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Resumo
Neste trabalho, os principais objetos de estudos são curvas algébrica com muitos pontos
Fq-racionais. Estamos interessados nas curvas que atingem o limite superior de Sziklai.
Nosso resultado principal completa a classificação das curvas extremais em relação ao limite
superior de Sziklai; mais precisamente, provamos que se uma curva plana não-singular
X de grau q ´ 1 definida sobre Fq (q ě 5) sem componentes Fq-lineares atinge o limite
superior de Sziklai pd´ 1qq ` 1 “ pq ´ 1q

2 para o número de pontos Fq-racionais, então X
é projetivamente equivalente sobre Fq à curva Xpα,β,γq : αXq´1

` βY q´1
` γZq´1

“ 0 para
alguns α, β, γ P F˚

q tais que α ` β ` γ “ 0. Além disso, como o limite de Sziklai é igual ao
limite de Stöhr-Voloch para curvas planas de grau q ´ 1, este resultado classifica as curvas
planas Fq-Frobenius clássicas não-singulares extremais de grau q ´ 1.

Palavras-chave: Curvas Algébricas. Pontos Fq-racionais. Limite superior de Sziklai.
Curvas Extremais.



Abstract
In this work, the main objects to study are algebraic curves with many Fq-rational points.
We are interested in curves attaining the Sziklai upper bound. Our main result completes
the classification of curves that are extremal with respect to the Sziklai bound; more
precisely, we prove that if a plane curve X of degree q ´ 1 defined over Fq pq ě 5q without
Fq-linear components attains the Sziklai upper bound pd ´ 1qq ` 1 “ pq ´ 1q

2 for the
number of its Fq-rational points, then X is projectively equivalent over Fq to the curve
Xpα,β,γq : αXq´1

` βY q´1
` γZq´1

“ 0 for some α, β, γ P F˚
q such that α` β ` γ “ 0. Also,

since the Sziklai bound is equal to the Stöhr-Voloch bound for plane curves of degree q´ 1,
this result classifies the Fq-Frobenius extremal classical nonsingular plane curves of degree
q ´ 1.

Keywords: Algebraic curves. Fq-Rational points. Sziklai upper bound. Optimal curves.



List of symbols

Fq the finite field with q elements;

F˚
q the nonzero elements of Fq;

K :“ Fq the algebraic closure of Fq;

X pFqq the set of Fq-rational points of X ;

IpP,F X Gq the intersection number of curves F and G at a point P ;

NqpX q the number of rational points on the nonsingular model of X ;

GLp3, Kq the general linear group of degree three over K;

GLp3, qq :“ GL3pFqq the general linear group of degree three over Fq;

PGLp3, Kq the projective general linear group of degree three over K;

PGLp3, qq :“ PGLp3,Fqq the projective general linear group over Fq;

Ψq : P2
Ñ P2 the Fq-Frobenius map with Ψqpx : y : zq :“ pxq : yq : zq

q;

KpX q the function field of X over K;

P̌2 :“ P̌2
pKq the dual projective space over K;

P̌2
pFqq the dual projective space over Fq;

P̌ pFqq the set of lines l P P̌2
pFqq such that P P l.

DivpX q the divisor group of X ;

ZX ptq the Zeta function of X ;

LX ptq the L-polynomial of X ;

K a pk, nq-arc in P2
pFqq;

AipKq the set of lines l P P̌2
pFqq such that #pl X Kq “ i;

aipKq the cardinality of AipKq;

CdpFqq the set of plane curves of degree d ě 2 defined over Fq without
Fq-linear components;

ψi : P2
pFqq Ñ t0, 1, ..., q ` 1u defined by ψipP q :“ #pP̌ pFqq X AipX qq;

ZpX q :“ P2
pFqqzX pFqq;
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Introduction

Algebraic curves defined over a finite field have been much studied in recent
years for their applications in finite geometry, number theory, error-correcting codes, and
cryptology. Let X be a projective, geometrically irreducible, algebraic curve defined over
a finite field Fq where q is a power of a prime number p. We denote by X pFqq its set of
Fq-rational points. It is a classical problem to count the number NqpX q :“ #pX pFqqq of
Fq-rational points of X . However, since this problem is rather hard to solve, it is often
desirable to find good upper bounds for NqpX q depending on some invariants of the curve
X . For instance, the famous Hasse-Weil upper bound states that

NqpX q ď q ` 1 ` 2 ¨ gpX q ¨ q
1
2 ( The Hasse-Weil Theorem )

where g “ gpX q is the genus of X . Note that the same bound holds for any curve defined
over Fq and genus g. Once we have a bound, it is a natural question to see whether such a
bound is sharp or not, and then, it is also natural to try to classify the optimal curves,
that is, the curves attaining said bound. In the context of the Hasse-Weil upper bound,
such optimal curves do exist and are called Fq-maximal curves. Maximal curves may
exist when q “ n2 is a square, and it is known that the genus of an Fq-maximal curve is
upper bounded by npn´ 1q{2 (Ihara’s Theorem). Also, Ihara’s Theorem for the genus of a
Fq-maximal curves cannot be improved in general. Up to birational equivalence, there is
exactly one Fq-maximal curve of genus npn ´ 1q{2: the Hermitian curve Hn given by the
homogeneous equation

Hn : Y nZ ` Y Zn
“ Xn`1

has genus gpHnq “ npn´1q{2. It is a classical and yet unsolved problem to find the spectrum
of the genera of Fq-maximal curves; see (ARAKELIAN; TAFAZOLIAN; TORRES, 2016).
When q is not a square, Serre refines Hasse-Wiel upper bound:

NqpX q ď q ` 1 ` gpX q ¨ m ( The Serre Theorem )

with m “ r2q 1
2 s, where rxs denotes the largest integer ď x. Note that, if q is a square, this

“refined Hasse-Weil upper bound” coincides with Hasse-Weil upper bound.

In this work, we are interested in plane curves with many Fq-rational points.
Let X be a plane curve of degree d ě 2 without Fq-linear components. In (SZIKLAI, 2008),
Sziklai conjectured the following result:

NqpX q ď pd ´ 1qq ` 1 ( The Sziklai Conjecture ).

In (HOMMA; KIM, 2009, section 3), Homma and Kim proved that the Sziklai Conjecture
fails for curves of degree 4 over F4, as the plane curve with equation

X4
` Y 4

` Z4
` X2Y 2

` Y 2Z2
` Z2X2

` X2Y Z ` XY 2Z ` XY Z2
“ 0 (1)
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has 14 points over F4 while Sziklai’s bound is equal to 13. Also, they proved that the curve
defined by (1) over F4 is a unique curve up to projective equivalence with degree 4 and
14 F4-rational points. So, Homma and Kim modify The Sziklai Conjecture: unless X is a
curve defined over F4 which is projectively equivalent to the curve defined by (1) over F4,
we might have NqpX q ď pd ´ 1qq ` 1. Later on, in a sequence of three papers (HOMMA;
KIM, 2009; HOMMA; KIM, 2010b; HOMMA; KIM, 2010a), Homma and Kim proved The
Modified Sziklai Conjecture 1.

We are interested in curves attaining the Sziklai bound. Let X be a nonsingular
plane curve of degree d that is optimal with respect to the Sziklai upper bound, that is,
NqpX q “ pd ´ 1qq ` 1, then, by (HOMMA; KIM, 2010b, Section 5), its degree d must
belong to the set

t2,?q ` 1, q ´ 1, q, q ` 1, q ` 2u.

This means that the spectrum of the degrees of optimal Sziklai curves is pretty small,
hence, it seems feasible to classify, up to projective equivalence, the nonsingular plane
curves of degree d attaining the Sziklai bound. Previously, it was only known in cases

d “ 2,?q ` 1, q, q ` 1 or q ` 2 (see, Theorem 2.3.1).

For the case d “ q ´ 1, a family of optimal curves is given by the homogeneous
equation

Xpα,β,γq : αXq´1
` βY q´1

` γZq´1
“ 0

with α, β, γ P F˚
q and α ` β ` γ “ 0. This curve Xpα,β,γq is nonsingular and the set of its

Fq-rational points is

Xpα,β,γqpFqq “ P2
pFqqzpvpXq Y vpY q Y vpZqq.

In (HOMMA, 2024), Homma has stated the following question:

Question 1. Are there curves of degree q´ 1 that attain the Sziklai upper bound such that
they are not projectively equivalent over Fq to a curve of type Xpα,β,γq?

In the same preprint, he gives a positive solution to this problem for q “ 4,
since in this case, the Hermitian cubic

H3 : X3
` Y 3

` Z3
“ 0

attains Sziklai’s bound but is not projectively equivalent to any Xpα,β,γq.

In this work, we give a negative answer to Question 1 for q ě 5 (see, Theorem
3.2.4), thus completing the classification of optimal Sziklai curves. This work is organized
as follows:
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In Chapter 1, we give basic facts about plane curves defined over a finite field;
also, we give the necessary background on a particular case of the Stöhr-Voloch theorem
for plane curves.

In Chapter 2, we briefly survey the existing literature on the Sziklai bound and
related topics.

In Chapter 3, first, we will give several technical results that are necessary
to prove our classification of curves of degree q ´ 1 that are optimal with respect to the
Sziklai bound. Later, is devoted to the proof of Theorem 3.2.4, which is the main result of
our work. Here, we remark that while our technique applies to all q ě 8, the cases q “ 5, 7
need to be dealt with by using two different approaches, which are of independent interest.
The former needs the knowledge of L-polynomial of curves of genus 3 with small defect
(LAUTER; SERRE, 2002), the latter is based on the classification on p36, 6q-arcs in P2

pF7q

(BOUYUKLIEV et al., 2020).

Finally, in Chapter 5, we give a brief discussion regarding topics that are
directly linked to or possible applications of our results. More in detail, we show as our
main result is related to the Fq-Frobenius classical plane curves of degree q ´ 1 attaining
the Stöhr-Voloch upper bound. Further, curves attaining the Sziklai upper bound are
related to nonsingular hypersurfaces with many Fq-rational points in even-dimensional
projective spaces; see (DATTA, 2019; TIRONI, 2022).
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1 Preliminaries and Notations

In this chapter, basic facts about plane curves defined over a finite field are
presented. Also, we introduce the notations that will be used throughout the thesis and
present some general results.

1.1 Algebraic Plane Curves over a Finite Field
Algebraic curves defined over a finite field have been much studied in recent

years. In this section, we provide a concise overview of the theory of plane curves over
finite fields, based on (HIRSCHFELD; KORCHMÁROS; TORRES, 2008) and (FULTON,
2008), to which we refer the reader to for further details.

Let Fq be a finite field with q “ ph elements and K :“ Fq be the algebraic
closure of Fq, where p is a prime number. A (projective) plane curve X in the projective
plane P2 :“ P2

K of homogeneous equation F pX, Y, Zq “ 0, where F P KrX, Y, Zs is a
homogeneous polynomial, is denoted by X “ vpF q and consists of all points px : y : zq P P2

such that F px, y, zq “ 0; namely,

X “ vpF q :“ tpx : y : zq P P2
| F px, y, zq “ 0u.

Also, the degree of X , denoted by degpX q, is degpF q. A curve of degree one is called a line.

Definition 1.1.1. A plane curve X “ vpF q is said to be defined over Fq if there is a
non-zero constant λ P K such that λ ¨ F pX, Y, Zq P FqrX, Y, Zs. Also, the points px : y :
zq P P2

pFqq such that F px, y, zq “ 0 are called Fq-rational points (or simply, rational
points) of X and X pFqq denotes the set of all Fq-rational points of X .

A component of X “ vpF q is a plane curve vpGq such that G divides F . If vpGq

is defined over Fq, then we say that vpGq is an Fq-component of X . Also, if degpvpGqq “ 1,
we say that vpGq is an Fq-linear component of X . The plane curve vpF q defined over Fq is
irreducible if F is irreducible over Fq and absolutely irreducible if F is irreducible over K.

A projective transformation φA : P2
Ñ P2 is defined as follows:

φApx : y : zq “ u with ut
“ A ¨ px : y : zq

t,

where A P GLp3, Kq. It is also called a projectivity. The projectivities of P2 constitute its
projective general linear group PGLp3, Kq. Also, the projectivities of P2 with A P GLp3,Fqq

is denoted by PGLp3, qq :“ PGLp3,Fqq ă PGLp3, Kq. Another interesting map in P2 is
the Fq-Frobenius map Ψq : P2

Ñ P2 with Ψqpx : y : zq :“ pxq : yq : zq
q.
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Definition 1.1.2. Let F and G plane curves. We say that F and G are projectively
equivalent over Fq, denoted by F »proj G, if there is a projectivity φA with A P GLp3,Fqq

such that
φApFq “ G.

The dual projective space P̌2 :“ P̌2
K is the space of all lines in P2 and by P̌2

pFqq

we mean the set of lines defined over Fq of P̌2. For a point P P P2
pFqq, we define

P̌ pFqq :“ tl P P̌2
pFqq | P P lu.

Remark 1.1.3. It is a basic fact that every line in P2 can be expressed as

lpa0, a1, a2q :“ tpx0 : x1 : x2q P P2; a0x0 ` a1x1 ` a2x2 “ 0u

for some p0, 0, 0q ‰ pa0, a1, a2q P K3, where

lpa0, a1, a2q “ lpb0, b1, b2q ô pa0 : a1 : a2q “ pb0 : b1 : b2q P P2.

Thus the map lpa0, a1, a2q Ñ ra0 : a1 : a2s allows us to identify P2 with P̌2. As PGLp3, Kq

acts transitively on the set of all triple of non-collinear points of P2, then PGLp3, Kq acts
transitively on the set of all triple of non-concurrent lines of P2.

For a definition the intersection number of two plane curves at a point, which
can be somewhat unintuitive, for simplicity, consider a curve in the affine plane

A2
K :“ K ˆ K “ tpx, yq | x, y P Ku

as simply an equivalence class of polynomials in KrX, Y s under multiplication by a non-
zero scalar. So, given two curves F and G in A2

K , the intersection number IpP, F X Gq of
F and G at the point P “ px, yq P A2

K is defined by the seven properties we want this
intersection number to have:

(I1) IpP, F X Gq P N when F and G have no common component through P ;

(I2) IpP, F X Gq “ 8 if F and G have a common component through P ;

(I3) IpP, F X Gq “ 0 if and only if P R F X G;

(I4) IpP, F X Gq “ 1 if F and G are two distinct lines through P ;

(I5) IpP, F X Gq “ IpP,G X F q;

(I6) IpP, F X pG ` AF qq “ IpP, F X Gq for any A P KrX, Y s;

(I7) IpP, F X GHq “ IpP, F X Gq ` IpP, F X Hq for any H P KrX, Y s.
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For the existence and uniqueness of the function IpP, FXGq, see (HIRSCHFELD;
KORCHMÁROS; TORRES, 2008, Theorem 3.8 and 3.9) or (FULTON, 2008, Section 3.3:
Theorem 3). For the projective curves F “ vpF q, G “ vpGq, and the point O “ p0 : 0 : 1q,
the intersection number is

IpO,F X Gq :“ Ipp0, 0q, F˚ X G˚q

where F˚pX, Y q :“ F pX, Y, 1q and G˚pX, Y q :“ GpX, Y, 1q. Intersection numbers of F and
G at another point P are calculated by using covariant properties; that is, a projectivity is
applied to change P to p0 : 0 : 1q.

Theorem 1.1.4. (HIRSCHFELD; KORCHMÁROS; TORRES, 2008, Theorem 3.14:
Bézout’s Theorem) If the projective plane curves F and G have degrees m and n, and no
common component, then

ÿ

IpP,F X Gq “ mn.

The next result provides a method to find all plane curves passing through a
given set of points of P2

pFqq:

Theorem 1.1.5. (FULTON, 2008, Section 5.5: Noether’s “AF + BG” Theorem) Let
F “ vpF q and G “ vpGq be two plane curves defined over Fq with no common components.
Suppose that

F X G “ tP1, ..., Psu and IpPi,F X Gq “ 1

for i “ 1, ..., s. Then for all plane curve X “ vpHq defined over Fq with F X G Ď X there
are A,B P FqrX, Y, Zs such that H “ AF ` BG.

Definition 1.1.6. A point P “ px : y : zq of X is singular if

BF

BX
px, y, zq “

BF

BY
px, y, zq “

BF

BZ
px, y, zq “ 0.

Otherwise, P is nonsingular (or smooth) and the tangent line at P is

TP pX q :“ v
ˆ

BF

BX
px, y, zq ¨ X `

BF

BY
px, y, zq ¨ Y `

BF

BZ
px, y, zq ¨ Z

˙

.

Also, a nonsingular point P of X is a point of inflexion of X if

IpP,TP pX q X X q ě 3.

Here, P is also called an inflexion.

We conclude this section with a brief discussion of algebraic curves in higher-
dimensional spaces. A subset V Ď Pn :“ Pn

K is a projective algebraic set if there exists a
set of homogeneous polynomials M Ď KrX0, X1, ..., Xns such that

V “ tpx0 : x1 : ¨ ¨ ¨ : xnq P Pn
| F px0, x1, ..., xnq “ 0 for all F P Mu.
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The ideal IpVq Ď KrX0, X1, ..., Xns which is generated by all homogeneous polynomials
F with F px0, x1, ..., xnq “ 0 for all px0 : x1 : ¨ ¨ ¨ : xnq P V, is called the ideal of V. It
is a homogeneous ideal. An algebraic set V Ď Pn is irreducible if it is not the union of
two smaller algebraic sets. We have that V Ď Pn is irreducible if, and only if, IpVq is
a homogeneous prime ideal in KrX0, X1, ..., Xns. A projective variety is an irreducible
projective algebraic set.

Given a non-empty variety V Ď Pn, we define its homogeneous coordinate ring
by

ΓhpVq :“ KrX0, X1, ..., Xns

IpVq
;

this is an integral domain containing K. The function field of V is defined by

KpVq :“
"

f

g
| f, g P ΓhpV q are forms of the same degree and g ‰ 0

*

which is a subfield of the quotient field of ΓhpVq. The dimension of V is the transcendence
degree of KpVq over K.

Definition 1.1.7. A projective algebraic curve X Ď Pn
pn ě 3q is a projective variety of

dimension one. A point P “ px0 : x1 : ¨ ¨ ¨ : xnq P X is nonsingular if the local ring

OP pX q :“
"

f

g
P KpX q | gpx0, x1, ..., xnq ‰ 0

*

Ď KpX q

is a discrete valuation ring. The curve X is called nonsingular if all points P P X are
nonsingular.

Remark 1.1.8. An irreducible plane curve can be defined as above.

Let V Ď Pm and W Ď Pn be projective varieties. A rational map ϕ : V Ñ W
is defined by ϕ “ pF0 : ¨ ¨ ¨ : Fnq where F0, ..., Fn P KrX0, ..., Xms are homogeneous
polynomials with the following properties:

(a) F0, ..., Fn have the same degree;

(b) not all Fi are in IpVq;

(c) for all H P IpWq holds HpF0, ..., Fnq P IpVq.

Two curves X1, X2 are birationally equivalent if there are rational maps ϕ1 :
X1 Ñ X2 and ϕ2 : X2 Ñ X1 such that ϕ1 ˝ ϕ2 and ϕ2 ˝ ϕ1 are the identity maps on X2 and
X1, respectively. We have that X1 and X2 are birationally equivalent if and only if their
function fields KpX1q and KpX2q are K-isomorphic.
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Theorem 1.1.9. (FULTON, 2008, Section 7.5: Theorem 3) Every irreducible plane curve
X is birationally equivalent to a nonsingular curve (not necessarily a plane curve), called
a nonsingular model of X .

Remark 1.1.10. In this thesis work, we are interested in the rational points of an algebraic
plane curve X , that is, X X P2

pFqq. In general, there is no bijection between X X P2
pFqq

and the rational points of its nonsingular model. Therefore, from this point onward, NqpX q

will represent the number of rational points on the nonsingular model of X . Note that, if
X is nonsingular, then NqpX q “ |X pFqq|.

1.1.1 Genus and Zeta Function

An algebraic function field F {K of one variable over K is an extension field
F Ą K such that F is a finite algebraic extension of Kpxq for some element x P F which is
transcendental over K. For instance, the function field KpX q of a curve X is an algebraic
function field of one variable over K.

Proposition 1.1.11. (FULTON, 2008, Section 7.5: Corollary of Theorem 3) There is a
natural one-to-one correspondence between nonsingular projective curves X and algebraic
function fields in one variable over K.

This correspondence makes it possible to translate definitions and results from
algebraic function fields to algebraic curves (and vice versa). For the basic definitions and
results of the theory of algebraic function fields, see (STICHTENOTH, 2009, Chapter 1).

Throughout this chapter, X Ď Pn denotes a nonsingular model of an irreducible
projective curve. For each P “ px0 : x1 : ¨ ¨ ¨ : xnq P X , we know that OP pX q is a discrete
valuation ring with maximal ideal

MP pX q :“
"

f

g
P OP pX q | fpx0, x1, ..., xnq “ 0

*

.

In this case, MP pX q “ t ¨ OP pX q is a principal ideal and each 0 ‰ z P KpX q has a unique
representation of the form z “ tn ¨ u for some n P Z and u P Oˆ

P pX q. Define

ordP pzq :“ n and ordP p0q :“ 8.

The divisor group of X is defined as the (additively written) free abelian group
which is generated by the points of X ; it is denoted by DivpX q. The elements of DivpX q

are called divisors of X . In other words, a divisor is a formal sum

D “
ÿ

P PX
nP ¨ P with nP P Z, almost all nP “ 0.
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Two divisors D “
ÿ

nPP and D1
“

ÿ

mPP are added coefficientwise

D ` D1 :“
ÿ

P PPF

pnP ` mP qP.

For Q P X and D “
ÿ

nPP , we define νQpDq :“ nQ. A partial ordering on DivpFq is
defined by

D1 ď D2 ô νP pD1q ď νP pD2q for all P P X .

A divisor D ě 0 is called an effective (or positive) divisor. The degree of a divisor is defined
as

degpDq :“
ÿ

P PPF

νP pDq ¨ degpP q where degpP q :“ rOP pX q{MP pX q : Ks.

Remark 1.1.12. The rational points P of X are the points P P X such that degpP q “ 1.

A nonzero element z P KpX q has only finitely many points P P X such that
ordP pzq ‰ 0; so we can define

divpzq :“
ÿ

P PX
ordP pzq ¨ P,

called the principal divisor of z. For a divisor D P DivpX q, we define the Riemann-Roch
space associated to D (which is a vector space over K) by

L pDq :“ tz P KpX q | divpzq ` D ě 0u Y t0u

and lpDq :“ dimKpL pDqq ă 8.

Proposition 1.1.13. (STICHTENOTH, 2009, Proposition 1.4.14) There is a constant
γ P Z such that for all divisors D P DivpX q the following holds: degpDq ´ lpDq ď γ.

The emphasis here lies on the fact that γ is independent of the divisor D; it
depends only on the function field KpX q. The genus g of KpX q{K is defined by

g :“ maxt degpDq ´ lpDq ` 1 | D P DivpX q u.

Note that this definition makes sense by Proposition 1.1.13.

Definition 1.1.14. The genus g “ gpX q of an irreducible algebraic curve X is the genus
of its function field KpX q{K.

Theorem 1.1.15. (HIRSCHFELD; KORCHMÁROS; TORRES, 2008, Theorem 5.57)
Let X an irreducible plane curve of degree d. If X is nonsingular, then

gpX q “
1
2 ¨ pd ´ 1qpd ´ 2q.
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For every n ě 0 there exist only finitely many positive divisors of degree n; see
(STICHTENOTH, 2009, Lemma 5.1.1). So, we can define the power series

ZX ptq :“
8
ÿ

n“0
Ant

n
P Crrtss,

where
An :“ #tD P DivpX q | D ě 0 and degpDq “ nu,

called the Zeta function of X . By (STICHTENOTH, 2009, Corollary 5.1.12), the power
series ZX ptq is convergent when q|t| ă 1; also, converges to a rational function of the form

ZX ptq “
pptq

p1 ´ tqp1 ´ qtq

where pptq P Crts.

Definition 1.1.16. The polynomial

LX ptq :“ p1 ´ tqp1 ´ qtqZX ptq

is called the L-polynomial of X .

Theorem 1.1.17. (STICHTENOTH, 2009, Theorem 5.1.15) The L-polynomial LX ptq of
X factors in Crts in the form

LX ptq “

2g
ź

i“1
p1 ´ αitq (1.1)

The complex numbers α1, ..., α2g are algebraic integers, and they can be arranged in such a
way that αiαg`i “ q holds for i “ 1, ..., g “ gpX q. (We note that a complex number α is
called an algebraic integer if it satisfies an equation αm

` cm´1α
m´1

` ¨ ¨ ¨ ` c1α ` c0 “ 0
with coefficients ci P Z).

Corollary 1.1.18. (STICHTENOTH, 2009, Corollary 5.1.16) For all r ě 1,

|X pFqr q| “ qr
` 1 ´

2g
ÿ

i“1
αr

i

where α1, ..., α2g P C are the reciprocals of the roots of LX ptq. In particular, we have

|X pFqq| “ q ` 1 ´

2g
ÿ

i“1
αi.

Theorem 1.1.19. (STICHTENOTH, 2009, Theorem 5.2.1 (Hasse-Weil)) The reciprocals
of the roots of LX ptq satisfy

|αi| “ q1{2 for i “ 1, ..., 2g.
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1.2 The Theory of Stöhr-Voloch for a Plane Curve
In (STÖHR; VOLOCH, 1986), Stöhr and Voloch gave a geometric method

to obtain upper bounds for the number of Fq-rational points of a curve of Pn
K . Here, we

give the necessary background on a particular case of the Stöhr-Voloch theorem for plane
curves.

Let X an irreducible plane curve defined over Fq in P2. The order-sequence at
a point P P X , denoted by j0pP q ă j1pP q ă j2pP q, is defined to be the set of intersection
multiplicities at P of X with the lines of P2. If P is nonsingular, then the order-sequence
of P is

j0pP q “ 0, j1pP q “ 1 and j2pP q “ IpP,TP pX q X X q.

Almost all point of X have the same order-sequence which is called the order-sequence of
X and is denoted by ϵ0 ă ϵ1 ă ϵ2. Now, since X is defined over Fq, there exists a smallest
integer ν P t1, ϵ2u such that

W ν
ζ px0, x1, x2q :“ det

¨

˚

˝

xq
0 xq

1 xq
2

x0 x1 x2

D
pνq

ζ x0 D
pνq

ζ x1 D
pνq

ζ x2

˛

‹

‚

ı 0

where Dpkq

ζ is the k-th Hasse derivative with respect to a separating variable ζ of KpX q{K,
and x0, x1, x2 are the coordinate functions on X Ď P2.

Definition 1.2.1. The number ν is called the Fq-Frobenius order of X , and such a curve
is called Fq-Frobenius classical if ν “ 1. Otherwise, X is called Fq-Frobenius nonclassical.

Theorem 1.2.2. Let X be an irreducible plane curve of degree d and genus g defined over
Fq. If ν denotes the Fq-Frobenius order of X , then

NqpX q ď
νp2g ´ 2q ` pq ` 2qd

2 .

In particular, if X is Fq-Frobenius classical, then

NqpX q ď
1
2dpd ` q ´ 1q.

Theorem 1.2.3. (HEFEZ; VOLOCH, 1990, Theorem 1) Let X be an irreducible plane
curve of degree d and genus g defined over Fq. If X is nonsingular and such that ν ą 1,
then

NqpX q “ dpq ´ 1q ´ p2g ´ 2q.

A refined version of theorem 1.2.2 can be obtained if one can gather sufficient
information on the number and the weight of the Fq-rational inflection points. Indeed,
consider the Frobenius divisor SX of X , then degpSX q “ νp2g ´ 2q ` pq ` 2qd and
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P P SupppSX q for all P P X pFqq. Also, by (STÖHR; VOLOCH, 1986, Theorem 2.4(a)),
for P P X pFqq we must have

νP pSX q ě 1 ` j2pP q ´ ν.

This implies that νP pSX q ´ j2pP q ` ν ´ 1 ě 0 ñ νP pSX q ´ j2pP q ` ν ` 1 ě 2. Hence, we
get the following result

Theorem 1.2.4. Let X Ď P2 be an irreducible nonsingular algebraic curve of genus g and
degree d defined over Fq. If ν is the Fq-Frobenius order of X , then

NqpX q ď
1
2

˜

νp2g ´ 2q ` pq ` 2qd ´
ÿ

P PX
ApP q

¸

where ApP q “ j2pP q ´ ν ´ 1 if P P X pFqq and ApP q “ 0 otherwise.

1.3 Arcs and Codes
The following brief account of the theory of plane arcs and their relationship

to linear codes is based on (BIERBRAUER, 2016, Chapter 10 and 17), to which we refer
the reader to for further details.

Definition 1.3.1. A pk, nq-arc K in P2
pFqq is a set of k points such that each line contains

at most n point of K and there is a line that contains exactly n points of K. A pk, 2q-arc
is simply called an arc.

If K Ď P2
pFqq be a pk, nq-arc, then for 0 ď i ď q ` 1, we define

AipKq :“ tl P P̌2
pFqq | #pl X Kq “ iu

aipKq :“ #AipKq and k0pKq :“ minti | aipKq ‰ 0u.

When there is no possibility of confusion we will denote them simply by Ai, ai and k0.

Definition 1.3.2. A linear subspace C of Fn
q of dimension k is called an rn, ksq-code. The

elements of a linear code C are called codewords.

The weight of a codeword x “ px1, ..., xnq P C Ď Fn
q is the number of nonzero

coordinates in x, denoted by wtpxq. The minimum distance of C is

mint wtpxq | x P C, x ‰ 0u.

If the minimum distance of C is d, then we write that C is an rn, k, dsq-code. A generator
matrix G of an rn, k, dsq-code C is a matrix with k rows and n columns whose rows form a
basis of C. The code C is recovered from G by taking all linear combinations of the rows
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of G. If C contains ci codewords of weight i, for i “ 1, ..., n, then the weight enumerator is
defined by

WCpzq :“ c0 ` c1z ` c2z
2

` ¨ ¨ ¨ ` cnz
n

P Zrzs.

Now, let C be a linear rn, 3, dsq-code described by a generator matrix G. We
assume that there is no 0 column in G. We can then consider the columns of G as generators
of points in P2

pFqq. A linear rn, 3, dsq-code C is called projective if there is a generator
matrix whose columns generate different points in P2

pFqq. For a projective rn, 3, dsq-code C
with a generator matrix G, the n points in P2

pFqq corresponding to columns of G form an
pn, n ´ dq-arc in P2

pFqq. For each i in 0, . . . , n ´ d, the number ai of lines in Ai is related
to the coefficients ci of the weight enumerator as follows:

pq ´ 1q ¨ pa0, ¨ ¨ ¨ , an´dq “ pcn, ¨ ¨ ¨ , cdq.
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2 The Sziklai Bound and Optimal Plane
Curves

Let X be a (projective, geometrically irreducible, algebraic) curve defined over
a finite field Fq. It is a classical problem to count the number NqpX q of Fq-rational points
of X . However, since this problem is rather hard to solve, it is often desirable to find good
upper bounds for NqpX q depending on some invariants of the curve X . Once we have a
bound, it is a natural question to see whether such a bound is sharp or not, and then, it
is also natural to try and classify the optimal curves, that is, the curves attaining said
bound. In this chapter, we will talk about the Sziklai upper bound and optimal curves.

2.1 Hasse-Weil Bound and Refinements
Before discussing the Sziklai bound, in this section, we will first explore some

known bounds. For instance, an important consequence from the Hasse-Weil Theorem
1.1.19 is the famous Hasse-Weil bound:

Theorem 2.1.1. (STICHTENOTH, 2009, Theorem 5.2.3: The Hasse-Weil Bound) Let
X be a curve of genus g “ gpX q ě 0 defined over Fq. If N “ NqpX q, then

|N ´ pq ` 1q| ď 2gq 1
2 .

The nonsingular plane curves X defined over Fq with NqpX q “ q ` 1 ` 2gq 1
2

are called Fq-maximal curves. Maximal curves may exist when q “ n2 is a square,
and it is known that the genus of a maximal curve is upper bounded by npn ´ 1q{2
(STICHTENOTH, 2009, Proposition 5.3.3 (Ihara)). It is a classical and yet unsolved
problem to find the spectrum of the genera of Fq-maximal curves; see (ARAKELIAN;
TAFAZOLIAN; TORRES, 2016). When q is not a square, Serre refines this bound:

Theorem 2.1.2. (SERRE et al., 2020, Theorem 2.1.1: The Serre Bound) Let X be a
curve of genus g ě 0 over a finite field Fq. If N “ NqpX q, then

|N ´ pq ` 1q| ď gm,

with m “ r2q 1
2 s, where rxs denotes the largest integer ď x.

Note that, if q is a square, this “refined Hasse-Weil bound” coincides with the
Hasse-Weil Bound (Theorem 2.1.1).
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Definition 2.1.3. Let α1, ..., α2g P C the reciprocals of the roots of the L-polynomial LX ptq

of X with αg`i “ αi for i “ 1, ..., g. If

xi :“ ´pαi ` αg`iq for i “ 1, ..., g

then we say that X has zeta function of type px1, ..., xgq. Also, a curve X has defect k if
NqpX q “ q ` 1 ` gm ´ k with m “ r2q 1

2 s.

Note that, by Corollary 1.1.18, we have NqpX q “ q` 1 ´

2g
ÿ

i“1
αi “ q` 1 `

g
ÿ

i“1
xi.

Theorem 2.1.4. (SERRE et al., 2020, Theorem 2.2.1)

(1) If x1 ` x2 ` ¨ ¨ ¨ ` xg “ gm (defect 0 case), then xi “ m for i “ 1, ...,m.

(2) If x1 `x2 `¨ ¨ ¨`xg “ gm´1 (defect 1 case), there are two possibilities for px1, ..., xgq,
namely:

pm,m, ...,m,m ´ 1q for gpX q ě 1

and
ˆ

m,m, ...,m `
´1 `

?
5

2 ,m `
´1 ´

?
5

2

˙

for gpX q ě 2.

(3) If x1 ` x2 ` ¨ ¨ ¨ ` xg “ gm ´ 2 (defect 2 case), then there are seven possibilities
px1, ..., xgq, namely:

pm,m, ...,m,m ´ 2q g ě 1,
pm,m, ...,m,m ´ 1,m ´ 1q g ě 2,
pm,m, ...,m,m `

?
2 ´ 1,m ´

?
2 ´ 1q g ě 2,

pm,m, ...,m,m `
?

3 ´ 1,m ´
?

3 ´ 1q g ě 2,
ˆ

m,m, ...,m,m ´ 1,m `
´1 `

?
5

2 ,m `
´1 ´

?
5

2

˙

g ě 3,
ˆ

m,m, ...,m,m `
´1 `

?
5

2 ,m `
´1 `

?
5

2 ,m `
´1 ´

?
5

2 ,m `
´1 ´

?
5

2

˙

g ě 4

pm,m, ...,m,m1,m2,m3q g ě 3

where mk “ m ` 1 ´ 4cos2
pkπ{7q for k “ 1, 2, 3.

Proposition 2.1.5. (SERRE et al., 2020, Corollary 2.5.2) Defect 1 is impossible for
gpX q ą 2.

Remark 2.1.6. (LAUTER; SERRE, 2002, Fact 3.3) By the Hasse-Weil Theorem 1.1.19,

|xi| “ |αi ` αg`i| ď |αi| ` |αg`i| “ 2q 1
2 “ m ` t2q 1

2 u

where txu denotes the fractional part of x. Any entry in the table not satifying this condition
for all i can be eliminated. So, if t2q 1

2 u ă
?

3 ´ 1, NqpX q “ q ` gm ´ 1 (defect 2) and
g ‰ 4, then px1, ..., xgq “ pm,m, ...,m,m ´ 2q. The proof of this follows from the fact that
the last cases in Theorem 2.1.4 are only possible when t2q1{2

u is large enough.
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2.2 The Sziklai Upper Bound
As we have already mentioned, maximal curves may exist only when q “ n2 is

a perfect square. When q is not a square, Theorem 2.1.4 item p1q also indicates that curves
achieving the Serre Bound (Theorem 2.1.2) are rare due to the constraints imposed in xi.
In this section, we will discuss the Sziklai Upper Bound, which provides an enhancement
over the Serre Bound in certain situations.

In this section, we denote by CdpFqq the set of plane curves of degree d ě 2
defined over Fq without Fq-linear components. For X P CdpFqq, in (SZIKLAI, 2008,
Conjecture 1), Sziklai conjectured the bound

NqpX q ď pd ´ 1qq ` 1 ( The Sziklai Conjecture ) (2.1)

and proof a weaker inequality

NqpX q ď pd ´ 1qq `

Z

d

2

^

(2.2)

where txu denotes the integer part of x. Actually, as noted by Homma and Kim in (HOMMA;
KIM, 2009, Section 1), the bound (2.2) had been already proved by Segre (SEGRE, 1959,
Theorem II on page 30).

In (HOMMA; KIM, 2009, section 3), they proved that the Sziklai Conjecture
(2.1) fails for curves of degree 4 over F4, as the plane curve with equation

X4
` Y 4

` Z4
` X2Y 2

` Y 2Z2
` Z2X2

` X2Y Z ` XY 2Z ` XY Z2
“ 0 (2.3)

has 14 points over F4 while Sziklai’s bound is equal to 13. Also, they proved that the curve
defined by (2.3) over F4 is a unique curve up to projective equivalence with degree 4 and
14 F4-rational points:

Theorem 2.2.1. (HOMMA; KIM, 2009, Theorem 3.3) Let X P C4pF4q. If N4pX q “ 14,
then X is projectively equivalent to the curve defined by (2.3) over F4.

So, Homma and Kim modify The Sziklai Conjecture (2.1):

Conjecture 1. (HOMMA; KIM, 2010b, Section 1: The Modified Sziklai Conjecture)
Unless X is a curve defined over F4 which is projectively equivalent to the curve defined by
(2.3) over F4, we might have

NqpX q ď pd ´ 1qq ` 1.

Later on, in a sequence of three papers (HOMMA; KIM, 2009; HOMMA; KIM,
2010b; HOMMA; KIM, 2010a), Homma and Kim proved The Modified Sziklai Conjecture
1. Since the proof of this conjecture is spread across three paper, we will provide a concise
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overview of the proof main idea, along with some essential results, in preparation for the
next chapter: First, note that The Modified Sziklai Conjecture 1 is true if d ě q ` 2; in
this case, we have pd ´ 1qq ` 1 ě pq ` 1qq ` 1. As an obvious bound to the cardinality of
the set of all Fq-rational points of X is NqpX q ď q2

` q ` 1 “ pq ` 1qq ` 1, which comes
from X pFqq Ď P2

pFqq, then

NqpX q ď q2
` q ` 1 ď pd ´ 1qq ` 1.

So they consider the conjecture for 2 ď d ď q` 1. In the first paper (HOMMA; KIM, 2009,
Corollary 2.2), they proved a new bound

NqpX q ď pd ´ 1qq ` pq ` 2 ´ dq (2.4)

The bound (2.4) implies that The Modified Sziklai Conjecture 1 is true for d “ q ` 1.

Now, for a nonsingular plane curve X P CdpFqq with 2 ď d ď q ´ 1, as noted
by Homma and Kim in (HOMMA; KIM, 2010b, Theorem 4.1), the Sziklai conjecture is
true by the theory of Stöhr-Voloch for a Plane Curve. In fact, note that

pd ´ 1qq ` 1 ´
1
2 ¨ dpd ` q ´ 1q “

1
2 ¨ pd ´ 2qpq ´ d ´ 1q ě 0;

so, if X is Fq-Frobenius classical, by Theorem 1.2.2, then NqpX q ď
1
2 ¨ dpd ` q ´ 1q ď

pd ´ 1qq ` 1. Also, we have that

pd ´ 1qq ` 1 ´ dpq ´ d ` 2q “ pd ´
?
q ´ 1qpd `

?
q ´ 1q.

So, if X is Fq-Frobenius nonclassical, by (HEFEZ; VOLOCH, 1990, Proposition 6), we
must have d ě

?
q ` 1 and, by Theorem 1.2.3,

NqpX q “ dpq ´ 1q ´ p2g ´ 2q “ dpq ´ d ` 2q ď pd ´ 1qq ` 1.

Also, as noted in (HOMMA; KIM, 2010b, Remark 4.2), Stöhr-Voloch bound 1.2.2 is
effective even if an irreducible Fq-Frobenius classical curve X has singularities.

To settle the Modified Sziklai’s Conjecture 1 affirmatively for other cases, the
following results prove that they can assume that the X curve is absolutely irreducible
without a singular Fq-rational point:

Proposition 2.2.2. (HOMMA; KIM, 2010b, Proposition 2.1) If X is reducible over Fq,
then NqpX q ă pd ´ 1qq.

Proposition 2.2.3. (HOMMA; KIM, 2010b, Proposition 2.2) If X has an irreducible
component which is not defined over Fq, then NqpX q ď pd ´ 1qq.

Proposition 2.2.4. (HOMMA; KIM, 2010b, Proposition 2.3) If X has a singular point
which is an Fq-rational point, then NqpX q ď pd ´ 1qq.
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For the case d “ q, the following results provide conditions for the lines defined
over Fq to intersect the curve at q rational points; In addition to being the main results
that help to prove the case d “ q, they help to characterize the curves of degree q with
NqpX q “ pq ´ 1qq ` 1 (see, (HOMMA; KIM, 2012)):

Proposition 2.2.5. (HOMMA; KIM, 2010b, Proposition 3.1) Let X P CqpFqq. Fix an
Fq-point P0 P X and an Fq-line l8 Ă P2 with P0 R l8. Suppose there are Fq-lines l1, ..., lt
with q ě t ě 3 passing thorugh P0 such that the q Fq-points of lizl8 are contained in X .
For an Fq-line l P P̌0 other than these t lines, if #pplzl8q X X pFqqq ě q ´ t ` 2, then all
the q Fq-points of lzl8 are contained in X .

Proposition 2.2.6. (HOMMA; KIM, 2010b, Proposition 3.2) Let X P CqpFqq. Fix an
Fq-point Q0 P P2

pFqqzX . Suppose there are Fq-lines l1, ..., lt with q ´ 1 ě t ě 2 passing
thorugh Q0 such that lipFqqztQ0u Ă X . For an Fq-line l P Q̌0 other than these t lines, if
#pl X X pFqqq ě q ´ t ` 2, then lpFqqztQ0u Ă X .

These two propositions establish the validity of the Modified Sziklai’s Conjecture
1 for d “ q ą 4 (see, (HOMMA; KIM, 2010b, Theorem 3.3 )). Also, as previously discussed,
these two results aid in characterizing curves X of degree q with NqpX q “ pq ´ 1qq ` 1. In
Chapter 3, we will prove a similar proposition for curves X of degree q´1 (Proposition 3.1.9)
in order to characterize curves of degree q ´ 1 with NqpX q “ ppq ´ 1q ´ 1qq ` 1 “ pq ´ 1q

2.

Therefore, to settle the conjecture, remains to be considered Fq-Frobenius
nonclassical plane curves of degree d with 2 ď d ď q ´ 1. In this case, Homma and Kimm
proved the following result:

Theorem 2.2.7. (HOMMA; KIM, 2010a, Theorem 2.3) Let q be a power of a prime
number p, and say q “ pe. Let X be an Fq-Frobenius nonclassical irreducible curve of
degree d over Fq, and pi the intersection multiplicity ipQ,X X TQpX qq for a general point
Q P X . If d ‰ pe´i

` 1, then NqpX q ď pd ´ 1qq.

Therefore, they established the following theorem:

Theorem 2.2.8 (Sziklai’s upper bound). If X P CdpFqq, then

NqpX q ď pd ´ 1qq ` 1, (2.5)

except for the curve over F4 which is projectively equivalent to the curve defined by (2.3).

Once we have a bound, it is natural to try and classify the optimal curves, that
is, the curves attaining said bound. Regarding the Sziklai upper bound (2.5), we make the
following observation:

Remark 2.2.9. (HOMMA; KIM, 2010b, section 2) If pd, qq ‰ p4, 4q and NqpX q “

pd ´ 1qq ` 1, then X is absolutely irreducible and any rational point of X is nonsingular.
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2.3 Optimal Plane Curves over Finite Fields
In (HOMMA; KIM, 2010b, Remark 5.1), Homma and Kim observe that the

possible degrees d of a nonsingular curve with pd´ 1qq ` 1 rational points are q ` 2, q ` 1,
q, q´ 1,?q` 1 and 2. Also, for each degree d in the list, there exists a nonsingular curve of
degree d that attains the bound. For d ‰ q ´ 1, the complete classification of such optimal
curves is known; we summarize these results in the following Theorem:

Theorem 2.3.1. Let X P CdpFqq a nonsingular curve with NqpX q “ pd ´ 1qq ` 1.

(i) (HIRSCHFELD, 1998, Section 5.1) If d “ 2, then X »proj vpX2
` Y Zq over Fq.

(ii) (HIRSCHFELD et al., 1991) If d “
?
q ` 1, then

X »proj vpX
?

q`1
` Y

?
q`1

` Z
?

q`1
q

over Fq when q ą 4 is a square.

(iii) (TALLINI, 1961; HOMMA; KIM, 2013) If d “ q`2, then X is projectively equivalent
over Fq to the curve of type

vpY pY qZ ´ Y Zq
q ` ZpZqX ´ ZXq

q ` paX ` bY ` cZqpXqY ´ XY q
qq

where t3 ´ pctq ` bt ` aq is irreducible over Fq.

(iv) (HOMMA; KIM, 2011, Theorem 1.3) If d “ q ` 1, then X is projectively equivalent
over Fq to the curve

Xq`1 :“ vpXq`1
´ X2Zq´1

` Y qZ ´ Y Zq
q

when q ě 5 or q “ 2. If q “ 4, then X is projectively equivalent over F4 to either X5

or the curve

vpµGpX, Y, Zq ` XY Zpµ2
pX2

` Y 2
` Z2

q ` XY ` Y Z ` ZXqq

where GpX, Y, Zq “ X4Y ` XY 4
` Y 4Z ` Y Z4

` Z4X ` ZX4 and µ2
` µ ` 1 “ 0.

Moreover, those two curves are not projectively equivalent to each other over F4. If
q “ 3, then X is projectively equivalent over F3 either to X4 or to the curve

vpX3Y ´ XY 3
` Y 3Z ´ Y Z3

` Z3X ´ ZX3
` XY ZpX ` Y ´ Zqq.

Moreover, those two curves are not projectively equivalent to each other over F3.

(v) (HOMMA; KIM, 2012, Main Theorem) If d “ q, then

X »proj vpXq
´ XZq´1

` Y q´1Z ´ Zq
q

over Fq.
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For d “ q ´ 1, as it was mentioned by Sziklai in (SZIKLAI, 2008), the curve

Xpα,β,γq :“ vpαXq´1
` βY q´1

` γZq´1
q

with α, β, γ P F˚
q and α` β ` γ “ 0 has pq ´ 1q

2 rational points. This curve is nonsingular
and the set of its Fq-rational points is

Xpα,β,γqpFqq “ P2
pFqqzpvpXq Y vpY q Y vpZqq.

In (HOMMA, 2024), Homma has studied the number of projective equivalence
classes over Fq in this family of curves. More precisely, he proves the following theorem.

Theorem 2.3.2. (HOMMA, 2024, Theorem 1.3) The number νq of projective equivalence
classes over Fq in the family of curves

tXpα,β,γq | α, β, γ P F˚
q , α ` β ` γ “ 0u

is as follows:

(i) Suppose that the characteristic of Fq is neither 2 nor 3.

(1) If q ” 2 mod 3, then νq “ pq ` 1q{6.

(2) If q ” 1 mod 3, then νq “ pq ` 5q{6.

(ii) Suppose that q is a power of 3. Then νq “ pq ` 3q{6.

(iii) Suppose that q is a power of 2:

(1) If q ” 2 mod 3, then νq “ pq ´ 2q{6.

(2) If q ” 1 mod 3, then νq “ pq ` 2q{6.

In the same paper, the curves of degree 3 with 9 F4-rational points are classified.

Theorem 2.3.3. (HOMMA, 2024, Theorem 3.1) Let X be a nonsingular plane curve of
degree 3 over F4 “ t0, 1, α, α2

u. If N4pX q “ 9, then X is either

(i) the Hermitian cubic H3 given by vpX3
` Y 3

` Z3
q or

(ii) projectively equivalent to the curve Xα given by vpX3
` αY 3

` α2Z3
q.

Remark 2.3.4. (HOMMA, 2024, Section 4) The Hermitian cubic H3 and the curve Xα

are birationally equivalent over F4. Also, they are projectively equivalent over F26.

In the same paper, Homma has stated the following Question 1: Are there
curves of degree q ´ 1 that attain the Sziklai’s upper bound such that they are not
projectively equivalent over Fq to a curve of type Xpα,β,γq?

In the next section, we give a negative answer to Question 1 for q ě 5.
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3 Optimal Plane Curves of Degree q ´ 1

Let q ě 5 be a prime power. In this chapter, we complete the classification of
curves that are extremal with respect to the Sziklai bound; more precisely, we prove that if
a plane curve X of degree q ´ 1 defined over Fq without Fq-linear components attains the
Sziklai upper bound pd ´ 1qq ` 1 “ pq ´ 1q

2 for the number of its Fq-rational points, then
X is projectively equivalent over Fq to the curve Xpα,β,γq : αXq´1

` βY q´1
` γZq´1

“ 0 for
some α, β, γ P F˚

q such that α ` β ` γ “ 0 (Theorem 3.2.4). Also, since the Sziklai bound
is equal to the Stöhr-Voloch bound for plane curves of degree q ´ 1, this result classifies
the Fq-Frobenius extremal classical nonsingular plane curves of degree q ´ 1.

3.1 Preliminary results
In this section, we give several technical results that are necessary to prove our

main result (Theorem 3.2.4).

The following result is of independent interest; however, it will effectively be
used only on the proof of Proposition 3.2.1, where the case q “ 5 is dealt with. Recall that,
by Theorem 2.3.3, this is the smallest case to be considered.

Theorem 3.1.1. Let X P Cq´1pFqq with NqpX q “ pq ´ 1q
2. Then, X is nonsingular.

Proof. Let F pX, Y, Zq P FqrX, Y, Zs be a homogeneous equation for X over Fq. By Remark
2.2.9, X is absolutely irreducible and any Fq-rational point of X is nonsingular. Also, by
Theorem 2.2.7, X is Fq-Frobenius classical. Let Y be the curve defined by the homogeneous
equation GpX, Y, Zq :“ Xq

¨ FX ` Y q
¨ FY ` Zq

¨ FZ P FqrX, Y, Zs. If px : y : zq P X pFqq,
by Euler’s formula, we have that

Gpx, y, zq “ xq
¨ FXpx, y, zq ` yq

¨ FY px, y, zq ` zq
¨ FZpx, y, zq

“ x ¨ FXpx, y, zq ` y ¨ FY px, y, zq ` z ¨ FZpx, y, zq

“ pq ´ 1q ¨ F px, y, zq “ 0.

Hence, X pFqq Ď Y . Let SingpX q be the set of all singularities of X . If px : y : zq P SingpX q,
then FXpx, y, zq “ FY px, y, zq “ FZpx, y, zq “ 0; hence, SingpX q Ď Y. Since NqpX q

attains also the Stöhr-Voloch bound 1.2.2, then IpP,X X Yq “ 2 for each P P X pFqq and
2NqpX q “ pq ´ 1q ¨ 2pq ´ 1q “ BpF q ¨ BpGq. Hence, by Bézout’s theorem 1.1.4,

X ¨ Y :“
ÿ

P

IpP,X X YqP “
ÿ

P PX pFqq

2P.
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Since SingpX q Ď Y, then any singular point of X must appear in the support of the
intersection divisor X ¨ Y . Therefore, X is nonsingular.

The next result is crucial to our strategy:

Proposition 3.1.2. (HOMMA, 2024, Proposition 2.1) Let X be a possibly reducible plane
curve over Fq of degree q ´ 1. Then

X P tXpα,β,γq | α, β, γ P F˚
q , α ` β ` γ “ 0u ô X pFqq “ P2

pFqqzpvpXq Y vpY q Y vpZqq.

Now, fix a curve X P Cq´1pFqq with NqpX q “ pq ´ 1q
2. Let

ZpX q :“ P2
pFqqzX pFqq.

Note that, by Proposition 3.1.2, if ZpX q “ pvpXq Y vpY q Y vpZqqpFqq, then X “ Xpα,β,γq

for some α, β, γ P F˚
q such that α ` β ` γ “ 0. By Remark 1.1.3, the general projective

linear group PGLp3, qq acts 3-transitively on the set of non concurrent lines of P2
pFqq. So,

as #ZpX q “ 3q, if there are three lines l1, l2, l3 P P̌2
pFqq such that ZpX q “ pl1 Y l2 Y l3qpFqq,

then l1, l2, l3 are not concurrent and we can choose coordinates X, Y, Z of P2 such that
l1 “ vpXq, l2 “ vpY q and l3 “ vpZq. This means that, in order to prove our main result
(Theorem 3.2.4), it is enough to show the existence of such three lines. To do this, we first
prove that X pFqq has a structure of pn, kq-arc in P2

pFqq:

Lemma 3.1.3. The set X pFqq Ď P2
pFqq is a ppq ´ 1q

2, q ´ 1q-arc.

Proof. Since degpX q “ q ´ 1, then #pl X X pFqqq ď q ´ 1 for every line l P P̌2
pFqq. Let

t :“ maxt#pl X X pFqqq | l P P̌2
pFqqu ď q ´ 1.

If P P X pFqq, then each line in P̌ pFqq contains at most t points of X pFqq. Since #P̌ pFqq “

q ` 1 then pq ´ 1q
2

“ NqpX q ď 1 ` pq ` 1qpt ´ 1q. Hence,

q ´ 1 ě t ě
qpq ´ 2q

q ` 1 ` 1 “ q ´ 2 `
3

q ` 1 ą q ´ 2.

This implies that t “ q ´ 1. Therefore, X pFqq is a ppq ´ 1q
2, q ´ 1q-arc in P2

pFqq.

For 0 ď i ď q ` 1, recall the definition of

Ai “ tl P P̌2
pFqq | #pl X X pFqqq “ iu and ai “ #Ai.

Since degpX q “ q ´ 1, then aq “ aq`1 “ 0. A line l P P̌2
pFqq is called an i-line if l P Ai. A

point P P PpFqq is said to be of type ir1
1 ...i

rt
t (i1 ą ¨ ¨ ¨ ą it and r1, ..., rt ě 0) if the number

of ij-lines through P is rj for j “ 1, ..., t. Also, as X pFqq is a ppq ´ 1q
2, q ´ 1q-arc, we may

use the following result:
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Lemma 3.1.4. (HIRSCHFELD, 1979, Lemma 12.1.1) With the same notation as above,
we have the following equalities.

(i)
q´1
ÿ

i“0
ai “ q2

` q ` 1.

(ii)
q´1
ÿ

i“1
iai “ pq ` 1qpq ´ 1q

2.

(iii)
q´1
ÿ

i“2
ipi ´ 1qai “ qpq ´ 2qpq ´ 1q

2.

Lemma 3.1.5. Let P P P2
pFqq be a point of type ir1

1 ...i
rt
t . Then r1 ` ¨ ¨ ¨ ` rt “ q ` 1.

Moreover,

(i) If P P X , then ij ě 1 for all j “ 1, ..., t and 1 `
ÿ

rjpij ´ 1q “ pq ´ 1q
2.

(ii) If P R X then
ÿ

rjij “ pq ´ 1q
2.

Proof. Since the Fq-lines through P cover the whole plane P2
pFqq and NqpX q “ pq ´ 1q

2,
the proof is straightforward.

Corollary 3.1.6. Let i and j be (not necessarily distinct) non-negative integers. Suppose
that there are different Fq-lines l1, l2 with l1 P Ai and l2 P Aj. If P “ l1 X l2 P X pFqq, then
i ` j ě q.

Proof. Suppose that P is of type ir1
1 ...i

rt
t . By Lemma 3.1.5 item (i), we have

pq ´ 1q
2

“ 1 `
ÿ

rjpij ´ 1q

ď 1 ` pi ´ 1q ` pj ´ 1q ` pq ´ 1qpq ´ 2q

“ i ` j ´ 1 ` q2
´ 3q ` 2

“ i ` j ´ q ` pq ´ 1q
2.

Therefore, i ` j ě q.

To simplify our notation, we give the following definition.

Definition 3.1.7. For i “ 0, . . . , q ´ 1 we define ψi : P2
pFqq Ñ t0, 1, ..., q ` 1u as

ψipP q :“ #pP̌ pFqq X Aiq.
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Lemma 3.1.8. If P P X pFqq, then ψq´1pP q ě 3. In particular, aq´1 ě 3pq ´ 1q. Also, if
ψq´1pP q “ 3, then P is of type pq ´ 1q

3
pq ´ 2q

q´2.

Proof. Let rP “ ψq´1pP q. By Lemma 3.1.5 (i), if P is of type ir1
1 ...i

rt
t then

pq ´ 1q
2

“ 1 `
ÿ

rjpij ´ 1q

ď 1 ` rP pq ´ 2q ` pq ` 1 ´ rP qpq ´ 3q

“ 1 ` qrP ´ 2rP ` q2
´ 3q ` q ´ 3 ´ qrP ` 3rP

“ rP ` pq ´ 1q
2

´ 3,

hence, rP ě 3. We get 3pq ´ 1q
2

“ 3 ¨ NqpX q lines in Aq´1. However, each line was counted
at most pq´ 1q times. This implies aq´1 ě 3pq´ 1q. If ψq´1pP q “ 3, let sP “ ψq´2pP q, then

pq ´ 1q
2

“ 1 `
ÿ

rjpij ´ 1q

ď 1 ` 3pq ´ 2q ` sP pq ´ 3q ` pq ´ 2 ´ sP qpq ´ 4q

“ 3q ´ 5 ` qsP ´ 3sP ` q2
´ 4q ´ 2q ` 8 ´ qsP ` 4sP

“ sP ` pq ´ 1q
2

` 2 ´ q,

hence, sP ě q ´ 2. This means that the other lines in P̌ pFqq are in Aq´2. Therefore, P is
of type pq ´ 1q

3
pq ´ 2q

q´2.

Roughly speaking, in order to prove our result, we need to prove the existence
of a point Q0 P ZpX q such that ψq´1pQ0q is big enough. In order to do so, we prove the
following proposition, which is inspired by Proposition 2.2.5 and 2.2.6:

Proposition 3.1.9. Fix a point Q0 P ZpX q and l8 P P̌2
pFqqzQ̌0pFqq. Suppose there are

lines l1, ..., lt P Q̌0pFqq p2 ď t ď q ´ 1q such that lipFqqzptQ0u Y l8q Ď X pFqq. For a line
l P Q̌0pFqq other than these t lines, if #pplzl8q X X pFqqq ě q ´ t, then

lpFqqzptQ0u Y l8pFqqq Ď X pFqq.

Proof. Choose coordinates X, Y, Z of P2 such that l1 “ vpXq, l2 “ vpY q and l8 “ vpZq,
whence Q0 “ p0 : 0 : 1q. Let

G0 :“ Zq´1
´ Xq´1

´ Y q´1, G1 :“ XY P FqrX, Y, Zs.

Note that vpG0q and vpG1q are plane curves with no common components. A direct
computation shows that #pvpG0q X vpG1qq “ 2pq ´ 1q “ BpG0q ¨ BpG1q; more precisely, we
have

vpG0q X vpG1q “ tp0 : 1 : αq, p1 : 0 : αq | α P F˚
q u “ pl1 Y l2qpFqqzptQ0u Y l8q.
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Hence, by Bézout’s Theorem 1.1.4, IpP,vpG0q X vpG1qq “ 1 for each P P vpG0q X vpG1q.
Also, since lipFqqzptQ0u Y l8q Ď X pFqq for i “ 1, 2, then vpG0q X vpG1q Ď X pFqq. Let F
be a homogeneous equation for X over Fq; by Noether’s “AF + BG” Theorem 1.1.5, we
can write

F pX, Y, Zq “ a00pZq´1
´ Xq´1

´ Y q´1
q ` XY pgq´3pX, Y q ` gq´4pX, Y qZ ` ¨ ¨ ¨ ` g0Z

q´3
q

where gν P FqrX, Y, Zs is homogeneous of degree ν and a00 P F˚
q . In general, any line

L P Q̌0pFqqztl1, l2u is defined by an equation of the form Y ´ µX “ 0 for some µ P F˚
q .

Hence
LpFqqzptQ0u Y l8pFqqq “ tp1 : µ : βq | β P F˚

q u.

Since a00pβq´1
´ 1 ´ µq´1

q “ ´a00 when β, µ P F˚
q , then

F p1, µ, βq “ pµpgq´3p1, µq ´ a00q ` µqq´4p1, µqβ ` ¨ ¨ ¨ ` µg0β
q´3. (3.1)

In particular, if l2`µ “ vpY ´ aµXq with µ “ 1, ..., t ´ 2, we must have aµ ‰ 0. Let

B “

¨

˚

˚

˝

...
1 β β2

¨ ¨ ¨ βq´3

...

˛

‹

‹

‚

βPF˚
q zt1u

.

Since l2`µpFqqzptQ0u Y l8q Ď X pFqq, by equation (3.1), then

B ¨

¨

˚

˚

˚

˚

˝

aµgq´3p1, aµq ´ a00

aµgq´4p1, aµq

...
aµg0

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

0
0
...
0

˛

‹

‹

‹

‹

‚

.

Since B is a Vandermonde matrix, we have detpBq ‰ 0. This implies that

gq´4p1, aµq “ ¨ ¨ ¨ “ g0p1, aµq “ 0.

If ν ă t ´ 2, since gνp1, yq has t ´ 2 roots ta1, ..., at´2u but its degree is less than t ´ 2,
then gνp1, yq ” 0 as a polynomial in y. Therefore,

F p1, y, zq “ a00pzq´1
´ yq´1

q ` pygq´3p1, yq ´ a00q ` yqq´4p1, yqz ` ¨ ¨ ¨ ` ygt´2p1, yqzq´t´1.

Let l “ vpY ´ µXq, where µ P F˚
q , and tp1, µ, βiq | 1 ď i ď q ´ tu is a set of chosen points

of plzl8qpFqq X X . Then µ ‰ 0 and βi ‰ 0 for i “ 1, ..., q ´ t. Hence,
¨

˚

˚

˝

...
1 βi β2

i ¨ ¨ ¨ βq´t´1
i

...

˛

‹

‹

‚

i“1,...,q´t

¨

˚

˚

˚

˚

˝

µgq´3p1, µq ´ a00

µgq´4p1, µq

...
µgt´2p1, µq

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

0
0
...
0

˛

‹

‹

‹

‹

‚

.

This implies that µgq´3p1, µq´a00 “ µgq´4p1, µq “ ¨ ¨ ¨ “ µgt´2p1, µq “ 0. So F p1, µ, βq “ 0
for any β P F˚

q . Therefore, lpFqqzptQ0u Y l8pFqqq Ď X pFqq.
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Corollary 3.1.10. Suppose that there is a point Q P ZpX q such that r “ ψq´1pQq ě 2. If
these r lines are l1, ..., lr, then tplipFqqztQuq X ZpX q | i “ 1, ..., ru is contained in a line.

Proof. Let Qi “ plipFqqztQuq X ZpX q with i “ 1, ..., r. Since r ě 2, we can consider the
line l8 :“ Q1Q2. Since li P Aq´1, then #plizl8qXX pFqq ě pq`1q´3 “ q´2 for i “ 3, ..., r.
By Proposition 3.1.9, we have lizpl8 Y tQuq Ď X pFqq. Therefore,

tplipFqqztQuq X ZpX q | i “ 1, ..., ru Ď l8.

Remark 3.1.11. Let Q P ZpX q. Suppose that Q̌pFqq X Aq´1 “ tl1, l2, ..., lru with r ě 2.
By Corollary 3.1.10, tplipFqqztQuq X ZpX q | i “ 1, 2, ..., ru Ď l8 is contained in a line.
Then, by Proposition 3.1.9, for any l P Q̌0pFqqztl1, l2, ..., lru, one has that

#pplzl8q X X pFqqq ď q ´ r ´ 1.

This, in turn, implies that
#pl X X pFqqq ď q ´ r.

We now prove some interesting Corollaries to Proposition 3.1.9. They can be
thought of as partial negative answers to Question 1 when assuming stronger conditions
on the structure of ZpX q.

Corollary 3.1.12. If a0 ě 2, then a0 “ 3.

Proof. Let Z˚
pX q :“ ZpX qzpl18Yl28q and Q P l18Xl28 where l18, l28 P A0. Since #ZpX q “ 3q,

we have #Z˚
pX q “ q ´ 1. As #Q̌pFqqztl18, l

2
8u “ q ´ 1 and degpX q “ q ´ 1, then each

line l P Q̌pFqqztl18, l
2
8u contains exactly one point of Z˚

pX q. By Corollary 3.1.10, Z˚
pX q

is contained in a line. Therefore, a0 “ 3.

Corollary 3.1.13. Let q ě 8. If Q P ZpX q is a point such that r “ ψq´1pQq ě 4, then
r “ q ´ 1. In particular, a0 “ 3.

Proof. Since r ě 4, Remark 3.1.11 implies that

q2
´ 2q ` 1 “ pq ´ 1q

2
ď rpq ´ 1q ` pq ` 1 ´ rqpq ´ rq

“ qr ´ r ` q2
` q ´ qr ´ qr ´ r ` r2

“ q2
` q ´ qr ` rpr ´ 2q.

Hence qpr ´ 3q ď rpr ´ 2q ´ 1. Since q ě 8, we must have r ě 7. So

q ď
rpr ´ 2q ´ 1

r ´ 3 “
pr ` 1qpr ´ 3q ` 2

r ´ 3 “ r ` 1 `
2

r ´ 3 .
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Since r ď q ´ 1, this implies that r “ q ´ 1. Therefore, Q is of type pq ´ 1q
q´102 and, by

Corollary 3.1.12, a0 “ 3.

Corollary 3.1.14. Let q ě 7. If a0 ě 1, then a0 “ 3.

Proof. By Lemma 3.1.8, aq´1 ě 3pq ´ 1q. Let l18 P A0. Since q ě 7, if ψq´1pQq ď 2 for
every point Q P l81 then

aq´1 ď 2pq ` 1q ă 3pq ´ 1q,

a contradiction. Hence, there is a point Q P l18 such that r “ ψq´1pQq ě 3. By Remark
3.1.11, we have that

q2
´ 2q ` 1 “ pq ´ 1q

2
ď 0 ` rpq ´ 1q ` pq ´ rqpq ´ rq

“ qr ´ r ` q2
´ 2qr ` r2

“ q2
´ qr ` rpr ´ 1q.

Hence, qpr ´ 2q ď rpr ´ 1q ´ 1. Since q ě 7, we must have r ě 6. So

q ď
rpr ´ 1q ´ 1

r ´ 2 “
pr ` 1qpr ´ 2q ` 1

r ´ 2 “ r ` 1 `
1

r ´ 2 .

Since r ď q ´ 1, this implies that r “ q ´ 1. Therefore, Q is of type pq ´ 1q
q´102. Then the

result follows from Corollary 3.1.12.

Let k0 :“ minti | ai ‰ 0u. By the previous Corollary, in order to prove our
main result for q ě 7, it is enough to show that k0 “ 0. We start by giving an upper bound
for k0.

Lemma 3.1.15. k0 ď q ´ 4.

Proof. Suppose that k0 ě q ´ 3; then Lemma 3.1.4 leads to the following linear system:

$

’

’

’

&

’

’

’

%

aq´3 ` aq´2 ` aq´1 “ q2
` q ` 1

pq ´ 3qaq´3 ` pq ´ 2qaq´2 ` pq ´ 1qaq´1 “ pq ` 1qpq ´ 1q
2

pq ´ 3qpq ´ 4qaq´3 ` pq ´ 2qpq ´ 3qaq´2 ` pq ´ 1qpq ´ 2qaq´1 “ qpq ´ 2qpq ´ 1q
2.

A direct computation shows that the system above implies that

2aq´3 “ 3pq2
´ 3q ` 2q, aq´2 “ ´2pq2

´ 5q ` 4q and 2aq´1 “ 3pq2
´ 3q ` 4q.
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Since q ě 5, then
aq´2 “ ´2pq2

´ 5q ` 4q ă 0,

a contradiction. Therefore, k0 ď q ´ 4.

We now prove a lower bound for k0 whenever k0 ‰ 0. We start with the following
lemma:

Lemma 3.1.16.
q´1
ÿ

i“k0

pi ´ k0qpi ´ q ` 2qai “ 3pq ´ 1q
2

´ 3k0. In particular,

pq ´ k0 ´ 1qaq´1 ě 3pq ´ 1q
2

´ 3k0.

Proof. Let S :“
q´1
ÿ

i“k0

pi ´ k0qpi ´ q ` 2qai. First, note that

pi ´ k0qpi ´ q ` 2q “ ipi ´ 1q ` ip3 ´ qq ` k0pq ´ 2 ´ iq

“ ipi ´ 1q ` ip3 ´ qq ´ ik0 ` k0pq ´ 2q

“ ipi ´ 1q ` ip3 ´ q ´ k0q ` k0pq ´ 2q.

By Lemma 3.1.4, we have

S “

q´1
ÿ

i“k0

ipi ´ 1qai ` p3 ´ q ´ k0q

q´1
ÿ

i“k0

iai ` k0pq ´ 2q

q´1
ÿ

i“k0

ai

“ qpq ´ 2qpq ´ 1q
2

` p3 ´ q ´ k0qpq ` 1qpq ´ 1q
2

` k0pq ´ 2qpq2
` q ` 1q

“ 3pq ´ 1q
2

´ 3k0.

Moreover, if i “ q ´ 1 then pi ´ k0qpi ´ q ` 2q “ pq ´ k0 ´ 1q and if k0 ď i ď q ´ 2 then
pi ´ k0qpi ´ q ` 2q ď 0. Also, by Lemma 3.1.15, k0 ď q ´ 4. Hence, 3pq ´ 1q

2
´ 3k0 ě 0.

Therefore,
pq ´ k0 ´ 1qaq´1 ě 3pq ´ 1q

2
´ 3k0.

Proposition 3.1.17. Let q ě 7. If k0 ‰ 0, then k0 ě 2.

Proof. Suppose that k0 “ 1. Let l1 P A1. Also, consider P0 “ l1 X X pFqq and

l1 X ZpX q “ tQ1, ..., Qqu.

by Corollary 3.1.6, P0 is of type pq ´ 1q
q11. If ri :“ ψq´1pQiq for i “ 1, ..., q then

ripq ´ 1q ` 1 ď NqpX q “ pq ´ 1q
2
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Hence, ri ď q ´ 2. If ri ě 3, then, again, by Remark 3.1.11,

q2
´ 2q ` 1 “ pq ´ 1q

2
ď 1 ` ripq ´ 1q ` pq ´ riqpq ´ riq

“ 1 ` riq ´ ri ` q2
´ 2qri ` r2

i

“ q2
` 1 ´ qri ` ripri ´ 1q,

hence, qpri ´ 2q ď pri ´ 1qri. Since q ě 7, we must have ri ě 6. Hence,

q ď
pri ´ 1qri

pri ´ 2q
“

pri ` 1qpri ´ 2q ` 2
ri ´ 2 “ ri ` 1 `

2
ri ´ 2 .

This implies that ri ě q ´ 1, a contradiction. Therefore ri ď 2 for i “ 1, ..., q; hence,
aq´1 ď q`2q “ 3q. By Lemma 3.1.16, pq´2qaq´1 ě 3pq´1q

2
´3 “ 3qpq´2q. So aq´1 “ 3q.

By Lemma 3.1.16, we have

q´1
ÿ

i“1
pi ´ 1qpi ´ q ` 2qai “ 3qpq ´ 2q.

Since pq ´ 2qaq´1 “ 3qpq ´ 2q, one has that a2 “ ¨ ¨ ¨ “ aq´3 “ 0. Then, by Lemma 3.1.4,
we get the following linear system:

$

&

%

a1 ` aq´2 “ q2
` q ` 1 ´ 3q

a1 ` pq ´ 2qaq´2 “ pq ` 1qpq ´ 1q
2

´ 3qpq ´ 1q.

A direct computation shows that the system above implies that

pq ´ 3qa1 “ 3pq ´ 1q and pq ´ 3qaq´2 “ qpq2
´ 5q ` 4q.

Note that
a1 “

3pq ´ 1q

q ´ 3 “ 3 `
6

q ´ 3 .

As a1 must be an integer, then pq ´ 3q|6. Since q ě 7, this implies that q “ 9. In this case,
a1 “ 4. Let l1 P A1. Suppose that l1 X X pFqq “ tP0u and l1 X ZpX q “ tQ1, ..., Q9u. Since
ψ8pP0q “ 9 and ψ8pQjq ď 2 (j “ 1, ..., 9), counting the number a8 “ 27 of 8-lines along
tP0, Q1, ..., Q9u, we must have that ψ8pQjq “ 2. Since a2 “ ¨ ¨ ¨ “ a6 “ 0, then the other
seven lines than two 8-lines and l1 of Q̌jpF9q are either a 7-line or a 1-line. Let s “ ψ7pQjq.
Then

64 “ p9 ´ 1q
2

“ 1 ¨ 1 ` 2 ¨ 8 ` s ¨ 7 ` p7 ´ sq ¨ 1 “ 6s ` 24,

which is impossible because s must be an integer. Therefore, k0 ě 2.

If q ě 8, by Corollary 3.1.13, it is enough to prove that there exist a point
Q P ZpX q such that ψq´1pQq ě 4. We now give a lemma in case this does not happen:
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Lemma 3.1.18. Suppose that ψq´1pQq ď 3 for every point Q P ZpX q:

(i) If there exist P0 P X pFqq such that ψq´1pP0q “ 3, then aq´1 ď 3pq ` 1q.

(ii) If there exist P0 P X pFqq such that ψq´1pP0q “ 4, then aq´1 ď 3pq ` 2q.

Proof. For piq, by Lemma 3.1.8, P0 is of type pq ´ 1q
3
pq ´ 2q

q´2. Let l P P̌ pFqq X Aq´2

and Q P l X ZpX q. If rQ :“ ψq´1pQq “ 3, by Proposition 3.1.9 and Corollary 3.1.10, then
l P Aq´1, a contradiction. So there are at least 3pq ´ 2q points in ZpX q such that rQ ď 2.
Therefore, 2aq´1 ď 2p3pq ´ 2qq ` 3 ¨ 6. Hence,

aq´1 ď 3pq ´ 2q ` 9 “ 3pq ` 1q.

Next, we prove item (ii). Let s “ ψq´2pP q. We have

pq ´ 1q
2

ď 1 ` 4pq ´ 2q ` spq ´ 3q ` pq ´ 3 ´ sqpq ´ 4q

“ 4q ´ 7 ` sq ´ 3s ` q2
´ 3q ´ sq ´ 4q ` 12 ` 4s

“ pq ´ 1q
2

` 4 ` s ´ q.

This implies that s ě q ´ 4; hence, P is of type pq ´ 1q
4
pq ´ 2q

q´4
pq ´ 5q

1. As in the
previous case, there are at least 3pq ´ 4q points in ZpX q such that the image by ψq´1 is
less than or equal to 2. Therefore, 2aq´1 ď 2p3pq ´ 4qq ` 3 ¨ 12; in particular,

aq´1 ď 3pq ´ 4q ` 18 “ 3pq ` 2q.

3.2 Characterization of Optimal Sziklai Curves of Degree q ´ 1

In this section, we provide the characterization of optimal Sziklai curves of
degree q ´ 1. First, we deal with the cases q “ 5, 7, as they need some ad hoc techniques.

Proposition 3.2.1. If X P C4pF5q and N5pX q “ 16, then there exist α, β, γ P F˚
5 with

α ` β ` γ “ 0 such that X »proj Xpα,β,γq over F5.

Proof. By Theorem 3.1.1, X is nonsingular of degree 4. By Theorem 1.1.15, X has genus

gpX q “
p4 ´ 1qp4 ´ 2q

2 “ 3.

By Lemma 3.1.15, we have k0 ď 1. Suppose that k0 “ 1. Let l1 P A1 with l1 XX pF5q “ tP0u.
By Corollary 3.1.6, P0 is of type 4511. In this case, l1 is the tangent line to X at P0. Since
degpX q “ 4, then we have the following expression for the intersection divisor l1 ¨ X :

l1 ¨ X “
ÿ

IpP, l1 X X qP “ 2P0 ` R1 ` R2,
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for some points R1, R2 P l1 X X . Since the divisor l1 ¨ X is defined over F5, by applying
the 5-Frobenius map Ψ5, we have that R1 ` R2 ` 2P0 “ Ψ5pR1q ` Ψ5pR2q ` 2P0, which
implies that R1, R2 P P2

pF25q. If R1 “ R2, then R1 “ R2 “ P0 and P0 is an inflexion point;
so IpP0, l1 X X q “ j2pP0q ě 3. On the other hand, by Stohr-Voloch Theorem 1.2.4, we have

32 “ 2NqpX q ď 32 ´
ÿ

P PX
ApP q.

So 0 “ ApP0q “ j2pP0q ´ 2, hence, IpP0, l1 X X q “ j2pP0q “ 2, a contradiction. Therefore,
R1 ‰ R2 and R1, R2 P P2

pF25qzP2
pF5q. Again, by Lemma 3.1.4 we are lead to the following

linear system:
$

’

’

’

&

’

’

’

%

a1 ` a2 ` a3 ` a4 “ 31

a1 ` 2a2 ` 3a3 ` 4a4 “ 96

2a2 ` 6a3 ` 12a4 “ 240.

By solving the system above by standard Gaussian elimination, we get

a1 “ 21 ´ a4, a2 “ 3pa4 ´ 15q and a3 “ 55 ´ 3a4.

Since a1, a2, a3 ě 0, then 15 ď a4 ď 18. In particular, a1 ě 3; in turn, this implies that

N25pX q ě 16 ` 3 ¨ 2 “ 22.

By Theorem 1.1.17, let Lptq “

6
ź

i“1
p1 ´ ωitq be the factorization of the L-polynomial of X

into linear factors in some finite extension of Q. By Corollary 1.1.18, we have

NqnpX q “ qn
` 1 ´

6
ÿ

i“1
ωn

i .

Since 16 “ N5pX q “ 5 ` 1 ` 3 ¨ 4 ´ 2 “ 5 ` 3 ¨ 4 ´ 1, by Remark 2.1.6, the curve X has
zeta function of type r4, 4, 2s. This means that

ω1 ` ω1 “ ´4, ω2 ` ω2 “ ´4 and ω3 ` ω3 “ ´2.

Hence,
6

ÿ

i“1
ω2

i “ 36 ´ 2p|ω1|
2

` |ω2|
2

` |ω3|
2
q.

By Hasse-Weil Theorem 1.1.19, |ωi|
2

“ 5. This implies that

22 ď N25pX q “ 26 ´

6
ÿ

i“1
ω2

i “ 26 ´ p36 ´ 30q “ 20,

a contradiction. Then, k0 “ 0.

Suppose that a1 ‰ 0. Let l0 P A0 and l1 P A1. By Corollary 3.1.6, we have

Q “ l0 X l1 P ZpX q.
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If rQ “ ψ4pQq, by Lemma 3.1.5, we have 16 ď 0 ` 1 ` 4rQ ` 3p4 ´ rQq “ 13 ` rQ, hence,
rQ ě 3. This means that Q is of type 43311101. On the other hand, since ψ4pQq ě 3, by
Proposition 3.1.9 and Corollary 3.1.10, we must have ψ3pQq “ 0, a contradiction. Hence,
a1 “ 0. By Lemma 3.1.4 we get:

$

’

’

’

&

’

’

’

%

a0 ` a2 ` a3 ` a4 “ 31

2a2 ` 3a3 ` 4a4 “ 96

2a2 ` 6a3 ` 12a4 “ 240.

It is easy to see that the system above implies that

3a0 “ 21 ´ a4, a2 “ 2pa4 ´ 12q and 3a3 “ 144 ´ 8a4.

If a0 “ 1, then a2 “ 12 and a3 “ 0. Let l2 P A2 and P0 P l2 X X pF5q. If r “ ψ4pP0q, by
Lemma 3.1.5, we have 16 ď 2 ` 3r` 2p5 ´ rq “ 12 ` r. Since 2 ` 3r ď 16, this implies that
r “ 4. Hence, ψ2pP0q “ 1, ψ3pP0q “ 1 and ψ4pP0q “ 4, a contradiction pa3 “ 0q. Therefore,
a0 ě 2 and the result follows from Corollary 3.1.12.

Proposition 3.2.2. If X P C6pF7q and N7pX q “ 36, then there exist α, β, γ P F˚
7 with

α ` β ` γ “ 0 such that X »proj Xpα,β,γq over F7.

Proof. First, recall the definition of k0 “ minti | ai ‰ 0u. Note that, by Proposition 3.1.17
and Corollary 3.1.14, it is enough to prove that k0 ď 1.

By Lemma 3.1.3, we have that X pF7q Ď P2
pF7q is a p36, 6q-arc. Up to projective

equivalence, there are exactly 194 p36, 6q-arcs in P2
pF7q, see (BOUYUKLIEV et al., 2020,

Remark 1). The full list can be found online at <http://mars39.lomo.jp/opu/36_3_30.
txt>, where the points of such arcs are arranged as a generator matrix for a r36, 3, 30s7-
code together with the weight enumerator. Recall that, by the relation between projective
rn, 3, dsq-codes and pn, n ´ dq-arcs in P2

pFqq, we have

6 ¨ pa0, a1, a2, a3, a4, a5, a6q “ pc36, c35, c34, c33, c32, c31, c30q.

By Lemma 3.1.15, k0 ď 3. Hence, from our initial observation, it is enough to prove
that the condition k0 P t2, 3u leads to a contradiction; equivalently, the six p36, 6q-arcs
corresponding to the r36, 3, 30s7-codes such that the weight of a codeword is at most 34
are not projectively equivalent to X pF7q.

Suppose that k0 “ 3. Since there is only one r36, 3, 30s7-code such that the
maximal weight of a codeword is exactly 33, then there is only one p36, 6q-arc with k0 “ 3,
up to projective equivalence. So we can choose coordinates X, Y, Z of P2 such that

http://mars39.lomo.jp/opu/36_3_30.txt
http://mars39.lomo.jp/opu/36_3_30.txt
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X pF7q “ tp1 : 1 : 3q, p1 : 1 : 5q, p1 : 2 : 3q, p1 : 2 : 5q, p1 : 2 : 6q, p1 : 3 : 3q,

p1 : 3 : 4q, p1 : 3 : 5q, p1 : 3 : 6q, p1 : 3 : 0q, p1 : 4 : 2q, p1 : 4 : 4q,

p1 : 4 : 5q, p1 : 4 : 6q, p1 : 4 : 0q, p1 : 5 : 2q, p1 : 5 : 3q, p1 : 5 : 4q,

p1 : 5 : 6q, p1 : 5 : 0q, p1 : 6 : 1q, p1 : 6 : 3q, p1 : 6 : 4q, p1 : 6 : 5q,

p1 : 6 : 0q, p1 : 0 : 1q, p1 : 0 : 2q, p1 : 0 : 4q, p1 : 0 : 6q, p1 : 0 : 0q,

p0 : 1 : 3q, p0 : 1 : 4q, p0 : 1 : 5q, p0 : 1 : 6q, p0 : 1 : 0q, p0 : 0 : 1qu.

Let

G “ Y ZpZ ´ 3Y qpZ ´ 4Y qpZ ´ 5Y qpZ ´ 6Y q P F7rX, Y, Zs

H “ XpX ` Y ´ Zqp2X ` Y ´ ZqpX ` 2Y ´ 2Zq P F7rX, Y, Zs

A direct computation shows that #pvpGq X vpHqq “ 24 “ 6 ¨ 4 “ BpvpGqq ¨ BpvpHqq and
vpGq X vpHq Ď X pF7q; more precisely, we have

vpGq X vpHq “ tp1 : 1 : 3q, p1 : 1 : 5q, p1 : 2 : 3q, p1 : 2 : 6q, p1 : 3 : 4q, p1 : 3 : 5q,

p1 : 3 : 0q, p1 : 4 : 5q, p1 : 4 : 6q, p1 : 5 : 2q, p1 : 5 : 6q, p1 : 5 : 0q,

p1 : 6 : 1q, p1 : 6 : 3q, p1 : 6 : 0q, p1 : 0 : 1q, p1 : 0 : 2q, p1 : 0 : 4q,

p0 : 1 : 3q, p0 : 1 : 4q, p0 : 1 : 5q, p0 : 1 : 6q, p0 : 1 : 0q, p0 : 0 : 1qu.

Hence, by Bézout’s Theorem 1.1.4, IpP,vpGq X vpHqq “ 1 for each P P vpGq X

vpHq. Let F P F7rX, Y, Zs be a homogeneous equation for X over F7; then, by Remark
2.2.9 and Noether’s “AF + BG” Theorem 1.1.5, we can write F “ G ` pα1X

2
` α2Y

2
`

α3Z
2

` α4XY ` α5XZ ` α6Y Zq ¨ H for some α1, ..., α6 P F7. Since

0 “ F p1, 0, 0q “ Gp1, 0, 0q ` α1Hp1, 0, 0q

“ 2α1,

0 “ F p1, 5, 4q “ Gp1, 5, 4q ` pα1 ` 52α2 ` 42α3 ` 5α4 ` 4α5 ` 20α6qHp1, 5, 4q

“ 4pα1 ` 4α2 ` 2α3 ` 5α4 ` 4α5 ` 6α6q,

0 “ F p1, 4, 0q “ Gp1, 4, 0q ` pα1 ` 42α2 ` 4α4qHp1, 4, 0q

“ 4pα1 ` 2α2 ` 4α4q,

0 “ F p1, 0, 6q “ Gp1, 0, 6q ` pα1 ` 62α3 ` 6α5qHp1, 0, 6q

“ 4pα1 ` α3 ` 6α5q,

0 “ F p1, 2, 5q “ Gp1, 2, 5q ` pα1 ` 22α2 ` 52α3 ` 2α4 ` 5α5 ` 10α6qHp1, 2, 5q

“ 4pα1 ` 4α2 ` 4α3 ` 2α4 ` 5α5 ` 3α6q,

0 “ F p1, 6, 4q “ Gp1, 6, 4q ` pα1 ` 62α2 ` 42α3 ` 6α4 ` 4α5 ` 24α6qHp1, 6, 4q

“ 4pα1 ` α2 ` 2α3 ` 6α4 ` 4α5 ` 3α6q.
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It is easy to check that this implies that α1 “ ¨ ¨ ¨ “ α6 “ 0. Therefore, F “ G and X has
F7-linear components, a contradiction.

Now, suppose that k0 “ 2. Since there are five r36, 3, 30s7-codes such that the
maximal weight of a codeword is exactly 34, then there are five p36, 6q-arcs with k0 “ 2,
up to projective equivalence. For instance, we can choose coordinates X, Y, Z of P2 such
that

X pF7q “ tp1 : 1 : 4q, p1 : 1 : 5q, p1 : 1 : 6q, p1 : 1 : 0q, p1 : 2 : 2q, p1 : 2 : 4q,

p1 : 2 : 6q, p1 : 2 : 0q, p1 : 3 : 2q, p1 : 3 : 3q, p1 : 3 : 4q, p1 : 3 : 5q,

p1 : 4 : 2q, p1 : 4 : 3q, p1 : 4 : 5q, p1 : 4 : 6q, p1 : 5 : 3q, p1 : 5 : 5q,

p1 : 5 : 6q, p1 : 5 : 0q, p1 : 6 : 1q, p1 : 6 : 2q, p1 : 6 : 4q, p1 : 6 : 6q,

p1 : 6 : 0q, p1 : 0 : 2q, p1 : 0 : 3q, p1 : 0 : 4q, p1 : 0 : 5q, p1 : 0 : 0q,

p0 : 1 : 3q, p0 : 1 : 4q, p0 : 1 : 5q, p0 : 1 : 6q, p0 : 1 : 0q, p0 : 0 : 1qu.

Let Q0 “ p1 : 5 : 2q P ZpX q. A direct computation shows that

Q̌0pF7q “ t5x`z, y`z, 2x`2y`z, 4x`3y`z, 6x`4y`z, x`5y`z, 3x`6y`z, 2x`yu,

Q̌0pF7q X A6 “ ty ` z, 4x ` 3y ` z, x ` 3zu and Q̌0pF7q X A5 “ tx ` 3y ` 6z, x ` 4yu.

Since ψ6pQ0q “ 3, by Corollary 3.1.10 and Proposition 3.1.9, we must have ψ5pQ0q “ 0, a
contradiction. The other four p36, 6q-arcs with k0 “ 2 can be dealt with by using a similar
argument:

(1) For

X pF7q “ tp1 : 1 : 3q, p1 : 1 : 5q, p1 : 1 : 6q, p1 : 2 : 4q, p1 : 2 : 5q, p1 : 2 : 6q,

p1 : 2 : 0q, p1 : 3 : 1q, p1 : 3 : 2q, p1 : 3 : 3q, p1 : 3 : 5q, p1 : 3 : 0q,

p1 : 4 : 2q, p1 : 4 : 3q, p1 : 4 : 4q, p1 : 4 : 6q, p1 : 5 : 2q, p1 : 5 : 4q,

p1 : 5 : 6q, p1 : 5 : 0q, p1 : 6 : 3q, p1 : 6 : 4q, p1 : 6 : 5q, p1 : 6 : 6q,

p1 : 6 : 0q, p1 : 0 : 2q, p1 : 0 : 3q, p1 : 0 : 4q, p1 : 0 : 5q, p1 : 0 : 0q,

p0 : 1 : 3q, p0 : 1 : 4q, p0 : 1 : 5q, p0 : 1 : 6q, p0 : 1 : 0q, p0 : 0 : 1qu.

Let Q “ p1 : 1 : 4q. In this case, we have

Q̌pF7q “ t3x`z, 2x`y`z, x`2y`z, 3y`z, 6x`4y`z, 5x`5y`z, 4x`6y`z, 6x`yu,

Q̌pF7qXA6 “ t3y`z, x`3y`6z, x`5zu and Q̌pF7qXA5 “ tx`y`3z, x`y`zu.
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(2) For

X pF7q “ tp1 : 1 : 2q, p1 : 1 : 5q, p1 : 1 : 0q, p1 : 2 : 2q, p1 : 2 : 3q, p1 : 2 : 4q,

p1 : 2 : 6q, p1 : 3 : 2q, p1 : 3 : 4q, p1 : 3 : 5q, p1 : 3 : 6q, p1 : 3 : 0q,

p1 : 4 : 3q, p1 : 4 : 4q, p1 : 4 : 5q, p1 : 4 : 6q, p1 : 5 : 3q, p1 : 5 : 4q,

p1 : 5 : 6q, p1 : 5 : 0q, p1 : 6 : 1q, p1 : 6 : 3q, p1 : 6 : 5q, p1 : 6 : 6q,

p1 : 6 : 0q, p1 : 0 : 2q, p1 : 0 : 3q, p1 : 0 : 4q, p1 : 0 : 5q, p1 : 0 : 0q,

p0 : 1 : 3q, p0 : 1 : 4q, p0 : 1 : 5q, p0 : 1 : 6q, p0 : 1 : 0q, p0 : 0 : 1qu.

Let Q “ p1 : 1 : 4q. In this case, we have

Q̌pF7q “ t3x`z, 2x`y`z, x`2y`z, 3y`z, 6x`4y`z, 5x`5y`z, 4x`6y`z, 6x`yu,

Q̌pF7q X A6 “ tx ` 5z, 2x ` y ` z, x ` 2y ` zu and Q̌pF7q X A5 “ ty ` 5zu.

(3) For

X pF7q “ tp1 : 1 : 2q, p1 : 1 : 5q, p1 : 1 : 6q, p1 : 2 : 3q, p1 : 2 : 4q, p1 : 2 : 6q,

p1 : 2 : 0q, p1 : 3 : 1q, p1 : 3 : 4q, p1 : 3 : 5q, p1 : 3 : 6q, p1 : 3 : 0q,

p1 : 4 : 2q, p1 : 4 : 3q, p1 : 4 : 5q, p1 : 4 : 0q, p1 : 5 : 2q, p1 : 5 : 3q,

p1 : 5 : 5q, p1 : 5 : 6q, p1 : 6 : 2q, p1 : 6 : 3q, p1 : 6 : 4q, p1 : 6 : 5q,

p1 : 6 : 0q, p1 : 0 : 2q, p1 : 0 : 3q, p1 : 0 : 4q, p1 : 0 : 6q, p1 : 0 : 0q,

p0 : 1 : 3q, p0 : 1 : 4q, p0 : 1 : 5q, p0 : 1 : 6q, p0 : 1 : 0q, p0 : 0 : 1qu.

Let Q “ p1 : 1 : 0q. In this case, we have

Q̌pF7q “ tz, 6x`y`z, 5x`2y`z, 4x`3y`z, 3x`4y`z, 2x`5y`z, x`6y`z, 6x`yu,

Q̌pF7q X A6 “ tz, 4x ` 3y ` z, 3x ` 4y ` zu and Q̌pF7q X A5 “ t6x ` y ` zu.

(4) For

X pF7q “ tp1 : 1 : 2q, p1 : 1 : 4q, p1 : 1 : 0q, p1 : 2 : 2q, p1 : 2 : 3q, p1 : 2 : 4q,

p1 : 2 : 5q, p1 : 3 : 3q, p1 : 3 : 4q, p1 : 3 : 6q, p1 : 3 : 0q, p1 : 3 : 2q,

p1 : 4 : 4q, p1 : 4 : 5q, p1 : 4 : 6q, p1 : 4 : 0q, p1 : 5 : 3q, p1 : 5 : 4q,

p1 : 5 : 5q, p1 : 5 : 6q, p1 : 5 : 0q, p1 : 6 : 2q, p1 : 6 : 3q, p1 : 6 : 5q,

p1 : 6 : 6q, p1 : 0 : 1q, p1 : 0 : 2q, p1 : 0 : 3q, p1 : 0 : 5q, p1 : 0 : 0q,

p0 : 1 : 3q, p0 : 1 : 4q, p0 : 1 : 5q, p0 : 1 : 6q, p0 : 1 : 0q, p0 : 0 : 1qu.

Let Q “ p1 : 1 : 1q. In this case, we have

Q̌pF7q “ t6x`z, 5x`y`z, 4x`2y`z, 3x`3y`z, 2x`4y`z, x`5y`z, 6y`z, 6x`yu,

Q̌pF7qXA6 “ t6y`z, 2x`4y`z, x`3y`3zu and Q̌pF7qXA5 “ tx`y`5z, 4x`2y`zu.
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In each of these cases, ψ6pQ0q “ 3. By Corollary 3.1.10 and Proposition 3.1.9,
we must have ψ5pQ0q “ 0, a contradiction. Therefore, none of these p36, 6q-arcs can be
projectively equivalent to X pF7q, and our assertion follows.

Remark 3.2.3. As a byproduct of Proposition 3.2.2, we have that, of the 194 nonequivalent
p36, 6q-arcs in P2

pF7q, only one is obtained as the set of rational points of an irreducible
plane curve of degree 6.

We are now in a position to prove our main result.

Theorem 3.2.4. Let X P Cq´1pFqq. If NqpX q “ pq ´ 1q
2 and q ě 5, then there exist

α, β, γ P F˚
q with α ` β ` γ “ 0 such that X »proj Xpα,β,γq over Fq.

Proof. Let k0 “ minti | ai ‰ 0u. If q ě 8, then by Proposition 3.1.17 and Corollary 3.1.13,
it is enough to prove that either k0 ď 1 or there exists a point Q P ZpX q such that
ψq´1pQq ě 4.

By way of contradiction, assume that k0 ě 2 and rQ :“ ψq´1pQq ď 3 for every
point Q P ZpX q. Since #ZpX q “ 3q, the latter hypothesis implies that 2aq´1 ď 9q.

Now, assume that q ě 11. If for every point P P X pFqq we have ψq´1pP q ě 5,
then aq´1 ě 5pq ´ 1q ą 9q{2, a contradiction. Let P0 P X pFqq such that r0 “ ψq´1pP q ď 4.
By Lemma 3.1.8, we have that r0 P t3, 4u. We distinguish two cases, namely r0 “ 3 or
r0 “ 4.

If r0 “ 3, then by Lemma 3.1.8, aq´1 ď 3pq ` 1q. By Lemma 3.1.15, k0 ď q ´ 4
and, by Lemma 3.1.16, we have

3pq ´ 1q2 ´ 3k0

q ´ k0 ´ 1 ď aq´1 ď 3pq ` 1q.

This implies that 3qpk0 ´ 2q ` 6 “ 3pq ´ 1q
2

´ 3k0 ´ pq ´ k0 ´ 1qp3q ` 3q ď 0. Therefore,
k0 ď 2 ´ 2{q ă 2, a contradiction.

We now suppose that r0 “ 4. Then, by Lemma 3.1.18, aq´1 ď 3pq ` 2q. Since
q ě 11, there is point P P X pFqq such that ψq´1pP q “ 3, otherwise, aq´1 ě 4pq ´ 1q ą

3pq ` 2q. Again, this implies that k0 ă 2, a contradiction.

We are then left with the cases q “ 5, 7, 8, 9. As the cases q “ 5, 7 have already
been dealt with in Propositions 3.2.1 and 3.2.2, respectively, we only need to consider the
cases q “ 8, 9. We proceed with a careful case-by-case analysis.

For q “ 9, by Lemma 3.1.16, we have

3p64 ´ k0q

8 ´ k0
ď a8 ď 40 “

„

9q
2

ȷ

. (3.2)
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By Lemma 3.1.15, we have k0 ď 5, and then 37k0 ´ 128 “ 3p64 ´ k0q ´ 40p8 ´ k0q ď 0.
This in turn implies k0 P t2, 3u.

Now, we prove that the condition k0 “ 2 leads to a contradiction for q “ 9. If
k0 “ 2, by the inequality (3.2), a8 ě 31. Let l2 P A2 with

l2 X X pF9q “ tP0, P1u and l2 X ZpX q “ tQ2, ..., Q9u.

Let rj :“ ψ8pPjq and ri :“ ψ8pQiq where j “ 0, 1 and i “ 2, ..., 9. By Lemma 3.1.5, if
j P t0, 1u, then

64 ď 2 ` 7rj ` 6p9 ´ rjq “ 56 ` rj.

Since 2 ` 7rj ď 64, this implies that rj “ 8 for j “ 0, 1. If ri “ 3 for some i P t2, ..., 9u, by
Remark 3.1.11, the other lines in Q̌ipFqq contain at most 6 points of X pF9q, hence,

64 ď 2 ` 3 ¨ 8 ` 6 ¨ 6 “ 62,

a contradiction. Then ri ď 2 when i “ 2, ..., 9. This implies that a8 ď 2 ¨ 8 ` 8 ¨ 2 “ 32. If
rP “ ψ8pP q ě 4 for every point P P X pFqqztP1, P2u, then

a8 ě
8 ¨ 2 ` 4ppq ´ 1q2 ´ 2q

q ´ 1 “ 33,

a contradiction. Then there is a point P P X pFqq such that rP “ 3. By Lemma 3.1.18, this
implies that a8 ď 3pq ` 1q “ 30, a contradiction.

We now prove that the condition k0 “ 3 leads to a contradiction for q “ 9. If
k0 “ 3, by inequality (3.2), a8 ě 37. Let l3 P A3 with

l3 X X pF9q “ tP0, P1, P2u and l3 X ZpX q “ tQ3, ..., Q9u.

Let rj :“ ψ8pPjq and ri :“ ψ8pQiq where j “ 0, 1, 2 and i “ 3, ..., 9. By Lemma 3.1.5, if
j P t0, 1, 2u, then

64 ď 3 ` 7rj ` 6p9 ´ rjq “ 57 ` rj.

Since 3`7rj ď 64, this implies that rj P t7, 8u for j “ 0, 1, 2. If ri “ 3 for some i P t3, ..., 9u,
by Remark 3.1.11, the other lines in Q̌ipFqq contain at most 6 points of X pF9q, hence,
64 ď 3 ` 3 ¨ 8 ` 6 ¨ 6 “ 63, a contradiction. Then ri ď 2 when i “ 3, ..., 9. This implies that
a8 ď 3 ¨8`7 ¨2 “ 38. If rP “ ψ8pP q ě 5 for every point P P X pFqq, then a8 ě 5pq´1q “ 40,
a contradiction. There is then a point P P X pFqq such that ψ8pP q ď 4. By Lemma 3.1.18,
this implies that a8 ď 3pq ` 2q “ 33, a contradiction.

We are then left with the case q “ 8. In this case, by Lemma 3.1.16, we have

3p49 ´ k0q

7 ´ k0
ď a7 ď 36 “

9q
2 (3.3)

By Lemma 3.1.15, we know that k0 ď 4. Then 3p11k0 ´ 35q “ 3p49 ´ k0q ´ 36p7 ´ k0q ď 0.
Hence, k0 P t2, 3u.
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As previously done, we prove that the condition k0 “ 2 leads to a contradiction.
If k0 “ 2, by the inequality (3.3), a7 ě 29. Let l2 P A2 with

l2 X X pF8q “ tP0, P1u and l2 X ZpX q “ tQ2, ..., Q8u.

Let rj :“ ψ7pPjq and ri :“ ψ7pQiq where j “ 0, 1 and i “ 2, ..., 8. By Lemma 3.1.5 if
j P t0, 1u, then

49 ď 2 ` 6rj ` 5p8 ´ rjq “ 42 ` rj.

Since 2 ` 6rj ď 49, then rj “ 7 for j “ 0, 1. If ri “ 3 for some i “ 2, ..., 8, by Remark
3.1.11, the other lines in Q̌ipFqq contain at most 5 points of X pF8q. We thus obtain that
49 ď 2 ` 3 ¨ 7 ` 5 ¨ 5 “ 48, a contradiction. Hence, ri ď 2 when i “ 2, ..., 8. Therefore
a7 ď 2 ¨ 7 ` 7 ¨ 2 “ 28, a contradiction.

Finally, we prove that the condition k0 “ 3 leads to a contradiction for q “ 8.
If k0 “ 3, by the inequality (3.3), a7 ě 35. Let l3 P A3 with

l3 X X pF8q “ tP0, P1, P2u and l2 X ZpX q “ tQ3, ..., Q8u.

Let rj :“ ψ7pPjq and ri :“ ψ7pQiq where j “ 0, 1, 2 and i “ 3, ..., 8. By Lemma 3.1.5, if
j P t0, 1, 2u then

49 ď 3 ` 6rj ` 5p8 ´ rjq “ 43 ` rj.

Since 3 ` 6rj ď pq ´ 1q
2

“ 49, then rj P t6, 7u for i “ 0, 1, 2. If ri “ 3 for some i “ 2, ..., 8,
by Remark 3.1.11, the other lines in Q̌ipFqq contain at most 5 points of X pF8q. So
49 ď 3 ` 3 ¨ 7 ` 5 ¨ 5 “ 49. This means that the other 5 lines in Q̌jpFqq are in A5. By Lemma
3.1.16, we have ´2a4 ´2a5 `4a7 “ 138. This implies that 4a7 ě 138`2a5 ě 138`10 “ 148,
hence a7 ě 37, a contradiction. So rj ď 2 when j “ 2, . . . , 8. Therefore, a7 ď 3¨7`6¨2 “ 33,
a contradiction.

The proof of our theorem is then completed.



50

4 Concluding Remarks

4.1 On Fq-Frobenius classical curves with many points
Let C Ď P2 be an irreducible nonsingular algebraic curve of degree d defined

over Fq. If C is Fq-Frobenius classical, by Theorem 1.2.2, we have

NqpCq ď
1
2dpd ` q ´ 1q. (4.1)

Note that if d “ q ´ 1 then dpd ` q ´ 1q{2 “ pq ´ 1q
2. This means that the Stöhr-Voloch

upper bound for a nonsingular Fq-Frobenius classical plane curve of degree q ´ 1 is equal
to the Sziklai upper bound. Also, by the proof of our main result, it is inferred that the
curves attaining the Sziklai bound are Fq-Frobenius classical and have no Fq-rational point
of inflection. In other words, Theorem 3.2.4 classifies the Fq-Frobenius classical nonsingular
curves of degree q ´ 1 attaining the Stöhr-Voloch upper bound (4.1) up to projective
equivalence.

4.2 On hypersurfaces with many rational points
A (projective) hypersurface X in the n-dimensional projective space Pn :“ Pn

K of
homogeneous equation F pX0, X1, ..., Xnq “ 0, where F P KrX0, X1, ..., Xns, is denoted by
X “ vpF q and consists of all points px0 : x1 : ¨ ¨ ¨ : xnq P Pn such that F px0, x1, ..., xnq “ 0;
namely,

X “ vpF q :“ tpx0 : x1 : ¨ ¨ ¨ : xnq P Pn
| F px0, x1, ..., xnq “ 0u.

Also, the degree of X , written degpX q, is degpF q. A hypersurface of degree one is called a
hyperplane. When n “ 2, a projective hypersurface is just a projective plane curve.

Definition 4.2.1. A hypersurface X “ vpF q is said to be defined over Fq if there is a
non-zero constant λ P K such that

λ ¨ F pX0, X1, ..., Xnq P FqrX0, X1, ..., Xns.

Also, the points px0 : x1 : ¨ ¨ ¨ : xnq P Pn
pFqq such that F px0, x1, ¨ ¨ ¨ , xnq “ 0 are called

Fq-rational points (or simply, rational points) of X and X pFqq denotes the set of all
Fq-rational points of X .

A component of X “ vpF q is a hypersurface vpGq such that G divides F .
If vpGq is defined over Fq, then we say that vpGq is an Fq-component of X . Also, if
degpvpGqq “ 1, we say that vpGq is an Fq-linear component of X .



Chapter 4. Concluding Remarks 51

A projectivity φ : Pn
Ñ Pn is given as follows:

φpx0 : x1 : ¨ ¨ ¨ : xnq “ u with ut
“ A ¨ px0 : x1 : ¨ ¨ ¨ : xnq

t,

where A P GLpn ` 1, Kq. It is also called a projective transformation; the projectivities of
Pn constitute its projective general linear group PGLpn` 1, Kq. Also, the projectivities of
Pn with A P GLpn`1,Fqq is denoted by PGLpn`1, qq :“ PGLpn`1,Fqq ă PGLpn`1, Kq.

Definition 4.2.2. Let F and G hypersurfaces. We say that F and G are projectively
equivalent over Fq, denoted by F »proj G, if there is a projectivity φ with A P GLpn` 1,Fqq

such that
φpFq “ G.

Definition 4.2.3. A point P “ px0 : x1 : ¨ ¨ ¨ : xnq of X is singular if

BF

BX0
px0, x1, ¨ ¨ ¨ , xnq “

BF

BX1
px0, x1, ¨ ¨ ¨ , xnq “ ¨ ¨ ¨ “

BF

BXn

px0, x1, ¨ ¨ ¨ , xnq “ 0.

Otherwise, P is nonsingular (or smooth) and the tangent hyperplane at P is

TP pX q :“ v
ˆ

BF

BX0
px0, x1, ¨ ¨ ¨ , xnq ¨ X0 ` ¨ ¨ ¨ `

BF

BXn

px0, x1, ¨ ¨ ¨ , xnq ¨ Xn

˙

.

In (HOMMA; KIM, 2017), Homma and Kim gave an upper bound for the
number NqpX q :“ |X pFqq| of Fq-rational points of a nonsingular hypersurface X defined
over Fq in an odd-dimensional projective space Pn:

Theorem 4.2.4. (HOMMA; KIM, 2017, Theorem 1.1) Let n be an odd integer at least 3.
If X is a nonsingular hypersurface of degree d ě 2 in Pn defined over Fq . Then

NqpX q ď θq pmq ppd ´ 1qqm
` 1q, (4.2)

where 2m “ n ´ 1 and θqpmq :“ |Pm
pFqq| “ qm

` ¨ ¨ ¨ ` q ` 1. Also, equality holds if and
only if either

(i) d “ 2 and X is a nonsingular hyperbolic quadric hypersurface, that is, X is projectively
equivalent over Fq to the hypersurface

pn´1q{2
ÿ

i“0
X2iX2i`1 “ 0; or

(ii) d “
?
q ` 1, where q is square, and X is a nonsingular Hermitian hypersurface, that

is, X is projectively equivalent over Fq to the hypersurface

pn´1q{2
ÿ

i“0

´

X
?

q
2i X2i`1 ` X2iX

?
q

2i`1

¯

“ 0; or
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(iii) d “ q ` 1 and X is a nonsingular Pn-filling hypersurface over Fq, that is, X is
projectively equivalent over Fq to the hypersurface

pn´1q{2
ÿ

i“0
pXq

2iX2i`1 ` X2iX
q
2i`1q “ 0.

In the same paper, they also conjectured the following for the even-dimensional
case: if X Ď Pn is a nonsingular hypersurface defined over Fq of degree d with n even, then

NqpX q ď Θd,q
n :“ θq pm ´ 1q ppd ´ 1qqm

` 1q (4.3)

where 2m “ n.

This conjecture was then proved by Datta in the case n “ 4:

Theorem 4.2.5. (DATTA, 2019, Theorem 4.8) Fix a positive integer d with 2 ď d ď q.
Let X Ă P4 be a nonsingular threefold of degree d defined over Fq. If pd, qq ‰ p4, 4q we
have,

NqpX q ď pd ´ 1qq3
` pd ´ 1qq2

` q ` 1.

Moreover, the bound is attained by a nonsingular threefold X of degree d only if there
exists a point P P X pFqq such that X X TP pX q is a cone, with center at P , over a plane
curve C of degree d defined over Fq that does not contain a line defined over Fq and
NqpCq “ pd ´ 1qq ` 1.

For n ě 6, this conjecture was then proved by Tironi:

Theorem 4.2.6. (TIRONI, 2022, Theorem 2) Let X n
Ă Pn`1 be a nonsingular hypersur-

face of degree d ě 2 defined over Fq with n ě 5 an odd integer. If d ď q, then

NqpX q ď Θd,q
n .

Moreover, the equality is reached by a nonsingular hypersurfaces X n
Ď Pn`1 only if there

exists an Fq-point P P X n such that X n
X TP pX n

q is a cone P ˚ Y with vertex P over a
nonsingular hypersurface Y Ă Pn´1 such that NqpYq “ Θd,q

n´2.

Also, in the same paper, Tironi proof the case d “ q ` 1 for n “ 4.

Here, a link with curves that are optimal with respect to the Sziklai bound
appears when considering hypersurfaces attaining (4.3). In fact, let X be a hypersurface
in P4 attaining the bound (4.3); then, by Theorem 4.2.5, there exists a point P P X pFqq

such that X XTP pX q is a cone with center P over a plane curve C of degree d defined over
Fq without Fq-linear components and NqpCq attains the Sziklai bound. Also, by (TIRONI,
2022, Theorem 1), this curve must be nonsingular. For n ě 6, by Theorem 4.2.6, we
have an analogous result. Therefore, the extremal hypersurfaces in even dimension can be
characterized inductively by starting with the ones in P4, which in turn can be constructed
from optimal Sziklai curves. This gives a possible application of the classification of
extremal Sziklai curves, and in particular, of Theorem 3.2.4.
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4.3 Future Work
As mentioned earlier, a potential application of the classification of extremal

Sziklai curves is the inductive characterization of extremal nonsingular hypersurfaces in
even dimensions. In this final section, we will examine specific cases.

Since the characterization may be done inductively, first consider the case in
P4: in this case, the upper bound of Theorem 4.2.5 is attained by a nonsingular threefold
X of degree d only if there exists a point P P X pFqq such that X X TP pX q is a cone, with
center at P , over a nonsingular plane curve C of degree d defined over Fq that does not
contain a line defined over Fq and NqpCq “ pd ´ 1qq ` 1. Hence, its degree d must belong
to the set

t2,?q ` 1, q ´ 1, q, q ` 1u.

Now, fixe X Ă P4 be a nonsingular threefold of degree d defined over Fq.

Definition 4.3.1. We say that P P X pFqq is of cone type over a plane curve C if X XTP pX q

is a cone, with center at P , over a plane curve C of degree d.

A natural question is the following:

Question 2. To guarantee that NqpX q “ pd ´ 1qq3
` pd ´ 1qq2

` q ` 1, how many points
P P X pFqq of cone type over a nonsingular optimal Sziklai curve C of degree d must there
be at a minimum?

First, we will examine the known cases. We are aware that the nonsingular
quadric Q Ď P4 over Fq and the nonsingular Hermitian H Ď P4 over Fq2 attained the limit
of Theorem 4.2.5. In this case, by (HIRSCHFELD; THAS, 1991, Section 1.3 and 2.2) and
(TIRONI, 2022, Proposition 6), all points are of cone type over a nonsingular optimal
Sziklai curve.

Now, we will determine the minimum number of points of cone type that should
exist.

Proposition 4.3.2. If NqpX q “ pd ´ 1qq3
` pd ´ 1qq2

` q ` 1, then there exists at least
q ` 1 point P P X pFqq of cone type.

Proof. Suppose that NqpX q “ pd ´ 1qq3
` pd ´ 1qq2

` q ` 1 and that there exist a point
P P X pFqq not of the cone type over a nonsingular optimal Sziklai curve C of degree d. By
(DATTA, 2019, Lemma 4.2), |X pFqq X TP pX q

C
| ď pd ´ 1qq3. Hence,

|X pFqq X TP pX q| ě pd ´ 1qq2
` q ` 1.
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Let r :“ #LqpP,X q, where LqpP,X q is the set of lines defined over Fq satisfying
P P l Ď X . By (DATTA, 2019, Lemma 4.3), we must have r ě 1. If l P P̌ pFqqzLqpP,X q

and l Ď TP pX q, then |X pFqq X plztP uq| ď d ´ 2. So

pd ´ 1qq2
` q ` 1 ď |X pFqq X TP pX q|

ď 1 ` pq2
` q ` 1 ´ rqpd ´ 2q ` rq

“ 1 ` pq2
` q ` 1qpd ´ 2q ` rpq ` 2 ´ dq.

This implies that r ě q ` 1. Now, by proof of (DATTA, 2019, Theorem 4.8), for each line
l P LqpP,X q there exists a point of cone type over a nonsingular optimal Sziklai curve C
of degree d. Hence, exists at least q ` 1 point of cone type.

Also, the lower bound q ` 1 cannot be improved:

Example 4.3.3. Consider the following polynomial F P F2rX0, X1, X2, X3, X4s:

F :“ X2
0X1 ` X0X

2
1 ` X0X1X2 ` X0X

2
2 ` X1X

2
2 ` X3

2 ` X0X2X3 ` X2
2X3 ` X2

0X4`

` X0X1X4 ` X1X2X4 ` X0X3X4 ` X2X3X4 ` X2
3X4 ` X2X

2
4 ` X3X

2
4 .

Then, X “ vpF q Ď P4 is a nonsingular hypersurface of degree 3 over F2 with NqpX q “

27 “ pd ´ 1qq3
` pd ´ 1qq2

` q ` 1. Let

P1 :“ p0 : 1 : 0 : 1 : 0q, P2 :“ p1 : 0 : 1 : 0 : 1q, P3 :“ p1 : 1 : 1 : 1 : 1q P X pFqq.

We see from Magma program

1 q := 2;

2 d := q + 1;

3 F<t> := GF(q);

4 P4 <x0 ,x1 ,x2 ,x3 ,x4 > := ProjectiveSpace (F, 4);

5 F1 := x0 ^2* x1 + x0*x1^2 + x0*x1*x2 + x0*x2^2 + x1*x2^2 +

6 x2^3 + x0*x2*x3 + x2 ^2* x3 + x0 ^2* x4 + x0*x1*x4 + x1*x2*x4 +

7 x0*x3*x4 + x2*x3*x4 + x3 ^2* x4 + x2*x4^2 + x3*x4 ^2;

8 X := Scheme (P4 ,[ F1]);

9 u := # Points (X);

10 PX := Points (X);

11 for x in [1 .. u] do

12 P := Points (X)[x];

13 Tp := TangentSpace (X,P);

14 S := Tp meet X;

15 TC := TangentCone (S,P);
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16 if TC eq S then

17 P;

18 end if;

19 end for;

that Pi is a point of cone type over a nonsingular optimal Sziklai curve C of degree 3 for
i “ 1, 2, 3 and no other point of X pFqq satisfies this condition.

Indeed, for d P tq´ 1, q, q` 1u, not all Fq-rational points of X are of cone type:
let P P X pFqq be a point of cone type, then

#pl X X pFqqq P t1, d, q ` 1u for l P P̌ pFqq.

On the other hand, for a Sziklai optimal curve of degree d P tq ´ 1, q, q ` 1u there exists a
Fq-line l such that #pl X X pFqqq “ d´ 1. Therefore, not all Fq-rational points of X are of
cone type. We can see this by (HIRSCHFELD; THAS, 1980, Theorem 29), if all Fq-rational
points of X are of cone type, then X pFqq is of type p1, d, q ` 1q; hence, X pFqq X TP pX q is
of type p1, d, q ` 1q in TP pX q » P3, but there is no set of type p1, d, q ` 1q in P3

pFqq with
pd ´ 1qq2

` q ` 1 (“ #pX pFqq X TP pX qq if P P X pFqq is of cone type) points. Also, the
existence of q ` 1 points is not enough for the hypersurface to be extremal:

Example 4.3.4. Consider the following polynomial F P F5rX0, X1, X2, X3, X4s:

F “ X4
0 ` X4

1 ´ 2X4
2 ` X4

3 ´ X4
4 .

Then, X “ vpF q Ď P4 is a nonsingular hypersurface of degree 4 over F5 with

NqpX q “ 316 ă 456 “ pd ´ 1qq3
` pd ´ 1qq2

` q ` 1.

Again, by Magma program

1 q := 5;

2 d := q - 1;

3 F<t> := GF(q);

4 P4 <x0 ,x1 ,x2 ,x3 ,x4 > := ProjectiveSpace (F, 4);

5 F1 := x0^d + x1^d - 2*x2^d + x3^d - x4^d;

6 X := Scheme (P4 ,[ F1]);

7 u := # Points (X);

8 PX := Points (X);

9 for x in [1 .. u] do

10 P := Points (X)[x];

11 Tp := TangentSpace (X,P);

12 S := Tp meet X;
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13 TC := TangentCone (S,P);

14 if TC eq S then

15 P;

16 end if;

17 end for;

All points of cone type are listed below:

tp1 : 0 : 0 : 0 : 1q, p2 : 0 : 0 : 0 : 1q, p3 : 0 : 0 : 0 : 1q, p4 : 0 : 0 : 0 : 1q,

p0 : 0 : 0 : 1 : 1q, p0 : 0 : 0 : 2 : 1q, p0 : 0 : 0 : 3 : 1q, p0 : 0 : 0 : 4 : 1q,

p0 : 1 : 0 : 0 : 1q, p0 : 2 : 0 : 0 : 1q, p0 : 3 : 0 : 0 : 1q, p0 : 4 : 0 : 0 : 1qu,

that is, X is not extremal and has 12 p ą 6 “ q ` 1 q point of cone type.

The last example (Example 4.3.4) contains more than q ` 1 points of cone
type. However, there is a potentially important difference when compared to Example
4.3.3, which has q ` 1 aligned points of cone type (something that does not occur in
Example 4.3.4). We still do not have any concrete example of the existence of these
hypersurfaces, we believe that they do not exist due to the specific structure they must
have for d P tq ´ 1, q, q ` 1u with q ą 2.
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