activity type), 

destination location, and trip route from origin to destination. The departure time of each 

activity location except the first departure time from home is the sum of arrival time and parking 

time at the activity location. The first departure time from home is stochastically extracted from 

the PDF corresponding to the EV user type.  

To simulate the stochastic nature of EV users’ trips, the travel activity type (trip purpose) is 

predicted stochastically based on the Markov chain concept according to the hourly TPM 

corresponding to user type and the departure time. The destination location corresponding to 

the trip purpose can be a fixed activity location or a non-fixed activity location. In the case of 

fixed activity location, the destination location is already assigned to the EV user, and the 

destination choice is not made, and only the trip route and estimation of required energy of trip 

are determined based on the segment-based optimal energy trip route choice model of fixed 

locations. For non-fixed activity location, the EV user decides the destination location and trip 

route based on simultaneous destination and route choice model as well as estimate the required 

energy for the trip. 

At departure time, the EV driving is started from zero velocity, and the second-by-second 

driving speed of the EV on the chosen trip route to the selected destination location is generated 

based on the TSSDC model. Accordingly, the instantaneous acceleration/deceleration, travel 

distance, energy consumption, battery SoC are calculated at each second. During the driving, 



the user monitors the instantaneous SoC. If SoC falls below the critical SoC, the user decides 

obligatory en-route charging, otherwise continue trip until reach destination location. If the en-

route charging is the case, the user finds the nearest FCS to charge EV, assuming that the EV 

user knows the FCS locations. To this end, the travel distances from the fast demand point to 

all FCs candidates are calculated using the Haversine formula based on the Lat/Longs of 

demand point, FCS locations, and shortest paths found by the Dijkstra algorithm on the street 

network graph. Then, the FCS with the minimum distance is selected, and EV travel to the 

selected FCS on the shortest path is modeled by the TSSDC model to generate the instantaneous 

driving speed regarding the path segment street types and their traffics. At FCS, the EV is fully 

charged and then continues the trip to the already selected destination by finding the new trip 

route from FCS to the destination location based on the optimal energy route choice model of 

the fixed destination. The TSSDC model again generates the instantaneous driving speed, and 

accordingly, the instantaneous acceleration/deceleration, driving distance, energy consumption, 

SoC are calculated at each second. This process continues until EV arrives at the destination 

location and the trip is over. As such, the driving behavior of the trip is modeled, and the driving 

trajectory is recorded. Upon arriving at the destination location, the user decides whether charge 

at the destination location or not. If the user doesn’t decide to charge, the EV is parked at a non-

EVPL for a parking time equal to the activity duration decided by the user. In this case, the 

parking trajectory is recorded.   

If the decision is to charge, the user also determines the charging mode. If the user decides to 

slow charging, EV is charged at an EVPL that is at the destination location or a public EVPL 

in the destination land-use block within the acceptable walking distance to the destination 

location. The EV will be charged during the activity duration while the user performs his/her 

activity. After finishing the activity, the user takes EV from the EVPL to make a new trip. If 

the user decides the fast charging mode, the EV is parked at a non-EVPL, and after finishing 

the activity and before starting a new trip, the user finds the nearest FCS and goes to the selected 

FCS to charge EV. After full charging EV at FCS, the next trip attributes (purpose, destination 

location, and route) are decided at the departure time of the FCS.  

Therefore, an EV trip includes the driving and charging, or parking afterward is simulated based 

on EV user driving, charging, and parking behaviors in the integration framework of EV-

transportation-land use-energy.  The detailed spatial-temporal characteristics of each EV trip 

are recorded to determine where and where EV is charged. The spatial attributes include the 

Lat/Longs of OD locations, street intersections of the trip route, slow charging location, or FCS 



location. The temporal characteristics include the departure time from the origin location, 

arrival time at the destination location, and times to reach or leave the street intersections, 

charging start time, and charging time. Moreover, the instantaneous energy consumption during 

driving, SoC profile of trip, charging demand of each trip are also recorded. Figure 5.1 shows 

the simulation flowchart of an EV trip. 

 

Figure 5.1.  The flowchart of an EV trip modeling in the urban electromobility simulation. 

 

Departure time at origin 

For first trip: extract from PDF 

Otherwise, 

Departure time= arrival time + parking 

time 

Trip purpose prediction 

Record the spatial-temporal 

information of EV driving  

Simultaneous 

destination 

location and trip 

route choice 

Synthesis instantaneous 

driving speed by TSSDC model 

for EV driving on trip route 

Calculate the 

instantaneous EV energy 

consumption 

updating 

Instantaneous SoC 

En-route charging assessment   

Charging 

decision ? 

Charging decision based on 

EV user type 

Determine the charging 

mode 

Slow charging  Fast charging  

calculate the charging 

demand and charging time 

Record the charging 

information of EV trip 

Calculate the 

Departure time= 

arrival time + 

parking time 

Determine the 

parking time based 

on PDF respective to 

destination type and 

arrival time 

Record the parking 

information of EV 

trip 

Driving  Charging  Parking  

Fixed 

destination 

location 

Non-fixed 

destination 

location 

Optimal-energy 

trip route 

choice 

Decisions  

at origin 

Driving 

pattern on 

the trip 

route 

Charging Not charging 

Charge at 

land-use 

Charge at 

nearest FCS  



5.3.EV daily charging demand 

 

The charging power demand at each charging location of the urban area is the sum of the 

charging demands of the EVs parked at the location. To predict the daily charging power 

demand profile of a charging location, it is required to estimate the arrival time, parking time, 

and the possible charging demand of EVs that may select the location as their destinations. As 

such, the simulation of daily EV trips makes it is possible to predict the spatial-temporal urban 

charging demand of the urban area.   

The daily trips of EVs between activity locations of different urban land-use must be modeled 

in detail to predict the spatial-temporal EV charging power demands. Whiles some previous 

studies without considering the dynamic EV mobility estimate charging demand at charging 

stations by assuming the arrival flow of EVs at charging stations with probability distribution 

functions like Poisson. 

 Besides, many studies modeled EV mobility by simple trip chains that the EV trips 

characteristics like driving time and driving distance are modeled based on extracted data from 

travel survey data. In these studies, the street network attributes, traffic flow, EV energy 

consumption model are totally ignored. Hence, the predicted charging demand in these studies 

cannot be accurate enough. 

 Moreover, proposed models in these studies are not applicable for urban charging demand 

because of ignoring the urban street network, urban traffic, the multi-locations pattern of urban 

mobility, etc. Therefore, it is essential to consider both the urban area’s actual street network 

and travel data to model EV mobility in a study area. In the urban electromobility simulation in 

this research, the daily travels of EVs are modeled in a multi-purposes and multi-locations 

framework to determine the possibility of EVs charging at different locations of the urban area. 

In other words, the EV mobility on the urban street network is translated to EV charging 

demand at private and public locations in the urban area. EV daily trips are considered home-

to-home trips in which the EV user departs from home at a specific time of the day, performs 

several activities in different locations, and finally returns home.  

Contrary to the existing studies that assigned a daily travel chain with predetermined spatial-

temporal attributes, in this study, the activity types (trip purpose) of EV daily trips are predicted 

trip by trip, considering the EV user type, stochastic nature of trips, and the effect of day time. 



To this end, the daily travel data of the study area is used that include spatial-temporal data of 

daily travels for different groups of drivers.  

For each trip at the departure time of origin, the trip purpose is predicted based on the hourly 

TPM corresponding to the user type and time of day and the origin’s activity type. This process 

is implemented for each EV trip so that it starts from home, continues at several activity 

locations, and finishes once the trip purpose is end trip at home. Between the start trip at home 

and end trip at home, EV users have one or more travel determined stochastically by TPM 

corresponding to the EV user type (i.e., employed, unemployed, and student).  

Therefore, contrary to the existing studies, the EV user daily trips are modeled stochastically in 

the study area by considering all affecting parameters like street network topology, streets 

traffic, EV energy consumption, etc. In this context, EV mobility in the urban area is modeled 

in detail on the basis of interactions between EV users, transportation system, land use, and 

energy system. As such, the achieved spatial-temporal charging demand is more accurate from 

the previous studies. However, with the increasing diffusion of EVs in the urban area in the 

near future and using real-world data of EV mobility, the accuracy of the proposed model in 

EV charging demand prediction can be improved. The process of daily trips generation for an 

EV user is shown in the flowchart of Figure 5.2. 

 

 



                                          

Figure 5.2. EV Daily trips modeling in urban electromobility simulation 
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Figure 5.3. A sample daily travel trajectory in the study area. 
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and transportation systems by providing the required energy for EV charging. The daily travels 

of EVs are modeled based on the proposed models in this research based on the interactions of 

EV users by the urban environment. 

As described in the previous chapter, each EV travel that includes the driving and 

charging/parking afterward is spatially-temporally is modeled according to EV user’s driving 

and charging/parking behaviors based on EV user interactions with the integration of 

transportation-land use-energy. As such, the location and time of possibly charging of EV trip 

are predicted.  

Furthermore, by modeling each trip of EV daily trips, the daily charging demands of the EV at 

the private and public locations of the urban area are predicted. By predicting the time and 

location of daily demands of all EVs in the study area, the spatial-temporal distributions of daily 

charging power of different charging locations in the urban area are predicted.  The forecasting 

procedure of spatial-temporal urban charging power distributions based on EVs’ daily charging 

demand is summarized below. 

(1) For the first EV trip, which starts from home, a departure time is decided randomly from 

the PDF of the first departure time from home corresponding to the EV user type (e.g., 

employed, unemployed, and student). 

(2) The trip purpose of the first trip is obtained stochastically from hourly TPM 

corresponding to the hour of departure from home and EV user type.  

(3) The travel trajectory includes the driving, charging/parking, and SoC profile of the trip 

are simulated. 

(4) For the second and further trips, the departure time is calculated as the sum of arrival 

time and parking time at the destination location. The next trip purpose is determined 

stochastically based on corresponding hourly TPM regarding departure time and the 

activity type of trip’s origin. 

(5) If the trip purpose is “end trip,” the current trip will be the last one the travel trajectory 

for the last trip is simulated, and the daily travel of the EV is over. Otherwise, the daily 

travel of the EV will continue, and the process will be repeated from step (3). 

(6) The daily travel trajectory of the EV is obtained by combining the simulated travel 

trajectories of daily trips based on steps (1)-(5), which can consist of one or several trips 

with different purposes.  



(7) For a number of EVs ( ) in the study area, the steps (1)-(6) are repeated  times to 

obtain daily travel trajectories and daily SoC profile of all EVs in the study area. 

(8) The daily spatial-temporal charging power demand distributions of slow charging at 

each land-use block and fast-charging power at each FCS candidate are obtained based 

on the incoming EV charging demands. The total charging load at time t for a 

location type l is calculated by the following equation: 

                                                                                                                                   (31) 

Where M is the number of EVs that are charged simultaneously at time t at location l, 

 is the charging power rate of the charging piles at location l 

The flowchart of spatial-temporal charging load demand prediction is shown in Figure. 5.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



 

 

                                         

Figure 5.4.  Flowchart of spatial-temporal charging load demand prediction. 
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5.5.Slow charging infrastructure planning 

 

The slow charging demand is classified as home charging demand, work charging demand, and 

public charging demand. The home charging demand is mainly slow nighttime charging 

demand met by dedicated home charging piles. The work charging demands are mostly slow 

daytime charging demands that are satisfied by charging facilities designated for employees at 

workplaces. As such, it is not required to plan charging infrastructures for the home and work 

charging demands. 

The public charging demands include the demands at activity locations in urban-land uses that 

are the destination of the trips with purposes including education, shopping, meal, health, 

recreation, personal matters, and others. The slow charging demands can be satisfied locally by 

slow charging piles located at EVPLs in the activity locations (e.g., shopping malls, trading 

centers, restaurants, universities, hospitals, recreation areas, etc.) or public EVPLs (like 

conventional public parking lots).  

For a trip that ends at a public location, the EV user chooses a land-use as the trip destination 

and subsequently an activity location in the land use. Upon arriving at the activity location, the 

EV user decides whether to charge EV at the current destination location. If the user chooses 

slow charging mode, EV has slow public charging that can be satisfied by the EVPL in the land 

use. In this case, the user leaves the EV at EVPL, goes to the activity location, and returns to 

get the EV after completing the activity. In this regard, the EVPL may be located at the activity 

location, or the user chooses the nearest EVPL with a short walking distance (maximum 

300meter). As a result, in the urban area, the locations of charging facilities should be dense 

enough to avoid wasting time and energy. Therefore, considering the walking distance to the 

nearest EVPL in the locating problem is compatible with the assumption that each land-use is 

equipped with enough charging stations to meet the EVs charging demand. 

In this research, the public slow charging infrastructure planning is performed at the land-use 

level. Instead of determining the exact locations for EVPLs at land-use blocks, it is assumed 

that there are enough EVPLs at each land use that EV can be charged at the destination location, 

by ignoring the modeling walking distance between the destination location and the nearest 



EVPL. As such, the public charging infrastructure planning model determines the charging 

piles’ number at the land-use block based on the spatial-temporal public slow charging demand 

of the land use and considering the parameters like charging demand time, charging power, 

parking time, the number of EVs that are charged simultaneously. 

 

5.6.Fast charging infrastructure planning 

 

FCSs are planned according to the distribution of the spatial-temporal public fast charging 

demands distributions and the structure of the urban street network. FCSs planning aims to 

determine the site and size of FCSs at the street network to satisfy the fast charging demand of 

EVs. The FCS planning problems are often based on multi objective optimization methods 

(with the objective like coverage rate of charging services maximization, minimizing the total 

construction cost, minimizing waiting time, etc.), which lead to taxing computational efforts 

for the large urban transportation system. Moreover, several studies have shown that the 

charging station placement problem is an NP-hard problem. Thus, the literature proposed that 

finding an optimal solution at the scale of the urban transportation system requires heuristic 

methods, which can obtain good solutions in a reasonable calculation time. The heuristic 

approaches should be developed according to the optimization criterion, urban transportation 

system attributes, and EV user preferences. This study proposes an evolutionary heuristic 

method for FCS planning in the urban transportation-land use integrated system based on the 

following objectives; 

• Minimizing the detour distance between fast demand point and FCS.  

• Maximizing the service area of FCSs.  

• Maximizing the assigned EVs number to FCSs. 

With the following constraints; 

• Detour distance for each EV is less than the predefined maximum distance ( ). 

• Each EV is assigned to one and only one FCS.  

• Travel distance between demand point to FCS is calculated according to geographic 

characteristics of the street network. 

• Considering the minimum number of daily assigned EVs to FCSs 

• Determining the upper and lower limits of chargers in an FCS.  



The proposed evolutionary heuristic algorithm is implemented in three steps. In the first step, 

the FCS candidate’s locations are determined in the urban area. In the second step that executed 

during the electromobility simulation, each EV with fast charging demand is assigned to the 

nearest FCS candidate so that their distance is less than . Finally, the third step that is 

performed after obtaining the temporal charging demand distribution in each candidate is a 

refinement process to merge the candidates to more favorable overlapping candidates.  The 

 is considered 1.5 km in this thesis to prevent the overload or idle in the FCSs. 

Step 1: FCSs candidate locations 

In the urban area, the FCSs are placed along the urban street network to be able also to meet 

the en-route fast charging demands. In this regard, the street segments with a large amount of 

daily traffic are appropriate to locate the FCSs. Therefore, according to the street network 

constructed based on OSM data and the traffic prediction model developed based on the GMTL 

data, the arterial street segments with two or more one-way lanes have more than one hour of 

heavy traffic (traffic jam condition) during the day are considered as candidates street segments.  

As such, the candidate segments are the motorway, trunk, primary, and secondary street 

segments that have heavy daily traffic. Furthermore, to specify the geographic coordinate of 

FCS candidate’s locations, since the lengths of the extracted street segments are not too long, 

the segments’ midpoints are determined, and FCSs candidates’ points are specified next to 

midpoints with Lat/Long coordinates.   

Step2: assigning EV with fast charging demand to the nearest FCS candidate 

During the electromobility simulation, once the EV has fast charging demand, the Lat/Longs 

of demand point and the demand time are recorded, and EV is assigned to an FCS candidate. 

Regarding the first objective of planning, EV users’ choice about where to charge is dictated 

by the proximity between the fast demand point and the FCSs candidate locations, which 

minimizes travel costs. Thus, the EV is assigned to the nearest FCS candidate so that the travel 

distance is less than . To this end, the trip routes from the fast demand point to all FCSs 

candidates are determined by the Dijkstra algorithm on the street network graph, based on the 

Lat/Longs of demand point, FCS candidates, and street network. Then, route distances are 

calculated by the Haversine formula, and the EV is assigned to the nearest FCS candidate. For 

assigning EVs to FCSs, it is assumed that the capacity of each FCS is large enough to serve all 

the EVs that arrived at the station.  

 



 

Step3: Reallocation step 

To achieve the second and third planning objectives, some refinements are performed under the 

following conditions to assess the possible reallocation of the EV to another FCS and combine 

the FCS to obtain the minimum number of FCSs that meet the urban fast-charging demands. 

• The economic aspects of the FCS planning 

The first optimization objective only considers the distance criteria to assign EVs to FCS 

candidates. Still, it does not consider the economic objective in the planning. It is reasonable to 

understand that an FCS candidate with very few allocated EVs numbers is not economic. Thus, 

to ensure there is no deployed FCSs with very low charging demand, the FCS candidates having 

the allocated EVs number less than the defined minimum number (i.e., <15 in a day) are 

eliminated, and their assigned EVs are reallocated to other FCS candidate so that the detour 

distance from fast demand point to the new FCS is not more than  . 

• FCS capacity  

In the assignment step, it is assumed that FCS candidates have an infinite capacity to serve all 

incoming EVs without considering waiting time. Since such a design is unrealistic and 

impractical, it is essential to determine the optimal size of the FCSs considering both technical 

and economic objectives. By imposing finite capacity, the service level is then defined based 

on the waiting times of the users at each FCs. Accordingly, the number of required chargers for 

each FCS is affected by the arrival flows of the EVs at the FCS. Therefore, regarding the arrival 

time of EVs to each FCS, the optimal size of the FCS is selected based on a trade-off between 

the waiting time and the number of active simultaneous chargers. Based on the determined 

number of chargers at the FCS, once the number of assigned EVs exceeds FCS capacity, the 

additional EVs are transferred to other FCSs according to the allocation mechanism. 

Therefore, the proposed evolutionary heuristic algorithm aims to determine the minimum 

number of FCSs in the urban area to meet the fast charging demand, considering the EV user 

convenience and the economic benefits of FCSs. 

 

 

 



Chapter6 

 

6. Simulation Results and Analysis 

 

6.1.Introduction  

 

This chapter provides numerical simulation and analysis to describe the proposed models of 

urban electromobility simulation in the integration framework of EV user-transportation-land 

use-energy. To this end, the number of EVs in the study area is determined for a given EV 

penetration percentage. Then for each EV, the daily travels on a typical weekday are simulated 

based on proposed models to predict the spatial-temporal charging demand of the EV. 

Accordingly, the spatial-temporal urban charging demands are determined at homes, 

workplaces, and public locations. Finally, the required slow and fast charging facilities to meet 

the urban charging demand are specified based on the proposed model in the previous chapter. 

 

6.2. Simulation parameter settings at the simulation setup  

 

At the setup phase of simulation, the values of the simulation parameters are set regarding the 

socio-demographic characteristics of the study area extracted from the city’s census data, EV 

technical attributes, etc. The specific values of the simulation parameters are set as follows: 

 

1) EV’s number 

The number of EVs in the study area is determined based on the vehicle’s number of the city 

of Campinas, which is based on the latest data (October 2021) of the city’s vehicle fleet 

provided by the Brazilian Ministry of infrastructure [123], the number of private cars in 

Campinas is 620063, and regarding the city area 795.667 the car per area ratio ( ) 

is 779.3.  Hence, for the study area with an area of 116.525 and the EV penetration level 



that due to the computational burden is considered 20%, the EV’s number is set to 18162 

(  ). 

2) EV’s technical attributes 

In the urban electromobility simulation, the technical characteristics of EVs are required. The 

actual EV attributes of different existing brands should be used to obtain the realistic model of 

EV. To this end, according to the selling percentage of EV brands in Brazil mentioned in Table 

4.1, an EV brand is randomly assigned to each EV, and corresponding technical specifications 

of the brand are used in the simulations. 

 

3) Fixed activity locations of EV users 

The fixed activity locations (home, work, and education) are assigned corresponding to the 

user’s occupation status. A user type is randomly assigned to each EV according to assumed 

distributions of EV user groups (employed, unemployed, student). Since the private EVs are 

considered in this research, and each user belongs to a household, a home location with a 

specific Lat/Long is randomly assigned to each EV user from the determined home location 

point in residential land uses. Furthermore, a workplace location with a particular Lat/Long is 

also given to employed users according to their users’ work types allocated based on work type 

distributions of the study area. Similarly, an education location(university or college) with 

predetermined Lat/Long is assigned to each student for his/her regular education activity. It is 

necessary to mention, besides the regular education, each EV of all user groups may have 

irregular education, which for these users, the education location is assigned during the 

simulation as fixed activity location. 

 

4) Initial SoC of EVs 

For each EV in the study area, an initial SoC is assigned as the amount of EV battery’s SoC at 

the starting time of the daily itinerary, that is the SoC at the first departer time of the home. It 

is assumed that the initial SoC of EVs obeys the Normal PDF,  [124], which is 

truncated to a lower and upper bound regarding the EV user type defined based on user access 

to charging facilities, as shown in Table 6.1. 

 



Table 6.1. 

Initial SoC of EVs 

EV user’s type PDF of Initial SoC Lower tail of truncation Upper tail of truncation 

Home-based  0.5 0.9 

Work-based  0.4 0.8 

Home and work based  0.5 0.9 

Public-based  0.35 0.6 

 

5) Probability of availability of charging facilities at homes and workplaces 

 

In the electromobility simulation, it is assumed that all homes and workplaces are not equipped 

with charging facilities. The probabilities that an agent who lives in a single-family house and 

multiple families has the charging pile at homes are assumed 80% and 70%, respectively. The 

probabilities of charging facilities’ availability at workplaces are assumed according to the work 

type of users that are shown in Table 6.2. 

Table 6.2. 

 Probabilities of charging facilities availability at workplaces 

 

Work type 

 

Probabilities 

 

Services 

 

0.4 

Commercial 0.6 

Industrial 1 

Education 0.7 

Administrations 0.8 

Health and social 

services 

0.7 

Construction 1 

Arts,culture,sports, 

and recreation 

0.5 

 

 

 



6) Charging power rate at charging locations 

 

Three types of charging power levels are considered: Level 1 (3.3 kW output), Level 2 (up to 

14.4 kW output but typically 6.7 kW), and Level 3 (up to 240 kW output but typically45kW). 

The slow charging power in homes is assumed to be 3.3 kW, while it is considered 6.7 kW in 

other locations. The fast-charging power rate in FCSs is set to 45 kW. Moreover, the charging 

efficiencies of charging piles are assumed to be a random number between 0.8 and 0.9. The 

maximum SoC that EV can be charged through slow and fast charging facilities are set to 0.8 

and 0.9, respectively.  

 

The electromobility simulations are performed for the assumed number of EVs in the study area 

based on the above simulation parameters. The recorded daily travel information and SoC 

profile of EVs are used to determine the spatial-temporal distribution of charging power 

demand in the study area. Figure 6.1 shows the distribution of the daily trips number of EVs in 

the electromobility simulation. Moreover, the daily SoC profiles of sample 25 EVs are shown 

in figure 6.2. 

 

 

          

Figure 6.1. Distribution of the number of trips for simulated EV daily trips. 
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Figure 6.2. Daily SoC profile of 25 sample EVs. 

 

6.3.Total EV charging power demands of the study area 

 

The total slow and fast-charging power demands are 439445 kWh and 67352 kWh, 

respectively. Figure 6.3 shows the total slow and fast charging power demand profile of the day 

with a one-minute resolution. 

 

 

       

Figure 6.3. Total slow and fast charging power demand of the study area. 
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From the simulation of daily trips of EVs in the study area, the total charging load at home, 

work, and public are 32.89%, 43.17, 23.94%, respectively. For home charging, 98.6% of total 

demand is slow charging, and 1.4% is fast. At work, 98.65 % and 1.35% of total charging are 

for slow and fast charging demand, respectively. At public locations, 48.84% of total demand 

is slow charging, and 51.16% is fast.  

The total slow and fast charging power demand profiles of the study area at home, work, and 

public, for a typical weekday from 5:00 to 6:00 of the next day, are illustrated in Figure 6.4. 

The public charging demand is the sum of the charging demand at destinations, including 

education, shopping, meal(lunch), health, recreation, personal matters, and others. 

 

Figure 6.4. The total slow (a) and fast (b) charging power demand profiles of the study area at home, 

work, and public. 
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As can be seen from this figure, the slow charging demand mainly includes morning charging 

at work and nighttime charging at home. Fast charging demands are usually in the morning to 

midday times. 

 

6.4.Daily charging power demands at different charging destination 

 

The daily charging demand amounts of slow and fast charging modes at the different destination 

types in the study area are illustrated in Table 6.3.  

 

Table6.3  

Daily charging demand in different destination types 

destination type Home 

(H1) 

Home 

(H2) 

Work  

Education 

 

Shopping 

Public   

Meal 

 

Health 

 

Recreation 

 

Personal  

 

Others 

Slow charging 

demand (kwh) 

2005 162332 215858.8 24185 3975.4 396.7 6637.4 6818 11319 5917.3 

Fast charging 

demand (KWh) 

2339.3 - 2952 1120.5 6945.8 402 5526.8 2540.3 9557.3 35968 

 

 

Figure 6.5(a) to 6.5 (i) shows the daily charging power profiles of slow and fast charging 

demand per minute from 5:00 to 6:00 the next day for different destination types.  
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Figure 6.5. Daily charging demand at different destination types. (a) home linger, (b) work, (c) 

education, (d) shopping, (e)Meal(lunch), (f) health, (g) recreation, (h) others, (i) personal matters, 

(j)end ta home. 
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As can be seen from the charging demand of H1 in Figure 6.5 (a), during the day, especially at 

midday, a number of EV users return home for lunch and rest. In the case that they requireto 

charge EV, Theses EV users prefer to use fast charging due to low time dwelling. The majority 

of EV users in the simulation are employed (i.e., 60%), and due to convenience and long parking 

time, they tend to charge EVs while working at their workplaces.  

Figure 6.5 (b) shows the daily charging demand of the work destination type, which is mostly 

slow charging demand due to the extended parking time of EVs at workplaces. Most EVs reach 

the workplace between 6:00-9:00, and the charging power demand increases quickly and shows 

a peak at 9:30. After that, the charging load demand decreases gradually as the EVs leave the 

workplaces.  

The 10% are student users who have education destinations (regular education (e.g., 

university)) in their daily trips. The charging demand at education destination type is from the 

student users and other users with education destinations (irregular education (e.g., language 

institute)).  

The daily charging demand of education locations is shown in Figure 6.5 (c). This charging 

demand has a peak in the morning mainly because of regular education and a small peak around 

19. At these locations, fast charging demand is mostly lower than slow charging demand 

because of the relatively longer parking time.  

Figure 6.5 (d) shows the daily EV charging power demand for shopping destinations, in which 

fast charging demand is higher than slow charging demand due to the short EV parking time. 

The shopping demand has several peaks in the morning and evening.  

According to Figure 6.5 (e), the charging demand at meal destination type is basically low. The 

charging demand concentrated between 11:00-15:00, which corresponds to lunchtime.  

The charging demand profile at health destinations illustrated in Figure 6.5 (f) has a peak in the 

morning. The fast charging demand at the health destinations is more than the slow charging 

due to the low dwell time of EV users at this destination time. While in the evening, the slow 

charging demand is more than the fast one. 

Figure 6.5 (g) depicts the daily charging power demand for recreation destinations, which is 

essentially low on weekdays. The charging demand is not concentrated at a specific time 

because this location type covers several activities that are performed at different times of the 



day. Due to the relatively long parking time, the slow charging demand is higher than the fast-

charging demand.  

As shown in Figure 6.5 (h), the charging demand of ‘Other’ destinations is mainly fast charging. 

The ‘Other’ trip purpose includes the trips with very low dwell time at destination (e.g., pick 

up/off someone) that if EV requires charging, the EV user prefers to select fast charging. 

The daily charging power demand for H2 is shown in Figure 6.5 (i). It is different from H1 and 

consists of entirely slow charging that is low between 5:00 and 18:00 and increases after that. 

As the number of EV users increases at home after returning from work, slow charging demand 

rises rapidly. 

 In addition, due to the preferences of EV users to charge EVs at low prices (i.e., 23:00 to 6:00), 

they postpone the EV charging to 23:00 hours of the night. As such, the charging demand of 

H2 peaks at 23:07 and then decreases gradually until 6:00 hours. Hence, the EV users set the 

charging time at H2 between 23:00 to 6:00 hours to take advantage of low-price energy. While 

as illustrated in Figure 6.6, a few EVs have charging demand at H2 after 6:00 hours, which are 

the EVs who arrive home late or cannot receive required charging during the nighttime 

charging.  

 

 

 

 

 

 

 

 

Figure 6.6. Daily charging demand of H2 
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6.5.Daily urban charging power demands  

 

The urban electromobility simulation in the multi-purposes and multi-locations framework in 

the EV-transportation -land use-energy integrated systems result in the spatial power load of 

slow charging for home, work, and public destination types in the study area. Accordingly, the 

total charging load amount (KWh) and daily charging power load profiles for home, work, and 

public charging of each land use block are obtained through urban electromobility simulation.  

The FCSs meet the fast charging demand, while the slow charging demands are met locally at 

the urban land-uses. 

 

6.5.1. Daily slow charging power load at different urban land-uses 

 

The slow charging demands of urban land-uses are obtained from the proposed urban 

electromobility simulation. The charging demand of each land use block is the sum of EVs’ 

charging power demand at the land use. Accordingly, by distinguishing between the charging 

demands at home, work, and public destination locations, each land-use block’s total daily 

charging power demand is calculated as home charging demand, work charging demand, and 

public charging demand. It is worth noting that each block may have one or more of the 

mentioned charging demands according to its use. Figures 6.7 to 6.9 show the spatial power 

load demand of the day for each land-use block of the study area. 

 



 

Figure 6.7. Total home charging power demand, KWh, of the urban land-uses. 

 

Figure 6.8. Total work charging power demand, KWH, of the urban land-uses. 
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Figure 6.9. Total public charging power demand, KWH, of the urban land-uses. 

 

Besides the total power demands at urban land-use blocks, the charging power at each time with 

an interval of one minute for each land-use block is calculated through urban electromobility 

simulation. The charging power demand of each land use block at time t is the sum of the 

charging power received by EVs that are simultaneously connected to chargers at time t. For 

instance, the spatial power load of the urban land-use blocks for home charging, workplace 

charging, and public charging power (in kW) at their power peak times are illustrated in Figure 

6.10 to Figure 6.12. The peak times for home charging, workplace charging, and public 

charging are 23:07, 9:27, and 9:54, respectively. 
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Figure 6.10. Spatial home charging power load (kW) of the urban land-uses at peak time t=23:07 

 

Figure 6.11. Spatial work charging power load (kW) of the urban land-uses at peak time t=9:27 

 

C
h

ar
g

in
g
 d

em
an

d
 (

K
W

) 

Longitude 

L
at

it
u

d
e 

C
h

ar
g
in

g
 d

em
an

d
 (

K
W

) 

Longitude 

L
at

it
u

d
e 



 

Figure 6.12. Spatial public charging power load (kW) of the urban land-uses at peak time t=9:54 

 

6.5.1.1.Charger numbers for public charging in urban land-use blocks 

 

The home charging power loads are from the homes that have charger piles in their homes. 

Moreover, the work charging power loads arise from workplaces that are equipped with 

charging facilities to provide energy for their employees. Hence, the charger numbers at these 

private locations are decided by their owner. On the contrary, urban planners should determine 

the required charge piles in public locations to meet public charging demands. Therefore, the 

number of charger piles at each urban land-use block can be determined based on the obtained 

daily public charging demand profile. In this regard, based on the daily charging profile with 

the one-minute resolution, the charging pile’s number is considered as the maximum number 

of EVs that are simultaneously connected to the charger at the land-use block. Accordingly, 

Figure 6.13 shows the charging piles number at each land-use block to meet the public charging 

power demand. 
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Figure 6.13. The charging pile’s number at each urban land-use. 

 

6.5.2. Daily fast-charging power load of the urban area 

 

The home and workplace are only equipped with level I and II slow charging facilities, 

respectively. The EVs with fast charging demand should go to FCSs that are assumed to have 

level III fast DC chargers. Therefore, to satisfy the total daily fast charging power demand of 

the study area illustrated in Figure 6.4, the size and site of optimal numbers of FCSs are obtained 

based on the proposed model in the electromobility simulation. Figure 6.14 shows the candidate 

number of FCS locations in the urban area.  
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Figure 6.14. The FCSs candidate locations in the urban area. 

According to the urban electromobility simulation, the fast charging demand locations are 

obtained, and each EV with fast charging demand is assigned to the nearest FCS. According to 

the obtained results of urban electromobility simulation and the proposed model of FCS 

planning, the optimal FCSs are obtained from the FCSs candidate. The obtained FCSs and their 

assigned fast charging demand points are shown in Figure 6.15. 
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Figure 6.15. (a) Optimal locations of FCSs and (b) their assigned fast demand points. 

 

The daily power load of each FCS is obtained with resolution on-minute so that the power load 

at each minute is the sum of the power drawn by the active chargers at that minute. The daily 

power load profiles for FCSs are illustrated in Figure 6.16. 
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Figure 6.16. Daily power load profile of FCSs in the urban area. 
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For each FCS, the number of charges is also determined based on the proposed FCS planning 

model. Figure 6.17 shows the charger number of FCSs in the urban area 

 

Figure 6.17. The charger’s number of each FCS in the urban area. 
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Chapter 7 

 

7. Conclusion and Recommendations for Future Research 

 

7.1. Conclusion 

 

This thesis proposes novel modeling and simulation of urban electromobility in the integration 

framework of EV-transportation-land use-energy to predict the urban charging power demand 

distributions and charging infrastructures planning. In this context, based on the existing 

interaction between EV users and EV, urban transportation system, urban land-uses, and urban 

energy systems, the users’ driving and charging behaviors are analyzed and modeled to simulate 

the daily travels of EVs in the urban area. The daily travels simulation eventually leads to 

predicting the spatial-temporal urban charging power demands, which are used for charging 

infrastructure planning in the urban area. 

 The actual street network and land-use spatial models constructed based on real-world data and 

the travel survey data provide a platform for simulating the spatial-temporal attributes of EV 

daily travel in the study area. The urban land use model provides the Geographical features of 

activity locations that the users select as destinations for their daily trips. The urban street 

network model enables the determination of daily trips’ trajectories. Moreover, in the absence 

of EV travel data, the travel survey data of conventional vehicles provides regional travel 

characteristics of drivers in the study area that are used to develop probabilistic models to reflect 

the stochastic nature of EV daily trips. Thus, the EV travels are simulated in the multi-purpose 

multi-location context, which helps achieve a more accurate model of urban electromobility 

simulation.  

In addition to the urban street network topology, the traffic flow on the urban streets strongly 

influenced the EV user driving behavior and EV energy consumption. Since collecting the 

actual traffic data of all urban streets is very difficult and perhaps impossible, this research 



develops a new tool by using the constructed urban street network, MATLAB, and online traffic 

information of the Google map to extract the traffic condition of streets of the study area.  

Another opportunity that the actual urban street network provided is calculating the average 

urban street slope that is affects the EV driving energy consumption. The real-world DEM data 

of the study area is utilized to estimate the slopes of the streets. Since the DEM and OSM data 

are both described by Lat/Longs, by overlapping the DEM raster and street segments, the 

average slope of each segment is calculated.  

Contrary to the existing studies, the integrated model of the urban street network and land use 

makes it possible to simulate urban mobility comprehensively. The land use contains the 

potential activity locations of EV trips, and the street network provides the potential paths 

between these activity locations. The graph-based model of the street network allows modeling 

the trip route choice of EV users. In this regard, the minimum-energy trip route predicting is 

modeled based on the EV energy consumption model, street network dynamic traffic status, 

and routing algorithm. In addition to predicting the destination and trip route of the EV travels, 

the street network and traffic models help model EV’s driving pattern on the selected trip route. 

Hence, to represent the stochastic nature of EV driving, the stochastic driving cycle unique to 

each EV trip is generated based on street characteristics and traffic conditions of the trip route’s 

street segments. Therefore, the spatial-temporal features of EV travels are determined in detail 

by modeling the EV user driving behavior simulating with taking into account the 

interdependency between the user, EV, transportation system, and land-use.   

The EV energy consumption on the street network ultimately leads to charging demand at 

charging locations. Hence, besides the driving behavior, the charging behavior of users should 

be modeled to achieve an accurate urban electromobility simulation. EVs’ charging demand 

causes EV users to interact with urban energy systems. The urban energy systems provide the 

energy to EV charging through charging stations located at land use or urban street network. 

The charging stations are the interface between EVs, transportation system, and land-use. 

Therefore, EV’s driving and charging behavior are modeled in integrating EV-transportation-

land use and energy to achieve accurate charging demand of the urban area. The charging 

behaviors of users are modeled according to the main influencing parameters on users’ 

decisions like user preferences, users’ access to charging opportunities, SoC of EV, users range 

anxiety. As such, the EV users are classified into four groups based on their access to the 

charging location. Different strategies are modeled to emulate the charging decision of each 

group of EV users. 



The daily travels of EVs are simulated based on proposed models of EV user driving and 

charging behaviors to predict the urban area’s slow and fast charging demand, which is then 

utilized in charging infrastructure planning.   

The numerical simulation of urban electromobility for EVs in the study area is conducted to 

predict spatial-temporal charging power demand distributions for a typical weekday. The slow 

charging power demands are distributed at urban land uses and fast charging power demands 

at FCS candidates. Land use’s slow charging demand is divided into home, work, and public 

charging demand.  Based on the simulation result analysis, it is concluded that the highest 

percentage of urban charging demand is the slow charging at home and work. The prediction 

results demonstrated that EV users prefer to charge at home or the workplace rather than public 

charging stations. Charging at work and home is more convenient and economical for EV users 

because they provide great convenience and flexibility to charge EV batteries. Hence, the 

charging at home and work for EV users is principal, and public charging is the complement.  

The slow public charging demands are met locally by the charging pile at each land use, which 

the number of charging piles at each land use is determined based on daily public charging 

power profile. To satisfy the fast public charging demand, the optimal number of FCSs from 

FCS candidates is obtained. The number of chargers at each selected FCS is determined based 

on the trade-off between the arrival time of EVs at FCS and waiting time. 

As a result, if there are insufficient chargers at homes and workplaces, the EV users who don’t 

have access to home/work charging have to rely solely on charging public destinations. Hence, 

the charging demand at public locations is increased. Also, the public charging stations could 

provide unique incentives and better-charging services to attract EV users to public charging. 

Therefore, planning adequate public charging infrastructures can satisfy the charging demand 

of users that don’t have access to home and work charging facilities. Hence, the optimal 

planning adequate public charging station can facilitate the EV penetration in the urban 

transportation system. 

Due to the limited knowledge and experiences of EV traveling in the urban areas, and in the 

absence of empirical data about EV users’ driving and charging behaviors, the proposed urban 

electromobility simulation in this thesis can provide a vision of urban charging energy demand 

prediction and charging infrastructures planning to develop and implement urban energy 

management solutions for its sustainable future. 

 



7.2.  Recommendations for future research 

 

The future research directions for further investigating the methods and results presented in this 

thesis are as follow: 

(1) This thesis investigates the urban electromobility simulation to predict the urban 

charging demand and plan the charging infrastructures based on EV driving and 

charging behavior. In the absence of empirical data of EV users’ driving and changing 

behavior, the models are developed based on conventional cars’ data and users’ rational 

behavior to charge EVs under different conditions. In the future, the proposed models 

can be combined with the real-world data from the EV user’s driving and charging 

behaviors, EV driving speed, etc.  

(2) In the proposed model in this research, the limitation imposed by the power grid is not 

considered in the charging demand prediction and charging infrastructure planning. In 

addition to the urban power grid, the renewable energy can be considered in the energy 

system in the proposed integrated framework in this thesis. Thus, with the inclusion of 

realistic data and considering the constraints of the energy systems, the proposed model 

would be extended by adding new parameters affecting EV users’ behaviors in their 

daily travels that eventually affect their charging demands.  

(3) Due to the complexity of the integrated framework of the urban transportation system 

and land use, planning the charging infrastructure by mathematical optimization 

methods is difficult and leads to taxing computational efforts. The proposed work can 

be extended by exploring the adequate optimization methods for urban charging 

infrastructures planning. 
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