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“Our Ancestors knew that healing comes in cycles and circles.
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Resumo

Neste trabalho, os principais objetos de estudos sao curvas algébrica com muitos pontos
[F,-racionais. Estamos interessados nas curvas que atingem o limite superior de Sziklai.
Nosso resultado principal completa a classificacao das curvas extremais em relacao ao limite
superior de Sziklai; mais precisamente, provamos que se uma curva plana nao-singular
X de grau ¢ — 1 definida sobre F, (¢ > 5) sem componentes F,-lineares atinge o limite
superior de Sziklai (d — 1)g + 1 = (¢ — 1)* para o ntimero de pontos F,-racionais, entdo X
¢ projetivamente equivalente sobre F, a curva X, 54 : X =1 gyt 4 ~ 7971 = () para
alguns «, 3, € F} tais que a + 3 + v = 0. Além disso, como o limite de Sziklai é igual ao
limite de Stohr-Voloch para curvas planas de grau ¢ — 1, este resultado classifica as curvas

planas [Fy-Frobenius cldssicas nao-singulares extremais de grau ¢ — 1.

Palavras-chave: Curvas Algébricas. Pontos F,-racionais. Limite superior de Sziklai.

Curvas Extremais.



Abstract

In this work, the main objects to study are algebraic curves with many I -rational points.
We are interested in curves attaining the Sziklai upper bound. Our main result completes
the classification of curves that are extremal with respect to the Sziklai bound; more
precisely, we prove that if a plane curve X' of degree ¢ — 1 defined over F, (¢ = 5) without
F,-linear components attains the Sziklai upper bound (d — 1)g + 1 = (¢ — 1)? for the
number of its F,-rational points, then X’ is projectively equivalent over F, to the curve
Xapm aX9V 4 gY T 4 47971 = 0 for some «, 3,7 € I, such that a + 8+~ = 0. Also,
since the Sziklai bound is equal to the Stohr-Voloch bound for plane curves of degree ¢ — 1,

this result classifies the F,-Frobenius extremal classical nonsingular plane curves of degree

q— 1.

Keywords: Algebraic curves. F,-Rational points. Sziklai upper bound. Optimal curves.



List of symbols

[F, the finite field with ¢ elements;

I, the nonzero elements of F,;

K :=TF, the algebraic closure of F;

X (F,) the set of F -rational points of X’;

I(P, F n G) the intersection number of curves F and G at a point P;
N, (&) the number of rational points on the nonsingular model of X’;
GL(3, K) the general linear group of degree three over K;

GL(3, q) := GL3(F,) the general linear group of degree three over Fy;
PGL(3, K) the projective general linear group of degree three over K
PGL(3, q) := PGL(3,F,) the projective general linear group over F;
W, : P? — P? the F,-Frobenius map with W, (z :y: 2) := (27 : y?: 29);
K (X) the function field of X over K;

P? = E”Q(K ) the dual projective space over K;

IFDQ(IFQ) the dual projective space over F;

P(F,) the set of lines [ € P?(FF,) such that P e [.

Div(X) the divisor group of X’;

Zx(t) the Zeta function of X’;

Lx(t) the L-polynomial of X’;

K a (k,n)-arc in P*(F,);

A;(K) the set of lines [ € P?(F,) such that #(I n K) = i;

a;(K) the cardinality of A;(K);

Ca(F,) the set of plane curves of degree d > 2 defined over F, without

F,-linear components;
Wi : PA(F,) — {0,1,...,q + 1} defined by ;(P) := #(P(F,) n A;(X));

Z(X) = P*(Fy)\X(F,);
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Introduction

Algebraic curves defined over a finite field have been much studied in recent
years for their applications in finite geometry, number theory, error-correcting codes, and
cryptology. Let X be a projective, geometrically irreducible, algebraic curve defined over
a finite field IF, where ¢ is a power of a prime number p. We denote by X (IF,) its set of
[F-rational points. It is a classical problem to count the number N (X) := #(X(F,)) of
[F,-rational points of X'. However, since this problem is rather hard to solve, it is often
desirable to find good upper bounds for N,(X) depending on some invariants of the curve

X. For instance, the famous Hasse-Weil upper bound states that
Ny(X)<qg+1+2-g(X)- ¢ ( The Hasse-Weil Theorem )

where g = g(X) is the genus of X'. Note that the same bound holds for any curve defined
over [, and genus g. Once we have a bound, it is a natural question to see whether such a
bound is sharp or not, and then, it is also natural to try to classify the optimal curves,
that is, the curves attaining said bound. In the context of the Hasse-Weil upper bound,
such optimal curves do exist and are called F,-maximal curves. Maximal curves may
exist when ¢ = n? is a square, and it is known that the genus of an F,-maximal curve is
upper bounded by n(n — 1)/2 (Ihara’s Theorem). Also, Thara’s Theorem for the genus of a
F,-maximal curves cannot be improved in general. Up to birational equivalence, there is
exactly one F,-maximal curve of genus n(n — 1)/2: the Hermitian curve H,, given by the
homogeneous equation
H,:Y"Z+YZ" = X"

has genus g(H,,) = n(n—1)/2. It is a classical and yet unsolved problem to find the spectrum
of the genera of F -maximal curves; see (ARAKELIAN; TAFAZOLIAN; TORRES, 2016).

When ¢ is not a square, Serre refines Hasse-Wiel upper bound:
Ny(X)<qg+1+g(X)-m ( The Serre Theorem )

with m = [Zq%], where [x] denotes the largest integer < z. Note that, if ¢ is a square, this

“refined Hasse-Weil upper bound” coincides with Hasse-Weil upper bound.

In this work, we are interested in plane curves with many [F -rational points.
Let X be a plane curve of degree d > 2 without [F-linear components. In (SZIKLAI, 2008),
Sziklai conjectured the following result:
Ny(X) <(d—1)g+1 ( The Sziklai Conjecture ).
In (HOMMA; KIM, 2009, section 3), Homma and Kim proved that the Sziklai Conjecture

fails for curves of degree 4 over Fy, as the plane curve with equation

XY+ 2P XY P Y2 P+ 2P X XY Z + XY Z + XY Z2 =0 (1)
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has 14 points over [F, while Sziklai’s bound is equal to 13. Also, they proved that the curve
defined by (1) over F, is a unique curve up to projective equivalence with degree 4 and
14 F4-rational points. So, Homma and Kim modify The Sziklai Conjecture: unless X is a
curve defined over F, which is projectively equivalent to the curve defined by (1) over Fy,
we might have N (X) < (d — 1)g + 1. Later on, in a sequence of three papers (HOMMA;
KIM, 2009; HOMMA; KIM, 2010b; HOMMA; KIM, 2010a), Homma and Kim proved The
Modified Sziklai Conjecture 1.

We are interested in curves attaining the Sziklai bound. Let & be a nonsingular
plane curve of degree d that is optimal with respect to the Sziklai upper bound, that is,
N,(X) = (d — 1)¢ + 1, then, by (HOMMA; KIM, 2010b, Section 5), its degree d must
belong to the set

{27\/64'1;(1_1;(];(]4‘1;(]"’2}

This means that the spectrum of the degrees of optimal Sziklai curves is pretty small,
hence, it seems feasible to classify, up to projective equivalence, the nonsingular plane

curves of degree d attaining the Sziklai bound. Previously, it was only known in cases

d=2,4/g+1,q,g+10r g+2 (see, Theorem 2.3.1).

For the case d = ¢ — 1, a family of optimal curves is given by the homogeneous
equation

Ko  0XTH+ YT 442971 =0

with «, 8,7 € F; and a + 3 + v = 0. This curve &, ., is nonsingular and the set of its

[F,-rational points is

Ko (Fg) = PHE)\(V(X) w v(Y) U v(Z)).

In (HOMMA, 2024), Homma has stated the following question:

Question 1. Are there curves of degree ¢ — 1 that attain the Sziklai upper bound such that

they are not projectively equivalent over F, to a curve of type X g.)?

In the same preprint, he gives a positive solution to this problem for ¢ = 4,

since in this case, the Hermitian cubic
Hy : X2+Y34+23=0

attains Sziklai’s bound but is not projectively equivalent to any X, )

In this work, we give a negative answer to Question 1 for ¢ = 5 (see, Theorem
3.2.4), thus completing the classification of optimal Sziklai curves. This work is organized

as follows:
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In Chapter 1, we give basic facts about plane curves defined over a finite field;
also, we give the necessary background on a particular case of the Stohr-Voloch theorem

for plane curves.

In Chapter 2, we briefly survey the existing literature on the Sziklai bound and

related topics.

In Chapter 3, first, we will give several technical results that are necessary
to prove our classification of curves of degree ¢ — 1 that are optimal with respect to the
Sziklai bound. Later, is devoted to the proof of Theorem 3.2.4, which is the main result of
our work. Here, we remark that while our technique applies to all ¢ > 8, the cases ¢ = 5,7
need to be dealt with by using two different approaches, which are of independent interest.
The former needs the knowledge of L-polynomial of curves of genus 3 with small defect
(LAUTER; SERRE, 2002), the latter is based on the classification on (36, 6)-arcs in P?(FF;)
(BOUYUKLIEV et al., 2020).

Finally, in Chapter 5, we give a brief discussion regarding topics that are
directly linked to or possible applications of our results. More in detail, we show as our
main result is related to the F,-Frobenius classical plane curves of degree ¢ — 1 attaining
the Stohr-Voloch upper bound. Further, curves attaining the Sziklai upper bound are
related to nonsingular hypersurfaces with many F,-rational points in even-dimensional
projective spaces; see (DATTA, 2019; TIRONI, 2022).
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1 Preliminaries and Notations

In this chapter, basic facts about plane curves defined over a finite field are
presented. Also, we introduce the notations that will be used throughout the thesis and

present some general results.

1.1 Algebraic Plane Curves over a Finite Field

Algebraic curves defined over a finite field have been much studied in recent
years. In this section, we provide a concise overview of the theory of plane curves over
finite fields, based on (HIRSCHFELD; KORCHMAROS; TORRES, 2008) and (FULTON,
2008), to which we refer the reader to for further details.

Let F, be a finite field with ¢ = p" elements and K := F, be the algebraic
closure of F,, where p is a prime number. A (projective) plane curve X in the projective
plane P? := P% of homogeneous equation F(X,Y,Z) = 0, where F € K[X,Y,Z] is a
homogeneous polynomial, is denoted by X = v(F) and consists of all points (x : y : 2) € P?

such that F(z,y, z) = 0; namely,
X=v(F):={(x:y:2)eP’| F(z,y,2) = 0}.
Also, the degree of X', denoted by deg(X'), is deg(F"). A curve of degree one is called a line.

Definition 1.1.1. A plane curve X = v(F) is said to be defined over F, if there is a
non-zero constant A € K such that A - F(X,Y,Z) e F [ X,Y, Z]. Also, the points (x : y :
z) € P*(F,) such that F(z,y,z) = 0 are called F,-rational points (or simply, rational
points) of X and X (F,) denotes the set of all F,-rational points of X.

A component of X = v(F) is a plane curve v(G) such that G divides F. If v(G)
is defined over I, then we say that v(G) is an [F,-component of X. Also, if deg(v(G)) = 1,
we say that v(G) is an F,-linear component of X'. The plane curve v(F') defined over F,, is

irreducible if F' is irreducible over F, and absolutely irreducible if F' is irreducible over K.

A projective transformation ¢4 : P> — P? is defined as follows:
pa(z:y:z)=u withu'=A-(z:y:2),

where A € GL(3, K). It is also called a projectivity. The projectivities of P constitute its
projective general linear group PGL(3, K). Also, the projectivities of P* with A € GL(3,F,)
is denoted by PGL(3,q) := PGL(3,F,) < PGL(3, K). Another interesting map in P?* is
the F,-Frobenius map ¥, : P? — P* with U, (2 : y: 2) := (2% :y?: 29).
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Definition 1.1.2. Let F and G plane curves. We say that F and G are projectively
equivalent over By, denoted by F ~,,.,; G, if there is a projectivity pa with A € GL(3,F,)
such that

pa(F) =G.

The dual projective space P? := P2 is the space of all lines in P? and by P?(FF,)

we mean the set of lines defined over F, of P2. For a point P € P*(F,), we define
P(F,) := {le PX(F,) | Pel}.
Remark 1.1.3. It is a basic fact that every line in P* can be expressed as
(ag, ar,az) == {(zo : x1 : T2) € P%; agxo + a121 + agxy = 0}
for some (0,0,0) # (ag, a1, az) € K*, where
(ag, a1, as) = U(by, by, by) < (ag : ay : az) = (by : by : by) € P2

Thus the map l(ag, a1, az) — [ag : ay : as] allows us to identify P* with P?. As PGL(3, K)
acts transitively on the set of all triple of non-collinear points of P, then PGL(3, K) acts

transitively on the set of all triple of non-concurrent lines of P?.

For a definition the intersection number of two plane curves at a point, which

can be somewhat unintuitive, for simplicity, consider a curve in the affine plane
Ak =K x K ={(z,y) | v,y e K}

as simply an equivalence class of polynomials in K[X, Y] under multiplication by a non-
zero scalar. So, given two curves F and G in A%, the intersection number I(P, F' n G) of
F and G at the point P = (z,y) € A% is defined by the seven properties we want this

intersection number to have:

(I1) I(P,F n G) € N when F and G have no common component through P;
(I2) I(P,FF n G) = w if F and G have a common component through P;
(I3) (P, F nG)=0if and only if P ¢ F' n G;

(I4) (P,F nG) =1if F and G are two distinct lines through P;

(15) I(P,F n G) = (P,G n F);

(16) I(P,F ~ (G + AF)) = (P, F n G) for any A € K[X,Y];

(I7) (P,FnGH)=1(P,FnG)+I(P,FnH) forany H e K[X,Y].
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For the existence and uniqueness of the function I( P, FnG), see (HIRSCHFELD;
KORCHMAROS; TORRES, 2008, Theorem 3.8 and 3.9) or (FULTON, 2008, Section 3.3:
Theorem 3). For the projective curves F = v(F), G = v(G), and the point O = (0:0: 1),

the intersection number is
(O, F nG):=1((0,0), F\x n Gy)

where Fi,(X,Y) := F(X,Y,1) and G,(X,Y) := G(X, Y, 1). Intersection numbers of F and
G at another point P are calculated by using covariant properties; that is, a projectivity is
applied to change P to (0:0:1).

Theorem 1.1.4. (HIRSCHFELD; KORCHMAROS; TORRES, 2008, Theorem 3.14:
Bézout’s Theorem) If the projective plane curves F and G have degrees m and n, and no

common component, then

YIP,FAG) =

The next result provides a method to find all plane curves passing through a

given set of points of P*(F,):

Theorem 1.1.5. (FULTON, 2008, Section 5.5: Noether’s “AF + BG” Theorem) Let
F =v(F) and G = v(G) be two plane curves defined over IF, with no common components.

Suppose that
FnG=A{P,..,P} and I(P,FnG)=1

fori=1,...;s. Then for all plane curve X = v(H) defined over F, with F n G < X there
are A, BeF [X,Y, Z] such that H = AF + BG.

Definition 1.1.6. A point P = (x :y: z) of X is singular if

oF oF oF
6X(x Yy, z) = aY(fff y,z) = aZ(af y,z) = 0.

Otherwise, P is nonsingular (or smooth) and the tangent line at P is

Tp(X) = (Sf;(x ) X+ Zi(m e Zg@; v 2) - Z>.

Also, a nonsingular point P of X is a point of inflexion of X if
I(P,Tp(X)nX) = 3.

Here, P is also called an inflexion.

We conclude this section with a brief discussion of algebraic curves in higher-
dimensional spaces. A subset V < P" := P is a projective algebraic set if there exists a

set of homogeneous polynomials M < K[Xy, Xi, ..., X,,] such that

V={(xg:xy: - :x,) P | Fxg,21,....,0,) =0 forall FeM}.
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The ideal I(V) € K[Xy, X1, ..., X;,] which is generated by all homogeneous polynomials
F with F(xg,x1,...,2,) = 0 for all (zg : z1 : -+ : x,) € V, is called the ideal of V. It
is a homogeneous ideal. An algebraic set V < P" is irreducible if it is not the union of
two smaller algebraic sets. We have that V < P" is irreducible if, and only if, I(V) is
a homogeneous prime ideal in K[Xg, X1, ..., X;,]. A projective variety is an irreducible

projective algebraic set.

Given a non-empty variety V < P", we define its homogeneous coordinate ring

by
K[Xo, X1,y Xu]

IV) ’
this is an integral domain containing K. The function field of V is defined by

Fh(V) =

K(V) = {]gc | f,g€T'h(V) are forms of the same degree and g # O}

which is a subfield of the quotient field of ', (V). The dimension of V' is the transcendence
degree of K (V) over K.

Definition 1.1.7. A projective algebraic curve X < P" (n = 3) is a projective variety of

dimension one. A point P = (xg:x1: -+ :x,) € X is nonsingular if the local ring
Op(X) := {; e K(X) | g(xo, z1, ..., ) # 0} c K(X)

is a discrete valuation ring. The curve X is called nonsingular if all points P € X are

nonsingular.

Remark 1.1.8. An irreducible plane curve can be defined as above.

Let V < P™ and W < P" be projective varieties. A rational map ¢ : V — W
is defined by ¢ = (Fy : --- : F,) where Fy,...,F, € K[Xy,...,X;y] are homogeneous

polynomials with the following properties:

(a) Fy,..., F,, have the same degree;
(b) not all F; are in I(V);
(c) for all H € (W) holds H(Fy, ..., F},) € I(V).
Two curves X, X, are birationally equivalent if there are rational maps ¢ :
X — &, and ¢ : Xy — A such that ¢, o ¢ and ¢, o ¢ are the identity maps on Xy and

X1, respectively. We have that X; and X, are birationally equivalent if and only if their
function fields K(X;) and K(A5) are K-isomorphic.
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Theorem 1.1.9. (FULTON, 2008, Section 7.5: Theorem 3) FEvery irreducible plane curve
X s birationally equivalent to a nonsingular curve (not necessarily a plane curve), called

a nonsingular model of X .

Remark 1.1.10. In this thesis work, we are interested in the rational points of an algebraic
plane curve X, that is, X nP*(F,). In general, there is no bijection between X n P*(F,)
and the rational points of its nonsingular model. Therefore, from this point onward, N,(X)
will represent the number of rational points on the nonsingular model of X. Note that, if
X is nonsingular, then N,(X) = |X(F,)|.

1.1.1 Genus and Zeta Function

An algebraic function field F'/K of one variable over K is an extension field
F o K such that F'is a finite algebraic extension of K (z) for some element x € F' which is
transcendental over K. For instance, the function field K (X') of a curve X is an algebraic

function field of one variable over K.

Proposition 1.1.11. (FULTON, 2008, Section 7.5: Corollary of Theorem 3) There is a
natural one-to-one correspondence between nonsingular projective curves X and algebraic

function fields in one variable over K.

This correspondence makes it possible to translate definitions and results from
algebraic function fields to algebraic curves (and vice versa). For the basic definitions and
results of the theory of algebraic function fields, see (STICHTENOTH, 2009, Chapter 1).

Throughout this chapter, X < P" denotes a nonsingular model of an irreducible
projective curve. For each P = (x¢: 21 : -+ :x,) € X, we know that Op(X) is a discrete

valuation ring with maximal ideal
Mp(X) := {i; € Op(X) | f(zo,x1,...,xs) =0 }

In this case, Mp(X) =t - Op(X) is a principal ideal and each 0 # z € K(X') has a unique

representation of the form z = " - u for some n € Z and u € Of(X). Define

ordp(z) :=n and ordp(0) := c0.

The divisor group of X is defined as the (additively written) free abelian group
which is generated by the points of X’; it is denoted by Div(&X’). The elements of Div(X)

are called divisors of X. In other words, a divisor is a formal sum

D = Z np- P with np e Z, almost all np = 0.
PeX



Chapter 1. Preliminaries and Notations 20

Two divisors D = anP and D' = ZmpP are added coefficientwise

D+ D' := ) (np+mp)P.

PEPF

For Q € X and D = anP, we define vg(D) := ng. A partial ordering on Div(F) is
defined by
Dy < Dy < vp(Dy) <vp(Dy) forall Pe X.

A divisor D > 0 is called an effective (or positive) divisor. The degree of a divisor is defined
as

deg(D) := Z vp(D) - deg(P) where deg(P) := [Op(X)/Mp(X) : K].

PEPF

Remark 1.1.12. The rational points P of X are the points P € X such that deg(P) = 1.

A nonzero element z € K(X) has only finitely many points P € X’ such that

ordp(z) # 0; so we can define

div(z) := Z ordp(z) - P,

PeX

called the principal divisor of z. For a divisor D € Div(X’), we define the Riemann-Roch

space associated to D (which is a vector space over K) by
ZL(D):={z¢e K(X) | div(z) + D = 0} u {0}
and (D) := dimg (Z(D)) < .

Proposition 1.1.13. (STICHTENOTH, 2009, Proposition 1.4.14) There is a constant
v € Z such that for all divisors D € Div(X) the following holds: deg(D) — (D) < 7.

The emphasis here lies on the fact that v is independent of the divisor D; it
depends only on the function field K (X'). The genus g of K(X')/K is defined by

g := max{ deg(D) — (D) + 1| D e Div(X) }.
Note that this definition makes sense by Proposition 1.1.13.

Definition 1.1.14. The genus g = g(X') of an irreducible algebraic curve X is the genus
of its function field K(X)/K.

Theorem 1.1.15. (HIRSCHFELD; KORCHMAROS; TORRES, 2008, Theorem 5.57)

Let X an irreducible plane curve of degree d. If X is nonsingular, then

g(X) = 5 - (d—=1)(d - 2).
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For every n > 0 there exist only finitely many positive divisors of degree n; see
(STICHTENOTH, 2009, Lemma 5.1.1). So, we can define the power series

Za(t) = 2 Aut" e C[[t]],

where

A, :=#{D e Div(X) | D = 0 and deg(D) = n},
called the Zeta function of X. By (STICHTENOTH, 2009, Corollary 5.1.12), the power

series Zy(t) is convergent when ¢|t| < 1; also, converges to a rational function of the form

p(t)

0= Ty

where p(t) € C[t].
Definition 1.1.16. The polynomial

Lx(t) := (1 =1)(1 — qt)Zx (1)
is called the L-polynomial of X .

Theorem 1.1.17. (STICHTENOTH, 2009, Theorem 5.1.15) The L-polynomial Lx(t) of
X factors in Cl[t] in the form
29
La(t) = [ [(1 = ast) (1.1)

i=1

The complex numbers o, ..., apg are algebraic integers, and they can be arranged in such a
way that ayayy; = q holds for i =1,...,g = g(X). (We note that a complex number « is
called an algebraic integer if it satisfies an equation '™ + cp10™ ' + -+ cra + ¢y = 0
with coefficients ¢; € 7).

Corollary 1.1.18. (STICHTENOTH, 2009, Corollary 5.1.16) For all r > 1,

29
(X(Fp)l =g +1- ) af
i=1

where ay, ..., sy € C are the reciprocals of the roots of Lx(t). In particular, we have

29
X(Fy)| =q+1-) o
i=1

Theorem 1.1.19. (STICHTENOTH, 2009, Theorem 5.2.1 (Hasse-Weil)) The reciprocals
of the roots of Lx(t) satisfy

lag| = ¢ for i=1,...,2g.
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1.2 The Theory of Stohr-Voloch for a Plane Curve

In (STOHR; VOLOCH, 1986), Stohr and Voloch gave a geometric method
to obtain upper bounds for the number of F -rational points of a curve of P%. Here, we
give the necessary background on a particular case of the Stohr-Voloch theorem for plane

curves.

Let X an irreducible plane curve defined over F, in P?. The order-sequence at
a point P € X, denoted by jo(P) < j1(P) < j2(P), is defined to be the set of intersection
multiplicities at P of X’ with the lines of P?. If P is nonsingular, then the order-sequence
of P is
jo(P) =0, ji(P) =1 and j:(P) = I(P, Tp(X) n X).

Almost all point of X have the same order-sequence which is called the order-sequence of
X and is denoted by €y < €; < 2. Now, since X is defined over F,, there exists a smallest

integer v € {1, e} such that

9 i

W (o, 1, 72) 1= det To T To £ 0
Déy).flj'o Déy)ﬂjl Déy)$2

T3

where Dék) is the k-th Hasse derivative with respect to a separating variable ¢ of K(X)/K,

and xg, 1, T» are the coordinate functions on X < P2

Definition 1.2.1. The number v is called the F,-Frobenius order of X, and such a curve

is called IF,-Frobenius classical if v = 1. Otherwise, X is called F,-Frobenius nonclassical.

Theorem 1.2.2. Let X be an irreducible plane curve of degree d and genus g defined over
F,. If v denotes the F,-Frobenius order of X, then
v(2g—2)+ (¢ + 2)d

N, (&) < 5 :

In particular, if X is I -Frobenius classical, then

L

N, (&) < 2d(d+ qg—1).

Theorem 1.2.3. (HEFEZ; VOLOCH, 1990, Theorem 1) Let X be an irreducible plane
curve of degree d and genus g defined over F,. If X is nonsingular and such that v > 1,
then

Ng(X) =d(qg—1) — (29 — 2).

A refined version of theorem 1.2.2 can be obtained if one can gather sufficient
information on the number and the weight of the IF -rational inflection points. Indeed,
consider the Frobenius divisor Sy of X, then deg(Sy) = v(29 — 2) + (¢ + 2)d and
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P e Supp(Sx) for all P e X(F,). Also, by (STOHR; VOLOCH, 1986, Theorem 2.4(a)),
for P e X(F,) we must have

vp(Sx) = 1+ jo(P) —v.

This implies that vp(Sy) — jo(P) + v — 1 = 0 = vp(Sy) — jo( P) + v + 1 = 2. Hence, we
get the following result

Theorem 1.2.4. Let X < P? be an irreducible nonsingular algebraic curve of genus g and
degree d defined over IF,. If v is the F,-Frobenius order of X', then

N, (&) < ; (V(2g 2+ (q+2)d— ) A(P))

PeXx

where A(P) = jo(P) —v —1if Pe X(F,) and A(P) = 0 otherwise.

1.3 Arcs and Codes

The following brief account of the theory of plane arcs and their relationship
to linear codes is based on (BIERBRAUER, 2016, Chapter 10 and 17), to which we refer

the reader to for further details.

Definition 1.3.1. A (k,n)-arc K in P*(F,) is a set of k points such that each line contains
at most n point of IC and there is a line that contains exactly n points of K. A (k,2)-arc

s simply called an arc.

If K < P*(F,) be a (k,n)-arc, then for 0 < i < g + 1, we define
A(K) = {1 e B(E,) | #(0 K) = i}
a;(K) := #A,(K) and ko(K) := min{i | a;(K) # 0}.
When there is no possibility of confusion we will denote them simply by A;, a; and k.

Definition 1.3.2. A linear subspace C of F of dimension k is called an [n, k],-code. The

elements of a linear code C are called codewords.

The weight of a codeword x = (1, ...,7,) € C < F is the number of nonzero

coordinates in x, denoted by wt(x). The minimum distance of C is
min{ wt(z) | z € C,x # 0}.

If the minimum distance of C is d, then we write that C is an [n, k, d],-code. A generator
matrix G of an [n, k, d],~code C is a matrix with k rows and n columns whose rows form a

basis of C. The code C is recovered from G by taking all linear combinations of the rows
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of G. If C contains ¢; codewords of weight ¢, for ¢ = 1, ..., n, then the weight enumerator is
defined by
We(z) i=co + 12+ oz + -+ + e, 2" € Z[2].

Now, let C be a linear [n, 3, d],-code described by a generator matrix G. We
assume that there is no 0 column in G. We can then consider the columns of G as generators
of points in P*(F,). A linear [n, 3, d],-code C is called projective if there is a generator
matrix whose columns generate different points in P?(F,). For a projective [n, 3, d],~code C
with a generator matrix G, the n points in P*(F,) corresponding to columns of G form an
(n,n — d)-arc in P*(FF,). For each i in 0,...,n — d, the number a; of lines in A; is related

to the coefficients ¢; of the weight enumerator as follows:

(q_l).<a07... 7anfd):(cn7"' ch)'
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2 The Sziklai Bound and Optimal Plane

Curves

Let X be a (projective, geometrically irreducible, algebraic) curve defined over
a finite field F,. It is a classical problem to count the number N, (X) of F -rational points
of X. However, since this problem is rather hard to solve, it is often desirable to find good
upper bounds for N,(X) depending on some invariants of the curve X'. Once we have a
bound, it is a natural question to see whether such a bound is sharp or not, and then, it
is also natural to try and classify the optimal curves, that is, the curves attaining said

bound. In this chapter, we will talk about the Sziklai upper bound and optimal curves.

2.1 Hasse-Weil Bound and Refinements

Before discussing the Sziklai bound, in this section, we will first explore some
known bounds. For instance, an important consequence from the Hasse-Weil Theorem
1.1.19 is the famous Hasse-Weil bound:

Theorem 2.1.1. (STICHTENOTH, 2009, Theorem 5.2.3: The Hasse-Weil Bound) Let
X be a curve of genus g = g(X) = 0 defined over F,. If N = N, (X)), then

D=

IN — (¢ + 1) <2gq2.

The nonsingular plane curves X defined over F, with N (X) = ¢+ 1 + QQq%
are called Fj,-maximal curves. Maximal curves may exist when ¢ = n? is a square,
and it is known that the genus of a maximal curve is upper bounded by n(n — 1)/2
(STICHTENOTH, 2009, Proposition 5.3.3 (Ihara)). It is a classical and yet unsolved
problem to find the spectrum of the genera of F,-maximal curves; see (ARAKELIAN;

TAFAZOLIAN; TORRES, 2016). When ¢ is not a square, Serre refines this bound:

Theorem 2.1.2. (SERRE et al., 2020, Theorem 2.1.1: The Serre Bound) Let X be a
curve of genus g = 0 over a finite field F,. If N = N (X), then

IN—=(g+1)| < gm,
with m = [Qq%], where [x]| denotes the largest integer < x.

Note that, if ¢ is a square, this “refined Hasse-Weil bound” coincides with the
Hasse-Weil Bound (Theorem 2.1.1).



Chapter 2. The Sziklai Bound and Optimal Plane Curves 26

Definition 2.1.3. Let ay, ..., aay € C the reciprocals of the roots of the L-polynomial Ly (t)
of X with agys =@ fori=1,...,g9. If

xi = —(o +agq) for i=1,...,9

then we say that X has zeta function of type (x4, ...,x,). Also, a curve X has defect k if
Ng(X) =q+ 1+ gm—k withm = [Qq%].

29 g
Note that, by Corollary 1.1.18, we have N, (X) = ¢+ 1— Z o =q+1+ Z X
i=1 i=1
Theorem 2.1.4. (SERRE et al., 2020, Theorem 2.2.1)

(1) If x1 + 22+ - - + x4 = gm (defect O case), then x; = m fori=1,...,m.

(2) If v +a2+---+x, = gm—1 (defect 1 case), there are two possibilities for (x1, ..., x,),
namely:

(m,m,...m,m—1) for g(X)=>1

and
—1+\/3m —1—4/5

(m,m,...,m—I— 5 + 5 ) for g(X) = 2.

(3) If x4 + 29+ -+ + x5 = gm — 2 (defect 2 case), then there are seven possibilities

(21, ..., ), namely:

(m,m,....,m,m — 2) g=1,
(m,m,...m,m—1,m—1) g =2,
(m,m,...,m,m+v2—1,m—~2—1) g =2,
(m,m,...,m,m++3—1,m—+3—1) g =2,
-1 5 —1—4/5
<m,m,...,m,m—1,m+ ;\F,er 2[ g =3,
—1+4+/5 —1+4+/5 Z1-4/5 ~1-+/5
sy Y TIENS L ZLEVE L TLEVEY oy
2 2 2 2
(m,m,...,m,my, mo, ms3) g=3

where my = m + 1 — 4cos®(km/7) for k =1,2,3.

Proposition 2.1.5. (SERRE et al., 2020, Corollary 2.5.2) Defect 1 is impossible for
g(X) > 2.

Remark 2.1.6. (LAUTER; SERRE, 2002, Fact 3.3) By the Hasse-Weil Theorem 1.1.19,
il = Jo: + agai] < Jau] + |agel = 297 = m + {2¢7}

where {x} denotes the fractional part of z. Any entry in the table not satifying this condition
for all i can be eliminated. So, if {2(]%} < V31, N,/(X) =q+gm—1 (defect 2) and
g # 4, then (z1,...,x4) = (m,m,...,m,m — 2). The proof of this follows from the fact that

the last cases in Theorem 2.1.4 are only possible when {2q1/2} is large enough.
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2.2 The Sziklai Upper Bound

As we have already mentioned, maximal curves may exist only when ¢ = n? is
a perfect square. When ¢ is not a square, Theorem 2.1.4 item (1) also indicates that curves
achieving the Serre Bound (Theorem 2.1.2) are rare due to the constraints imposed in x;.
In this section, we will discuss the Sziklai Upper Bound, which provides an enhancement

over the Serre Bound in certain situations.

In this section, we denote by Cy(F,) the set of plane curves of degree d > 2
defined over F, without F,-linear components. For X € Cy(F,), in (SZIKLAI, 2008,

Conjecture 1), Sziklai conjectured the bound
N,(X)<(d—1)¢g+1 ( The Sziklai Conjecture ) (2.1)

and proof a weaker inequality

Ng(X) < (d—1)g+ B| (2.2)

where || denotes the integer part of z. Actually, as noted by Homma and Kim in (HOMMA;
KIM, 2009, Section 1), the bound (2.2) had been already proved by Segre (SEGRE, 1959,
Theorem II on page 30).

In (HOMMA; KIM, 2009, section 3), they proved that the Sziklai Conjecture

(2.1) fails for curves of degree 4 over Fy, as the plane curve with equation
X4V + 2P+ XY+ Y222+ P XP+ XY Z + XY Z + XY ZP =0 (23)

has 14 points over [F4 while Sziklai’s bound is equal to 13. Also, they proved that the curve
defined by (2.3) over Fy is a unique curve up to projective equivalence with degree 4 and

14 F4-rational points:

Theorem 2.2.1. (HOMMA; KIM, 2009, Theorem 3.3) Let X € Cy(Fy). If Ny(X) = 14,
then X is projectively equivalent to the curve defined by (2.3) over Fy.

So, Homma and Kim modify The Sziklai Conjecture (2.1):

Conjecture 1. (HOMMA; KIM, 2010b, Section 1: The Modified Sziklai Conjecture)
Unless X is a curve defined over Fy which is projectively equivalent to the curve defined by
(2.3) over Fy, we might have

Ng(X) < (d—1)g+ 1.

Later on, in a sequence of three papers (HOMMA; KIM, 2009; HOMMA; KIM,
2010b; HOMMA; KIM, 2010a), Homma and Kim proved The Modified Sziklai Conjecture

1. Since the proof of this conjecture is spread across three paper, we will provide a concise
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overview of the proof main idea, along with some essential results, in preparation for the
next chapter: First, note that The Modified Sziklai Conjecture 1 is true if d > g + 2; in
this case, we have (d —1)g+ 1 = (¢ + 1)g + 1. As an obvious bound to the cardinality of
the set of all F-rational points of X is N(X) < ¢* + ¢+ 1 = (¢ + 1)g + 1, which comes
from X (F,) < P*(F,), then

N(X) <P +qg+1<(d—1)g+ 1.

So they consider the conjecture for 2 < d < g+ 1. In the first paper (HOMMA; KIM, 2009,
Corollary 2.2), they proved a new bound

Ny(X) < (d—1)g+ (¢ +2—d) (2.4)

The bound (2.4) implies that The Modified Sziklai Conjecture 1 is true for d = ¢ + 1.

Now, for a nonsingular plane curve X € Cy(F,) with 2 < d < ¢ — 1, as noted

by Homma and Kim in (HOMMA; KIM, 2010b, Theorem 4.1), the Sziklai conjecture is
true by the theory of Stohr-Voloch for a Plane Curve. In fact, note that

(d—Dq+1—;-ﬂd+q—1)=;~M—2KQ—d—1)>&

so, if X is F,-Frobenius classical, by Theorem 1.2.2, then N, (&X) <
(d —1)q + 1. Also, we have that

1

(d—1)g+1—-d(lg—d+2)=(d—+/qg—1)(d++/q—1).
So, if X' is F,-Frobenius nonclassical, by (HEFEZ; VOLOCH, 1990, Proposition 6), we
must have d > /g + 1 and, by Theorem 1.2.3,
Ny(X)=d(g—1)—(29g—2)=d(¢g—d+2) <(d—1)g+ 1.
Also, as noted in (HOMMA; KIM, 2010b, Remark 4.2), Stohr-Voloch bound 1.2.2 is

effective even if an irreducible Fy-Frobenius classical curve X has singularities.

To settle the Modified Sziklai’'s Conjecture 1 affirmatively for other cases, the
following results prove that they can assume that the X’ curve is absolutely irreducible

without a singular F,-rational point:

Proposition 2.2.2. (HOMMA; KIM, 2010b, Proposition 2.1) If X' is reducible over I,
then N, (X) < (d — 1)g.

Proposition 2.2.3. (HOMMA; KIM, 2010b, Proposition 2.2) If X has an irreducible
component which is not defined over F,, then Ny (X) < (d — 1)q.

Proposition 2.2.4. (HOMMA; KIM, 2010b, Proposition 2.3) If X has a singular point
which is an F,-rational point, then N (X) < (d — 1)q.
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For the case d = ¢, the following results provide conditions for the lines defined
over F, to intersect the curve at ¢ rational points; In addition to being the main results
that help to prove the case d = ¢, they help to characterize the curves of degree ¢ with
N,(X) = (¢ —1)g+ 1 (see, (HOMMA; KIM, 2012)):

Proposition 2.2.5. (HOMMA; KIM, 2010b, Proposition 3.1) Let X € Cy(F,). Fiz an
Fy-point Py € X and an F,-line 1, < P? with Py ¢ l,,. Suppose there are Fy-lines 1y, ..., 1
with ¢ >t = 3 passing thorugh Py such that the q F -points of [;\l, are contained in X.
For an Fy-line | € Py other than these t lines, if #((I\lw) N X (Fy)) = q —t + 2, then all
the q F,-points of I\l are contained in X.

Proposition 2.2.6. (HOMMA; KIM, 2010b, Proposition 3.2) Let X € Cy(F,). Fiz an
F,-point Q € P*(F,)\X. Suppose there are Fy-lines Iy, ....l; with ¢ — 1 =t > 2 passing
thorugh Qo such that [;(F,)\{Qo} = X. For an F,-line [ € Qo other than these t lines, if
#(1nX(F,)) =q—t+2, then (F)\{Qo} <= X.

These two propositions establish the validity of the Modified Sziklai’s Conjecture
1 for d = ¢ > 4 (see, (HOMMA; KIM, 2010b, Theorem 3.3 )). Also, as previously discussed,
these two results aid in characterizing curves X" of degree ¢ with Ny (X) = (¢ —1)¢+ 1. In
Chapter 3, we will prove a similar proposition for curves X’ of degree ¢g—1 (Proposition 3.1.9)

in order to characterize curves of degree ¢ — 1 with N,(X) = ((¢—1) — 1)g+ 1 = (¢ — 1)%.

Therefore, to settle the conjecture, remains to be considered F,-Frobenius
nonclassical plane curves of degree d with 2 < d < ¢ — 1. In this case, Homma and Kimm

proved the following result:

Theorem 2.2.7. (HOMMA; KIM, 2010a, Theorem 2.3) Let q be a power of a prime
number p, and say q = p°. Let X be an F,-Frobenius nonclassical irreducible curve of
degree d over F,, and p' the intersection multiplicity i(Q, X n To(X)) for a general point
QeX. Ifd+#p" +1, then Ny(X) < (d — 1)q.

Therefore, they established the following theorem:

Theorem 2.2.8 (Sziklai’s upper bound). If X € Cy(F,), then
Ng(X) < (d—1)g+ 1, (2.5)
except for the curve over Fy which is projectively equivalent to the curve defined by (2.3).
Once we have a bound, it is natural to try and classify the optimal curves, that

is, the curves attaining said bound. Regarding the Sziklai upper bound (2.5), we make the

following observation:

Remark 2.2.9. (HOMMA; KIM, 2010b, section 2) If (d,q) # (4,4) and N (X) =

(d—1)q + 1, then X is absolutely irreducible and any rational point of X is nonsingular.
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2.3 Optimal Plane Curves over Finite Fields

In (HOMMA; KIM, 2010b, Remark 5.1), Homma and Kim observe that the
possible degrees d of a nonsingular curve with (d — 1)g + 1 rational points are ¢ + 2, ¢ + 1,
¢,q—1,4/q+ 1 and 2. Also, for each degree d in the list, there exists a nonsingular curve of
degree d that attains the bound. For d # ¢ — 1, the complete classification of such optimal

curves is known; we summarize these results in the following Theorem:

Theorem 2.3.1. Let X € Cy(F,) a nonsingular curve with Ny(X) = (d —1)q + 1.

(i) (HIRSCHFELD, 1998, Section 5.1) If d = 2, then X ~,; v(X* + Y Z) over F,.
(ii) (HIRSCHFELD et al., 1991) Ifd = \/q+ 1, then
X ~proj V(XVITE 4 yVart g Zvatt
over F, when q > 4 is a square.

(iii) (TALLINT, 1961; HOMMA; KIM, 2013) If d = q+2, then X is projectively equivalent

over IF, to the curve of type
V(Y(Y9Z —YZ9) + Z(Z°X — ZX) + (aX +bY + cZ)(XTY — XY))
where t* — (ct? + bt + a) is irreducible over F,.

(iv) (HOMMA; KIM, 2011, Theorem 1.3) If d = q + 1, then X is projectively equivalent

over F, to the curve
Xy = v(X9 = X220 Y7 - Y Z9)

when q =5 or q = 2. If ¢ = 4, then X is projectively equivalent over Fy to either X

or the curve
v(iuG(X,Y, 2) + XY Z(12(X? + Y  + Z°) + XY + Y Z + ZX))

where G(X,Y,Z) = XY + XY+ Y Z +YZ* + Z*X + ZX* and pi* + p+1 = 0.
Moreover, those two curves are not projectively equivalent to each other over Fy. If

q = 3, then X is projectively equivalent over F3 either to X, or to the curve
vIXBY — XY 4+ Y Z - YZP+ 2PX - ZXP+ XYZ(X +Y — Z)).
Moreover, those two curves are not projectively equivalent to each other over Fs.
(v) (HOMMA; KIM, 2012, Main Theorem) If d = q, then
X i VX = XZTH + Y 7 — 79)

over F,.
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For d = ¢ — 1, as it was mentioned by Sziklai in (SZIKLAI, 2008), the curve
Xiapn = v(aXT + Y + 4271

with a, 3,7 € F, and o+ 3 +v = 0 has (¢ — 1)? rational points. This curve is nonsingular

and the set of its F,-rational points is
Ko (Fy) = PHE\(V(X) U v(Y) U v(Z)).
In (HOMMA, 2024), Homma has studied the number of projective equivalence
classes over [, in this family of curves. More precisely, he proves the following theorem.

Theorem 2.3.2. (HOMMA, 2024, Theorem 1.3) The number v, of projective equivalence

classes over Fy in the family of curves

{Xapm | @, B,7€Fs, a+p+7y=0}

is as follows:

(i) Suppose that the characteristic of F, is neither 2 nor 3.
(1) If g=2 mod 3, then v, = (¢ +1)/6.
(2) If¢=1 mod 3, then v, = (¢ + 5)/6.
(i) Suppose that q is a power of 3. Then v, = (¢ + 3)/6.
(iii) Suppose that q is a power of 2:

(1) If g=2 mod 3, then v, = (¢ —2)/6.
(2) If¢g=1 mod 3, then v, = (¢ + 2)/6.

In the same paper, the curves of degree 3 with 9 F4-rational points are classified.
Theorem 2.3.3. (HOMMA, 2024, Theorem 3.1) Let X be a nonsingular plane curve of
degree 3 over Fy = {0,1,,a?}. If Ny(X) =9, then X is either
(i) the Hermitian cubic Hs given by v(X> +Y? + Z°) or
(ii) projectively equivalent to the curve X, given by v(X® + aY? + a?Z%).

Remark 2.3.4. (HOMMA, 2024, Section 4) The Hermitian cubic Hs and the curve X,

are birationally equivalent over Fy. Also, they are projectively equivalent over Fas.

In the same paper, Homma has stated the following Question 1: Are there
curves of degree ¢ — 1 that attain the Sziklai’s upper bound such that they are not

projectively equivalent over [F, to a curve of type X4 5.)?

In the next section, we give a negative answer to Question 1 for ¢ > 5.
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3 Optimal Plane Curves of Degree q¢ — 1

Let ¢ > 5 be a prime power. In this chapter, we complete the classification of
curves that are extremal with respect to the Sziklai bound; more precisely, we prove that if
a plane curve X of degree ¢ — 1 defined over F, without [Fy-linear components attains the
Sziklai upper bound (d — 1)g + 1 = (¢ — 1)? for the number of its F -rational points, then
A& is projectively equivalent over I, to the curve X, ) : aX9 4 gyt 4 47971 = O for
some «, 3,7 € F}, such that a + 3 + v = 0 (Theorem 3.2.4). Also, since the Sziklai bound
is equal to the Stohr-Voloch bound for plane curves of degree ¢ — 1, this result classifies

the IF,-Frobenius extremal classical nonsingular plane curves of degree ¢ — 1.

3.1 Preliminary results

In this section, we give several technical results that are necessary to prove our

main result (Theorem 3.2.4).

The following result is of independent interest; however, it will effectively be
used only on the proof of Proposition 3.2.1, where the case ¢ = 5 is dealt with. Recall that,

by Theorem 2.3.3, this is the smallest case to be considered.

Theorem 3.1.1. Let X € C, 1(F,) with N,(X) = (¢ — 1)®. Then, X is nonsingular.

Proof. Let F(X,Y,Z) e F,[X,Y, Z] be a homogeneous equation for X over F,. By Remark
2.2.9, X is absolutely irreducible and any [ -rational point of X’ is nonsingular. Also, by
Theorem 2.2.7, X is IF,-Frobenius classical. Let ) be the curve defined by the homogeneous
equation G(X,Y, Z) := X - Fx +Y? - Fy + Z?- F, e F XY, Z]. If (x:y:2)e X(F,,

by Euler’s formula, we have that

G(l’,y,Z) :Iq'Fx<(E,y,Z)+yq’Fy(Jf7y,Z)+Zq'Fz(ZE,y,Z)
IZL‘-FX(I7y,Z)+y'Fy(I,y,2)+Z'F2(ZE,y,Z)

Hence, X (F,) < V. Let Sing(X') be the set of all singularities of X. If (x : y : z) € Sing(X),
then Fx(z,y,2) = Fy(x,y,2) = Fz(x,y,2) = 0; hence, Sing(X) < Y. Since N,(X)
attains also the Stohr-Voloch bound 1.2.2, then I(P, X n')) = 2 for each P € X(F,) and
2N,(X) =(¢—1)-2(¢—1) = d(F) - d(G). Hence, by Bézout’s theorem 1.1.4,

XY= Z[Pme Z 2P.

PeX(F,)
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Since Sing(X) < ), then any singular point of X must appear in the support of the

intersection divisor X - ). Therefore, X is nonsingular.

]

The next result is crucial to our strategy:

Proposition 3.1.2. (HOMMA, 2024, Proposition 2.1) Let X be a possibly reducible plane

curve over F, of degree ¢ — 1. Then

X e {Xapy |, B,7€Fy, atB+7 =0} X(F,) =PF)\(v(X) uv(Y) v v(Z)).

Now, fix a curve X € C,_(F,) with N,(X) = (¢ — 1)*. Let
Z(X) = P2(Fq)\X(Fq)-

Note that, by Proposition 3.1.2, if Z(X) = (v(X) uv(Y) uv(Z))(F,), then X = X, 3.
for some «, 3,7 € F, such that a + 3 + v = 0. By Remark 1.1.3, the general projective
linear group PGL(3, ) acts 3-transitively on the set of non concurrent lines of P?(F,). So,
as #7(X) = 3q, if there are three lines Iy, Iy, ls € P*(F,) such that Z(X) = (I; uly Uls)(F,),
then [y, 1o, I3 are not concurrent and we can choose coordinates X,Y, Z of P? such that
li =v(X),lo =v(Y) and I3 = v(Z). This means that, in order to prove our main result
(Theorem 3.2.4), it is enough to show the existence of such three lines. To do this, we first
prove that X'(FF,) has a structure of (n, k)-arc in P?(F,):

Lemma 3.1.3. The set X(F,) < P*(F,) is a ((¢ — 1)*,q — 1)-arc.

Proof. Since deg(X) = ¢ — 1, then #(I n X(F,)) < g — 1 for every line [ € ]f”2(IFq). Let
t = max{#(l n X(F,)) | l e P(F,)} < q— 1.

If P e X(F,), then each line in P(F,) contains at most ¢ points of X' (F,). Since #P(F,) =
q+1then (g—1)* = Ny(X) <1+ (¢+ 1)(t — 1). Hence,

q(q —2) 3
+1=¢q—-2+——>q—2.
q+1 1 qg+1 g

This implies that ¢t = ¢ — 1. Therefore, X' (F,) is a ((¢ — 1)*,¢ — 1)-arc in P*(F,).

g—1=t>

For 0 < i < ¢+ 1, recall the definition of
A = {leP(F,) | #(1 n X(F,)) = i} and a; = #A;.

Since deg(X) = ¢ — 1, then a;, = ag41 = 0. Aline [ € ]f”2(IFq) is called an i-line if [ € A;. A
point P € P(IF,) is said to be of type i}*...5;* (i3 > --- >4, and rq, ..., 7, = 0) if the number
of i;-lines through P is r; for j = 1,...,t. Also, as X(F,) is a ((¢ — 1), ¢ — 1)-arc, we may

use the following result:
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Lemma 3.1.4. (HIRSCHFELD, 1979, Lemma 12.1.1) With the same notation as above,

we have the following equalities.
q—1
(i) Y ai=q"+q+1.
i=0
(i7) Zzaz =(q+1)(qg— 1)

(iii) Z (i — Da: = q(g — 2)(g — 1)

Lemma 3.1.5. Let P € P*(F,) be a point of type iy*...i;*. Then ry + -+ 1, = g+ 1.

Moreover,
(1) If Pe X, theni; > 1 forall j =1,...,t and 1 —i—er(ij ~1)=(¢— 1~
(ii) If P ¢ X then ) rji; = (¢ — 1)°.

Proof. Since the F-lines through P cover the whole plane P?(F,) and N,(X) = (¢ — 1)?,
the proof is straightforward.

]

Corollary 3.1.6. Let i and j be (not necessarily distinct) non-negative integers. Suppose
that there are different F,-lines ly,ly with [y € A; and ly € A;. If P =11 nly € X(F,), then
1+7=q.

Proof. Suppose that P is of type i1'...7;*. By Lemma 3.1.5 item (i), we have

(q—1)% =14 Y r(i; — 1)
<1+(@-1)+0G-1D+(¢—1(¢—-2)
=i+j—14+¢ —3¢+2
—it+j—q+(g-1)7%

Therefore, 1 + 7 > q.

To simplify our notation, we give the following definition.

Definition 3.1.7. Fori=0,...,q— 1 we define v : P*(F,) — {0,1,...,q + 1} as

Ui(P) := #(P(F,) N A).
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Lemma 3.1.8. If P e X(F,), then v,_1(P) = 3. In particular, a,—1 = 3(q — 1). Also, if
Yy 1(P) = 3, then P is of type (¢ — 1)*(q¢ — 2)7 2.

Proof. Let rp = ¢,_1(P). By Lemma 3.1.5 (i), if P is of type ¢}'...i;* then

(q—1)* =14 Y r(i; = 1)
<l+rp(g=2)+(¢+1-rp)(g—3)
=1+qrp—2rp+q¢*—3q+q—3—qrp+3rp
=rp+(¢—1)>*-3,

hence, 7p > 3. We get 3(q¢ — 1)? = 3- N, (X) lines in A, ;. However, each line was counted
at most (¢ — 1) times. This implies a,—1 = 3(¢—1). If 1,1 (P) = 3, let sp = 1,_o(P), then

(q— 1) =1+ r(i; — 1)
<1+3(g=2)+sp(g=3)+(¢—2—-5p)(¢—4)
=3¢ —5+qsp—3sp+¢* —4q—2q +8 — qsp + 4sp
=sp+(¢—1)+2—q,
hence, sp > ¢ — 2. This means that the other lines in P (F,) are in A,_5. Therefore, P is
of type (¢ — 1)*(g —2)72.

O

Roughly speaking, in order to prove our result, we need to prove the existence
of a point Qg € Z(X) such that ¢,_1(Qo) is big enough. In order to do so, we prove the
following proposition, which is inspired by Proposition 2.2.5 and 2.2.6:

Proposition 3.1.9. Fiz a point Qo € Z(X) and l,, € P*(F,)\Qo(F,). Suppose there are
lines Iy, ..., l; € Qo(F,) (2 <t < q—1) such that Li(F)\({Qo} U ls) € X(F,). For a line
e Qu(F,) other than these t lines, if #((I\ly) N X(F,)) = q —t, then

Z(Fq>\({QO} Y loo(]Fq)) < X(Fq>‘

Proof. Choose coordinates X,Y, Z of P? such that I; = v(X),l; = v(Y) and I, = v(Z),
whence Qo = (0:0:1). Let

Go = 207 — X1 _ Y, G, 1= XY e B,[X,Y, Z].

Note that v(Gy) and v(Gp) are plane curves with no common components. A direct
computation shows that #(v(Go) N v(G1)) = 2(q — 1) = d(Gy) - d(G1); more precisely, we

have

v(Go) nv(G1) ={(0:1:a), (1:0:a) |aeF,} = (l1 Ul)(F)\({Qo} U lx).
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Hence, by Bézout’s Theorem 1.1.4, I(P,v(Gy) n v(G1)) = 1 for each P € v(Gy) n v(Gy).
Also, since [;(F,)\({Qo} v ls) < X(F,) for i = 1,2, then v(Gy) n v(G;) < X(F,). Let F
be a homogeneous equation for X over F,; by Noether’s “AF 4+ BG” Theorem 1.1.5, we

can write
F(X,Y,Z)=aw(Z7" = X' YT ) + XY (9, 3(X,Y) + g, a(X,Y)Z + -+ + g0 Z97?)

where ¢, € F,[X,Y, Z] is homogeneous of degree v and ag € ;. In general, any line
L € Qo(F,)\{l1,1} is defined by an equation of the form Y — uX = 0 for some y € Fy.

Hence
LFN\{Qo} v leo(Fy)) = {(L:pn: B) | BeFy}.
Since agy(BY ! — 1 — p4™h) = —agy when B, € [y, then
F(1, 1, 8) = (1(gq—s(L, p1) — aoo) + piqq—a(L, p) B + -+ + pgoBr~>. (3.1)

In particular, if Iy, = v(Y —a,X) with g = 1,...,t — 2, we must have a, # 0. Let

PeFg\{1}
Since lot, (F)\{Qo} v 1) < X(F,), by equation (3.1), then

augq-3(1; a,) — ano 0
B. augq*4‘(17 au) _ O
a,go 0

Since B is a Vandermonde matrix, we have det(B) # 0. This implies that

gq74(17au> == 90<1>au) =0.

If v <t—2,since g,(1,y) has t — 2 roots {ay, ..., a;_2} but its degree is less than t — 2,
then g,(1,y) = 0 as a polynomial in y. Therefore,

F(1,y,2) = aop(2"" = y") + (yga-3(1,9) — aco) + yq-a(1,9)2 + -~ + ygi2(1,y)2""" .

Let [ = v(Y — pX), where p e Fy, and {(1, 1, 8;) | 1 <14 < ¢ —t} is a set of chosen points
of (I\lw)(Fy) N X. Then p # 0 and §; # 0 for i = 1, ..., ¢ — t. Hence,

pgq—s(1, i) — ano

1 5 é? gttt 19q-4(1, 1) _ 0
i=heat 119e—2(1, 1) 0
This implies that pg,—s(1, ) —ago = p1gq—a(l, 1) = -+ = pgi—o(1, 1) = 0. So F(1, 1, 5) =0

for any 8 € ;. Therefore, [(F,)\({Qo} v lx(Fy)) = X(F,).
[
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Corollary 3.1.10. Suppose that there is a point Q) € Z(X) such that r = ,_1(Q) = 2. If
these r lines are ly, ..., l,, then {(I;(F,)\{Q}) n Z(X) | i = 1,...,r} is contained in a line.

Proof. Let Q; = (Li(F)\{Q}) n Z(X) with i = 1,...,r. Since r > 2, we can consider the
line Iy, 1= Q1Q2. Since l; € Ay, then #(I\low) "X (F,) = (¢+1)—3 =qg—2fori =3,...,7.
By Proposition 3.1.9, we have [;\(l, v {Q}) < X(F,). Therefore,

{(LFQY) 0 Z(X) [0 =1,...,7} S Lee.

]

Remark 3.1.11. Let Q € Z(X). Suppose that Q(Fq) NAg1 = {li,lo, . L} with r = 2.
By Corollary 3.1.10, {(Li(F)\{Q}) n Z(X) | i = 1,2,....,1} S Iy is contained in a line.
Then, by Proposition 3.1.9, for any | € QO(Fq)\{ll, la, ..., L.}, one has that

#((Neo) N X (Fy)) < g—r—1.

This, in turn, implies that

#(UnX(E,)) <q-r

We now prove some interesting Corollaries to Proposition 3.1.9. They can be
thought of as partial negative answers to Question 1 when assuming stronger conditions
on the structure of Z(X).

Corollary 3.1.12. If ag = 2, then ag = 3.

Proof. Let Z*(X) := Z(X)\(ILUl2) and Q € I}, N2 where ., 12 € Ay. Since #Z(X) = 3¢,
we have #7*(X) = g — 1. As #Q(F,)\{IL,12} = ¢ — 1 and deg(X) = ¢ — 1, then each
line I € Q(F)\{I%, (%} contains exactly one point of Z*(X). By Corollary 3.1.10, Z*(X)

is contained in a line. Therefore, ay = 3.

]

Corollary 3.1.13. Let ¢ = 8. If Q € Z(X) is a point such that r = 1,_1(Q) = 4, then

r=q— 1. In particular, ay = 3.

Proof. Since r = 4, Remark 3.1.11 implies that

¢ —20+1=(q=1<r(g=1)+(q+1—-r)(g—r)
zqr—r+q2+q—qr—qr—r+r2
=q2+q—qr+r(r—2).

Hence ¢(r —3) < r(r —2) — 1. Since ¢ > 8, we must have r > 7. So

rir—=2)—1 (r+1)(r—3)+2 2
= = 1 .
r—3 r—3 mr +T—3

q <
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Since r < q — 1, this implies that r = ¢ — 1. Therefore, @ is of type (¢ — 1)?7'0% and, by
Corollary 3.1.12, ay = 3.

]

Corollary 3.1.14. Let ¢ > 7. If ag = 1, then ag = 3.

Proof. By Lemma 3.1.8, a, 1 = 3(q — 1). Let I}, € Ap. Since ¢ > 7, if 1, 1(Q) < 2 for
every point @ € [{ then
a1 < 2(g+1) <3(¢g—1),

a contradiction. Hence, there is a point Q € I such that r = 1,-1(Q) = 3. By Remark
3.1.11, we have that

¢ =2+1=(q-1)"<0+r(g=1)+(@@-r)g—7)
zqr—r+q2—2qr+r2
=q —qr+r(r—1).
Hence, g(r —2) < r(r —1) — 1. Since ¢ > 7, we must have r > 6. So

rir—1)—-1 (r+1)(r—2)+1
r—2 B r—2 B r—2°

Since r < ¢ — 1, this implies that 7 = ¢ — 1. Therefore, Q is of type (¢ — 1)?"10%. Then the

result follows from Corollary 3.1.12.

]

Let ko := min{i | a; # 0}. By the previous Corollary, in order to prove our
main result for ¢ > 7, it is enough to show that ky = 0. We start by giving an upper bound
for k.

Lemma 3.1.15. ky < g — 4.

Proof. Suppose that kg > ¢ — 3; then Lemma 3.1.4 leads to the following linear system:

Ag—3 + Ag—2 + Qg—1 = q2 +q+ 1
(¢ —3)ag—s + (¢ —2)ag— + (¢ — Dag—1 = (g+ 1)(g — 1)°
(¢ —3)(q—4)ag-3+ (¢ —2)(q = 3)ag2+ (g — 1)(q — 2)ag1=q(g — 2)(g — 1),

A direct computation shows that the system above implies that

2a, 3 = 3(¢* =3¢ +2), ag0=—2(¢>—5¢+4) and 2a, 1 =3(¢* — 3q +4).
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Since ¢ > 5, then
ago=—2(¢>—5g+4) <0,

a contradiction. Therefore, kg < ¢ — 4.

O

We now prove a lower bound for ky whenever kg # 0. We start with the following

lemma:
qg—1
Lemma 3.1.16. Z (i — ko)(i — q + 2)a; = 3(q — 1)* — 3ko. In particular,
i=ko
(g — ko — D)ag1 = 3(q — 1)* — 3k.
q—1
Proof. Let S := Z (i — ko)(i — g + 2)a,. First, note that
i=ko

(i—ko)(i—q+2)=i(i—1)+i(3—¢q)+ kolqg—2—1)
i(t—1) +1i(3—q) —iko + ko(q —2)
i(i—1)+i(3—q— ko) + ko(qg — 2).

By Lemma 3.1.4, we have

S = 2 i(il)ai+(3*qk0)'i iaﬂrk‘o(q?)'i a;
=q(g=2)(¢—1)*+ (3 —q—ko)(g+1)(g = 1)* + kolg — 2)(¢* + ¢ + 1)

=3(qg—1)* — 3ko.

Moreover, if i = g — 1 then (i — ko)(i —q +2) = (¢ — ko — 1) and if kg < i < ¢ — 2 then
(i — ko)(i — q +2) < 0. Also, by Lemma 3.1.15, kg < q¢ — 4. Hence, 3(q — 1)* — 3ko > 0.
Therefore,

(g — ko — Da,1 = 3(q —1)* — 3ko.

Proposition 3.1.17. Let ¢ > 7. If kg # 0, then ko > 2.

Proof. Suppose that kg = 1. Let [; € A;. Also, consider Py = i1 n X(F,) and
oA Z() = Q1 Q.

by Corollary 3.1.6, Py is of type (¢ — 1)?1*. If r; := 1, 1(Q;) for i = 1, ..., q then

rilg —1) + 1 < Ng(X) = (¢ — 1)?
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Hence, r; < g — 2. If r; = 3, then, again, by Remark 3.1.11,

F—2¢+1=(q—1*<1+r(g—1)+(g—7)(qg—1)
=1+7q—71 +q —2qr; + 717
=q2+1—qri+rz~(rz~—1),

hence, g(r; —2) < (r; — 1)r;. Since ¢ = 7, we must have r; > 6. Hence,

(7’1'— 1)7”1 (TZ'—F 1)(7’Z—2) +2
< = =7 1 X
! (Tl_z) T — 2 i +7°7;—2

This implies that r; > ¢ — 1, a contradiction. Therefore r; < 2 for ¢ = 1, ..., ¢; hence,
ay-1 < q+2q = 3¢. By Lemma 3.1.16, (¢ —2)a,_1 = 3(¢—1)*—3 = 3q(¢—2). So a,_1 = 3q.
By Lemma 3.1.16, we have

q—1

D= 1)(i — q+2)a; = 3q(q — 2).

i=1

Since (¢ — 2)a,—1 = 3¢(q — 2), one has that ay = --- = @43 = 0. Then, by Lemma 3.1.4,

we get the following linear system:

a; + aq,2=q2+q+1—3q
a1+ (¢ —2)ag2=(g+1)(¢ —1)> = 3¢(qg — 1).

A direct computation shows that the system above implies that
(q—3)a; =3(g—1) and (q—3)a, 2 = q(q* —5q + 4).

Note that
a; = 3(qq__31) =3+ q§3

As a; must be an integer, then (¢ — 3)|6. Since ¢ = 7, this implies that ¢ = 9. In this case,
a; = 4. Let [y € A;. Suppose that I, n X(F,) = {FPy} and I} n Z(X) = {Q1, ..., Qo}. Since
Ys(Py) = 9 and ¢5(Q;) < 2 (j = 1,...,9), counting the number ag = 27 of 8-lines along
{Po, @1, ...,Qg}, we must have that ¢5(Q;) = 2. Since ay = --- = ag = 0, then the other
seven lines than two 8-lines and Iy of Q;(Fy) are either a 7-line or a 1-line. Let s = ¥(Q;).
Then

64=(9—-17=1-1+2-8+s-7+(7T—5)-1=06s+24,
which is impossible because s must be an integer. Therefore, ky > 2.

]

If ¢ = 8, by Corollary 3.1.13, it is enough to prove that there exist a point
Q € Z(X) such that 1,_1(Q) = 4. We now give a lemma in case this does not happen:
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Lemma 3.1.18. Suppose that 1,_1(Q) < 3 for every point Q € Z(X):

(1) If there exist Py € X (F,) such that v,_1(Fo) = 3, then a,—1 < 3(q+ 1).

(it) If there exist Py € X (F,) such that v,—1(FPy) = 4, then a,—1 < 3(q + 2).

Proof. For (i), by Lemma 3.1.8, Py is of type (¢ — 1)*(¢ — 2)72. Let [ € P(F,) N Ag_s
and Qe ln Z(X). If rg := 1,1(Q) = 3, by Proposition 3.1.9 and Corollary 3.1.10, then
l € A,_1, a contradiction. So there are at least 3(¢ — 2) points in Z(X) such that rg < 2.
Therefore, 2a,_1 < 2(3(¢ —2)) + 3 - 6. Hence,

ag—1 <3(g—2)+9=3(¢g+1).

Next, we prove item (ii). Let s = ¢,_o(P). We have

(=17 <1+4(g—2)+s(g—3)+(g—3—s)(g—4)
=49 —T7+5sq—3s+q¢*—3¢—sq—4q+ 12 +4s
=(q—1)+4+s—q.

This implies that s > ¢ — 4; hence, P is of type (¢ — 1)*(¢ — 2)7*(¢ — 5)*. As in the
previous case, there are at least 3(¢ — 4) points in Z(X') such that the image by v, is
less than or equal to 2. Therefore, 2a,-1 < 2(3(¢ —4)) + 3 - 12; in particular,

ag—1 < 3(qg—4) + 18 = 3(¢ + 2).

3.2 Characterization of Optimal Sziklai Curves of Degree ¢ — 1

In this section, we provide the characterization of optimal Sziklai curves of

degree ¢ — 1. First, we deal with the cases ¢ = 5,7, as they need some ad hoc techniques.

Proposition 3.2.1. If X € Cy(F5) and N5(X) = 16, then there exist o, 3,7y € Fi with
a+ B+ =0 such that X ~.o; X(a5,4) over Fs.

Proof. By Theorem 3.1.1, X' is nonsingular of degree 4. By Theorem 1.1.15, X has genus

o) — (41)2(42) .,

By Lemma 3.1.15, we have kg < 1. Suppose that kg = 1. Let [ € A; with [y n X (F5) = {F}.
By Corollary 3.1.6, Py is of type 4°1'. In this case, [; is the tangent line to X at Py. Since

deg(X) = 4, then we have the following expression for the intersection divisor [; - X

h-X =>1(PhnX)P=2P+ R + R,
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for some points Ry, Ry € [; n X. Since the divisor [; - X is defined over F5, by applying
the 5-Frobenius map W5, we have that Ry + Ry 4+ 2P = VU5(Ry) + U5(Ry) + 25, which
implies that Ry, Ry € P*(Fy5). If Ry = Ry, then Ry = Ry = Py and P is an inflexion point;
so [(FPy, 1y n X) = jo(Fy) = 3. On the other hand, by Stohr-Voloch Theorem 1.2.4, we have

32 = 2N, (X) < 32— ) A(P).

PeXx

So 0 = A(Py) = jo(FPy) — 2, hence, [(Py,l1 n X) = ja(Fy) = 2, a contradiction. Therefore,
Ry # Ry and Ry, Ry € P?(IFy5)\P?(F5). Again, by Lemma 3.1.4 we are lead to the following
linear system:

a1+ as+ a3+ as=31
a; + 2(12 + 3@3 + 4@4 =96
2a9 + 6as + 12a4 = 240.

By solving the system above by standard Gaussian elimination, we get
a; =21 —ay, as = 3(ag — 15) and a3 = 55 — 3ay.
Since aq, as,az = 0, then 15 < a4 < 18. In particular, a; > 3; in turn, this implies that

Nos(X) > 16 +3-2 = 22.

6

By Theorem 1.1.17, let L(t) = H(l — w;t) be the factorization of the L-polynomial of X
i=1
into linear factors in some finite extension of Q. By Corollary 1.1.18, we have

6
N (X) = q" +1=) wl"
i=1

Since 16 = N5(X) =5+1+3-4—-2=5+3-4—1, by Remark 2.1.6, the curve X’ has
zeta function of type [4,4,2]. This means that

wy +w; =—4, wy +wy = —4and w3 + w3 = —2.

Hence,

w? = 36 — 2(Jwr]? + Jwa|? + |ws]?).

-

Il
—_

(2

By Hasse-Weil Theorem 1.1.19, |w;|> = 5. This implies that

22 < Nos(X) =26 — » w? =26 — (36 — 30) = 20,

6
=1

a contradiction. Then, kg = 0.

Suppose that a; # 0. Let [y € Ay and [; € A;. By Corollary 3.1.6, we have

Q=1lynleZ(X).
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If rg = ¥4(Q), by Lemma 3.1.5, we have 16 < 0+ 1 + 4rg + 3(4 — rg) = 13 + rg, hence,
ro = 3. This means that @) is of type 4%3'1'0". On the other hand, since ¥4(Q) = 3, by
Proposition 3.1.9 and Corollary 3.1.10, we must have 13(Q) = 0, a contradiction. Hence,
a; = 0. By Lemma 3.1.4 we get:

ap+ as+ as+ CL4=31
2(12 + 3@3 + 4&4 =96
2a9 + 6as + 12a4 = 240.

It is easy to see that the system above implies that
3ag = 21 — ay, as = 2(ay — 12) and 3asz = 144 — 8ay.

If ag = 1, then ay = 12 and a3 = 0. Let Iy € Ay and Py € lo n X (F5). If r = 14(R), by
Lemma 3.1.5, we have 16 < 2+ 3r +2(5 —r) = 12 +r. Since 2 + 3r < 16, this implies that
r = 4. Hence, 19(Fy) = 1, ¥3(Fy) = 1 and 14(Fy) = 4, a contradiction (a3 = 0). Therefore,
ag = 2 and the result follows from Corollary 3.1.12.

]

Proposition 3.2.2. If X € Cs(F;) and N;(X) = 36, then there exist o, 3,7y € F3 with
a+ B4 =0 such that X ~.o; X(ap,4) over Fr.

Proof. First, recall the definition of ky = min{i | a; # 0}. Note that, by Proposition 3.1.17
and Corollary 3.1.14, it is enough to prove that ko < 1.

By Lemma 3.1.3, we have that X (F;) < P*(IF;) is a (36, 6)-arc. Up to projective
equivalence, there are exactly 194 (36, 6)-arcs in P?(F;), see (BOUYUKLIEV et al., 2020,
Remark 1). The full list can be found online at <http://mars39.lomo.jp/opu/36_3 30.
txt>, where the points of such arcs are arranged as a generator matrix for a [36, 3, 30];-
code together with the weight enumerator. Recall that, by the relation between projective

[n,3,d],-codes and (n,n — d)-arcs in P*(F,), we have

6 - (ao,al,ag,ag,a4,a5,a6) = (03670357034,(333;03270317030)-

By Lemma 3.1.15, ky < 3. Hence, from our initial observation, it is enough to prove
that the condition kg € {2,3} leads to a contradiction; equivalently, the six (36, 6)-arcs
corresponding to the [36, 3, 30]7-codes such that the weight of a codeword is at most 34

are not projectively equivalent to X (F;).

Suppose that ky = 3. Since there is only one [36, 3, 30];-code such that the
maximal weight of a codeword is exactly 33, then there is only one (36, 6)-arc with kg = 3,

up to projective equivalence. So we can choose coordinates X,Y, Z of P? such that


http://mars39.lomo.jp/opu/36_3_30.txt
http://mars39.lomo.jp/opu/36_3_30.txt
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XF)={(1:1:3),(1:1:5),(1:2:3),(1:2:5),(1:2:6),(1:3:3),
(1:3:4),(1:3:5),(1:3:6),(1:3:0),(1:4:2),(1:4:4),
(1:4:5),(1:4:6),(1:4:0),(1:5:2),(1:5:3),(1:5:4),
(1:5:6),(1:5:0),(1:6:1),(1:6:3),(1:6:4),(1:6:5),
(1:6:0),(1:0:1),(1:0:2),(1:0:4),(1:0:6),(1:0:0),
(0:1:3),(0:1:4),(0:1:5),(0:1:6),(0:1:0),(0:0:1)}.

Let

G=YZ(Z-3Y)Z—-4Y)(Z-5Y)(Z —6Y) e F-[X,Y, Z]
H=XX+Y—-2)2X+Y — Z)(X +2Y —22) e F;[X,Y, Z]

A direct computation shows that #(v(G) nv(H)) =24 =6-4 = d(v(G)) - d(v(H)) and
v(G) nv(H) < X(F7); more precisely, we have

viG)nv(H)={(1:1:3),(1:1:5),(1:2:3),(1:2:6),(1:3:4),(1:3:5),
(1:3:0),(1:4:5),(1:4:6),(1:5:2),(1:5:6),(1:5:0),
(1:6:1),(1:6:3),(1:6:0),(1:0:1),(1:0:2),(1:0:4),
(0:1:3),(0:1:4),(0:1:5),(0:1:6),(0:1:0),(0:0:1)}.

Hence, by Bézout’s Theorem 1.1.4, I(P,v(G) nv(H)) = 1 for each P € v(G) n
v(H). Let F € F;[X,Y, Z] be a homogeneous equation for X over Fr; then, by Remark
2.2.9 and Noether’s “AF + BG” Theorem 1.1.5, we can write F = G + (a; X? + apY? +
asZ? + au XY +asXZ + agY Z) - H for some ay, ..., ag € F7. Since

0= F(1,0,0) = G(1,0,0) + oy H(1,0,0)
= 20y,

0= F(1,5,4) = G(1,5,4) + (a1 + 5%ay + 4%az + Say + das + 2006) H (1, 5,4)
= 4(aq + day + 2a3 + bay + das + 6ag),

0= F(1,4,0) = G(1,4,0) + (a; + 4%ag + 4ay) H(1,4,0)
= 4(a1 + 209 + day),

0= F(1,0,6) = G(1,0,6) + (a; + 6%az + 6as)H(1,0,6)
= 4(aq + a3 + 6as),

0=F(1,2,5) = G(1,2,5) + (a1 + 2%ay + 5%az + 204 + Has + 1006) H(1,2,5)
= 4(aq + day + das + 2ay + bas + 3ag),

0=F(1,6,4) = G(1,6,4) + (a; + 6%ay + 4%az + 6oy + das + 2406) H(1,6,4)
= 4(a1 + ag + 23 + 6y + 4oy + 3ag).
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It is easy to check that this implies that a; = -+ = ag = 0. Therefore, F' = GG and X has

[F;-linear components, a contradiction.

Now, suppose that ky = 2. Since there are five [36, 3, 30];-codes such that the
maximal weight of a codeword is exactly 34, then there are five (36, 6)-arcs with ky = 2,
up to projective equivalence. For instance, we can choose coordinates X, Y, Z of P? such
that

XF)={(1:1:4),(1:1:5),(1:1:6),(1:1:0),(1:2:2),(1:2:4),
(1:2:6),(1:2:0),(1:3:2),(1:3:3),(1:3:4),(1:3:5),
(1:4:2),(1:4:3),(1:4:5),(1:4:6),(1:5:3),(1:5:5),
(1:5:6),(1:5:0),(1:6:1),(1:6:2),(1:6:4),(1:6:6),
(1:6:0),(1:0:2),(1:0:3),(1:0:4),(1:0:5),(1:0:0),
(0:1:3),(0:1:4),(0:1:5),(0:1:6),(0:1:0),(0:0:1)}.

Let Qo= (1:5:2) e Z(X). A direct computation shows that
Qo(F7) = {5+ 2z, y+2 2042y + 2,40+ 3y + 2,60+ 4y + 2, £ + 5y + 2, 32 + 6y + 2, 20 + y},

Qo(F7) N Ag = {y + 2,42 + 3y + 2,2 + 32z} and Qo(F7) n As = {x + 3y + 62,z + 4y}.

Since ¥6(Qo) = 3, by Corollary 3.1.10 and Proposition 3.1.9, we must have 15(Qg) = 0, a

contradiction. The other four (36, 6)-arcs with ky = 2 can be dealt with by using a similar

argument:

(1) For
XF)={(1:1:3),(1:1:5),(1:1:6),(1:2:4),(1:2:5),(1:2:6),
(1:2:0),(1:3:1),(1:3:2),(1:3:3),(1:3:5),(1:3:0),
(1:4:2),(1:4:3),(1:4:4),(1:4:6),(1:5:2),(1:5:4),
(1:5:6),(1:5:0),(1:6:3),(1:6:4),(1:6:5),(1:6:6),
(1:6:0),(1:0:2),(1:0:3),(1:0:4),(1:0:5),(1:0:0),
(0:1:3),(0:1:4),(0:1:5),(0:1:6),(0:1:0),(0:0:1)}.

Let @ = (1:1:4). In this case, we have

v

Q(F7) = {3x+2,2v+y+2,2+2y+2,3y+z,6x+4y+2, 5x+5y+2,4x+6y+2, 62 +y},

Q(FﬂmAg ={3y+z,2+3y+6z,x+5z} and Q(IF7)0A5 ={r+y+3z,x+y+z}.
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(2) For

Let @ = (1:1:4). In this case, we have
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Q(Fﬁ = {3x+z,2x+y+z,x+2y+2,3y+z,6x+4y+z,5r+5y+z,4v+6y+2z, 6z +y},

@(F7)0A6= {x+5z2x+y+2z,2+2y+ 2z} and Q(F7)0A5 =

(3) For

X (F7) = {
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Let @ = (1:1:0). In this case, we have
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4),(1:2:6),
6),(1:3:0),
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6),(1:0:0),

:0),(0:0:1)}.

Q(IE}) ={z,6c+y+z,br+2y+z4r+3y+z,3x+4y+z,20+5y+z, o +6y+z, 6x+y},

QF:) N As = {2,420 + 3y + 2,3z + 4y + z} and Q(F;) N As =

(4) For

X (F7) = {

)
9
)
)

Y

(1:1:2)
(1:2:5)
(1:4:4)
(1:5:5)
(1:6:6)
(0:1:3)

Y

(1:1
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Let @ = (1:1:1). In this case, we have

_ O O e W N

_ o O Ot W N

{6z +y + 2}.
3),(1:2:4),
0),(1:3:2),
3),(1:5:4),
3),(1:6:5),
5),(1:0:0),
0),(0:0:1)}.

Q(F;) = {6242, 5x+y+2,4x+2y+2, 3+3y+2, 20 +4y+2z, t+5y+2, 6y +2, 62+y},

Q(Fﬂ ﬁAG

(6y+2, 20+4y+2, 2+3y+32} and Q(F7)nAs =

{x+y+5z,4x+2y+2}.
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In each of these cases, ¥4(Qy) = 3. By Corollary 3.1.10 and Proposition 3.1.9,
we must have ¢5(Qo) = 0, a contradiction. Therefore, none of these (36, 6)-arcs can be

projectively equivalent to X' (FF7), and our assertion follows.

O

Remark 3.2.3. As a byproduct of Proposition 3.2.2, we have that, of the 19/ nonequivalent
(36, 6)-arcs in P*(F7), only one is obtained as the set of rational points of an irreducible

plane curve of degree 6.

We are now in a position to prove our main result.

Theorem 3.2.4. Let X € C, 1(F,). If NJ(X) = (¢ — 1)* and q = 5, then there exist
a, B,y € Fy with a+ B+~ =0 such that X ~55 X(a,5,) over Fy.

Proof. Let kg = min{i | a; # 0}. If ¢ > 8, then by Proposition 3.1.17 and Corollary 3.1.13,
it is enough to prove that either kg < 1 or there exists a point @) € Z(X') such that

¢q71 (Q) = 4.

By way of contradiction, assume that ky > 2 and rq := 1),_1(Q) < 3 for every
point Q) € Z(X). Since #Z(X) = 3q, the latter hypothesis implies that 2a,_; < 9q¢.

Now, assume that ¢ > 11. If for every point P € X (F,) we have ¢,_;(P) = 5,
then a,—1 = 5(¢ — 1) > 9¢/2, a contradiction. Let Py € X(F,) such that ro = ¢,_1(P) < 4.
By Lemma 3.1.8, we have that rq € {3,4}. We distinguish two cases, namely rq = 3 or

To = 4.
If 7o = 3, then by Lemma 3.1.8, a,_1 < 3(¢ + 1). By Lemma 3.1.15, kg < ¢ —4
and, by Lemma 3.1.16, we have

3(q—1)2—3k0
q—ko—l

This implies that 3q(ky —2) + 6 = 3(q — 1)* — 3ko — (¢ — ko — 1)(3¢ + 3) < 0. Therefore,
ko <2 —2/q < 2, a contradiction.

We now suppose that rp = 4. Then, by Lemma 3.1.18, a,—1 < 3(¢ + 2). Since
q = 11, there is point P € X(F,) such that ¢,_;(P) = 3, otherwise, a,—1 > 4(¢ — 1) >
3(q + 2). Again, this implies that ky < 2, a contradiction.

We are then left with the cases ¢ = 5,7,8,9. As the cases ¢ = 5,7 have already

been dealt with in Propositions 3.2.1 and 3.2.2, respectively, we only need to consider the

cases ¢ = 8,9. We proceed with a careful case-by-case analysis.
For ¢ = 9, by Lemma 3.1.16, we have

3(64 — ko) 9%
22T g <a0= |22 2
Sk s {2 (3.2)
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By Lemma 3.1.15, we have ky < 5, and then 37k, — 128 = 3(64 — ko) — 40(8 — ko) < 0.
This in turn implies kg € {2, 3}.

Now, we prove that the condition ky = 2 leads to a contradiction for ¢ = 9. If
ko = 2, by the inequality (3.2), ag = 31. Let I, € Ay with
lh n X(Fg) = {Fo, P} and Iy n Z(X) = {Q2, ..., Qo}.

Let r; := 1s(P;) and r; := ¢5(Q;) where j = 0,1 and ¢ = 2,...,9. By Lemma 3.1.5, if
j €{0,1}, then

64 <2+ 7r; +6(9— ;) =56+ ;.
Since 2 + 7r; < 64, this implies that r; = 8 for j = 0, 1. If ; = 3 for some i € {2,...,9}, by
Remark 3.1.11, the other lines in Q;(FF,) contain at most 6 points of X (Fy), hence,

64<2+3-8+6-6=062,
a contradiction. Then r; < 2 when ¢ = 2,...,9. This implies that ag <2 -8 +8-2 = 32. If
rp = Yg(P) = 4 for every point P € X (F,)\{Py, P»}, then
- 8-2+4((qg—1)*—2)
a contradiction. Then there is a point P € X'(F,) such that rp = 3. By Lemma 3.1.18, this
implies that ag < 3(¢ + 1) = 30, a contradiction.

as = 33,

We now prove that the condition ky = 3 leads to a contradiction for ¢ = 9. If
ko = 3, by inequality (3.2), ag = 37. Let I3 € A3 with

l3 M X(Fg) = {P(),Pl,Pg} and l3 M Z(X) = {Qg, ...7Q9}.

Let r; := 9g(P;) and r; := 95(Q;) where j = 0,1,2 and ¢ = 3,...,9. By Lemma 3.1.5, if
je{0,1,2}), then
64<3+7r;+6(9—r;)=>57+r;.

Since 3+ 7r; < 64, this implies that r; € {7,8} for j = 0,1,2. If 7, = 3 for some i € {3, ..., 9},
by Remark 3.1.11, the other lines in Qi(Fq) contain at most 6 points of X'(IFy), hence,
64 <3+4+3-8+46-6 =063, a contradiction. Then r; < 2 when ¢ = 3,...,9. This implies that
ag < 3:8+7-2=38.If rp = ¢)5(P) = 5 for every point P € X(F,), then ag = 5(¢—1) = 40,
a contradiction. There is then a point P € X (FF,) such that ¢5(P) < 4. By Lemma 3.1.18,
this implies that ag < 3(¢ + 2) = 33, a contradiction.

We are then left with the case ¢ = 8. In this case, by Lemma 3.1.16, we have

3(49 — k?()) 9(]
— 0 S a7 <90 = .
TR Ser<36= 3 (3.3)

By Lemma 3.1.15, we know that ky < 4. Then 3(11ky — 35) = 3(49 — ko) — 36(7 — ko) < 0.
Hence, ko € {2, 3}.
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As previously done, we prove that the condition kg = 2 leads to a contradiction.
If ko = 2, by the inequality (3.3), a7 = 29. Let [, € Ay with

l2 M X(Fg) = {P07P1} and lz M Z(X) = {QQ,...,Qg}.

Let rj := 97(P;) and r; := ¢7(Q;) where j = 0,1 and ¢ = 2,...,8. By Lemma 3.1.5 if
j €{0,1}, then
49 <2+6r; +58—rj) =42+ 71,

Since 2 4 6r; < 49, then r; = 7 for j = 0,1. If r; = 3 for some ¢ = 2,...,8, by Remark
3.1.11, the other lines in Q;(F,) contain at most 5 points of X'(Fg). We thus obtain that
49 < 2+ 3-7+5-5 = 48, a contradiction. Hence, r; < 2 when ¢ = 2, ..., 8. Therefore
a; <2-7+7-2= 28, a contradiction.

Finally, we prove that the condition ky = 3 leads to a contradiction for ¢ = 8.
If ko = 3, by the inequality (3.3), a7 = 35. Let [3 € A3 with

l3 M X(Fg) = {P(],Pl,Pg} and lQ M Z(X) = {Qg, '-'7Q8}-

Let rj := 7(P;) and r; := 97(Q);) where j = 0,1,2 and ¢ = 3,...,8. By Lemma 3.1.5, if
j €{0,1,2} then
49 <34 6r; +5(8 —1;) =43 +1;.

Since 3 + 6r; < (¢ — 1)* = 49, then r; € {6,7} for i = 0,1,2. If r; = 3 for some i = 2, ..., 8,
by Remark 3.1.11, the other lines in Q;(F,) contain at most 5 points of X (Fs). So
49 < 343-7+5-5 = 49. This means that the other 5 lines in Q;(F,) are in As. By Lemma
3.1.16, we have —2a4 —2a5+4ay = 138. This implies that 4a; > 138+ 2a5 > 138+ 10 = 148,
hence a; = 37, a contradiction. So r; < 2 when j = 2,...,8. Therefore, a7 < 3-74+6-2 = 33,

a contradiction.

The proof of our theorem is then completed.
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4 Concluding Remarks

4.1 On [ -Frobenius classical curves with many points

Let C < P? be an irreducible nonsingular algebraic curve of degree d defined

over [F,. If C is IF,-Frobenius classical, by Theorem 1.2.2, we have

N,(C) < =d(d + ¢ — 1). (4.1)

DN | —

Note that if d = ¢ — 1 then d(d + ¢ — 1)/2 = (¢ — 1)?. This means that the Stohr-Voloch
upper bound for a nonsingular F,-Frobenius classical plane curve of degree ¢ — 1 is equal
to the Sziklai upper bound. Also, by the proof of our main result, it is inferred that the
curves attaining the Sziklai bound are F,-Frobenius classical and have no [F-rational point
of inflection. In other words, Theorem 3.2.4 classifies the [F -Frobenius classical nonsingular
curves of degree ¢ — 1 attaining the Stohr-Voloch upper bound (4.1) up to projective

equivalence.

4.2 On hypersurfaces with many rational points

A (projective) hypersurface X in the n-dimensional projective space P" := P} of
homogeneous equation F'(Xo, X, ..., X,,) = 0, where F' € K[X,, Xy, ..., X,,], is denoted by
X = v(F) and consists of all points (z¢ : z1 : -+ : x,) € P" such that F(x,z,...,z,) = 0;
namely,

X=v(F):={(xg:x1: - :2,) € P" | Fxg, 21, ..., 2,) = 0}.
Also, the degree of X', written deg(X), is deg(F’). A hypersurface of degree one is called a

hyperplane. When n = 2, a projective hypersurface is just a projective plane curve.

Definition 4.2.1. A hypersurface X = v(F) is said to be defined over F, if there is a

non-zero constant A € K such that
A F(Xo,Xl, 7Xn) S Fq[Xo, Xl, ---:Xn]-

Also, the points (xg @ x1 @ - : x,) € P"(F,) such that F(zo,z1,--- ,2,) = 0 are called
[F,-rational points (or simply, rational points) of X and X(F,) denotes the set of all
F,-rational points of X.

A component of X = v(F) is a hypersurface v(G) such that G divides F.
If v(G) is defined over F,, then we say that v(G) is an F,-component of X'. Also, if
deg(v(G)) = 1, we say that v(G) is an F -linear component of X
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A projectivity ¢ : P" — P" is given as follows:
ooz, =u withu'=A (xg:2,:-:2,)",

where A € GL(n + 1, K). It is also called a projective transformation; the projectivities of
P constitute its projective general linear group PGL(n + 1, K). Also, the projectivities of
P" with A € GL(n+1,F,) is denoted by PGL(n+1, q) := PGL(n+1,F,) < PGL(n+1, K).

Definition 4.2.2. Let F and G hypersurfaces. We say that F and G are projectively
equivalent over F, denoted by F ~,,,; G, if there is a projectivity p with A € GL(n+1,F,)
such that

o(F) =G.
Definition 4.2.3. A point P = (xo:xy: - : x,) of X is singular if
oF oF oF
67‘X0($07x17--. 7xn) frd aXl(xO,x17-.. 7Z'U7’L> = e e . = 87&(%071’17.-- 71"”) :0'

Otherwise, P is nonsingular (or smooth) and the tangent hyperplane at P is

oF oF
Tp(X):=v (aXO(xo,xl, e xy) - Xo+ o+ E(xo,xl,-'- ,Tp) - Xn) )
In (HOMMA; KIM, 2017), Homma and Kim gave an upper bound for the
number N, (X) := |X(F,)| of F,-rational points of a nonsingular hypersurface X defined

over [F, in an odd-dimensional projective space P":

Theorem 4.2.4. (HOMMA; KIM, 2017, Theorem 1.1) Let n be an odd integer at least 3.
If X is a nonsingular hypersurface of degree d > 2 in P" defined over F, . Then

No(X) < b3 (m) ((d = 1)g™ + 1), (4.2)

where 2m = n — 1 and 0,(m) := [P™(F,)| = ¢" + --- + ¢ + 1. Also, equality holds if and
only if either

(i) d =2 and X is a nonsingular hyperbolic quadric hypersurface, that is, X is projectively

equivalent over F, to the hypersurface

(n—1)/2
Z X9iXoiy1 =0; or

1=0

(i) d = \/q+ 1, where q is square, and X is a nonsingular Hermitian hypersurface, that

is, X 1is projectively equivalent over Fy to the hypersurface

(n—1)/2
2 (XfXQiH +X2¢X2\ﬁ1> =0; or

1=0
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(i) d = ¢+ 1 and X is a nonsingular P"-filling hypersurface over F,, that is, X is
projectively equivalent over Fy to the hypersurface
(n—1)/2

D (X§ X + X0 X5,,) = 0.
=0

In the same paper, they also conjectured the following for the even-dimensional

case: if X < P" is a nonsingular hypersurface defined over I, of degree d with n even, then
N,(X) < 0% :=0,(m—1)((d—1)g™ + 1) (4.3)
where 2m = n.

This conjecture was then proved by Datta in the case n = 4:

Theorem 4.2.5. (DATTA, 2019, Theorem 4.8) Fiz a positive integer d with 2 < d < q.
Let X < P* be a nonsingular threefold of degree d defined over F,. If (d,q) # (4,4) we
have,

Ny(X)<(d—-1)¢* + (d—1)¢* + g + 1.
Moreover, the bound is attained by a nonsingular threefold X of degree d only if there
ezists a point P € X(F,) such that X N Tp(X) is a cone, with center at P, over a plane

curve C of degree d defined over F, that does not contain a line defined over F, and
N,(C)=(d—1)g+1.

For n > 6, this conjecture was then proved by Tironi:

Theorem 4.2.6. (TIRONI, 2022, Theorem 2) Let X™ < P"*! be a nonsingular hypersur-
face of degree d = 2 defined over F, with n =5 an odd integer. If d < q, then

N,(X) < 0%,

Moreover, the equality is reached by a nonsingular hypersurfaces X™ < P only if there
exists an F,-point P € X" such that X" n Tp(X™) is a cone P+ Y with vertex P over a

nonsingular hypersurface ) < P*~' such that N (J) = @fﬂz.

Also, in the same paper, Tironi proof the case d = ¢ + 1 for n = 4.

Here, a link with curves that are optimal with respect to the Sziklai bound
appears when considering hypersurfaces attaining (4.3). In fact, let X be a hypersurface
in P* attaining the bound (4.3); then, by Theorem 4.2.5, there exists a point P € X (F,)
such that X n Tp(X) is a cone with center P over a plane curve C of degree d defined over
[F, without FF,-linear components and N,(C) attains the Sziklai bound. Also, by (TIRONI,
2022, Theorem 1), this curve must be nonsingular. For n > 6, by Theorem 4.2.6, we
have an analogous result. Therefore, the extremal hypersurfaces in even dimension can be
characterized inductively by starting with the ones in P*, which in turn can be constructed
from optimal Sziklai curves. This gives a possible application of the classification of

extremal Sziklai curves, and in particular, of Theorem 3.2.4.
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4.3 Future Work

As mentioned earlier, a potential application of the classification of extremal
Sziklai curves is the inductive characterization of extremal nonsingular hypersurfaces in

even dimensions. In this final section, we will examine specific cases.

Since the characterization may be done inductively, first consider the case in
P*: in this case, the upper bound of Theorem 4.2.5 is attained by a nonsingular threefold
X of degree d only if there exists a point P € X(F,) such that X n Tp(X) is a cone, with
center at P, over a nonsingular plane curve C of degree d defined over F, that does not
contain a line defined over F, and N,(C) = (d — 1)q + 1. Hence, its degree d must belong
to the set

{2,va+1,q—1,¢q,q+ 1}.
Now, fixe X < P* be a nonsingular threefold of degree d defined over F,.

Definition 4.3.1. We say that P € X (F,) is of cone type over a plane curve C if X n'Tp(X)

is a cone, with center at P, over a plane curve C of degree d.

A natural question is the following:

Question 2. To guarantee that Ny(X) = (d — 1)¢* + (d — 1)¢*> + ¢ + 1, how many points
P e X(F,) of cone type over a nonsingular optimal Sziklai curve C of degree d must there

be at a minimum?

First, we will examine the known cases. We are aware that the nonsingular
quadric Q < P* over F, and the nonsingular Hermitian ‘H < P* over [F,2 attained the limit
of Theorem 4.2.5. In this case, by (HIRSCHFELD; THAS, 1991, Section 1.3 and 2.2) and
(TIRONI, 2022, Proposition 6), all points are of cone type over a nonsingular optimal

Sziklai curve.

Now, we will determine the minimum number of points of cone type that should

exist.

Proposition 4.3.2. If N,(X) = (d — 1)¢° + (d — 1)¢* + q + 1, then there exists at least
q+ 1 point P e X(F,) of cone type.

Proof. Suppose that N,(X) = (d — 1)¢* + (d — 1)¢* + ¢ + 1 and that there exist a point
P e X(F,) not of the cone type over a nonsingular optimal Sziklai curve C of degree d. By
(DATTA, 2019, Lemma 4.2), |X(F,) n Tp(X)°| < (d — 1)¢*. Hence,

[X(Fy) nTp(X)] = (d—1)¢* +q+ 1.
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Let r := #L,(P, X), where L, (P, X) is the set of lines defined over F, satisfying
Pelc X. By (DATTA, 2019, Lemma 4.3), we must have r > 1. If [ € P(F,)\Ly(P, X)
and [ < Tp(X), then |X(F,) n (I\{P})] <d—2. So

(d—1)¢* +q+1<|X(F,) nTp(X)

<1+ (@P+qg+1-7)(d-2)+rqg
=1+ (*+q+1)(d—2)+r(g+2—d).
This implies that » > ¢ + 1. Now, by proof of (DATTA, 2019, Theorem 4.8), for each line
le L, (P, X) there exists a point of cone type over a nonsingular optimal Sziklai curve C

of degree d. Hence, exists at least ¢ + 1 point of cone type.

O
Also, the lower bound g + 1 cannot be improved:
Example 4.3.3. Consider the following polynomial F € Fo| Xg, X1, X2, X3, X4]:

F = X§Xi + Xo X7 + Xo X1 X2 + Xo X5 + X1 X5 + X3 + XoXo X3 + X5 X3 + XJXu+
+ Xo X1 X4 + X1 Xo Xy + Xo X3 Xy + Xo X3 Xy + X2X, + Xo X7 + X3X].

Then, X = v(F) € P* is a nonsingular hypersurface of degree 3 over Fy with N, (X) =
27=(d—1)¢* + (d—1)¢* + g+ 1. Let

P :=(0:1:0:1:0), P,:=(1:0:1:0:1), Py:=(1:1:1:1:1)e X(F,).

We see from Magma program

q := 2;
d := q + 1;

F<t> := GF(q);

P/<z0,z1,22,23,24> := ProjectiveSpace(F, 4);

F1 := 207 2%zl + z0x*xxl1 2 + zO0*xzl*xz2 + xzO0*x2 2 + xTl*x272 +

T2 73 + zO0*x2*xx3 + x2 2*xx3 + x0 2*x4f + xO*xTl*xT4 + TI1*T2*T4 +

cO*T3*xT4 + T2*T3*xT4 + T3 2*xT4 + T2*T4 2 + T3*T4 2;

X := Scheme(P4,[F1]);

u := #Points (X);

PX := Points (X);

for = 4n [1 .. u] do

P := Points(X)[z];

Tp := TangentSpace(X,P);
S := Tp meet X;

TC := TangentCone(S,P);
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1f TC eq S then
25
end 1f;

end for;

that P; is a point of cone type over a nonsingular optimal Sziklai curve C of degree 3 for
i =1,2,3 and no other point of X(F,) satisfies this condition.

Indeed, for d € {g —1, ¢, ¢+ 1}, not all F,-rational points of X" are of cone type:
let P e X(F,) be a point of cone type, then

#(1n X(F,)) e {1,d,q+1} forle P(F,).

On the other hand, for a Sziklai optimal curve of degree d € {q — 1, ¢, q + 1} there exists a
F,-line [ such that #(I n X(F,)) = d — 1. Therefore, not all F -rational points of X" are of
cone type. We can see this by (HIRSCHFELD; THAS, 1980, Theorem 29), if all F,-rational
points of X are of cone type, then X (F,) is of type (1,d, ¢ + 1); hence, X(F,) n Tp(X) is
of type (1,d,q + 1) in Tp(X) ~ P?, but there is no set of type (1,d, ¢ + 1) in P*(F,) with
(d—1)¢*+q+1 (= #(X(F,) n Tp(X)) if P e X(F,) is of cone type) points. Also, the

existence of ¢ + 1 points is not enough for the hypersurface to be extremal:

Example 4.3.4. Consider the following polynomial F € F5[Xq, X1, Xo, X3, X4]:
F=X+X!—2X;+ X4 — X}
Then, X = v(F) < P* is a nonsingular hypersurface of degree 4 over Fs with
N,(X) =316 < 456 = (d — 1)¢° + (d — 1)¢* + ¢ + 1.

Again, by Magma program

q := 5;

d := q - 1;

F<t> := GF(q);

P4<z0,z1,z2,23,24> := ProjectiveSpace (F, 4);
F1 := 20°d + z1°d - 2*z2°d + 23°d - x4 °d;
X := Scheme(P4,[F1]);

u := #Points (X);

PX := Points(X);

for = 4n [1 .. u] do

P := Points (X)[z];

Tp := TangentSpace(X,P);

S := Tp meet X;
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TC := TangentCone (S,P);
1f TC eq S then

P;

end 1f;

end for;
All points of cone type are listed below:

{(1:0:0:0:1),(2:0:0:0:1),(3:0:0:0:1),(4:0:0:0:1),
(0:0:0:1:1),(0:0:0:2:1),(0:0:0:3:1),(0:0:0:4:1),
(0:1:0:0:1),(0:2:0:0:1),(0:3:0:0:1),(0:4:0:0:1)},

that is, X is not extremal and has 12 ( > 6 = g+ 1 ) point of cone type.

The last example (Example 4.3.4) contains more than ¢ + 1 points of cone
type. However, there is a potentially important difference when compared to Example
4.3.3, which has ¢ + 1 aligned points of cone type (something that does not occur in
Example 4.3.4). We still do not have any concrete example of the existence of these
hypersurfaces, we believe that they do not exist due to the specific structure they must

have for d e {¢ — 1,q,q + 1} with ¢ > 2.
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