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Resumo

Desde o surgimento dos modelos de linguagem baseados na arquitetura transformers,

seu desempenho tem superado significativamente o de modelos não neurais em tarefas

de NLP (do inglês, natural language processing) e IR (do inglês, information retrieval).

Diante desse cenário, os sistemas de recuperação de informação estado-da-arte têm sido

fundamentados nessas arquiteturas. Contudo, o desempenho desses sistemas é direta-

mente proporcional ao número de parâmetros dos modelos, o que resulta em um aumento

substancial dos custos e da latência, prejudicando a implementação desses modelos em

ambientes que demandam respostas em tempo real e/ou possuem recursos limitados.

Modelos como o T5, um modelo transformer sequência-para-sequência (seq2seq), pos-

sui versões que extrapolam 11 bilhões de parâmetros, demandando hardware com alto

poder computacional, como múltiplas GPUs (graphic processing units) ou TPUs (tensor

processing units), para operar em cenários de baixa latência.

Este trabalho de mestrado visa explorar novas estratégias de transferência de con-

hecimento em recuperação de informação com foco no desempenho fora do domínio de

treinamento. O objetivo é reduzir o tamanho dos modelos utilizados em sistemas de recu-

peração de informação, sem prejudicar a capacidade de generalização para dados fora do

domínio de treinamento do modelo (cenários de zero-shot). Assim, foi criado o InRanker,

um modelo estudante derivado de modelos professores maiores, que emprega uma abor-

dagem de destilação em duas etapas. Na primeira etapa, o modelo estudante é treinado

de forma supervisionada a partir de uma base de dados rotulados de IR suficientemente

grande e diversa, usando rótulos suaves produzidos pelo modelo professor. Na segunda

etapa, são criadas perguntas sintéticas a partir de grandes modelos de linguagem (LLMs,

do inglês large language models), gerando dados que imitam o domínio-alvo e ampliam

o escopo de conhecimento do modelo estudante para situações fora do domínio original

de treinamento. Com isso, busca-se diminuir o tamanho do modelo e assegurar que ele

mantenha alta eficácia em cenários zero-shot, semelhante ao comportamento encontrado

em grandes modelos.

A metodologia proposta foi avaliada em conjuntos de dados de recuperação de in-

formação, como o BEIR, que abrange uma grande variedade de domínios textuais. Os

resultados indicam que modelos substancialmente menores, como o monoT5-60M e o

monoT5-220M, conseguem atingir níveis de desempenho comparáveis ao de seu modelo

professor (monoT5-3B), mesmo sendo 50 e 13 vezes menores, respectivamente. Isso evi-

dencia que a abordagem de destilação sugerida não só possibilita uma redução de custos

e de exigências computacionais, mas também preserva a capacidade de generalização,

aspecto essencial para a aplicação em contextos reais e diversos. Adicionalmente, este

trabalho também explorou formas de transferir o conhecimento em cenários multilíngues,

nos quais o professor foi treinado com dados em inglês e transferiu o conhecimento para o



estudante com foco em documentos em português. Os modelos e códigos utilizados estão

disponíveis em https://github.com/unicamp-dl/InRanker.

Palavras-chave: Processamento de Linguagem Natural; Aprendizado Pro-

fundo; Modelos de Linguagem; Recuperação de Informação



Abstract

Since the emergence of neural language models based on the transformer architecture,

the semantic and contextual understanding of words has become much more precise com-

pared to their non-neural counterparts on tasks such as NLP (natural language processing)

and IR (information retrieval). In this context, state-of-the-art information retrieval sys-

tems have been built upon these architectures. However, the efficacy of these systems

is directly proportional to the number of parameters in the models, which results in a

substantial increase in costs and latency, hindering the implementation of these models in

environments that demand real-time responses and/or have limited resources. Models like

T5 (a transformer-based sequence-to-sequence model) have versions exceeding 11 billion

parameters, requiring specialized hardware, such as GPUs (graphic processing units) or

TPUs (tensor processing units), to operate effectively in low-latency scenarios.

This master thesis aims to explore new knowledge transfer strategies in information

retrieval, focusing on the out-of-domain effectiveness. The goal is to reduce the size

of the models used in information retrieval systems without compromising their ability

to generalize to data outside the model’s training domain. To this end, InRanker was

created, a student model derived from monoT5-3B, which employs a two-step distillation

approach. In the first step, the student model is supervisedly trained using a large and

diverse labeled IR dataset, using soft labels produced by the teacher model. In the second

step, synthetic queries are created using large language models (LLMs), generating data

that resembles the target domain and expands the student model’s knowledge scope for

situations outside the original domain. This approach aims not only to reduce the model

size, but also to ensure that it maintains high effectiveness in zero-shot scenarios, similar

to the behavior observed in large models.

The proposed methodology was evaluated using information retrieval datasets, such

as BEIR, which covers a wide range of textual domains. The results indicate that signifi-

cantly smaller models, such as monoT5-60M and monoT5-220M, can achieve performance

levels comparable to their teacher model (monoT5-3B), despite being 50 and 13 times

smaller, respectively. This demonstrates that the suggested distillation approach not only

enables cost and computational requirement reductions, but also preserves generalization

capacity, an essential aspect for applications in real-world and diverse contexts. Addition-

ally, this work also explored ways to transfer knowledge in multilingual scenarios, where

the teacher was trained with data in English and transferred knowledge to the student

model focusing on documents in Portuguese. The models and codes used are available at

https://github.com/unicamp-dl/InRanker.

Keywords: Natural Language Processing; Deep Learning; Language Mod-

els; Information Retrieval
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1 Introduction

As the volume of data continues to grow exponentially [1], retrieving relevant infor-

mation has become essential for a variety of applications, from search engines to decision-

making systems. The challenge lies in efficiently processing documents while accurately

predicting the user’s intent behind a query. Information Retrieval (IR) refers to the com-

putational process of identifying and extracting relevant information from those source

of data, in response to a specific query. This task involves not only the retrieval of doc-

uments but also understanding and interpreting the semantics of both the query and

the content within the documents, making the process particularly complex. Queries are

typically concise, and the system must infer the user’s intent and locate documents that

are relevant to the query. Additionally, the volume of data in modern digital repositories

adds to the challenge, as processing these large datasets requires efficient algorithms and

considerable computational resources.

Over the last few years, new approaches have been developed to handle the key

challenges in IR. Traditional models, such as boolean search and probabilistic models, have

been foundational, but more recent advancements in machine learning, natural language

processing, and deep learning have led to newer techniques that are capable of better

handling linguistic nuances, context, and the high dimensionality of modern data.

These techniques rely on neural networks, usually based on the transformer architec-

ture, which may reach billions of parameters. In fact, it is well known that the effectiveness

of IR pipelines increases with the number of parameters [3, 26, 28, 29, 33]. For instance,

multi-billion parameter rankers and dense models achieve top positions on leaderboards of

IR benchmarks and competitions [11, 12, 13]. These large models leverage increased rep-

resentation capacity, enabling them to encode features that might elude smaller models.

However, deploying these large models is not without its challenges. The computational

overheads are substantial, often requiring specialized hardware such as GPUs or TPUs to

operate in latency-critical applications. The high cost is directly related to the large num-

ber of parameters that these models contain, as they require hardware with high memory

and computational capacity. In a production environment, this means higher operating

costs and reduced scalability.

To address these challenges, there have been efforts to create more efficient models

without significantly reducing effectiveness. One such approach is model distillation [18].

Distilled models, such as MiniLM [37], use a teacher or an ensemble of larger models

to transfer knowledge to a smaller student model. Rosa et al. [35] show that MiniLM

surpassed the zero-shot effectiveness of monoT5-base in IR tasks despite being an order

of magnitude smaller in size. This has shown that knowledge transfer via model distillation

is not only feasible but also effective. However, most distillation techniques have been
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geared towards optimizing effectiveness on specific benchmark tasks and do not focus on

out-of-domain effectiveness. Rosa et al. also show that while smaller models are capable

of achieving high in-domain results, similar to their larger counterparts, the disparity in

effectiveness becomes evident in out-of-domain scenarios.

Usually, training a retrieval model requires human-annotated hard labels informing

which passage is relevant for each query. However, with the advance of Large Language

Models (LLMs), it has become possible to generate synthetic queries for passages, pro-

viding a feasible approach for data augmentation [3, 20, 5, 30, 2]. Our work introduces

a method for the generation of synthetic data specifically designed for distilling rankers

that increases their out-of-domain effectiveness. We present InRanker, a distilled model

derived from monoT5-3B [29], that uses the predictions of the teacher directly with both

synthetic, generated from an out-of-domain corpus, and real query-document pairs. Effec-

tively, this approach converts any corpus to be in-domain, since the model will be trained

using queries from the target domain. As a result, this approach leads to reduced model

sizes while maintaining improved out-of-domain effectiveness, as presented in Figure 12.

The research conducted during the master’s program and documented in this dissertation

also resulted in a scientific article made available as a preprint on arXiv [22] and published

on Bracis 2024.

This document is structured as follows: it begins with an introduction Chapter 1 that

provides background information, including the motivation, evaluation metrics, datasets,

and main contributions. This is followed by a Chapter on related work 2, a Chapter

detailing the proposed pipeline 3, a Chapter presenting the results 4, and finally, a Chapter

discussing the conclusions and limitations of this study 5.

1.1 Background

In this section, we introduce the main concepts of information retrieval, evaluation

metrics, and explain different approaches commonly used to this task. We also present

the monoT5 model, which is the main focus of this work.

In addition to the development of retrieval algorithms, the research community has

created metrics to assess the performance of IR systems. Metrics such as precision, recall

and more complex measures like mean average precision (MAP) or normalized discounted

cumulative gain (nDCG) are used to quantify the accuracy and relevance of candidate

documents to the user’s query. In the following sections we present in detail the main

evaluation metrics, ranking approaches and main evaluation datasets.
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1.1.1 Evaluation Metrics

There are many metrics used to evaluate the performance of IR systems. Some of

the most used metrics are:

• Recall: the fraction of relevant documents that have been retrieved over the total

number of relevant documents in the corpus. It is calculated as the number of

relevant documents retrieved divided by the total number of relevant documents

available, where d is the set of documents retrieved by the system and D the set of

all relevant documents in the corpus.

Recall =
|d ∩D|

|D|
(1)

This metric is crucial for understanding how effectively a search system is able to

cover the relevant documents in the corpus, indicating the system’s ability to not

miss out relevant information.

• Precision: the fraction of relevant documents among the retrieved documents. It

is calculated as the number of relevant documents retrieved divided by the total

number of documents retrieved, and expresses how reliable is the model pointing

out documents that actually are relevant within the retrieved documents:

Precision =
|d ∩D|

|d|
(2)

• Mean Average Precision (MAP): it corresponds to the arithmetic mean of the

Average Precision (AP) values across all queries. For each query q, the Average

Precision is calculated by determining the precision at each rank k (cutoff point)

where a relevant document is retrieved, and then averaging these precision values

over the total number of relevant documents for that query Dq. The MAP is the

mean of these AP values across all queries in the query set Q. In this context, Q

represents the set of all queries, |Q| is the total number of queries, Dq is the set

of relevant documents for query q, nq is the total number of retrieved documents

for query q, Pq(k) is the precision at rank k for query q, and relq(k) is an indicator

function that is 1 if the document at rank k for query q is relevant, and 0 otherwise.

The equation for MAP is:

MAP =
1

|Q|

∑

q∈Q

(

1

|Dq|

nq
∑

k=1

Pq(k) · relq(k)

)

(3)

• Mean Reciprocal Rank (MRR): a measure of a system’s ability to return highly

ranked relevant documents, emphasizing the importance of having relevant docu-
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ments appearing as early as possible in the search results. It is calculated as the

average of the reciprocal ranks of the first relevant document for each query in a set

of queries. The reciprocal rank is the inverse of the rank at which the first relevant

document is retrieved. The metric is defined as:

MRR =
1

|Q|

∑

q∈Q

1

rank(q)
, (4)

where rank(q) is the rank of the first relevant document for query q.

• Normalized Discounted Cumulative Gain (nDCG): a metric for evaluating

the quality of a set of search results, especially when the relevance of each document

is not binary but graded. It measures the usefulness, or gain, of a document based

on its position in the result list. The gain is accumulated from the top of the

result list to the bottom, with the gain of each document discounted at lower ranks.

This metric is particularly useful for situations where the most relevant documents

appearing earlier in the search results are more beneficial to the user. The nDCG is

normalized against the ideal order of documents (the maximum possible DCG), to

ensure the score is within a range from 0 to 1, making it easier to compare between

different sets of results. The formula for nDCG, considering a list of retrieved

documents up to a particular rank K, is:

nDCG@K =
DCG@K

IDCG@K
(5)

where DCG@K (Discounted Cumulative Gain) is calculated as:

DCG@K =
K
∑

k=1

2relk − 1

log2(k + 1)
(6)

with relk being the graded relevance of the document at position k.

IDCG@K is the ideal DCG at rank K, representing the maximum possible DCG

given the set of document relevance grades. This is calculated by sorting documents

by their relevance in descending order and then applying the DCG formula. The

division of DCG@K by IDCG@K ensures that the score is normalized, allowing for

meaningful comparisons across different search result sets or queries by accounting

for the varying levels of document relevance.
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1.1.2 Information Retrieval Datasets

A commonly used dataset for training and evaluating IR systems is the MS MARCO

[27], which is a large-scale dataset that contains 6980 queries, 8.84M documents, and

the relevance judgments for each query-document pair (there are 400 thousands in this

dataset). The dataset is widely used in the community and has been employed in many

competitions and challenges.

Also, there are benchmarks composed of different datasets such as BEIR (Bench-

mark for Information Retrieval) [36], which contains a broad variety of text domains

for testing the effectiveness of IR systems. The benchmark is composed of nine re-

trieval tasks: fact-checking (FEVER, Climate-FEVER, SciFact); question answering (NQ,

HotpotQA, FiQA-2018); biomedical IR (TREC-COVID, BioASQ, NFCorpus); news re-

trieval (TREC-News, Robust04); argument retrieval (Touché-2020, ArguAna); duplicate

question retrieval (Quora, CQADupStack); citation prediction (SciDocs); tweet retrieval

(Signal-1M); and entity retrieval (DBpedia).

1.1.3 Ranking Approaches

In Information Retrieval (IR), an essential aspect of how systems retrieve and rank

relevant documents lies in the way text is represented. Two primary approaches to this

representation are sparse and dense models.

Sparse Models

Sparse models, such as Term Frequency-Inverse Document Frequency (TF-IDF) and

BM25, use high-dimensional vectors where each dimension corresponds to a specific term

in the vocabulary. These vectors are typically sparse, meaning they contain many zero val-

ues because most documents include only a small subset of possible terms. This approach

has been foundational in IR due to its interpretability and simplicity. However, traditional

sparse models may struggle with capturing deeper semantic relationships between words.

• Computational Efficiency: Since most positions in these vectors are zeros, sparse

models can be stored and processed efficiently. Algorithms can skip over the zeros,

focusing only on the non-zero values, which speeds up calculations.

• Interpretability: Sparse models are easy to understand. For instance, if a docu-

ment scores high on a particular term, you can directly see that the presence of that

term is important for retrieval. This transparency allows researchers to analyze and

fine-tune the retrieval process by understanding which terms contribute most to the

ranking.

• Inability to Capture Synonyms and Polysemy: Traditional sparse models



17

struggle with understanding relationships between different words that have simi-

lar meanings (synonyms) or words that have multiple meanings (polysemy). For

example:

– A query for “automobile” might not retrieve a document that uses the word

“car” instead, even though they mean the same thing.

– Similarly, the word “bank” could refer to a financial institution or the side of

a river. Sparse models may not effectively disambiguate these meanings based

on the context.

A commonly used non-neural sparse algorithm is BM25, which is a ranking function

used by search engines to rank documents according to their relevance to a given query,

based on a probabilistic model. It improves upon the TF-IDF approach by incorporating

document length and query term frequency to adjust the weighting term. In BM25, each

term in the query is assigned a weight based on its frequency in the document, its presence

in the document collection, and the length of the document. This method acknowledges

that longer documents may have more occurrences of a term purely by chance, and adjusts

for this by normalizing term frequencies against document length. Furthermore, BM25

introduces the concept of saturation, which limits the benefit of additional occurrences of

a term in a document, reflecting the intuition that after a certain point, more occurrences

of a word do not make the document more relevant. BM25 is widely regarded for its

effectiveness and is a standard benchmark in information retrieval tasks. It is defined by

the following formula:

BM25(D,Q) =
n
∑

i=1

IDF(ti)×
f(ti, D)× (k1 + 1)

f(ti, D) + k1 × (1− b+ b× |D|
avgdl

)
(7)

where D is the document, Q is the query, n is the number of terms in the query, f(ti, D)

is the frequency of term ti in document D, k1 and b are free parameters, and avgdl is the

average document length in the collection. The IDF function is defined as:

IDF(ti) = ln

(

N − n(ti) + 0.5

n(ti) + 0.5
+ 1

)

(8)

where N is the total number of documents in the collection and n(ti) is the number of

documents containing term ti.

Dense Models

Dense models, on the other hand, are a more recent development, emerging from

advances in deep learning, especially with transformer-based architectures. These models

represent documents and queries as dense vectors that capture the semantic meaning in

a continuous vector space. Unlike sparse models, where each dimension is directly tied
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3. Portuguese InRanker: in addition to the English model, this work has demon-

strated that it is possible to transfer knowledge from an English teacher model into

a Portuguese fine-tuned model, such as PTT5, opening doors for future research in

creating new language-tuned rankers.

4. Open-Source Code and Models: as part of this research, the codebase and

models have been made publicly available to the community, contributing to the

transparency and reproducibility of results. This open-source release enables further

research in model distillation and efficient neural rankers, particularly in multilingual

and resource-constrained environments.

Additionally, a paper based on this master’s work was accepted for publication at

BRACIS 2024, and the open-source models have been downloaded over more than 22000

times on HuggingFace as of October 2024.
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3 Proposed Method

3.1 Training

Our proposed method consists of two key phases of distillation, each designed with

specific objectives to maximize the model’s zero-shot effectiveness. The first phase uses

real-world data to familiarize the student model with the ranking task, while the second

phase uses synthetic data designed to improve zero-shot generalization and improve the

model’s effectiveness on specific datasets. The datasets used to distill InRanker consists

of {query, passage, logits} triplets, where the logits (soft labels) come from a teacher

model that has been trained for the relevance task. For the first stage, we chose to

use query-document pairs from the MS MARCO [27] dataset, given their variety, the

large number of annotated pairs, and its demonstrated effectiveness in enhancing retrieval

effectiveness [34]. Figure 8 shows an example of query and passages from MS MARCO.

Query: at what age do kids start to hold memories?

Relevant Passage: Childhood amnesia, also called infantile amnesia, is the

inability of adults to retrieve episodic memories before the age of 2 to 4 years, as

well as the period before age 10 of which adults retain fewer memories than might

otherwise be expected given the passage of time.

Non-relevant Passage: In an effort to better understand how children

form memories, the researchers asked 140 kids between the ages of 4 and 13 to

describe their earliest memories and then asked them to do the same thing two

years later.

Figure 8: Sample from the MS MARCO dataset. A query and a relevant and non-relevant

passage.

Next, we source synthetic queries from InPars [3], which used an LLM to create

queries for the datasets in BEIR in a few-shot manner. The synthetic queries were gener-

ated using the prompt shown in Figure 9. The strategy involves providing three examples

of queries and passages, followed by a "fake" fourth example, that is actually the one

the language model is supposed to complete, after which it is extracted and saved as a

training sample.

After the datasets were processed, distilling rerankers involves using the Mean Squared

Error (MSE) loss to match the logits of the teacher and the student, as part of a two-phase

pipeline illustrated in Figure 10. The first phase consists of two steps: (1) generating the

teacher logits given a query and either a positive (relevant) or a negative (non-relevant)
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Example 1:

Document: We don’t know a lot about the effects of caffeine during pregnancy

on you and your baby. So it’s best to limit the amount you get each day. If you

are pregnant, limit caffeine to 200 milligrams each day. This is about the amount

in 1½ 8-ounce cups of coffee or one 12-ounce cup of coffee.

Relevant Query: Is a little caffeine ok during pregnancy?

Example 2:

Document: Passiflora herbertiana. A rare passion fruit native to Australia.

Fruits are green-skinned, white fleshed, with an unknown edible rating. Some

sources list the fruit as edible, sweet and tasty, while others list the fruits as being

bitter and inedible.

Relevant Query: What fruit is native to Australia?

Example 3:

Document: The Canadian Armed Forces. 1 The first large-scale Canadian

peacekeeping mission started in Egypt on November 24, 1956. 2 There are

approximately 65,000 Regular Force and 25,000 reservist members in the Canadian

military. 3 In Canada, August 9 is designated as National Peacekeepers’ Day.

Relevant Query: How large is the Canadian military?

Example 4:

Document: (document text)

Relevant Query:

Figure 9: Prompt used by InPars to generate synthetic queries for target domains.

passage, where the negatives are randomly sampled using BM25 on the top-k = 1000 can-

didates, and the positives are sampled from the human-annotated pairs; and (2) training

InRanker given the queries and passages as input using the MSE loss to match the student

logits to those of the teacher, which remain frozen during training. This approach can be

beneficial as it removes the need for making hard decisions about a passage’s relevance,

i.e. determining a threshold to obtain binary relevance labels, and instead focuses on a

soft target objective aimed at aligning the student’s perception of relevance with that of

the teacher.

The second phase, with a focus on zero-shot effectiveness, involves the same afore-

mentioned. However, instead of employing real queries sourced from a costly human-

annotation process, it uses synthetic queries generated by an LLM based on randomly

sampled documents from the corpus (InPars). In this scenario, the positive document is
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the one used to create the query, and the negatives are collected using the same top-k

sampling approach as before.

We also perform zero-mean normalization on the teacher logits for each query-document

pair, independent of the overall dataset distribution. This approach intends to make the

data distribution symmetric for each query-document pair, thereby minimizing the bias

that InRanker is required to learn. Formally:

L′
true = Ltrue −

Ltrue + Lfalse

2

L′
false = Lfalse −

Ltrue + Lfalse

2
,

(10)

with Ltrue and Lfalse denoting the teacher’s logits for the relevant and non-relevant classes,

respectively, and L′ being the normalized values. This results in the following loss for each

training example:

LMSE = ([Ytrue − L′
true]

2 + [Yfalse − L′
false]

2), (11)

with Ytrue and Yfalse representing the logits of the student.

Due to the training objective described in Equation (11), the model no longer deter-

mines the relevance of passages and instead focuses on replicating the teacher’s output,

thus eliminating the need for tuning a relevance threshold that would be needed to pro-

duce a binary label. With this approach, we can expand the out-of-domain knowledge of

distilled models by generating new queries for documents using an LLM and fine-tuning

the distilled model using the teacher’s logits. In Chapter 4 we show the effectiveness of

this approach in improving the student model’s effectiveness across 16 datasets of BEIR

simultaneously. We present the hyperparameters used for training, the dataset curation,

and we discuss variations of the training loss in Section 4.1.

3.2 Evaluation

For the evaluation of the InRanker models, we used 16 datasets from BEIR, which

contain a variety of subjects such as science, biomedical, news, and finance. We focused

on two evaluation points:

- Ranking effectiveness: For this, we fine-tuned the models using synthetic queries

from all datasets simultaneously and considered the average nDCG, evaluated using the

real queries, as the final metric.

- Zero-shot effectiveness: This evaluation was performed to assess the model’s gen-

eralization when exposed to different distribution scenarios. Figure 11 shows the method-

ology used to simulate a zero-shot evaluation. Starting with all 16 selected datasets, we
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4 Results

4.1 Experimental Setup

Table 1 presents the hyperparameters used for training the models using an A100

GPU with 80GB of VRAM. All experiments were conducted using a learning rate of 7e−5

and AdamW as optimizer with β1 = 0.9 e β2 = 0.99. The batch size was set to 32.

For the 3B model, we used gradient checkpointing and gradient accumulation (to achieve

an effective batch size of 2 × 16) due to memory constraints. During the generation of

soft labels using the teacher model, we sampled 9 non-relevant passages for each relevant

passage, leading to 10 pairs of logits per query as shown in Figure 10. It is important to

note that, differently from InPars and Promptagator, which train a separate model for each

dataset, InRanker is a single model trained on all 16 datasets from BEIR simultaneously.

Parameters Dataset Steps Epochs
Training

Duration

60M
Human Soft 400k 10 7h

Synthetic Soft 329k 1 5:30h

220M
Human Soft 400k 10 15h

Synthetic Soft 329k 1 12h

3B
Human Soft 400k 10 300h

Synthetic Soft 329k 1 250h

Table 1: Training hyperparameters and duration using an A100-80GB GPU.

During evaluation we used a strategy to simulate out-of-domain scenarios. For this,

we created two samples of datasets containing synthetic queries from 8 datasets of BEIR.

These sets were used during the fine-tuning process, while the remaining datasets were

used to simulate in-domain scenarios as shown in Figure 11. Table 2 shows the datasets

that were randomly chosen for inclusion in each sample set, resulting in the use of 12

out of the 16 BEIR datasets (as some were not used for training at all). We also tested

different loss functions, including the KL divergence and MSE, to match the logits of the

two models. Table 3 shows the results, indicating that KL divergence was slightly worse

for T5-small and that using only the true label in MSE as opposed to using both true and

false labels also reduced the effectiveness.
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4.2 Experimental Results

We distilled monoT5-3B to models with parameters ranging from 60M to 3B, using

combinations of the following configurations:

Human Hard: representing the common approach for training rankers with human-

annotated hard (i.e., binary) labels from the MS MARCO passage ranking dataset.

In this case, a vanilla cross-entropy loss is used:

LCE = − logPrelevant − logPnon−relevant (12)

where Prelevant and Pnon−relevant are the probabilities assigned by the model to the

relevant and non-relevant query-document pair, respectively. Non-relevant pairs are

sampled from the top-1000 retrieved by BM25.

Human Soft: representing a distillation step for matching the logits of a teacher and a

student model, using real (human-generated) queries from the ranking dataset as

inputs, but without the binary relevance judgments for targets.

Synthetic Soft: representing a distillation step for matching the logits of the two mod-

els, similar to the previous configuration, but using exclusively synthetic queries

generated from the corresponding BEIR corpora with InPars [3, 20].

From Table 4, we see that both distillation steps were essential for improving the

average nDCG@10 score compared to the model trained solely using human hard labels

from MS MARCO. As a result, InRanker-60M (row 3) and InRanker-220M (row 6),

despite being 50x and 13x smaller than the teacher model, were able to improve their

effectiveness on the BEIR benchmark significantly. Moreover, models trained exclusively

on MS MARCO soft labels (rows 2 & 5) saw an increase in effectiveness in comparison to

training on solely hard labels (rows 1 & 4), corroborating findings from previous studies

regarding the effectiveness of soft labels [18, 19, 15, 17]. Furthermore, we observed an

increase in the effectiveness even in self-distillation training (row 8), where the student

learns soft labels generated by itself. We hypothesize that the improvement stems from the

extra knowledge provided by the language model used to generate the synthetic queries.

We did not provide results for the 3B model trained on both human soft and synthetic

soft due to computational costs.

Furthermore, in Table 5, we present a effectiveness comparison between InRanker,

Promptagator [14], and RankT5 [39]. Although we used monoT5-3B as a teacher for our

experiments, which has a lower effectiveness on average when compared to Promptagator

or RankT5-3B, our method is model-agnostic and thus one could use a stronger teacher

model and anticipate even stronger results. Nonetheless, InRanker remains competitive

in both model groups of 220M and 3B parameters, outperforming the other two baselines

in 6 out of the 10 evaluated datasets, despite the average score not reflecting this due to
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all results are presented with a jugded@10 of 100%.

Table 7 presents the results obtained after distilling the models using soft labels

from MS MARCO and BEIR. We can observe the impact of both proposed distillation

steps, namely using soft human labels and soft synthetic labels, which bring significant

effectiveness improvements over the base models. In particular, using logits from MS

MARCO leads to an average of a 2-point nDCG@10 improvement for each model, while

the subsequent fine-tuning phase with the synthetic BEIR queries further enhances their

effectiveness by 4.5 points for T5-small and approximately 1.4 points for T5-base.

For the Portuguese evaluation, hypothesis testing results were provided to assess

the statistical significance of the outcomes for each query. Using all 50 queries from the

Quati dataset, which requires ranking 1, 000 passages per query, we applied a paired t-test

since the queries and passages were identical across both models. For smaller models, a

non-parametric test (Wilcoxon signed-rank test) was used because the Shapiro-Wilk test

indicated that score differences were not normally distributed. The results show that

all InRanker models outperformed the monoPTT5 models, as the null hypothesis (equal

effectiveness) was rejected. All results are shown at Table 8.

4.4 Latency Improvement

In this subsection, we present the latency improvements achieved by distilling the

knowledge of larger rankers into student models. Figure 13 illustrates the latency versus

effectiveness (nDCG@10) of both InRanker and the non-distilled monoT5 equivalents. It

was measured using a Tesla T4 GPU with 16GB of RAM, 1000 passages and 16 bits of

precision, each with approximately 256 tokens. From the figure, we conclude that the

InRanker model can achieve results comparable to larger models while being 3x faster.

4.5 Ablation Experiments

In this section, we present our ablation experiments aimed at validating the best

configuration for distilling monoT5-3B into smaller T5-based models, as well as assessing

their zero-shot capabilities. The initial experiments we conducted focused on evaluating

how distillation would affect the model’s effectiveness on novel dataset distributions that

were not seen during training, i.e., we did not generate synthetic queries for them. To

achieve this, we created two subsets, each containing 8 randomly selected datasets from

16 datasets of BEIR, which we named sample sets 1 and 2 and used only one set for

training per experiment. The datasets that were used for training are designated as the

“in-domain” category, while the remaining datasets, i.e. the other 8 datasets that are not

part of the training set, represent the “out-of-domain” (O.O.D.) category.
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the distillation step that includes the soft human targets on MS MARCO is beneficial, as

it improves the model’s effectiveness in both in-domain and out-of-domain scenarios.

Upper bound for soft distillation To estimate the upper bound of the effectiveness

that these models could attain through distillation, we repeated the process using real

queries from BEIR, (i.e., the validation queries) instead of the synthetic ones. Results

presented in Table 10 show that for both model sizes, there was an increase in effec-

tiveness for the in-domain datasets, as the model was exposed to the evaluation queries

during training. However, we also observed an increase in effectiveness for out-of-domain

datasets, indicating that the synthetic queries used for training could be improved.
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Dataset Sample Set 1 Sample Set 2

TREC-COVID X

NFCorpus X

BioASQ X

NQ X X

HotpotQA X X

Climate-FEVER

DBPedia X

TREC-NEWS

Robust04 X

ArguAna

Touché-2020

Quora X

SCIDOCS X X

SciFact X

FiQA-2018 X X

Signal-1M X

Table 2: Composition of the two sample sets used in the ablation experiments, using

datasets from the BEIR benchmark.

Parameters Loss nDCG@10

60M

MSE with normalized logits 0.4807

MSE with “true” logit only 0.4748

KL divergence 0.4712

220M
MSE with normalized logits 0.5008

KL divergence 0.5012

Table 3: Average nDCG@10 on 16 datasets of the BEIR benchmark with varying loss

functions.
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Training Configurations

Model
Human

Hard

Human

Soft

Synthetic

Soft

Avg.

Score

(1) monoT5-60M X 0.4125

(2) →֒ w/ soft human X 0.4356

(3) InRanker-60M X X 0.4807

(4) monoT5-220M X 0.4638

(5) →֒ w/ soft human X 0.4870

(6) InRanker-220M X X 0.5008

(7) monoT5-3B* X 0.5174

(8) InRanker-3B X X 0.5253

Table 4: Distillation results (nDCG@10) on 16 BEIR datasets. The model marked with

* represents the teacher model. We did not train InRanker-3B on human soft labels due

to computational constraints.

Dataset
InRanker

60M

InRanker

220M

Promptagator++

110M + 110M

RankT5-Enc

220M

InRanker

3B

monoT5

3B*

RankT5-Enc

3B

TREC-COVID 0.7775 0.7984 0.7620 0.7896 0.8175 0.7936 0.8237

NFCorpus 0.3547 0.3658 0.3700 0.3731 0.3825 0.3801 0.3990

HotpotQA 0.7563 0.7742 0.7360 0.7269 0.7800 0.7595 0.7536

Climate-FEVER 0.2729 0.2914 0.2030 0.2462 0.2931 0.2835 0.2753

DBPedia 0.4451 0.4650 0.4340 0.4373 0.4762 0.4719 0.4598

ArguAna 0.2466 0.2873 0.6300 0.3094 0.4243 0.3824 0.4069

Touché-2020 0.2883 0.2897 0.3810 0.4449 0.2924 0.3026 0.4869

SCIDOCS 0.1788 0.1911 0.2010 0.1760 0.1990 0.1978 0.1918

SciFact 0.7490 0.7618 0.7310 0.7493 0.7831 0.7773 0.7600

FiQA-2018 0.4043 0.4431 0.4940 0.4132 0.5027 0.5068 0.4932

Average 0.4474 0.4668 0.4942 0.4666 0.4951 0.4856 0.5050

Table 5: Comparison of the effectiveness for various reranking models, measured by

nDCG@10 on the BEIR benchmark. The model marked with * represents the teacher

model used for training InRanker. Bolded scores correspond to the best effectiveness on

a specific dataset for a given model size, while underlined scores indicate the best effec-

tiveness overall.
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Training Configurations

Model
Human

Hard

Human

Soft

Synthetic

Soft

Avg.

Score

(1) PTT5-v2-60M X 0.4225

(2) →֒ w/ soft human X 0.4372

(3) InRanker-60M X X 0.5121

(4) PTT5-v2-220M X 0.5662

(5) →֒ w/ soft human X 0.5693

(6) InRanker-220M X X 0.6108

(7) PTT5-v2-740M X 0.5917

(8) →֒ w/ soft human X 0.6362

(9) InRanker-740M X X 0.6624

(10) monoT5-3B X 0.4864

(11) mT5-3.7B X 0.6593

Table 6: InRanker results on QUATI, a Portuguese evaluation dataset for information

retrieval using PTT5-v2 [32]. All synthetic soft labels were generated using the BEIR

datasets.
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Dataset T5-small (60M) T5-base (220M) T5-3B

Baseline 1st Step + 2nd Step Baseline 1st Step + 2nd Step Teacher

TREC-COVID 0.6928 0.7247 0.7775 0.7775 0.7643 0.7984 0.7936

NFCorpus 0.3180 0.3475 0.3547 0.3570 0.3639 0.3658 0.3801

BioASQ 0.4880 0.4648 0.5516 0.5240 0.5281 0.5652 0.5652

NQ 0.4733 0.5214 0.5469 0.5674 0.5855 0.5971 0.6251

HotpotQA 0.5996 0.6842 0.7563 0.6950 0.7546 0.7742 0.7595

Climate-FEVER 0.2116 0.2488 0.2729 0.2451 0.2739 0.2914 0.2835

DBPedia 0.3437 0.3745 0.4451 0.4195 0.4446 0.4650 0.4719

TREC-NEWS 0.3848 0.4478 0.4646 0.4475 0.4808 0.4695 0.4806

Robust04 0.4222 0.4782 0.5386 0.5016 0.5588 0.5774 0.6171

ArguAna 0.1274 0.1098 0.2466 0.1946 0.2431 0.2873 0.3824

Touché-2020 0.2643 0.2557 0.2883 0.2773 0.2991 0.2897 0.3026

Quora 0.8259 0.8246 0.8335 0.8230 0.8418 0.8427 0.8347

SCIDOCS 0.1436 0.1526 0.1788 0.1649 0.1746 0.1911 0.1978

SciFact 0.6963 0.7022 0.7490 0.7356 0.7505 0.7618 0.7773

FiQA-2018 0.3377 0.3712 0.4043 0.4136 0.4374 0.4431 0.5068

Signal-1M 0.2711 0.2612 0.2820 0.2771 0.2910 0.2926 0.3004

Average 0.4125 0.4356 0.4807 0.4638 0.4870 0.5008 0.5174

Table 7: nDCG@10 values for each dataset after two steps of distillation.

Models t-value p w-statistic p

InRanker-small

monoPTT5-v2-small
- - 201 0.0001

InRanker-base

monoPTT5-v2-base
2.607 0.0121 - -

InRanker-large

monoPTT5-v2-large
3.601 0.0007 - -

Table 8: Hypothesis testing of means using a two-tailed paired t-test on nDCG@10 values

for each query (50 queries) from the Quati dataset. For InRanker-small, due to the non-

normality of the differences (a condition required for the t-test), we used a non-parametric

test (Wilcoxon Signed-Rank test).
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Training Configurations Sample Set 1 Sample Set 2

T5 Model Human

Hard

Human

Soft

Synthetic

Soft

In-

domain

O.O.D. In-

domain

O.O.D.

(1) 60M (monoT5) X 0.4141 0.4109 0.4817 0.3434

(2) 60M X 0.4422 0.4290 0.5124 0.3587

(3) 60M (InRanker) X X 0.4768 0.4716 0.5558 0.3852

(4) 60M X X 0.4475 0.4587 0.5355 0.3617

(5) 220M (monoT5) X 0.4647 0.4629 0.5475 0.3801

(6) 220M X 0.4867 0.4873 0.5692 0.4048

(7) 220M (InRanker) X X 0.4945 0.5028 0.5874 0.4083

(8) 220M X X 0.4905 0.4942 0.5832 0.3941

(9) 3B* (monoT5) X 0.5095 0.5253 0.6053 0.4295

Table 9: Comparison of the in-domain vs out-of-domain effectiveness of our method,

measured by nDCG@10. The model marked with * represents the teacher model used for

the knowledge distillation process.

Sample Set 1 Sample Set 2

Model In-

domain

O.O.D. In-

domain

O.O.D.

InRanker-60M 0.4768 0.4716 0.5558 0.3852

→֒ w/ real queries 0.4975 0.4719 0.5860 0.3813

InRanker-220M 0.4945 0.5028 0.5874 0.4083

→֒ w/ real queries 0.5242 0.5175 0.6159 0.4202

Table 10: Upper bound effectiveness (nDCG@10) using real queries from BEIR for the

distillation datasets. Bold indicates the best between using synthetic and real queries.
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5 Conclusion

This master’s thesis introduces a method for distilling the knowledge of informa-

tion retrieval models and improve upon previous work on how to better use synthetic

data, aimed at improving the out-of-domain effectiveness of students. The methodology

involves two steps of distillation: (1) using a human-curated corpus, and (2) using syn-

thetic data generated by an LLM. The first step is used to make the model learn about

the retrieval task, whereas the second step is responsible to specialize the model on tar-

get domains. Ablation studies showed that these specializations not only improved the

model’s effectiveness on the desired domain but also enhanced its generalization capa-

bilities when evaluated on out-of-domain datasets. Additionally, our work shows that it

is possible to improve a reranker’s capabilities in specific domains without the need for

additional human-annotated labels, since the queries used to specialize the model were

generated synthetically. However, we observe that synthetic query generation could be

improved since the real queries achieved a better out-of-domain effectiveness compared to

the model trained solely on synthetic ones.

Our study reveals that, through this knowledge distillation process, smaller mod-

els can achieve results comparable to the teacher (monoT5-3B) or larger models such as

monoT5-large, despite being an order of magnitude smaller. In terms of latency, moving

from a model with 3B parameters to a 220M model (InRanker-base) can reduce latency

by up to 10 times. Furthermore, the approach can be applied in the context of multi-

lingual transfer knowledge, where an English teacher was used to generate soft labels to

train a Portuguese fine-tuned T5 (PTT5). With this, we were able to surpass the zero-

shot effectiveness of a multilingual version of monoT5-3B (mT5-3b) that was tuned to

English and Portuguese with a model 5x smaller (PTT5v2-large). Therefore, the method

is particularly significant for applications where computational resources are limited, in

production environments, or for languages with a lack of available models that can serve

as a teacher.

5.1 Limitations

In this master’s thesis, the proposed methodology was applied to rerankers to improve

their effectiveness in out-of-domain scenarios. However, due to the nature of the loss

function, it is challenging to train a dense retriever using the same technique, as it typically

relies on contrastive loss. Since dense retrievers process the query and passage at different

stages, they are usually trained with a significantly larger batch size, which is increased

through in-batch negative samples. Another limitation of this work is related to the

evaluation datasets. Although we separated 8 datasets for fine-tuning with synthetic

queries, we cannot guarantee that the remaining 8 datasets of each set, which simulate

out-of-domain scenarios, do not have a similar composition.
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